
Chapter 7

MicrosoftÒ DirectXÔ 3
Software Development
Kit

DirectSetup

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names herein may be the trademarks of their respective
owners.

3

C H A P T E R 7

About DirectSetup..
DirectSetup Overview..

Using the DirectXSetup Function...
Preparing a DirectX Application for Installation...
Enabling AutoPlay..

DirectSetup Reference..
Functions...
Structure..
Return Values..

DirectSetup

About DirectSetup
DirectSetup is a simple application programming interface (API) that provides
you with a one-call installation for the DirectX™ 3 components. This is much
more than a convenience; DirectX 3 is a complex product, and its installation is
an involved task. You should not attempt a manual installation of DirectX 3.

In addition, DirectSetup provides an automated way to install the appropriate
Microsoft® Windows® registry information for applications that use the
DirectPlayLobby object. This registry information is required for the
DirectPlayLobby object to enumerate and start the application.

Although DirectSetup provides three API functions, only two are useful to you as
an application developer. The other, DirectXDeviceDriverSetup, is designed for
those who plan to install their own DirectX device drivers and is not addressed in
this document.

DirectSetup Overview
This section contains general information about the DirectSetup component. The
following topics are discussed:

Using the DirectXSetup Function
Preparing a DirectX Application for
Installation
Enabling AutoPlay

Using the DirectXSetup Function
Applications and games that depend on DirectX use the DirectXSetup API
function to install their system components on top of an existing Windows
installation. This function updates the display and audio drivers to support
DirectX (if required) during the DirectX installation process. DirectXSetup is
provided to each application from the Dsetup.dll that is included with your
product. You can find the declarations for DirectSetup in Dsetup.h.

Applications that use DirectXSetup must distribute the entire contents of the
Redist directory, not just the contents of the \Redist\Directx directory. Although
DirectXSetup allows you to install a single DirectX component, such as
DirectDraw®, it is not recommended; the space-saving advantages are minimal
because of the interdependent design of DirectX components. Applications must
distribute the entire DirectX system, even if they use only one DirectX
component.

Chapter 7 DirectSetup 5

Preparing a DirectX Application for
Installation
When you are ready to create a way to install your application and the DirectX
files on a user's system, you need to create a setup program that lists the files in
your application, determines the amount of disk space required, and loads the
appropriate DirectX files. You also need to create a directory on your distribution
medium. You will place all the application's files and any additional DirectX
components in this directory. The following topics describe these steps:

· Creating the Setup Program
· Setting Up the Application Directory

Creating the Setup Program
Included with this SDK is an example setup program that you can use as a model
for your application. The setup program, called Dinstall and located in the \
Dxsdk\Sdk\Samples\Setup directory, demonstrates how to load a sample program
called Rockem in a selected directory. It also demonstrates one way to configure
the DirectXSetup function.

The following steps describe how you can modify the Dinstall.c program to work
for your application:

1 In an editor, open Dinstall.c.
2 You need to provide a list of your application's files that you want to load on a

user's system. To modify the list in the Dinstall.c file to fit your application's
needs, search for "copy_list", and then change the list of files in this structure to
the list of files for your application.
Dinstall installs files only in the default directory. If you want some of your
application's files to be installed in a subdirectory, you need to modify Dinstall.c.

3 The Dinstall.c program does not determine whether enough free hard disk space
is available on the user's system to successfully install your application. You
should, however, add this functionality by writing your own code. To find the
two locations in the Dinstall.c file to insert this code, search for
"IDS_DISK_MSG".

4 The lpszRootPath parameter of DirectXSetup specifies the path to the
Dsetup*.dll files (Dsetup.dll, Dsetup6e.dll, Dsetup6j.dll, Dsetupe.dll, and
Dsetupj.dll) and the Directx directory on your distribution media. These
dynamic-link libraries and this directory should be located in the same directory
as the Dinstall executable (after it is compiled), unless there is an overwhelming
reason to do otherwise. If all these files and directories are located in the same
directory, the value of the lpszRootPath parameter should be set to NULL. This
ensures that if the path changes when the files are placed on a compact disc or
floppy disks from the root of the application, DirectXSetup will still function
properly.

For example, suppose Dinstall.exe, Dsetup*.dll, and the Directx directory are
located in an application directory called D:\Funstuff during the testing phase.
Then, when you burn the files on a compact disc, suppose you put them in the
root. If the lpszRootPath parameter is set to "\FUNSTUFF", the setup program
(Dinstall.exe) will not function from the compact disc. However, if the
lpszRootPath parameter is set to NULL, the setup program will function in both
cases, because the path to Dsetup*.dll, and the Directx directory are still in the
current directory.
If you decide to place the Dsetup*.dll files and the Directx directory somewhere
other than in the directory that contains Dinstall.exe, you must pass the correct
parameters to DirectXSetup and load Dsetup.dll correctly. The lpszRootPath
parameter of DirectXSetup should contain the full path to Dsetup.dll. In
addition, you need to use the LoadLibrary and GetProcAddress Win32®
functions in your setup program to locate Dsetup.dll.

The content of the Setup dialog box is determined by data supplied in the
Dinstall.rc resource file. To display your application's name and graphics, make
the following changes to this resource file:

1 In an editor, open Dinstall.rc.
2 Search for all occurrences of "Rockem" and change them to the name of your

application.
3 The graphics that are displayed in the Setup and Reboot dialog boxes are called

Signon.bmp and Reboot.bmp in the resource file. You can either name your
bitmap files these names, or you can change the names in the resource file to
match the names of your bitmaps.

4 The icon for the Dinstall executable is called Setup.ico in the resource file, and it
is specified by SETUP_ICON. You can either name your icon file Setup.ico, or
you can change the name in the resource file to match the name of your icon file.

5 Optionally, you can change the default directory your application is installed in.
To do this, search for "IDS_DEFAULT_GAME_DIR" (it is located in two places
in the resource file) and change the path of the default directory.

After you have modified the Dinstall.c and Dinstall.rc files to fit your
application's needs, you can compile them into the Dinstall.exe executable. You
can also rename this executable (to Setup.exe, for example).

Setting Up the Application Directory
Before you commit your application to a compact disc or floppy disks, you
should create an application directory to test your setup program. The application
directory should contain all your application files, the setup program, and the
DirectX files and drivers.

To set up the application directory, carry out the following steps:

Chapter 7 DirectSetup 7

1 Create a directory that includes all your application's files. Be sure to create any
subdirectories if needed, and place the appropriate application files in the
subdirectories.

2 Copy the setup executable you wrote to the root of your application directory.
3 At the MS-DOS prompt, use the xcopy command to copy the Redist directory on

the DirectX 3 compact disc to the root of your application directory. For
example, if your application's root directory is D:\Fungame, and the E: drive is
your CD-ROM drive, type the following:
xcopy /s e:\redist*.* d:\fungame

The root of your application directory should include the entire contents of the
Redist directory distributed on the DirectX 3 SDK to ensure that the
DirectXSetup function and the Dxsetup.exe file work properly.

After you copy all the appropriate files to the root application directory, it will
look similar to this:

 Volume in drive D is SYSTEM
 Directory of D:\FUNGAME

. <DIR> 07-26-96 6:43a .

.. <DIR> 07-26-96 6:43a ..
directx <DIR> 07-26-96 6:43a directx
dsetup dll 22,016 07-26-96 4:38a dsetup.dll
dsetup6e dll 36,224 07-26-96 4:38a dsetup6e.dll
dsetup6j dll 36,224 07-26-96 4:38a dsetup6j.dll
dsetupe dll 42,496 07-26-96 4:38a dsetupe.dll
dsetupj dll 42,496 07-26-96 4:38a dsetupj.dll
dinstall dll 168,960 07-26-96 4:38a dinstall.dll
yourfile exe 96,442 07-26-96 4:39a yourfile.exe
yourfile dat 1,508,228 07-26-96 4:39a yourfile.dat
...

Enabling AutoPlay
If you are building an AutoPlay compact disc title, you can copy the Autorun.inf
file in the root directory of the DirectX 3 SDK compact disc to the root of your
application directory. This text file contains the following information:

[autorun]
OPEN=SETUP.EXE

If your application's setup program is called Setup.exe, you will not have to make
any changes to this file; otherwise, edit this file to contain the name of your setup

Note

program. For more information about the Autorun.inf file, see The Autorun.inf
File.

DirectSetup Reference
Functions

DirectXRegisterApplication
int WINAPI DirectXRegisterApplication(HWND hWnd,
 LPDIRECTXREGISTERAPP lpDXRegApp);

Registers an ISV's game as an application designed to work with
DirectPlayLobby.

· Returns TRUE if successful, or FALSE otherwise. If FALSE is returned, use the
GetLastError Win32 function to get extended error information.

hWnd
Handle of the parent window. If this parameter is set to NULL, the desktop is the
parent window.

lpDXRegApp
Address of the DIRECTXREGISTERAPP structure that contains the registry
entries. These entries need to be filled in.

DirectXSetup
int WINAPI DirectXSetup(HWND hWnd, LPSTR lpszRootPath,
 DWORD dwFlags);

Installs one or more DirectX components.

· Returns SUCCESS if successful, or an error otherwise. For a list of possible
return codes, see DirectSetup Return Values.

hWnd
Handle of the parent window for the setup dialog boxes.

lpszRootPath
Address of a string that contains the root path of the DirectX component files.
This string must specify a full path to the directory that contains the Dsetup.dll
file. (This directory is typically Redist.) If you are certain the current directory
contains Dsetup.dll and the Directx directory, this parameter can be NULL.

dwFlags
One or more flags used to indicate which DirectX components should be
installed. A full installation (DSETUP_DIRECTX) is recommended.

Chapter 7 DirectSetup 9

DSETUP_D3D Installs Direct3D™.
DSETUP_DDRAW Installs DirectDraw.
DSETUP_DDRAWDRV Installs DirectDraw device drivers.
DSETUP_DINPUT Installs DirectInput™.
DSETUP_DIRECTX Installs all DirectX components.
DSETUP_DIRECTXSETUP Installs DirectXSetup DLLs.
DSETUP_DPLAY Installs DirectPlay®.
DSETUP_DPLAYSP Installs DirectPlay service

providers.
DSETUP_DSOUND Installs DirectSound®.
DSETUP_DSOUNDDRV Installs DirectSound device drivers.
DSETUP_DVIDEO Installs DirectVideo.
DSETUP_PROMPTFORDRIVERS Prompts before replacing display

and audio device drivers.
DSETUP_RESTOREDRIVERS Restores display and audio drivers.

Before you use DirectXSetup in your setup program, you should ensure that
there is at least 5 MB of available disk space on the user's system. This is the
maximum space required for DirectX to set up the appropriate files. If the user's
system already contains the DirectX files, this space is not needed.

Structure

DIRECTXREGISTERAPP
typedef struct _DIRECTXREGISTERAPP {
 DWORD dwSize;
 DWORD dwFlags;
 LPSTR lpszApplicationName;
 LPGUID lpGUID;
 LPSTR lpszFilename;
 LPSTR lpszCommandLine;
 LPSTR lpszPath;
 LPSTR lpszCurrentDirectory;
} DIRECTXREGISTERAPP, *PDIRECTXREGISTERAPP, *LPDIRECTXREGISTERAPP;

Contains the registry entries needed for applications designed to work with
DirectPlayLobby.

dwSize
Size of the structure.

dwFlags
Reserved for future use.

lpszApplicationName
Name of the application.

lpGUID
Globally unique identifier (GUID) of the application.

lpszFilename
Name of the executable file to be called.

lpszCommandLine
Command-line arguments for the executable file.

lpszPath
Path of the executable file.

lpszCurrentDirectory
Indicates the current directory. This is typically the same as lpszPath.

Return Values
The DirectXSetup function can return the following values.

DSETUPERR_BADSOURCESIZE
A file's size could not be verified or was incorrect.

DSETUPERR_BADSOURCETIME
A file's date and time could not be verified or were incorrect.

DSETUPERR_BADWINDOWSVERSION
DirectX does not support the Windows version on the system.

DSETUPERR_CANTFINDDIR
The setup program could not find the working directory.

DSETUPERR_CANTFINDINF
A required .inf file could not be found.

DSETUPERR_INTERNAL
An internal error occurred.

DSETUPERR_NOCOPY
A file's version could not be verified or was incorrect.

DSETUPERR_NOTPREINSTALLEDONNT
The version of Windows NT on the system does not have all the DirectX 3
components installed.

DSETUPERR_OUTOFDISKSPACE
The setup program ran out of disk space during installation.

DSETUPERR_SOURCEFILENOTFOUND
One of the required source files could not be found.

DSETUPERR_UNKNOWNOS

Chapter 7 DirectSetup 11

The operating system on your system is not currently supported.
DSETUPERR_USERHITCANCEL

The Cancel button was pressed before the application was fully installed.
SUCCESS

A 0 is returned if the setup was successful and no restart is required.
A 1 is returned if the setup was successful and a restart is required.

	About DirectSetup
	DirectSetup Overview
	Using the DirectXSetup Function
	Preparing a DirectX Application for Installation
	Creating the Setup Program
	Setting Up the Application Directory

	Enabling AutoPlay

	DirectSetup Reference
	Functions
	DirectXRegisterApplication
	DirectXSetup

	Structure
	DIRECTXREGISTERAPP

	Return Values

