
Chapter 3

MicrosoftÒ DirectXÔ 3
Software Development
Kit

DirectSound

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names herein may be the trademarks of their respective
owners.

3

C H A P T E R 3

About DirectSound...
DirectSound Architecture...

Architectural Overview...
Object Types...
Software Emulation..
Device Drivers..
Cooperative Levels...
System Integration..

DirectSound Overview...
DirectSound Features..
Three-Dimensional Sound..

DirectSound Interface Overviews..
IDirectSound Interface..
IDirectSound3DBuffer Interface..
IDirectSound3DListener Interface..
IDirectSoundBuffer Interface...

DirectSound Examples...
Creating a DirectSound Object...
Creating a DirectSound Object by Using CoCreateInstance.....................................
Querying the Hardware Capabilities..
Creating Sound Buffers...
Writing to Sound Buffers..
Using the DirectSound Mixer...
Using a Custom Mixer..
Using Compressed Wave Formats..

DirectSound Reference...
Functions...
Callback Function...
IDirectSound...
IDirectSound3DBuffer..
IDirectSound3DListener...
IDirectSoundBuffer...
Structures...
Return Values..

DirectSound

About DirectSound
The Microsoft® DirectSound® application programming interface (API) is the
audio component of the DirectX™ 3 Software Development Kit (SDK).
DirectSound provides low-latency mixing, hardware acceleration, and direct
access to the sound device. It provides this functionality while maintaining
compatibility with existing Windows®-based applications and device drivers.

DirectX 3 allows you access to the display and audio hardware while insulating
you from the specific details of that hardware. The overriding design goal in
DirectX 3 is speed. Instead of providing a high-level set of functions,
DirectSound provides a device-independent interface, allowing applications to
take full advantage of the capabilities of the audio hardware.

DirectSound Architecture
This section contains general information about the relationship between the
DirectSound component and the rest of DirectX, the operating system, and the
system hardware. The following topics are discussed:

· Architectural Overview
· Object Types
· Software Emulation
· Device Drivers
· Cooperative Levels
· System Integration

Architectural Overview
Programming for high-performance applications and games requires efficient and
dynamic sound production. Microsoft provides two methods for achieving this:
MIDI streams and DirectSound. MIDI streams are actually part of the Windows
95 multimedia API. They provide the ability to time stamp MIDI messages and
send a buffer of these messages to the system, which can then efficiently
integrate them with its processes. For more information about MIDI streams, see
the documentation included with the Microsoft Win32® Software Development
Kit (SDK).

DirectSound implements a new model for playing digitally recorded sound
samples and mixing sample sources. As with other object classes in the DirectX 3
SDK, DirectSound uses the hardware to its greatest advantage whenever possible,
and it emulates hardware features in software when the feature is not present in

hardware. You can query hardware capabilities at run time to determine the best
solution for any given personal computer configuration.

DirectSound is built on the IDirectSound and IDirectSoundBuffer COM-based
interfaces, and it is extensible to other interfaces. For more information about
COM concepts that you should understand to create applications with the DirectX
3 SDK, see The Component Object Model.

The DirectSound object represents the sound card and its various attributes. An
application creates the DirectSoundBuffer object by using the DirectSound
object's IDirectSound::CreateSoundBuffer method. The DirectSoundBuffer
object represents a buffer containing sound data. Several DirectSoundBuffer
objects can exist and be mixed together in the primary DirectSoundBuffer object.
DirectSound buffers are used to start, stop, and pause sound playback, as well as
to set attributes such as frequency, format, and so on.

Depending on the card type, DirectSound buffers can exist in hardware as
onboard RAM, wave-table memory, a direct memory access (DMA) channel, or
a virtual buffer (for an I/O port-based audio card). Where there is no hardware
implementation of a DirectSound buffer, it is emulated in system memory.

The primary sound buffer is typically used to mix sound from secondary sound
buffers, but it can be accessed directly for custom mixing or other specialized
activities. (Use caution in locking the primary buffer, because it blocks all access
to the sound hardware from other sources.)

The secondary buffers can store common sounds played throughout an
application, such as in a game. The application can play a sound stored in a
secondary buffer as a single event or as a looping sound that plays repeatedly.

Secondary buffers can also play sounds that are larger than the available sound-
buffer memory. When the secondary buffer is used to play a sound that is larger
than the sound-buffer memory, the secondary buffer serves as a queue that stores
the portions of the sound about to be played.

Object Types
The most fundamental type of object is the DirectSound object, which represents
the sound card itself. The IDirectSound Component Object Model (COM)
interface controls the DirectSound object; the methods of this interface allow the
application to change the characteristics of the card.

The second type of object is a sound buffer. DirectSound uses primary and
secondary sound buffers. Primary sound buffers represent the audio data that is
actually heard by the user, while secondary sound buffers represent individual
source sounds. DirectSound provides controls for primary and secondary sound
buffers in the IDirectSoundBuffer interface.

Chapter 3 DirectSound 7

Primary buffers control sound characteristics, such as output format and total
volume. Also, your application can write directly to the primary buffer. In this
case, however, the DirectSound mixing and hardware-acceleration features are
not available. In addition, writing directly to the primary buffer can interfere with
other DirectSound applications. When possible, your application should write to
secondary buffers instead of the primary buffer. Secondary buffers allow the
system to emulate features that might not be present in the hardware; they also
allow an application to share the sound card with other applications in the system.

Secondary buffers represent single sound sources that an application uses. An
application can play or stop each buffer independently. DirectSound mixes all
playing buffers into the primary buffer, and then it outputs the primary buffer to
the sound device. Secondary buffers can reside in hardware or system buffers;
hardware buffers are mixed by the sound device without any system-processing
overhead.

Secondary sound buffers can be either static or streaming sound buffers. A static
sound buffer means that the buffer contains an entire sound. A streaming sound
buffer means that the buffer contains only part of a sound, and, therefore, your
application must continually write new data to the buffer while it is playing.
DirectSound attempts to store static buffers by using sound memory located on
the sound hardware, if available. Buffers stored on the sound hardware do not
consume system processing time when they are played because the mixing is
done in the hardware. Reusable sounds, such as gunshots, are perfect candidates
for static buffers.

Your applications will work with two significant positions within a sound buffer:
the current play position and the current write position. The current play position
indicates the location in the buffer where the sound is being played. The current
write position indicates the location where you can safely change the data in the
buffer. The following illustration shows the relationship between these two
positions.

Although DirectSound buffers are conceptually circular, they are implemented by
using contiguous, linear memory. When the current play position reaches the end
of the buffer, it wraps back to the beginning of the buffer.

This section discusses the DirectSound object, the DirectSoundBuffer object, and
how your applications can use these objects.

· The DirectSound Object
· The DirectSoundBuffer Object

The DirectSound Object
Each sound device installed in the system is represented by a DirectSound object
that is accessed through the IDirectSound interface. Your application can create a
DirectSound object by calling the DirectSoundCreate function that returns an
IDirectSound interface. DirectSound objects installed in the system can be
enumerated by calling the DirectSoundEnumerate function.

Windows is a multitasking operating system. Typically, users run several
programs at once and expect them all to share resources. DirectSound objects
share sound devices by tracking the input focus. They produce sound only when
their owning application has the input focus. When an application loses the input
focus, the audio streams from that object are muted. Multiple applications can
create DirectSound objects for the same sound device. When the input focus
changes between applications, the audio output automatically switches from one
application's streams to another's. As a result, applications do not have to
repeatedly play and stop their buffers when the input focus changes.

The header file for DirectSound includes C programming macro definitions for the
methods of the IDirectSound and IDirectSoundBuffer interfaces.

The DirectSoundBuffer Object
Each sound or audio stream is represented by a DirectSoundBuffer object that
your application can access through the IDirectSoundBuffer interface. An
application can create a DirectSoundBuffer object by calling the
IDirectSound::CreateSoundBuffer method, which returns an
IDirectSoundBuffer interface.

Applications can also create primary sound buffers or secondary sound buffers.
In the current implementation, each DirectSound object has only one primary
buffer.

Your application can write data into sound buffers by locking the buffer, writing
data to the buffer, and then unlocking the buffer. A buffer can be locked by
calling the IDirectSoundBuffer::Lock method. This method returns a pointer to
the locked portion of the buffer. After the buffer is locked, your application can
copy audio data to the buffer. After writing data to the buffer, you must unlock
the buffer and complete the write operation by calling the
IDirectSoundBuffer::Unlock method.

Note

Chapter 3 DirectSound 9

The primary sound buffer contains the data that is heard. You can play audio data
from a secondary sound buffer by using the IDirectSoundBuffer::Play method.
This method causes DirectSound to begin mixing the secondary buffer into the
primary buffer. By default, IDirectSoundBuffer::Play plays the buffer once and
stops at the end. You can also play a sound repeatedly in a continuous loop by
specifying the DSBPLAY_LOOPING flag when calling this method. The
application can stop a buffer that is playing by using the
IDirectSoundBuffer::Stop method.

Typically, the duration of a sound determines how your application uses the
associated sound buffer. If the sound data is only a few seconds long, you can use
a static sound buffer to store the sound. If the sound is longer than that, you
should use a streaming sound buffer.

Your application can create a DirectSoundBuffer object that has a static buffer by
using the IDirectSound::CreateSoundBuffer method and specifying the
DSBCAPS_STATIC flag. (If your application does not specify this flag, a
streaming sound buffer is created.) DirectSound attempts to store static buffers by
using sound memory located on the sound hardware, if that memory is available.
Buffers stored on sound hardware do not consume system processing time when
they are played because the mixing is done in the hardware. Reusable sounds,
such as engine roars, cheers, and jeers, are perfect candidates for static buffers.

Streaming buffers can also use hardware mixing if it is supported by the sound
device; however, this is efficient only when your application runs on computers
with fast data buses, such as the peripheral component interconnect (PCI) bus. If
the computer does not have a fast bus, the data-transfer overhead outweighs the
benefits of hardware mixing. DirectSound locates streaming buffers in hardware
only if the sound device is located on a fast bus.

Software Emulation
DirectSound can emulate in software the features that a particular sound card
does not directly support without loss of functionality. Applications can query
DirectSound to determine the capabilities of the audio hardware by using the
IDirectSound::GetCaps method. A high-performance game, for example, can
use this information to scale its audio features.

Device Drivers
DirectSound accesses the sound hardware through the DirectSound hardware-
abstraction layer (HAL), an interface that is implemented by the audio-device
driver. This is a Windows audio-device driver that has been modified to support
the HAL. This driver architecture provides backward compatibility with existing
Windows-based applications. The DirectSound HAL provides the following
functionality:

· Acquires and releases control of the audio hardware
· Describes the capabilities of the audio hardware
· Performs the specified operation when hardware is available
· Fails the operation request when hardware is unavailable

The device driver does not perform any software emulation; it simply reports the
capabilities of the hardware to DirectSound and passes requests from
DirectSound to the hardware. If the hardware cannot perform a requested
operation, the device driver fails the request and DirectSound emulates the
operation.

If a DirectSound driver is not available, DirectSound communicates with the
audio hardware through the standard Windows 95, Windows NT®, or Windows
3.1 audio-device driver. In this case, all DirectSound features are still available
through software emulation, but hardware acceleration is not possible.

Cooperative Levels
DirectSound defines four cooperative levels for sound devices: normal, priority,
exclusive, and write-primary. Applications set a sound device's cooperative level
by using the IDirectSound::SetCooperativeLevel method. Applications can
create global or sticky sound buffers in all cooperative levels except write-
primary.

The normal cooperative level is the lowest level. At the normal level, the
IDirectSoundBuffer::SetFormat and IDirectSound::Compact methods cannot
be called. In addition, the application cannot obtain write access to primary
buffers. All applications using this cooperative level use a primary buffer format
of 22 kHz, stereo sound, and 8-bit samples to make task switching as smooth as
possible.

When using a DirectSound object with the priority cooperative level, the
application has first priority to hardware resources, such as hardware mixing, and
can call IDirectSoundBuffer::SetFormat and IDirectSound::Compact.

When using a DirectSound object with the exclusive cooperative level, the
application has all the privileges of the priority level. In addition, however, when
the application has the input focus, its buffers are the only ones that are audible.
After the input focus is gained, DirectSound restores the application's preferred
wave format, which was defined in the most recent call to
IDirectSoundBuffer::SetFormat. (DirectSound restores the wave format
regardless of the priority level.)

The highest cooperative level is write-primary. When using a DirectSound object
with this cooperative level, your application has direct access to the primary
sound buffer. In this mode, the application must lock the buffer by using the

Chapter 3 DirectSound 11

IDirectSoundBuffer::Lock method and write directly to the primary buffer.
While this occurs, secondary buffers cannot be played.

When the application is set to the write-primary cooperative level and gains the
input focus, all secondary buffers for other applications are stopped and marked
as lost. (These buffers must be restored by using the
IDirectSoundBuffer::Restore method before they can be played again.) When
this application, in turn, loses the input focus, its primary buffer is marked as lost.
It also can be restored after the application regains the input focus.

The write-primary level is not required to create a primary buffer. However, to
obtain access to the audio samples in the primary buffer, the application must be
set to the write-primary level. If the application is not set to this level, then all
calls to IDirectSoundBuffer::Lock and IDirectSoundBuffer::Play fail,
although some methods, such as IDirectSoundBuffer::GetFormat,
IDirectSoundBuffer::SetFormat, and IDirectSoundBuffer::GetVolume, can
still be called successfully.

System Integration
The following illustration shows the relationships between DirectSound and other
system audio components.

Using a device driver for the sound hardware that implements the DirectSound
HAL provides the best performance for playing audio. The device driver
implements each function of the HAL to leverage the architecture of the sound
hardware and provide functionality and high performance. The HAL describes
the capabilities of the hardware to DirectSound and passes requests from
DirectSound to the hardware. If the hardware cannot handle the request, the
driver causes the call to fail. DirectSound then emulates the request in software.

Your application can use DirectSound features even when no DirectSound driver
is present. If the sound hardware does not have an installed DirectSound driver,
DirectSound uses its HAL emulation layer. This layer uses the Windows
multimedia waveform-audio functions.

The DirectSound functions and the waveform-audio functions provide alternative
paths to the waveform-audio portion of the sound hardware. A single device
provides access from one path at a time. If a waveform-audio driver has allocated
a device, an attempt to allocate that same device by using DirectSound will fail.
Similarly, if a DirectSound driver has allocated a device, an attempt to allocate
the device by using the waveform-audio driver will fail.

If your application must use both sets of functions, you should use each set
sequentially. For example, you could open the sound hardware by using the
DirectSoundCreate function, play sounds by using the IDirectSound and
IDirectSoundBuffer interfaces, and close the sound hardware by using the
IDirectSound::Release method. The sound hardware would then be available for
the waveform-audio functions of the Win32 SDK.

Also, if two sound devices are installed in the system, your application can access
each device independently through either DirectSound or the waveform-audio
functions.

The waveform-audio functions continue to be a practical solution for certain
applications. For example, your application can easily play a single sound or
audio stream, such as an introductory sound, by using the PlaySound or
WaveOut function.

Microsoft Video for Windows currently uses the waveform-audio functions to output
the audio track of an audio visual interleaved (.avi) file. Therefore, if your
application is using DirectSound and you play an .avi file, the audio track will not be
audible. Similarly, if you play an .avi file and attempt to create a DirectSound
object, the creation function will return an error.

For now, applications can release the DirectSound object by calling
IDirectSound::Release before playing an .avi file. Applications can then re-create
and reinitialize the DirectSound object and its DirectSoundBuffer objects when the
video finishes playing.

DirectSound Overview
This section contains general information about the DirectSound component. The
following topics are discussed:

· DirectSound Features
· Three-Dimensional Sound

Note

Chapter 3 DirectSound 13

DirectSound Features
This section describes DirectSound's low-latency audio mixing and its ability to
take advantage of accelerated sound hardware. In addition, this section discusses
what you should consider when you design applications that write to a primary
sound buffer.

· Mixing
· Hardware Acceleration
· Write Access to the Primary Buffer

Mixing
The most frequently used feature of DirectSound is the mixing of audio streams
with little latency. Latency is the delay between the time that a sound buffer plays
and the time that the speakers reproduce the sound. Your application can create
one or more secondary sound buffers and write audio data to them. You can
choose to play or stop any of these buffers. DirectSound mixes all playing buffers
and writes the result to the primary sound buffer, which supplies the sound
hardware with audio data. Only the available processing time limits the number
of buffers that DirectSound can mix.

A user perceives no delay between the time that a buffer plays and the time that
the speakers reproduce the sound when the latency is 20 milliseconds or less. The
DirectSound mixer provides 20 milliseconds of latency, so there is no perceptible
delay before play begins. Under these conditions, if your application plays a
buffer and immediately begins a screen animation, the audio and video appear to
start synchronously. However, if DirectSound must use the HAL emulation layer
(if a DirectSound driver for the sound hardware is not present), the mixer cannot
achieve low latency and a hardware-dependent delay (typically 100-150
milliseconds) occurs before the sound is reproduced.

Only buffers from a single application are audible at any given instance because
only one application at a time can open a particular DirectSound device,

Hardware Acceleration
DirectSound automatically takes advantage of accelerated sound hardware,
including hardware mixing and hardware sound-buffer memory. Your application
need not query the hardware or program specifically to use hardware
acceleration.

However, for you to make the best possible use of the available hardware
resources, you can query DirectSound to receive a full description of the
hardware capabilities of the sound device. From this information, you can specify
which sound buffers should receive hardware acceleration.

Because your application determines when to use each effect, when to play each
sound buffer, and what priority each buffer should take, it can allocate hardware
resources as it needs them.

Write Access to the Primary Buffer
The primary sound buffer outputs audio samples to the sound device.
DirectSound provides direct write access to the primary buffer; however, this
feature is useful for a very limited set of applications that require specialized
mixing or other effects not supported by secondary buffers. Gaps in sound are
difficult to avoid when an application writes directly to the primary buffer.
Applications that access the primary buffer directly are subject to stringent
performance requirements.

A primary buffer is typically very small, so if your application writes directly to
this kind of buffer, it must write blocks of data at short intervals to prevent the
previous block in the buffer from repeating. During buffer creation, you cannot
specify the size of the buffer, and you must accept the returned size after the
buffer is created.

When you obtain write access to a primary sound buffer, other DirectSound
features become unavailable. Secondary buffers are not mixed and, consequently,
hardware-acceleration mixing is unavailable. (When DirectSound mixes sounds
from secondary buffers, it places the mixed audio data in the primary buffer.)

Most of your applications should use secondary buffers instead of directly
accessing the primary buffer. Applications can write to a secondary buffer easily
because the larger buffer size provides more time to write the next block of data,
thereby minimizing the risk of gaps in the audio. Even if your application has
simple audio requirements, such as using one stream of audio data that does not
require mixing, it will achieve better performance by using a secondary buffer to
play its audio data.

Three-Dimensional Sound
DirectSound enables an application to change the apparent position of a sound
source, by using the IDirectSound3DBuffer and IDirectSound3DListener
interfaces. Sound sources can be a point from which sounds radiate in all
directions or a cone outside which sounds are attenuated. Applications can also
modify sounds using Doppler shift. Although these effects are audible using
standard loudspeakers, they are more obvious and compelling when the user
wears headphones.

The following topics are discussed in this overview of 3D sound:

· Perception of Sound Positions
· Listeners

Chapter 3 DirectSound 15

· Sound Cones
· Minimum and Maximum Distances
· Position Versus Velocity
· Integration with Direct3D
· Units of Measure and Distance Factors
· Mono and Stereo Sources

Perception of Sound Positions
In the real world, the perception of a sound's position in space is influenced by a
number of factors, including the following:

· Volume. The farther an object is from the listener, the quieter it sounds. This
phenomenon is known as rolloff.

· Arrival offset. A sound emitted by a source to the listener's right will arrive at the
listener's right ear slightly before it arrives at the left ear. (The duration of this
offset is approximately a millisecond.)

· Muffling. The orientation of people's ears ensures that sounds coming from
behind the listener are slightly muffled compared with sounds coming from in
front of the listener. In addition, if a sound is coming from the listener's right, the
sounds reaching the left ear will be muffled by the mass of the listener's head.

Although these are not the only cues people use to discern the position of sound,
they are the main ones, and they are the factors that have been implemented in
DirectSound's positioning system. When hardware that supports 3D sound
becomes generally available, other positioning cues might be incorporated into
the system, including the difference in how high- and low-frequency sounds are
muffled by the mass of the listener's head and the reflections of sound off the
listener's shoulders and external ear parts.

One of the most important sound-positioning cues is the apparent visual position
of the sound source. If a projectile appears as a dot in the distance and grows to
the size of an intercontinental missile before it roars past the viewer's head, for
example, the sound will appear to have gone by the listener without much help
from subtle cues.

Listeners
Listeners experience an identical sonic effect when an object moves in a 90-
degree arc around them or if they move their heads 90 degrees relative to the
object. Programmatically, however, it is often much simpler to change the
position or orientation of the listener than to change to positions of every other
object in a scene. DirectSound exposes this capability through the
IDirectSound3DListener interface.

Sound Cones
A sound with a position but no orientation is a point source; the farther the
listener is from the sound, in any direction, the quieter the sound. A sound with a
position and an orientation is a sound cone.

In DirectSound, sound cones include an inside cone and an outside cone. Within
the inside cone, the volume is at the maximum level for that sound source.
(Because DirectSound does not support amplification, the maximum volume level
is zero; all other volume levels are negative values that represent an attenuation
of the maximum volume.) Outside the outside cone, the volume is the specified
outside volume added to the inside volume. If an application sets the outside
volume to -10,000, for example, the sound source will be inaudible outside the
outside cone. Between the outside and inside cones, the volume changes
gradually from one level to the other. The concept of sound cones is shown in the
following illustration:

Technically, every sound buffer represented by the IDirectSound3DBuffer
interface is a sound cone, but often these sound cones behave like
omnidirectional sound sources. For example, the default value for the volume
outside the sound cone is zero; unless the application changes this value, the
volume will be the same inside and outside the cone, and sound will not have any
apparent orientation. Additionally, you could make the sound-cone angles as
wide as you want, effectively making the sound cone a sphere.

Chapter 3 DirectSound 17

Minimum and Maximum Distances
As a listener approaches a sound source, the sound gets louder. Past a certain
point, however, it isn't reasonable for the volume to continue to increase; either
the maximum (zero) has been reached, or the nature of the sound source imposes
a logical limit. This is the minimum distance for the sound source. Similarly, the
maximum distance for a sound source is the distance beyond which the sound
does not get any quieter.

The minimum distance is especially useful when an application must compensate
for the difference in absolute volume levels of different sounds. Although a jet
engine is much louder than a bee, for example, for practical reasons these sounds
must be recorded at similar absolute volumes (16-bit audio doesn't have enough
room to accommodate such different volume levels). An application might use a
minimum distance of 100 meters for the jet engine and 2 centimeters for the bee.
With these settings, the jet engine would be at half volume when the listener was
200 meters away, but the bee would be at half volume when the listener was 4
centimeters away. This concept is shown in the following illustration:

Position Versus Velocity
Every 3D sound buffer and 3D listener has both a position and a velocity. From a
graphics and animation standpoint, these characteristics seem quite similar. As
one would expect, the position of a 3D sound buffer or listener represents its
location in 3D space. However, the velocity of that buffer or listener does not
represent how fast the object is moving in space. Rather, DirectSound uses the
velocity of a given buffer or listener to calculate Doppler-shift effects.

Velocity adjustments can be useful if you would like to exaggerate the Doppler
shift of an object. For example, imagine that you want the sound of an oncoming
race car to seem as though it is screaming past the listener. If you exaggerate the
effects of Doppler shift for the listener, the exaggeration will affect all sound
buffers that the listener hears. To exaggerate the effect for the race car alone, you
could increase the velocity setting for the car's 3D sound buffer.

The system handles cumulative Doppler-shift effects for you. If your application's
listener and the sound source have velocities, the system automatically calculates
the relationship between the velocities and adjusts the Doppler effect accordingly.

Integration with Direct3D
The IDirectSound3DBuffer and IDirectSound3DListener interfaces are designed
to work together with Direct3D™. The positioning information used by Direct3D
to arrange objects in a virtual environment can also be used to arrange sound
sources. The D3DVECTOR and D3DVALUE types that are familiar to
Direct3D programmers are also used in the IDirectSound3DBuffer and
IDirectSound3DListener interfaces. The same left-handed coordinate system
used by Direct3D is also employed by DirectSound. (For information about
coordinate systems, see 3D Coordinate Systems, in the Direct3D overview
material.)

You can use the system callback mechanism of Direct3D to simplify the
implementation of 3D sound in your application. For example, you could use the
D3DRMFRAMEMOVECALLBACK callback function to monitor the
movement of a frame in an application and change the sonic environment only
when a certain condition has been reached.

Units of Measure and Distance Factors
The default values for the 3D sound effects mimic the natural world. Many
application designers choose to change these values, however, to make the effects
more dramatic. Exaggerated Doppler effects or exaggerated sound attenuation
with distance can make an application more exciting.

DirectSound's 3D effects use meters as the default unit of distance measurements.
If your application does not use meters, it need not convert between units of
measure to maintain compatibility with the component. Instead, the application

Chapter 3 DirectSound 19

can set a distance factor, which is a floating-point value that represents meters per
application-specified distance unit. For example, if your application uses feet as
its unit of measure, it could specify a distance factor of .30480006096, which is
the number of meters in a foot.

Mono and Stereo Sources
Stereo sound sources are not particularly useful in 3D sound environments. In
effect, a stereo signal consists of two separate monaural tracks played
simultaneously on different speakers.

Applications should supply monaural sound sources when using DirectSound's
3D capabilities. Although the system can convert a stereo source into mono, there
is no reason to supply stereo, and the conversion step wastes time.

DirectSound Interface Overviews
This section contains general information about the following DirectSound
interfaces:

· IDirectSound Interface
· IDirectSound3DBuffer Interface
· IDirectSound3DListener Interface
· IDirectSoundBuffer Interface

IDirectSound Interface
A DirectSound object describes the audio hardware on a system. The audio data
itself resides in a buffer called a DirectSoundBuffer object. For more information
about DirectSound buffers, see IDirectSoundBuffer Interface. The IDirectSound
interface enables your application to define and control the sound card, speaker,
and memory environment.

This section describes how your application can retrieve the capabilities of the
system's sound device, create sound buffers, set the configuration of the system's
speakers, and compact hardware memory.

· Device Capabilities
· Creating Buffers
· Speaker Configuration
· Hardware Memory Management

Device Capabilities
After calling the DirectSoundCreate function to create a DirectSound object,
your application can retrieve the capabilities of the sound device by calling the
IDirectSound::GetCaps method. For optimal performance, you should make
this call to determine the capabilities of the resident sound card, then modify its
sound parameters as appropriate.

Creating Buffers
After calling the DirectSoundCreate function to create a DirectSound object and
investigating the capabilities of the sound device, your application can create and
enumerate the sound buffers that contain audio data. The
IDirectSound::CreateSoundBuffer method creates a sound buffer. The
IDirectSound::DuplicateSoundBuffer method creates a second sound buffer
using the same physical buffer memory as the first. If you duplicate a sound
buffer, you can play both buffers independently without wasting buffer memory.

Your application must use the IDirectSound::SetCooperativeLevel method to
set its cooperative level for a sound device before playing any sound buffers.
Most applications use a standard priority level, DSSCL_NORMAL, which
ensures they will not conflict with other applications.

Speaker Configuration
The IDirectSound interface contains two methods that allow your application to
investigate and set the configuration of the system's speakers. These methods are
IDirectSound::GetSpeakerConfig and IDirectSound::SetSpeakerConfig.
Currently recognized configurations include headphones, binaural headphones,
stereo, quadraphonic, and surround sound.

Hardware Memory Management
Your application can use the IDirectSound::Compact method to move any
onboard sound memory into a contiguous block to make the largest portion of
free memory available.

IDirectSound3DBuffer Interface
The IDirectSound3DBuffer interface provides access to the 3D parameters of a
sound buffer. This interface is not supported by all sound buffers.

This section describes how your applications can obtain a pointer to an
IDirectSound3DBuffer interface and manage buffer parameters by using
interface methods. The following topics are discussed:

· Obtaining an IDirectSound3DBuffer Interface Pointer
· Batch Parameter Manipulation

Chapter 3 DirectSound 21

· Minimum and Maximum Distance Values
· Operation Mode
· Position and Velocity
· Sound Projection Cones

Obtaining an IDirectSound3DBuffer Interface
Pointer
To obtain a pointer to an IDirectSound3DBuffer interface, you must first create a
secondary 3D sound buffer. Do this by using the
IDirectSound::CreateSoundBuffer method, specifying the
DSBCAPS_CTRL3D flag in the dwFlags member of the accompanying
DSBUFFERDESC structure. Then, use the
IDirectSoundBuffer::QueryInterface method on the resulting buffer to obtain a
pointer to an IDirectSound3DListener interface for that buffer.

// lpDsbSecondary was created with DSBCAPS_CTRL3D.
hr = lpDsbSecondary->QueryInterface(IID_IDirectSound3DBuffer,
 &lpDs3dBuffer);
 if(SUCCEEDED(hr)) {
 // Set 3D parameters of this sound.
 .
 .
 .
}

DirectSound supports monaural or a stereo wave format for 3D sound buffers.
However, 3D positional sound works best with monaural sounds because the 3D
processing creates a stereo output from a monaural input. If an application uses
stereo sound buffers, the left and right values for each sample are averaged
before the 3D processing is applied. To position the two stereo channels at
different locations, the application must divide the stereo stream into two
monaural streams, and write this data into two monaural sound buffers.

Pan control conflicts with 3D processing. Therefore, if both DSBCAPS_CTRL3D
and DSBCAPS_CTRLPAN are specified, DirectSound causes a creation request to
fail.

Batch Parameter Manipulation
Applications can retrieve or set a 3D sound buffer's parameters individually or in
batches. To set individual values, your application can use the applicable
IDirectSound3DBuffer interface method. However, applications often must set or
retrieve all the values that describe the buffer at once. An application can perform
a batch parameter manipulation in a single call by using the

Note

IDirectSound3DBuffer::GetAllParameters and
IDirectSound3DBuffer::SetAllParameters methods.

Minimum and Maximum Distance Values
Applications can specify minimum and maximum distance values for a 3D sound
buffer. The minimum distance is the distance at which the sound does not get
louder. Conversely, the maximum distance is the distance at which the sound no
longer attenuates. For more information about the relationship between these
values, see Minimum and Maximum Distances.

An application sets and retrieves the minimum distance value by using the
IDirectSound3DBuffer::SetMinDistance and
IDirectSound3DBuffer::GetMinDistance methods. Similarly, it can set and
retrieve the maximum distance value by using the
IDirectSound3DBuffer::SetMaxDistance and
IDirectSound3DBuffer::GetMaxDistance methods.

Operation Mode
Sound buffers have three processing modes: normal, head-relative, and disabled.
Normal processing mode is the default mode. In the head-relative mode, sound
parameters (position, velocity, and orientation) are relative to the listener's
parameters. In this mode, the absolute parameters of the sound are updated
automatically as the listener's parameters change, so that the relative parameters
remain constant. In the disabled mode, 3D sound processing is disabled and the
sound seems to originate from the center of the listener's head.

An application sets the mode for a 3D sound buffer by using the
IDirectSound3DBuffer::SetMode method. This method sets the operation mode
based on the flag the application sets for the first parameter, dwMode.

Position and Velocity
An application can set and retrieve a 3D sound buffer's position in 3D space by
using the IDirectSound3DBuffer::SetPosition and
IDirectSound3DBuffer::GetPosition methods.

To set or retrieve the velocity value that DirectSound uses to calculate Doppler-
shift effects for a listener, use the IDirectSound3DBuffer::SetVelocity and
IDirectSound3DBuffer::GetVelocity methods. A buffer's position is not
affected by its velocity. For more information about the relationship between
position and velocity, see Position Versus Velocity.

Sound Projection Cones
A 3D sound buffer has two sound cones: an inside cone and an outside cone. An
application can set and retrieve the cone angles, maximum and minimum

Chapter 3 DirectSound 23

distances, and position and orientation of a buffer's sound projection cones by
using various IDirectSound3DBuffer methods. For more information about the
behavior and characteristics of sound projection cones, see Sound Cones.

Designing sound cones properly can add dramatic effects to your application. For
example, imagine that you want to use the sound of a ghostly voice. Instead of
simply playing the sound, you could create additional suspense in your
application by using IDirectSound3DBuffer methods. Position the sound source
in the center of a room, setting its orientation toward a door. Then, focus the
sound cones to the width of the door and set the outside cone volume to -10,000
(inaudible). These characteristics, when combined, make it seem that the voice is
emanating from a room that the user passes by.

This section describes how to set the following sound characteristics:

· Cone Angles and Cone Orientation
· Inside and Outside Cone Volumes

Cone Angles and Cone Orientation
An application sets or retrieves the angles that define cones by using the
IDirectSound3DBuffer::SetConeAngles and
IDirectSound3DBuffer::GetConeAngles methods. To set or retrieve the
orientation of sound cones, an application can use the
IDirectSound3DBuffer::SetConeOrientation and
IDirectSound3DBuffer::GetConeOrientation methods.

By default, cone angles are 360 degrees, meaning the object projects sound at the
same volume in all directions. A smaller value means that the object projects
sound at a lower volume outside the defined cone. The outside cone angle must
always be equal to or greater than the inside cone angle.

Inside and Outside Cone Volumes
The outside cone volume represents the additional volume attenuation of the
sound when the listener is outside the buffer's sound cone. This factor is
expressed in hundredths of decibels. By default the outside volume is zero,
meaning the sound cone will have no perceptible effect until this parameter is
changed.

An application sets and retrieves the outside cone volume by using the
IDirectSound3DBuffer::SetConeOutsideVolume and
IDirectSound3DBuffer::GetConeOutsideVolume methods. Keep in mind that
an audible outside cone volume is still subject to attenuation, due to distance from
the sound source.

When the listener is within the sound cone, the normal buffer volume (returned
by the IDirectSoundBuffer::GetVolume method) is used. When the listener is
outside the sound cone, the cone outside volume is applied as well, making the

actual volume the sum of the two. Near the boundary of the cone, the volume
fades smoothly between the two levels to avoid perceptual artifacts.

IDirectSound3DListener Interface
A 3D listener represents the person who hears sounds generated by sound buffer
objects in 3D space. The IDirectSound3DListener interface controls the listener's
position and apparent velocity in 3D space. It also controls the environment
parameters that affect the behavior of the DirectSound component, such as the
amount of Doppler shifting and volume attenuation applied to sound sources far
from the listener.

This section describes how your application can obtain a pointer to an
IDirectSound3DListener interface and manage listener parameters by using
interface methods. The following topics are discussed:

· Obtaining an IDirectSound3DListener Interface Pointer
· Batch Parameter Manipulation
· Deferred Settings
· Distance Factor
· Doppler Factor
· Listener Position and Velocity
· Listener Orientation
· Rolloff Factor

Obtaining an IDirectSound3DListener Interface
Pointer
To obtain a pointer to an IDirectSound3DListener interface, you must first create
a primary 3D sound buffer. Do this by using the
IDirectSound::CreateSoundBuffer method, specifying the
DSBCAPS_CTRL3D flag in the dwFlags member of the accompanying
DSBUFFERDESC structure. Then, use the
IDirectSoundBuffer::QueryInterface method on the resulting buffer to obtain a
pointer to an IDirectSound3DListener interface for that buffer, as shown in the
following example:

// lpDsbPrimary was created by using DSBCAPS_CTRL3D.

hr = lpDsbPrimary->QueryInterface(IID_IDirectSound3DListener,
 &lpDs3dListener);

if(SUCCEEDED(hr)) {
 // Perform 3D operations.
 .

Chapter 3 DirectSound 25

 .
 .
}

Batch Parameter Manipulation
Applications can retrieve or set a 3D listener object's parameters individually or
in batches. To set individual values, your application can use the applicable
IDirectSound3DListener interface method. However, applications often must set
or retrieve all the values that describe the listener at once. An application can
perform these batch parameter manipulations in a single call by using the
IDirectSound3DListener::GetAllParameters and
IDirectSound3DListener::SetAllParameters methods.

Deferred Settings
Every change to a 3D listener parameter requires a recalculation of the 3D
positional filter parameters. Therefore, to get maximum efficiency, your
application can make parameter changes while using the DS3D_DEFERRED flag
in the dwApply parameter of the applicable method. It can then call
IDirectSound3DListener::CommitDeferredSettings when all settings are
complete.

Any deferred settings are overwritten if your application calls the same setting with
the DS3D_IMMEDIATE flag before it calls
IDirectSound3DListener::CommitDeferredSettings. That is, if you set the listener
velocity to (1,2,3) by using the deferred flag and then set the listener velocity to
(4,5,6) with the immediate flag, the velocity will be (4,5,6). Then, if your application
calls the IDirectSound3DListener::CommitDeferredSettings method, the velocity
will still be (4,5,6).

Distance Factor
DirectSound uses meters as the default unit of distance measurements. If your
application does not use meters, it can set a distance factor. For information about
distance factors, see Units of Measure and Distance Factors.

To set a distance factor for an application that uses feet, for example, call the
IDirectSound3DListener::SetDistanceFactor, specifying .30480006096 as the
flDistanceFactor parameter. (This value is the number of meters in a foot.) After
an application sets the distance factor, it can call any methods that apply to that
listener, using the application's native distance unit.

Consequently, an application can retrieve the current distance factor set for a
listener by using the IDirectSound3DListener::GetDistanceFactor method.
The default value is DS3D_DEFAULTDISTANCEFACTOR (1.0), meaning that
one distance unit corresponds to 1 meter. At the default value, a position vector of

Note

(3.0,7.2,-20.9) means that the object is 3.0 m right, 7.2 m above, and 20.9 m
behind the origin. If the distance factor were changed to 2.0, the same position
vector would mean that the object is 6.0 m right, 14.4 m above, and 41.8 m
behind the origin.

Doppler Factor
DirectSound applies Doppler-shift effects to sounds, based on the listener's
velocity in relation to one or more 3D sound buffers. DirectSound can apply to a
sound up to 10 times the Doppler shift experienced in the real world by setting a
Doppler factor. To set this factor, use the
IDirectSound3DListener::SetDopplerFactor method. The Doppler factor can
range from 0 to 10. A value of 0 means no Doppler shift is applied to a sound.
Every other value represents a multiple of the Doppler shift experienced in the
real world. In other words, a value of 1 means the Doppler shift experienced in
the real world is applied to the sound; a value of 2 means two times the Doppler
shift experienced in the real world, and so on. To retrieve the Doppler factor set
for a 3D listener, use the IDirectSound3DListener::GetDopplerFactor method.

Listener Position and Velocity
An application can set and retrieve a listener's position in 3D space by using the
IDirectSound3DListener::SetPosition and
IDirectSound3DListener::GetPosition methods.

To set or retrieve the velocity value that DirectSound uses to calculate Doppler-
shift effects for a listener, use the IDirectSound3DListener::SetVelocity and
IDirectSound3DListener::GetVelocity methods. A listener's position is not
affected by its velocity. For more information about the relationship between
position and velocity, see Position Versus Velocity.

Listener Orientation
The listener's orientation plays a strong role in 3D effects processing.
DirectSound approximates sound cues to provide the illusion that a sound is
generated at a particular point in space. For more information about these cues,
see Perception of Sound Positions.

Listener orientation is defined by the relationship between two vectors that share
an origin: the top and front vectors. The top vector originates from the center of
the listener's head and points straight up through the top of the head. The front
vector also originates from the center of the listener's head, but it points at a right
angle to the top vector, forward through the listener's face. The following
illustration shows the directions of these vectors:

Chapter 3 DirectSound 27

An application can set and retrieve the listener's orientation by using the
IDirectSound3DListener::SetOrientation and
IDirectSound3DListener::GetOrientation methods. By default, the front vector
is (0,0,1.0), and the top vector is (0,1.0,0).

Rolloff Factor
Rolloff is the amount of attenuation that is applied to sounds, based on the
listener's distance from the sound source. DirectSound can apply to a sound up to
10 times the rolloff experienced in the real world by setting a rolloff factor. To
set this factor, use the IDirectSound3DListener::SetRolloffFactor method. The
rolloff factor can range from 0 to 10. A value of 0 means no rolloff is applied to a
sound. Every other value represents a multiple of the rolloff experienced in the
real world. In other words, a value of 1 means the rolloff experienced in the real
world is applied to the sound; a value of 2 means two times the rolloff
experienced in the real world, and so on. To retrieve the rolloff factor, use the
IDirectSound3DListener::GetRolloffFactor method.

IDirectSoundBuffer Interface
The IDirectSoundBuffer interface enables your application to work with buffers
of audio data. Audio data resides in a DirectSound buffer. Your application
creates DirectSound buffers for each sound or audio stream to be played.

The primary sound buffer represents the actual audio samples sent to the sound
device. These samples can be a single audio stream or the mixed output of several
audio streams. Applications typically do not directly access the audio data in a
primary sound buffer. However, the primary buffer can be used for control
purposes, such as setting the output volume or wave format.

A secondary sound buffer represents a single output stream or sound. Your
application can play this buffer into the primary sound buffer. Secondary sound

buffers that play concurrently are mixed into the primary buffer, which is then
sent to the sound device.

DirectSoundBuffer objects are owned by the DirectSound object that created them.
When the DirectSound object is released, all buffers created by that object also will
be released and should not be referenced.

This section discusses how your application can manage sound-buffer playback;
track and control volume, frequency, and pan settings; retrieve sound-buffer
information; and manage memory.

· Play Management
· Sound-Environment Management
· Retrieving Information
· Memory Management

Play Management
Your application can use the IDirectSoundBuffer::Play and
IDirectSoundBuffer::Stop methods to control the real-time playback of sound.
The application can also play a sound by using IDirectSoundBuffer::Play. The
buffer stops automatically when its end is reached. However, if the application
specifies looping, the buffer repeats until the application calls
IDirectSoundBuffer::Stop.

The IDirectSoundBuffer::Lock method retrieves a write pointer to the current
sound buffer. After writing audio data to the buffer, you must unlock the buffer
by using the IDirectSoundBuffer::Unlock method. You should not leave the
buffer locked for extended periods.

To retrieve or set the current position in the sound buffer, call the
IDirectSoundBuffer::GetCurrentPosition or
IDirectSoundBuffer::SetCurrentPosition method.

Sound-Environment Management
To retrieve and set the volume at which a buffer is played, your application can
use the IDirectSoundBuffer::GetVolume and
IDirectSoundBuffer::SetVolume methods. Setting the volume on the primary
sound buffer changes the waveform-audio volume of the sound card.

Similarly, by calling the IDirectSoundBuffer::GetFrequency and
IDirectSoundBuffer::SetFrequency methods, you can retrieve and set the
frequency at which audio samples play. You cannot change the frequency of the
primary buffer.

Note

Chapter 3 DirectSound 29

To retrieve and set the pan, you can call the IDirectSoundBuffer::GetPan and
IDirectSoundBuffer::SetPan methods. You cannot change the pan of the
primary buffer.

Retrieving Information
The IDirectSoundBuffer::GetCaps method retrieves the capabilities of the
DirectSoundBuffer object. Your application can use the
IDirectSoundBuffer::GetStatus method to determine if the current sound buffer
is playing or if it has stopped.

You can use the IDirectSoundBuffer::GetFormat method to retrieve
information about the format of the sound data in the buffer. You also can use the
IDirectSoundBuffer::GetFormat and IDirectSoundBuffer::SetFormat
methods to set the format of the sound data in the primary sound buffer.

After a secondary sound buffer is created, its format is fixed. If you need a secondary
buffer that uses another format, you should create a new sound buffer with this
format.

Memory Management
Your application can use the IDirectSoundBuffer::Restore method to restore
the sound-buffer memory for a specified DirectSoundBuffer object. Although this
is useful if the buffer has been lost, the IDirectSoundBuffer::Restore method
restores only the memory itself. It cannot restore the contents of the memory.
After the buffer memory is restored, the application must write valid sound data
to it.

DirectSound Examples
Your application should follow these basic steps to implement DirectSound:

1 Create a DirectSound object by calling the DirectSoundCreate function.
2 Specify a cooperative level by calling the IDirectSound::SetCooperativeLevel

method. Most applications use the lowest level, DSSCL_NORMAL.
3 Create secondary sound buffers by using the IDirectSound::CreateSoundBuffer

method. Your application need not specify in the DSBUFFERDESC structure
that these buffers are secondary buffers; the creation of secondary buffers is the
default.

4 Load the secondary buffers with data. Use the IDirectSoundBuffer::Lock
method to obtain a pointer to the data area and the IDirectSoundBuffer::Unlock
method to set the data to the device.

5 Use the IDirectSoundBuffer::Play method to play the secondary buffers.

Note

6 Stop all buffers when your application has finished playing sounds by using the
IDirectSoundBuffer::Stop method of the DirectSoundBuffer object.

7 Release the secondary buffers.
8 Release the DirectSound object.

Your application can also perform the following optional items:

· Set the output format of the primary sound buffer by creating a primary buffer
and calling the IDirectSoundBuffer::SetFormat method. This requires your
application to set the cooperative level to DSSCL_PRIORITY before setting the
output format of the primary buffer.

· Create a primary sound buffer and play the buffer by using the
IDirectSoundBuffer::Play method. This guarantees that the primary buffer is
always playing, even if no secondary buffers are playing. This action consumes
some of the processing bandwidth, but it reduces startup time when the first
secondary buffer is played.

This section contains code samples that perform the following common tasks
related to the DirectSound component. An explanation of the code accompanies
each sample.

· Creating a DirectSound Object
· Creating a DirectSound Object by Using CoCreateInstance
· Querying the Hardware Capabilities
· Creating Sound Buffers
· Writing to Sound Buffers
· Using the DirectSound Mixer
· Using a Custom Mixer
· Using Compressed Wave Formats

Creating a DirectSound Object
The easiest way for your application to create a DirectSound object is to call the
DirectSoundCreate function and specify a NULL GUID. The function will then
attempt to create the object corresponding to the wave device of the default
window. You must then call the IDirectSound::SetCooperativeLevel method;
no sound buffers can be played until this call has been made. The following
example demonstrates this process:

LPDIRECTSOUND lpDirectSound;
if(DS_OK == DirectSoundCreate(NULL, &lpDirectSound,
 NULL)) {
 // Creation succeeded.
 lpDirectSound->lpVtbl->SetCooperativeLevel(lpDirectSound,

Chapter 3 DirectSound 31

 hwnd, DSSCL_NORMAL);
 // .
 // . Place code to access DirectSound object here.
 // .
} else {
 // Creation failed.
 // .
 // .
 // .
}

Your application can use the DirectSoundEnumerate function to specify the
particular sound device to create. To use this function, you must create a
DSEnumCallback function and, in most cases, an instance data structure, as
shown in the following example:

typedef struct {
 // Storage for GUIDs.
 // Storage for device description strings.
} APPINSTANCEDATA, *LPAPPINSTANCEDATA;
BOOL AppEnumCallbackFunction(
 LPGUID lpGuid,
 LPTSTR lpstrDescription,
 LPTSTR lpstrModule,
 LPVOID lpContext)
{
 LPAPPINSTANCEDATA lpInstance = (LPAPPINSTANCEDATA)
 lpContext;
 // Copy GUID into lpInstance structure.
 // Strcpy description string into lpInstance
 // structure.
 return TRUE; // Continue enumerating.
}

Then, your application could create the DirectSound object by using the
following example:

AppInitDirectSound()
{
 APPINSTANCEDATA AppInstanceData;
 LPGUID lpGuid;
 LPDIRECTSOUND lpDirectSound;
 HRESULT hr;
 DirectSoundEnumerate(AppEnumCallbackFunction,
 &AppInstanceData);
 lpGuid = AppLetUserSelectDevice(&AppInstanceData);

 // The application should check the return value of
 // DirectSoundCreate for errors.

 hr = DirectSoundCreate(lpGuid, &lpDirectSound, NULL);
 // .
 // .
 // .
}

The DirectSoundCreate function fails if there is no sound device or if the sound
device, as specified by the lpGuid parameter, has been allocated through the
waveform-audio functions. You should prepare your applications for this call to
fail so that they can either continue without sound or prompt the user to close the
application that is using the sound device.

Creating a DirectSound Object by Using
CoCreateInstance
Use the following steps to create an instance of a DirectSound object by using
CoCreateInstance:

1 Initialize COM at the start of your application by calling CoInitialize and
specifying NULL.
if (FAILED(CoInitialize(NULL)))
 return FALSE;

2 Create your DirectSound object by using CoCreateInstance and the
IDirectSound::Initialize method, rather than the DirectSoundCreate function.
dsrval = CoCreateInstance(&CLSID_DirectSound,
 NULL, &IID_IDirectSound, &lpds);
 if(!FAILED(dsrval))
 dsrval = IDirectSound_Initialize(lpds, NULL);

CLSID_DirectSound is the class identifier of the DirectSound driver object class
and IID_IDirectSound is the DirectSound interface that you should use. The lpds
parameter is the uninitialized object CoCreateInstance returns.

Before you use the DirectSound object, you must call IDirectSound::Initialize.
This method takes the driver GUID parameter that DirectSoundCreate typically
uses (NULL in this case). After the DirectSound object is initialized, you can use
and release the DirectSound object as if it had been created by using
DirectSoundCreate.

Before you close the application, shut down COM by using CoUninitialize, as
follows:

CoUnitialize();

Chapter 3 DirectSound 33

Querying the Hardware Capabilities
DirectSound allows your application to retrieve the hardware capabilities of the
sound device being used by a DirectSound object. Most applications will not need
to do this; DirectSound automatically takes advantage of hardware acceleration.
However, high-performance applications can use this information to scale their
sound requirements to the available hardware. For example, your application
might play more sounds if hardware mixing is available.

To retrieve the hardware capabilities, use the IDirectSound::GetCaps method,
which fills in a DSCAPS structure, as shown in the following example :

AppDetermineHardwareCaps(LPDIRECTSOUND lpDirectSound)
{
 DSCAPS dscaps;
 HRESULT hr;
 dscaps.dwSize = sizeof(DSCAPS);
 hr = lpDirectSound->lpVtbl->GetCaps(lpDirectSound,
 &dscaps);
 if(DS_OK == hr) {
 // Succeeded, now parse DSCAPS structure.
 // .
 // .
 // .
 }
 // .
 // .
 // .
}

The DSCAPS structure contains information about the performance and
resources of the sound device, including the maximum resources of each type and
the resources that are currently available. There can be tradeoffs between various
resources; for example, allocating a single hardware streaming sound buffer
might consume two static mixing channels. If your application scales to hardware
capabilities, you should call the IDirectSound::GetCaps method between every
buffer allocation to determine if there are enough resources for the next buffer
creation.

Do not make assumptions about the behavior of the sound device; otherwise, your
application might work on some sound devices but not on others. Furthermore,
future devices might behave differently from existing devices.

When allocating hardware resources, your application should attempt to allocate
them as software buffers instead. Complete access to all hardware resources is
not always available. For example, because Windows is a multitasking operating
system, the IDirectSound::GetCaps method might indicate a free resource, but
by the time you attempt to allocate the resource, it might have been allocated to
another application.

Creating Sound Buffers
This section describes how your application can create simple sound buffers. It
also describes the control options your application can set for each sound buffer it
creates. In addition, you will find information about the differences between
audio data storage in static and streaming sound buffers, hardware and software
sound buffers, and in primary and secondary sound buffers.

· Creating a Basic Sound Buffer
· Control Options
· Static and Streaming Sound Buffers
· Hardware and Software Sound Buffers
· Primary and Secondary Sound Buffers

Creating a Basic Sound Buffer
To create a sound buffer, your application fills a DSBUFFERDESC structure
and then calls the IDirectSound::CreateSoundBuffer method. This creates a
DirectSoundBuffer object and returns a pointer to an IDirectSoundBuffer
interface. Your application can use this interface to write, manipulate, and play
the buffer.

Your application should create buffers for the most important sounds first, and
then create buffers for other sounds in descending order of importance.
DirectSound allocates hardware resources to the first buffer that can take
advantage of them.

The following example illustrates how to create a basic secondary sound buffer:

BOOL AppCreateBasicBuffer(
 LPDIRECTSOUND lpDirectSound,
 LPDIRECTSOUNDBUFFER *lplpDsb)
{
 PCMWAVEFORMAT pcmwf;
 DSBUFFERDESC dsbdesc;
 HRESULT hr;
 // Set up wave format structure.
 memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));
 pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM;
 pcmwf.wf.nChannels = 2;
 pcmwf.wf.nSamplesPerSec = 22050;
 pcmwf.wf.nBlockAlign = 4;
 pcmwf.wf.nAvgBytesPerSec =
 pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;
 pcmwf.wBitsPerSample = 16;
 // Set up DSBUFFERDESC structure.
 memset(&dsbdesc, 0, sizeof(DSBUFFERDESC)); // Zero it out.
 dsbdesc.dwSize = sizeof(DSBUFFERDESC);

Chapter 3 DirectSound 35

 // Need default controls (pan, volume, frequency).
 dsbdesc.dwFlags = DSBCAPS_CTRLDEFAULT;
 // 3-second buffer.
 dsbdesc.dwBufferBytes = 3 * pcmwf.wf.nAvgBytesPerSec;
 dsbdesc.lpwfxFormat = (LPWAVEFORMATEX)&pcmwf;
 // Create buffer.
 hr = lpDirectSound->lpVtbl->CreateSoundBuffer(lpDirectSound,
 &dsbdesc, lplpDsb, NULL);
 if(DS_OK == hr) {
 // Succeeded. Valid interface is in *lplpDsb.
 return TRUE;
 } else {
 // Failed.
 *lplpDsb = NULL;
 return FALSE;
 }
}

Control Options
When creating a sound buffer, your application must specify the control options
needed for that buffer. This can be done with the dwFlags member of the
DSBUFFERDESC structure, which can contain one or more DSBCAPS_CTRL
flags. DirectSound uses the options your application specifies when it allocates
hardware resources to sound buffers. For example, a device might support
hardware buffers but provide no pan control on those buffers. In this case,
DirectSound would use only hardware acceleration if the DSBCAPS_CTRLPAN
flag was not specified.

To obtain the best performance on all sound cards, your application should
specify only control options it will use.

If your application calls a method that a buffer lacks, that method fails. For
example, if you attempt to change the volume by using the
IDirectSoundBuffer::SetVolume method, the method will succeed if the
DSBCAPS_CTRLVOLUME flag was specified when the buffer was created.
Otherwise, the method fails and returns the DSERR_CONTROLUNAVAIL error
code. Providing controls for the buffers helps to ensure that all applications run
correctly on all existing or future sound devices.

Static and Streaming Sound Buffers
A static sound buffer contains a complete sound in memory. These buffers are
convenient because your application can write the entire sound to the buffer at
once. A streaming sound buffer represents only a portion of a sound, such as a
buffer that can hold 3 seconds of audio data that plays a 2-minute sound. In this
case, your application must periodically write new data to the sound buffer.
However, a streaming buffer requires much less memory than a static buffer.

When you create a sound buffer, you can indicate that a buffer is static by
specifying the DSBCAPS_STATIC flag. If you do not specify this flag, the buffer
is a streaming buffer.

If a sound device has onboard sound memory, DirectSound attempts to place
static buffers in the hardware memory. These buffers can then take advantage of
hardware mixing, and the processing system incurs little or no overhead to mix
these sounds. This is particularly useful for sounds your application plays more
than once, such as the sounds of footsteps or a weapon, because the sound data
must be downloaded only once to the hardware memory.

Streaming buffers are generally located in main system memory to allow efficient
writing to the buffer, although you can use hardware mixing on peripheral
component interconnect (PCI) machines or other fast buses. There are no
requirements for using streaming buffers. For example, you can write an entire
sound to a streaming buffer if the buffer is big enough. In fact, if you do not
intend to use the sound more than once, it can be more efficient to use a
streaming buffer because there is no need for the sound data to be downloaded to
the hardware memory.

DirectSound uses the designation of a buffer as static or streaming to optimize
performance; it does not restrict how you can use the buffer.

Hardware and Software Sound Buffers
A hardware sound buffer has its mixing performed by a hardware mixer located
on the sound device. A software sound buffer has its mixing performed by the
system central processing unit. In most cases, your application should simply
specify whether the buffer is static or streaming; DirectSound locates the buffer
in hardware or software as appropriate.

If your application must explicitly locate buffers in hardware or software,
however, you can specify either the DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE flag in the DSBUFFERDESC structure. If the
DSBCAPS_LOCHARDWARE flag is specified and there is insufficient
hardware memory or mixing capacity, the buffer creation request fails. Also,
most existing sound devices do not have any hardware memory or mixing
capacity, so no hardware buffers can be created on these devices.

You can determine the location of a sound buffer by using the
IDirectSoundBuffer::GetCaps method and checking the dwFlags member of
the DSBCAPS structure for either the DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE flags. One or the other is always specified.

Note

Chapter 3 DirectSound 37

Primary and Secondary Sound Buffers
Primary sound buffers represent the audio samples that the listener will hear.
Secondary sound buffers each represent a single sound or stream of audio. Your
application can create a primary buffer by specifying the
DSBCAPS_PRIMARYBUFFER flag in the DSBUFFERDESC structure. If this
flag is not specified, a secondary buffer is created.

Usually you should create a secondary sound buffer for every sound in an
application. Note that your application can reuse sound buffers by overwriting the
old sound data with new data. DirectSound takes care of the hardware resource
allocation and the mixing of all buffers that are playing.

If your application uses secondary buffers, you can choose to create a primary
sound buffer to perform certain controls. For example, you can control the
hardware output format by calling the IDirectSoundBuffer::SetFormat method
on the primary buffer. However, any methods that access the buffer memory,
such as IDirectSoundBuffer::Lock and
IDirectSoundBuffer::GetCurrentPosition, fail.

If your application performs its own mixing, DirectSound provides write access
to the primary buffer. You should write data to this buffer in a timely manner; if
you do not update the data, the previous buffer will repeat itself, causing gaps in
the audio. Write access to the primary buffer is available only if your application
sets the DSSCL_WRITEPRIMARY cooperative level. At this cooperative level,
no secondary buffers can be played.

Note that your application must play primary sound buffers with looping. Ensure
that the DSBPLAY_LOOPING flag is set.

The following example shows how to obtain write access to the primary buffer:

BOOL AppCreateWritePrimaryBuffer(
 LPDIRECTSOUND lpDirectSound, LPDIRECTSOUNDBUFFER *lplpDsb,
 LPDWORD lpdwBufferSize, HWND hwnd)
{
 DSBUFFERDESC dsbdesc;
 DSBCAPS dsbcaps;
 HRESULT hr;
 // Set up wave format structure.
 memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));
 pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM;
 pcmwf.wf.nChannels = 2;
 pcmwf.wf.nSamplesPerSec = 22050;
 pcmwf.wf.nBlockAlign = 4;
 pcmwf.wf.nAvgBytesPerSec =
 pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;
 pcmwf.wBitsPerSample = 16;
 // Set up DSBUFFERDESC structure.
 memset(&lplpDsb, 0, sizeof(DSBUFFERDESC)); // Zero it out.

 dsbdesc.dwSize = sizeof(DSBUFFERDESC);
 dsbdesc.dwFlags = DSBCAPS_PRIMARYBUFFER;
 // Buffer size is determined by sound hardware.
 dsbdesc.dwBufferBytes = 0;
 dsbdesc.lpwfxFormat = NULL; // Must be NULL for primary buffers.

 // Obtain write-primary cooperative level.
 hr = lpDirectSound->lpVtbl->SetCooperativeLevel(lpDirectSound,
 hwnd, DSSCL_WRITEPRIMARY);
 if(DS_OK == hr) {
 // Succeeded. Try to create buffer.
 hr = lpDirectSound->lpVtbl->CreateSoundBuffer(lpDirectSound,
 &dsbdesc, lplpDsb, NULL);
 if(DS_OK == hr) {
 // Succeeded. Set primary buffer to desired format.
 hr = (*lplpDsb)->lpVtbl->SetFormat(*lplpDsb, &pcmwf);
 if(DS_OK == hr) {
 // If you want to know the buffer size, call GetCaps.
 dsbcaps.dwSize = sizeof(DSBCAPS);
 (*lplpDsb)->lpVtbl->GetCaps(*lplpDsb, &dsbcaps);
 *lpdwBufferSize = dsbcaps.dwBufferBytes;
 return TRUE;
 }
 }
 }
 // SetCooperativeLevel failed.
 // CreateSoundBuffer, or SetFormat.
 *lplpDsb = NULL;
 *lpdwBufferSize = 0;
 return FALSE;
}

Writing to Sound Buffers
Your application can obtain write access to a sound buffer by using the
IDirectSoundBuffer::Lock method. After the sound buffer (memory) is locked,
the application can write or copy data to the buffer. The buffer memory must then
be unlocked by calling the IDirectSoundBuffer::Unlock method.

Because streaming sound buffers usually play continually, DirectSound returns
two write pointers when locking a sound buffer. For example, if you tried to lock
300 bytes beginning at the midpoint of a 400-byte buffer,
IDirectSoundBuffer::Lock would return one pointer to the last 200 bytes of the
buffer, and a second pointer to the first 100 bytes. Depending on the offset and
the length of the buffer, the second pointer can be NULL.

Memory for a sound buffer can be lost in certain situations. In particular, this can
occur when buffers are located in the hardware sound memory. In the worst case,
the sound card itself might be removed from the system while in use; this

Chapter 3 DirectSound 39

situation can occur with PCMCIA sound cards. It can also occur when an
application with the write-primary cooperative level gains the input focus. If this
flag is set, DirectSound makes all other sound buffers lost so that the application
with the focus can write directly to the primary buffer. If this happens,
DirectSound returns the DSERR_BUFFERLOST error code in response to the
IDirectSoundBuffer::Lock and IDirectSoundBuffer::Play methods. When the
application lowers its cooperative level from write-primary, or loses the input
focus, other applications can attempt to reallocate the buffer memory by calling
the IDirectSoundBuffer::Restore method. If successful, this method restores the
buffer memory and all other settings for the buffer, such as volume and pan
settings. However, a restored buffer does not contain valid sound data. The
owning application must rewrite the data to the restored buffer.

The following example writes data to a sound buffer by using the
IDirectSoundBuffer::Lock and IDirectSoundBuffer::Unlock methods:

BOOL AppWriteDataToBuffer(
 LPDIRECTSOUNDBUFFER lpDsb, DWORD dwOffset, LPBYTE lpbSoundData,
 DWORD dwSoundBytes)
{
 LPVOID lpvPtr1;
 DWORD dwBytes1;
 LPVOID lpvPtr2;
 DWORD dwBytes2;
 HRESULT hr;
 // Obtain write pointer.
 hr = lpDsb->lpVtbl->Lock(lpDsb, dwOffset, dwSoundBytes, &lpvPtr1,
 &dwBytes1, &lpvPtr2, &dwBytes2, 0);

 // If DSERR_BUFFERLOST is returned, restore and retry lock.
 if(DSERR_BUFFERLOST == hr) {
 lpDsb->lpVtbl->Restore(lpDsb);
 hr = lpDsb->lpVtbl->Lock(lpDsb, dwOffset, dwSoundBytes,
 &lpvPtr1, &dwAudio1, &lpvPtr2, &dwAudio2, 0);
 }
 if(DS_OK == hr) {
 // Write to pointers.
 CopyMemory(lpvPtr1, lpbSoundData, dwBytes1);
 if(NULL != lpvPtr2) {
 CopyMemory(lpvPtr2, lpbSoundData+dwBytes1, dwBytes2);
 }
 // Release the data back to DirectSound.
 hr = lpDsb->lpVtbl->Unlock(lpDsb, lpvPtr1, dwBytes1, lpvPtr2,
 dwBytes2);
 if(DS_OK == hr) {
 // Success.
 return TRUE;
 }
 }

 // Lock, Unlock, or Restore failed.
 return FALSE;
}

Using the DirectSound Mixer
It is easy to mix multiple streams with DirectSound. Your application can simply
create secondary sound buffers, receiving an IDirectSoundBuffer interface for
each sound. You can then use these interfaces to write data to the buffers by
using the IDirectSoundBuffer::Lock and IDirectSoundBuffer::Unlock
methods, and you can play the buffers by using the IDirectSoundBuffer::Play
method. You can stop playing the buffers at any time by using the
IDirectSoundBuffer::Stop method.

The IDirectSoundBuffer::Play method always starts playing at the buffer's
current position. The current position is specified by an offset, in bytes, into the
buffer. The current position of a newly created buffer is 0. When a buffer is
stopped, the current position immediately follows the next sample played. The
current position can be set explicitly by calling the
IDirectSoundBuffer::SetCurrentPosition method, and can be queried by
calling the IDirectSoundBuffer::GetCurrentPosition method.

By default, IDirectSoundBuffer::Play stops playing when the end of the buffer
is reached. This is the correct behavior for nonlooping static buffers. (The current
position will be reset to the beginning of the buffer at this point.) For streaming
buffers or for static buffers that continually repeat, your application should call
IDirectSoundBuffer::Play and specify the DSBPLAY_LOOPING flag in the
dwFlags parameter. This causes the buffer to loop back to the beginning once it
reaches the end.

For streaming sound buffers, your application is responsible for ensuring that the
next block of data is written to the buffer before the play cursor loops back to the
beginning. Your application can do this by using the SetTimer or SetEvent
Win32 functions to cause a message or callback function to occur at regular
intervals. In addition, many DirectSound applications will already have a real-
time DirectDraw component that must service the display at regular intervals; this
component should be able to service DirectSound buffers as well. For optimal
efficiency, all applications should write at least 1 second ahead of the current
play cursor to minimize the possibility of gaps in the audio output during
playback.

The DirectSound mixer can obtain the best usage from hardware acceleration if
your application correctly specifies the DSBCAPS_STATIC flag for static
buffers. This flag should be specified for any static buffers that will be reused.
DirectSound downloads these buffers to the sound hardware memory, where
available, and thereby does not incur any processing overhead in mixing these

Chapter 3 DirectSound 41

buffers. The most important static sound buffers should be created first to give
them first priority for hardware acceleration.

The DirectSound mixer produces the best sound quality if all your application's
sounds use the same wave format and the hardware output format is matched to
the format of the sounds. If this is done, the mixer need not perform any format
conversion.

Your application can change the hardware output format by creating a primary
sound buffer and calling the IDirectSoundBuffer::SetFormat method. Note that
this primary buffer is for control purposes only; only applications with a
cooperative level of DSSCL_PRIORITY or higher can call this function.
DirectSound will then restore the hardware format to the format specified in the
last IDirectSoundBuffer::SetFormat method call every time the application
gains the input focus.

Using a Custom Mixer
Most applications should use the DirectSound mixer; it should be sufficient for
almost all mixing needs and it automatically takes advantage of hardware
acceleration, if available. However, if an application requires some other
functionality that DirectSound does not provide, it can obtain write access to the
primary sound buffer and mix streams directly into it. This feature is provided for
completeness, and it should be useful only for a very limited set of high-
performance applications. Applications that take advantage of this feature are
subject to stringent performance requirements because it is difficult to avoid gaps
in the audio.

To implement a custom mixer, the application should first obtain the
DSSCL_WRITEPRIMARY cooperative level and then create a primary sound
buffer. It can then call the IDirectSoundBuffer::Lock method, write data to the
returned pointers, and then call the IDirectSoundBuffer::Unlock method to
release the data back to DirectSound. Applications must explicitly play the
primary buffer by calling the IDirectSoundBuffer::Play method to reproduce
the sound data in the speakers. Note that the DSBPLAY_LOOPING flag must be
specified or the IDirectSoundBuffer::Play call fails.

The following example illustrates how an application might implement a custom
mixer. The AppMixIntoPrimaryBuffer function in the following example would
have to be called at regular intervals, frequently enough to prevent the sound
device from repeating blocks of data. The CustomMixer function is an
application-defined function that mixes several streams together, as specified in
the application-defined AppStreamInfo structure, and writes the result to the
specified pointer.

BOOL AppMixIntoPrimaryBuffer(
 LPAPPSTREAMINFO lpAppStreamInfo, LPDIRECTSOUNDBUFFER lpDsbPrimary,
 DWORD dwDataBytes, DWORD dwOldPos, LPDWORD lpdwNewPos)

{
 LPVOID lpvPtr1;
 DWORD dwBytes1;
 LPVOID lpvPtr2;
 DWORD dwBytes2;
 HRESULT hr;
 // Obtain write pointer.
 hr = lpDsbPrimary->lpVtbl->Lock(lpDsbPrimary, dwOldPos, dwDataBytes,
 &lpvPtr1, &dwBytes1, &lpvPtr2, &dwBytes2, 0);
 // If we got DSERR_BUFFERLOST, restore and retry lock.
 if(DSERR_BUFFERLOST == hr) {
 lpDsbPrimary->lpVtbl->Restore(lpDsbPrimary);
 hr = lpDsbPrimary->lpVtbl->Lock(lpDsbPrimary, dwOldPos,
 dwDataBytes, &lpvPtr1, &dwBytes1, &lpvPtr2, &dwBytes2, 0);
 }
 if(DS_OK == hr) {
 // Mix data into the returned pointers.
 CustomMixer(lpAppStreamInfo, lpvPtr1, dwBytes1);
 *lpdwNewPos = dwOldPos + dwBytes1;
 if(NULL != lpvPtr2) {
 CustomMixer(lpAppStreamInfo, lpvPtr2, dwBytes2);
 *lpdwNewPos = dwBytes2; // Because it wrapped around.
 }
 // Release the data back to DirectSound.
 hr = lpDsbPrimary->lpVtbl->Unlock(lpDsbPrimary, lpvPtr1,
 dwBytes1, lpvPtr2, dwBytes2);
 if(DS_OK == hr) {
 // Success.
 return TRUE;
 }
 }
 // Lock or Unlock failed.
 return FALSE;
}

Using Compressed Wave Formats
DirectSound does not currently support compressed wave formats. Applications
should use the Audio Compression Manager (ACM) functions, provided with the
Win32 SDK, to convert compressed audio to pulse-coded modulation (PCM) data
before writing the data to a sound buffer. In fact, by locking a pointer to the
sound-buffer memory and passing this pointer to the ACM, the data can be
decoded directly to the sound buffer for maximum efficiency.

Chapter 3 DirectSound 43

DirectSound Reference
Functions

DirectSoundCreate
HRESULT DirectSoundCreate(GUID FAR * lpGuid,
 LPDIRECTSOUND * ppDS, IUnknown FAR * pUnkOuter);

Creates and initializes an IDirectSound interface.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_ALLOCATED
DSERR_INVALIDPARAM
DSERR_NOAGGREGATION
DSERR_NODRIVER
DSERR_OUTOFMEMORY

lpGuid
Address of the GUID that identifies the sound device. The value of this parameter
must be one of the GUIDs returned by DirectSoundEnumerate, or NULL to
request the default device.

ppDS
Address of a pointer to a DirectSound object created in response to this function.

pUnkOuter
Controlling unknown of the aggregate. Its value must be NULL.

The application must call the IDirectSound::SetCooperativeLevel method
immediately after creating a DirectSound object.

See also IDirectSound::GetCaps, IDirectSound::SetCooperativeLevel

DirectSoundEnumerate
BOOL DirectSoundEnumerate(
 LPDSENUMCALLBACK lpDSEnumCallback, LPVOID lpContext);

Enumerates the DirectSound drivers installed in the system.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpDSEnumCallback
Address of the DSEnumCallback function that will be called for each
DirectSound object installed in the system.

lpContext
Address of the user-defined context passed to the enumeration callback function
every time that function is called.

See also DSEnumCallback

Callback Function

DSEnumCallback
BOOL DSEnumCallback(GUID FAR * lpGuid,
 LPSTR lpstrDescription, LPSTR lpstrModule,
 LPVOID lpContext);

Application-defined callback function that enumerates the DirectSound drivers.
The system calls this function in response to the application's previous call to the
DirectSoundEnumerate function.

· Returns TRUE to continue enumerating drivers, or FALSE to stop.

lpGuid
Address of the GUID that identifies the DirectSound driver being enumerated.
This value can be passed to the DirectSoundCreate function to create a
DirectSound object for that driver.

lpstrDescription
Address of a null-terminated string that provides a textual description of the
DirectSound device.

lpstrModule
Address of a null-terminated string that specifies the module name of the
DirectSound driver corresponding to this device.

lpContext
Address of application-defined data that is passed to each callback function.

The application can save the strings passed in the lpstrDescription and
lpstrModule parameters by copying them to memory that is allocated from the
heap. The memory used to pass the strings to this callback function is valid only
while this callback function is running.

See also DirectSoundEnumerate

IDirectSound
Applications use the methods of the IDirectSound interface to create
DirectSound objects and set up the environment. This section is a reference to the
methods of this interface. For a conceptual overview, see IDirectSound Interface.

Chapter 3 DirectSound 45

The methods of the IDirectSound interface can be organized into the following
groups:

Allocating memory Compact
Initialize

Creating buffers CreateSoundBuffer
DuplicateSoundBuffer
SetCooperativeLevel

Device capabilities GetCaps

Speaker configuration GetSpeakerConfig
SetSpeakerConfig

The IDirectSound interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface
Release

IDirectSound::Compact
HRESULT Compact();

Moves the unused portions of onboard sound memory, if any, to a contiguous
block so that the largest portion of free memory will be available.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED
DSERR_UNINITIALIZED

If the application calls this method, it must have exclusive cooperation with the
DirectSound object. (To get exclusive access, specify DSSCL_EXCLUSIVE in a
call to the IDirectSound::SetCooperativeLevel method.) This method will fail
if any operations are in progress.

See also IDirectSound, IDirectSound::SetCooperativeLevel

IDirectSound::CreateSoundBuffer
HRESULT CreateSoundBuffer(LPDSBUFFERDESC lpDSBufferDesc,
 LPLPDIRECTSOUNDBUFFER lplpDirectSoundBuffer,
 IUnknown FAR * pUnkOuter);

Creates a DirectSoundBuffer object to hold a sequence of audio samples.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_ALLOCATED
DSERR_BADFORMAT
DSERR_INVALIDPARAM
DSERR_NOAGGREGATION
DSERR_OUTOFMEMORY
DSERR_UNINITIALIZED
DSERR_UNSUPPORTED

lpDSBufferDesc
Address of a DSBUFFERDESC structure that contains the description of the
sound buffer to be created.

lplpDirectSoundBuffer
Address of a pointer to the new DirectSoundBuffer object, or NULL if the buffer
cannot be created.

pUnkOuter
Controlling unknown of the aggregate. Its value must be NULL.

Before it can play any sound buffers, the application must specify a cooperative
level for a DirectSound object by using the IDirectSound::SetCooperativeLevel
method.

The lpDSBufferDesc parameter points to a structure that describes the type of
buffer desired, including format, size, and capabilities. The application must
specify the needed capabilities, or they will not be available. For example, if the
application creates a DirectSoundBuffer object without specifying the
DSBCAPS_CTRLFREQUENCY flag, any call to
IDirectSoundBuffer::SetFrequency will fail.

The DSBCAPS_STATIC flag can also be specified, in which case DirectSound
stores the buffer in onboard memory, if available, to take advantage of hardware
mixing. To force the buffer to use either hardware or software mixing, use the
DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE flag.

See also DSBUFFERDESC, IDirectSound,
IDirectSound::DuplicateSoundBuffer, IDirectSound::SetCooperativeLevel,
IDirectSoundBuffer, IDirectSoundBuffer::GetFormat,
IDirectSoundBuffer::GetVolume, IDirectSoundBuffer::Lock,

Chapter 3 DirectSound 47

IDirectSoundBuffer::Play, IDirectSoundBuffer::SetFormat,
IDirectSoundBuffer::SetFrequency

IDirectSound::DuplicateSoundBuffer
HRESULT DuplicateSoundBuffer(
 LPDIRECTSOUNDBUFFER lpDsbOriginal,
 LPLPDIRECTSOUNDBUFFER lplpDsbDuplicate);

Creates a new DirectSoundBuffer object that uses the same buffer memory as the
original object.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_ALLOCATED
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_OUTOFMEMORY
DSERR_UNINITIALIZED

lpDsbOriginal
Address of the DirectSoundBuffer object to be duplicated.

lplpDsbDuplicate
Address of a pointer to the new DirectSoundBuffer object.

The new object can be used just like the original.

Initially, the duplicate buffer will have the same parameters as the original buffer.
However, the application can change the parameters of each buffer
independently, and each can be played or stopped without affecting the other.

If data in the buffer is changed through one object, the change will be reflected in
the other object because the buffer memory is shared.

The buffer memory will be released when the last object referencing it is
released.

See also IDirectSound, IDirectSound::CreateSoundBuffer

IDirectSound::GetCaps
HRESULT GetCaps(LPDSCAPS lpDSCaps);

Retrieves the capabilities of the hardware device that is represented by the
DirectSound object.

· Returns DS_OK if successful, or one of the following error values otherwise:

DSERR_GENERIC
DSERR_INVALIDPARAM
DSERR_UNINITIALIZED

lpDSCaps
Address of the DSCAPS structure to contain the capabilities of this sound device.

Information retrieved in the DSCAPS structure describes the maximum
capabilities of the sound device and those currently available, such as the number
of hardware mixing channels and the amount of onboard sound memory. You can
use this information to fine-tune performance and optimize resource allocation.

Because of resource-sharing requirements, the maximum capabilities in one area
might be available only at the cost of another area. For example, the maximum
number of hardware-mixed streaming sound buffers might be available only if
there are no hardware static sound buffers.

See also DirectSoundCreate, DSCAPS, IDirectSound

IDirectSound::GetSpeakerConfig
HRESULT GetSpeakerConfig(LPDWORD lpdwSpeakerConfig);

Retrieves the speaker configuration specified for this DirectSound object.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_INVALIDPARAM
DSERR_UNINITIALIZED

lpdwSpeakerConfig
Address of the speaker configuration for this DirectSound object. The speaker
configuration is specified with one of the following values:
DSSPEAKER_HEADPHONE

The audio is output through headphones.
DSSPEAKER_MONO

The audio is output through a single speaker.
DSSPEAKER_QUAD

The audio is output through quadraphonic speakers.
DSSPEAKER_STEREO

The audio is output through stereo speakers (default value).
DSSPEAKER_SURROUND

The audio is output through surround speakers.

Chapter 3 DirectSound 49

See also IDirectSound, IDirectSound::SetSpeakerConfig

IDirectSound::Initialize
HRESULT Initialize(GUID FAR * lpGuid);

Initializes the DirectSound object that was created by using the
CoCreateInstance function.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_ALREADYINITIALIZED
DSERR_GENERIC
DSERR_INVALIDPARAM
DSERR_NODRIVER

lpGuid
Address of the globally unique identifier (GUID) specifying the sound driver for
this DirectSound object to bind to, or NULL to select the primary sound driver.

This method is provided for compliance with the Component Object Model
(COM) protocol. If the DirectSoundCreate function was used to create the
DirectSound object, this method returns DSERR_ALREADYINITIALIZED. If
IDirectSound::Initialize is not called when using CoCreateInstance to create
the DirectSound object, any method that is called afterward returns
DSERR_UNINITIALIZED.

For more information about using IDirectSound::Initialize with
CoCreateInstance, see Creating a DirectSound Object by Using
CoCreateInstance.

See also DirectSoundCreate

IDirectSound::SetCooperativeLevel
HRESULT SetCooperativeLevel(HWND hwnd, DWORD dwLevel);

Sets the cooperative level of the application for this sound device.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_ALLOCATED
DSERR_INVALIDPARAM
DSERR_UNINITIALIZED
DSERR_UNSUPPORTED

hwnd
Window handle for the application.

dwLevel
Requested priority level. Specify one of the following values:
DSSCL_EXCLUSIVE

Sets the application to the exclusive level. When it has the input focus,
the application will be the only one audible (sounds from applications
with the DSBCAPS_GLOBALFOCUS flag set will be muted). With this
level, it also has all the privileges of the DSSCL_PRIORITY level.
DirectSound will restore the hardware format, as specified by the most
recent call to the IDirectSoundBuffer::SetFormat method, once the
application gains the input focus. (Note that DirectSound will always
restore the wave format no matter what priority level is set.)

DSSCL_NORMAL
Sets the application to a fully cooperative status. Most applications should
use this level, because it has the smoothest multitasking and resource-
sharing behavior.

DSSCL_PRIORITY
Sets the application to the priority level. Applications with this
cooperative level can call the IDirectSoundBuffer::SetFormat and
IDirectSound::Compact methods.

DSSCL_WRITEPRIMARY
This is the highest priority level. The application has write access to the
primary sound buffers. No secondary sound buffers in any application can
be played.

The application must set the cooperative level by calling this method before its
buffers can be played. The recommended cooperative level is
DSSCL_NORMAL; use other priority levels when necessary. For additional
information, see Cooperative Levels.

See also IDirectSound, IDirectSound::Compact,
IDirectSoundBuffer::GetFormat, IDirectSoundBuffer::GetVolume,
IDirectSoundBuffer::Lock, IDirectSoundBuffer::Play,
IDirectSoundBuffer::Restore, IDirectSoundBuffer::SetFormat

IDirectSound::SetSpeakerConfig
HRESULT SetSpeakerConfig(DWORD dwSpeakerConfig);

Specifies the speaker configuration of the DirectSound object.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_INVALIDPARAM
DSERR_UNINITIALIZED

Chapter 3 DirectSound 51

dwSpeakerConfig
Speaker configuration of the specified DirectSound object. This parameter can be
one of the following values:
DSSPEAKER_HEADPHONE

The speakers are headphones.
DSSPEAKER_MONO

The speakers are monaural.
DSSPEAKER_QUAD

The speakers are quadraphonic.
DSSPEAKER_STEREO

The speakers are stereo (default value).
DSSPEAKER_SURROUND

The speakers are surround sound.

See also IDirectSound, IDirectSound::GetSpeakerConfig

IDirectSound3DBuffer
Applications use the methods of the IDirectSound3DBuffer interface to retrieve
and set parameters that describe the position, orientation, and environment of a
sound buffer in 3D space. This section is a reference to the methods of this
interface. For a conceptual overview, see IDirectSound3DBuffer Interface.

The methods of the IDirectSound3DBuffer interface can be organized into the
following groups:

Batch parameter GetAllParameters
manipulation SetAllParameters

Distance GetMaxDistance
GetMinDistance
SetMaxDistance
SetMinDistance

Operation mode GetMode
SetMode

Position GetPosition

SetPosition

Sound projection GetConeAngles
cones GetConeOrientation

GetConeOutsideVolume
SetConeAngles
SetConeOrientation
SetConeOutsideVolume

Velocity GetVelocity
SetVelocity

The IDirectSound3DBuffer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirectSound3DBuffer::GetAllParameters
HRESULT GetAllParameters(LPDS3DBUFFER lpDs3dBuffer);

Retrieves information that describes the 3D characteristics of a sound buffer at a
given point in time.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpDs3dBuffer
Address of a DS3DBUFFER structure that will contain the information
describing the 3D characteristics of the sound buffer.

IDirectSound3DBuffer::GetConeAngles
HRESULT GetConeAngles(
 LPDWORD lpdwInsideConeAngle, LPDWORD lpdwOutsideConeAngle);

Retrieves the inside and outside angles of the sound projection cone for this
sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

Chapter 3 DirectSound 53

lpdwInsideConeAngle and lpdwOutsideConeAngle
Addresses of variables that will contain the inside and outside angles of the sound
projection cone.

IDirectSound3DBuffer::GetConeOrientation
HRESULT GetConeOrientation(LPD3DVECTOR lpvOrientation);

Retrieves the orientation of the sound projection cone for this sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpvOrientation
Address of a D3DVECTOR structure that will contain the current orientation of
the sound projection cone. The vector information represents the center of the
sound cone.

This method has no effect unless the cone angle and cone volume factor have
also been set. The default value is (0,0,1).

See also IDirectSound3DBuffer::SetConeAngles,
IDirectSound3DBuffer::SetConeOutsideVolume

IDirectSound3DBuffer::GetConeOutsideVolume
HRESULT GetConeOutsideVolume(LPLONG lplConeOutsideVolume);

Retrieves the current cone outside volume for this sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lplConeOutsideVolume
Address of a variable that will contain the current cone outside volume for this
buffer.

Volume levels are represented by attenuation. Allowable values are between 0
(no attenuation) and -10,000 (silence). Amplification is not currently supported
by DirectSound.

For additional information about the cone outside volume concept, see Sound
Projection Cones.

See also IDirectSoundBuffer::SetVolume

IDirectSound3DBuffer::GetMaxDistance
HRESULT GetMaxDistance(LPD3DVALUE lpflMaxDistance);

Retrieves the current maximum distance for this sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpflMaxDistance
Address of a variable that will contain the current maximum distance setting.

By default, the maximum distance value is infinite. For additional information
about minimum and maximum distances, see Minimum and Maximum Distance
Values.

See also IDirectSound3DBuffer::GetMinDistance,
IDirectSound3DBuffer::SetMaxDistance

IDirectSound3DBuffer::GetMinDistance
HRESULT GetMinDistance(LPD3DVALUE lpflMinDistance);

Retrieves the current minimum distance for this sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpflMinDistance
Address of a variable that will contain the current minimum distance setting.

By default, the minimum distance value is 1.0 (corresponding to 1.0 meter at the
default distance factor of 1.0 m per unit). For additional information about
minimum and maximum distances, see Minimum and Maximum Distance Values.

See also IDirectSound3DBuffer::SetMinDistance,
IDirectSound3DBuffer::GetMaxDistance

IDirectSound3DBuffer::GetMode
HRESULT GetMode(LPDWORD lpdwMode);

Retrieves the current operation mode for 3D sound processing.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpdwMode
Address of a variable that will contain the current mode setting. This value will
be one of the following:
DS3DMODE_DISABLE

Processing of 3D sound is disabled. The sound seems to originate from
the center of the listener's head.

DS3DMODE_HEADRELATIVE
Sound parameters (position, velocity, and orientation) are relative to the
listener's parameters. In this mode, the absolute parameters of the sound
are updated automatically as the listener's parameters change, so that the

Chapter 3 DirectSound 55

relative parameters remain constant.
DS3DMODE_NORMAL

Normal processing. This is the default mode.

IDirectSound3DBuffer::GetPosition
HRESULT GetPosition(LPD3DVECTOR lpvPosition);

Retrieves the sound buffer's current position, in distance units. By default,
distance units are meters, but the units can be changed by using the
IDirectSound3DListener::SetDistanceFactor method.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpvPosition
Address of a D3DVECTOR structure that will contain the current position of the
sound buffer.

IDirectSound3DBuffer::GetVelocity
HRESULT GetVelocity(LPD3DVECTOR lpvVelocity);

Retrieves the current velocity for this sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpvVelocity
Address of a D3DVECTOR structure that will contain the sound buffer's current
velocity.

Velocity is used for Doppler effects only. It does not actually move the buffer.
For additional information, see Position and Velocity.

See also IDirectSound3DBuffer::SetPosition,
IDirectSound3DBuffer::SetVelocity

IDirectSound3DBuffer::SetAllParameters
HRESULT SetAllParameters(
 LPDS3DBUFFER lpDs3dBuffer, DWORD dwApply);

Sets all 3D sound buffer parameters from a given DS3DBUFFER structure that
describes all aspects of the sound buffer at a moment in time.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpDs3dBuffer
Address of a DS3DBUFFER structure containing the information that describes
the 3D characteristics of the sound buffer.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

IDirectSound3DBuffer::SetConeAngles
HRESULT SetConeAngles(
 DWORD dwInsideConeAngle,
 DWORD dwOutsideConeAngle, DWORD dwApply);

Sets the inside and outside angles of the sound projection cone for this sound
buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

dwInsideConeAngle and dwOutsideConeAngle
Inside and outside angles of the sound projection cone.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

Each angle must be in the range of 0 degrees (no cone) to 360 degrees (the full
sphere). The default value is 360. For additional information see, Sound
Projection Cones.

Chapter 3 DirectSound 57

See also IDirectSound3DBuffer::GetConeOutsideVolume,
IDirectSound3DBuffer::SetConeOutsideVolume

IDirectSound3DBuffer::SetConeOrientation
HRESULT SetConeOrientation(D3DVALUE x,
 D3DVALUE y, D3DVALUE z, DWORD dwApply);

Sets the orientation of the sound projection cone for this sound buffer. This
method has no effect unless the cone angle and cone volume factor have also
been set.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
new sound cone orientation vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

The vector information in the lpvOrientation parameter of the
IDirectSound3DBuffer::GetConeOrientation method represents the center of
the sound cone. The default value is (0,0,1).

See also IDirectSound3DBuffer::SetConeAngles,
IDirectSound3DBuffer::SetConeOutsideVolume

IDirectSound3DBuffer::SetConeOutsideVolume
HRESULT SetConeOutsideVolume(
 LONG lConeOutsideVolume, DWORD dwApply);

Sets the current cone outside volume for this sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lConeOutsideVolume
Cone outside volume for this sound buffer, in hundredths of decibels. Allowable
values are between 0 (no attenuation) and -10,000 (silence).

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

Volume levels are represented by attenuation. Amplification is not currently
supported by DirectSound.

For additional information about the cone outside volume concept, see Sound
Projection Cones.

See also IDirectSoundBuffer::SetVolume

IDirectSound3DBuffer::SetMaxDistance
HRESULT SetMaxDistance(
 D3DVALUE flMaxDistance, DWORD dwApply);

Sets the current maximum distance value.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

flMaxDistance
New maximum distance value.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for

Chapter 3 DirectSound 59

all 3D sound buffers.

By default, the maximum distance value is infinite. For additional information
about minimum and maximum distances, see Minimum and Maximum Distance
Values.

See also IDirectSound3DBuffer::GetMaxDistance,
IDirectSound3DBuffer::SetMinDistance

IDirectSound3DBuffer::SetMinDistance
HRESULT SetMinDistance(
 D3DVALUE flMinDistance, DWORD dwApply);

Sets the current minimum distance value.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

flMinDistance
New minimum distance value.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

By default, the minimum distance value is 1.0 (corresponding to 1.0 meter at the
default distance factor of 1.0 m per unit). For additional information about
minimum and maximum distances, see Minimum and Maximum Distance Values.

See also IDirectSound3DBuffer::SetMaxDistance

IDirectSound3DBuffer::SetMode
HRESULT SetMode(
 DWORD dwMode, DWORD dwApply);

Sets the operation mode for 3D sound processing.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

dwMode
Flag specifying the 3D sound processing mode to be set.
DS3DMODE_DISABLE

Processing of 3D sound is disabled. The sound seems to originate from
the center of the listener's head.

DS3DMODE_HEADRELATIVE
Sound parameters (position, velocity, and orientation) are relative to the
listener's parameters. In this mode, the absolute parameters of the sound
are updated automatically as the listener's parameters change, so that the
relative parameters remain constant.

DS3DMODE_NORMAL
Normal processing. This is the default mode.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

IDirectSound3DBuffer::SetPosition
HRESULT SetPosition(D3DVALUE x,
 D3DVALUE y, D3DVALUE z, DWORD dwApply);

Sets the sound buffer's current position, in distance units. By default, distance
units are meters, but the units can be changed by using the
IDirectSound3DListener::SetDistanceFactor method.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
new position vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

Chapter 3 DirectSound 61

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

IDirectSound3DBuffer::SetVelocity
HRESULT SetVelocity(D3DVALUE x,
 D3DVALUE y, D3DVALUE z, DWORD dwApply);

Sets the sound buffer's current velocity.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
new velocity vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

Velocity is used for Doppler effects only. It does not actually move the buffer.
For additional information, see Position and Velocity.

See also IDirectSound3DBuffer::SetPosition,
IDirectSound3DBuffer::GetVelocity

IDirectSound3DListener
Applications use the methods of the IDirectSound3DListener interface to
retrieve and set parameters that describe a listener's position, orientation, and
listening environment in 3D space. This section is a reference to the methods of
this interface. For a conceptual overview, see IDirectSound3DListener Interface.

The methods of the IDirectSound3DListener interface can be organized into the
following groups:

Batch parameter GetAllParameters
manipulation SetAllParameters

Deferred settings CommitDeferredSettings

Distance factor GetDistanceFactor
SetDistanceFactor

Doppler factor GetDopplerFactor
SetDopplerFactor

Orientation GetOrientation
SetOrientation

Position GetPosition
SetPosition

Rolloff factor GetRolloffFactor
SetRolloffFactor

Velocity GetVelocity
SetVelocity

The IDirectSound3DListener interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirectSound3Dlistener
 ::CommitDeferredSettings
HRESULT CommitDeferredSettings();

Chapter 3 DirectSound 63

Commits any deferred settings made since the last call to this method.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

For additional information about using deferred settings to maximize efficiency,
see Deferred Settings.

IDirectSound3DListener::GetAllParameters
HRESULT GetAllParameters(LPDS3DLISTENER lpListener);

Retrieves information that describes the current state of the 3D world and
listener.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpListener
Address of a DS3DLISTENER structure that will contain the current state of the
3D world and listener.

See also IDirectSound3DListener::SetAllParameters

IDirectSound3DListener::GetDistanceFactor
HRESULT GetDistanceFactor(LPD3DVALUE lpflDistanceFactor);

Retrieves the current distance factor.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpflDistanceFactor
Address of a variable whose type is D3DVALUE and that will contain the
current distance factor value.

For additional information about distance factors, see Distance Factor.

See also IDirectSound3DListener::SetDistanceFactor

IDirectSound3DListener::GetDopplerFactor
HRESULT GetDopplerFactor(LPD3DVALUE lpflDopplerFactor);

Retrieves the current Doppler effect factor.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpflDopplerFactor
Address of a variable whose type is D3DVALUE and that will contain the
current Doppler factor value.

This Doppler factor has a range of 0 (no Doppler effects) to 10.0 (10 times the
Doppler effects found in the physical world). The default value is
DS3D_DEFAULTDOPPLERFACTOR (1.0). For additional information about
Doppler factor, see Doppler Factor.

See also IDirectSound3DListener::SetDopplerFactor

IDirectSound3DListener::GetOrientation
HRESULT GetOrientation(
 LPD3DVECTOR lpvOrientFront,
 LPD3DVECTOR lpvOrientTop);

Retrieves the listener's current orientation in vectors: a front vector and a top
vector.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpvOrientFront
Address of a D3DVECTOR structure that will contain the listener's front
orientation vector.

lpvOrientTop
Address of a D3DVECTOR structure that will contain the listener's top
orientation vector.

The front vector points in the direction of the listener's nose, and the top vector
points out the top of the listener's head. By default, the front vector is (0,0,1.0)
and the top vector is (0,1.0,0).

See also IDirectSound3DListener::SetOrientation

IDirectSound3DListener::GetPosition
HRESULT GetPosition(LPD3DVECTOR lpvPosition);

Retrieves the listener's current position in distance units. By default, these units
are meters, but this can be changed by calling the
IDirectSound3DListener::SetDistanceFactor method.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpvPosition
Address of a D3DVECTOR structure that will contain the listener's position
vector.

See also IDirectSound3DListener::SetPosition

Chapter 3 DirectSound 65

IDirectSound3DListener::GetRolloffFactor
HRESULT GetRolloffFactor(LPD3DVALUE lpflRolloffFactor);

Retrieves the current rolloff factor.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpflRolloffFactor
Address of a variable whose type is D3DVALUE and that will contain the
current rolloff factor value.

The default value is DS3D_DEFAULTROLLOFFFACTOR (1.0). For additional
information about the rolloff factor, see Rolloff Factor.

See also IDirectSound3DListener::SetRolloffFactor

IDirectSound3DListener::GetVelocity
HRESULT GetVelocity(LPD3DVECTOR lpvVelocity);

Retrieves the listener's current velocity.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpvVelocity
Address of a D3DVECTOR structure that will contain the listener's current
velocity.

Velocity is used only for Doppler effects. It does not actually move the listener.
To change the listener's position, use the IDirectSound3DListener::SetPosition
method. The default velocity is (0,0,0).

See also IDirectSound3DListener::SetVelocity

IDirectSound3DListener::SetAllParameters
HRESULT SetAllParameters(
 LPDS3DLISTENER lpListener, DWORD dwApply);

Sets all 3D listener parameters from a given DS3DLISTENER structure that
describes all aspects of the 3D listener at a moment in time.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpListener
Address of a DS3DLISTENER structure that contains information describing all
current 3D listener parameters.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

See also IDirectSound3DListener::GetAllParameters

IDirectSound3DListener::SetDistanceFactor
HRESULT SetDistanceFactor(
 D3DVALUE flDistanceFactor, DWORD dwApply);

Sets the current distance factor.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

flDistanceFactor
New distance factor.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

For additional information about distance factors, see Distance Factor.

See also IDirectSound3DListener::GetDistanceFactor

IDirectSound3DListener::SetDopplerFactor
HRESULT SetDopplerFactor(
 D3DVALUE flDopplerFactor, DWORD dwApply);

Chapter 3 DirectSound 67

Sets the current Doppler effect factor.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

flDopplerFactor
New Doppler factor value.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

This Doppler factor has a range of 0 (no Doppler effects) to 10.0 (10 times the
Doppler effects found in the physical world). The default value is
DS3D_DEFAULTDOPPLERFACTOR (1.0). For additional information about
Doppler factor, see Doppler Factor.

See also IDirectSound3DListener::GetDopplerFactor

IDirectSound3DListener::SetOrientation
HRESULT SetOrientation(D3DVALUE xFront,
 D3DVALUE yFront, D3DVALUE zFront,
 D3DVALUE xTop, D3DVALUE yTop,
 D3DVALUE zTop, DWORD dwApply);

Sets the listener's current orientation in terms of two vectors: a front vector and a
top vector.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

xFront, yFront, and zFront
Values whose types are D3DVALUE and that represent the coordinates of the
front orientation vector.

xTop, yTop, and zTop
Values whose types are D3DVALUE and that represent the coordinates of the
top orientation vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

The front vector points in the direction of the listener's nose, and the top vector
points out the top of the listener's head. By default, the front vector is (0,0,1.0)
and the top vector is (0,1.0,0).

See also IDirectSound3DListener::GetOrientation

IDirectSound3DListener::SetPosition
HRESULT SetPosition(D3DVALUE x, D3DVALUE y,
 D3DVALUE z, DWORD dwApply);

Sets the listener's current position, in distance units. By default, these units are
meters, but this can be changed by calling the
IDirectSound3DListener::SetDistanceFactor method.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
listener's new position vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

See also IDirectSound3DListener::GetPosition

Chapter 3 DirectSound 69

IDirectSound3DListener::SetRolloffFactor
HRESULT SetRolloffFactor(
 D3DVALUE flRolloffFactor, DWORD dwApply);

Sets the rolloff factor.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

flRolloffFactor
New rolloff factor.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the
IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

The default value is DS3D_DEFAULTROLLOFFFACTOR (1.0). For additional
information about the rolloff factor, see Rolloff Factor.

See also IDirectSound3DListener::GetRolloffFactor

IDirectSound3DListener::SetVelocity
HRESULT SetVelocity(D3DVALUE x,
 D3DVALUE y, D3DVALUE z, DWORD dwApply);

Sets the listener's velocity.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

x, y, and z
Values whose types are D3DVALUE and that represent the coordinates of the
listener's new velocity vector.

dwApply
Value indicating when the setting should be applied. This value must be one of
the following:
DS3D_DEFERRED Settings are not applied until the application

calls the

IDirectSound3DListener::CommitDeferre
dSettings method. This allows the application
to change several settings and generate a
single recalculation.

DS3D_IMMEDIATE Settings are applied immediately, causing the
system to recalculate the 3D coordinates for
all 3D sound buffers.

Velocity is used only for Doppler effects. It does not actually move the listener.
To change the listener's position, use the IDirectSound3DListener::SetPosition
method. The default velocity is (0,0,0).

See also IDirectSound3DListener::GetVelocity

IDirectSoundBuffer
Applications use the methods of the IDirectSoundBuffer interface to create
DirectSoundBuffer objects and set up the environment. The methods can be
organized into the following groups:

Information GetCaps
GetFormat
GetStatus
SetFormat

Memory management Initialize
Restore

Play management GetCurrentPosition
Lock
Play
SetCurrentPosition
Stop
Unlock

Sound management GetFrequency
GetPan
GetVolume
SetFrequency
SetPan
SetVolume

Chapter 3 DirectSound 71

All COM interfaces inherit the IUnknown interface methods. This interface
supports the following three methods:

AddRef
QueryInterface
Release

IDirectSoundBuffer::GetCaps
HRESULT GetCaps(LPDSBCAPS lpDSBufferCaps);

Retrieves the capabilities of the DirectSoundBuffer object.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpDSBufferCaps
Address of a DSBCAPS structure to contain the capabilities of this sound buffer.

The DSBCAPS structure contains similar information to the DSBUFFERDESC
structure passed to the IDirectSound::CreateSoundBuffer method, with some
additional information. This additional information can include the buffer's
location, either in hardware or software, and some cost measures. Examples of
cost measures include the time it takes to download to a hardware buffer and the
processing overhead required to mix and play the buffer when it is in the system
memory.

The flags specified in the dwFlags member of the DSBCAPS structure are the
same flags used by the DSBUFFERDESC structure. The only difference is that
in the DSBCAPS structure, either DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE will be specified according to the location of the
buffer memory. In the DSBUFFERDESC structure, these flags are optional and,
depending on which flag is specified, force the buffer to be located in either
hardware or software.

See also DSBCAPS, DSBUFFERDESC, IDirectSoundBuffer,
IDirectSound::CreateSoundBuffer

IDirectSoundBuffer::GetCurrentPosition
HRESULT GetCurrentPosition(LPDWORD lpdwCurrentPlayCursor,
 LPDWORD lpdwCurrentWriteCursor);

Retrieves the current position of the play and write cursors in the sound buffer.

· Returns DS_OK if successful, or one of the following error values otherwise:

DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

lpdwCurrentPlayCursor
Address of a variable to contain the current play position in the
DirectSoundBuffer object. This position is an offset within the sound buffer and
is specified in bytes.

lpdwCurrentWriteCursor
Address of a variable to contain the current write position in the
DirectSoundBuffer object. This position is an offset within the sound buffer and
is specified in bytes.

The write cursor indicates the position at which it is safe to write new data to the
buffer. The write cursor always leads the play cursor, typically by about 15
milliseconds worth of audio data.

It is always safe to change data that is behind the position indicated by the
lpdwCurrentPlayCursor parameter.

See also IDirectSoundBuffer, IDirectSoundBuffer::SetCurrentPosition

IDirectSoundBuffer::GetFormat
HRESULT GetFormat(LPWAVEFORMATEX lpwfxFormat,
 DWORD dwSizeAllocated, LPDWORD lpdwSizeWritten);

Retrieves a description of the format of the sound data in the buffer, or the buffer
size needed to retrieve the format description.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpwfxFormat
Address of the WAVEFORMATEX structure to contain a description of the
sound data in the buffer. To retrieve the buffer size needed to contain the format
description, specify NULL.

dwSizeAllocated
Size, in bytes, of the WAVEFORMATEX structure. DirectSound writes, at
most, dwSizeAllocated bytes to that pointer; if the WAVEFORMATEX structure
requires more memory, it is truncated.

lpdwSizeWritten
Address of a variable to contain the number of bytes written to the
WAVEFORMATEX structure. This parameter can be NULL.

The WAVEFORMATEX structure can have a variable length that depends on
the details of the format. Before retrieving the format description, the application
should query the DirectSoundBuffer object for the size of the format by calling
this method and specifying NULL for the lpwfxFormat parameter. The size of the

Chapter 3 DirectSound 73

structure will be returned in the lpdwSizeWritten parameter. The application can
then allocate sufficient memory and call IDirectSoundBuffer::GetFormat again
to retrieve the format description.

See also IDirectSoundBuffer, IDirectSoundBuffer::SetFormat

IDirectSoundBuffer::GetFrequency
HRESULT GetFrequency(LPDWORD lpdwFrequency);

Retrieves the frequency, in samples per second, at which the buffer is playing.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_CONTROLUNAVAIL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

lpdwFrequency
Address of the variable that represents the frequency at which the audio buffer is
being played.

The frequency value will be in the range of 100 to 100,000.

See also IDirectSoundBuffer, IDirectSoundBuffer::SetFrequency

IDirectSoundBuffer::GetPan
HRESULT GetPan(LPLONG lplPan);

Retrieves a variable that represents the relative volume between the left and right
audio channels.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_CONTROLUNAVAIL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

lplPan
Address of a variable to contain the relative mix between the left and right
speakers.

The returned value is measured in hundredths of a decibel (dB), in the range of -
10,000 to 10,000. The value -10,000 means the right channel is attenuated by 100
dB. The value 10,000 means the left channel is attenuated by 100 dB. The neutral
value is 0; a value of 0 in the lplPan parameter means that both channels are at

full volume (they are attenuated by 0 decibels). At any setting other than 0, one of
the channels is at full volume and the other is attenuated.

A pan of -2173 means that the left channel is at full volume and the right channel
is attenuated by 21.73 dB. Similarly, a pan of 870 means that the left channel is
attenuated by 8.7 dB and the right channel is at full volume. A pan of -10,000
means that the right channel is silent and the sound is "all the way to the left,"
while a pan of 10,000 means that the left channel is silent and the sound is "all the
way to the right."

The pan control acts cumulatively with the volume control.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetVolume,
IDirectSoundBuffer::SetPan, IDirectSoundBuffer::SetVolume

IDirectSoundBuffer::GetStatus
HRESULT GetStatus(LPDWORD lpdwStatus);

Retrieves the current status of the sound buffer.

· Returns DS_OK if successful, or DSERR_INVALIDPARAM otherwise.

lpdwStatus
Address of a variable to contain the status of the sound buffer. The status can be
set to the following values:
DSBSTATUS_BUFFERLOST

The buffer is lost and must be restored before it can be played or locked.
DSBSTATUS_LOOPING

The buffer is being looped. If this value is not set, the buffer will stop
when it reaches the end of the sound data. Note that if this value is set, the
buffer must also be playing.

DSBSTATUS_PLAYING
The buffer is playing. If this value is not set, the buffer is stopped.

See also IDirectSoundBuffer

IDirectSoundBuffer::GetVolume
HRESULT GetVolume(LPLONG lplVolume);

Retrieves the current volume for this sound buffer.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_CONTROLUNAVAIL
DSERR_INVALIDPARAM

Chapter 3 DirectSound 75

DSERR_PRIOLEVELNEEDED

lplVolume
Address of the variable to contain the volume associated with the specified
DirectSound buffer.

The volume is specified in hundredths of decibels (dB), and ranges from 0 to -
10,000. The value 0 represents the original, unadjusted volume of the stream. The
value -10,000 indicates an audio volume attenuated by 100 dB, which, for all
practical purposes, is silence. Amplification is not currently supported by
DirectSound.

The decibel scale corresponds to the logarithmic hearing characteristics of the
ear. For example, an attenuation of 10 dB makes a buffer sound half as loud, and
an attenuation of 20 dB makes a buffer sound one-quarter as loud.

See also IDirectSoundBuffer, IDirectSoundBuffer::SetVolume

IDirectSoundBuffer::Initialize
HRESULT Initialize(LPDIRECTSOUND lpDirectSound,
 LPDSBUFFERDESC lpDSBufferDesc);

Initializes a DirectSoundBuffer object if it has not yet been initialized.

· Returns DSERR_ALREADYINITIALIZED.

lpDirectSound
Address of the DirectSound object associated with this DirectSoundBuffer object.

lpDSBufferDesc
Address of a DSBUFFERDESC structure that contains the values used to
initialize this sound buffer.

Because the IDirectSound::CreateSoundBuffer method calls
IDirectSoundBuffer::Initialize internally, it is not needed for the current release
of DirectSound. This method is provided for future extensibility.

See also DSBUFFERDESC, IDirectSound::CreateSoundBuffer,
IDirectSoundBuffer

IDirectSoundBuffer::Lock
HRESULT Lock(DWORD dwWriteCursor, DWORD dwWriteBytes,
 LPVOID lplpvAudioPtr1, LPDWORD lpdwAudioBytes1,
 LPVOID lplpvAudioPtr2, LPDWORD lpdwAudioBytes2,
 DWORD dwFlags);

Obtains a valid write pointer to the sound buffer's audio data.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_BUFFERLOST
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

dwWriteCursor
Offset, in bytes, from the start of the buffer to where the lock begins. This
parameter is ignored if DSBLOCK_FROMWRITECURSOR is specified in the
dwFlags parameter.

dwWriteBytes
Size, in bytes, of the portion of the buffer to lock. Note that the sound buffer is
conceptually circular.

lplpvAudioPtr1
Address of a pointer to contain the first block of the sound buffer to be locked.

lpdwAudioBytes1
Address of a variable to contain the number of bytes pointed to by the
lplpvAudioPtr1 parameter. If this value is less than the dwWriteBytes parameter,
lplpvAudioPtr2 will point to a second block of sound data.

lplpvAudioPtr2
Address of a pointer to contain the second block of the sound buffer to be locked.
If the value of this parameter is NULL, the lplpvAudioPtr1 parameter points to
the entire locked portion of the sound buffer.

lpdwAudioBytes2
Address of a variable to contain the number of bytes pointed to by the
lplpvAudioPtr2 parameter. If lplpvAudioPtr2 is NULL, this value will be 0.

dwFlags
Flags modifying the lock event. The following flag is defined:
DSBLOCK_FROMWRITECURSOR

Locks from the current write cursor, making a call to
IDirectSoundBuffer::GetCurrentPosition unnecessary. If this flag is
specified, the dwWriteCursor parameter is ignored. This flag is optional.

This method accepts an offset and a byte count, and returns two write pointers
and their associated sizes. Two pointers are required because sound buffers are
circular. If the locked bytes do not wrap around the end of the buffer, the second
pointer, lplpvAudioBytes2, will be NULL. However, if the bytes do wrap around,
then the second pointer will point to the beginning of the buffer.

If the application passes NULL for the lplpvAudioPtr2 and lpdwAudioBytes2
parameters, DirectSound will not lock the wraparound portion of the buffer.

Chapter 3 DirectSound 77

The application should write data to the pointers returned by the
IDirectSoundBuffer::Lock method, and then call the
IDirectSoundBuffer::Unlock method to release the buffer back to DirectSound.
The sound buffer should not be locked for long periods of time; if it is, the play
cursor will reach the locked bytes and configuration-dependent audio problems,
possibly random noise, will result.

This method returns a write pointer only. The application should not try to read
sound data from this pointer; the data might not be valid even though the
DirectSoundBuffer object contains valid sound data. For example, if the buffer is
located in onboard memory, the pointer might be an address to a temporary buffer in
main system memory. When IDirectSoundBuffer::Unlock is called, this temporary
buffer will be transferred to the onboard memory.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetCurrentPosition,
IDirectSoundBuffer::Unlock

IDirectSoundBuffer::Play
HRESULT Play(DWORD dwReserved1, DWORD dwReserved2,
 DWORD dwFlags);

Causes the sound buffer to play from the current position.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_BUFFERLOST
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

dwReserved1
This parameter is reserved. Its value must be 0.

dwReserved2
This parameter is reserved. Its value must be 0.

dwFlags
Flags specifying how to play the buffer. The following flag is defined:
DSBPLAY_LOOPING

Once the end of the audio buffer is reached, play restarts at the beginning
of the buffer. Play continues until explicitly stopped. This flag must be set
when playing primary sound buffers.

This method will cause a secondary sound buffer to be mixed into the primary
buffer and sent to the sound device. If this is the first buffer to play, it will

Warning

implicitly create a primary buffer and start playing that buffer; the application
need not explicitly direct the primary buffer to play.

If the buffer specified in the method is already playing, the call to the method will
succeed and the buffer will continue to play. However, the flags that define
playback characteristics are superseded by the flags defined in the most recent
call.

Primary buffers must be played with the DSBPLAY_LOOPING flag set.

This method will cause primary sound buffers to start playing to the sound
device. If the application is set to the DSSCL_WRITEPRIMARY cooperative
level, this will cause the audio data in the primary buffer to be sent to the sound
device. However, if the application is set to any other cooperative level, this
method will ensure that the primary buffer is playing even when no secondary
buffers are playing; in that case, silence will be played. This can reduce
processing overhead when sounds are started and stopped in sequence, because
the primary buffer will be playing continuously rather than stopping and starting
between secondary buffers.

Before this method can be called on any sound buffer, the application must call the
IDirectSound::SetCooperativeLevel method and specify a cooperative level,
typically DSSCL_NORMAL. If IDirectSound::SetCooperativeLevel has not been
called, the IDirectSoundBuffer::Play method returns the
DSERR_PRIOLEVELNEEDED error value.

See also IDirectSoundBuffer, IDirectSound::SetCooperativeLevel

IDirectSoundBuffer::Restore
HRESULT Restore();

Restores the memory allocation for a lost sound buffer for the specified
DirectSoundBuffer object.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_BUFFERLOST
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

If the application does not have the input focus, IDirectSoundBuffer::Restore
might not succeed. For example, if the application with the input focus has the
DSSCL_WRITEPRIMARY cooperative level, no other application will be able to

Note

Chapter 3 DirectSound 79

restore its buffers. Similarly, an application with the DSSCL_WRITEPRIMARY
cooperative level must have the input focus to restore its primary sound buffer.

Once DirectSound restores the buffer memory, the application must rewrite the
buffer with valid sound data. DirectSound cannot restore the contents of the
memory, only the memory itself.

The application can receive notification that a buffer is lost when it specifies that
buffer in a call to the IDirectSoundBuffer::Lock or IDirectSoundBuffer::Play
method. These methods return DSERR_BUFFERLOST to indicate a lost buffer.
The IDirectSoundBuffer::GetStatus method can also be used to retrieve the
status of the sound buffer and test for the DSBSTATUS_BUFFERLOST flag.

See also IDirectSoundBuffer, IDirectSoundBuffer::Lock,
IDirectSoundBuffer::Play, IDirectSoundBuffer::GetStatus

IDirectSoundBuffer::SetCurrentPosition
HRESULT SetCurrentPosition(DWORD dwNewPosition);

Moves the current play cursor for secondary sound buffers.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

dwNewPosition
New position, in bytes, from the beginning of the buffer that will be used when
the sound buffer is played.

This method cannot be called on primary sound buffers.

If the buffer is playing, it will immediately move to the new position and
continue. If it is not playing, it will begin from the new position the next time the
IDirectSoundBuffer::Play method is called.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetCurrentPosition,
IDirectSoundBuffer::Play

IDirectSoundBuffer::SetFormat
HRESULT SetFormat(LPWAVEFORMATEX lpfxFormat);

Sets the format of the primary sound buffer for the application. Whenever this
application has the input focus, DirectSound will set the primary buffer to the
specified format.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_BADFORMAT
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_OUTOFMEMORY
DSERR_PRIOLEVELNEEDED
DSERR_UNSUPPORTED

lpfxFormat
Address of a WAVEFORMATEX structure that describes the new format for
the primary sound buffer.

If this method is called on a primary buffer that is being accessed in write-
primary cooperative level, the buffer must be stopped before
IDirectSoundBuffer::SetFormat is called. If this method is being called on a
primary buffer for a non-write-primary level, DirectSound will implicitly stop the
primary buffer, change the format, and restart the primary; the application need
not do this explicitly.

A call to this method fails if the hardware does not directly support the requested
pulse coded modulation (PCM) format. It will also fail if the calling application
has the DSSCL_NORMAL cooperative level.

If a secondary sound buffer requires a format change, the application should
create a new DirectSoundBuffer object using the new format.

DirectSound supports PCM formats; it does not currently support compressed
formats.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetFormat

IDirectSoundBuffer::SetFrequency
HRESULT SetFrequency(DWORD dwFrequency);

Sets the frequency at which the audio samples are played.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_CONTROLUNAVAIL
DSERR_GENERIC
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

Chapter 3 DirectSound 81

dwFrequency
New frequency, in hertz (Hz), at which to play the audio samples. The value
must be between 100 and 100,000.
If the value is 0, the frequency is reset to the current buffer format. This format is
specified in the IDirectSound::CreateSoundBuffer method.

Increasing or decreasing the frequency changes the perceived pitch of the audio
data. This method does not affect the format of the buffer.

See also IDirectSoundBuffer, IDirectSound::CreateSoundBuffer,
IDirectSoundBuffer::GetFrequency, IDirectSoundBuffer::Play,
IDirectSoundBuffer::SetFormat

IDirectSoundBuffer::SetPan
HRESULT SetPan(LONG lPan);

Specifies the relative volume between the left and right channels.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_CONTROLUNAVAIL
DSERR_GENERIC
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

lPan
Relative volume between the left and right channels. This value has a range of -
10,000 to 10,000 and is measured in hundredths of a decibel (dB).

The neutral value for lPan is 0; it indicates that both channels are at full volume
(attenuated by 0 decibels). At any other setting, one of the channels is at full
volume and the other is attenuated. For example, a pan of -2173 means that the
left channel is at full volume and the right channel is attenuated by 21.73 dB.
Similarly, a pan of 870 means that the left channel is attenuated by 8.7 dB and the
right channel is at full volume.

A pan of -10,000 means that the right channel is silent and the sound is "all the
way to the left," while a pan of 10,000 means that the left channel is silent and the
sound is "all the way to the right."

The pan control is cumulative with the volume control.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetPan,
IDirectSoundBuffer::GetVolume, IDirectSoundBuffer::SetVolume

IDirectSoundBuffer::SetVolume
HRESULT SetVolume(LONG lVolume);

Changes the volume of a sound buffer.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_CONTROLUNAVAIL
DSERR_GENERIC
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

lVolume
New volume requested for this sound buffer. Values range from 0 (0 decibels
(dB), no volume adjustment) to -10,000 (-100 dB, essentially silent). DirectSound
does not currently support amplification.

Volume units of are in hundredths of decibels, where 0 is the original volume of
the stream.

Positive decibels correspond to amplification and negative decibels correspond to
attenuation. The decibel scale corresponds to the logarithmic hearing
characteristics of the ear. An attenuation of 10 dB makes a buffer sound half as
loud; an attenuation of 20 dB makes a buffer sound one-quarter as loud.
DirectSound does not currently support amplification.

The pan control is cumulative with the volume control.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetPan,
IDirectSoundBuffer::GetVolume, IDirectSoundBuffer::SetPan

IDirectSoundBuffer::Stop
HRESULT Stop();

Causes the sound buffer to stop playing.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

For secondary sound buffers, IDirectSoundBuffer::Stop will set the current
position of the buffer to the sample that follows the last sample played. This
means that if the IDirectSoundBuffer::Play method is called on the buffer, it
will continue playing where it left off.

Chapter 3 DirectSound 83

For primary sound buffers, if an application has the DSSCL_WRITEPRIMARY
level, this method will stop the buffer and reset the current position to 0 (the
beginning of the buffer). This is necessary because the primary buffers on most
sound cards can play only from the beginning of the buffer.

However, if IDirectSoundBuffer::Stop is called on a primary buffer and the
application has a cooperative level other than DSSCL_WRITEPRIMARY, this
method simply reverses the effects of IDirectSoundBuffer::Play. It configures
the primary buffer to stop if no secondary buffers are playing. If other buffers are
playing in this or other applications, the primary buffer will not actually stop until
they are stopped. This method is useful because playing the primary buffer
consumes processing overhead even if the buffer is playing sound data with the
amplitude of 0 decibels.

See also IDirectSoundBuffer, IDirectSoundBuffer::Play

IDirectSoundBuffer::Unlock
HRESULT Unlock(LPVOID lpvAudioPtr1, DWORD dwAudioBytes1,
 LPVOID lpvAudioPtr2, DWORD dwAudioBytes2);

Releases a locked sound buffer.

· Returns DS_OK if successful, or one of the following error values otherwise:
DSERR_INVALIDCALL
DSERR_INVALIDPARAM
DSERR_PRIOLEVELNEEDED

lpvAudioPtr1
Address of the value retrieved in the lplpvAudioPtr1 parameter of the
IDirectSoundBuffer::Lock method.

dwAudioBytes1
Number of bytes actually written to the lpvAudioPtr1 parameter. It should not
exceed the number of bytes returned by the IDirectSoundBuffer::Lock method.

lpvAudioPtr2
Address of the value retrieved in the lplpvAudioPtr2 parameter of the
IDirectSoundBuffer::Lock method.

dwAudioBytes2
Number of bytes actually written to the lpvAudioPtr2 parameter. It should not
exceed the number of bytes returned by the IDirectSoundBuffer::Lock method.

An application must pass both pointers, lpvAudioPtr1 and lpvAudioPtr2, returned
by the IDirectSoundBuffer::Lock method to ensure the correct pairing of
IDirectSoundBuffer::Lock and IDirectSoundBuffer::Unlock. The second
pointer is needed even if 0 bytes were written to the second pointer.

Applications must pass the number of bytes actually written to the two pointers in
the parameters dwAudioBytes1 and dwAudioBytes2.

Make sure the sound buffer does not remain locked for long periods of time.

See also IDirectSoundBuffer, IDirectSoundBuffer::GetCurrentPosition,
IDirectSoundBuffer::Lock

Structures

DS3DBUFFER
typedef struct {
 DWORD dwSize;
 D3DVECTOR vPosition;
 D3DVECTOR vVelocity;
 DWORD dwInsideConeAngle;
 DWORD dwOutsideConeAngle;
 D3DVECTOR vConeOrientation;
 LONG lConeOutsideVolume;
 D3DVALUE flMinDistance;
 D3DVALUE flMaxDistance;
 DWORD dwMode;
} DS3DBUFFER;

Contains all information necessary to uniquely describe the location, orientation,
and motion of a 3D sound buffer. This structure is used with the
IDirectSound3DBuffer::GetAllParameters and
IDirectSound3DBuffer::SetAllParameters methods.

dwSize
Size of this structure, in bytes.

vPosition
A D3DVECTOR structure that describes the current position of the 3D sound
buffer.

vVelocity
A D3DVECTOR structure that describes the current velocity of the 3D sound
buffer.

dwInsideConeAngle
The angle of the inside sound projection cone.

dwOutsideConeAngle
The angle of the outside sound projection cone.

vConeOrientation
A D3DVECTOR structure that describes the current orientation of this 3D
buffer's sound projection cone.

Chapter 3 DirectSound 85

lConeOutsideVolume
The cone outside volume.

flMinDistance
The minimum distance.

flMaxDistance
The maximum distance.

dwMode
The 3D sound processing mode to be set.
DS3DMODE_DISABLE

3D sound processing is disabled. The sound will appear to originate from
the center of the listener's head.

DS3DMODE_HEADRELATIVE
Sound parameters (position, velocity, and orientation) are relative to the
listener's parameters. In this mode, the absolute parameters of the sound
are updated automatically as the listener's parameters change, so that the
relative parameters remain constant.

DS3DMODE_NORMAL
Normal processing. This is the default mode.

DS3DLISTENER
typedef struct {
 DWORD dwSize;
 D3DVECTOR vPosition;
 D3DVECTOR vVelocity;
 D3DVECTOR vOrientFront;
 D3DVECTOR vOrientTop;
 D3DVALUE flDistanceFactor;
 D3DVALUE flRolloffFactor;
 D3DVALUE flDopplerFactor;
} DS3DLISTENER;

Contains all information necessary to uniquely describe the 3D world parameters
and position of the listener. This structure is used with the
IDirectSound3DListener::GetAllParameters and
IDirectSound3DListener::SetAllParameters methods.

dwSize
Size of this structure, in bytes.

vPosition, vVelocity, vOrientFront, and vOrientTop
D3DVECTOR structures that describe the listener's position, velocity, front
orientation, and top orientation, respectively.

flDistanceFactor, flRolloffFactor, and flDopplerFactor
The current distance, rolloff, and Doppler factors, respectively.

DSBCAPS
typedef struct _DSBCAPS {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwBufferBytes;
 DWORD dwUnlockTransferRate;
 DWORD dwPlayCpuOverhead;
} DSBCAPS, *LPDSBCAPS;

Specifies the capabilities of a DirectSound buffer object, for use by the
IDirectSoundBuffer::GetCaps method.

dwSize
Size of this structure, in bytes.

dwFlags
Flags that specify buffer-object capabilities.
DSBCAPS_CTRL3D

The buffer is a primary buffer that uses 3D control.
DSBCAPS_CTRLFREQUENCY

The buffer must have frequency control capability.
DSBCAPS_CTRLPAN

The buffer must have pan control capability.
DSBCAPS_CTRLVOLUME

The buffer must have volume control capability.
DSBCAPS_GETCURRENTPOSITION2

Indicates that IDirectSoundBuffer::GetCurrentPosition should use the
new behavior of the play cursor. In DirectSound in DirectX 1, the play
cursor was significantly ahead of the actual playing sound on emulated
sound cards; it was directly behind the write cursor. Now, if the
DSBCAPS_GETCURRENTPOSITION2 flag is specified, the application
can get a more accurate play position. If this flag is not specified, the old
behavior is preserved for compatibility. Note that this flag affects only
emulated sound cards; if a DirectSound driver is present, the play cursor
is accurate for DirectSound in all versions of DirectX.

DSBCAPS_GLOBALFOCUS
The buffer is a global sound buffer. With this flag set, an application
using DirectSound can continue to play its buffers if the user switches
focus to another application, even if the new application uses
DirectSound. The one exception is if you switch focus to a DirectSound
application that uses the DSSCL_EXCLUSIVE or
DSSCL_WRITEPRIMARY flag for its cooperative level. In this case, the
global sounds from other applications will not be audible.

DSBCAPS_LOCHARDWARE

Chapter 3 DirectSound 87

Forces the buffer to use hardware mixing, even if DSBCAPS_STATIC is
not specified. If the device does not support hardware mixing, or the
required hardware memory is not available, the call to
IDirectSound::CreateSoundBuffer will fail. The application must
ensure that a mixing channel will be available for this buffer; this
condition is not guaranteed.

DSBCAPS_LOCSOFTWARE
Forces the buffer to be stored in software memory and use software
mixing, even if DSBCAPS_STATIC is specified and hardware resources
are available.

DSBCAPS_PRIMARYBUFFER
Indicates that the buffer is a primary sound buffer. If this value is not
specified, a secondary sound buffer will be created.

DSBCAPS_STATIC
Indicates that the buffer will be used for static sound data. Typically,
these buffers are loaded once and played many times. These buffers are
candidates for hardware memory.

DSBCAPS_STICKYFOCUS
Changes the focus behavior of the sound buffer. This flag can be
specified in an IDirectSound::CreateSoundBuffer call. With this flag
set, an application using DirectSound can continue to play its sticky focus
buffers if the user switches to another application not using DirectSound.
In this situation, the application's normal buffers are muted, but the sticky
focus buffers are still audible. This is useful for nongame applications,
such as movie playback (ActiveMovie™), when the user wants to hear
the soundtrack while typing in Word or Excel, for example. However, if
the user switches to another DirectSound application, all sound buffers,
both normal and sticky focus, in the previous application are muted.

dwBufferBytes
Size of this buffer, in bytes.

dwUnlockTransferRate
Specifies the rate, in kilobytes per second, that data is transferred to the buffer
memory when IDirectSoundBuffer::Unlock is called. High-performance
applications can use this value to determine the time required for
IDirectSoundBuffer::Unlock to execute. For software buffers located in system
memory, the rate will be very high because no processing is required. For
hardware buffers, the rate might be slower because the buffer might have to be
downloaded to the sound card, which might have a limited transfer rate.

dwPlayCpuOverhead
Specifies the processing overhead as a percentage of main processing cycles
needed to mix this sound buffer. For hardware buffers, this member will be 0
because the mixing is performed by the sound device. For software buffers, this
member depends on the buffer format and the speed of the system processor.

The DSBCAPS structure contains information similar to that found in the
DSBUFFERDESC structure passed to the IDirectSound::CreateSoundBuffer
method, with some additional information. Additional information includes the
location of the buffer (hardware or software) and some cost measures (such as
the time to download the buffer if located in hardware, and the processing
overhead to play the buffer if it is mixed in software).

Note that the dwFlags member of the DSBCAPS structure contains the same
flags used by the DSBUFFERDESC structure. The only difference is that in the
DSBCAPS structure, either the DSBCAPS_LOCHARDWARE or
DSBCAPS_LOCSOFTWARE flag will be specified, according to the location of
the buffer memory. In the DSBUFFERDESC structure, these flags are optional
and are used to force the buffer to be located in either hardware or software.

See also IDirectSound::CreateSoundBuffer, IDirectSoundBuffer::GetCaps

DSBUFFERDESC
typedef struct _DSBUFFERDESC{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwBufferBytes;
 DWORD dwReserved;
 LPWAVEFORMATEX lpwfxFormat;
} DSBUFFERDESC, *LPDSBUFFERDESC;

Describes the necessary characteristics of a new DirectSoundBuffer object. This
structure is used by the IDirectSound::CreateSoundBuffer method.

dwSize
Size of this structure, in bytes.

dwFlags
Identifies the capabilities to include when creating a new DirectSoundBuffer
object. Specify one or more of the following:
DSBCAPS_CTRL3D

The buffer is a primary buffer that uses 3D control.
DSBCAPS_CTRLALL

The buffer must have all control capabilities.
DSBCAPS_CTRLDEFAULT

The buffer should have default control options. This is the same as
specifying the DSBCAPS_CTRLPAN, DSBCAPS_CTRLVOLUME, and
DSBCAPS_CTRLFREQUENCY flags.

DSBCAPS_CTRLFREQUENCY
The buffer must have frequency control capability.

DSBCAPS_CTRLPAN

Chapter 3 DirectSound 89

The buffer must have pan control capability.
DSBCAPS_CTRLVOLUME

The buffer must have volume control capability.
DSBCAPS_GETCURRENTPOSITION2

Indicates that IDirectSoundBuffer::GetCurrentPosition should use the
new behavior of the play cursor. In DirectSound in DirectX 1, the play
cursor was significantly ahead of the actual playing sound on emulated
sound cards; it was directly behind the write cursor. Now, if the
DSBCAPS_GETCURRENTPOSITION2 flag is specified, the application
can get a more accurate play position. If this flag is not specified, the old
behavior is preserved for compatibility. Note that this flag affects only
emulated sound cards; if a DirectSound driver is present, the play cursor
is accurate for DirectSound in all versions of DirectX.

DSBCAPS_GLOBALFOCUS
The buffer is a global sound buffer. With this flag set, an application
using DirectSound can continue to play its buffers if the user switches
focus to another application, even if the new application uses
DirectSound. The one exception is if you switch focus to a DirectSound
application that uses the DSSCL_EXCLUSIVE or
DSSCL_WRITEPRIMARY flag for its cooperative level. In this case, the
global sounds from other applications will not be audible.

DSBCAPS_LOCHARDWARE
Forces the buffer to use hardware mixing, even if DSBCAPS_STATIC is
not specified. If the device does not support hardware mixing or if the
required hardware memory is not available, the call to the
IDirectSound::CreateSoundBuffer method will fail. The application
must ensure that a mixing channel will be available for this buffer; this
condition is not guaranteed.

DSBCAPS_LOCSOFTWARE
Forces the buffer to be stored in software memory and use software
mixing, even if DSBCAPS_STATIC is specified and hardware resources
are available.

DSBCAPS_PRIMARYBUFFER
Indicates that the buffer is a primary sound buffer. If this value is not
specified, a secondary sound buffer will be created.

DSBCAPS_STATIC
Indicates that the buffer will be used for static sound data. Typically,
these buffers are loaded once and played many times. These buffers are
candidates for hardware memory.

DSBCAPS_STICKYFOCUS
Changes the focus behavior of the sound buffer. This flag can be
specified in an IDirectSound::CreateSoundBuffer call. With this flag
set, an application using DirectSound can continue to play its sticky focus
buffers if the user switches to another application not using DirectSound.

In this situation, the application's normal buffers are muted, but the sticky
focus buffers are still audible. This is useful for nongame applications,
such as movie playback (ActiveMovie), when the user wants to hear the
soundtrack while typing in Word or Excel, for example. However, if the
user switches to another DirectSound application, all sound buffers, both
normal and sticky focus, in the previous application are muted.

dwBufferBytes
Size of the new buffer, in bytes. This value must be 0 when creating primary
buffers.

dwReserved
This value is reserved. Do not use.

lpwfxFormat
Address of a structure specifying the waveform format for the buffer. This value
must be NULL for primary buffers. The application can use
IDirectSoundBuffer::SetFormat to set the format of the primary buffer.

The DSBCAPS_LOCHARDWARE and DSBCAPS_LOCSOFTWARE flags
used in the dwFlags member are optional and mutually exclusive.
DSBCAPS_LOCHARDWARE forces the buffer to reside in memory located in
the sound card. DSBCAPS_LOCSOFTWARE forces the buffer to reside in main
system memory, if possible.

These flags are also defined for the dwFlags member of the DSBCAPS structure,
and when used there, the specified flag indicates the actual location of the
DirectSoundBuffer object.

When creating a primary buffer, applications must set the dwBufferBytes
member to 0; DirectSound will determine the optimal buffer size for the
particular sound device in use. To determine the size of a created primary buffer,
call IDirectSoundBuffer::GetCaps.

See also IDirectSound::CreateSoundBuffer

DSCAPS
typedef struct _DSCAPS {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwMinSecondarySampleRate;
 DWORD dwMaxSecondarySampleRate;
 DWORD dwPrimaryBuffers;
 DWORD dwMaxHwMixingAllBuffers;
 DWORD dwMaxHwMixingStaticBuffers;
 DWORD dwMaxHwMixingStreamingBuffers;
 DWORD dwFreeHwMixingAllBuffers;
 DWORD dwFreeHwMixingStaticBuffers;
 DWORD dwFreeHwMixingStreamingBuffers;

Chapter 3 DirectSound 91

 DWORD dwMaxHw3DAllBuffers;
 DWORD dwMaxHw3DStaticBuffers;
 DWORD dwMaxHw3DStreamingBuffers;
 DWORD dwFreeHw3DAllBuffers;
 DWORD dwFreeHw3DStaticBuffers;
 DWORD dwFreeHw3DStreamingBuffers;
 DWORD dwTotalHwMemBytes;
 DWORD dwFreeHwMemBytes;
 DWORD dwMaxContigFreeHwMemBytes;
 DWORD dwUnlockTransferRateHwBuffers;
 DWORD dwPlayCpuOverheadSwBuffers;
 DWORD dwReserved1;
 DWORD dwReserved2;
} DSCAPS, *LPDSCAPS;

Specifies the capabilities of a DirectSound device for use by the
IDirectSound::GetCaps method.

dwSize
Size of this structure, in bytes.

dwFlags
Specifies device capabilities. Can be one or more of the following:
DSCAPS_CERTIFIED

This driver has been tested and certified by Microsoft.
DSCAPS_CONTINUOUSRATE

The device supports all sample rates between the
dwMinSecondarySampleRate and dwMaxSecondarySampleRate
member values. Typically, this means that the actual output rate will be
within +/- 10 hertz (Hz) of the requested frequency.

DSCAPS_EMULDRIVER
The device does not have a DirectSound driver installed, so it is being
emulated through the waveform-audio functions. Performance
degradation should be expected.

DSCAPS_PRIMARY16BIT
The device supports primary sound buffers with 16-bit samples.

DSCAPS_PRIMARY8BIT
The device supports primary buffers with 8-bit samples.

DSCAPS_PRIMARYMONO
The device supports monophonic primary buffers.

DSCAPS_PRIMARYSTEREO
The device supports stereo primary buffers.

DSCAPS_SECONDARY16BIT
The device supports hardware-mixed secondary sound buffers with 16-bit

samples.
DSCAPS_SECONDARY8BIT

The device supports hardware-mixed secondary buffers with 8-bit
samples.

DSCAPS_SECONDARYMONO
The device supports hardware-mixed monophonic secondary buffers.

DSCAPS_SECONDARYSTEREO
The device supports hardware-mixed stereo secondary buffers.

dwMinSecondarySampleRate and dwMaxSecondarySampleRate
Minimum and maximum sample rate specifications that are supported by this
device's hardware secondary sound buffers.

dwPrimaryBuffers
Number of primary buffers supported. This value will always be 1 for this
release.

dwMaxHwMixingAllBuffers
Specifies the total number of buffers that can be mixed in hardware. This
member can be less than the sum of dwMaxHwMixingStaticBuffers and
dwMaxHwMixingStreamingBuffers. Resource trade-offs frequently occur.

dwMaxHwMixingStaticBuffers
Specifies the maximum number of static sound buffers.

dwMaxHwMixingStreamingBuffers
Specifies the maximum number of streaming sound buffers.

dwFreeHwMixingAllBuffers, dwFreeHwMixingStaticBuffers, and
dwFreeHwMixingStreamingBuffers

Description of the free, or unallocated, hardware mixing capabilities of the
device. An application can use these values to determine whether hardware
resources are available for allocation to a secondary sound buffer. Also, by
comparing these values to the members that specify maximum mixing
capabilities, the resources that are already allocated can be determined.

dwMaxHw3DAllBuffers, dwMaxHw3DStaticBuffers, and
dwMaxHw3DStreamingBuffers

Description of the hardware 3D positional capabilities of the device. These will
all be 0 for the first release.

dwFreeHw3DAllBuffers, dwFreeHw3DStaticBuffers, and
dwFreeHw3DStreamingBuffers

Description of the free, or unallocated, hardware 3D positional capabilities of the
device. These will all be 0 for the first release.

dwTotalHwMemBytes
Size, in bytes, of the amount of memory on the sound card that stores static sound
buffers.

Chapter 3 DirectSound 93

dwFreeHwMemBytes
Size, in bytes, of the free memory on the sound card.

dwMaxContigFreeHwMemBytes
Size, in bytes, of the largest contiguous block of free memory on the sound card.

dwUnlockTransferRateHwBuffers
Description of the rate, in kilobytes per second, at which data can be transferred
to hardware static sound buffers (those located in onboard sound memory). This
and the number of bytes transferred determines the duration of a call to the
IDirectSoundBuffer::Unlock method.

dwPlayCpuOverheadSwBuffers
Description of the processing overhead, as a percentage of the central processing
unit, needed to mix software buffers (those located in main system memory).
This varies according to the bus type, the processor type, and the clock speed.
The unlock transfer rate for software buffers is 0 because the data need not be
transferred anywhere. Similarly, the play processing overhead for hardware
buffers is 0 because the mixing is done by the sound device.

dwReserved1 and dwReserved2
These values are reserved. Do not use.

See also IDirectSound::GetCaps

Return Values
Errors are represented by negative values and cannot be combined. This table
lists the values that can be returned by all IDirectSound and IDirectSoundBuffer
methods. For a list of the error codes each method can return, see the individual
method descriptions.

DS_OK
The request completed successfully.

DSERR_ALLOCATED
The request failed because resources, such as a priority level, were already in
use by another caller.

DSERR_ALREADYINITIALIZED
The object is already initialized.

DSERR_BADFORMAT
The specified wave format is not supported.

DSERR_BUFFERLOST
The buffer memory has been lost and must be restored.

DSERR_CONTROLUNAVAIL
The control (volume, pan, and so forth) requested by the caller is not
available.

DSERR_GENERIC

An undetermined error occurred inside the DirectSound subsystem.
DSERR_INVALIDCALL

This function is not valid for the current state of this object.
DSERR_INVALIDPARAM

An invalid parameter was passed to the returning function.
DSERR_NOAGGREGATION

The object does not support aggregation.
DSERR_NODRIVER

No sound driver is available for use.
DSERR_OTHERAPPHASPRIO

This value is obsolete and is not used.
DSERR_OUTOFMEMORY

The DirectSound subsystem could not allocate sufficient memory to complete
the caller's request.

DSERR_PRIOLEVELNEEDED
The caller does not have the priority level required for the function to
succeed.

DSERR_UNINITIALIZED
The IDirectSound::Initialize method has not been called or has not been
called successfully before other methods were called.

DSERR_UNSUPPORTED
The function called is not supported at this time.

	About DirectSound
	DirectSound Architecture
	Architectural Overview
	Object Types
	The DirectSound Object
	The DirectSoundBuffer Object

	Software Emulation
	Device Drivers
	Cooperative Levels
	System Integration

	DirectSound Overview
	DirectSound Features
	Mixing
	Hardware Acceleration
	Write Access to the Primary Buffer

	Three-Dimensional Sound
	Perception of Sound Positions
	Listeners
	Sound Cones
	Minimum and Maximum Distances
	Position Versus Velocity
	Integration with Direct3D
	Units of Measure and Distance Factors
	Mono and Stereo Sources

	DirectSound Interface Overviews
	IDirectSound Interface
	Device Capabilities
	Creating Buffers
	Speaker Configuration
	Hardware Memory Management

	IDirectSound3DBuffer Interface
	Obtaining an IDirectSound3DBuffer Interface Pointer
	Batch Parameter Manipulation
	Minimum and Maximum Distance Values
	Operation Mode
	Position and Velocity
	Sound Projection Cones
	Cone Angles and Cone Orientation
	Inside and Outside Cone Volumes

	IDirectSound3DListener Interface
	Obtaining an IDirectSound3DListener Interface Pointer
	Batch Parameter Manipulation
	Deferred Settings
	Distance Factor
	Doppler Factor
	Listener Position and Velocity
	Listener Orientation
	Rolloff Factor

	IDirectSoundBuffer Interface
	Play Management
	Sound-Environment Management
	Retrieving Information
	Memory Management

	DirectSound Examples
	Creating a DirectSound Object
	Creating a DirectSound Object by Using CoCreateInstance
	Querying the Hardware Capabilities
	Creating Sound Buffers
	Creating a Basic Sound Buffer
	Control Options
	Static and Streaming Sound Buffers
	Hardware and Software Sound Buffers
	Primary and Secondary Sound Buffers

	Writing to Sound Buffers
	Using the DirectSound Mixer
	Using a Custom Mixer
	Using Compressed Wave Formats

	DirectSound Reference
	Functions
	DirectSoundCreate
	DirectSoundEnumerate

	Callback Function
	DSEnumCallback

	IDirectSound
	IDirectSound::Compact
	IDirectSound::CreateSoundBuffer
	IDirectSound::DuplicateSoundBuffer
	IDirectSound::GetCaps
	IDirectSound::GetSpeakerConfig
	IDirectSound::Initialize
	IDirectSound::SetCooperativeLevel
	IDirectSound::SetSpeakerConfig

	IDirectSound3DBuffer
	IDirectSound3DBuffer::GetAllParameters
	IDirectSound3DBuffer::GetConeAngles
	IDirectSound3DBuffer::GetConeOrientation
	IDirectSound3DBuffer::GetConeOutsideVolume
	IDirectSound3DBuffer::GetMaxDistance
	IDirectSound3DBuffer::GetMinDistance
	IDirectSound3DBuffer::GetMode
	IDirectSound3DBuffer::GetPosition
	IDirectSound3DBuffer::GetVelocity
	IDirectSound3DBuffer::SetAllParameters
	IDirectSound3DBuffer::SetConeAngles
	IDirectSound3DBuffer::SetConeOrientation
	IDirectSound3DBuffer::SetConeOutsideVolume
	IDirectSound3DBuffer::SetMaxDistance
	IDirectSound3DBuffer::SetMinDistance
	IDirectSound3DBuffer::SetMode
	IDirectSound3DBuffer::SetPosition
	IDirectSound3DBuffer::SetVelocity

	IDirectSound3DListener
	IDirectSound3Dlistener
	::CommitDeferredSettings
	IDirectSound3DListener::GetAllParameters
	IDirectSound3DListener::GetDistanceFactor
	IDirectSound3DListener::GetDopplerFactor
	IDirectSound3DListener::GetOrientation
	IDirectSound3DListener::GetPosition
	IDirectSound3DListener::GetRolloffFactor
	IDirectSound3DListener::GetVelocity
	IDirectSound3DListener::SetAllParameters
	IDirectSound3DListener::SetDistanceFactor
	IDirectSound3DListener::SetDopplerFactor
	IDirectSound3DListener::SetOrientation
	IDirectSound3DListener::SetPosition
	IDirectSound3DListener::SetRolloffFactor
	IDirectSound3DListener::SetVelocity

	IDirectSoundBuffer
	IDirectSoundBuffer::GetCaps
	IDirectSoundBuffer::GetCurrentPosition
	IDirectSoundBuffer::GetFormat
	IDirectSoundBuffer::GetFrequency
	IDirectSoundBuffer::GetPan
	IDirectSoundBuffer::GetStatus
	IDirectSoundBuffer::GetVolume
	IDirectSoundBuffer::Initialize
	IDirectSoundBuffer::Lock
	IDirectSoundBuffer::Play
	IDirectSoundBuffer::Restore
	IDirectSoundBuffer::SetCurrentPosition
	IDirectSoundBuffer::SetFormat
	IDirectSoundBuffer::SetFrequency
	IDirectSoundBuffer::SetPan
	IDirectSoundBuffer::SetVolume
	IDirectSoundBuffer::Stop
	IDirectSoundBuffer::Unlock

	Structures
	DS3DBUFFER
	DS3DLISTENER
	DSBCAPS
	DSBUFFERDESC
	DSCAPS

	Return Values

