
Chapter 1

MicrosoftÒ DirectXÔ 3
Software Development
Kit

Introducing DirectX 3

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names herein may be the trademarks of their respective
owners.

3

C H A P T E R 1

DirectX Goals...
Benefits of Developing DirectX Windows Applications...
Providing Guidelines for Hardware Development...

The DirectX SDK...
DirectX SDK Components..
Using Macro Definitions...

DirectX and the Component Object Model...
The Component Object Model...
IUnknown Interface..
DirectX COM Interfaces...
C++ and the COM Interface...
Accessing COM Objects by Using C...
Interface Method Names and Syntax...

What's New in the DirectX 3 SDK?...
Conventions..

Introducing DirectX 3

DirectX Goals
The Microsoft® DirectX™ Software Development Kit (SDK) provides a finely
tuned set of application programming interfaces (APIs) that provide you with the
resources you need to design high-performance, real-time applications. DirectX
technology will help build the next generation of computer games and multimedia
applications.

Microsoft developed DirectX because it wanted the performance of applications
running in the Microsoft Windows® operating system to rival or exceed the
performance of applications running in the MS-DOS® operating system or on
game consoles. This SDK was developed to promote game development for
Windows by providing you with a robust, standardized, and well-documented
operating environment for which to write games.

This section discusses two important benefits of using DirectX: providing
hardware independence for software developers and setting guidelines for
hardware developers.

· Benefits of Developing DirectX Windows Applications
· Providing Guidelines for Hardware Development

Benefits of Developing DirectX Windows
Applications
The primary goals of DirectX are to provide portable access to the features used
with MS-DOS today, to meet or improve on the performance of MS-DOS
console-based applications, and to remove the obstacles to hardware innovation
on the personal computer.

Microsoft developed DirectX to provide Windows-based applications with high-
performance, real-time access to available hardware on current and future
computer systems. DirectX provides a consistent interface between hardware and
applications, reducing the complexity of installation and configuration and using
the hardware to its best advantage.

A high-performance Windows-based game will take advantage of the following
technologies:

· Accelerator cards designed specifically for improving performance
· Plug and Play and other Windows hardware and software
· Communications services built into Windows, including DirectPlay

Chapter 1 Introducing DirectX 3 5

Providing Guidelines for Hardware
Development
When Microsoft created DirectX, one of its primary goals was to promote games
development for the Windows operating environment. Prior to DirectX, the
majority of games developed for the personal computer were MS-DOS-based.
Developers of these games had to conform to a number of hardware
implementations for a variety of cards. With DirectX, games developers get the
benefits of device independence without losing the benefits of direct access to the
hardware.

Another important goal was to provide guidelines for hardware companies based
on feedback from developers of high-performance applications and independent
hardware vendors (IHVs). As a result, the DirectX SDK components might
provide specifications for hardware-accelerator features that do not yet exist. In
many cases, the software emulates these features. In other cases, the software
polls the hardware regarding its capabilities and bypasses the feature if it is not
supported.

Display-hardware features that will be available soon include:

· Overlays, which will be supported so page flipping will be enabled within a
window in a graphic device interface (GDI). Page flipping is the double-buffer
scheme used to display frames on the entire screen.

· Sprite engines, which make overlaying sprites easier.
· Stretching with interpolation, which efficiently conserve display memory because

it stretches a smaller frame to fit the entire screen.
· Alpha blending, which mixes colors at the hardware-pixel level.
· Three-dimensional (3D) accelerators with perspective-correct textures, which

allow you to display textures on a 3D surface. For example, you can texture
hallways in a castle generated by 3D software with a brick-wall bitmap that
maintains the correct perspective.

· Blits for 3D graphics that take z-buffers into account.
· Standard 2 megabytes (MB) of display memory, which is typically the minimum

required by 3D games.
· Compression standard, which allows you to store more data in display memory.

This standard will be very fast when implemented in either software or hardware.
It will be used for textures and will include transparency compression.

Audio-hardware features that will be available soon include:

· Hardware and enhancers that provide a 3D spatial placement for different sounds.
· On-board memory for audio boards.
· Audio-video combination boards that share on-board memory.

In addition, video playback will benefit from future DirectX-compatible
hardware accelerators. One of the features that future releases of DirectX will
support is hardware-accelerated decompression of YUV video.

The DirectX SDK
This section describes the DirectX SDK and some DirectX implementation
details. The following topics are discussed:

· DirectX SDK Components
· Using Macro Definitions

DirectX SDK Components
The DirectX SDK includes several components that address the performance
issues of programming Windows-based games and high-performance
applications. This section lists these components and provides a link to the
chapter for each component.

· DirectDraw® accelerates hardware and software animation techniques by
providing direct access to bitmaps in off-screen display memory, as well as
extremely fast access to the blitting and buffer-flipping capabilities of the
hardware. For more information about this component, see About DirectDraw in
the DirectDraw documentation.

· DirectSound® enables hardware and software sound mixing and playback. For
more information about this component, see About DirectSound in the
DirectSound documentation.

· DirectPlay® makes connecting games over a modem link or network easy. For
more information about this component, see About DirectPlay in the DirectPlay
documentation.

· Direct3D™ provides a high-level Retained-Mode interface that allows
applications to easily implement a complete 3D graphical system, and a low-
level Immediate-Mode interface that lets applications take complete control over
the rendering pipeline. For more information about this component, see About
Direct3D in the Direct3D documentation.

· DirectInput™ provides input capabilities to your game that are scalable to future
Windows-based hardware-input APIs and drivers. Currently the joystick, mouse,
and keyboard are supported. For more information about this component, see
Introduction to Joysticks in the DirectInput documentation.

· DirectSetup provides a one-call installation procedure for DirectX. For more
information about this component, see About DirectSetup in the DirectSetup
documentation.

Chapter 1 Introducing DirectX 3 7

· AutoPlay is a Windows 95 feature that starts an installation program or game
automatically from a compact disc when you insert the disc in the CD-ROM
drive. For more information about this component, see About AutoPlay in the
AutoPlay documentation.

The AutoPlay feature is part of the Microsoft Win32® API and is not unique to
DirectX.

Among the most important parts of the documentation for the DirectX SDK is the
sample code. Studying code from working samples is one of the best ways to
understand DirectX. Sample applications are located in the Sdk\Samples folder of
the SDK.

Using Macro Definitions
Many of the header files for the DirectX interfaces include macro definitions for
each method. These macros are included to simplify the use of the methods in
your programming.

The following example uses the IDirectDraw2_CreateSurface macro to call the
IDirectDraw2::CreateSurface method. The first parameter is a reference to the
DirectDraw object that has been created and invokes the method:

ret = IDirectDraw2_CreateSurface (lpDD, &ddsd, &lpDDS,
 NULL);

To obtain a current list of the methods supported by macro definitions, see the
appropriate header file for the DirectX component you want to use.

DirectX and the Component Object Model
This section describes the Component Object Model (COM) and how it
implements the DirectX objects and interfaces. The following topics are
discussed:

· The Component Object Model
· IUnknown Interface
· DirectX COM Interfaces
· C++ and the COM Interface
· Accessing COM Objects by Using C
· Interface Method Names and Syntax

The Component Object Model
Most APIs in the DirectX SDK are composed of objects and interfaces based on
the COM. The COM is a foundation for an object-based system that focuses on
reuse of interfaces, and it is the model at the heart of OLE programming. It is also
an interface specification from which any number of interfaces can be built. It is
an object model at the operating-system level.

Many DirectX APIs are instantiated as a set of OLE objects. You can consider an
object to be a black box that represents the hardware and requires communication
with applications through an interface. The commands sent to and from the object
through the COM interface are called methods. For example, the
IDirectDraw2::GetDisplayMode method is sent through the IDirectDraw2
interface to get the current display mode of the display adapter from the
DirectDraw object.

Objects can bind to other objects at run time, and they can use the implementation
of interfaces provided by the other object. If you know an object is an OLE
object, and if you know which interfaces that object supports, your application (or
another object) can determine which services the first object can perform. One of
the methods all OLE objects inherit, the QueryInterface method, lets you
determine which interfaces an object supports and creates pointers to these
interfaces. For more information about this method, see IUnknown Interface.

IUnknown Interface
All COM interfaces are derived from an interface called IUnknown. This
interface provides DirectX with control of the object's lifetime and the ability to
navigate multiple interfaces. IUnknown has three methods:

· AddRef, which increments the object's reference count by 1 when an interface or
another application binds itself to the object.

· QueryInterface, which queries the object about the features it supports by
requesting pointers to a specific interface.

· Release, which decrements the object's reference count by 1. When the count
reaches 0, the object is deallocated.

AddRef and Release maintain an object's reference count. For example, if you
create a DirectDrawSurface object, the object's reference count is set to 1. Every
time a function returns a pointer to an interface for that object, the function then
must call AddRef through that pointer to increment the reference count. You
must match each AddRef call with a call to Release. Before the pointer can be
destroyed, you must call Release through that pointer. After an object's reference
count reaches 0, the object is destroyed and all interfaces to it become invalid.

QueryInterface determines whether an object supports a specific interface. If an
object supports an interface, QueryInterface returns a pointer to that interface.

Chapter 1 Introducing DirectX 3 9

You then can use the methods contained in that interface to communicate with
the object. If QueryInterface successfully returns a pointer to an interface, it
implicitly calls AddRef to increment the reference count, so your application
must call Release to decrement the reference count before destroying the pointer
to the interface.

IUnknown::AddRef
ULONG AddRef();

Increases the object's reference count by 1.

· Returns the new reference count.

When the object is created, its reference count is set to 1. Every time an
application obtains an interface to the object or calls the AddRef method, the
object's reference count is increased by 1. Use the Release method to decrease
the object's reference count by 1.

This method is part of the IUnknown interface inherited by the object.

IUnknown::QueryInterface
HRESULT QueryInterface(REFIID riid, LPVOID* obp);

Determines if the object supports a particular COM interface. If it does, the
system increases the object's reference count, and the application can use that
interface immediately.

· Returns S_OK if the call succeeds. If the call fails, the method returns
E_NOINTERFACE or one of the following interface-specific error values.
Interface-specific error values are listed by component.
DirectDraw

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY (IDirectDrawSurface2 only)

DirectSound
DSERR_GENERIC (IDirectSound and IDirectSoundBuffer only)
DSERR_INVALIDPARAM

DirectPlay
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

For Direct3D's Retained-Mode and Immediate-Mode interfaces, the
QueryInterface method returns one of the values in Direct3D Retained-Mode
Return Values and Direct3D Immediate-Mode Return Values.

riid
Reference identifier of the interface being requested.

obp
Address of a pointer that will be filled with the interface pointer if the query
succeeds.

If the application does not need to use the interface retrieved by a call to this
method, it must call the Release method for that interface to free it. The
QueryInterface method allows Microsoft and third parties to extend objects
without interfering with each other's existing or future functionality.

This method is part of the IUnknown interface inherited by the object.

IUnknown::Release
ULONG Release();

Decreases the object's reference count by 1.

· Returns the new reference count.

The object deallocates itself when its reference count reaches 0. Use the AddRef
method to increase the object's reference count by 1.

This method is part of the IUnknown interface inherited by the object.

DirectX COM Interfaces
The interfaces in the DirectX SDK have been created at a very basic level of the
COM programming hierarchy. Each interface to an object that represents a
device, such as IDirectDraw2, IDirectSound, and IDirectPlay, derives directly
from the IUnknown OLE interface. Creation of these basic objects is handled by
specialized functions in the dynamic link library (DLL) for each object, rather
than by the Win32 CoCreateInstance function typically used to create COM
objects.

Typically, the DirectX SDK object model provides one main object for each
device. Other support service objects are derived from this main object. For
example, the DirectDraw object represents the display adapter. You can use it to
create DirectDrawSurface objects that represent the display memory and
DirectDrawPalette objects that represent hardware palettes. Similarly, the
DirectSound object represents the audio card and creates DirectSoundBuffer
objects that represent the sound sources on that card.

Chapter 1 Introducing DirectX 3 11

Besides the ability to generate subordinate objects, the main device object
determines the capabilities of the hardware device it represents, such as the
screen size and number of colors, or whether the audio card has wave-table
synthesis.

C++ and the COM Interface
To C++ programmers, a COM interface is like an abstract base class. That is, it
defines a set of signatures and semantics but not the implementation, and no state
data is associated with the interface. In a C++ abstract base class, all methods are
defined as pure virtual, which means they have no code associated with them.

Pure virtual C++ functions and COM interfaces both use a device called a vtable.
A vtable contains the addresses of all functions that implement the given
interface. If you want a program or object to use these functions, you can use the
QueryInterface method to verify that the interface exists on an object and to
obtain a pointer to that interface. After sending QueryInterface, your application
or object actually receives from the object a pointer to the vtable, through which
this method can call the interface methods implemented by the object. This
mechanism isolates from one another any private data the object uses and the
calling client process.

Another similarity between COM objects and C++ objects is that a method's first
argument is the name of the interface or class, called the this argument in C++.
Because COM objects and C++ objects are completely binary compatible, the
compiler treats COM interfaces like C++ abstract classes and assumes the same
syntax. This results in less complex code. For example, the this argument in C++
is treated as an understood parameter and not coded, and the indirection through
the vtable is handled implicitly in C++.

Accessing COM Objects by Using C
Any COM interface method can be called from a C program. There are two
things to remember when calling an interface method from C:

· The first parameter of the method always refers to the object that has been
created and that invokes the method (the this argument).

· Each method in the interface is referenced through a pointer to the object's
vtable.

The following example creates a surface associated with a DirectDraw object by
calling the IDirectDraw2::CreateSurface method with the C programming
language:

ret = lpDD->lpVtbl->CreateSurface (lpDD, &ddsd, &lpDDS,
 NULL);

The lpDD parameter references the DirectDraw object associated with the new
surface. Incidentally, this method fills a surface-description structure (&ddsd) and
returns a pointer to the new surface (&lpDDS).

To call the IDirectDraw2::CreateSurface method, first dereference the
DirectDraw object's vtable, and then dereference the method from the vtable. The
first parameter supplied in the method is a reference to the DirectDraw object that
has been created and which invokes the method.

To illustrate the difference between calling a COM object method in C and C++,
the same method in C++ is shown below (C++ implicitly dereferences the lpVtbl
parameter and passes the this pointer):

ret = lpDD->CreateSurface(&ddsd, &lpDDS, NULL)

Interface Method Names and Syntax
All COM interface methods described in this document are shown using C++
class names. This naming convention is used for consistency and to differentiate
between methods used for different DirectX objects that use the same name, such
as QueryInterface, AddRef, and Release. This does not imply that you can use
these methods only with C++.

In addition, the syntax provided for the methods uses C++ conventions for
consistency. It does not include the this pointer to the interface. When
programming in C, the pointer to the interface must be included in each method.
The following example shows the C++ syntax for the IDirectDraw2::GetCaps
method:

HRESULT GetCaps(LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps);

The same example using C syntax looks like this:

HRESULT GetCaps(LPDIRECTDRAW lpDD,
 LPDDCAPS lpDDDriverCaps, LPDDCAPS lpDDHELCaps);

The lpDD parameter is a pointer to the DirectDraw structure that represents the
DirectDraw object.

What's New in the DirectX 3 SDK?
The DirectX 3 SDK provides more services—and more avenues for innovation—
than did the DirectX 2 SDK. Although this SDK contains additional functions and
services, all the applications you wrote with the DirectX 2 SDK, or the original
DirectX 1 SDK, will compile and run successfully without changes.

Chapter 1 Introducing DirectX 3 13

The purpose of this section is to help those of you who are familiar with the
DirectX 2 SDK quickly identify several important areas of this SDK that are
significantly different. These differences are listed by component.

DirectDraw
No changes to the API. The documentation has been updated to include a series of
tutorials that provide step-by-step instructions for implementing a simple
DirectDraw application. To read these tutorials, see DirectDraw Tutorials in the
DirectDraw documentation.

DirectSound
DirectX 3 contains DirectSound3D functionality, which enables an application to
change the apparent position of a sound source. Applications can specify sound
cones for directional sound sources, Doppler-shift effects for moving sounds, and
distances at which different effects occur. For more information about this new
feature of DirectSound, see Three-Dimensional Sound in the DirectSound section
of the documentation.

DirectPlay
DirectPlay has become a technology family that provides not only a way for
applications to communicate with each other that is independent of the underlying
transport, protocol, or online service, but also the independence for matchmaking
servers. The IDirectPlay2, IDirectPlay2A, and IDirectPlayLobby interfaces were
added to implement this new technology. For more information about what's new
in DirectPlay, see What's New in DirectPlay Version 3?.

Direct3D
No changes to the API. The Retained-Mode tutorial has been updated and
simplified. To read this tutorial, see Direct3D Retained-Mode Tutorial in the
Direct3D documentation.

DirectInput
DirectInput now includes support for mouse and keyboard input devices, as well as
joysticks.

DirectSetup
DirectSetup has a new function that helps applications make the proper entries in
the registry during installation.

AutoPlay
The AutoPlay documentation now includes Windows NT® information.

Conventions
The following conventions define syntax:

Convention Meaning
Italic text Denotes a placeholder or variable. You must provide

the actual value. For example, the statement
SetCursorPos(X, Y) requires you to substitute values

for the X and Y parameters.
[] Encloses optional parameters.
| Separates an either/or choice.
... Specifies that the preceding item may be repeated.
.
.
.

Represents an omitted portion of a sample application.

In addition, the following typographic conventions are used to help you
understand this material:

Convention Meaning
SMALL CAPITALS Indicates the names of keys, key sequences, and key

combinations—for example, ALT+SPACEBAR.
FULL CAPITALS Indicates most type and structure names, which also

are bold, and constants.
monospace Sets off code examples and shows syntax spacing.

	DirectX Goals
	Benefits of Developing DirectX Windows Applications
	Providing Guidelines for Hardware Development

	The DirectX SDK
	DirectX SDK Components
	Using Macro Definitions

	DirectX and the Component Object Model
	The Component Object Model
	IUnknown Interface
	IUnknown::AddRef
	IUnknown::QueryInterface
	IUnknown::Release

	DirectX COM Interfaces
	C++ and the COM Interface
	Accessing COM Objects by Using C
	Interface Method Names and Syntax

	What's New in the DirectX 3 SDK?
	Conventions

