

Director 6.0 Help
Last revised May 8, 1997

The Director 6.0 Help system was created by many talented individuals.

Online help development by Jeff Swartz

Online help project management by Karen Olsen-Dunn

Help content written by Ben Melnick, Joe Schmitz, and Corinne Chandel

Show Me movie production by James Khazar, Zippy Lehnus, Kathleen Craig, and Dave Benman

Show Me instructional design by Ben Melnick, James Khazar, Karen Olsen-Dunn, and Joe Schmitz

Art design by Ilene Sandler

Production art by Noah Zilberberg

Special thanks to: Director engineering, Tech support, and QA review teams; Lee Swearingen and Cathy Clarke
at DXM Productions for developing the "Streaming Shockwave" movie; Karin Arrigoni for indexing the help
system; Krzysztof Rogala for Show Me DLL development; Landra Tankha for testing help links; the makers of
chocolate of any kind, which was devoured at a phenomenal rate during the project.

Copyright (c) 1994-1997 Macromedia, Inc. All rights reserved. The information in this help system may not be
copied, photocopied, reproduced, translated, or converted to any printed, electronic or machine-readable form in
whole or in part without prior written approval of Macromedia, Inc.

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

The Macromedia Director Developers Center web site is located at the following address:
www.macromedia.com/support/director/. (Note: In Windows NT you cannot launch the URL by clicking
here; you must type the URL directly into your web browser.)

The Director Developers Center includes these areas:

· How do I...? - The Experts Speak ... Working With Shockwave ... Tips & Tricks ... Show Me ... Submission
Guide ... Made With Macromedia

· Troubleshooting - Frequently Asked Questions ... Recently Asked Questions ... Technotes

· Updates & Downloads - Product Updates ... Xtras ... Goodies

· Interact - Feedback

· Doc Stuff - Code Examples ... Glossary ... New & Improved ... Oops!

· Resources - Books & Macromedia Press ... User Groups ... Web Sites ... Events ... Programs & Services

Tutorial
Learning Director

Director feature demos
Behaviors
Cast Members and Sprites
Color Palettes
Film Loops
Ink Effects
Onion Skinning
Streaming Shockwave
Tweening

Examples about Lingo
Click to play the movie: Click to open inside Director and see how

it works:
Keyboard Lingo --
Lists Lingo Lists Lingo
Field Lingo Field Lingo
Navigation Lingo Navigation Lingo
-- Simple Child Object
-- Multiple Child Objects
Synchronized Media Synchronized Media
Scriptable Authoring Scriptable Authoring

More on the web
Check the Director Developers Center Show Me page to see more examples.

Menus

Windows

Toolbars

Keyboard Shortcuts

Director scripting includes the following categories:

Lingo

Browser scripts

Browser scripts
Shockwave movies and other objects within a browser-including Shockwave movies-interact by:

_ Sending messages to a movie: More information

- The scripting environment controls the Shockwave movie by using the EvalScript function to send
Lingo commands to the movie. This is especially useful for allowing the scripting environment to control
and synchronize movie playback.

- Commands a browser can send the movie provide basic functionality for controlling the movie. For more
information, see the Commands a browser can send a Shockwave movie help topic.

· Sending messages to the scripting environment: More information

- The movie interacts with the browser and other Shockwave movies by using the externalEvent
command to send instructions to the scripting environment.

Sending messages to a movie
The EvalScript function provides fairly complete access to and control of the movie without requiring a
detailed definition of all available properties and functions.

This function calls an on EvalScript handler in the movie, which must be present for EvalScript to
work.

The on EvalScript handler can process the parameter string however you choose to specify it.

Specify return values by placing a return string statement at the end of the
on EvalScript handler or executing a Lingo statement that returns a value.

For security, avoid using the do command, which could allow arbitrary Lingo to be executed. Instead, use a
handler such as the following, in which possible Lingo statements are already defined:

on EvalScript param
case: param of
"Horn": playHorn
"Drum": bangDrum
"Bongos": reallyBeat

end case
end

The following commands can control a movie when issued from a browser:

To do this
Issue this command from the browser

Control the player. Play
Stop
Rewind
GotoFrame
GotoMovie

Determine the Shockwave movie's
current frame.

GetCurrent Frame

Send a string, such as a Lingo
statement, to the Shockwave movie.

EvalScript

Determine whether the movie plays
on loading or rewinding.

AutoStart

Commands a browser can send to a Shockwave movie
· Play-This command starts the movie if it is stopped. When the movie starts, its on prepareMovie handler

runs first.

This command has no effect on a movie that is already playing. For example, it doesn't restart a movie or
run its on prepareMovie handler.

· Stop-This command completely stops the movie. However, the movie still redraws the Stage if another
window passes over the movie.

Except for Rewind, GotoFrame, and GetCurrentFrame, the movie doesn't generate or respond to events
in this state until the movie receives the Play command from the scripting environment.

This command runs the movie's on stopMovie handler when the movie stops. Lingo globals aren't
preserved.

· Rewind-This command rewinds the movie.

- If the AutoStart property is true, the movie then plays.

- If the AutoStart property is false, the movie remains stopped.

· GetCurrentFrame-This command returns the number of the current frame. It works whether or not the

movie is stopped.

· GotoFrame-This command instructs the movie to go to a specified frame. It works whether or not the movie
is stopped.

· GotoMovie-This command instructs the movie to go the specified URL, which may be relative. It doesn't
work if the movie is stopped.

Properties a browser can set in a Shockwave movie
AutoStart-This property determines whether or not a movie starts automatically when it loads on the web
page and when Rewind is called. Set the AutoStart property in the EMBED or OBJECT tag as an
attribute; possible values are true or false.

· If AutoStart is true, movies play immediately upon loading. This is the default for tags that do not specify
this attribute.

· If AutoStart is false, movies load and then stop.

The AutoStart property can also be set after the movie has been loaded on the page.

Sending messages to the scripting environment
Shockwave makes many methods and properties available to a variety of scripting languages.

· The externalEvent command communicates with the browser. For more information, see
"Communicating with the browser," below.

· The externalParamCount, externalParamName, and externalParamValue functions access
external parameters in an OBJECT or EMBED tag. For more information, see the External parameter
access from Lingo help topic.

Communicating with the browser
Use the externalEvent command from within a movie to control external objects in the browser, including
other Shockwave movies. This command has the form:

externalEvent "string"

Where string represents the browser instructions that the Shockwave movie sends.

This command doesn't return a value.

If you use externalEvent when authoring outside a browser, Director indicates in the Message window
that externalEvent was called, but the command has no other effect.

How the scripting environment interprets the string included with the externalEvent command depends
on the scripting environment.

Using externalEvent in LiveConnect

In LiveConnect, the string is evaluated as a function call. For JavaScript, simply define a function called
whatever you choose in the HTML header. In the movie, the chosen function name and parameters should
be passed as the string parameter to externalEvent. Because the browser must interpret parameters as
strings, you must enclose them in single quotation marks.

In HTML, use a statement similar to the following:

function AnyFunctionName(parm1, parm2) {
// script here
}

In the movie, use a statement similar to the following:

externalEvent "AnyFunctionName('parm1', 'parm2')"

Using externalEvent in ActiveX

ActiveX handles externalEvent as an event. You can process this event and its string parameter the same as
other events, such as an onClick event in a button object. Use a statement similar to the following:

externalEvent ("string")

In HTML, you can define a function to receive the event in the HTML header. Use a statement similar to this
example in VBScript:

Sub
MovieName_ExternalEvent (aString)
REM process the string

End Sub

External parameter access from Lingo
When you use an EMBED or OBJECT tag to invoke a Shockwave movie from an HTML page, additional
parameters can be included in these tags. These parameters and their values can be accessed from Lingo
and are used to control a wide variety of aspects of the movie. Create a single movie and change its
appearance or behavior by altering the parameter values on the EMBED or OBJECT tag.

Note: External parameters are accessed with new Lingo functions. Shockwave obtains the parameters from the
HTML tag used to specify and run the movie. Shockwave provides the parameters to the movie through the
functions described below.

The OBJECT tag supports only specific named parameters that were defined at the time the ActiveX control
was created. Although Netscape Navigator supports user-defined parameters, to ensure that your movie
runs properly on all browsers, use only those parameters that both Netscape Navigator and Internet Explorer
recognize.

· Use the externalParamCount function to determine how many external parameters are passed from an
HTML EMBED or OBJECT tag, u.

· Use the externalParamName function to determine the names of external parameters passed from an
HTML EMBED or OBJECT tag.

· Use the externalParamValue function to obtain a specific value from the list of external parameters.

For more information about parameters that are accessible from Lingo, see Chapter 14, "Shockwave, the
Internet, and Lingo," in Learning Lingo.

Lingo
Lingo is Director's scripting language. For general information on using Lingo, see the Lingo Basics topic.

Click a letter to view Lingo elements alphabetically:

Lingo updates for Director 6
Click a category to see a list of Lingo elements that have changed since Director 5:

New Lingo elements in Director 6

Lingo that has changed in Director 6

Lingo that is outdated in Director 6

Lingo by feature
Click a feature below to see a list of Lingo elements that support that feature:

Behaviors Navigation

Cast members Net Lingo

Casts Operators

Code structures & syntax Parent scripts

Computer & monitor Points and rects

Digital video Puppets

Events Score generation

External files Shockwave audio

Fields Sound

Frames Sprites

Functions Strings

Interface elements Text and Keys

Lists Time

Media Synchronization User interaction

Memory management Variables

Movie control Xtras

Movie in a window

Lingo is Director's scripting language. Some of the advantages of using Lingo in a movie include:

· Internet operation and Shockwave support

· Navigation features that let users play and explore movies in the way they prefer

· Ability to play additional movies in windows

· Communication with users by receiving and sending information

· Ability to play animation and sound in ways that the Score alone can't

· Control of fields, sound, and digital video

· Creation of child objects

· Automation of authoring by duplicating manual tasks done by using the interface

Lingo Basics
Lingo is Director's scripting language. Some of the advantages of using Lingo in a movie include:

· Internet operation and Shockwave support

· Navigation features that let users play and explore movies in the way they prefer

· Communication with users by receiving and sending information

· Ability to play animation and sound in ways that the Score alone can't

· Control of fields, sound, and digital video

· Creation of child objects

· Automation of authoring by duplicating manual tasks done by using the interface

Lingo Menu
The Lingo menu appears when you click and hold the Lingo button in the Script window. This menu displays the
complete set of Lingo elements that you can use to write scripts.

Choose an element from the Lingo menu to enter it into a script at the insertion point. This avoids typing the
command and inserting typos.

Writing Scripts
For information about writing scripts, see:

Writing scripts Handling text

Types of scripts Controlling sound

Using variables Managing memory

Event message hierarchy Using movie in a window

Working with casts Child-parent scripts

Puppeting Using XCMDs

Sprite properties Generating score

Creating dialog boxes

New Lingo elements in Director 6
See also: New Lingo elements in Director 5

The following elements are new in Director 6 or have had functionality added since Director 5:

activeCastLib netTextResult

alertHook numChannels of member

applicationPath on alertHook

behavesLikeToggle of member on beginSprite

behavesLikeToggle of sprite on cuePassed

bitRate of member on endSprite

browserName on EvalScript

cacheDocVerify on getBehaviorDescription

cacheSize on getPropertyDescriptionList

call on mouseEnter

callAncestor on mouseLeave

castLibNum of member on mouseUpOutSide

castLibNum of sprite on mouseWithin

clearCache on prepareFrame

cpuHogTicks on prepareMovie

copyrightInfo of member on runPropertyDialog

cuePointNames on streamStatus

cuePointTimes pause member

currentSpriteNum percentPlayed of member

currentTime percentStreamed of member

downloadNetThing play member

duration of member preLoadBuffer member

enabled of member preloadNetThing

enabled of sprite preLoadTime of member

externalEvent proxyServer

externalParamCount putImageIntoCastMember

externalParamName runMode

externalParamValue scriptInstanceList of sprite

frameReady scriptNum of sprite

fullColorPermit searchPaths

getError sendAllSprites

getErrorString sendSprite

getLatestNetID setButtonImageFromCastMember

getNetText setPref

getPref soundChannel of member

gotoNetMovie SPACE

gotoNetPage spriteNum

initialToggleState of member state of member

isPastCuePoint stop member

isToggled of sprite stopEvent

labelString streamName of member

mediaReady of member symbol

mostRecentCuePoint tellstreamStatus

mouseMember tracking

netAbort tweened of sprite

netDone URL of member

netError VOID

netLastModDate volume of member

netMIME

netPresent

netStatus

Lingo that is outdated in Director 6
See also: Lingo that became outdated in Director 5

The following elements are obsolete and no longer supported:

castNum of sprite

colorQD

setCallBack

spriteBox

Lingo that has changed in Director 6
See also: Lingo that changed in Director 5

The following elements have been revised. The older elements are still supported, but they will become obsolete
and should be avoided:

Director 5 Element Director 6 Element

continue go to the frame + 1

dontPassEvent stopEvent

mouseCast mouseMember

pause go to the frame

New Lingo elements in Director 5
The following elements were new in Director 5 or had functionality added since Director 4. If you upgraded from
Director 4 to Director 6, update Lingo in your movies to replace these elements:

activeWindow name of CastLib

autoTab of member new

beginRecording number of CastLib

border of member number of castLibs

boxDropShadow number of members of castLib

boxType of member on activateWindow

buttonType on closeWindow

cancelIdleLoad on moveWindow

case on resizeWindow

castLibNum of sprite on rightMouseDown

center of member on rightMouseUp

changeArea of member on zoomWindow

channelCoun of member openWindow

charPosToLoc otherwise

chunkSize of member pageHeight of member

clearFrame paletteMapping

crop of member pattern

deleteFrame paletteRef

desktopRectList the platform

digitalVideoTimeScale preLoadMode of CastLib

digitalVideoType of member preLoadMovie

dropShadow of member rect of member

duplicate(list) rightMouseDown, the

duplicateFrame rightMouseUp, the

duration of member sampleRate

editable of member sampleSize of member

emulateMultiButtonMouse save castLib

end case score

endRecording scoreSelection

fileName of castLib scriptsEnabled

filled of member scriptType

finishIdleLoad scrollByLine

frameLabel scrollByPage

framePalette scrollTop of member

frameScript selection of castLib

frameSound1 setCallBack

frameSound2 shapeType

frameTempo sound of member

frameTransition wordWrap of member

frontWindow timeScale of member

height of member trackCount(member)

idleHandlerPeriod trackCount(sprite)

idleLoadDone trackEnabled

idleLoadMode trackNextKeyTime

idleLoadPeriod trackNextSampleTime

idleLoadTag trackPreviousKeyTime

idleReadChunkSize trackPreviousSampleTime

insertFrame trackStartTime(member)

keyPressed trackStartTime(sprite)

lineCount of member trackStopTime(member)

linePosToLocV trackStopTime(sprite)

lineSize of member trackText

loc of sprite trackType (member)

locToCharPos trackType (sprite)

locVToLinePos transitionType of member

loop of member type of member

margin of member unloadMovie

media of member updateFrame

member updateLock

memberNum of sprite windowPresent

Lingo that became outdated in Director 5
The following elements became obsolete in Director 5 and are no longer supported. If you upgraded from
Director 4 to Director 6, update the Lingo in your movies to replace these elements:

birth (use new instead)

closeDA
factory
instance
openDA
when...then constructs

Lingo that changed in Director 5
The following elements were revised to support multiple casts in Director 5. If you upgraded from Director 4 to
Director 6, update Lingo in your movies to use the new elements:

Director 4 Element Director 5 Element

backColor of cast backColor of member

cast member

castmembers number of members

castNum of sprite memberNum of sprite

castType of cast type of member

center of cast center of member

controller of cast controller of member

crop of cast crop of member

depth of cast depth of member

duplicate cast duplicate member

duration of cast duration of member

erase cast erase member

fileName of cast fileName of member

foreColor of cast foreColor of member

frameRate of cast frameRate of member

height of cast height of member

hilite of cast hilite of member

loaded of cast loaded of member

loop of cast loop of member

modified of cast modified of member

move cast move member

name of cast name of member

number of cast number of member

number of castmembers number of members

palette of cast palette of member

picture of cast picture of member

preLoad of cast preLoad of member

preLoadCast preLoadMember

purgePriority of cast purgePriority of member

scriptText of cast scriptText of member

size of cast size of member

sound of cast sound of member

text of cast text of member

textAlign of field alignment of member

textFont of field font of member

textHeight of field lineHeight of member

textSize of field fontSize of member

textStyle of field fontStyle of member

video of cast video of member

width of cast width of member

Child-parent scripts
A child object is a an occurrence of a parent script. Each child object of the same parent script shares the parent
script's handlers but maintains individual values for properties:

A parent script contains three types of Lingo:

· An optional on new handler, which creates a new child object and sets its initial values when the handler is
called. (The term me serves as a local variable that contains the child object itself and provides a placeholder
for the child object in Lingo statements.)

· Optional additional handlers that control the child object's behavior and properties after the child object is
created.

· An optional statement that declares which variables are property variables-variables for which each child
object can maintain individual values regardless of the values for other child objects.

The new function creates a new child object when it uses the name of a parent script, as in the following syntax:

new(script "scriptName", argument1, argument2, argument3...)

The new function can be issued from anywhere in the movie. Customize the child object by changing the variable
name and values of the arguments in the new statement.

An ancestor is an additional parent script whose handlers are available to a child object. A parent script makes
another parent script its ancestor by assigning the script's name to the ancestor property. For example, the
following statement makes the script Ancestor Ball Script an ancestor:

set ancestor to new(script"Ancestor Ball Script", ¬
listPosition)

For more information, see "Parent Scripts and Child Objects" in Learning Lingo . For a demonstration of parent
scripts, see the "Single Child Object" and "Multiple Child Objects" sample movies.

{button See also,AL(`Child_parent_scripts')}

Event message hierarchy
Each message has a set series of scripts that it goes to after the message is sent. Different messages are sent
to different types of scripts. The following table lists the order of objects that each type of message is sent to:

This message: Is sent to this series of scripts:

mouseDown, mouseUp Primary event handler, sprite, cast member, frame,
and then movie scripts

mouseEnter, mouseLeave,
mouseUpOutside, mouseWithin

Sprite scripts and then cast member scripts

keyDown, keyUp Primary event handler, sprite, cast member, frame,
and then movie scripts

enterFrame, exitFrame Frame and then movie scripts

beginSprite, endSprite Sprite scripts only

prepareFrame Sprite, cast member, frame, and then movie scripts

idle Primary event handler and then movie scripts

prepareMovie, startMovie and stopMovie
handler

Movie scripts

activateWindow, closeWindow,
openWindow, resizeWindow,
zoomWindow

Movie scripts

Custom handler calling statements Handlers in the script that sent the message and
then to movie scripts

For more information about strategies for placing handlers, see Chapter 2, "Script Basics," in Learning Lingo.

{button See also,AL(`Lingo_event_hierarchy')}

Puppeting
Making a Score channel a puppet has the movie ignore the Score's settings for that channel and control the
channel directly from Lingo.

· For sprite channels that are puppets, changes made by Lingo last beyond the life of the sprite that the
change was first made to. Use puppetSprite or puppet of sprite to make a sprite channel a puppet.

· For sound channels, the channel remains under Lingo's control until you use a statement to return control to
the Score. Use the puppetSound command to make a sound channel a puppet.

· For tempos and palette channels, the channel remains under Lingo's control until the playback head enters
a frame that has a new palette or tempo setting. Use the puppetTempo command to make the tempo
channel a puppet. Use the puppetPalette command to make the palette channel a puppet.

· For transition channels, the channel is under Lingo's control only for the specific instance in which the
puppet transition is used. Use the puppetTransition command to make the transition channel a puppet.

For details about using one of these commands, see that command's entry in the online help. For more
information about puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning Lingo.

{button See also,AL(`Lingo_puppeting')}

Handling text
Director has two types of cast members dedicated to text:

· Text cast members can be edited and formatted in the Text window but not on the Stage or from Lingo. This
type of text is a graphic after the movie is converted to a projector. Although text cast members are useful for
displaying text that has been previously formatted as rich text, they can't receive user input or change
formatting after the movie is distributed.

· Field cast members can be edited on the Stage and from Lingo while the movie plays. This lets you make
movies in which the user can type characters and have Director manage them. Strings in a field cast
member can be revised as the movie plays, and Lingo can format characters at any time.

A variety of field cast member properties determine the format of characters in the field cast member. For a list of
properties that you can set, choose Fields from the categorized Lingo menu in the Script window.

Lingo duplicates the ability to make a field editable by setting the editable of sprite and the editable
of member properties. To turn editable fields on or off independent of the interface, set the sprite or field cast
member property to either TRUE or FALSE.

For more information about handling text and fields, see Chapter 7, "Working with Text and User Input," in
Learning Lingo.

Controlling sound
Lingo can control many aspects of how sound plays in a movie. Using the puppetSound command, you can
override the Score and play a sound cast member from Lingo. However, Lingo can also control how sound plays.
The following table lists additional ways that Lingo can control sound and the elements that you use to achieve it.
For details about an element, see its entry in the online help:

To do this: Use these elements:

Play an external sound file sound playFile
Check whether a sound channel is currently

playing a sound and make the movie respond
accordingly

the soundBusy

Turn sound off the soundEnabled
Control sound volume from the movie the soundLevel
Control how sound fades in and out sound fadeIn and sound fadeOut

{button See also,AL(`Lingo_controlling_sound')}

Using movie in a window
Use Lingo to create a window by specifying the screen rectangle for the window and then specifying the movie
assigned to the window. You can also make the window visible, change its type, set its title, or set the window's
size and location.

Besides specifying which movie plays in the window and when the window opens and closes, you can control the
behavior of the window itself and how movies in windows interact with the movie on the stage.

The following lists the Lingo elements you use to achieve different tasks for playing a movie in a window.

To: Use:

Set up a rectangle for the movie set the rect of window "whichWindow" to
rect(coordinates)

Assign a movie to the window set the fileName of window
"whichWindow" to "fileName"

Specify whether the window title is visible set the titleVisible of window
"whichWindow" to trueOrFalse

Open the window that contains the movie open window "whichWindow"
Specify the window type set the windowType of window

"whichWindow"
Move the window to the front moveToFront window "whichWindow"
Move the window to the back moveToBack window "whichWindow"
Make the window visible set the visible of window

"whichWindow"
Pass Lingo statements between windows tell "instructions"
Close the window close window "whichWindow"

For an example of how these elements are used together to create a movie in a window, see Chapter 11,
"Movies in a window," in Learning Lingo.

{button See also,AL(`Lingo_mov_in_window')}

Using variables
Director remembers and updates values by using variables. As the name implies, a variable contains a value that
can be changed or updated as the movie plays. By changing the value of a variable as the movie plays, you can
do things such as store information the user enters or record whether a specific event has happened.

The value assigned to the variable can be a whole number, a decimal number (such as 1.56), a character string
(such as "xyz" or a person's name), a symbol, or the result of a calculation.

Assigning values to variables

Assign a value-such as a number or a character string-to a variable with the set...= or set...to command.
For example, the statement

set theName to "Mary"

assigns the string "Mary" to the variable vName.

Some possible sources for values assigned to variables are strings that the user types, the result of an arithmetic
operation, and the result of clicking a particular sprite.

Creating variables

A variable is created the first time you assign a value to it, which is also called initializing a variable. You can then
use the variable in other expressions or change its value based on whatever criteria you want. A variable can be
a global variable or a local variable.

Global variables

Global variables can be shared among handlers and movies. The global variable exists and retains its value for
as long as Director is running or until you issue the clearGlobals command.

You make a variable global by using the term global before the variable name in every handler that uses the
global variable. Alternatively, make a variable global in every handler in a script by inserting the term global
followed by the names of variables that are to be global at the top of the Script window.

Every handler that declares that a variable is global can use the variable's current value; if the handler changes
the variable's value, the new value is available throughout the movie. Variables that you declare in the Message
window are automatically global.

For example, to use someone's name several times in a movie, you could establish a global variable that
contains a name entered by the user at the beginning of the movie.

The following statements makes theName a global variable and give it the value Mary:

global gName
set gName = "Mary"

Later in the movie, this handler could change the name assigned to this variable to "John." The variable can be
changed from two different handlers because each handler treats the variable as global:

on nameChange
 global gName
 set gName to "John"
end

It is a good habit to start the names of all global variables with a small letter "g". This helps identify which
variables are global when you examine Lingo code.

Display all current global variables and their current values by using the showGlobals command in the
Message window.

Local variables

A local variable exists only as long as the handler in which it is defined is running. You can use a local variable in
any handler, but it is available only while that handler is running.

Unless the handler uses the term global to declare that a variable is global, the variable is automatically a local
variable.

Display all current local variables in the handler by using the showLocals command. This command can be
used in the Message window or in handlers to help with debugging. The result appears in the Message window.

Treating variables as local is a good idea when you only want to use the variable temporarily in that one handler.
This helps avoid unintentionally changing the value in another handler that uses the same variable name.

{button See also,AL(`Lingo_using_vars')}

Types of scripts
A script's type is determined by where it is attached in the movie. The type of script in which you place Lingo can
affect the script's behavior.

There are four types of scripts:

· Score scripts are assigned to sprites and frames in the Score. A Score script assigned to a sprite is called a
sprite script. A Score script assigned to a frame's script channel is called a frame script.

Sprite scripts can respond to beginSprite, endSprite, mouseDown, mouseUp, and rollover events. If
the sprite is a field, the script can also respond to keyDown and keyUp events.

Frame scripts can respond to rollover, prepareFrame, enterFrame, exitFrame, mouseDown, mouseUp,
keyDown events. If the frame contains field sprites, the script can also respond to keyDown and keyUp
events.

Director automatically assigns numbers to new Score scripts. These numbers appear in the Script pop-up
menu and in the cells that the script is assigned to. When you revise a Score script, the changes show up
everywhere the script is assigned in the Score.

Attach score scripts by selecting sprite and frames to attach them to and then selecting the script from the
Script pop-up, or by dragging them from the Cast window to sprites or frames.

· Scripts of cast members are attached directly to a cast member independent of the Score. Scripts assigned
to cast members can respond to prepareFrame, mouseDown, and mouseUp events and to keyDown and
keyUp events if the cast member is a field.

· Movie scripts aren't attached to a specific object but are available to the entire movie. Scripts assigned to the
movie can respond to rollover, mouseDown, mouseUp, keyDown, keyUp, enterFrame, exitFrame,
idle, prepareFrame, startMovie, and stopMovie events.

· Parent scripts are a special type of script that contains Lingo used to create child objects. For information
about parent scripts, see Child-parent scripts.

The title bar at the top of the Script window tells the script's type.

Score, movie, and parent scripts exist as full-fledged cast members in the Cast window. You can change one of
these script's type to one of the others by choosing from the Type pop-up menu in the Script Cast Member
Properties dialog box.

{button See also,AL(`Lingo_script_types')}

Managing memory
Loading cast members that require a large amount of memory can cause undesired pauses in a movie.

Lingo helps you minimize these pauses by controlling when specific cast members are loaded, setting how many
bytes Director attempts to load at one time, and prioritizing when Director unloads them.

For more information, see the entry for individual Lingo elements that can manage memory. For a list of elements
related to memory management, choose Memory Management from the features menu in the Script window.

{button See also,AL(`Lingo_managing_memory')}

Working with casts
Lingo uses the castLib keyword, followed by a cast's name, to identify a cast. For example, in the statement
set the text of member "Title" of castLib "News" to "Calendar" it uses castLib to identify
the cast News.

When you want to change a movie's content by switching casts, you can change the cast assigned to a sprite by
changing the sprite's castLibNum property. The sprite then uses the cast member that has the same cast
member number in the new cast.

When you want to replace a movie's content by replacing its casts, you can make the casts external casts and
change the cast file assigned to the cast.

The following Lingo elements are useful for obtaining information about casts:

castLib

fileName of castLib

findEmpty

name of castLib

number of castLib

number of castLibs

number of members of castLib

preLoadMode of castLib

save castLib

{button See also,AL(`Lingo_work_with_casts')}

Sprite properties
Using Lingo's sprite properties, you can check a sprite's current conditions and change many of them. For a
complete list of sprite properties, choose Sprites from the Lingo features menu in the Script window. For
more information about a specific property, such as whether it can be set from Lingo, see the property's
entry in the online help.

The following properties can be set from Lingo provided that the sprite channel has been put under Lingo's
control by the puppetSprite command:

backColor locH
blend locV
castLibNum member
constraint memberNum
editable moveableSprite
foreColor pattern
height stretch
ink trails
lineSize width
loc

{button See also,AL(`Lingo_sprite_properties')}

Generating Score
Lingo duplicates manual tasks that you perform in the Score-such as selecting frames, specifying what's in each
channel, and animating sprites over a series of frames-by creating a new frame and then specifying each
channel's content. It repeats this, frame by frame, until the entire sequence of frames is set up.

You can add new frames, edit frames, or delete frames.

To start recording Score, you must issue the beginRecording keyword. When you are done recording Score,
you must issue the endRecording keyword.

Lingo can specify each channel's content during a Score recording session. The following lists what Lingo can
set for each channel:

Channel Lingo that can set the channel's
content

Label the frameLabel
Tempo the frameTempo

Palette the framePalette

Transition the frameTransition
Sound channel 1 the frameSound1
Sound channel 2 the frameSound2
Script the frameScript
Sprite channels Sprite properties such as memberNum

of sprite, locH and locV, and
moveable of sprite. (Assign a sprite
script by setting the scriptNum of
sprite.)

When the frame's content is complete, use the updateFrame command to enter the new content. The
updateFrame command makes a copy of the current frame, inserts it as the next frame, and then advances to
the new frame. After Director has entered the new frame, you can specify that frame's content.

Several commands are available to add or delete frames. The following table lists these commands and their
result:

Command Result
clearFrame Deletes everything in the current frame,

but remains in the frame.
deleteFrame Deletes the current frame. The next

frame then becomes the current frame.
duplicateFrame Duplicates the current frame and its

content. The duplicate frame is inserted
after the current frame and then
becomes the current frame.

insertFrame Inserts a copy of the current frame
following the current frame. The new
frame then becomes the current frame.

updateFrame Enters the changes made to the current
frame. The command then makes a
copy of the current frame, inserts it as
the next frame, and then advances to
the new frame.

For more information about generating Score from Lingo, see Chapter 12, "Creating movies from Lingo," in
Learning Lingo.

{button See also,AL(`Lingo_generating_score')}

Writing scripts
You write scripts in the Script window. The following are common ways to perform basic tasks for creating,
assigning, and opening scripts:

To: Do this:

Open a new Score script Choose New Script from the Script pop-up
menu; or double-click a frame in the script
channel. When you open a new Score
script, the script receives the number of the
first available location in the Cast window.

Open a new movie script Click the Add button in the Script window.

Attach a Score script to one
or more cells in the Score

Drag the script from the Cast window to the
score, OR select locations in the Score and
then choose the Score script number from
the Script pop-up menu.

Remove a Score script from
the cell

Select the cell and then choose Clear Script
from the Script pop-up.

Change a Script window's type Open the script's Cast Member Properties
and then choose a type from the Type pop-
up menu.

Cycle through the scripts in
the Script window

Use the Next Cast Member and Previous
Cast Member arrows at the top of the Script
window to advance or back up to the script.

Open the script assigned to a
cast member

Click Script in the Cast Member Properties
dialog box; or select the script in the Cast
window and then click the script button at
the top of the Cast window.

Open a Score, movie, or
parent script

Double-click the script in the Cast window.

Duplicate a script Select the script and choose Duplicate from
the Edit menu

{button See also,AL(`Lingo_writing_scripts')}

Dialog boxes from the MUI Xtra

The MUI Xtra provides fully functional dialog boxes set up the way that you specify. The dialog boxes respond to
user action and return information about the user's choice.

These dialog boxes don't require the memory or disk footprint of a MIAW that simulates a dialog box. They also
draw the appropriate Windows controls, follow preferences for dialog box appearance set by the user in
Windows 95, and draw with gray-scale controls on the Macintosh.

See Creating dialog boxes for an explanation of how to create dialog boxes. For examples of scripts that use
this Lingo, see the movie Dialogs.dir in the Goodies folder.

Dialog boxes created from the MUI Xtra also provide:
· Horizontal scrolling within editable text fields

· Clipboard operations for editable text

· Activation of a default item when the user presses Enter or Return

· Activation of a cancel item when the user presses Esc-period or
Command-period.

The MUI Xtra is used for some of Director's user interface. Each dialog box is an instance of the MUI Xtra.

The MUI Xtra supports these dialog box types:
· General purpose dialog boxes that you can set up with any arrangement of buttons, editable fields, labels,

sliders, and pop-ups

· Alerts that offer several possible button and icon combinations

· Standard open file dialog boxes

· Standard save file dialog boxes

· A dialog box for entering a URL

What the MUI Xtra contains
The MUI Xtra contains the following that you can use to create dialog boxes:

· These Lingo elements:

Alert
FileOpen
FileSave
GetItemPropList
GetUrl
GetWidgetList
GetWindowPropList
Initialize
ItemUpdate
New
Run
Stop
WindowOperation

· A predefined list of window properties that you can use as default values for a general purpose dialog box

· A predefined list of properties for components of a general purpose dialog box

Creating dialog boxes
To create dialog boxes from the MUI Xtra:

1. Plan and design the dialog box.

Determine what users need the dialog box to achieve, the type of interface components that best accomplish
this, and where the data in the dialog box comes from. Sketch a preliminary dialog box to get a better idea of
where options need to appear and how well they fit into the dialog box.

2. Decide which type of dialog box to use.

The MUI Xtra provides predefined dialog boxes for entering alerts, opening and saving files, and for entering
URLs. These are relatively easy to create. If none of these types are appropriate, you can define your own
general purpose dialog box.

3. Use the statement new (xtra "MUI") to create an instance of the MUI Xtra.

4. Set up the dialog box.

There are two general categories of dialog boxes. The procedure for creating a dialog box is different for each
category:

· Dialog boxes for alerts, opening and saving files, and opening URLs are created by calling the function that
creates the specific dialog box. When the user clicks a button, the dialog box responds accordingly and
sends the appropriate message back to Director. To set up one of these dialog boxes, use the following
functions:

To customize this type of dialog box Set parameters for this function

Alert Alert

Open file dialog box FileOpen

Save file dialog box FileSave

Dialog box for entering a URL GetUrl

· General purpose dialog boxes are created by defining each attribute and component in the dialog box, and
then explicitly initializing and running the dialog box. See Using a general purpose dialog box for more
information.

Using a general purpose dialog box
When you use a general purpose dialog box, first set up the dialog box's overall attributes and components. After
the dialog box's attributes are set up, use the Initialize, Run, and Stop commands to control the dialog box.

To define a general purpose dialog box:
1. Create two lists of definitions:

· One list is a property list that contains definitions of overall dialog box attributes such as the name that
appears in the title bar, the box's size and location, and the handler that runs when an event occurs in the
dialog box. See Specifying overall dialog box properties

· The other list is a linear list of definitions for each component in the dialog box. Each item in this linear list is
a property list that defines one component of the dialog box. See Specifying dialog box content

2. Use the Initialize command to specify that these lists are the ones Director should use for definitions of the
general purpose dialog box.

Note: A Lingo statement can't contain more than 256 characters. Since lists are typically long, it might be
necessary to assign some values to variables and then use the variables in the list.

To use a general purpose dialog box:
After the dialog box is defined and initialized, Lingo can open, respond to, and close the dialog box.

· Open a modal dialog box by using the Run command. Open a non-modal dialog box by using the
WindowOperation command with the #show option.

· Use the ItemUpdate command to update the dialog box in response to user actions.

· Respond to user actions by sending events in the dialog box to the handler set up to handle callbacks. See
Sending dialog box events to Director

· Close a modal dialog box by using the Stop command. Close a non-modal dialog box by using the
WindowOperation command with the #hide option.

Alert
Syntax: Alert(MUIObject, alertPropertiesList)

This command displays an alert dialog box created from an instance of the MUI Xtra. This feature is in addition to
the simple alerts generated by the alert command.

The MUI Xtra provides modal alerts. The alert can be moveable or non-moveable.

To create the alert, create a MUI Xtra object, and then issue the alert command with a list containing definitions
of alert properties as the second parameter.

The following are properties that you must specify and their possible values:

Property Possible values Specifies

#buttons #Ok
#OkCancel
#AbortRetryIgnore
#YesNoCancel
#YesNo
#RetryCancel

The set of buttons that
appear in the alert. The
buttons appear in the order
that they are named in each
symbol.

#default The ordinal number of the button that
becomes the default. For example, if
the alert's buttons are OK and
Cancel, 2 specifies the Cancel button.
Specify 0 for no default.

Which button is the default.

#icon #stop
#note
#caution
#question
#error

The type of icon that appears
in the alert. Specify 0 for no
icon.

#message A string The message that appears in
the alert

#movable TRUE
FALSE

Whether the alert is
moveable

#title A string The alert's title

You must explicitly specify each of the alert's properties. The MUI Xtra doesn't provide a list of default alert
properties.

Lingo returns a value for the button that the user clicks.

Alerts can be almost as big as the screen; you can display a lengthy description if appropriate.

Example:
The following statements create and display an alert dialog box.

· The first statement creates an instance of the MUI Xtra, which is the object used as the dialog box.

· The second statement sets up a list of the alert's properties.

· The final statements use the Alert command to display the alert and report which buttons the user clicks.

set alertObj = new(xtra "MUI")

set alertInitList = Â
[#buttons : #YesNo, Â
#title : "Alert Test", Â
#message : "This shows Yes and No buttons",Â

#movable : TRUE]
if objectP (alertObj) then
set result = Alert(alertObj, alertInitList)
case result of
1 : -- the user clicked yes
2 : -- the user clicked no
otherwise : -- something is seriously wrong

end case
end if

FileOpen
Syntax: FileOpen(MUIObject, string)

This function displays a standard file open dialog box provided by an instance of the MUI Xtra.

The second parameter specifies a string that appears in the editable field when the dialog box opens. The user
can specify which file to open by entering the file name in the editable field. When the user clicks a button, the
text is returned.

· If the user clicks Cancel, the returned text is the same as the value that was passed in.

· If the user clicks OK, the returned text is a platform-specific path.

Example:

These statements create and display a standard file open dialog box.

· The first statement creates an instance of the MUI Xtra, which is the object used as the dialog box.

· The second statement assigns a string to the variable fileString, which is used later as the second
parameter of the FileOpen command.

· The third statement uses the FileOpen command to generate the open file dialog box.

· The final statements check whether the original string sent with the FileOpen command is the same as the
string that was returned when the user clicked a button. If the values are different, the user selected a file to
open.

set aMuiObj = new (xtra "MUI")

set fileString = "Open this file"

set result = fileOpen(aMuiObj, fileString)

-- Check to see if the dialog was canceled
if (result <> fileString) then

-- The dialog wasn't canceled, do something with
-- the new path data.
else

put "ERROR - fileOpen requires a valid aMuiObj"
end if

FileSave
Syntax: FileSave(MUIObject, string, message)

This function displays a standard file saving dialog box that saves the current file. The dialog box is created from
an instance of the MUI Xtra.

· The string parameter specifies the string that appears in the dialog box's file name field. The user can use
this field to enter a new file name for the file. When the user clicks a button, Lingo returns a value for string
that contains the field's content. If the user clicks Cancel, the returned string is the same as the original
string.

· The message parameter is the string that appears above the dialog box's editable field.

Example:
These statements create and display a file save dialog box.

· The first statement creates an instance of the MUI Xtra, which is the object used as the dialog box.

· The second statement assigns a string to the variable fileString, which is used later as the second
parameter of the FileSave command.

· The third statement uses the FileSave command to generate the save file dialog box.

· The final statements check whether the result after the user clicks a button is the same as the string sent
when the dialog box opened. If it differs, the user clicked something other than Cancel.

set aMuiObj = new (Xtra "MUI")

set fileString = "save this file"

set result = fileSave(aMuiObj, fileString, "with this prompt")

if (result <> fileString) then
-- The dialog wasn't canceled, do something with the new -- path data.

end if

GetItemPropList
Syntax: GetItemPropList(MUIObject)

This function returns a list of the MUI Xtra's predefined properties for components in a general purpose dialog
box. It is useful for defining new components in a general purpose dialog box. Use GetItemPropList to obtain
a comprehensive list of properties and values and then edit individual properties as necessary.

The list of properties and values are the following:

Property Default value

 #value 0
#type #checkBox
#attributes [],
#title "title"
#tip "tip" (This is not supported at the

release of Director 6. It is reserved for
possible use in later versions of the MUI
Xtra.)

#locH 20
#locV 24
#width 200
#height 210
#enabled 1

Example:
These statements define the beginning of a dialog box window.

· The first statement creates an instance of the MUI Xtra, which is the object used as the dialog box.

· The second statement assigns a list of default dialog component settings to the variable tempItemProps.

· The third statement makes the component the dialog box's beginning by changing its type to
#windowBegin.

set aMuiObj = new (Xtra "MUI")
set tempItemProps = GetItemPropList(aMuiObj)

set the type of tempItemProps = #windowBegin

GetUrl
Syntax: GetUrl(MUIObject, message, MovableOrNot)

This function displays a dialog box for entering a URL and returns the URL that the user enters.

· message specifies the message that appears in the field for entering a URL. When the dialog box is first
opened, this string is sent as a predefined value. When the user clicks a button, Lingo returns the string that
the user entered. If the user clicks Cancel, the returned string is the same as the original value.

· On the Macintosh, MovableOrNot specifies whether the dialog box is movable. TRUE makes the dialog box
movable. FALSE makes the dialog box not movable. The GetURL dialog box is always movable in Windows.

Example:
These statements display a dialog box for entering a URL.

· The first statement creates an instance of the MUI Xtra, which is the object used as the dialog box.

· The second statement uses the GetUrl function to display a moveable dialog box for entering URLs and
assigns the dialog box to the variable result. The message "Enter a URL here" appears in the dialog box's
field for entering a URL.

· The final statements check whether the result after the user clicks a button is the same as the string sent
when the dialog box opened. If it differs, the user entered a URL and clicked OK.

set MUIObj = new (xtra "Mui")

set result = GetUrl(MUIObj, "Enter a URL", TRUE)

if objectP (MUIObj) then
set result = GetUrl(MUIObj, "Enter a URL", TRUE)
if (result <> "Enter a URL") then
goToNetPage result

end if
end if

GetWidgetList
Syntax: GetWidgetList(MUIObject)

This function returns a linear list of symbols for types of general purpose dialog box components supported for
an instance of the MUI Xtra.

Example:
This statement displays a list of widgets supported by MUIObject, which is an instance of the MUI Xtra:

put GetWidgetList(MUIObject)
-- [#dividerV, #dividerH, #bitmap, #checkBox, #radioButton, #PopupList,
#editText, #WindowBegin, #WindowEnd, #GroupHBegin, #GroupHEnd,
#GroupVBegin, #GroupVEnd, #label, #IntegerSliderH, #FloatSliderH,
#defaultPushButton, #cancelPushButton, #pushButton, #toggleButton]

GetWindowPropList
Syntax: GetWindowPropList(MUIObject)

This function returns a list of the MUI Xtra's predefined settings for a general purpose dialog box's window.

When defining a new general purpose dialog box, use GetWindowPropList function to obtain a
comprehensive list of dialog box properties and values and then edit individual properties as necessary. Besides
being more convenient, this technique ensures compatibility with future versions of the MUI Xtra that may have
additional properties.

These are the window properties and predefined values that GetWindowPropList returns:

Property Predefined value

#type #normal
#name "window"
#callback "nothing"
#mode #data
#xPosition 100
#yPosition 120
#width 200
#height 210
#modal 1
#toolTips 0
#closeBox 1
#canZoom 0

Example:

These statements define a new general purpose dialog box. The first statement assigns a list of predefined
properties to the variable thePropList. Subsequent statements customize the dialog box by modifying these
settings:

set thePropList = GetWindowPropList(muiObject)

set the name of thePropList = "Picture Window"
set the callback of thePropList = "theWindowCallback"
set the mode of thePropList = #data
set the modal of thePropList = TRUE
set the closeBox of thePropList = FALSE

Initialize
Syntax: Initialize (MUIObject, initialPropertyList)

This command sets up a general purpose dialog box from an instance of the MUI Xtra.

initialPropertyList is a property list that specifies where Director obtains definitions for the dialog box's attributes.

· The property list associated with the #windowPropList property (see Specifying overall dialog box
properties) is the list Director uses for definitions of the overall dialog box's attributes.

· The linear list associated with the #windowItemList property (see Specifying dialog box content) is the
list Director uses for definitions of individual components. Each item in the list is a property list that defines
one component.

Example:

This statement initializes a general purpose dialog box created from MUIObject, which is an instance of the MUI
Xtra. The list aWindowPropList contains definitions for the overall dialog box. The list aWindowItemList
contains definitions for the dialog box's individual components:

Initialize(MUIObj, Â
[#windowPropList:aWindowPropList, Â
 #windowItemList:aWindowItemList])

ItemUpdate
Syntax: ItemUpdate(MUIObject, itemNumber, itemInputPropList)

This command updates a component in a general purpose dialog box. It is useful for updating a dialog box in
response to user actions while the dialog box is displayed.

· itemNumber represents the number of the item being updated.

· itemInputPropList represents the list of new properties for the item.

The ItemUpdate command can be used for many things; possible uses include enabling or disabling buttons,
changing the range of a pop-up, updating a sliders position, and updating editable text items if the user enters an
invalid value.

You may want to update individual items in a dialog box depending on user input, user interaction, or to display
underlying data. Although you would typically update an item's #value, you can also update everything else about
an item, except for its type. Set the height, width, locH, and locV properties to -1 to keep their current
values.

Example 1:

These statements update the dialog box component that has the number itemNum.

· The first statement obtains the component's definitions from the overall list of item definitions.

· The second and third statements modify the component's type and attribute properties.

· The last statement uses the ItemUpdate command to update the component's settings.

set baseItemList = getAt (theItemList, itemNum)
set the type of baseItemList = #IntegerSliderH
set the attributes of baseItemList = [#valueRange :[#min:1, #max:8,
#increment:1, #jump:1, #acceleration:1]
ItemUpdate(MUIObj, itemNum, baseItemList)

Example 2:

This handler updates

on smileyUpdate
-- declare globals
global smileyIndex, gMuiSmileDialObj, itemNumSmile, Â itemNumSlide,

smileItemList

-- validate dialog object
if (objectP (gMuiSmileDialObj)) then
-- get a list to put in new/updated values
set baseItemList = duplicate (getAt (smileItemList, Â
itemNumSmile))

-- metrics can be set to -1, this "keeps them the same"
-- instead of updating.
-- could also be set to a new value if you
-- wanted to resize the item or relocate it.
set the width of baseItemList = -1 -- keep previous
set the height of baseItemList = -1 -- keep previous
set the locH of baseItemList = -1 -- keep previous
set the locV of baseItemList = -1 -- keep previous

-- in this particular case, the value is

-- the only thing that's changing
set the value of baseItemList = string(smileyIndex)
-- member name

-- tell the dialog to update the item number
-- with the new item list
ItemUpdate(gMuiSmileDialObj, itemNumSmile, baseItemList)

end if
end

new
Syntax: new(xtra "MUI")

or

set theObject = new(xtra "MUI")
This function creates a new instance of the MUI Xtra that you can use as a dialog box. This use is in addition to
creating child objects, new cast members, and instances of other Xtras with the new function.

You must create a new instance of the MUI Xtra before you can use it to create a dialog box or obtain any of the
Xtra's predefined values.

Example:

This statement creates a new instance of the MUI Xtra and assigns it to the variable MUIObject:

set MUIObject = new(xtra "MUI")

run
Syntax: run(MUIObject)

This command displays a general purpose modal dialog box created from an instance of the MUI Xtra.

Before Director can open the dialog box, use the Initialize command to define the dialog box. See Specifying
dialog box content and Specifying Overall dialog box properties for more information about specifying the
content of a general purpose dialog box.

Note: To open a non-modal dialog box, use the WindowOperation command with the #show option. This
command allows other Lingo to run in the movie while the non-modal dialog box is open.

Example:

This handler checks whether the object MUIObject exists and displays a general purpose dialog box from
MUIObject if it is:

on runDialog
global MUIObject
if objectP(MUIObject) then

run(MUIObject)
end if

end

stop
Syntax: stop(MUIObject, stopItem)

This function stops the general purpose dialog created from an instance of the MUI Xtra. After the function is
called, Lingo returns the results as the number for the stopItem parameter.

The stopItem parameter is returned from the run(MUIOject) call. Use this to pass back a parameter indicating
how the dialog box was stopped. For example, this could return 1 if the user clicked OK and return 0 if the user
clicked Cancel.

Note: To close a non-modal dialog box, use the WindowOperation command with the #hide option.

Example:

This handler stops the general purpose dialog box created from MUIObject. The second parameter of the stop
command is zero, which fulfills the requirement for a value but has no other purpose:

on stopDialog
global MUIObject
if (objectP (MUIObject)) then

 stop(MUIObject, 0)
 end if
end stopDialog

WindowOperation
Syntax: WindowOperation(MUIObject, operation)

This command controls the window for a general purpose dialog box.

Replace the operation parameter with a value that determines what the window does. Possible values and their
result are:

Possible values Result

 #show Displays a non-modal dialog box only. (To open a
modal dialog box, use the Run command.)

#hide Hides a non-modal dialog box. (To close a modal
dialog box, use the Stop command.)

#center Centers the window on the monitor screen.

#zoom Sends a message that the user clicked the zoom box
on the window. The callback handler must resize the
dialog box, if you want the window to resize after the
user clicks the zoom box.

#tipsOn Turns tool tips on. (This is not supported in the initial
release of Director 6. #tipsOn is reserved for future
versions of the MUI Xtra.)

#tipsOff Turns tool tips off. (This is not supported in the initial
release of Director 6. #tipsOff is reserved for future
versions of the MUI Xtra.)

Example 1:

This handler checks whether MUIObject exists and displays the dialog box if the does:

on showDialog
global MUIObject
if objectP(MUIObject) then

WindowOperation(MUIObject, #show)
end if

end showDialog

Example 2:

This statement hides the dialog box created from MUIObject:

WindowOperation(MUIObject, #hide)

 Specifying overall dialog box properties
To specify the dialog box's overall properties, create a property list that sets values for each of the window's
properties.

The GetItemPropList function (see GetItemPropList) returns a predefined list of attributes. It's usually
easiest to obtain a predefined list from the GetItemPropList function and then modify values as needed.

Before opening the dialog box, use the Initialize command to specify which list Director uses as the source of
definitions for the overall dialog box.

The following are the overall dialog box properties and their possible values:

Property Possible Values

#type #alert, #normal, #palette
#name String that contains the window name. Use "" for no name.

#callback Handler that processes the result of the callback. See
Sending dialog box events to Director for more information.

#mode #data, #dialogUnit, or #pixel. These set the way that
Director lays out the dialog box.

#Xposition Number of pixels that upper left corner of the dialog box
appears from the left of the screen. Specify -1 to have the
dialog box appear in the center.

#Yposition Number of pixels that the top of the dialog box appears from
the top of the screen. Specify -1 to have the dialog box appear
in the center.

#width Width of the window in pixels. Specify 0 to have the dialog box
set its width automatically.

#height Height of the window in pixels. Specify 0 to have the dialog
box set its height automatically.

#modal TRUE or FALSE. Sets whether the dialog box is modal.

#toolTips TRUE or FALSE. Sets whether to use tooltips initially. (This is
not supported in Version 1.0 of the MUI Xtra. It is reserved for
future use.)

#closeBox TRUE or FALSE. Specifies whether the dialog box has a close
box.

#canZoom TRUE or FALSE. Specifies whether the dialog box can zoom.

Note: A Lingo statement can't contain more than 256 characters. Because lists are typically long, it might be
necessary to assign some values to variables and then use those variables in the list.

Example:

These statements set up a list of overall dialog box properties.

· The first statement creates an instance of the MUI Xtra and assigns it to the variable theBox.

· The second statement assigns a list of predefined values to the variable aWindowPropList.
· The next three statements modify the name, callback, and width properties that were obtained from the

GetWindowPropList function.

· The last statement displays the modified list in the Message window. The result appears at the end of the
example.

set theBox = new(xtra "mui")
set aWindowPropList = GetWindowPropList(theBox)
set the name of aWindowPropList = "General Settings"
set the callback of aWindowPropList = "otherCallback"
set the width of aWindowPropList = 200
put aWindowPropList
 -- [#type: #normal, #name: "General Settings", #callback:
"otherCallback", #mode: #data, #xPosition: 100, #yPosition: 120, #width:
200, #height: 210, #modal: 1, #toolTips: 0, #closeBox: 1, #canZoom: 0]

Specifying dialog box content
To specify the content of a general purpose dialog box, create a linear list of definitions for each component of
the dialog box. Each definition is a property list that defines one component. Components appear in the order
that they are listed.

Some components define the structure of the dialog box, such as the beginning and end of the window and the
start and end of horizontal and vertical sets of components. When constructing the dialog box, you must use this
overall framework of components:

Window beginning

Additional components as desired. This can include nested sets of additional horizontal and vertical groups,
horizontal and vertical dividers, labels, and interface features such as buttons, check boxes, editable fields,
and other interface elements.

Window end

To define individual components, create a property list that specifies each component. For convenience, use the
GetItemPropList function obtain a predefined list of values and then modify properties as needed.

The following are properties for general dialog box components and their possible values:

Property Possible value

 #value Determines the component's value type. Possible
types are integer, float, or string. See the following
section "Possible #value settings for general
purpose dialog box components" for more
information about the #value property.

#type One of the supported component types (see
Possible component types)

#attributes A list that specifies the component's attributes.
Attributes that you can specify depend on the
component's type. See Possible attribute
settings

#title String used as the title for the component. Specify
"" for no title.

#tip String used as the message in a tool tip. . Specify ""
for no tool tip. (Tool tips aren't supported in the
initial release of the MUI Xtra. This is reserved for
possible use in future releases.)

#locH The distance of the component's left edge from the
left of the dialog box. There is no need to specify
this property if #data is specified for the dialog
box's #mode property.

#locV The distance of the component's top from the top of
the dialog box. There is no need to specify this
property if #data is specified for the dialog box's
#mode property.

#width The component's width in pixels. Specify 0 to have
Director automatically size the component's width.
There is no need to specify this property if #data is
specified for the dialog box's #mode property.

#height The component's height in pixels. Specify 0 to have
Director automatically size the component's height.
There is no need to specify this property if #data is

specified for the dialog box's #mode property.

#enabled TRUE or FALSE. Specify whether the item is
enabled.

Possible #value settings for general purpose dialog box components

The #value settings for general purpose dialog box components are crucial for the correct display and editing of
data in the dialog box. The following are possible settings for each type of component:

Component Possible setting for #value Examples

#dividerV (Ignored) (Not applicable)

#dividerH (Ignored) (Not applicable)

#bitmap Cast member number, name, or
reference

12, "First bitmap
castmember", member 12 of
castLib "Internal"

#checkBox Boolean TRUE, FALSE
#radioButton Boolean TRUE, FALSE
#PopupList String, integer, or float 1, "Fred", 2.3
#editText String "Edit This Text"
#WindowBegin (Ignored) (Not applicable)

#WindowEnd (Ignored) (Not applicable)

#GroupHBegin (Ignored) (Not applicable)

#GroupHEnd (Ignored) (Not applicable)

#GroupVBegin (Ignored) (Not applicable)

#GroupVEnd (Ignored) (Not applicable)

#label String "label: ", "Long Label
Text Here"

#IntegerSliderH Integer 1, 100, 0
#FloatSliderH Float 1.2, 0.0, 12.345
#defaultPushButton (Ignored) (Not applicable)

#cancelPushButton (Ignored) (Not applicable)

#pushButton (Ignored) (Not applicable)

#toggleButton Boolean TRUE, FALSE

Before opening the dialog box, use the Initialize command to specify which list Director uses as the source of
definitions for the overall dialog box.

Note: A Lingo statement can't contain more than 256 characters. Because lists are typically long, it might be
necessary to assign some values to variables and then use those variables in the list.

Example:

These statements specify the components for a general purpose dialog box that contains an editable field and a
button. The dialog box is created from theBox, which is an instance of the MUI Xtra.

· The first statement creates a new list named aWindowItemList.

· Each subsequent set of statements obtains a predefined list of properties for an individual component,
modifies it as necessary, and then adds the modified list to the overall list of dialog box components.

· The final statement displays the new overall list in the Message window. The result appears at the end of the
example. For easier reading, the display has been broken out into separate sections for each item in the list.

set aWindowItemList = []

-- Set up the beginning of the dialog box
set tempItemPropList = GetItemPropList(theBox)
set the type of tempItemPropList = #windowBegin
append (aWindowItemList, duplicate(tempItemPropList))

-- Set up the beginning of an overall group
set tempItemPropList = GetItemPropList(theBox)
set the type of tempItemPropList = #groupHBegin
append (aWindowItemList, duplicate(tempItemPropList))

-- Set up an editable field
-- This will use default values for text attributes, because no
-- list of values is assigned to the attributes property.
set tempItemPropList = GetItemPropList(theBox)
set the type of tempItemPropList = #editText
set the value of tempItemPropList = "Enter text here"
append (aWindowItemList, duplicate(tempItemPropList))

-- Set up an OK button
set tempItemPropList = GetItemPropList(theBox)
set the type of tempItemPropList = #pushButton
set the title of tempItemPropList = "OK"
append (aWindowItemList, duplicate(tempItemPropList))

-- Set up end of overall group
set tempItemPropList = GetItemPropList(theBox)
set the type of tempItemPropList = #groupHBegin
append (aWindowItemList, duplicate(tempItemPropList))

-- Last, set up end of window
set tempItemPropList = GetItemPropList(theBox)
set the type of tempItemPropList = #windowEnd
append (aWindowItemList, duplicate(tempItemPropList))

put aWindowItemList
-- [
[#value: 0, #type: #WindowBegin, #attributes: [], #title: "title", #tip: "tip", #locH: 20, #locV: 24,
#width: 200, #height: 210, #enabled: 1],
[#value: 0, #type: #GroupHBegin, #attributes: [], #title: "title", #tip: "tip", #locH: 20, #locV: 24,
#width: 200, #height: 210, #enabled: 1],
[#value: "Enter text here", #type: #editText, #attributes: [], #title: "title", #tip: "tip", #locH: 20,
#locV: 24, #width: 200, #height: 210, #enabled: 1],
[#value: 0, #type: #pushButton, #attributes: [], #title: "OK", #tip: "tip", #locH: 20, #locV: 24,
#width: 200, #height: 210, #enabled: 1],
[#value: 0, #type: #GroupHBegin, #attributes: [], #title: "title", #tip: "tip", #locH: 20, #locV: 24,
#width: 200, #height: 210, #enabled: 1],

[#value: 0, #type: #WindowEnd, #attributes: [], #title: "title", #tip: "tip", #locH: 20, #locV: 24,
#width: 200, #height: 210, #enabled: 1]
]

Possible attribute settings
To specify the attributes of a general purpose dialog box component, assign a list of attribute specifications to the
component's #attributes property.

What you can specify depends on the type of component. The following are possible properties and values you
can specify for a component's attribute property. The available attributes vary depending on the type of
component.

Attribute Possible values Can be set for

#textSize One of the following: #large, #tiny,
#normal(default)

Strings

#textStyle A list that includes any of the following
attributes: #bold, #italic, #underline,
#plain (default), #inverse (v2)

Strings

#textAlign One of the following: #left, #right,
#center (defaults to system language
standard)

Strings

#popupStyle One of the following: #tiny, #cramped,
#normal (default)

Pop-ups

#valueList A list of values that appear in a pop-up. All
values are coerced to strings. For example,
Director treats ['one', #two, 3, 4.0]
as four pop-up items, each of which is
treated as a string.

Pop-ups

#valueRange A list of a slider's minimum, maximum,
increment, jump, and acceleration values.
Available properties to set are #min, #max,
#increment, #jump, and
#acceleration. This list is the default
setting: [#min:0.0, #max:1000.0,
#increment:1.0, #jump:10.0,
#acceleration:0.5]

Sliders

#sliderStyle A linear list of one or both of #ticks or
#value.

Sliders

#layoutStyle A list of values that includes one or more of
the following: #minimize,
#lockPosition, #lockSize, #centerH,
#right, #left, #centerV, #top,
#bottom.

All items that aren't grouped
by the #groupHBegin,
#groupHEnd,
#groupVBegin, or
#groupVEnd properties.

#bitmapStyle A property list that specifies that one of the
bitmap icons in the MUI Xtra is to be used
as an icon for a general purpose dialog box.

The property in the property list is
#bitmapIcon. Possible values are #stop,
#note, #caution, #question, #error.
For example, the statement
set the attributes of Â
tempPropItemList= Â
[#bitmapIcon:#caution] sets the
caution symbol as the value for

Bitmaps

#bitmapStyle.

Example 1:

The following statement sets up attributes for an editable field:

set the attributes of tempTextItemList = Â [#textSize:#Normal,
#textStyle:[#Normal]]

Example 2:

The following statement sets up attributes for a slider:

set the attributes of tempItemList = Â
[#valueRange: [#min:0.0, #max:100.0, Â
 #jump:5.0, #acceleration:0.5], #sliderStyle:[#ticks]]

Possible component types
The following are available component types, whether they use a title, and the attributes that you can specify
for them. See Possible attribute settings for details about setting specific attributes.

Property Title Available attributes

#bitmap No #layoutStyle,
#bitmapStyle

#cancelPushButton Yes #textSize, #layoutStyle
#checkBox Yes #textSize, #layoutStyle
#defaultPushButton Yes #textSize, #layoutStyle
#dividerH No #layoutStyle
#dividerV No #layoutStyle
#editText, No #textSize,

#justification,
#textStyle, #layoutStyle

#floatSliderH No #sliderStyle,
#valueRange,
#layoutStyle

#groupHBegin No None

#groupHEnd No None

#groupVBegin No None

#groupVEnd No None

#IntegerSliderH No #sliderStyle,
#valueRange,
#layoutStyle

#label No #textSize,
#justification,
#textStyle, #layoutStyle

#none No #layoutStyle
#popupList No #popupStyle, #valueList,

#layoutStyle
#pushButton Yes #textSize, #layoutStyle
#radioButton Yes #textSize, #layoutStyle
#toggleButton Yes #textSize, #layoutStyle
#windowBegin No None

#windowEnd No None

The GetWidgetList function also returns a list of supported general purpose dialog box component types.

Sending dialog box events to Director
Sending dialog events back to Director lets you determine events such as clicking buttons, changing values, or
when the dialog box moves or closes.

When a dialog box event occurs, the callback message includes three arguments:

· The callback event symbol, which identifies the type of event.

· Event-specific information such as the number in the #windowItemList of the item involved in the event

· The new item property list for the affected item

To specify how a general purpose dialog box responds, write Lingo that instructs the movie what to do in
response to an event and then assign that Lingo to the event's symbol. Specify which handler responds to a
dialog box event by assigning the handler's name to the dialog box's #callback property in the list assigned to
the #windowPropList.

The following are possible events that a general purpose dialog box can send back to Director to indicate what
happened to the dialog box:

Event What occurred

#itemChanged The item's value has changed.

#itemClicked The user clicked an item in the dialog box.

#windowOpening The dialog box window opened.

#windowClosed The dialog box window closed.

#windowZoomed The dialog box window was zoomed.

#windowResized The dialog box window was resized.

#itemEnteringFocus An item in the dialog box got focus.

#itemLosingFocus An item in the dialog box lost focus.

These are some tricks for setting up a callback:

· Store item numbers in global variables when building an item list. To check whether an item is important,
compare eventData to the stored index number.

· Because all buttons have their text in their titles, you can compare the title against text to determine if a
particular button was clicked. For portability and easier localization, store text button titles in global string
variables when setting up a dialog box and to do comparisons.

· Always make sure there is always a way to close a dialog box. Otherwise, it can be impossible to dismiss it.

· Because you can update items, if text changes you can enable an OK button that is unavailable until the text
changes.

· Avoid hanging inside a modal dialog by making sure there is an event that can stop the dialog box.

Example:

The following handler contains a case statement that responds to an event in a general purpose dialog box.
Each possible event is a condition that Director tests for.

The three arguments are the following:

· event is the type of event.

· eventData is specific information about the event.

· itemPropList is the list of property's for the item.

The handler's name is already assigned to the dialog box's #callback property in the list assigned to the
#windowPropList.

on theWindowCallback event, eventData, itemPropList

 global gMuiSmileDialObj, smileyIndex
 if symbolP(event) then -- basic error check
 case event of
 #itemChanged :
 if the type of itemPropList = #IntegerSliderH then
 set smileyIndex = the value of itemPropList
 smileyUpdate FALSE
 end if

 #itemClicked :
 case (the type of itemPropList) of
 #bitmap : beep
 #defaultPushButton :
 if (the title of itemPropList = "Forward") then
 smileyIndexIncrement
 smileyUpdate TRUE
 end if
 #pushButton :
 if (the title of itemPropList = "Back") then
 smileyIndexDecrement
 smileyUpdate TRUE
 end if

 #cancelPushButton :
 if (objectP (gMuiSmileDialObj)) then
 stop(gMuiSmileDialObj, 1)
 end if
 end case

 #windowOpening:
 #windowClosed:
 #windowZoomed :
 #windowResized :
 otherwise :
 end case
 end if
end theWindowCallback

Lingo elements-behaviors
bitRate of member

call

callAncestor

on getBehaviorDescription

on getPropertyDescriptionList

on runPropertyDialog

scriptInstanceList of sprite

spriteNum

{button See Also,AL(`Lingo_menu_behaviors')}

Lingo elements-media sychnronization
cuePointNames of member

cuePointTimes of member

isPastCuePont

on cuePassed

{button See Also,AL(`Lingo_menu_media_synch')}

Lingo elements-net Lingo
Click a Lingo element for more information:

browserName netAbort

cacheSize netDone

cacheDocVerify netError

clearCache netLastModDate

downloadNetThing netMIME

externalParamCount netPresent

externalParamName netStatus

externalParamValue netTextResult

frameReady on streamStatus

getLatestNetID preloadNetThing

getNetText proxyServer

getPref setPref

gotoNetMovie tellStreamStatus

gotoNetPage

mediaReady

Lingo elements-navigation
Click a Lingo element for more information:

delay go

go loop labelList

go next marker

go previous play

play done

Lingo elements-movie control
Click a Lingo element for more information:

abort platform

centerStage play

changeArea of member play done

do printFrom

exitLock saveMovie

halt score

fixStageSize scriptsEnabled

labelList searchPaths

lastFrame stage

movie stageBottom

movieName stageColor

name of xtra stageLeft

nothing stageRight

number of xtras stageTop

on startMovie switchColorDepth

on stopMovie trace

paletteMapping traceLoad

pass traceLogFile

pauseState updateMovieEnabled

Lingo elements-user interaction
Click a Lingo element for more information:

clickLoc mouseItem

clickOn mouseLine

commandDown mouseUp

controlDown mouseH

cursor mouseUpScript

cursor of sprite mouseV

doubleClick mouseWord

editableText of sprite move member

emulateMultiButtonMouse moveableSprite of sprite

key on keyDown

keyCode on keyUp

keyDown on mouseDown

keyDownScript on mouseEnter

keyPressed on mouseLeave

keyUpScript on mouseUp

lastClick on mouseUpOutside

lastEvent on mouseWithin

lastKey on rightMouseDown

lastRoll on rightMouseUp

loc of sprite optionDown

menuItem rollOver

mouseCast shiftDown

mouseChar stillDown

mouseDown

mouseDownScript

Lingo elements-computer & monitor
Click a Lingo element for more information:

beep multiSound

beepOn pasteClipBoardInto

colorDepth quit

desktopRectList restart

drawRect of window romanLingo

floatPrecision shutDown

machineType version

mci

Lingo elements-memory management
Click a Lingo element for more information:

cancelIdleLoad preLoad of member

finishIdleLoad preLoadBuffer member

freeBlock preLoadEventAbort

freeBytes preLoadNetThing

idleHandlerPeriod preLoadEventAbort

idleLoadDone preLoadMember

idleLoadMode preLoadMode of CastLib

idleLoadPeriod preLoadMovie

idleLoadTag preLoadRAM

idleReadChunkSize purgePriority of member

loaded of member ramNeeded

memorySize size of member

movieFileFreeSize unload

movieFileSize unloadMember

on idle unloadMovie

preLoad

Lingo elements-casts
Click a Lingo element for more information:

activeCastLib number of CastLib

castLib number of castLibs

fileName of castLib number of members of castLib

findEmpty preLoadMode of CastLib

name of CastLib save castLib

Lingo elements-cast members
Click a Lingo element for more information:

center of member new

crop number of member

depth of member palette of member

duplicate member pasteClipBoardInto

erase member pattern

fileName of member picture of member

filled of member pictureP

height of member rect of member

hilite of member regPoint

importFileInto shapeType

media of member transitionType

member type of member

modified of member URL of member

name of member width of member

Lingo elements-sprites
Click a Lingo element for more information:

backColor of sprite on beginSprite

castLibNum of sprite on endSprite

constrainH paletteRef

constraint of sprite puppetSprite

constrainV scriptNum of sprite

cursor of sprite sprite

foreColor of sprite sprite...intersects

height of sprite sprite...within

ink of sprite stretch of sprite

type of sprite

left of sprite trails of sprite

loc of sprite updateStage

locH of sprite visible of sprite

locV of sprite width of sprite

memberNum of sprite zoomBox

moveableSprite of sprite

Lingo elements-frames
Click a Lingo element for more information:

frame label

frameLabel marker

framePalette on enterFrame

frameScript on exitFrame

frameSound1 puppetPalette

frameSound2 puppetTempo

frameTempo puppetTransition

frameTransition

Lingo elements-Score generation
Click a Lingo element for more information:

beginRecording insertFrame

clearFrame scoreColor

chunkSize of member scoreSelection

deleteFrame scriptType

duplicateFrame updateFrame

endRecording updateLock

Lingo elements-external files
Click a Lingo element for more information:

@ pathname operator open

applicationPath openDA

closeDA openResFile

closeResFile openXlib

closeXlib pathName

copyToClipBoard preloadNetThing

downloadNetThing searchCurrentFolder

fileName of castLib searchPath

fileName of member setCallBack

fileName of window showResFile

getNthFileNameInFolder showXlib

importFileInto sound playFile

movieFileFreeSize URL of member

moviePath xFactoryList

Lingo elements-movie in a window
Click a Lingo element for more information:

closeWindow on resizeWindow

drawRect of window on zoomWindow

fileName of window open window

forget window rect of window

frontWindow sourceRect

modal of window tell

moveToBack title of window

moveToFront titleVisible of window

name of window visible of window

on activateWindow window

on closeWindow windowList

windowPresent

on moveWindow windowType

on openWindow

Lingo elements-parent scripts
Click a Lingo element for more information:

actorList

ancestor

new

property

stepFrame

Lingo elements-lists
Click a Lingo element for more information:

[] (list operators) getOne

add getPos

addAt getProp

addProp getPropAt

append ilk

count list

deleteAll listP

deleteAt param

deleteOne paramCount

deleteProp min

duplicate setaProp

findPos setAt

findPosNear setProp

getaProp set

getAt sort

getLast

Lingo elements-code structures & syntax
Click a Lingo element for more information:

(symbol operator) if ... then ...

¬ (continuation symbol) if ... then ... else

-- (comment delimiter) next

case next repeat

end or

end case otherwise

end if repeat while

end repeat repeat with

exit repeat with...down to

exit repeat repeat with...in list

global the

VOID

Lingo elements-strings
Click a Lingo element for more information:

& itemDelimiter

&& last

char...of length

chars line...of

contains number of items in

delete number of lines in

EMPTY string

item...of stringP

word...of

Lingo elements-functions
Click a Lingo element for more information:

abs floatP

and integer

atan integerP

charToNum mod

cos or

exp sqrt

FALSE TRUE

float

Lingo elements-fields
Click a Lingo element for more information:

after lineCount of member

alignment of member lineHeight

autoTab of member lineHeight of member

backColor of member linePosToLocV

before lineSize of member

border of member lineSize of sprite

boxDropShadow locToCharPos

boxType of member locVToLinePos

char...of margin

charPosToLoc number of chars in

chars number of items in

charToNum number of words in

contains offset

delete pageHeight of member

dropShadow of member put...after

editable of member put...before

editable of sprite put...into

font of member scrollByPage

fontSize of member scrollLine

fontStyle of member scrollTop of member

foreColor of member selEnd

height of member selStart

hilite string

in text of member

into wordWrap of member

item...of word...of

Lingo elements-digital video
Click a Lingo element for more information:

controller of member trackEnabled

digitalVideoTimeScale trackNextKeyTime

digitalVideoType trackNextSampleTime

directToStage of member trackPreviousKeyTime

duration of member trackPreviousSampleTime

frameRate of member trackStartTime(member)

loop of member trackStartTime(sprite)

movieTime of sprite trackStopTime(member)

movieRate of sprite trackStopTime(sprite)

pauseAtStart trackText

quickTimePresent trackType (member)

setTrackEnabled trackType (sprite)

timeScale of member video of member

trackCount(member) videoForWindowsPresent

trackCount(sprite)

Lingo elements-sound
Click a Lingo element for more information:

channelCount sound of member

puppetSound sound playFile

sampleRate sound stop

sampleSize of member soundBusy

sound close soundEnabled

sound fadeIn volume of sprite

sound fadeOut

Lingo elements-Shockwave audio
Click a Lingo element for more information:

bitsPerSample of member play member

bitRate of member preLoadBuffer member

copyrightInfo of member preLoadTime of member

duration of member sampleRate of member

getError soundChannel of member

getErrorString state of member

numChannels of member stop member

pause member streamName of member

percentStreamed URL of member

percentPlayed volume of member

Lingo elements-interface elements
Click a Lingo element for more information:

alert menu

buttonStyle menuItem

buttonType name of menu

checkBoxAccess name of menuItem

checkBoxType number of menuItems

checkMark of menuItem number of menus

enabled of menuItem script of menuItem

installMenu

Lingo elements-operators
Click a Lingo element for more information:

(pound sign) <> (not equal)

- (minus sign) = (equal sign)

-- (comment delimiter) > (greater than)

& (concatenator) > = (greater than or equal to)

&& (concatenator) [] (list operators)

* (multiplication) " (string constant)

+ (addition) ¬ (continuation symbol)

/ (division) () [parentheses]

< (less than) @ (pathname operator)

< = (less than or equal to)

Lingo elements-puppets
Click a Lingo element for more information:

puppet of sprite

puppetPalette

puppetSound

puppetSprite

puppetTempo

puppetTransition

updateStage

Lingo elements-time
Click a Lingo element for more information:

abbr, abbrev, abbreviated ticks

date time

delay timer

framesToHMS timeoutKeyDown

HMStoFrames timeoutLapsed

long timeoutMouse

short timeoutPlay

startTimer timeoutScript

Lingo elements-variables
Click a Lingo element for more information:

clearGlobals

global

property

put

set...to and set...=

showGlobals

showLocals

Lingo elements-events
Click a Lingo element for more information:

exitFrame on moveWindow

keyDown on openWindow

on activeWindow on prepareFrame

on closeWindow on prepareMovie

on deactivateWindow on resizeWindow

on enterFrame on rightMouseDown

on exitFrame on rightMouseUp

on idle on startMovie

on keyDown on stepFrame

on keyUp on stopMovie

on mouseDown on timeOut

on mouseUp on zoomWindow

Lingo elements-text and keys
Click a Lingo element for more information:

BACKSPACE keyPressed

charToNum lastKey

EMPTY mouseChar

ENTER numToChar

hilite RETURN

key string

keyCode symbolP

value

Lingo elements-xtras
Click a Lingo element for more information:

name of xtra xtra

number of xtras xtras

Lingo elements-points and rects
Click a Lingo element for more information:

bottom of sprite point

inflate rect rect

inside rect of sprite

intersect right of sprite

map source rect

offset top of sprite

offset rect union rect

Lingo elements-A
Click a Lingo element for more information:

abbr after

abbrev alert

abbreviated alerthook

abort alignment of member

abs ancestor

activateWindow and

activeCastLib append

activeWindow applicationPath

actorList atan

add autoTab of member

addAt

addProp

Lingo elements-B
Click a Lingo element for more information:

backColor of member birth

backColor of sprite bitsPerSample of member

BACKSPACE bitRate of member

beep blend of sprite

beepOn border of member

before bottom of sprite

beginRecording boxDropShadow of member

beginSprite boxType of member

behavesLikeToggle of member browserName

behavesLikeToggle of sprite buttonStyle

buttonType

Lingo elements-C
Click a Lingo element for more information:

cacheDocVerify close window

cacheSize closeDA

call closeResFile

callAncestor closeWindow

cancelIdleLoad closeXlib

case colorDepth

castLib colorQD

castLibNum of member commandDown

castLibNum of sprite constrainH

castNum of sprite constraint of sprite

center of member constrainV

centerStage contains

changeArea of member continue

channelCount of member controlDown

char...of controller of member

charPosToLoc copyrightInfo of member

chars copyToClipBoard

charToNum cos

checkBoxAccess count

checkBoxType cpuHogTicks

checkMark of menuItem crop of member

chunkSize of member cuePassed

clearCache cuePointNames of member

clearFrame cuePointTimes of member

clearGlobals currentSpriteNum

clickLoc currentTime

clickOn cursor

cursor of sprite

Lingo elements-D
Click a Lingo element for more information:

date directToStage of member

deactivateWindow do

delay dontPassEvent

delete

deleteAll doubleClick

deleteAt down

deleteFrame downloadNetThing

deleteOne drawRect of window

deleteProp dropShadow of member

depth of member duplicate(list)

desktopRectList duplicate member

digitalVideo duplicateFrame

digitalVideoTimeScale duration of member

digitalVideoType of member

Lingo elements-E
Click a Lingo element for more information:

editable of member ENTER

editable of sprite enterFrame

else erase member

EMPTY EvalScript

emulateMultiButtonMouse exit

enabled of member exit repeat

enabled of sprite exitFrame

enabled of menuItem exitLock

end exp

end case externalEvent

end repeat externalParamCount

endRecording externalParamName

endSprite externalParamValue

Lingo elements-F
Click a Lingo element for more information:

factory fontStyle of member

fadeIn foreColor of member

fadeOut foreColor of sprite

FALSE forget window

field frame

fileName of castLib frameLabel

fileName of member framePalette

fileName of window frameRate of member

filled of member frameReady

findEmpty frameScript

findPos frameSound1

findPosNear frameSound2

finishIdleLoad framesToHMS

fixStageSize frameTempo

float frameTransition

floatP freeBlock

floatPrecision freeBytes

font of member frontWindow

fontSize of member fullColorPermit

Lingo elements-G
Click a Lingo element for more information:

getaProp getPref

getAt getProp

getBehaviorDescription getPropAt

getError getPropertyDescriptionList

getErrorString global

getLast go

getLatestNetID go loop

getNetText go next

getNthFileNameInFolder go previous

getOne gotoNetMovie

getPos gotoNetPage

Lingo elements-H
Click a Lingo element for more information:

halt

height of member

height of sprite

hilite

hilite of member

HMStoFrames

Lingo elements-I
Click a Lingo element for more information:

idle inside

idleHandlerPeriod inside point

idleLoadDone installMenu

idleLoadMode instance

idleLoadPeriod integer

idleLoadTag integerP

idleReadChunkSize intersect

if intersects

ilk into

importFileInto isPastCuePoint

in isToggled of sprite

inflate rect item...of

initialToggleState of member itemDelimiter

ink of sprite items

insertFrame

Lingo elements-J
There are no Lingo elements that begin with the letter J.

Lingo elements-K
Click a Lingo element for more information:

key

keyCode

keyDown

keyDownScript

keyPressed

keyUp

keyUpScript

Lingo elements-L
Click a Lingo element for more information:

label lines

labelList lineSize of member

labelString of member lineSize of sprite

last list

lastClick list operator ([])

lastEvent listP

lastFrame loaded of member

lastKey loc of sprite

lastRoll locH of sprite

left of sprite locToCharPos

length locV of sprite

line...of locVToLinePos

lineCount of member log

lineHeight long

lineHeight of member loop

linePosToLocV loop of member

Lingo elements-M
Click a Lingo element for more information:

machineType mGet

map min

map point mInstanceRespondsTo

map rect mMessageList

margin of member mName

marker mNew

mAtFrame mod

max modal of window

maxInteger modified of member

mci mostRecentCuePoint

mDescribe mouseChar

mDispose mouseDown

me mouseDownScript

media of member mouseEnter

mediaReady of member mouseH

member mouseItem

member backColor mouseLeave

member memberType mouseLine

member depth mouseMember

member fileName mouseUp

member foreColor mouseUpOutSide

member height mouseUpScript

member hilite mouseV

member loaded mouseWithin

member name mouseWord

member number move member

member of sprite moveableSprite of sprite

member palette moveToBack

member picture moveToFront

member purgePriority moveWindow

member rect movie

member regPoint movieFileFreeSize

member scriptText movieFileSize

member text movieName

member width moviePath

memberNum of sprite movieRate of sprite

memorySize movieTime of sprite

menu mPerform

menuItem mPut

menuItems mRespondsTo

menus multiSound

method

Lingo elements-N
Click a Lingo element for more information:

name of CastLib not

name of member nothing

name of menu number of CastLib

name of menuItem number of castLibs

name of window number of chars in

name of xtra number of items in

netAbort number of lines in

netDone number of member

netError number of members

netLastModDate number of members of castLib

netMIME number of menuItems

netPresent number of menus

netStatus number of words in

netTextResult number of xtras

new numChannels of member

next numToChar

next repeat

Lingo elements-O
Click a Lingo element for more information:

objectP on mouseWithin

of on moveWindow

offset on openWindow

offset rect on prepareFame

on on prepareMovie

on activateWindow on resizeWindow

on alerthook on rightMouseDown

on beginSprite on rightMouseUp

on closeWindow on runPropertyDialog

on cuePassed on startMovie

on deactivateWindow on stepFrame

on endSprite on stepMovie

on enterFrame on stopMovie

on EvalScript on streamStatus

on exitFrame on timeOut

on getBehaviorDescription on zoomWindow

on getPropertyDescriptionList open

on idle open window

on keyDown openDA

on keyUp openResFile

on mouseDown openWindow

on mouseEnter openXlib

on mouseLeave optionDown

on mouseUp or

on mouseUpOutSide otherwise

Lingo elements-P
Click a Lingo element for more information:

pageHeight of member preLoad

palette of member preLoad of member

paletteMapping preLoadBuffer member

paletteRef preLoadEventAbort

param preLoadMember

paramCount preLoadMode of CastLib

pass preLoadMovie

pasteClipBoardInto preloadNetThing

pathName preLoadRAM

pattern preLoadTime of member

pause prepareFrame

pause member prepareMovie

pausedAtStart of member previous

pauseState printFrom

percentPlayed of member property

percentStreamed of member proxyServer

perFrameHook puppet of sprite

pi puppetPalette

picture of member puppetSound

pictureP puppetSprite

platform puppetTempo

play puppetTransition

play done purgePriority of member

play member put

playFile put...after

point put...before

power put...into

putImageIntoCastMember

Lingo elements-Q
Click a Lingo element for more information:

quickTimePresent

quit

QUOTE

Lingo elements-R
Click a Lingo element for more information:

ramNeeded resizeWindow

random restart

randomSeed result

rect RETURN

rect of member return

rect of sprite right of sprite

rect of window rightMouseDown

rect point rightMouseDown

regPoint of member rightMouseUp

relative rightMouseUp

repeat while rollOver

repeat with romanLingo

repeat with...down to runMode

repeat with...in list runPropertyDialog

Lingo elements-S
Click a Lingo element for more information:

sampleRate of member sound close

sampleSize of member sound fadeIn

save castLib sound fadeOut

saveMovie sound of member

score sound playFile

scoreColor of sprite sound stop

scoreSelection soundBusy

script of menuItem soundChannel of member

scriptInstanceList of sprite soundEnabled

scriptNum of sprite soundLevel

scriptsEnabled of member sourceRect

scriptText of member SPACE

scriptType of member sprite

scrollByLine sprite...intersects

scrollByPage sprite...within

scrollTop of member spriteBox

searchCurrentFolder spriteNum

searchPath sqrt

searchPaths stage

selection stageBottom

selection of castLib stageColor

selEnd stageLeft

selStart stageRight

sendAllSprites stageTop

sendSprite startMovie

set...to and set...= starts

setaProp startTime of sprite

setAt startTimer

setButtonImageFrom- CastMember state of member

setCallBack stepFrame

setPref stepMovie

setProp stillDown

setTrackEnabled stop

shapeType stop member

shiftDown stopEvent

short stopMovie

showGlobals stopTime of sprite

showLocals streamName of member

showResFile streamStatus

showXlib stretch of sprite

shutDown string

sin stringP

size of member switchColorDepth

sort symbol

 symbolP

Lingo elements-T
Click a Lingo element for more information:

TAB trackCount(member)

tan trackCount(sprite)

tell trackEnabled

tellStreamStatus

text of member tracking

the trackNextKeyTime

then trackNextSampleTime

ticks trackPreviousKeyTime

time trackPreviousSampleTime

timeoutKeyDown trackStartTime(member)

timeoutLapsed trackStartTime(sprite)

timeoutLength trackStopTime(member)

timeoutMouse trackStopTime(sprite)

timeoutPlay trackText

timeoutScript trackType (member)

timer trackType (sprite)

timeScale of member trails of sprite

title of window transitionType of member

titleVisible of window TRUE

to tweened of sprite

top of sprite type of member

trace type of sprite

traceLoad

traceLogFile

Lingo elements-U
Click a Lingo element for more information:

union rect updateLock

unLoad updateMovieEnabled

unLoadMember updateStage

unloadMovie URL of member

updateFrame

Lingo elements-V
Click a Lingo element for more information:

value visible of window

version VOID

video of member voidP

videoForWindowsPresent volume of member

visible of sprite volume of sound

volume of sprite

Lingo elements-W
Click a Lingo element for more information:

when...then windowPresent

while windowType of window

width of member with

width of sprite within

window word...of

windowList wordWrap of member

Lingo elements-X
Click a Lingo element for more information:

xFactoryList

xtra

xtras

Lingo elements-Y
There are no Lingo elements that begin with the letter Y.

Lingo elements-Z
Click a Lingo element for more information:

zoomBox

zoomWindow

(symbol operator)
Syntax: #symbolName

This symbol operator defines a symbol. In addition to integers, floating-point numbers, strings, and objects, Lingo
also has a symbol data type. The value symbolName begins with an alphabetical character and may be followed
by any number of alphabetical or numerical characters.

The valid operations on symbols are:

· Assignment to a variable

· Comparison

· Being passed as a parameter to a handler or method

· Being returned as a value from a handler or method

A symbol is a self-contained unit that can be used to represent a condition or flag. It does not consist of individual
characters in the same sense as a string. However, you can convert a symbol to a string for display purposes by
using the string function.

Symbols take up much less space than strings and can be manipulated. Essentially, symbols have the speed
and memory advantages of integers but give you the descriptive power of strings.

The following are some important points about symbol syntax:

· Symbols are case-insensitive.

· Symbols can't start with a number.

· Symbols use the 128 ASCII characters, and letters with diacritical or accent marks are treated as their base
letter.

All symbols, global variables, and names of parameters passed to global variables are stored in a common
lookup table. Because 16-bit projectors for Windows 3.1 use the segmented memory model, no single list can
exceed 64K in size. As a result, you can typically have no more than approximately 5000 symbols in a Windows
3.1 projector.

For more information about using symbols, strings, and other values, see Chapter 2, "Script Basics," in Learning
Lingo.

Example:

This statement sets the variable named state to the symbol #Playing:

set state = #Playing

{button See also,AL(`Lingo_pound_sign')}

- (minus sign)
Syntax (negation): -expression

This arithmetic operator reverses the sign of the value of expression.

This is an arithmetic operator with a precedence level of 5.

Syntax (subtraction): expression1 - expression2

This arithmetic operator performs an arithmetic subtraction on two numerical expressions, subtracting
expression2 from expression1. When both expressions are integers, the difference is an integer. When either or
both expressions are floating-point numbers, the difference is a floating-point number.

This is an arithmetic operator with a precedence level of 3.

Example 1: (negation):

This statement reverses the sign of the expression 2 + 3:

put -(2 + 3)

The result is -5.

Example 2 (subtraction):

This statement subtracts the integer 2 from 5, and then displays the result in the Message window:

put 5 - 2

The result is 3, which is an integer.

Example 3 (subtraction):

This statement subtracts the floating-point number 1.5 from 3.25, and then displays the result in the Message
window:

put 3.25 - 1.5

The result is 1.75, which is a floating-point number.

-- (comment delimiter)
Syntax: -- [comment]

The comment delimiter, which is a double hyphen, indicates the beginning of a script comment. On any line, what
appears between the comment symbol (double hyphen) and the end-of-line return character is interpreted as a
comment instead of a Lingo statement.

Example:

This handler uses a double hyphen to make the second line a comment:

on resetColors
 -- This handler resets the sprite's colors.
 set the foreColor of sprite 1 to 35
 -- bright red
 set the backColor of sprite 1 to 36
 -- light blue
end resetColors

& (concatenator)
Syntax: expression1 & expression2

This operator performs a string concatenation of two expressions. If either expression1 or expression2 is a
number, it is first converted to a string. The resulting expression is a string.

This is a string operator with a precedence level of 2.

Note: Lingo allows some commands and functions that take only one argument to be used without parentheses
surrounding the argument. This rarely presents a problem. However, when the argument includes an operator,
Lingo interprets only the first argument as part of the function.

The open window command is one case. It allows one argument that specifies which window to open. If you
use the & operator to define a pathame and file name, Director only interprets the string before the & operator as
a file name. For example, Lingo interprets the statement open window the applicationPath &
"theMovie" as (open window the applicationPath) & ("theMovie"). Avoid this problem by
surrounding the entire phrase that includes an operator in parentheses. Thus, a successful version of the above
statement would be
open window (the applicationPath & "theMovie")
The parentheses clear up Lingo's confusion by changing the precedence by which Lingo deals with the operator
and treats the two parts of the argument as one complete argument.

Example 1:

This statement concatenates the strings "abra" and "cadabra":

put "abra" & "cadabra"

The result is the string "abracadabra".

Example 2:

This statement concatenates the strings "$" and the content of the variable price. The concatenated string is
then assigned to the field cast member Price:

put "$" & price into field "Price"

&& (concatenator)
Syntax: expression1 && expression2

This string operator concatenates two expressions, inserting a space character between the original string
expressions. If either expression1 or expression2 is a number, it is first converted to a string. The resulting
expression is a string.

This is a string operator with a precedence level of 2.

Example 1:

This statement concatenates the strings "abra" and "cadabra", and inserts a space between the two:

put "abra" && "cadabra"

The result is the string "abra cadabra".

Example 2:

This statement concatenates the strings "Today is" and today's date in the long format, and inserts a space
between the two:

put "Today is" && the long date

If today's date were Tuesday, March 15, 1996, the result would be the string Tuesday, March 15, 1996.

() (parentheses)
Syntax: (expression)

This grouping operator performs a grouping operation on an expression. It is used to control the order of
execution of the operators in an expression, and override the automatic precedence order. It causes the
expression contained within the parentheses to be evaluated first. When parentheses are nested, the contents of
inner ones are evaluated before the contents of outer ones.

This is a grouping operator with a precedence level of 5.

Note: Lingo allows some commands and functions that take only one argument to be used without parentheses
surrounding the argument. This rarely presents a problem. However, when the argument includes an operator,
Lingo interprets only the first argument as part of the function.

The open window command is one case. It allows one argument that specifies which window to open. If you
use the & operator to define a pathame and file name, Director only interprets the string before the & operator as
a file name. For example, Lingo interprets the statement open window the applicationPath &
"theMovie" as (open window the applicationPath) & ("theMovie"). Avoid this problem by
surrounding the entire phrase that includes an operator in parentheses. Thus, a successful version of the above
statement would be
open window (the applicationPath & "theMovie")
The parentheses clear up Lingo's confusion by changing the precedence by which Lingo deals with the operator
and treats the two parts of the argument as one complete argument.

Example:

These statements use the grouping operator to change the order in which operations occur. The result appears
below each statement:

put (2 + 3) * (4 + 5)
-- 45
put 2 + (3 * (4 + 5))
-- 29
put 2 + 3 * 4 + 5
-- 19

* (multiplication)
Syntax: expression1 * expression2

This arithmetic operator performs an arithmetic multiplication on two numerical expressions. If both expressions
are integers, the product is an integer. If either or both expressions are floating-point numbers, the product is a
floating-point number.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement multiplies the integers 2 and 3, and then displays the result in the Message window:

put 2 * 3

The result is 6, which is an integer.

Example 2:

This statement multiplies the floating-point numbers 2.0 and 3.1414, and then displays the result in the Message
window:

put 2.0 * 3.1416

The result is 6.2832, which is a floating-point number.

+ (addition)
Syntax: expression1 + expression2

This arithmetic operator performs an arithmetic sum on two numerical expressions. If both expressions are
integers, the sum is an integer. If either or both expressions are floating-point numbers, the sum is a floating-
point number.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement adds the integers 2 and 3, and then displays the result in the Message window:

put 2 + 3

The result is 5, which is an integer.

Example 2:

This statement adds the floating-point numbers 2.5 and 3.25, and then displays the result in the Message
window:

put 2.5 + 3.25

The result is 5.75, which is a floating-point number.

/ (division)
Syntax: expression1 / expression2

This arithmetic operator performs an arithmetic division on two numerical expressions, dividing expression1 by
expression2. If both expressions evaluate to integers, the quotient is an integer. If either or both expressions
evaluate to floating-point numbers, the quotient is a floating-point number.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement divides the integer 22 by 7, and then displays the result in the Message window:

put 22 / 7

The result is 3. Because both numbers in the division are integers, Lingo rounds the answer down to the nearest
integer.

Example 2:

This statement divides the floating-point number 22.0 by 7.0, and then displays the result in the Message
window:

put 22.0 / 7.0

The result is 3.1429, which is a floating-point number.

< (less than)
Syntax: expression1 < expression2

This comparison operator compares two expressions. When expression1 is less than expression2, the condition
is TRUE. When expression1 is greater than or equal to expression2, the condition is FALSE.

This operator can compare strings, integers, floating-point numbers, rects, and points.

This is a comparison operator with a precedence level of 1.

<= (less than or equal to)
Syntax: expression1 <= expression2

This comparison operator compares two expressions. When expression1 is less than or equal to expression2,
the condition is TRUE. When expression1 is greater than expression2, the condition is FALSE.

This operator can compare strings, integers, floating-point numbers, rects, and points.

This is a comparison operator with a precedence level of 1.

<> (not equal)
Syntax: expression1 <> expression2

This comparison operator compares two expressions. When expression1 is not equal to expression2, the
condition is TRUE. When expression1 is equal to expression2, the condition is FALSE.

This operator can compare strings, integers, floating-point numbers, rects, and points.

This is a comparison operator with a precedence level of 1. This operator also works with symbols and objects.

= (equal sign)
Syntax: expression1 = expression2

This comparison operator compares two expressions or strings. When expression1 is equal to expression2, the
condition is TRUE. When expression1 is not equal to expression2, the condition is FALSE.

This operator can compare strings, integers, floating-point numbers, rects, and points.

This is a comparison operator with a precedence level of 1. This operator also works with symbols and objects.

> (greater than)
Syntax: expression1 > expression2

This comparison operator compares two expressions. When expression1 is greater than expression2, the
condition is TRUE. When expression1 is less than or equal to expression2, the condition is FALSE.

This operator can compare strings, integers, floating-point numbers, rects, and points.

This is a comparison operator with a precedence level of 1.

>= (greater than or equal to)
Syntax: expression1 >= expression2

This comparison operator compares two expressions. When expression1 is greater than or equal to expression2,
the condition is TRUE. When expression1 is less than expression2, the condition is FALSE.

This operator can compare strings, integers, floating-point numbers, rects, and points.

This is a comparison operator with a precedence level of 1.

[] (list operators)
Syntax: [entry1, entry2, entry3, ...]

These square brackets specify that the entries within the brackets are a list.

There are four types of lists:

· Unsorted linear lists

· Sorted linear lists

· Unsorted property lists

· Sorted property lists

Each entry in a linear list is a single value that has no other property associated with it. Each entry in a property
list consists of a value and a property. The property appears before the value and is separated from the value by
a colon. You cannot store a property in a linear list. When using strings as entries in a list, enclose the string in
quotation marks.

For example, [6, 3, 8] is a linear list. The numbers have no properties associated with them. However, [#gears:6,
#balls:3, #ramps:8] is a property list. Each number has a property, in this case a piece of machinery, associated
with it. This property list could be useful for tracking how many of each piece of machinery are currently on the
Stage in the mechanical simulation. Properties can appear more than once in a property list.

Lists can be sorted in alphanumeric order. A sorted linear list is ordered by the values in the list. A sorted property
list is in order by the properties in the list. You sort a list by using the appropriate command for a linear list or
property list.

· In linear lists, symbols and strings are case-sensitive.

· In property lists, symbols are case-sensitive but strings aren't case-sensitive.

A linear list or a property list can contain no values at all. An empty list consists of two square brackets ([]). To
clear a linear list, set the list to []. To clear a property list, set the list to [:].

You can modify, test, or read items in a list.

You do not have to worry about explicitly disposing lists. Lists are automatically disposed when they are no
longer referred to by any variable. When the list is held within a global variable, it persists from movie to movie.

You can quickly initialize a list by doing so in the on prepareMovie handler. An alternative way is to write the
list as a field cast member and assign the list to a variable. You can then handle the list by handling the variable.

Not all PC keyboards have square brackets. If this is the case, use the list function to create a list.

Note: Lingo passes instances of a list as a reference to the list.

For more information about using lists, see Chapter 10, "Lists," in Learning Lingo.

Example 1:

This statement defines a list by making the variable machinery equal to the list:

set machinery = [#gears:6, #balls:3, #ramps:8]

Example 2:

This handler sorts the list "aList," and then displays the result in the Message window:

on sortList aList
 sort aList
 put aList
end sortList

If the movie issues the statement sortList machinery, where machinery is the list in Example 1: above, the
result is [#balls:3, #gears:6, #ramps:8].

Example 3:

This statement creates an empty linear list:

set x = []

Example 4:

This statement creates an empty property list:

set x = [:]

{button See also,AL(`Lingo_list_operators')}

" (string constant)
Syntax: "

When used before and after a string, quotation marks indicate that the string within the quotation marks is a
literal string - not a variable, numerical value, or Lingo element. Quotation marks must always surround literal
names of cast members, casts, windows, and external files.

Example:

The following statement uses quotation marks to indicate that the string "San Francisco" is a literal string. In this
case, it's the name of a cast member.

put the loaded of member "San Francisco"

{button See also,AL(`Lingo_string_constant')}

¬ (continuation symbol)
Syntax: first part of a statement on this line¬

second part of statement ¬
 third part of statement here

This special character, when used as the last character in a line, indicates that the statement continues on the
next line. Lingo then interprets the lines as one continuous statement.

You can do this on several successive lines. However, one complete statement can have no more than 256
characters.

Create this character by pressing Alt+Enter.

Example:

This statement uses the ¬ character to wrap the statement onto several lines:

set the memberNum of sprite mySprite ¬
 to the number of member ¬
 "This is a long cast name."

@ (pathname operator)

Syntax: @
This operator defines the pathname to the current movie's folder. It has the important advantage that a pathname
defined this way can be understood on both Windows and Macintosh computers.

Identify the current movie's folder by using the @ symbol followed by one of these pathname separators:

· / (forward slash)

· \ (backslash)

· : (colon)

When used with the @ operator, any of these pathname separators are valid on either platform.

You can build on this pathname to specify folders that are above or below the current movie's folder.

· Add a pathname separator immediately after the @ symbol to specify a folder up in the hierarchy.

· Add folder and file names (separated by /, \, or :) after the current folder name to specify subfolders and files
within folders.

Relative pathnames in Lingo are the best way to indicate the location of a linked file in a folder different than the
movie's folder.

Note: Lingo allows some commands and functions that take only one argument to be used without parentheses
surrounding the argument. This rarely presents a problem. However, when the argument includes an operator
such as @, Lingo interprets only the first argument as part of the function.

The parentheses clear up Lingo's confusion by changing the precedence by which Lingo deals with the operator
and treats the two parts of the argument as one complete argument.

Example 1:

These are equivalent expressions for the subfolder bigFolder, which is in the current movie's folder:

@/bigFolder
@:bigFolder
@\bigFolder

Example 2:

These are equivalent expressions that specify the file linkedFile, which is in the subfolder bigFolder:

@:bigFolder:linkedFile
@\bigFolder\linkedFile
@/bigFolder/linkedFile

Example 3:

This expression specifies the file linkedFile, which is located one level up from the current movie's folder:

@//linkedFile

This specifies the file linkedFile, which is located two levels up from the current movie's folder:

@:::linkedFile

Example 4:

These are equivalent expressions that specify the file linkedFile, which is in the folder otherfolder. The
folder otherFolder is in the folder one level up from the current movie's folder:

@::otherFolder:linkedFile
@\\otherFolder\linkedFile
@//otherFolder/linkedFile

{button See also,AL(`Lingo_at_symbol')}

abbr, abbrev, abbreviated
These elements are used by the date and time functions.

abort
Syntax: abort

This command has Lingo exit the current handler and any handler that called it without executing any of the
remaining statements in the handler. This differs from the exit keyword, which returns to the handler from which
the current handler was called.

The abort command does not quit Director.

Example:

This statement instructs Lingo to exit the handler and any handler that called it when the amount of free memory
is less than 50K:

if the freeBytes < 50*1024 then abort

{button See also,AL(`Lingo_abort')}

abs
Syntax: abs (numericExpression)

This function calculates the absolute value of a numerical expression. If numericExpression is an integer, its
absolute value is also an integer. If numericExpression is a floating-point number, its absolute value is also a
floating-point number.

The abs function has several uses. It can simplify tracking mouse and sprite movement by converting coordinate
differences (which can be either positive or negative) into distances (which are always positive). The abs
function is also useful for handling mathematical functions, such as sqrt and log.

Example 1:

This statement calculates the absolute value of -2.2 and displays the result in the Message window:

put abs(-2.2)

Example 2:

This statement determines whether the absolute value of the difference between the current mouse position and
the value of the variable startV is greater than 30. If it is, the foreground color of sprite 6 is changed.

if abs (the mouseV - startV) > 30 then ¬
set the foreColor of sprite 6 to 95

activeCastLib
Syntax: the activeCastLib

This system property indicates which cast was most recently activated. The activeCastLib property's value is
the cast's number.

The activeCastLib property is useful when working with the selection of castLib property. Use it to
determine which cast the selection refers to.

This property can be tested but not set.

Example:

These statements assign the selected cast members in the most recently selected cast to the variable
selectedMembers.

set castLibOfInterest to the activeCastLib
set selectedMembers to the selection of castLib castLibOfIntrest

An equivalent way to write this would be:

set selectedMembers to the selection of the castLib the activeCastLib

activeWindow
Syntax: the activeWindow

This system property indicates which movie window is currently active. For the main movie, the
activeWindow is the Stage. For a movie in a window, the activeWindow is the movie in a window itself.

Example:

This example places the word Active in the title bar of the window clicked on and places the word Inactive in the
title bar of all other open windows:

on activateWindow
 set clickedWindow = getPos(the windowlist, ¬
 the activeWindow)
 set windowCount = count(the windowlist) into windowCount
 repeat with x = 1 to windowCount
 if x = clickedWindow then
 set the title of the activeWindow to "Active"
 else
 set the title of (getAt(the windowlist,x))
 to "Inactive"
 end if
 end repeat
end

{button See also,AL(`Lingo_activeWindow')}

actorList
Syntax: the actorList

The actorList property is a list of child objects that have been explicitly added to the list. Objects in the
actorList receive a stepFrame message each time the playback head enters a frame.

To add an object to the actorList, use add the actorList, theObject. The object's on stepFrame
handler in its parent or ancestor scripts will then be run automatically at each frame advance.

Clear objects from the actorList by setting the actorList to [], which is an empty list.

Director doesn't clear the contents of the actorList when branching to another movie, which can cause
unpredictable behavior in the new movie. To prevent child objects in the current movie from carrying over to the
new movie, insert the statement set the actorList = [] in the on prepareMovie handler of the new
movie.

Don't remove an object from the actorList in an on stepFrame handler. Doing this might cause unexpected
results.

For more information about parent scripts and child objects, see Chapter 12, "Parent Scripts and Child Objects,"
in Learning Lingo.

Example 1:

This statement adds a child object created from the parent script Moving Ball. All three values are parameters
that the script requires:

add the actorList, new(script "MovingBall", 1,¬
 200,200)

Example 2:

This statement displays the contents of the actorList in the Message window:

put the actorList

Example 3:

This statement clears the actorList:

set the actorList = []

{button See also,AL(`Lingo_abortactorList')}

add
Syntax: add linearList, value

This command adds the value specified by value to the linear list specified by linearList. For a sorted list, the
value is placed in its proper order. For an unsorted list, the value is added to the end of the list.

This command applies to linear lists only. When used on a property list, the add command gives an error.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example 1:

These statements add the value 2 to the list named bids. The resulting list is [3, 4, 1, 2]:

set bids = [3, 4, 1]
add bids, 2

Example 2:

This statement adds 2 to the sorted linear list [1, 4, 5]. The new item remains in alphanumeric order because the
list is sorted:

add bids, 2

addAt
Syntax: addAt list , position , value

This command adds a value to the list at the position specified by position. Use this command when you need to
add an item at a specific location in a list.

The addAt command works with linear lists only. Using addAt with a property list produces a script error.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement adds the value 8 to the fourth position in the list named bids, which is [3, 2, 4, 3, 6, 7]:

set bids = [3, 2, 4, 5, 6, 7]
addAt bids, 4, 8

The resulting value of bids is [3, 2, 4, 8, 5, 6, 7].

addProp
Syntax: addProp list , property , value

This command adds the property specified by property and its value specified by value to the property list
specified by list. For an unsorted list, the value is added to the end of the list. For a sorted list, the value is placed
in its proper order.

When the property already exists in the list, Lingo creates a duplicate property. You can avoid duplicate
properties by using the setaProp command to change the new entry's property.

The addProp command works with property lists only. Using addProp with a linear list produces a script error.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example 1:

This statement adds the property named kayne and its assigned value 3 to the property list named bids, which
contains [#gee: 4, #ohasi: 1]. Because the list is sorted, the new entry is placed in alphabetical order:

addProp bids, #kayne, 3

The result is the list [#gee: 4, #kayne: 3, #ohasi: 1].

Example 2:

This statement adds the entry kayne: 7 to the list named bids, which now contains [#gee: 4, #kayne: 3,
#ohasi: 1]. Because the list already contains the property kayne, Lingo creates a duplicate property:

addProp bids, #kayne, 7

The result is the list [#gee: 4, #kayne: 3, #kayne:7, #ohasi: 1].

after
 See: put...after command.

alert
Syntax: alert message

This command causes a system beep, and displays an alert dialog box containing the string specified by
message and an OK button. This command is useful for providing error messages in your movie. The message
can contain up to 255 characters.

The message must be a string. If you want to include a number variable in an alert, use the string function to
handle the variable.

Example 1:

The following statement produces an alert stating that there is no CD-ROM drive connected:

alert "There is no CD-ROM drive ¬
connected."

Example 2:

This statement produces an alert stating that a file was not found:

alert "The file" && QUOTE & filename & QUOTE ¬
 && "was not found."

{button See also,AL(`Lingo_alert')}

alertHook
Syntax: the alertHook

This system property specifies a parent script that contains the on alertHook handler. When the on
alertHook handler is in effect, the handler determines whether a projector displays alerts about file errors or
Lingo script errors.

Set the alertHook to zero to turn off the on alertHook handler's capability to handle alert statements.

Example:

The following statement specifies the parent script Alert as the script that determines whether to display alerts
when an error occurs:

on prepareMovie
set the alertHook = script "Alert"

end

{button See also,AL(`Lingo_alertHook')}

alignment of member
Syntax: the alignment of member whichCastmember

This field property determines the alignment used to display characters within the specified field cast member.

The value of the property is a string consisting of one of the following: "left," "center," or "right." The parameter
whichCastmember can be either a cast name or a cast number.

The alignment of member property can be tested and set.

The field cast member must contain characters, if only a space, to use the alignment of member property. It
has no effect on a cast member that contains no characters.

For more information about working with fields, see Chapter 7, "Working with Fields and User Input," in Learning
Lingo.

Example:

This statement sets the variable named characterAlign to the current alignment of member setting for
the field cast member Rokujo Speaks:

set characterAlign = the alignment of member "Rokujo Speaks"

This repeat loop consecutively sets the alignment of the field cast member Rove to left, center, and then right.

repeat with i = 1 to 3
 set the alignment of member "Rove" ¬
 to word i of "left center right"
end repeat

This property requires that the field cast member already contain characters, if only a space. It will not affect a
cast member that contains no characters.

{button See also,AL(`Lingo_alignment_of_member')}

ancestor
Syntax: property {optionalProperties} ancestor

The ancestor property allows child objects and behaviors to use handlers that are not contained within the
parent script or behavior.

The ancestor property is typically used with two or more parent scripts. This is useful when you want child
objects and behaviors to share certain behaviors that are inherited from an ancestor, while differing in other
behaviors that are inherited from the parents.

For the child objects, the ancestor property is usually assigned in the on new handler within the parent script.
When you send a message to a child object that does not have a defined handler, that message is forwarded to
the script defined by the ancestor property.

If a behavior has an ancestor, the ancestor receives mouse events such as mouseDown and mouseWithin.
The ancestor property can be changed "on the fly." This allows you to change behaviors and properties for a
large group of objects with a single command.

The ancestor script can contain independent property variables that can be accessed by child objects. To refer
to property variables within the ancestor script, you must use this syntax:

set propertyVariable of me to value

For example, this statement changes the property variable legCount within an ancestor script to 4:

set the legCount of me to 4

Use the syntax the variableName of scriptName to access property variables that are not contained within the
current object. This statement allows the variable myLegCount within the child object to access the property
variable legCount within the ancestor script:

set myLegCount to the legCount of me

For more information about using the ancestor property with parent scripts and child objects, see Chapter 12,
"Parent Scripts and Child Objects," in Learning Lingo.

For more information about using the ancestor property with behaviors, see Chapter 15, "Authoring Behaviors,"
in Learning Lingo.

Example:

The following scripts present an example of using the ancestor property. Each of these scripts is a cast
member. Using the ancestor script Animal and the parent scripts Dog and Man, they interact with one another to
define objects.

The first script Dog sets the property variable breed to Mutt; sets the ancestor of Dog to the Animal script;
and sets the legCount variable that is stored in the ancestor script to 4:

property breed, ancestor
on new me
 set breed = "Mutt"
 set the ancestor of me to new(script "Animal")
 set the legCount of me to 4
 return me
end new

The second script Man sets the property variable race to African, sets the ancestor of Man to the Animal
script, and sets the legCount variable that is stored in the ancestor script to 2:

property race, ancestor
on new me
 set race to "African"
 set the ancestor of me to new(script "Animal")
 set the legCount of me to 2
 return me
end new

{button See also,AL(`Lingo_ancestor')}

and
Syntax: logicalExpression1 and logicalExpression2

This logical operator determines whether two logical expressions are both TRUE. When both logicalExpression1
and logicalExpression2 are TRUE, the result is TRUE (1). When either or both expressions are FALSE, the result
is FALSE (0).

The precedence level of this logical operator is 4.

Example 1:

This statement determines whether both logical expressions are TRUE and displays the result in the Message
window:

put 1 < 2 and 2 < 3

The result is 1, which is the numerical equivalent of TRUE.

Example 2:

The first logical expression in this statement is TRUE; the second logical expression is FALSE. Because both
logical expressions are not TRUE, the logical operator gives the result 0, which is the numerical equivalent of
FALSE:

put 1 < 2 and 2 < 1
-- 0

{button See also,AL(`Lingo_and')}

append
Syntax: append list, value

This command adds the specified value to the end of a linear list. This differs from the add command, which
adds a value to a sorted list in accordance with the list's order.

The append command works with linear lists only. Using append with a property list produces a script error.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement adds the value 2 at the end of the sorted list named bids, which contains [1, 3, 4] even though
this is not according to the list's sorted order:

set bids = [1, 3, 4]
append bids, 2
The resulting value of bids is [1, 3, 4, 2].

{button See also,AL(`Lingo_append')}

applicationPath
Syntax: the applicationPath
This property determines the path or location of the folder that contains the running copy of the Director
application. The value is a string.

If you use the applicationPath followed by & and a path to a subfolder, surround the entire expression in
parentheses so that Lingo parses the expression as one phrase.

This property can be tested but not set.

Example 1:

This statement displays the pathname for the folder that contains the Director application. The result is Z:\
Program Files\Director\Movies:

put the applicationPath
--"Z:\Program Files\Director\Movies"

Example 2:

This statement opens the movie "Sunset Boulevard" as a movie in a window:

open window (the applicationPath & "Film Noir\Sunset¬ Boulevard")

atan
Syntax: atan (number)

This function calculates the arctangent, which is the angle whose tangent is the specified number. The result is a
value in radians between pi/2 and +pi/2.

 Example:

This statement gives the arctangent of 1:

atan (1)

The result, to four decimal places, is 0.7854, which is approximately pi/4.

{button See also,AL(`Lingo_atan')}

autoTab of member
Syntax: the autoTab of member whichCastmember

This field cast member property determines whether the editable field that follows the field cast member specified
by whichCastmember becomes the active field after the user presses Tab. Tabbing order depends on sprite
number order, not position on the Stage.

· When the autoTab of member is TRUE, pressing Tab makes the next editable field sprite on Stage the
active field.

· When the autoTab of member is FALSE, pressing Tab does not make the next editable field sprite on
Stage the active field.

For more information about fields, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement makes the field that follows the field cast member Comments active after the user presses Tab:

set the autoTab of member "Comments" to TRUE

backColor of cast
This Lingo element is obsolete. Use backColor of member instead.

backColor of member
Syntax: set the backColor of member whichCastmember to colorNumber

This cast member property sets the background color of the specified field cast member.

The backColor of member value depends on the color depth of the monitor. It ranges from 0 to 255 for 8-bit
color, from 0 to 15 for 4-bit color, and so on. The numbers correspond to the index number of the background
color in the current palette. (A color's index number appears in the color palette's lower left corner when you click
the color.)

Example:

This statement changes the color of the characters in cast member 1 to the color in palette entry 250.

set the backColor of member 1 to 250

backColor of sprite
Syntax: the backColor of sprite whichSprite

This sprite property determines the background color of the sprite specified by whichSprite. Setting the
backColor using a Lingo script is the same as choosing the background color from the tool palette when the
sprite is selected on the Stage. For the value set by Lingo to last beyond the current sprite, the sprite must be a
puppet.

The background color applies only to 1-bit bitmap and shape cast members. It does not affect how a field or
button cast member is displayed. An 8-bit bitmap is affected, but generally not in a useful way.

The backColor of sprite value ranges from 0 to 255 for 8-bit color, and from 0 to 15 for 4-bit color. The
numbers correspond to the index number of the background color in the current palette. (A color's index number
appears in the color palette's lower left corner when you click the color.)

The backColor of sprite property can be tested and set.

Example 1:

The following statement sets the variable oldColor to the background color of sprite 5:

put the backColor of sprite 5 into oldColor

Example 2:

The following statement randomly changes the background color of a random sprite between sprite 11 and sprite
13 to color number 36:

set the backColor of sprite (10 + random(3)) to 36

{button See also,AL(`Lingo_backColor_of_sprite')}

BACKSPACE
Syntax: BACKSPACE

This character constant represents the Backspace key. This key is marked "Backspace" in Windows and "delete"
on the Macintosh keyboard.

Example:

This on keyDown handler checks whether the Backspace key was pressed and, if it was, calls the handler
clearEntry:

on keyDown
 if the key = BACKSPACE then clearEntry
 stopEvent
end keyDown

beep
Syntax: beep {numberOfTimes }

This command causes the computer's speaker to beep the number of times specified by numberOfTimes. If
numberOfTimes is missing, the beep occurs once.

· In Windows, the beep sound is the sound assigned in the Sounds Properties dialog box.

· For the Macintosh, the beep sound is the sound selected in Alert Sounds in the Sound control panel. If the
Volumes in the Sound control panel is set to 0, the menu bar flashes instead.

Example:

This statement causes two beeps if the field Answer is empty:

if field "Answer" = EMPTY then beep 2

beepOn
Syntax: the beepOn

This property determines whether the computer beeps when the user clicks outside an active sprite-a sprite that
has a script associated with it.

If the beepOn property is set to TRUE, clicking outside active sprites results in a beep. The default value is
FALSE.

Scripts that set the beepOn property should be placed in frame or movie scripts.

The beepOn property can be tested and set.

Example 1:

This statement sets the beepOn property to TRUE:

set the beepOn to TRUE

Example 2:

This statement sets the beepOn to the opposite of its current setting:

set the beepOn to (not the beepOn)

before
See: put...before command

beginRecording
Syntax: beginRecording

This keyword starts a Score generation session. Only one update session in a movie can be active at a time.

Every beginRecording keyword must be matched by an endRecording keyword that ends the Score
generation session.

You can't start a Score recording session from within an on enterFrame handler.

For more information about Lingo that generates Score, see Chapter 13, "Authoring from Lingo," in Learning
Lingo.

Example:

When used in the following handler, the beginRecording keyword begins a Score generation session that
animates the cast member Ball by assigning the cast member to sprite channel 20 and then moving the sprite
horizontally and vertically over a series of frames. The number of frames is determined by the argument
numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set horizontal = 0
 set vertical = 300
 repeat with i = 1 to numberOfFrames
 go to frame i
 set the member of sprite 20 to ¬
 member "Ball"
 set the locH of sprite 20 to horizontal
 set the locV of sprite 20 to vertical
 set the type of sprite 20 to 1
 set the foreColor of sprite 20 to 255
 set horizontal = horizontal + 3
 set vertical = vertical + 2
 updateFrame
 end repeat
 endRecording
end

{button See also,AL(`Lingo_beginRecording')}

behavesLikeToggle of member
Syntax: the behavesLikeToggle of member whichCastmember

This button cast member property determines whether a button behaves as a push button or a toggle.

· When the behavesLikeToggle of member is TRUE, the button behaves like a toggle.

· When the behavesLikeToggle of member is FALSE, the button behaves like a push button.

This property can be tested and set.

Example:

This statement makes the button cast member Panic behave like a toggle:

set the behavesLikeToggle of member "Panic" to TRUE

{button See also,AL(`behavesLikeToggle_member')}

behavesLikeToggle of sprite
Syntax: the behavesLikeToggle of sprite whichSprite

This button sprite property determines whether a button behaves as a push button or a toggle.

· When the behavesLikeToggle of sprite is TRUE, the button behaves like a toggle.

· When the behavesLikeToggle of sprite is FALSE, the button behaves like a push button.

This property can be tested and set.

Example:

This statement makes the button sprite number 50 behave like a toggle:

set the behavesLikeToggle of sprite 50 to TRUE

{button See also,AL(`behavesLikeToggle_sprite')}

birth
This function is obsolete. Use the new function instead.

bitRate of member
Syntax: the bitRate of member whichCastmember

This sound cast member property returns the bit rate of the specified Shockwave Audio (SWA) cast member
that has been preloaded from the server. The value is in Kbps.

The bitRate of member property returns (0) until streaming has started.

Example:

This handler displays the bit rate of SWA cast member Louie Prima in the field cast member BitRate Display:

on exitFrame
if the state of member "Louie Prima" = 2 then
put the bitRate of member "Louie Prima"¬
into member "BitRate Display"

end if
end

bitsPerSample of member
Syntax: the bitsPerSample of member "whichCastmember"

This Shockwave Audio streaming cast member property indicates the bit depth of the original file that has been
SWA-encoded. This property is only available after the SWA sound is playing or after the file has been preloaded
using the preLoadBuffer command.

This property can be tested but not set.

Example:

This statement assigns the original bit rate of the file used in SWA streaming cast member Paul Robeson to the
field cast member How Deep:

put the bitsPerSample of member "Paul Robeson" into member "How Deep"

blend of sprite
Syntax: the blend of sprite whichSprite

Using this sprite property, you can set or determine the sprite's blend value. (The blend ink effect must be applied
to the sprite for this property to have any significance.) For the value set by Lingo to last beyond the current
sprite, the sprite must be a puppet.

Blend values can be from 0 to 100, which correspond to the blend values in the Sprite Properties dialog box.

The possible colors depend on the colors available in the palette, regardless of the monitor's color depth.

Example 1:

This statement sets the blend value of sprite 3 to 40 percent:

set the blend of sprite 3 to 40

Example 2:

This statement displays the blend value of sprite 3 in the Message window:

put the blend of sprite 3

border of member
Syntax: the border of member whichCastmember

This field cast member property indicates the width, in pixels, of the border around the specified field cast
member.

Example:

This statement makes the border around the field cast member Title ten pixels wide:

set the border of member "Title" to 10

bottom of sprite
Syntax: the bottom of sprite whichSprite

This sprite property is the bottom vertical coordinate of the bounding rectangle of the sprite specified by
whichSprite.

The bottom of sprite property can be tested but not set directly. Set the rect of sprite property to set
the bottom vertical coordinate of a sprite.

Example:

This statement assigns the vertical coordinate of the bottom of sprite numbered
(i + 1) to the variable named lowest:

set lowest = put the bottom of sprite (i + 1)

{button See also,AL(`Lingo_bottom_of_sprite')}

boxDropShadow of member
Syntax: the boxDropShadow of member whichCastMember

This field cast member property determines the size, in pixels, of the drop shadow for the box of the field cast
member specified by whichCastmember.

Example:

This statement makes the drop shadow of field cast member Title ten pixels wide:

set the boxDropShadow of member "Title" to 10

boxType of member
Syntax: the boxType of member whichCastmember

This field cast member property determines the type of text box used for the specified cast member. The possible
values are #adjust, #scroll, #fixed, and #limit.

Example:

This statement makes the box for field cast member Editorial a scrolling field:

set the boxType of member "Editorial" to #scroll

browserName
 Syntax: browserName pathName

or

browserName()
or

browserName(#enabled, trueOrFalse)
The browserName property determines several things, depending on the syntax used.

· The syntax browserName pathName specifies the path or location of the browser. You can use the FileIO
Xtra to display a dialog box that allows the user to search for a browser.

· The suntax browserName() returns the name of the currently specified browser.

· The syntax browserName(#enabled, trueOrFalse) determines whether the specifed browser launches
automatically when the goToNetPage command is issued. The statement browserName(#enabled,
TRUE) has the specifed browser launch automatically. The statement browserName(#enabled, FALSE)
has the specified browser not launch automatically.

This property can be tested and set.

Example 1:

This expression refers to the location of the Netscape browser:

browserName "My Disk:My Folder:Netscape"

Example 2:

This statement displays the browser name in a Message window:

put browserName()

buttonStyle
Syntax: the buttonStyle

This property determines the visual response of buttons when a user clicks a button, and then moves the pointer
over other buttons without releasing the mouse button.

The buttonStyle property can have these values:

· 0-list style: When the buttonStyle property is set to 0 (list style), subsequent buttons highlight when the
pointer passes over them. If the user releases the mouse button while the pointer is over such a button, the
script associated with that button is activated.

· 1-dialog style: When the buttonStyle property is set to 1 (dialog style), only the first button clicked
highlights. Subsequent buttons are not highlighted. If the user releases the mouse button while the pointer is
over a button other than the original button clicked, the script associated with that button is not activated.

The buttonStyle property can be tested and set. The default value is 0 (list style). You can set or test this
property in any type of script.

Example 1:

The following statement sets the buttonStyle property to 1:

set the buttonStyle to 1

Example 2:

This statement remembers the current setting of the buttonStyle property by putting the current
buttonStyle in the variable buttonStyleValue:

set buttonStyleValue to the buttonStyle

{button See also,AL(`Lingo_buttonStyle')}

buttonType
Syntax: the buttonType of member whichCastmember

This button cast member property indicates the specified button cast member's type. Possible values are
#pushButton, #checkBox, or #radioButton.

Example:

This statement makes the button cast member Editorial a check box:

set the buttonType of member "Editorial" to #checkBox

cacheDocVerify
Syntax: cacheDocVerify #setting

or

cacheDocVerify()
This function sets how often the contents of a page on the internet are refreshed with information from the cache.
Possible values are #once and #always. The default value is #once.

The form cacheDocVerify() returns the current setting of the cache.

The cacheDocVerify function is only valid for movies run in Director or as projectors. This function is not
valid for Shockwave movies because Shockwave movies use the network settings of the browser in which they
run.

Example:

on resetCache
set current=cacheDocVerify()
if current = #once then
alert "Turning cache verification on"
cacheDocVerify #always

end if
end

{button See also,AL(`Lingo_cacheDocVerify')}

cacheSize
Syntax: cacheSize Size

or

cacheSize()
This function sets Director's cache size. The value is in kilobytes.

The form cacheSize() returns the cache size setting.

The cacheSize function is valid only for movies run in Director or as projectors. This function is not valid for
Shockwave movies because Shockwave movies use the network settings of the browser in which they run.

Example:

This handler checks whether the browser's cache setting is less than 1 MB. If it is, the handler displays an alert
and sets the cache size to 1 MB:

on checkCache
if cacheSize()<1000 then
alert "Increasing cache to 1Mb"
cacheSize 1000

end if
end

{button See also,AL(`Lingo_cacheSize')}

call
Syntax: call #handlerName, script, [args...]

or

call (#handlerName, scriptInstance, [args...])

This command sends a message that invokes a handler in specified scripts.

· Replace handlerName with the name of the handler to be activated.

· Replace script with references to the script or a list of scripts.

If script is a single script instance, an error alert occurs if the handler is not defined in the script's ancestor
script.

If script is a list of script instances, the message is sent to each item in the list in turn. In this case, if the
handler is not defined in the ancestor script, no alert is generated.

· Replace args with any optional parameters to be passed to the handler.

The call command can use a variable as the name of the handler.

Messages passed using call are not passed to other scripts attached to the sprite, scripts of cast members,
frame scripts, or movie scripts.

Example 1:

This handler sends the message bumpCounter to the first behavior script attached to sprite 1:

on mouseDown me
-- get the reference to the first behavior of sprite 1
set xref = getAt (the scriptInstanceList of sprite 1,1)
-- run the bumpCounter handler in the referenced script,
-- with a parameter
call (#bumpCounter, xref, 2)

end

Example 2:

This example shows how a call statement can call handlers in a behavior or parent script and its ancestor.

· This is the parent script:

-- script Man
property tool
property ancestor
on new me
set ancestor = new(script "Animal", 2)
set tool = ""
return me

end
on run me
put "Man running with "&the legCount of me&" legs "&tool

end
on hold me, newTool
set tool = newTool

end

· This is the ancestor script:

-- script Animal
property legCount
on new me, newLegCount
set legCount = newLegCount
return me

end
on run me
put "Animal running with "& legCount &" legs"

end
on walk me
put "Animal walking with "& legCount &" legs"

end
· The following statements use the parent script and ancestor script:

This statement creates an instance of the parent script:

set m = new(script "man")

This statement makes the man walk:

call #walk, m
-- "Animal walking with 2 legs"

This statement makes the man run:

set msg = #run
call msg, m
-- "Running with 2 legs and rock"

This statement makes a second instance of the parent script:

set m2 = new(script "man")

This statement sends a message to both instances of the parent script:

call #msg, [m, m2]
-- "Man running with 2 legs "
-- "Man running with 2 legs "

{button See also,AL(`Lingo_call')}

callAncestor
Syntax: callAncestor #handlerName, script, [args...]

This command sends a message to a child object's ancestor script.

· Replace handlerName with the name of the handler to be activated.

· Replace script with references to the script or a list of scripts.

If script is a single script instance, an error alert occurs if the handler is not defined in the ancestor of the
script.

If script is a list of scripts, the message is sent to each item in the list in turn. In this case, if the handler is
not defined in the ancestor script, no alert is generated.

· Replace args with any optional parameters to be passed to the handler.

When you use callAncestor, the name of the handler can be a variable and you can explicitly bypass the
handlers in the primary script and directly access the ancestor script.

Example:

This example shows how a callAncestor statement can call handlers in the ancestor of a behavior or parent
script.

· This is the parent script:

-- script "man"
property tool
property ancestor
on new me
set ancestor = new(script "Animal", 2)
set tool = ""
return me

end
on run me
put "Man running with "&the legCount of me&" legs "&tool

end
on hold me, newTool
set tool = newTool

end
· This is the ancestor script:

-- script "animal"
property legCount
on new me, newLegCount
set legCount = newLegCount
return me

end
on run me
put "Animal running with "& legCount &" legs"

end
on walk me
put "Animal walking with "& legCount &" legs"

end
· The following statements use the parent script and ancestor script.

This statement creates an instance of the parent script:

set m = new(script "man")

This statement makes the man walk:

call #walk, m
-- "Animal walking with 2 legs"

This statement makes the man run:

set msg = #run
call msg, m
-- "Man running with 2 legs and rock"

This statement creates a second instance of the parent script:

set m2 = new(script "man")

This statement sends a message to the ancestor script for both men:

callAncestor #run,[m,m2]
-- "Animal running with 2 legs "
-- "Animal running with 2 legs "

{button See also,AL(`Lingo_call_ancestor')}

cancelIdleLoad
Syntax: cancelIdleLoad loadTag

This command cancels the loading of all cast members that have the specified load tag.

Example:

This statement cancels loading cast members that have the idle load tag 20:

cancelIdleLoad 20

{button See also,AL(`Lingo_cancelIdleLoad')}

case
Syntax: case case expression of

expression1 : Statement(s)

expression2 :

 multipleStatements

.

.

.

expression3, expression4 :

 Statement(s)

{otherwise statement(s)}

 end case
This keyword starts a multiple branching logic structure that is easier to write than repeated if...then statements.

Lingo compares the value in case expression to the expressions in the lines beneath it. The comparison starts at
the beginning and continues through each line in order until Lingo encounters an expression that matches case
expression.

When a matching expression is found, Lingo executes the corresponding statement or statements that follow the
colon after the matching expression. When only one statement follows the matching expression, the matching
expression and its corresponding statement appear on the same line. Multiple statements appear on indented
lines immediately below the matching expression.

When there is more than one possible match that causes Lingo to execute the same statements, the expressions
must be separated by commas. (The line containing expression3 and expresssion4 is an example of such a
situation.) After Lingo encounters the first match, it stops testing for additional matches.

If the optional otherwise statement is included at the end of the case structure, the statement following
otherwise is executed if there are no matches.

Example 1:

The following handler tests which key the user pressed most recently and responds accordingly:

· If the user pressed A, the movie goes to the frame labeled Apple.

· If the user pressed B or C, the movie performs the specified transition, and then goes to the frame labeled
Oranges.

· If the user pressed any other key, the computer beeps.

on keyDown
case (the key) of
"A": go to frame "Apple"
"B", "C":
puppetTransition 99
go to frame "Oranges"

otherwise beep
end case

end keyDown

Example 2:

This case statement tests whether the cursor is over sprite 1, 2, or 3 and runs the corresponding Lingo if it is:

case rollover() of
1: puppetSound "Horn"
2: puppetSound "Drum"

3: puppetSound "Bongos"
end case

cast
This is obsolete. Use member instead.

castLib
Syntax: castLib whichCast

This keyword indicates that the cast specified in whichCast is a cast.

The default cast is cast number 1. To specify a cast member in a cast other than
cast 1, set the castLib to specify the alternate cast.

Example 1:

This statement displays the number of the cast Buttons in the Message window:

put the number of castLib "Buttons"

Example 2:

This statement assigns cast member 5 in cast number 4 to sprite 10:

set the member of sprite 10 to member 5 of castLib 4

castLibNum of member
Syntax: the castLibNum of member whichCastMember

This cast member property determines the number of the cast that contains the specified cast member. This
property can be tested but not set.

Example:

This statement determines the number of the cast that cast member Jazz is
assigned to:

put the castLibNum of member "Jazz"

castLibNum of sprite
Syntax: the castLibNum of sprite whichSprite

This sprite property determines the number of the cast that contains the cast member assigned to the specified
sprite. This property can be tested and set.

If you change the castLibNum of sprite without changing the memberNum of sprite, Director uses
the cast member that has the same cast member number in the new cast. This is useful for movies that you use
as templates and update by supplying new casts. If you organize the cast contents so that each cast member
has a cast member number that corresponds to its role in the movie, Director automatically inserts the new cast
members correctly. To change the cast member assigned to a sprite regardless of its cast, set the member of
sprite property.

Example:

This statement changes the cast member assigned to sprite 5 by switching its cast to "Wednesday Schedule":

set the castLibNum of sprite 5 to the number ¬
of castLib "Wednesday Schedule"

{button See also,AL(`Lingo_castLibNum_of_sprite')}

castmembers
This is obsolete. Use number of members instead.

castNum of sprite
This sprite property is now obsolete. It was used in earlier versions of Director to identify which cast member was
assigned to a sprite. Use member of sprite or memberNum of sprite instead.

castType of cast
This is obsolete. Use type of member instead.

center of cast
This is obsolete. Use center of member instead.

center of member
Syntax: the center of member whichCastmember

This movie and digital video cast member property interacts with the crop of member cast member property. It
can be tested and set.

· When the crop of member is FALSE, the center of member has no effect.

· When the crop of member is TRUE and the center of member is TRUE, cropping occurs around
the center of the digital video cast member.

· When the crop of member is TRUE and the center of member is FALSE, the digital video's right
and bottom sides are cropped.

For more information about controlling digital video, see Chapter 7, "Controlling Sound and Digital Video," in
Learning Lingo.

Example:

This statement causes the digital video cast member Interview to be displayed in the top left corner of the sprite:

set the center of member "Interview" to FALSE

{button See also,AL(`Lingo_center_of_member')}

centerStage
Syntax: the centerStage

This property determines whether the Stage is centered on the monitor when the movie is loaded. Place the
statement that includes this property in the movie that precedes the movie you want it to affect.

· If the centerStage is TRUE, the Stage is centered.

· If the centerStage is FALSE, the Stage is not centered.

This property is useful for checking Stage location before a movie plays from a projector.

The centerStage property can be tested and set. The default value is TRUE.

Example 1:

This statement sends the movie to a specific frame if the Stage is not centered:

if the centerStage = FALSE then ¬
 go to frame "off center"

Example 2:

This statement changes the centerStage property to the opposite of its current value:

set the centerStage to (not the centerStage)

{button See also,AL(`Lingo_centerStage')}

changeArea of member
Syntax: the changeArea of member whichCastMember

This transition cast member property determines whether the transition applies to the changing area on the
Stage. It can be tested and set. Its effect is similar to selecting the Changing Area Only option in the Frame
Properties Transition dialog box.

· When the changeArea of member is TRUE, the transition applies to the changing area only.

· When the changeArea of member is FALSE, the transition applies to the entire Stage.

Example:

This statement makes the transition cast member Wave apply only to the changing area on the Stage:

set the changeArea of member "Wave" to TRUE

channelCount of member
Syntax: the channelCount of member whichCastmember

This sound cast member property determines the number of channels in the specified cast member. This is
useful for determining whether a sound is in mono or stereo. This property can be tested but not set.

Example:

This statement determines how many channels are in the sound cast member Jazz:

put the channelCount of member "Jazz"

char...of
Syntax: char whichCharacter of chunkExpression

char firstCharacter to lastCharacter of chunkExpression

This chunk expression keyword identifies a character or a range of characters in a chunk expression. A chunk
expression is any character, word, item, or line in any source of text (such as field cast members and variables)
that holds a string.

· An expression using whichCharacter identifies a specific character.

· An expression using firstCharacter and lastCharacter identifies a range of characters.

The expressions must be integers that specify a character or range of characters in the chunk. Characters
include letters, numbers, punctuation marks, spaces, and control characters like TAB and RETURN.

You can test but not set the char...of keyword.

Example 1:

This statement displays the first character of the string $9.00:

put char 1 of "$9.00"
-- "$"

Example 2:

This statement displays the entire string $9.00:

put char 1 to 5 of "$9.00"
-- "$9.00"

Example 3:

This statement changes the first five characters of the second word of the third line of a field cast member:

set char 1 to 5 of word 2 of line 3 ¬
 of member "quiz" to "?????"

{button See also,AL(`Lingo_char_of')}

charPosToLoc
Syntax: charPosToLoc(member whichCastMember, nthCharacter)

This function gives the point in the specified field cast member that is closest to the character specified by
nthCharacter. This is useful for determining the location of individual characters.

Values for charPosToLoc are in pixels from the top left corner of the field cast member. The nthCharacter
parameter is 1 for the first character in the field, 2 for the second character, and so on. The point is the point in
the entire field cast member, not the part of the field cast member that appears on the Stage.

Example:

The following statement determines the point where the fiftieth character in the field cast member Headline
appears and assigns the result to the variable location:

set location to charPosToLoc(member "Headline", 50)

chars
Syntax: chars(stringExpression , firstCharacter , lastCharacter)

This function identifies a substring of characters in stringExpression. The substring starts at firstCharacter and
ends at lastCharacter. The expressions firstCharacter and lastCharacter must specify a position in the string.

If firstCharacter and lastCharacter are equal, then a single character is returned from the string. If lastCharacter
is greater than the string length, only a substring up to the length of the string is identified. If lastCharacter is
before firstCharacter, the function gives the value EMPTY.

Example 1:

This statement identifies the sixth character in the word Macromedia:

put chars("Macromedia", 6, 6)
-- "m"

Example 2:

This statement identifies the sixth through tenth characters of the word Macromedia:

put chars("Macromedia", 6, 10)
-- "media"

Example 3:

This statement attempts to identify the sixth through twentieth characters of the word Macromedia. Because the
word has only ten characters, the result includes only the sixth to tenth characters.

put chars ("Macromedia", 6, 20)
-- "media"

{button See also,AL(`Lingo_chars')}

charToNum
Syntax: charToNum(stringExpression)

This function returns the ASCII code number that corresponds to the first character of stringExpression.

The charToNum function is especially useful for testing the ASCII value of characters created by combining keys
such as the Control key and one other alphanumeric key.

A problem can arise when testing characters. Director treats upper- and lower-case letters the same if you
compare them using the equal sign (=) operator.

For example, the statement put ("M" = "m") gives the result 1 or TRUE.

Avoid problems by using charToNum to return the ASCII code for a character and then use the ASCII code to
refer to the character.

For a demonstration of the charToNum function, see the sample movie Keyboard Lingo

Example 1:

This statement displays the ASCII code number for the letter A:

put charToNum("A")
-- 65

Example 2:

This statement checks whether 0 is the ASCII code number of the character assigned to the variable nextChar:

if charToNum(nextChar) = 0 then foundNUL

{button See also,AL(`Lingo_charToNum')}

checkBoxAccess
Syntax: the checkBoxAccess

This property determines what happens when the user clicks a check box or radio button created with button
tools in the Tools window. There are three possible results:

0-Lets the user set check boxes and radio buttons on and off.

1-Lets the user set check boxes and radio buttons on but not off.

2-Prevents the user from setting check boxes and radio buttons at all; the buttons can only be set by scripts.

The default value is 0.

The checkBoxAccess property can be tested and set.

Example 1:

This statement sets the checkBoxAccess property to 1, which lets the user click check boxes and radio buttons
on but not off:

set the checkBoxAccess to 1

Example 2:

This statement records the current setting of the checkBoxAccess property by putting the value in the variable
oldAccess:

set oldAccess to the checkBoxAccess

{button See also,AL(`Lingo_checkBoxAccess')}

checkBoxType
Syntax: the checkBoxType

This system property determines what is inserted in check boxes to indicate whether they are selected. There
are three possible styles:

0-Creates a standard check box that contains an "x" when the check box is selected. This is the default.

1- Creates a check box that contains a black rectangle when the check box is selected.

2- Creates a check box that contains a filled black rectangle when the check box is selected.

The default value is 0.

The checkBoxType property can be tested and set.

Example:

This statement sets the checkBoxType property to 1, which creates a black rectangle in check boxes when the
user clicks them.

set the checkBoxType to 1

{button See also,AL(`Lingo_checkBoxType')}

checkMark of menuItem
Syntax: the checkMark of menuItem whichItem of menu whichMenu

This menu item property determines whether the specified custom menu item is displayed with a checkmark.

· When it is TRUE, a checkmark appears next to the custom menu item.

· When it is FALSE, no checkmark appears.

The default value is FALSE.

The whichItem expression can be either a menu item name or a menu item number. The whichMenu expression
can be either a menu name or a menu number.

The checkMark of menuItem property can be tested and set.

Example:

This handler unchecks any items that are checked in the custom menu specified by the argument theMenu. For
example, unCheck ("Format") unchecks all the items in the Format menu:

on unCheck theMenu
 put the number of menuItems of menu theMenu into n
 repeat with i = 1 to n
 set the checkMark of menuItem i of menu ¬
 theMenu to FALSE
 end repeat
end unCheck

{button See also,AL(`Lingo_checkMark_of_menuItem')}

chunkSize of member
Syntax: the chunkSize of member whichCastMember

This transition cast member property, which determines the transition's chunk size, does the same as setting the
smoothness slider in the Frame Properties: Transition dialog box.

This property can be tested and set.

Values are the number of pixels in each chunk of the transition and can be any value from 1 to 128 pixels.

Example:

This statement sets the chunk size of the transition cast member Fog to 4 pixels:

set the chunkSize of member "Fog" to 4

clearCache
Syntax: clearCache

This command clears Director's network cache.

The clearCache command is valid only for movies that play in Director or as projectors. This command isn't
valid for Shockwave movies because Shockwave movies use the network settings of the browser in which they
run.

If a file is in use, it isn't cleared from the cache.

Example:

This handler clears the cache when the mouse button is released:

on mouseUp
clearCache

end

{button See also,AL(`Lingo_clearCache')}

clearFrame
Syntax: clearFrame

This command erases everything already in the current frame's sprite and effects channels. It works during
Score recording only.

For more information about generating Score from Lingo, see Chapter 12, "Authoring from Lingo," In Learning
Lingo.

Example:

The following handler clears the content of each frame before it edits that frame during Score generation:

on newScore
beginRecording

repeat with counter = 1 to 50
clearFrame
set the frameScript to 25
updateFrame

end repeat
endRecording

end
{button See also,AL(`Lingo_clearFrame')}

clearGlobals
Syntax: clearGlobals

This command sets all global variables to VOID.

This can be useful when initializing global variables or when opening a new movie that requires a new set of
global variables.

Example:

This statement sets all global variables to VOID:

clearGlobals

clickLoc
Syntax: the clickLoc

This function identifies the last place on the screen where the mouse was clicked. The location is given as a
point.

For more information about detecting what the user clicks, see Chapter 7, "Working with Fields and User Input,"
In Learning Lingo.

Example:

The following on mouseDown handler displays the last mouse click location:

on mouseDown
 put the clickLoc
end mouseDown

If the click were 50 pixels from the left end of the Stage and 100 pixels from the top of the Stage, the Message
window would display the following:

-- point(50, 100)

clickOn
Syntax: the clickOn

This function returns the last active sprite clicked by the user. An active sprite is a sprite that has a sprite or cast
member script associated with it.

When the user clicks the Stage, the clickOn equals 0. To detect whether the user clicks a sprite with no
script, you must assign a placeholder script to it ("--" for example) so that it can be detected by the clickOn
function.

The clickOn function can be checked within a repeat loop. However, neither
the clickOn nor the clickLoc functions change value when the handler is running. The value that you
obtain is the value from before the handler started.

For more information about detecting what the user clicks, see Chapter 7, "Working with Fields and User Input,"
In Learning Lingo.

Example 1:

This statement checks whether sprite 7 was the last active sprite clicked:

if the clickOn = 7 then alert "Sorry, try again."

Example 2:

This statement sets the foreColor of the last active sprite that was clicked to a random color:

set the foreColor of sprite (the clickOn) to ¬
 random(255)-1

{button See also,AL(`Lingo_clickOn')}

close window
Syntax: close window windowIdentifier

This command closes the window specified by windowIdentifier.

· To specify a window by name, use the syntax close window name, where you replace name with the
name of a window. Use the complete pathname.

· To specify a window by its number in the windowList, use the syntax close window number, where you
replace number with the window's number in
the windowList.

Lingo allows you to attempt to close a window that is already closed.

For more information about using a movie in a window, see Chapter 10, "Movies in a Window," In Learning
Lingo.

Example 1:

This statement closes the window named Panel, which is in the subfolder MIAW Sources within the current
movie's folder:

close window "@/MIAW Sources/Panel"

Example 2:

This statement closes the window that is number 5 in the windowList:

close window 5

{button See also,AL(`Lingo_close_window')}

closeDA
This Lingo element is obsolete.

closeResFile
Syntax: closeResFile [whichFile]

This command, which closes the resource file on the Macintosh, is now obsolete.

{button See also,AL(`Lingo_closeResFile')}

closeXlib
Syntax: closeXlib [whichFile]

This command closes the Xlibrary file specified by the string whichFile. If the Xlibrary file is in a folder other than
the current movie, whichFile must specify a pathname. If no file is specified, all open Xlibraries are closed.

Xtras and XObjects are stored in Xlibrary files. Xlibrary files are resource files that contain XCOD (XObjects)
resources. HyperCard XCMDs and XFCNs can also be stored in Xlibrary files.

The closeXlib command doesn't work for URLs.

In Windows, using the DLL extension for XObjects is optional.

It is good practice to close any file you have opened as soon as you are finished using it.

Example 1:

This statement closes all open Xlibrary files:

closeXlib

Example 2:

This statement closes the Xlibrary Video Disc Xlibrary when it is in the same folder as the movie:

closeXlib "Video Disc Xlibrary"

Example 3:

This statement closes the Xlibrary Transporter Xtras in the folder New Xtras on the same disk as the movie. The
disk is identified by the variable currentDrive:

closeXlib currentDrive & ¬
 ":New Xtras:Transporter Xtras"

{button See also,AL(`Lingo_closeXlib')}

colorDepth
Syntax: the colorDepth

This property determines the color depth of the computer's monitor.

· In Windows, using this property lets you check the monitor's color depth. Setting the colorDepth takes
effect only if the change can be made without restarting the computer. Always verify that the color depth
actually changed after attempting to set it.

· On the Macintosh, using this property lets you check the color depth of different monitors and change it
when appropriate.

Possible values are the following:

1 Black-and-white

2 4 colors

4 16 colors

8 256 colors

16 32,768 colors

32 16,777,216 colors

If you try to set a monitor's color depth to a value that is impossible for the monitor, the monitor's color depth
doesn't change.

On computers with more than one monitor, the colorDepth property refers to the monitor that the Stage is on.
If the Stage spans more than one monitor, the colorDepth indicates the greatest depth of those monitors;
setting the colorDepth attempts to put all those monitors to the specified depth.

The colorDepth property can be tested and set. On the Macintosh, the default value is the value set in the
Monitors control panel.

Example 1:

This statement makes playing the segment "Full color" dependent on whether the monitor color depth is set to
256 colors:

if the colorDepth = 8 then play movie "Full color"

Example 2:

This handler attempts to change the color depths. If the change is not successful, an alert appears.

on tryToSetColorDepth desiredDepth
 set the colorDepth = desiredDepth
 if the colorDepth = desiredDepth then
 return TRUE
 else
 alert "Please change your system to " ¬
 && desiredDepth && " color depth and reboot."
 return false
 end if
end tryToSetColorDepth

When changing the user's color depth, it is good practice to restore the original depth when the movie is finished.

On Windows, the command set the colorDepth = 0 restores the user's preferred settings from the control
panel.

{button See also,AL(`Lingo_colorDepth')}

colorQD
Syntax: the colorQD

This function is now obsolete. It was used in earlier versions of Director to indicate whether the Color QuickDraw
software was available on a Macintosh. Computers that are currently supported always give TRUE for the
colorQD.

To determine whether a computer is black and white, test the colorDepth instead.

{button See also,AL(`Lingo_colorQD')}

commandDown
Syntax: the commandDown

This function determines whether the Command key is being pressed on the Macintosh or the Control key is
being pressed in Windows.

· The commandDown function is TRUE when the Command key is being pressed on the Macintosh or the
Control key is being pressed in Windows.

· The commandDown function is FALSE when the Command key is not being pressed on the Macintosh or the
Control key is not being pressed in Windows.

You can use the commandDown together with the element the key to determine when the Macintosh
Command key or the Windows Control key is pressed in combination with another key. This lets you create
handlers that are executed when the user presses specified Command-key or Control-key combinations.

Note that Command-key and Control-key equivalents for Director's authoring menus take precedence while
playing the movie, unless you have installed custom Lingo menus or are playing a projector version of the movie.

For a demonstration of modifier keys in Lingo, see the sample movie Keyboard Lingo.

Example:

These statements pause a projector whenever the user presses Command-A on the Macintosh or Control-A in
Windows. By setting the keyDownScript property to doCommandKey, the on prepareMovie handler makes
the doCommandKey handler the first event handler executed when a key is pressed. The doCommandKey
handler checks whether the Command or Control and P keys are pressed at the same time and pauses the
movie if they are:

on prepareMovie
 set the keyDownScript to "doCommandKey"
end prepareMovie
on doCommandKey
 if (the commandDown) and (the key = "a") then go to the frame
end

{button See also,AL(`Lingo_commandDown')}

constrainH
Syntax: constrainH (whichSprite , integerExpression)

This function evaluates integerExpression, and then gives a value that depends on the horizontal coordinates of
the left and right edges of whichSprite.

· When the value is between the left and right coordinates, the value doesn't change.

· When the value is less than the left horizontal coordinate, the value is changed to the value of the left
coordinate.

· When the value is greater than the right horizontal coordinate, the value is changed to the value of the right
coordinate.

The constrainH and constrainV functions constrain only one axis each; the constraint of sprite
property limits both. Note that this function does not change the sprite's properties.

For more information about manipulating sprites on Stage, see Chapter 6, "Manipulating Sprites," in Learning
Lingo.

Example 1:

These statements check the constrainH function for sprite 1 when it has left and right coordinates of 40 and
60:

put constrainH(1, 20)
-- 40
put constrainH(1, 55)
-- 55
put constrainH(1, 100)
-- 60

Example 2:

This statement constrains a moveable slider (sprite 1) to the edges of a gauge (sprite 2) when the mouse pointer
goes past the edge of the gauge:

set the locH of sprite 1 to constrainH(2, the mouseH)

{button See also,AL(`Lingo_constrainH')}

constraint of sprite
Syntax: the constraint of sprite whichSprite

This sprite property determines the constraints on the position of the sprite specified by whichSprite. When the
constraint of sprite property is turned on, the sprite specified by whichSprite is constrained to the
bounding rectangle of another sprite.

The constraint of sprite property affects moveable sprites, and the locH and locV sprite properties. The
constraint point of a moveable sprite cannot be moved outside the bounding rectangle of the constraining sprite.
(The constraint point for a bitmap sprite is the registration point. The constraint point for a shape sprite is its top
left corner.) When a sprite has a constraint set, the constraint limits override any locH and locV sprite property
settings.

To remove a constraint of sprite property, set it to 0:

set the constraint of sprite whichSprite to 0

The constraint of sprite property can be tested and set. The default value is 0.

The constraint of sprite property is useful for constraining a moveable sprite to the bounding rectangle of
another sprite. This is a way to simulate a "track" for a slider control or restrict where on the screen a user can
drag an object in a game.

For more information about manipulating sprites on Stage, see Chapter 6, "Manipulating Sprites," in Learning
Lingo.

Example 1:

This statement constrains sprite (i + 1) to the boundary of sprite 14.

set the constraint of sprite (i + 1) to 14

Example 2:

This statement checks whether sprite 3 is constrained and activates the handler showConstraint if it is. (The
operator <> performs the same operation as "not equal to.")

if the constraint of sprite 3 <> 0 then ¬
 showConstraint

{button See also,AL(`Lingo_constraint_of_sprite')}

constrainV
Syntax: constrainV (whichSprite , integerExpression)

This function evaluates integerExpression, and then gives a value that depends on the vertical coordinates of the
top and bottom edges of the sprite specified by whichSprite.

· When the value is between the top and bottom coordinates, the value doesn't change.

· When the value is less than the top coordinate, the value is changed to the value of the top coordinate.

· When the value is greater than the bottom coordinate, the value is changed to the value of the bottom
coordinate.

Note that this function does not change the sprite properties.

For more information about manipulating sprites on Stage, see Chapter 6, "Manipulating Sprites," in Learning
Lingo.

Example 1:

These statements check the constrainV function for sprite 1 when it has top and bottom coordinates of 40 and
60:

put constrainV(1, 20)
-- 40
put constrainV(1, 55)
-- 55
put constrainV(1, 100)
-- 60

Example 2:

This statement constrains a moveable slider (sprite 1) to the edges of a gauge (sprite 2) when the mouse pointer
goes past the edge of the gauge:

set the locV of sprite 1 to ¬
 constrainV(2, the mouseV)

{button See also,AL(`Lingo_constrainV')}

contains
Syntax: stringExpression1 contains stringExpression2

This operator compares two strings.

· When stringExpression1 contains stringExpression2, the condition is TRUE (1).

· When stringExpression1 does not contain stringExpression2, the condition is FALSE (0).

The contains comparison operator has a precedence level of 1.

The contains comparison operator is useful for checking whether the user types a specific character or string
of characters. You can also use the contains operator to search one or more fields for specific strings of
characters.

For more information about manipulating fields, see Chapter 7, "Working with Fields and User Input" in Learning
Lingo.

Example:

This statement determines whether a string contains the character contained in aLetter before converting the
string using the value() function:

on isNumber aLetter
 put "1234567890." into digits
 if digits contains aLetter then
 return TRUE
 else
 return FALSE
 end if
end isNumber

Note: The string comparison is not sensitive to case or diacritical marks; "a" and "" are treated the same.

{button See also,AL(`Lingo_contains')}

continue
Syntax: continue

The continue command was used in earlier versions of Director to resume playing the movie after a pause. It is
no longer recommended. Use go to the frame +1 instead.

For more information about how to pause and continue a movie, see Chapter 3, "Navigation," in Learning Lingo.

controlDown
Syntax: the controlDown

This function determines whether the Control key on a Macintosh or the Control key on a Windows computer is
being pressed.

· The controlDown function is TRUE when the Control key is being pressed.

· The controlDown function is FALSE when the Control key is not being pressed.

You can use the controlDown function together with the key to check for combinations of the Control key and
another key.

For a demonstration of modifier keys and Lingo, see the sample movie Keyboard Lingo.

Example:

This on keyDown handler checks whether the key that is pressed is the Control key and activates the on
doControlKey handler if it is. The argument (the key) identifies which key was pressed in addition to the
Control key.

on keyDown
 if the controlDown then doControlKey (the key)
end

{button See also,AL(`Lingo_controlDown')}

controller of cast
This is obsolete. Use controller of member instead.

controller of member
Syntax: the controller of member castName

This property determines whether a digital video movie cast member shows or hides its controller. Setting this
property to 1 shows the controller; setting it to 0 hides the controller.

The controller of member property applies to QuickTime and QuickTime for Windows digital video only.

· Setting the controller of member for a Video for Windows digital video performs no operation and
generates no error message.

· Checking the controller of member property for a Video for Windows digital video always returns
FALSE.

The digital video must be in directToStage playback mode in order to display the controller.

For more information about controlling digital video, see Chapter 8, "Controlling Sound and Digital Video," in
Learning Lingo.

Example:

This statement causes the QuickTime cast member to Demo show its controller:

set the controller of member "Demo" to 1

{button See also,AL(`Lingo_controller_of_member')}

copyrightInfo of member
Syntax: copyrightInfo of member "whichCastmember"

This property is the copyright text in a Shockwave Audio (SWA) file. This property is available only after the SWA
sound is playing or after the file has been preloaded using the preLoadBuffer command.

This property can be tested. In SoundEdit16, version 2.0.4 or higher, this property can be set.

Example:

This statement has Director display the copyright information of the Shockwave Audio file SWAfile in a field cast
member named Info Display:

set whatState = the state of member "SWAfile"
if whatState > 1 AND whatState < 9 then

put the copyrightInfo of member "SWAfile" into ¬
member "Info Display"

end if

copyToClipBoard
Syntax: copyToClipBoard member whichCastmember

This command copies the specified cast member to the Clipboard. You can use this command to copy cast
members between movies or applications. The Cast window does not need to be the active window when you
use the copyToClipBoard command.

This is best used during authoring and not in projectors. Use in projectors can cause memory problems.

Example 1:

This statement copies the cast member named chair to the Clipboard:

copyToClipBoard member "chair"

Example 2:

This statement copies cast member number 5 to the Clipboard:

copyToClipBoard member 5

{button See also,AL(`Lingo_copyToClipBoard')}

cos
Syntax: cos (angle)

This function calculates the cosine of the specified angle. The angle must be expressed in radians.

Example:

The following statement calculates the cosine of pi divided by 2 and displays it in the Message window:

put cos (pi() /2)

{button See also,AL(`Lingo_cos')}

count
Syntax: count (list)

count(theObject)
This function returns the number of entries in a list or the number of properties in a parent script. When counting
properties in a parent script, it doesn't count properties in an ancestor script.

The count command works with linear and property lists.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement displays the number 3, the number of entries:

put count ([10, 20, 30])
-- 3

cpuHogTicks
Syntax: the cpuHogTicks

This global property controls how often Director releases control of the CPU to allow the computer to process
background events such as events in other applications, network events, clock updates, and other keyboard
events. Its default setting is 20 ticks.

To give more time to Director, set cpuHogTicks to a higher value, so that there is more time between releasing
the CPU to background events. This can be useful for controlling how the computer responds to network
operations.

Another possible use is in a movie that has the user hold down a key to generate a rapid sequence of auto-
repeating key presses. Director typically checks for auto-repeating key presses less frequently than the rate set
in the computer's Control Panel. You can create faster auto-repeating key performance by setting cpuHogTicks
to a lower value. However, this can slow down animation.

The cpuHogTicks property works only on the Macintosh.

Example:

This statement has Director release control of the CPU every 6 ticks, which is
one-tenth of a second:

set the cpuHogTicks = 6

crop of cast
This is obsolete. Use crop of member instead.

crop of member
Syntax: the crop of member whichCastmember

This cast member property affects how the digital video cast member is displayed inside a sprite when the digital
movie is larger than the sprite that it appears in. It can be tested and set.

· When the crop of member property is FALSE, the cast member is scaled-either stretched or shrunk-to fit
inside the sprite rectangle.

· When the crop of member property is TRUE, the cast member is not scaled. It is cropped to fit inside the
sprite rectangle.

For more information about controlling digital video, see Chapter 8, "Controlling Sound and Digital Video," in
Learning Lingo.

Example:

This statement instructs Lingo to crop any sprite that refers to the digital video cast member Interview:

set the crop of member "Interview" to TRUE

{button See also,AL(`Lingo_crop_of_member')}

cuePointNames of member
Syntax: the cuePointNames of member whichCastmember

This property provides a list of cue point names. If a cue point is not named, an empty string ("") is inserted as a
placeholder in the list.

This property is supported by sound cast members created in SoundEdit, QuickTime digital video cast members,
and Xtras cast members that contain cue points. The list of cue point names may not be available for Xtras that
generate cue points at runtime.

Cue point names are useful for synchronizing sound, QuickTime, and animation. For more information about
synchronizing media, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement obtains the name of the third cue point of a cast member:

put (getAt(the cuePointNames of member "symphony"), 3)

{button See also,AL(`Lingo_cuePointNames')}

cuePointTimes of member
Syntax: the cuePointTimes of member whichCastmember

This property provides a list of the times of the cue points, in milliseconds, of a given cast member.

This property is supported by sound cast members created in SoundEdit, QuickTime digital video cast members,
and Xtras cast members that support cue points. This list of cue points may not be available for Xtras that
generate cue points at runtime.

Cue point times are useful for synchronizing sound, QuickTime, and animation. For more information about
synchronizing media, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement obtains the time of the third cue point of a sound cast member:

put getAt(the cuePointTimes of member "symphony"), 3)

{button See also,AL(`Lingo_cuePointTimes')}

currentSpriteNum
Syntax: the currentSpriteNum

This property indicates the number of the sprite where the current event occurred.

The currentSpriteNum property is similar to spriteNum of me, but it doesn't require the me reference. It is
useful in cast member, frame, and movie scripts for identifying which sprite was involved in an event. (Cast
member, frame, and movie scripts have no way to determine which sprite is involved in an event because they
have no access to the sprite's me variable.)

For example, if a script of a cast member includes an on mouseDown handler, the script can use the
currentSpriteNum to determine whether the on mouseDown event was passed to the sprite level either
because there was no on mouseDown event handler in the sprite scripts, or because the event was passed.

This property can be tested and set.

Example:

The following handler in a cast member or movie script switches the cast member assigned to the sprite involved
in the mouseDown event:

on mouseDown
set the member of sprite the currentSpriteNum = ¬
member "DownPict"

end

{button See also,AL(`Lingo_currentSpriteNum')}

currentTime
Syntax: the currentTime

This property returns the current playing time of a sound sprite, QuickTime digital video sprite, or any Xtra that
supports cue points. The time is in milliseconds.

Shockwave Audio (SWA) sounds can appear as sprites in sprite channels, but they play sound in a sound
channel. It is recommended that you refer to SWA sound sprites by their sprite channel number rather than their
sound channel number.

Example:

This statement shows the current time, in seconds, of the sound sprite in sprite
channel 10:

set the text of member "time" to (the currentTime of sprite 10) / 1000

{button See also,AL(`Lingo_currentTime')}

cursor
Syntax: cursor [castNumber , maskCastNumber]

or

cursor whichCursor

This command changes the cast member that is used for a cursor. The cursor command stays in effect until
you turn it off by setting the cursor to zero.

Use the syntax cursor [castNumber , maskCastNumber] to specify the number of a cast member to use as
a cursor and its optional mask. The hot spot of the cursor is the registration point of the cast member.

The cast member that you specify must be a 1-bit cast member. If the cast member is larger than 16 x 16
pixels, Director crops it to a 16 x 16 square, starting in the upper left corner of the image. The bitmap's
registration point is the cursor's hot spot.

Use the syntax cursor whichCursor to use the default cursors that are supplied by the system. The term
whichCursor must be an integer that specifies the appearance of the cursor. The following values specify
cursors:

· 0 no cursor set
· -1 arrow (pointer) cursor
· 1 I-beam cursor
· 2 crosshair cursor
· 3 crossbar cursor
· 4 watch cursor (Macintosh only)
· 200 blank cursor

To hide the cursor, set the cursor to 200 (a blank cursor).

During system events such as loading a file, the operating system may display the watch cursor, and then
change to the pointer cursor when returning control to the application. This overrides the cursor command
settings from the previous movie. Therefore, in a presentation using a custom cursor for multiple movies, store
any special cursor resource number as a global variable. Global Lingo variables remain in memory between
movies. This allows you to use the cursor command at the beginning of any new movie that is loaded.

Cursor commands can be interrupted by an Xtra or other external agent. If the cursor is set to a value in Director
and something else takes control of the cursor, resetting the cursor to the original value has no effect because
Director doesn't perceive that the cursor changed. You can work around this by explicitly setting the cursor to a
third value and then resetting it to the original value.

For more information about custom cursors, see Chapter 9, "Creating User Interfaces," in Learning Lingo.

Notes:

· In Windows, a cursor can't be a resource; it must be a cast member. If a cursor isn't available in Windows
because it hasn't been converted from a resource to a cast member, Lingo uses the standard arrow cursor
instead. It is recommended that you don't make custom cursors resources when you create movies that you
intend to play on both Macintosh and Windows computers.

· Be sure not to confuse cursor 1 with cursor [1]. The first selects the I-beam from the system cursor
set; the second uses cast member 1 as the custom cursor.

Example:

On the Macintosh, this statement changes the cursor to a watch cursor whenever the value in the variable
named status equals 1:

if status = 1 then cursor 4

This handler checks whether the cast member assigned to the variable is a 1-bit cast member and then uses it
as the cursor if it is:

on myCursor someMember
if the depth of member someMember = 1

then cursor[someMember]
else

beep
end if

end
{button See also,AL(`Lingo_cursor')}

cursor of sprite
Syntax: the cursor of sprite whichSprite to [castNumber, maskCastNumber]

the cursor of sprite whichSprite to whichCursor

On the Macintosh, this sprite property determines the cursor resource that is used when the pointer is over the
sprite specified by the integer expression whichSprite. The cursor of sprite property stays in effect until
you turn it off by setting the cursor to 0.

When you set the cursor of sprite in a given frame, Director keeps track of the sprite rectangle to
determine whether to alter the cursor. This rectangle persists when the movie enters another frame unless you
set the cursor of sprite property for that channel to 0.

Note: In Windows, a cursor can't be a resource; it must be a cast member. If a cursor isn't available in Windows
because it hasn't been converted from a resource to a cast member, Lingo uses the standard arrow cursor
instead. It is recommended that you don't make custom cursors resources when you create movies that you
intend to play on both Macintosh and Windows computers.

The cursor of sprite property is an integer that specifies the resource ID number of the cursor. The
following cursors are always available:

 0 no cursor set; uses system default

 -1 arrow (pointer) cursor

 1 I-beam cursor

 2 crosshair cursor

 3 crossbar cursor

 4 watch cursor

200 blank cursor

To hide the cursor, set the cursor to 200 (a blank cursor resource).

To use custom cursors, set the cursor of sprite property to a list that contains the cast member to use as
the cursor or the number that specifies a system cursor.

The cursor of sprite property is useful for changing the cursor when the mouse pointer is over specific
regions of the screen. You can use this to indicate regions where certain actions are possible when the user
clicks.

If the sprite is a bitmap that has Matte ink applied, the cursor changes only when the cursor is over the matted
portion of the sprite.

When the cursor is over the location of a sprite that has been removed, the rollover still occurs. Avoid this
problem by not performing rollovers over these locations or by relocating the sprite up above the menu bar
before deleting it.

On the Macintosh, you can use a numbered cursor resource in the current open movie file as the cursor by
replacing whichCursor with the number of the cursor resource.

The cursor of sprite property can be tested and set.

For more information about custom cursors, see Chapter 9, "Creating User Interfaces," in Learning Lingo.

Example:

This statement changes the cursor that appears over sprite 20 to a watch cursor:

set the cursor of sprite 20 to 4

{button See also,AL(`Lingo_cursor_of_sprite')}

date
Syntax: the abbr date

the abbrev date
the abbreviated date
the date
the long date
the short date

This function gives the current date in the system clock in one of three formats: abbreviated, long, or short.
If no format is specified, the default is short. The abbreviated format can also be referred to as abbrev and
abbr.

The format Director uses for the date varies, depending on how the date is formatted on the computer.

· In Windows, you can customize the date display by using the International Control Panel. (Windows stores
the current short date format in the SYSTEM.INI file. Use this value to determine what the parts of the short
date indicate.)

· On the Macintosh, you can customize the date display by using the Date and Time control panel.

Example 1:

This statement gives the abbreviated date:

put the abbreviated date
-- "Sat, Sep 7, 1991"

Example 2:

This statement gives the long date:

put the long date
-- "Saturday, September 7, 1991"

Example 3:

This statement gives the short date:

put the short date
-- "9/7/91"

Example 4:

This statement tests whether the current date is January 1 by checking whether the first four characters of the
date are 1/1. If it is January 1, the alert "Happy New Year!" appears:

if char 1 to 4 of the date = "1/1/" ¬
 then alert "Happy New Year!"

Note: The three date formats vary, depending on the country for which your operating system was designed.
These examples are for the United States.

{button See also,AL(`Lingo_date')}

delay
Syntax: delay numberOfTicks

This command makes the playback head stand still for a given amount of time. The integer expression
numberOfTicks specifies the number of ticks to wait. The only mouse and keyboard activity possible during this
time is to stop the movie by pressing Control+Alt+Period.

The delay command can be applied only when the playback head is moving. However, when delay is in effect,
handlers can still run. Place scripts using the delay command in either an on enterFrame or on exitFrame
handler.

To mimic the behavior of a halt in a handler when the playback head is not moving, use the startTimer
command or assign the current value of the timer to a variable and wait for an amount of time to pass before
exiting the frame. (An example is shown in the following set.)

Because it increases the time of individual frames, the delay command is useful for controlling the playback rate
of a sequence of frames.

Example 1:

This handler delays the movie for 2 seconds when the playback head exits the current frame:

on exitFrame
delay 2 * 60

end exitFrame

Example 2:

This handler, which can be placed in a frame script, delays the movie a random number of ticks:

on keyDown
 if the key = RETURN then delay random(180)
end keyDown

Example 3:

The first of these handlers sets a timer when the playback head leaves a frame. The second handler, assigned to
the next frame, loops in the frame until the specifed amount of time passes:

--script for first frame
on exitFrame
 global gTimer
 set gTimer = the ticks
end
--script for second frame
on exitFrame
 global gTimer
 if the ticks < gTimer + (10 * 60) then
 go to the frame
 end if
end

Note: The delay command does not function when the playback head is not moving.

{button See also,AL(`Lingo_delay')}

delete
Syntax: delete chunkExpression

This command deletes the specified chunk expression (character, word, item, or line) in any string container.
Sources of strings include field cast members and variables that hold strings.

Example 1:

This statement deletes the first word of line 3 in the field cast member Address:

delete word 1 of line 3 of member "Address"

Example 2:

This statement deletes the first character of the string in the variable bidAmount, if that character is the dollar
sign ($).

if char 1 of bidAmount = "$" then delete char 1 ¬
 of bidAmount

{button See also,AL(`Lingo_delete')}

deleteAll
Syntax: deleteAll list

This command deletes all items in the specified list.

The empty list keeps the same type. A linear list remains a linear list; a property list remains a property list.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement deletes every item in the list named propList:

deleteAll propList

deleteAt
Syntax: deleteAt list , number

This command deletes the item in the position specified by number from the list specified by list. The value
number is the item's position in the order of the list.

If you try to delete an object that isn't in the list, Director displays an alert. You can avoid this by first checking
whether the item is in the list.

The deleteAt command works with linear and property lists.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement deletes the second item from the list named designers, which contains ["gee", "kayne", "ohashi"]:

set designers = ["gee", "kayne", "ohashi"]
deleteAt designers, 2

The result is the list ["gee", "ohashi"].

This handler checks whether an object is in a list before attempting to delete it:

on myDeleteAt theList, theIndex
 if count(theList) < theIndex then
 beep
 else
 deleteAt theList, theIndex
 end if
end

{button See also,AL(`Lingo_deleteAt')}

deleteFrame
Syntax: deleteFrame

This command deletes the current frame. After the current frame is deleted, the next frame becomes the new
current frame.

The deleteFrame command works during a Score generation session only.

For more information about generating Score from Lingo, see Chapter 13, "Authoring from Lingo" in Learning
Lingo.

Example:

The following handler checks whether the sprite in channel 10 of the current frame has gone past the right edge
of a 640 x 480 Stage and deletes the frame if it has:

on testSprite
beginRecording

 if the locH of sprite 10 > 640 ¬

 then deleteFrame
 endRecording
end
{button See also,AL(`Lingo_deleteFrame')}

deleteOne
Syntax: deleteOne list, value

This command deletes a value from a linear or property list. If the value appears in the list more than once,
deleteOne deletes only the first occurrence.

When the list is a property list, the property associated with the deleted value is also removed from the list.

Attempting to delete a property has no effect.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

The first statement creates a list consisting of the days Tuesday, Wednesday, and Friday. The second statement
deletes the name Wednesday from the list.

set days = ["Tuesday", "Wednesday", "Friday"]
deleteOne days, "Wednesday"
put days
-- ["Tuesday", "Friday"]
The put days statement causes the Message window to display the result, which is: ["Tuesday",
"Friday"].

deleteProp
Syntax: deleteProp list, item

This command deletes the specified item from the specified list.

· For linear lists, replace item with a number for the list position of the item to delete. The deleteProp
command for linear lists is the same as the deleteAt command. If the number is greater than the number
of items in the list, a script error occurs.

· For property lists, replace item with the name of the property to delete. Deleting a property deletes its
associated value also. If the list has more than one of the same property, only the first property in the list is
deleted.

For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement deletes the property color from the list [#height:100, #width: 200, #color: 34, #ink: 15], which is
called spriteAttributes:

deleteProp spriteAttributes, #color

The result is the list [#height:100, #width: 200, #ink: 15].

{button See also,AL(`Lingo_deleteProp')}

depth of cast
This is obsolete. Use depth of member instead.

depth of member
Syntax: the depth of member whichCastmember

This cast member property gives the color depth of the bitmap cast member specified by whichCastmember.
Black and white is 1-bit color depth; 256 colors is 8-bit color depth; thousands of colors is 16-bit color depth; and
millions of colors is 32-bit color depth.

This property can be tested but not set.

Example:

This statement determines the color depth of the cast member Shrine:

put the depth of member "Shrine"

deskTopRectList
Syntax: the deskTopRectList

This system property indicates the size of the computer's monitors and their position in the desktop. It is useful
for checking whether objects such as windows, sprites, and pop-ups appear entirely on one screen.

The result is a list of standard rect coordinates, where each rect is the boundary of a monitor. The coordinates for
each monitor are relative to the upper left corner of monitor 1, which has the value (0,0). The first set of rect
coordinates is the size of the first monitor. If a second monitor is present, a second set of coordinates show
where the corners of the second monitor are relative to the first monitor.

This property can be tested but not set.

Example 1:

This statement tests the size of the monitors connected to the computer and displays the result in the Message
window:

put the deskTopRectList
-- [rect(0,0,1024,768), rect(1025, 0, 1665, 480]

The result shows that the first monitor is 1024 x 768 pixels and the second monitor is 640 x 480 pixels.

Example 2:

This handler tells how many monitors are in the current system:

on countMonitors
 return count(deskTopRectList)
end

digitalVideo
See : center of member, controller of member, crop of member, directToStage of member,

duration of member, frameRate of member, loop of member, pausedAtStart of
member, preload of member, sound of member, trackStartTime(member),
trackStopTime(member), video of member, volume of member cast member
properties; movieRate of sprite and movieTime of sprite properties

digitalVideoTimeScale
Syntax: the digitalVideoTimeScale

This system property determines the time scale the system uses to track digital video cast members.

The time scale is a measurement in units per second. For example, if
the digitalVideoTimeScale is set to:

· 100 - The time scale is 1/100th of a second (and the movie is tracked in 100 units per second);

· 500 - The time scale is 1/500th of a second (and the movie is tracked in 500 units per second);

· 0 - Director uses the time scale of the movie that is currently playing.

Setting the digitalVideoTimeScale lets you precisely access tracks by making sure that the system's time
unit for video is a multiple of the digital video's time unit.

This property can be tested and set.

Example:

This statement sets the time scale the system uses to measure digital video to 600 units per second:

set the digitalVideoTimeScale to 600

digitalVideoType of member
Syntax: the digitalVideoType of member whichCastmember

This digital video cast member property indicates the format of the specified digital video. This property can be
tested but not set. Possible values are #quickTime or #videoForWindows.

For more information about controlling digital video, see Chapter 8, "Controlling Sound and Digital Video," in
Learning Lingo.

Example:

The following statement tests whether the cast member Today's Events is a QuickTime or AVI digital video and
displays the result in the Message window:

put the digitalVideoType of member "Today's Events"

directToStage of member
Syntax: the directToStage of member castName

This property determines whether a digital video cast member plays in front of all other layers on the Stage.

· When this property is set to 1, a digital video plays in front of all other layers.

· When this property is set to 0, a digital video can appear in any layer of the Stage's animation planes. (For
QuickTime digital video in Windows, the directToStage of member property is always TRUE. Setting
the directToStage of member to FALSE has no effect in Windows.)

No other cast member can appear in front of a directToStage digital video. Also, ink effects do not affect the
appearance of a directToStage digital video.

Using this property may improve the playback performance of a digital video movie cast member.

When a digital video's directToStage property is TRUE, Director writes the digital video directly to the screen
without first being composited in Director's offscreen buffer. The result can be similar to the trails ink effect of the
Stage.

Explicitly refresh a trailed area by turning the directToStage property off and on, using a full-screen transition,
or "wiping" another sprite across this area. (In Windows, you can jump to another similar screen and the video
doesn't completely disappear.)

Example:

This statement makes the QuickTime movie "The Residents" always play in the top layer of the Stage:

set the directToStage of member "The Residents" to 1

do
Syntax: do stringExpression

This command evaluates stringExpression and executes the result as a Lingo statement. This command is useful
for evaluating expressions that the user has typed, and for executing commands stored in string variables, fields,
arrays, and files.

Using uninitialized local variables within a do command creates a compile error. Initialize any local variables in
advance.

Note: This command does not allow global variables to be declared; these variables must be declared in
advance.

Example:

This command performs the statement contained within quotation marks:

do "beep 2"
do getAt(commandList, 3)

dontPassEvent
This command is obsolete. Use stopEvent instead.

doubleClick
Syntax: the doubleClick

This function lets Director treat two mouse clicks within the time set for a
double-click as a double-click rather than two single clicks.

If Lingo doesn't call this function, Director treats two such clicks as two single clicks. However, when Lingo calls
this function, it tests whether two clicks have occurred within the time set for a double click:

· If the last two mouse clicks occurred within the time span for a double-click, the doubleClick function
returns TRUE.

· If the last two mouse clicks didn't occur within the time span for a double-click, the doubleClick function
returns FALSE.

For more information about determining what the user does with the mouse, see Chapter 7, "Working with Fields
and User Input," in Learning Lingo.

Example 1:

This statement sends the playback head to the frame Enter Bid when the user double-clicks the mouse button.

if the doubleClick then go to frame "Enter Bid"

Example 2:

The following handler tests whether a double-click occurs. When the user clicks the mouse, a repeat loop runs
for the time set for a double-click (20 ticks in this case). If a second click occurs within the 20 ticks, the
doubleClickAction handler runs. If a second click doesn't occur, the singleClickAction handler runs:

on mouseUp
if the doubleClick then exit
startTimer
repeat while the timer < 20
if the mouseDown then
doubleClickAction
exit

end if
end repeat
singleClickAction

end mouseUp

{button See also,AL(`Lingo_doubleClick')}

downloadNetThing
 Syntax: downloadNetThing URL, localFile

This command downloads a file from the internet to a local disk so it can be used later without a download delay.

· URL is the file name of any object that can be downloaded, for example, an ftp or HTTP server, an HTML
page, an external cast member, a Director movie, a graphic.

· localFile is the pathname and file name for the file on the local disk.

The current movie continues playing while downloadNetThing loads the file to a local disk. Use netDone to
find out whether downloading is finished.

Director movies in authoring mode and projectors support the downLoadNetThing command, but this
command isn't available in the Shockwave player. This protects users from having files copied from the internet
to their disk unintentionally.

Although many network operations can be active at a time, running more than four concurrent operations usually
slows down performance unacceptably.

Neither the Director movie's cache size nor the setting for the Check Documents option affects the behavior of
the downloadNetThing command.

Example:

These statements download an external cast from a URL to the folder that Director is in, and then makes that file
the external cast named Cast of Thousands:

downLoadNetThing("http://www.cbDeMille.com/Thousands.cst",¬
the applicationPath&"Thousands.Cst")
set the fileName of castLib "Cast of Thousands" = ¬
the applicationPath&"Thousands.Cst"

{button See also,AL(`Lingo_downLoadNetThing')}

drawRect of window
Syntax: the drawRect of window windowName

This window property identifies the rectangular coordinates of the section of the movie that appears in the
movie's window. The coordinates are given as a rect, with entries in the order left, top, right, and bottom.

This can be useful for scaling or panning movies. However, text in strings doesn't rescale when this property is
changed. Rescaling bitmaps can also impact performance.

The drawRect of window property can be tested and set.

Example 1:

This statement displays the current coordinates of the movie window called Control Panel.

put the drawRect of window "Control Panel"
-- rect(10, 20, 200, 300).

Example 2:

This statement sets the rect of the movie to the values of the rect movieRectangle. The portion of the movie
within the rect is the part of the movie that appears in the window:

set the drawRect of window "Control Panel" ¬
 to movieRectangle

{button See also,AL(`Lingo_drawRect_of_window')}

dropShadow of member
Syntax: the dropShadow of member whichCastMember

This field cast member property determines the size of the drop shadow for text in a field cast member. Possible
values are a range of pixels.

For more information about determining what the user does with the mouse, see Chapter 7, "Working with Fields
and User Input," in Learning Lingo.

Example:

This statement sets the drop shadow of the field cast member Comment to five pixels:

set the dropShadow of member "Comment" to 5

duplicate(list)
Syntax: duplicate(oldList)

or

set <x> = duplicate(oldList)
This function returns a copy of a list. It is useful for saving the current content of a list for later use. Nested lists
(list items that are themselves lists) are copied as lists, with all their content duplicated.

When you assign a list to a variable, the variable contains a reference to the list, not the list itself. You can make
an independent copy of the list by using the following structure:

set newList = value(string(oldList))
For more information about lists, see Chapter 10, "Lists," in Learning Lingo.

Example:

This statement makes a copy of the list CustomersToday and assigns it to the variable CustomerRecord:

put duplicate(CustomersToday) into CustomerRecord

duplicate cast
This is obsolete. Use duplicate member instead.

duplicate member
Syntax: duplicate member original [, new]

This command makes a copy of the cast member specified by original. The optional new parameter specifies a
specific Cast window location for the duplicate cast member. If the new parameter isn't included, the duplicate
cast member is placed in the first open Cast window position.

This command is best used during authoring because it essentially creates another cast member in memory.
This could result in memory problems.

Example 1:

This statement makes a copy of cast member Desk and places it in the first empty Cast window position:

duplicate member "Desk"

Example 2:

This statement makes a copy of cast member Desk and places it in Cast window position 125:

duplicate member "Desk", member 125

duplicateFrame
Syntax: duplicateFrame

This command duplicates the current frame and its content. The duplicate frame is inserted after the current
frame and then becomes the current frame. This command can be used during Score generation only.

The duplicateFrame command performs the same function as the insertFrame command.

For more information about generating Score from Lingo, see Chapter 13, "Authoring from Lingo," in Learning
Lingo.

Example:

When used in the following handler, the duplicateFrame command creates a series of frames that have cast
member Ball in the external cast Toys assigned to sprite channel 20. The number of frames is determined by the
argument numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set the memberNum of sprite 20 to ¬
 the number of member "Ball" of castLib "Toys"
 repeat with i = 0 to numberOfFrames
 duplicateFrame
 end repeat
 endRecording
end

duration of cast
This is obsolete. Use duration of member instead.

duration of member
Syntax: the duration of member whichCastmember

This property determines the duration of the specified Shockwave Audio (SWA) cast member.

· When whichCastmember is a streaming sound file, this is the duration of the sound. The duration property
returns 0 until streaming has started. Setting the preLoadTime to 1 second allows the bit rate to return
the actual duration.

· When whichCastmember is a digital video cast member, this property indicates the digital video's duration.
The value is in ticks.

· When whichCastmember is a transition cast member, this property indicates the transition's duration. The
value for the transition is in milliseconds. During playback, this setting has the same effect as the Duration
setting in the Frame:Transition dialog box.

This property can be tested but not set.

Example 1:

If the SWA cast member Louie Prima has been preloaded, this statement displays the sound's duration in the
field cast member Duration Displayer:

on exitFrame
if the state of member "Louie Prima" = 2 then
put the duration of member "Louie Prima"¬
into member "Duration Displayer"

end if
end

Example 2:

This statement sets the duration of the transition cast member Fog to 1 second:

set the duration of member "Fog" = 60

{button See also,AL(`Lingo_duration_of_member')}

editable of member
Syntax: the editable of member whichCastmember

This field cast member property determines whether the specified field cast member is editable on Stage.

· When the editable of member is TRUE, the specified field cast member is editable.

· When the editable of member is FALSE, the specified field cast member isn't editable.

Example:

This statement makes the field cast member Answer editable:

set the editable of member "Answer" = TRUE

editable of sprite
Syntax: the editable of sprite whichSprite

This sprite property indicates whether a field sprite is editable.

· When the field can be edited by the user, the editable of sprite property is TRUE.

· When the field cannot be edited by the user, the editable of sprite property is FALSE.

For the value set by Lingo to last beyond the current sprite, the sprite must be a puppet.

Use editable of sprite property to change whether a field can be edited as the movie plays. This lets you
turn editable on and off, depending on current conditions in the movie.

You can also make a field cast member editable by using the Editable option in the Field Cast Member
Properties dialog box.

You can make a field sprite editable by using the Editable option in the Score.

The editable of sprite property can be tested and set.

For more information about handling several editable fields in a movie, see Learning Lingo.

Example 1:

This handler first makes the sprite channel a puppet and then makes the field sprite editable:

on myNotes
puppetSprite 5, TRUE
set the editable of sprite 5 to TRUE

end

Example 2:

This statement checks whether a field sprite is editable and displays a message if it is:

if the editable of sprite 13 = TRUE ¬
then set the text of member "Notice"¬
to "Please enter your answer below."

EMPTY
Syntax: EMPTY

This character constant represents the empty string, "", a string with no characters.

Example:

This statement erases all characters in the field cast member Notice by setting the field to EMPTY:

set the text of member "Notice" to EMPTY

emulateMultiButtonMouse
Syntax: the emulateMultiButtonMouse

This system property determines whether a movie interprets clicking the mouse button with the Control key
pressed on the Macintosh the same as clicking the right mouse button in Windows. Because the Macintosh has
no right mouse button, Lingo that responds to right mouse button clicks has no direct Macintosh equivalent.

· When emulateMultiButtonMouse is TRUE, the movie treats clicking the mouse button while the Control
key is pressed on the Macintosh the same as clicking the right mouse button on a Windows computer.

· When the emulateMultiButtonMouse is FALSE, the movie doesn't treat clicking the mouse button
while the Control key is pressed on the Macintosh the same as clicking the right mouse button on a
Windows computer.

Setting this property to TRUE lets you provide consistent mouse button responses for cross-platform movies.

For more information about responding to the keyboard and mouse, see Chapter 7, "Working with User Input," in
Learning Lingo.

Example:

The following statement checks whether the movie is playing on a Windows computer and sets the
emulateMultiButtonMouse property to TRUE if it is:

if the machineType = 256 then set ¬
the emulateMultiButtonMouse to TRUE

{button See also,AL(`Lingo_emulateMultiButtonMouse')}

enabled of member
Syntax: the enabled of member whichMember

This property determines the default state for buttons created with the button editor.

· Disable the button by setting enabled of member to zero or FALSE.

· Enable the button by setting enabled of member to non-zero or TRUE.

When getting this property, a disabled button returns FALSE and an enabled button returns TRUE.

Example:

This statement causes all subsequent sprites created from this cast member to be initially disabled.

set the enabled of member 2 to FALSE

enabled of menuItem
Syntax: the enabled of menuItem whichItem of menu whichMenu

This menu item property determines whether the menu item specified by whichItem is displayed in plain text or
dimmed, and whether it is selectable. The term whichMenu specifies the menu that contains the menu item.

· If the enabled of menuItem is TRUE, the menu item appears in plain text and is selectable.

· If the enabled of menuItem is FALSE, the menu item appears dimmed and is not selectable.

The expression whichItem can be either a menu item name or a menu item number. The expression whichMenu
can be either a menu name or a menu number.

Although some Lingo for formatting custom menus works on the Macintosh only, the enabled of menuItem
works on both Windows and Macintosh computers.

The enabled property can be tested and set. The default value is TRUE.

For more information about custom menus, see Chapter 9, "Creating User Interfaces," in Learning Lingo.

Example:

This handler enables or disables all the items in the specified menu. The argument theMenu specifies the menu;
the argument Setting specifies TRUE or FALSE. For example, the calling statement ableMenu ("Special",
FALSE) disables all the items in the Special menu.

on ableMenu theMenu, vSetting
 set n = the number of menuItems of menu theMenu
 repeat with i = 1 to n
 set the enabled of menuItem i of menu theMenu ¬
 to vSetting
 end repeat
end ableMenu

{button See also,AL(`Lingo_enabled_of_menuItem')}

enabled of sprite
Syntax: the enabled of sprite whichSprite

This button sprite property enables or disables a button sprite.

· Disable the button by setting enabled of sprite to zero or FALSE.

· Enable the button by setting enabled of sprite to non-zero or TRUE.

 Getting this property returns TRUE for enabled sprites and FALSE for disabled sprites.

Note: This property does not affect existing sprites.

Example:

This statement disables the button in sprite 4:

set the enabled of sprite 4 to FALSE

end
This keyword marks the end of handlers, methods, and multiline control structures.

{button See also,AL(`Lingo_end')}

end case
Syntax: end case

This keyword ends a case statement.

Example:

This handler uses the end case keyword to end the case statement:

on keyDown
 case the key
 of "A": go to frame "Apple"
 of "B", "C" :
 puppetTransition 99
 go to frame "Mango"
 otherwise beep
 end case
end keyDown

{button See also,AL(`Lingo_end_case')}

end repeat
See repeat while

repeat with
repeat with...in list
repeat with...down to

endRecording
Syntax: endRecording

This keyword ends a Score update session.

You can resume control of Score channels through puppetting after the endRecording keyword is issued.

Example:

When used in the following handler, the endRecording keyword ends the Score generation session:

on animBall numberOfFrames
beginRecording
set the memberNum of sprite 20 to ¬
the number of member "Ball"
set horizontal = 0
set vertical = 300
repeat with i = 0 to numberOfFrames
set the locH of sprite 20 to horizontal
set the locV of sprite 20 to vertical
set horizontal = horizontal + 3
set vertical = vertical + 2
updateFrame
end repeat

endRecording
end

{button See also,AL(`Lingo_endRecording')}

ENTER
Syntax: ENTER

This character constant represents the Enter key.

· This key is marked as "enter" on the Macintosh keyboard.

· Although PC keyboards also label the key that enters a carriage return as Enter, the element ENTER only
refers to the Enter key on the number pad. In Windows, use RETURN to represent the key that enters a
carriage return.

Example:

This statement checks whether the Enter key is pressed and sends the playback head to the frame addSum if it
is:

on keyDown
 if the key = ENTER then go to frame "addSum"
end

enterFrame
 See: on enterFrame event handler.

erase cast
This is obsolete. Use erase member instead.

erase member
Syntax: erase member whichCastmember

This command deletes the specified cast member and leaves its slot in the Cast window empty.

Example 1:

This statement deletes the cast member named Gear in the cast Hardware:

erase member "Gear" of castLib "Hardware"

Example 2:

This handler deletes cast members start through finish:

on deleteMember start, finish
 repeat with i = start to finish
 erase member i
 end repeat
end on deleteMember

{button See also,AL(`Lingo_erase_member')}

EvalScript
See: on EvalScript event handler

exit
Syntax: exit

This keyword instructs Lingo to leave a handler and return to the place from where the handler was called. When
the handler is nested within another handler, Lingo returns to the main handler.

Example:

The first statement of this script checks whether the monitor is set to black and white, and exits if it is:

on setColors
 if the colorDepth = 1 then exit
 set the foreColor of sprite 1 to 35
end setColors

{button See also,AL(`Lingo_exit')}

exit repeat
Syntax: exit repeat

This keyword instructs Lingo to leave a repeat loop and go to the statement following the end repeat
statement, but remain within the current handler or method.

The exit repeat keyword is useful for breaking out of a repeat loop when a specified condition-such as two
values being equal or a variable being a certain value-exists.

Example:

This handler searches for the position of the first vowel in a string represented by the variable testString. As
soon as the first vowel is found, the exit repeat command instructs Lingo to leave the repeat loop and go to
the statement return i:

on findVowel testString
 repeat with i = 1 to the number of chars ¬
 in testString
 if "aeiou" contains ¬
 char I of testString then exit repeat
 end repeat
 return i
end findVowel

{button See also,AL(`Lingo_exit_repeat')}

exitLock
Syntax: the exitLock

This property determines whether the user can quit to the Desktop from projectors.

· When the exitLock is FALSE, the user can quit to the desktop by pressing Control+period, Control+Q or
Control+W.

· When the exitLock is TRUE, the user cannot quit to the desktop by pressing Control+period, Control+Q
or Control+w.

The exitLock property can be tested and set. The default value is FALSE.

Example 1:

This statement sets the exitLock property to TRUE:

set the exitLock to TRUE

Example 2:

This handler checks whether Control+period , Control+Q, or Control+W was pressed and whether the exitLock
property is set so that the user cannot exit to the Desktop. When this is the case, the playback head goes to the
frame "quit sequence," which can provide an alternative way to exit the movie:

on checkExit
 if the commandDown and ¬
 (the key = "." or the key = "q") and ¬
 the exitLock = TRUE then go to frame "quit sequence"
end checkExit

exp
Syntax: exp(integerOrFloat)

This function calculates e, the natural logarithm base, to the power specified by integerOrFloat.

Example:

The following statement calculates the value of e to the exponent 5:

put exp(5)
-- 148.4132

externalEvent
Syntax: externalEvent "string"

This command sends the browser a string that the browser can interpret as a scripting language instruction. This
allows a movie playing on the internet to communicate with the browser in which it is embedded.

Supported scripting languages vary for different browsers. To be used by a specific browser, the string sent by
externalEvent must be in a language supported by the browser.

The externalEvent command does not produce a return value. There is no immediate way to determine if the
browser handled the event or ignored it. Use on EvalScript within the browser to return a message to the
movie.

Example 1:

These statements use externalEvent in the LiveConnect scripting environment, which is supported by
Netscape 3.x.

LiveConnect evaluates the string passed by externalEvent as a function call. JavaScript authors must define
and name this function in the HTML header. In the movie, the function name and parameters are defined as a
string in externalEvent. Because the parameters must be interpreted by the browser as separate strings,
each parameter is surrounded by single quotes.

Statements within HTML:

function MyFunction(parm1, parm2) {
//script here

}

Statements within a script in the movie :

externalEvent ("MyFunction('parm1','parm2')")

Example 2:

These statements use externalEvent in the ActiveX scripting environment.

ActiveX treats externalEvent as an event, and processes this event and its string parameter the same as an
onClick event in a button object.

Statements within HTML:

In the HTML header, define a function to catch the event. This example is in VBScript:

Sub NameOfShockwaveInstance_externalEvent(aParam)
'script here

End Sub

Alternatively, rather than defining a function, you can define a script for the event:

<SCRIPT FOR="NameOfShockwaveInstance"
EVENT="externalEvent(aParam)" LANGUAGE="VBScript">
'script here

</SCRIPT>

Statements within a script in the movie:

Within the movie, include the function and any parameters as part of the string for externalEvent:

externalEvent ("MyFunction ('parm1','parm2')")

externalParamCount
Syntax: externalParamCount()

This function returns the number of parameters an HTML EMBED or OBJECT tag is passing to a Shockwave
movie.

This function is only valid for Shockwave movies that are running in a browser. It doesn't work for movies during
authoring or projectors.

Example:

This handler determines whether an OBJECT or EMBED tag is passing any external parameters to a Shockwave
movie and runs Lingo statements if they are:

if externalParamCount() > 0 then
-- perform some action

end if

externalParamName
Syntax: externalParamName(n)

This function returns the name of a specific parameter in the list of external parameters from an HTML EMBED
or OBJECT tag.

· If n is an integer, externalParamName returns the nth parameter name in
the list.

· If n is a string, externalParamName returns n if any of the external parameter names matches n. The
match is not case-sensitive. If no matching parameter name is found, externalParamName returns VOID.

This function is only valid for Shockwave movies that are running in a browser. It cannot be used with Director
movies or projectors.

Example:

This statement puts the value of a given external parameter into the variable myVariable:

if externalParamName(swURL) then
set myVariable to externalParamValue(swURL)

end if

externalParamValue
Syntax: externalParamValue(n)

This function returns a specific value from the external parameter list in an HTML EMBED or OBJECT tag.

· If n is an integer, externalParamValue returns the nth parameter value from the external parameter list.

· If n is a string, externalParamValue returns the value associated with the first name that matches n.
The match isn't case-sensitive. If no such parameter value exists, externalParamValue returns VOID.

This function is only valid for Shockwave movies that are running in a browser. It can't be used with movies
running inside Director or projectors.

Example:

This statement puts the value of an external parameter into the variable myVariable:

if externalParamName(swURL) then
set myVariable to externalParamValue(swURL)

end if

factory
This Lingo is now outdated.

FALSE
Syntax: FALSE

This logical constant applies to an expression that is logically FALSE, such as 2 > 3. When treated as a number
value, FALSE has the numerical value of 0.

Example:

This statement turns off the soundEnabled property by setting it to FALSE:

set the soundEnabled to FALSE

{button See also,AL(`Lingo_FALSE')}

field
Syntax: field whichField

This keyword refers to the field cast member specified by whichField.

· When whichField is a string, it is used as the cast member name.

· When whichField is an integer, it is used as the cast member number.

Character strings can be read from or put into the field. You can also use chunk expressions with fields.

The term field was used in earlier versions of Director and is maintained for backward compatibility. For new
movies, use member to refer to field cast members.

Example 1:

This statement puts the characters 5 through 10 of the field name entry into the variable myKeyword:

put char 5 to 10 of field "entry" into myKeyword

Example 2:

This statement checks whether the user entered the word desk and goes to the frame deskBid if he or she did:

if field "bid" contains "desk" then go to "deskBid"

{button See also,AL(`Lingo_field')}

fileName of cast
This is obsolete. Use fileName of member instead.

fileName of castLib
Syntax: the fileName of castLib whichCast

This property gives the file name of the specified cast.

· For an external cast, the fileName of castLib gives the cast's full pathname and file name.

· For an internal cast, the fileName of castLib depends on which internal cast is specified. For the first
internal cast library, the fileName of castLib is the name of the movie. For remaining internal casts,
the fileName of castLib is an empty string.

The fileName of castLib property accepts URLs as references. However, to use a cast from the internet,
use the downloadNetThing command to download the cast's file to a local disk first, and then set the
fileName of castLib to the file on the disk. This minimizes problems with waiting for the cast to download.

If a movie sets the file name of an external cast, don't use the Duplicate Cast Members for Faster Loading option
in the Projector Options dialog box.

This property can be tested and set for external casts. It can only be tested for internal casts.

Example 1:

This statement displays the pathname and file name of the external cast Buttons in the Message window:

 put the fileName of castLib "Buttons"

Example 2:

This statement sets the file name of the external cast Buttons to Content.cst:

set the fileName of castLib "Buttons" to ¬
the pathName&"Content.cst"

The movie then uses the external cast file Content.cst as the cast Buttons.

Example 3:

These statements download an external cast from a URL to the same folder that Director is in, and then makes
that file the external cast named Cast of Thousands:

downLoadNetThing("http://www.cbDeMille.com/Thousands.cst",¬
the applicationPath&"Thousands.Cst")
set the fileName of castLib "Cast of Thousands" = ¬
the applicationPath&"Thousands.Cst"

{button See also,AL(`Lingo_fileName_of_castLib')}

fileName of member
Syntax: the fileName of member whichCastmember

This cast member property refers to the name of the file assigned to the linked cast member specified by
whichCast member. This is useful for switching which external linked file is assigned to a cast member while the
movie plays, similar to the way you can switch cast members. When the linked file is in a different folder than the
movie, you must include the file's pathname.

The fileName of member property accepts URLs as a reference. However, to use a file from a URL, use the
downloadNetThing command to download the file to a local disk first, and then set the fileName of
member to the file on the local disk. This minimizes problems with waiting for the file to download.

The fileName of member property can be tested and set. After the file name is set, Director uses that file the
next time the cast member is used.

For more information about using the fileName of member to assign content to cast members, see Chapter
13, "Authoring from Lingo," in Learning Lingo.

Example:

This statement makes the QuickTime movie "ChairAnimation" the linked file assigned to cast member 40:

set the fileName of member 40 = "ChairAnimation"

These statements download an external file from a URL to the same folder that Director is in, and then makes
that file the media for the sound cast member Norma Desmond Speaks:

downLoadNetThing("http://www.cbDeMille.com/Talkies.AIF",¬
the applicationPath&"Talkies.AIF")
set the fileName of member "Norma Desmond Speaks" = ¬
the applicationPath&"Talkies.AIF"

{button See also,AL(`fileName_of_member')}

fileName of window
Syntax: the fileName of window whichWindow

This window property refers to the file name of the movie assigned to the window specified by whichWindow.
When the linked file is in a different folder than the movie, you must include the file's pathname.

You assign a movie to a window by setting the fileName of window for the window to the movie's file name.
This is required before you can play the movie in the window.

The fileName of window property accepts URLs as a reference. However, to use a movie file from a URL,
use the downloadNetThing command to download the movie file to a local disk first, and then set the
fileName of window to the file on the local disk. This minimizes problems with waiting for the file to
download.

The fileName of window property can be tested and set.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example 1:

This statement assigns the file named Control Panel to the window named Tool Box:

set the fileName of window "Tool Box" = ¬
 "Control Panel"

Example 2:

This statement displays the file name of the file assigned to the window named Navigator:

put the fileName of window "Navigator"

Example 3:

These statements download a movie file from a URL to the same folder that Director is in, and then assign that
file to the window My Close Up:

downLoadNetThing("http://www.cbDeMille.com/Finale.DIR",¬
the applicationPath&"Finale.DIR")
set the fileName of window "My Close Up" = ¬
the applicationPath&"Finale.DIR"

filled of member
Syntax: the filled of member whichCastmember

This shape cast member property indicates whether the specified cast member is filled with a pattern.

· When the filled of member is TRUE, the shape is filled with a pattern.

· When the filled of member is FALSE, the shape isn't filled with a pattern.

Example:

The following statements make the shape cast member Target Area a filled shape and assigns it the pattern
numbered 0, which is a solid color:

set the filled of member "Target Area" = TRUE
set the pattern of member "Target Area" = 0

{button See also,AL(`Lingo_filled_of_member')}

findEmpty
Syntax: findEmpty(member whichCastmember)

This function gives the next empty cast member position or the position after the cast member specified by
whichCastmember. This function works on the current cast only.

Example:

This statement finds the first empty cast member on or after cast member 100.

put findEmpty(member 100)

findPos
Syntax: findPos(list, property)

This command identifies which position the property specified by property holds in the property list specified by
list.

The findPos command works with property lists only. If you try to use findPos with linear lists, findPos
returns a bogus number if the value of prop is a number and a script error if the value of prop is a string.

The findPos command performs the same function as the findPosNear command, except that the result of
the findPos command is VOID when the specified property is not in the list.

Example:

This statement identifies the position of the property c in the list Answers, which consists of [#a:10, #b:12, #c:15,
#d:22]:

findPos(Answers, #c)

The result is 3, because c is the third property in the list.

{button See also,AL(`Lingo_findPos')}

findPosNear
Syntax: findPosNear(sortedList , valueOrProperty)

This command identifies which position the item specified by valueOrProperty holds in the specified sorted list.

The findPosNear command works with sorted lists only.

· For sorted linear lists, replace valueOrProperty with a value.

· For sorted property lists, replace valueOrProperty with a property.

The findPosNear command is similar to the findPos command, except that when the specified property is not
in the list, the findPosNear command identifies the position of the value that has the most similar alphanumeric
name. This would be useful in finding the closest name in a sorted directory of names.

Example:

This statement identifies the position of a property in the sorted list Answers, which consists of [#Nile:2,
#Pharaoh:4, #Raja:0]:

findPosNear(Answers, #Ni)

The result is 1, because Ni is closest to Nile, the first property in the list.

{button See also,AL(`Lingo_findPosNear')}

finishIdleLoad
Syntax: finishIdleLoad loadTag

This command completes loading for all the cast members that have the specified
load tag.

Example:

 This statement completes the loading of all cast members that have the load tag 20:

finishIdleLoad 20

fixStageSize
Syntax: the fixStageSize

This property determines whether the Stage size remains the same when you load a new movie, regardless of
the Stage size saved with that movie. When the fixStageSize property is TRUE, the Stage size remains the
same when you load a new movie.

The fixStageSize property cannot change the Stage size for a movie that is currently playing. This property is
primarily used for movies played back with the player.

The fixStageSize property can be tested and set. The default value is TRUE.

Example:

This statement determines if the fixStageSize property is turned on and sends the playback head to a
specified frame if it is.

if the fixStageSize = FALSE then ¬
 go to frame "proper size"

This statement sets the fixStageSize property to the opposite of its current setting:

set the fixStageSize to (not the fixStageSize)

{button See also,AL(`Lingo_fixStageSize')}

float
Syntax: float (expression)

This function converts an expression to a floating-point number. The number of digits that follow the decimal
point is set using the floatPrecision property.

Example:

This statement converts the integer 1 to floating-point 1.

put float(1)
-- 1.0

{button See also,AL(`Lingo_float')}

floatP
Syntax: floatP(expression)

This function indicates whether the value specified by expression is a floating-point number.

· The floatP function is TRUE (1) if expression is a floating-point number.

· The floatP function is FALSE (0) if expression is not a floating-point number.

The "P" in floatP stands for "predicate."

Example:

This statement tests whether 3.0 is a floating-point number. The Message window displays the number 1,
indicating that it is TRUE:

put floatP(3.0)
-- 1

This statement tests whether 3 is a floating-point number. The Message window displays the number 0,
indicating that it is FALSE:

put floatP(3)
-- 0

{button See also,AL(`Lingo_floatP')}

floatPrecision
Syntax: the floatPrecision

This system property rounds off the display of floating-point numbers to the number of decimal places specified.
The value of floatPrecision must be an integer. The maximum is 15 significant digits.

The floatPrecision property determines only the number of digits used to display floating-point numbers.
The number of digits used to perform calculations doesn't change.

· If the floatPrecision is a number from 1 to 15, floating-point numbers display that number of digits
after the decimal point. Trailing zeros remain.

· If the floatPrecision is zero, floating-point numbers are rounded to the nearest integer. No decimal
points appear.

· If the floatPrecision is a negative number, floating-point numbers are rounded to the absolute value
for the number of decimal places. Trailing zeros are dropped.

The floatPrecision property can be tested and set. The default value is 4.

Example 1:

This statement rounds off the square root of 3.0 to three decimal places:

set the floatPrecision to 3
set x = sqrt(3.0)
put x
-- 1.732

Example 2:

This statement rounds off the square root of 3.0 to eight decimal places:

set the floatPrecision to 8
put x
-- 1.73205081

font of member
Syntax: the font of member whichCastmember

This field property determines the typeface of the font used to display the specified field cast member. The
parameter whichCastmember can be either a cast member name or number.

The font of member field property can be set, affecting every line in the field. When tested, it returns the
height of the first line of the field.

The field cast member must contain characters, if only a space, to use the font of member property. It has no
effect on a cast member that contains no characters.

Example:

This statement sets the variable named oldFont to the current font of member setting for the field cast
member Rokujo Speaks:

set oldFont = the font of member "Rokujo Speaks"

{button See also,AL(`Lingo_font_of_member')}

fontSize of member
Syntax: the fontSize of member whichCastmember

This field property determines the size of the font used to display the specified field cast member. The parameter
whichCastmember can be either a cast member name or number.

The fontSize field property can be tested and set.

Example:

This statement sets the variable named oldSize to the current fontSize of member setting for the field cast
member Rokujo Speaks:

set oldSize = the fontSize of member "Rokujo Speaks"

This property requires that the field cast member already contain characters, if only a space. It will not affect a
cast member that contains no characters.

{button See also,AL(`Lingo_fontSize_of_member')}

fontStyle of member
Syntax: the fontStyle of member whichCastmember

This field property determines the styles applied to the font used to display the specified field cast member.

The value of the property is a string of styles delimited by commas. Lingo uses a font that is a combination of the
styles in the string. The available styles are plain, bold, italic, underline, shadow, outline, and
extend. On the Macintosh, condense is also an available style.

Use the word plain to remove all of the styles that are currently applied. The parameter whichCastmember can
be either a cast member name or number.

The field cast member must contain characters, if only a space, to use the fontStyle of member property.
It has no effect on a cast member that contains no characters.

The fontStyle of member field property can be tested and set.

Example 1:

This statement sets the variable named oldStyle to the current fontStyle of member setting for the field
cast member Rokujo Speaks:

set oldStyle = the fontStyle of member "Rokujo"

Example 2:

This statement sets the fontStyle of member setting for the field cast member Rokujo Speaks to bold italic:

set the fontStyle of member "Poem" to "bold, italic"

{button See also,AL(`Lingo_fontStyle_of_member')}

foreColor of cast
This is obsolete. Use foreColor of member instead.

foreColor of member
Syntax: set the foreColor of member castName to colorNumber

This cast member property sets the foreground color of a field cast member.

Example:

This statement changes the color of the field in cast member 1 to the color in palette entry 250:

set the foreColor of member 1 to 250

foreColor of sprite
Syntax: the foreColor of sprite whichSprite

This sprite property determines the foreground color of the sprite specified by whichSprite. Setting the
foreColor sprite property is equivalent to choosing the foreground color from the Tools window when the sprite
is selected on the Stage.

The foreground color applies only to 1-bit bitmap and shape cast members. It does not affect the display of a
field or button cast member. An 8-bit, 16-bit, or 24-bit bitmap is affected, but generally not in a useful way.

The value of a sprite's background color ranges from 0 to 255 for 8-bit color, or from 0 to 15 for 4-bit color. The
numbers correspond to the index number of the background color in the current palette. (A color's index number
appears in the color palette's lower left corner when you click the color.)

Changing a sprite's foreground color in an on mouseDown handler is a useful way to indicate when a sprite is
clicked.

The foreColor of sprite property can be tested and set.

Example 1:

The following statement sets the variable oldColor to the foreground color of
sprite 5:

set oldColor to the foreColor of sprite 5

Example 2:

The following statement makes 36 the number for the foreground color of a random sprite from sprite 11 to sprite
13.

set the backColor of sprite (10 + random(3)) to 36

forget window
Syntax: forget window whichWindow

This command instructs Lingo to close and delete the window specified by whichWindow when the window is no
longer in use and no other variables refer to it.

When a forget window command is given, the window and the MIAW disappear without calling the on
stopMovie, on closeWindow, or on deactivateWindow handlers.

If there are multiple global references to the movie in a window, the window doesn't respond to the forget
command.

Example:

This statement instructs Lingo to delete the window Control Panel when the movie no longer uses the window:

forget window "Control Panel"

{button See also,AL(`Lingo_forget_window')}

frame
Syntax: the frame

This function returns the number of the current frame of the current movie.

Example:

This statement sends the playback head to the frame before the current frame:

go to (the frame - 1)

{button See also,AL(`Lingo_frame')}

frameLabel
Syntax: the frameLabel

This frame property identifies the label assigned to the current frame. When the current frame has no label, the
value of the frameLabel property is 0.

The frameLabel property can be tested at any time. It can also be set during a Score generation session.

Example:

This statement checks the label of the current frame. In this case, the current frameLabel is Start:

put the frameLabel
-- "Start"

{button See also,AL(`Lingo_frameLabel')}

framePalette
Syntax: the framePalette

This frame property identifies the cast member number of the palette used in the current frame.

The palette doesn't have to be set in the current frame. The frame's palette is whichever palette is currently in
effect.

The framePalette property can be tested. It can also be set during a Score generation session.

Example 1:

This statement checks the palette used in the current frame. In this case, the palette is cast member 45:

put the framePalette
-- 45

Example 2:

This statement makes cast member 45, which is a palette cast member, the palette for the current frame:

set the framePalette to 45

{button See also,AL(`Lingo_framePalette')}

frameRate of cast
This is obsolete. Use frameRate of member instead.

frameRate of member
Syntax: the frameRate of member QTcastmember

This digital video cast member property specifies the playback frame rate for the specified digital video cast
member. The possible values for the frameRate of member correspond to the radio buttons for selecting
digital video playback options.

· When the frameRate of member is between 0 and 255, the digital video movie plays every frame at
that frame rate. The frameRate of member property cannot be greater than 255.

· When the frameRate of member is set to -1, the digital video movie plays every frame at its normal
rate.

· When the frameRate of member is set to -2, the digital video movie plays every frame as fast as
possible.

Example 1:

This statement sets the frame rate of the QuickTime digital video cast member Rotating Chair to 30 frames per
second:

set the frameRate of member "Rotating Chair" to 30

Example 2:

This statement instructs the QuickTime digital video cast member Rotating Chair to play every frame as fast as
possible:

set the frameRate of member "Rotating Chair" to -2

{button See also,AL(`Lingo_frameRate_of_member')}

frameReady
Syntax: frameReady(frameN)

or
frameReady(frameN, frameZ)
or
frameReady()

This function determines if all the cast members for frameN are downloaded from the internet and available
locally. frameN is the number of the frame.

· frameReady (frameN) determines whether the cast members for frameN are downloaded.

· frameReady (frameN, frameZ) determines whether the cast members for frames frameN through
frameZ are downloaded.

· frameReady() determines if the entire movie is downloaded.

The function can be used with Director movies, projectors, and Shockwave movies.

Note: This property is only useful when streaming a movie or cast. Streaming a movie is activated by setting the
Movie:Playback properties in the Modify menu to Use Media As Available or Show Placeholders.

This function can be tested but not set.

For a demonstration of the frameReady function, see the sample movie Streaming Shockwave

Example:

This statement determines if the cast members for frame 20 are downloaded and ready to be viewed.

on exitFrame
if frameReady(20) then
-- go to frame 20 if all the required cast members are

locally available
go to frame 20

else
-- resume animating loop while background streaming
got to frame 1

end if
end

mediaReady of member

frameScript
Syntax: the frameScript

This frame property identifies the cast member number of the frame script assigned to the current frame.

The frameScript property can be tested. During a Score recording session, you can also assign a frame script
to the current frame by setting the frameScript property. (This property could not be set in earlier versions of
Director.)

Example 1:

This statement displays the number of the script assigned to the current frame. In this case, the script number is
25:

put the frameScript
-- 25

Example 2:

This statement makes the script cast member "Button responses" the frame script for the current frame:

set the frameScript to member "Button responses"

frameSound1
Syntax: the frameSound1

This frame property determines the number of the cast member assigned to the first sound channel in the current
frame. This property can also be set during a Score recording session.

Example:

As part of a Score recording session, this statement assigns the sound cast member Jazz to the first sound
channel:

set the frameSound1 to member "Jazz"

frameSound2
Syntax: the frameSound2

This frame property determines the number of the cast member assigned to the second sound channel for the
current frame. This property can also be set during a Score recording session.

Example:

As part of a Score recording session, this statement assigns the sound cast member Jazz to the second sound
channel:

set the frameSound2 to member "Jazz"

framesToHMS
Syntax: framesToHMS(frames , tempo , dropFrame , fractionalSeconds)

This function converts the specified number of frames to their equivalent length in hours, minutes, and seconds.
This is useful for predicting the actual playtime of a movie or controlling a video playback device.

· The integer expression frames specifies the number of frames.

· The integer expression tempo specifies the tempo in frames per second.

· The dropFrame argument is a logical expression. Normally, this is FALSE. This argument is meaningful only
if FPS is set to 30 frames per second. (Drop frame is a method of compensating for the color NTSC frame
rate, which is not exactly 30 frames per second.)

· The fractionalSeconds argument determines what happens to residual frames. When TRUE replaces
fractionalSeconds, the residual frames are converted to the nearest hundredth of a second. When FALSE
replaces fractionalSeconds, the residual frames are returned as an integer number of frames.

The resulting string uses the form: "sHH:MM:SS.FFD", where:

s-"-" if the time is less than zero, or space if the time is greater than or equal to zero

HH-hours

MM-minutes

SS-seconds

FF-fraction of a second if fractionalSeconds is TRUE or frames if fractionalSeconds is FALSE

D-"d" if dropFrame is TRUE or space if dropFrame is FALSE

Example:

This statement converts a 2710-frame, 30 frame-per-second movie. The dropFrame and fractionalSeconds
arguments are both turned off:

put framesToHMS(2710, 30, FALSE, FALSE)
-- " 00:01:30.10 "

{button See also,AL(`Lingo_framesToHMS')}

frameTempo
Syntax: the frameTempo

This frame property indicates the tempo assigned to the current frame.

The frameTempo property can be tested. It can also be set during a Score recording session. (This property
could not be set in earlier versions of Director).

Example:

This statement checks the tempo used in the current frame. In this case, the tempo is 15 frames per second:

put the frameTempo
-- 15

{button See also,AL(`Lingo_frameTempo')}

frameTransition
Syntax: the frameTransition

This frame property gives the number of the transition cast member assigned to the current frame. During a
Score recording session, you can also set this property as a way to specify transitions.

Example:

When used in a Score recording session, this statement makes the transition cast member Fog the transition for
the frame that Lingo is currently recording:

set the frameTransition to member "Fog"

freeBlock
Syntax: the freeBlock

This function indicates the size of the largest free contiguous block of memory, in bytes. A kilobyte (K) is 1024
bytes. A megabyte (MB) is 1024 kilobytes. In order to load a cast member, you need a free block at least as large
as the cast member.

Example:

This statement determines whether the largest contiguous free block is smaller than 10K and displays an alert if
it is:

if the freeBlock < 10 * 1024 then ¬
 alert "Not enough memory!"

{button See also,AL(`Lingo_freeBlock')}

freeBytes
Syntax: the freeBytes

This function indicates the total number of bytes of free memory, which may not be contiguous. A kilobyte (K) is
1024 bytes. A megabyte (MB) is 1024 kilobytes.

This function differs from freeBlock, because it reports all free memory, not just contiguous memory.

On the Macintosh, if you turn on Use System Temporary Memory in Director's General Preferences or a
projector's Options dialog box, the freeBytes function returns all the free memory that is available to the
application. This is the same as the application's allocation shown in its Get Info dialog box and the Largest
Unused Block value in the About This Macintosh dialog box.

Example:

This statement checks whether more than 200K of memory is available and plays a color movie if it is.

if the freeBytes > 200 * 1024 then ¬
 play movie "colorMovie"

{button See also,AL(`Lingo_freeBytes')}

frontWindow
Syntax: the frontWindow

This system property indicates which movie in a window is currently frontmost on the Stage. When the Stage is
frontmost, the frontWindow is the Stage. When a media editor or floating palette is frontmost, the
frontWindow is VOID.
This property can be tested but not set.

Example:

This statement determines whether the Stage is currently the frontmost window and, if it is, brings the window
Try This to the front:

if the frontWindow = the stage then ¬
moveToFront window "Try This"

fullColorPermit
Syntax: the fullColorPermit

This property determines whether the computer's offscreen buffer is set to the full color possible for the monitor.

· When the fullColorPermit is TRUE, the offscreen buffer is a 32-bit buffer on a 32-bit monitor, and a 16-
bit buffer on a 16 bit-monitor. This is the default.

· When the fullColorPermit is FALSE, the maximum depth of the offscreen animation buffer is 8 bits,
regardless of the monitor's color depth.

Setting this property can be useful for projectors, which require a smaller offscreen buffer when running 8-bit
color on a 16-bit or 32-bit monitor.

Example:

This statement sets the fullColorPermit to FALSE, which allows a projector to use an 8-bit buffer on a
computer with a 16-bit or 32-bit monitor.

set the fullColorPermit = FALSE

getaProp

Syntax: getaProp(list, item)
This command identifies the value associated with the item specified by item in the list specified by list.

· When the list is a linear list, replace item with the number for an item's position in a list. The result is the
value at that position.

· When the list is a property list, replace item with a property in the list. The result is the value associated with
the property.

The getaProp command returns VOID when the specified value is not in the list.

When used with linear lists, the getaProp command does the same as the getAt command.

Example 1:

This statement identifies the value in the third position of the linear list Answers, which consists of [10, 12, 15,
22]:

getaProp(Answers, 3)

The result is 15, because 15 is the third value in the list.

Example 2:

This statement identifies the property associated with the value 15 in the property list Answers, which consists of
[#a: 10, #b:12, #c:15, #d:22]:

getaProp(Answers, #c)

The result is 15, which is the value associated with the property.

{button See also,AL(`Lingo_getaProp')}

getAt
Syntax: getAt(list, position)

This command identifies the item in the position specified by position in the specifed list. If the list contains fewer
elements than the specified position, an alert appears.

The getAt command works with linear and property lists. This command does the same as the getaProp
command for linear lists.

Example:

This statement causes the Message window to display the third item in the list Answers, which consists of [10,
12, 15, 22]:

getAt(Answers, 3)

The result is 15.

{button See also,AL(`Lingo_getAt')}

getBehaviorDescription
See: on getBehaviorDescription handler.

getError
Syntax: getError whichCastmember

This function returns an error number indicating the type of error that occurred with a Shockwave Audio cast
member. (The getErrorString function returns a message describing the error.) The following are possible
values for getError and get ErrorString:

getError() result Corresponding value returned by
getErrorSting()

0 OK

1 memory

2 network

3 playback device

99 other

Example:

This handler uses getError to determine whether an error involving the Shockwave Audio cast member Norma
Desmond Speaks occurred and displays the appropriate error string in a field if it did:

on exitFrame
if getError (member "Norma Desmond Speaks") <> 0 then
put getErrorString (member "Norma Desmond Speaks")
into member "Display Error Name"

end if
end

{button See also,AL(`Lingo_getError')}

getErrorString
Syntax: getErrorString "whichCastmember"

This function returns a string that is an error message indicating the type of error that occurred with a Shockwave
Audio cast member. (The getError function returns the number of the error message.) The following are
possible values for getError and get ErrorString:

getError() result Corresponding value returned by
getErrorSting()

0 OK

1 memory

2 network

3 playback device

99 other

Example:

This handler uses getError to determine whether an error involving the Shockwave Audio cast member Norma
Desmond Speaks occurred. If an error occurred, the handler uses getErrorString to obtain the error
message and assigns the message to a field cast member:

on exitFrame
if getError (member "Norma Desmond Speaks") <> 0 then
put getErrorString (member "Norma Desmond Speaks")
into member "Display Error Name"

end if
end

{button See also,AL(`Lingo_getErrorString')}

getLast
Syntax: getLast(list)

This command identifies the last value in the list specified by list. The getLast command works with linear and
property lists.

Example 1:

This statement identifies the last item in the list Answers, which consists of
 [10, 12, 15, 22]:

put getLast(Answers)

The result is 22.

Example 2:

This statement identifies the last item in the list Bids, which consists of [#Gee:750, #Kayne:600, #Ohashi:850]:

put getLast(Bids)

The result is 850.

getLatestNetID
Syntax: getLastestNetID

This function returns an identifier for the last network operation that started.

The identifier returned by getLatestNetID can be used as a parameter in the netDone, netError, and
netAbort functions to identify the last network operation.

Note: This function is included for backward compatibility. It is recommended that you use the network ID
returned from a net lingo function rather than getLatestNetId. However, if you use getLatestNetId, use it
immediately after issuing the net lingo command.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This script assigns the network ID of a getNetText operation to the field cast member Result so results of that
operation can be accessed later.

on startOperation
global gNetID
getNetText "url"
set gNetID = getLatestNetID()

end
on checkOperation
global gNetID
if netDone(gNetID) then
put netTextResult into member "Result"

end if
end

{button See also,AL(`Lingo_getLatestNetID')}

getNetText
Syntax: getNetText URL

This function starts the retrieval of text from a file on an ftp or HTTP server.

Use netDone to find out when the getNetText operation is complete. Use netTextResult to return the text
retrieved by getNetText.

The function works with relative URLs.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This script retrieves text from the URL http://BigServer.com/sample.txt and assigns it to the field cast member
Display Text:

on mouseUp
set netID = getNetText "http://BigServer.com/sample.txt"

end
on idle
if netDone(netID) then
put the netTextResult into member "Display Text"

end if
end

{button See also,AL(`Lingo_getNetText')}

getNthFileNameInFolder
Syntax: getNthFileNameInFolder(folderPath, fileNumber)

This function returns a file name from the directory folder at the specified path and number within the folder. To
be found by the getNthFileNameInFolder function, Director movies must be set to be visible in the folder
structure. However, the getNthFileNameInFolder function finds other types of files whether they are visible
or invisible. If the function returns an EMPTY string, you have specified a number greater than the number of
files in the folder.

To return the name of the current folder, use -1 as the fileNumber parameter.

The getNthFileNameInFolder function doesn't work with URLs.

To specify other folder names, use the @ pathname operator or the full path defined in the format for the specific
platform the movie is running on.

· For example, on the Macintosh, use a pathname such as HardDisk:Director:Movies. To look for files
on the Macintosh desktop, you would use the path HardDisk:Desktop Folder.

· To specify a pathname in Windows, use a directory path such as C:\Director\Movies.
Example:

The following handler returns a list of file names in the folder at the current path. To call the function, use
parentheses, as in put currentFolder():

on currentFolder
put [] into fileList
repeat with i = 1 to the maxInteger
put getNthFileNameInFolder(the pathName, i) ¬
into n

if n = EMPTY then exit repeat
append(fileList, n)

end repeat
return fileList

end currentFolder

If Director is running in the current folder, this statement displays the folder's name in the Message window:

put getNthFileNameInFolder(the applicationPath, -1)

{button See also,AL(`Lingo_getNthFileNameInFolder')}

getOne
Syntax: getOne(list , value)

This command identifies the position or property associated with the value specified by value in the list specified
by list.

· When the list is a linear list, the result is the value's position in the list.

· When the list is a property list, the result is the property associated with the value in the list.

For values contained in the list more than once, only the first occurrence is displayed. The getOne command
gives the result 0 when the specified value is not in the list.

When used with linear lists, the getOne command performs the same functions as the getPos command.

Example 1:

This statement identifies the position of the value 12 in the linear list Answers, which consists of [10, 12, 15, 22]:

getOne(Answers, 12)

The result is 2, because 12 is the second value in the list.

Example 2:

This statement identifies the property associated with the value 12 in the property list Answers, which consists of
[#a:10, #b:12, #c:15, #d:22]:

getOne(Answers, 12)

The result is #b, which is the property associated with the value 12.

{button See also,AL(`Lingo_getOne')}

getPos
Syntax: getPos(list , value)

This command identifies the position of the value specified by value in the list specified by list. When the
specified value is not in the list, the getPos command gives the value 0.

The getPos command works with linear and property lists.

For values contained in the list more than once, only the first occurrence is displayed. This command performs
the same function as the getOne command when used for linear lists.

Example:

This statement identifies the position of the value 12 in the list Answers, which consists of [#a:10, #b:12, #c:15,
#d:22]:

getPos(Answers, 12)

The result is 2, because 12 is the second value in the list.

{button See also,AL(`Lingo_getPos')}

getPref
 Syntax: getPref(prefName)

This function retrieves the content of the specified file. It only works in browsers.

When you use this function, replace prefName with the name of a file that was previously created by the
setPref function. If no such file exists, getPref returns VOID.

The file name used for prefName must be a valid file name only. Do not include a pathname when specifying
prefName. The only valid file extensions for prefName are txt or htm; any other extension is rejected.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This handler retrieves the content of the file Test and then assigns the file's text to the field Total Score:

on mouseUp
 set theText = getPref("Test")
 put theText into member "Total Score"
end

{button See also,AL(`Lingo_getPref')}

getProp
Syntax: getProp(list , property)

This command identifies the value associated with the property specified by property in the property list specified
by list.

The getProp command works with property lists only. Using getProp with a linear list produces a script error.

The getProp command is identical to the getaProp command, except that the getProp command displays an
error message when the specified property is not in the list.

Example:

This statement identifies the value associated with the property #c of the property list Answers, which consists of
[#a:10, #b:12, #c:15, #d:22]:

getProp(Answers, #c)

The result is 15, because 15 is the value associated with #c.

{button See also,AL(`Lingo_getProp')}

getPropAt
Syntax: getPropAt(list , index)

This command identifies the property name associated with the position specified by index in the property list
specified by list. If the specified item isn't in the list, Director displays an error message.

The getPropAt command works with property lists only. Using getPropAt with linear lists produces a script
error.

Example:

This statement displays the second property in the given list.

put getPropAt([#a:10, #b:20],2)
-- #b

getPropertyDescriptionList
See: on getPropertyDescriptionList

global
Syntax: global variable1 [, variable2] [, variable3]...

This keyword identifies a variable as a global variable so that it can be shared by other handlers or movies.

Every handler that examines or changes the contents of a global variable must use the global keyword to
identify the variables as global. Otherwise, the handler treats the variable as a local variable even if it is declared
to be global in another handler.

A global variable can be declared in a handler or the Message window. Its value can be used by any other
handlers or scripts that declare the variable as global.

Example:

global startingPoint
set startingPoint = whichMenu

{button See also,AL(`Lingo_global')}

go
Syntax: go {to} {frame} whichFrame

go {to} movie whichMovie

go {to} {frame} whichFrame of movie whichMovie

This command causes the playback head to jump to the frame specified by whichFrame of the movie specified
by whichMovie. The expression whichFrame can be a marker label or an integer frame number. The expression
whichMovie must specify a movie file. (If the movie is in another folder, whichMovie must specify the pathname.)

The phrase "go to the frame" has the playback head loop in the current frame. This is a convenient way to keep
the playback head in the same frame, but keep Lingo active. Avoid using "go to the frame" in a frame that has a
transition. This slows down the movie and overwhelms the processor as it constantly tries to perform the
transition.

It's better to refer to marker labels instead of frame numbers, because editing a movie can cause frame numbers
to change. Thus, a command like go to frame 35 can become incorrect. It's also easier to read your script if
you use marker labels.

The go to movie command loads frame 1 of the movie. If the command is called from within a handler, the
handler in which it is placed continues executing. If you want to suspend the handler while playing the movie, use
the play command.

When you specify a movie to play, you must also specify its path if the movie is in a different folder. There's no
need to include the movie's DIR or DXR file extension in the go to movie command. In fact, it's often better to
omit the suffix during development. If you use DIR files during the main development cycle and then later protect
those movies, Lingo will fail when it encounters hard-coded file names with the incorrect suffix. If you omit the file
suffix, Lingo looks for a file with either suffix in the specified path.

To go to a movie at a URL, it can be more efficient to use the downloadNetThing command to download the
movie file to a local disk first, and then use the go to movie command to go to that movie on the local disk.

The following are reset when loading a movie: the beepOn, the constraint properties, the
keyDownScript, the mouseDownScript, the mouseUpScript; the cursor of sprite and
immediate of sprite properties; the cursor and puppetSprite commands; and custom menus.
However, the timeoutScript is not reset when loading a movie.

Example 1:

This statement sends the playback head to the marker named "start":

go to "start"

Example 2:

This statement sends the playback head to the marker named Memory in the movie named "Noh Tale to Tell":

go to frame "Memory" of movie "Noh Tale to Tell"

Example 3:

This handler has the movie loop in the current frame. This is useful for making the movie wait in a frame while
the movie plays so that it can respond to events:

on exitFrame
go to the frame

end

{button See also,AL(`Lingo_go')}

go loop
Syntax: go loop

This command causes the playback head to continuously return to the first marker to the left and then loop back.
If no markers are to the left of the playback head, the playback head continues to the right.

The go loop command is equivalent to the statement go to the marker(0) that was used in earlier
versions of Lingo.

Example:

This statement causes the movie to loop between the current frame and the previous marker:

go loop

{button See also,AL(`Lingo_go_loop')}

go next
Syntax: go next

This command sends the playback head to the next marker in the movie. If no markers are to the right of the
playback head, the playback head goes to the first marker to the left. If there are no markers to the left, the
playback head goes to frame 1.

The go next command is equivalent to the statement go marker(1) that was used in earlier versions of
Lingo.

Example:

This statement sends the playback head to the next marker in the movie:

go next

{button See also,AL(`Lingo_go_next')}

go previous
Syntax: go previous

This command sends the playback head to the previous marker in the movie.

If there is only one marker to the left of the frame, the playback head will go back one marker. If there are two (or
more) markers to the left of the current frame, the playback head will go back two (or more) markers.

Example:

This statement sends the playback head to the previous marker in the movie:

go previous

{button See also,AL(`Lingo_go_previous')}

gotoNetMovie
 Syntax: gotoNetMovie URL

or
gotoNetMovie (URL)

This command retrieves and plays a new Shockwave movie from and ftp or HTTP server. The current movie
continues to run until the new movie is available.

Only URLs are supported as valid parameters. The URL can specify either a file name or a marker within a
movie. Relative URLs work if the movie is on an internet server.

If a gotoNetMovie operation is in progress and you issue a second gotoNetMovie command before the first
is finished, the second command cancels the first.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example 1:

In this statement, the URL indicates a Director file name:

gotoNetMovie "http://www.yourserver.com/movies/movie1.dcr"

Example 2:

In this statement, the URL indicates a marker within a file name:

gotoNetMovie ¬ "http://www.yourserver.com/movies/buttons.dcr#Contents"

Example 3:

In this statement, gotoNetMovie is used as a function. The function returns the network ID for the operation.

set myNetID = gotoNetMovie ¬
("http://www.yourserver.com/movies/buttons.dcr#Contents")

gotoNetPage
Syntax: gotoNetPage "URL", "targetName"

This command opens a Shockwave movie or another MIME type file.

Only URLs are supported as valid parameters. Relative URLs work if the movie is on an ftp or HTTP server.

targetName is an optional HTML parameter that identifies or names the frame or window name in which you
want the page to be loaded.

· If targetName is a window or frame in the browser, gotoNetPage replaces the contents of that window or
frame.

· If targetName isn't a frame or window that is currently open, goToNetPage opens a new window.

· If targetName is not included, gotoNetPage replaces the current movie, wherever it is located.

Use netDone to find out when the gotoNetPage operation completes.

In the authoring environment, this command launches the preferred browser if it is enabled. In projectors, this
command tries to launch the preferred browser. The user sets the preferred browser in the Network Preferences
dialog box.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This script loads the file Newpage.html into the frame or window named "frwin". If a window or frame in the
current window called "frwin" exists, that window or frame is used. If the window "frwin" doesn't exist, a new
window named "frwin" is created.

on keyDown
gotoNetPage "Newpage.html", "frwin"

end

{button See also,AL(`Lingo_gotoNetPage')}

halt
Syntax: halt

This command exits the current handler and any handler that called it. After exiting all handlers, the halt
command stops the movie.

Example:

This statement checks whether the amount of free memory is less than 50K, and if it is, exits all handlers that
called it and then stops the movie:

if the freeBytes < 50*1024 then halt

{button See also,AL(`Lingo_halt')}

height of cast
This is obsolete. Use height of member instead.

height of member
Syntax: the height of member whichCastmember

This cast member property determines the height in pixels of the cast member specified by whichCastmember.
The height of member property applies only to bitmap and shape cast members. It does not affect field or
button cast members.

The height of member property can be tested but not set.

Example:

This statement assigns the height of cast member Headline to the variable vHeight:

set vHeight to the height of member "Headline"

{button See also,AL(`Lingo_height_of_member')}

height of sprite
Syntax: the height of sprite whichSprite

This sprite property determines the vertical size in pixels of the sprite specified by whichSprite. The height
applies only to bitmap and shape cast members. It does not affect field or button cast members.

Setting this property does not have any effect on bitmap sprites unless the sprite's stretch property is set to
TRUE. For the value set by Lingo to last beyond the current sprite, the sprite must be a puppet.

The height of sprite property can be tested and set.

Example 1:

This statement sets the height of sprite 10 to 26 pixels:

set the height of sprite 10 to 26

Example 2:

This statement assigns the height of sprite (i + 1) to the variable vHeight:

set vHeight = the height of sprite (i + 1)

{button See also,AL(`Lingo_height_of_sprite')}

hilite
Syntax: hilite chunkExpression

This command highlights (selects) the specified chunk in a field sprite. You can select any chunk that Lingo lets
you define, such as a character, word, or line.

Example:

This statement highlights the fourth word in the field cast member Comments, which contains the string "Thought
for the Day":

hilite word 4 of member "Comments"

{button See also,AL(`Lingo_hilite')}

hilite of cast
This is obsolete. Use hilite of member instead.

hilite of member
Syntax: the hilite of member whichCastmember

This button property determines whether a check box or radio button is selected.

· When the hilite of member button property is TRUE, the check box or radio button is selected.

· When the hilite of member button property is FALSE, the check box or radio button is not selected.

When whichCastmember is a string, it is used as the cast member name. When whichCastmember is an integer,
it is used as the cast member number.

The hilite of member button property can be tested and set. The default value is FALSE.

Example 1:

This statement checks whether the button named "2400 baud" is selected and sets the baud rate to 2400 if it is:

if the hilite of member "2400 baud" = TRUE then ¬
 setBaudRate(2400)

Example 2:

This statement uses Lingo to select the button cast member powerSwitch by setting the hilite of
member for the cast member to TRUE:

set the hilite of member powerSwitch to TRUE

{button See also,AL(`Lingo_hilite_of_member')}

HMStoFrames
Syntax: HMStoFrames(hms , tempo , dropFrame , fractionalSeconds)

This function converts movies measured in hours-minutes-seconds to the equivalent number of frames.

· The string expression hms specifies the time in the form "sHH:MM:SS.FFD", where:

s is a dash (-) if the time is less than zero, or a space if the time
is greater than or equal to zero.

HH represents number of hours.

MM represents number of minutes.

SS represents number of seconds.

FF represents fraction of a second if fractionalSeconds is TRUE.
FF represents frames if fractionalSeconds is FALSE.

D is the letter "d" if dropFrame is TRUE. D is a space if dropFrame is FALSE.

· The expression tempo specifies the tempo in frames per second.

· The dropFrame argument is a logical expression. When TRUE replaces dropFrame, it is a drop frame. When
FALSE replaces dropFrame, it is not. When the string hms ends in a "d", the time is treated as a drop frame,
regardless of the value of dropFrame.

· The fractionalSeconds argument determines the meaning of the fractional seconds. When it is set to TRUE,
the numbers after the seconds specify a fraction of a second, to the nearest hundredth of a second. When it
is set to FALSE, the numbers after the seconds specify the number of residual frames.

This property can also be used to convert a number of hours, minutes, and seconds into time if you set the
tempo argument to 1 (one frame = one second). See the example that follows.

Example 1:

This statement determines the number of frames in a 1-minute, 30.1-second movie when the tempo is 30 frames
per second. The dropFrame and fractionalSeconds arguments are both turned off:

put HMStoFrames(" 00:01:30.10 ", 30, FALSE, FALSE)
-- 2710

Example 2:

This statement converts 600 seconds into minutes:

>> put framesToHMS(600, 1,0,0)
>> -- " 00:10:00.00 "

Example 3:

This statement converts an hour and a half into seconds:

>> put HMStoFrames("1:30:00", 1,0,0)
>> -- 5400
{button See also,AL(`Lingo_HMStoFrames')}

idle
See: on idle event handler

idleHandlerPeriod
Syntax: the idleHandlerPeriod

This movie property determines the maximum number of ticks that passes until the movie sends an idle
message. The default value is 0, which has the movie send idle handler messages as frequently as possible.

When the playback head enters a frame, Director starts a timer, repaints the appropriate sprites on the Stage,
and then issues an enterFrame event. At this point, if the amount of time set for the tempo setting has elapsed,
Director generates an exitFrame event and goes to the next specified frame.

However, if the amount of time set for this frame hasn't elapsed, Director waits until the time runs out. During this
time, Director periodically generates an idle message. The amount of time between idle events is determined
by the idleHandlerPeriod.

Example:

The following statement causes the movie to send an idle message at most once per second:

set the idleHandlerPeriod = 60

{button See also,AL(`Lingo_idleHandlerPeriod')}

idleLoadDone
Syntax: idleLoadDone(loadTag)

This function reports whether Director has loaded all cast members that have the specified load tag.

· The result is TRUE when all cast members with the given tag have been loaded.

· The result is FALSE when some cast members with the given load tag are still waiting to be loaded.

Example:

This statement checks whether all cast members whose load tag is 20 have been loaded, and then plays the
movie "Kiosk" if they are:

if idleLoadDone(20) = TRUE then play "Kiosk"

{button See also,AL(`Lingo_idleLoadDone')}

idleLoadMode
Syntax: the idleLoadMode

This system property determines when the preLoad and preLoadMember commands attempt to load cast
members during idle periods. The following values are possible values for the idleLoadMode and their effect:

0-Does not perform idle loading

1-Performs idle loading when there is free time between frames

2-Performs idle loading during idle events

3-Performs idle loading as frequently as possible

The idleLoadMode system property itself performs no function; this system property only works in conjunction
with the preLoad and preLoadMember commands.

Example:

This statement causes the movie to try as frequently as possible to load cast members designated for preloading
by the preLoad and preLoadMember commands:

set the idleLoadMode = 2

{button See also,AL(`Lingo_idleLoadMode')}

idleLoadPeriod
Syntax: the idleLoadPeriod

This property determines the number of ticks that Director waits before returning to attempt to load cast members
that are waiting to be loaded. The default value for the idleLoadPeriod is 0, which instructs Director to
service the load queue as frequently as possible.

Example:

This statement instructs Director to service the set of cast members waiting to be loaded every 1/2 second (30
ticks):

set the idleLoadPeriod = 30

{button See also,AL(`Lingo_idleLoadPeriod')}

idleLoadTag
Syntax: the idleLoadTag

This system property is a number that identifies, or tags, the cast members that have been queued for loading
when the computer is idle. The idleLoadTag is merely a convenience that identifies the cast members in a
group that you want to preload.

The property can be tested and set. When you set the property, it can be any number that you choose.

Example:

This statement makes the number 10 the idle load tag.

set the idleLoadTag = 10

{button See also,AL(`Lingo_idleLoadTag')}

idleReadChunkSize
Syntax: the idleReadChunkSize of member whichCastmember

This movie property determines the maximum number of bytes from a cast member that Director can load when
it loads cast members from the load queue. The property can be tested and set.

Example:

This statement specifies that 500K is the maximum number of bytes from cast member number 50 that Director
can load in one attempt at loading cast members in the load queue:

set the idleReadChunkSize to 500000

if
Syntax: if logicalExpression then then-statement

or

if logicalExpression then then-statement

else else-statement

end if
or

if logicalExpression then
statement(s)

end if
or

if logicalExpression then
statement(s)

else
statement(s)

end if
or

if logicalExpression1 then
statement(s)

else if logicalExpression2 then
statement(s)

else if logicalExpression3 then
statement(s)

end if
The if...then structure evaluates the logical expression specified by logicalExpression.

· When the condition is TRUE, Lingo executes the statement(s) that follow then.

· When it is FALSE, Lingo executes the statement(s) following else. If no statements follow else, Lingo exits
the if...then structure.

When the condition is a property, Lingo automatically checks whether the property is TRUE. You don't need to
explicitly add the phrase = TRUE after the property, but it is common practice to do so.

The else portion of the statement is optional. If you need to use more than one then-statement or else-
statement, you must end with the form end if.
When you use else, it always corresponds to the previous if statement. This means that sometimes you need
to include an else nothing statement to associate an else keyword with the proper if keyword.

Example 1:

This statement checks whether the Return key was pressed and then continues if it was:

if the key = RETURN then continue

Example 2:

This handler checks whether the Command and q keys were pressed simultaneously, and then executes the
subsequent statements if it was:

on keyDown
if (the commandDown) and (the key = "q") then
 cleanUp
 quit
end if
end keyDown

{button See also,AL(`Lingo_if')}

ilk
Syntax: ilk(list)

ilk(item, type)

This function indicates the type of a list, rect, or point.

· The syntax ilk(list) returns whether list is a linear list or property list. For linear lists, ilk(list) returns
#list; for property lists, ilk(list) returns #propList.

· The syntax ilk(item, type) compares the object represented by item and indicates whether the object
is of the specified type. When the object is of the specified type, the ilk function returns TRUE. When the
object isn't of the specified type, the ilk function returns FALSE. The following are the values that are
returned for each combination of linear list, property list, point, or rect items and types:

Item Possible type=returned value

linear list #list=1, #linearlist=1, #proplist=0, #point=0, #rect=0

property list #list=1, #linearlist=0, #proplist=1, #point=0, #rect=0

point #list=1, #linearlist=0, #proplist=0, #point=1, #rect=0

rect #list=1, #linearlist=0, #proplist=0, #point=0, #rect=1

Example 1:

This statement identifies whether the list named Bids is a property list and displays the result in the Message
window:

put ilk(Bids, #proplist)

Because the list is a property list, the Message window displays 1, which is the numeric equivalent of TRUE.

Example 2:

This statement identifies whether the variable Total is a list and displays the result in the Message window:

put ilk(Total, #list)

Because the variable is not a list, the Message window displays 0, which is the numeric equivalent of FALSE.

importFileInto
Syntax:

importFileInto member whichCastmember , fileName

or

importFileInto member whichCastmember of ¬
castLib whichCast, fileName
or

importFileInto(member whichCastMember, fileName)
or

importFileInto member whichCastmember , URL

This command replaces the content of the cast member specified by whichCastmember with the file specified by
fileName.

The importFileInto command is useful in three situations:

· When finishing developing a movie, use it to embed media that you have kept linked and external so that it
could be edited during the project.

· When generating Score from Lingo, use it to assign content to new cast members that you created. For
more information about generating Score and creating new cast members, see "Authoring from Lingo," in
Learning Lingo.

· When downloading files from the internet, you can use it to download the file at a specific URL. However, to
import a file from a URL, it's usually more efficient to use the preloadNetThing command to download the
file to a local disk first, and then import the file from the local disk. This minimizes problems with waiting for
the file to download.

Using this command in projectors can be a problem, because imported files can quickly consume memory.

Example 1:

This handler assigns a URL that contains a GIF file to the variable tempURL. The handler then uses the
importFileInto command to import the file at the URL into a new bitmap cast member:

on exitFrame
set tempURL = "http://www.dukeOfUrl.com/crown.gif"
importFileInto(new(#bitmap), tempUrl)

end exitFrame
Example 2:

This statement replaces the content of the sound cast member Memory with the sound file Wind:

importFileInto member "Memory", "Wind"

Example 3:

These statements download an external file from a URL to the same folder that Director is in, and then imports
that file into the sound cast member Norma Desmond Speaks:

downLoadNetThing http://www.cbDeMille.com/Talkies.AIF,¬
the applicationPath&"Talkies.AIF"
set the fileName of member "Norma Desmond Speaks" = ¬

the applicationPath&"Talkies.AIF"

in
number of chars in, number of items in, number of lines in, and number of words in functions

inflate rect
Syntax: inflate (rectangle , widthChange , heightChange)

This command changes the dimensions of the rectangle specified by rectangle. The change is relative to the
center of the rectangle.

· The widthChange parameter specifies how much the rectangle changes horizontally.

· The heightChange parameter specifies how much the rectangle changes vertically.

The total change in each direction is twice the number you specify. For example, replacing widthChange with 15
increases the rectangle's width by 30 pixels.

Values less than 0 for horizontal or vertical reduce the rectangle's size.

Example 1:

This statement increases the width of the rectangle by 4 pixels and the height by 2 pixels:

inflate (rect(10, 10, 20, 20), 2, 1)
-- Rect (8, 9, 22, 21)

Example 2:

This statement increases both the height and width of the rectangle by 20 pixels:

inflate (rect(0, 0, 100, 100), -10, -10)
-- Rect (10, 10, 90, 90)

initialToggleState of member
Syntax: the initialToggleState of member whichCastmember

This button cast member property determines the initial state for toggle buttons created with the Button editor.

· When initialToggleState of member is TRUE, the button is not toggled initially.

· When initialToggleState of member is FALSE, the button is toggled initially.

This property doesn't apply to push buttons. It can be tested and set.

Example:

This statement sets the toggle button cast member Panic to be toggled when it first appears:

set the initialToggleState of member "Panic" to FALSE

ink of sprite
Syntax: the ink of sprite whichSprite

This sprite property determines the ink effect applied to the sprite specified by whichSprite.

The following ink effects are available:

0-Copy 9-Mask

1-Transparent 32-Blend

2-Reverse 33-Add pin

3-Ghost 34-Add

4-Not copy 35-Subtract pin

5-Not transparent 36-Background transparent

6-Not reverse 37-Lightest

7-Not ghost 38-Subtract

8-Matte 39-Darkest

In the case of background transparent (ink effect 36), you set the color that becomes transparent by selecting the
color from the background color chip in the Tools window while the sprite is selected in the Score. You can do the
same thing by using Lingo to set the backColor property, but this is unpredictable when the sprite has more
than 1-bit color.

If you set this property within a script while the playback head is not moving, be sure to use the updateStage
command to redraw the Stage. If you change several sprite properties-or several sprites-use only one
updateStage command at the end of all the changes.

For further information about ink effects, see Using Director.

The ink sprite property can be tested and set. To change any sprite property using Lingo, the sprite must be a
puppet.

Example 1:

This statement changes the variable currentInk to the value for the ink effect of sprite (i + 1):

put the ink of sprite 3 into currentInk

Example 2:

This statement gives sprite (i + 1) a matte ink effect by setting the ink effect of sprite property to 8, which
specifies matte ink:

set the ink of sprite (i + 1) to 8

{button See also,AL(`Lingo_ink_of_sprite')}

insertFrame
Syntax: insertFrame

This command duplicates the current frame and its content. The duplicate frame is inserted after the current
frame and then becomes the current frame. It can be used only during a Score recording session.

This command performs the same function as the duplicateFrame command.

Example:

The following handler generates a frame that has the transition cast member Fog assigned in the transition
channel followed by a set of empty frames. The number of frames is determined by the argument
numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set the frameTransition to ¬
 the number of member "Fog"
 repeat with i = 0 to numberOfFrames
 insertFrame
 end repeat
 endRecording
end

inside
Syntax: inside(point, rectangle)

This function indicates whether the point specified by point is within the rectangle specified by rectangle.

· When the point is within the rectangle, the inside function is TRUE.

· When the point is outside the rectangle, the inside function is FALSE.

Example:

This statement indicates whether the point Center is within the rectangle Zone and displays the result in the
Message window:

put inside(Center, Zone)

{button See also,AL(`Lingo_inside')}

installMenu
Syntax: installMenu whichCastmember

This command installs the menu defined in the field cast member specified by whichCast member. These custom
menus appear only while the movie is playing. To remove the custom menus, use the installMenu command
with no argument, or with 0 as the argument.

For an explanation of how menu items are defined in a field cast member, refer to the menu keyword.

Changing menus many times should be avoided. Numerous menu changes have an impact on system
resources.

Hierarchical menus aren't available through this command.

If the menu is longer than the screen on the Macintosh, the menu can scroll. In Windows, if the menu is longer
than the screen, only part of the menu appears.

Example 1:

This statement installs the menu defined in field cast member 37:

installMenu 37

Example 2:

This statement installs the menu defined in the field cast member named Menubar by using the number of
member property to refer to the field cast member:

installMenu member "Menubar"

Example 3:

This statement disables menus that were installed by the installMenu command:

installMenu 0

{button See also,AL(`Lingo_installMenu')}

instance
This Lingo element is obsolete.

integer
Syntax: integer(numericExpression)

This function rounds the value of numericExpression to the nearest whole integer.

You can force an integer to be a string by using the string() function.

Example 1:

This statement rounds off the number 3.75 to the nearest whole integer:

put integer(3.75)
-- 4

Example 2:

This statement rounds off the value in parentheses. This provides a usable value for the locH of sprite
property, which requires an integer:

set the locH of sprite 1 ¬
 to integer(0.333 * stageWidth)

{button See also,AL(`Lingo_integer')}

integerP
Syntax: integerP(expression)

This function indicates whether the expression specified by expression is an integer:

· When expression can be evaluated to an integer, integerP is TRUE (1).

· When expression cannot be evaluated to an integer, integerP is FALSE (0).

The "P" in integerP stands for "predicate."

Example 1:

This statement checks whether the number 3 can be evaluated to an integer. Because it is an integer, the
Message window displays the number 1, which is the numeric equivalent of TRUE:

put integerP(3)
-- 1

Example 2:

This statement checks whether the number 3 can be evaluated to an integer. Because 3 is surrounded by
quotation marks, it cannot be evaluated to an integer, so the Message window displays the number 0, which is
the numeric equivalent of FALSE:

put integerP("3")
-- 0

Example 3:

This statement checks whether the numerical value of the string in field cast member Entry is an integer, and
displays an alert if it isn't.

if integerP(value(field "Entry")) = FALSE then ¬
 alert "Please enter an integer."

{button See also,AL(`Lingo_integerP')}

intersect
Syntax: intersect(rectangle1 , rectangle2)

This function determines the rectangle formed where rectangle1 and rectangle2 intersect.

Example:

This statement assigns the variable newRectangle to the rectangle formed where rectangle toolKit intersects
rectangle Ramp:

set newRectangle = intersect(toolKit, Ramp)

{button See also,AL(`Lingo_intersect')}

into
This code fragment occurs in a number of Lingo constructs, such as put...into.

isPastCuePoint
 Syntax: isPastCuePoint(whichSpriteOrSound, cuePointID)

This function returns the number of times a sprite passes a specified cue point in its media. This function can be
used with SoundEdit, QuickTime, or Xtra files that support cue points.

Replace whichSpriteOrSound with a sprite channel or a sound channel. SWA sounds can appear as sprites in
sprite channels, but they play sound in a sound channel. It is recommended that you refer to SWA sound sprites
by their sprite channel number rather than their sound channel number.

Replace cuePointID with a reference for a cue point:

· If cuePointID is an integer, isPastCuePoint returns 1 if the cue point has passed and 0 if it hasn't been
passed.

· If cuePointID is a name, isPastCuePoint returns the number of cue points passed that have that name.

If the value specified for cuePointID doesn't exist in the sprite or sound, the function returns 0.

The number returned by isPastCuePoint is based on the absolute position of the sprite in its media. For
example, if a sound passes cue point Main and then loops and passes Main again, isPastCuePoint returns 1
instead of 2.

When the result of isPastCuePoint is treated as a Boolean, the function returns TRUE if any cue points
identified by cuePointID have passed, and FALSE if no cue points are passed.

Example:

This statement allows a sound to play until the third time the cue point Chorus End is passed:

if (isPastCuePoint(sound 1, "Chorus End")=3) then
puppetSound 0

end if

isToggled of sprite
Syntax: the isToggled of sprite whichSprite

This button sprite property determines the state of toggle button sprites whose cast member was created with the
Button Editor.

· When isToggled of sprite is TRUE, the button sprite is not toggled.

· When isToggled of sprite is FALSE, the button sprite is toggled.

This property doesn't apply to push buttons.

This property can be tested and set.

Example:

This statement sets the button type of sprite 1 to the "normal" button type.

set the isToggled of sprite 1 to FALSE

item...of
Syntax: item whichItem of chunkExpression

or

item firstItem to lastItem of chunkExpression
This chunk expression keyword specifies an item or a range of items in a chunk expression. An item in this case
is any sequence of characters delimited by commas.

The terms whichItem, firstItem, and lastItem must be integers or integer expressions that refer to the position of
items in the chunk.

Chunk expressions refer to any character, word, item, or line in any source of strings. Sources of strings include
field cast members and variables that hold strings.

When the number that specifies the last item is greater than the item's position in the chunk expression, the
actual last item is specified instead.

Example 1:

This statement determines the third item in the chunk expression that consists of names of colors and displays
the result in the Message window:

put item 3 of "red, yellow, blue green, orange"
-- "blue green"

Example 2:

The result is the entire chunk "blue green" because this is the entire chunk within the commas.

This statement determines the third through fifth item in the chunk expression and displays the result in the
Message window:

put item 3 to 5 of "red, yellow, blue green, orange"
-- "blue green, orange"

Example 3:

This statement attempts to determine the third through fifth items in the chunk expression. Because there are
only four items in the chunk expression, the fourth item is used instead of the fifth item. The result appears in the
Message window:

put item 3 to 5 of "red, yellow, blue green, orange"
-- " blue green, orange"
put item 5 of "red, yellow, blue green, orange"
-- ""

Example 4:

This statement inserts the item Desk as the fourth item in the second line of the field cast member All Bids:

put "Desk" into item 4 of line 2 ¬
 of member "All Bids"

{button See also,AL(`Lingo_item_of')}

itemDelimiter
Syntax: the itemDelimiter

This property indicates the special character used to separate items.

You can use the itemDelimiter function to parse file names by setting itemDelimiter to a colon (:) on the
Macintosh or a backslash (\) in Windows. Restore the itemDelimiter to a comma (,) for normal operation.
Be sure to restore it to "," for normal operation.

The itemDelimiter function can be tested and set.

Example:

This handler determines the last component in a Macintosh pathname. The handler first records what the current
delimiter is and then changes the delimiter to a colon (:). When a colon is the delimiter, Lingo can use the last
item of to determine the last item in the chunk that makes up a Macintosh pathname. Before exiting, the
delimiter is reset to its original value.

on getLastComponent pathName
 set save = the itemDelimiter
 set the itemDelimiter = ":"
 set f = the last item of pathName
 set the itemDelimiter = save
 return f
end

key
Syntax: the key

This function indicates the last key that was pressed. (This value is the ANSI value assigned to the key, not the
numerical value.)

You can use the key in handlers that perform certain actions when the user presses specific keys. This is a
way to provide keyboard shortcuts and other forms of interactivity for the user. When used in a primary event
handler, the actions you specify are the first to be executed.

Note: The value of the key doesn't update if the user presses a key while Lingo is in a repeat loop.

Use the sample movie "Keyboard Lingo" to test which characters correspond to different keys on different
keyboards.

Example 1:

These statements cause the movie to pause when the user presses the Return key. By setting the
keyDownScript property to checkKey, the on prepareMovie handler makes the on checkKey handler the
first event handler executed when a key is pressed. The on checkKey handler checks whether the Return key is
pressed and pauses the movie if it is:

on prepareMovie
 set the keyDownScript to "checkKey"
end prepareMovie
on checkKey
 if the key = RETURN then pause
end

Example 2:

This on keyDown handler checks whether the last key pressed is the Enter key, and then calls the handler on
addNumbers if it is:

on keyDown
 if the key = ENTER then addNumbers
end keyDown

{button See also,AL(`Lingo_key')}

keyCode
Syntax: the keyCode

This function gives the numerical code for the last key pressed. (This keyboard code is the key's numerical value,
not the ANSI value.)

You can use the keyCode function to detect when the user has pressed the arrow or function keys, which cannot
be specified by the key function. The value of keyCode can vary on different keyboards.

Use the sample movie "Keyboard Lingo" to test which characters correspond to different keys on different
keyboards.

The keyCode function can be tested but not set.

Example 1:

This handler uses the Message window to display the appropriate key code each time a key is pressed:

on enterFrame
 set the keydownScript = "put the keyCode"
end

Example 2:

This statement checks whether the up arrow (whose key code is 126) is pressed, and goes to the previous
marker if it is:

if the keyCode = 126 then go to marker(-1)

Example 3:

This handler checks whether one of the arrow keys was pressed, and responds accordingly if one was:

on keyDown
case (the keyCode) of
123: TurnLeft
126: GoForward
125: BackUp
124: TurnRight

end case
end keyDown

{button See also,AL(`Lingo_keyCode')}

keyDown
See: on keyDown handler

keyDownScript
Syntax: the keyDownScript

This property specifies the Lingo that is executed when a key is pressed. The Lingo is written as a string,
surrounded by quotation marks. It can be a simple statement or a calling script for a handler.

When a key is pressed and the keyDownScript property is defined, Lingo executes the instructions specified
for the keyDownScript property first. Unless the instructions include the pass command so that the keyDown
message can pass on to other objects in the movie, no other on keyDown handlers are executed.

Setting the keyDownScript property performs the same function as using the when keyDown then
command that appeared in earlier versions of Director.

When the instructions you specify for the keyDownScript property are no longer appropriate, turn them off by
using the statement
set the keyDownScript to EMPTY.

Example 1:

This statement sets the keyDownScript to
 if the key = RETURN then go to the frame + 1. When this is in effect, the movie always goes to the
next frame whenever the user presses the Return key.

set the keyDownScript to "if the key = RETURN then go to ¬
the frame + 1"

Example 2:

This statement sets the keyDownScript to the custom handler myCustomHandler. A Lingo custom handler
must be enclosed in quotation marks when used with the keyDownScript property.

set the keyDownScript to "myCustomHandler"

{button See also,AL(`Lingo_keyDownScript')}

keyPressed
Syntax: the keyPressed

This system property gives the character assigned to the key that was last pressed. The result is in the form of a
string. When no key has been pressed, the keyPressed is an empty string.

The keyPressed property updates when the user presses keys while Lingo is in a repeat loop. This is an
advantage over the key, which doesn't update when Lingo is in a repeat loop.

Use the sample movie "Keyboard Lingo" to test which characters correspond to different keys on different
keyboards.

This property can be tested but not set.

Example:

The following statement checks whether the user pressed the Enter key in Windows or the Return key on a
Macintosh and runs the handler updateData if he or she did:

if the keyPressed = RETURN then updateData

keyUpScript
Syntax: the keyUpScript

This property specifies the Lingo that is executed when a key is released. The Lingo is written as a string,
surrounded by quotation marks. It can be a simple statement or a calling script for a handler.

When a key is released and the keyUpScript property is defined, Lingo executes the instructions specified for
the keyUpScript property first. Unless the instructions include the pass command so that the keyUp message
can pass on to other objects in the movie, no other on keyUp handlers are executed.

When the instructions you've specified for the keyUpScript property are no longer appropriate, turn them off
by using the statement set the keyUpScript to empty.

Example 1:

This statement sets the keyUpScript to if the key = RETURN then go the frame + 1. When this is
in effect, the movie always goes to the next frame whenever the user presses the Return key.

set the keyUpScript ¬
to "if the key = RETURN then go to the frame + 1"

Example 2:

This statement sets the keyUpScript to the custom handler myCustomHandler. A Lingo custom handler must
be enclosed in quotation marks when used with the keyUpScript property.

set the keyUpScript to "myCustomHandler"

{button See also,AL(`Lingo_keyUpScript')}

label
Syntax: label(expression)

This function indicates the frame associated with the marker label specified by expression. The term expression
should be a label in the current movie; if it's not, this function returns 0.

Example 1:

This statement sends the playback head to the tenth frame after the frame labeled Start:

go to label("Start") + 10

Example 2:

This statement assigns the frame number of the fourth item in the label list to the variable whichFrame:

set whichFrame = label(line 4 of the labelList)

{button See also,AL(`Lingo_label')}

labelList
Syntax: the labelList

This function gives a listing of the frame labels in the current movie, one label per line. The result is a Return-
delimited string containing one label per line. The labels are listed according to their order in the Score. (Because
the entries are Return-delimited, the end of the string is an empty line after the last Return. Be sure to remove
this empty line if necessary.)

Example 1:

This statement makes a listing of frame labels the content of the field cast member Key Frames:

put the labelList into member "Key Frames"

Example 2:

This handler determines the label that starts the current scene:

on FindLastLabel
repeat with i = 1 to the number of lines in the labelList
if the frame < label(line i of the labelList) then
return line i - 1 of the labelList

end if
end repeat
return line (the number of lines in the labelList - 1)¬
of the labelList

end FindLastLabel

{button See also,AL(`Lingo_labelList')}

labelString of member
Syntax: the labelString of member whichCastMember

This button cast member property determines the button's label. The labelString of member property's
value is a string.

This property can be tested but not set.

Example:

This statement assigns the current label of button cast member Panic to the variable buttonName:

set buttonName to the labelString of member "Panic"

last
Syntax: the last chunk in (chunkExpression)

This function identifies the last chunk specified by chunk of the chunk expression specified by chunkExpression.

Chunk expressions refer to any character, word, item, or line in any container of characters. Containers include
the contents of field cast members; variables that hold strings; and specified characters, words, items, lines, and
ranges within containers.

 Example 1:

This statement identifies the last word of the string "Macromedia, the multimedia company" and displays the
result in the Message window:

put the last word of "Macromedia,¬
 the multimedia company"

The result is the word company.

Example 2:

This statement identifies the last character of the string "Macromedia, the multimedia company" and displays the
result in the Message window:

put the last char of "Macromedia,¬
 the multimedia company"

The result is the letter y.

{button See also,AL(`Lingo_last')}

lastClick
Syntax: the lastClick

This function gives the time in ticks (60ths of a second) since the mouse button was last pressed.

The lastClick function can be tested but not set.

Example:

This statement checks whether it has been 10 seconds since the last mouse click, and sends the playback head
to the marker No Click if it has:

if the lastClick > 10 * 60 then go to "No Click"

{button See also,AL(`Lingo_lastClick')}

lastEvent
Syntax: the lastEvent

This function gives the time in ticks (60ths of a second) since the last mouse click, rollover, or key press
occurred.

Example:

This statement checks whether it has been 10 seconds since the last mouse click, rollover, or key press, and
sends the playback head to the marker Help if it has:

if the lastEvent > 10 * 60 then go to "Help"

{button See also,AL(`Lingo_lastEvent')}

lastFrame
Syntax: the lastFrame

This property is the number of the last frame in the movie.

The lastFrame property can be tested but not set.

Example:

This statement displays the number of the last frame of the movie in the Message window:

put the lastFrame

lastKey
Syntax: the lastKey

This function gives the time in ticks (60ths of a second) since the last key was pressed.

Example:

This statement checks whether it has been 10 seconds since the last key was pressed, and sends the playback
head to the marker No Key if it has:

if the lastKey > 10 * 60 then go to "No Key"

{button See also,AL(`Lingo_lastKey')}

lastRoll
Syntax: the lastRoll

This function gives the time in ticks (60ths of a second) since the mouse was last moved.

Example:

This statement checks whether it has been 45 seconds since the mouse was last moved, and sends the
playback head to the marker No Roll if it has:

if the lastRoll > 45 * 60 then go to "Attract Loop"

{button See also,AL(`Lingo_lastRoll')}

left of sprite
Syntax: the left of sprite whichSprite

This sprite property is the left horizontal coordinate of the bounding rectangle of the sprite specified by
whichSprite.

Sprite coordinates are measured in pixels, starting with (0,0) at the upper left corner of the Stage.

The left of sprite property can be tested, but not set. Use the rect of sprite property to set the left
horizontal coordinate of a sprite.

Example 1:

The following statement determines whether the sprite's left edge is to the left of the Stage's left edge. If the
sprite's left edge is to the Stage's left edge, the script runs the handler offLeftEdge:

if the left of sprite 3 < 0 then offLeftEdge

Example 2:

This statement measures the left horizontal coordinate of the sprite numbered (i + 1) and assigns the value to the
variable named vLowest:

set vLowest = the left of sprite (i + 1)

{button See also,AL(`Lingo_left_of_sprite')}

length
Syntax: length(string)

This function gives the number of characters in the string specified by string. Spaces and control characters like
Tab and Return count as characters.

Example 1:

This statement displays the number of characters in the string "Macro"&"media":

put length("Macro" & "media")
-- 10

Example 2:

This statement checks whether the content of the field cast member File Name has more than 31 characters and
displays an alert if it does:

if length(field "File Name") > 31 then ¬
 alert "That file name is too long."

{button See also,AL(`Lingo_length')}

line...of
Syntax: line whichLine of chunkExpression

or

line firstLine to lastLine of chunkExpression
This chunk expression keyword specifies a line or a range of lines in a chunk expression. A line chunk is any
sequence of characters delimited by Return characters, not by line breaks caused by text wrapping.

The expressions whichLine, firstLine, and lastLine must be integers that specify a line in the chunk.

Chunk expressions refer to any character, word, item, or line in any source of characters. Sources of characters
include field cast members and variables that hold strings.

Example 1:

This statement assigns the first four lines of the variable Action to the field cast member To Do:

set the text of member "To Do" = line 1 to 4 ¬
 of Action

Example 2:

This statement inserts the word and after the second word of the third line of the string assigned to the variable
Notes:

put "and" after word 2 of line 3 of Notes

{button See also,AL(`Lingo_line_of')}

lineCount of member
Syntax: the lineCount of member whichCastMember

This field cast member property indicates the number of lines that appear in the field cast member on the Stage.
The number of lines depends on how the string wraps, not the number of carriage returns in the string.

Example:

This statement determines how many lines the field cast member Today's News has when it appears on the
Stage and assigns the value to the variable numberOfLines:

set numberOfLines = the lineCount of member "Today's News"

lineHeight
Syntax: lineHeight(member whichCastMember, lineNumber)

This function gives the height, in pixels, of a specific line in the specified field cast member.

Example:

This statement determines the height, in pixels, of the first line in the field cast member Today's News and
assigns the result to the variable headline:

set headline = lineHeight(member "Today's News",1)

lineHeight of member
Syntax: the lineHeight of member whichCastmember

This field property determines the line spacing used to display the specified field cast member. The parameter
whichCastmember can be either a cast member name or number.

Setting the lineHeight of member temporarily overrides the system's setting. After closing a movie, the
field's line spacing returns to the system's setting. To use the desired line spacing throughout a movie, set the
lineHeight of member in an on prepareMovie handler.

The lineHeight of member property can be tested and set.

Example:

This statement sets the variable oldHeight to the current lineHeight of member setting for the field cast
member Rokujo Speaks:

set oldHeight = the lineHeight of member "Rokujo Speaks"

{button See also,AL(`Lingo_lineHeight_of_member')}

linePosToLocV
Syntax: linePosToLocV(member whichCastMember, lineNumber)

This function gives a specific line's distance, in pixels, from the top edge of the field cast member.

Example:

This statement measures the distance, in pixels, that the second line of the field cast member Today's News is
from the top of the field cast member and assigns the result to the variable startOfString:

set startOfString = linePosToLocV(member "Today's News",2)

lineSize of member
Syntax: the lineSize of member whichCastmember

This shape cast member property determines the thickness, in pixels, of the border of the specified shape cast
member. It can be tested and set.

Example:

This statement sets the thickness of the shape cast member Answer Box to 5 pixels:

set the lineSize of member "Answer Box" = 5

lineSize of sprite
Syntax: the lineSize of sprite whichSprite

This sprite property determines the thickness, in pixels, of the border of the sprite specified by whichSprite. The
lineSize of sprite property applies only to shape sprites. For non-rectangular shapes the border is the
edge of the shape, not its bounding rectangle.

The setting of the lineSize of sprite takes precedence over the lineSize of member. If Lingo
changes the lineSize of member while a sprite is on Stage, the sprite's lineSize settting remains in
effect until the sprite is finished.

For the value set by Lingo to last beyond the current sprite, the sprite must be a puppet.

The lineSize of sprite property can be tested and set.

Example 1:

This statement displays the thickness of the border of sprite 4:

set thickness = the lineSize of sprite 4

Example 2:

This statement sets the thickness of the border of sprite 4 to 3 pixels:

set the lineSize of sprite 4 to 3

list
Syntax: list(value1 , value2 , value3...)

This function defines a linear list made up of the values specified by value1, value2, value3.... This is an
alternative to using square brackets ([]) to create a list.

The maximum length of a single line of executable Lingo is 256 characters. You can't create a very large list
using this command. If you have a large amount of data that you want to put in a list, surround the data in square
brackets and put the data into a field. You can then assign the field to a variable. The variable's content is a list of
the data.

Example:

This statement sets the variable named designers equal to a linear list that contains the names
Gee, Kayne, and Ohashi:

set designers = list("Gee", "Kayne", "Ohashi")

The result is the list ["Gee", "Kayne", "Ohashi"].

listP
Syntax: listP(item)

This function indicates whether the item specified by item is a list, rect, or point.

· When listP is TRUE (1), the item specified by item is a list, rect, or point.

· When listP is FALSE (0), the item specified by item is not a list, rect, or point.

Example 1:

This statement checks whether the list in the variable designers is a list, rect, or point and displays the result in
the Message window:

put listP(designers)

The result is 1, which is the numerical equivalent of TRUE.

Example 2:

This statement checks whether the point in the variable Spot is a list, rect, or point and displays the result in the
Message window:

put listP(Spot)

The result is 1, which is the numerical equivalent of TRUE.

{button See also,AL(`Lingo_listP')}

loaded of cast
This is obsolete. Use loaded of member instead.

loaded of member
Syntax: the loaded of member whichCastMember

This cast member property specifies whether the cast member specified by whichCastMember is loaded into
memory.

· When the loaded of member is TRUE, the cast member is loaded into memory.

· When the loaded of member is FALSE, the cast member is not loaded into memory.

· Different cast member types have slightly different behaviors for loading.

· Shape and script cast members are always loaded in memory.

· Movie cast members are never unloaded.

· Digital video cast members can be preloaded and unloaded independently of whether they are being used.
(A digital video cast member plays faster from memory than from disk.)

The loaded of member property can be tested but not set.

Example:

This statement checks whether cast member Demo Movie is loaded in memory and goes to an alternate movie if
it isn't:

if the loaded of member "Demo Movie" = FALSE then ¬
go to "Waiting"

{button See also,AL(`Lingo_loaded_of_member')}

loc of sprite
Syntax: the loc of sprite whichSprite

This property determines the Stage coordinates of the specified sprite's registration point. The value is given as a
point. The loc of sprite property can be tested and set.

Example:

This statement checks the Stage coordinates of sprite 6. The result is the point
(50, 100):

put the loc of sprite 6
-- point(50, 100)

{button See also,AL(`Lingo_loc_of_sprite')}

locH of sprite
Syntax: the locH of sprite whichSprite

This sprite property is the horizontal position of the specified sprite's registration point. Sprite coordinates are
relative to the upper left corner of the Stage. See Using Director for information about registration points.

The locH of sprite property can be tested and set. For the value set by Lingo to last beyond the current
sprite, the sprite must be a puppet.

Example 1:

This statement checks whether the horizontal position of sprite 9's registration point is to the right of the right
edge of the monitor and moves the sprite's right edge to the edge of the Stage if it is:

if the locH of sprite 9 > the stageRight then ¬
 set the locH of sprite 9 to the stageRight

Example 2:

This statement puts sprite 15 at the same horizontal location as the mouse click:

set the locH of sprite (15) to the mouseH

{button See also,AL(`Lingo_locH_of_sprite')}

locToCharPos
Syntax: locToCharPos(member whichCastMember, location)

This function returns a number that identifies which character in the specified field cast member is closest to the
point within the field specified by location. The value for location is a point relative to the upper left corner of the
field cast member.

The value 1 corresponds to the first character in the string, the value 2 corresponds to the second character in
the string, and so on.

Example 1:

This statement determines which character is closest to the point 100 pixels to the right and 100 pixels below the
upper left corner of the field cast member Today's News. The statement then assigns the result to the variable
PageDesign:

set pageDesign to locToCharPos(member "Today's News", point(100,100))

Example 2:

This handler tells which character is under the cursor when the user clicks the mouse over the field sprite
Information:

on mouseDown
put locToCharPos(member "Information", the clickLoc - ¬
the loc of sprite (the clickOn))

end

locV of sprite
Syntax: the locV of sprite whichSprite

This sprite property is the vertical position of the specified sprite's registration point. Sprite coordinates are
relative to the upper left corner of the Stage. See Using Director for information about registration points.

The locV of sprite property can be tested and set. For the value set by Lingo to last beyond the current
sprite, the sprite must be a puppet.

Example 1:

This statement checks whether the vertical position of sprite 9's registration point is below the bottom of the
Stage, and moves the sprite's bottom edge to the bottom of the Stage if it is:

if the locV of sprite 9 > the stageBottom then ¬
 set the locV of sprite 9 to the stageBottom

Example 2:

This statement puts sprite 15 at the same vertical location as the mouse click:

set the locV of sprite (15) to the mouseV

{button See also,AL(`Lingo_locV_of_sprite')}

locVToLinePos
Syntax: locVToLinePos(member whichCastMember, locV)

This function returns the number of the line of characters that appears at the vertical position specified by locV.
The locV value is the number of pixels from the top of the field cast member, not the part of the field cast member
that currently appears on the Stage.

Example:

This statement determines which line of characters appears 150 pixels from the top of the field cast member
Today's News and assigns the result to the variable pageBreak:

put locVToLinePos(member "Today's News", 150) into pageBreak

log
Syntax: log(number)

This function calculates the natural logarithm of the number specified by number, which must be a decimal
number greater than zero.

Example 1:

This statement assigns the natural logarithm of 10.5 to the variable Answer. The result is calculated to two
decimal places:

set Answer = log(10.5)

Example 2:

This statement calculates the natural logarithm of the square root of the value Number, and then assigns the
result to the variable Answer:

set Answer = log(the sqrt of Number)

long
See: the date and time functions

loop
Syntax: loop

This keyword refers to the marker. The loop keyword with the go to command is equivalent to the statement
go to the marker.

Example:

This handler loops the movie between the previous marker and the current frame:

on exitFrame
 go loop
end exitFrame

loop of cast
This is obsolete. Use loop of member instead.

loop of member
Syntax: the loop of member whichCastmember

This digital video cast member property determines whether the specified digital video movie cast member is set
to loop.

· When the loop of member is TRUE, the digital video movie cast member loops.

· When the loop of member is set to FALSE, the digital video movie cast member doesn't loop.

Example:

This statement sets the QuickTime movie cast member Demo to loop:

set the loop of member "Demo" to 1

machineType
Syntax: the machineType

This function indicates the kind of computer that is currently being used. These codes indicate the type of
computer:

1 Macintosh 512Ke 25 Macintosh LCIII

2 Macintosh Plus 27 PowerBook Duo 210

3 Macintosh SE 28 Macintosh Centris 650

4 Macintosh II 30 PowerBook Duo 230

5 Macintosh IIx 31 PowerBook 180

6 Macintosh IIcx 32 PowerBook 160

7 Macintosh SE/30 33 Macintosh Quadra 800

8 Macintosh Portable 35 Macintosh LC II

9 Macintosh IIci 42 Macintosh IIvi

1
1

Macintosh IIfx 45 PowerMac 7100/70

1
5

Macintosh Classic 46 Macintosh IIvx

1
6

Macintosh IIsi 47 Macintosh Color Classic

1
7

Macintosh LC 48 PowerBook 165c

1
8

Macintosh Quadra 900 50 Macintosh Centris 610

1
9

PowerBook 170 52 PowerBook 145

2
0

Macintosh Quadra 700 53 PowerComputing 8100/100

2
1

Classic II 73 PowerMac 6100/60

2
2

PowerBook 100 76 Macintosh Quadra 840av

2
3

PowerBook 140 256 IBM PC-type machine

2
4

Macintosh Quadra 950

Note: These codes are for general classification purposes only. It is unwise to use them to make assumptions
about the performance or screen size of the computer your movie is running on.

Example 1:

This statement checks whether the computer is a Macintosh Classic and plays the movie "Classic Movie" if it is:

if the machineType = 15 then play "Classic Movie"

Example 2:

These statements check whether the current operating system is Windows or Macintosh, and runs a handler
intended for that platform:

if the machineType = 256 then

 WindowsActions
else
 MacintoshActions
end if

{button See also,AL(`Lingo_machineType')}

map
Syntax: map(targetRect, sourceRect, destinationRect)

or

map(targetPoint, sourceRect, destinationRect)
This function is used to position and size a rectangle or point, based on the relationship of a source rectangle to
a target rectangle.

 Example:

This handler modifies the rectangle of sprite n so that the sprite's new rect has the same relationship to its old
rect as the dimensions of the Stage have to the rect of sprite 2:

on scaleMySprite n
 set the stretch of sprite to TRUE
 set the rect of sprite n = ¬
 map(the rect of sprite n, ¬
 the rect of sprite 2, ¬
 the rect of the stage)
 updateStage
end scaleMySprite

margin of member
Syntax: the margin of member whichCastmember

This field cast member property determines the size, in pixels, of the margin inside the field box.

Example:

The following sets the margin inside the box for the field cast member Today's News to 15 pixels:

set the margin of member "Today's News" to 15

marker
Syntax: marker(integerExpression)

or
marker("string")

This function returns the frame number of markers before or after the current frame. This can be useful for
implementing a "next" or "previous" button, or for setting up an animation loop.

The argument integerExpression can evaluate to any positive or negative integer or zero. For example:

· marker(2) returns the frame number of the second marker after the current frame.

· marker(1) returns the frame number of the first marker after the current frame.

· marker(0) returns the frame number of the current frame, if the current frame is marked, or the frame
number of the previous marker if the current frame is not marked.

· marker(-1) returns the frame number of the first marker before the current frame.

· marker(-2) returns the frame number of the second marker before the current frame.

If the argument for marker is a string, marker returns the frame number of the first frame whose marker label
matches the string.

Example 1:

This statement sends the playback head to the beginning of the current frame:

go to marker(0)

Example 2:

This statement sets the variable nextMarker equal to the next marker in the Score:

set nextMarker = marker(1)

{button See also,AL(`Lingo_marker')}

mAtFrame
This method was used in earlier versions of Director. It is now obsolete and has been replaced by stepFrame
events.

{button See also,AL(`Lingo_mAtFrame')}

max
Syntax: max(list)

or

max (value1, value2, value3, ...)
This function returns the highest value in the specified list, or the highest of a given series of values.

The max function also works with ASCII characters, similar to the way that < and > operators work with strings.

Example:

This handler assigns the variable Winner the maximum value in the list Bids, which consists of [#Castle:600,
#Schmitz:750, #Wang:230]. The result is then inserted in the content of the field cast member Congratulations:

on findWinner Bids
 set Winner = max(Bids)
 set the text of member "Congratulations" = ¬
 "You have won, with a bid of $" & Winner &"!"
end

maxInteger
Syntax: the maxInteger

This property returns the largest whole number that is supported by the system. On most personal computers,
this is 2,147,483,647 (2 to the 31st power, minus 1).

This can be useful for initializing boundary variables before a loop or for limit testing.

To use numbers larger than the range of addressable integers, use floating-point numbers instead. They aren't
processed as fast as integers, but support a greater range of values.

Example:

This statement generates a table, in the Message window, of the maximum decimal value that can be
represented by a certain number of binary digits.

on showMaxValues
set b = 31
set v = the maxInteger
repeat while v > 0
put b && "-" && v
set b = b-1
set v = v/2

end repeat
end showMaxValues

mci
Syntax: mci "string "

The multimedia extensions for Windows respond to commands sent to the Media Control Interface (MCI). You
can use the mci command to pass the strings specified by strings to the Windows media control interface.

Strings passed by the mci command play only in Windows; they are not executed on the Macintosh. Because
the Macintosh does not support the MCI interface, the mci command gives you a way to include commands
intended for the Windows environment within a movie that you create and can play on the Macintosh.

Example:

This statement makes the command play cdaudio from 200 to 600 track 7 play only when the movie
plays back in Windows:

mci "play cdaudio from 200 to 600 track 7"

mDescribe
This method was used in earlier versions of Director to return a list of all commands, arguments, and results that
an XObject had available. Use mMessageList instead.

{button See also,AL(`Lingo_mDescribe')}

mDispose
This method was used in earlier versions of Lingo to support XObjects. Use lists and parent lists instead.

me
Syntax: me

This keyword can be used within parent scripts and behaviors as a shorthand means of referring to the current
object that is an instance of the parent script or the behavior. It's basically a variable that contains the memory
address of the object.

The term itself has no predefined meaning in Lingo. The term me is used by convention.

Example 1:

This statement sets the object myBird1 to the script named Bird. The me keyword accepts the parameter script
Bird and is used to return that parameter:

set myBird1 to new(script "Bird")

This is the on new handler of the Bird script:

on new me
 return me
end

Example 2:

These are two sets of handlers that make up a parent script. The first set uses me to refer to the child object. The
second set uses the variable myAddress to refer to the child object. In all other respects, the parent scripts are
the same:

This is the first set:

property myData
on new me, theData
set myData to theData
return me

end
on stepFrame me
ProcessData me

end

This is the second set:

property myData
on new myAddress, theData
set myData to theData
return myAddress

end
on stepFrame myAddress
ProcessData myAddress

end

{button See also,AL(`Lingo_me')}

media of member
Syntax: the media of member whichCastmember

This function returns data that describes the specified cast member. The result is a set of numbers that identifies
the cast member.

You can use the media of member to copy the content of one cast member into another cast member by
setting the second cast member's media of member value to the media of member value for the first.

For a film loop cast member, the media of member is a selection of frames and channels in the Score.

Setting the media of member can use large amounts of memory. It is best used during authoring only. To
swap media in a projector, it's more efficient to set the media of sprite property.

Example

This statement copies the content of the cast member Sunrise into the cast member Dawn by setting the media
of member value for Dawn to the media of member value for Sunrise:

set the media of member "Dawn" to the ¬
media of member "Sunrise"

{button See also,AL(`Lingo_media_of_member')}

mediaReady of member
Syntax: the mediaReady of member whichCastmember

This property determines if the specifed cast member is downloaded from the internet and available on the local
disk

· When the mediaReady of member is TRUE, the media is available on a local disk.

· When the mediaReady of member is FALSE, the media isn't available on a local disk.

This property is only useful when streaming a movie or cast file. Streaming a movie is activated by setting the
Movie > Playback properties in the Modify menu to Use Media As Available or Show Placeholders.

For a demonstration of the mediaReady of member function, see the sample movie Streaming Shockwave.

This property can be tested but not set.

Example :

This statement changes cast members when the desired cast member is downloaded and available locally.

if the mediaReady of member "background" = TRUE then
set the memberNum of sprite 2 to 10
-- 10 is the number of cast member "background"

end if

member
Syntax: member whichCastmember

member whichCastmember of castLib whichCast

This keyword indicates that the object specified by whichCastmember is a cast member. If whichCastmember is
a string, it is used as the cast member name. If whichCastmember is an integer, it is used as the cast member
number.

Example 1:

The following statement sets the hilite property of the button cast member named Enter Bid to TRUE:

set the hilite of member "Enter Bid" to TRUE

Example 2:

This statement puts the name of sound cast member 132 into the variable soundName:

set soundName = the name of member 123 ¬
of castLib "Las Vegas"

Example 3:

This statement determines whether cast member 9 has a name assigned:

if the name of member 9 = EMPTY then exit

member of sprite
Syntax: the member of sprite whichSprite

This property specifies a sprite's cast member and cast.

The member of sprite property differs from memberNum of sprite, which specifies only the sprite's
number for its location in the cast but doesn't specify the cast itself. The member of sprite property also
differs from mouseMember and the obsolete castNum sprite properties, neither of which specifies the sprite's
cast.

When assigning a sprite's member property, you can use one of the following formats:

· The full member and cast description (set the member of sprite x to ¬
 member A of castLib B)

· The cast member name (set the member of sprite x to ¬
member "MELODY.WAV")

· The unique integer that includes all cast libraries and corresponds to the mouseMember function (set
the member of sprite x to 132).

If you use only the cast member name, Director finds the first cast member that has that name in all current
casts. If the name is duplicated in two casts, then only the first name is used.

To specify a cast member by number only when there are multiple casts, use the memberNum sprite property,
which changes the member's position in its cast without affecting the sprite's cast (set the memberNum of
sprite x ¬
to 132).

You can determine the memberNum sprite property from the member sprite property by using the phrase the
number of the member of sprite x. You can also retrieve other cast member properties such as the
name of the member ¬
of sprite x or the rect of the member of sprite x.

The cast member assigned to a sprite channel is only one of that sprite's properties. The sprite has other
properties that vary with the type of media element in that channel in the Score. For instance, if you replace a
bitmap with an unfilled shape by setting the member sprite property, the shape sprite's lineSize sprite property
doesn't automatically change. You'll likely not see the shape.

Similar sprite property mismatches can occur if you change the member of a field sprite to a video. Although you
can change all sprite properties through the type sprite property, it's generally more useful and predictable to
replace cast members with similar cast members. For example, replace bitmap sprites with bitmap cast
members.

This property can be tested and set.

Example 1:

This statement assigns cast member 3 of cast number 4 to sprite 15:

set the member of sprite 15 = member 3 of castLib 4

Example 2:

The following handler shows a way to use the global numeric identifier from the mouseMember function with the
cast member and cast identifier of the member sprite property:

-- This handler determines whether the mouse is within
-- the irregular outlines of a bitmap sprite with matte ink
on exitFrame
set MM to the mouseMember
set target to the number of member "hotspot" of castLib "extra buttons"
if target = MM then put "above the hotspot"
go the frame

end exitFrame

Example 3:

This handler uses the member sprite property in a different way, by converting
the mouseMember numeric identifier into a name including cast member and cast name:

-- A handler to highlight a sprite when clicked on, and
-- to revert to "copy" ink if rolled-off:
on mouseDown
set myMember to the member of sprite (the clickOn)
set copyInk to 0
set notCopy to 4
repeat while the stillDown
set MM to the mouseMember
if (MM < 1) then set newInk to copyInk
else if (member MM = myMember) then set newInk to notCopy
else set newInk to copyInk

set the ink of sprite (the clickOn) to newInk
updateStage

end repeat
end

{button See also,AL(`Lingo_member')}

memberNum of sprite
Syntax: the memberNum of sprite whichSprite

This sprite property identifies the number of the cast member associated with the specified sprite. Its value is the
number for the cast member's location only; it doesn't refer to the cast member's cast.

The memberNum property is useful for switching cast members assigned to a sprite as long as the cast members
are within the same cast. To switch among cast members in different casts, use the member of sprite. For
the value set by Lingo to last beyond the current sprite, the sprite must be a puppet.

A typical use of the memberNum property is to exchange cast members when a sprite is clicked to simulate the
reversed image that appears when a standard button is clicked. You can also make some action in the movie
depend on which cast member is assigned to a sprite.

When you set this property within a script while the playback head is not moving, be sure to use the
updateStage command to redraw the Stage.

The memberNum of sprite property can be tested and set.

Example 1:

The following statement switches the cast member assigned to sprite 3 to cast member number 35:

set the memberNum of sprite 3 to 35

Example 2:

This statement assigns the cast member Narrator to sprite 10 by setting the memberNum of sprite to
Narrator's cast number:

set the memberNum of sprite 10 = the number of member "Narrator"

Example 3:

This handler swaps bitmaps when a button is clicked or rolled-off. It assumes that the artwork for the down button
immediately follows the artwork for the up button in the same cast:

on mouseDown
set upButton to the memberNum of sprite (the clickOn)
set downButton to upButton + 1
repeat while the stillDown
if rollover(the clickOn) then set the memberNum of sprite (the

clickOn) to ¬ downButton
else set the memberNum of sprite (the clickOn) to upButton
updateStage

end repeat
if rollover (the clickOn) then put "the button was activated"

end

{button See also,AL(`Lingo_memberNum_of_sprite')}

members
See: number of members property

memberType of member
Use type of member instead.

{button See also,AL(`Lingo_memberType_of_member')}

memorySize
Syntax: the memorySize

This function returns the total amount of memory allocated to the program, whether in use or free. It is useful for
checking minimum memory requirements. The value is given in bytes.

Example:

This statement checks whether the computer allocates less than 500K and displays an alert if it does:

if the memorySize < 500 * 1024 then alert ¬
 "There is not enough memory to run this movie."

{button See also,AL(`Lingo_memorySize')}

menu
Syntax: menu: menuName

itemName | script

itemName | script

...

or

menu: menuName

itemName | script

itemName | script

 ...
[more menus]

This keyword specifies the actual content of custom menus, in conjunction with the installMenu command.
Menu definitions are typed in field cast members. You refer to a particular menu definition by its cast member
name or number.

The menu keyword specifies the name of the menu. In the subsequent lines you can specify the menu items for
that menu. You can have a script execute when the user chooses that item by putting the script after the vertical
bar (|) symbol. A new menu is defined by the subsequent occurrence of the menu keyword.

On the Macintosh, you can use special characters to define custom menus. These special characters are case-
sensitive. For example, to make a menu item bold, the letter B must be uppercase. Because this formatting isn't
available for many Windows computers, avoid this formatting in projectors that might play in Windows.)

Symbol Example-Description (key combination)
| Open/O | go to frame "Open"-Associates a script with the menu item

@ menu: @-On the Macintosh, creates the Apple symbol and enables Macintosh
menu bar items when you define an Apple menu

(Save(-Disables the menu item

(- (- -Creates a disabled line in the menu

!Ã !ÃEasy Select-On the Macintosh, checks the menu with a checkmark (Option-
v)

<B Bold<B-On the Macintosh, sets the menu item's style to Bold

<I Italic<I-On the Macintosh, sets the style to Italic

<U Underline<U-On the Macintosh, sets the style to Underline

<O Outline<O-On the Macintosh, sets the style to Outline

<S Shadow<S-On the Macintosh, sets the style to Shadow

/ Quit/Q-Defines a command-key equivalent

Special symbols should follow the item name and precede the vertical bar (|) symbol. You can also use more
than one special character to define a menu item. Using <B<U, for example, sets the style to Bold and Underline.

Note: The following formatting tags work on the Macintosh only:

@ (for the Apple symbol)

!Ã (Checkmarks for menu items)
<B (Boldface)

<I (Italic text)

<U (Underlined text)

<0 (Outlined text)

<S (Shadow text)

Example:

This set of statements specifies the content of a custom File menu. The Convert menu item runs the custom
handler convertThis:

menu: File
Open/O | go to frame "Open"
Close/W | go to frame "Close"
Convert/C | convertThis
 (-
Quit/Q | go to frame "Quit"

{button See also,AL(`Lingo_menu')}

menuItem
 See: name of menuItem, number of menuItems, checkMark of menuItem, enabled of menuItem, and
script of menuItem menu item properties.

method
Syntax: method methodName [argument1] [, argument2] ...

This keyword is now obsolete. It was used to define a method in earlier versions of Director. Use lists and parent
scripts instead.

{button See also,AL(`Lingo_method')}

mGet
This method was used for managing arrays in earlier versions of Director. Use lists instead.

{button See also,AL(`Lingo_mGet')}

min
Syntax: min(list)

or

min (a1, a2, a3...)
This function specifies the minimum value in the list specified by list.

Example:

This handler assigns the variable vLowest the minimum value in the list bids, which consists of [#Castle:600,
#Shields:750, #Wang:230]. The result is then inserted in the content of the field cast member Sorry:

on findLowest bids
set vLowest = min(bids)
set the text of member "Sorry" = ¬
 "We're sorry, your bid of $" & vLowest && "is not a
 winner!"
end

{button See also,AL(`Lingo_min')}

mInstanceRespondsTo
This method is now obsolete. It was used in earlier versions of Director to check whether an instance of an
XObject responds to a specific message.

mMessageList
Syntax: XObject(mMessageList)

This method is used with Xtras and XObjects to return a string that describes the Xtra or XObject and its
methods.

mName
This method is now obsolete. It was used to determine which XObject created a specific instance.

mNew
This method is now obsolete. It was used to create XObjects and factories in earlier versions of Director. You
should now use parent scripts and lists instead.

{button See also,AL(`Lingo_mNew')}

mod
Syntax: integerExpression1 mod integerExpression2

This arithmetic operator performs the arithmetic modulus operation on two integer expressions. In this operation,
integerExpression1 is divided by integerExpression2.

The resulting value of the entire expression is the integer remainder of the division. It always has the sign of
integerExpression1.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement divides 7 by 4 and then displays the remainder in the Message window:

put 7 mod 4

The result is 3.

Example 2:

This handler sets the ink effect of all odd-numbered sprites to copy, which is the ink effect specified by the
number 0. First, the handler checks whether the sprite that has the number in the variable mySprite is an odd-
numbered sprite by dividing the sprite number by 2 and then checking whether the remainder is 1. When the
remainder is 1, which is the result for an odd-numbered number, the ink effect is set to copy:

on setInk
if (mySprite mod 2) = 1 then
set the ink of sprite mySprite to 0

else
set the ink of sprite mySprite to 8

end if
end setInk

Example 3:

This handler regularly cycles a sprite's cast member among a number of bitmaps:

on exitFrame
global gCounter
-- These are sample values for bitmap cast member numbers
set theBitmaps to [2,3,4,5,6,7]
-- Specify which sprite channel is affected
set theChannel to 1
-- This cycles through the list

 set gCounter to 1 + (gCounter mod count(theBitmaps))
set the memberNum of sprite theChannel to getAt(theBitmaps, gCounter)
go the frame

end exitFrame

modal of window
Syntax: the modal of window "window "

This window property specifies whether movies can respond to events that occur outside the window specified
by window.

· When the modal of window property is TRUE, movies cannot respond to events outside the window.

· When the modal of window property is FALSE, movies can respond to events outside the window.

Setting the modal of window to TRUE lets you make a specific movie in a window the only movie that the
user can interact with.

Example:

This statement lets movies respond to events outside of the window Tool Panel:

set the modal of window "Tool Panel" to FALSE

modified of cast
This is obsolete. Use modified of member instead.

modified of member
Syntax: the modified of member whichCastmember

This function indicates whether the cast member specified by whichCastmember has been modified since it was
read from the movie file.

· When the modified of member is TRUE (1), the cast member has been modified since it was read
from the movie file.

· When the modified of member is FALSE (0), the cast member has not been modified since it was read
from the movie file.

Example:

This statement tests whether the cast member Introduction has been modified since it was read from the movie
file:

put the modified of member "Introduction"

The result is 0, which is the numerical equivalent of FALSE.

mostRecentCuePoint
 Syntax: the mostRecentCuePoint

This property is the number that identifies the most recent cue point passed in the sprite. The value is the cue
point's ordinal number of the cue point. If no cue points have been passed, the value is 0.

This property can be used with SoundEdit, QuickTime digital video, and Xtras that support cue points.

Shockwave Audio (SWA) sounds can appear as sprites in sprite channels, but they play sound in a sound
channel. It is recommended that you refer to SWA sound sprites by their sprite channel number rather than their
sound channel number.

Example:

This examples has the message window display the number for the most recent cue point passed in the sprite in
sprite channel 1:

put the mostRecentCuePoint of sprite 1
{button See also,AL(`Lingo_mostRecentCuePoint')}

mouseChar
Syntax: the mouseChar

This integer function, used for field sprites, gives the number of the character that is under the cursor when the
function is called. The count is from the beginning of the field. If the mouse is not over a field or is in the gutter of
a field, the result
is -1.

The value of the mouseChar function can change in a handler or repeat loop. If a handler or repeat loop is using
this function multiple times, it's usually a good idea to call the function once and assign its value to a local
variable.

Example 1:

This statement determines whether the cursor is not over a field sprite and changes the content of the field cast
member Instructions to "Please point to a character." when it is:

if the mouseChar = -1 then ¬
set member "Instructions" = ¬
 "Please point to a character."

Example 2:

This statement assigns the character under the cursor in the specified field to the variable currentChar:

set currentChar = char (the mouseChar) of ¬
 member (the mouseMember)

Example 3:

This handler highlights the character under the cursor when the mouse button is pressed:

on mouseDown
set thisField to the member of sprite (the clickOn)
if the mouseChar < 1 then exit
set lastChar to 0
repeat while the stillDown
set MC to the mouseChar
if MC < 1 then next repeat
if MC <> lastChar then
hilite word MC of field thisField
set lastChar to MC

end if
end repeat

end

{button See also,AL(`Lingo_mouseChar')}

mouseDown
Syntax: the mouseDown

This function indicates whether the mouse button is currently being pressed.

· When the mouseDown is TRUE, the button is being pressed.

· When the mouseDown is FALSE, the button is not being pressed.

Example 1:

This handler causes the movie to beep until the user clicks the mouse:

on enterFrame
 repeat while the mouseDown = FALSE
 beep
 end repeat
end

Example 2:

This statement instructs Lingo to exit the repeat loop or handler it is in when the user clicks the mouse:

if the mouseDown then exit

{button See also,AL(`Lingo_mouseDown')}

mouseDownScript
Syntax: the mouseDownScript

This property specifies the Lingo that is executed when the mouse button is pressed. The Lingo is written as a
string, surrounded by quotation marks. It can be a simple statement or a calling script for a handler.

When the mouse button is pressed and the mouseDownScript property is defined, Lingo executes the
instructions specified for the mouseDownScript property first. Unless the instructions include the pass
command so that the mouseDown message can pass on to other objects in the movie, no other on mouseDown
handlers are executed.

Setting the mouseDownScript property performs the same function as the when keyDown then command
that appeared in earlier versions of Director.

When the instructions you've specified for the mouseDownScript property are no longer appropriate, turn them
off by using the statement set the mouseDownScript to empty.

The mouseDownScript property can be tested and set. The default value is EMPTY, which means that the
mouseDownScript property has no Lingo at all assigned to it.

Example 1:

This statement sets the mouseDownScript to if the mouseDown then go to next. When this is in
effect and the user clicks the mouse button, the playback head always jumps to the next marker in the movie.

set the mouseDownScript ¬
 to "if the mouseDown then go to next"

Example 2:

This statement sets the mouseDownScript to if the clickOn = 0 then beep. When this in effect and
the user clicks anywhere on the Stage, the computer beeps.

set the mouseDownScript ¬
 to "if the clickOn = 0 then beep"

Example 3:

This statement sets the mouseDownScript to the custom handler, myCustomHandler. A Lingo custom handler
must be enclosed in quotation marks when used with the mouseDownScript property.

set the mouseDownScript to "myCustomHandler"

{button See also,AL(`Lingo_mouseDownScript')}

mouseH
Syntax: the mouseH

This function indicates the horizontal position of the mouse cursor. The value of mouseH is the number of pixels
the cursor is positioned from the left edge of the Stage.

The mouseH function is useful for moving sprites to the horizontal position of the mouse cursor and checking
whether the cursor is within a region of the Stage. Using mouseH and mouseV functions together, you can
determine the cursor's exact location.

The mouseH function can be tested but not set.

Example 1:

This handler moves sprite 10 to the mouse cursor location and updates the Stage when the user clicks the
mouse button:

on mouseDown
 set the locH of sprite 1 to the mouseH
 set the locV of sprite 1 to the mouseV
 updateStage
end

Example 2:

This statement tests whether the cursor is more than 10 pixels to the right or left of a starting point and sets the
variable Far to TRUE if it is:

if abs(the mouseH - startH) > 10 then ¬
set draggedEnough = TRUE

{button See also,AL(`Lingo_mouseH')}

mouseItem
Syntax: the mouseItem

This integer function gives the number of the item that is under the pointer when the function is called and the
cursor is over a field sprite. (An item is any sequence of characters delimited by commas.) Counting starts at the
beginning of the field. If the mouse is not over a field, the result is -1.

The value of the mouseItem function can change in a handler or repeat loop. If a handler or repeat loop relies
on the initial value of the mouseItem when the handler or repeat loop begins, call the function once and assign
its value to a local variable.

Example 1:

This statement determines whether the cursor is over a field sprite and changes the content of the field cast
member Instructions to "Please point to an item." when it is not:

if the mouseItem = -1 then
 put "Please point to an item." ¬
 into member "Instructions"

Example 2:

This statement assigns the item under the cursor in the specified field to the variable currentItem:

set currentItem = item (the mouseItem) ¬
 of member (the mouseMember)

Example 3:

This handler highlights the item under the cursor when the mouse button is pressed:

on mouseDown
set thisField to the member of sprite (the clickOn)
if the mouseItem < 1 then exit
set lastItem to 0
repeat while the stillDown
set MI to the mouseWord
if MI < 1 then next repeat
if MI <> lastWord then
hilite item MI of field thisField
set lastItem to MI

end if
end repeat

end

{button See also,AL(`Lingo_mouseItem')}

mouseLine
Syntax: the mouseLine

This integer function gives the number of the line under the pointer when the function is called and the cursor is
over a field sprite. Counting starts at the beginning of the field. When the mouse is not over a field sprite, the
result is -1.

The value of the mouseLine function can change in a handler or repeat loop. If a handler or repeat loop is using
this function multiple times, it's usually a good idea to call the function once and assign its value to a local
variable.

Example 1:

This statement determines whether the cursor is over a field sprite and changes the content of the field cast
member Instructions to "Please point to a line." when it is not:

if the mouseLine = -1 then ¬
 put "Please point to a line." ¬
 into member "Instructions"

Example 2:

This statement assigns the number of the item under the cursor in the specified field to the variable
currentLine:

set currentLine = line (the mouseLine) of ¬
member (the mouseMember)

Example 3:

This handler highlights the line under the cursor when the mouse button is pressed:

on mouseDown
set thisField to the member of sprite (the clickOn)
if the mouseLine < 1 then exit
set lastLine to 0
repeat while the stillDown
set ML to the mouseLine
if ML < 1 then next repeat
if ML <> lastLine then
hilite word ML of field thisField
set lastLine to ML

end if
end repeat

end

{button See also,AL(`Lingo_mouseLine')}

mouseMember
Syntax: the mouseMember

This function gives the cast member assigned to the sprite that is under the cursor when the function is called.
When the cursor is not over a sprite, it gives the result VOID.

The mouseMember function replaces mouseCast, which was used in earlier versions of Director.

This function is useful for having the movie perform specific actions when the cursor rolls over a sprite and the
sprite uses a certain cast member.

The value of the mouseMember function can change frequently. If you want to use this function multiple times in
handler but want a consistent value, assign the mouseMember value to a local variable when the handler starts
and use the
variable instead.

For casts other than cast 1, the mouseMember returns a value that does not distinguish between the cast
member and the cast number. To obtain a result that distinguishes the cast member and the cast number, use
the expression member (the mouseMember). However, if the user doesn't click a sprite, this expression
generates a script error.

Example 1:

This statement checks whether the cast member Off Limits is the cast member assigned to the sprite under the
cursor and displays an alert if it is. This is one example of how you can specify an action depending on which
cast member is assigned to the sprite:

if the mouseMember = member "Off Limits"¬
then alert "Stay away from there!"

Example 2:

This statement assigns the cast member of the sprite under the cursor to the variable lastMember:

set lastMember = the mouseMember

{button See also,AL(`Lingo_mouseCast')}

mouseUp
Syntax: the mouseUp

This function indicates whether the mouse button is released.

· The mouseUp function is TRUE when the mouse button is released.

· The mouseUp function is FALSE when the mouse button is being pressed.

Example 1:

This handler causes the movie to beep as long as the mouse button is being pressed. The beep stops when the
user clicks the mouse button:

on enterFrame
 repeat while the mouseUp = FALSE
 beep
 end repeat
end enterFrame

Example 2:

This statement instructs Lingo to exit the repeat loop or handler it is in when the user releases the mouse button:

if the mouseUp then exit

{button See also,AL(`Lingo_mouseUp')}

mouseUpScript
Syntax: the mouseUpScript

This property determines the Lingo that is executed when the mouse button is released. The Lingo is written as a
string, surrounded by quotation marks. It can be a simple statement or a calling script for a handler.

When the mouse button is released and the mouseUpScript property is defined, Lingo executes the
instructions specified for the mouseUpScript property first. Unless the instructions include the pass command
so that the mouseUp message can pass on to other objects in the movie, no other on mouseUp handlers are
executed.

When the instructions you've specified for the mouseUpScript property are no longer appropriate, turn them off
by using the statement set the mouseUpScript to empty.

Setting the mouseUpScript property does the same as using the when mouseUp then command that
appeared in earlier versions of Director.

The mouseUpScript property can be tested and set. The default value is EMPTY.

Example 1:

This statement sets the mouseUpScript to "go to the frame +1". When this statement is in effect and the
movie is paused, the movie always continues whenever the user releases the mouse button.

set the mouseUpScript to "go to the frame +1"

Example 2:

This statement has the movie beep when the user releases the mouse button after clicking anywhere on the
Stage:

set the mouseUpScript ¬
 to "if the clickOn = 0 then beep"

Example 3:

This statement sets the mouseUpScript to the custom handler myCustomHandler. A Lingo custom handler
must be enclosed in quotation marks when used with the mouseUpScript property.

set the mouseUpScript to "myCustomHandler"

{button See also,AL(`Lingo_mouseUpScript')}

mouseV
Syntax: the mouseV

This function indicates the vertical position of the mouse cursor. The value of mouseV is the number of pixels the
cursor is from the top of the Stage.

The mouseV function is useful for moving sprites to the vertical position of the mouse cursor and checking
whether the cursor is within a region of the Stage. Using the mouseH and mouseV functions together, you can
identify the cursor's exact location.

Example 1:

This handler moves sprite 1 to the mouse cursor location and updates the Stage when the user clicks the mouse
button:

on mouseDown
 set the locH of sprite 1 to the mouseH
 set the locV of sprite 1 to the mouseV
 updateStage
end

Example 2:

This statement tests whether the cursor is more than 10 pixels above or below a starting point and sets the
variable vFar to TRUE if it is:

if abs(the mouseV - startV) > 10 then ¬
 set draggedEnough = TRUE

{button See also,AL(`Lingo_mouseV')}

mouseWord
Syntax: the mouseWord

This integer function gives the number of the word under the cursor when the function is called and when the
cursor is over a field sprite. Counting starts from the beginning of the field. When the mouse is not over a field,
the result is -1.

The value of the mouseWord function can change in a handler or repeat loop. If a handler or repeat loop is using
this function multiple times, it's usually a good idea to call the function once and assign its value to a local
variable.

Example 1:

This statement determines whether the cursor is over a field sprite and changes the content of the field cast
member Instructions to "Please point to a word." when it is not:

if the mouseWord = -1 then ¬
 put "Please point to a word." ¬
 into member "Instructions"

Example 2:

This statement assigns the number of the word under the cursor in the specified field to the variable
currentWord:

set currentWord = word (the mouseWord) of ¬
 member (the mouseMember)

Example 3:

This handler highlights the word under the cursor when the mouse button is pressed:

on mouseDown
set thisField to the member of sprite (the clickOn)
if the mouseWord < 1 then exit
set lastWord to 0
repeat while the stillDown
set MW to the mouseWord
if MW < 1 then next repeat
if MW <> lastWord then
hilite word MW of field thisField
set lastWord to MW

end if
end repeat

end

{button See also,AL(`Lingo_mouseWord')}

move cast
This is obsolete. Use move member instead.

move member
Syntax: move member whichCastmember [, member whichLocation]

This command moves the cast member specified by whichCastmember to a different location in the Cast
window.

· Using the move member command without the optional parameter moves the cast member to the first
empty location in the Cast window.

· Including the member whichLocation parameter in the move member command moves the cast member to
the location specified by whichLocation.

Example 1:

This statement moves cast member Shrine to the first empty location in the Cast window:

move member "Shrine"

Example 2:

This statement moves cast member Shrine to location 20 in the Bitmaps Cast window:

move member "Shrine", member 20 of castLib "Bitmaps"

moveableSprite of sprite
Syntax: the moveableSprite of sprite whichSprite

This sprite property indicates whether a sprite is moveable.

· When the sprite can be moved by the user, the moveableSprite of sprite is TRUE.

· When the sprite cannot be moved by the user, the moveableSprite of sprite is FALSE.

You can also make a sprite moveable by using the Moveable option in the Score. However, controlling whether a
sprite is moveable by using Lingo lets you turn this condition on and off as situations in the movie require. For
example, referring to the "Mechanical Simulation" sample movie, you can allow the user to drag parts from the
toolkit but make them unmoveable after they are on the pegboard by turning moveableSprite of sprite on
and off at the appropriate times.

Setting the moveableSprite of sprite property lets you control whether sprites are moveable from other
scripts.

The moveableSprite of sprite property can be tested and set.

Example 1:

This handler first makes sprite channel 5 a puppet and then makes sprites in that channel moveable:

on spriteMove
 puppetSprite 5, TRUE
 set the moveableSprite of sprite 5 to TRUE
end

Example 2:

This statement checks whether a sprite is moveable and displays a message if it isn't:

if the moveableSprite of sprite 13 = FALSE ¬
 then set the text of member "Notice" to ¬
 "You can't drag this item by using the mouse."

{button See also,AL(`Lingo_moveableSprite_of_sprite')}

moveToBack
Syntax: moveToBack window "whichWindow "

This command moves the window specified by whichWindow behind all other windows.

Example:

These statements move the first window in the windowList behind all other windows:

set myWind=getat(the windowList, 1)
moveToBack myWind

If the first record of the windowList was Demo Window, the long version of the moveToBack would be:

moveToBack window "Demo Window"

moveToFront
Syntax: moveToFront window "whichWindow"

This command moves the window specified by whichWindow in front of all other windows.

Example:

This statement moves the first window in the windowList in front of all other windows:

set myWind = getAt(the windowList, 1)
moveToFront myWind

If the first record of the windowList was Demo Window, the long version of moveToFront would be:

moveToFront window "Demo Window"

movie
Syntax: the movie

This string function returns the name of the currently open movie.

Example:

This statement assigns the name of the current movie to the field cast member Current Movie:

put the movie into member "Current Movie"

{button See also,AL(`Lingo_movie')}

movieFileFreeSize
Syntax: the movieFileFreeSize

This function returns the number of unused bytes in the current movie.

When the movie has no unused space, the movieFileFreeSize function returns 0.

Example:

This statement displays the number of unused bytes that are in the current movie:

put the movieFileFreeSize

movieFileSize
Syntax: the movieFileSize

This function returns the number of bytes in the current movie.

Example:

This statement displays the number of bytes in the current movie:

put the movieFileSize

movieName
Syntax: the movieName

This function indicates the simple name of the current movie. The movieName function is equivalent to the
movie function.

Example:

This statement displays the name of the current movie in the Message window:

put the movieName

{button See also,AL(`Lingo_movieName')}

moviePath
Syntax: the moviePath

This function indicates the pathname of the folder that the current movie is located in. The moviePath function
is equivalent to the pathName function.

For pathnames that work on both Windows and Macintosh computers, use the @ pathname operator.

Example 1:

This statement displays the pathname of the current movie's folder:

put the moviePath

Example 2:

This statement plays a sound file crash.aif stored in the Sounds subfolder of the current movie's folder:

sound playFile 1, the moviePath&"Sounds/crash.aif"

Note: If you choose to specify a subfolder location, as in this example, using "/" will ensure that the path is
understood on both Macintosh and Windows computers. Only on a Macintosh can you use ":" to separate
subfolders.

{button See also,AL(`Lingo_moviePath')}

movieRate of sprite
Syntax: the movieRate of sprite whichSprite

This sprite property controls the rate at which a digital video in a specific channel plays. The movie rate is a value
specifying the playback of the digital video. A value of 1 is normal forward play, -1 is reverse, and 0 is stop.
Higher and lower values are possible. For example, a value of 0.5 causes the digital video to play slower than
normal. However, frames may be dropped when the movieRate of sprite exceeds 1. The severity of
dropping frames depends on factors such as the performance of the computer the movie is playing on, whether
the digital video sprite is stretched, and so on.

This property can be tested and set.

Example:

This statement sets the rate for a digital video in sprite channel 9 to normal playback speed:

set the movieRate of sprite 9 to 1

This statement causes the digital video in sprite channel 9 to play in reverse:

set the movieRate of sprite 9 to -1

{button See also,AL(`Lingo_movieRate_of_sprite')}

movieTime of sprite
Syntax: the movieTime of sprite whichSprite

This sprite property determines the current time of a digital video movie playing in the channel specified by
channelNumber. The value of the movieTime is measured in ticks.

The movieTime of sprite property can be tested and set.

Example 1:

This statement displays the current time of the QuickTime movie in channel 9 in the Message window:

put the movieTime of sprite 9

Example 2:

This statement sets the current time of the QuickTime movie in channel 9 to the value in the variable Poster:

set the movieTime of sprite 9 to Poster

{button See also,AL(`Lingo_movieTime_of_sprite')}

mPerform
This method is now obsolete. It was used in earlier versions of Director to send an arbitrary message to any
Lingo object.

mPut
This method is now obsolete. It was used in earlier versions of Director to put data into an object's internal array.

mRespondsTo
This method is now obsolete. It was used in earlier versions of Director to determine whether an XObject could
respond to a specific message.

multiSound
Syntax: the multiSound

This system property is TRUE when the system supports more than one sound channel. A Windows computer
must have a multichannel sound card for the multiSound property to be TRUE.

Example:

This statement plays the sound file Music in sound channel 2 if the computer supports more than one sound
channel:

if the multiSound then sound playFile 2, "Music"

name of cast
This is obsolete. Use name of member instead.

name of castLib
Syntax: the name of castLib whichCast

This cast member property returns the name of the specified cast. This property can be tested and set.

Example:

This statement changes the name of the cast Buttons to Interface:

set the name of castLib "Buttons" to "Interface"

name of member
Syntax: the name of member whichCastmember

This cast member property determines the name of the specified cast member.

· When whichCastmember is a string, it is used as the cast name.

· When whichCastmember is an integer, it is used as the cast number.

The name is a descriptive string assigned by the user. Setting this property is equivalent to entering a name in
the Cast Member Properties dialog box.

The name cast member property can be tested and set.

Example 1:

This statement changes the name of the cast member named On to Off:

set the name of member "On" to "Off"

Example 2:

This statement sets the name of cast member 15 to Background Sound:

set the name of member 15 to "Background Sound"

Example 3:

This statement sets the variable itsName to the name of the cast member that follows the cast member whose
number is equal to the variable i:

set itsName = the name of member (i + 1)

{button See also,AL(`Lingo_name_of_member')}

name of menu
Syntax: the name of menu whichMenu

This menu property returns a string containing the name of the specified menu. The expression whichMenu can
evaluate to either a menu number or a menu name.

The name of menu property can be tested but cannot be set directly. Use the installMenu command to set
up a custom menu bar.

For more information about user interfaces, see Chapter 9, "Creating User Interface Controls," in Learning Lingo.

Example 1:

This statement assigns the name of menu number 1 to the variable firstMenu:

set firstMenu = the name of menu 1

Example 2:

The following handler returns a list of menu names, one per line:

on menuList
 put EMPTY into list
 repeat with i = 1 to the number of menus
 put the name of menu i & RETURN after list
 end repeat
 return list
end menuList

{button See also,AL(`Lingo_name_of_menu')}

name of menuItem
Syntax: the name of menuItem whichItem of menu whichMenu

This menu item property determines the text that appears in the menu item specified by whichItem in the menu
specified by whichMenu. The whichItem expression can be either a menu item name or a menu item number;
whichMenu can be either a menu name or a menu number.

The name of menuItem property can be tested and set.

For more information about user interfaces, see Chapter 9, "Creating User Interface Controls," in Learning Lingo.

Example 1:

This statement sets the variable itemName to the name of the eighth item in the Edit menu:

set itemName = the name of menuItem 8 of menu "Edit"

Example 2:

This statement causes a specific file name to follow the term Open in the File menu:

set the name of menuItem "Open" of menu fileMenu ¬
 to "Open" & fileName

{button See also,AL(`Lingo_name_of_menuItem')}

name of window
Syntax: the name of window "whichWindow"

This property determines the name of the specified window in the windowList. (The title of window
property determines the title that appears in a window's title bar.)

It can be tested and set.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement changes the name of window Yesterday to Today:

set the name of window "Yesterday to "Today"

name of xtra
Syntax: the name of xtra whichXtra.

This property indicates the name of the specified Xtra. It can be tested and set.

Example:

The following statement changes the name of the Xtra Editor to Text Whiz:

set the name of xtra "Editor" to "Text Whiz"
{button See also,AL(`Lingo_name_of_xtra')}

netAbort
Syntax: netAbort(URL)

or
netAbort(netID)

This command cancels a network operation without waiting for a result.

If it is available, using a network ID is the most efficient way to stop a network operation.

In some cases, when a network ID is not available, you can use a URL to stop the transmission of data for that
URL. If the data transmission is complete, this command will have no effect.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This statement passes a network ID to netAbort to cancel a particular network operation.

on mouseUp
netAbort(myNetID)

end

{button See also,AL(`Lingo_netAbort')}

netDone
Syntax: netDone()

or
netDone(netID)

This function indicates whether getNetText, preloadNetThing, gotoNetMovie, gotoNetPage, or
putNetText are finished.

· Use netDone() to test the last network operation.

· Use netDone(netID) to test the net operation identified by netID.

The netDone function returns TRUE after a background loading operation is finished or when the operation is
terminated by a browser error. The default value is TRUE.

The netDone function returns FALSE after a background loading operation is started and is in progress.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example 1:

This handler uses the netDone function to test whether the last network operation is finished. If the operation is
finished, text returned by netTextResult is displayed in the field cast member Display Text:

on exitFrame
if netDone() = TRUE then
put netTextResult() into member 'Display Text'

end if
end

Example 2:

This handler uses a specific network ID as an argument for netDone to check on the status of a specific network
operation:

on exitFrame
-- stay on this frame until the net operation is completed
global mynetid
if netDone(mynetid) = FALSE then
go to the frame

end if
end

{button See also,AL(`Lingo_netDone')}

netError
Syntax: netError()

or
netError(netID)

This function determines whether an error has occurred in a network operation.

· Use netError() to test the last network operation.

· Use netError(netID) to test the network operation specified by netID.

If the operation completed successfully, the function returns OK.

If the operation failed, the function returns an error number.

If no background loading operation has started, the function returns an empty string.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This statement passes a network ID to netError to check the error status of a particular network operation:

on exitFrame
global mynetid
if netError(mynetid)<>"OK" then beep

end

{button See also,AL(`Lingo_netError')}

netLastModDate
Syntax: netLastModDate()

This function returns the "date last modified" string from the HTTP header for the specified item. The string's
format is "Thu, Jan 30, 1997 12:00:00 AM GMT"

The netLastModDate function can be called only after netDone or netError reports that the operation is
complete and before the next operation starts. After the next operation starts, the Director movie or projector
discards the results of the previous operation to conserve memory.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

These statements check the date of a file downloaded from the internet:

if netDone() then
set theDate = netLastModDate()
if char 6 to 11 of theDate <> "Jan 30" then
alert "The file is outdated."

end if
end if

{button See also,AL(`Lingo_netLastModDate')}

netMIME
Syntax: netMIME()

This function provides the MIME type of the internet file that the last network operation returned (the most
recently downloaded ftp or HTTP item).

The netMIME function can be called only after the netDone or netError reports that the operation is complete
and before the next network operation starts. After the next operation starts, the Director movie or projector
discards the results of the previous operation to conserve memory.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This handler checks the MIME type of an item downloaded from the internet and responds accordingly:

on checkNetOperation theURL
if netDone (theURL) then
set myMimeType = netMIME()
case myMimeType of
"image/jpeg": go frame "jpeg info"
"image/gif": go frame "gif info"
"application/x-director": goToNetMovie theURL
"text/html": goToNetPage theURL
otherwise: alert "Please choose a different item.¬

Mime type " & myMimeType & " is unsupported."
end case

else
go the frame

end if
end

{button See also,AL(`Lingo_netMIME')}

a
netPresent
Syntax: netPresent()

This property determines whether the Xtras needed for accessing the internet are available.

Example:

This statement sends an alert if the Xtras are not available:

if netPresent() = FALSE then
alert

end if

{button See also,AL(`Lingo_netPresent_xtra')}

netStatus
Syntax: netStatus msgString

This command displays the specified string in the status area of the browser window.

In the authoring environment, netStatus displays the string in the Message window.

The netStatus command doesn't work in projectors or with the Director Shockwave ActiveX control in Internet
Explorer 3.0.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

on exitFrame
netStatus "This is a test"

end

netTextResult
Syntax: netTextResult()

or
netTextResult(netID)

This function returns the text obtained by the last network operation. If the last network operation was
getNetText, the text is the text of the file on the network.

The netTextResult function can be called only after netDone or netError indicates that the operation is
complete and before the next operation starts.

After the next operation starts, Director discards the results of the previous operation to conserve memory.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This handler uses the netDone function to test whether the last network operation is finished. If the operation is
finished, text returned by netTextResult is displayed in the field cast member Display Text:

on exitFrame
if netDone() = TRUE then
put netTextResult() into member "Display Text"

end if
end

{button See also,AL(`Lingo_netTextResult')}

new
Syntax: new(type)

or

new(type, castLib whichCast)
or

new(type, member whichCastMember of castLib whichCast)
or

set x = new(parentScript arg1, arg2, ...)
or

new(script parentScriptName , value1, value2 , ...)
or

new(xtra "xtraName")
This function creates a new cast member, child object, or Xtra.

For cast members, the parameter type sets the cast member's type. Possible predefined values correspond to
the existing cast member types: #bitmap, #field, and so on. The new function can also create Xtra cast
member types, which can be identified by any name that the author chooses.

The optional whichCastMember and whichCast parameters specify the cast member slot and Cast window
where the new cast member is stored. When no cast member slot is specified, the first empty slot is used. The
new function returns the cast member slot.

When the argument for the new function is a parent script, the new function creates a child object. The parent
script should include an on new handler that sets the child object's initial conditions.

The child object has all the handlers of the parent script. The child object has the same property variable names
that are declared in the parent script, but each child object has its own values for these properties.

Because the child object is a value, it can be assigned to variables, placed in lists, and passed as a parameter.

Being able to assign individual property values to child objects is the primary advantage of using on new
handlers.

You display information about a child object by using the put command to display information about it in the
Message window.

For more information about parent scripts and child objects, see Chapter 12, "Parent Scripts and Child Objects,"
in Learning Lingo.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example 1:

This handler creates a new bitmap cast member and assigns it to the variable Background:

on makeBitmap
 set Background = new(#bitmap)
end makeBitmap

Example 2:

These statements use an on new handler to create a child object of a parent script. The parent script is a script
cast member named Bird, which contains these handlers:

on new me
return me

end

on fly me
put "I am flying"

end fly

Example 3:

These statements create a child object called myBird, and make it fly by calling the fly handler in the Bird parent
script:

set myBird to new(script "Bird")
fly myBird

Example 4:

This statement uses a new Bird parent script, which contains the property variable speed:

property speed
on new me, initSpeed
 set speed to initSpeed
 return me
end
on fly me
 put "I am flying at " & speed & "mph"
end

Example 5:

The following statements create two child objects called myBird1 and myBird2. When the fly handler is called
from the child object, the speed of the object is displayed in the Message window:

set myBird1 to new (script "Bird", 15)
set myBird2 to new(script "Bird", 25)
fly myBird1
fly myBird2

This message appears in the Message window:

-- "I am flying at 15 mph"
-- "I am flying at 25 mph"

{button See also,AL(`Lingo_new')}

next
Syntax: next

This keyword refers to the next marker in the movie. The next keyword is equivalent to the phrase the marker
(+ 1).

For more information about navigation, see Chapter 3, "Navigation," in Learning Lingo.

Example 1:

This statement sends the playback head to the next marker in the movie:

go next

Example 2:

This handler has the movie move to the next marker in the Score when the right arrow key is pressed and the
previous marker when the left arrow key is pressed:

on keyUp
if the keyCode = 124 then go next
if the keyCode = 123 then go previous

end keyUp

{button See also,AL(`Lingo_next')}

next repeat
Syntax: next repeat

This keyword causes Lingo to go to the next step in a repeat loop in a script. This is different from the exit
repeat keyword.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This repeat loop displays only odd numbers in the Message window:

repeat with i = 1 to 10
 if (i mod 2) = 0 then next repeat
 put i
end repeat

not
Syntax: not logicalExpression

This logical operator performs a logical negation on a logical expression.

· When the expression specified by logicalExpression is TRUE, the result is FALSE.

· When the expression specified by logicalExpression is FALSE, the result is TRUE.

This logical operator has a precedence level of 5.

Example 1:

This statement determines whether 1 is not less than 2:

put not (1 < 2)

Because 1 is less than 2, the result is 0, which indicates that the expression is FALSE.

Example 2:

This statement determines whether 1 is not greater than 2:

put not (1 > 2)

Because 1 is not greater than 2, the result is 1, which indicates that the expression is TRUE.

Example 3:

This handler sets the checkMark of menuItem for the item Bold in the Style menu to the opposite of its
current setting:

on resetMenuItem
 set the checkMark of menuItem "Bold" ¬
 of menu "Style" to not (the checkMark ¬
 of menuItem "Bold" of menu "Style")
end resetMenuItem

{button See also,AL(`Lingo_not')}

nothing
Syntax: nothing

This command does nothing at all. It is useful for making the logic of an if...then statement more obvious.
Also, a nested if...then...else statement that contains no explicit command for the else clause may
require else nothing. Otherwise, Lingo interprets the else clause as part of the preceding if clause.

Example 1:

The nested if...then...else statement in this handler uses the nothing command to satisfy the
statement's else clause:

on mouseDown
 if the clickOn = 1 then
 if the moveable of sprite 1 = TRUE ¬
 then set the text of member "Notice" = ¬
 "Drag the ball"
 else nothing
 else set the text of member "Notice" = ¬
 "Click again"
 end if
end mouseDown

Example 2:

This handler instructs the movie to do nothing as long as the mouse button is being pressed:

on mouseDown
 repeat while the stillDown
 nothing
 end repeat
end mouseDown

{button See also,AL(`Lingo_nothing')}

number of cast
This is obsolete. Use number of member instead.

number of castLib
Syntax: the number of castLib whichCast

This cast member property indicates the number of the specified cast. For example, 2 is the number of
castLib for Cast 2. The property can be tested but not set.

Example:

This repeat loop uses the Message window to display the number of cast members that are in each of the
movie's casts:

repeat with n = 1 to the number of castLibs
 put the name of castLib n &&"contains"&&the ¬
 number of members of castLib n&&"cast members."
end repeat

number of castLibs
Syntax: the number of castLibs

This cast member property returns the number of casts that are in the current movie. This property can be tested
but not set.

Example:

This repeat loop uses the Message window to display the number of cast members that are in each of the
movie's casts:

repeat with n = 1 to the number of castLibs
 put the name of castLib n &&"contains"&&the ¬
 number of members of castLib n&&"cast members."
end repeat

number of castmembers
This is obsolete. Use number of members instead.

number of chars in
Syntax: the number of chars in chunkExpression

This chunk function returns a count of the characters in a chunk expression.

Chunk expressions are any character, word, item, or line in any container of characters. Containers include field
cast members and variables that hold strings, and specified characters, words, items, lines, and ranges in
containers.

Spaces and control characters such as Tab and Return count as characters.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement displays the number of characters in the string "Macromedia, the Multimedia Company" in the
Message window:

put the number of chars ¬
in "Macromedia, the Multimedia Company"

The result is 34.

Example 2:

This statement sets the variable charCounter to the number of characters in the word i located in the string
Names:

set charCounter to the number of chars in word i ¬
 of member "Names"

{button See also,AL(`Lingo_number_of_chars_in')}

number of items in
Syntax: the number of items in chunkExpression

This chunk function returns a count of the items in a chunk expression. An item chunk is any sequence of
characters delimited by commas.

Chunk expressions are any character, word, item, or line in any container of characters. Containers include fields
(field cast members) and variables that hold strings, and specified characters, words, items, lines, and ranges in
containers.

Example 1:

This statement displays the number of items in the string "Macromedia, the Multimedia Company" in the
Message window:

put the number of items ¬
in "Macromedia, the Multimedia Company"

The result is 2.

Example 2:

This statement sets the variable itemCounter to the number of items in the field Names:

set itemCounter = the number of items in field "Names"

{button See also,AL(`Lingo_number_of_items_in')}

number of lines in
Syntax: the number of lines in chunkExpression

This chunk function returns a count of the lines in a chunk expression. (Lines refers to lines delimited by carriage
returns, not lines formed by line wrapping.)

Chunk expressions are any character, word, item, or line in any container of characters. Containers include field
cast members and variables that hold strings, and specified characters, words, items, lines, and ranges in
containers.

Example 1:

This statement displays the number of lines in the string "Macromedia, the Multimedia Company" in the Message
window:

put the number of lines ¬
in "Macromedia, the Multimedia Company"

The result is 1.

Example 2:

This statement sets the variable lineCounter to the number of lines in the field Names:

set lineCounter to the number of lines in member "Names"

{button See also,AL(`Lingo_number_of_lines_in')}

number of member
Syntax: the number of member whichCastmember

This cast member property indicates the cast number of the cast member specified by whichCastmember.

· When whichCastmember is a string, the string is used as the cast member name.

· When whichCastmember is an integer, the integer is used as the cast member number.

The number of member property can be tested but not set.

Example 1:

This statement assigns the cast number of the cast member Power Switch to the variable whichCastmember:

put the number of member "Power Switch" into ¬
 whichCastmember

Example 2:

This statement assigns the cast member Red Balloon to sprite 1:

set the memberNum of sprite 1 ¬
 to the number of member "Red Balloon"

{button See also,AL(`Lingo_number_of_member')}

number of members
Syntax: the number of members

This property indicates the number of the last cast member in the current movie. Any empty cast slots are also
counted, so the actual number of cast members may be fewer than the number of members value.

The number of members property can be tested but not set.

Example:

The following handler returns a string containing a list of all the cast member names, one per line:

on castList whichCast
 put EMPTY into list
 repeat with i = 1 to the number of members¬
 of castLib whichCast
 put the name of member I of castLib whichCast¬
 & RETURN after list
 end repeat
 return list
end castList

{button See also,AL(`Lingo_number_of_members')}

number of members of castLib
Syntax: the number of members of castLib whichCast

This cast member property indicates the number of the last cast member in the specified cast. This property can
be tested but not set.

Example:

These statements use the Message window to display the type of each cast member in the cast Central Casting.
The number of members of castLib property is used to determine how many times the loop repeats.

i = 0
repeat i to the number of members ¬
of castLib "Central Casting"
 put "Cast member"&&i&&"is a"&&¬
 (the type of member I of ¬
 castLib "Central Casting" &&"cast member."
end repeat

number of menuItems
Syntax: the number of menuItems of menu whichMenu

This menu property indicates the number of menu items in the custom menu specified by whichMenu. The
whichMenu parameter can be a menu name or a menu number.

The number of menuItems menu property can be tested but not set directly. Use the installMenu
command to set up a custom menu bar.

For more information about user interfaces, see Chapter 9, "Creating User Interface Controls," in Learning Lingo.

Example 1:

This statement sets the variable fileItems to the number of menu items in the custom File menu:

set fileItems = the number of menuItems of menu "File"

Example 2:

This statement sets the variable itemCount to the number of menu items in the custom menu whose menu
number is equal to the variable i:

set itemCount = the number of menuItems of menu i

{button See also,AL(`Lingo_number_of_menuItems')}

number of menus
Syntax: the number of menus

This menu property indicates the number of menus installed in the current movie.

The number of menus menu property can be tested but not set. Use the installMenu command to set up a
custom menu bar.

For more information about user interfaces, see Chapter 9, "Creating User Interface Controls," in Learning Lingo.

Example 1:

This statement determines whether any custom menus are installed in the movie and installs the menu Menubar
if no menus are already installed:

if the number of menus = 0 then ¬
 installMenu (the number of member "Menubar")

Example 2:

This statement causes the Message window to display the number of menus that are in the current movie:

put the number of menus

{button See also,AL(`Lingo_number_of_menus')}

number of words in
the number of words in chunkExpression

This function tells how many words are in the chunk expression specified by chunkExpression.

Chunk expressions refer to any character, word, item, or line in any container of characters. Containers include
field cast members and variables that hold strings, and specified characters, words, items, lines, and ranges in
containers.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement has the Message window display the number of words in the string "Macromedia, the multimedia
company":

put the number of words ¬
 in "Macromedia, the multimedia company"

The result is 4.

Example 2:

This handler reverses the order of words in the string specified by the argument wordList:

on reverse wordList
 put EMPTY into list
 repeat with i = 1 to the number of words ¬
 in wordList
 put word i of wordList & " " before list
 end repeat
 delete char (the number of chars in list) of list
 return list
end reverse wordList

{button See also,AL(`Lingo_number_of_words_in')}

number of xtras
Syntax: the number of xtras

This property returns the number of Lingo Xtras available to the movie. These Xtras might have been opened by
the openxlib command or might be present in the standard Xtras folder. This property can be tested but not
set.

Example:

This statement causes the Message window to display the number of Lingo Xtras that are available to the movie:

put the number of xtras

{button See also,AL(`Lingo_number_of_xtras')}

numChannels of member
Syntax: the numChannels of member "whichCastmember"

This Shockwave Audio (SWA) property returns the number of channels within the specified SWA streaming cast
member. Allowable values are 1 for mono and 2 for stereo.

This property is only available after the SWA streaming cast member is playing or after the file has been
preloaded using the preLoadBuffer command.

This property can be tested but not set.

Example:

This example assigns the number of sound channels of the SWA streaming cast member Duke Ellington to the
field cast member Channel Display:

set myVariable to the numChannels of member "Duke Ellington"
if myVariable = 1 then

set the text of member "Channel Display" = "Mono"
else

set the text of member "Channel Display" = "Stereo"
end if

numToChar
Syntax: numToChar(integerExpression)

This function displays a string containing the single character whose ASCII sequence number is the value of
integerExpression. It is useful for interpreting data from outside sources that are presented as numbers rather
than as characters.

ASCII values up to 127 are standard on all computers. Values of 128 or greater can refer to different keys on
different computers.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement causes the Message window to display the character whose ASCII number is 65:

put numToChar(65)

The result is the letter "A."

Example 2:

This handler takes any arbitrary string, removes any non-alphabetic characters, and returns only capital letters:

on ForceUppercase input
set output to EMPTY
set num to length(input)
repeat with i = 1 to num
set theASCII to charToNum(char 1 of input)
if theASCII = min(max(96, theASCII), 123) ¬
then set theASCII to theASCII - 32
if theASCII = min(max(63, theASCII), 91) then ¬
put numToChar(theASCII) after output
delete char 1 of input

end repeat
return output

end ForceUppercase

{button See also,AL(`Lingo_numToChar')}

objectP
Syntax: objectP(expression)

This function indicates whether the expression specified by expression is an object produced by a parent script,
Xtra, or XObject.

· When objectP is TRUE, the expression is such an object.

· When objectP is FALSE, the expression is not such an object.

The "P" in objectP stands for "predicate."

It is good practice to use objectP to determine which items are XObjects when you create XObjects by using
mNew or disposing of XObjects by using mDispose.

Example 1:

This statement checks whether modemPort is an XObject and displays the result in the Message window:

put objectP(modemPort)

Example 2:

This handler checks whether externalFile is an XObject and disposes of it if it is:

on stopMovie
 if objectP(externalFile) then ¬
 externalFile(mDispose)
end stopMovie

{button See also,AL(`Lingo_objectP')}

of
The word of is part of many Lingo properties, such as the foreColor of sprite, the number of
member, the name of menu, and so on.

offset
Syntax: offset(stringExpression1, stringExpression2)

This function returns the first place that the first character of stringExpression1 occurs in stringExpression2.

· When stringExpression1 is found in stringExpression2, the result is the number that indicates the position of
the first occurrence.

· When stringExpression1 is not found in stringExpression2, the result is 0.

Lingo counts spaces as characters in both strings. On the Macintosh, the string comparison is not sensitive to
case or diacritical marks. For example, Lingo considers "a" and "" the same character on the Macintosh.

Example 1:

This statement causes the Message window to display the beginning position of the string "media" within the
string "Macromedia":

put offset("media","Macromedia")

The result is 6.

Example 2:

This statement causes the Message window to display the beginning position of the string "Micro" within the
string "Macromedia":

put offset("Micro", "Macromedia")

The result is 0, because "Macromedia" doesn't contain the string "Micro".

Example 3:

This handler replaces one string with another. It doesn't check for upper- or lowercase letters.

on SearchAndReplace input, oldString, newString
set output to ""
repeat while input contains oldString
set position to offset(oldString, input) - 1
put char 1 to position of input after output
put newString after output
delete char 1 to (position ¬
+ length(oldString)) of input

end repeat
put input after output
return output

end SearchAndReplace

{button See also,AL(`Lingo_offset')}

offset rect
Syntax: offset (rectangle, horizontalChange, verticalChange)

This function yields a rectangle that is offset from the rectangle specified by rectangle. The horizontal offset is the
value specified by horizontalChange; the vertical offset is the value specified by verticalChange.

· When horizontalChange is greater than zero, the offset is toward the right of the Stage; when
horizontalChange is less than zero, the offset is toward the left of the Stage.

· When verticalChange is greater than zero, the offset is toward the top of the Stage; when verticalChange
is less than zero, the offset is toward the bottom of the Stage.

The values for verticalChange and horizontalChange are in pixels.

on
Syntax: on handlerName [argument1] [, arg2] [, arg3] ...

[statements]
end handlerName

This keyword indicates the beginning of a handler. Handlers are collections of Lingo statements that you can
execute by simply using the handler name. A handler can accept arguments as input values and return a value
as a function result.

Handlers can be defined in Score scripts, movie scripts, and scripts of cast members. A handler in a script of a
cast member can only be called by other handlers in the same script. A handler in a Score script or movie script
can be called from anywhere.

You can use the same handler in more than one movie by putting the handler's script in the shared cast.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

{button See also,AL(`Lingo_on')}

on activateWindow
Syntax: on activateWindow

statement(s)

end
This event handler contains statements that run when the movie is running as a movie in a window and the
window becomes active and comes to the foreground when the user clicks the inactive window.

An on activateWindow handler is a good place for Lingo that you want executed every time the movie
becomes active. Place such a handler in a movie script.

Clicking the main movie (the main Stage) does not generate an on activateWindow handler.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This handler plays the sound file Hurray when the window that the movie is playing in becomes active:

on activateWindow
 puppetSound 2, "Hurray"
end

{button See also,AL(`Lingo_on_activateWindow')}

on alertHook
Syntax: on alertHook me err, msg

return value

end

This event handler contains statements that determine whether a projector displays an error alert when an error
occurs.

me refers to the parent script instance

err describes the source of the error. Possible values are:
"File read error"
"File error"
"Script syntax error"
"Script runtime error"

msgspecifies whether an alert appears when an error occurs.
When value is 0, an error alert appears
When value is 1, no error alert appears and the
 projector continues playing, if possible.

The on alertHook handler must be placed in a parent script.

Example:

This handler has the projector display no error alert when an error occurs:

on alertHook me, err, msg
return 1

end

on beginSprite
Syntax: on beginSprite

statement(s)

end
This event handler contains statements that run when the playback head moves to a frame that has a sprite that
was not previously encountered. The event is generated before prepareFrame.

Director creates instances of any behavior scripts attached to the sprite when the beginSprite message is
sent.

This event is passed the sprite script reference me if used in a behavior. The message is sent to sprite scripts
and frame scripts.

If a sprite begins in the first frame that plays in a movie, the beginSprite message is sent after the
prepareMovie message but before the prepareFrame and startMovie messages.

Example:

This handler plays the sound cast member Stevie Wonder when the sprite begins:

on beginSprite me
puppetSound "Stevie Wonder"
updateStage

end

on closeWindow
Syntax: on closeWindow

statement(s)

end
This event handler contains statements that run when the user closes the window for a movie in a window by
clicking the window's close box.

The on closeWindow handler is a good place to put Lingo that you want executed every time the movie's
window closes.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This handler has Director forget the current window when the window that the movie is playing in closes:

on closeWindow
 -- perform general housekeeping here
 forget the activeWindow
end

on cuePassed
Syntax: on cuePassed(channelID,cuePointNumber,cuePointName)

statement(s)
end
or

on cuePassed(me,channelID,cuePointNumber,cuePointName)
statement(s)

end
This event handler contains statements that run each time a sound or sprite passes a cue point in its media.

· The optional me parameter is the scriptInstanceRef of the script being invoked.

· channelID is either the number of the sound or sprite channel for the file that the cue point occurred in.
Shockwave Audio (SWA) sounds can appear as sprites in sprite channels, but they play sound in a sound
channel. It is recommended that you refer to SWA sound sprites by their sprite channel number rather than
their sound channel number.

· cuePointNumber is the ordinal number of the cue point that triggers the event in the list of the cast
member's cue points.

· cuePointName is the name of the cue point that was encountered.

The message is passed - in order - to sprite, cast member, frame, and movie scripts.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement reports any cue points in sound channel 1 to the Message window:

on cuePassed channel, number, name
 if (channel = #Sound1) then

put "CuePoint" && number && "named" &&
name && "occurred in sound 1"

end if
end

{button See also,AL(`Lingo_on_cuePassed')}

on deactivateWindow
Syntax: on deactivateWindow

statement(s)

end
This event handler contains statements that run when the window that the movie is playing in is deactivated. The
on deactivate event handler is a good place for Lingo that you want executed whenever a window is
deactivated.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This handler plays the sound file Snore when the window that the movie is playing in is deactivated:

on deactivateWindow
 puppetSound 2, "Snore"
end

on endSprite
Syntax: on endSprite

statement(s)

end
This event handler contains Lingo that runs when the playback head leaves a sprite and goes to a frame in which
the sprite doesn't exist. It is generated after exitFrame.

Place on endSprite handlers in the Score script that a behavior is in.

Director destroys instances of any behavior scripts attached to the sprite when the endSprite event occurs.

The event handler is passed the sprite script or frame script reference me if used in a behavior.

The endSprite message is sent after the exitFrame message if the playback head plays to the end of the
frame.

Example:

This handler runs when the playback head exits a sprite:

on endSprite me
-- clean up
set gNumberOfSharks = gNumberOfSharks - 1
puppetSound(5,0)

end

{button See also,AL(`Lingo_on_endsprite')}

on enterFrame
Syntax: on enterFrame

statement(s)

end enterFrame
This event handler contains statements that run each time the playback head enters the frame that the on
enterFrame handler is attached to. The on enterFrame handler is equivalent to the on stepMovie handler
used in earlier versions of Director.

Place on enterFrame handlers in sprite, frame, or movie scripts.

· To assign the handler to an individual sprite, put the handler in the sprite script.

· To assign the handler to an individual frame, put the handler in the frame script.

· To assign the handler to every frame (unless you explicitly instruct the movie otherwise), put the on
enterFrame handler in a movie script. The handler executes every time the playback head enters a frame
unless the frame script has its own handler. If the frame script has its own handler, the on enterFrame
handler in the frame script overrides the on enterFrame handler in the movie script.

The order of frame events is stepFrame, prepareFrame, enterFrame, and then exitFrame.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler turns off the puppet condition for sprites 1 through 5 each time the playback head enters the frame:

on enterFrame
 repeat with i = 1 to 5
 puppetSprite i, FALSE
 end repeat
end

{button See also,AL(`Lingo_on_enterFrame')}

on EvalScript
Syntax: on EvalScript

statement(s)

end
This event handler in a Shockwave movie contains statements that run when the handler receives an
EvalScript message from a browser.

The EvalScript message can include a string that Director can interpret as a Lingo statement. Lingo cannot
accept nested strings Therefore, if the handler you are calling expects a string as a parameter, pass the
parameter as a symbol.

The on EvalScript handler is called by the EvalScript() scripting method from a JavaScript or VBScript in
a browser.

Expose only those behaviors through on EvalScript that you want people to be able to control. For security
reasons, the movie author should not give complete access to the outside.

Although Lingo is not case-sensitive regarding the term EvalScript, it is best to match the capitalization used
in JavaScript and use an initial uppercase letter "E" when writing EvalScript.

Example 1:

This handler runs the statement go frame aParam if it receives an EvalScript message that includes dog,
cat, or tree as an argument:

on EvalScript aParam
case aParam of

"dog", "cat", "tree": go frame aParam
end case

end
A possible calling statement for this in JavaScript would be EvalScript ("dog")

Example 2:

This handler takes an argument that could be a number or symbol:

on EvalScript aParam
if word 1 of aParam = "myHandler" then

do aParam
end if

end
Example 3:

This handler would normally require a string as its argument. The argument is received as a symbol and then
converted to a string within the handler by the string function:

on myHandler aParam
go to frame sring(aParam)

end

on exitFrame
Syntax: on exitFrame

statement(s)

end exitFrame
This event handler contains statements that run each time the playback head exits the frame that the on
exitFrame handler is attached to. The on exitFrame handler is a useful place for Lingo that resets conditions
that are no longer appropriate after leaving the frame.

Place on exitFrame handlers in sprite, frame, or movie scripts.

· When you want to assign the handler to an individual sprite, put the handler in the sprite script.

· When you want to assign the handler to an individual frame, put the handler in the frame script.

· When you want to assign the handler to every frame unless explicitly instructed otherwise, put the handler in
a movie script. The on exitFrame handler then executes every time the playback head exits the frame
unless the frame script has its own on exitFrame handler. When the frame script has its own on
exitFrame handler, the on exitFrame handler in the frame script overrides the one in the movie script.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

· The order of frame events is prepareFrame, enterFrame, and then exitFrame.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example 1:

This handler turns off all puppet conditions when the playback head exits the frame:

on exitFrame me
 repeat with i = 48 down to 1
 set the puppet of sprite i = FALSE
 end repeat
end exitFrame

Example 2:

This handler sends the playback head to a specified frame if the value in the variable vTotal exceeds 1000
when the playback head exits the frame:

on exitFrame
 if vTotal > 1000 then go to frame "Finished"
end

{button See also,AL(`Lingo_on_exitFrame')}

on getBehaviorDescription
Syntax: on getBehaviorDescription me

statements

end
This event handler contains Lingo that returns the string that appears in a behavior's Description Pane in the
Behavior Inspector when the behavior is selected.

The description string is optional.

Director sends the getBehaviorDescription message to the behaviors attached to a sprite when the
Behavior Inspector opens. Place the on getBehaviorDescription handler within the score script that
defines the behavior.

Example:

This statement displays "Vertical MultiLine textField Scrollbar" in the description pane.

on getBehaviorDescription me
return "Vertical Multiline textField Scrollbar"

end
{button See also,AL(`Lingo_on_getBehaviorDescription')}

on getPropertyDescriptionList
Syntax: on getPropertyDescriptionList me

This event handler contains Lingo that generates a list of definitions and labels for the parameters that appear in
a behavior's Parameters dialog box.

Place the on getPropertyDescriptionList handler within the Score script that defines the behavior.
Behaviors that don't contain an
on getPropertyDesdriptionList handler don't appear in the Parameters dialog box and can't be edited
from Director's interface.

The on getPropertyDescriptionList message is sent when any action that causes the Behavior
Inspector to open occurs: either the user drags a behavior to the Score or the user double-clicks a behavior in
the Behavior Inspector.

The #default, #format, and #comment settings are mandatory for each parameter. Possible values for
these settings are:

#default The parameter's initial setting.

#format #integer #float #string #symbol #member #bitmap
#filmloop #field #palette #picture #sound #button
#shape #movie #digitalvideo #script #richtext #ole
#transition #xtra #frame #marker #ink #boolean
#cursor #graphic

#comment A descriptive string that appears to the left of the parameter's
editable field in the Parameters dialog box.

For more information, see Chapter 15, "Authoring Behaviors," in Learning Lingo.

Example:

This handler defines a behavior's parameters that appear in the Parameters dialog box. Each statement that
begins with addProp adds a parameter to the list named description. Each element added to the list defines a
property and the property's #default, #format, and #comment values:

on getPropertyDescriptionList me
set description = [:]
addProp description,#dynamic,[#default:1,¬
#format:#boolean,#comment:"Dynamic"]
addProp description,#fieldNum[#default:1,¬
#format:#integer,#comment:"Scroll which sprite:"]
addProp description,#extentSprite,[#default:1,¬
#format:#integer,#comment:"Extend Sprite:"]
addProp description,#proportional,[#default:1,¬
#format:#boolean,#commet:"Proportional:"]
return description

end
{button See also,AL(`Lingo_getPropertyDescriptionList')}

on idle
Syntax: on idle

statement(s)

end idle
This event handler contains statements that run whenever the movie has no other events to handle.

This is a useful location for Lingo statements that you want to execute as frequently as possible. Some common
cases are updating values in global variables and displays that tell current movie conditions.

Because statements in on idle handlers run frequently, it is good practice to avoid placing Lingo that takes a
long time to process in an on idle handler.

It is often preferable to put on idle handlers in frame scripts instead of movie scripts. This makes it easier to
turn off the on idle handler when appropriate.

Director can load cast members from an internal or external cast during an idle event. However, it cannot load
linked cast members during an idle event.

Cast members that were loaded during an idle event remain compressed until the movie uses them. When the
movie plays back, it may have noticeable pauses while it decompresses the cast members.

The idle message is sent to frame scripts and movie scripts.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler updates the time being displayed in the movie whenever there are no other events to handle:

on idle
 put the short time into member "Time"
end idle

{button See also,AL(`Lingo_on_idle')}

on keyDown
Syntax: on keyDown

statement(s)

end
This event handler contains statements that run when a key is pressed.

When a key is pressed, Lingo searches these locations, in order, for an on keyDown handler: primary event
handler, editable field sprite script, script of a field cast member, frame script, and movie script. For sprites and
cast members, on keyDown handlers work only for editable strings. A keyDown on a different type of cast
member, such as a bitmap, has no effect. When pressing a key should always have the same response
throughout the movie, set the keyDownScript.

Lingo stops searching when it reaches the first location that has an on keyDown handler, unless the handler
includes the pass command to explicitly pass the keyDown message on to the next location.

The on keyDown event handler is a good place to put Lingo that implements keyboard shortcuts or other
interface features that you want to have occur when the user presses keys.

Where you place an on keyDown handler can affect when it runs.

· When you want the handler to apply to a specific editable field sprite, put the handler in a sprite script.

· When you want the handler to apply to an editable field cast member in general, put the handler in a script of
the cast member.

· When you want the handler to apply to an entire frame, put the handler in a frame script.

· When you want the handler to apply throughout the entire movie, put the handler in a movie script.

You can override an on keyDown handler by placing an alternate on keyDown handler in a location that Lingo
checks before it gets to the handler you want to override. For example, you can override an on keyDown
handler assigned to a cast member by placing an on keyDown handler in a sprite script.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler checks whether the Return key was pressed and sends the playback head to another frame if it
was:

on keyDown
 if the key = RETURN then go to frame "AddSum"
end keyDown

{button See also,AL(`Lingo_on_keyDown')}

on keyUp
Syntax: on keyUp

statement(s)

end
This event handler contains statements that run when a key is released. The on keyUp handler is similar to the
on keyDown handler.

When a key is released, Lingo searches these locations, in order, for an on keyUp handler: primary event
handler, editable field sprite script, script of a field cast member, frame script, and movie script. For sprites and
cast members, on keyUp handlers work only for editable strings. A keyUp on a different type of cast member,
such as a bitmap, has no effect. When releasing a key should always have the same response throughout the
movie, set the keyUpScript.

Lingo stops searching when it reaches the first location that has an on keyUp handler, unless the handler
includes the pass command to explicitly pass the keyUp message on to the next location.

The on keyUp event handler is a good place to put Lingo that implements keyboard shortcuts or other interface
features that you want to have occur when the user releases keys.

Where you place an on keyUp handler can affect when it runs:

· When you want the handler to apply to a specific editable field sprite, put the handler in a sprite script.

· When you want the handler to apply to an editable field cast member in general, put the handler in a script of
the cast member.

· When you want the handler to apply to an entire frame, put the handler in a frame script.

· When you want the handler to apply throughout the entire movie, put the handler in a movie script.

You can override an on keyUp handler by placing an alternate on keyUp handler in a location that Lingo
checks before it gets to the handler you want to override. For example, you can override an on keyUp handler
assigned to a cast member by placing an on keyUp handler in a sprite script.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler checks whether the Return key was released and sends the playback head to another frame if it
was:

on keyUp
 if the key = RETURN then go to frame "AddSum"
end keyUp

{button See also,AL(`Lingo_on_keyUp')}

on mouseDown
Syntax: on mouseDown

statement(s)

end
This event handler contains statements that run when the mouse button is pressed.

When the mouse button is pressed, Lingo searches these locations, in order, for an on mouseDown handler:
primary event handler, sprite script, script of a cast member, frame script, and movie script. Lingo stops
searching when it reaches the first location that has an on mouseDown handler, unless the handler includes the
pass command to explicitly pass the mouseDown message on to the next location.

When pressing the mouse button should always have the same response throughout the movie, set the
mouseDownScript. For more information, see Chapter 2, "Script Basics," in Learning Lingo.

The on mouseDown event handler is a good place to put Lingo that flashes images, triggers sound effects, or
makes sprites move when the user presses the mouse button.

Where you place an on mouseDown handler can affect when it runs.

· When you want the handler to apply to a specific sprite, put the handler in a sprite script.

· When you want the handler to apply to a cast member in general, put the handler in a script of the cast
member.

· When you want the handler to apply to an entire frame, put the handler in a frame script.

· When you want the handler to apply throughout the entire movie, put the handler in a movie script.

You can override an on mouseDown handler by placing an alternate on mouseDown handler in a location that
Lingo checks before it gets to the handler you want to override. For example, you can override an on
mouseDown handler assigned to a cast member by placing an on mouseDown handler in a sprite script.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example 1:

This handler checks whether the user clicks anywhere on the Stage and sends the playback head to another
frame if he or she does:

on mouseDown
 if the clickOn = 0 then go to frame "AddSum"
end mouseDown

Example 2:

This handler, assigned to a sprite script, plays a sound when the sprite is clicked:

on mouseDown
 puppetSound "Crickets"
end mouseDown

{button See also,AL(`Lingo_on_mouseDown')}

on mouseEnter
Syntax: on mouseEnter

statement(s)

end mouseEnter
This event handler contains statements that run when the mouse cursor first contacts the active area of the
sprite. The mouse button does not have to be pressed.

If the sprite is a bitmap cast member with matte ink applied, the active area is the portion of the image that is
displayed; otherwise, the active area is the sprite's bounding rectangle.

The mouseEnter message is sent to the sprite script and then the cast member script; it is not sent to movie
scripts.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement plays a sound when the mouse first touches the sprite:

on mouseEnter me
puppetSound "inSound"

end mouseEnter

{button See also,AL(`Lingo_on_mouseEnter')}

on mouseLeave
Syntax: on mouseLeave

statement(s)

end mouseLeave
This event handler contains statements that run when the mouse leaves the active area of the sprite. The mouse
button does not have to be pressed.

If the sprite is a bitmap cast member with the matte ink applied, the active area is the portion of the image that is
displayed; otherwise, the active area is the sprite's bounding rectangle.

The mouseLeave message is sent to the sprite script and then the cast member script; it is not sent to movie
scripts.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement plays a sound when the mouse leaves the sprite:

on mouseLeave me
puppetSound "outSound"

end mouseLeave

{button See also,AL(`Lingo_on_mouseLeave')}

on mouseUp
Syntax: on mouseUp

statement(s)

end mouseUp
This event handler contains statements that are activated when the mouse button is released.

When the mouse button is released, Lingo searches these locations, in order, for an on mouseUp handler:
primary event handler, sprite script, script of a cast member, frame script, and movie script. Lingo stops
searching when it reaches the first location that has an on mouseUp handler, unless the handler includes the
pass command to explicitly pass the mouseUp message on to the next location.

When releasing the mouse button should always have the same response throughout the movie, set the
mouseUpScript.

An on mouseUp event handler is a good place to put Lingo that changes the appearance of objects-such as
buttons-after they are clicked. You can do this by switching the cast member assigned to the sprite after the
sprite is clicked and the mouse button is released. The sprite's different appearance indicates that the sprite has
already been clicked.

Where you place an on mouseUp handler can affect when it runs.

· When you want the handler to apply to a specific sprite, put the handler in a sprite script.

· When you want the handler to apply to a cast member in general, put the handler in a script of the cast
member.

· When you want the handler to apply to an entire frame, put the handler in a frame script.

· When you want the handler to apply throughout the entire movie, put the handler in a movie script.

You can override an on mouseUp handler by placing an alternate on mouseUp handler in a location that Lingo
checks before it gets to the handler you want to override. For example, you can override an on mouseUp
handler assigned to a cast member by placing an on mouseUp handler in a sprite script.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler, assigned to sprite 10, switches the cast member assigned to sprite 10 when the user releases the
mouse button after clicking the sprite:

on mouseUp
 puppetSprite 10, TRUE
 set the memberNum of sprite 10 ¬
 to the number of member "Dimmed"
end mouseUp

{button See also,AL(`Lingo_on_mouseUp')}

on mouseUpOutside
Syntax: on mouseUpOutside me

statement(s)

end mouseUpOutside
This event handler is sent when the mouse is initially pressed on a sprite but is later released off the sprite.

The mouseUpOutside message is sent to the sprite script and then the cast member script; it is not sent to
movie scripts.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement displays the mouse location when the mouse is over the sprite:

on mouseUpOutside me
puppetSound "Professor Long Hair"

end mouseUpOutside

on mouseWithin
Syntax: on mouseWithin

statement(s)

end mouseWithin
This event handler contains statements that run when the mouse is within the active area of the sprite. The
mouse button does not have to be pressed.

If the sprite is a bitmap cast member with the matte ink applied, the active area is the portion of the image that is
displayed; otherwise, the sprite's bounding rectangle is the active area.

The mouseWithin message is sent to the sprite script and then the cast member script; it is not sent to movie
scripts.

Note: This event is passed the sprite script or frame script reference me if used in a behavior.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement displays the mouse location when the mouse is over the sprite:

on mouseWithin
put the mouseH into field "Display"

end mouseWithin

{button See also,AL(`Lingo_on_mouseWithin')}

on moveWindow
Syntax: on moveWindow

 statement(s)

end
This event handler contains statements that run when a window is moved, such as when the user drags the
movie to a new location on the Stage. The on moveWindow handler is a good place to put Lingo that you want
executed every time the movie's window moves.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This handler plays the sound file Honk when the window that the movie is playing in moves:

on moveWindow
 puppetSound 2, "Honk"
end

on openWindow
Syntax: on openWindow

 statement(s)

 end

This event handler contains statements that run when Director opens a window. The on openWindow handler
is a good place to put Lingo that you want executed every time the movie's window opens.

Example:

This handler plays the sound file Hurray when the window that the movie is playing in opens:

on openWindow
 puppetSound 2, "Hurray"
end

on prepareFrame
Syntax: on prepareFrame

statement(s)

end prepareFrame
This event handler contains statements that run before the current frame is drawn.

The on prepareFrame handler is a useful place to change sprite properties before the sprite is drawn.

The on prepareFrame handler receives the reference me if used in a behavior.

The prepareFrame message is sent to sprite scripts, the script of the cast member, frame scripts, and movie
scripts.

Example:

This handler sets the locH of the sprite that the behavior is attached to:

on prepareFrame me
set the locH of sprite the spriteNum of me = the mouseH

end

{button See also,AL(`Lingo_on_prepareFrame')}

on prepareMovie
Syntax: on prepareMovie

statement(s)

end prepareMovie
This event handler contains statements that run after the movie preloads cast members but before the movie
does the following:

· Creates instances of behaviors attached to scripts in the first frame that plays.

· Prepares the first frame that plays. This includes drawing the frame, playing any sounds, and performing
transitions and palette effects.

New global variables used for sprite behaviors in the first frame must be initialized in the on prepareMovie
handler. Global variables already set by the previous movie do not need to be reset.

A on prepareMovie handler is a good place to put Lingo that creates global variables, initializes variables,
plays a sound while the rest of the movie is loading into memory, or checks and adjusts to computer conditions
such as color depth.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler creates a global variable when the movie starts:

on prepareMovie
 global currentScore
 set currentScore = 0
end prepareMovie

on resizeWindow
Syntax: on resizeWindow

statement(s)

end resizeWindow
This event handler contains statements that run when a movie is running as a movie in a window, and the user
resizes the window by dragging the window's grow box or one of its edges.

An on resizeWindow event handler is a good place to put Lingo related to the window's dimensions, such as
positioning sprites and cropping digital video.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This handler moves sprite 3 to the coordinates stored in the variable centerPlace when the window that the
movie is playing in is resized:

on resizeWindow centerPlace
 set the loc of sprite 3 to centerPlace
end

on rightMouseDown
Syntax: on rightMouseDown

 statements

 end rightMouseDown

This event handler contains statements that run when the right mouse button on a Windows computer is
pressed. For Macintosh computers, the statements are activated when the mouse button and Control key are
pressed at the same time, provided that the emulateMultiButtonMouse property is set to TRUE. If the
emulateMultiButtonMouse property isn't set to TRUE, this event handler has no effect on the Macintosh.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler opens the window Help when the user clicks the right mouse button in Windows:

on rightMouseDown
 open window "Help"
end

on rightMouseUp
Syntax: on rightMouseUp

statements

end rightMouseUp

This event handler contains statements that run when the right mouse button on a Windows computer is
released.

For Macintosh computers, the statements are activated if the mouse button is released while the Control key is
pressed, provided that the emulateMultiButtonMouse property is set to TRUE. If the
emulateMultiButtonMouse property isn't set to TRUE, this event handler has no effect on the Macintosh.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler opens the window Help when the user releases the right mouse button in Windows:

on rightMouseUp
 open window "Help"
end

on runPropertyDialog
Syntax: on runPropertyDialog me currentInitializerList

This event handler contains Lingo that defines specific values for a behavior's parameters in the Parameters
dialog box. The runPropertyDialog message is sent when the Parameters dialog box opens.

The current settings of a behavior's initial properties are passed to the handler as a property list. If the on
runPropertyDialog handler is not defined within the behavior, Director runs a behavior customization dialog
based on the property list returned by the on getPropertyDescriptionList handler.

Example:

This handler overrides the behavior's values for the Parameters dialog box for the behavior. Normally the
Parameters dialog box allows the user to set the mass and the gravitational constants. However, this handler
assigns these parameters constant values:

property mass
property gravitationalConstant
on runPropertyDialog me iList

--force mass to 10
setaProp currentInitializerList, #mass, 10
-- force gravitationalConstant to 9.8
setaProp currentInitializerList, #gravitationalConstant, 9.8
return iList

end
{button See also,AL(`Lingo_on_runPropertyDialog')}

on startMovie
Syntax: on startMovie

statement(s)

end startMovie
This event handler contains statements that run just before the playback head enters the first frame of the movie.
The startMovie event occurs after the prepareFrame event and before the enterFrame event.

An on startMovie handler is a good place to put Lingo that initializes sprites in the first frame of the movie.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler makes sprites invisible when the movie starts:

on startMovie
 repeat with counter = 10 to 50
 set the visible of sprite counter to FALSE
 end repeat
end startMovie

{button See also,AL(`Lingo_on_startMovie')}

on stepFrame
Syntax: on stepFrame

statement(s)

end stepFrame
This event handler contains statements that run when the playback head enters a frame or the Stage is updated.
This handler only works in scripts attached to objects in the actorList because these are the only objects
that receive a stepFrame message.

An on stepFrame handler is a useful location for Lingo that you want to attach to a specific set of objects. The
most common use of this handler is for Lingo instructions that need to run frequently for child objects, such as
Lingo that creates animation.

The stepFrame message is sent before the prepareFrame message.

Assign objects to the actorList if you want the objects to respond to stepFrame messages.

For more information about child objects and using the on stepFrame handler, see Chapter 12, "Parent Scripts
and Child Objects," in Learning Lingo.

Example:

If the child object is assigned to the actorList, the on stepFrame handler in this parent script sends a
move message to the child object's on move handler each time the playback head enters a frame.

property mySprite
on new me, theSprite
set mySprite = theSprite
return me

end
on move me
set the loc of sprite mySprite = point(random(640),random(480))
return me

end
on stepFrame me
move me

end

on stepMovie
Syntax: on stepMovie

statement(s)

end stepMovie
This event handler, which was used in earlier versions of Director, does the same as the on enterFrame
handler. Use the on enterFrame event handler instead.

{button See also,AL(`Lingo_on_stepMovie')}

on stopMovie
Syntax: on stopMovie

statement(s)

end stopMovie
This event handler contains statements that run when the movie stops playing.

An on stopMovie handler is a good place to put Lingo that performs cleanup tasks-such as closing resource
files, clearing global variables, erasing fields, and disposing of objects-when the movie is finished.

An on stopMovie handler in a MIAW is called only when the movie plays through to the end or jumps to
another movie. It isn't called when the window is closed or the window is deleted by the forget window
command.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler clears global variables and closes two resource files when the movie stops:

on stopMovie
 set gCurrentScore = 0
 closeResFile "Special Fonts"
 closeResFile "Special Cursors"
end stopMovie

{button See also,AL(`Lingo_on_stopMovie')}

on streamStatus
Syntax: on streamStatus URL, state, bytesSoFar, bytesTotal, error

statements

end streamStatus
The on streamStatus handler determines how much of an object has downloaded from the internet. The
handler is only called if tellStreamStatus (TRUE) has been called. The handler is called periodically to
report the progress of streams that are being retrieved from the internet.

Parameters for the on streamStatus event handler have the following uses:

URL The internet address of the data being retrieved.

state The state of the stream being downloaded. Possible values
are: Connecting, Started, InProgress, Complete, and Error

bytesSoFar The number of bytes retrieved from the network so far.

bytesTotal The total number of bytes in the stream, if known. The value
may be 0 if the HTTP server does not include the content-
length in the MIME header.

error Contains the error code if the stream state is "Error"; 0
otherwise.

Network streams can be initiated using Lingo commands, or by linking media from a URL, or by using an
external cast member from a URL.

Use streamStatus with gotoNetMovie, getNetText, preloadNetThing, and
downloadNetThing.
Place the streamStatus handler in movie scripts.

Example:

This handler determines the state of a streamed object and displays the URL of the object:

on streamStatus URL state bytesSoFar bytesTotal
if state = "Complete" then

put URL && "download finished"
end if

end streamStatus

on timeOut
Syntax: on timeOut

end timeOut
This event handler contains statements that run when no one uses the keyboard or mouse for the length of time
set in the timeOutLength. This is a useful location for Lingo that you want to execute when the user does
nothing for a specified length of time.

When a timeout should always have the same response throughout the movie, set
the timeOutScript.

An on timeOut handler must be placed in a movie script.

For more information, see the chapter, "Script Basics," in Learning Lingo.

Example:

This handler plays the movie "Attract Loop" after users do nothing for the time set in the timeOutLength
property. This can be a way to respond when users have gone away from the computer:

on timeOut
 play movie "Attract Loop"
end timeOut

{button See also,AL(`Lingo_on_timeOut')}

on zoomWindow
Syntax: on zoomWindow

statement(s)

end zoomWindow
This event handler contains statements that run when a movie that is running as a movie in a window is resized
when the user clicks the minimize/maximize button (Windows) or the zoom button (Macintosh). The operating
system determines the dimensions after resizing the window.

An on zoomWindow event handler is a good place to put Lingo intended to rearrange sprites when window
dimensions change.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This handler moves sprite 3 to the coordinates stored in the variable centerPlace when the window that the
movie is playing in is resized:

on zoomWindow centerPlace
 set the loc of sprite 3 to centerPlace
end

open
Syntax: open [whichDocument with] whichApplication

This command launches the application specified by the string whichApplication. By specifying whichDocument,
you can specify a document that the application opens at the same time. When either is in a different folder than
the current movie, you must specify the pathname.

If the computer is using MultiFinder, it must have enough memory to run both Director and the other application
at the same time.

Example 1:

This statement checks whether the computer is a Macintosh (by checking whether it isn't a Windows computer)
and then opens the application MacWrite if it is:

if the machineType <> 256 then open "MacWrite"

Example 2:

This statement opens the MacWrite application, which is in the folder Applications on the drive myDrive, and the
document named Storyboards:

open "Storyboards" with myDrive & "Applications:" ¬
 & "MacWrite"

{button See also,AL(`Lingo_open')}

open window
Syntax: open window "whichWindow"

This command opens the window or movie specified by whichWindow and brings it to the front of the Stage. If no
movie is assigned to the window, the Open file dialog box appears.

· If you replace whichWindow with a movie's file name, the window uses the file name as the window.

· If you replace whichWindow with a window name, the window takes that name. However, you must then
assign a movie to the window by using set the fileName of window.

To open a window that uses a movie from a URL, it's a good idea to use the downloadNetThing command to
download the movie's file to a local disk first, and then use the file on the disk. This minimizes problems with
waiting for the movie to download.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement opens the window Control Panel and brings it to the front:

open window "Control Panel"

{button See also,AL(`Lingo_open_window')}

openDA
This Lingo element is obsolete.

openResFile
Syntax: openResFile whichFile

On the Macintosh, this command opens the resource file specified by the string whichFile. When the file is in a
different folder than the current movie, whichFile must specify a pathname.

In earlier versions of Director, this command was necessary to make additional fonts and cursors available in
your movies. However, you can now provide custom cursors by importing the cursor as a cast member and using
the cursor property.

When the file is already open, openResFile has no effect. It is good practice to close any open file as soon as
you are finished using it.

The openResFile command doesn't support URLs as file references.

Do not use openResFile to open another application. (Its code resources will interfere with those of Director.)
Use a resource mover like ResEdit to move the resources you need to a separate resource file.

Example:

This statement opens the resource file Special Fonts:

openResFile "Special Fonts"

This statement opens the resource file Special Icons, which is in another folder:

openResFile the pathName&"Special Icons"

{button See also,AL(`Lingo_openResFile')}

openXlib
Syntax: openXlib whichFile

This command opens the Xlibrary file specified by the string expression whichFile. If the file is in a different folder
than the current movie, whichFile must include the pathname.

It is good practice to close any file you have opened as soon as you are finished using it. When the file is already
open, openXlib has no effect.

The openXlib command doesn't support URLs as file references.

Xlibrary files contain Xtras and XObjects as XCOD resources. Unlike openResFile, openXlib makes these
Xtras and XObjects known to Director.

In Windows, the DLL extension is optional.

Example 1:

This statement opens the Xlibrary file Video Disc Xlibrary:

openXlib "Video Disc Xlibrary"

Example 2:

This statement opens the Xlibrary file Xtras, which is in a different folder than the current movie:

openXlib "My Drive:New Stuff:Transporter Xtras"

{button See also,AL(`Lingo_openXlib')}

optionDown
Syntax: the optionDown

This function determines whether the Option key on the Macintosh or the Alt key on a PC keyboard is being
pressed.

· When the Option or Alt key is being pressed, the optionDown is TRUE.

· When the Option or Alt key is not being pressed, the optionDown is FALSE.

In Windows, the optionDown doesn't work in projectors. Avoid using the optionDown if you intend to
distribute the movie as a Windows projector.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

For a demonstration of the optionDown function, see the sample movie Keyboard Lingo.

Example:

This handler checks whether the Option key or Alt key is being pressed and calls the handler named
doOptionKey if it is:

on keyDown
 if the optionDown then doOptionKey(the key)
end keyDown

{button See also,AL(`Lingo_optionDown')}

or
Syntax: logicalExpression1 or logicalExpression2

This operator performs a logical OR operation on two logical expressions.

· When either expression or both expressions are TRUE, the result is TRUE.

· When both expressions are FALSE, the result is FALSE.

This is a logical operator with a precedence level of 4.

Example 1:

This statement causes the Message window to display whether at least one of the expressions 1 < 2 and 1 > 2 is
TRUE:

put 1 < 2 or 1 > 2

Because the first expression is TRUE, the result is 1, which is the numerical equivalent of TRUE.

Example 2:

This statement checks whether the contents of the field cast member named State are either AK or HI, and
displays an alert if they are:

if member "State" = "AK" or member "State" = "HI" ¬
 then alert "You're off the map!"

{button See also,AL(`Lingo_or')}

otherwise
Syntax: otherwise statement

This optional keyword precedes instructions that Lingo carries out when none of the earlier conditions in a case
statement are met.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

The following handler tests which key the user pressed most recently and responds accordingly:

· If the user pressed A, B, or C, the movie performs the corresponding action following the of keyword.

· If the user pressed any other key, the movie executes the statement that follows the otherwise keyword. In
this case, the statement is a simple beep.

on keyDown
 case (the key) of
 "A": go to frame "Apple"
 "B", "C":
 puppetTransition 99
 go to frame "Oranges"
 otherwise beep
 end case
end keyDown

pageHeight of member
Syntax: the pageHeight of member whichCastmember

This field cast member property returns the height, in pixels, of the area of the field cast member that is visible on
the Stage. This property can be tested but not set.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement gets the height of the visible portion of the field cast member Today's News:

put the pageHeight of member "Today's News"

palette of cast
This is obsolete. Use palette of member instead.

palette of member
Syntax: the palette of member whichCastMember

This cast member property determines which palette is associated with the cast member specified by
whichCastMember. This property applies to bitmap cast members only.

The palette of member property can be tested and set.

Example:

This statement displays the palette assigned to the cast member Leaves in the Message window:

put the palette of member "Leaves"

paletteMapping
Syntax: the paletteMapping

This movie property determines whether Director remaps the movie's palette. Its effect is similar to the Remap
Palettes When Needed check box in the Movie Properties dialog box.

· When the paletteMapping is TRUE, the movie remaps palettes for cast members whose palette is
different than the current movie palette.

· When the paletteMapping is FALSE, the movie doesn't remap palettes for cast members.

To display different graphics with different palettes simultaneously, you can set paletteMapping to TRUE.
When it's TRUE, Director looks at each onscreen cast member's reference palette (the palette assigned in its
Cast Member Properties dialog box) and, if it is different from the current palette, find the closest match for each
pixel in the new palette.

The non-matching bitmap's colors won't be exactly the same as the original colors, but the colors will be
relatively close.

Unfortunately, this consumes processor time. It's usually worth the effort to adjust the bitmap's palette in
advance.

This feature can give undesirable results when paletteMapping is TRUE and a bitmap sprite spans a series of
frames. If the palette changes in the middle of the sprite span, the bitmap immediately remaps to the new palette
and appears in the wrong colors. However, if anything refreshes the screen-a transition or a sprite moving across
the Stage-then the refreshed area of the screen appears in remapped colors.

Example:

This statement has the movie always remap the movie's palette when needed:

set the paletteMapping = TRUE

paletteRef
Syntax: the paletteRef

This property determines the palette associated with a bitmap cast member.
Built-in Director palettes are indicated by symbols (#systemMac, #rainbow, and so on). Palettes that are cast
members are treated as cast member references. This differs from the palette of member, which returns a
positive number for cast palettes and negative numbers for built-in Director palettes.

The paletteRef property can be tested and set.

Example:

This statement assigns the Macintosh system palette to the bitmap cast member Shell:

set the paletteRef of member "Shell" to #systemMac

param
Syntax: param(parameterPosition)

This function provides the value of a parameter in a list. The variable parameterPosition represents the
parameter's position in the list.

For more information about lists, see Chapter 10, "Working with Lists," in Learning Lingo.

Example:

This handler calculates the average value of a list of parameters:

on avg first, second, third
 set n = paramCount()
 set sum = 0.0
 repeat with i = 1 to n
 set sum = param(i) + sum
 end repeat
 return sum/n
end avg

This statement passes the handler three values and displays the result in the Message window:

put avg(1,2,3)
--> 2.0

{button See also,AL(`Lingo_param')}

paramCount
Syntax: the paramCount

This function indicates the number of parameters sent to the current handler.

Example:

This statement sets the variable counter to the number of parameters that were sent to the current handler:

set counter = the paramCount

pass
Syntax: pass

This command passes an event message to the next location in the message hierarchy. The pass command
jumps to the next location as soon as the command runs. Any Lingo that follows the pass command in the
handler does not run.

By default, an event message stops at the first location containing a handler for the event, usually at the sprite
level.

Including the pass command in a handler causes the event to be passed to other objects in the hierarchy even
though the handler would otherwise intercept the event.

Passing an event message to other locations in the message hierarchy lets you execute more than one handler
for a given event.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This statement passes the event to the cast member level.
on mouseUp me
 if (movie_needs_to_know) then pass
end

{button See also,AL(`Lingo_pass')}

pasteClipBoardInto
Syntax: pasteClipBoardInto member whichCastmember

This command pastes the contents of the Clipboard into the cast member specified by whichCastMember. When
you paste into an occupied Cast window location, the old cast member is completely erased. For instance,
pasting a bitmap into a field cast member makes the bitmap the cast member and erases the field cast member.

You can paste any item that is in a format that Director can use as a cast member. When you copy strings from
another application, the string's formatting is not retained.

The pasteClipBoardInto command provides a convenient way to copy objects from other movies and from
other applications into the Cast window. Because copied cast members must be stored in RAM, avoid using this
command in projectors. It's best used during authoring.

Example:

This statement pastes the contents of the Clipboard into the bitmap cast member Shrine:

pasteClipBoardInto member "Shrine"

pathName
Syntax: the pathName

This function returns a string containing the full pathname of the folder in which the current movie is located.

The pathName function returns a URL if the movie is on the internet.

You can write pathnames that work on both Windows and Macintosh computers by using the @ operator.

Example 1:

This statement checks whether the pathname contains the term System and causes the computer to beep if it
does:

if the pathName contains "System" then beep

Example 2:

These statements check whether the movie is playing in Windows or on the Macintosh, and then plays the sound
file Crash.aif in the Sounds subfolder of the current movie's folder. By checking which platform the movie is
playing on, the movie uses the sound playFile statement that has the appropriate folder delimiter:

case (the platform) of
"Windows,32", "Windows,16" :sound playFile 1, ¬
the pathname&"sounds/Crash.aif"
otherwise sound playFile 1, the pathname&¬
"sounds:Crash.aif"

end case

{button See also,AL(`Lingo_pathName')}

pattern
Syntax: the pattern of member whichCastmember

This shape cast member property determines the pattern associated with the specified shape. Possible values
are the numbers that correspond to the chips in the Tools window's patterns palette. If the shape cast member is
unfilled, the pattern is applied to the cast member's outer edge. This property can be tested and set.

This can be useful in Shockwave movies for changing images by changing the tiling applied to a shape, allowing
you to save memory required by larger bitmaps.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example 1:

The following statements make the shape cast member Target Area a filled shape and assign it the pattern
numbered 0, which is a solid color:

set the filled of member "Target Area" = TRUE
set the pattern of member "Target Area" = 0

Example 2:

This handler cycles through eight tiles, with each tile's number offset from the previous. This lets you create
animation using smaller bitmaps:

on exitFrame
set currentPat to the pattern of member "Background Shape"
set nextPat to 57 + ((currentPat - 56) mod 8)
set the pattern of member "Background Shape" to nextPat
go to the frame

end

pause
Syntax: pause

This command was used in earlier versions of Director to halt the playback head.

In general, using pause is not recommended. It's better to use the statement
go to the frame in a frame script for the frame that you want to stay in. This has the movie appear to pause,
but lets the movie continue to respond to events.

For more information about navigation, see Chapter 3, "Navigation," in Learning Lingo.

Example:

The following on mouseUp handler for a button alternately pauses and continues the animation, like the pause
button on a videocassette recorder:

on mouseUp
 if the pauseState = TRUE then
 go to the marker + 1
 else
 pause
 end if
end mouseUp

{button See also,AL(`Lingo_pause')}

pause member
Syntax: pause member ("whichCastmember")

This command pauses the playback of a Shockwave Audio (SWA) streaming cast member. When the sound is
paused, the state of member property equals 4.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This handler could be used for a play/pause button. If the sound is playing, the handler pauses the sound;
otherwise, the handler plays the sound linked to the SWA streaming cast member soundSWA:

on mouseDown
set whatState = the state of member "soundSWA"
if whatState = 3 then

pause member "soundSWA"
else

play member "soundSWA"
end if

end

pausedAtStart of member
Syntax: the pausedAtStart of member whichDigitalVideo trueOrFalse

This digital video cast member property specifies whether the Paused at Start check box in the Digital Video
Cast Member Properties dialog box is checked or not.

· When the pausedAtStart of member property is TRUE, the Paused at Start check box is checked.

· When the pausedAtStart of member property is FALSE, the Paused at Start check box is not checked.

The pausedAtStart of member property can be tested and set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement turns on the Paused at Start check box in the Digital Video Cast Member Info dialog box for the
QuickTime movie Rotating Chair:

set the pausedAtStart of member "Rotating Chair" = TRUE

pauseState
Syntax: the pauseState

This property returns TRUE when the movie is currently paused.

Example:

This statement checks whether the movie is currently paused and causes the movie to continue if it is:

if the pauseState = TRUE then go to the marker + 1

{button See also,AL(`Lingo_pauseState')}

percentPlayed of member
Syntax: the percentPlayed of member "whichCastmember"

This cast member property returns the percentage of the specified Shockwave Audio (SWA) file that has actually
played.

This property can be tested only after the SWA sound is playing or has been preloaded using the
preLoadBuffer command. This property cannot be set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This handler displays the percentage of the SWA streaming cast member Frank Sinatra that has played and puts
the value in the field cast member Percent Played:

on exitFrame
set whatState = the state of member "Frank Sinatra"
if whatState > 1 AND whatState < 9 then

put the percentPlayed of member "Frank Sinatra"
into member "Percent Played"

end if
end

percentStreamed of member
Syntax: the percentStreamed of member "whichCastmember"

This Shockwave Audio (SWA) streaming sound cast member property indicates the percent of the SWA file
already streamed from an ftp or HTTP server.

This differs from the percentPlayed property in that it also includes the amount of the file that has been
buffered, but not yet been played.

This property is only available after the SWA sound is playing or has been preloaded using the preLoadBuffer
command.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This example displays the percentage of SWA streaming cast member Ray Charles that has streamed and puts
the value in a field:

on exitFrame
set whatState = the state of member "Ray Charles"
if whatState > 1 AND whatState < 9 then

put the percentStreamed of member "Ray Charles"
into member "Percent Streamed Displayer"

end if
end

perFrameHook
Syntax: the perFrameHook

The perFrameHook property is obsolete. It was used in earlier versions of Director to send messages to
XObjects. You should now use the actorList property and the
on stepFrame handler to send messages to a set of child objects.

{button See also,AL(`Lingo_perFrameHook')}

pi
Syntax: pi()

This function gives the value of pi (¹), the ratio of a circle's circumference to its diameter. The value of ¹ is given
as a floating-point number to the number of decimal places set by the floatPrecision property.

Example:

This statement uses the pi function as part of an equation for calculating the area of a circle:

set vArea = pi()*power(vRadius,2)

picture of cast
This is obsolete. Use picture of member instead.

picture of member
Syntax: the picture of member whichCastmember

This cast member property determines which image is associated with a bitmap, text, or PICT cast member. To
update changes to a cast member's registration point or update changes to an image after relinking it using the
fileName property, use the following statement:

set the picture of member whichCastmember = the picture ¬
of member whichCastmember

where you replace whichCastmember with the name or number of the affected cast member.

Because changes to cast members are stored in RAM, this property is best used during authoring. Avoid setting
it in projectors.

The picture of member property can be tested and set.

For more information about parent scripts and child objects, see Chapter 12, "Parent Scripts and Child Objects,"
in Learning Lingo.

Example:

This statement sets the variable named pictHolder to the image in the cast member named Sunset:

set pictHolder = the picture of member "Sunset"

{button See also,AL(`Lingo_picture_of_member')}

pictureP
Syntax: pictureP(pictureValue)

This function tells the state of the picture of member property for the specified cast member.

· When the picture of member property is TRUE, pictureP is TRUE (1).

· When the cast member is not a picture data type, pictureP is FALSE (0).

Because pictureP doesn't directly check whether a cast member has a picture, you must test whether a cast
member has a picture by checking the cast member's picture of member property.

Example:

The first statement assigns the value of the picture of member property for the cast member Shrine, which is
a bitmap, to the variable pictureValue. The second statement checks whether Shrine is a picture by checking
the value assigned to pictureValue:

set pictureValue to the picture of member "Shrine"
put pictureP(pictureValue)

The result is 1, which is the numerical equivalent of TRUE.

platform
Syntax: the platform

This property indicates the platform type that the projector was created for. It can be tested but not set.

Possible values are the following:

Possible value Corresponding platform

Macintosh,68k Original 68K Macintosh

Macintosh,PowerPC PPC Macintosh

Windows,16 Windows 3.1 or earlier

Windows,32 Windows 95 or WinNT

Example:

This statement checks whether the movie was created in Windows 95 and assigns the cast Win95 Art the name
Interface if it is:

if the platform contains "Windows,32" then set the name ¬
of castLib "Win95 Art" to "Interface"

play
Syntax: play [frame] whichFrame

play movie whichMovie

play frame whichFrame of movie whichMovie

This command causes the playback head to jump to the specified frame of the specified movie. The expression
whichFrame can be either a string marker label or an integer frame number. The expression whichMovie must be
a string that specifies a movie file. When the movie is in another folder, whichMovie must specify a pathname.

The play command is similar to the go to command, but with the play command, when the sequence being
played is over, the playback head automatically returns to the frame where the play command was called. If the
play command is issued from a frame script, the playback head returns to the next frame; if the play command
comes from a sprite script or handler, the playback head returns to the same frame. A sequence is over when the
playback head reaches the end of the movie, or when the play done command is given.

To play a movie from a URL, it's a good idea to use the downloadNetThing or preLoadNetThing command
to download the file to a local disk first, and then use the play command to play the movie on the local disk. This
minimizes problems with waiting for the file to download.

The play command can also be used for playing several movies from a single handler. The handler is
suspended while each movie plays but resumes when the movie is over. Contrast this with a series of go
commands that, when called from a handler, play the first frame of each movie. The handler is not suspended
while the movie plays but immediately continues executing.

If a play done command isn't used to indicate the end of a segment started by a play command, memory gets
used up because the original calling script isn't deleted. If you aren't sure that each play command has a
matching play done command, consider avoiding play commands. Instead, use a global list to record where
the movie should return to.

For more information on about navigation, see Chapter 3, "Navigation," in Learning Lingo.

Example 1:

This statement moves the playback head to the marker named blink:

play "blink"

Example 2:

This statement moves the playback head to the next marker:

play marker(1)

Example 3:

This statement moves the playback head to a separate movie:

play movie "My Drive:More Movies:" & newMovie

{button See also,AL(`Lingo_play')}

play done
Syntax: play done

This command indicates that the sequence being played is complete when the current movie or sequence was
started using the play or go to commands. The play done command causes the playback head to return to
where the sequence was started from. If the play command is issued from a frame script, the playback head
returns to the next frame; if the play command is issued from a sprite script, the playback head returns to the
same frame.

If a play done command isn't used to indicate the end of a segment started by a play command, memory gets
used up because the original calling script isn't deleted. If you aren't sure that each play command has a
matching play done command, consider avoiding play commands. Instead, use a global list to record where
the movie should return to.

Note: The play done command has no effect in a movie that is playing in a window.

Example:

This handler has the playback head return to the frame of the movie that was playing before the current movie
started:

on exitFrame
play done

end

{button See also,AL(`Lingo_play_done')}

play member
Syntax: play member "whichCastmember"

This command begins playback of a Shockwave Audio (SWA) streaming cast member.

If the sound has not been preloaded using the preLoadBuffer command, the SWA sound preloads before
playing begins. When the sound is playing, the
state of member property equals 3.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This handler begins the playback of cast member Big Band:

on mouseDown
play member "Big Band"

end

point
Syntax: point(horizontal, vertical)

This function yields a point that has the horizontal coordinate specified by horizontal and the vertical coordinate
specified by vertical.

A point has a locH and a locV property. Point coordinates can be changed by arithmetic operations.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement sets the variable lastLocation to the point (250, 400):

set lastLocation = point(250, 400)

Example 2:

This statement adds 5 pixels to the horizontal coordinate of the point assigned to the variable myPoint:

set the locH of myPoint to the locH of myPoint + 5

Example 3:

These statements set a sprite's Stage coordinates to mouseH and mouseV plus 10 pixels. The two statements
are equivalent:

set the loc of sprite (the clickOn) to ¬
point(the mouseH, the mouseV) + point(10, 10)
set the loc of sprite (the clickOn) to point(the mouseH, the mouseV) + 10

Example 4:

This handler moves a named sprite to the location that the user clicks.

on mouseDown
-- Set these variables as needed for your own movie
set theSprite to 1 -- Set the sprite that should move
set steps to 40 -- Set the number of steps to get there
set initialLoc to the loc of sprite theSprite
set delta to (the clickLoc - initialLoc) / steps
repeat with i = 1 to steps
set the loc of sprite theSprite to ¬
(initialLoc + (i * delta))
updateStage

end repeat
end mouseDown

{button See also,AL(`Lingo_point')}

power
Syntax: power(base, exponent)

This function calculates the value of the number specified by base to the exponent specified by exponent.

Example:

This statement sets the variable vResult to the value of 4 to the third power:

set vResult = power(4,3)

preLoad
Syntax: preLoad

preLoad toFrameNum

preLoad fromFrame, toFrameNum

This command preloads cast members in the specified frame or range of frames into memory. Preloading stops
when memory is full or when all of the specified cast members have been preloaded.

When used without arguments, the preLoad command causes a preload of all cast members used from the
current frame to the last frame of a movie.

When used with one argument, toFrame, the preLoad command causes a preload of all cast members used in
the range of frames from the current frame to the frame toFrame, as specified by frame number or label name.

When used with two arguments, fromFrame and toFrame, the preLoad command causes a preload of all cast
members used in the range of frames from the frame fromFrame to the frame toFrame, as specified by frame
number or label name.

The preLoad command also returns the number of the last frame successfully loaded. To access this value, use
the result function.

Example 1:

This statement preloads the cast members used from the current frame to the frame that has the next marker:

preLoad marker (1)

Example 2:

This statement preloads the cast members used from frame 10 to frame 50:

preLoad 10, 50

{button See also,AL(`Lingo_preLoad')}

"

preLoad of cast
This is obsolete. Use preLoad of member instead.

preLoad of member
Syntax: the preLoad of member whichCastmember

This digital video cast member property determines whether the digital video cast member specified by
whichCastmember can preload into memory.

· When the digital video cast member can be preloaded into memory, the preLoad of member is TRUE.

· When the digital video cast member cannot be preloaded into memory, the preLoad of member is
FALSE.

Setting the preLoad of member to TRUE has the same effect as selecting Enable Preload in the Digital
Video Cast Member Properties dialog box.

Example:

This statement causes the Message window to display whether the QuickTime movie "Rotating Chair" can be
preloaded into memory:

put the preLoad of member "Rotating Chair

preLoadBuffer member
Syntax: preLoadBuffer member "whichCastmember"

This command preloads part of a specified Shockwave Audio (SWA) file into memory. The amount preloaded is
determined by the preLoadTime property. This command works only if the SWA cast member is stopped.

After the preLoadBuffer command is successful, the state of member equals 2. Most SWA cast member
properties can be tested only after the preLoadBuffer command has completed successfully. Some of these
properties are the following: cuePointNames, cuePointTimes, currentTime, duration,
percentPlayed, percentStreamed, bitRate, sampleRate, and numChannels.

Example:

This statement loads the cast member Mel Torme into memory:

preLoadBuffer (member "Mel Torme")

preLoadCast
This is obsolete. Use preLoadMember instead.

preLoadEventAbort
Syntax: the preLoadEventAbort

This property specifies whether pressing keys or clicking the mouse can stop the preloading of cast members.

· When the preLoadEventAbort property is TRUE, pressing keys or clicking the mouse can stop the
preloading of cast members.

· When the preLoadEventAbort property is FALSE, pressing keys or clicking the mouse cannot stop the
preloading of cast members.

The default value is FALSE. The setting of this property affects the current movie.

The preLoadEventAbort property can be tested and set.

Example:

This statement lets the user stop the preloading of cast members by pressing keys or clicking the mouse:

set the preLoadEventAbort = TRUE

{button See also,AL(`Lingo_preLoadEventAbort')}

preLoadMember
Syntax: preLoadMember

preLoadMember whichCastmember

preLoadMember fromCastmember, toCastmember

This command preloads cast members. Preloading stops when memory is full or when all of the specified cast
members have been preloaded.

When used without arguments, the preLoadMember command preloads all cast members in the movie.

When used with the whichCastmember argument, the preLoadMember command preloads that cast member.

When used with the arguments fromCastmember and toCastmember, the preLoadMember command preloads
all cast members in the range specified by the cast member numbers or names.

The preLoadMember command returns the cast member number of the last cast member successfully loaded.
To obtain this value, use the result function.

Example 1:

This statement preloads cast member 20:

preLoadMember 20

Example 2:

This statement preloads cast member Shrine and the ten cast members after it in the Cast window :

preLoadMember "Shrine", (the number of member "Shrine" + 10)

preLoadMode of CastLib
Syntax: the preLoadMode of castLib whichCast

This cast property determines the specified cast's preload mode. This has the same effect as setting Load Cast
in the Cast Properties dialog box.

Possible values are the following:

0-When Needed

1-Before Frame One

2-After Frame One

A on prepareMovie handler is usually a good place for Lingo that determines when cast members are loaded.
This property can be tested and set.

Example:

The following statement causes Director to load the members of the cast Buttons before the movie enters frame
one:

set the preLoadMode of castLib "Buttons" = 1

{button See also,AL(`Lingo_preLoadMode_of_CastLib')}

preLoadMovie
Syntax: preLoadMovie whichMovie

This command preloads the cast members associated with the first frame of the specified movie. Preloading a
movie helps it start faster when it is started by a go to movie or play movie command.

To preload cast members from a URL, use the preloadNetThing or the downloadNetThing command.

· Using preloadNetThing loads the cast members directly to cache.

· Using downLoadNetThing loads the movie to a local disk first, from which you can load the movie into
memory. This can minimize problems with waiting for the file to download.

Example:

This statement preloads the movie Introduction:

preLoadMovie "Introduction"

preloadNetThing
Syntax: preloadNetThing (URL)

This command preloads a file from the internet to the browser's cache so it can be used later without a download
delay. Replace URL with the name of any valid internet file, such as a Director movie, HTML page, ftp server
location, or graphic.

The preloadNetThing command loads the file while the current movie continues playing. Use netDone to find
out whether preloading is finished.

After an item is preloaded, it can be displayed immediately because it is taken from the local browser's cache
rather than from the network.

Although many network operations can be active at a time, running more than four concurrent operations usually
slows down performance unacceptably.

Neither the cache size nor the Check Documents option affects the behavior of the preLoadNetThing
command.

The preloadNetThing command does not parse an HTML file's EMBED tags. Thus, even if an HTML page
contains embedded pictures and Shockwave movies, preloadNetThing downloads the page's HTML. You still
must preload other objects embedded in the page.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example 1:

This statement preloads the file Roses.pict from the internet:

preLoadNetThing("http://www.flowers.com/Roses.pict")

Example 2:

This statement uses preloadNetThing as a function and returns the network ID for the operation:

set mynetid = # ¬ preloadNetThing("http://www.yourserver.com/menupage/¬
default.html")

{button See also,AL(`Lingo_preloadNetThing')}

preLoadRAM
Syntax: the preLoadRAM

This property specifies the amount of RAM that can be used for preloading a digital video. It can be set and
tested.

This is useful for managing memory, so that digital video cast members are not given more than a certain limit of
memory, and other types of cast members can still be preloaded. When the preLoadRAM is FALSE, all
available memory can be used for preloading digital video cast members.

Example:

This statement allocates the amount of RAM available for preloading to 3 times the size of the cast member
Interview:

set the preLoadRAM to 3 * (the size of member "Interview")

{button See also,AL(`Lingo_preLoadRAM')}

preLoadTime of member
Syntax: preLoadTime of member whichCastmember

This property specifies the amount of the Shockwave Audio (SWA) streaming cast member to download before
playback begins or when a preLoadBuffer command is used. The value is in seconds.

This property can be set only when the SWA streaming cast member is stopped. The default value is 5 seconds.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This handler sets 6 seconds as the amount of time to download from the SWA streaming cast member Louis
Armstrong. The actual preload occurs when a preLoadBuffer or play command is issued:

on mouseDown
stop member "Louis Armstrong"
set the preLoadTime of member "Louis Armstrong " = 6

end

prepareFrame
 See on prepareFrame event handler.

prepareMovie
 See on prepareMovie event handler.

previous
See: go previous command

printFrom
Syntax: printFrom fromFrame [, toFrame] [, reduction]

This command prints whatever is displayed on the Stage in each frame starting at the frame specified by
fromFrame. Optionally, you can supply toFrame, and the reduction (100, 50, or 25 percent).

When printing at less than 100 percent, the document prints as a bitmap, so text does not print as sharply as it
would at full size.

Example:

This statement prints what is on the Stage in every frame starting at frame 1:

printFrom 1

This statement prints what is on the Stage in every frame from the marker Intro to the marker Tale. The reduction
is 50 percent:

printFrom label("Intro"), ("Tale"), 50

property
Syntax: property [property1][, property2][, property3] [...]

This keyword declares that the properties specified by property1, property2, and so on are property variables.

Declare property variables at the beginning of the parent script or behavior script. You can access them from
outside the parent script or behavior script by using the the operator.

You can refer to a property within a parent script or behavior script without using the me keyword. However, to
refer to a property of a parent script's ancestor, use the form: the property of me.

For behaviors, properties defined in one behavior script are available to other behaviors attached to the same
sprite. If a behavior has an ancestor that needs the sprite's number, declare spriteNum as a property in the
ancestor script.

A child object's property can be directly manipulated from outside the object's parent scripts through syntax
similar to that for manipulating other properties. For example, this sets the motionStyle property of a child
object:

set the motionStyle of myBouncingObject to #frenetic

The count function can determine the number of properties within the parent script of a child object. Retrieve
the name of these properties by using getPropAt. Add properties to an object by using setaProp.

Example 1:

This statement allows each child object created from a single parent script to have its own location and velocity
setting:

property location, velocity

This handler assigns a random color property if the object doesn't already have a color property:

on DoesItNeedAColor theObject
repeat with i = 1 to count (theObject)
if getPropAt (theObject, i) = #color then exit

end repeat
set colors to [#red, #green, #blue]
set thisColor to getAt(colors, random(count(colors)))
setaProp (theObject, #color, thisColor)

end

This handler declares spriteNum a property in a behavior's ancestor script:

-- script Elder
property spriteNum
on new me, spriteNumber
 set the spriteNum of me = spriteNumber
 return me
end

In the original behavior script, this sets up the ancestor:

property ancestor
on beginSprite me

 set ancestor = new(script "Elder",the spriteNum of me)
end

{button See also,AL(`Lingo_property')}

proxyServer
Syntax: proxyServer serverType, "ipAddress", portNum

or

proxyServer()
This command sets the values of an ftp or HTTP proxy server.

· The serverType parameter can be #ftp or #http.

· The ipAddress parameter is a string containing the IP address.

· The portNum parameter is the integer value of the port number.

If you use the syntax proxyServer(), this element returns the settings of an ftp or HTTP proxy server.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example 1:

This statement sets up an HTTP proxy server at IP address 197.65.208.157 with port 5:

proxyServer #http,"197.65.208.157",5

Example 2:

This statement returns the port number of an HTTP proxy server:

put proxyServer(#http,#port)

If no server type is specified, the function returns 1.

Example 3:

This statement returns the IP address string of an HTTP proxy server:

put proxyServer(#http)

Example 4:

This statement disables turns off an ftp proxy server:

proxyServer #ftp,#stop

puppet of sprite
Syntax: the puppet of sprite whichSprite

This sprite channel property determines whether the sprite channel specified by whichSprite is under control by
Lingo.

Note: A sprite channel under control by Lingo is referred to as a puppet.

· If a sprite channel is a puppet, any changes that Lingo makes to the channel's sprite properties remain in
effect after the playback head exits the sprite.

· If a sprite channel is not a puppet, any changes that Lingo makes to a sprite last for the life of the current
sprite only.

While the playback head is in the same sprite, setting the sprite channel's
puppet of sprite property to FALSE resets the sprite's properties to those set in the Score.

Making the sprite channel a puppet lets you control many sprite properties-such as member of sprite, locH
of sprite, and width of sprite-from Lingo after the playback head exits the sprite.

Setting the puppet of sprite property is equivalent to using the puppetSprite command. For example,
the statement:

set the puppet of sprite 1 to TRUE

has the same effect as:

puppetSprite 1, TRUE

The puppet of sprite property can be tested and set. The default value is FALSE.

For more information about using puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning
Lingo.

Example 1:

This statement makes the sprite numbered i + 1 a puppet:

set the puppet of sprite (i + 1) to TRUE

Example 2:

This statement records whether sprite 5 is a puppet by assigning the value of
the puppet of sprite to the variable. When sprite 5 is a puppet, isPuppet is set to TRUE. When sprite 5
is not a puppet, isPuppet is set to FALSE:

put the puppet of sprite 5 into isPuppet

{button See also,AL(`Lingo_puppet_of_sprite')}

puppetPalette
Syntax: puppetPalette whichPalette [, speed] [, nFrames]

This command causes the palette channel to act as a puppet. When the palette channel is a puppet, Lingo can
override the palette setting in the palette channel of the Score and assign palettes to the movie.

The puppetPalette command sets the current palette to the palette cast member specified by the expression
whichPalette. If whichPalette evaluates to a string, it specifies the cast name of the palette. If whichPalette
evaluates to an integer, it specifies the cast number of the palette.

Optionally, you can fade in the palette by replacing speed with an integer expression, with 1 being slowest and
60 being fastest. You can also fade in the palette over several frames by replacing nFrames with an integer
expression for the number of frames.

A puppet palette remains in effect until you turn it off with the command puppetPalette 0. No subsequent
palette changes in the Score are obeyed when the puppet palette is in effect.

For more information about using puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning
Lingo.

Example 1:

This statement makes Rainbow the movie's palette:

puppetPalette "Rainbow"

Example 2:

This statement makes Grayscale the movie's palette. The transition to the Grayscale palette occurs over a time
setting of 15 and between frames labeled Gray and Color:

puppetPalette "Grayscale", 15, ¬
 label("Gray") - label("Color")

{button See also,AL(`Lingo_puppetPalette')}

puppetSound
Syntax: puppetSound whichChannel, "whichCastMember"

puppetSound "whichCastMember"
puppetSound member "whichCastMember"
puppetSound 0
puppetSound whichChannel, 0

This command makes the sound channel a puppet and plays the sound cast member specified by
whichCastMember. When the sound is a puppet, Lingo can override any sounds assigned in the Score's sound
channels.

For sound cast members, specify a sound channel by replacing whichChannel with a channel number.

The sound starts playing after the playback head moves or the updateStage command is executed. Using 0 as
the cast number argument stops the sound from playing. It also returns control of the sound channel to the
Score.

Puppet sounds can be useful for playing a sound while a different movie is being loaded into memory.

For more information about using puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning
Lingo.

Example 1:

This statement plays the sound Wind under control of Lingo:

puppetSound "Wind"

Example 2:

This statement turns off the sound playing in channel 2:

puppetSound 2, 0

{button See also,AL(`Lingo_puppetSound')}

puppetSprite
Syntax: puppetSprite whichChannel, state

This command sets whether the sprite channel specified by whichSprite is under control by Lingo.

Note: A sprite channel under control by Lingo is referred to as a puppet.

· When state is TRUE, Lingo controls the sprite channel and the Score is ignored.

· When state is FALSE, the sprite channel is controlled by the Score.

While the playback head is in the same sprite, turning off the sprite channel's puppetting using the command
puppetSprite whichSprite, FALSE resets the sprite's properties to those in the Score.

The sprite channel's initial properties are taken from whatever the channel's settings are when the
puppetSprite command is executed. Subsequent control of the sprite properties through Lingo can change
these properties.

· If a sprite channel is a puppet, any changes that Lingo makes to the channel's sprite properties remain in
effect after the playback head exits the sprite.

· If a sprite channel is not a puppet, any changes that Lingo makes to a sprite last for the life of the current
sprite only.

The channel must contain a sprite when you use the puppetSprite command.

Making the sprite channel a puppet lets you control many sprite properties-such as memberNum of sprite,
locH of sprite, and width of sprite-from Lingo, after the playback head exits the sprite.

Use the command puppetSprite whichSprite, FALSE to return control to the Score when finished with
controlling a sprite channel from Lingo. Otherwise, unpredictable results can occur when the playback head is in
frames that aren't intended to be puppets.

For more information about using puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning
Lingo.

Example 1:

This statement makes the sprite in channel 15 a puppet:

puppetSprite 15, TRUE

Example 2:

This statement removes the puppet condition from the sprite in the channel numbered i + 1:

puppetSprite i + 1, FALSE

{button See also,AL(`Lingo_puppetSprite')}

puppetTempo
Syntax: puppetTempo framesPerSecond

This command causes the tempo channel to act as a puppet. When the tempo channel is a puppet, Lingo can
override the tempo setting in the Score and change the tempo assigned to the movie.

The puppetTempo command sets the tempo to the number of frames specified by framesPerSecond. The
maximum frames per second is 60.

You do not need to turn off the puppet tempo condition to have subsequent tempo changes in the Score take
effect.

For more information about using puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning
Lingo.

Example 1:

This statement set the movie's tempo to 30 frames per second:

puppetTempo 30

Example 2:

This statement increases the movie's old tempo by ten frames per second:

puppetTempo oldTempo + 10

{button See also,AL(`Lingo_puppetTempo')}

puppetTransition
Syntax: puppetTransition member whichCastMember

puppetTransition member castmemberReference
puppetTransition whichTransition [, time]¬
 [, chunkSize] [, changeArea]

This command performs the specifed transition between the current frame and the next frame.

To use an Xtra transition cast member, use puppetTransition member followed by the cast member's name
or number.

To use a built-in Director transition, replace whichTransition with one of the following values:

Co
de

Transition Co
de

Transition

01 Wipe right 27 Random rows

02 Wipe left 28 Random columns

03 Wipe down 29 Cover down

04 Wipe up 30 Cover down, left

05 Center out, horizontal 31 Cover down, right

06 Edges in, horizontal 32 Cover left

07 Center out, vertical 33 Cover right

08 Edges in, vertical 34 Cover up

09 Center out, square 35 Cover up, left

10 Edges in, square 36 Cover up, right

11 Push left 37 Venetian blinds

12 Push right 38 Checkerboard

13 Push down 39 Strips on bottom, build left

14 Push up 40 Strips on bottom, build right

15 Reveal up 41 Strips on left, build down

16 Reveal up, right 42 Strips on left, build up

17 Reveal right 43 Strips on right, build down

18 Reveal down, right 44 Strips on right, build up

19 Reveal down 45 Strips on top, build left

20 Reveal down, left 46 Strips on top, build right

21 Reveal left 47 Zoom open

22 Reveal up, left 48 Zoom close

23 Dissolve, pixels fast * 49 Vertical blinds

24 Dissolve, boxy rectangles 50 Dissolve, bits fast *

25 Dissolve, boxy squares 51 Dissolve, pixels *

26 Dissolve, patterns 52 Dissolve, bits *

Transitions marked with an asterisk (*) in the table will not work on monitors that are set to 32 bits.

Replace time with the number of 1/4 seconds used to complete the transition. The minimum is 0; the maximum is
120 (30 seconds). Replace chunkSize with the number of pixels in each chunk of the transition. The minimum is

1; the maximum is 128. Smaller chunk sizes give smoother transitions but are slower.

There is no direct relationship between a low time and a fast transition. The actual speed of the transition
depends on the relation of chunkSize and time. As an example, if chunkSize is one pixel, the transition takes a
long time no matter how low the time, because the computer has to do a lot of work. To make transitions occur
faster you should use a larger chunk size, instead of setting a shorter time.

Replace changeArea with a value that determines whether the transition occurs only in the changing area. The
changeArea variable is an area within which sprites have changed.

· To have the transition occur only in the areas that change, replace changeArea with FALSE, which is the
default setting.

· To have the transition occur over the entire Stage, replace changeArea with TRUE.

For more information about using puppets, see Chapter 5, "Controlling Score Channels from Lingo," in Learning
Lingo.

Example:

This statement performs a wipe from right transition. Because no value is specified for changeArea, the
transition occurs only on the changing area, which is the default:

puppetTransition 1

This statement performs a wipe from right transition that lasts 1 second, has a chunk size of 20, and occurs over
the entire Stage:

puppetTransition 2, 4, 20, TRUE

{button See also,AL(`Lingo_puppetTransition')}

purgePriority of cast
This is obsolete. Use purgePriority of member instead.

purgePriority of member
Syntax: the purgePriority of member whichCastMember

This cast member property specifies the purge priority of the cast member specified by whichCastMember.

Cast members' purge priorities determine the priority that Director follows to choose which cast members to
delete from memory when memory is full. The higher the purge priority, the more likely that the cast member is
deleted. The following purgePriority settings are available:

0-Never purge

1-Purge last

2-Purge next

3-Purge normal

Normal allows Director to purge cast members from memory at random. Next, Last, and Never allows some
control over purging. However, if you set several cast members to Last or Never, your movie may run out of
memory.

Setting purgePriority of member for cast members is useful for managing memory when the size of the
movie's cast exceeds the available memory. As a general rule, you can minimize pauses while the movie loads
cast members by assigning a low purge priority to cast members that are frequently used in the course of the
movie. This reduces the number of times that Director reloads the cast member when the movie plays.

Example:

This statement sets the purge priority of cast member Background to 2, which makes it one of the first cast
members to be purged when memory is needed:

set the purgePriority of member "Background" to 2

put
Syntax: put expression

This command evaluates the expression specified by expression and displays the result in the Message window.
This can be used as a debugging tool by tracking the values of variables as the movie plays.

Example 1:

This statement displays the time in the Message window:

put the time
-- "9:10 AM"

Example 2:

This statement displays the value assigned to the variable bid in the Message window:

put bid
-- "Johnson"

{button See also,AL(`Lingo_put')}

put...after
Syntax: put expression after chunkExpression

This command evaluates a Lingo expression, converts the value to a string, and inserts the resulting string after
a specified chunk in a container. (If chunkExpression specifies a nonexistent target chunk, the string value is
inserted as appropriate into the container.) The previous contents of the container remain.

Chunk expressions can refer to any character, word, item, or line in any container of characters. Containers
include fields (field cast members) and variables that hold strings, and specified characters, words, items, lines,
and ranges in containers.

Example:

This statement adds the string "fox dog cat" after the contents of the field cast member Animal List.

put "fox dog cat" after member "Animal List"

{button See also,AL(`Lingo_put_after')}

put...before
Syntax: put expression before chunkExpression

This command evaluates a Lingo expression, converts the value to a string, and inserts the resulting string
before a specified chunk in a container. (If chunkExpression specifies a nonexistent target chunk, the string value
is inserted as appropriate into the container.) The previous contents of the container remain.

Chunk expressions can refer to any character, word, item, or line in any container. Containers include fields (field
cast members) and variables that hold strings, and specified characters, words, items, lines, and ranges in
containers.

Example:

This statement sets the variable Animal List to the string "fox dog cat" and then inserts the word elk before
the second word of the list:

put "fox dog cat" into Animal List
put "elk " before word 2 of Animal List

The result is the string "fox elk dog cat".

{button See also,AL(`Lingo_put_before')}

put...into
Syntax: put expression into chunkExpression

This command evaluates a Lingo expression, converts the value to a string, and uses the resulting string to
replace a specified chunk in a container. (If chunkExpression specifies a nonexistent target chunk, the string
value is inserted as appropriate into the container.)

Chunk expressions can refer to any character, word, item, or line in any container. Containers include field cast
members and variables that hold strings, and specified characters, words, items, lines, and ranges in containers.

Note: Earlier versions of Director also used the put...into command to assign values to variables. It is no
longer supported for this purpose. Use the set command to assign values to variables.

Example:

This statement changes the second line of field cast member Review Comments to "Reviewed by Agnes Gooch":

put "Reviewed by Agnes Gooch" into line 2 of ¬
member "Review Comments"

{button See also,AL(`Lingo_put_into')}

putImageIntoCastMember
Syntax: putImageIntoCastMember (buttonCastMember, "imageString", castMember)

For buttons created in the Button Editor, this function takes the specified image string of the specifed button cast
member and creates a bitmap cast member.

Example:

This statement takes the image named ImageRollover from the Button Editor values for cast member 1 and
creates the bitmap cast member Panic in castLib 2.

putImageIntoCastMember(member 1, "ImageRollover", member ¬
"Panic" of castLib 2)

quickTimePresent
Syntax: the quickTimePresent

This function determines whether the QuickTime extension is currently loaded into memory.

· When the extension is present, the quickTimePresent function is TRUE (1).

· When the extension is not present, the quickTimePresent function is
FALSE (1).

Example:

This statement determines whether the QuickTime extension is in memory and sets the movieRate for a
QuickTime sprite indicated by QTSprite:

if the quickTimePresent = 1 then ¬
 set the movieRate of sprite QTSprite

quit
Syntax: quit

This command exits from Director or a projector to the Windows Desktop or Macintosh Finder.

Example:

This statement causes the computer to exit to the Desktop when the user presses Control+Q:

if the key = "q" and the commandDown then quit

{button See also,AL(`Lingo_quit')}

QUOTE
Syntax: QUOTE

This character constant represents the quote character. It is needed to refer to the literal quote character in a
string, because the quote character itself is used by Lingo scripts to delimit strings.

Example:

This statement inserts quote characters in the string:

put "Can you spell" && QUOTE & "Macromedia" ¬
 & QUOTE & "?"

The result is quotes around the word Macromedia, as in the following string:

Can you spell "Macromedia"?

ramNeeded
Syntax: ramNeeded (firstFrame, lastFrame)

This function determines, in bytes, the memory needed to display a range of frames. For example, you can test
the size of frames containing 32-bit artwork. If ramNeeded is larger than freeBytes, then go to frames
containing 8-bit artwork. Divide by 1024 to convert bytes to kilobytes (K).

Example 1:

This statement sets the variable frameSize to the number of kilobytes needed to display frames 100 to 125 of
the movie:

put ramNeeded (100, 125) into frameSize

Example 2:

This statement determines whether the memory needed to display frames 100 to 125 is more than the available
memory and branches to a movie using cast members that have lower color depth if it is:

if ramNeeded (100, 125) > freeBytes then ¬
 play frame "8-bit"

{button See also,AL(`Lingo_ramNeeded')}

random
Syntax: random(integerExpression)

This function returns a random integer in the range from 1 to the value specified by integerExpression.

The random function is useful when you want to randomly vary values in a movie. Some possible uses are
varying the path through a game, assigning random numbers, or changing the color or position of sprites.

In cases when you want a set of possible random numbers to start with a number other than 1, subtract the
appropriate amount from the random function. For example, the expression random(n) - 1 uses a range
from 0 to the number n.

Example 1:

This statement assigns random values to the variable diceRoll:

set diceRoll = random(6) + random(6)

This statement randomly changes the foreground color of sprite 10:

set the foreColor of sprite 10 = random(256) - 1

Example 2:

This handler randomly chooses which of two movie segments to play in the "Noh Tale" movie:

on selectMovie
if random(2) = 2 then play frame "11a"
else
play frame "11-b" of movie "NT.OTher Movie"

end if
end

Example 3:

The following statements produce results in a desired range:

This statement produces a random multiple of five between five and one hundred:

set theScore to 5 * random(20)

This statement produces a random multiple of five between zero and one hundred:

set theScore to 5 * (random(21) - 1)

This statement generates integers between -10 and +10:

set dirH to random(21) - 11

This statement produces a random two-point decimal value:

set theCents to random(100)/100.0 - .01

randomSeed
Syntax: the randomSeed

This property specifies seed for generating random numbers. Using the same seed produces the same
sequence of random numbers.

The randomSeed property can be tested and set.

Example:

This statement displays the random seed number in the Message window:

put the randomSeed

rect
Syntax: rect(left, top, right, bottom)

rect(point1, point2)
This function has two uses:

· When you use four arguments, the rect function defines a rectangle that has the sides specified by left,
top, right, and bottom. The left and right values specify numbers of pixels from the left edge of the Stage.
The top and bottom values specify numbers of pixels from the top of the Stage.

· When you use two arguments, the rect function defines a rectangle that encloses the points specified by
point1 and point2.

You can refer to rect components by list syntax or property syntax. For example, the following two phrases are
equivalent:

set targetWidth the right of targetRect - the left of targetRect
set targetWidth to getAt(targetRect, 3) - getAt(targetRect, 1)

You can perform arithmetic operations on rects. If you add a single value to a rect, Lingo adds it to each element
in the rect.

Example 1:

This statement sets the variable newArea to a rectangle whose left side is at 100, top is at 150, right side is at
300, and bottom is at 400 pixels:

set newArea = rect(100, 150, 300, 400)

Example 2:

This statement sets the variable newArea to the rectangle defined by the points firstPoint and
secondPoint. The coordinates of firstPoint are (100, 150); the coordinates of secondPoint are (300,
400). Note that this statement creates the same rect as the rectangle created in the previous example:

put rect(firstPoint, secondPoint)

Example 3:

These statements add and subtract values for rects:

put rect(0,0,100,100) + rect(30, 55, 120, 95)
-- rect(30, 55, 220, 195)
put rect(0,0,100,100) - rect(30, 55, 120, 95)
-- rect(-30, -55, -20, 5)

Example 4:

This statement adds 80 to each coordinate in a rect:

put rect(60, 40, 120, 200) + 80
-- rect(140, 120, 200, 280)

Example 5:

This statement divides each coordinate in a rect by 3:

put rect(60, 40, 120, 200) / 3
-- rect(20, 13, 40, 66)

{button See also,AL(`Lingo_rect')}

rect of member
Syntax: the rect of member whichCastmember

This function gives the left, top, right, and bottom coordinates for the rectangle of any graphic cast member such
as a bitmap, shape, movie, or digital video. The coordinates are returned as a rect.

The rect of member property is measured from the upper left corner of the cast member's bounding
rectangle, not from the upper left corner of the Stage or of the cast member in the Paint window. The upper left
corner of the bounding rectangle is given as (0, 0).

For an Xtra cast member that has an image, the rect of member is a rect that has its upper left corner at
(0,0). This differs from Director 5, which returned a rect whose registration point was at (0,0).

The rect of member property can be tested. It can be set for field cast members only.

Example 1:

This statement displays the coordinates of bitmap cast member 20:

put the rect of member 20

Example 2:

This statement sets the coordinates of bitmap cast member Banner:

set the rect of member "Banner" = rect(100, 150, 300, 400)

{button See also,AL(`Lingo_rect_of_member')}

rect of sprite
Syntax: the rect of sprite whichSprite

This function gives the left, top, right, and bottom coordinates for the rectangle of any graphic sprite such as a
bitmap, shape, movie, or digital video. The coordinates are returned as a rect.

The rect of sprite property can be tested and set.

Example:

This statement displays the coordinates of bitmap sprite 20:

put the rect of sprite 20

rect of window
Syntax: the rect of window whichWindow

This window property determines the left, top, right, and bottom coordinates of the window specified by
whichWindow. The coordinates are given as a rect.

The rect of window property can be tested and set.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement displays the coordinates of the window Control Panel:

put the rect of window "Control Panel"

regPoint of member
Syntax: the regPoint of member whichCastMember

This cast member property specifies the registration point of a bitmap cast member. The registration points are
listed as horizontal and vertical coordinates in a point that has the form point (horizontal, vertical).

You can use the regPoint property to animate individual graphics within a film loop by changing a cast
member's regPoint in relation to other objects on the Stage.

The regPoint of member property can be tested and set.

Example 1:

This statement displays the registration points of the bitmap cast member Desk in the Message window:

put the regPoint of member "Desk"

Example 2:

This statement changes the registration points of the bitmap cast member Desk to the values in the list:

set the regPoint of member "Desk" = ¬
 point(300, 400)

relative
See: @ (pathname operator)

repeat while
Syntax: repeat while testCondition

[statements...]

end repeat
This keyword structure repeatedly executes the statements as long as the condition specified by testCondition is
TRUE. Some possible uses for this structure are for Lingo that continues to read strings until the end of a file is
reached, checks items until the end of a list is reached, or repeatedly performs an action until the user clicks or
releases the mouse button.

Only one handler runs at a time. If Lingo stays in a repeat loop for a long time, other events stack up waiting to
be evaluated. Therefore, repeat loops are best used for short, fast operations or when you know the user won't
be doing other things.

If you need to process something for several seconds or more, evaluate the function in a loop with some type of
counter or test to track progress.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler starts the timer counting, resets the timer to 0, and then has the timer count up to 60 ticks:

on countTime
 startTimer
 repeat while the timer < 60
 -- waiting for time
 end repeat
end countTime

{button See also,AL(`Lingo_repeat_while')}

repeat with
Syntax: repeat with counter = start to finish

[statements...]

end repeat
This keyword structure executes the Lingo specified by statements the number of times specified by counter. The
value of counter is the difference between the value specified by start and the value specified by finish. The
counter is incremented by 1 each time Lingo goes through the repeat loop.

The repeat with structure is useful for repeatedly applying the same effect to a series of sprites or calculating
a series of numbers, such as a number, to some exponent.

Only one handler runs at a time. If Lingo stays in a repeat loop for a long time, other events stack up waiting to
be evaluated. Therefore, repeat loops are best used for short, fast operations or when you know the user won't
be doing other things.

If you need to process something for several seconds or more, evaluate the function in a loop with some type of
counter or test to track progress.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

The following handler turns sprites 1 through 30 into puppets:

on puppetize
 repeat with channel = 1 to 30
 puppetSprite channel, TRUE
 end repeat
end puppetize

{button See also,AL(`Lingo_repeat_with')}

repeat with...down to
Syntax: repeat with variable = startValue down to endValue

This keyword counts down by increments of 1 from startValue to endValue.

Only one handler runs at a time. If Lingo stays in a repeat loop for a long time, other events stack up waiting to
be evaluated. Therefore, repeat loops are best used for short, fast operations or when you know the user won't
be doing other things.

If you need to process something for several seconds or more, evaluate the function in a loop with some type of
counter or test to track progress.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This handler contains a repeat loop that counts down from 20 to 15:

on countDown
 repeat with i = 20 down to 15
 set the memberNum of sprite 6 to (10 + i)
 updateStage
 end repeat

repeat with...in list
Syntax: repeat with variable in someList

This keyword assigns successive values from the specified list to the variable.

Only one handler runs at a time. If Lingo stays in a repeat loop for a long time, other events stack up waiting to
be evaluated. Therefore, repeat loops are best used for short, fast operations or when you know the user won't
be doing other things.

If you need to process something for several seconds or more, evaluate the function in a loop with some type of
counter or test to track progress.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

This statement displays four values in the Message window:

repeat with x in [1, 2, 3, 4]
 put i
end repeat

restart
Syntax: restart

This command restarts the Macintosh computer. It is equivalent to choosing Restart in the Macintosh Finder's
Special menu. The restart command has no effect in Windows.

Example:

This statement restarts the Macintosh when the user presses Command-period:

if the key = "r" and the commandDown then restart

{button See also,AL(`Lingo_restart')}

result
Syntax: the result

This function gives the value of the return expression from the last handler executed.

The result function is useful for obtaining values from movies that are playing in windows and tracking Lingo's
progress by displaying results of handlers in the Message window as the movie plays.

Example 1:

The following handler returns a random roll for two dice:

on diceRoll
 return random(6) + random(6)
end diceRoll

Example 2:

The two statements:

diceRoll
 set roll to the result

are equivalent to this statement:

set roll to diceRoll()

Example 3:

Note that

set roll to diceRoll

does not call the handler because there are no parentheses following diceRoll; diceRoll here is considered
a variable reference.

{button See also,AL(`Lingo_result')}

return
Syntax: return expression

This keyword is used in handlers that return values. It returns the value of expression and exits from the handler.
The expression can be an integer, floating-point number, string, object, or symbol.

When calling a handler that serves as a user-defined function and has a return value, you must use parentheses
around the argument list. This is necessary even when there are no arguments, as in the diceRoll function
handler discussed under the entry for the result function.

Think of return as similar to the exit command, except that it also gives back a value to whatever called the
handler. The return command in a handler immediately exits that handler, but it can return a value to the Lingo
that called it.

Working on both object-oriented scripting and the return function at the same time can be difficult to
understand at first. It's easier to work first with return for making functions and exiting handlers. Later, it will be
more obvious that the return me line in an on new handler is a way to pass back a reference to the object that
was created so that it can be assigned to a variable name.

The return function isn't the same as the character constant RETURN, which is a carriage return. The usage
depends on the context.

To retrieve a returned value, use parentheses after the handler name in the calling statement to indicate that the
named handler is a function.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example 1:

This handler returns a random multiple of five between five and a hundred:

on GetRandomScore
set theScore to 5 * random(20)
return theScore

end GetRandomScore

You would call this handler with a statement similar to the following:

set thisScore to GetRandomScore()

In this example, the variable thisScore is assigned the returned value from the function GetRandomScore.
The same thing happens with a parent script-by returning the object reference, the variable name in the calling
code provides a handle to subsequently refer to that object.

Example 2:

In Windows, this statement creates a two-character string named CRLF that provides the additional line feed:

set CRLF = RETURN&numToChar(10)

{button See also,AL(`Lingo_return')}

RETURN
Syntax: RETURN

This character constant represents the Return key.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement causes a paused movie to continue when the user presses the Return key:

if the key = RETURN then go to the frame + 1

This statement uses the Return character constant to insert a return between two lines in an alert:

alert "Last line in the file." & RETURN & ¬
 "Click OK to exit."

In Windows, writing to a file requires an additional line feed character at the end of each line. This statement
creates a two-character string named CRLF that provides the additional line feed:

set CRLF = Return&numToChar(10)

right of sprite
Syntax: the right of sprite whichSprite

This sprite property indicates the number of pixels that the right edge of the sprite specified by whichSprite is
from the left edge of the Stage.

The right of sprite property can be tested but not set directly. Edit the dimensions of a sprite by editing the
sprite's rect property.

Note: Sprite coordinates are expressed relative to the upper left corner of the Stage.

Example:

This statement calls the handler offRightEdge when the right edge of sprite 3 is past the right edge of the
Stage:

if the right of sprite 3 > (the stageRight ¬
 - the stageLeft) then offRightEdge

{button See also,AL(`Lingo_right_of_sprite')}

rightMouseDown
Syntax: the rightMouseDown

This system property indicates the current state of the right mouse button on a Windows computer. On the
Macintosh, if the emulateMultiButtonMouse property is set to TRUE, this property indicates whether the
user is pressing the mouse button and the Control key.

· When rightMouseDown is TRUE, the right mouse button (Windows) or the mouse button and Control key
(Macintosh) is being pressed. (On the Macintosh, rightMouseDown is TRUE only if the
emulateMultiButtonMouse property is TRUE).

· When rightMouseDown is FALSE, the right mouse button (Windows) or the mouse button and Control key
(Macintosh) is not being pressed.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement checks whether the right mouse button is being pressed and plays the sound Oops in Sound
Channel 2 if it is:

if the rightMouseDown then puppetSound 2, "Oops"

rightMouseUp
Syntax: the rightMouseUp

This system property indicates the current state of the right mouse button on a Windows computer. On the
Macintosh, if the emulateMultiButtonMouse property is set to TRUE, this property indicates whether the
user is pressing the mouse button and the Control key.

· When rightMouseUp is TRUE, the right mouse button (Windows) or the mouse button and Control key
(Macintosh) is currently not being pressed. (On the Macintosh, rightMouseDown is TRUE only if the
emulateMultiButtonMouse property is TRUE).

· When rightMouseUp is FALSE, the right mouse button (Windows) or the mouse button and Control key
(Macintosh) is currently being pressed.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement checks whether the right mouse button is released and plays the sound Click Me if it is:

if the rightMouseUp then puppetSound 2, "Oops"

rollOver
Syntax: rollOver(whichSprite)

or

the rollover
This function indicates whether the cursor is currently over the bounding rectangle of the sprite specified by
whichSprite.

· When the cursor is currently over the sprite, rollOver returns TRUE (1).

· When the cursor isn't currently over the sprite, rollOver returns FALSE (0).

The rollover has two possible syntaxes.

· When rollover isn't preceded by the, include parentheses.

· When rollover is preceded by the, don't include parentheses.

The rollOver function is typically used in frame scripts. It is useful for creating handlers that perform an action
when the user places the cursor over a specific sprite. It can also simulate additional sprite channels by splitting
the Stage into regions that send the playback head to a different frame that subdivides the region for the
available sprite channels.

If the user continues to roll the mouse, the value of the rollover can change while Lingo is running a handler.
You can make sure that a handler uses a consistent rollover value by assigning the rollover to a variable
when the handler starts.

When the cursor is over the location of a sprite that has been removed, the rollover still occurs. Avoid this
problem by not performing rollovers over these locations or by relocating the sprite up above the menu bar
before deleting it.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement changes the content of field cast member Message to "This is the place." when the cursor is over
sprite 6:

if rollOver(6) then ¬
put "This is the place." into field "Message"

Example 2:

This handler sends the playback head to different frames when the cursor is over certain sprites on the Stage. It
first assigns the rollover value to a variable. This lets the handler use the rollover value that was in effect
when the rollover started, regardless of whether the user continues to roll the mouse:

on exitFrame
set currentLocation = the rollover
case rollover(currentLocation) of
1: go to frame "Left"
2: go to frame "Middle"
3: go to frame "Right"

end case
end exitFrame

{button See also,AL(`Lingo_rollOver')}

romanLingo
Syntax: the romanLingo

This property specifies whether Lingo uses a single-byte or double-byte interpreter.

· When the romanLingo is TRUE, Lingo uses a single-byte interpreter.

· When the romanLingo is FALSE, Lingo uses a double-byte interpreter.

The Lingo interpreter is faster with single-byte character sets. Some versions of Macintosh system software-
Japanese, for example-use a double-byte character set. U.S. system software uses a single-byte character set.
Normally, the romanLingo is set when starting up Director and is determined by the local version of the system
software.

If you are using a non-Roman script system but don't use any double-byte characters in your script, set this
property to TRUE to get faster execution of your Lingo scripts.

Example:

This statement sets the romanLingo to TRUE, which causes Lingo to use a single-byte character set:

set the romanLingo to TRUE

runMode
Syntax: the runMode

This function returns the run mode of a movie. Possible values are:

Author The movie is running in Director.

Projector The movie is running as a projector.

Plugin The movie is running as a Shockwave plug-in or other
scripting environment such as LiveConnect or Active X.

Example:

This statement determines whether or not external parameters are available and obtains them if they are:

if the runMode = "Plugin" then
-- decode the embed parameter
if externalParamName(swURL) = swURL then

put externalParamValue(swURL) into myVariable
end if

end if

runPropertyDialog
See on runPropertyDialog.

sampleRate of member
Syntax: sampleRate of member "whichCastmember"

This property of the Shockwave Audio (SWA) streaming cast member returns the sample rate of the original file
that has been SWA-encoded. This property is only available after the SWA sound is playing or after the file has
been preloaded using the preLoadBuffer command. The value is in samples per second.

This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement assigns the original sample rate of the file used in SWA streaming cast member Paul Robeson
to the field cast member Sound Quality:

put the sampleRate of member "Paul Robeson" into member "Sound Quality"

sampleSize of member
Syntax: the sampleSize of member whichCastmember

This sound cast member property determines the sample size of the specified cast member. The result is usually
8- or 16-bit. This property can tested but not set.

Example:

This statement checks the sample size of the sound cast member Voice Over and assigns the value to the
variable soundSize:

set soundSize = the sampleSize of member "Voice Over"

save castLib
Syntax: save castLib whichCast {, pathName:newFileName}

This command saves any changes to the cast. Including the optional pathName:newFileName parameter saves
the file to a new file that uses the pathName:newFileName parameter as its file name. (When the
pathName:newFileName parameter isn't included, changes to the cast are saved in the cast's original file.) This
command does not work with compressed files.

The saveCastLib command doesn't support URLs as file references.

Example:

This statement causes Director to save the revised version of the cast Buttons in the new file UpdatedButtons
in the same folder:

save castLib "Buttons" , "UpdatedButtons"

{button See also,AL(`Lingo_save_castLib')}

saveMovie
Syntax: saveMovie [pathName:fileName]

This command saves the current movie. Including the optional parameter saves the movie to the file specified by
pathName:fileName. This command does not work with compressed files.

The saveMovie command doesn't support URLs as file references.

Example:

This statement saves the current movie to the file Update:

saveMovie "Update"

score
Syntax: the score

This movie property determines which Score is associated with the current movie. The property can be tested
and set.

Example:

This statement assigns the film loop cast member Waterfall to the Score of the current movie:

set the score to the media of member "Waterfall"

scoreColor of sprite
Syntax: the scoreColor of sprite whichSprite

This sprite property indicates the Score color assigned to the sprite specified by whichSprite. The possible values
correspond to color chips 0 to 5 in the current palette.

The scoreColor of sprite property can be tested and set.

Example:

This statement causes the Message window to display the value for the Score color assigned to sprite 7:

put the scoreColor of sprite 7

scoreSelection
Syntax: the scoreSelection

This movie property determines which channels are selected in the Score window. The selection is in a list
consisting of the starting channel number, the ending channel number, the starting frame number, and the ending
frame number. Specify sprite channels by their channel number. Use the following numbers to specify the other
channels:

To specify: Use:

Frame script channel 0

Sound channel 2 -1

Sound channel 1 -2

Transition channel -3

Palette channel -4

Tempo channel -5

You can select discontinuous channels, but you can't select discontinuous frames. This property can be tested
and set.

Example 1:

 This statement selects sprite channels 15 through 25 in frames 100 through 200:

set the scoreSelection = [[15, 25, 100, 200]]

Example 2:

This statement selects sprite channels 15 through 25, and sprite channels 40 through 50, in frames 100 through
200:

set the scoreSelection = [[15, 25, 100, 200] , [40, 50, 100, 200]]

Example 3:

This statement selects the frame script in frames 100 through 200:

set the scoreSelection = [[0, 0, 100, 200]]

script of menuItem
Syntax: the script of menuItem whichItem of menu whichMenu

This menu item property determines which Lingo statement is executed when the specified menu item is
selected. The whichItem expression can be either a menu item name or a menu item number; the whichMenu
expression can be either a menu name or a menu number.

When the menu is installed, the script is set to the text following the "Å" character in the menu definition.

The script property can be tested and set.

For more information about user interfaces, see Chapter 9, "Creating User Interfaces," in Learning Lingo.

Example:

This statement makes the handler named goHandler the handler that is executed when the user chooses the
command Go from the custom menu Control:

set the script of menuItem "Go" of menu "Control" ¬
 to "goHandler"

{button See also,AL(`Lingo_script_of_menuItem')}

scriptInstanceList of sprite
Syntax: the scriptInstanceList of sprite spriteNum

This sprite property gives a list of script references attached to a sprite. It is useful for:

· Attaching a behavior to a sprite.

· Determining which behaviors are attached to a sprite.

· Finding a behavior script reference to use with the call command.

The value of the scriptInstanceList is a list.

This property can be tested and set.

Example 1:

This handler displays the list of script references attached to a sprite:

on showScriptRefs me
put the scriptInstanceList of sprite the spriteNum of me

end

Example 2:

These statements attach the script Big Noise to sprite 5:

set x = new(script "Big Noise")¬
 add(the scriptInstanceList of sprite 5,x)

{button See also,AL(`Lingo_scriptInstanceList')}

scriptNum of sprite
Syntax: scriptNum of sprite whichSprite

This sprite property indicates the number of the script attached to the sprite specified by whichSprite. If the sprite
has multiple scripts attached,
the scriptNum of sprite returns the number of the first script. (To see a complete list of the scripts
attached to a sprite, see the behaviors listed for that sprite in the Behavior Inspector.)

The scriptNum of sprite property can be tested, but not set.

Example:

This statement displays the number of the script attached to sprite 4:

put the scriptNum of sprite 4

scriptsEnabled of member
Syntax: the scriptsEnabled of member whichCastmember

This movie cast member property determines whether scripts in a linked movie are enabled.

· When the scriptsEnabled of member is TRUE (1), the linked movie's scripts are enabled.

· When the scriptsEnabled of member is FALSE (0), the linked movie's scripts aren't enabled.

This property is available for Director movie cast members only. Although the property can be tested and set for
Director movies, it can't be tested or set for other cast members.

Example:

This statement turns off scripts in the linked movie Jazz Chronicle:

set the scriptsEnabled of member "Jazz Chronicle" = FALSE

scriptText of cast
This is obsolete. Use scriptText of member instead.

scriptText of member
Syntax: the scriptText of member whichCastmember

This cast member property indicates the content of the script, if any, assigned to the cast member specified by
whichCastmember.

The text of a script is removed when the movie is converted into a projector or compressed for Shockwave. Such
movies lose their values for the scriptText of member property. Therefore, the movie's values for the
scriptText of member can't be used by a projector. However, Director can set new values for
the scriptText of member inside the projector.

The scriptText of member property can be tested and set.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example:

This statement makes the contents of field cast member 20 the script of cast member 30:

set the scriptText of member 30 = the text of member 20

scriptType of member
Syntax: the scriptType of member whichScript

This script cast member property indicates the specified script's type. Possible values are #MOVIE, #SCORE,
and #PARENT.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example:

This statement makes script member Main Script a movie script:

set the scriptType of member "Main Script" to #movie

{button See also,AL(`Lingo_scriptType_of_member')}

scrollByLine
Syntax: scrollByLine member whichCastmember, amount

This command scrolls the specified field cast member up or down by the number of lines specified in amount.
(Lines are lines separated by carriage returns, not lines caused by line wrapping.)

· When amount is positive, the field scrolls down.

· When amount is negative, the field scrolls up.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement scrolls the field cast member Today's News down five lines:

scrollByLine member "Today's News", 5

Example 2:

This statement scrolls the field cast member Today's News up five lines:

scrollByLine member "Today's News", -1

scrollByPage
Syntax: scrollByPage member whichCastMember, amount

This command scrolls the specified field cast member up or down by the number of pages specified in amount.

· When amount is positive, the field scrolls down.

· When amount is negative, the field scrolls up.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

This statement scrolls the field cast member Today's News down one page:

scrollByPage member "Today's News", 1

Example 2:

This statement scrolls the field cast member Today's News up one page:

scrollByPage member "Today's News", -1

scrollTop of member
Syntax: the scrollTop of member whichCastmember

This property of text and field cast members determines the distance, in pixels, from the top of a field cast
member to the top of the field that is currently visible in the scrolling box. By changing the value for the
scrollTop of member while the movie plays, you can change the section of the field that appears in the
scrolling field.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This repeat loop makes the field Credits appear to accelerate scrolling by continuously increasing the value of
the scrollTop of member:

set the scrollTop of member "Credits" = 1
repeat with count = 1 to 150
 set the scrollTop of member "Credits" = the scrollTop ¬
 of member "Credits" + count
end repeat

searchCurrentFolder
Syntax: the searchCurrentFolder

This global property determines whether Director searches the current folder when searching file names.

· When the searchCurrentFolder property is TRUE (1), Director searches the current folder when
resolving file names.

· When the searchCurrentFolder property is FALSE (0), Director does not search the current folder
when resolving file names.

The searchCurrentFolder property can be tested and set.

Example 1:

This statement causes the Message window to display whether the searchCurrentFolder property is on:

put the searchCurrentFolder

The result is the number 1, which is the numeric equivalent of TRUE.

Example 2:

This statement sets the searchCurrentFolder property to TRUE, which causes Director to search the current
folder when resolving file names:

set the searchCurrentFolder to TRUE

searchPath
Syntax: the searchPath

This property provides a list of the pathnames that are searched when Director resolves file names. When
Director cannot find the file in the current folder, it searches for it in the folders listed in searchPath.

The searchPath property doesn't support URLs as file references.

The searchPath content is a regular list that you can handle the same as any other list by using commands
such as add, addAt, append, deleteAt, and setAt. Items in the list are separated by commas. Trailing
colons and backslashes are allowed but not necessary.

Adding a large number of paths to the searchPath slows searching. Try to minimize the number of paths in
the list.

The searchPath property works the same as the searchPaths. It can be tested and set.

Setting the value of searchPath automatically changes the value of searchPaths also.

Example 1:

This statement displays the pathnames that Director searches when resolving file names:

put the searchPath

Example 2:

This statement assigns two folders to the searchPath in Windows. This version includes optional trailing
backslashes:

set the searchPath = ["c:\director\projects\",¬ "d:\cdrom\sources\"]

This statement is the same, except that trailing backslashes have been omitted:

set the searchPath = ["c:\director\projects", "d:\cdrom\sources"]

Example 3:

This statement assigns two folders to the searchPath on a Macintosh. This version includes optional trailing
colons:

set the searchPath = ["hard drive:director:projects:",¬
"cdrom:sources:"]

This statement is the same, except that trailing colons have been omitted:

set the searchPath = ["hard drive:director:projects",¬
"cdrom:sources"]

{button See also,AL(`Lingo_searchPath')}

searchPaths
Syntax: the searchPaths

This global property is a list of paths that Director searches. Each item in the list is a fully qualified pathname as it
appears on the current platform at runtime.

The value of searchPaths is a regular list that you can handle the same as any other list by using commands
such as add, addAt, append, deleteAt, and setAt.

The searchPaths property doesn't support URLs as file references.

Adding a large number of paths to the searchPaths slows searching. Try to minimize the number of paths in
the list.

The searchPath property works the same as the searchPaths. It can be tested and set.

Setting the value of searchPaths automatically changes the value of searchPath also.

Example:

These statements cause Director to search inside a folder named Sounds, which is in the same folder as the
current Director movie:

put the moviePath & "Sounds" into soundsPath
add the searchPaths, soundPath

{button See also,AL(`Lingo_searchPaths')}

selection
Syntax: the selection

This function returns a string containing the highlighted portion of the current editable field. It is useful for testing
what a user has selected in a field.

The selection function only determines which string of characters are selected; you cannot use the
selection to select a string of characters.

Example:

This statement checks whether any characters are selected and, if none are, displays the alert "Please select a
word.":

if the selection = EMPTY then ¬
 alert "Please select a word."

{button See also,AL(`Lingo_selection')}

selection of castLib
Syntax: the selection of castLib whichCast

Or

set the selection of castLib whichCast = [startMember1,¬
endMember1] , {[startMember2, endMember2] , ¬
[startMember3, endMember3]...}

This cast property determines which cast members are selected in the specified Cast window. The specified
range appears as a list of the starting and ending cast member numbers for the selected range. You can specify
more than one selection by specifying additional ranges of cast members. (Specifying more than one selection is
done by dragging while pressing the Control key (Windows) or the Command key (Macintosh). This property can
be tested and set.

Example:

This statement selects cast members 1 through 10 in castLib number 1:

set the selection of castLib 1 = [1, 10]

This statement selects cast members 1 through 10, and 30 through 40, in castLib number 1:

set the selection of castLib 1 = [1, 10], [30,40]

selEnd
Syntax: the selEnd

This field property specifies the ending character of a selection. It is used with the selStart to determine a
selection from the currently editable field, counting from the beginning character.

The selEnd field property can be tested and set, and the default value is 0.

Example 1:

These statements select "cde" from the field "abcdefg":

set the selStart to 3
set the selEnd to 5

Example 2:

This statement calls the handler noSelection when the selEnd is the same as the selStart:

if the selEnd = the selStart then noSelection

Example 3:

This statement makes a selection 20 characters long:

set the selEnd to the selStart + 20

{button See also,AL(`Lingo_selEnd')}

selStart
Syntax: the selStart

This field property specifies the starting character of a selection. It is used with the selEnd to determine a
selection from the currently editable field, counting from the beginning character.

The selStart field property can be tested and set. The default value is 0.

Example 1:

These statements select "cde" from the field "abcdefg":

set the selStart to 3
set the selEnd to 5

Example 2:

This statement calls the handler noSelection when the selEnd is the same as the selStart:

if the selEnd = the selStart then noSelection

Example 3:

This statement makes a selection 20 characters long:

set the selEnd to the selStart + 20

{button See also,AL(`Lingo_selStart')}

sendAllSprites
Syntax: sendAllSprites (#customEvent, args)
This command makes a custom event message available to all sprites, not just the sprite that was involved in the
event. As with any other message, the message is available to every script attached to the sprite, unless the
stopEvent command is used.

The symbol operator (#) must precede the custom event message when you write this command.

After the message has passed to all sprites, the event follows the regular message hierarchy: script of cast
member, frame script, and then movie script.

When you use the sendAllSprites command:

· Replace #customEvent with the message.

· Replace args with any arguments to be sent with the message.

Example:

This handler sends the custom message bumpCounter and the argument 2 to all sprites when the user clicks
the mouse:

on mouseDown me
sendAllSprites (#bumpCounter, 2)

end

{button See also,AL(`Lingo_sendAllSprites')}

sendSprite
Syntax: sendSprite (whichSprite, #customMessage, args)
This command sends a custom event message to all scripts attached to a specified sprite.

The symbol operator (#) must precede the custom message when you write this command.

Messages sent using sendSprite are available to all scripts attached to the sprite . The messages then follow
the regular message hierarchy: script of the cast member, frame script, and movie script.

Example:

This handler sends the custom message #bumpCounter and the argument 2 to
sprite 1 when the user clicks the mouse:

on mouseDown me
sendSprite (1, #bumpCounter, 2)

end

{button See also,AL(`Lingo_sendSprite')}

set...to, set...=
Syntax: set the property to expression

or

set the property = expression

or

set variable to expression

or

set variable = expression

This command evaluates the expression specified by expression and puts the result into the property specified
by property or the variable specified by variable.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example 1:

This statement sets the ink effect for sprite 3 to the ink effect specified by the number 8:

set the ink of sprite 3 to 8

Example 2:

This statement sets the soundEnabled property to the opposite of its current state. When the soundEnabled
is TRUE (the sound is on), this statement turns it off. When the soundEnabled is FALSE (the sound is off),
this statement turns it on.

set the soundEnabled = not (the soundEnabled)

Example 3:

This statement sets the variable vowels to the string "aeiou":

set vowels to "aeiou"

{button See also,AL(`Lingo_set_to')}

setaProp
Syntax: setaProp list, property, newValue

or

setaProp (childObject, property, newValue)
This command replaces the value assigned to property with the value specified by newValue. The setaProp
command works with property lists only. Using setaProp with a linear list produces a script error.

· For property lists, setaProp replaces a property in the list specified by list. When the property isn't already
in the list, Lingo adds the new property and value.

· For child objects, setaProp replaces a property of the child object.

· The setaProp command can also set ancestor properties.

For more information about lists, see Chapter 10, "Working with Lists," in Learning Lingo.

Example:

These statements create a property list and then add the item #c:10 to the list:

set newList = [#a:1, #b:5]
put newList
-- [#a:1, #b:5]
setaProp newList, #c, 10
put newList
-- [#a:1, #b:5, #c:10]

{button See also,AL(`Lingo_setaProp')}

setAt
Syntax: setAt list, orderNumber, value

This command replaces the item specified by orderNumber with the value specified by value in the list specified
by list.

· When orderNumber is greater than the number of items in a linear list, Director expands the list's blank
entries to provide the number of places specified by orderNumber.

· When orderNumber is greater than the number of items in a property list, the setAt command gives a script
error.

For more information about lists, see Chapter 10, "Working with Lists," in Learning Lingo.

Example:

This handler assigns a name to the list [12, 34, 6, 7, 45], replaces the fourth item in the list with the value 10, and
then displays the result in the Message window:

on enterFrame
 set vNumbers = [12, 34, 6, 7, 45]
 setAt vnumbers, 4, 10
 put vNumbers
end enterFrame

When the handler runs, the Message window displays the following:

 [12, 34, 6, 10, 45]

setButtonImageFromCastMember
Syntax: setButtonImageFromCastMember (buttonCastMember, ¬

"imageString", bitmapCastMember)
This function assigns a bitmap to an image string in a button cast member.

When you use this function:

· Replace bitmapCastMember with the name of the bitmap cast member.

· Replace imageString with the name of the image string in the button cast member.

· Replace buttonCastMember with the name of the button cast member.

Example:

This statement takes the bitmap cast member Coolness of castLib 2 and puts it into the image named
imageNormal in the Button editor residing in button cast member Panic:

putImageIntoCastMember(member "Coolness", "imageNormal", ¬
member "Panic" of castLib 2)

setCallBack
Syntax: setCallBack XCMDname, value

This command is obsolete. It was used in earlier versions of Director to specify how Lingo handled unsupported
callbacks from the HyperTalk XCMD or XFCN.

setPref
Syntax: setPref prefName, prefValue

This command writes the string specified by prefValue to the file specified by prefName on the computer's local
disk.

prefName must be a valid file name. To make sure the file name is valid on all platforms, use no more than
eight alphanumeric characters for the file name.

After the setPref command runs, if the movie is playing inside a browser, a folder named Prefs is created
inside the Plug-In Support folder. The setPref command can write only to that folder.

If the movie is playing outside a browser, a folder is created in the same folder as the application. The folder
receives the name Application Folder, where Application is the name of the Application. For example, a projector
named BigBand would have a folder named BigBand Folder.

Example:

This handler assigns the text in the field cast member Text Entry to the field cast member Current Preferences:

on mouseUp
 setPref the text of member "Current Preferences", ¬
 the text of member "Text Entry"
end

{button See also,AL(`Lingo_setPref')}

setProp
Syntax: setProp list, property, newValue

This command replaces the value assigned to property with the value specified by newValue in the list specified
by list. If the list doesn't contain the specifed property, setProp produces a script error.

The setProp command works with property lists only. Using setProp with a linear list produces a script error.

This command is similar to the setaProp command, except that this command gives an error when the property
is not already in the list.

For more information about lists, see Chapter 10, "Working with Lists," in Learning Lingo.

Example:

This statement changes the value assigned to the age property of property list x to 11:

setProp x #age, 11

{button See also,AL(`Lingo_setProp')}

setTrackEnabled
Syntax: setTrackEnabled(sprite whichSprite, whichTrack, trueOrFalse)

This digital video sprite property sets whether the specified track of a digital video is enabled to play.

· When setTrackEnabled is TRUE, the specified track is enabled.

· When setTrackEnabled is FALSE, the specified track is disabled.

To test whether a track is already enabled, test the trackEnabled of sprite property.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement enables track 3 of the digital video assigned to sprite channel 8:

setTrackEnabled(sprite 8, 3, TRUE)

{button See also,AL(`Lingo_setTrackEnabled')}

shapeType
Syntax: the shapeType of member whichCastmember

This shape cast member property indicates the specified shape's type. Possible types are #rect, #roundRect,
#oval, or #line. This property is useful for specifying a shape cast member's type after the shape cast member
is created from Lingo.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example:

These statements create a new shape cast member numbered 100 and then define it as an oval:

new(#shape, member 100)
set shapeType of member 100 = #oval

shiftDown
Syntax: the shiftDown

This function indicates whether the user is pressing the Shift key. It must always be tested in conjunction with
another key.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

· When the shiftDown is TRUE, the user is pressing the Shift key.

· When the shiftDown is FALSE, the user is not pressing the Shift key.

Example:

This statement checks whether the Shift key is being pressed and calls the handler doCapitalA if it is:

if the shiftDown then doCapitalA (the key)

{button See also,AL(`Lingo_shiftDown')}

short
{button See also,AL(`Lingo_short')}

showGlobals
Syntax: showGlobals

This command causes the Message window to display all global variables. It is useful for debugging scripts.

Example:

This statement displays all global variables in the Message window:

showGlobals

{button See also,AL(`Lingo_showGlobals')}

showLocals
Syntax: showLocals

This command causes the Message window to display all local variables. This command can only be used within
handlers or parent scripts.

Local variables in handlers are abandoned after the handler executes. This command is useful for debugging
scripts.

Example:

This statement displays all local variables in the Message window:

showLocals

{button See also,AL(`Lingo_showLocals')}

showResFile
Syntax: showResFile [whichFile]

This command, when used on the Macintosh, displays a list of resources in the resource file specified by the
string whichFile. The file must be already open. If the resource file is in a different folder than the current movie,
whichFile must specify a pathname. If no file is specified, all open resource files are listed. In Windows, the
showResFile command has no effect.

The showResFile command doesn't support URLs as file references.

There may be many open resource files, and the listing may be very long. To cancel the listing, click the mouse
button.

Example:

This statement displays the resource file Special Fonts:

showResFile "Special Fonts"

{button See also,AL(`Lingo_showResFile')}

showXlib
Syntax: showXlib [Xlibfilename]

This command shows all Xtras and XObjects in Xlibfilename (it must be open), or all open Xlibraries if no file is
specified. Xlibrary files are resource files that contain XCOD (XObjects) resources. If the file is in another folder
than the current movie, specify the pathname.

Xlibrary files are resource files that contain XCOD (Xtras and XObjects) resources (Macintosh) or DLLs
(Windows). Because the type of Xlibrary files on the Macintosh and in Windows differs, the list of files that the
showXlib command generates can be different on different platforms.

The showXlib command doesn't support URLs as file references.

The mDescribe method displays online documentation for an XObject.

To use mDescribe:

1. Type showXlib in the Message window and press the Return key.
This displays all open Xlibrary resource files and all Xtras and XObjects contained in those Xlibraries.

2. Using the list of Xtras and XObjects displayed in the Message window, type
XObjectName(mDescribe) and press the Return key.
This displays the on-line documentation for that XObject.

Example:

This statement displays the Xtras and XObjects in the VideoDisc Library:

showXlib "VideoDisc Xlibrary"

{button See also,AL(`Lingo_showXlib')}

shutDown
Syntax: shutDown

This command has different effects on the Macintosh and in Windows.

· On the Macintosh, the shutDown command closes all open applications and turns the computer off.

· In Windows 95, the shutDown command exits Director or the projector.

· In Windows 3.1, the shutDown command exits Director or the projector and then exits Windows.

Example:

This statement checks whether the user has pressed Control+R and shuts down the computer if he or she has:

if the key = "s" and the commandDown then shutDown

{button See also,AL(`Lingo_shutDown')}

sin
Syntax: sin(angle)

This function calculates the sine of the specified angle. The angle must be expressed in radians as a floating-
point number.

Example:

The following statement calculates the sine of pi/2:

put sin (pi()/2.0)
-- 1

Note: The symbol ¹ cannot be used in a Lingo expression.

size of cast
This is obsolete. Use size of member instead.

size of member
Syntax: the size of member castName

This cast member property permits you to learn the size, in bytes, of a specific cast member number or name.
Divide bytes by 1024 to convert to kilobytes.

Example:

put the size of member "Shrine" into member "How Big"

sort
Syntax: sort list

This command puts the items in the list specified by list into alphanumeric order.

· When the list is a linear list, the list is sorted by values.

· When the list is a property list, the list is sorted alphabetically by properties.

After a list is sorted, it maintains its sort order even when you add new variables using the add command.

For more information about lists, see Chapter 10, "Working with Lists," in Learning Lingo.

Example:

This statement puts the list Values, which consists of [#a: 1, #d: 2, #c: 3], into alphanumeric order. The result
appears below the statement:

put values
-- [#a: 1, #d: 2, #c: 3]
sort Values
put Values
--[#a: 1, #c: 3, #d: 2]

sound close
Syntax: sound close soundChannel

This command stops the sound playing in the specified channel and then closes the sound channel specified by
soundChannel.

The sound close command was used in earlier versions of Director. For best results, use the puppetSound
command.

Example:

This statement stops any sound playing in and closes sound channel 1:

sound close 1

{button See also,AL(`Lingo_sound_close')}

sound fadeIn
Syntax: sound fadeIn whichChannel

sound fadeIn whichChannel, ticks

This command fades in a sound in the specified sound channel over a period of frames or ticks.

· When ticks is specified, the fade in occurs evenly over that period of time.

· When ticks is not specified, the default number of ticks is calculated as 15 * (60 / (Tempo setting)) based on
the Tempo setting for the first frame of the fade in.

The fade in continues at a predetermined rate until the number of ticks has elapsed, or until the sound in the
specified channel changes.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement fades in the sound in channel 1 over 5 seconds:

sound fadeIn 1, 5 * 60

{button See also,AL(`Lingo_sound_fadeIn')}

sound fadeOut
Syntax: sound fadeOut whichChannel

sound fadeOut whichChannel, ticks

This command fades out a sound in the specified sound channel over a period of frames or ticks.

· When ticks is specified, the fade out occurs evenly over that period of time.

· When ticks is not specified, the default number of ticks is calculated as 15 * (60 / (Tempo setting)) based on
the Tempo setting for the first frame of the fade out.

The fadeout continues at a predetermined rate until the number of ticks has elapsed, or until the sound in the
specified channel changes.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement fades out the sound in channel 1 over 5 seconds:

sound fadeOut 1, 5 * 60

{button See also,AL(`Lingo_sound_fadeOut')}

sound of cast
This is obsolete. Use sound of member instead.

sound of member
Syntax: the sound of member whichCastmember

This movie and digital video cast member property determines whether the sound for the specified movie or
digital video plays.

· When the sound of member is TRUE (1), the sound plays.

· When the sound member is FALSE (0), the sound doesn't play.

This property can be tested and set for Director movies and digital video cast members.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement turns on the sound for the Director movie cast member Movie Clip:

set the sound of member "Movie Clip" to 1

sound playFile
Syntax: sound playFile whichChannel, whichFile

This command plays the AIFF or WAVE sound located at whichFile in the sound channel specified by
whichChannel.

When the sound file is in a different folder than the movie, whichFile must specify the full pathname to the file.

To play sounds obtained from a URL, it's usually a good idea to use the downloadNetThing command to
download the file to a local disk first. This can minimize problems with waiting for the file to download.

The sound playFile command streams files from disk rather than playing them from RAM. As a result, using
the sound playFile command when playing digital video or when loading cast members into memory can
cause conflicts when the computer tries to read the disk in two places at once.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example 1:

This statement plays the file named Thunder in channel 1:

sound playFile 1, "Thunder"

Example 2:

This statement plays the file named Thunder in channel 3:

sound playFile 3, the pathName &"Thunder"

{button See also,AL(`Lingo_sound_playFile')}

sound stop
Syntax: sound stop whichChannel

This command stops the playing of the sound playing in the specified channel.

The sound stop command was used in earlier versions of Director. For best results, use the puppetSound
command.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example 1:

These statements stop any sound playing in and closes sound channel 1:

sound stop 1
sound close 1

Example 2:

This statement checks whether a sound is playing in sound channel 1 and stops the sound if it is:

if soundBusy(1) then sound stop 1

{button See also,AL(`Lingo_sound_stop')}

soundBusy
Syntax: soundBusy(whichChannel)

This function determines whether a sound is playing in the sound channel specified by whichChannel.

· When a sound is playing in the specified sound channel, the soundBusy function returns TRUE.

· When no sound is playing in the specified sound channel, the soundBusy function returns FALSE.

Make sure that you allow enough time for the sound to start playing before using soundBusy to check the sound
channel.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement checks whether a sound is playing in sound channel 1 and loops in the frame if it is. This would
allow the sound to finish before the playback head goes to another frame:

if soundBusy(1) then go to the frame

{button See also,AL(`Lingo_soundBusy')}

soundChannel of member
Syntax: the soundChannel of member "whichCastmember"

This Shockwave Audio (SWA) streaming cast member property specifies the sound channel in which the SWA
sound plays.

If no channel number or channel 0 is specified, the SWA streaming cast member assigns the sound to the
highest numbered unused sound channel.

Shockwave Audio streaming sounds can appear as sprites in sprite channels, but they play sound in a sound
channel. It is recommended that you refer to SWA sound sprites by their sprite channel number rather than their
sound channel number.

This property can be tested and set.

Example:

This statement has the SWA streaming cast member Frank Zappa play in sound channel 3:

set the soundChannel of member "Frank Zappa" to 3

soundEnabled
Syntax: the soundEnabled

This property determines whether the sound is on or off. TRUE means that the sound is on.

The soundEnabled property can be tested and set, and the default value is TRUE. When you set this property
to FALSE, the volume setting of the sound is not changed, but you do not hear the sound.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement set turns to the opposite of its current setting. It turns the sound on if it is off and turns it off if it is
on:

set the soundEnabled to not (the soundEnabled)

{button See also,AL(`Lingo_soundEnabled')}

soundLevel
Syntax: the soundLevel

This property determines the volume level of the sound that is played through the computer's speaker. Settings
range from 0 (no sound) to 7 (maximum sound volume).

The soundLevel property can be tested and set. The default value is 7.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example 1:

This statement sets the variable oldSound equal to the current sound level:

put the soundLevel into oldSound

Example 2:

This statement sets the sound level to 5:

set the soundLevel to 5

{button See also,AL(`Lingo_soundLevel')}

sourceRect
Syntax: the sourceRect of window whichWindow

This window property specifies the coordinates of the rectangle that the movie that plays in the window specified
by whichWindow was originally created for.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement displays the original coordinates of the movie "Control Panel" in the Message window:

put the sourceRect of "Control Panel"

SPACE
Syntax: SPACE

This read-only constant represents the space character.

Example:

This statement displays "Age Of Aquarius" in the Message window:

put "Age"&SPACE&"Of"&SPACE&"Aquarius"

sprite
Syntax: the property of sprite whichSprite

This keyword tells Lingo that the value specified by whichSprite is a sprite channel number. It is used with every
sprite property.

A sprite is an occurrence of a cast member in a sprite channel of the Score.

Example 1:

This statement sets the variable named horizontal to the locH of sprite 1:
set horizontal = the locH of sprite 1 into horizontal

Example 2:

This statement turns on the puppet condition for the sprite channel that has sprite number
i + 1:

set the puppet of sprite (i + 1) to TRUE

{button See also,AL(`Lingo_sprite')}

sprite...intersects
Syntax: sprite sprite1 intersects sprite2

This operator compares the position of two sprites. It is TRUE if the bounding rectangle of sprite1 touches the
bounding rectangle of sprite2.

If both sprites have matte ink, their actual outlines, not the bounding rectangles, are used. A sprite's outline is
defined by the non-white pixels that make up its border.

This is a comparison operator with a precedence level of 5.

Example:

This statement checks whether two sprites intersect, and, if they do, changes the contents of the field cast
member Notice to "You placed it correctly.":

if sprite i intersects j then ¬
put "You placed it correctly." into member "Notice"

{button See also,AL(`Lingo_sprite_intersects')}

sprite...within
Syntax: sprite sprite1 within sprite2

This comparison operator compares the position of two sprites. It is TRUE if the bounding rectangle of sprite1 is
entirely inside the bounding rectangle of sprite2.

If both sprites have matte ink, their actual outlines, not the bounding rectangles, are used. A sprite's outline is
defined by the non-white pixels that make up its border.

This is a comparison operator with a precedence level of 5.

Example:

This statement checks whether two sprites intersect and calls the handler doInside if they do:

if sprite 3 within 2 boundary ¬
 then doInside

{button See also,AL(`Lingo_sprite_within')}

spriteBox
Syntax: spriteBox whichSprite, left, top, right, bottom

This command is obsolete, Set the rect of sprite to change a sprite's bounding rectangle instead.

{button See also,AL(`Lingo_spriteBox')}

spriteNum
Syntax: the spriteNum of me

This property indicates the number of the channel the behavior's sprite is in.

If you attach behaviors to a sprite, t he scriptInstanceList automatically records which scripts the
sprite has assigned. However, if you use an on new handler to create an instance of the behavior, the script's on
new handler must explicitly set the spriteNum property to the sprite's number. This provides a way to identify
which sprite the script is attached to. The sprite's number must be sent to the
on new handler as an argument when the on new handler is called.

Example 1:

In this handler, the spriteNum property is automatically set for script instances that are created by the system:

on mouseDown me
set the member of sprite the spriteNum of me = member ¬ "DownPict"

end

Example 2:

This script includes an on new handler that explicitly sets the spriteNum property to identify the sprite that the
script is attached to:

property spriteNum
on new me whichSprite
set the spriteNum of me = whichSprite

 return me
end

{button See also,AL(`Lingo_spriteNum')}

sqrt
Syntax: sqrt(number)

the sqrt of number

This function yields the square root of the number specified by number.

· When number is a floating-point number, the result is a floating-point number.

· When number is an integer, the result is rounded to the nearest integer.

The value of number must be a decimal number that is greater than zero.

Example:

This statement displays the square root of 3.0 in the Message window:

put sqrt(3.0)
-- 1.7321

{button See also,AL(`Lingo_sqrt')}

stage
Syntax: the stage

This system property is used to refer to the main movie. This is useful when using the tell command to send a
message to the main movie from a child movie.

Example:

This statement causes the main movie to loop in its current frame:

tell the stage to go to the frame

This statement displays the current setting of the Stage:

put the rect of the stage
--rect (0, 0, 640, 480)

stageBottom
Syntax: the stageBottom

This function-along with the stageLeft, the stageRight, and the stageTop-indicates where the Stage
is positioned on the desktop. It returns the bottom vertical coordinate of the Stage, relative to the upper left
corner of the main screen. The height of the Stage in pixels is given by the stageBottom - the stageTop.

The stageBottom function can be tested but not set.

Example:

These two statements position sprite 3 a distance of 50 pixels from the bottom edge of the Stage:

put the stageBottom - the stageTop into ¬
 stageHeight
set the locV of sprite 3 to stageHeight - 50

Note: Sprite coordinates are expressed relative to the upper left corner of the Stage. See Using Director for
more information.

{button See also,AL(`Lingo_stageBottom')}

stageColor
Syntax: the stageColor

This property determines the color of the movie background.

The value of the stageColor property ranges from 0 to 255 for 8-bit color, or from 0 to 15 for 4-bit color. You
can click a color in the color palette to see that color's index number in the lower left corner of the window.
Setting the stageColor property in a Lingo script is equivalent to choosing the Stage color from the pop-up
palette in the panel window.

Example:

This statement sets the variable oldColor to the index number of the current Stage color:

set oldColor = the stageColor into oldColor

This statement sets the Stage color to the color assigned to chip 249 on the current palette:

set the stageColor to 249

{button See also,AL(`Lingo_stageColor')}

stageLeft
Syntax: the stageLeft

This function-along with the stageRight, the stageTop, and the stageBottom-indicates where the
Stage is positioned on the desktop. It equals the left horizontal coordinate of the Stage, relative to the upper left
corner of the main screen. When the Stage is flush with the left side of the main screen, this coordinate is zero.

The stageLeft function can be tested but not set.

Sprite coordinates are expressed relative to the upper left corner of the Stage.

Example:

This statement checks whether the left edge of the Stage is beyond the left edge of the screen and calls the
handler leftMonitorProcedure if it is:

if the stageLeft < 0 then leftMonitorProcedure

{button See also,AL(`Lingo_stageLeft')}

stageRight
Syntax: the stageRight

This function-along with the stageLeft, the stageTop, and the stageBottom-indicates where the Stage
is positioned on the desktop. It returns the right horizontal coordinate of the Stage, relative to the upper left
corner of the main screen's desktop. The width of the Stage in pixels is given by the stageRight - the
stageLeft.

The stageRight function can be tested but not set.

Sprite coordinates are expressed relative to the upper left corner of the Stage.

Example:

These two statements position sprite 3 a distance of 50 pixels from the right edge of the Stage:

set stageWidth = the stageRight - the stageLeft
set the locH of sprite 3 to stageWidth - 50

{button See also,AL(`Lingo_stageRight')}

stageTop
Syntax: the stageTop

This function-along with the stageBottom, the stageLeft, and the stageRight-indicates where the
Stage is positioned on the desktop. It returns the top vertical coordinate of the Stage, relative to the upper left
corner of the main screen's desktop. If the Stage is in the upper left corner of the main screen, this coordinate is
zero.

The stageTop function can be tested but not set.

Example:

This statement checks whether the top of the Stage is beyond the top of the screen and calls the handler
upperMonitorProcedure if it is:

if the stageTop < 0 then upperMonitorProcedure

Sprite coordinates are expressed relative to the upper left corner of the Stage.

{button See also,AL(`Lingo_stageTop')}

startMovie
See: on startMovie movie handler.

starts
Syntax: string1 starts string2

This comparison operator compares two strings.

· When string1 starts with string2, the condition is TRUE (1).

· When string1 does not start with string2, the condition is FALSE (0).

The string comparison is not sensitive to case or diacritical marks; "a" and "" are considered the same.

This is a comparison operator with a precedence level of 1.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement has the Message window display whether the word Macromedia starts with the string Macro:

put "Macromedia" starts "Macro"

The result is 1, which is the numerical equivalent of TRUE.

{button See also,AL(`Lingo_starts')}

startTime of sprite
Syntax: the startTime of sprite whichSprite

This sprite property determines when the specified digital video sprite begins. The value of the startTime is
measured in ticks.

It can be tested and set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement starts the digital video sprite in channel 5 at 100 ticks into the digital video:

set the startTime of sprite 5 to 100

startTimer
Syntax: startTimer

This command sets the timer property to zero. It also resets all the accumulating timers for the lastClick,
lastEvent, lastKey, and lastRoll functions to zero.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This handler sets the timer to zero when a key is pressed:

on keyDown
 startTimer
end keyDown

{button See also,AL(`Lingo_startTimer')}

state of member
Syntax: state of member "whichCastmember"

This Shockwave Audio (SWA) streaming cast member property determines the current state of the SWA
streaming file. The properties streamName, URL, and preLoadTime can only be changed when the
SWA sound is stopped. The following properties for the SWA file return meaningful information only after
the file is streaming: cuepointNames, cuepointTimes, currentTime, duration,
percentPlayed, percentStreamed, bitRate, sampleRate, and numChannels.

The following are possible values and their corresponding meanings for the state of member:

0 Stopped

1 Preloading

2 Preload completed successfully

3 Playing

4 Paused

5 Done

9 Error

10 Insufficient CPU

Example:

This statement issues an alert if an error is detected for the SWA streaming cast member:

on mouseDown
if the state of member "Ella Fitzgerald" = 9 then

alert "Sorry, can't find an audio file to stream."
end if

end

stillDown
Syntax: the stillDown

This function indicates whether the user is pressing the mouse button.

· When the user is pressing the mouse button, the stillDown is TRUE.

· When the user is not pressing the mouse button, the stillDown is FALSE.

This function is useful within a mouseDown script to test whether the mouse button is still being pressed after
Director responds to the initial mouse press.

Lingo cannot test the stillDown when it is used inside a repeat loop. Use the mouseDown function inside of
repeat loops instead.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

For a demonstration of modifier keys, see the sample movie Keyboard Lingo.

Example:

This statement checks whether the mouse button is being pressed and calls the handler dragProcedure if it is:

if the stillDown then dragProcedure

{button See also,AL(`Lingo_stillDown')}

stopEvent
Syntax: stopEvent

This command prevents Lingo from passing an event message to subsequent locations in the message
hierarchy. This does the same as the dontPassEvent command used in earlier versions of Director, except that
it now applies to sprite scripts also.

By default, messages are available first to a primary event handler (if one exists), and then to any scripts
attached to a sprite involved in the event. If more than one script is attached to the sprite, the message is
available to each of the sprite's scripts. If no sprite script responds to the message, the message passes to a
cast member script, frame script, and movie script.

Use the stopEvent command to stop the message in a primary event handler or a sprite script, thus making the
message unavailable for subsequent sprite scripts.

The stopEvent command applies only to the current event being handled. It does not affect future events. The
stopEvent command applies only within primary event handlers, handlers that primary event handlers call, or
multiple sprite scripts. It has no effect elsewhere.

For more information, see Chapter 2, "Script Basics," in Learning Lingo.

Example:

on mouseUp me
global grandTotal
if grandTotal = 500 then
stopEvent

end if
end

{button See also,AL(`Lingo_stopEvent')}

stop member
Syntax: stop member ("whichCastmember")

The command stops the playback of a Shockwave Audio (SWA) streaming cast member. When the cast member
is stopped, the state of member property equals 0.

To change properties such as streamName, preLoadTime, and URL of member, the SWA streaming cast
member must be stopped.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement stops SWA cast member Big Band from playing.

stop member ("Big Band")

stopTime of sprite
Syntax: the stopTime of sprite whichSprite

This sprite property determines when the specified digital video sprite stops. The value of the stopTime is
measured in ticks.

It can be tested and set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement stops the digital video sprite in channel 5 at 100 ticks into the digital video:

set the stopTime of sprite 5 to 100 on streamStatus

streamName of member
Syntax: the streamName of member "whichCastmember"

This Shockwave Audio (SWA) property specifies a URL or file name for a SWA streaming cast member. It has
the same functionality as URL of member.

This property can be tested and set.

Example:

This statement links the file BigBand.swa to a SWA streaming cast member. The linked file is on the disk
MyDisk within the folder named Sounds.

set the streamName of member "SWAstream" to ¬
"MyDisk/sounds/BigBand.swa"

stretch of sprite
Syntax: the stretch of sprite whichSprite

This sprite property was introduced in an earlier version of Director and used in conjunction with the spriteBox
command. To set the rect of a sprite, it's now easier to use the rect sprite property.

The stretch of sprite property determines whether the sprite specified by whichSprite can be stretched by
using the spriteBox command or the width of sprite and height of sprite properties. If it is TRUE,
the bitmap sprite can be stretched.

The stretch of sprite property can be tested and set, and the default value is FALSE. When FALSE, the
bitmap sprite always remains at its default or normal size.

The stretch of sprite property applies to bitmap, digital video, film loop, linked movie, OLE and Xtra cast
members that have a graphic image, and picture cast members, but not to shape, field, or button sprites.

Shapes can be stretched at any time by setting their height of sprite and width of sprite properties,
regardless of the setting of their stretch property. Field and button cast members cannot be stretched in any
case.

Director requires much more processor time to draw stretched sprites than regular sprites, which can affect
movie performance.

For the value set by Lingo to last beyond the current sprite, the sprite must be a puppet.

Example:

This statement checks whether sprite 3 is stretchable and sets the sprite's width to 10 pixels if it is:

if the stretch of sprite 3 = TRUE then ¬
 set the width of sprite 3 to 10

{button See also,AL(`Lingo_stretch_of_sprite')}

string
Syntax: string(expression)

This function converts an integer, floating-point number, or symbol expression to a string.

Example 1:

This statement adds 2.0 + 2.5 and inserts the results into field cast member Total:

set field "Total" = string(2.0 + 2.5)

Example 2:

This statement converts the symbol #red to a string and inserts it in the field cast member Color:

set field "Color" = string(#red)

{button See also,AL(`Lingo_string')}

stringP
Syntax: stringP(expression)

This function determines whether the expression specified by expression is a string.

· When expression is a string, the result is TRUE.

· When expression is not a string, the result is FALSE.

The "P" in stringP stands for predicate.

Example 1:

This statement checks whether "3" is a string:

put stringP("3")

The result is 1, which is the numeric equivalent of TRUE.

Example 2:

This statement checks whether the floating-point number 3.0 is a string:

put stringP(3.0)

Because 3.0 is a floating-point number and not a string, the result is 0, which is the numeric equivalent of FALSE.

{button See also,AL(`Lingo_stringP')}

switchColorDepth
Syntax: the switchColorDepth

This property, when the movie plays on the Macintosh, determines whether Director automatically switches the
color depth when loading a movie. The switchColorDepth property has no effect in Windows.

· When the switchColorDepth is TRUE, Director switches the monitor(s) that the Stage occupies to the
color depth of the movie that is being loaded.

· When the switchColorDepth is FALSE, Director leaves the color depth of the monitor(s) unchanged
when a movie is loaded.

When the switchColorDepth is TRUE, nothing happens until a new movie is loaded.

Setting the monitor's color depth to that of the movie is good practice.

· When the monitor's color depth is set below that of the movie, resetting it to the color depth of the movie
(assuming that the monitor can provide that color depth) helps maintain the movie's original appearance.

· When the monitor's color depth is higher than that of the movie, reducing the color depth lets you use the
minimum amount of memory to play movies. At minimum memory, loading cast members is more efficient
and animation can occur faster.

The switchColorDepth property can be tested and set. The default value is the setting for the Reset Monitor
to Movie's Color Depth check box in the General Preferences dialog box.

Example 1:

This statement sets the variable named switcher to the current setting of switchColorDepth:

put the switchColorDepth into switcher

Example 2:

This statement checks whether the current color depth is 8-bit and turns the switchColorDepth property on if
it is:

if the colorDepth = 8 then ¬
 set the switchColorDepth to TRUE

{button See also,AL(`Lingo_switchColorDepth')}

symbol
Syntax: symbol(stringValue)

This function takes a string, stringValue, and returns a symbol.

Example 1:

This statement displays the symbol #hello.

put symbol("hello")
-- #hello

Example 2:

This statement displays the symbol #goodbye.

set x = "goodbye"
put symbol(x)
-- #goodbye

symbolP
Syntax: symbolP(expression)

This function determines whether the expression specified by expression is a symbol.

· When expression is a symbol, the result is TRUE.

· When expression is not a symbol, the result is FALSE.

The "P" in symbolP stands for predicate.

Example:

This statement checks whether #3 is a symbol:

put symbolP(#3)

TAB
Syntax: TAB

This character constant represents the Tab key.

Example:

This statement checks whether the character typed is the Tab character and calls the handler doNextField if it
is:

if the key = TAB then doNextField

This statement advances or retreats the playback head, depending on whether the user presses Tab or Shift-
Tab:

if the key = TAB then
 if the shiftDown then
 go the frame -1
 else
 go the frame +1
 end if
end if

{button See also,AL(`Lingo_TAB')}

tan
Syntax: tan(angle)

This function yields the tangent of the specified angle. The angle must be expressed in radians as a floating-
point number.

Example:

The following function yields the tangent of ¹/4:

tan (pi()/4.0) = 1

Note: The ¹ symbol cannot be used in a Lingo expression.

tell
Syntax: tell object to statement

or

tell object

statement(s)

end tell
This command communicates the statement or statements specified by statement(s) to the object specified by
object.

The tell command is useful for allowing movies to interact. It can be used within a main movie to send a
message to a movie playing in a window, or to send a message from a movie playing in a window to the main
movie. For example, the tell command can let a button in a control panel call a handler in a movie playing in a
window. The movie playing in a window might react to the first movie handler by executing the handler. The
movie playing in the window might interact with the main movie by sending a value back to the movie.

When you use the tell command to send a message to a movie playing in a window, it is important to use an
object name that identifies the window by using the full pathname or its number in the windowList. If you use
the windowList, use the expression getAt(the windowList, windowNum), where windowNum is a
variable that contains the number of the window's position in the list. Because opening and closing windows may
change the order of windowList, it is a good idea to store the full pathname as a global variable.

A multiple-line tell command resembles a handler. It requires an end tell statement:

global childMovie
tell window childMovie
 go to frame 5
 set the stageColor to 100
 set the memberNum of sprite 4 to 45
 updateStage
end tell

When a message calls a handler, a value returned from the handler can be found in the global property the
result after the called handler is done. For example, these statements send the window childMovie the
message calcBalance and then return the result:

global childMovie
tell window childMovie to calcBalance
-- a handler name
set myBalance to the result
-- return value from "calcBalance" handler

When you use the tell command to send a message from a movie playing in a window to the main movie, use
the system property the stage as the object name:

tell the stage to go to frame "Main Menu"

When you use the tell command to call a handler in another movie, make sure that you do not have a handler
by the same name in the same script in the local movie. If you do, the local script will be called. This applies only
to handlers in the same script in which you are using the tell command.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement causes the window Control Panel to instruct the movie Simulation to branch to another frame:

tell window "Simulation" to go to frame "Save"

tellStreamStatus
Syntax: tellStreamStatus()

This function enables or disables stream status reporting.

Setting the parameter for tellStreamStatus to different values gives these results:

· tellStreamStatus(TRUE) turns on the stream status handler.

· tellStreamStatus(FALSE) turns off the steam status handler.

· tellStreamStatus() determines the status of the handler.

Example 1:

This on prepareMovie handler calls the on streamStatus handler when the movie starts:

on prepareMovie
tellStreamStatus(TRUE)

end

Example 2:

This statement determines the status of the stream status handler:

on mouseDown
put tellStreamStatus()

end

textAlign of field
This is obsolete. Use alignment of member instead.

textFont of field
This is obsolete. Use font of member instead.

textHeight of field
This is obsolete. Use lineHeight of member instead.

text of cast
This is obsolete. Use text of member instead.

text of member
Syntax: the text of member whichCastmember

This cast member property determines the character string that is contained in the field cast member specified by
whichCastmember.

The text of member property is useful for displaying messages and recording what the user types.

The text of member property can be tested and set.

Lingo changes to the text of a cast member remove any special formatting you have applied to individual words
or lines. Altering the text of member reapplies global formatting.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

This statement places the phrase "Thank you." in the empty cast member Response:

if the text of member "Response" = EMPTY then ¬
 set the text of member "Response" to "Thank You."

This statement sets the content of cast member Notice to "You have made the right decision!":

set the text of member "Notice" = "You have ¬
 made the right decision!"

{button See also,AL(`Lingo_text_of_member')}

textSize of field
This is obsolete. Use fontSize of member instead.

textStyle of field
This is obsolete. Use fontStyle of member instead.

the
Syntax: the property

All Lingo properties and many sprite properties and functions require the keyword the to precede the property.
The keyword the distinguishes the property from a variable or object name.

Properties are globally available to handlers without a global declaration. Like global variables, Lingo system
properties are available between different movies in the same presentation (unless they are changed by system
events). Sprite properties change when a new movie is loaded.

ticks
Syntax: the ticks

This function returns the current time in ticks (1/60th of a second). Counting ticks begins from the time the
computer is started.

Example:

This statement converts ticks to minutes by dividing the number of ticks by 60 twice, and then sets the variable
minutesOn to the result:

put the ticks/60/60 into minutesOn

{button See also,AL(`Lingo_ticks')}

time
Syntax: the time

the short time
the long time
the abbreviated time
the abbrev time
the abbr time

This function returns the current time in the system clock as a string in one of three formats: short, long, or
abbreviated. If no format is specified, the default is short. The abbreviated format can also be referred to as
abbrev and abbr. In the United States, the short and abbreviated formats are the same.

Example:

These statements cause the Message window to display the time in different formats. Possible results appear
below each statement:

put the short time
--"1:30 PM"
put the long time
--"1:30:24 PM"
put the abbreviated time
--"1:30 PM"

Note: The three time formats vary, depending on the individual computer's time format. The examples above are
for the United States.

{button See also,AL(`Lingo_time')}

timeoutKeyDown
Syntax: the timeoutKeyDown

When this property is TRUE, keyDown events set the timeoutLapsed property to zero. This is useful for
restarting the countdown for a timeout each time a key is pressed.

The timeoutKeyDown property can be tested and set. The default value is TRUE.

Example:

This statement sets the variable timing to the value of the timeoutKeyDown property:

set timing to the timeoutKeyDown

This statement turns off the timeoutKeyDown property:

set the timeoutKeyDown to FALSE

{button See also,AL(`Lingo_timeoutKeyDown')}

timeoutLapsed
Syntax: the timeoutLapsed

This property indicates the number of ticks elapsed since the last timeout. A timeout event occurs when the
timeoutLapsed property reaches the time specified by the timeoutLength property.

The timeoutLapsed property can be tested but not set directly in Lingo.

Example:

This statement sets the field of member Countdown to the value of the timeoutLapsed property. Dividing
timeOutLapsed by 60 converts it to seconds:

set member "Countdown" = the timeoutLapsed / 60

timeoutLength
Syntax: the timeoutLength

This property determines the number of ticks before a timeout event occurs. A timeout occurs when the
timeoutLapsed property reaches the time specified by the timeoutLength property.

The timeoutLength property can be tested and set. The default value is 10,800 ticks, which is 3 minutes.

Example:

This statement sets the timeOutLength to 10 seconds:

set the timeoutLength to 10 * 60

timeoutMouse
Syntax: the timeoutMouse

This property determines whether mouseDown events reset the timeoutLapsed property to zero. When this
property is TRUE, mouseDown events reset the timeoutLapsed property.

The timeoutMouse property can be tested and set. The default value is TRUE.

Example 1:

This statement records the current setting of the timeoutMouse by setting the variable named timing to the
timeoutMouse:

set timing = the timeoutMouse

Example 2:

This statement sets the timeoutMouse property to FALSE. The result is that the timeoutLapsed property
keeps its current value when the mouse button is pressed:

set the timeoutMouse to FALSE

{button See also,AL(`Lingo_timeoutMouse')}

timeoutPlay
Syntax: the timeoutPlay

This property determines whether the timeoutLapsed property is reset to zero when a movie is played. When
timeoutPlay is TRUE, playing a movie resets the timeoutLapsed property to zero. This allows timeouts to
occur only when the animation is paused.

The timeoutPlay property can be tested and set. The default value is FALSE.

Example:

This statement sets the timeoutPlay to TRUE, which has Lingo reset the timeoutLapsed property to zero
when a movie is played:

set the timeoutPlay to TRUE

timeoutScript
Syntax: the timeoutScript

This property determines the Lingo that Director executes as a primary event handler when a timeout occurs.
The Lingo is written as a string, surrounded by quotation marks.

Define a primary event handler for timeouts by setting the timeoutScript to a string of the appropriate Lingo.
The Lingo can be a simple Lingo statement or a calling statement for a handler. When the event script you've
assigned is no longer appropriate, turn it off with the statement set the timeoutScript to EMPTY.

The timeoutScript property can be tested and set. The default value is EMPTY.

Example:

This statement sets the timeoutScript to a calling script for the handler timeoutProcedure:

set the timeoutScript to "timeoutProcedure"

timer
Syntax: the timer

This property is a free running timer that counts time in ticks (60ths of a second). It has nothing to do with the
timeOutScript property. It is used only for convenience in timing certain events. The startTimer command
zeroes the value of the timer property.

The timer property is useful for setting up delays within handlers. (The delay command works only in frame
scripts.) For example, you can use the timer to synchronize pictures to a soundtrack by inserting a delay that
makes the movie wait until a sound is finished.

Example:

This handler creates a 1-second delay:

on countTime
 startTimer
 repeat while the timer < 60
 nothing
 end repeat
end countTime

This statement sets the variable startTicks to the current value of the timer:

set startTicks = the timer

{button See also,AL(`Lingo_timer')}

timeScale of member
Syntax: the timeScale of member whichCastmember

This digital video cast member property gives the time unit per second that the digital video's frames are based
on. For example, a QuickTime digital video is measured in 1/600s of a second. This property can be tested but
not set.

{button See also,AL(`Lingo_timeScale_of_member')}

title of window
Syntax: the title of window whichWindow

This window property is the title of the window specified by whichWindow.

The title of window property can be tested and set.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement makes Action View the title of window X:

set the title of window "X" to "Action View"

titleVisible of window
Syntax: the titleVisible of window whichWindow

This window property specifies whether the window specified by whichWindow displays the window title in the
window's title bar.

The titleVisible of window property can be tested and set.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement displays the title of the window Control Panel by setting the window's titleVisible property to
TRUE:

set the titleVisible of window "Control Panel" to TRUE

to
The word to occurs in a number of Lingo constructs.

{button See also,AL(`Lingo_to')}

top of sprite
Syntax: the top of sprite whichSprite

This sprite property returns the top vertical coordinate of the bounding rectangle of the sprite specified by
whichSprite. The coordinate is the number of pixels from the upper left corner of the Stage.

The top of sprite property can be tested but not set directly. Set the rect of sprite to set the top
vertical coordinate of a sprite.

Example:

This statement checks whether the top of sprite 3 is above the top of the Stage and calls the handler
offTopEdge if it is:

if the top of sprite 3 < 0 then offTopEdge

{button See also,AL(`Lingo_top_of_sprite')}

trace
Syntax: the trace

This movie property specifies whether the movie's trace function is on or off.

· When the trace is TRUE, the trace function is on.

· When the trace is FALSE, the trace is off.

· This property can be tested and set.

Example:

This statement turns the trace property on:

set the trace = TRUE

traceLoad
Syntax: the traceLoad

This property specifies the amount of information that is displayed about cast members as they are loaded. The
possible values for the traceLoad property have the following effect:

0-Displays no information

1-Displays cast members' names

2-Displays cast members' names, number of the current frame, movie name, and file seek offset

The traceLoad property can tested and set.

Example:

This statement causes the movie to display the names of cast members as they are loaded:

set the traceLoad to 1

traceLogFile
Syntax: the traceLogFile

This property specifies the name of the file that the Message window display is written to. You can close the file
by setting the traceLogFile property to
EMPTY ("").

Example:

This statement instructs Lingo to write the contents of the Message window to the file Messages:

set the traceLogFile = "Messages"

This statement closes the file that the Message window display is being written to:

set the traceLogFile = ""

trackCount(member)
Syntax: trackCount(member whichCastmember)

This digital video cast member property returns the number of tracks on the specified digital video cast member.
This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the number of tracks in the digital video cast member Jazz Chronicles and displays
the answer in the Message window:

put trackCount(member "Jazz Chronicle")

trackCount(sprite)
Syntax: trackCount(sprite whichSprite)

This digital video sprite property returns the number of tracks on the specified digital video sprite. This property
can be read but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the number of tracks in the digital video sprite assigned to channel 10 and displays
the answer in the Message window:

put trackCount(sprite 10)

trackEnabled
Syntax: trackEnabled(sprite whichSprite, whichTrack)

This digital video sprite property indicates whether the specified track of a digital video is enabled to play.

· When trackEnabled is TRUE, the specified track is enabled.

· When trackEnabled is FALSE, the specified track is disabled.

This property cannot be set. You must use the setTrackEnabled property.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

{button See also,AL(`Lingo_trackEnabled')}

tracking
Syntax: the tracking of sprite whichSprite

This sprite property determines whether a button is tracking over the specified sprite. A button tracks if the mouse
was pressed while over the sprite, but isn't yet released yet.

This property can be tested but not set.

Example:

This statement displays the state of tracking for sprite 5:

put the tracking of sprite 5

trackNextKeyTime
Syntax: trackNextKeyTime(sprite whichSprite, whichTrack)

This digital video sprite property indicates the time of the key frame that follows the current time in the specified
digital video track. This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement has the Message window display the time of the key frame that follows the current time in track 5
of the digital video assigned to sprite channel 15 and displays the result in the Message window:

put trackNextKeyTime(sprite 15, 5)

trackNextSampleTime
Syntax: trackNextSampleTime(sprite whichSprite, whichTrack)

This digital video sprite property indicates the time of the next sample that follows the digital video's current time.
It is useful for locating text tracks in a digital video. This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the time of the next sample that follows the current time in track 5 of the digital video
assigned to sprite 15:

put trackNextSampleTime(sprite 15, 5)

trackPreviousKeyTime
Syntax: trackPreviousKeyTime(sprite whichSprite, whichTrack)

This digital video sprite property reports the time of the prior key frame that precedes the current time. This
property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement has the Message window display the time of the key frame in track 5 that precedes the current
time in the digital video sprite assigned to channel 15:

put previousKeyTime(sprite 15, 5)

trackPreviousSampleTime
Syntax: trackPreviousSampleTime(sprite whichSprite, whichTrack)

This digital video sprite property indicates the time of the sample preceding the digital video's current time. It is
useful for locating text tracks in a digital video. This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the time of the sample in track 5 that precedes the current time in the digital video
sprite assigned to channel 15 and displays the result in the Message window:

put trackPreviousSampleTime(sprite 15, 5)

trackStartTime(member)
Syntax: trackStartTime(member whichCastMember, whichTrack)

This digital video cast member property gives the start time of the specified track of the specified digital video
cast member. It can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the start time of track 5 in the digital video cast member Jazz Chronicle and displays
the result in the Message window:

put trackStartTime(member "Jazz Chronicle", 5)

trackStartTime(sprite)
Syntax: trackStartTime(sprite whichSprite, whichTrack)

This sprite property sets the starting time of a digital video movie in the specified sprite channel. The value of
trackStartTime is measured in ticks.

This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

In the Message window, this statement tells when track 5 in sprite channel 10 starts playing. The starting time is
120 ticks (2 seconds) into the track:

put trackStartTime(sprite 10, 5)
-- 120

{button See also,AL(`Lingo_trackStartTimesprite')}

trackStopTime(member)
Syntax: trackStopTime(member whichCastmember, whichTrack)

This digital video cast member property provides the stop time of the specified track of the specified digital video
cast member. It can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the stop time of track 5 in the digital video cast member Jazz Chronicle and displays
the result in the Message window:

put trackStopTime(member "Jazz Chronicle", 5)

trackStopTime(sprite)
Syntax: trackStopTime(sprite, whichSprite, whichTrack)

This digital video sprite property provides the stop time of the specified track of the specified digital video sprite.
It can be tested but not set.

When a digital video movie is played, the trackStopTime is where playback halts or loops if the loop
property is turned on.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement determines the stop time of track 5 in the digital video assigned to sprite 6 and displays the result
in the Message window:

put trackStopTime(sprite 6, 5)

{button See also,AL(`Lingo_trackStopTimesprite')}

trackText
Syntax: trackText(sprite whichSprite, whichTrack)

This digital video sprite property provides the text that is at the current time in the specified track of the digital
video. The result is a string value, which can be up to 32K characters long. This property applies to text tracks
only.

This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

This statement assigns the text at the current time in track 5 of the digital video assigned to sprite 20 to the field
cast member Archives:

put trackText(sprite 20, 5) into member "Archives"

trackType(member)
Syntax: trackType (member whichCastmember, whichTrack)

This digital video cast member property indicates which type of media is in the specified track of the specified
cast member. Possible values are #video, #sound, #text, and #music. This property can be tested
but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

The following handler checks whether track 5 of digital video cast member Today's News is a text track and runs
the handler textFormat if it is:

on checkForText
 if trackType(member "Today's News", 5) = #text ¬
 then textFormat
end

trackType(sprite)
Syntax: trackType(sprite whichSprite, whichTrack)

This digital video sprite property provides the type of media in the specified track of the specified sprite. Possible
values are #video, #sound, #text, and #music.

This property can be tested but not set.

For more information, see Chapter 8, "Controlling Sound and Digital Video," in Learning Lingo.

Example:

The following handler checks whether track 5 of the digital video sprite assigned to channel 10 is a text track and
runs the handler textFormat if it is:

on checkForText
 if the trackType(sprite 10, 5) = #text ¬
 then textFormat
end

trails of sprite
Syntax: the trails of sprite whichSprite

This property turns the trails ink effect on and off for the sprite specified by whichSprite. For the value set by
Lingo to last beyond the current sprite, the sprite must be a puppet.

Set the trails to 0 to turn trails off; set the trails to 1 to turn trails on.

· To erase trails, animate another sprite across these pixels or use a transition.

Example:

This statement sets the trails on for sprite 7:

set the trails of sprite 7 to 1

{button See also,AL(`Lingo_trails_of_sprite')}

transitionType of member
Syntax: the transitionType of member whichCastmember

This transition cast member property determines a transition's type, which is given as a specific number. The
possible values are the same as the code numbers assigned to transitions for the puppetTransition
command.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example:

This statement sets the type of transition cast member 3 to 51, which is a pixel dissolve cast member:

set the transitionType of member 3 to 51

TRUE
Syntax: TRUE

This logical constant represents the value of a logically true expression, such as
2 < 3. It has a numerical value of 1.

Example:

This statement turns on the soundEnabled property by setting it to TRUE:

set the soundEnabled to TRUE

{button See also,AL(`Lingo_TRUE')}

tweened of sprite
Syntax: the tweened of sprite

This property determines whether the individual frames in a sprite are created as key frames when the sprite is
created.

· If the tweened of sprite is TRUE, only the first frame in the new sprite is a key frame.

· If the tweened of sprite is FALSE, all frames in the new sprite are key frames.

The tweened of sprite property can be tested and set.

Note: This property does not impact playback and is only useful during Score recording.

Example:

When this statement is issued, newly created sprites only have a key frame in the first frame of the sprite span:

set the tweened of sprite to 1

type of member
Syntax: the type of member whichCastmember

the type of member whichCastmember ¬
of castLib whichCast

This cast member property indicates the specified cast member's type. This property replaces castType, which
appeared in earlier versions of Director.

The type of member property can be one of the following values:

#bitmap #palette
#button #picture
#digitalVideo #richText
#empty #script
#field #shape
#filmLoop #sound
#movie #transition
#ole

You can also define custom cast member types for custom cast members.

The type of member cast member property can be tested but not set.

For movies created in Director 5 and Director 6, the type of member returns #field for field cast members
and #richText for text cast members. However, field cast members originally created in Director 4 return
#text for the type of member. This is to provide backward compatibility for movies that were created in Director
4.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example:

The following handler checks whether the cast member Today's News is a field cast member and runs the
handler fieldFormat if it is:

on checkFormat
 if the type of member "Today's News" = #field ¬
 then fieldFormat
end

type of sprite
Syntax: the type of sprite

In earlier versions of Director, this sprite property determined a sprite's type, but is no longer supported for this
purpose.

Currently, the type of sprite property lets you clear sprite channels during Score recording by setting the
type of sprite value for that channel to 0.

The type of sprite property can be tested and set.

Example:

This statement clears sprite channel 1 when issued during a Score recording session:

set the type of sprite 1 to 0

union rect
Syntax: union rect rect1, rect2

This function returns the smallest rectangle that encloses the two rectangles rect1 and rect2.

Example:

put union (rect (0, 0, 10, 10), ¬
rect (15, 15, 20, 20))
-- rect (0, 0, 20, 20)

{button See also,AL(`Lingo_union_rect')}

unLoad
Syntax: unLoad

unLoad theFrameNum

unLoad fromFrameNum, toFrameNum

This command clears the cast members used in a specified frame from memory. When used without an
argument, the unLoad command clears the cast members in all the frames of a movie from memory-except any
being used in the current frame.

When used with one argument, theFrameNum, the unLoad command clears from memory the cast members in
that frame. Director automatically unloads the least recently used cast members to accommodate preLoad
commands or normal cast loading.

When used with two arguments, fromFrameNum and toFrameNum, the unLoad command unloads all cast
members in the range specified. You can specify a range of frames by frame numbers or frame labels.

Example:

This statement clears the cast members used in frame 10 from memory:

unLoad 10

This statement clears the cast members used from the frame labeled first to the frame labeled last:

unLoad "first","last"

{button See also,AL(`Lingo_unLoad')}

unLoadMember
Syntax: unLoadMember member whichCastmember

unLoadMember member whichCastmember of castLib whichCast

unLoadMember member fromCastName, toCastName

This command clears the specified cast members from memory. When used without an argument,
unLoadMember causes all cast members in a movie to be cleared from memory-except for any being used in
the current frame.

When used with one argument, whichCastmember, the unLoadMember command clears from memory the cast
member name or number that you specify.

When used with two arguments, fromCastName and toCastName, the unLoadMember command unloads all
cast members in the range specified.

Example 1:

This statement clears the cast member Screen1:

unLoadMember member "Screen1"

Example 2:

This statement clears from memory all cast members from cast member 1 to cast member Big Movie.

unLoadMember 1, member "Big Movie"

{button See also,AL(`Lingo_unLoadMember')}

unloadMovie
Syntax: unloadMovie whichMovie

This command removes the specified preloaded movie from memory. This can be useful for prioritizing which
movies to unload when memory is low.

You can use a URL as the file reference.

If the movie isn't already in RAM, the result is -1.

Example 1:

This statement checks whether the largest contiguous block of free memory is less than 100K and unloads the
movie "Parsifal" if it is:

if the freeBlock < 100 * 1024 then unLoadMovie "Parsifal"

Example 2:

This statement unloads the movie at http://www.cbDemille.com/SunsetBlvd.dir:

unLoadMovie "http://www.cbDemille.com/SunsetBlvd.dir"

updateFrame
Syntax: updateFrame

This command enters the changes that have been made to the current frame and steps to the next frame. Any
objects that were already in the frame when the update session started remain in the frame. You must issue an
updateFrame command for each frame that you are updating.

This command works during a Score generation session only.

When used in the movie's last frame or any frame after that, the updateFrame command duplicates everything
in the frame and copies it into the next frame. (You can determine the last frame number using the statement put
the lastFrame.)
To avoid this, assign an empty frame script or Tempo setting in a frame that is well past the last frame in which
you plan to record Score.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

Example:

When used in the following handler, the updateFrame command enters the changes that have been made to
the current frame and steps to the next frame each time Lingo reaches the end of the repeat loop. The number of
frames is determined by the argument numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set horizontal = 0
 set vertical = 300
 repeat with i = 1 to numberOfFrames
 go to frame i
 set the memberNum of sprite 20 to ¬
 the number of member "Ball"
 set the locH of sprite 20 to horizontal
 set the locV of sprite 20 to vertical
 set the type of sprite 20 to 1
 set the foreColor of sprite 20 to 255
 set horizontal = horizontal + 3
 set vertical = vertical + 2
 updateFrame
 end repeat
 endRecording
end

{button See also,AL(`Lingo_updateFrame')}

updateLock
Syntax: the updateLock

This movie property determines whether the Stage is updated during Score recording

· When the updateLock is TRUE, the Stage is not updated.

· When the updateLock is FALSE, the Stage is updated.

You can keep the Stage display constant during a Score recording session by setting the updateLock movie
property to TRUE before Lingo updates the Score. If the updateLock is FALSE, the Stage updates to show a
new frame each time the frame is entered by the updateLock command.

You can also use the updateLock to prevent unintentional Score updating when leaving a frame, such as
when temporarily leaving a frame to examine properties in another frame.

For more information about authoring from Lingo, see Chapter 13, "Authoring from Lingo," in Learning Lingo.

updateMovieEnabled
Syntax: the updateMovieEnabled

This property specifies whether changes made to the current movie are automatically saved when the movie
branches to another movie.

· When the updateMovieEnabled is TRUE, changes to the movie are automatically saved when the
movie branches to another movie.

· When the updateMovieEnabled is FALSE, changes to the movie are not automatically saved when the
movie branches to another movie. The default value is FALSE.

This property can be tested and set.

Example:

This statement instructs Director to save changes to the current movie whenever the movie branches to another
movie.

set the updateMovieEnabled = TRUE

updateStage
Syntax: updateStage

This command redraws the Stage immediately. Normally the Stage is updated only between frames, but the
updateStage command updates the Stage any time the command is executed from a handler.

The updateStage command redraws sprites, performs transitions, plays sounds, and sends a stepFrame
message.

Example:

This handler changes the sprite's horizontal and vertical locations, and redraws the Stage so that the sprite
appears in the new location:

on moveRight whichSprite, howFar
 puppetSprite whichSprite, TRUE
 set the locH of sprite whichSprite ¬
 to the locH of sprite whichSprite + howFar
 updateStage
end moveRight

URL of member
Syntax: set the URL of member " whichCastmember"

This property specifies the URL for the Shockwave Audio cast member.

This property can be tested. It can be set only when the SWA streaming cast member is stopped.

For more information about Shockwave movies and the internet, see Chapter 14, "Shockwave, the Internet, and
Lingo," in Learning Lingo.

Example:

This statement makes a file on an internet server the URL for SWA cast member Benny Goodman:

on mouseDown
set the URL of member "Benny Goodman" = ¬
"http://audio.macromedia.com/samples/classic.swa"

end

value
Syntax: value(string)

This function returns the numerical value of a string. This is useful when making use of a numerical string that the
user has typed into a field cast member or data from Xtras and XObjects that return numerical strings.

Example 1:

This statement displays the numerical value of the string "the sqrt of" && "2.0":

put value("the sqrt of" && "2.0")

The result is 1.4142.

Example 2:

This statement displays the numerical value of the string "penny":

put value("penny")

The resulting display in the Message window is VOID, because the word penny has no numerical value.

{button See also,AL(`Lingo_value')}

version
Syntax: version

This system variable contains the version string for Macromedia Director. The same string appears the Finder's
Get Info dialog box.

Example:

This statement displays the version of Macromedia Director in the Message window:

put version
-- "6.0"

video of cast
This is obsolete. Use video of member instead.

video of member
Syntax: the video of member whichCastmember

This digital video cast member property enables or disables playing the graphic image of the specified digital
video cast member.

· When the video of member is TRUE (1), the digital video is enabled.

· When the video of member is FALSE (0), the digital video is disabled.

Only the visual element of the digital video cast member is affected. For example, when the video of
member is set to FALSE, the digital video's soundtrack (if present) continues to play.

Example:

This statement turns off the video associated with the cast member Interview:

set the video of member "Interview" to FALSE

videoForWindowsPresent
Syntax: the videoForWindowsPresent

This movie property indicates whether Video for Windows is present on the computer. It can be tested but not
set.

Example:

This statement checks whether Video for Windows is missing and has the playback head go the marker Alternate
Scene if it isn't:

if the videoForWindowsPresent = FALSE then go to "Alternate Scene"

visible of sprite
Syntax: the visible of sprite whichSprite

This sprite property determines whether the sprite specified by whichSprite is visible.

· When the visible of sprite property is TRUE, the sprite is visible.

· When the visible of sprite property is FALSE, the sprite is not visible.

The visible of sprite property can be tested and set.

Example:

This statement makes sprite 8 visible:

set the visible of sprite 8 to TRUE

visible of window
Syntax: the visible of window whichWindow

This window property determines whether the window specified by whichWindow is visible.

· When the visible of window property is TRUE, the window is visible.

· When the visible of window property is FALSE, the window is not visible.

The visible of window property can be tested and set.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement makes the window Control Panel visible:

set the visible of window "Control Panel" to TRUE

VOID
Syntax: VOID

This constant is the value VOID.

Example:

This statement checks whether the value in the variable currentVariable is VOID.

if currentVariable = VOID then
put "This variable has no value"

end if

voidP
Syntax: voidP(variableName)

This property specifies whether VOID is the value of the specified variable.

· When the voidP property is TRUE, the variable has not been given an initial value.

· When the voidP property is FALSE, the variable has been given an initial value.

The voidP property can be tested but not set.

Example:

This statement checks whether the variable answer has been given an initial value:

put voidP(answer)

volume of member
Syntax: the volume of member "whichCastmember"

This Shockwave Audio streaming cast member property determines the volume of the specified SWA streaming
cast member.

Allowable values range from 0 to 255.

This property can be tested and set.

Example:

This statement sets the volume of a Shockwave Audio streaming cast member to half the possible volume:

set the volume of member "SWAfile" to 128

volume of sound
Syntax: the volume of sound whichChannel

This sound property determines the volume of the sound channel specified by whichChannel. Sound channels
are numbered 1, 2, 3, and so on. 1 and 2 are the channels that appear in the Score.

The value of the volume of sound property ranges from 0 (mute) to 255 (maximum volume).

The lower the value of the volume of sound, the more static or noise you're likely to hear. Using the
soundLevel may produce less noise, although it offers less control.

Example:

This statement sets the volume of sound channel 2 to 130, which is a medium setting:

set the volume of sound 2 to 130

{button See also,AL(`Lingo_volume_of_sound')}

volume of sprite
Syntax: the volume of sprite whichSprite

This property can be used to control the volume of a digital video movie cast member. You can use a cast name
or number. The values for volume range from -256 to 256. Values of zero or less are mute.

Example:

This statement sets the volume of the QuickTime movie playing in sprite channel 7 to 256, which is the maximum
sound volume:

set the volume of sprite 7 to 256

{button See also,AL(`Lingo_volume_of_sprite')}

when...then
This Lingo construct is obsolete.

width of cast
This is obsolete. Use width of member instead.

width of member
Syntax: the width of member whichCastMember

This cast member property determines the width, in pixels, of the cast member specified by whichCastMember.
The width of member applies only to bitmap and shape cast members. It does not affect field or button cast
members.

The width of member property can be tested but not set.

Example:

This statement assigns the width of member 50 to the variable height:

put the width of member 50 into height

{button See also,AL(`Lingo_width_of_member')}

width of sprite
Syntax: the width of sprite whichSprite

This sprite property determines the horizontal size in pixels of the sprite specified by whichSprite. The width
applies only to bitmap and shape cast members. It does not affect field or button cast members.

The width of sprite property can be tested and set.

Setting this property has no effect on bitmap sprites unless the sprite's stretch of sprite property is set to
TRUE.

Example 1:

This statement sets the width of sprite 10 to 26 pixels:

set the width of sprite 10 to 26

Example 2:

This statement assigns the width of sprite number i + 1 to the variable howWide:

put the width of sprite (i + 1) into howWide

{button See also,AL(`Lingo_width_of_sprite')}

window
Syntax: window whichWindow

This keyword refers to the movie window-a window that contains a Director movie-specified by whichWindow.

Windows that play movies are useful for creating floating palettes, separate control panels, and windows of
different shapes. By using windows that play movies, you can have several movies open at once and allow them
to interact.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example 1:

This statement opens the window Control Panel:

open window "Control Panel"

Example 2:

This statement moves the window Control Panel to the front:

moveToFront window "Control Panel"

{button See also,AL(`Lingo_window')}

windowList
Syntax: the windowList

This property is a list of all the known movie windows.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example 1:

This statement displays all the known movie windows in the Message window:

put the windowList

Example 2:

This statement clears the windowList:

set the windowList = []

windowPresent
Syntax: windowPresent("windowName")

This function indicates whether the object specified by windowName is running as a movie in a window. The
windowName argument must be the window's name as it appears in the windowList property.

· When windowPresent returns TRUE (1), the object is a movie in a window.

· When windowPresent returns FALSE (0), the object isn't a movie in a window.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement tests whether the object myWindow is a movie in a window and displays the result in the
Message window:

put windowPresent(myWindow)

windowType of window
Syntax: the windowType of window whichWindow

This window property specifies the display style of the window specified by whichWindow. Possible values for
whichWindow are:

0 Moveable, sizeable window without zoom box

1 Alert box or modal dialog box

2 Plain box, no title bar

3 Plain box with shadow, no title bar

4 Moveable window without size box or zoom box

5 Moveable modal dialog box

8 Standard document window

12 Zoomable, nonresizeable window

16 Rounded corner window

49 Floating palette, during authoring (in Macintosh projectors,
the value 49 specifies a stationary window)

In Windows, these numbers create windows with the same functionality but a Windows appearance. Other
values for the windowType of window are possible, but use them with caution, because some modal
windows can only be exited by restarting the computer.

For more information about movies in a window, see Chapter 11, "Movies in a Window," in Learning Lingo.

Example:

This statement sets the value of the display style of the window named Control Panel to 8:

set the windowType of window "Control Panel" to 8

word...of
Syntax: word whichWord of chunkExpression

word firstWord to lastWord of chunkExpression
This chunk expression keyword specifies a word or a range of words in a chunk expression. A word chunk is any
sequence of characters delimited by spaces. (Any non-visible character-such as a Tab or Enter-is considered a
space.)

The expressions whichWord, firstWord, and lastWord must evaluate to integers that specify a word in the chunk.

Chunk expressions refer to any character, word, item, or line in any source of characters. Sources of characters
include fields (field cast members) and variables that hold strings.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example 1:

These statements set the variable named animalList to the string "fox dog cat" and then insert the word elk
before the second word of the list:

set animalList = "fox dog cat"
put "elk" before word 2 of animalList

The result is the string "fox elk dog cat".

Example 2:

This statement causes the Message window to display the fifth word of the same string:

put word 5 of "fox elk dog cat"

Because there is no fifth word in this string, the Message window displays two quotation marks (""), which
indicate an empty string.

{button See also,AL(`Lingo_word_of')}

wordWrap of member
Syntax: the wordWrap of member whichCastmember

This field cast member property controls line wrapping.

· When TRUE, the wordWrap of member allows line wrapping.

· When FALSE, the wordWrap of member prevents line wrapping.

For more information, see Chapter 7, "Working with Fields and User Input," in Learning Lingo.

Example:

· This statement turns the line wrapping off for the field cast member Rokujo:

set the wordWrap of member "Rokujo" to FALSE

xFactoryList
Syntax: xFactoryList(whichLibrary)

This function returns a string list of all the currently available Xtras and XObjects in the XLibrary file specified by
the string whichLibrary. The XLibrary must have been previously opened with the openXlib command. If you
specify EMPTY for whichLibrary, this function returns a list of all Xtras and XObjects in all open XLibraries.

The Xtras and XObjects appear one per line in the returned string list. Each line ends with a an Enter character.

Example 1:

This statement displays the Xtras and XObjects available in the Xlibrary named AppleCD XObj:

put xfactoryList("AppleCD XObj")"

Example 2:

This statement displays the first line of the list of all available Xtras and XObjects in all open Xlibraries:

put line 1 of xfactoryList(EMPTY)

{button See also,AL(`Lingo_xFactoryList')}

xtra
Syntax: xtra "whichLingoXtra"
This function returns an instance of the Lingo Xtra specified by whichLingoXtra.

Example:

This statement uses the new function to create a new instance of the Lingo Xtra HelpXtra and assigns it to the
variable tool:

set tool = new(xtra "HelpXtra")

{button See also,AL(`Lingo_xtra')}

xtras
{button See also,AL(`Lingo_xtras')}

zoomBox
Syntax: zoomBox startSprite, endSprite [, delayTicks]

This command creates a zooming effect, like the expanding windows in the Finder (Macintosh). The zoom effect
starts at the bounding rectangle of startSprite and finishes at the bounding rectangle of endSprite. The zoomBox
command uses the following logic when executing:

1-Looks for endSprite in the current frame, otherwise,

2-Looks for endSprite in the next frame.

Note, however, that the zoomBox command does not work for an endSprite in the same channel as startSprite.

The delayTicks variable is the delay in ticks between each movement of the zoom rectangles. If delayTicks is
not specified, the delay is 1.

Example:

This statement creates a zoom effect between sprites 7 and 3:

zoomBox 7, 3

Menus
For information on a command, click the name of the menu in which it appears:

File Modify

Edit Control

View Xtras

Insert Window

Help

Or browse the alphabetical list of menu commands.

Menu commands
Click a command or submenu listed alphabetically below:

Align New Bitmap

Arrange New Cast

Auto Distort New Check Box

Auto Filter New Color Palette

Borders New Field

Bring to Front New Movie

Cast New OLE Object

Cast Member New Radio Button

Cast Member Properties New Push Button

Cast Member Script New Text

Cast Preferences New Window

Cast Properties Open

Cast to Time Page Setup

Clear Paint Preferences

Close Window Paint

Color Palettes Panel

Control Panel Paragraph

Control > Custom Button Paste Special

Control > Field Paste

Control > Push Button, Radio Button, or
Check Box

Play

Convert to Bitmap Preferences > Cast

Copy Preferences > Editors

Create Film Loop Preferences > General

Create Projector Preferences > Network

Custom Button Preferences > Paint

Cut Preferences > Score

Debugger Print

Disable Scripts Recompile All Scripts

Display Remove All Breakpoints

Duplicate Remove Frame

Edit Cast Member Remove Keyframe

Edit Entire Sprite Repeat

Edit Sprite Frames Replace Again

Exchange Cast Members Reverse Sequence

Exit Revert

Export Rewind

Extend Sprite Ruler

Field Run Script

Film Loop Save

Filter Bitmap Save All

Find Again Save and Compact

Find Cast Member Save As

Find Handler Save As Shockwave Movie

Find Selection Score Preferences

Find Text Score

Font Script

Frame Palette Select All

Frame Script Selected Frames Only

Frame Sound Send to Back

Frame Tempo Show Grid

Frame Transition Snap To Grid

Frame Sort

General Preferences Space to Time

Grids > Settings Split Sprite

Grids > Show Sprite > Properties

Grids > Snap To Sprite > Script

Ignore Breakpoints Sprite > Tween Properties

Import Sprite Overlay > Show Info

Insert Frame command Sprite Overlay > Show Paths

Inspector > Behavior Sprite Overlay > Settings

Inspector > Memory Sprite Toolbar

Inspector > Sprite Stage

Inspector > Text Step Backward

Invert Selection Step Forward

Join Sprites Step Into Script

Keyframe (insert menu) Step Script

Keyframes (view menu) Stop

Launch External Editor Transform Bitmap

Loop Playback Text

Marker > Next Toggle Breakpoint

Marker > Previous Toolbar

Markers Window Tool Palette

Media Element > Bitmap Transform Bitmap

Media Element > Color Palette Tweak

Media Element > Shockwave Audio Undo

Media Element > Text Update Movies

Message Video

Move Backward Volume

Move Forward Watch Expression

Movie > Casts Watcher

Movie > Playback Zoom In

Movie > Properties Zoom Out

Movie > Xtras

File menu
The File menu contains commands for creating Director movies and casts, opening and saving movies, importing
and exporting files, creating projectors, and printing.

Click the name of a menu command for more information:

New > Movie Create Projector

New > Cast Page Setup

Open Print

Close Window Send Mail

Save Preferences > General

Save As Preferences > Network

Save As Shockwave Movie Preferences > Score

Save and Compact Preferences > Sprite

Save All Preferences > Cast

Revert Preferences > Paint

Import Preferences > Editors

Export Exit

New > Movie command (File menu) Control-N
The New Movie command opens a new, untitled movie. Name the untitled movie in the dialog box that appears
the first time you save the movie.

New > Cast command (File menu) Control-Alt-N
The New Cast command creates new internal and external casts.

To create a new cast, enter a name for the new cast, choose either Internal or External, and then click Create.

If you choose External, Used in Current Movie check box is turned on. Click the check box if you don't want the
external cast used in the current movie.

{button See also,AL(`New_Cast_help')}

Open command (File menu) Control-O
The Open command opens an existing Director movie or external cast. When you choose Open, a directory
dialog box appears.

The dialog box only lists movies and casts created by the Macintosh version of Director, or movies with a .DIR
extension created with the Windows version of Director.

When you open a movie with linked external casts, Director opens the external casts as well. If it cannot find
them in the specified location, it prompts you to choose a new location.

{button See also,AL(`Open_help')}

Close command (File menu) Control-F4
This command closes the current window.

Save command (File menu) Control-S
The Save command saves the current movie, replaces the previous version, and saves all casts (internal and
external) linked to the movie.

If an external cast is the active window, then the external cast is saved, not the movie.

The first time you save a movie with linked external casts, Director prompts you to enter a name and location for
each cast.

Tip: To change the movie's color depth, change the monitor's color depth before saving the movie.

{button See also,AL(`Save_help')}

Save As command (File menu) Control-Shift-S
Use Save As to name and save a movie, save the movie under a different name, or save it to a different folder.
Enter the new name of the movie to name it, or choose a new folder.

The first time you save a movie with linked external casts, Director prompts you to enter a name and location for
each cast.

Tip: To change the movie's color depth, change the monitor's color depth before saving the movie.

{button See also,AL(`Save_As_help')}

Save As Shockwave Movie command (File menu) Control-Shift-S
Use this command to convert the currently opened Director movie into a Shockwave movie that can be played on
the Internet.

The Save As Shockwave Movie command saves a movie file in the compressed Shockwave format.

{button See also,AL(`Save_Shockwave_help')}

Save and Compact (File menu) Control-Option-S
Use Save and Compact to save the movie so that it is optimized for playback. Since this operation reorders the
cast and compacts the file, it takes longer, especially if you are saving a very large file. However, this command
produces smaller and more efficient movies.

{button See also,AL(`Save_Compact_help')}

Save All command (File menu)
Use Save All to save the movie and all external cast files, linked and unlinked. If the movie or any casts have not
been saved before, a dialog box appears.

{button See also,AL(`Save_All_help')}

Revert command (File menu)
The Revert command opens the last saved version of the current movie. This command is dimmed if you have
not made any changes or if you are working on a new untitled movie that you have not yet saved.

Import command (File menu) Control-R
When you choose Import, Director opens a cast window and displays a dialog box so you can choose the file you
want to import.

Note: Director 6.0 for Windows supports the following file types in addition to those also supported by Director
for Macintosh: JPEG, CompuServe GIF, TIFF, EPS, Photo CD, Windows metafiles, and FCC and FCI.

Dialog box options
Preview shows a thumbnail image of the file to be imported.

Show determines what type of files appear in the list of available files. Choose a media type that Director
imports. For example, choose Bitmap Image to view only the bitmaps in the current folder.

Add All places all the files of the selected type in the current folder in the list of files to be imported.

Show Preview displays a thumbnail image of the file to be imported.

Internet opens a dialog box in which you can enter a URL. Director imports the file from the URL or creates
a link, depending on the option you choose from the Media pop-up at the bottom of the dialog box.

Options provides further options when importing PICS or Scrapbook files.

Add, Add All, and Remove let you build a list of multiple files to import.

Media:

· Standard Import imports data directly into the movie.

· Link to External File gives you the option to create a link to a PICT file, AIFF sound file, or a Director movie
rather than copying the contents of the file into your movie.

· Include Original Data for Editing is for use with external editors. When this option is selected, Director
retains a copy of the original data. When you edit the cast member with an external editor, Director sends
the original data to the external editor.

· Import PICT File As PICT is only available when you import a Macintosh PICT file. If checked, the image is
imported and pasted into the cast as a PICT cast member. If not checked, Director converts the imported
image to a bitmapped cast member.

Import imports all the selected files and places them in the active cast.

Note: Digital videos are always linked.

{button See also,AL(`Import_help')}

Image Options
If you import a bitmap with a color depth or color palette different than the current movie, the Image Options
dialog box appears. You can choose to import the bitmap at its original color depth or at the Stage color depth.
You also have the choice of importing the image's color palette, or remapping the image's colors to a palette
already in the movie.

In many cases, it's easiest to change the image's color depth to the depth of the Stage and remap the
image to the color palette used in the rest of the movie. If you are not concerned with the exact colors that display on
Stage, remap everything to the system palette.

Dialog box options

Color Depth selects the color depth for the cast member.

· Image specifies the color depth of the current image. Select this option to import the image at this color
depth.

· Stage specifies the color depth of the current Stage. Select this option to import the file at this color depth.

Palette specifies options for importing 2-, 4-, or 8-bit images.

· Import specifies importing the image with its color palette.

· Remap To makes Director replace the image's colors with the most similar solid colors in the palette you
select from the pop-up.

· Dither blends the colors in the new palette to approximate the original colors in the graphic.

Same Settings for Remaining Images applies the current settings to all the remaining files you selected for
importing.

Note: If you change 16-, 24-, or 32-bit cast members to 8-bits or less, you need to remap them to an existing
color palette.

{button See also,AL(`Image_options_help')}

Export command (File menu) Control-Shift-R
Exports frames of Director movies from Director so you can save images as stills, or create digital videos. You
can choose to export frames of movies as AVI, or DIB files.

Dialog box options

Export options determine which frames to export:

· Current Frame exports the current frame on the Stage. This is the default.

· Selected Frames exports the selected frames in the Score window.

· All Frames exports all frames.

· Frame Range exports only the range of frames that begin and end with the frame numbers you enter in the
Begin: and End: boxes.

Include:

· Every Frame exports all frames in the selected range.

· One in Every _ Frames exports only the frames at the interval you specify in the box.

· Frames With Markers exports frames with markers set in the Score window.

· Frames with Artwork Changes in Channel exports frames only when a cast member changes in the
channel you specify in the box.

Format specifies the exported file format from the pop-up. File formats you can export are Video for Windows
(AVI) and DIB (Device Independent Bitmap).

Options is dimmed unless you choose Video for Windows from the Format pop-up. Specify the export
frames per second (fps) interval in the Frame Rate box in the Video for Windows Export Options dialog box.

When you click Export, a dialog box appears, allowing you to name the file. If you are saving in AVI format, only
one file will be created. If you are saving in DIB format, Director automatically creates one file for each frame,
attaching the corresponding frame number to each file. For example, if the name of the exported file is "Myfile",
Frame 1 will be exported to a file named "Myfi0001.dib" for Windows 3.1 and NT or "Myfile0001" for Windows
'95.

{button See also,AL(`Export_help')}

Create Projector command (File menu)
The Create Projector command creates a play-only version of a Director movie, called a projector. You can
package several movies, external casts, Xtras, and linked media in a single projector. Use the Create Projector
dialog box to add these objects from the Source Folder to the projector's play list.

Movies created with previous versions of Director are not listed in the Create Projector dialog box. To include
movies that were created with a previous version of Director, you must first open the movies in the current
version of Director and save them, or use the Update Movies command to convert them.

If a movie is open when you choose this command, Director closes the current movie.

Dialog box options
Source Folder (on
the left side of the
dialog box)

From the opened folder, select the movies and external casts you
want to include in the projector.

Add Moves the selected source movie to the projector's play list (on the
right side of the dialog box).

Add All Adds all movies in the current folder to the play list.

Remove Deletes the selected source movie from the projector's play list.

Move Up and Move
Down

Moves a selected movie higher up or further down in the play list.

Create Assembles the projector file.

Done Dismisses the dialog box.

Create Assembles the projector file.

Options Opens the Projector Options dialog box that specifies additional
preferences for creating the projector.

Projector Options dialog box
The Projector Options dialog box specifies additional preferences for creating the projector.

Note: These settings override any movie preferences you set in Movie Properties and apply to all movies in the
projector.

{button See also,AL(`Projector_Options_help')}

Dialog box options
Create for specifies the systems for the projector to run on:

· Windows 3.1 creates a projector that runs on Windows 3.1. A Windows 3.1 projector will also run on
Windows 95 and NT.

· Windows 95 and NT creates a projector that runs on all Windows 32-bit operating systems.

Playback:

· Play Every Movie specifies that the projector plays all movies in the play list. Otherwise, the projector
only plays the first movie in the play list (unless other movies are called by Lingo from the first movie). In a
projector with Play Every Movie checked, pressing Command-period will go to the next movie and
Command-Q will quit.

· Animate in Background allows the movie to continue playing if a user clicks outside the Stage. This is
useful if you are using Apple Events. If not checked, the movie stops playing if the user clicks outside the
Stage.

Options:

· Full Screen displays the movie full screen, placing the menu bar (if there is one) at the top of the screen
and hiding all of the desktop. If there's a menu, it overlays the top of the Stage.

· In a Window displays the movie in a normal window, without taking over the screen. The window is not
resizeable.

· Show Title Bar is available only if In a Window is selected. If checked, the window where the movie
appears has a title bar. The window is only moveable if it has a title bar.

Stage Size:

· Use Movie Settings uses the same Stage size of the new movie or matches the size of the current
movie.

· Match First Movie repositions and resizes based on the first movie in the projector.
· Center centers the Stage on the screen, which is useful if the Stage size is smaller than the screen size.

Otherwise, the movie plays using its original Stage position. In Windows, projectors are always centered.

Media:

· Compress (Shockwave Format) compresses the projector's movie data in the Shockwave format. This
makes the projector smaller, but increases the load time.

Xtras:

· Include Network Xtras includes the Xtras required to connect the projector to the internet. Check this
option if your movie uses any linked media from the internet.

· Check Movies for Xtras includes in the projector all Xtras listed in the Movie Xtras dialog. Xtras used
only in Lingo do not appear in Movie Xtras.

Page Setup command (File menu) Control-Shift-P
The Page Setup command offers options for determining how a page is to be printed. The dialog box that you
see depends on the type of printer you use.

Print command (File menu) Control-P
The Print command lets you print your movie in a variety of ways.

Click a dialog box option for more information:

{button See also,AL(`Print_help')}

Print specifies what part of the movie to print. You can print an image of the Stage, the Score, all scripts or a
range of scripts (movie, cast, Score, and sprite scripts), cast text, cast art, cast thumbnails, and the comments in
the Markers window.

The Scripts, Cast Text, Cast Art, or Cast Thumbnails print options let you choose from a range of cast and cast
members-internal or external. Information displayed in the Print dialog box depends on the selection to be
printed.

When you use the Print command, cast members in each frame are merged into a single image. If you press the
Alt key while clicking the Print button, each cast member in a given frame is imaged as a separate PICT. If you
are printing multiple frames on a page, printing with this option causes shape elements (text, rectangles, lines,
and circles) to print better. However, printing with this option may take much longer.

Frames controls which frames of your movie are printed.

· Current Frame prints the frame that is currently on the Stage.

· Selected prints the frames that are selected in the Score.

· All Frames prints all the frames in your movie.

· Range prints the range of frame entered in the Begin and End boxes.

Include lets you specify which frames to print.

· Every Frame is the default setting and prints every frame specified in Range.

· One in Every _ Frames prints frames at the interval you specify in the box. For example, if you type 10,
Director prints every 10th frame.

· Frames with Markers prints only the frames that have markers in the Score window.

· Frames with Artwork Changes In Channel _ prints the frames in which cast members move or in which
new cast members are introduced in the Score. Specify the channel in the box.

Options displays a dialog box that lets you adjust the layout of the items you choose to print. The image at the
left of the dialog box previews the layout options.

· Scale provides options to print 100%, 50% or 25% of original size.

· Frame Borders creates a border around each frame.

· Frame Numbers prints the frame number with each frame.

· Registration Marks places registration marks on every page.

· Storyboard Format is only available when you select 50%- or 25%-size images to print. It places marker
comments next to the frame image.

· Date and Filename in Header prints a header on each page. The header consists of the name of the
Director movie and the current date.

· Custom Footer prints a footer on each page. Type the footer in the field.

Send Mail (File menu) Control-P
Send Mail mails an open movie, together with any other information you provide, to the user you specify in a
dialog. (The dialog is supplied by the mail-system you have installed, and may differ between systems.) The
command is only enabled when electronic mail software is installed on your computer in Windows 95 and NT. It
is not supported on Windows 3.1.

Preferences > General command (File menu) Control-U
The General Preferences command allows you to modify some of Director's default settings.

Click a dialog box option for more information:

Stage Size specifies the size and location of the Stage.

· Use Movie Settings sets the Stage size to the movie's Stage size and location.

· Match Current Movie opens the new movie in the Stage of the movie that's currently open.

· Center positions the Stage in the center of the screen, which is useful if the Stage size is smaller than the
screen size. Otherwise, the movie plays using its original Stage position.

·

· Animate in Background runs your animation in the background while you are working with other
applications. When you are running animation in the background, the Stage remains on the screen and the
active application window appears in front of the Stage.

Use Movie Properties on the Modify menu to specify the exact size of the Stage.

User Interface

· Classic Look (Monochrome) switches to a black-and-white user interface. Using a black-and-white user
interface improves performance if you switch color palettes, since Director doesn't have to update its color
user interface to match the colors in the new palette each time you switch palettes. In addition, working with
a black-and-white user interface may be less distracting as you work with the color palettes in your movie.
For example, if you are working on an animation that uses multiple palettes and/or color cycling, using a
black-and-white user interface may be less distracting.

· Dialogs Appear At Mouse Position displays dialog boxes at the mouse position. If this option is not
checked, dialog boxes are centered on the monitor that contains the menu bar.

· Save Window Positions on Exit saves the positions of all open windows every time you quit.

· Message Window Recompiles Scripts is turned on by default. If deselected, scripts should be manually
recompiled using the Recompile All Scripts command before entering Lingo in the Message window.

· Show Tooltips controls the definitions that appear when the pointer is over tools. Turn the option off to stop
definitions from appearing.

Text Units specifies inches, centimeters, or pixels for the units of measure displayed on the Ruler in the Text and
Field windows.

Memory limits the amount of memory Director uses. Click Limit Memory Size to, and then enter the number of
Kilobytes in the box on the right.

Preferences > Network command (File menu)
This command opens the Network Preferences dialog box. This box includes the settings and configurations that
control communication between Director and the internet.

Dialog box options
Preferred Browser specifies the browser to launch when a movie running the authoring environment encounters
the "gotoNetPage" lingo command. Use the Browse option to locate the browser.

Launch When Needed enables or disables browser launching.

Note: When Director encounters instances that require browser launching, and a preferred browser has not been
specified, an alert appears with the following options: Browse (to select the preferred browser) or Disable (to
disable browser launching).

Cache Size defines the amount of space on your hard disk to be used by Director to cache data from the
internet.

Clear empties the cache immediately.

Check Documents specifies how often cached documents are compared to the same documents on the server.
This comparison determines whether you view an updated page from the network server or a potentially out-of-
date page stored in the cache.

· Once Per Session checks for page revisions only once during the time your start and quit the application.

· Every Time repeatedly checks for changes when you request a page. This option slows performance.

Proxies specify the configuration of your system's proxy server.

Ordinarily, browsers don't require proxies to interact with the network services of external sources. However, in
some network configurations the connection between the browser software and a remote server is blocked by a
firewall. A firewall protects information in internal computer networks from external access, and in doing so, may
limit the ability to exchange information.

To overcome this limitation, browser software can interact with proxy software. A proxy server interacts with the
firewall and acts as a conduit, providing a specific connection for each network service protocol. If you are
running browser software on an internal network from behind a firewall, you will need the name and associated
port number for the server running proxy software for each network service.

· No Proxies specifies that you have a direct connection to the Internet.

· Manual Configuration controls proxy settings for your system. Enter the http or ftp URL and port number.

Preferences > Score Window command (File menu)
This command controls display options in the Score window.

Click a dialog box option for more information:

{button See also,AL(`Score_Window_Options_help')}

Extended Display options let you choose the notation information that appears in the numbered sprite channels
when extended display is on. You can turn on extended display with the Score window's Display pop-up.

· Cast Member displays the cast member number and/or name.

· Behaviors displays the behaviors assigned to the cast member.

· Ink Mode displays the type of ink applied to the cast member.

· Blend displays the blend percentage applied to the cast member.

· Location shows the X & Y screen coordinates of the cast member.

· Change in Location indicates the change in X and Y coordinates relative to the previous cast member in
that channel.

Options

· Script Preview displays the Script Preview box at the top of the Score.

· Show Data Tips displays data tips (cast member name and number) when the pointer is over a sprite for a
few seconds.

Compatibility

· Director 5 Style Score Display modifies the Director 6 Score window to look and behave like the Director 5
Score window.

· Allow Drag and Drop allows sections of score to be moved by dragging in the Director 5 Score. Pressing
the Spacebar while the Score window is open temporarily overrides this setting.

· Allow Colored Cells allows you to choose a color for selected cells using the cell color selector on the left
side of the Score window. Otherwise, the cell color selector is hidden.

If you've already applied color to cells, turning off this option hides cell colors but doesn't remove them.
Score window scrolling performance is faster if you hide cell colors.

Preferences > Sprite (File menu)
This command determines how sprites are displayed in the Score window and on the Stage.

Click a dialog box option for more information:

{button See also,AL(`Preferences_Sprite_help')}

Stage Selection determines whether the entire sprite or a single frame within the sprite is selected in the Score
window when a sprite is selected on the Stage.

· Entire Sprite specifies that selecting a sprite on the Stage selects the sprite in all the frames it occupies.

· Current Frame Only specifies that selecting a sprite on the Stage selects only the current frame of the
sprite.

Span Defaults determines the appearance and behavior of sprites yet to be created. These options do not
change settings for existing sprites.

· Display Sprite Frames turns on Edit Sprite Frames for all new sprites. See Editing Sprite Frames.

· Tween Size and Position turns on automatic tweening for size and position for all new sprites. With this
option off, sprites must be manually tweened when new frames or keyframes are added to the sprite.

Span Duration determines the length of the sprite, or sprite span, measured in frames.

· _ Frames defines the default number of frames for sprites.

· Width of Score Window sets the sprite span to the visible width of the Score window.

· Terminate at Markers makes new sprites end at the first marker encountered.

Preferences > Cast Window command (File menu)
The Cast Window Preferences command displays a dialog box that lets you control the appearance of the
current cast window. Before you choose Cast Preferences, make sure that the cast you want to change is active.
The title bar displays the name of the cast you are changing.

Click a dialog box option for more information:

Maximum Visible specifies the maximum number of cast members displayed in the Cast window. Note that this
option does not limit the actual number of cast members that can exist in the cast. If you have a small number of
cast members, you can hide the remaining unused cast positions and make better use of the vertical scroll bar.
The default is 1000.

Row Width determines how many thumbnails are displayed in each row in the Cast window. 8 Thumbnails, 10
Thumbnails, and 20 Thumbnails specify fixed-row widths that are independent of the window size; if the cast
window is smaller horizontally than the width of the cast row, you must use the horizontal scroll bar to reveal the
rest of the cast. The Fit to Window option automatically adjusts the number of cast members per row to fit the
current width of the cast window. In this mode, the horizontal scroll bar is disabled, since the entire width of the
cast is always in view. The default is Fit to Window.

Thumbnail Size sets the size of each cast thumbnail image displayed in the Cast window. Thumbnails always
maintain the standard 4:3 aspect ratio.

· Small 44 x 33 pixels

· Medium 56 x 42 pixels (default)

· Large 80 x 60 pixels

Tip: If thumbnails appear fuzzy, they were probably created at a small size and are now set to a larger size. To
fix this problem, change the Cast window preferences thumbnail setting to a larger size. Click OK when the alert
message asks you if thumbnails should be regenerated.

Label selects the display format of the cast member ID displayed below each cast thumbnail image in the Cast
window. The chosen format is also used in other windows, whenever a cast ID is displayed, including the Score.
The default is Number:Name.

· Number displays cast number in decimal format.

· Name displays cast name, if one exists; otherwise displays cast number in decimal format.

· Number:Name displays the cast number (in decimal format) and cast name, separated by a colon, for
example, "340:Jackie O". If a name does not exist, it just displays the cast number in decimal format. This is
the default.

Media Type Icons determines if Director displays an icon in the lower right corner of each cast member,
indicating the cast member's type.

Cast Member Script Icons makes a script indicator icon appear in the lower left corner of each cast member
that has a script attached.

Preferences > Paint window command (File menu)
The Paint window Preferences command allows you to modify the settings of a number of tools and drawing
methods in the Paint window.

Click a dialog box option for more information:

{button See also,AL(`Paint_Window_Options_help')}

Brush Tools allows you to set brush tools to remember the last color or ink used.

· Remember Color remembers the last color used with a tool and stays selected for the next time you use
the paintbrush or air brush.

· Remember Ink remembers the last ink used with a tool and stays selected for the next time you use the
paintbrush or air brush.

Color Cycling controls the way colors cycle when you draw with cycling ink.

· Repeat Sequence causes colors to cycle from foreground to destination and then repeat foreground to
destination.

· Reverse Sequence causes colors to cycle from the foreground to the destination color and then destination
to foreground.

"Other" Line Width allows you to set a thicker line width than the widths available in the Paint window. The
width you set will be the width that appears when you draw a line (after selecting Other Line Width in the Tool
Palette line width selector).

Blend Amount sets the opacity of the selected color when using the Blend ink effect in the Paint window. You
can vary the blend value between 0 and 100 percent.

Lighten/Darken sets the rate at which artwork changes when you use the Darken or Lighten effect in the Paint
window.

Interpolate by determines how colors are used when using smooth, lighten, darken, or cycle effects.

· Color Value ignores the order of the colors in the palette and produces a continuous blend of the foreground
and destination colors.

· Palette Location uses all the colors in the palette between the foreground and destination colors.

Preferences > Editors command (File menu)
This command opens the External Editors Preferences dialog box. Use this box to associate an external editor
with a bitmap, video, or sound cast member.

Initially, all cast members are set to Director's internal default editor. To switch to an external editor, highlight a
cast member type and select the Edit option.

{button See also,AL(`Preferences_Editors_help')}

Exit command (File menu) Alt-F4
The Exit command exits Director.

Edit menu
The Edit menu contains standard commands for editing.

Click a command for more information:

Undo Find > Text

Repeat Find > Handler

Cut Find > Cast Member

Copy Find > Selection

Paste Find Again

Paste Special Replace Again

Clear Edit Sprite Frames

Duplicate Edit Entire Sprite

Select All Exchange Cast Members

Invert Selection Edit Cast Member

Launch External Editor

Undo command (Edit menu) Control-Z
Undo reverses your last action. Undo works with most commands you use while writing, drawing, and animating.

Repeat command (Edit menu) Control-Y
The Repeat command repeats your last action. Repeat works with paint effects commands.

If using Photoshop filters to modify cast members, this command repeats the effect of the last filter used.

Cut command (Edit menu) Control-X
The Cut command removes the selected object from its current location and places it on the Clipboard. It can
then be pasted to another location.

Copy command (Edit menu) Control-C
The Copy command makes a copy of the selected colors, text, art, or sequence of art and places that copy on
the Clipboard.

Paste command (Edit menu) Control-V
The Paste command pastes the contents of the Clipboard in a selected location.

{button See also,AL(`Paste')}

Paste Options
This dialog box appears if a paste operation will overwrite existing sprites.

Choose one of the following options:
Overwrite Existing Sprites overwrites existing sprites with the content of the Clipboard.

Truncate Sprites Being Pasted pastes the content of the Clipboard in the space available and doesn't
overwrites existing sprites.

Insert Blank Frames to Make Room creates new frames for the contents of the Clipboard.

{button See also,AL(`Paste_Options')}

Paste Special command (Edit menu)
Use this command to paste a sequence of sprites at the point on the Stage where a previous sequence ended.
When you use this command, Director automatically adjusts the positions of cast members on the Stage so that
the first cast member in the pasted sequence follows the last cast member in the original sequence.

For example, to animate a ball bouncing across the Stage with a sequence of five sprites that describe one
bounce, you can use Paste Relative to make the second sequence of sprites start where the first sequence
ended. The effect is that the two sequences are chained, one after another, in one smooth, continuous motion.
This works for any repetitive sequence of sprites.

When selecting cells in a sequence to be pasted relative to the original sequence, make sure the same cast
member is at the beginning and end of the sequence, and that you overlap the first cell in the copy with the last
cell in the original sequence.

{button See also,AL(`Paste_Special')}

Clear command (Edit menu)
Clear removes the selected frames or cast members without saving to the Clipboard. When the Score window is
active, Clear removes the contents of selected sprite frames. When a Cast window is active, Clear removes
selected cast members.

Delete is the keyboard shortcut for this command.

Duplicate command (Edit menu) Control-D
The Duplicate command duplicates the selected cast member and pastes the duplicate into the next available
position in the cast window.

If the Paint, Text, Video, or Script window is open, this command duplicates the selected cast member and
places it in the Edit window. The name and registration point of the duplicate is the same as the name and
registration point of the original cast member.

This is a quick way to create a series of cast members for frame-by-frame animation. Duplicate a cast member,
change it slightly, duplicate the changed cast member, alter and duplicate it again, and so on.

Tip: If the Cast window is front-most, you can select multiple cast members and use this command to duplicate
the entire selection at the same time.

You can also duplicate by Option-dragging selected cast members into empty cast spaces.

{button See also,AL(`Duplicate_Cast_Member_help')}

Select All command (Edit menu) Control-A
Select All highlights all the selectable items in the active window.

Invert Selection command (Edit menu)
When you choose Invert Selection after choosing a color or range of colors in the Color Palettes window, your
selection is replaced by a new selection, which consists of all the colors that were not part of your original
selection. This command only works when working with color palettes.

Find > Text command (Edit menu) Control-F
Find Text lets you quickly search for and replace text in the Text, Field, or Script windows. All searches start at
the insertion point and search forward.

Click a dialog box option for more information:

{button See also,AL(`Find_Change_help')}

Find specifies the text you want to find. Searching is not case-sensitive: ThisHandler, thisHandler, and
THISHANDLER are all the same for search purposes.

Replace specifies the replacement text.

Search specifies which cast members to search.

· Cast Member _ limits the search to the current cast member.

· Cast _ limits the search to cast members in the current cast.

· All Casts extends the search to all cast members in all casts.

Options

· Wrap-Around specifies whether or not Director returns to the beginning of text once it reaches the end. If
this option is turned on but All Casts is off, Director continues searching from the top of the current text after
it reaches the bottom of the window. If both options are checked, Director searches all cast members of the
same type (either text or script, depending on where you initiated the search), beginning with the currently
selected cast member, and returning to the first cast member of that type if necessary.

· Whole Words Only searches for occurrences of the specified whole word.

Find > Handler command (Edit menu) Control-Shift-;
Find Handler lets you view the names of all handlers in the current script or movie. You can also use this
command to open the Script Window that contains the selected handler.

To find a handler:

Choose Edit > Find Handler. Select a handler and click OK to open the Script Window in which the handler is
defined.

Dialog box options

Search determines which Scripts to search.

· Current Script Only limits the search to handlers defined in the current script. It is only available if you
choose Find Handler from a Script Window.

View by determines how handlers will be listed.

· Name lists handlers alphabetically, by name.

· Script Order lists handlers in the order in which they appear in their respective scripts. Handlers from
different scripts are listed in the order in which the scripts appear in the cast window.

{button See also,AL(`Find_Handler_help')}

Find > Cast Member command (Edit menu) Control-;
Use this command to find cast members by name, by type, by color palette, or by their use in the current Score.
This command is useful for identifying cast members to clear from your movie or to remap to another palette.

To find cast members:

Choose the cast you want to search from the Cast pop-up and then choose one of the search options. Cast
member names and number appear in the bottom pane.

· Select a cast member in the list and click Select (or double-click a cast member) to close the dialog box and
select the cast member in the cast.

· Click Select All to close the dialog box and select all matching cast members in the cast.

Tip: To quickly select cast members by name, type the first few letters of the name, and the dialog box
automatically displays a list of cast members whose name begins with the letters you type.

Click a dialog box option for more information:

{button See also,AL(`Find_Cast_Member_help')}

Cast selects the cast to search.

Name searches for all cast members with names that begin with the characters you enter. Click Name and enter
the cast member name you want to search for in the field to the right.

Type specifies the type of cast members to search for. Select Type and choose an option from the pop-up.

Palette searches for all cast members using a certain palette.

Usage finds all cast members not used in the Score. Keep in mind, however, that a cast member that is not used
in the Score may still be used in a Lingo command.

View by determines how cast members are displayed on the list.

· Name displays cast members by name.

· Number displays cast members by number.

Select selects the cast member highlighted in the Find Cast Member dialog box.

Select All selects all the cast members in the Find Cast Member dialog box.

Find > Selection command (Edit menu) Control-H
Select a cast member in either the Cast window or the Score and use Find Selection to find the next occurrence
of that cast member in the Score.

Find Again repeats the previous find, initiated in either the Cast or Score window.

Find Again command (Edit menu) Control-Alt-F
Find Again finds the next occurrence of the text you entered in the Find field in the Find dialog box.

Replace Again command (Edit menu) Control-Alt-E
Choose Replace Again to replace the next instance of the text you entered in the Find field in the Find Text dialog
box.

Edit Sprite Frames command (Edit menu)
The Edit Sprite Frames command changes how a sprite is selected and how keyframes are created.
Ordinarily, clicking a sprite on the Stage or in the Score selects the entire sprite. When Edit Sprite Frames is
turned on for a certain sprite, clicking the sprite selects a single frame. Any change you make to a tweenable
property, such as moving a sprite on the Stage, defines a new keyframe.

Alt-double-clicking (Windows) or Option-double-clicking (Macintosh) a sprite is the equivalent of choosing
this command.

{button See also,AL(`Edit_Sprite_Frames_help')}

Edit Entire Sprite command (Edit menu)
The Edit Entire Sprite command returns sprites to their normal state when Edit Sprite Frames is on. Alt-
double-clicking (Windows) or Option-double-clicking (Macintosh) a frame within the sprite is the equivalent of
choosing this command.

{button See also,AL(`Edit_Entire_Sprite_help')}

Exchange Cast Members command (Edit menu) Control-E
The Exchange Cast Members command replaces the cast member selected on the Stage or in the Score with
the cast member selected in the Cast window. When you use Exchange Cast Members, the registration point of
the new cast member lines up with the registration point of the old cast member.

{button See also,AL(`Exchange_Cast_Members_help')}

Edit Cast Member command (Edit menu)
This command is only available if there is a selection in the cast window. It displays the appropriate editing
window for the selected cast member. For example, if you select a bitmap cast member and choose this
command, Director opens the Paint window for the selected cast member. For cast members that don't have
editing windows (such as shape, PICT, sound, movie, and film loop cast members) Director displays the cast
member's Cast Member Properties dialog box.

Shortcut: Double-click a cast member in the cast window.

Launch External Editor command (Edit menu)
This command launches an external editor for the selected cast member.

{button See also,AL(`Launch_Editor_help')}

View menu
Click a command or submenu for more information:

Marker > Previous Sprite Overlay > Show Info

Marker > Next Sprite Overlay > Show Paths

Display Sprite Overlay > Settings

Zoom Sprite Toolbar

Grids > Show Keyframes

Grids > Snap To Sprite Labels

Grids > Settings Onion Skin

Rulers

Depending on which window you have in front, the Panel command name changes (such as Paint Tools or Text
Toolbar).

Display command (View menu)
Choose the type of display for the Score window. The same choices are also available in the Display pop-up in
the Score.

{button See also,AL(`Display_submenu_help')}

Marker > Next command (View menu) Control-right
Choose an option to move to the next marker in the Score, or select the name of a marker to move there directly.

{button See also,AL(`Marker_Next_help')}

Marker > Previous command (View menu) Control-left
Choose an option to move to the previous marker in the Score, or select the name of a marker to move there
directly.

{button See also,AL(`Marker_Previous_help')}

Zoom submenu (View menu)
Narrower Control-Subtract

Choose Narrower to make frames in the Score smaller and display more of them at once.

Wider Control-Add
Choose Wider to make frames in the Score wider so more detail is visible in sprite labels.

Zoom In Control-Add
Choose Zoom In to change the size of the Paint window, or the width of frames in the Score. You can zoom
between 100% to 800%.

When you zoom in, a smaller representation of the 100% size artwork appears in the upper right corner of the
Paint window. To return to normal size, click inside the smaller window or choose Zoom Out.

Zoom Out Control-Subtract
Choose Zoom Out to enlarge the Paint window. You can zoom from 100% to 800%.

To return to normal size, click inside the smaller window or choose Zoom In.

Zoom 100, 200, 400, 800%
Choose one of these to view the Paint window or Score at a specific scale.

Tip: You can also magnify your artwork by double-clicking the pencil tool in the Paint window's tool palette, or by
Control-clicking the area you want to enlarge with any of the paint tools.

Rulers command (View menu)
Choose Rulers from the View menu to show or hide rulers in the paint or Text windows.

The default setting for the unit of measure is inches. You can change the setting for text to picas, centimeters, or
pixels using General Preferences in the File menu.

In the Paint window, change the unit of measure by clicking the upper left corner where the vertical and
horizontal rulers meet. The zero point of the rulers can be moved to a new location by dragging from the corner
of the rulers. The current position of the pointer is indicated by dotted lines in the rulers.

Grids > Show command (View menu) Command-Shift-Alt-G

The commands on the Grids submenu control the grid on the Stage. Use the grid to align and place sprites on
the Stage.

Show shows or hides the grid on the Stage. A checkmark indicates the grid is displayed.

{button See also,AL(`Show_Grid_help')}

Grids > Snap To command (View menu) Control-Option-G
The commands on the Grids submenu control the grid on the Stage. Use the grid to align and place sprites on
the Stage.

Snap To makes all sprites move to the nearest grid line when you move them. A check mark indicates the option
is on.

{button See also,AL(`Snap_Grid_help')}

Grids > Settings command (View menu)
The commands on the Grids submenu control the grid on the Stage. Use the grid to align and place sprites on
the Stage.

Dialog box options

Grid Settings defines the settings for the grid. In the Grid Settings dialog box you can define the following
settings:

Spacing specifies the number of pixels between the vertical and horizontal grid markings.

Display determines if the grid appears as lines or dots.

Color defines the color for the grid from the pop-up color palette.

{button See also,AL(`Grid_Settings_help')}

Sprite Overlay > Show Info command (View menu)
This command displays the most important sprite properties directly on Stage. Each sprite visible on Stage has
its own sprite overlay. The sprite overlay is dynamically updated and always reflects the current property values
of the sprite.

{button See also,AL(`Sprite_Overlay_Info')}

Sprite Overlay > Show Paths command (View menu)
This command displays the path of moving sprites on the Stage. Keyframes appear as hollow circles. Small tick
marks show the sprite's position in tweened frames.

{button See also,AL(`Sprite_Overlay_Paths')}

Sprite Overlay > Settings command (View menu)
This command opens the Overlay Setting dialog box, which determines how sprite overlay properties appear on
the Stage.

Dialog box options
Display determines how sprite properties appear on the Stage:

· Roll Over makes sprite properties visible and active when the mouse rolls over a single sprite.

· Selection makes sprite properties visible and active when a sprite is selected.

· All Sprites makes sprite properties visible and active for all sprites on the Stage.

Text Color determines the text color displayed in the sprite overlay.

{button See also,AL(`Sprite_Overlay_Settings')}

Keyframes command (View menu)
This command suppresses display of all but the head and tail sprites in the Score.

{button See also,AL(`KeyFrames_View_help')}

Panel command (View menu) Control-Shift-H
Choose Panel from the View menu to show or hide tool panels in the Text, Paint, Color Palette, and Script
windows.

The command name in the View menu varies, depending on which window is active. If the active window has a
toolbar, the name of the toolbar appears. If the active window does not have a toolbar, the word Panel appears.

Active window: View menu command:

Field window Text Toolbar

Message window Message Toolbar

Paint window Paint Tools

Script Window Script Toolbar

Score window Sprite Toolbar

Text window Text Toolbar

Watcher window Panel

Sprite Toolbar command (View menu)
This option displays the Sprite Inspector as part of the Score window.

Sprite Labels command (View menu)
This command displays the sprite label of the sprite in the Score window. The label can represent the name of
the underlying castmember or the value of any property.

Choose one of the following options:

· Keyframes displays sprite labels at each keyframe.

· Changes Only displays sprite labels when a tweenable property within the sprite changes.

· Every Frame displays a sprite label for each frame. Use the View > Zoom menu option to adjust the Score,
if necessary. This option can reduce performance in the authoring environment.

· First Frame displays sprite labels at the first frame of the sprite.

· None displays no sprite labels.

{button See also,AL(`Sprite_Labels_help')}

Onion Skin command (View menu)
Onion skinning allows you to view several cast members blended into an image in the Paint window. The
blended-in cast members serve as a reference while you paint a new cast member.

To activate onion skinning, choose View > Onion Skin. The Onion Skin toolbar appears. Click the Toggle Onion
Skin button in the toolbar to enable onion skinning. See the Using onion skinning help topic.

Click a toolbar button for more information:

{button See also,AL(`Onion_Skin_help')}

Toggle Onion Skinning is an on/off button. When off, no reference images are blended into the Paint window's
drawing area. When on, selected reference images are blended into the drawing area. The current cast member
is then drawn on top. Shortcut: Control-Alt-K enables or disables onion skinning.

Preceding Cast Members indicates the number of cast members immediately preceding the current cast
member shown as reference images in the Paint window. Images further away from the current cast member are
dimmer than images closer to it in the cast.

Following Cast Members indicates the number of cast members immediately following the current cast member
that will be shown as reference images in the Paint window. Images further away from the current cast member
are dimmer than images closer to it in the cast.

Set Background selects the current cast member to be the background cast member. This cast member will be
used as a reference image if Show Background is on.

Show Background blends the background cast member into the Paint window as a reference image.

Track Background marks the current foreground and background cast members as the beginning members of a
foreground and background series of cast members. From then on, as you select different foreground cast
members, the corresponding member of the background series is used as a reference image.

Insert menu
Click a command or submenu for more information:

Keyframe Media Element > Color Palette

Remove Keyframe Control > Push Button

Frame Control > Radio Button

Remove Frame Control > Check Box

Marker Control > Field

Media Element > Bitmap Control > Custom Button

Media Element > Shockwave Audio OLE Object

Media Element > Text Film Loop

Marker command (Insert menu)
The Marker command inserts a marker into the Score at the current position of the playback head.

{button See also,AL(`Marker_Insert_help')}

Frames command (Insert menu) Control-Shift-]
The Frames command inserts a specified number of frames into your movie at the location of the playback head.

The new frame is inserted for all channels and adds a frame to the movie's length.

{button See also,AL(`Insert_Frame_help')}

Remove Frame command (Insert menu) Control-[
Remove Frame deletes the frame at the location of the playback head, making the movie one frame shorter in
length.

Keyframe command (Insert menu) Control-Alt-K
This command inserts a new keyframe at the location of the Playback Head.

{button See also,AL(`Keyframe_Insert_help')}

Remove Keyframe command (Insert menu)
Remove Keyframe deletes the selected key frame(s).

{button See also,AL(`Remove_Keyframe_help')}

Media Element > Bitmap command (Insert menu)
Choose Insert > Media Element > Bitmap to create a new bitmapped cast member. When you choose this
command, Director opens the Paint window.

Unless you first select an empty position in the cast window, Director assigns the new cast member to the first
empty position after the current cast member.

Media Element > Text command (Insert menu)
Choose Insert > Media Element > Text to create a new text cast member and open the Text window.

Unless you first select an empty position in the cast window, Director assigns the new cast member to the first
empty position after the current cast member.

{button See also,AL(`New_Cast_Member_Text_help')}

Media Element > Color Palette command (Insert menu)
Choose Insert > Media Element > Color Palette command to create a new palette cast member. When you
choose this command a dialog box appears and prompts you to enter the name of the new color palette. Once
you enter a name and click OK, Director opens the color palettes window and you can change the new palette as
needed.

Unless you first select an empty position in the cast window, Director assigns the new cast member to the first
empty position after the current cast member.

{button See also,AL(`New_Cast_Member_Palette_help')}

Control > Push Button, Radio Button, or Check Box (Insert menu)
Choose one of these commands to create a button or check box cast member on the Stage. First, select the
channel and frame in the Score where you want to create the button or check box, and then choose the
command. A button or check box will appear on the Stage and you can begin entering text.

Unless you first select an empty position in the cast window, Director assigns the new cast member to the first
empty position after the current cast member.

You must then attach a script to a button or check box so that it responds appropriately when clicked.

Control > Field command (Insert menu)
Use this command to create a new field cast member. First, select the channel and frame in the Score where you
want to create the new field, and then select the Field command. A field will appear on the Stage and you can
begin entering text.

Unless you first select an empty position in the cast window, Director assigns the new cast member to the first
empty position after the current cast member.

Use fields primarily for text that must be editable in a projector. For most text applications you should use normal
text.

{button See also,AL(`New_Cast_Member_Field_help')}

Control > Custom Button command (Insert menu)
This command opens the Button Editor. The Button Editor creates a single cast member that displays on, off,
rollover, and disabled conditions automatically, without any scripting or references to other cast members.

Settings/Bitmaps tabs switch between panels containing different button options.

· Settings provides controls that determine the button text, font, button type, and initial state of the button.

· Bitmaps provides fields in which you paste images of the button in all its states.

Label provides a box in which you enter the text that appears on the button.

Font opens the Font dialog box. Use it to specify the font, size, style, and kerning of the button text.

Button Type provides two options, Push Button and Toggle Button.

· Push Button creates a button that reverts to its normal state after being clicked.

· Toggle Button creates a button that remains in the toggled state after being clicked.

Initial State provides options for the initial setting of the button.

· Enabled makes the button enabled by default.

· Toggled makes a toggle button on by default (not available for push buttons).

{button See also,AL(`Custom_Button_help')}

Media Element > Shockwave Audio
Creates a Streaming Shockwave Audio cast member. The cast member created by using this command
does not do anything until you use Cast Member Properties to link the cast member to an external
Shockwave Audio file.

{button See also,AL(`SWA_Streaming_Xtra')}

OLE Object command (Insert menu)
The OLE Object command creates cast members from OLE objects. You can create a new OLE Object using the
source application, or by linking to an existing file.

Note: OLE objects only work in Windows 95 and Windows NT.

{button See also,AL(`New_OLE_Object_help')}

Film Loop command (Insert menu)
The Film Loop command changes a selected animation sequence into a repeating loop that appears as a single
cast member.

{button See also,AL(`Create_Film_Loop_help')}

Modify menu
Click the name of a menu command for more information:

Cast Properties Font

Cast Member > Properties Paragraph

Cast Member > Script Borders

Sprite > Properties Join Sprites

Sprite > Script Split Sprite

Sprite > Tweening Extend Sprite

Frame > Tempo Arrange

Frame > Palette Align

Frame > Transition Tweak

Frame > Sound Reverse Sequence

Frame > Script Sort

Movie > Properties Cast to Time

Movie > Casts Space to Time

Movie > Xtras Transform Bitmap

Movie > Playback Convert to Bitmap

Cast Properties command (Modify menu)
Use the Cast Properties command to view properties and change settings for the currently selected cast.

Dialog box options

Name displays the name of the current cast for you to view or change.

Storage indicates whether the cast is internal or external and, if the cast is external, where it is stored.

Size displays the size of the cast in kilobytes.

Preload defines how the cast is loaded into memory when the movie runs. The choices are:

· When Needed: The cast does not load into memory until it is required by the movie.

· After Frame One: The cast is loaded when the movie exits frame one.

· Before Frame One: The cast is loaded before the movie plays frame one.

{button See also,AL(`Cast_Properties_help')}

Cast Member Properties command (Modify menu)
Cast Member Properties displays a dialog box containing information about the selected cast member: its name,
cast position, type, and its size in kilobytes. The Cast Member Properties dialog box also displays additional
information and options for each cast member type. Use the options in the dialog box to define the behavior and
appearance of the selected cast members.

The type of information in the Cast Member Properties dialog box depends on the type of cast member.

Bitmap PICT

Button Script

Digital Video Shape

Field Sound

Film Loop Field

Director Movie Text

Palette Transition

Multiple cast members selected Xtras

 In the cast window, select a cast member and click the Info button as a shortcut for choosing this command. If
you are editing the cast member in the paint, text, digital video, or Script Window, you can click the window's Info
button as a shortcut for choosing this command.

Tip: Select a cast member in the cast or on the Stage and then right-click and choose Cast Member Properties
from the pop-up.

Cast Member Properties > Bitmap (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· Dimensions

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains
attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script, so that you don't
have to update your scripts if your cast members are renumbered or sorted.

File Name displays the location of linked external files. This appears only if the selected cast member is linked to
an external file. Click the file name to choose a new location.

Options: Highlight When Clicked makes the current cast member invert when it is clicked by the user. Use this
option to create buttons. Even if Highlight When Clicked is checked, the cast member will not do anything unless
it is controlled by a Lingo script.

Color Depth displays the color depth of the cast member.

Palette assigns a different palette to the cast member, while maintaining the cast member's original palette
references, so the image is not changed. You can change the palette assignment at any time by choosing
another palette from the menu.

Unload controls how Director removes the cast member from memory if memory is low.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Button (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains
attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script, so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Type lists the button types-push button, check box, or radio button.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Digital Video (Modify menu)
Use the Cast Member Properties for digital video cast members to view information about the current cast
member and to change optional settings. The following information about the current cast member appears on
the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The length of the movie in seconds

· The size in kilobytes

· Dimensions

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

File Name displays the location of the digital video. Click the file name to choose a new location.

Video plays the video portion of the digital video. If turned off, the video portion does not play. Deselect this
option and check Sound if you want to play the audio-only portion of a movie.

Sound plays the sound portion of the digital video.

Paused pauses the digital video when it first appears on the Stage (while playing the Director movie).

By default, a digital video starts playing the moment it first appears. If you check Paused, you can later start the
movie using the statement:

set the movieRate of sprite n to R
where:

· n is the sprite number in the current frame

· R is a number representing the rate. For example, 0 = stop, 1 = normal speed, 2 = 2x speed, and -1 =
reverse.

Loop loops the digital video from the end back to the beginning and continues to play.

{button See also,AL(`QuickTime_Cast_Info_help')}

Crop retains the movie's original size if you resize the bounding rectangle. The edges of the movie may be
clipped.

Center centers the movie when you resize the bounding rectangle. If Center is not checked, the loop maintains
its original position when you resize its bounding rectangle. Center is only available if Crop is checked.

Scale scales the movie if you resize the bounding rectangle.

Direct to Stage plays the movie in front of any cast members on the Stage, regardless of the channel that
contains the movie. Inks are not visible on a movie that plays with this option. In general, use Direct to Stage
when you want the best possible performance from a digital video and you don't need ink effects or compositing.
Results may vary, so you may have to experiment. For more information, see the Using Direct to Stage help
topic.

Show Controller displays a controller bar below the movie to allow the user to start, stop, and step through the
movie. This option is only available if Direct to Stage is checked.

Video defines how the movie is synchronized. If you choose Play Every Frame, every frame of the digital video
plays. The digital video's soundtrack will not play, since the movie can't play the soundtrack asynchronously while
the video portion plays frame-by-frame. If you choose Sync to Soundtrack, the movie skips frames as necessary
to keep up with the tempo of the soundtrack. These options are only available if Direct to Stage is checked.

Rate determines at what rate the movie plays. The options on the Rate menu are only available if Play Every
Frame is checked. The following options appear on the Rate pop-up:

· Normal: Each frame plays at its normal rate, and no frames are skipped.

· Maximum: The movie plays as fast as possible while still displaying each frame.

· Fixed: Play the movie using a specific frame rate. Enter the number of frames per second in the field to the
right. Use this option only for digital videos that use the same frame rate for each frame of the movie.

Enable Preload preloads the entire movie (or as much of the movie as can fit into available memory) using the
preLoad or preLoadMember Lingo commands. If there is not enough memory to load the entire movie, Director
loads only what can fit into memory. If this option is turned off, Director does not load the movie into memory and
instead plays it from disk. This results in slower animation speeds, since each frame must be retrieved from disk
before it is played.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast. The script remains attached to the cast member if the cast member is
cut or copied and pasted.

Cast Member Properties > Film Loop (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Crop retains the film loop's original size if you resize the bounding rectangle of the sprite. The edges of the
movie may be clipped.

Scale scales the film loop if you resize the sprite bounding rectangle.

Center centers the film loop when you resize the bounding rectangle. If Center is not checked, the loop
maintains its original position when you resize its bounding rectangle. Center is only available if Crop is checked.

Play Sound enables sound during playback. If not checked, sound is disabled during playback.

Loop returns the animation from the last frame back to the first and continues to play. If this option is not
checked, the animation doesn't loop, and the last frame remains on the Stage.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Director Movie (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

File Name displays the location of the external file associated with the linked movie. Clicking the file name lets
you choose a new location.

Crop retains the linked Director movie's original size if you resize the bounding rectangle. The edges of the
movie may be clipped.

Scale scales the movie if you resize the bounding rectangle.

Center centers the linked Director movie when you resize the bounding rectangle. If Center is not checked, the
movie maintains its original position when you resize its bounding rectangle. Center is only available if Crop is
checked.

Enable Scripts activates the linked movie's scripts when the movie is used in the Score. If this option is not
checked, Director ignores the movie's scripts.

Play Sound enables sound during playback. If not checked, sound is disabled during playback.

Loop returns the movie from the last frame back to the beginning and continues to play. If this option is not
checked, the movie doesn't loop, and the last frame remains on the Stage when the movie finishes playing.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Palette (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Cast Member Properties > PICT (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

· Dimensions

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script, so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Script (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Type displays the script type (Movie, Score, or Parent) for the selected cast member and lets you change it. A
movie script's handlers are global and can be called from other scripts. A Score script's handlers are local and
cannot be called from other scripts. If you change a script into a Score script, it appears in the Script pop-up in
the Score.

Cast Member Properties > Shape (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Shape displays the current shape-rectangle, round rectangle, or oval-and lets you change the shape into any of
the other available shapes.

Filled fills the currently selected shape with the current fill pattern and colors as specified in the tool palette.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Sound (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

· Sample rate, sample size, and channels

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

File Name displays the location of linked external sound files. This appears only if the selected cast member is
linked to an external file. Click the file name to choose a new location.

Loop makes the sound play continuously. If not checked, the sound plays once, even if the movie loops.

Unload controls how Director removes the cast member from memory if memory is low.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Play plays the sound at its pre-recorded sampling rate.

Cast Member Properties > Field (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains attached
to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Framing displays framing options for the current field.

· Adjust to Fit causes the field to expand vertically when text is entered that extends beyond the current size
of the box.

· Scrolling attaches a scroll bar to the right side of the field. This is useful for a large amount of text.

· Fixed causes the box to retain its original size. If text is entered that extends beyond the limits of the box,
the text is not displayed.

· Limit to Field Size sets the field's width to be fixed to the size of the field. Characters that don't fit are
ignored.

Editable makes field cast members editable during movie playback. You can use this option instead of using the
Lingo command set the editable of sprite to TRUE.

If you set a field cast member to be editable in the cast, it is always editable. Director overrides the Score's
editable check box setting for the sprite.

Word Wrap makes words move to the next line when they reach the edge of the box. If turned off, text that
extends beyond the right edge is truncated and you must use the Enter key to generate a new line.

Tab to Next Field causes the Tab key to advance the cursor to the next editable field on the Stage during
playback. Note that the editable check box must be checked, or the Lingo command set the editable of
sprite to TRUE must be specified for this option to have any effect.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Text (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains
attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Framing displays framing options for the current text cast member.

· Adjust to Fit causes the text box to expand vertically when text is entered that extends beyond the current
size of the box.

· Scrolling attaches a scroll bar to the right side of the text box. This is useful for a large amount of text.

· Cropped causes the text box to retain its original size. If you enter text that extends beyond the limits of the
box, the text is not displayed.

Anti-Alias Text: dramatically improves the appearance of large text, but it can blur or distort smaller text.
Experiment with the size setting to get the best results for the font you are using.

· All Text anti-aliases all the text in the text block.

· Larger Than anti-aliases text larger than the point size entered in the points field.

· None turns off anti aliasing for the current cast member.

Unload controls how Director removes the cast member from memory if memory is low.

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Script opens a Script Window for the cast member. The script remains attached to the cast member if the cast
member is cut or copied and pasted.

Cast Member Properties > Transition (Modify menu)
The following information about the current cast member appears on the left side of the dialog box:

· The cast member number

· The cast member name

· The cast name

· The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change. The name remains
attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up:

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Options is only available if you have installed Xtra transitions in the Xtras folder (within the Director application
folder). The contents of the Options dialog box is determined by the developer of the Xtra. Refer to any
documentation supplied with the Xtra.

Cast Member Properties > (Multiple items) (Modify menu)
Use Cast Member Properties to view and change settings for several selected cast members at once.

Click a dialog box option for more information:

Since multiple cast members are selected, no cast member name is shown.

Type displays "Multiple" when several cast members are selected, unless all the selected cast members are the
same type.

Selected displays the number of cast members in the selection.

Total Size displays the total size, in kilobytes, of the selected cast members.

Palette lets you choose the palette used by the selected cast members.

Unload controls how Director removes the cast members from memory if memory is low. Choose one of these
options from the pop-up:

· 3-Normal: The selected cast members will be removed from memory after all purge priority 3 cast members
have been purged.

· 2-Next: The selected cast members will be among the next to be removed from memory.

· 1-Last: The selected cast members will be the last to be removed from memory.

· 0-Never: The selected cast members remain in memory and is never purged.

Cast Member Properties > Xtras (Modify menu)
Xtras are cast members created as plug-in extensions to Director. They can be new media types or add-on
transitions. Xtra cast members may have additional settings accessible through an Options button.

Click a dialog box option for more information:

{button See also,AL(`Xtras_Cast_Info_help')}

Name field displays the name of the current cast member for you to view or change. The name remains
attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you should avoid using them. If
more than one cast member has the same name, Lingo uses the cast member with the lowest number in the
cast. Use cast member names instead of numbers to address cast members in a Lingo script, so that you don't
have to update your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low. Choose one of these
options from the pop-up:

· 3-Normal: The selected cast member will be removed from memory as necessary.

· 2-Next: The selected cast member will be among the next to be removed from memory.

· 1-Last: The selected cast member will be the last to be removed from memory.

· 0-Never: The selected cast member remains in memory and is never purged.

Options opens a dialog box containing special controls and options for the Xtra cast member. Not all Xtra cast
member have options available. The contents of the Options dialog box is determined by the developer of the
Xtra. Refer to any documentation supplied with the Xtra.

Cast Member Script command (Modify menu)
Choose this command to open the script attached to the selected cast member. This is the same as clicking the
Script button in the Cast Member Properties dialog box or in the cast window.

Shortcuts: To open the cast member script:

· Press Control-' (Control-hyphen).

· In the Cast window, select a cast member and click the Script button.

· In any media editor window, click the window's Script button.

Sprite > Properties command (Modify menu)
Use the Sprite Properties command to change the size, location, and blend percentage of a selected sprite. If
you select more than one sprite, this command lets you edit them as a group.

Click a dialog box option for more information:

{button See also,AL(`Sprite_Info_help')}

Size changes the sprite's size. Enter an exact size or a scaling percentage.

· Height, Width: Enter a specific width and height for the sprite, in pixels.

· Scale: Enter a percentage in the Scale field. The sprite is scaled relative to its current size, not to the size of
its parent cast member.

· Maintain Proportions: Turn on this option to maintain the same proportions of width and height when the
object is resized.

Location changes the top left corner position of the sprite on the Stage.

· Left: Enter the number of pixels you wish to offset the sprite from the left edge of the Stage.

· Top: Enter the number of pixels you wish to offset the sprite from the top edge of the Stage.

Blend specifies the blend percentage for selected sprites in the Score. You can apply a blend effect to sprites
that use Blend, Background Transparent, Mask, or Matte inks. Each sprite in the same frame can store its own
blend value.

Use the Blend option in the In Between Special dialog box to fade sprites in or out of the Stage as they are
animating.

Sprite > Script command (Modify menu)
Sprite Script opens a Script Window for the currently selected sprite.

{button See also,AL(`Sprite_Script_help')}

Sprite > Tweening command (Modify menu) Control-Shift-B
This command opens the Sprite Tweening dialog box. Set the tweening properties to change the curve a sprite,
to accelerate or decelerate across the Stage, or to change color or blend.

Click a dialog box option for more information:

{button See also,AL(`Sprite_Tween_Properties_help')}

Tween identifies the sprite properties to be tweened: Path, Size, Blend, Foreground Color, and/or Background
Color.

Curvature controls the degree to which the sprite's curved path follows the inside or outside boundaries of the
path.

· Linear: The sprite travels in straight lines between the sprite keyframe positions.

· Normal: The sprite follows a curved path that is inside the sprite keyframe positions.

· Extreme: The sprite follows a curved path outside keyframe positions.

Continuous at Endpoints makes the sprite move smoothly through start and end frames when moving in a
circle.

Path diagram shows the sprite's path as specified by the Curvature, Speed, Ease-In, and Ease-Out settings.
This does not show the actual path of the sprite, just the type of curve it will follow.

If the beginning and ending points of the sprite are the same, the diagram is circular, indicating that the sprite
travels in a circle when tweened. If the beginning and ending points are not the same, the diagram describes a
curved path, indicating that the sprite ends in a position different than the starting point.

Speed defines how the tweened sprite properties change between keyframes.

· Sharp Changes: Changes in properties occur abruptly.

· Smooth Changes: Changes in properties occur gradually.

Ease-In and Ease-Out defines how tweened sprite properties change over the whole length of the sprite.

· Ease-In: Defines the percentage of the sprite span over which you want to accelerate the sprite.

· Ease-Out: Defines the percentage of the sprite span over which you want to decelerate the sprite.

Frame > Tempo command (Modify menu)
Use this command to set a tempo or pause in your movie. The tempo setting determines how the playback head
moves from frame to frame.

Click a dialog box option for more information:

When you set a tempo, it also applies to all frames to the right of the tempo setting until another tempo is
encountered in the tempo channel.
Shortcuts: To open the Frame Properties: Tempo dialog box:

· Double-click a cell in the tempo channel.

· Right-click a cell in the tempo channel and choose Tempo.

Tip: If you place tempo settings in the same frame as a transition, some tempo channel settings such as Wait
become disabled. To avoid this, don't place a transition in the same frame as your tempo settings. Instead, place
the tempo settings in the frame immediately before or after the transition.

{button See also,AL(`Set_Tempo_help')}

Tempo sets a new tempo for the movie. Use the arrows or slide the box to change the settings. This is the same
as changing the tempo in the Control Panel.

Wait stops the movie at the current frame for the time specified. Use the arrows or slide the box to change the
settings.

Wait for Mouse Click or Key Press pauses the playback head until the user clicks the mouse or presses a key.
The cursor changes to a blinking mouse to indicate that the movie is paused.

Wait For Cue Point pauses the playback head at the designated cue point until the sound or digital video
specified in the designated channel finishes playing. This option allows waiting for any cue point in digital audio
or video media, not just the end point.

· Channel Select Sound 1, Sound 2, or any active sprite channel with media that supports cue points. You
can type into the text field or choose from the list.

· Cue Point Select Next, End, or a cue point from the list of cue-point names or numbers for the element
selected in Channel. You can also type into the field or choose from the list.

Frame > Palette command (Modify menu)
Use the Frame Palette command to change palettes in a selected frame of the palette channel. When you set a
palette in the palette channel of the Score, the colors of the cast members in the movie are determined by that
palette until another palette is encountered in the palette channel.

When you specify a new palette in the palette channel, cast members change color depending on the position of
their colors in the palette. For example, if one cast member is yellow, and yellow occupies the fifth color in the
palette, the cast member will change to whatever color is in the fifth position in the new palette.

Click a dialog box option for more information:

The options in the dialog box change depending on whether you choose Palette Transition or Color Cycling.
When Palette Transition is selected, these options appear in the dialog box (click for more information):

When Color Cycling is selected, these options appear in the dialog box (click for more information):

Shortcuts: To open the Frame Properties: Palette dialog box:
· Double-click a frame in the palette channel.

· Right-click a frame in the palette channel and choose Palette.

{button See also,AL(`Set_Palette_help')}

Palette lets you choose the palette used for the selected cells in the palette channel.

Palette Transition changes the palette at the current frame, or the beginning of the current selected range.
Choose Palette Transition when you want a smooth transition from one palette to another. Instead of your cast
member abruptly changing colors when you switch palettes, this option gradually blends from one palette to the
next.

Color Cycling changes the palette by rotating the colors in a selected range of the palette. For example, if a cast
member's color is the fifth color in the palette, and you select a range of colors from four to six, the cast member
changes colors when the movie is played, cycling through colors four, five, and six.

To select a range to cycle, drag across the colors to be cycled in the dialog box. You can also click a color and
Shift-click another color to select those colors and all the colors in between.

Rate displays the rate at which the palette changes between frames. Use the arrow keys or slide the box to
change the setting. This setting does not apply if you select Span Selected Frames.

· Between Frames changes the palette between frames. The Rate setting determines the length of the
transition. All animated movement will halt as the transition takes place. This option appears only if you first
select a range of frames in the palette channel.

· Span Selected Frames changes the palette while the selected frames are playing. The number of frames
selected determines the length of the transition. Any movement in those frames will take place as usual. This
option appears only if you first select a range of frames in the palette channel.

Palette Transition options

· Fade to Black fades the entire screen to black. Like other palette transitions, this can occur over time or
between frames. A nice way to end a movie is to make the final frame a black cast member that covers the
whole Stage, and then fade to black over several frames before the last frame.

· Fade to White fades the entire screen to white. Like other palette transitions, this can occur over time or
between frames. A nice way to end a movie is to make the final frame a white cast member that covers the
whole Stage, and then fade to white over several frames before the last frame.

· Don't Fade changes the palette without fading the screen during the palette transition.

Note: Palette transitions including Fade to Black and Fade to White do not work in 16-, 24-, and 32-bit
environments. These features require either that palettes be in use or that a video card set to 256 colors is
present.

Color Cycling options

· Cycles specifies the number of cycles per frame.

· Auto Reverse reverses the direction of color cycling when the cycle completes.

· Loop returns the color cycle to the beginning when it reaches the end.

Frame > Transition command (Modify menu)
Use this command to define and select a transition. To set a transition, select a cell in the transition channel of
the Score window and choose Frame Transition from the Modify menu. The transition occurs when the playback
head reaches that cell.

Different options are available for different transitions.

Click a dialog box option for more information:

Shortcuts: To open the Frame Properties: Transition dialog box:
· Double-click a cell in the transition channel.

· Right-click a cell in the transition channel and choose Transition.

{button See also,AL(`Set_Transition_help')}

Categories lists the categories of transitions. If you select a category, such as Dissolve, then only the Dissolve
transitions are listed in the categories list. If you select the All category, then all available transitions are listed.

Transitions lists the available transitions.

Duration indicates the approximate amount of time (in seconds) of the entire transition. Adjust the slider to
change the setting.

Smoothness selects the smoothness of the transition. Adjust the slider to change the degree of smoothness.

Affects indicates where the transition takes place on the Stage.

· Entire Stage makes the transition take place over the entire Stage area.

· Changing Area Only makes the transition takes place over the changing area of the frame.

Frame > Sound command (Modify menu)
Use this command to select and preview sounds. Select one or more cells in one of the sound channels, and
then choose this command. If you have not made a selection in one of the sound channels in the Score, this
command is not available.

The dialog box lists all sounds in the currently opened casts. Select a sound from the list and click OK to place
the sound in the selected frames.

To play a sound, select one from the list and click Play.

Shortcuts: To open the Frame Properties: Sound dialog box:

· Double-click a frame in the sound channel.

· Right-click a frame in the sound channel and choose Sound.

{button See also,AL(`Set_Sound_help')}

Frame > Script command (Modify menu)
Choose this command to open the script for the current frame.

Shortcut: To open the script for the current frame:

· Double-click a frame in the script channel.

· Right-click a frame in the script channel and choose Frame Script from the shortcut menu.

Movie > Properties command (Modify menu) Control-Shift-D
The Movie > Properties command lets you specify options such as Stage size and color for the currently open
movie.

{button See also,AL(`Movie_Info_help')}

Dialog box options
Stage Size defines the size of the Stage. Changing the Stage size is useful if you want to display movies on a
smaller or larger Stage, or if you want to change the Stage size to match the size of a digital video. Change the
size of the Stage by choosing a setting from the menu, or by entering the width and height of the Stage.

If you choose a setting from the pop-up, the values in the Width and Height fields automatically update.

Stage Location changes the location of the Stage.

· Centered places the Stage window in the center of your monitor. This option is useful if you play a movie
that was created for a 13-inch screen on a larger screen. You can also use this option if you are creating a
movie on a larger screen that will be seen on smaller screens.

· Upper Left places the Stage in the top left corner. Alternatively, the values you type in the Left and Top
boxes represent the number of pixels the Stage is moved from the top left corner of the screen. These
values apply only if the Stage is smaller than the current monitor's screen size.

Default Palette defines the palette Director uses for the movie until it encounters a different palette setting in the
palette channel.

Stage Color determines the color of the Stage. Click to select a new background color from the current palette.

Remap Palettes When Needed remaps the current palette when cast members with different palettes appear on
the Stage. If this box is checked, Director automatically creates a common palette and remaps all images on the
Stage that have a different palette to the common palette. The cast members themselves are not modified. The
common palette determines how the cast member is remapped. For example, if a cast member uses a grayscale
palette, it will be drawn on the Stage using whatever grays are available in the common palette.

Allow Outdated Lingo lets you include Lingo commands used by Director 4.0 that are no longer acceptable.

Save Font Map saves the current font map settings in a text file named Fontmap.txt.

Load Font Map loads the font mapping assignments specified in the selected font map file.

Movie > Casts command (Modify menu) Control-Shift-C
Use Movie Casts to view the casts in the current movie, create new casts, and link external casts to the movie.
The Movie Casts dialog box displays a list of all the casts in the current movie, including internal casts and linked
external casts.

Dialog box options

New opens the New Cast dialog box so that you can create a new cast.

Link attaches existing external casts to the movie. Use the dialog box that appears to select an external cast file
to link to the movie.

Remove unlinks or deletes a cast from the movie. Select a cast from the list and click Remove. If the cast is
internal, it is deleted. If it is external, it is unlinked from the movie. You cannot delete the first internal cast in the
movie.

Properties opens the Cast Properties dialog box for the cast selected on the list.

{button See also,AL(`Movie_Casts_help')}

Movie > Playback command (Modify menu)
This command opens the Movie Playback Properties dialog box. Use this box to determine how an Internet-
based movie is played on your local system.

Dialog box options

General:

· Lock Frame Durations locks the current playback rate so that Director plays the movie at the same speed
on all types of computers. For frames without recorded durations, Director uses the current tempo.
Locked movies will not play faster when played on a faster computer, but may play slower on a slower
computer.

· Pause When Window Inactive specifies when movies in windows play. When this option is set, a movie in
a window only plays when the main movie is playing or when it is the frontmost window; otherwise the movie
in a window continues to animate.

Streaming:

· Wait for All Media delays playback until the movie is completely downloaded from the internet.

· Use Media as Available begins playback as soon as the target frame is available, or the designated number
of pre-fetch frames are available.

· Show Placeholders displays placeholders (rectangular outlines) on the screen until the required images are
downloaded from the Internet.

· Pre-Fetch _ Frames Designates the number of frames to download from the Internet before playback of the
movie can begin. If 0 frames are designated, playback will begin as soon as the target frame is available.

{button See also,AL(`Movie_Playback_help')}

Movie > Xtras command (Modify menu)
This command opens the Movie Xtras dialog box. The dialog box lists Xtras required by the movie. It displays
Xtras that control or import cast members that appear in the Score. Xtras used only in Lingo scripts may not
appear on the list.

Xtras appearing on the list shown in the dialog box are automatically included when a projector is created, as
long as the Check Movie for Xtras option in the Projector Options dialog box is turned on.

Add opens a dialog box for selecting Xtras. Any Xtra you choose is added to the list.

Remove removes the selected Xtra from the list.

{button See also,AL(`Movie_Xtras_help')}

Font command (Modify menu)Ctrl-Shift-T
Use the Font dialog box to specify all the formatting options for characters and lines of text. Not all options are
available for fields.

To change character formatting, first select the text you want to change, and then choose Font from the Modify
menu. If you select the cast member, all the text changes.

Dialog box options

The scrolling field on the left lists all the fonts installed in your system. Select a new font by clicking one on the
list. Director may not be able to anti-alias certain fonts in your system (such as bitmap fonts and some variations
of TrueType fonts). When you select a font that can't be anti-aliased, the message "This font cannot be anti-
aliased" appears above the font preview pane.

Style: Bold, Italic, and Underline each apply the character attribute to the selected text.

Size specifies the font size, in points.

Spacing sets the total height for all lines in the paragraph in points. This option is not available for fields.

Kerning increases or decreases the amount of space (in points) between selected characters. This option is not
available for fields.

Color determines the color of the selected text. Click to choose a new color from the current color palette.

{button See also,AL(`Font_Settings_help')}

Paragraph command (Modify menu) Alt-Control-Shift-T
Use the Paragraph dialog box to view and change paragraph formatting. The Paragraph command is only
available for text cast members.

Dialog box options

Alignment determines how the selected paragraph is aligned with the text box. The choices are Left, Right,
Center, and Justify. (The Justify setting aligns text to both the left and right margins.)

Margin:

· Left and Right defines the left and right margin settings of the text box. Click the arrows or enter a number
to change the amount the paragraph is indented.

· First Indent controls the indent setting of the first line of text in the paragraph. Changing the setting is the
same as moving the margin markers on the text ruler.

Spacing increases or decreases the amount of space before or after the current paragraph. Click the arrows or
enter a value in points.

{button See also,AL(`Paragraph_Settings_help')}

Borders submenu (Modify menu)
The commands on the Borders submenu only apply to fields. You cannot use them to change text cast members.

Line adds a box around the field on the Stage. Choose the line thickness from the submenu.

Margin changes the distance between the edges of the field and the characters inside. Choose the margin width
from the submenu.

Box Shadow adds a drop shadow to the text box. Choose the drop shadow width from the submenu.

Text Shadow adds a drop shadow to bitmapped text in the Paint window or field text. Choose the shadow width
from the submenu. Drop shadow on text is a good way to ensure that your text will remain legible in color if you
are planning to overlay text to videotape.

Split Sprite command (Modify menu)
This command breaks a single sprite into two adjacent sprites, with ending and beginning key frames directly
abutting. If a single cell or key frame is selected, the split occurs to the immediate right. If two cells are selected,
the split occurs between them and turns each into a key frame.

{button See also,AL(`Split_Sprite_help')}

Join Sprites command (Modify menu)
This command turns two or more sprites into a single sprite span by tweening the ending and beginning key
frames of the selected sprites.

{button See also,AL(`Join_Sprites_help')}

Extend Sprite command (Modify menu)
This command extends the end of each selected sprite to the current frame in a movie or to the position of the
playback head.

{button See also,AL(`Extend_Sprite_help')}

Arrange submenu (Modify menu)
The Arrange submenu contains four commands that move sprites up or down in the Score, changing their order
on the Stage. Sprites appear on the Stage in order, starting with the first channel. A sprite in channel two appears
on top of a sprite in channel one.

Bring to Front (Control-Shift-Up arrow) moves the selected cells to the last channels in the Score. The sprites in
those cells move in front of all other sprites.
Move Forward (Control-Up arrow) switches the selected cells with the cells immediately below. This command is the
same as clicking the Move Forward button at the bottom of the Score window.

Move Backward (Control-Alt-Down arrow) switches the selected cells with the cells immediately above. This
command is the same as clicking the Move backward command at the bottom the Score window.

Send to Back (Control-Alt-Shift-Down arrow) moves the selected cells to the first channels in the Score. The
sprites in those cells move behind all other sprites.

{button See also,AL(`Arrange_help')}

Align command (Modify menu)Control-K
Use the Align palette to align sprites on the Stage. You can align sprites in multiple channels and frames.

Dialog box options

Horizontal alignment options include No Change, Align Tops, Align Centers, Align Bottoms, Align Reg. Points.

Vertical alignment options include No Change, Align Lefts, Align Centers, Align Rights, Align Reg. Points.

Tip: You can also click the preview to experiment with sprite alignment.

{button See also,AL(`Align_window_help')}

Tweak (Modify menu) Control-Shift-K
Use the Tweak window to move one or more selected sprites in any direction with precision. Drag the point on
the left side of the window, or enter the number of pixels in the fields for horizontal and vertical change and click
Tweak.

Continue clicking Tweak to repeatedly move the selected sprites the same distance.

Reverse Sequence command (Modify menu)
Reverses the order of selected cells in the Score.

Sort (Modify menu)
Use Sort to rearrange selected cast members in the cast and eliminate empty cast member positions. To
rearrange an entire cast, first choose Select All from the Edit menu before choosing this command.

Director automatically updates the Score with the new number for each repositioned cast member.

Note: Because cast member numbers may change when you use this command, cast member number
references in scripts may become invalid. If you use Sort Cast Members, you may have to go through your
scripts to update them with the new numbers. Use cast member names instead of numbers to address cast
members in a Lingo script so that you don't have to worry if your cast members get re-numbered.

Dialog box options

Usage in Score sorts selected cast members in the order in which they appear in the Score. If a cast member
does not appear in the Score, it is placed after all the cast members that are referenced from the Score.

Media Type sorts selected cast members by type (bitmap, palette, button, text, sound, shape, PICT, digital video,
film loop, movie, script, field, Xtra, transition, OLE).

Name sorts selected cast members alphabetically by name.

Size sorts selected cast members by file size, in decreasing size order.

Empty at End places empty cast members at the end.

{button See also,AL(`Sort_Cast_Members_help')}

Cast to Time command (Modify menu)
Use Cast to Time to speed the creation of a cast member sequence in your movie. This command places
selected cast members sequentially into separate frames in the Score.

If you select a single cell in the Score before choosing this command, the selected cast members are added to
the Score beginning at the selected cell. Any existing Score data is replaced by the Cast to Time sequence. If
you set an insertion point in the Score before choosing this command, the Cast to Time sequence is inserted in
channel 1, beginning at the insertion point. If you select a range of Score cells before choosing this command,
the Cast to Time sequence that is inserted will only be as long as the number of selected cells in the Score.

Shortcut: You can also place selected cast members across time in the Score by Alt dragging from the cast.

{button See also,AL(`Cast_to_Time_help')}

Space to Time command (Modify menu)
Space to Time moves selected sprites in one frame to a single channel in the Score so they play in a sequence
of frames.

The dialog box lets you specify the number of frames apart to spread sprites. Consecutive cells (1 frame apart) is
the default.

{button See also,AL(`Space_to_Time_help')}

Transform Bitmap command (Modify menu)
Transform Bitmap changes the size, color depth, and palette of selected cast members. Any change you make to
a cast member's color depth or palette affects the cast member itself-not just its appearance on the Stage. As a
result, color depth and palette changes can't be undone. If you want to keep a cast member's original bitmap
unchanged but temporarily apply a different palette, use Cast Member Properties instead. To change the size of
only the sprite on the Stage, use Sprite Properties.

The Transform Bitmap dialog box displays values for the current selection. If more than one cast member is
selected, a blank value indicates that cast members in the selection have different values. To maintain a cast
member's original value, leave that value blank in the dialog box.

Click a dialog box option for more information:

{button See also,AL(`Transform_Bitmap_help')}

Size determines the dimensions of the selected cast member. If multiple cast members are selected, you can
resize all the cast members to the dimensions you enter. You can either enter new measurements (in pixels) in
the Width and Height fields, or enter a scaling percentage in the Scale box.

Turn on the Maintain Proportions check box to keep the width and height of the selected cast member in
proportion. If you change the width, the proportional height is automatically entered in the Height field.

Color Depth sets the color depth of the selected cast member. A cast member's color depth is determined at
import by the selection set in the Import dialog box. A movie's color depth is determined by the cast member with
the highest color depth.

You can change the color depth to save memory and disk space when you are creating a color movie.

Palette selects the palette for the selected cast member. The palettes listed in the pop-up are the default Director
palettes, plus any additional ones found in the casts. You can create a common palette that contains most of the
colors your cast member needs.

When you use the Transform Bitmap command to remap the color in a cast member, Director matches the colors
of the cast member with similar colors in the new palette. For example, if the original artwork is red and the
closest red available in the new palette is pink, the red is changed to pink.

If the movie is playing, the active palette is the one that is currently in use at any given time, as specified in the
Score. The palette active when you use Transform Bitmap may be different from the palette used by the movie.

Remap Colors replaces the image's colors with the most similar solid colors in the palette you select from the
pop-up.

Dither blends the colors in the new palette to approximate the original colors in the graphic.

Convert to Bitmap command (Modify menu)
This command converts fields to bitmapped cast members. The converted graphic can then be edited in the
Paint window. Once you convert a cast member to a bitmapped graphic, you cannot undo the change.

You can't convert a shape to a bitmap.

Control menu
Click the name of a menu command for more information:

Play Disable Scripts

Stop Toggle Breakpoint

Rewind Watch Expression

Step Forward Remove All Breakpoints

Step Backward Ignore Breakpoints

Real-Time Recording Step Script

Step Recording Step Into Script

Loop Playback Run Script

Selected Frames Only Recompile All Scripts

Volume

Play command (Control menu) Control-Alt-P
The Play command starts the movie. If you press the Shift key while choosing Play, the menu bar is hidden and
the Stage is cleared of all open windows as the movie plays.

Shortcut: The keypad + key toggles between Play and Stop.

{button See also,AL(`Play_help')}

Stop command (Control menu) Control-period (.)
The Stop command halts the movie.

Shortcut: The keypad + key toggles between Play and Stop.

{button See also,AL(`Stop_help')}

Rewind command (Control menu) Control-Alt-R
Rewind moves the playback head back to frame 1. If the animation is playing, it also stops.

Shortcut: Keypad 0 rewinds the movie.

{button See also,AL(`Rewind_help')}

Step Forward command (Control menu)
The Step Forward command advances the movie forward one frame. When using the step recording technique,
it can be used to advance to the next frame to record sprites.

Shortcut: Keypad 3 or Control-right arrow steps the movie forward.

{button See also,AL(`Step_Forward_help')}

Step Backward command (Control menu)
Step Backward steps the movie backward one frame at a time.

Shortcut: Keypad 1 or Control-left arrow steps the movie backward.

{button See also,AL(`Step_Backward_help')}

Real-Time Recording command (View menu)
Real-time recording is an animation technique. When you select this option you can create animation by
recording the movement of a sprite as you drag it across the Stage.

{button See also,AL(`Realtime_Recording')}

Step Recording command (View menu)
Step recording is an animation technique. When you select this option, you can create animation one frame at a
time. Position and record the sprite in the starting frame, step forward one frame, position and record the sprite in
this frame, and then step forward again. Repeat this process until the animation sequence is complete.

{button See also,AL(`Step_Recording')}

Loop Playback command (Control menu) Control-Alt-L
If selected, the Loop Playback command causes the movie to repeat continuously when played. When the movie
reaches the last frame, it automatically starts again from frame 1. By default, this option is on.

Shortcut: Keypad 8 causes the movie to loop.

{button See also,AL(`Loop_help')}

Selected Frames Only command (Control menu)
Selected Frames Only designates a range of frames that can be played. This is convenient if you are working on
just one part of a movie.

To play a portion of a movie, open the Score and select the frames to be played. Choose Selected Frames Only,
make sure loop is turned on, and play the movie.

When a portion of the Score has been marked as selected frames, a green bar appears at the top of the Score
over the selected frames.

Turn off Selected Frames Only when you want to return to normal play mode.

This command is dimmed if no frames are selected in the Score.

{button See also,AL(`Selected_Frames_Only_help')}

Volume submenu (Control menu)
The Volume submenu specifies the sound level of the movie. Choose a level from
0 (mute) to 7 (loud).

Shortcut: Keypad 7 toggles between sound on and sound off.

{button See also,AL(`Volume_help')}

Disable Scripts command (Control menu)
This command is useful when you want to control whether interactivity is on or off during playback, or if you want
to preview exporting a range of frames as a digital video.

Toggle Breakpoint command (Control menu) Control-Shift-Alt-K
This command inserts and removes breakpoints for the line of Lingo that the Script Window cursor is in. Director
opens the Debugger window whenever it encounters a breakpoint in scripts.

When a line in a script has a breakpoint, the Toggle Breakpoint command removes the breakpoint. When there is
no breakpoint, the command inserts one.

{button See also,AL(`Toggle_Breakpoint_help')}

Watch Expression command (Control menu) Control-Shift-Alt-W
The Watch Expression command adds to the Watcher window any expressions and variables in the line of
Lingo that the Script window's text cursor is currently in. This has the same effect as clicking the Watch
Expression button in the Debugger window.

Remove All Breakpoints command (Control menu)
This command removes all breakpoints from the movie's scripts.

{button See also,AL(`Remove_All_Breakpoints_help')}

Ignore Breakpoints command (Control menu)Control-Shift-Alt-I
This command has Lingo ignore any breakpoints in the movie's scripts as the movie plays.

{button See also,AL(`Ignore_Breakpoints_help')}

Step Script command (Control menu) Control-Shift-Alt-down arrow
The Step Script command runs the current line of Lingo but doesn't run any nested handlers that the line calls.

{button See also,AL(`Step_Script_help')}

Step Into Script command (Control menu) Control-Shift-Alt-right arrow
The Step Into Script command runs the current line of Lingo and follows Lingo's normal flow through any
handlers called by that line.

{button See also,AL(`Step_Into_Script_help')}

Run Script command (Control menu) Control-Shift-Alt-Up arrow
The Run Script command is only available when Lingo has stopped at a breakpoint. Use this command to restart
Lingo.

{button See also,AL(`Run_Script_help')}

Recompile All Scripts command (Control menu) Control-Shift-Alt-C
This command recompiles all scripts and checks them for errors. If a script error is found, the appropriate Script
Window opens and the location of the error is selected.

If a Script Window is the active window, Director first saves any changes in the current Script window and
compiles its script before continuing.

Xtras menu
Click a command or submenu for more information:

Update Movies

Filter Bitmap

Auto Filter

Auto Distort

Update Movies command (Xtras menu)
Use the Update Movies command on the Xtras menu to:

· Update movies from Director 4.x movies to the latest file format

· Creating several Shockwave movies at once

· Remove redundant and fragmented data in movie and cast files

· Prevent users from opening movie and cast files

· Batch-process movie and cast files in large projects

Click a dialog box option for more information:

{button See also,AL(`Update_Movies_help')}

Update converts movies from Director 4 or later to the latest file format. As it updates movies, Director
consolidates and removes fragmented data. You can also use this option to rewrite files from the current version
of Director. This removes redundant and fragmented data in the same way as Save As does. (To update movies
from older versions, you must first convert them to the Director 4 file format.)

Protect makes a movie or cast uneditable. It prevents users from opening the movie or cast and making
changes. Protect compacts the movie in the same way as Update and Compact, but it makes the movie even
smaller by removing lingo script text and thumbnails. Once a movie is protected, there is no way to "unprotect" it,
so be sure to keep an unprotected copy.

Convert to Shockwave Movie(s) rewrites movies in the compressed Shockwave file format and adds the DCR
extension. This options also prevents users from opening the movie or cast and making changes. Once a movie
is compressed, there is no way to "decompress" it, so be sure to keep the original movie.

Back Up Into Folder specifies that the original files should be placed in a selected folder. Click Browse to select
the folder for the original files. To avoid overwriting old backups, you should choose a new folder each time you
run Update Movies.

Delete specifies that the original files should be overwritten by the newly updated files. Be very careful using this
option, especially if you are protecting files. Once a file is protected, you cannot open it in Director.

Filter Bitmap command (Xtras menu)
The Filter Bitmap command displays all the filters you have installed as Xtras. Filters are plug-in image editors
that apply effects to bitmapped images. You can also install Adobe Photoshop and Premiere.

Filter Bitmap Dialog options

Categories displays the categories of available filters. These categories are defined by the filters themselves.
When you select a category, the filters in that category appear in the Filters list to the right. Choose All to view
filters in all categories.

Filters displays all the filters in the current category.

Filter activates the current filter and opens the filter controls.

{button See also,AL(`Filter_Bitmap_submenu_help')}

Auto Filter command (Xtras menu)
Use Auto Filter to create dramatic animated effects with filters. Auto Filter applies a filter incrementally to a series
of cast members. You can use it to change a range of selected cast members or to generate a series of new
filtered cast members based on a single cast member. You define a beginning and ending setting for the filter,
and Auto Filter applies an intermediate filter value to each cast member.

For example, if a filter converts an image to look as if it is breaking apart like broken glass, you can apply it to a
cast member with Auto Filter and create a series of ten cast members. The first would show the pieces just
coming apart and the last would show the pieces completely fragmented. You could then show the image
breaking apart in an animation.

Click a dialog box option for more information:

Auto Filter generates new cast members and places them in empty positions following the cast member you selected.
If you selected a range of cast members, no new cast members appear, but the cast members in the range you
selected are changed incrementally.

{button See also,AL(`Xtra_Auto_Filter_help')}

Categories displays the categories of available filters. These categories are defined by the filters themselves.
When you select a category, the filters in that category appear in the Filters list to the right. Choose All to view
filters in all categories.

Filters displays all the filters in the current category.

Set Values:

· Start defines the filters settings of the first cast member to be filtered.

· End defines the filter settings for the last cast member to be filtered.

Create _ New Cast Members defines the number of new cast members that will be created. This option is not
available if you select a range of cast members.

Filter activates the current filter and opens the filter controls.

Auto Distort command (Xtras menu)
The Auto Distort command automatically generates tween positions for any cast member that is free rotated,
made into a perspective, slanted, distorted, or stretched. After artwork has been altered with one of these five
effects, and before you deselect the artwork, choose Auto Distort, and enter the number of tween cast members
in the Generate New Cast Members field in the Auto Distort dialog box. The new cast members are placed in the
next available cast member positions.

{button See also,AL(`Xtra_Auto_Distort_help')}

Help menu
The Help menu contains commands for launching various sections of the Director Help file. It also lets you
register your copy of Director.

Help Pointer
Select the Help Pointer command to change the cursor to the Help Pointer ("?"). You can also select the Help
Pointer with the Help Pointer tool at the far right of the toolbar.

When you click a Director interface element (such as a menu command or a window) with the Help Pointer,
Director Help appears with information about that interface element.

Keyboard shortcuts
Click a category for more information:

Shortcut menus

Menu command shortcuts:
File menu shortcuts

Edit menu shortcuts

View menu shortcuts

Insert menu shortcuts

Modify menu shortcuts

Control menu shortcuts

Window menu shortcuts

Director window shortcuts:
Score shortcuts

Stage shortcuts

Cast window & cast editor shortcuts

Paint window shortcuts

Shortcut menus
Director supports shortcut menus throughout the user interface.

To display a shortcut menu, right-click a sprite or cast member, or in any window. A menu of commonly used
commands is displayed.

File menu shortcuts
Command Shortcut

New Movie Control-N

New Cast Control-Alt-N

Open Control-O

Close Control-F4

Save Control-S

Import Control-R

Export Control-Shift-R

Page Setup Control-Shift-P

Print Control-P

General Preferences Control-U

Exit Alt-F4

Edit menu shortcuts
Command Shortcut

Undo Control-Z

Repeat Control-Y

Cut Control-X

Copy Control-C

Paste Control-V

Clear Delete

Duplicate Control-D

Select All Control-A

Find Text Control-F

Find Handler Control-Shift-;

Find Cast Member Control-;

Find Selection Control-H

Find Again Control-Alt-F

Replace Again Control-Alt-E

Edit Sprite Frames Control-Alt-]

Edit Entire Sprite Control-Alt-[

Exchange Cast Members Control-E

Launch External Editor Control-, (comma)

View menu shortcuts
Command Shortcut

Next Marker Control-right arrow

Previous Marker Control-left arrow

Zoom In Control-+

Zoom Out Control-- (minus)

Show Grid Command-Shift-Alt-G

Snap to Grid Control-Alt-G

Rulers Control-Shift-Alt-R

Show Info Control-Shift-Alt-O

Show Paths Control-Shift-Alt-H

Toolbar for current window Control-Shift-H

Keyframes Control-Alt-Shift-K

Insert menu shortcuts
Command Shortcut

Keyframe Control-Alt-K

Frames Control-Shift-]

Remove Frame Control-[

Modify menu shortcuts
Command Shortcut

Cast Member Properties Control-I

Cast Member Script Control-' (apostrophe)

Sprite Properties Control-Shift-I

Sprite Script Control-Shift-' (apostrophe)

Sprite Tweening Control-Shift-B

Movie Properties Control-Shift-D

Movie Casts Control-Shift-C

Font Ctrl-Shift-T

Paragraph Control-Shift-Alt-T

Join Sprites Control-J

Split Sprite Control-Shift-J

Extend Sprite Control-B

Bring to Front Control-Shift-Up arrow

Move Forward Control-Up arrow

Move Backward Control-Alt-Down arrow

Send to Back Control-Alt-Shift-Down arrow

Align Control-K

Tweak Control-Shift-K

Control menu shortcuts
Command Shortcut

Play Control-Alt-P

Stop Control-period (.)

Rewind Control-Alt-R

Step Backward Control-Option-left arrow

Step Forward Control-Option-right arrow

Loop Playback Control-Alt-L

Volume: Mute Control-Alt-M

Toggle Breakpoint F9

Watch Expression Shift-F9

Ignore Breakpoints Alt-F9

Step Script F10

Step Into Script F8

Run Script F5

Recompile All Scripts Control-Shift-Alt-C

Window menu shortcuts
Command Shortcut

Toolbar Control-Shift-Alt-B

Tool Palette Control-7

Behavior Inspector Control-Alt-;

Sprite Inspector Control-Alt-S

Text Inspector Control-T

Stage Control-1

Control Panel Control-2

Markers Control-Shift-M

Score Control-4

Cast Control-3

Paint Control-5

Text Control-6

Field Control-8

Color Palettes Control-Alt-7

Video Control-9

Script Control-0

Message Control-M

Debugger Control-`(back single quote)

Watcher Control-Shift-`(back single quote)

Stage shortcuts
Action Shortcut

Select only the current frame of the sprite Alt-click the sprite

Show/hide sprite paths Control-Shift-AltH

Create a keyframe within a sprite path Alt-click a tick mark in the sprite path

Show/hide sprite information panels Control-Shift-AltO

Change the opacity of sprite information
panels

Drag the horizontal line on the right side of a
panel.

Open cast member editor Double-click sprite

Open paint window Control-5

Inks pop-up Control-click

Real-time record Control-Spacebar-drag a sprite on the stage

Display shortcut menu for selection right-click

Hide selection indicators Keypad + (plus)

Move sprite by one pixel Arrow keys

Move sprite by ten pixels Shift-arrow keys

Score window shortcuts

Selecting sprites and frames
Action Shortcut

Duplicate selection (sprite or keyframe) Alt

Select a frame within a sprite Alt-click a frame within sprite

Turn Edit Sprite Frames on or off Alt-double-click a frame within sprite

Select empty frames and sprite frames Alt-drag beginning in an empty frame

Select all the frames in a channel Double-click channel number, drag to select
mulitple

Select all the sprite in a channel Click the channel number, drag to select
multiple

Moving and stretching sprites
Action Shortcut

Shuffle backward Control-up arrow

Shuffle forward Control-down arrow

Overwrite sprite frames while dragging a
selection to a new location

Press Control while dragging

Move sprite on the Stage by one pixel Select in the Score and use arrow keys

Move sprite on the Stage by ten pixels Select in the Score and use Shift-arrow keys

Move entire sprite (instead of keyframe) Spacebar-drag

Stretch a sprite without proportionally
relocating keyframes

Control-drag the end frame

Moving the playback head
Action Shortcut

Move playback head to end of movie Tab

Move playback head to beginning of movie Shift-Tab

Move playback head to beg/end Control-Shift-left/right arrow

Go to next marker comment (or jump 10
frames)

Control-right arrow

Previous marker comment (or back 10
frames)

Control-left arrow

Opening editors
Action Shortcut

Open cast editor for selected sprite Double-click a sprite frame or the cast
thumbnail

Open frame settings dialog box Double-click tempo, palette, or transition
channel

Changing the Score
Action Shortcut

Open shortcut menu for Score display
options and preferences

Right-click in the channel number area of the
Score

Cast window & cast editor window shortcuts
Action Shortcut

Open cast member editor Double-click a paint, text, palette or script cast member
or select the cast member and press Return

Cast member script Control-' (apostrophe)

Switch selected cast member with score
selection

Alt-double-click thumbnail

Display cast member info Control-click cast thumbnail

Open script in new window Alt-Script button

Place button Control-Shift-L (places selected cast member in center
of stage)

Cast to Time (Option-Place button) Control-Shift-Alt-L

Create a new cast member* Control-Shift-A

Previous cast member* Control-left arrow

Next cast member* Control-right arrow

 * same function,
 in a new window

Control-Alt-left/right arrow

Scroll up/down one window Page up, Page down

Scroll to top left of cast window Home

Scroll to show last occupied cast member End

Type-select by cast member Type number.

Paint window shortcuts

Changing tool settings
Action Shortcut

Open Gradient Settings dialog box and set ink to
gradient

Double-click paintbrush, rectangle, paint bucket, or
polygon tool

Open Air Brush Settings dialog box Double-click airbrush

Open Pattern Settings dialog box Double-click pattern chip

Open Brush Settings dialog box Double-click paintbrush

Open Paint Window Preferences Double-click line width selector

Turn selected tool into foreground eyedropper D key, while pressed

Turn selected tool into background eyedropper Shift-D key

Turn selected tool into hand tool Spacebar, while pressed

Turn selected tool into destination eyedropper Alt-D key

General
Action Shortcut

Undo ~ (tilde)

Next/previous cast member Keypad left/right arrow keys

Open Transform Bitmap dialog box Double-click color resolution indicator

Toggle Zoom in/Zoom out Control-click in window or double-click pencil tool

Working with images
Action Shortcut

Nudge selection rect. or lasso selection Keypad arrows with selection rectangle or lasso

Change airbrush size (while painting) Keypad up/down arrows with airbrush selected

Change airbrush flow (while painting) Keypad left/right arrows with airbrush selected

Change foreground color (not painting) Keypad up/down arrows, all tools

Change background color (not painting) Shift-keypad up/down arrows, all tools

Change destination color (not painting) Alt-keypad up/down arrows, all tools

Draw border w/current pattern Alt-shape or line tools

Select background color Shift-eyedropper

Select destination color Alt-eyedropper

Toggle between custom and grayscale patterns Alt-click pattern

Polygon lasso Alt-lasso

Duplicate selection Alt-drag

Stretch Control-drag

Draw with background color Alt-pencil tool

Clear visible part of window Double-click eraser

Open color palettes window Double-click foreground, background, or destination
color chip

Text, Field, and Script window shortcuts
Action Shortcut

Bold Control-Alt-B

Italic Control-Alt-I

Underline Control-Alt-U

Sprite shortcuts

Changing sprite duration
Action Shortcut

Stretch a sprite without proportionally
relocating keyframes

Control-drag the end frame

Join Sprites Control-J

Split Sprite Control-Shift-J

Extend Sprite command Control-B

Tweening sprites
Sprite Tweening command Control-Shift-B

Selecting and moving sprites
Select a single frame within a sprite Alt-click the sprite

Select a single frame within a sprite Alt-click the sprite on the Stage, or a frame
within the sprite in the Score

Move entire sprite between frames (instead
of keyframe)

Spacebar-drag

Select all the sprite in a channel Click the channel number, drag to select
multiple

Select all the frames in a channel Double-click channel number, drag to select
mulitple

Turn Edit Sprite Frames on or off Alt-double-click a frame within sprite

Select empty frames and sprite frames Alt-drag beginning in an empty frame

Overwrite sprite frames while dragging a
selection to a new location

Press Control while dragging

Changing sprites on the Stage
Move sprite on the Stage by one pixel Select on the Stage or in the Score and use

arrow keys

Move sprite on the Stage by ten pixels Select on the Stage or in the Score and use
Shift-arrow keys

Show/hide sprite paths Control-Shift-Alt-H

Create a keyframe within a sprite path Alt-click a tick mark in the sprite path on the
Stage

Windows
For information on a window, click its name:

Behavior Inspector Score

Cast Sprite Inspector

Color Palettes Text Inspector

Control Panel Text

Debugger Toolbar

Field Tool Palette

Markers Video

Memory Inspector Script

Message Watcher

Paint

Window menu
The commands in the Window menu open and close Director's authoring windows. Open windows have
checkmarks next to their names.

Click the name of a menu command or submenu for more information:

New Window Cast

Toolbar Paint

Tool Palette Text

Inspectors > Behavior Field

Inspectors > Sprite Color Palettes

Inspectors > Text Video

Inspectors > Memory Script

Stage Message

Control Panel Debugger

Markers Watcher

Score

Director automatically hides all open windows if you choose Stage from the Window menu.

New Window command (Window menu)
The New Window command duplicates the front-most window and its contents, creating another view. This
command works with Score, Cast, Text, Field, Script, and Digital Video windows.

Duplicating a window is useful if the window's contents are large and you want to look at or edit different sections
of the window simultaneously. It's especially useful for viewing several casts at once. Changes you make in the
window are automatically reflected in all other views of the same window.

Shortcut: Press Alt while choosing a Text, Digital Video, Script, Cast, or Field window from the Window menu.

Toolbar (Window menu) Control-Shift-Alt-B
The buttons on the toolbar provide shortcuts for common commands and functions.

The Toolbar command on the Window menu shows or hides the toolbar underneath the menu bar. Click a tool for
more information:

New Movie Exchange Cast Members

New Cast Extend Sprite

Open Align

Save Rewind

Print Stop

Import Play

Undo Cast window

Cut Score window

Copy Paint window

Paste Text window

Find Cast Member Behavior Inspector

Script window

Tool palette (Window menu) Control-7

·

· Click a tool shown at the left for more information.

· Text, shapes, and buttons you create with tools appear as cast
members in the Cast and Score windows.

· Shapes are QuickDraw graphics, not bitmaps.

· Shapes print better than bitmaps, but they animate more slowly.

{button See also,AL(`Tools')}

Selection (arrow) tool
The Selection tool is a standard selection arrow.

Text tool
The Text tool creates text cast members directly on the Stage. Click the Text tool and then drag to define the area
on the Stage where you want text. When you release the mouse button, a text insertion point appears in the area
you just defined and you can begin entering text. The new text cast member is placed in the first available
position in the current cast. The sprite is placed in the first open score cell in the current frame.

Click the Arrow to select text that is already on the Stage. You can change the color of selected text using the
Foreground and Background color chips in the Tool palette.

To edit the text cast member on Stage, click once to select and move the sprite or double-click to edit the text. Click
and drag the handles to change the size of the text box. Work with the text formatting ruler and define tab settings in
the text box by choosing Ruler from the View menu. When you make a change, Director updates all instances of the
text cast member.
The Text tool is an alternative to the Text window for creating text. The Text window is faster and more convenient for
working on substantial amounts of text.

You can use Sprite Properties in the Modify menu to change or determine the size, location, or blend of a
selected sprite. Any changes to a sprite's properties only affects the sprite's appearance on the Stage and does
not alter the actual properties of the cast member.

{button See also,AL(`Tools_Text')}

Line tool
Click the Line tool and drag it across the Stage to draw. You can choose the color for the line with the foreground
and background pop-up that appears when you click the color chips. The width of the Line tool is controlled by
the Line Width Selector at the bottom. The Line tool is constrained to horizontal, vertical, or 45-degree lines with
the Shift key.

Shape tools
Click the Shape tools to draw an outline of the selected shape or on the left to draw shapes with a solid color or
pattern.

Choose the color for the shape with the foreground and background palettes that appear when you press the
color chips.

Use the Pattern chip to select the current pattern. Use the Line Width Selector at the bottom of the Tool palette to
control the thickness of the borders of the Shape tools.

{button See also,AL(`Tools_Shape')}

Field tool
The Field tool creates field cast members directly on the Stage. Click the Field tool and then drag to define the
area on the Stage where you want the field.

Use fields for creating user-editable text in movies or text that you want to format with Lingo. Use the Text tool to
create all other types of text.

{button See also,AL(`Tools_Field')}

Button tools
Director provides three tools for creating buttons, checkboxes, and radio buttons. Click the Check box tool, Push
button tool, or Radio button tool and drag a rectangle on the Stage to create the button. Then type the text that
you want to appear on or next to the button. Set the font, style, and size. The button is placed in the cast as a
button cast member. You can edit the button's text on the Stage or in a Text window.

Do not confuse these buttons with Custom buttons created by the Button Editor.

Buttons do not perform any special function until you write a Lingo script for them.

{button See also,AL(`Tools_Button')}

Foreground and Background color chips
The Foreground and Background color chips in the Tool palette set the color of text, shapes, and sprites.

To set the color for a sprite, select the sprite in the Score or on the Stage and choose a New Foreground Color
using the Foreground color chip, or a New Background Color using the Background color chip.

To set the color of text, select the text you want to change and then choose a text color using the Foreground
color chip. To set the text's background color, choose a color using the Background color chip.

If you apply color to a 1-bit cast member, Director changes the color of the sprite on the Stage but does not
change the color of the actual cast member, which remains black and white.

Pattern settings
The Pattern selector lets you select the current pattern for a Shape tool. It also provides access to the Tile
Settings and Pattern Settings dialog box.

Line width selector
Lets you select the current width of the Line tool, or the border for a shape tool.

Inspectors > Text (Window menu) Control-T
The Text Inspector is a floating window that provides tools to edit text cast members directly on the Stage. The
tools are shortcuts for the formatting options in the Paragraph and Font dialog boxes.

Font pop-up is used to choose any font in your system.
Bold, Italic, and Underline buttons apply character formatting to selected text.
Size specifies the font size. Choose a size from the pop-up, or enter a size in the field. You may need to adjust the
line spacing.

Line spacing displays the line spacing in points. Click the up and down arrows to change the setting, or enter a
value in points.

Alignment aligns selected paragraphs. Click Align Left, Align Center, Align Right, or Justify to align paragraphs.

Kerning sets the kerning between selected paragraphs. The value is in points.

{button See also,AL(`Text_Inspector_help')}

Inspectors > Memory (Window menu)
The Memory Inspector displays information about how much memory is available to Director for your movie. It
also indicates how much memory different parts of the current movie use and the total disk space the movie
occupies.

Total Memory displays the total system memory available. This number depends on the amount of RAM installed on
your computer and any virtual memory that's available.
Partition Size indicates the memory limit assigned to Director in the Limit Memory Size to box of the General
Preferences dialog box.

Total Used indicates how much RAM is being used for a movie.

Free Memory indicates how much more memory is currently available in your system.

Other Memory indicates the amount of memory taken up by Windows, by DIRECTOR.EXE, and by other
applications.

Used by Program indicates the amount of memory used by Director (excluding the amount of memory taken up
by DIRECTOR.EXE).

Mattes & Thumbs shows how much memory is used by cast members that use the Matte ink in the Score and
by thumbnail images in the Cast window.

Cast & Score indicates the amount of memory used by the cast members in the Cast window and the notation in
the Score window. Cast members include all the artwork in the Paint window, all the text in the Text windows, and
any sounds, palettes, buttons, digital video movies, or linked files imported into the cast and currently loaded into
memory.

Screen Buffer shows how much memory Director reserves for a "working area" while animating on the Stage.

Purge button removes all purgeable items from RAM, including all thumbnail images in the Cast window. All
cast members that have Unload (purge priority) set to a priority other than "0-Never" (as specified in the Cast
Member Properties dialog box) are removed from memory. This is useful for gaining as much free memory as
possible before importing a large file. Edited cast members don't get purged.

Inspectors > Behavior (Window menu) Control-Alt-;
The Behavior Inspector is a floating window that lists the behaviors attached to the current selection. The
Behavior Inspector provides controls for editing existing behaviors or creating new ones. It also displays
descriptions of the selected behavior.

Click a window element for more information:

{button See also,AL(`Behavior_Inspector_help')}

Behavior pop-up
Displays the behaviors currently available to the movie. Choose New Behavior to create a new behavior.

Note: You can attach pre-created behaviors to sprites. See the Xtras > Behavior Library menu. Once attached,
the behaviors appear in the Behavior pop-up in the Behavior Inspector.

Parameters button
Opens the Parameters dialog box for the selected behavior.

Cast Member Script button
Opens the Script window and displays the script of the current behavior.

Behavior Shuffle Down/Up buttons
These buttons move the selected behavior down or up in the Behavior list. Director executes behaviors in the
order they appear on the list.

Behavior list
Lists the behaviors attached to the current sprite. The cast in which the behavior is stored and the parameter
settings appear after the name. Director executes behaviors in the order they appear on the list.

Edit pane expander
Shows or hides the Edit pane. Use the Edit pane to modify behaviors.

Event pop-up
Use the Event pop-up to append a new event to the list. Choose New Event from the pop-up to specify a
message from a script or behavior as a custom event.

Action pop-up
Use the Action pop-up to append a new action to the Action list. Attach as many actions as you need to a single
event. Choose New Action from the pop-up to enter the name of Lingo function or handler.

Action Shuffle Down/Up buttons
Moves the selected action down or up in the Action list. Director executes actions in the order the appear on the
list.

Events list
Lists the events that the current behavior responds to.

Actions list
Lists the actions performed when the event occurs.

Description pane expander
Shows or hides the description pane for the selected behavior.

Behavior description
Describes the current behavior. Behaviors included with Director have descriptions. Others may not.

Lock Selection button
Locks the current selection so nothing changes in the Behavior Inspector when new sprites are selected.

Selection
Shows the name, channel number, start frame, and end frame of the selection.

Inspectors > Sprite (Window menu) Control-Alt-S
The Sprite Inspector is a toolbar that allows you to view and modify sprite properties. The Sprite Inspector
appears as an attachment at the top of the Score window (see Sprite Toolbar) or it can be displayed as a
separate window.

Note: When it is displayed as a separate window, you can change the orientation of the Sprite Inspector by
clicking inside the lower right corner of the inspector and dragging the inspector. Possible orientations are:
vertical, horizontal, and stacked.

Click a window element for more information:

{button See also,AL(`Sprite_Inspector')}

Cast member preview(Inspectors > Sprites)
Displays a small preview or image of the cast member for the selected sprite in the Score. Double-click the
sprite's image to open a window in which you can edit the cast member.

Behavior Inspector (Inspectors > Sprites)
This button displays the Behavior Inspector.

Sprite Script pop-up (Inspectors > Sprites)

The Sprite Script pop-up lists all the frame and sprite scripts used in the current movie. The Sprite Script pop-up
displays the script number associated with a selected frame in the Script channel. If the selected frame has no script
associated with it, the pop-up is blank. If more than one script has been attached to a selected sprite, only the first
script appears on the pop-up. Use the Behavior Inspector to see all attached scripts (or behaviors). You can use this
pop-up to assign existing scripts to areas of the Score. Select the cells or sprite you want to apply the script to, then
choose the script you want from the Script pop-up.

Clear Script removes the script from the selected frame or sprite.

New Script creates a new score script.

{button See also,AL(`Sprite_Insp_Script')}

Ink pop-up (Inspectors > Sprites)
You apply ink to sprites to change the way they appear on the Stage. The Ink pop-up also indicates the current
ink applied to selected sprites in the Score.

For a demonstration of how each of the following ink effects work, see the Ink Effects movie.

Copy is the default ink and is useful for backgrounds or for sprites that do not appear in front of other artwork. If
the cast member is not rectangular, a white box appears around the sprite when it passes in front of another
sprite or is displayed on a non-white background. Sprites with the Copy ink animate faster than sprites with any
other ink.

Matte removes the bounding box (rectangular area) around a sprite. Artwork within the boundaries is opaque.
Matte functions much like the Lasso in the Paint window, in that the artwork is outlined rather than enclosed in a
rectangle. Matte, like Mask, uses more memory than the other inks, and sprites with this ink animate more slowly
than other sprites.

Background Transparent makes the pixels in the background color of the selected sprite appear transparent
and permits the background to be seen. This effect uses more memory and may make your sprite animate more
slowly.

Transparent makes all colors transparent so you can see the artwork through it.

Reverse reverses overlapping colors. A pixel that was originally white becomes transparent and lets the
background show through unchanged. Reverse is good for making custom masks.

Ghost is useful for reversing black and white. When it is applied to the foreground sprite, any black pixel turns
the pixel beneath it white. Anything white becomes transparent.

Not Copy, Not Transparent, Not Reverse, and Not Ghost are variations of the above four effects. The
foreground image is first reversed, then the Copy, Transparent, Reverse, or Ghost inks are applied. These are
good for odd effects. Like Transparent, the Not Transparent ink is good for reversing black and white. Just
choose Not Transparent, select a white fill, then draw a rectangle on Stage on top of the artwork you want to
reverse.

Mask ink allows you to define exactly what parts of a sprite are transparent and opaque. For mask ink to work,
you must place a 1-bit mask cast member in the Cast window position immediately following the cast member to
be masked. The black areas of the mask make the sprite opaque and the white areas make the sprite
transparent. This ink is especially useful for sprites in which you want some white areas to be transparent, and
some opaque.

For example, to show a white car you would want the white body of the car to be opaque and the windows to be
transparent. To create a mask, make a copy of the car in the next cast position, convert it to 1-bit color depth with
the Transform Bitmap command, and then fill in the body of the car with black. In the Score, apply Mask ink to
the sprite of the car. The body of the car becomes opaque and the windows transparent.

Blend ensures that the sprite uses the blend percentage specified in the Sprite Properties dialog box.

Darkest compares pixel colors in the foreground and background, and uses whichever pixel color is darkest.

Lightest compares pixel colors in the foreground and background and uses whichever pixel color is lightest.

Add creates a new color that is the result of adding the color value of the foreground sprite with the color value of
the background sprite. If the value of the two colors exceeds the maximum color value, the numbering begins
again at 1.

Add Pin is similar to Add. The foreground sprite's color is added to the background sprite's color, but the value of
the new color cannot exceed the maximum color value.

Subtract subtracts the value of the foreground sprite's color from the value of the background sprite's color to
arrive at the new color. If the color value of the new color is less than the minimum color in the color scale, the
new color is determined by wrapping around and starting at the top of the color scale.

Subtract Pin subtracts the color value of the foreground sprite from the value of the background sprite. The
value of the new color does not wrap around the color scale.

Tip: Mask and Matte use twice the memory of any other ink because Director has to internally create a duplicate

of the artwork.

{button See also,AL(`Sprite_Insp_Ink')}

Blend pop-up(Inspectors > Sprites)
This pop-up displays the blend percentages that can be applied to a sprite. You can vary the blend value
between 0 and 100 percent.

{button See also,AL(`Sprite_Insp_Blend')}

Trails checkbox (Inspectors > Sprites)

If Trails is checked, the selected sprite remains on the Stage, leaving a trail of images along its path as the movie
plays. If Trails is unchecked, the selected sprite is erased from previous frames as the movie plays. The checkbox
also reflects the current selection.

Moveable checkbox (Inspectors > Sprites)
If Moveable is checked, the selected sprite(s) can be moved around on the Stage during playback and in
projectors. If checked, the moveable setting is in effect only when the Playback Head is executing those frames
that contain the moveable sprites. The checkbox also reflects the current selection.

The Moveable checkbox displays a dash (-) if the current selection includes sprites that don't all have the same
setting.

Editable checkbox (Inspectors > Sprites)
If Editable is checked, the selected field sprites can be edited on the Stage during playback. This option is
convenient for making a field sprite editable in some frames, and noneditable in others. You can turn this setting
off when it is no longer required. If checked, the editable setting is in effect only when the Playback Head is
executing those frames that contain the editable sprites. The checkbox also reflects the current selection. If the
current selection includes sprites that don't all have the same setting, the Editable checkbox displays a dash (-).

You can set a field cast member to always be editable in the Score using the Field Cast Member Properties
dialog box. Director ignores the Score's Editable checkbox setting for the cast member.

Using the Lingo statement set the editable of sprite to TRUE is the same as checking the Editable
checkbox in the Score.

Start/End Frames (Inspectors > Sprites)
These fields display the start and end frames of the sprite.

{button See also,AL(`Sprite_Insp_Frames')}

Sprite Coordinates (Inspectors > Sprites)
These fields display the sprite coordinates. The top left corner of the stage is 0, 0.

· X and Y are the horizontal and vertical coordinates of the registration point.

· W and H are the width and height of the sprite.

· l, r, t and b are the left, right, top and bottom edges of the sprite's bounding rectangle.

{button See also,AL(`Sprite_Insp_Coord_help')}

Score window (Window menu) Control-4
The Score window contains the notation that describes your movie and is the primary tool for creating and editing
animation. The Score window contains a record of everything that happens on the Stage.

Click a window element for more information:

Click a topic for more information:
Cells Hide/Show Effects Channels

Frames Sprite channels

Sprites Playback head

Markers channel Channel playback toggle

Markers pop-up Display pop-up

Special effects channels Zoom pop-up

Center Current Frame

{button See also,AL(`Score_help')}

Cells (Score)

A cell is the smallest unit in the Score.
A horizontal row of cells can be viewed as a channel. A vertical column of cells can be viewed as a frame.
Cells are "empty" and contain no information until they are occupied by sprites or set in the special effects channels.

Frames (Score)

Frames are numbered, vertical columns of cells. Like a frame in a movie, each Score frame is a snapshot of your
Director movie at a particular point in time.
An individual frame contains information about everything you see on the Stage when you stop a movie at that frame.
A frame shows what each sprite in each channel is doing on the Stage at that moment.

Sprites (Score)

A sprite is an object that determines when, where, and how a cast member appears in a Director movie. Each sprite
object consists of a cast member and a set of behaviors or characteristics.
For a demonstration of using sprites, see the Cast Members and Sprites movie.
A sprite is represented in the Score by a horizontal bar which can extend across any number of cells or frames in the
Score. The first frame in which the sprite appears (the head of the sprite) is a keyframe indicated by a circle. The last
frame in which the sprite appears (the tail of the sprite) is marked by a square.

· Extend the number of frames in which the sprite appears in the Score by dragging either the head or tail of
the horizontal bar to the appropriate frame.

· The sprite can be moved to a position earlier or later in the movie by clicking and dragging the horizontal
bar.

· Clicking anywhere on the body of the horizontal bar, selects the entire sprite, indicating that menu or
keyboard commands will affect the entire sprite object.

{button See also,AL(`Score_Sprites_help')}

Zoom pop-up (Score)
The Zoom pop-up adjusts the display size of the frames in the Score.

{button See also,AL(`Score_Zoom')}

Playback Head (Score)
The Playback Head shows which frame is on the Stage. You can display an animation sequence by moving the
Playback Head across the frames in the Score.

There are several ways to move the Playback Head:

· Position the cursor on the Playback Head, click the left mouse button, and drag the Playback Head to any
frame in the Score.

· Click any frame in the Score and the Playback Head moves to this frame.

· If markers are in use, click the Next Marker or Previous Marker arrows to move the Playback Head to the
designated marker.

{button See also,AL(`Score_Playback_help')}

Center Current Frame (Score)
The Center Current Frame button moves and centers the Score to the position of the Playback Head.

Markers channel (Score)
Use the Markers channel to place markers in the Score. Markers identify frames and can be used as navigation
points within a movie. You can also use markers to add comments, speaker notes, or storyboard notes to specific
frames of animation.

· Insert a marker by clicking any frame in the Markers channel.

· Reposition a marker by dragging it to the left or right within the Markers channel.

· Remove a marker by dragging the marker off the Score.

{button See also,AL(`Score_Markers_Chnl')}

Markers menu (Score)

Use the Markers menu or the Previous Marker and Next Marker arrows to position the playback head at a particular
marker.

{button See also,AL(`Score_Markers_Menu')}

Special effects channels (Score)
A channel is a row of frames. The first six channels (located above the sprite channels) keep track of special
effects. You can hide or display these channels using the Hide/Show Effects Channels toggle:

· Tempo

· Palette

· Transition

· Sound 1

· Sound 2

· Script

{button See also,AL(`Score_Effects_Chnl_help')}

Sprite channels (Score)
A channel is a row of frames. Sprite channels (located below the six special effects channels) describe the state
of one or more sprites in a movie.

There are 120 sprite channels. Sprites that occupy higher-numbered channels appear in the foreground; sprites
that occupy lower-numbered channels appear in the background.

{button See also,AL(`Score_Sprite_Chnl_help')}

Hide/Show Effect Channels toggle (Score)
The toggle shows or hides the special effects channels (tempo, palette, transition, sound, and script) of the
Score.

Channel playback toggle (Score)
The square-shaped toggle at the left of the sprite channel turns the channel on or off. Turning a channel off tells
Director to ignore the channel during playback. By default, all channels are on.

If you turn off a sprite channel, sprites in the selected channel do not appear when the movie is played.

If you turn off the script channel, Director ignores all scripts during playback. (This is the same as checking the
Disable Scripts command in the Control menu.)

Color Selector (Score)
Use the Color Selector to apply color to sprites. The color only affects the display of sprite spans in the Score; it
does not affect how sprites appear on Stage.

To apply a color, select the sprite and then click a color from the Color Selector.

Display menu (Score)
The Display pop-up lets you change the type of information displayed in each cell of the Score. It is located
between the special effects and sprite channels at the left of the Score window. Use it to view different types of
notation in the Score. By default, the Score displays cast member notation.

{button See also,AL(`Score_Display')}

Stage (Window menu) Control-1
The Stage is the backdrop for all Director movies. Choose Modify > Movie Properties to set the size of the Stage.
In most cases, the edges of the Stage window extend to the edges of your screen, so you can use all of the
monitor for your movie. Movies continue to play on the Stage when other windows are open and active. This
permits you to study the movie in the Score, for example, while keeping an eye on the Stage.

Choose Window > Stage to bring the Stage to the front of the screen. It temporarily hides all open windows. To
open a menu just click and hold.

{button See also,AL(`Stage')}

Control Panel (Window menu) Control-2
The Control Panel has controls similar to a VCR. Use it to play, stop, step forward or backward, or rewind your
movie. The Control Panel is also used to loop animation, set tempo, and turn sound on and off. The Control
Panel indicates the current frame number, the current tempo, and the actual duration of the current frame.

Choose Window > Control Panel to show or hide the Control Panel. The Control Panel buttons have
corresponding commands on the Control menu.

Use shortcuts on the number pad instead of clicking Control Panel buttons. See the diagram on the back cover
of the Learning Lingo book.

Click part of the Control Panel for more information:

Click the name of a Control Panel indicator for more information:

Frame counter
Tempo display
Actual tempo display

Frame counter (Control Panel)

The frame counter displays the number of the frames currently on the Stage. To go to a specific frame number, click
the field, type a frame number, and press Enter.

Tempo display (Control Panel)

The Tempo display shows the tempo of the current frame. You can view the tempo in either FPS (frames per second),
or SPF (seconds per frame). Click the Tempo Mode button and choose the mode you want from the pop-up. Seconds
per frame measures the duration of a frame in milliseconds.
To change the tempo, click or press the up or down arrow next to the Tempo display. To use a specific tempo, click
the Tempo display, type a tempo, and press Enter. If you are entering a tempo in frames per second (FPS), you must
enter a whole number. If you are entering a tempo in seconds per frame (SPF), you must type a decimal (.) before
entering a value.

If there are no tempo settings in the tempo channel, the Control Panel displays the default tempo. (If there is a
tempo setting in the tempo channel, the Control Panel displays the tempo of the current frame.)

Tip: You should always enter a tempo setting in the first frame in the tempo channel.

{button See also,AL(`Control_Panel_Tempo_display')}

Actual Tempo display (Control Panel)

While a movie is playing, the Actual Tempo display shows how fast the movie is playing. Click the Actual Tempo Mode
button and choose a mode for viewing the tempo from the pop-up. There are four different modes:

FPS (frames per second) shows the actual duration of the previous frame in frames per second (FPS),
including the time necessary to execute any Lingo scripts except Exit Frame scripts. If the movie is stopped,
the display shows the duration of the current frame. Frames that don't have a recorded tempo value display
"--" instead of a value for the Actual Tempo.

SPF (seconds per frame) shows the duration of the current frame in milliseconds.

Running Total provides a quick summary of elapsed seconds from the beginning of the movie to the current
frame.

Estimated Total provides a more accurate but slower calculation of elapsed time. It is useful if you want to
include transitions and palette changes in determining frame durations.

Computing estimated frame durations can reduce playback speed, so don't leave the Actual display in Estimated
Total mode.

If the movie is locked (using the Lock Frame Durations option in the Movie Properties dialog box), the Actual
Tempo display shows the previously recorded frame durations.

· Clear all recorded frame durations from the movie if you want to record frame durations for a section of the
movie and lock them. To clear all recorded frame durations, press Alt while clicking the Lock option in the
Movie Properties dialog box. During playback, frames that don't have a recorded duration instead display "--"
.

· Since not all computers are equally fast, you can step through the movie frame-by-frame and compare the
actual frame durations to the tempos you've set for the movie. To find frames that have longer durations than
the current tempo, set both the Tempo and Actual Tempo displays to show seconds per frame (SPF); then
step through the range of frames, and look for any frame whose actual duration is longer than the current
tempo.

{button See also,AL(`Control_Panel_Actual_display')}

Markers window (Window menu) Control-Shift-M

The Markers window lets you write comments associated with markers you set in the Score. For example, a Director
animation can have staging or acting directions, storyboard scripts, or speaker's notes written in the Markers window
and tied to specific frames in the Score. Storyboards, transparencies, or handouts can be printed that include pictures
of selected frames of your movie along with the comments written in the markers window. Double-click a marker in
the Score to open the Markers window to the comment associated with that frame.

{button See also,AL(`Markers')}

Cast window (Window menu) Control-3
The Cast window displays the cast members in the current cast. A cast is a database of graphics, sounds, Color
Palettes, scripts, buttons, transitions, digital video movies, and text used in a Director movie.

Click a window element for more information:

Click a topic for more information:
Cast window positions and thumbnails

Moving cast members

Cast Preferences

Cast Properties

Viewing multiple casts
Open multiple Cast windows to display the different casts in your movie, or select a different cast to display in the
current window.

· To open a new Cast window for a particular cast in the current movie, choose
Window > Cast and then select the name of the cast from the submenu.

· To open a new Cast window for the current cast, make a Cast window active and then choose Window >
New Window.

·

To change the cast displayed in a Cast window, click the cast pop-up and choose the cast you want to display
from the pop-up.

The Cast window title bar indicates whether a cast is internal, external linked, or external unlinked.

Cast window size

A movie's cast can contain up to 32,000 cast members. You control the row width and the number of visible rows
using Cast Preferences in the File menu.

Selecting cast members

Clicking any cast member selects it. Select a range of cast members by Shift-clicking. Control-click selects
multiple non-adjacent cast members. Individual cast members can be cut, copied, pasted, or cleared from the
Cast window.

{button See also,AL(`Cast_help')}

Cast window positions and thumbnails
Each cast member position is identified by a number and, optionally, a name. For every occupied position in the
Cast window, a thumbnail image is displayed that represents the cast member's type.

Note: Thumbnail images for Xtra cast members vary.

Cast members with scripts display a Script icon in the lower left corner. To control whether or not Director
displays a script icon in the cast, use the Show Cast Member Script Icons checkbox in the Cast Preferences
dialog box.

Tip: Double-clicking a cast member is a shortcut for opening the Paint window for a graphic cast member, the
Text window for a text cast member, the Color Palettes window for a palette cast member, the Script window for a
script cast member, and the Digital Video window for a digital video cast member. Alt-double-clicking is a shortcut
for opening the cast member in a new window.

Choose Cast pop-up

Use the cast pop-up to select which cast is displayed in the current Cast window. You can choose between any
internal cast or external cast linked to the current movie. You can also choose New Cast to create a new cast.

To open a new Cast window, make sure a Cast window is active and then choose New Window from the Window
menu.

Drag Cast Member button

The Drag Cast Member button moves the selected cast members to the Stage or Score, or moves them within
the cast. When cast members are moved within the Cast window, the Score window is updated with their new
position. When you press and hold down this button, the cursor changes to a closed hand to let you drag one or
more selected cast members. Using this button is the same as clicking and dragging a selected cast member in
the Cast window. Use this button to move selected cast members that may not currently be visible in the Cast
window, if you've scrolled to a new location.

To use the Drag Cast Member button to move a cast member to a new location within the Cast window:

1. Select the cast members you want to move.

2. Scroll to the new location in the Cast window where you want to insert the selected cast member.

3. Drag from the Drag Cast Member button to the new location in the Cast window. As you drag within
the Cast window, a blinking insertion bar indicates the location where the cast member will be
inserted.

4. Release the mouse button to insert the selected cast member at the new location.

Previous, Next Cast Member arrows

The Previous and Next Cast Member arrows let you navigate to the previous or next cast member, skipping over
empty cast members.

Cast Member Properties button

The Cast Member Properties button displays the Cast Member Properties dialog box for the selected cast
member. If the selection consists of more than one cast member, the dialog box displays the number of cast
members selected, their total size, and purge priority.

Shortcut: Control-I also opens the Cast Member Properties dialog box.

Cast Member Script button

The Cast Member Script button opens a new Script window or makes an existing Script window active for the
selected cast member, or for the first selected cast member if more than one are selected. If the selected cast
member has no script associated with it, clicking this button opens a new Script window, creating a script for the
cast member. This is the same as clicking the Script button in the Cast Member Properties dialog box.

Shortcut: Pressing Control-' (apostrophe) is the same as clicking this button.

Cast Member Number button

The Cast Member Number button displays the position of the selected cast member in the Cast window or the
position of the first selected cast member in a multiple selection.

Tip: When the Cast window is front-most, typing the number of an existing cast member automatically scrolls the
Cast window to the cast member's location and selects it. After you've stopped typing, the Cast window will scroll
to show the new selection.

Cast Member Name field

The Cast Member Name field displays the name of the selected cast member or the first selected cast member
in a multiple selection. Click and type into the name area to enter or edit the name of a cast member. Press Enter
to confirm your changes.

Paint window (Window menu) Control-5
{button See also,AL(`Paint')}

The Paint window has a complete set of paint tools and inks you can use to create and edit bitmapped cast
members for your movies.

Click part of the Paint window illustrated or on a topic below for more
information:

Creating cast members within Director
Using rulers in the Paint window
Zooming in and out in the Paint window
Using the Effects toolbar
Using shapes

Shortcut: A shortcut for opening the Paint window is to double-click a
bitmapped cast member on the Stage or in the Score or Cast windows. The
Paint window opens with that cast member showing.

The Paint window tools
The list below shows whether clicking and/or dragging makes the tool work.
Click the name of a Paint window tool for more information:

Lasso-(Drag) Selects irregular shapes
Marquee-(Drag) Selects rectangular areas
Registration-(Click) Sets registration point
Eraser-(Drag) Erases artwork
Hand-(Drag) Moves artwork within window
Magnifying Glass-(Click) Scales the view
Eyedropper-(Click or drag) Picks foreground color
Paint Bucket-(Click) Fills with foreground color or current pattern
Text-(Click) Starts text entry
Pencil-(Click or drag) Toggles pixels between foreground and background
color
Air Brush-(Click or drag) Sprays foreground color or current pattern
Brush-(Click or drag) Paints foreground color or current pattern
Arc-(Drag) Draws arcs (one quarter of an ellipse or circle)
Line -(Drag) Draws straight lines
Rectangle-(Drag) Draws hollow or filled rectangles and squares
Ellipse-(Drag) Draws hollow or filled ellipses and circles
Polygon-(Click) Draws hollow or filled polygons

Tip: If you Control-click the image in the Paint window, your view of the
artwork will zoom in to a magnified view. In most cases, pressing the Shift
key while dragging a tool constrains it to horizontal or vertical. The Ellipse
and Rectangle tools are constrained to a perfect circle or square when Shift-
dragging.

Lasso tool (Paint window)
Use the Lasso tool to select an area. Once selected, drag, cut, copy, or clear the artwork. You can also use the
following buttons on the effects toolbar: Invert, Trace Edges, Fill, Darken, Lighten, Smooth, and Switch Colors.

Tips:

· When artwork is selected with the Lasso, hold down the Alt key while dragging the artwork to make a copy of
it.

· If you press the Alt key while dragging the Lasso, the Lasso draws straight lines to select a polygon shape.
Click the Lasso to anchor a point and draw another straight line. Double-click when you reach the end of
your selection.

· Pressing the Shift key while dragging the object constrains its movement to a horizontal or vertical line. To
move the cast member in one-pixel increments, select it on the Stage and use the arrow keys on your
keyboard.

Note: Use the Lasso to select everything but the pixels of a certain color. The color of the pixels not selected is
determined by where you begin to drag the Lasso. For example, if you're selecting an object that is red, white,
and blue, and you only want to select the red and white pixels in the object, begin your drag on a blue pixel.
Then, only the red and white pixels will be selected. If you want to avoid this effect, use the No Shrink option in
the Lasso pop-up.

Lasso pop-up (Paint window)
Press and hold the mouse button while the pointer is on the Lasso tool to display the pop-up and modify how the
Lasso works.

· Shrink causes the Lasso to tighten around the selected object so that only the object is selected.

· No Shrink permits you to select the entire area you drag around. The Lasso selects whatever is inside the
selected area.

· See Thru Lasso causes your selection to become transparent, as if the Transparent ink effect were applied.

Selection Marquee (Paint window)
The Marquee tool selects artwork in the Paint window. Once selected, artwork can be dragged, cut, copied,
cleared, or modified with the commands on the Paint toolbar.

Select the contents of the visible part of the current cast member by double-clicking the Marquee.

Tips:

· Stretch and compress art that is selected with the Marquee using Control-drag.

· Make a copy of artwork that is selected with the Selection Marquee using Alt-drag.

 {button See also,AL(`Paint_Selection_rectangle')}

Marquee tool (Paint window)
If you press and hold the mouse button when the pointer is positioned on the Marquee tool, the Marquee pop-up
appears with commands to modify the action of the tool.

· Shrink causes the rectangle to shrink around the selected artwork.

· No Shrink permits you to select everything within the Marquee.

· Lasso tightens the Marquee around the object like the Lasso tool and selects the pixels according to the
color of the pixel beneath the crosshair when you started your drag.

· See Thru tightens the Marquee around the object and applies the Transparent ink.

Any artwork selected with the Lasso or Marquee can be further modified with ink effects or commands on the
Paint toolbar.

Double-clicking the Marquee tool selects the entire cast member.

As with the Lasso, you can reposition the selected area of the cast member. Move the crosshair into the selected
area so that the crosshair turns into a pointer and drag the selected area to reposition it. There are several key
combinations that affect the selected area when you drag. They include:

· Copy-Alt-drag

· Stretch-Control-drag

· Stretch proportionally-Control-Shift-drag

· Constrain to horizontal or vertical-Shift-drag

· Clear-Backspace or Delete

· Scale-Control-Alt-drag

Use the keyboard arrow keys to horizontally or vertically nudge a selection.

Hand tool (Paint window)
The Hand tool moves the view within the Paint window, changing your position in the window relative to the
artwork. Click the Hand tool to select it, then drag the artwork to pan the view.

Tip: Press the Spacebar and click the mouse as a shortcut to turn any tool into the Hand tool.

Magnifying Glass tool (Paint window)
Click to zoom in on an area. Shift-click to zoom out.

Text tool (Paint window)
Use the Text tool to type text in any font, size, or style in the Paint window.

The text you create in the Paint window is bitmapped. Text can be dragged around the Paint window before you
deselect it. However, once you click outside the field after creating the text, you cannot edit its font, size, or style.
To change the font, size, or style after clicking, you must erase the text and replace it with new bitmapped text.

Modify selected text with ink effects from the Ink pop-up, patterns from the Patterns pop-up, or foreground and
background colors with the Foreground and Background color chips in the Paint window.

{button See also,AL(`Paint_Text')}

Paint Bucket tool (Paint window)
The Paint Bucket fills any enclosed area with the currently selected color and pattern. Modify the fill with the ink
effects in the Ink pop-up in the Paint window. If there is a break in the outlined area you are filling, the paint will
leak out and fill the surrounding area. If this happens, choose Edit > Undo Bitmap and then View > Zoom In to
get a magnified view and inspect the outline for breaks.

Tip: Double-click the Paint Bucket tool to open the Gradient Settings dialog box.

Air Brush tool (Paint window)
The Air Brush sprays the currently selected color and pattern. To modify the spray, choose the ink effects from
the Ink pop-up in the Paint window. The longer you hold the Air Brush in one spot, the darker it fills in the area.

Air Brush pop-up

If you press and hold the mouse button when the pointer is positioned on the Air Brush, the Air Brush pop-up
appears. Each of the five settings in the pop-up can be defined so you can have several types of spray available
without opening the Air Brush Settings dialog box.

To define a setting:

1. Choose the menu item you want to define from the Air Brush pop-up.

2. Click the Air Brush again and choose Settings from the Air Brush pop-up.

3. Select the type of spray you want in the Air Brush Settings dialog box.

4. Click Set.
The choices you make in the Air Brush Settings dialog box are assigned to the menu item and remain until you
change them.

Air Brush Settings dialog box

The Air Brush Settings dialog box defines the size of the area the Air Brush covers, the size of the dots in the Air
Brush's spray, and the flow speed of the Air Brush's paint.

Tip: Double-click the Air Brush in the Tool palette to open the Air Brush Settings dialog box. Use this dialog box
to set the size of the Air Brush's spray, the size of the dots of paint it sprays, and how fast it sprays paint.

Uniform Spray causes drops sprayed by the Air Brush to be uniformly sized.

Random Sizes sprays with randomly sized drops.

Current Brush sprays with drops shaped like the current Paintbrush.

Spray Area sets the size of the Air Brush's spray area. To change the spray area, drag the Size scrollbar.

Dot Size sets the size of the dots sprayed by the Air Brush. To change the dot size, drag the Dot Size scrollbar.

Flow Rate controls how fast the Air Brush covers an area with paint. To change the flow, drag the Flow Speed
slider.

Brush tool (Paint window)
The Brush draws with the currently selected colors, ink effect, or fill pattern. Double-click the Paintbrush to
change the size and shape of the brush. When the Brush Settings dialog box appears, click the Brush shape you
need, and then click Set.

Paintbrush pop-up

The Paintbrush pop-up is similar to the Air brush pop-up. Press and hold the mouse button while the pointer is
positioned on the Paintbrush tool to open the pop-up.

Each of the five settings in the pop-up can be defined so you can have several brush shapes available without
opening the Brush Settings dialog box.

To define a setting:

1. Choose the menu item you want to define from the Brush pop-up.

2. Click the Brush tool again and choose Settings from the Paintbrush pop-up.

3. Select the brush shape you want in the Brush Settings dialog box.

4. Click Set.
The choices you make in the Brush Settings dialog box are assigned to the menu item in the pop-up and remain
until you change them.

Brush Settings dialog box

The Brush Settings dialog box lets you change the shape of the Brush. You can double-click the Paintbrush in
the Paint window Tool palette.

Click a dialog box option for more information:

Custom/Standard selects standard default brush shapes or lets you create your own brush shapes from the set
of custom brush shapes. Only the custom Brush shapes are editable.

Change a custom Brush shape by clicking one of the Brush shapes on the left. You can edit the current Brush
shape by clicking the magnified image of the Brush shape. Clicking a blank pixel fills it and clicking a filled pixel
makes it blank.

Clicking outside the Brush Shapes dialog box picks up the shape on the screen at the point you click.

Right/Left arrows move the Brush shape one pixel to the right or to the left.

Up/Down arrows move the Brush shape up or down one pixel.

Black/White square reverses the colors of the Brush shape (for example, black becomes white and white
becomes black).

Copy copies the Brush shapes to the Clipboard.

Paste pastes the Brushes into the custom set of Brush shapes.

Pencil tool (Paint window)
The Pencil tool creates a one-pixel-wide line. On a black and white cast member, the Pencil draws black pixels
on a white background and white pixels on a black background. On a color cast member, the Pencil draws with
the currently selected foreground color unless you are drawing on pixels that are the foreground color. In that
case, the Pencil draws in the background color.

Double-click the Pencil tool to magnify the object view in the Paint window. You can also zoom in while using the
Pencil or any other tool by Control-clicking.

Use the magnified view to edit the cast member pixel by pixel. Use any of the paint tools while in a magnified
view. Click the reduced view in the upper right corner of the Paint window to returns to a 100% view. Double-click
the Pencil in the Tool palette, while in magnified view, to also return to a 100% view.

Filled Rectangle/Rectangle tool (Paint window)
The Rectangle tool draws rectangles of any size. Click the Rectangle tool to draw an outline in the current
foreground color as you drag the crosshair. Click the Filled Rectangle tool to fill the rectangle with the current
foreground and background colors selected. The thickness of the rectangle's border is controlled with the Line
Width Selector at the bottom of the Tool palette.

Tip: Double-click the Filled Rectangle tool to open the Gradient Settings dialog box.

To constrain the rectangle to a square, press the Shift key as you drag. If you press the Alt key while drawing a
rectangle, the border is drawn with the current pattern.

Eraser tool (Paint window)
The Eraser clears the portion of the cast member you drag across. The Eraser always clears to white. Double-
click the Eraser tool to erase everything in the Paint window's visible area.

Filled Ellipse/Ellipse tool (Paint window)
The Filled Ellipse/Ellipse tool creates circles and ovals. Like the Rectangle tool, the Ellipse is an outline if you
click the Ellipse tool. The ellipse is filled with the selected foreground and background colors, ink, and pattern
when you click the Filled Ellipse tool. The thickness of the border is controlled by clicking the Line Width Selector
at the bottom of the Tool palette.

Tip: Double-click the Filled Ellipse tool to open the Gradient Settings dialog box.

When you hold down the Shift key as you draw, the Ellipse tool draws perfect circles. If you use the Ellipse tool
while pressing the Alt key, the border of the circle is drawn with the currently selected pattern.

Filled Polygon/Polygon tool (Paint window)
The Filled Polygon/Polygon tool draws polygons with as many sides as you want. The Polygon tool creates an
outline and the Filled Polygon tool draws an area filled with the current foreground and background colors, inks,
and patterns. When you click the tool, the pointer becomes a crosshair. Click in the Paint window to start drawing
the side of the polygon. Each time you click, a line is drawn from the spot you clicked previously. Double-click to
connect the end-point of the shape to the beginning of it.

Line thickness is controlled by the Line Width Selector at the bottom of the Tool Palette. Press the Alt key while
drawing a polygon, to draw the border with the currently selected pattern.

Tip: Double-click the Filled Polygon tool to open the Gradient Settings dialog box.

Line tool (Paint window)
The Line tool draws straight lines at any angle. When you hold down the Shift key, the Line tool draws vertical,
horizontal, or 45-degree lines, depending upon the direction you begin to drag. Change the line width by clicking
the Line Width Selector in the Tool palette.

The line is drawn with the currently selected foreground color and ink effect.

Tip: Press the Alt key while drawing a line to cause the line to be drawn in the currently selected pattern.

Arc tool (Paint window)
The Arc tool draws one quarter of an ellipse or circle. When the tool is active, the pointer becomes a crosshair.
Drag the crosshair from the starting point of the line and move the pointer to see the curve. Experiment with
dragging the tool until it produces the line you need. The thickness of the arc is controlled with the Line Width
Selector.

The line is drawn with the currently selected foreground color and ink unless you press the Alt key while
dragging, in which case the arc is drawn with the current pattern.

Registration tool (Paint window)
The default registration point for a bitmap image is the center of the cast member in the Paint window. However,
the registration point for shapes, buttons, and text cast members is always the upper left corner of the image.
Using the Registration Point tool to click a point in the Paint window sets the registration point at that location.

Tip: Double-click the Registration tool to reset the default registration point at the center of the cast member.

{button See also,AL(`Paint_Registration')}

Eyedropper tool (Paint window)
The Eyedropper tool is used to match colors. When you select the Eyedropper tool, any color you click in the
Paint window becomes the foreground color. Use it to match colors without opening the Color Palette.

Ink pop-up (Paint window)
Choose an ink effect from the Ink pop-up at the bottom of the Paint window.

The result of the ink you choose depends on whether you are working in color or black and white. Also,
some inks work better when painting with patterns and others work better when painting with solid colors. To
learn more about using ink effects, see the Ink Effects movie.

Ink
(click for info)

B&W Color Works best with

Normal Ã Ã Solids and patterns

Transparent Ã Ã Patterns

Reverse Ã Ã Solids and patterns

Ghost Ã Ã Solids (b&w) and patterns (color)

Gradient Ã Ã Paintbrush, Paint Bucket, Shape tools

Reveal Ã Ã Paintbrush, Shape tools

Cycle Ã Solids and patterns

Switch Ã Paintbrush

Blend Ã Solids and patterns

Darkest Ã Patterns

Lightest Ã Patterns

Darken Ã Paintbrush

Lighten Ã Paintbrush

Smooth Ã Paintbrush

Smear Ã Paintbrush

Smudge Ã Paintbrush

Spread Ã Ã Paintbrush

Clipboard Ã Ã Paintbrush

Normal (Ink pop-up of the Paint window)
Normal is the default ink. It is opaque and maintains the color of the current foreground color and pattern.

Transparent (Ink pop-up of the Paint window)
Transparent ink makes the background color of patterns transparent so you can see artwork drawn previously in
the current cast member through the pattern.

Reverse (Ink pop-up of the Paint window)
Reverse ink makes overlapping colors reverse. Any pixel in the foreground art that was originally white becomes
transparent. Any pixel that was black reverses the color of the background art.

Ghost (Ink pop-up of the Paint window)
Ghost in black and white creates an image than can only be seen when drawn over a black background. In color,
Ghost draws with the current background color.

Gradient (Ink pop-up of the Paint window)
Gradient lets you paint with the gradient fill selected in the Gradient Settings dialog box. A gradient fill is one
that progresses from one color, the foreground, to another color called the destination color. You can paint with
Gradient ink with the Paintbrush, Paint Bucket, or Shape tools.

Reveal (Ink pop-up of the Paint window)
Reveal works indirectly with the art in the previous cast position. Imagine the previous cast member's artwork
covered with a white area. Reveal erases the white area to show the artwork in the previous window. Reveal can
be used to create specific shapes from shades created with the Air Brush. Since it is impossible to mask certain
shapes for the Air Brush, spray an area with the Air Brush first; then in the next cast member, paint the shapes
you need with a Reveal ink. As you paint your object, you will expose the Air Brush pattern in the previous
window.

Cycle (Ink pop-up of the Paint window)
Cycle is a color ink. As you draw with a cycling ink, the colors change as the ink progresses through the palette.
The beginning and ending points of the color cycle are determined by the foreground and destination colors. If
you want to cycle through the whole palette, choose white as the foreground color and black as the destination
color.

Switch (Ink pop-up of the Paint window)
Switch changes any pixel that is the current foreground color to the current gradient destination color as you
paint over that color.

This ink only works when your computer is set to 256 colors.

Blend (Ink pop-up of the Paint window)
Blend creates a translucent color ink. You can see the background object, but its color is blended with the
foreground object's color. Choose the percentage of blend in the Paint Window Preferences dialog box.

Darkest (Ink pop-up of the Paint window)
Darkest is a useful ink for colorizing black and white artwork. For example, if you paint yellow over black and
white, black will remain black since it is darker than yellow, and white will become yellow because yellow is
darker than white.

Lightest (Ink pop-up of the Paint window)
Lightest is a useful ink for colorizing black and white artwork. For example, if you paint yellow over black and
white, black objects become yellow when painted with the Lightest ink effect and white remains white because it
is lighter than yellow.

Darken (Ink pop-up of the Paint window)
Darken makes colors darker. The more the Paintbrush passes over an area, the darker it becomes. The color of
the foreground, background, or destination inks have no effect on Darken. Darken creates an effect that is the
same as reducing a color's brightness with the controls in the Color Palettes window. Vary the rate of this ink
effect in the Paint Preferences dialog box.

Lighten (Ink pop-up of the Paint window)
Lighten makes existing artwork lighter. The more times you pass over the artwork with the Paintbrush, the lighter
it becomes. The color of the foreground, background, or destination inks have no effect on Lighten. Lighten
creates an effect that is the same as increasing a color's brightness with the controls in the Color Palettes
window. Vary the lightness of this ink effect in the Paint Preferences dialog box.

Smooth (Ink pop-up of the Paint window)
Smooth blurs existing artwork when painted with the Paintbrush. It is not directional like Smear and Smudge. The
color of the foreground, background, or destination inks have no effect on Smooth. Smooth only works with art
already in the Paint window. Use it to smooth out jagged edges.

Smear (Ink pop-up of the Paint window)
Smear works with the Paintbrush and is similar to mixing paint. Any area you drag across with a Smear ink is
spread in the direction of the brush and fades as it gets farther from its source. The color of the foreground,
background, or destination inks have no effect on Smear. Smear only works with art already in the Paint window.

Smudge (Ink pop-up of the Paint window)
Smudge is a color ink for the Paintbrush that is similar to Smear. It is also like mixing paint. The colors fade faster
as they are spread. The color of the foreground, background, or destination inks have no effect on Smudge.
Smudge only works with art already in the Paint window.

Spread (Ink pop-up of the Paint window)
Spread works with the Paintbrush in color. Whatever is under the Paintbrush when you start to drag is picked up
as the ink for the brush. Copies of what is beneath the brush are pushed across the window as you draw.

Clipboard (Ink pop-up of the Paint window)
Clipboard uses the current contents of the Clipboard as a pattern to paint with.

Gradient Colors selection bar (Paint window)
A gradient is a blend of a range of colors that can be used for shading, highlights, backgrounds, and special
effects. On a black-and-white monitor, gradients are created with a pattern of black and white pixels that fade
from black to white or vice versa. With a color monitor, the two colors that form the beginning and end of a
gradient are the foreground color and the foreground and background color. The range of colors between the
foreground and background colors is used with the Gradient, Cycle, and Switch inks. Select the background
color using the right Gradient Colors selection bar.

To set the current foreground color, click the left side of the selector and choose a color from the pop-up Color
Palette. To set the Gradient background color, click the right side of the selector and choose a color from the pop-
up color palette.

Tip: Hold down the Alt key while pressing the up or down arrow key to cycle through the colors in the Gradient
color chip.

Gradient Colors (Paint window)
The Gradient Colors selection bar creates a blend of colors that you can use for backgrounds, highlights,
shading, and special effects. Limited gradient effects can be created with a black-and-white cast member.

The gradient's foreground color and background color can be selected in the Paint window with the color chips in
the Gradient Colors selector or with the controls in the Gradient Settings dialog box. When in the Paint window,
use the popup palette on the Foreground color chip to select the foreground color. Pick the destination color with
the pop-up at the right side of the Gradient Colors selection bar above the foreground and background color
chips. The current foreground color is displayed to the left of the selection bar and the current destination color is
displayed on the right side of the selection bar.

To change gradient settings, click the area between the foreground and destination color chips and choose
Gradient Settings from the pop-up.

Gradient Settings dialog box

In the Gradients Settings dialog box, set the foreground and background colors as well as the pattern to use with
your gradient. There are several pop-ups that control the style of your gradient fill. Each choice you make is
immediately previewed on the left.

Click a dialog box option for more information:

Type (Gradient Settings)
Type determines whether the gradient is made with the pattern you select with the Pattern chip pop-up in the
Paint window, or with a dithered pattern. If you choose Dither, only dithering options appear on the Method pop-
up below. If you choose Pattern, only pattern options appear.

Method (Gradient Settings)
Method determines the way the gradient fills an area in the Paint window. The options on the menu list determine
where the dark and light colors of your blend are located.

· Dither Best Colors ignores the order of the colors in the palette and only uses colors that create a
continuous blend from foreground to background colors and blends them with a dithered pattern. Dithering is
a technique of creating color with two or more colors of pixels interspersed together.

· Dither Adjacent Colors uses all colors between the foreground and background colors and blends them
with a dithered pattern.

· Dither Two Colors uses only the foreground and the background colors and blends them with a dithered
pattern.

· Dither One Color uses only the foreground color and fades it with a dithered pattern.

· Standard Colors ignores all colors between foreground and background and adds several blended colors
with a dithered pattern to create the gradient.

· Multi Colors ignores all the colors between foreground and background and adds several blended colors
with a randomized dithered pattern to create a smooth gradient. You can interrupt the drawing of this kind of
dither by clicking anywhere in the dialog box.

· Pattern Best Colors ignores the order of the colors in the palette and only uses colors that create a
continuous blend of the foreground and background colors.

· Pattern Best Transparent ignores the order of the colors in the palette and only uses those colors that
create a continuous blend of the foreground and background colors. White pixels in patterns created with
this method are transparent.

· Pattern Adjacent Colors uses all the colors in the palette between the foreground and background for the
gradient.

· Pattern Adjacent Colors Transparent uses all the colors in the palette between the foreground and
background for the gradient. White pixels in patterns created with this method are transparent.

Direction (Gradient Settings)
The Direction popup determines the way the gradient fills an area in the Paint window. The options on the menu
list determine where the dark and light colors of your blend are located.

Click the name of a gradient direction to see an illustration:

· Top to Bottom puts the foreground color at the top and the destination color at the bottom.

· Bottom to Top puts the destination color at the top and the foreground color at the bottom.

· Left to Right puts the foreground color on the left and the destination color on the right.

· Right to Left puts the foreground color on the right and the destination color on the left.

· Directional you determine the direction of the gradient. You set the direction of the gradient in the Paint
window with the paint tool used to fill the area.

· Sun Burst starts filling at the edge of the artwork and moves in concentric circles to the center.

Cycles (Gradient Settings)
Cycles control the number of times the gradient is created within one filled area and whether or not the colors
cycle through the palette in one direction only, or auto reverse at the end of one pass through the palette. Sharp
cycles have a banded appearance, while smooth cycles go from foreground to destination, then back to
foreground.

Click the name of a gradient cycle to see an illustration:

· One takes the gradient once through the range of colors you define.

· Two Sharp takes the gradient through the range of colors twice, from foreground to destination and from
foreground to destination.

· Two Smooth takes the gradient from foreground to destination, then from destination to foreground.

· Three Sharp takes the gradient from foreground to destination three times.

· Three Smooth takes the gradient from foreground to destination, destination to foreground, foreground to
destination.

· Four Sharp takes the gradient from foreground to destination four times.

· Four Smooth takes the gradient from foreground to destination, destination to foreground, foreground to
destination, and destination to foreground.

Spread (Gradient Settings)
Spread options let you choose how to distribute colors between the foreground and the destination colors of the
gradient.

· Equal provides an even spacing of colors between the foreground and the destination colors.

· More Foreground increases the amount of the foreground color in the gradient.

· More Middle increases the amount of the middle color in the gradient.

· More Destination increases the amount of the destination color in the gradient.

Range (Gradient Settings)
Range options determine whether the full range of the gradient is created over the paint object, cast member, or
the entire Paint window. The options provide greater control over how the gradient is created relative to the cast
member's position on the Stage or in the Paint window.

· Paint Object paints the full gradient as the fill or brush stroke of the object, regardless of the object's
location in the Paint window.

· Cast Member paints the full gradient with respect to the size of the cast member.

· Window paints a full gradient only if the object is the length or width of the entire window, otherwise it paints
a partial gradient corresponding to the object's location in the window.

Foreground color chip (Paint window)
Foreground color is the color displayed in the Foreground color chip in the Foreground and Background colors
bar. It's also displayed in the color chip on the left side of the Gradient Colors selector bar. The foreground color
is the color you work with when you're using the solid pattern and the Normal ink effect.

Press the up or down arrow key to cycle through the colors in the color palette associated with the Foreground
color chip.

Double-click the Foreground, Background, or Destination color chip to open the Color Palettes window.

Background color chip (Paint window)
Background color is the color displayed in the lower right color chip in the Foreground and Background colors
bar. The background color is the secondary color that appears in a pattern. When used with the Transparent ink,
the background color in a pattern is transparent.

Tip: Hold down the Shift key while pressing the up or down arrow keys to cycle through the colors in the color
palette associated with the Background color chip.

Pattern chip (Paint window)
The current pattern is displayed in the Pattern chip.

Click the Pattern chip to select a new pattern from the pop-up palette.

Tips:

· Pressing the Alt key before displaying the pattern palette permanently changes the patterns to shades
ranging from the foreground color to the background color rather than the set of patterns you see without
pressing the Alt key. Press the Alt key again to return to the default set of patterns.

· Double-click the Pattern chip to open the Pattern Settings dialog box. Use the dialog box to edit or select
new sets of patterns.

Pattern Settings
Click part of the illustration for more information:

Custom/Standard pop-up selects from the standard default patterns to create patterns from the set of custom
patterns. Only the custom patterns are editable.

Click one of the patterns on the left to change a custom pattern. Edit the current pattern by clicking the magnified
image of the pattern. Click a blank pixel to fill it and click a filled pixel to make it blank.

Right/Left arrows move the pattern one pixel to the right or to the left.

Up/Down arrows move the pattern up or down one pixel.

Black/White square reverses the colors of the pattern (for example, black becomes white and white becomes
black).

Copy/Paste copies or pastes the pattern you want to use.

Tile Settings (Paint window)
Tiles are a useful way to create patterns with more than two colors. Cast members in the Paint window form the
basis for creating a tile. When you choose a portion of a cast member to be made into a tile, the cast member
becomes a building block for a pattern created with a field of tiles. You can use tiles in the Paint window or with
the shapes in the Tool palette.

 To open the Tile Settings dialog box, click the Pattern chip and choose Tile Settings from the pop-up.

Dialog box options

The Tile Settings dialog box lets you select the tile position, the cast member to make into a tile, what portion of
the cast member to use for the tile, and the tile size.

Click a dialog box option for more information:

{button See also,AL(`Tile_settings_help')}

Source controls which cast member is the basis for your tile. Click Built In to restore the original tile to a tile
position you've changed. Click Cast Member to make a tile from a cast member in your movie. Use the left and
right arrows to step through all the graphic cast members in the movie.

The selection rectangle determines which part of the cast member is used for the tile. Drag the rectangle to
reposition it on a different part of the cast member or click a new spot in the cast member view to reposition the
rectangle.

Edit lets you select the tile you want to edit. An enlarged version of the tile is displayed in the dialog box.

Width Height lists the available tile sizes in pixels. You can make a tile as small as 16 by 16 pixels or as large as
128 by 128 pixels. As the size of the tile increases, more of the cast member is used for the tile.

Line width selector (Paint window)
The line width selector controls the thickness of the line drawn by the Line or Arc tool and the thickness of the
borders drawn by the Shape tools.

The width of the line drawn by the Line, Arc, Rectangle, Ellipse, and Polygon tools can be changed with the line
width selector. The line width palette has several settings for line width ranging from No Line (the dotted line in
the line width selector) to Other. Use the dotted line setting when you want to draw filled shapes without borders.
If you choose Other, the line width is determined by the Other Line Width setting in the Paint Preferences dialog
box.

Tip: Double-click Other Line Width at the bottom of the line width selector to open the Paint Preferences dialog
box. Use it to set the other line width.

Color Depth indicator (Paint window)
The Color Depth indicator displays the color depth of the current cast member in the Paint window.

Double-click the Color Depth indicator to open the Transform Bitmap dialog box. Use the Transform Bitmap
dialog box to change the color depth of the current cast member in the Paint window. Changing the color depth
from color to black and white saves disk space. You can still make a selected 1-bit sprite a color other than black
by selecting colors with the foreground and Background color chips in the Tool Palette after it has been reduced
to 1-bit. (This colorizes the sprite on the Stage, but does not affect the original cast member, which remains black
and white.)

If you import black and white cast members, changing their color depth to multiple colors permits you to colorize
them with any color in the current palette.

Flip Horizontal

Flip Horizontal mirrors the selected area in the Paint window horizontally from right to left.

Flip Vertical

Flip Vertical mirrors the selected area in the Paint window vertically from top to bottom.

Rotate Left

Rotate Left rotates the selected area in the Paint window 90 degrees counterclockwise.

Rotate Right

Rotate Right rotates the selected area in the Paint window 90 degrees clockwise.

Free Rotate

When you choose Free Rotate, handles appear at the corners of the Marquee. Drag any handle in the desired
direction to rotate the object in the Paint window any number of degrees clockwise or counterclockwise.

Skew

The Skew command skews the selected artwork. When you choose Skew, handles appear at the corners of the
Marquee. Dragging a handle in the desired direction moves the opposing corner an equal amount in the same
direction, maintaining a parallelogram.

Warp

When you choose Warp, handles appear at the corners of the selection rectangle. Each corner can be dragged
in any direction independent of the other corners. When you release the mouse button, the selected artwork
assumes the shape that you have created.

Perspective

Perspective stretches the selected artwork to give it a perspective effect. When you choose Perspective, handles
appear at the corners of the selection rectangle. Drag one or more handles to create the effect you want. For
example, you can bring the two top handles closer together to create the illusion of linear perspective.

Tip: To make artwork appear to be vanishing into the distance, choose Perspective and move the handles on
one side of your selection together and the handles on the opposite side of your selection apart.

Smooth

Smooth softens the edges of the selected artwork by adding pixels of blended color to the artwork's edges.

Trace Edges

Trace Edges creates an outline around the edges of the selected artwork. The outline is the same color as the
selected line, if the line is a solid color. If the original line is multicolored, an outline is created for each section of
the line. Click Trace Edges repeatedly to add multiple outlines.

Invert

The Invert command reverses the colors of the selected area in the Paint window. For 2-, 4-, and 8-bit cast
members, to see what the reverse colors are, open the Color Palettes window, select all the colors in the palette,
and click Invert Selection in the Color Palettes window; you'll see that the effect is an upside-down mirror image
of the palette. For 16- and 32-bit cast members, a true RGB-complement of each color is shown. If you are
working in black and white, Invert changes black to white and vice versa.

Lighten

Lighten increases the brightness of anything in the selection rectangle

Darken

Darken reduces the brightness of the selected artwork.

Fill

The Fill command fills a selected area with the current foreground color and pattern.

Switch Colors

Switch Colors changes each pixel that is the currently selected foreground color to the currently selected
background color.

Note: This command only works for images whose color depth is 8 bits or less.

Text window (Window menu) Control-6
Use the Text window to create and edit text cast members. Enter and edit text in the Text window using standard
word processing procedures. You select text in the Text window or on the Stage by dragging across the text, or
by double-clicking to select a whole word. Triple-clicking selects all text in the cast member, which is the same as
choosing Select All from the Edit menu.

The ruler and toolbar across the top of the Text window provide several formatting shortcuts.

To open the Text window:

· Choose Text from the Window menu.

· Click the Text window tool on the toolbar.

· Double-click a text cast member in the cast or on the Stage.

Click a topic for more information:

Creating text cast members

Working with text

Importing text

Text Ruler

Text Inspector

Formatting text

Formatting paragraphs

Paragraph command (Modify menu)

Font command (Modify menu)

Editable text (Field window)

Tip: To create another view of the same Text window, choose Window > New Window. This is useful if you are
editing a large text cast member, since you can display different sections of the text in each view and cut and
paste between them.

Text Ruler
Use the text ruler to set tabs and indents for paragraphs. To show or hide the text ruler, choose View > Ruler. To
set units of measure for the ruler, choose File > General Preferences.

Setting tabs

· To set tabs, click the Tab well until the symbol for the type of tab you want and then click the Ruler where
you want to place the tab.

· To remove a tab, drag the tab off the Ruler.

· To move a tab, drag the tab to the new location on the Ruler.

· If you don't define your own tab stops, pressing the Tab key advances the cursor to the next preset tab.

Setting indents

To set an indent for selected paragraphs, drag the left and right indent markers on the ruler. To change the indent
for only the first line of text, drag the marker. Setting a special first line indent is useful for creating bulleted
paragraphs and hanging indents.

Field window (Window menu) Control-8
Use the Field window to enter and edit text for field cast members. It is identical to the Text window except that
the Ruler is not available for setting tabs and indents. When you use the alignment and spacing tools on the
toolbar, the changes affect all the paragraphs in the cast member.

To open the Field window:

· Choose Field from the Window menu.

· Or double-click a field cast member.

{button See also,AL(`Text_Field')}

Color Palettes window (Window menu) Control-Alt-7
The Color Palettes window provides several ways of changing Color Palettes.

Click a topic name for more information:

Reserve selected colors

Select reserved colors

Select used colors

Invert selection

Blend Colors

Reverse sequence

Cycle colors

Sort colors

Color picker

All the functions in the Color Palettes window involve changing the currently active color palette. You choose the
active palette by selecting a palette from the pop-up.

Director has ten built-in palettes:

· System-Mac (the standard 256-color Macintosh system palette)

· System-Win (the standard 256-color Windows system palette)

· Rainbow palette

· Grayscale palette

· Pastels palette

· Vivid palette

· NTSC palette

· Metallic palette

· VGA palette, a special palette for VGA 4-bit displays. It provides consistent results when playing Director
movies under Windows in 4-bit mode.

· System-Win (Dir4), a palette that is included for compatibility with movies created in Director 4.

If you add new palettes to your movie from other graphics applications, those palettes also appear in the pop-up
and in the cast.

In Windows, if you use any palette other than the two System-Win palettes (or a palette that does not include the
Windows colors in its top and bottom rows), Director switches to Classic user interface look, and switches
Windows itself to black and white. This is to maintain legibility while editing your movies.

Note: Choosing a new palette in the Color Palettes window does not change the palette for the movie, or any
frame in the movie. Use Movie Properties on the Modify menu to choose the movie's default color palette, or
Frame Palette on the Modify menu to change the color palette at a particular frame.

Use the Hand tool to drag colors in the palette to reposition them.

Use the Eyedropper tool to match the color of any pixel on the Stage with the same color in the palette. Click the
Eyedropper tool and select any color in the Color Palettes window. Without releasing the mouse button, drag to any
point on the Stage. The selection in the Color Palettes window and the foreground color in the Tool Palette change to
the color at the pointer location.

Clicking the arrow changes your pointer back to the arrow pointer.
{button See also,AL(`Color_Palettes')}

 Reserve Selected Colors button
Reserve Selected Colors button isolates specific colors used in palette effects like color cycling. For example, if
you are cycling colors and don't want to inadvertently use the cycling colors on a noncycling cast member,
reserve the cycling colors to prevent them from being used.

To reserve colors, select them in the Color Palettes window and then click the Reserve Selected Colors button.

When the Reserved Colors dialog box appears, choose Reserve Selected Colors and then click Reserved.

 Reserved colors appear striped in the Color Palettes window. The Select Reserved Colors button (shown at the
left) also appears in the window to help you see which colors are reserved.

Click the Select Reserved Colors button to select all reserved colors.

To make all the reserved colors available again, click Reserve Selected Colors and choose All Colors Available in
the dialog box.

 Select Reserved Colors
Select Reserved Colors in the Color Palettes window highlights the colors in the current palette that have been
reserved.

 Select Used Colors button
The Select Used Colors button in the Color Palettes window highlights the colors in the current palette that are
used in selected cast members.

 Invert selection button
The Invert Selection button in the Color Palettes window replaces the color or range of colors you selected with a
new selection. The new selection consists of all the colors that were not part of your original selection.

 Sort button
The Sort button in the Color Palettes window reorders the selected colors in the palette by hue, saturation, or
brightness.

To use the Sort button, select a range of colors in the Color Palettes window and then click the button. When the
Sort Colors dialog box appears, choose Hue, Saturation, or Brightness. When you click Sort, the Create Palette
dialog box appears. Enter a name for the new palette in the Name field. After you click OK, the colors appear in
the palette according to the sorting order selected.

If you sort colors after drawing cast members, the cast members that use the selected colors will also change
color as the colors are sorted.

 Reverse Sequence button
The Reverse Sequence button in the Color Palettes window reverses the order of the selected colors: the first
color of the palette becomes the last. The colors themselves remain unchanged.

 Cycle button
The Cycle button displaces all the selected colors in the Color Palettes window one square to the left. The
leftmost color wraps around and appears at the last right square. Each time you click the Cycle button, the
selected colors shift by one more square. As the colors reach the left edge of the selection, they wrap around to
the right edge and continue their journey. It is similar to the movement of color within a palette that you can see
while colors cycle.

This is precisely what goes on when you use color cycling. If you are using a paint tool in the Paint window with a
cycling ink effect, the colors rotate through the palette as you draw. Another example of color cycling is in the
Frame Palette dialog box in the Modify menu. You can select a range of colors to cycle as your movie plays. Any
cast member that is the same color as one of the cycled colors will change as the colors rotate through the
palette.

 Blend button Control-B
The Blend button changes the current palette to create a blend of the first and last colors of a selected range in
the Color Palettes window. Use it to create blends of color for color cycling or smooth gradients.

To use the button, select a range of colors in the Color Palettes window and then click the button.

If you choose one of the nine built-in palettes, Director creates a new palette. You are prompted to name the new
palette.

Color Picker button
You can define a new color in the current color palette either with the controls at the bottom of the Color Palettes
window, or with the Windows Color dialog box.

To use the Windows Color dialog box, select the color you want to change and then click the color picker button.
For information about using the Color dialog box, see the user's guide that came with Windows.

To edit selected colors in the Color Palettes window using the HSB (Hue, Saturation, Brightness) system, click
the arrows at the bottom of the window to increase or decrease the hue, saturation, or brightness.

Hue is the primary or secondary color created by mixing two primaries. Saturation is a measure of how much
white is mixed in with the color. A fully saturated color is vivid; a less saturated color is a washed out pastel or
even a shade of gray.

Brightness controls how much black is mixed in with a color. Colors that are very bright have little or no black.
As the brightness is reduced, the color gets darker as if more black were added. If brightness is reduced to 0,
then no matter what the values for hue or saturation, the color will be black.

Video window (Window menu) Control-9
The Video window lets you play digital video movies. Use the controls at the bottom of the window to play, stop,
advance, or rewind the movie. Stop the movie to cut, copy, and paste frames from the movie into another Video
window.

Choose Window > Video, or double-click a digital video cast member in the Cast window or on the Stage to open the
Video window.
Note: On a Macintosh, the term "digital video" refers only to QuickTime movies. However, Director for Windows
supports Microsoft's Video for Windows (.AVI) and QuickTime for Windows.

The Previous Cast Member, Next Cast Member, Drag Cast Member, Cast Member Script, and Cast
Member Properties buttons work the same as they do in the Cast window.

{button See also,AL(`Video')}

Script window (Window menu) Control-0
Use the Script window to enter and edit scripts. A script can contain up to 32K of text.

For a description of the buttons at the top of the Script window, see the Cast window topic.
For descriptions of the tools on the Script toolbar, see the Script toolbar topic.

Tip: The help topics for Lingo commands include examples that you can paste into your scripts and use.

Director saves changes you make in the Script window when you click anywhere outside of the window, close it,
click the Previous or Next buttons to go to a different script, or if you choose Control > Recompile All Scripts.

Tip: Double-click a cell in the script channel to open the Script window.

{button See also,AL(`Script')}

Script window toolbar
The Script window toolbar has the following tools (click one for more information):

Go to Handler pop-up

Lists the name of each handler that is used in the current movie. Go to a handler by
selecting its name from the pop-up.

Go to Handler button

Goes to the handler that is in the current line of Lingo and inserts the cursor there.

Comment

If the current line of Lingo is not commented out, this command comments out the line
by putting two dashes at the beginning of the line.

Uncomment

If the current line of Lingo is commented out, this command uncomments the line by
removing the two dashes at the beginning of the line.

Alphabetical Lingo pop-up

Displays an alphabetical menu of all Lingo elements. Choosing one of the elements
from the menu inserts it in the script at the cursor.

Categorized Lingo pop-up

Displays a pop-up of Lingo elements grouped according to the features that they can
implement. Choosing one of the elements from the menu inserts it in the script at the
cursor.

Toggle Breakpoint

Inserts and removes breakpoints in the current line of Lingo.

· When the current line of Lingo has a breakpoint, clicking Toggle Breakpoint removes it.

· When the current line of Lingo has no breakpoint, clicking Toggle Breakpoint inserts one.

Watch Expression

Adds the selected expression or variable to the list in the Watcher window.

Recompile All Scripts

Recompiles the movie's scripts without closing the Script window.

Debugger window (Window menu) Control-`
The Debugger helps with troubleshooting. The window helps to locate and correct bugs in scripts. It includes
several tools that let you:

· See the current line of Lingo

· Run the current handler line by line

· Track the sequence of handlers that were called as part of getting to the current handler

· Display the value of any local variable, global variable, or property related to the Lingo that you're
investigating

· Open related windows such as the Watcher window and Script window.

Click part of the illustration for more information:

Any of the following actions opens the Debugger window:

· Choosing Window > Debugger

· Encountering a breakpoint in a script

· Clicking Debugger in an error message that appears when Director encounters a syntax error in a script.

You can't edit the script directly in the Debugger; you must return to the Script window.

{button See also,AL(`Debugger')}

Handlers History pane displays the order of handlers that ran to get to the current script. Clicking a handler
name displays the script. Using the Step Into or Step Over button always focuses the Debugger back to the
bottom-most active handler in the pane.

Variable pane displays local variables, global variables, and property settings that Lingo encountered as it ran up
to the current line. Only values are displayed; you can't change them directly in the Debugger. To edit Lingo,
return to the Script window. To change any of these values while working with the Debugger, use a set
statement in the Message window.

Script pane displays the current script and highlights the current line of Lingo. Breakpoints are indicated by a red
dot to the left of the line of Lingo. The current line is indicated by a green arrow to the left of the line. The Lingo
that appears in the script pane is only a display. You must return to the Script window to edit the script.

Step Script runs the current line of Lingo, runs any handlers that the line calls, and then stops at the next line in
the current handler. This is useful when you are confident that handlers called from the current line are
performing as expected and want to concentrate on Lingo in the current handler.

Step Into Script follows Lingo's normal flow, line by line from the current line through any nested handlers. Lingo
advances one line each time you click Step Into Script. This is useful when you want to examine the handlers
called from the current line of Lingo.

Run Script exits debugging and returns to the current handlers.

Toggle Breakpoint turns on and off the breakpoint in the line of Lingo that is highlighted in the script display
pane. When the highlighted line has no breakpoint, clicking Toggle Breakpoint inserts one at that line. When the
highlighted line has a breakpoint, clicking Toggle Breakpoint removes the breakpoint.

Ignore Breakpoints has Lingo pass over any breakpoints in the movie's scripts.

Watch Expression adds the selected variables or expressions to the Watcher window.

Watcher window opens the Watcher window, which displays the current value of variables that you select. For
more information, see Watcher window.

Go to Handler goes to the handler in the Script window whose name is selected in the Debugger. After you are
in the Script window, you can edit the script normally.

Watcher window (Window menu) Control-Shift-`
The Watcher window shows the values of simple expressions and variables in the movie's scripts.

The variable or expression appears at the left of the window followed by an equal sign (=) and the expression or
variable's current value. If Director can't obtain the value of an expression or variable in the current context, the
term "<void>" appears to the right of the equal sign. Director updates values in the Watcher window when the
user steps through lines of a script while in debug mode or continuously while the movie plays. Some variables,
such as the time or the mouseH are updated even while the movie is not playing.

Note: Watching too many variables can decrease Director's response noticeably. For example, the cursor may
blink slowly or windows may resize sluggishly. Reducing the amount of data the Watcher window must
continuously update will immediately improve Director's performance.

To add variables or expressions to the list in the Watcher window by selecting them in the Script window:

1. Open a Script window in which the variable or expression appears.

2. Select the variable or expression.

3. Click the Watch Expression button

 at the top of the Script window.
Director adds the selected variables or expressions to the list in the Watcher window and also displays those
changes in the variable pane.

To change the value of a variable or expression:

1. Select the value or expression in the Watcher window.

2. Type the new value in the field next to the Set button.

3. Click Set.

To add variables or expressions to the list directly from the Watcher
window:

1. Type the variable or expression in the field to the left of the Add button.

2. Click Add.
The variable or expression appears in the list.

To remove a variable or expression:

1. Select the variable or expression in the Watcher window.

2. Click Remove.
{button See also,AL(`Watcher')}

Message window (Window menu) Control-M

The Message window is a convenient place to experiment with and test Lingo scripts. Actions occur immediately
when you press the Enter key, so you can see the results before you insert your scripts into a movie. This allows
you to see the results of any script, including whether it is a valid script.

For descriptions of the tools on the Message window toolbar, see the Message toolbar topic.

To move around the Message window, use the arrow keys or scrollbar. Press Control-up arrow to move the
insertion point to the top of the window. Press Control-down arrow to move the insertion point to the bottom of
the window.

{button See also,AL(`Message')}

Message window toolbar
The Message window toolbar has the following tools (click one for more information):

Alphabetical Lingo pop-up

Displays an alphabetical pop-up of all Lingo elements. Choosing one of the elements
from the menu inserts it in the script at the cursor.

Categorized Lingo pop-up

Displays a pop-up of Lingo elements grouped according to the features that they can
implement. Choosing one of the elements from the menu inserts it in the script at the
cursor.

Trace

Click the Trace button to have the Message window display all the Lingo that runs as the movie plays. Using
Trace slows down animation, so click Trace to turn it off.

Go to Handler

Goes to the handler that is in the current line of Lingo and inserts the cursor there.

Watch Expression

Adds the selected expression or variable to the list in the Watcher window.

Working with Cast Members

Working with Sprites

Creating Interactivity

Editing Media

Working Behind the Scenes

Completing Movies

Working with Cast Members-Common Tasks

Cast basics
{button ,JI(`',`UsersGuide_006_help')} Creating casts
{button ,AL(`howLink_2_3_help')} Working with the Cast window

Creating cast members
{button ,JI(`',`UsersGuide_012_help')} Importing cast members
{button ,JI(`',`UsersGuide_017_help')} Creating cast members within Director

Viewing cast member properties
{button ,AL(`howLink_2_8_help')} Basic task

Finding cast members
{button ,JI(`',`UsersGuide_022_help')} Basic task
{button ,JI(`',`UsersGuide_023_help')} Searching for cast members in the Score

Sorting cast members
{button ,JI(`',`UsersGuide_024_help')} Basic task

Working with Sprites-Common Tasks

Creating sprites
{button ,JI(`',`UsersGuide_032_help')} Basic task

Moving and resizing sprites
{button ,JI(`',`UsersGuide_034_help')} Basic task
{button ,AL(`howLink_3_2b_help')} Changing the stacking order of sprites

Selecting sprites
{button ,JI(`',`UsersGuide_036_help')} Basic task

Changing when sprites appear
{button ,JI(`',`UsersGuide_037_help')} Basic task
{button ,JI(`',`UsersGuide_038_help')} Moving sprites between frames
{button ,JI(`',`UsersGuide_039_help')} Changing sprite duration
{button ,JI(`',`UsersGuide_040_help')} Extending sprites

Viewing and changing sprite properties
{button ,JI(`',`UsersGuide_045_help')} Blending sprites
{button ,JI(`',`UsersGuide_046_help')} Scaling sprites

Tweening sprites
{button ,JI(`',`UsersGuide_048_help')} Basic task
{button ,AL(`howLink_3_12b_help')} Tweening options
{button ,JI(`',`UsersGuide_051_help')} Showing and editing sprite paths

Exchanging sprite cast members
{button ,JI(`',`UsersGuide_053_help')} Basic task

Editing sprite frames
{button ,JI(`',`UsersGuide_054_help')} Basic task

Animating with a series of cast members
{button ,JI(`',`UsersGuide_056_help')} Basic task
{button ,JI(`',`UsersGuide_058_help')} Creating a sprite from a sequence of cast members
{button ,JI(`',`UsersGuide_060_help')} Using Space to Time
{button ,JI(`',`UsersGuide_062_help')} Using film loops

Splitting and joining sprites
{button ,AL(`howLink_3_19_help')} Basic task

Step recording
{button ,JI(`',`UsersGuide_068_help')} Basic task

Real-time recording
{button ,JI(`',`UsersGuide_070_help')} Basic task

Linking a sequence with Paste Relative
{button ,JI(`',`UsersGuide_072_help')} Basic task

Aligning sprites
{button ,AL(`howLink_3_23_help')} Basic task

Adding and removing frames
{button ,AL(`howLink_3_24_help')} Basic task

Score viewing options
{button ,JI(`',`UsersGuide_079_help')} Zooming the Score
{button ,JI(`',`UsersGuide_083_help')} Using multiple Score windows
{button ,JI(`',`UsersGuide_084_help')} Turning a channel on and off
{button ,JI(`',`UsersGuide_085_help')} Showing and hiding the effects channels
{button ,JI(`',`UsersGuide_087_help')} Using Director 5 Score display

Creating Interactivity-Common Tasks

Attaching behaviors
{button ,AL(`howLink_4_2a_help')} Basic Tasks
{button ,JI(`',`UsersGuide_092_help')} Getting information about behaviors
{button ,JI(`',`UsersGuide_093_help')} Changing the order of attached behaviors

Creating and modifying behaviors
{button ,JI(`',`UsersGuide_101_help')} Basic Task

Using the button editor
{button ,AL(`howLink_4_10_help')} Creating and editing buttons

Editing Media-Common Tasks

Working with color depth and palettes
{button ,JI(`',`UsersGuide_118_help')} Changing the color depth and palette of bitmap cast members

Working with bitmaps
{button ,JI(`',`UsersGuide_124_help')} Resizing a bitmapped cast member
{button ,AL(`howLink_5_17_help')} Using the Paint window
{button ,AL(`howLink_5_18_help')} Using onion skinning
{button ,JI(`',`UsersGuide_139_help')} Using Auto Distort
{button ,AL(`howLink_5_19_help')} Using bitmap filters

Working with text
{button ,AL(`howLink_5_20_help')} Creating text cast members
{button ,AL(`howLink_5_23_help')} Formatting text

Using fields
{button ,JI(`',`UsersGuide_156_help')} Creating fields
{button ,JI(`',`UsersGuide_157_help')} Editing and formatting fields
{button ,JI(`',`Editing_Fontmap')} Editing a movie's Fontmap.txt

Working with digital video
{button ,JI(`',`UsersGuide_160_help')} Importing digital videos
{button ,JI(`',`UsersGuide_161')} Opening the Video window
{button ,JI(`',`UsersGuide_163')} Cropping a video

Using OLE cast members
{button ,JI(`',`UsersGuide_166')} Working with OLE cast members

Launching external editors
{button ,JI(`',`UsersGuide_170')} Basic task

Working Behind the Scenes-Common Tasks

Working with tempo settings
{button ,JI(`',`UsersGuide_180_help')} Using the tempo channel
{button ,JI(`',`UsersGuide_182_help')} Using sound and video cue points
{button ,JI(`',`UsersGuide_184_help')} Comparing actual speed with tempos you've set

Compressing and streaming sounds with Shockwave Audio
{button ,JI(`',`UsersGuide_195_help')} Compressing internal sounds
{button ,JI(`',`UsersGuide_196_help')} Streaming Shockwave Audio files

Working with transitions
{button ,JI(`',`UsersGuide_199_help')} Creating transitions

Changing color palettes
{button ,JI(`',`UsersGuide_203_help')} Changing palettes in a movie
{button ,JI(`',`UsersGuide_205_help')} Using color cycling
{button ,AL(`howLink_6_19_help')} Using the Color Palettes window

Completing Movies-Common Tasks

Creating projectors
{button ,JI(`',`UsersGuide_219a_help')} Basic task

Creating Shockwave movies
{button ,JI(`',`UsersGuide_220_help')} Basic task

Managing Xtras for distributed movies
{button ,JI(`',`UsersGuide_223_help')} Making an Xtra package file

Processing movies with Update Movies
{button ,JI(`',`UsersGuide_226_help')} Converting existing movies

Exporting digital video
{button ,AL(`howLink_7_11a_help')} Basic tasks

Common problems

Tech support

Common problems
Click a category to see a list of frequently asked questions:

Technical support

Multiple platforms

General

Macintosh

Microsoft Windows

Digital video

Lingo

Made with Macromedia

Common problems - multiple platforms
{button ,JI(`',`FAQ_1')}How do I convert Director movies to work on a different type of computer? Do I need to

purchase a new version of Director?

{button ,JI(`',`FAQ_2')}Will Director run on OS/2? How about Shockwave for Unix?

Common problems - general
{button ,JI(`',`FAQ_4')} Why won't my projector center on the stage when I choose this option in the Movie
Properties dialog box?

{button ,JI(`',`FAQ_5')} When I import graphics into Director and apply Background Transparent ink effect to
them, why aren't the edges clean?

{button ,JI(`',`FAQ_6')} Why are behaviors attached to frames ignored when I use wait settings in the tempo
channel?

{button ,JI(`',`FAQ_7')} How can I expand Director's printing capabilities?

{button ,JI(`',`FAQ_8')} Why do I get an out of memory error when importing a FLC or FLI on Windows, or a PICS
file on Macintosh?

{button ,JI(`',`FAQ_9')} How does Director work with a database?

{button ,JI(`',`FAQ_31')} How can I play a Director movie on a hard disk and keep its content on a CD-ROM?

Common problems - Macintosh
{button ,JI(`',`FAQ_11')} Why does Director quit with a Type 1 Error?

{button ,JI(`',`FAQ_12')} How do I make the area behind the stage black?

{button ,JI(`',`FAQ_13')} Why does my fileIO Lingo fail to work after upgrading a title from Director 4 or Director
5?

Common problems - Microsoft Windows
{button ,JI(`',`FAQ_14')} Why do 24-bit images look great in Director but look dithered when viewed in a Window

3.1 projector?

{button ,JI(`',`FAQ_15')} How do I play MPEG movies in Director for Windows?

{button ,JI(`',`FAQ_16')} How can I send MCI commands from Lingo? Where is a list of MCI commands?

{button ,JI(`',`FAQ_17')} When running a Director for Windows projector, why does the error message "Lingo.ini
not found" occur?

{button ,JI(`',`FAQ_19')} When playing a QuickTime movie or an AVI file with sound, why am I unable to play
another sound file simultaneously?

{button ,JI(`',`FAQ_20')} Is there a way to embed a custom icon for a Director for Windows projector?

{button ,JI(`',`FAQ_21')} Which installer is recommended for Director for Windows projectors? Which compiler is
recommended for DLLs?

{button ,JI(`',`FAQ_30')} How do I find the letter of a CD drive in Director for Windows?

Common problems - digital video
{button ,JI(`',`FAQ_31a')} Why don't QuickTime movies play when I create a Windows 3.1 projector and test it
Windows 95?

{button ,JI(`',`FAQ_22')} What happens to transitions and sounds when a Director movie is exported to digital
video?

{button ,JI(`',`FAQ_23')} In Director for Windows, why does the controller of my QuickTime for Windows movie
stay on the stage when I jump to a new frame? Or, on the Macintosh, why does the last frame of the digital
video file stay on the screen when I jump to a new frame?

{button ,JI(`',`FAQ_24')} How can I make digital video files play as well as they do outside of Director?

Common problems - Lingo
{button ,JI(`',`FAQ_25')} How do I find the movie script?

{button ,JI(`',`FAQ_26')} How do I use a custom cursor in Director?

{button ,JI(`',`FAQ_27')} What is a mask cast member, and how do I make one?

{button ,JI(`',`FAQ_28')} I have a rollOver test in a frame that works properly, but when I jump to a new frame,
that rollOver area is still being evaluated even though the sprite is no longer there. This also happens with
the cursor of sprite property.

{button ,JI(`',`FAQ_29')} Where is a list of keyCodes?

Common problems - Made with Macromedia
{button ,JI(`',`FAQ_40')} Basic information regarding distribution of "Made with Macromedia" titles.

{button ,JI(`',`FAQ_41')} Who needs to comply with the Made with Macromedia logo requirements?

{button ,JI(`',`FAQ_42')} What if the Macromedia runtime is an insubstantial part of a commercially distributed
software product that was not Made with Macromedia?

{button ,JI(`',`FAQ_43')} I am using Shockwave to add multimedia to my web site. Am I required to use the Made
with Macromedia logo on my "Shocked" Web Site?

{button ,JI(`',`FAQ_44')} I qualify for either full or partial marking of the Made with Macromedia logo. What are
the steps I need to take to comply with this agreement?

Technical support

Review the problem:
If you think you need technical support, first review the following steps. Most of the problems you encounter
can be solved by following these steps:

1. Read everything relevant to the problem in the manuals and the online help.

2. Check the index for more references to the topic.
More information on a procedure or feature may be found in a separate section.

3. If something used to work, think about what may have changed.
Perhaps you installed new software or changed some settings.

4. Create a new file and reproduce the problem there.
If the problem goes away in the new file, compare the new file with your old file to find and eliminate the
differences.

Before you call:
If you still need help, consult the following checklist before contacting technical support. This advanced
preparation will help the support representative pinpoint and solve your problem more quickly.

1. Define the problem as a series of steps that can be repeated by the support representative.
The support representative needs to know exactly what the problem is.

2. Provide the following information:
· Product name, version number, and product registration number

· Type of computer, such as 386, 486 or Pentium, local-bus or non-local bus, Quadra or PowerMac

· Amount of memory installed

· Amount of free hard disk space

· Screen resolution (screen size in pixels, for example, 1024 by 768)

· Screen color depth (number of colors or bits, for example, 256 colors or 8-bit color)

· Graphics card manufacturer, model name, and driver version number.

· Sound card manufacturer and model name

· DOS and Windows or Macintosh System version numbers

· A list of external devices connected to the computer

· Brief description of the problem or error, and the specific text of any error messages

Technical support:
Contacting Macromedia

Inside the U.S. and Canada

In Japan

In Europe

Contacting Macromedia
Technical Support

Sales: Call 800-288-4797

Source & Center

Call 800-396-0129 or 415-252-7999.

Contact Source & Center for training, consulting services, purchasing Priority Access technical support,
referrals for multimedia development, referrals to Macromedia Authorized Graphics/Imaging Centers
(MAGIC) and to user groups, and authorization programs for trainers, developers and service bureaus.

Macromedia International User Conference

Call 415-252-7999

Success Stories

pr@macromedia.com

fax 415-626-1502

Product Suggestions and Feedback

director@macromedia.com

fax 415-626-0554.

Contact the Director Product Team with product suggestions and feedback about Director.

World Wide Web

http://www.macromedia.com/

Made with Macromedia program

Call 415-252-2000.

Macromedia offers Director 5 developers the ability to distribute applications created in Director without
paying royalties. Our new Macromedia licensing policy allows you to distribute your Director projects royalty-
free, provided you include the Made with Macromedia logo as described in our guidelines.

Technical support inside the United States and Canada
Debugging, designing, creating

Technical support can answer installation, configuration, and general usage questions about the product. For
help in debugging, designing, or creating your application, Macromedia can help you find a consultant. You can
find an international list of Authorized Macromedia Developers at
http://www.macromedia.com/support/developers/.

Internet

Information about technical support and Director can be found on Macromedia's website. Visit
http://support.macromedia.com for more details.

Online services

Information about technical support and Director is available in Macromedia's forums on Compuserve and
America Online. For an up-to-date list of all of the resources available online, call MacroFacts, Macromedia's 24-
hour fax information line and request document 3198. In the United States and Canada, call 800-449-3329. From
elsewhere, call 415-863-4409.

· CompuServe: To reach the Macromedia forum on CompuServe, use the command Go Macromedia. On
CompuServe, we provide message areas for discussion of multimedia development and support of our
products, as well as libraries that contain useful utilities and examples-including drivers, sample movies,
Xtras, DLLs, and XCMDs.

· America Online: In the United States, to reach the Macromedia forum on America Online, use the keyword
Macromedia. On America Online, we provide message areas for discussion of multimedia development and
support of our products, as well as libraries that contain useful utilities and examples- including drivers,
sample movies, Xtras, DLLs, and XCMDs.

MacroFacts

Macromedia's 24-hour fax information line, providing instant access to Macromedia's products and services. In
the United States and Canada, call 800-449-3329. From elsewhere, call 415-863-4409.

Contacting Technical Support

Technical Support fax: 415-703-0924

Technical Support phone: 415-252-9080

Macromedia, Inc.

600 Townsend Street

San Francisco, CA 94103

Technical Support in Japan
Internet

Information about technical support and Director can be found on Macromedia's website. Visit
http://support.macromedia.com for more details.

Online services

Information about technical support and Director is available in Macromedia's forums on Compuserve. For an up-
to-date list of all of the resources available online, call MacroFacts, Macromedia's 24-hour fax information line
and request document 3198. In the United States and Canada, call 800-449-3329. From elsewhere, call 415-
863-4409.

CompuServe: To reach the Macromedia forum on CompuServe, use the command Go Macromedia. On
CompuServe, we provide message areas for discussion of multimedia development and support of our products,
as well as libraries that contain useful utilities and examples-including drivers, sample movies, Xtras, DLLs, and
XCMDs.

MacroFacts

Macromedia's 24-hour fax information line, providing instant access to Macromedia's products and services. You
can reach MacroFacts by calling 415-863-4409.

If you're looking for assistance by fax or phone internationally, please contact the vendor or the distributor from
which you acquired Director.

For additional help, contact:

· Macromedia Japan
Serom Building 3F
Shinsen-Cho 11-7
Shibuya-Ku
Tokyo
Japan 150

81.3.3462.5790
81.3.3462.5794 (fax)

Technical Support in Europe
Internet

Information about technical support and Director can be found on Macromedia's website. Visit
http://support.macromedia.com for more details.

Online services

Information about technical support and Director is available in Macromedia's forums on Compuserve and
America Online. For an up-to-date list of all of the resources available online, call MacroFacts, Macromedia's 24-
hour fax information line and request document 3198. In the United States and Canada, call 800-449-3329. From
elsewhere, call 415-863-4409.

CompuServe: To reach the Macromedia forum on CompuServe, use the command Go Macromedia. On
CompuServe, we provide message areas for discussion of multimedia development and support of our products,
as well as libraries that contain useful utilities and examples-including drivers, sample movies, Xtras, DLLs, and
XCMDs.

For additional help, contact:

· Macromedia Europe (including Europe, the Middle East, and Africa)
4 Wellington Business Park
Dukes Ride, Crowthorne Berkshire
England
United Kingdom RG45 6LS

44.1344.76.1111
44.1344.76.1149 (fax)
44.1344.750.517 (fax)

How do I convert Director movies to work on a different type of computer? Do I need to purchase a new
version of Director?

Projectors are platform-specific. You need the Windows version of Director to create Windows projectors, and the
Macintosh version to create Macintosh projectors.

In general, you do not need to duplicate your work. Director movies can be opened in the authoring environment
on either platform. The Lingo code is usually the same. Most of the other issues you will encounter are content
related: making sure that your cast members work on both platforms as well.

For the best results, work with both platforms from the beginning of your project. Test your project early, often,
and on all target machines.

Will Director run on OS/2? How about Shockwave for Unix?
OS/2 is not a supported platform for Director 6 authoring or delivery. OS/2 is able to run many Windows
applications, however Macromedia does not support this operating environment.

Macromedia offers the Director 4.04 Player for OS/2 which allows existing Director 4 developers to develop 32-
bit OS/2 native applications. For information on this player contact Macromedia Sales.

There is no Shockwave plug-in for Unix systems, nor are there any announcements of one. For the up-to-date
information, please visit our website at http://www.macromedia.com

Why won't my projector center on the stage when I choose this option in the Movie Properties dialog box?
To avoid this, use the following Lingo command in your on startMovie handler: "set the centerStage
to TRUE".

When I import graphics into Director and apply the Background Transparent ink effect to them, why aren't the
edges clean?

Imported images may have very light shades around the edges that look white to the eye, but are darker than
true white. Background Transparent ink effect subtracts one color only. The default for this background color is
white, the first indexed position of a palette. You can change the background color of a sprite by selecting the
sprite on the stage and choosing a different color in the background chip of the Tools window.

Some techniques used to work with these light colors are:

· Use the Eyedropper tool in the Paint window to determine the position in the palette the light color. Select
the image in the Paint window with the selection rectangle tool in Shrink or No Shrink modes. Select the
Paintbrush tool and the switch ink effect to change that color to a true white.

· Images that are anti-aliased against a white background may get a halo around them. This is because the
image has feathered edges with intermediate colors between the object color and the white background. To
avoid the halo recreate the image without anti-aliasing, or edit the edges by hand.

Why are behaviors attached to frames ignored when I use wait settings in the tempo channel?
Wait settings in the tempo channel stop the Playback Head. Any script or behavior that waits for an exitFrame
event will not work as long as the playback head is stopped.

For example, you have:

· a sprite script for a button to "go to the frame + 1"

· a Wait for Digital Video Movie to Finish in Channel: X set in the tempo channel

Director will not know which message to execute. The Tempo channel and Lingo compete for control of score
navigation.

To avoid this problem and maintain interactivity, script everything in the Tempo channel with Lingo.

How can I expand Director's printing capabilities?
From the Director application, you can print for authoring purposes of previewing the stage, your scripts, cast
members and more. For many reasons, one being to keep the size of the projector small, Director projectors
have simple printing engines.

Use the Lingo printFrom command to print the stage in a projector at 25, 50 or 100%. You can also use third-
party solutions to enhance the printing capabilities of a projector. Director 6 installs Printomatic Lite, an extra that
will enhance printing cast members. For more information, see the PrintOMatic Xtra help topic, and consult the
Printomatic documentation which is installed with Director 6.

PrintOMatic Xtra

 PrintOMatic "Heavy" - The Full Version
The PrintOMatic Xtra is the full featured version of PrintOMatic Lite. It is a printing tool for Director. PrintOMatic
adds a full set of page-layout, text and graphics printing features to Director 4, 5, and 6 projects on Macintosh
and Windows.

PrintOMatic includes commands for specifying the position of any text or graphic element on the page.
PrintOMatic documents can contain graphic files from disk, styled text, graphic primitives, cast member bitmaps,
and snapshots of the Director stage.

Product Features
· Generates multi-page layouts with full control over the placement of text and graphic elements on the page.

· Print styled text: any combination of available fonts, sizes, or styles

· Print PICT, BMP or EPS files from disk, any portion of the Director stage, or Director cast members.

· Print object-oriented graphic primitives: lines, boxes, ovals and rounded rectangles.

· "Master Page" can contain any combination of text or graphic elements

· Automatic page numbering

· Customizable and hideable Print Progress dialog

· Paper-saving Print Preview feature

· Supports all Macintosh and Windows compatible printers

· Supports color and landscape-mode printing

· Fully compatible with MacOS, Windows 3.1, Windows 95 and Windows NT

Where to order PrintOMatic
The PrintOMatic Xtra is published and distributed worldwide by g/matter, inc. The registered edition of
PrintOMatic is shipped with demonstrations, sample code, and other tidbits.

For more information, contact:

g/matter, inc.
300 Brannan Street, Suite 210
San Francisco, CA 94107

Tel: (800) 933-6223 or (415) 243-0394
FAX: (415) 243-0396

Email: sales@gmatter.com
http://www.gmatter.com/

Why do I get an out of memory error when importing a FLC or FLI on Windows, or a PICS file on Macintosh?
When you import a FLC/FLI or PICS file into Director, for example, a 27-frame file, it is similar to importing 27 full
screen graphics. You may run out of memory if you try to import all of these graphics at once.

To avoid problems with memory, do the following:

1. Import one small section of the file at a time.
PICS (Mac) or FLC/FLI (Windows).

2. Save the file by choosing Save and Compact
This re-writes the file and your changes.

3. Open About Director, and purge the memory.

4. Repeat this sequence as necessary.
How often you need to repeat the sequence depends on the size of the file.

Once the entire animation is imported, put it back together on the stage with "Cast To Time." Use the paint
window to make sure the registration points of all of the images are the same. Double-click the registration tool to
make sure it is in the center of each image.

For additional information about 3D animation see the technical support KnowledgeBase file, available on our
CompuServe and America Online forums, and our web page.

How does Director work with a database?
Two database options are available:

· Create your own database structure using Lingo's lists. This is an easy, fast, cross-platform solution.

· Communicate with an external database using one of the Xtras available from third parties, such as FileFlex
or V12.

Issues you need to consider when using this approach include: cross-platform compatibility issues for the
database, how to distribute the database, and the overhead of running multiple applications on the target
machine.

Note: Information on third party Xtras can be found on Macromedia's website.

Why does Director quit with a Type 1 Error?
A Type 1 Error is a bus error. This is one of the most common errors on the Macintosh. It could mean a number
of things. If you get this error, review the following list:

1. Allocate more memory to Director:
· Quit Director.

· Select the Director application icon in the Director folder (do not launch it).

· Select Get Info from the File Menu.

· Allocate more memory to the Preferred size for Director.

· Try the task you were doing before.

2. If that does not work, disable all of your extensions:
· Restart your computer and hold down the Shift key.

· Keep the Shift key held down until a message comes up saying "Extensions Disabled."

If the error goes away, work through your extensions to see which ones might be conflicting.
Sometimes two extensions that cause no problems by themselves will cause an error if they are
both active at the same time. Similarly, sometimes extension conflicts are the result of load
order
Director does not require extensions, except QuickTime if you are using QuickTime movies. If
you find an extension conflict on your machine, use the Extension Manager (System 7.5 and
up) to disable all of your extensions except QuickTime while working in Director.

3. If that does not work, reinstall Director.

4. If that does not work, reinstall the System Software.
A full list of all the Macintosh System errors is available from Apple.

How do I make the area behind the stage black?
To do this in a projector, choose Full Screen in the Projector Options dialog box, and change the color of the stage to
black.

Why does my fileIO Lingo fail to work after upgrading a title from Director 4 or Director 5?
On Macintoshes the functionality of fileIO Xobject is no longer built into the Director or projector codebase.
Director 5 introduced "fileIO Xtra", which is a newer MOA-compliant piece of code. This Xtra gets installed into
the Director 6 Xtras folder. If your title relies on the older FileIO Xobject, you will need to distribute the Xobject
with your projector. You can find a copy of the Xobject on your Director 6 CD.

Why do 24-bit images look great in Director but look dithered when viewed in a Window 3.1 projector?
Windows 3.1 projectors display bitmap sprites on stage in 8-bit color depth (256 colors) or less. This abides by a
Microsoft standard set for Windows 3.1 to ensure a high level of compatibility with a broad range of video display
drivers. Director 6 projectors running on Windows 95 and NT support 24-bit color.

This limitation does not apply to digital video, like QuickTime for Windows and Video for Windows. Digital video
goes through a different display buffer than the other sprites on the Director stage. You have two options:

· Convert your bitmaps to one-frame digital video files, as they are optimized to color depths greater than 8-
bit. However, because digital video files play directly to the screen buffer you will not be able to overlay
sprites on top of them during playback.

· Dither your graphics to a custom 8-bit palette. This option maintains the score's 120 channel layering effects.

How do I play MPEG movies in Director for Windows?
There are third party Xtras which facilitate integrating MPEG with Director. A demo version of the MPEG Xtra is
contained in the third party Xtras folder on the Director 6 CD.

Also, because Director 6 supports MCI, more experienced developers have the option to send MCI strings from
Lingo. For more information on MCI, please see TechNote 3521.

How can I send MCI commands from Lingo? Where is a list of MCI commands?
Send MCI commands using the Lingo mci "string" command. The command you insert in the "string"
area contains the device you are trying to control. See the mci help topic for information on using the Lingo mci
command. Microsoft has a series of help files and technical documents on CompuServe and in their multimedia
developer's kit. An MCI help file, called MCISTRWH.HLP, is located in our libraries on our CompuServe and
America Online forums, as well as our web page: http:///www.macromedia.com.

When running a Director for Windows projector, why does the error message "Lingo.ini not found" occur?
The two most frequent causes of this problem include:

· A particular Cirrus Logic video driver that overwrites other areas of memory. Solution: Get newer Cirrus
Logic video drivers from Cirrus Logic or use the generic Microsoft SVGA (640x480x256) driver.

· A multimedia shell is in use on a low-end machine, thus, reducing system resources and available RAM
below a workable level. The solution is to run straight Program Manager instead.

When playing a QuickTime movie or an AVI file with sound, why am I unable to play another sound file
simultaneously?

Windows supports only one sound channel. Director for Windows can play more than one sound at a time (.WAV
or .AIF) because it mixes them together. Macromedia created a technology called MACROMIX.DLL that allows
Director to do this.

What Director cannot do is mix sounds for QuickTime for Windows or AVI movies with audio files. Whichever
sound gets to the sound port first, wins. The second sound cannot start playing until the first sound is completely
finished with the sound channel.

The Director for Windows "README.WRI" file recommends keeping at least one frame between video and audio
sources. Other techniques used to ensure the first sound is completely finished include:

· For a puppetSound: puppetSound 0
· For a digital video: set the movieRate of sprite X to 0

Is there a way to embed a custom icon for a Director for Windows projector?
To embed a custom icon in Windows, edit the icon inside the PROJECTR.SKL file.

1. Make a backup copy of PROJECTOR.SKL.
It should be installed into the same directory as DIRECTOR.EXE.

2. Open PROJECTOR.SKL as an .EXE using a resource editor
One recommended resource editor is AppStudio. AppStudio comes with Microsoft's Visual C++.

3. Edit the icon.
The icon is located in the icon resource called APPICON.

4. Save the file.
Make sure the file is still called PROJECTOR.SKL and that it is saved to the same directory.

5. Create a projector with your own icon.

6. Optional: restore the original version of PROJECTOR.SKL.

Notes:

· Borland Resource Workshop versions 4.0 and 4.0.2 will not work for this procedure. (It comes with Borland
C++.) The Director projector skeleton includes half a megabyte of code, but BRW will not recognize those
code elements - it only understands resources. Thus, you will run into "unexpected file format" errors trying
to save your updated PROJECTR.SKL file as an EXE.

· You will need to use a 16-bit resource editor in order modify the resources of a 16-bit projector.

Which installer is recommended for Director for Windows projectors? Which compiler is recommended for
DLLs?

There are many installer and compiler products on the market. We cannot, as a policy, officially recommend
third-party software or hardware. It seems, from the feedback of many developers, that this decision is
based on personal preference. For a list of installers, please see Tech Note #3528 at Macromedia's, or our
forums on Compuserve and AOL.

What happens to transitions and sounds when a Director movie is exported to digital video?
You cannot export transitions in Director 6.

On Windows, the export to AVI option does not support sound.

On the Macintosh, exporting sound with the Director animation to QuickTime can vary in reliability. Success in
doing this is affected by the sound format, available resources on the machine, where the sound is placed in the
score and many other factors, none of which are constant.

The best technique is to export only the animations from Director. Add the transitions and sounds using a digital
video editing tool. SoundEdit 16 works well when editing the sound of a QuickTime movie on a Macintosh. You
can choose keyframes in the QuickTime movie, synchronize parts of the wave form to those frames, and save
the QuickTime movie once again.

In Director for Windows, why does the controller of my QuickTime for Windows file stay on the stage when I
jump to a new frame? Or, on the Macintosh, why does the last frame of the digital video file stay on the
screen when I jump to a new frame?

In Windows, digital video plays directly to the screen buffer, on top of Director's compositing engine. You can turn
this property off on the Macintosh, but not in Windows. It is a good technique on the Macintosh, however, to
select Direct to Stage in the Cast Member Properties dialog box for the QuickTime movie. This way, the video
can play on the top layer, above the other sprites.

When the video plays direct to stage, Director does not know that the movie is there, and therefore does not
redraw the stage when jumping to a new frame. You will see an artifact of the video when you jump to a new
frame if you do not remove it yourself.

There are many techniques you can use to redraw the stage. Here is one example:

 on exitFrame
 set the visible of sprite X to FALSE
 --X is the channel where the video is placed
 updatestage
 end

How can I make digital video files play as well as they do outside of Director?
If you are having trouble with the performance of a digital video file in Director, you should:

1. Play the digital video file in Apple's MoviePlayer or the Windows Media Player.
Make sure it runs to your satisfaction outside of Director.

2. After importing the file into Director, play it in the video window.
You can access this window by double-clicking on the digital video file in the Cast window. If the file plays
poorly from there, it will not play well in the score. If you are having troubles with the file, you should return to
the MoviePlayer or Media Player to see if the file is intact.

3. On the Macintosh, select Direct to Stage in the Digital Video Cast Member Info dialog box for the
QuickTime movie.
Note: Digital video is always Direct to Stage on Windows.

4. Place the video in the score.
· In the script channel for that frame, type the following commands. It is important to use this "go to

the frame" loop to keep Director's playback head moving in that frame:

on exitFrame
 go to the frame

end

· If you would like to loop in that frame until the digital video is done playing, you can use this script:

on exitFrame
 if the movieRate of sprite channelNumber

 then go to the frame
end

For a list of all of the digital video Lingo terms, see the Lingo digital video topic.

How do I find the movie script?
Unlike previous versions, Director 5 and Director 6 support multiple movie scripts. Once created, you can find a
movie script in the cast window. Additional ways to locate a movie script include:

· Press Ctrl-Shift-U (Windows) or Cmd-Shift-U (Macintosh)

· In the Window menu, select the script window.

· If you're in a score script, click the Add (+) button.

How do I use a custom cursor in Director?
To use a custom cursor, follow these steps:

1. The cast member you use for your custom cursor must be 1-bit (black and white.
You can verify this in the bottom left hand corner of the paint window.

2. Your Lingo syntax needs to be correct. You have two options of how to do this. Here are some
sample scripts to illustrate this:

You can use the "cursor" command:

on startMovie
 cursor [5]
 --your cursor is in cast #5 and would be
 --active for the entire movie
end

You can use the "cursor of sprite" command:

on enterFrame
 if rollover (2) then
 --the sprite you rollover is in channel 2
 set the cursor of sprite 2 to [5]
 --your cursor is in cast #5
 end if
 --only when sprite 2 is rolled over
end
on exitFrame
 go to the frame
end

Note: For additional information refer to Director's Learning Lingo manual.

What is a mask cast member, and how do I make one?
When you use a custom cursor, the areas that are white in the black-and-white area will be transparent when
rolling over other sprites. To make the white areas opaque, you need to make a mask cast member. The
Macintosh system watch cursor is a good example of this.

Here is one technique to do so:

1. Duplicate your custom cursor cast member in the cast window.

2. Double-click that cast member and bring it up in the paint window.

3. After zooming in, select the pencil tool and draw a one-pixel circumference around the bitmap.
Note: Make the circumference one pixel thicker than the other bitmap.

4. Take the paint bucket tool and fill the white areas with black.
The paint bucket tool may do the trick. In order to have the white area be opaque over other
sprites, there needs to be opposition of black and white pixels when the two cursors are used
together.

5. Make sure this cursor is set to 1-bit after editing.

6. Make sure this cast member is in the cast position following the custom cursor.

7. Add it to your syntax. For example:
set the cursor of sprite 2 to [5,6]
--where the cursor cast member is in cast #5
--and the mask cast member is in cast #6

I have a rollOver test in a frame that works properly, but when I jump to a new frame, that rollOver area is
still being evaluated even though the sprite is no longer there. This also happens with the cursor of
sprite property.

These tests for the mouse position, or "hot" areas, actually refer to sprite channel characteristics, and not to
individual sprites. If the channel used to hold the sprite being rolled over alternates between empty and full,
unexpected results may occur.

Here are three solutions:

1. Keep channels full in all frames.
You can move all the frames next to one another and delineate them with markers.

2. Create a one-bit "dot" cast member using the tools window.
Put an instance of the "dot" in the empty frames of the sprite channel being used to test for the rollOver.

3. Scoot the sprite off-stage,
Move the sprite above the menu bar to give it an off-screen position before removing it from the stage.

This issue is similar to setting the cursor of sprite, as mentioned in the Lingo Dictionary. The cursor
property will stay in effect until you turn it off by setting the cursor to zero.

Where is a list of keyCodes?
The keyCode function returns the numerical code for the last key pressed. This keyboard code is the key's
numerical value, not the ASCII value.

You can generate a list of keyCodes by creating a one-frame test movie with these scripts:

· In the movie script, type:
on startMovie
set the keyDownScript to "put the keyCode"
end

· In the frame script of frame 1, type:
on exitFrame
go to the frame
end

When you play the movie, leave the message window open and the keyCode for any key you type will appear in
the message window. Make sure that the message window is not the active window, or the keys you press will
not be evaluated correctly.

To test for keys in the numeric keypad, you need to test the keyCodes from a projector and put the keyCode
into a text field. It is necessary to test for certain modifier keys specifically with Lingo (i.e. the controlDown,
the shiftDown, etc.)

These keyCodes are standard on Macintosh keyboards, but might not be standard across IBM-compatible
keyboards. We have not, however, come across a nonstandard keyboard in technical support.

How do I find the letter of a CD drive in Director for Windows?
Crossing drive volumes is more difficult in Windows than on the Mac. On the Mac, you can use the following
script and any mounted volume with that name and path will work automatically:

play movie "MyCD:Data:MovieA"
On Windows, however, each user's machine could have the hard drive on a different drive letter. The path could
be "G:\MyCD\Data\MovieA" or "D:\MyCD\Data\MovieA" or something else. For Windows, create a handler
that locates the drive letter for the CD drive and call that handler from a script.

Script:

put CheckDrive("weirdfil.txt") into myCD

Note: The script passes the file named "weirdfil.txt" to the handler. If the file is located, the handler returns
the letter name of the CD volume, followed by a colon.

Handler:

The handler assumes that you have a uniquely named file that you pass to the handler, here named
"weirdfil.txt", at the root level of your CD drive. The handler successively searches for the file on the
root of each drive letter in the alphabet (A to Z).

Note: This handler begins looking at drive C, since the chances of both A and B drive being floppy drives is
very high:

on CheckDrive weirdfile
 repeat with i = 66 to 90

set drive = numTochar(i)
set thisPath = string(drive & ":\"& weirdfile)
set myFile = new(xtra "fileio")
openFile(myFile, thisPath, 1) -- attempt to open the file
if status(myfile) = 0 then -- status returns 0 for success

set myFile = 0 -- Dispose of the instance
return drive&":"
exit

end if
end repeat
set myFile = 0 -- Dispose of the instance
alert "Please check that"&"E&weirdfile"E&&"is on your CD drive."

end

Why don't QuickTime movies play when I create a Windows 3.1 projector and test it on Windows 95?
You may have the 32-bit version of QuickTime installed. Director projectors for Windows 3.1 are 16-bit
applications. 16-bit Director projectors will only be able to use 16-bit QuickTime. To obtain the most recent
version of QuickTime visit Apple's website at http://quicktime.apple.com.

How can I play a Director movie on a hard disk and keep its content on a CD-ROM?
Here are some tips on how to play your Director movie from a hard disk while keeping its content on the CD-
ROM:

1. Make sure linked cast members are all on one volume, and save the movie onto the same volume.
This allows a relative pathname to be constructed at playback.

2. In the movie script, determine the drive letter of the CD-ROM.
You may need to use a custom Xtra.

3. Construct a string starting with the drive letter of the CD-ROM, and the rest of the path duplicating
the directory hierarchy where the movie was saved.
This allows the relative paths constructed in the first step to remain usable.

4. setAt the searchPath, 1, <<the constructed string>>
This tells Director to search for files on the CD-ROM, beginning at the named directory.
If your content or subsidiary movies are on the hard disk and CD-ROM, search the hard disk
first. These searches will be relative to the directory that the movie was launched from.
If you know that your content and subsidiary movies are on the CD-ROM, you can dispense
with searching the hard disk.

5. set the searchCurrentFolder to FALSE
This bypasses searches relative to the current directory before scanning through the
searchPath.

Basic information regarding distribution of "Made with Macromedia" titles.
Macromedia's royalty-free licensing policy means that you can distribute applications created with Director or
Authorware to millions of end-users on multiple platforms-free. Simply include the Made with Macromedia logo
on your product's packaging and credit screen, complete the Run time distribution agreement, and register your
product with Macromedia to qualify.

This is meant to give a quick overview of the Made with Macromedia Run-time distribution agreement and
answer frequently asked questions. It is not, however, a replacement for the actual agreement. Please refer to
the Made with Macromedia (MwM) folder on your product CD for the Run-Time distribution agreement, logos,
and logo usage guidelines.

Who needs to comply with the Made with Macromedia logo requirements?
Any user of Authorware or Director who creates an End-user Product and distributes it outside of his own
organization or anyone who causes an End-user Product to be created and distributed outside of his own
organization. You must fill out Exhibit A of the Run time distribution agreement and place the Made with
Macromedia logo on the outer most front, side, or back of the packaging and within the software on either a
splash or credits screen.

What if the Macromedia runtime is an insubstantial part of a commercially distributed software product that
was not Made with Macromedia?

You do not need to place the Made with Macromedia logo on the outside of the packaging, but you will need to
put the logo onscreen within the software that makes use of a Macromedia run-time. You must sign and return
the Run-time distribution agreement, fill out Exhibit C, "Product Qualifying for Limited Markings," and place the
Made with Macromedia logo on the splash or credits screen only. You do not have to place it on the packaging.

I am using Shockwave to add multimedia to my web site. Am I required to use the Made with Macromedia
logo on my "Shocked" Web Site?

No. This is a benefit to help inform your viewers that your site contains cutting edge multimedia content. Viewers
will be directed to the Shockwave Plug-In so they can view the Macromedia-created movies within your web site.

I qualify for either full or partial marking of the Made with Macromedia logo. What are the steps I need to take
to comply with this agreement?

1. Complete, sign, and return one copy of the Run-time Distribution Agreement and either Exhibit A or C that
are located in the Made with Macromedia folder of the Director or Authorware product CD. Exhibit A is for
products that qualify for full marking and Exhibit C is for products that qualify for limited, software only,
markings. The agreement becomes effective upon receipt by Macromedia. For multiple products or future
products, you need only fill out and return an additional copy of Exhibit A or C. Each additional copy of
Exhibit A or C will become effective upon receipt by Macromedia.

2. If you qualify for full markings, you need to place the Made with Macromedia logo on the outside of the
packaging and on screen within the software. Logos are located in the Made with Macromedia (MwM) folder
of your Authorware or Director product CD. See Exhibit B of the Run Time Distribution Agreement for
detailed size and location guidelines. If you qualify for limited markings, you must place the Made with
Macromedia logo on screen only within the software guidelines outlined in Exhibit B.

3. Incorporate the following copyright statement into the copyright screen of the end-user product.
· If Authorware was used to create the Publisher Product:

AUTHORWARE ¨ COPYRIGHT © 1993 Macromedia, Inc.

· If Director was used to create the Publisher Product:

DIRECTOR ¨ COPYRIGHT © 1994 Macromedia, Inc.

4. Send Macromedia two (2) copies of the final, packaged end-user software within 30 days of ship to:

Macromedia Developer Relations
600 Townsend Street
San Francisco, CA 94103

What's new

Basic concepts

Ease-of-use

Scriptless authoring

Internet

General improvements

New Lingo

__

Ease-of-use improvements
Sprites

Sprites are now unified objects that span frames in the Score. To make a sprite span more frames, just drag
the end frame. Tweening is automatic. Moving a sprite on the Stage moves it in every frame in which it
appears.

For more information, see Cast members and sprites.

New Score

The Score has been redesigned so it's more powerful and easier to use. A new playback indicator displays
in every channel. Useful information about selected sprites appears at the top of the Score. New views
provide zoomed and expanded views of the movie. Open multiple Score windows to view the data in
different ways at the same time.

For more information, see Score viewing options.

Key frames and automatic tweening

Key frames are selectable objects in the Score and on the Stage. Director automatically changes your
animation when you move sprites in key frames.

Sprite paths

Display and adjust the path of a sprite moving over time right on the stage.

For more information, see Showing and editing sprite paths.

Sprite overlay

Display the most important sprite information directly on the Stage and easily open key editing windows with
the sprite overlay.

For more information, see Viewing and changing sprite properties.

Sprite inspector

Display and edit the most important sprite properties in a floating palette with the Sprite Inspector.

For more information, see Using the Sprite Inspector.

Movies in Director Help

Director Help now includes a complete interactive tutorial and several movies demonstrating key concepts
such as cast members and sprites, tweening, film loops, and drag-and-drop behaviors. Choose Help >
Learning Director to run the interactive tutorial. See the Show Me help topic to see a list of all included
movies.

Scriptless authoring
Drag-and-drop behaviors

Drag behaviors onto sprites and frames to create interactivity without scripting. Drag several behaviors onto
a single sprite to build more complex actions. Choose from a large library of included behaviors, or create
your own with Lingo or the Behavior Inspector.

For more information, see Using included behaviors.

Behavior Inspector

Create, combine, and edit flow-control and interactive behaviors with the Behavior Inspector. Enter
parameters for existing behaviors, or make your own from scratch.

For more information see Understanding behaviors.

Button editor

Make buttons that show normal, pressed, rollover, and disabled states in a simple dialog box. No Lingo
required.

For more information, see Using the Button Editor.

Internet improvements
Streaming playback

Movies begin playing as soon as the data for the first scene reaches the user's system. The beginning of the
movie plays while the rest of the movie continues to download in the background.

For more information, see Setting streaming playback options.

Shockwave integration

Shockwave is now fully integrated with the Director authoring environment. Create movies ready for use with
Shockwave without the AfterBurner Xtra. All internet Lingo functions are now recognized by the compiler and
are fully documented in online help. Test Shockwave movies, including all net Lingo and internet functions,
right in the Director authoring environment.

For more information, see Creating Shockwave movies.

Linked media on the internet

Link to media anywhere on the internet, just as you would link to external media on disk.

For more information, see Importing from the internet.

More net Lingo

Director's scripting language, Lingo, includes more commands for internet functions. Use new Lingo commands
like frameReady, mediaReady, and getNetText to expand the power of Shockwave.

Browser integration

Use new scripting commands from the host environment to control Shockwave movies and more tightly
integrate them with Internet Explorer, Netscape, and Visual Basic.

For more information, see Browser scripts.

General improvements
Media cue points

Synchronize the playback head to predefined cue points in sound or digital video.

For more information, see Using sound and video cue points.

Launch and edit

Launch any media editor directly from Director. Specify different editors for different graphic formats. Director
automatically re-imports the data after editing in an external editor.

For more information, see Launching external editors.

New import formats

Both Windows and Macintosh versions of Director now support BMP, GIF, JPEG, LRG (xRes), Photoshop
3.0, MacPaint, PNG, TIF, and PICT graphic formats.

Director for Windows also supports Photo CD, PCX, WMF, PostScript, and the FLC and FLI multiple image
formats.

Director for Macintosh also supports PICS, Scrapbook multiple image formats.

For more information, see Importing cast members.

Shockwave Audio

Shockwave Audio is now fully integrated with Director for use via the internet and off disk. Compress any
internal sound by up to 176 to 1. Stream sounds directly from the internet or CD-ROMs.

For more information, see Compressing and streaming sounds with Shockwave Audio.

Shockwave compression

Shockwave compression is now usable off disk or over the internet. Compress projectors to make them use
less disk space.

For more information see Preparing a movie for distribution.

Basic Concepts
Getting Started

Working with Cast Members

Working with Sprites

Creating Interactivity

Editing Media

Working Behind the Scenes

Completing Movies

Creating Shockwave Movies for the Web

Using Xtras

Getting Started

Cast members and sprites
{button ,JI(`',`UsersGuide_001_help')} Basics

Using the Stage and Score
{button ,JI(`',`UsersGuide_002_help')} Basics

Controlling movie playback
{button ,JI(`',`UsersGuide_003a_help')} Basics

Working with Cast Members-Basic Concepts

Cast basics
{button ,JI(`',`UsersGuide_004_help')} Basics
{button ,JI(`',`UsersGuide_005_help')} Understanding internal and external casts
{button ,JI(`',`UsersGuide_007_help')} Working with the Cast window

Creating cast members
{button ,JI(`',`UsersGuide_017_help')} Basics
{button ,JI(`',`UsersGuide_012_help')} Importing cast members
{button ,JI(`',`UsersGuide_013_help')} Linking to a file
{button ,JI(`',`UsersGuide_014_help')} Importing from the internet
{button ,JI(`',`UsersGuide_015_help')} Supported file types
{button ,JI(`',`UsersGuide_018_help')} Using Xtra cast member types

Viewing cast member properties
{button ,JI(`',`UsersGuide_019_help')} Basics

Finding cast members
{button ,JI(`',`UsersGuide_022_help')} Basics

Sorting cast members
{button ,JI(`',`UsersGuide_024_help')} Basics

Using external casts
{button ,JI(`',`UsersGuide_025_help')} Basics

Working with Sprites-Basic Concepts

Creating sprites
{button ,JI(`',`UsersGuide_032_help')} Basics
{button ,JI(`',`UsersGuide_033_help')} Default sprite duration

Moving and resizing sprites
{button ,JI(`',`UsersGuide_034_help')} Basics
{button ,JI(`',`UsersGuide_035_help')} Changing the stacking order of sprites

Selecting sprites
{button ,JI(`',`UsersGuide_036_help')} Basics

Changing when sprites appear
{button ,JI(`',`UsersGuide_037_help')} Basics
{button ,JI(`',`UsersGuide_038_help')} Moving sprites between frames
{button ,JI(`',`UsersGuide_039_help')} Changing sprite duration
{button ,JI(`',`UsersGuide_040_help')} Extending sprites

Viewing and changing sprite properties
{button ,JI(`',`UsersGuide_041_help')} Basics
{button ,JI(`',`UsersGuide_042_help')} Using the Sprite Inspector
{button ,JI(`',`UsersGuide_043_help')} Sprite coordinates
{button ,JI(`',`UsersGuide_044_help')} Applying ink effects to sprites

Tweening sprites
{button ,JI(`',`UsersGuide_047_help')} Basics
{button ,JI(`',`UsersGuide_049a_help')} Tweening options
{button ,JI(`',`UsersGuide_050_help')} Tweening speed
{button ,JI(`',`UsersGuide_052_help')} Tweening suggestions and shortcuts

Exchanging sprite cast members
{button ,JI(`',`UsersGuide_053_help')} Basics

Editing sprite frames
{button ,JI(`',`UsersGuide_054_help')} Basics

Animating with a series of cast members
{button ,JI(`',`UsersGuide_055_help')} Basics
{button ,JI(`',`UsersGuide_057_help')} Animating with Cast to Time
{button ,JI(`',`UsersGuide_059_help')} Using Space to Time
{button ,JI(`',`UsersGuide_061_help')} Using film loops

Splitting and joining sprites
{button ,JI(`',`UsersGuide_065_help')} Basics

Step recording
{button ,JI(`',`UsersGuide_067_help')} Basics

Real-time recording
{button ,JI(`',`UsersGuide_069_help')} Basics

Aligning sprites
{button ,JI(`',`UsersGuide_073_help')} Basics

Selecting, moving and deleting frames in the Score
{button ,JI(`',`UsersGuide_075b_help')} Basics

Using markers
{button ,JI(`',`UsersGuide_076_help')} Basics

Score viewing options
{button ,JI(`',`UsersGuide_078_help')} Basics
{button ,JI(`',`UsersGuide_079_help')} Zooming the Score
{button ,JI(`',`UsersGuide_080_help')} Using sprite labels
{button ,JI(`',`UsersGuide_086_help')} Using Director 5 Score display

Creating Interactivity-Basic Concepts

Understanding behaviors
{button ,JI(`',`UsersGuide_089_help')} Basics

Attaching behaviors
{button ,JI(`',`UsersGuide_090a_help')} Basics
{button ,JI(`',`UsersGuide_092_help')} Getting information about behaviors
{button ,JI(`',`UsersGuide_091_help')} Entering behavior parameters

Using included behaviors
{button ,AL(`conceptLink_4_5a_help')} Basics

Creating and changing behaviors
{button ,JI(`',`UsersGuide_100_help')} Basics
{button ,AL(`conceptLink_4_7b_help')} Actions and events

Using the button editor
{button ,JI(`',`UsersGuide_106_help')} Basics

Editing Media-Basic Concepts

Working with color
{button ,AL(`conceptLink_5_12_help')} Basics
{button ,JI(`',`UsersGuide_116_help')} Palettes in web browsers
{button ,AL(`conceptLink_5_14_help')} Solving color palette problems
{button ,JI(`',`UsersGuide_122_help')} Image resolution

Working with bitmaps
{button ,JI(`',`Paint_help')} Basics
{button ,JI(`',`UsersGuide_124_help')} Resizing bitmaps
{button ,JI(`',`UsersGuide_128_help')} Using registration points
{button ,AL(`conceptLink_5_18_help')} Using onion skinning
{button ,AL(`conceptLink_5_19_help')} Using bitmap filters

Working with text
{button ,JI(`',`UsersGuide_144_help')} Basics
{button ,JI(`',`UsersGuide_145_help')} Creating text cast members
{button ,JI(`',`UsersGuide_147_help')} Importing text
{button ,JI(`',`UsersGuide_150_help')} Using anti-aliased text
{button ,AL(`conceptLink_5_25_help')} Using different types of text in Director
{button ,AL(`conceptLink_5_26_help')} Creating fields
{button ,JI(`',`UsersGuide_158_help')} Mapping fonts between platforms

Working with digital video
{button ,JI(`',`UsersGuide_159a_help')} Basics
{button ,JI(`',`UsersGuide_159b_help')} Using Direct to Stage

Using shapes
{button ,JI(`',`UsersGuide_164_help')} Basics

Using OLE cast members
{button ,JI(`',`UsersGuide_165_help')} Basics
{button ,JI(`',`UsersGuide_167_help')} Working with OLE cast members
{button ,JI(`',`UsersGuide_168_help')} Using Paste Special with OLE objects

Launching external editors
{button ,JI(`',`UsersGuide_169_help')} Basics

Using movies within Director movies
{button ,JI(`',`UsersGuide_171_help')} Basics
{button ,JI(`',`UsersGuide_172_help')} Importing movies
{button ,JI(`',`UsersGuide_173_help')} Playing a movie in a window
{button ,JI(`',`UsersGuide_174_help')} Comparing film loops, digital videos, linked movies, and MIAWs

Working Behind the Scenes-Basic Concepts

Working with tempo settings
{button ,AL(`conceptLink_6_1_help')} Basics
{button ,JI(`',`UsersGuide_179_help')} Using the tempo channel
{button ,JI(`',`UsersGuide_181_help')} Using sound and video cue points

Using sounds
{button ,JI(`',`UsersGuide_185_help')} Basics
{button ,JI(`',`UsersGuide_186_help')} Importing sounds
{button ,JI(`',`UsersGuide_187_help')} Using internal and external sounds
{button ,JI(`',`UsersGuide_188_help')} Placing sounds in the Score
{button ,JI(`',`UsersGuide_189_help')} Repeating a sound
{button ,JI(`',`UsersGuide_190_help')} Setting sound volume
{button ,JI(`',`UsersGuide_191_help')} Synchronizing sound

Compressing and streaming sounds with Shockwave Audio
{button ,JI(`',`UsersGuide_192_help')} Basics
{button ,JI(`',`UsersGuide_193_help')} Understanding compression quality
{button ,JI(`',`UsersGuide_194_help')} Compressing internal sounds
{button ,JI(`',`UsersGuide_196_help')} Streaming external Shockwave Audio

Working with transitions
{button ,JI(`',`UsersGuide_197_help')} Basics
{button ,JI(`',`UsersGuide_198_help')} Creating transitions
{button ,JI(`',`UsersGuide_200_help')} Tips for using transitions

Changing color palettes
{button ,JI(`',`UsersGuide_201_help')} Basics
{button ,JI(`',`UsersGuide_202_help')} Changing palettes in a movie
{button ,AL(`conceptLink_6_19_help')} Using the Color Palettes window

Printing movies
{button ,JI(`',`UsersGuide_211_help')} Basics

Completing Movies-Basic Concepts

Preparing a movie for distribution
{button ,JI(`',`UsersGuide_213_help')} Basics
{button ,JI(`',`UsersGuide_214_help')} Distributing movies on disk
{button ,JI(`',`UsersGuide_215_help')} Distributing movies on the internet
{button ,JI(`',`UsersGuide_216_help')} Distributing movies on a local network
{button ,JI(`',`UsersGuide_217_help')} Organizing movie files

Creating projectors
{button ,JI(`',`UsersGuide_218_help')} Basics

Creating Shockwave movies
{button ,JI(`',`UsersGuide_219b_help')} Basics

Managing Xtras for distributed movies
{button ,JI(`',`UsersGuide_221_help')} Basics

Processing movies with Update Movies
{button ,JI(`',`UsersGuide_225_help')} Basics
{button ,JI(`',`UsersGuide_227_help')} Converting existing movies

Including required system elements
{button ,JI(`',`UsersGuide_228_help')} Basics
{button ,JI(`',`UsersGuide_229_help')} Video for Windows and QuickTime

Naming files and folders
{button ,JI(`',`UsersGuide_230_help')} Basics
{button ,AL(`conceptLink_7_10_help')} Choosing file names and folder names for Windows 3.1

Exporting digital video
{button ,JI(`',`UsersGuide_232_help')} Basics

Creating Shockwave Movies for the Web-Basic Concepts

Shockwave for Director
{button ,JI(`',`UsersGuide_246b_help')} Basics

Setting streaming options
{button ,JI(`',`UsersGuide_251_help')} Basics

Authoring issues for Shockwave movies
{button ,AL(`conceptLink_8_4_help')} Basics

Downloading considerations
{button ,JI(`',`UsersGuide_259_help')} Basics

Shockwave browser compatibility
{button ,JI(`',`UsersGuide_261_help')} Basics

Shockwave HTML requirements
{button ,JI(`',`UsersGuide_262_help')} Basics
{button ,JI(`',`UsersGuide_263_help')} Parameters for OBJECT and EMBED tags
{button ,JI(`',`UsersGuide_265_help')} Multiple movies in an HTML document

Using Xtras-Basic Concepts
{button ,JI(`',`UsersGuide_268_help')} Basics
{button ,JI(`',`UsersGuide_269_help')} Types of Xtras
{button ,JI(`',`UsersGuide_270_help')} Installing Xtras
{button ,JI(`',`UsersGuide_271_help')} Checking which Xtras are available

Using XCMDs and XFCNs
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

Related topics:

Differences between Xobjects and XCMDs

Differences between XObjects and XCMDs

Learning to use XCMDs

Using an XCMD or XFCN

XCMDs and callbacks

XCMD and XFCN callback requests

Lingo lets you use HyperCard's XCMDs and XFCNs in your movies. Using XCMDGlue-part of Director's
*Standard.xlib library of XObjects- you can access XCMDs and XFCNs from Lingo scripts. This lets you can
extend Director's capabilities by using the many XCMDs and XFCNs available from HyperCard.

Most XCMDs and XFCNs work automatically with XCMDGlue, but some may not.When the XCMD's primary
purpose is to perform a HyperCard-specific action-such as handling cards, HyperTalk scripts, or other parts of
the HyperCard interface-the XCMD or XFCN might generate an error message when used in Director.

XCMDs and XFCNs are closely related. For convenience, Director Help refers to them collectively as XCMDs.

Note: XCMDs provide an interface to external code modules but are not capable of ensuring that the external
code modules themselves perform as intended. You must make sure that the external code modules perform
correctly to have them produce the desired results in Director.

Differences between XObjects and XCMDs
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

XCMDGlue works differently from XObjects. You don't create instances of XCMDGlue to work with specific
XCMDs. Instead, XCMDGlue acts as an interpreter between Lingo and the XCMD.

A major difference between XCMDs and XObjects is that an XObject can have multiple instances:

· One XObject can be used to create a number of independent objects, each capable of performing different
operations.

· An XCMD cannot create new instances, so it can perform only one function at a time.

For these cases, you can use Lingo to create a special mechanism which may solve the problem. For further
information, see the XCMDs and callbacks topic.

Learning to use XCMDs
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

Related topics:

Opening XCMD resources

Viewing XCMD resources

Closing XCMD resources

Like using XObjects, using an XCMD involves three basic steps:

1. Opening the XCMD

2. Exchanging messages with the XCMD to perform some function

3. Closing the XCMD.
One of the best ways to learn about XCMDs is to use them in Director's message window. In this section, you'll
see how to open, view the contents of an XCMD resource by exchanging a message with the XCMD, and close
an XCMD.

Opening XCMD resources
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

XCMDs can be located in two places: in an external file or in a Director movie.

When an XCMD resource is stored in the current movie's resource fork, the XCMD is automatically opened when
the movie is opened. This is similar to the way *Standard.xlib is automatically opened when you launch Director.
You can copy XCMD resources into your Director movie using a resource editor like ResEdit.

When an XCMD resource is stored in an external file such as a resource file or stack, you can open it with the
openXlib command. If the file is in another folder, you must specify a full pathname to the folder. The easiest way
to access the file is to place it in the same folder as your Director movie or the Director application.

To open an XCMD using the openXlib command:

1. Launch Director.

2. Open the message window and type openXlib followed by the name of the XCMD resource file.

3. Press Return.
The resource file you specified opens.

One resource file can contain multiple XCMDs. When you use the openXlib command, all XCMDs stored in
the specified XCMD resource file are opened. The XCMD resource file can be a HyperCard stack, a
resource file, or even a TeachText document containing XCMD resources. Notice that this is the same
command used to open regular XObjects.

Viewing XCMD resources
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

After you've opened the XCMD, you can use the showXlib command to display all open resource files that
contain XCMDs as well as XObjects.

To display a list of all open resource files that contain XCMDs and Xobjects, ype showXlib in the message
window, and then press Return.

To display the contents of a specific XCMD resource file, type showXlib followed by the name of the resource file,
and then press Return.

Closing XCMD resources
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

The closeXlib command lets you close all open resource files that contain XCMDs and XObjects.

To close all open resource files that contain XCMDs and XObjects, type closeXlib in the message window, and
then press Return.

To close a specific resource file that contains XCMDs, type closeXlib followed by the name of the resource file in
the message window, and then press Return.

Using an XCMD or XFCN
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

In many cases, once you open an XCMD, you can use the XCMD in your Lingo scripts the same way you would
use it in a HyperTalk script. XCMDGlue does everything else by converting the XCMD for you. For example, the
following handler would let you use the MIDIplay XCMD (from Opcode Systems) to play a MIDI file from Director:

on startMIDIplayback
openXlib (the pathname & "MIDIplay")
-- opens the MIDIplay XCMD
-- Use Lingo's "pathname" function to find
-- resource files
-- in the same folder as your movie
MIDIplay "open","MyDrive:MyFolder:myMIDIfile"
-- opens the MIDI file to be played
MIDIplay "start"
-- starts playback of the MIDI file

end startMIDIplayback

This handler stops the playback of the MIDI file:

on stopMIDIplayback
MIDIplay "stop"
closeXlib (the pathname & "MIDIplay")

end stopMIDIplayback

XCMDs and callbacks
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

Related topics:

Using a callback handler

Defining the callback factory

Creating the callback object

Specifying the callback handler

Not all XCMDs can be used with XCMDGlue in a completely transparent manner. Occasionally, XCMDGlue is
unable to properly convert the XCMD. When you attempt to use an XCMD's syntax in a script, an error message
is displayed.

Certain XCMDs may call on HyperCard to internally perform some tasks while the XCMD is executing. Most of
these are conversion routines and are used to conveniently convert information to and from different formats.
The remaining callbacks either involve the HyperTalk interpreter or access information stored in HyperCard-
specific entities such as fields, or they do both. The table of HyperCard callback requests at the end of this
appendix lists specific technical information regarding these callbacks.

Lingo automatically supports all callbacks that are not overly specific to HyperCard. Still, some HyperCard-
specific callbacks are supported when Lingo provides a direct equivalent. The remaining callbacks that are not
automatically supported (a total of nine) are so specific to HyperCard that they cannot be resolved automatically
unless the application calling the XCMD is virtually identical to HyperCard. Even in such cases, it is still possible
to use an XCMD by using a user-defined mechanism called a callback handler.

Using a callback handler
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

A callback handler uses a Lingo factory to accept and respond to messages that correspond to HyperCard
callback requests. A factory is a set of scripts that can be used to create an object. In Director 4.0, the
functionality of factories has largely been replaced by parent scripts. For more information on parent scripts, see
Chapter 10, "Parent Scripts and Child Objects." In this specific case, however, a factory provides the best way to
respond to callbacks. This section shows you the steps necessary to create a callback factory, and to call that
factory from a handler.

Essentially, a callback handler provides a mechanism that some XCMDs already expect to be available. The
XCMD expects that when it sends or receives a callback message, something will be there to receive it and
possibly return another message. (Usually HyperCard does this.) A callback handler defined in Lingo simply
intercepts and returns these messages when appropriate. Whether you choose to use this information depends
on your understanding of the purpose of the callback.

Fortunately, when XCMDGlue does not understand a callback request, it indicates the name of the callback in
the error message. Once you know which callback your XCMD needs to deal with, you can create a callback
handler for it.

There are three basic steps to creating a callback handler:

1. Defining a callback factory

2. Creating the callback object

3. Specifying the XCMD to be used with the callback object (with the setCallBack command that is part
of XCMDGlue).

Defining the callback factory
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

The first step in creating a callback factory is to define it. The following example factory includes methods for all
the callbacks that are not supported by XCMDGlue. This factory does not attempt to do anything with the
callback requests other than create a record of them in the message window. As you'll see later, you can use this
information to process callbacks. This factory should be placed in a movie script:

factory callBackFactory
method mNew
me(mPut, 1, "SendCardMessage")
me(mPut, 2, "EvalExpr")
me(mPut, 3, "StringLength")
me(mPut, 4, "StringMatch")
me(mPut, 5, "SendHCMessage")
me(mPut, 6, "ZeroBytes")
me(mPut, 7, "PasToZero")
me(mPut, 8, "ZeroToPas")
me(mPut, 9, "StrToLong")
me(mPut, 10, "StrToNum")
me(mPut, 11, "StrToBool")
me(mPut, 12, "StrToExt")
me(mPut, 13, "LongToStr")
me(mPut, 14, "NumToStr")
me(mPut, 15, "NumToHex")
me(mPut, 16, "BoolToStr")
me(mPut, 17, "ExtToStr")
me(mPut, 18, "GetGlobal")
me(mPut, 19, "SetGlobal")
me(mPut, 20, "GetFieldByName")
me(mPut, 21, "GetFieldByNum")
me(mPut, 22, "GetFieldByID")
me(mPut, 23, "SetFieldByName")
me(mPut, 24, "SetFieldByNum")
me(mPut, 25, "SetFieldByID")
me(mPut, 26, "StringEqual")
me(mPut, 27, "ReturnToPas")
me(mPut, 28, "ScanToReturn")

me(mPut, 31, "FormatScript")
me(mPut, 32, "ZeroTermHandle")
me(mPut, 33, "PrintTEHandle")
me(mPut, 34, "SendHCEvent")
me(mPut, 35, "HCWordBreakProc")
me(mPut, 36, "BeginXSound")
me(mPut, 37, "EndXSound")
me(mPut, 38, "RunHandler")
me(mPut, 39, "ScanToZero")
me(mPut, 40, "GetXResInfo")
me(mPut, 41, "GetFilePath")
me(mPut, 42, "FrontDocWindow")
me(mPut, 43, "PointToStr")
me(mPut, 44, "RectToStr")
me(mPut, 45, "StrToPoint")
me(mPut, 46, "StrToRect")
me(mPut, 47, "GetFieldTE")
me(mPut, 48, "SetFieldTE")
me(mPut, 49, "GetObjectName")
me(mPut, 50, "GetObjectScript")
me(mPut, 51, "SetObjectScript")
me(mPut, 52, "StackNameToNum")
me(mPut, 53, "Notify")
me(mPut, 54, "ShowHCAlert")
me(mPut, 100, "NewXWindow/GetNewXWindow")
me(mPut, 101, "CloseXWindow")
me(mPut, 102, "SetXWIdleTime")
me(mPut, 103, "XWHasInterruptCode")
me(mPut, 104, "RegisterXWMenu")
me(mPut, 105, "BeginXWEdit/EndXWEdit")
me(mPut, 106, "SaveXWScript")
me(mPut, 107, "GetCheckPoints")
me(mPut, 108, "SetCheckPoints")
me(mPut, 109, "XWAllowReEntrancy")
me(mPut, 110, "SendWindowMessage")

me(mPut, 111, "HideHCPalettes")
me(mPut, 112, "ShowHCPalettes")
me(mPut, 113, "XWAlwaysMoveHigh")
me(mPut, 200, "GoScript")
me(mPut, 201, "StepScript")
me(mPut, 202, "AbortScript")
me(mPut, 203, "CountHandlers")
me(mPut, 204, "GetHandlerInfo")
me(mPut, 205, "GetVarInfo")
me(mPut, 206, "SetVarValue")
me(mPut, 207, "GetStackCrawl")
me(mPut, 208, "TraceScript")
method mEvalExpr x
put "mEvalExpr:" && x

method mSendHCMessage x
put "mSendHCMessage:" && x

method mSendCardMessage x
put "mSendCardMessage:" && x

method mGetFieldByName card, name
put "mGetFieldByName:" && card && name

method mGetFieldByNum card, num
put "mGetFieldByNum:" && card && num

method mGetFieldByID card, id
put "mGetFieldByID:" && card && id

method mSetFieldByName card, name, value
put "mSetFieldByName:" && card && name && value

method mSetFieldByNum card, num, value
put "mSetFieldByNum:" && card && num && value

method mSetFieldByID card, id, value
 put "mSetFieldByID:" && card && id && value
method mUnknown which
put me(mGet, value(which)) into callBackName
put "mUnknown:" && which && "(" & Â
callbackName & ")"

You do not need to specify every callback handled in this factory. You are required to define methods only for the
callbacks that are indicated in error dialogs generated by the XCMD. For example, the mEvalExpr callback may
be the only callback you need to account for.

As indicated in this example, the put statements in each method are optional. They are there to let you know
what the XCMD or XFCN is attempting to tell HyperCard. You can use this information in any way you want.
Sometimes, a callback requires a value (message) to be sent back to HyperCard. If you know what that value
should be, use return at the end of the specific callback method's script. For example, if a callback required
HyperCard to return TRUE or FALSE you could use a method similar to the following:

method callBackMethod
if test then return TRUE else return FALSE

end callBackMethod

Some XCMDs use a large amount of processor time. In this situation, using a put statement in your script slows
down whatever the XCMD does, because the put statement has to be evaluated and written into the message
window. You can optimize the callback factory in this case by removing the put statements.

When a callback error occurs, the XCMD usually stops running after you click OK in the error dialog box.
However, because of the design of certain XCMDs, the XCMD sometimes continues to execute. You still need to
create a callback handler for these XCMDs. Otherwise, unexpected results could occur.

Creating the callback object
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

After you have defined a callback factory, you can create a factory object using the following statement:

put callbackFactory(mNew) into callbackObject

Specifying the callback handler
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

Finally, you specify the callback handler with the following statement:

setCallBack XCMD/XFCNname, callbackObject

The setCallBack command is part of the XCMDGlue XObject.

The XCMD or XFCN should now function properly. If you later use other elements of the XCMD's syntax, you
might still need to deal with other callbacks. You can accomplish this easily by adding the appropriate method to
your callback factory.

XCMD and XFCN callback requests
Note: For this development release of Director, this information in this help topic may not be up-to-date. It is
based on facts for Director 5, and it will be updated soon.

The following are HyperCard's callback requests. The symbol in the rightmost column identifies which level of
support is provided for each callback.

Number HyperCard callback Type*

1 SendCardMessage -

2 EvalExpr -

3 StringLength 4

4 StringMatch 4

5 SendHCMessage -

6 ZeroBytes 4

7 PasToZero 4

8 ZeroToPas 4

9 StrToLong 4

10 StrToNum 4

11 StrToBool 4

12 StrToExt 4

13 LongToStr 4

14 NumToStr 4

15 NumToHex 4

16 BoolToStr 4

17 ExtToStr 4

18 GetGlobal 4

19 SetGlobal 4

20 GetFieldByName -

21 GetFieldByNum -

22 GetFieldByID -

23 SetFieldByName -

24 SetFieldByNum -

25 SetFieldByID -

26 StringEqual 4

27 ReturnToPas 4

28 ScanToReturn 4

31 FormatScript -

32 ZeroTermHandle -

33 PrintTEHandle -

34 SendHCEvent -

35 HCWordBreakProc -

36 BeginXSound -

37 EndXSound -

38 RunHandler -

39 ScanToZero 4

40 GetXResInfo -

41 GetFilePath -

42 FrontDocWindow -

43 PointToStr -

44 RectToStr -

45 StrToPoint -

46 StrToRect -

47 GetFieldTE -

48 SetFieldTE -

49 GetObjectName -

50 GetObjectScript -

51 SetObjectScript -

52 StackNameToNum -

53 Notify -

54 ShowHCAlert -

100 NewXWindow/GetNewXWindow -

101 CloseXWindow -

102 SetXWIdleTime -

103 XWHasInterruptCode -

104 RegisterXWMenu -

105 BeginXWEdit/EndXWEdit -

106 SaveXWScript -

107 GetCheckPoints -

108 SetCheckPoints -

109 XWAllowReEntrancy -

110 SendWindowMessage -

111 HideHCPalettes -

112 ShowHCPalettes -

113 XWAlwaysMoveHigh -

200 GoScript -

201 StepScript -

202 AbortScript -

203 CountHandlers -

204 GetHandlerInfo -

205 GetVarInfo -

206 SetVarValue -

207 GetStackCrawl -

208 TraceScript -

* 4: Automatically supported by Lingo

-: Requires a callback handler. Some messages and expressions (such as EvalExpr) may be evaluated by
XCMDGlue in a manner compatible with HyperTalk. Other messages and expressions (such as
GetFieldByName) always assume HyperCard entities for which there are no counterpart in Director.

Editing a movie's Fontmap.txt file
To define the font mapping information for a movie, it's best to edit the Fontmap.txt file before you begin
authoring a movie, since Director automatically uses the information stored in the Fontmap.txt file when you
open a new movie. (If you've already created the movie, you can still edit the font map file, but you will then
have to manually load the file into the movie to have Director apply it to the movie.)

To define the font mapping information for a new movie:

1 Using any application that can edit text, open the sample Fontmap.txt file that's in the same folder as
the Director application.
When you installed Director, this file was placed in the same folder as the Director application. If the file is
missing, you can either re-install it or create it from scratch. See the end of this section for an example of a
Fontmap.txt file.

2 For each Macintosh font remapping entry, type on one line:

 Mac:MacFontName=>Win:WinFontName Â
[MAP (NONE|ALL)] [MACfontsize=>WINfontsize]

where MacFontName is the name of the Macintosh font, and WinFontName is the name of the
Windows font being substituted for the Macintosh font.
The two arguments enclosed in brackets are optional. MAP ALL or MAP NONE specifies whether you want to
remap characters with ASCII values greater than 127 or just pass them through. The default is MAP ALL.
You can specify how you want the characters to be remapped, as described in Step 3. The sample
Fontmap.txt file contains mappings for a few commonly used graphical characters.
The last argument, [MACfontsize=>WINfontsize], consists of one or more pairs of numbers, separated
by a space, that let you map a Macintosh font size to a Windows font size.
Because font sizes appear smaller on a PC, you might want to map Macintosh font sizes to larger Windows
font sizes.

3 For each Macintosh special character that you want to remap, type:

Mac:=>Win: OLDCHAR=>NEWCHAR OLDCHAR=>NEWCHAR ...

where OLDCHAR is the ASCII value of the Macintosh special character, and NEWCHAR is the ASCII
value of the Windows character being substituted for it. You can enter as many remapping pairs as
you want by separating each one with a space.
You can only remap characters whose ASCII values are greater than 127 and less than 255.
If you didn't specify MAP ALL for any of the font remapping entries, as described in Step 2, you can skip this
step.

4 Save the file as ASCII text, in the same folder as the Director application.

5 Open a new movie in Director.
When you open a new movie, Director looks for the font map file named Fontmap.txt in the same folder as
the Director application. All new movies will use the font mapping information in the Fontmap.txt file. You can
edit this file on a movie-by-movie basis, as necessary.

Existing movies continue to use the font map information (if any) stored within the movie rather than the font
mapping specified in the Fontmap.txt file.

To change the font mapping for an existing movie:

1 Using any text editing application, edit the Fontmap.txt file as described in "Editing a movie's
Fontmap.txt file," earlier in this section.

Save this file using any name of your choice.

2 Open the movie whose font mapping you want to change.

3 Choose Movie Properties on the Modify menu.

4 Click Load from File.
This option lets Director load the font mapping assignments specified in the font map file.

5 In the dialog box, select the font map file you just edited and click Open.

6 Click OK in the Movie Info dialog box.

7 Save the movie and close it.

8 Open the movie again.
The movie now uses the font map information specified in the fontmap.txt file.

Note: If you edit a text, field, or button cast member on a Windows system, in a movie created on a
Macintosh, the text cast member loses its original Macintosh font information. Similarly, if you edit a text, field, or
button cast member on the Macintosh for a movie created on a Windows system, the cast member loses its
original Windows font information. If you plan to edit a movie on both the Macintosh and Windows platforms,
make sure that the font mapping file specifies that each Macintosh font has only one substitute font in Windows,
and vice versa. This one-to-one font mapping ensures that Director will be able to assign the appropriate
substitute font when you edit a text cast member on one platform and then open the movie on the other platform.

A movie's Fontmap.txt file might look like this:
; This is a sample Fontmap.txt file
; Comments are denoted by using ";" or "--" to startÂ the line
; The format for Font Mapping is:
; Platform:FontName => Platform:FontName [MAP (NONE | ALL)] [OLDSIZE => NEWSIZE]
-- The format for specific Character Mapping is
-- Platform: => Platform: OLDCHAR => NEWCHAR ...
; Here are sample mappings for the standard Mac fonts:
Mac:Chicago => Win:"MS Sans Serif"
Mac:Courier => Win:"Courier New"
Mac:Geneva => Win:System Map All
Mac:Helvetica => Win:Arial
Mac:Monaco => Win:Terminal
Mac:"New York" => Win:"MS Serif" Map None
Mac:Symbol => Win:Symbol
Mac:Times => Win:"Times New Roman" 14=>12 18=>14 24=>18 30=>24
; Here are sample mappings for the stock Windows fonts
Win:Arial => Mac:Helvetica Map All
Win:Courier => Mac:Courier
Win:"Courier New" => Mac:Courier
Win:"MS Serif" => Mac:"New York" Map None
Win:"MS Sans Serif" => Mac:Chicago
Win:Symbol => Mac:Symbol

Win:System => Mac:Geneva
Win:Terminal => Mac:Monaco
Win:"Times New Roman" => Mac:Times 12=>14 14=>18 18=>24 24=>30
; Note: From Windows to Mac, Courier and Courier New map onto Courier. When
coming back to Windows only Courier New will be used.
; Here is a sample character mapping for the bullet char
Mac: => Win: 165=>149
Win: => Win: 149=>165
Note that:

· Comment lines must begin with two dashes (--) or a semicolon (;)

· Only one font mapping definition can be specified on a line

· Arguments must be separated by spaces or tabs

· If a font name consists of more than one word, it must be enclosed in quotation marks.

{button See Also,AL(`Editing_Fontmap')}

Cast members and sprites
Cast members are a movie's basic elements. Cast members include bitmap images, text, sounds, buttons,
digital videos, and more. You create most cast members by importing media such as bitmaps, sounds, and
digital videos created in other programs. Cast members are organized into casts. Make as many casts as
you need to organize the media in a movie.

Sprites are objects representing when, where, and how cast members appear in the movie. By creating
multiple sprites, you can make a single cast member appear in different places and times in a movie. Create
a sprite by dragging a cast member to the Stage or Score.

For a demonstration of these concepts, see the Cast Members and Sprites movie.

Creating a Director movie is largely a process of defining where sprites appear on the Stage, when they
appear in the movie, how they behave, and what their properties are.

{button See also,AL(`UsersGuide_001_help')}

Using the Stage and Score
The Stage and Score are where you assemble a movie. The Stage shows what is happening in the movie at
a particular time. The Score shows what happens in the movie over time.

The Stage
The Stage is what the viewer sees when a movie is complete. While creating a movie, you can perform
many actions directly on the Stage. Unlike other windows, the Stage has no title or scroll bars, and can
extend to the edges of the screen. To set the size of the Stage, choose Modify > Movie > Properties. The
default size is 640 by 480 pixels.

Note: The menu bar is active but invisible when only the Stage is showing. To display a menu, move the
pointer to the top of the screen to the menu's position, and hold down the mouse button. In Windows, the Stage
will not hide the menu bar unless the Director window is maximized.

The Score
The Score displays the state of all the elements in your movie over time. Choose Window > Score to open
the Score.

When you create a new sprite, Director places the sprite's image on the Stage and displays information
about when the sprite appears in the Score. Sprites appear in the Score as bars extending across all the
frames in which the sprite appears.

{button Illustration,PI(`',`UG_illustration_1_100')}

The numbers across the top of the Score show the number of each frame. Frames represent a single step in
the movie, like the frames in a traditional film. You set the playback speed of a movie by specifying the
number of frames to be displayed per second. See the Controlling movie playback help topic.

{button Illustration,PI(`',`UG_illustration_1_800')}

The playback head moves through the Score to show what frame is currently displayed on the Stage. The
playback head moves to any frame you click in the Score.

When you click a sprite to select it, a small image of the sprite's cast member appears in the upper left
corner of the Score. Information such as the size and location, and start and end frame of the selected sprite
appears to the right.

{button Illustration,PI(`',`UG_illustration_3_6303')}

Using Score channels
Different channels in the Score store different types of information.

{button Illustration,PI(`',`UG_illustration_1_005')}

When the Score first appears, the effects channels are not visible, only the sprite and script channels are
visible. Click the Show/Hide Effect Channels button on the right side of the Score to show or hide the effect
channels.

{button Illustration,PI(`',`UG_illustration_3_740a')}

{button See also,AL(`UsersGuide_002_help')}

Controlling movie playback
Control how movies play back with the Control Panel, buttons on the toolbar, or keyboard shortcuts.

{button Illustration,PI(`',`UG_illustration_2_060')}

The Control Panel provides most of the basic functions you need to play back movies. Choose Window >
Control Panel to open this floating panel.

Note: Be sure the movie is stopped before editing.

{button See also,AL(`UsersGuide_003a_help')}

Cast basics
A cast is a library of graphics, sounds, color palettes, behaviors and Lingo scripts, buttons, transitions, digital
video movies, and text used in a Director movie. Each movie's cast can contain up to 32,000 cast members.

You can create as many casts as you need for a movie. Use casts to:

· Separate different types of media.

· Organize sections of a movie.

· Share casts between movies.

· Work on the same movie with other people without having to merge changes back into the same file.

· Reuse casts in other movies.

· Dynamically update a movie with new media published on the internet.

{button See also,AL(`UsersGuide_004_help')}

Understanding internal and external casts
There are two types of casts: internal and external. The cast that appears when you create a new movie is
an internal cast.

Internal casts are stored inside movie files and can't be shared with other movies.

External casts are stored outside the movie file and can be shared with other movies.

Use internal casts to store media not shared with other movies. Use external casts to store shared media or
commonly used elements. See the Using external casts help topic.

{button See also,AL(`UsersGuide_005_help')}

Creating casts
To create a new cast, choose File > New > Cast. When the New Cast dialog box appears, choose either the
Internal or External option.

If you choose External, choose a setting for the Use in Current Movie option to determine if the cast is linked
to the current movie. See the Using external casts help topic.

{button See also,AL(`UsersGuide_006_help')}

Working with the Cast window
The Cast window displays the members of the current cast. You can open as many windows as you need to
display the different casts in your movie, or you can use the cast pop-up to select a different cast for display
in the current window. The name of the current cast appears in the Cast window title bar.

There are several buttons at the top of the Cast window to help you work with cast members:

Most of these buttons also appear at the top of all the windows you use to edit cast members. There are only
a few differences:

The Cast window displays information for each cast member.

For every occupied position in the Cast window, Director displays an icon that represents the cast member's
type.

You control the size of the Cast window, the size of the thumbnail images, and other optional settings with
File > Preferences > Cast.

{button See also,AL(`UsersGuide_007_help')}

Opening Cast windows

To Do this
Open an existing cast in a new
Cast window

Choose Window > Cast or press Control-3
(Windows), or Command-3 (Macintosh). If
you have more than one cast, select a cast
name from the cast submenu.

Change the cast displayed in the
current Cast window

Click the cast button and choose a cast
from the pop-up.

Create a new Cast window Select a Cast window and choose Window
> New.

{button See also,AL(`UsersGuide_008_help')}

Selecting cast members

To Do this
Select a range of cast members Click the first cast member in the range.

Shift-click the last one in the range.

Select multiple non-adjacent cast
members

Control-click (Windows) or Command-click
(Macintosh) all the cast members you want
to select.

{button See also,AL(`UsersGuide_009_help')}

Moving cast members
You move cast members between positions in any open Cast windows by dragging and dropping.

To Do this
Move a cast member to a new
position or a different cast

Drag the cast member to a new position in any open Cast
window.

A highlight bar appears to show you where the cast member
will be placed.

Cut, copy, and paste cast
members to a new position or a
different cast

Select a cast member, choose Cut or Copy from the Edit
menu, select a position in any open Cast window, and then
choose Paste.

Move a cast member to a
position not presently visible

Select the cast member you want to move.

Scroll the Cast window to display the destination position.

Drag from the drag well to the destination position and
release the mouse button.   

When you move a cast member to a new position, Director assigns it a new number and updates all
references to the cast member in the Score. However, Director doesn't automatically update references to
cast member numbers in Lingo scripts. To avoid problems with moving cast members and Lingo, name cast
members and refer to them by name in Lingo. See the Naming cast members help topic.

{button See also,AL(`UsersGuide_010_help')}

Importing cast members

To import cast members:

1. Select the window for the cast to which you want to import.
If you want cast members in a certain place in the cast, select the position. Otherwise, Director places the
new cast members in the first available position.

2. Choose File > Import.

3. Use the Import dialog box to select files.
The pop-up in the dialog box displays all the file types you can import.
You can switch folders and import files from different folders at the same time. To import from the internet,
click Internet and enter a URL.

4. Choose an option from the Media pop-up at the bottom of the dialog box.

Choose To
Standard Import Import all selected files so they are stored inside the movie

file.

Link to External File Create a link to the selected files and import the data each
time the movie runs. For more information, see the
Linking to a fileUsersGuide_013_help help topic..

Include Original Data for
Editing

Preserve the original data within the movie file for use with
an external editor. For more information, see the
Launching external editors help topic.

Import Pict File as PICT Do not convert PICT files to bitmaps.

5. When you've finished selecting the files, click Import.
Director prompts you if it needs more information to complete the import, such as color depth and palette
options.
For some types of media, you will need to convert or modify files before importing them into Director. For
example, to import images from vector graphics programs like FreeHand and Illustrator, you must first
convert them to bitmaps.    

For details about
importing Read
Bitmaps Changing the color depth and palette during import
Digital video Importing digital videos
Director movies Importing movies
Sound Using sounds
Text Importing text

Tip: You can also import cast members by dragging files from the desktop to the Cast window.

{button See also,AL(`UsersGuide_012_help')}

Linking to a file
For most types of imported media, you have the choice of importing the data into the movie or linking to the
external file. To link to an external file, choose Link to External File from the Media pop-up at the bottom of
the Import dialog box when you import the file. With this option turned on, Director imports the media every
time the movie runs.

Linking is especially useful for showing media from the internet that changes frequently. It also makes it
easier to use bulky media such as long sounds and large bitmaps. When you link to an external file, Director
creates a cast member that stores the name and location of the file.

Only the link to a linked cast member is saved as part of the movie. If you distribute a movie, you need to
include all linked cast members as well. The linked cast members must remain in the same file system
position relative to the movie. For more information, see the Assigning pathnames help topic.

Director uses different Xtras to import media of each type. The Xtras that import the media types for all
linked cast members must be present when a movie runs. In most cases, Director handles this automatically.
For more information, see the Managing Xtras for distributed movies help topic

Note: It's best to keep linked files in a folder that's close to the original movie file. Pathnames are
restricted to 255 characters by the system. URLs can be up to 260 characters. (You can enter URLs up to 4000
characters in Lingo.) If you store files too many folders away from the movie, or at a very long URL, it may fail to
link correctly.

{button See also,AL(`UsersGuide_013_help')}

Importing from the internet
Including linked media from the internet provides a way to dynamically update movies. Linked media might
include pictures that change often, sports scores, stock quotes, and so on.

You can import any supported file directly from the internet by clicking Internet in the Import dialog box and
entering a URL.

If you import media from the internet using the Standard Import option, Director immediately retrieves the file
from the internet (if a connection is available). Director stores the media inside the movie and does not
update it if the source material changes.

To dynamically update media from the internet, choose Link to External File from the Media pop-up at the
bottom of the Import dialog box when you import a file. Using this import option, Director imports the media
from the specified location every time the movie runs.

Linking to external media is also useful for making movies download faster. Movies often supply content that
users may never choose to view. If this type of content is linked externally, it won't be downloaded unless it's
needed.

There are several issues to consider when using linked media on the internet:

· The media must be present at the specified URL when the movie runs. Since you can never be certain an
internet transaction will be successful, be sure to make some provision for the link failing. Use the included
Net Show Proxy behavior to specify an alternative cast member to display if a linked cast member is not
available. For more information, see the "Display Proxy Until Loaded" behavior in the Behaviors for
controlling media help topic..

· Certain Xtras must be included with a projector for Director to be able to connect to the internet during
playback. You can include these Xtras automatically by turning on Include Network Xtras in the Projector
Options dialog box. Movies playing in web browsers do not require these Xtras. For more information, see
the Creating projectors help topic.

· Director uses different Xtras to import media of each type. The Xtras that import the media types for all
linked cast members must be present when a movie runs. The Shockwave players for Netscape Navigator
and Microsoft Internet Explorer include the Xtras required to import GIF and JPEG graphics; and AIFF
(compressed and uncompressed), Shockwave Audio, and WAV (uncompressed only) sounds. Shockwave
movies playing in web browsers can import these media types without downloading Xtras. To import other
types of media, the required Xtras must first be downloaded and installed.

For projectors, the Xtra for each type of file being imported must be included with the projector. In most
cases, Director handles this automatically. For more information, see the Managing Xtras for distributed
movies help topic

Note: Use File > Preferences > Network to define standard network settings for the Director authoring
environment. See the Preferences > Network command help topic for a description of Network Preferences.

{button See also,AL(`UsersGuide_014_help')}

Supported file types
Because file formats are often modified and new formats are created, this list may not be complete. See the
Director Developers Center web site for possible updates to this information.

Type of file Supported formats
Image BMP, GIF, JPEG, LRG (xRes), Photoshop 3.0, MacPaint, PNG, TIFF, PICT

Windows?

Windows only: Photo CD, PCX, WMF, PostScript

Multiple image files Windows only: FLC, FLI

Macintosh only: PICS, Scrapbook

Sound AIFF, WAV, uncompressed and IMA compressed

Macintosh only: System 7 sounds

Video QuickTime

Windows only: AVI

Text RTF, ASCII (often called "Text Only")

Palettes Windows only: PAL

{button See also,AL(`UsersGuide_015_help')}

Importing issues
· If your movie imports directly from external files at runtime, you must include the appropriate importing Xtra.

This can be accomplished automatically with the Check Movie Xtras option in Projector Options. See the
Creating projectors help topic.

· Movies created with an older version of Director may have used compressed PICT files with a JPG
extension. Since Director now supports JPEG files, there may be a conflict since both file types use the JPG
extension. To use compressed PICT files with Director 6, rename them with the PIC extension.

· GIF and progressive JPEG images appear as single images. They do stream while loading as they do in
some web browsers.

· To avoid low memory errors, save often during importing, especially when importing multiple file images
(FLC, FLI, PICS).

{button See also,AL(`UsersGuide_016_help')}

Creating cast members within Director
Create certain types of cast members within Director using the commands on the Media Element, Control, or
Other submenus on the Insert menu.

Choose To
Insert > Media Element > Bitmap Create a new bitmap cast member and open the Paint

window for editing.

Insert > Media Element > Text Create a new text cast member and open the Text window
for editing. See the Working with text help topic.

Insert > Media Element > Color Palette Create a new color palette cast member and open the color
palette window for editing. See the Changing color
palettes help topic

Insert > Media Element > Sound Create a new sound cast member. See the Creating sound
cast members help topic.

Insert > Controls > Custom Button Create a custom button with Button Editor. See the Using
the Button Editor help topic .

Insert > Controls Push Button, Radio
Button, or Check Box

Create a button cast member and a sprite on the Stage.
See the Using shapes help topic.

Insert > Controls > Field Create a field cast member and create a sprite on the
Stage. See the Field window help topic.

Insert > Others > SWA Streaming Xtra Create a Streaming Shockwave Audio cast member. See
the Streaming external Shockwave Audio files help topic.

You can also create simple shape cast members using the tools on the tools palette. See the Using shapes
help topic.

Use the Add button in any of the media editing windows (Paint, Text, Script, and so on) to create a cast
member of the corresponding type.

When you choose any of the commands for creating a cast member, Director places the new cast member
in the first empty position at or after the current selection in the Cast window. To place the cast member in a
specific position, select the position first.

{button See also,AL(`UsersGuide_017_help')}

Using Xtra cast member types
Xtras can provide new types of cast members. Macromedia provides Xtras such as the Button Editor; others
are provided by third-party developers. Documentation is usually provided with the Xtra.

Xtras that create cast members appear on the Insert menu.

{button See also,AL(`UsersGuide_018_help')}

Viewing cast member properties
The Cast Member Properties dialog box displays the selected cast member's name, number, type, size in
kilobytes, and special options for different cast member types. Use the options in the dialog box to define the
appearance and behavior of the selected cast members.

There are several ways to open the Cast Member Properties dialog box:

· Select a cast member in the Cast window and choose Modify > Cast Member > Properties.

· Right-click (Windows) or Control-click (Macintosh) a cast member and choose Cast Member Properties from
the menu that appears.

· In the Cast window, the Sprite Inspector, the Sprite toolbar, or any of the editing window (for example the
Paint window), click the Cast Member Properties button, .

{button See also,AL(`UsersGuide_019_help')}

Naming cast members
To prevent problems in Lingo scripts and behaviors that refer to cast members, provide a unique name for
each cast member and use it to refer to the cast member instead of the cast member number. There is no
difference in performance when referring to cast members by name. If you refer to a cast member by name,
you don't need to worry about its number changing when you move it in the cast. The cast member's name
stays the same even if its number changes.

To name a cast member:
· Select the cast member in the cast and enter a name in the name field at the top of the Cast window, or in

any of the editing windows.

· Enter a name in the Cast Member Properties dialog box.

{button See also,AL(`UsersGuide_020_help')}

To find cast members:

1. Choose Edit > Find > Cast Member.

2. In the Find Cast Member dialog box, choose a cast to search from the Cast pop-up.
Choose All Casts to search every cast in the movie.

3. Choose one of the search options.
If you choose Name, enter search text in the field to the right. If you choose Type or Palette, choose an
option from the pop-up:

4. Once Director displays the cast members you're looking for, you can:
- Choose a cast member on the list and click Select to close the dialog box and select the cast
member in the Cast window.

- Click Select All to close the dialog box and select all the listed cast members in the Cast window.

{button See also,AL(`UsersGuide_022_help')}

To find a cast member in the Score:

1. Select the cast member you want to search for.
Select a cast member in the cast or the Score. If you select a sprite, Director searches for the first cast
member in the sprite. Open the sprite to select a cast member other than the first.

2. Choose Edit > Find > Selection, or press Control-H (Windows) or Command-H (Macintosh).
Director searches the Score and highlights the first found Score cell.

3. Choose Edit > Find Again to find the next occurrence of the cast member in the Score.

{button See also,AL(`UsersGuide_023_help')}

To sort the cast:

1. Bring the Cast window you want to sort to the front.

2. Select the cast members you want to sort, or choose Edit > Select All.

3. Choose Modify > Sort.
The Sort Cast Members dialog box appears.

4. Choose one of the sorting methods.

5. Click Sort.
Director reorders the cast members according to the sorting method you selected.

The Score automatically adjusts to the new cast member numbers.

It's helpful to use Sort to bring all the cast members of one type together. You can then select each category
separately and use Sort again to alphabetize the category.

Note: When you sort a cast, Director moves many cast members to new positions in the Cast window. If
you've written Lingo scripts that refer to cast members by number, Lingo will not be able to find cast members
that have been moved. It's best to name those cast members and then change the references in the scripts to
the cast members' names. Otherwise, you'll need to update the reference numbers one by one every time you
sort the cast.

Using external casts
External casts are stored as separate files outside the movie file. They have many useful applications:

· Storing elements used by different movies

· Creating libraries of commonly used cast members such as buttons and behaviors

· Switching entire groups of media at runtime, for purposes such as switching languages

{button See also,AL(`UsersGuide_025_help')}

Linking and unlinking casts
External casts can be linked or unlinked to movies. Use linked external casts for media that is shared
between several movies. Once Director links an external cast to a movie, it opens the cast every time it
opens the movie.

Use unlinked external casts as libraries to store commonly used elements for authoring like scripts, buttons,
and so on.

To link an external cast to a movie, choose Modify > Movie > Casts and then click Link in the Movie Casts
dialog box . You can link to casts on your local disk, or to casts stored at any URL. Click Network to enter a
URL for a linked external cast.

When you drag a cast member from an unlinked external cast to the Stage or Score, a dialog box offers you
the choice of linking the cast to the movie or copying the cast member to an internal cast.

To use a cast member from an external cast without creating a link to the cast file, first copy the cast
member to an internal cast.

Use Modify > Movie > Casts to unlink casts from the current movie. See the Movie Casts help topic for
more information.

{button See also,AL(`UsersGuide_026_help')}

Using external casts as libraries
External casts can serve as libraries of commonly used elements. Use the word "library" as the last word in
the name of the cast to instruct Director to use the cast as a library (for example, Behavior Library, Button
Library, Palette Library). When you drag a cast member from an external cast library to the Stage or Score,
Director automatically copies the cast member to one of the movie's internal casts. The library is not linked
to the movie. If you place an external cast library in the Xtras folder, it appears on the Xtras menu. This is
how the Behavior Library and other libraries included with Director were created.

{button See also,AL(`UsersGuide_027_help')}

Opening and saving external casts
If you don't link an external cast to a movie, you must open and save the file separately with the Open and
Save commands.

Save All saves the movie and all open cast files, linked and unlinked.

{button See also,AL(`UsersGuide_028_help')}

Distributing movies with external casts
When you distribute a movie that uses an external cast, either on disk or on the web, you must include the
external cast file. For disk-based movies, the cast must be in the same position relative to the movie as it
was when the movie was created. For Shockwave movies on the web, the cast must be at the specified
URL.

{button See also,AL(`UsersGuide_029_help')}

Referring to external casts in Lingo
Always refer to casts by name in Lingo. The cast number is not a reliable means of identifying a cast.
Director assigns numbers to casts for each movie in order of creation. External casts may have different
numbers when used in different movies.

{button See also,AL(`UsersGuide_030_help')}

Creating sprites

To create a new sprite:

1. Select a cell in the Score where you want the sprite to begin.

2. Drag a cast member from the Cast window to the Stage or Score.
Director creates a new sprite with a duration of 28 frames. You can change this setting with File >
Preferences > Sprite. See the Sprite Preferences help topic.

If you drag the cast member to the Score, Director places the new sprite in the center of the Stage.

To make a sprite only one frame long, hold down Alt (Windows) or Option (Macintosh) as you drag the cast
member.

The same cast member can appear in multiple sprites. A sprite can also contain several cast members.

Tip: When two bitmap sprites overlap on the Stage, you often notice a white box around the image. Use
the Matte or Background Transparent Score inks to remove the white box. See the Applying ink effects to
sprites help topic.

{button See also,AL(`UsersGuide_032_help')}

Default sprite duration
Director assigns each new sprite a default duration of 28 frames. You can change this setting with File >
Preferences > Sprite. If the Terminate at Markers option is turned on in the Sprite Preferences dialog box,
Director makes new sprites end two frames before a marker. See the Using markers help topic.

{button See also,AL(`UsersGuide_033_help')}

Moving and resizing sprites
To move several sprites at once, select them on the Stage, or in the Score, and drag any one of them.

Hold down Shift as you drag to constrain the movement to vertical or horizontal.

Use the arrow keys to move selected sprites one pixel at a time. This works whether you select the sprite on
the Stage or in the Score.

To precisely resize a sprite or to scale it by a certain percentage, use Modify > Sprite > Properties. See the
Viewing and changing sprite properties help topic.

Changing the size or location of a sprite on the Stage doesn't change the cast member that the sprite is
based on. Once you've changed the size of a sprite, changing the size of the sprite's cast member does not
affect the size of the sprite.

Note: Resizing sprites can dramatically slow down movies. If you need a sprite to be a particular size, you
should attempt to make the cast members displayed in the sprite the proper size. You can do this with Modify >
Transform Bitmap, or in any image-editing program.

{button See also,AL(`UsersGuide_034_help')}

Changing the stacking order of sprites
Use Arrange commands on the Modify menu, to change the order of sprites on the Stage. Sprites appear on
the Stage in order according to their channel number. A sprite in channel two appears on top of a sprite in
channel one, and so on.

{button Illustration,PI(`',`UG_illustration_3_740b')}

To move the contents of an entire channel, first select the channel by double-clicking the channel number.

{button See also,AL(`UsersGuide_035_help')}

Selecting sprites

To select Do this
An entire sprite Click the sprite on the Stage. In the Score, click the horizontal line

within a sprite bar, (not the keyframes*, or the start and end
frame).

Keyframes* Click the keyframe indicators.

A contiguous range of
sprites

Select a sprite at one end of the range, then Shift-click a sprite at
the other end.

Discontiguous sprites Control-click (Windows) or Command-click (Macintosh)
discontiguous sprites.

Keyframes* and sprites
at the same time

Control-click (Windows) or Command-click (Macintosh) the
elements you want to select.

A frame within a sprite
that isn't a keyframe

Alt-click (Windows) or Option-click (Macintosh) a frame within the
sprite.

Areas in the score that
include Sprites and
empty cells

Alt-click (Windows) or Option-click (Macintosh) empty frames and
then drag across sprites, or use Shift to extend the selection.

*Keyframes are where a tweenable property of a sprite changes. See the Tweening sprites help topic.

Changing when sprites appear
Use the Score to change when sprites appear. Choose Window > Score to open the Score window. You
change when sprites appear by moving them between frames and stretching or shrinking the sprite bars.

{button See also,AL(`UsersGuide_037_help')}

Moving sprites between frames
The horizontal bars in the Score show the frames in which a sprite appears. To make a sprite appear at a
different time, drag the bar to a different frame.

Drag a sprite to change when it appears
You can also use the Sprite Inspector to change the start or end frame. See the Using the Sprite Inspector
help topic.

You can't move a sprite to a frame already occupied by another sprite unless you hold down Control
(Windows) or Command (Macintosh) as you drag a sprite. This instructs Director to replace any sprites
occupying the destination frames.

{button See also,AL(`UsersGuide_038_help')}

To change sprite duration
To change when a sprite appears or disappears, drag the start or end frame. The start and end frame are
the first and last frames in a sprite. You can also use the Sprite Inspector to change the start and end frame.
See the Using the Sprite Inspector help topic.

Note: See the Tweening sprites help topic for a complete description of keyframes.

Alt-drag (Windows) or Option-drag (Macintosh) a keyframe at the end of a sprite to extend the sprite and
leave the last keyframe in place.

{button See also,AL(`UsersGuide_039_help')}

Extending sprites
The Extend command extends a selected sprite to the current location of the Playback Head. Select sprites
to extend, click in the frame channel to move the Playback Head, and then choose Modify > Extend Sprite.

Extend Sprite works on multiple selected sprites. This is useful for aligning several sprites at a certain frame.

Extend Sprite can shorten a sprite if you move the Playback Head inside the sprite.

Extend Sprite moves the sprite's start frame if you place the Playback Head to the left of the sprite.

{button See also,AL(`UsersGuide_040_help')}

Viewing and changing sprite properties
Director can display the most important sprite properties directly on the Stage. To turn on this view, choose
View > Sprite Overlay > Show Info.

Sprite information displays in small panels below the sprite. Use View > Sprite Overlay > Settings to specify
whether sprite information appears for all sprites, when the pointer rolls over sprites, or for sprites that are
selected.

Tip: Drag the horizontal line on the right side of a sprite information panel to change the panel's opacity.

In the Sprite Overlay panel, click the icons on the left to edit the data.

Click To
Open the Cast Member Properties dialog box for the Sprite's cast member.
See the Viewing cast member properties help topic.

Open the Sprite Properties dialog box for the current sprite.

Open the Behavior Inspector. See the Creating and changing behaviors
help topic.

{button See also,AL(`UsersGuide_041_help')}

Using the Sprite Inspector
Use the Sprite Inspector to view and edit sprite properties.

You can use the Sprite Inspector as a floating window or as a toolbar at the top of the Score.

· Choose Windows > Inspectors > Sprite to display the Sprite Inspector in a floating window.

· Choose View > Sprite Toolbar to show or hide the Sprite toolbar in the Score.

The Sprite Inspector shows properties for the currently selected sprite. When you select multiple sprites, the
Sprite Inspector displays any settings all the selected sprites have in common. If you enter new settings, the
change affects all selected sprites.

To change the width and orientation of the Sprite Inspector, drag the lower right corner to resize the window.
You can display the Sprite Inspector in a narrow vertical or horizontal state, or in a wider, double-column
state

Changes made in the Sprite Inspector take place immediately and affect all selected sprites.

For a description of all the sprite properties, see the Sprite Inspector help topic.

Sprite coordinates
You can precisely locate a sprite on the Stage using various coordinates. To arrange some sprites, you might
want to specify the coordinates for the top edge; for others, the registration point may be more important.

{button Illustration,PI(`',`UG_illustration_3_715')}

All sprite coordinates are measured in pixels, with 0,0 at the upper left corner of the Stage. Sprite
coordinates include the width and height; the top, left, right, and bottom edges of the sprite's bounding
rectangle; and the X and Y coordinates of the sprite's registration point.

The registration point is a point within the boundaries of a cast member that Director uses to align cast
members of different sizes and shapes. Director places the registration point in the center of the bounding
rectangle for all bitmapped cast members; for other types of cast members, the registration point is at the
upper left corner. You can easily move a cast member's registration point in the Paint window. See the
Using registration points help topic.

You can change settings for these coordinates in the Sprite Properties dialog box, the Sprite Inspector, or
from Lingo. When you change the setting for the top, bottom, left, or right edges of a sprite, Director resizes
the sprite. It's best to use the X and Y coordinates (the registration point) of the sprite to move the sprite
without resizing it.

{button See also,AL(`UsersGuide_043_help')}

Applying ink effects to sprites
Apply ink effects to change the way sprites appear on the Stage. Inks most often are used to remove
bounding boxes from images, but they can also create many interesting and useful effects.

The Score window inks fall into two main categories:

· General purpose-Copy, Matte, Transparent, Reverse, Ghost, Not Copy, Not Transparent, Not Reverse, Not
Ghost, and Mask

· Color bitmaps only-Background Transparent, Blend, Darkest, Lightest, Add, Add Pin, Subtract, and Subtract
Pin

Note: Text cast members only support Copy, Background Transparent, and Blend inks.

For a demonstration and description of all the inks, see the Ink Effects movie.

To change the ink for a sprite, select the sprite and choose an ink from the Ink pop-up in the Sprite Inspector.
Your choice replaces the previous ink assigned to the sprite. The Ink pop-up also shows the ink applied to
selected sprites in the Score.

The normal ink is Copy. When you use Copy, a white bounding box appears around the sprite. To eliminate
the bounding box that appears around a sprite, select the sprite in the Score and choose Matte or
Background Transparent ink. Matte ink removes all the white pixels around the edges of an image.
Background Transparent removes all the background color pixels in the entire image. Use it when an image
has holes or windows through which you want the background to show.

Note: If Background Transparent or Matte inks don't work, the background of the image may not be true
white. Also, if the edges of the image have been blended or are fuzzy, applying these inks may create a halo
effect. Use the Paint window or an image editing program to change the background to true white and harden the
edges.

For a detailed description of each type of ink, refer to the Ink pop-up help topic.

Blending sprites
Use blending along with tweening to make sprites fade in or out of a background. (See the To fade a sprite
in or out help topic.) Change a sprite's blend setting in the Sprite Inspector or in the Sprite Properties dialog
box. Blend settings are not visible unless you apply the Blend ink.

Scaling sprites
Use the Scale option in the Sprite Properties dialog box to scale sprites by a certain percentage. This is
useful when you want to resize several sprites by the same amount. To scale a sprite, select it and choose
Modify > Sprite > Properties, and then enter a percentage in the Scaling box.

{button See also,AL(`UsersGuide_046_help')}

Tweening sprites
Tweening" is a traditional animation term that describes when a lead animator draws only the frames where
major changes take place, and assistants draw all the frames in between.

In Director, tweening is the simplest way to make sprites change as the movie plays. You define certain
properties for sprites in keyframes and Director automatically changes the sprite in the frames in between.

A keyframe is where any tweenable property changes. Properties that can be tweened are position, size,
foreground and background color, and blend setting. Each keyframe defines a value for all of these
properties, even if you only explicitly define one.

For a demonstration of tweening, see the movie Tweening Sprites.

{button See also,AL(`UsersGuide_047_help')}

To tween a sprite:

1. Move a sprite on the Stage to the place you want the motion to start.
This places the start frame of the sprite in the proper location. The start frame is also the first keyframe in the
sprite.

2. In the Score, click a frame within the sprite and choose Insert > Keyframe. (If the Score isn't open,
choose Window > Score.)
Director inserts the keyframe at the Playback Head. Choose the frame in which you want the sprite to stop
moving or change direction.

3. On the Stage, drag the sprite to where you want it to stop moving or change directions.

4. Repeat steps 2 and 3 to define additional keyframes.
Note that the end frame is not a key frame unless you create one there.

5. Rewind and play the movie to see how the sprite moves between the points you defined in the
keyframes.

Adjust the path of a sprite at any time by selecting a keyframe in the score and then moving the sprite on the
Stage. Remember, if you select the sprite on the Stage without first selecting a keyframe in the Score, the
entire sprite is selected; moving the sprite in this state moves the entire sprite, not just the keyframe location.
The best way to adjust the path of a moving sprite is with View > Sprite Overlay > Show Paths. For more
information, see Showing and editing sprite paths.

You can also move keyframes back and forth in the Score to adjust when the change occurs.

Change how the sprite moves and define curved paths with Modify > Sprite > Tweening.

Tip: To speed up tweening, Alt-click (Windows) or Option-click (Macintosh) a frame within a sprite to
select only the frame, and then simply move the sprite on the Stage. This creates a new keyframe and defines
the sprite location at the same time.

{button See also,AL(`UsersGuide_048_help')}

Tweening options
By default, sprites curve between the keyframes you define. Use Modify > Sprite > Tweening to specify
tweening option to make sprites circle, speed up, or slow down. You can also make a sprite change size,
shape, orientation, color, or blend value as the sprite is tweened.

Combine tweening options to create different effects. For example, a sprite could show a bird moving along
a curving path, getting smaller, and fading out.

Director tweens the size and position for all sprites by default. To change this setting, choose File >
Preference > Sprite and turn off Tween Size and Position. For movies created in Director 5, Tween Size and
Position is off by default.

Tip: Turn off all tweening options to make a sprite jump instantly between settings in different keyframes.

{button See also,AL(`UsersGuide_049a_help')}

To change the curve of a sprite:

1. Position a sprite where you want the motion to start and make sure it spans all the frames in which
you want the sprite to move.

2. Create at least three keyframes in which the sprite occupies a different position.
Remember, the last frame in the sprite is not a keyframe unless you place one there. To make the sprite
move in a circle, use the same start and end point.

3. Choose Modify > Sprite > Tweening.

4. Use the Curvature slider to define how the sprite curves. If you want the sprite to move in a circle,
turn on Continuous at Endpoints.

{button See also,AL(`UsersGuide_049b_help')}

To make a sprite shrink or grow (tweening the size or shape):

1. Position a sprite and make sure it spans all the frames in which you want the sprite to change.

2. Select the start frame of the sprite in the Score and change the size of the sprite.

3. Create a keyframe at the end of the sprite and change the size of the sprite.

4. Choose Modify >Sprite > Tweening and make sure Size is turned on the Sprite Tweening dialog box.
{button See also,AL(`UsersGuide_049c_help')}

To fade a sprite in or out:

1. Position a sprite and make sure it spans all the frames in which you want the sprite to change.

2. Apply the Blend ink to the sprite.

3. Select the start frame of the sprite in the Score and define the beginning blend setting in the Sprite
Inspector.
Choose 0 to make the sprite fade in or 100 to make it fade out. For more information, see the Blending
sprites help topic.

4. Create a keyframe at the end of the sprite in the Score and define the ending blend setting.

5. Choose Modify > Sprite > Tweening and make sure Blend is turned on the Sprite Tweening dialog
box.

{button See also,AL(`UsersGuide_049f_help')}

To tween a sprite's foreground or background color:

1. Position a sprite and make sure it spans all the frames in which you want the sprite to change.

2. Select the start frame of the sprite in the Score and specify the beginning color in the first frame of
the sprite.
Use the color pop-up on the tool palette to specify the colors. See the Using shapes help topic.

3. Select the end frame of the sprite in the Score and specify the ending color in the last frame of the
sprite.

4. Choose Modify > Sprites > Tweening and make sure Foreground Color or Background Color is
turned on in the Sprites Tweening dialog box.

Tweening colors works best with 1-bit (black-and-white) images or shapes, but it can also create interesting
effects with 8-bit images. Director tweens colors by replacing the image's foreground or background colors
with colors from the current palette that are between the colors defined in the sprite's keyframes. Control
what colors appear during the tweening by arranging the color palette.

{button See also,AL(`UsersGuide_049d_help')}

To accelerate or decelerate a sprite:

Use the Ease-in or Ease-out options in the Sprite Tweening dialog box to create more natural motion in
tweened sprites.

Use one of the tweening methods to create a moving sprite.

Use the Ease In and Ease Out sliders to specify the percentage of the sprite's path through which it should
accelerate or decelerate.

Turn on View > Sprite Overlay > Show Paths to see how far the sprite moves between each frame.

{button See also,AL(`UsersGuide_049e_help')}

Tweening speed
The Speed settings in the Sprites Tweening dialog box control how Director moves a sprite between
keyframes. The Ease In and Ease Out controls have a similar effect on the complete length of the sprite's
path.

The Sharp Changes option is the default setting. Using this option, Director calculates how to move the
sprite between each pair of keyframes separately. If a sprite's keyframes are an unequal number of frames
apart from each other in the Score, or different amounts of space apart from each other on the Stage, this
can cause abrupt changes in speed as the sprite moves between keyframe locations.

You can smooth out these speed changes by choosing the Smooth Changes option or eliminate them with
the Constant option. To see what these options actually do in an animation, see the "Tweening Sprites"
movie in Director Help.

This option Does this
Sharp Changes Moves the sprite between keyframe locations without adjusting the

speed.

Smooth Changes Adjusts the sprite's speed gradually as it moves between
keyframes.

Constant Adjusts the sprite's keyframes so the sprite can maintain a
constant speed as it moves between the points.

{button See also,AL(`UsersGuide_050_help')}

Showing and editing sprite paths
Choose View > Sprite Overlay > Show Paths to display and edit the path of any moving sprite. With Show
Paths turned on, Director displays the path of moving sprites on the Stage. Keyframes appear as hollow
circles. Small tick marks show the sprite's position in tweened frames.

· To change the sprite's path, drag a keyframe.

· To create a new keyframe in a sprite's path, hold down Alt (Windows) or Option (Macintosh)and move the
pointer over a tick mark on the sprite path. When the pointer changes to cross-hair, click to create a
keyframe.

Use View > Sprite Overlay > Settings to specify whether sprite paths appear for all sprites, only when the
pointer rolls over sprites, or only for selected sprites.

{button See also,AL(`UsersGuide_051_help')}

Tweening suggestions and shortcuts
· To define keyframes more quickly, Alt-click (Windows) or Option-click (Macintosh) a frame in the score within

a sprite to select only the frame, and then simply move the sprite on the Stage. This creates a new keyframe
and defines the sprite location at the same time.

· For smoother movements, tween across more frames, increasing the tempo if necessary.

· To achieve some types of motion, you may need to split the sprite and tween the sprites separately.

· Choose View > Sprite Overlay > Show Paths to display and edit the path of any moving sprite.

· Alt-drag (Windows) or Option-drag (Macintosh) keyframes to quickly make duplicates. This is useful when
you want the start frame and end frame to have the same settings. This shortcut also provides a quick way
to create a complex path. Insert a single keyframe, drag several duplicates to the proper frames, and then
select the various keyframes and set positions on the Stage.

· Alt-drag (Windows) or Option-drag (Macintosh) a keyframe at the end of a sprite to extend the sprite and
leave the last keyframe in place.

· Control-click (Windows) or Command-click (Macintosh) multiple keyframes to select them and then move
the sprite on the Stage to move all keyframe positions at once.

· To make the animation look smoother, use an image editor to blur the edges of bitmaps.

· Turn off all tweening options to make a sprite jump instantly between settings in different keyframes.

· For tweening sprites that have a series of cast members, consider using a film loop instead. See the Using
film loops help topic.

{button See also,AL(`UsersGuide_052_help')}

To exchange cast members:

1. Select a sprite.

2. Open the Cast window and select the cast member you want to use next in the animation.

3. Choose Edit > Exchange Cast Members.
Director replaces the cast member for the entire sprite.

You can exchange the cast members in sprites and maintain all other sprite properties. This is useful when
you've tweened a sprite, and you decide to use a different cast member. When you exchange the cast
member, the tweening path stays the same.

{button See also,AL(`UsersGuide_053_help')}

Editing sprite frames
The Edit Sprite Frames command changes how a sprite is selected and how keyframes are created. Use
Edit Sprite Frames with sprites that have animation you need to adjust frequently. It is especially useful for
cell animation in which each frame contains a different cast member in a different position.

Ordinarily, clicking a sprite on the Stage or in the Score selects the entire sprite.

{button Illustration,PI(`',`UG_illustration_3_962')}

When Edit Sprite Frames is turned on for a certain sprite, clicking the sprite selects a single frame. Any
change you make to a tweenable property, such as moving a sprite on the Stage, defines a new keyframe.

{button Illustration,PI(`',`UG_illustration_3_963')}

· To use Edit Sprites Frames, select sprites and choose Edit > Edit Sprite Frames. You can also Alt-double-
click (Windows) or Option-double-click (Macintosh) a frame within the sprite.

· To return sprites to their normal state, select them and choose Edit > Edit Entire Sprite. You can also Alt-
double-click (Windows) or Option-double-click (Macintosh) a frame within the sprite.

Tip: To select the entire sprite when it is open, Alt-click (Windows) or Option-click (Macintosh) the sprite
in the Score or on the Stage.

{button See also,AL(`UsersGuide_054_help')}

Animating with a series of cast members
Use a series of cast members to create animation more complex than is possible with simple tweening.
Sprites usually refer to only one cast member, but they can also include several cast members. For example,
an animation of a man walking may include several cast members showing the man in different positions. By
placing all the images within a single sprite, you can work with the animation as if it were a single object.

{button Illustration,PI(`',`UG_illustration_3_725')}

Tip: The best way to prepare cast members for use in multiple cast member animation is with onion
skinning in the Paint window. See the Using onion skinning help topic.

{button See also,AL(`UsersGuide_055_help')}

To animate a sprite with multiple cast members:

1. Create a sprite by placing the first cast member in the animation on the Stage in the appropriate
frame.

2. Change the length of the sprite as needed.
Drag the start or end frame in the Score, or enter a new start or end frame number in the Sprite Inspector.

3. Choose View > Display > Cast Member.
This setting displays the name of the cast member on each sprite. See the Score viewing options help
topic.

4. Choose View > Sprite Labels > Changes Only.
This changes the view of the Score to show the name of sprite's cast member when it changes. This makes
it easy to identify frames where the cast member changes.

5. Choose Edit > Edit Sprite Frames.
Edit Sprite Frames makes it easier to select frames within a sprite. See the Editing sprite frames help
topic.

6. Select the frames in the sprite where you want a different cast member to appear.

7. Open the Cast window and select the cast member you want to use next in the animation.

8. Choose Edit > Exchange Cast Members.
Director replaces the cast member in the selected frame with the cast member selected in the Cast window.

9. Repeat these steps to complete the animation. Choose Edit Entire Sprite when you're done.
Sometimes a series of cast members placed in the Score jumps unexpectedly when you play the movie.
This occurs because the cast member's registration points aren't aligned properly. When you exchange cast
members, Director places the new cast member's registration point precisely where the previous cast
member's registration point was. By default, Director places registration points in the center of a bitmapped
cast member's bounding rectangle.

For information about aligning registration points, see the Using registration points help topic. You can
also align sprites relative to their bounding rectangles. See the Aligning sprites help topic.

{button See also,AL(`UsersGuide_056_help')}

Animating with Cast to Time
Use Cast to Time to move a series of cast members to the Score as a single sprite. This is one of the most
useful methods for creating animation with multiple cast members. Typically, you create a series of images,
and then use Cast to Time to quickly place them in the Score as a single sprite. Director's onion skinning
feature is also useful for creating and aligning series of images for use in animation. See the Using onion
skinning help topic.

{button See also,AL(`UsersGuide_057_help')}

To create a sprite from a sequence of cast members:

1. Select the frame in the Score where you want to place the new sprite.

2. Make the Cast window active.

3. Select the series of cast members to be placed in the new sprite.

4. Choose Modify > Cast to Time, or hold down Alt (Windows) or Option (Macintosh), and drag the cast
members to the Stage.
The selected series of cast members becomes a single sprite.

{button See also,AL(`UsersGuide_058_help')}

Using Space to Time
Use the Space to Time command on the Modify menu to move sprites from adjacent channels to a single
sprite. This method is convenient when you want to arrange several images on the Stage in one frame and
then convert them to a single sprite.

Onion skinning provides a similar benefit in the Paint window as Space to Time does on the Stage. See the Using
onion skinning help topic.
{button See also,AL(`UsersGuide_059_help')}

To use the Space to Time command:

1. Choose File > Preferences > Sprite and set the Span Duration to 1 frame.
You can set the Span Duration to any setting you like, but Space to Time works best with shorter sprites.

2. Select an empty frame in the Score.
This is usually at the end of the Score.

3. Drag cast members on the Stage to create sprites where you want them to appear in the animation.
As you position the sprites on the Stage, Director places each sprite in a separate channel. Make sure all
the sprites are in consecutive channels.

4. Select all the sprites that are part of the sequence in the Score or on Stage.

5. Choose Modify > Space to Time.
The Space to Time dialog box appears. Set the number of frames you want between each cast member.

6. Enter an interval (usually 1).
Director rearranges the sprites so that instead of being arranged from top to bottom in a single frame, they're
arranged in sequence from left to right in a single sprite.

Tip: Space to Time is a fast way to set up keyframes for a sprite to move along a curve. Arrange the
cast members in one frame, choose Space to Time from the Modify menu, and add 10 to 20 cells between each
cast member to produce a smooth curve.

{button See also,AL(`UsersGuide_060_help')}

Using film loops
A film loop is an animated sequence that you can use like a single cast member. For example, to create an
animation of a bird flying across the Stage, you can create a film loop of the sequence of cast members that
shows the bird flapping its wings. Instead of using the frame-by-frame technique, you create a sprite
containing only the film loop, and then animate it across as many frames as you need. When you run the
animation, the bird flaps its wings and moves across the Stage at the same time.

You can also use film loops to consolidate Score data. Film loops are especially helpful when sprite
channels are in short supply. You can combine several Score channels into a film loop in a single channel.

To better understand film loops, see the Film Loops. movie.

If you delete any cast member used in the film loop from the Cast window, Director can't run the film loop.
You can edit or reposition the cast members in the Cast window, but the cast members in the film loop must
remain in the same cast for the film loop to work.

A film loop behaves just like any other cast member, with a few exceptions:

· When you step through an animation that contains a film loop (either by using Step Forward or Step
Backward or by dragging the Playback Head in the Score), the film loop doesn't animate. Animation occurs
only when the movie is running.

· You can't apply ink effects to a film loop. If you want to use ink effects with a film loop, you need to apply
them to the sprites that make up the animation before you turn the animation into a film loop.

· When you lengthen or shorten a sprite containing a film loop, it doesn't affect how the fast the film loop
plays. It changes how many times the film loop cycles.

Director provides three other ways of incorporating a completed animation into a movie as a discrete
element: you can export it as a digital video ("QuickTime or AVI), save and import it as a linked Director
movie, or play it in a window in another Director movie. For a comparison of all methods, see the
Comparing film loops, digital videos, linked movies, and MIAWs help topic.

{button See also,AL(`UsersGuide_061_help')}

To create a film loop:

1. In the Score, select the sprites you want to turn into a film loop.
Use sprites in as many channels as you need in film loops-even the sound channel. Select sequences in all
the channels you want to be part of the film loop. You can select fragments of sprites if you first select them
and choose Edit > Edit Sprite Frames. Control-click (Windows) or Command-click (Macintosh) to select
sequences that aren't in adjacent channels.

2. Choose Insert > Film Loop.
A dialog box appears asking you to name the film loop.

3. Enter a name for the film loop.
Director stores all the Score data and cast member references as a new film loop cast member.

Tip: Drag a selection from the Score to the Cast window to quickly create a film loop cast member in
that position.

{button See also,AL(`UsersGuide_062_help')}

Editing film loops
If you need to edit a film loop and you've deleted the original Score data it was based upon, it's possible to
restore the Score data for editing. Copy the film loop cast member to the Clipboard, select a cell in the
Score, and then paste. Director pastes the original Score data instead of the film loop.

{button See also,AL(`UsersGuide_063_help')}

To split an existing sprite:

1. In the Score, click the frame within a sprite where you want the split to occur.
This moves the Playback Head to the frame.

2. Choose Modify > Split Sprite.
Director splits the old sprite and creates two new sprites.
{button See also,AL(`UsersGuide_065_help')}

To join separate sprites into a single sprite:

1. Select all the sprites you want to join.
There can be gaps between the sprites, but the sprites must be in the same channel.

2. Choose Modify > Join Sprite.

{button See also,AL(`UsersGuide_066_help')}

Step recording
Step recording is a process of animating one frame at time. You record the position of a sprite in a frame,
step forward to the next frame, move the sprite to its new position, step forward to the next frame, and so on
until you've completed the animation. It is useful for creating sprites that follow irregular paths.

{button See also,AL(`UsersGuide_067_help')}

To step-record animation:

1. Place sprites on the Stage where you want the animation to begin.

2. Select all the sprites you want to animate.

3. In the Score, click the frame where you want to begin animating.

4. Choose Control > Step Recording.

5. Press 3 on the number pad, or click on the control panel.
The movie advances to the next frame. If you reach the last frame in a sprite, Director extends the sprite into
the new frame.

Note: As soon as you move the animation in any way other than stepping-such as using Rewind, Play, or
Back, or by dragging the Playback Head- recording stops.

6. Drag the sprite to reposition it.
You can also stretch the sprite, exchange cast members, or change any property.

7. Repeat steps 5 and 6 until you've completed the sequence you want to record.

8. Rewind the movie or click a new frame in the Score to stop recording.

{button See also,AL(`UsersGuide_068_help')}

Real-time recording
You can create animation by recording the movement of a sprite as you drag it across the Stage. The real-
time recording technique is especially useful for simulating the movement of a cursor, or for quickly creating
a complex motion for later refinement.

For better control when you're recording in real time, use the Tempo control in the Control Panel to record at
a speed that's slower than normal.

{button See also,AL(`UsersGuide_069_help')}

To use real-time recording:

1. Click a frame in a sprite where you want animation to begin.
It's usually best to click a frame at the start or end of a sprite. Recording will begin at the playback head. Be
sure to select a sprite in a completely empty score channel.
To record in a specific range of frames, select the frames, and then click the Selected Frames Only button
on the control panel.

2. Choose Control > Real-Time Recording.
Recording begins as soon as you drag the sprite on stage, so be prepared to move the mouse.

3. Drag the sprite on stage to record a path for the sprite.
Director records the path.

4. Release the mouse button to stop recording.
Tip: If you select Trails in the Score, you can also use real-time recording to simulate handwriting.

{button See also,AL(`UsersGuide_070_help')}

To paste one sequence relative to another:

1. Select a sprite in the Score.

2. Choose Edit > Copy.

3. Select the cell immediately after the last cell in the sprite.

4. Choose Edit > Paste Special > Relative.
Director positions the beginning of the pasted sprite where the previous sprite ends.

Paste Relative automatically aligns the start frame of one sprite with the end frame of the preceding sprite.
It's useful for extending animations across the Stage.

{button See also,AL(`UsersGuide_072_help')}

To align sprites:

1. Select the sprites you want to align on the Stage or in the Score.
Select entire sprites, keyframes, or frames within open sprites in as many different frames or channels as
you need. All of the elements will be aligned to the last sprite or frame you select. Director always aligns
sprites to the location in the first frame.

2. Choose Modify > Align.
The vertical and horizontal alignment options appear on two pop-ups.

3. Select the options you want and click Align.
The Align panel stays open until you close it.

Tip: You can also double-click the regions in the preview area to set alignment options.

{button See also,AL(`UsersGuide_073_help')}

To align sprites to the grid
Use the grid to position sprites on the Stage. When you move sprites while Snap to Grid is on, their edges
and registration points snap to the nearest grid line.

Choose View > Grids > Snap To to turn on Snap to Grid.

Tip: Press and hold down G while moving or resizing a sprite to temporarily turn Snap to Grid off or on.
You can also click Control-Alt-G (Windows) or Command-Option-G (Macintosh) to turn Snap to Grid off and on.

{button See also,AL(`UsersGuide_074_help')}

To add or remove frames:

1. Select a frame in the Score.

2. Choose Insert > Frames.

3. Enter the number of frames to insert.
The new frames appear to the right of the selected frame. If there are sprites in the frames you select, they
are tweened or extended.

Use Insert > Remove Frames to remove frames.

{button See also,AL(`UsersGuide_075a_help')}

Selecting, moving and deleting frames in the Score
To move or delete all the contents of a range of frames, double-click and drag in the frame channel. If you
cut or delete the selected frames, Director removes the frames and closes up the empty space.

When you select frames, any sprite within the range is selected, even if it extends beyond the range. If you
switch to the Director 5 Score display, only the sprite frames within the range are selected. For information
about using the Director 5 Score display, see the Using Director 5 Score options help topic.

You can paste frames in any location as long as you select a frame first.

{button See also,AL(`UsersGuide_075b_help')}

Using markers
Markers identify fixed locations at a particular frame in a movie.

Click in the markers channel to create a marker. To delete a marker, drag it up or down out of the markers
channel.

Markers are vital to navigation in movies. Using Lingo or draggable behaviors, you can instantly move the
Playback Head to any marker frame. You can jump to markers while authoring using the Next and Previous
marker buttons on the left side of the markers channel, by pressing the 4 and 6 keys on the number pad, or
by choosing markers from the Markers menu.

Note: If the Terminate at Markers option is turned on in the Sprite Preferences dialog box, Director makes
newly created sprites end two frames before a marker.

When you create a marker, an insertion point appears to the right of the marker so you can type a short
name. Use the markers window to review and edit marker names.

Once you've marked a frame in the Score, you can use the marker name in your scripts to refer to exact
frames. Marker names remain constant no matter how you edit the Score. They are more reliable to use as
navigation references than frame numbers, which may change if you insert or delete frames in the Score.

{button See also,AL(`UsersGuide_076_help')}

The Markers window
Use the Markers window to write comments associated with markers you set in the Score. Double-click one
of the markers in the Score window to open the Markers window to the comment associated with that frame.

The left column of the Markers window displays the marker names in the Score. Click on a marker in this list
to move the Playback Head to that location in the Score. Advancing through the markers with the left or right
arrows will also move the Playback Head. Comments associated with the markers appear in the right
column.

To enter a comment, click a marker name and then enter your comments beginning at the insertion point that
appears in the right column of the Markers window. By default, the marker name appears as the first line of
text in the right column. If you don't want to edit the marker name, press Enter (Windows) or Return
(Macintosh) to start a new line.

Tip: Use Control-left or -right arrow (Windows) or Command-left or -right arrow (Macintosh) to move to
the previous or next marker.

{button See also,AL(`UsersGuide_077_help')}

Score viewing options
There are many ways to change the view of the Score to make your work easier. You can view multiple
windows, turn channels off and on, zoom in and out, and change the data displayed within Score cells.

{button See also,AL(`UsersGuide_078_help')}

Zooming the Score
Change the zoom percentage to narrow or widen the Score. Zooming in widens each frame so it's possible
to see more data in each frame. Zooming out shows more frames in less space. Zooming out is useful when
moving around large blocks of Score data. To change the zoom setting, choose an option on the Zoom
submenu of the View menu, or on the Zoom pop-up to the right of the Score.

Using sprite labels
Sprite labels are the information that appears within the sprite bars in the Score. They display vital
information for troubleshooting a movie. If you detect a strange blip caused by an ink effect, you can turn on
Ink display and quickly locate the problem in a sprite label. You may also want to track the precise location of
a sprite in every frame using Extended display.

The following figure shows the different options for displaying sprite labels. All these options are available on
the View > Sprite Labels submenu.

Keyframes

Changes Only (shown at 800%)

Every frame (shown at 800%)

First Frame

{button See also,AL(`UsersGuide_080_help')}

Display options
Use the various display options to change the information in the sprite labels. Choose the display type from
the Display pop-up in the Score, or the View > Display submenu.

Display option Displays
Member The name and/or number of the sprite's cast member (change the setting

in File > Cast > Preferences)

Behavior The behavior attached to the sprite

Location The X and Y coordinates of the sprite's registration point

Ink The ink effect applied to each sprite

Blend The blend percentage

Extended Any combination of display options -choose options with File >
Preferences > Score

{button See also,AL(`UsersGuide_081_help')}

Data tips
Data tips are small pop-up panels that display the cast member name and number when the pointer is over
a sprite for a few seconds.

Turn data tips off or on with the Data Tips option in the Sprite Preferences dialog box.

{button See also,AL(`UsersGuide_082_help')}

Using multiple Score windows
View different parts of a movie at the same time by opening additional Score windows. To open a new Score
window, activate the current Score window and choose Window > New Window. This creates a new Score
window that you can scroll to a different location in the Score. Use a second Score window to work on two
places in the movie at once without scrolling.

Note: Only the first Score window automatically scrolls to show the Playback Head location.

{button See also,AL(`UsersGuide_083_help')}

Turning a channel on and off
Click the button next to a channel number to turn the channel off temporarily. None of the sprites in the
channel appear in the movie and any behaviors are ignored. This can be useful for testing performance or
for working on complex overlapping animations.

If you turn the script channel off, Director ignores all scripts during playback. (This is the same as checking
the Disable Scripts command in the Control menu.)

These settings are not saved with a movie, they last only one session.

{button See also,AL(`UsersGuide_084_help')}

Showing and hiding the effects channels
There are five special Score channels above the markers channel. These channels are for tempo settings,
palette changes, transitions, sounds, and frame scripts.

Click the Hide/Show Effects Channels button in the upper right corner of the Score to change the display.

{button See also,AL(`UsersGuide_085_help')}

Using Director 5 Score options
The improvements in the Score for Director 6 make work easier for most users, but if you are familiar with
older versions of Director you may be more comfortable using the older version of the Score for some types
of work. This is especially true when working on movies that were created with older versions of Director.

By setting various preferences it's possible to simulate the functioning of the old Score. You may find many
new Score features useful in the old Score and vice versa. For example, you may want to use the old Score
view with the new Sprite toolbar or use the new Score with Edit Sprite Frames on for all sprites. You can mix
new and old functions by selecting different Score and sprite preferences.

{button See also,AL(`UsersGuide_086_help')}

To make the Score work as it did in Director 5:

1. Choose File > Preferences > Score and set options as shown in the following table.:

Set this option To
Director 5 Style Score
Display: On

* Change the view of the Score so frames appear as a
plain grid.

* Make frames selectable and editable within sprites.

Script Preview: On Make the Script Preview box appear at the top of the
Score. The Script Preview also works in the new Score
view.

 Drag-and-Drop: Optional Enable drag-and-drop of score sections in the Director 5
Score view.

2. Choose File > Preferences > Sprite and set options as shown in the following table.

Set this option To
Stage Selection: Current
Frame Only

Change the way sprites are selected so that clicking a
sprite on the Stage selects only the current frame instead
of the sprite's complete span.

Display Sprite Frames: On
(not necessary if Director 5
Style Score display is on)

Make all frames within new sprites selectable and
editable, as they were in Director 5. See the Editing
sprite frames help topic.

Tween Size and Position:
Off

Turn off automatic tweening of size and position for new
sprites.

The following steps are optional:

· To turn on the Sprite toolbar, choose View > Sprite Toolbar.

· If existing sprites are being tweened automatically, select them and turn off all tweening options in the
Sprites Tweening dialog box.

· Alt-drag (Windows) or Option-drag (Macintosh) from empty cells to select empty cells and sprite frames in
the new score as you would in the old score.

{button See also,AL(`UsersGuide_087_help')}

Understanding behaviors
Behaviors are special cast members that define operations or procedures. Most behaviors are made to
respond to a simple event like a sprite being clicked or the Playback Head entering a frame. When the
specified event occurs, the behavior carries out an action, such as moving the Playback Head to a different
frame or playing a sound.

For more information about using behaviors, see the Behaviors movie .

Attach behaviors to sprites or frames. You can attach as many behaviors as you need to a sprite, but you
can only attach one behavior to a frame.

Attach a behavior to a frame to make an action occur when the Playback Head enters or exits the frame.
Behaviors attached to frames are best suited to actions that affect the whole movie. For example, you might
attach Go to Movie to the last frame in a movie to make it run a new movie when it reaches the end.

Attach a behavior to a sprite to cause actions directly related to the sprite. The most common use for sprite
behaviors is creating buttons for navigating a movie.

Note: For Lingo programmers, behaviors are the same as score scripts. To edit behaviors in the Script
window instead of the Behavior Inspector, choose File > Preference > Editor. Choose Behaviors in the Editor
Preferences dialog box. Click Editor and choose Script Window.

{button See also,AL(`UsersGuide_089_help')}

Attaching behaviors
Attach behaviors to sprites or frames. To open the library of include behaviors, choose Xtras > Behavior
Library. To see descriptions of the included behaviors, choose Window > Inspectors > Behavior to open the
Behavior Inspector, and then select behaviors in the Cast window. For more information about included
behaviors, see the Using included behaviors help topic.

You can only attach one behavior to a frame. If you attach a behavior to a frame that already has a behavior,
the new behavior replaces the old.

Some behaviors are written to work only when applied to either a sprite or a frame; read the behavior descriptions to
learn more.

{button See also,AL(`UsersGuide_090a_help')}

To attach a behavior to a sprite:

1. Drag a behavior from the Behavior Library (or any Cast window) to a sprite on the Stage or in the
Score.
{button Illustration,PI(`',`UG_illustration_4_400')}

2. Enter parameters for the behavior in the Parameter dialog box.
You can attach as many behaviors as you need to a single sprite.

To attach the same behavior to several sprites at once, select the sprites in the Score and drag a behavior to any
one of them.

Note: If you attach a behavior from the included Behaviors cast, Director copies it to an internal cast. This
prevents you from accidentally changing the original behavior.

{button See also,AL(`UsersGuide_090b_help')}

To attach a behavior to a frame:

1. Drag a behavior from the Behavior Library (or any Cast window) to a frame in the Score's script
channel.
{button Illustration,PI(`',`UG_illustration_4_401')}

2. Enter parameters for the behavior in the Parameter dialog box.
You can only attach one behavior to a frame. If you attach a behavior to a frame that already has a behavior,
the new behavior replaces the old.

Note: If you attach a behavior from the included Behaviors cast, Director copies it to an internal cast. This
prevents you from accidentally changing the original behavior.

{button See also,AL(`UsersGuide_090c_help')}

To attach behaviors using the Behavior Inspector:

1. Choose Window > Inspectors > Behavior to open the Behavior Inspector.

2. Select sprites or a frame in the script channel.

3. Choose a behavior from the Behavior pop-up.
Director attaches the behavior you choose to the sprite or frame.

{button See also,AL(`UsersGuide_090d_help')}

Entering behavior parameters
Many behaviors require additional information to work properly. For example, the Go to Marker behavior
requires that you enter the name of a marker. When you attach one of these behaviors to a sprite or frame,
the Parameters dialog box for the behavior appears. Use it to enter required parameters.

The parameters you enter apply only to the behavior as it is attached to the current sprite or frame. They do
not affect how the behavior works when attached elsewhere. In this regard, they are similar to other sprite
properties such as size and location that do not affect cast members.

To change parameters for a behavior that is already attached, select the sprite or frame where the behavior
is attached, and then double-click the behavior name in the Behavior Inspector.

{button See also,AL(`UsersGuide_091_help')}

Getting information about behaviors
To see a description of a behavior, open the Behavior Inspector, select a behavior, and click the arrow that
expands the Behavior Inspector's description pane. You can leave the description pane expanded and select
different behaviors to see their descriptions.

All of the behaviors included with Director have descriptions. Behaviors from other sources may not. You can
add descriptions to behaviors you create yourself.

{button See also,AL(`UsersGuide_092_help')}

To change the order of the behaviors attached to a sprite:

1. Select the sprite in the Score or on the Stage.

2. Open the Behavior Inspector.

3. Select a behavior from the list.

4. Click the arrows in the toolbar to move the behavior.
Director executes behaviors in the order they were attached to a sprite. It's often necessary to change the
sequence of behaviors so that actions occur in the proper order.

{button See also,AL(`UsersGuide_093_help')}

Using included behaviors
Director includes a variety of behaviors for basic functions. To see all the included behaviors, choose Xtras >
Behavior Library. When you attach any of these behaviors to a sprite or frame in a movie, Director copies
them to an internal cast.

There are behaviors for more specialized functions in the Goodies folder on the Director CD.

{button See also,AL(`UsersGuide_094_help')}

Behaviors for navigating in a movie
These behaviors all move the playback head to specified locations in the movie, or to a URL.

To find these behaviors, choose Xtras > Behavior Library.

For more information about any included behavior, select the behavior, open the Behavior Inspector, and
read the description in the description pane.

Behavior Description Example
Hold on Current
Frame

Loop the Playback Head on
the current frame until
another action triggered by a
behavior or script moves the
Playback Head elsewhere.

Place in a frame containing a
menu to make the movie stop
playing while users make a
selection.

Go to Frame Move the Playback Head to
a specified frame number.

Attach to a sprite to make it
function as a button that
moves the Playback Head to a
certain frame number.

Go to Marker Move the Playback Head to
the specified marker.

Attach to a sprite to make it
function as a navigation
control to jump to another
scene.

Go to Previous
Marker

Move the Playback Head to
the previous marker in the
Score.

Attach to a sprite to make it
function as a button that
switches back to the previous
scene.

Go to Next
Marker

Move the Playback Head to
the next marker in the
Score.

Attach to a sprite to make it
function as a button that
advances to the next scene.

Go to Movie Switch to a new movie. Arrange a series of small
movies on the web to reduce
download time.

Go to Page Loads a network page from
the specified URL and
displays it in a browser
during authoring or when
playing from a projector. If
used in movie already
playing in browser, the
specified page is loaded in
the browser.

Attach to a menu item so that
on Mouse Up, a net page is
displayed in the browser.

Go to Net Movie Runs a Director movie at the
specified URL.

Create a series of small
movies to reduce download
time and chain them together.

Open Movie in a
Window

Opens a movie in a window. Create a window that floats
over the Stage for displaying
help. For more information,
see Playing a movie in a
window.

Play Done Identifies the end of a movie
or sequence and returns the

Create a reusable control to
place at the end of every

Playback Head to where the
movie or sequence was
started from.

scene in your movie that
sends the Playback Head to
wherever the scene was
started from.

{button See also,AL(`UsersGuide_095_help')}

Behaviors for sending messages
Behaviors described here send messages to other sprites. Many behaviors are set to respond to events like
the mouse being clicked or the playback head entering a frame. Other behaviors run when they receive a
message from another behavior or from a Lingo script.

Sending messages is useful to make a behavior to run when something happens to a different sprite, or to
make a whole group of behaviors attached to different sprites respond to a certain message.

To find these behaviors, choose Xtras > Behavior Library.

For more information about any included behavior, select the behavior, open the Behavior Inspector, and
read the description in the description pane.

Behavior Description Example
Message Sprite Send a specified message

to a sprite in a certain
channel.

Attach to a button to make it
send a message to another
sprite that makes it switch
cast members.

Message All
Sprites

Send a specified message
to all sprites in the current
frame.

Send a message to several
sprites at once to make them
all switch cast members.

Message Movie
in a Window

Send a message to a movie
in a window.

Create controls that play,
stop, and rewind a movie in a
window.

{button See also,AL(`UsersGuide_096_help')}

Behaviors for controlling media
These behaviors are for controlling media such as sound and digital video, and for switching cast members.

To find these behaviors, choose Xtras > Behavior Library.

For more information about any included behavior, select the behavior, open the Behavior Inspector, and
read the description in the description pane.

Behavior Description Example
Sound Beep Play the system beep on a

specified event.
Attach to a button to make it beep when
clicked.

Sound Play Cast
Member

Play a sound cast member
on a specified event.

To play a click sound when a button is
pressed, drag this behavior to the button and
set Which Event to mouseDown and click the
Start Immediately checkbox.

Sound Play File Play an external sound file
on a specified event.

Place in a frame in the script channel to
stream a long sound track directly from disk.
For more information about streaming sound,
see Importing sounds.

Image Switch
Cast Members

Switch a sprite's cast
member when the
switchstates message is
received. Enter a name to
identify groups of sprites the
behavior has been applied
to.

Create a group of sprites that show cows,
and a group of chickens. Attach the Image
Switch Cast Member behavior to all the
sprites and enter cows or chickens as the
names for the behaviors attached to each
group of sprites. Create a button and attach
the Message All Sprites behavior. Send the
message switchStates cows to make only
the cows switch cast members. Do the same
for the chickens, only send the message
switchStates chickens.

Image Cycle
Cast Members

Cycle through a range of
contiguous cast members
when the cycleState
message is received. Enter
a name to identify groups of
sprites the behavior has
been applied to.

Create a slide show that cycles through a
series of cast members. Create a button that
sends the cycleState message to the sprite
that cycles cast members.

Media Preload Preload a specified range of
cast members into memory.

Place in the frame before a new a scene
begins to load all the scene's cast members
and improve performance.

Net Show Proxy Specifies a graphic to be
displayed until the real cast
member of the sprite is
downloaded. The real cast
member appears
automatically when it
becomes available.

For a streaming Shockwave movie, define a
small graphic to display while a larger image
is downloading. Place the proxy cast
member near the beginning of the Score to
make sure it is one of the first cast members
downloaded.

Net Hold Until
Frame Ready

Loops the movie on the
current frame until all the
media required for the
frame has been
downloaded.

Place in a frame in the script channel at the
beginning of a scene in a streaming movie to
make sure all the cast members for the
scene have been downloaded before the
scene plays.

Net Get Text Sets the text of a field sprite
to the text retrieved from a
specified URL.

Display text that is updated on the internet
such as sports scores or stock prices in a
movie. Enter a time-out value so the movie
doesn't hang if there is no response from the
URL.

{button See also,AL(`UsersGuide_097_help')}

Behaviors for making controls
These behaviors are for creating common types of controls such as push button, toggle buttons, and radio
buttons.

To find these behaviors, choose Xtras > Behavior Library.

For more information about any included behavior, select the behavior, open the Behavior Inspector, and
read the description in the description pane.

Behavior Description Example
Pushbutton Creates a standard two-

state push button. When
the button is clicked it
switches to the cast
member specified by
Down Member. If the
pointer is dragged off the
button, the original cast
member reappears.

Attach this behavior to a
sprite to create a button.
Attach a second behavior to
make the button do
something.

Toggle button Creates a standard toggle
button that remains in the
same state after being
clicked. Replaces the Up
member with the Down
member on mouseUp. If
the sprite is rolled off while
the mouse is down, the
change is canceled.

Use for buttons that define a
series of options before
carrying out an action, like
the settings for a game.

Radio Group Item Connects a group of radio
buttons or checkboxes so
that only one can be
checked at a time. Sets
the value of
WhichRBSelected Group
to the text of the selected
radio button in the group.

Assign three radio buttons
the same group name to
insure that only one is
checked at any time.

Video Play Starts digital video playing
on MouseUp.

Attach to a button to make a
digital video sprite begin
playing.

Video Stop Stops digital video on
mouseUp, does not
rewind.

Attach to a button to make a
digital video sprite stop
playing.

Video Rewind Rewinds a digital video
sprite to the beginning on
mouseUp.

Attach to a button to make it
rewind a digital video.

{button See also,AL(`UsersGuide_098a_help')}

Behaviors for pointers, dragging, and rollovers
These behaviors change the pointer and affect moveable sprites.

To find these behaviors, choose Xtras > Behavior Library.

For more information about any included behavior, select the behavior, open the Behavior Inspector, and
read the description in the description pane.

Behavior Description Example
Pointer Change Replaces the system

pointer with the specified
cast member.

Define distinctive pointers
for different levels of a
game.

Pointer Animate Replaces the system
pointer with a cycling
range of cast members.
Start and stops cycling
when the startCursor or
stopCursor messages are
received. The cast
members must be 1-bit
bitmaps and adjacent to
each other in the cast
window.

Create a watch pointer with
hands that move while the
movie is downloading cast
members.

Rollover Change Pointer Changes the system
pointer while the pointer is
over a certain sprite. The
new pointer must be a 1-
bit bitmap.

Make the pointer switch to a
finger while over a button.

Rollover Change
Member

Switch the cast member of
a sprite when the pointer
rolls over.

Make a button highlight
when the pointer rolls over.

Drag Snap to Sprite Make a moveable sprite
snap to the registration
point of a specified sprite.

Create clothes that snap to
place on a certain figure.

Drag Snap to Sprite List Make a moveable sprite
snap to the registration
points of a list of sprites.

Make clothes that snap to
place on a number of
different figures.

{button See also,AL(`UsersGuide_098b_help')}

Creating and changing behaviors
Use the Behavior Inspector to create and change behaviors.

All behaviors work by detecting an event, and then performing one or more actions in response. The
Behavior Inspector lists the most common events and actions used in behaviors.

Even without any scripting or programming experience, you can use the Behavior Inspector to create and
modify behaviors to perform basic actions. To create behaviors with more complex structures, it's a good
idea to read Chapter One, "Script Basics" in the Learning Lingo book.

Using the Behavior Inspector in this way is a good way to begin learning Lingo. You can examine the scripts
created by the Behavior Inspector to see how basic functions are assembled. Select any behavior and click
the Script button to view the associated Lingo script.

For experienced Lingo programmers, the Behavior Inspector also provides a shortcut for writing simple
scripts.

Note: To always edit behaviors in the Script window instead of the Behavior Inspector, choose File >
Preferences > Editors. In the Editors Preferences dialog box, choose Behaviors from the list and then click
Editor. In the Select Editor box choose Script Window.

{button See also,AL(`UsersGuide_100_help')}

To create or modify a behavior:

1. Do one of the following:

- Select a behavior in the Behavior Inspector

- Click the Behavior pop-up, choose New Behavior, and enter a name for the new behavior.
If you create a new behavior, it appears in the currently selected cast. Select an empty cast position first if
you want it to appear in a certain place.

2. Click the arrow to expand the editing pane of the Behavior Inspector.
{button Illustration,PI(`',`UG_illustration_4_406')}
The editing pane shows the events and actions in the current behavior. If you're creating a new behavior, no
events or actions appear. There are several steps you can take at this point.

To Do this
Add a new
event/action group to
the behavior

Choose an event from the Event pop-up and then choose
actions for the event from the Actions pop-up. You can choose
as many actions as you need for a single event.

Change an existing
event/action group

Choose an event from the list and then add or remove actions in
the actions list.

Delete an
event/action group

Choose the event and press Delete.

Change the
sequence of actions
in an event/actions
group

Choose an event from the list, choose an action from the action
list, and then click the up and down arrows above the action list
to change the order of actions.

The included actions and events are basic building blocks you can use to create simple or complex
behaviors. For more descriptions and examples of creating behaviors, see the Director Developers Center
web site.

If you are familiar with Lingo, you can also edit a behavior's script directly.

{button See also,AL(`UsersGuide_101_help')}

Included Events

Event Description
Mouse Up A mouse button was released.

Mouse Down A mouse button was clicked.

Right Mouse Up The right mouse button was released. (On the Macintosh, Director
treats Control-clicking the same as clicking the right mouse button on
Windows system's keyboard.)

Right Mouse Down The right mouse button was clicked.

Mouse Enter The pointer entered a sprite's region.

Mouse Leave The cursor left a sprite's region.

Mouse Within The cursor is within the sprite's region.

key Up A key was released.

key Down A key was pressed.

Prepare Frame The playback head has left the previous frame, but has not yet
entered the next frame.

Enter Frame The playback head entered the current frame.

Exit Frame The playback head exited the current frame.

New Event A specified message was received from a script or behavior.

{button See also,AL(`UsersGuide_102a_help')}

Included Actions

Action Description
Go to Frame Move the playback head to the specified frame.

Go to Movie Open and play the specified movie.

Go to Marker Move the playback head to the specified marker.

Go to Net Page Go to the specified URL.

Wait on Current Frame Wait at the current frame until another behavior or script advances to
the next frame.

Wait Until Click Wait at the current frame until the mouse button is clicked.

Wait Until Key Press Wait at the current frame until a key is pressed.

Wait for Time Duration Wait at the current frame for the specified time.

Play Cast Member Play the specified sound cast member.

Play External File Play the specified external sound file.

Beep Play the current system beep.

Set Volume Set the system volume level to the specified setting.

Change Tempo Change the movie's tempo to the specified setting.

Perform Transition Perform the specified transition.

Change Palette Change to the specified palette.

Change Location Move the current sprite to the specified coordinates.

Change Cast Member Switch the sprite's cast member to the specified cast member.

Change Ink Switch to the specified ink.

Change Cursor Change the pointer to the specified cursor number. .

Restore Cursor Restore the current system pointer.

New Action Execute any Lingo function or send a message to a handler.

{button See also,AL(`UsersGuide_102b_help')}

Using the Button Editor
The Button Editor creates custom buttons that display separate down, up, rollover, and disabled conditions.
The Button Editor creates single cast members that display all these conditions automatically, without any
scripting or references to other cast members.

A button can be either a push button or toggle button. Push buttons return to the same state after they are
clicked. Toggle buttons remain in a "toggled" state after they are clicked. There are different options available
for each type of button.

Buttons do not do anything until you attach a behavior or Lingo script to them.

{button See also,AL(`UsersGuide_106_help')}

Creating and editing custom buttons
It's easiest to create a button in two stages. First create the button by defining the button type, label text, and
other options; then arrange the bitmaps for the button in different states.

To create a custom button:

1. Choose Insert > Controls > Custom Button.
The Button Editor dialog box appears.

2. Enter a label for the button.
This is the text that appears on the button.

3. Click Font to set the text formatting for the label text.
Specify the font, size, style, and kerning for the text that appears on the button.

4. Choose either Push Button or Toggle Button.
- If you choose Push Button, click Enabled to make the button enabled by default.

- If you choose Toggle Button, click Toggled to make the button toggled by default.

6. Click OK to close the Button Editor and create the new custom button cast member.
The new cast member appears on the stage, but you haven't yet defined the bitmaps for the button.

To define button bitmaps:

1. Create or import a series of bitmapped cast members that represent the button in different states.

2. Select all the bitmapped cast members and choose Edit > Copy.

3. Double-click the button cast member to reopen the Button Editor.

4. Click the Bitmaps tab in the Button Editor.
The Button Editor changes to display the bitmap fields for the button in all of its states.

5. Select the first bitmap field and choose Edit > Paste.
The bitmapped cast members are pasted into the fields. You can cut and paste them between fields in the
Button Editor to change their positions. You can also repeat these steps to copy single images.

Change any settings for an existing button by double-clicking the button in the cast to open the Button Editor.
You can also open the Button Editor by clicking Options in the Xtra Cast Member Properties dialog box for a
particular button.

Understanding color depth
The number of colors a graphic image or a computer system can display is called the color depth. Your
computer monitor, the Director movie you're working on, and every cast member in the movie can have its
own color depth setting.

Color depth is expressed as the number of bits used to specify the color of each pixel, or as the number of
colors that can be displayed at one time.

Bit depth Number of colors
1-bit black and white

2-bit 4

4-bit 16

8-bit 256

16-bit 32,768

24-bit 16.7 million

32-bit 16.7 million plus eight channels of special effects

There are several reasons why you should create your movies using 8-bit graphics:

· Many low-end systems support only 8-bit graphics. This will be less true in the future, but if you intend to
distribute to a wide audience, 8-bit is the safest choice.

· Graphics with lower color depth use less storage space and memory, and animate faster. Because graphics
with higher color depths (16-, 24-, and 32-bit) contain so much information about color, they can rapidly use
up all available memory and storage space.

· Director movies are especially demanding because they contain so many graphics.

· When playing movies on Windows 3.1 systems, Director supports only 8-bit graphics. Director for Windows
95 and NT supports higher bit depths.

If you are making a movie that will be played only on your own system, these issues may not concern you.

For instructions on changing the color depth of the movie and cast members, see the Solving color palette
problems help topic.

Tip: Cast members with a bit depth lower than 8-bit often reduce the performance of 8-bit movies
because Director must convert them to 8-bit before displaying them on the screen. Also, Director compresses 8-
bit cast members based on the actual number of colors in the image so they are as small as 1-, 2- and 4-bit
images.

{button See also,AL(`UsersGuide_112_help')}

Understanding color palettes
When your system is set to 8-bit color depth (256 colors) or less, it uses a limited set of colors called a color
palette. The color palette determines all the colors that can be shown on the screen at the same time. This
includes not only the colors for the images you're working with, but system elements like title bars, dialog
boxes, tools, and so on.

For a full-color demonstration of how color palettes affect your work in Director, see the Color Palettes movie.

Note: If your system is set to display 16-, 24-, or 32-bit color (thousands or millions of colors), color
palettes don't affect Director movies; they serve only as a means for selecting colors in the Paint window.
Because they refer directly to a complete spectrum of colors, 16-, 24-, and 32-bit graphics do not require color
palettes to achieve accurate color.

Color graphics with 2-, 4-, or 8-bit color depth don't store any information about the hue, saturation, or
brightness of any particular color. They identify colors by referring to positions in the current color palette.

{button See also,AL(`UsersGuide_113_help')}

Conflicting color palettes in Director movies
Only one palette can be active on your computer at a time. This causes problems in Director when you try to
put two bitmapped cast members that have different palettes on the Stage at the same time; the colors for
one of the images will be wrong.

While a movie is playing, the palette channel in the Score determines the active palette. When the playback
head reaches a frame containing a new palette, it changes the active palette. To make this change using
Lingo, see the puppetPalette topic.

When a cast member you are placing on the Stage has a palette different from the currently active palette,
Director adds the new palette to the palette channel. The new palette becomes the active palette, and it
remains in effect until you set a different palette in the palette channel. For more information about using the
palette channel, see the Changing color palettes help topic.

For a full-color demonstration of how color palettes affect your work in Director, see the Color Palettes movie.

{button See also,AL(`UsersGuide_115_help')}

Palettes in web browsers
When playing movies in web browsers, Shockwave movies don't take over the active color palette of a
user's system the way a normal Director movie does. Shockwave remaps the colors in the Director movie to
the most similar colors in the palette active in the user's system. See the Managing color palettes for
browsers help topic.

{button See also,AL(`UsersGuide_116_help')}

Solving color palette problems
Here are some guidelines for solving problems caused by conflicting color palettes:

· Make sure all cast members on the Stage at the same time refer to the same palette.

· Simplify your work and avoid frequent palette changes by mapping all the images in your movie to as few
palettes as possible.

· If possible, create a palette that contains all the colors you need in your movie. Do this within Director by
modifying an existing palette in the color palette window. You can copy and paste colors from one palette to
another. For information on using the color palette window, see the Using the Color Palettes window help
topic. You can also use image editing programs like Debabelizer and the PlanetColor Xtra to scan groups of
images, create an optimal palette, and then remap all of the images to the new palette.

· Remap existing cast members to a new color palette using the Transform Bitmap command.

· As you import cast members, you can remap them to new palettes using the Image Options dialog box.

· If the Import option for Palette is not available in the Import Options dialog box, the image's palette may not
meet standard system requirements. Use an image-editor to make sure the image's palette meets the
following requirements:

The palette must contain exactly 16, or 256 colors.

Black or white must be the first or last colors in the palette.

There must be only one black and one white in the entire palette.

· Don't change colors used by your system software for interface elements. On Windows these color always
appear as the first ten, and last ten, colors in the palette.

· If you don't understand what has been discussed so far, or if you're using images with simple colors, you can
avoid all of these complexities by using Transform Bitmap to remap all of your images to the Windows or
Macintosh system palette.

Note: Changing the color scheme in the Windows Display control panel has no effect on color display
within Director.

{button See also,AL(`UsersGuide_117_help')}

To change the color depth and palette of bitmap cast members:

1. Select the cast members you want to change in the cast.

2. Choose Modify > Transform Bitmap.

3. Choose a new depth setting from the Color Depth pop-up.
If you change 16-, 24-, or 32-bit cast members to 8-bits or less, you need to remap them to an existing color
palette. See the Understanding color palettes help topic.

4. Choose a new palette from the Palette pop-up.

5. Choose either Remap Colors or Dither.
- Remapping replaces the original colors in the graphic with the most similar solid colors in the new
palette. This is the preferred option in most cases.

- Dithering blends the colors in the new palette to approximate the original colors in the graphic.

6. Click Transform to change the palette.
You can also remap images to new palettes with image editing programs such as xRes and PhotoShop.

{button See also,AL(`UsersGuide_118_help')}

Changing the color depth and palette during import
If you import a bitmap with a color palette or depth different than the current movie, the Image Options dialog
box appears. You can choose to import the bitmap at its original color depth or at the Stage color depth.

{button See also,AL(`UsersGuide_119_help')}

Changing movie color depth
The color depth of a Director movie is determined by the setting of the color depth of the monitor when the
movie is saved. Change the color depth of the movie by changing your monitor's color depth, and then save
the movie.

{button See also,AL(`UsersGuide_120_help')}

Changing the active palette while authoring
While working on a movie, you can change the active palette with the Palette window or by displaying a cast
member with a different palette. The palette that is active in the authoring environment while you work does
not change the palette in the movie you're working on. Any settings in the palette channel reset the active
palette as soon as the movie plays.

Tip: Since the palette you choose affects everything displayed on the monitor, including the interface,
you may find it difficult to see what you're doing after you select a palette other than the system palette. Use the
Classic Look (Monochrome) option in the General Preferences dialog box to display all of Director's screen
elements in black and white.

{button See also,AL(`UsersGuide_121_help')}

Image resolution
When creating and importing bitmaps, you should always consider that they will be displayed on the screen
at your monitor's resolution (generally 72 to 96 dots per inch). Higher resolution images that you place on
the Stage in Director may appear much larger than you expect. Other applications, particularly those
focused on creating images for print, allow you to work on the screen with high-resolution images at reduced
sizes. Within Director, you can scale high-resolution images to the right size, but this may reduce the quality
of the image. Also, high-resolution images use extra memory and storage space, even after they've been
scaled.

If you are working with a high-resolution image, convert it to 72 to 96 dots per inch with your image editing
program before you import it into Director.

To resize a bitmapped cast member:

1. Select the bitmapped cast member you want to change.
You can select as many cast members as you want to change in the Cast window. You can also change a
cast member displayed in the Paint window.

2. Choose Transform Bitmap from the Modify menu.
When the Transform Bitmap dialog box appears, do one of the following:

- To change the size to a specific height or width, enter the new dimensions (in pixels) in Width and
Height. If you click Maintain Proportions, the settings automatically change for the other field when you enter
a number.

- To change the size by a certain percentage, enter the percentage in Scale.

This procedure changes the size of the cast member itself. All associated sprites change size as well, unless
they were resized individually.

Note: If you use Transform Bitmap to change several cast members at once, be sure to deselect Maintain
Proportions. If you don't, all cast members will be resized to the values in the Width and Height boxes.

For information about resizing sprites, see the Moving and resizing sprites help topic.

{button See also,AL(`UsersGuide_124_help')}

Changing selected areas
Once you have selected part of an image with the lasso or selection rectangle, you can change the selected
area in several ways.

Move the crosshair inside the selected area until the crosshair turns into an arrow pointer and drag the
selected area to reposition it. Several key combinations affect the selected area when you drag it.

Effect Mouse or key combination
Copy Alt-drag (Windows)

Option-drag (Macintosh)

Stretch (selection
rectangle only)

Control-drag (Windows)
Command-drag (Macintosh)

Stretch proportionally
(selection rectangle
only)

Control-Shift-drag (Windows)
Command-Shift-drag (Macintosh)

Copy and stretch
(selection rectangle
only)

Control-Alt-drag (Windows)
Command-Option-drag (Macintosh)

Constrain to horizontal
or vertical

Shift-drag

Clear Backspace (Windows)
Delete (Macintosh)

You can also use the keypad arrow keys to move the selected area one pixel at a time.

{button See also,AL(`UsersGuide_127_help')}

Using registration points
Registration points are the main way of locating images in Director. A registration point provides a fixed
reference point within a bitmapped image. By default, Director assigns a registration point in the center of all
bitmaps, but for many types of animation you may want to move the registration point. Use the Registration
tool to move the registration point.

Moving the registration point is most useful for preparing a series of images for animation. When you use
Cast to Time or exchange cast members, Director places a new cast member's registration point precisely
where the previous one was. By placing the registration point in the different locations, you can make a
series of images move around a fixed position without having to hand-place the sprites on the Stage. Use
onion skinning when setting registration points to where images are placed in relation to each other. See the
Using onion skinning help topic.

{button See also,AL(`UsersGuide_128_help')}

To set a registration point:

1. Display the cast member you want to change in the Paint window.

2. Click the registration tool .
The dotted lines in the Paint window intersect at the registration point. The default registration point is the
center of the cast member.
The pointer changes to a crosshair when you move it to the Paint window.

3. Click a location in the Paint window to set the registration point.
You can also drag the dotted lines around the window to reposition the registration point.

Tip: To reset the default registration point at the center of the cast member, double-click the registration
tool.

{button See Also,AL(`UsersGuide_129_help')}

Using rulers in the Paint window
The Paint window has vertical and horizontal rulers to help you align and size your artwork.

To hide or show the rulers, choose View > Rulers.

To change the location of the zero point, drag right or left along the ruler at the top of the window or up or
down along the ruler at the side.

{button See also,AL(`UsersGuide_130_help')}

Zooming in and out in the Paint window
Use the Zoom commands on the View menu to zoom in or out at four levels of magnification. The shortcut
for zooming in is Control-plus (Windows) or Command-plus (Macintosh). The shortcut for zooming out is
Control-minus (Windows) or Command-minus (Macintosh).

To zoom in on a particular feature of the image, Control-click (Windows) or Command-click (Macintosh) the
image, or position the pointer over the feature before choosing Zoom In.

{button See also,AL(`UsersGuide_131_help')}

Using the Effects toolbar
The toolbar at the top of the Paint window contains buttons to apply effects to bitmaps. Before using any of
these options, you must select part of the bitmap with the Lasso or selection Marquee. Some effects work
only with the Marquee.

Tip: Press Control-Y (Windows) or Command-Y (Macintosh) to repeat any of these effects.

Use this button: To:
Flip Horizontal, Flip
Vertical

Flip the selected area from right to left or from top to bottom.

Rotate Left/Right Rotate the selected area 90 degrees clockwise or counterclockwise.

Free Rotate Rotate the selected area by hand in either direction. When you click
the button, handles appear at the corners of the selection rectangle.
Drag any handle in the desired direction.

Skew Skew the selected artwork. Handles appear at the corners of the
selection rectangle. Dragging a handle moves the opposing corner an
equal amount in the same direction, maintaining a parallelogram
shape.

Warp Distort the shape of the selected area. Handles appear at the corners
of the selection rectangle. Drag any handle in any direction
independent of the other corners.

Perspective Create a perspective effect. Handles appear at the corners of the
selection rectangle. Drag one or more handles to create the effect you
want. For example, you can bring the two top handles closer together
to create the illusion of linear perspective.

Smooth Soften the edges of the selected artwork by adding pixels of blended
color to the artwork's edges. This can help animation appear
smoother.

Trace Edges Create an outline around the edges of the selected artwork. The
outline is the same color as the selected line, if the line is a solid color.
If the original line is multicolored, an outline is created for each section
of the line. You can add multiple outlines by choosing Trace Edges or
Repeat repeatedly.

Invert Color Reverse the colors of the selected area.

Lighten/Darken Color Increase or reduce the brightness of the selected area.

Fill Color Fill the selected area with the current foreground color and pattern.

Switch Colors Change each pixel that is the currently selected foreground color to
the currently selected destination color. Works on 8-bit images only.

{button See also,AL(`UsersGuide_132_help')}

Using onion skinning
Onion skinning derives its name from a technique used by conventional animators who draw on very thin
"onion skin" paper so that they can see one or more of the previous images in the animation.

For a demonstration of onion skinning, see the Onion Skinning movie.

Onion skinning in Director allows you to create or edit animated sequences of cast members in the Paint
window using other cast members as a reference. Reference images appear dimmed in the background.
While working in the Paint window you can view not only the current cast member that you're painting, but
one or more cast members blended into the image.

You can use onion skinning:

· To trace over an image or to create a series of images all registered with a particular image.

· When drawing each cast member of an animation, to see previous images in the sequence and use those
images as a reference while you are drawing new ones.

· To create a series of images based on another "parallel" animation. A series of images serves as the
background while you paint a series of foreground images.

{button See also,AL(`UsersGuide_133_help')}

Tracing a cast member with onion skinning
Follow these steps to trace a new cast member using another cast member as a background image:

1. Open the Paint window and choose View > Onion Skin.

2. Open the cast member in the Paint window that you want to use as the reference image or
background.

3. Click Toggle Onion Skin in the Onion Skin toolbar to turn the feature on .

4. Click Set Background to set the background image.

5. Click the Add button in the Paint window to create a new cast member.

6. Click Show Background in the Onion Skin toolbar .
The original cast member now appears as dimmed image in the Paint window. All painting operations now
take place "on top of" the original cast member's image.

7. Paint the new cast member using the background image as a reference.
{button See also,AL(`UsersGuide_135_help')}

Creating new cast members using previous cast members as reference images
You can create new cast members using other cast members as reference images. Use the Preceding and
Following Cast Members settings in the Onion Skin toolbar to help you step through a series of cast
members created for your animation.

Drawing a series of images using another series of images as a reference
Follow these steps to use a series of images that serve as the background while painting a series of
foreground images:

1. Arrange the series of cast members you want to use as your background in consecutive order in the
cast.
Cast members in each of the foreground and background series must be adjacent to each other in the cast.

2. Open the Paint window and choose View > Onion Skin.
The Onion Skin toolbar appears.

3. Click Toggle Onion Skin in the Onion Skin toolbar to turn onion skinning on .
Make sure all values in the Onion Skin toolbar are set to 0.

4. Open the cast member in the Paint window that you want to use as the first background cast
member in the reference series and click Set Background.

5. Select the position in the cast where you want the first cast member in the foreground series to
appear and click the add button in the Paint window to create a new cast member .
The first cast member in the foreground series can be located anywhere in any cast.

6. Click Track Background in the Onion Skin toolbar .
The corresponding member of the reference series appears as a reference image.

7. Paint the new cast member using the background image as a reference.

8. When you have finished drawing the cast member, click the add button again to create the next cast
member.
When Track Background is enabled, Director advances to the next cast member in the reference series and
its image appears in the background in the Paint window.

9. Repeat step 8 until you have completed drawing the cast members in the series.
{button See also,AL(`UsersGuide_137_help')}

Onion skinning and registration points
Onion skinning uses registration points to align images to each other. Be careful not to move registration
points for cast members after onion skinning. If you do, the cast members may not line up the way you want
them to. For more information, see the Using registration points help topic.

{button See also,AL(`UsersGuide_138_help')}

To create a custom tile:
1. Create a bitmapped cast member to use as a tile and display it in the Paint window.

2. Click the Pattern Chip in the Paint window and choose Tile Settings from the bottom of the Pattern
pop-up.

3. Click an existing tile to edit.
The existing tiles appear next to the Edit label. You have to replace one of the built-in tiles to create a new
one. To restore the built-in tile for any tile position, select it and click Built-in.

4. Click Cast Member.
The cast member appears in the box on the lower left. The box on the right shows how the image appears
when tiled. To dotted rectangle inside the cast member image shows the area used for the tile.
If you want to choose a different cast member, use the arrow buttons to the right of the Cast Member button
to switch through the movie's cast members.

5. Drag the dotted rectangle to the area of the cast member you want tiled.

6. Use the Width and Height controls to specify the size of the tile.
The new tile appears in the tile position you selected. You can use it in the Paint window or from the Tools
palette to fill shapes.

{button See also,AL(`UsersGuide_138a_help')}

Using Auto Distort
Auto Distort generates tweened cast members for any cast member that is free rotated, made into a
perspective, slanted, distorted, or stretched. After artwork has been altered with one of these five effects,
and before you deselect the artwork, choose Xtras > Auto Distort, and enter the number of cast members
you want to create. The new cast members are placed in the next available cast member positions.

For a rotated bitmap image, Auto Distort uses the center of the image as the rotation point. Consequently,
you will have to use the paint window's registration tool to reset the registration point of each tweened cast
member created by the Auto Distort operation.

{button See also,AL(`UsersGuide_139_help')}

Using bitmap filters
Bitmap filters are plug-in image editors that apply effects to bitmapped images. You can install Photoshop-
compatible filters to change images within Director.

To install a filter, place the filter in the Xtras folder in the Director application folder. If you want to use the
filter in other Macromedia applications, place the filter in the Xtras folder in the Macromedia folder in either
the Windows folder or the Macintosh System Folder.

You can apply a filter to a selected portion of a bitmapped image, to the entire cast member, or to several
cast members at once.

{button See also,AL(`UsersGuide_139_help')}

To apply a bitmap filter:

1. Open the cast member in the Paint window, or select the cast member in the Cast window.
You can apply a filter to several cast members at once by selecting them all in the Cast window. To apply a
filter to a selected portion of a cast member, use the selection marquee or the lasso in the Paint window to
select the part you want to change.

2. Choose Xtras > Filter Bitmap.

3. In the Filter Bitmap dialog box, choose a category on the left and a filter on the right.
Choose All as the category list to view all the filters at once.

4. Click Filter.
Many filters require you to enter special settings. When you choose one of these filters, a dialog box or other
type of control appears after you click Filter. When you finish choosing filter settings and proceed, the filter
changes the cast member.
Some filters have no changeable settings. When you choose one of these filters, the cast member changes
with no further steps.

Tip: Bitmap filters are applied to the bounding box of the image. To make the rectangle less visible, use
the Lasso tool to select the image before choosing Xtras > Filter Bitmap. You can also draw single dots in the
upper left and lower right corners of the image to extend the bounding box away from the image itself, and then
erase the edge dots in the filtered images.

{button See also,AL(`UsersGuide_141_help')}

Using Auto Filter
Use Auto Filter to create dramatic animated effects with bitmap filters. Auto Filter applies a filter
incrementally to a series of cast members. You can use it either to change a range of selected cast
members, or to generate a series of new filtered cast members based on a single image. You define a
beginning and ending setting for the filter, and then Auto Filter applies an intermediate filter value to each
cast member.

For instructions on installing filters, see the Using bitmap filters help topic.

Note: Not every image filter supports auto filtering. The dialog box only lists those that do.

{button See also,AL(`UsersGuide_142_help')}

To use Auto Filter:

1. Select a bitmapped cast member, or a range of cast members, and then choose Xtras > Auto Filter.
If you want to change only a portion of a bitmapped cast member, use the selection rectangle or the lasso in
the Paint window to select the part you want to change.

2. In the Auto Filter dialog box, select a filter.

3. Click Set Starting Values and use the filter controls to enter filter settings for the first cast member in
the sequence.
When you finish working with the filter controls, the Auto Filter dialog box reappears.

4. Click Set Ending Values and use the filter controls to enter filter settings for the last cast member in
the sequence.

5. Enter the number of new cast members you want to create. The box is not available if you have
selected a range of cast members.

6. Click Filter to begin the filtering.
A message appears to show the progress. Some filters are very complex and require extra time for
computing.
Auto Filter generates new cast members and places them in empty cast positions following the cast member
you selected. If you selected a range of cast members, no new cast members appear, but the cast members
in the range you selected are changed incrementally.
{button See also,AL(`UsersGuide_143_help')}

Working with text
You can create and edit text cast members directly on the Stage or in the Text window.

Note: There are three types of text in Director, each with distinct advantages for certain applications. The
type of text described in this section, rich text, looks the best on screen and is the easiest to distribute. It also
uses the most memory. For a comparison of all types of text, see the Using different types of text in Director
help topic.

To open the Text window:

· Choose Text from the Window menu.

· Click the Text window button on the toolbar .

· Press Control-6 (Windows) or Command-6 (Macintosh).

{button See also,AL(`UsersGuide_144_help')}

Creating text cast members
There are three ways to create text cast members:

· Create text cast members directly on the Stage using the text tool in the tool palette . Click the text tool and
then drag the pointer on the Stage to define the width of the text. When you release the mouse button, a text
insertion point appears in the area you just defined and you can begin entering text. The new text cast
member is placed in the first available position in the current cast. The sprite is placed in the first open Score
cell in the current frame.

· Create text cast members in the Text window by choosing Media Element and then Text from the Insert
menu. Text you enter appears in the first available cast position, but it is not automatically placed on the
Stage.

· If the Text window is already open, click the Add button to create a new text cast member.

{button See also,AL(`UsersGuide_145_help')}

Importing text
You can import text from any application that saves text in the rich text format (RTF).

When importing text, Director creates a new cast member each time it encounters a page break or column
break in the file.

The amount of text in a cast member is limited only by the memory available in the playback system.

{button See also,AL(`UsersGuide_147_help')}

Formatting text
You can change most of the text formatting settings with controls on the text inspector.

To display the Text Inspector, choose Text Inspector from the Window menu, or press Control-T (Windows)
or Command-T (Macintosh). The same controls also appear at the top of the Text window, and in the Font
and Paragraph dialog boxes.

Formatting characters

To Do this
Specify the font of
selected text

Choose a font from the pop-up.

Make selected text
bold, italic, or
underlined

Click the appropriate button in the text inspector.

Change the point size
of selected text

Increase or decrease the size with the size controls in the text
inspector.

Change the spacing
between selected
characters

Increase or decrease the character spacing with the control in the text
inspector.

Change the color of
selected text

Choose Modify > Font and use the pop-up color palette or use the color
chip on the tool palette to select a new color.

{button See also,AL(`UsersGuide_148_help')}

Formatting paragraphs
You can specify alignment, indent, tabs, and spacing for each paragraph in a text cast member.

To make any formatting changes to a paragraph, first place the cursor in the paragraph you want to change,
or select multiple paragraphs.

To Do this
Set tabs Click the tab well until the type of tab you want appears, and then click

the ruler to place the tab.

If the ruler isn't displayed, choose View > Ruler.

Move a tab Drag the tab marker on the ruler.

Remove a tab Drag the tab marker up or down off of the ruler.

Set margin Drag the indent markers on the ruler.

Set line spacing Change the setting with the line spacing control in the Text Inspector.

Director adjusts line spacing to match the size of the text you're using.
If you change the space setting, Director stops making automatic
adjustments. To resume automatic adjustment of spacing, enter 0 in
the line spacing box.

Set paragraph
alignment

Click one of the alignment buttons in the Text Inspector.

Set spacing before and
after paragraphs

Choose Modify > Paragraph and use the Spacing Before and After
controls.

{button See also,AL(`UsersGuide_149_help')}

Using anti-aliased text
The anti-alias text feature smoothes the edges of text on the screen so that it appears without jagged angles
and curves. Director blends the color of text with the background by adding pixels of intermediate colors.
Anti-alias text is turned on by default. You change the setting with the Text Cast Member Properties dialog
box. Select the cast member you want to change and then choose Modify > Cast Member Properties.

Anti-aliasing dramatically improves the quality of large text on the Stage, but it can blur or distort smaller
text. Experiment with the size settings to get the best results for the font you're using.

Director can anti-alias all outline (TrueType and PostScript) fonts but not bitmapped fonts. When you select
a font that cannot be anti-aliased, the message "This font cannot be anti-aliased" appears in the Font dialog
box below the font list.

{button See also,AL(`UsersGuide_150_help')}

Using different types of text in Director
There are three ways of working with text in Director: rich text, fields, and bitmapped text. Each has distinct
advantages for different applications.

{button See also,AL(`UsersGuide_151_help')}

Understanding rich text
Rich text is text that is editable in the authoring environment, but converted to an anti-aliased bitmapped
graphic on the Stage when the movie plays. Rich text is what you create with the text tool or in the Text
window. All the documentation, and Director itself, refers to rich text is as simply "text."

· Rich text offers paragraph formatting and definable tabs for each paragraph in a cast member.

· Rich text is always editable in the authoring environment, but when the movie plays it is turned into a
graphic.

· Because rich text is converted to a graphic, it offers faster animation and does not require the same fonts to
be installed on every system where the movie is played.

· Large fonts can be anti-aliased to improve on-screen appearance. No jagged lines appear at corners or
along angles.

· You can import from any application that can save text in the standard rich text format (RTF). When
importing text Director creates a new cast member each time it encounters a page or column break in the
file.

· Rich text requires more storage space than fields, but much less than text created in the Paint window or an
image editor.

· Text cast members support only three Score inks: Copy, Background Transparent, and Blend.

There are some drawbacks to using rich text:

· Rich text cast members use considerably more memory and storage space than field cast members. A rich
text cast member uses four bits per pixel. Field text uses one byte per character. For example, a rich text
cast member containing enough 12-point text to fill a normal page might take over 60K of memory. The
same amount of text in a field cast member would use around 2 or 3K. If your memory or storage space is
limited, there are many cases where using a field cast member may be more appropriate. For larger blocks
of text and text in smaller point sizes, fields are usually preferable to rich text.

· Anti-aliasing provides no benefit to most typefaces smaller than 14 points. In some cases, it makes the text
less legible. In general, anti-aliased rich text is best for headings, menu items, controls, and other items
where you need small amounts of large, clear text.

· Rich text can't be edited while a movie is playing.

· The text in rich text cast members isn't accessible or controllable from Lingo. You can't change words at
runtime or retrieve text.

{button See also,AL(`UsersGuide_152_help')}

Understanding fields
Field text is standard text controlled by your system software. A field is what you create with the field tool on
the tool palette or by choosing Insert > Control > Field. In general, you should use fields for large blocks of
small text (12-point or less). Use fields if you need text that is editable while the movie plays, or if you need
to manipulate the text with Lingo.

The important things to know about fields are:

· The text displayed in fields is controlled by the system software, so the same fonts must be installed in each
system every time the movie or projector is played. Try to use only standard system fonts for field text, like
Arial for Windows and Helvetica for the Macintosh.

· Unlike text cast members, fields can be edited while a movie plays. They also can be controlled by Lingo in
ways not possible with text cast members. See Chapter 6, "Working with Fields and User Input," in Learning
Lingo. You specify that a field is editable in the Field Cast Member Properties dialog box, or from Lingo.

· Field text can't be anti-aliased.

· Paragraph formatting and tabs are not available.

· Fields animate more slowly than text cast members.

· Fields require less storage space than all other types of text.

{button See also,AL(`UsersGuide_153_help')}

Understanding bitmapped text
Bitmapped text is a raster image that happens to look like text. You can create graphics that look like text in
the Paint window or any image editor, but you cannot edit it as text once you create it. However, you can
change it using any paint functions. For example, you can create dramatic effects by applying Photoshop
filters to bitmapped text. Use Modify > Convert to Bitmap to convert text and field cast members to bitmaps.

{button See also,AL(`UsersGuide_154_help')}

Creating fields
You can create a field cast member by choosing Insert > Control > Field, or with the Field tool in the Tools
palette.

{button See also,AL(`UsersGuide_156_help')}

Editing and formatting fields
Just like text cast members, you edit fields on the Stage or in a window, and apply formatting with the Text
Inspector. Not all text formatting options are available for fields. You cannot apply spacing, tabs, or indents to
individual paragraphs within fields. Alignment settings apply to every paragraph in the field.

The Field window does not have a ruler for setting tabs and indents.

To open the Field window, choose Field from the Window menu, or double-click a field cast member in the
Cast window.

Note: Field cast members can include up to 32K of text.

{button See also,AL(`UsersGuide_157_help')}

Mapping fonts between platforms
When creating movies for cross-platform applications, be sure to consider how fonts are changed when the
movie is moved between different systems.

Director converts text cast members to bitmaps, so text cast members appear exactly the same on any
platform as they did on the system where they were created. You can work on a movie in Director that was
created on a different platform and the text cast members still display their original fonts. Director assigns a
new font only when you try to edit a text cast member and the original font is unavailable.

Field cast members always depend on the system software to display the proper font. For either authoring or
playback on any platform (including Shockwave movies playing in web browsers), the font must be installed
in the system. For this reason you should only use common system fonts for field cast members, or license
and install custom fonts.

See the Using different types of text in Director help topic if you are unfamiliar with the difference
between text and field cast members.

Director uses a file named Fontmap.txt to map fonts between the Windows and Macintosh platforms. When
you create a new movie, Director looks for Fontmap.txt in the same folder as the Director application.

The version of Fontmap.txt included with Director assigns fonts as shown in the table that follows. These
settings provide the best equivalents of common system fonts on both platforms.

Windows font Macintosh font
Arial Helvetica

Courier Courier

New Courier Courier

MS Serif New York

MS Sans Serif Geneva

Symbol Symbol

System Chicago

Terminal Monaco

Times New Roman Times-Because Times New Roman is larger
than Times, Fontmap.txt assigns a smaller
point size.

Fontmap.txt also determines the scaling of fonts and how special characters like bullets and symbols are
translated between platforms. Again, the default settings should be correct for nearly all applications, but you
can edit the settings if necessary.

{button See also,AL(`UsersGuide_158_help')}

Working with digital video
Director supports QuickTime movies on Windows and Macintosh, and Video for Windows (AVI).

Director can also export movies or portions of movies as digital video. See the Exporting digital video help
topic

{button See also,AL(`UsersGuide_159a_help')}

Using Direct to Stage
Director plays digital video using a feature called Direct to Stage. Direct to Stage allows Video for Windows
or QuickTime to completely control the video playback.

Direct to Stage often provides the best frame rate, but there are two disadvantages to using it:

· The digital video always appears in front of all other sprites on the Stage, no matter which channel contains
the sprite.

· Ink effects do not work, so it is difficult to conceal the video's bounding rectangle with Background
Transparent ink.

Use Cast Member Properties to turn off Direct to Stage for the current cast member. Turn off Direct to Stage
when you want to place other sprites in front of a video and use ink effects on the video. When Direct to
Stage is off, Director layers a digital video on the Stage exactly like other sprites, and the Background
Transparent ink works normally. (Matte ink does not work for digital videos.)

Direct to Stage is the only available option for using QuickTime digital video cast members in Director for
Windows. However, Direct to Stage can be turned off for Video for Windows (AVI) digital video cast
members. On Macintosh, Direct to Stage can be disabled for QuickTime digital video cast members.

The Play Every Frame option in the Cast Member Properties dialog box ensures that no frames are skipped
when the video plays. Depending on the data rate of the digital video, the digital video sprite may not play
any more smoothly than before. In addition, playing every frame may cause the digital video to take more
time to play. Note also that a digital video's soundtrack will not play if Play Every Frame is turned on.

Note In some cases a Direct to Stage digital video causes redraw problems on the Stage after it finishes
playing. This occurs when Video for Window or QuickTime does not return control of the stage to Director. You
can avoid this condition by placing a sprite the same size as the video (or larger) in the frame after it finishes
playing. You can also use a simple Lingo script. For more information, see "Clearing the stage after a digital
video finishes" in Chapter Seven of Learning Lingo.

{button See also,AL(`UsersGuide_159b_help')}

Importing digital videos
You import a digital video the same way you import any other type of cast member. The only difference is
that digital videos always remain linked to the original file on disk. When you move a movie or projector to a
different system, you must always make sure to include all digital videos.

{button See also,AL(`UsersGuide_160_help')}

Opening the Video window
You view digital videos in the Video window.

To open the Video window:

· Double-click a digital video cast member.

· Choose Window > Video.

· Press Control-9 (Windows) or Command-9 (Macintosh).
The Video window appears:

Note: The video controller appears only for QuickTime videos.

{button See also,AL(`UsersGuide_161_help')}

Using video in Director movies
You add a video to a Director movie the same way you add any other cast member. Videos begin playing
when the playback head reaches the frame containing the video.

Use Cast Member Properties to make the movie pause or loop.

Tip: If there's a white bounding box around the video, use the Background Transparent ink to remove it.
(Matte ink doesn't work with digital video.)

A video, like a sound, is a time-based cast member. If you place a video in just a single frame of the Score,
the playback head moves to the next frame before Director has time to play more than a brief instant of the
video.

There are three ways to make sure that Director plays a video until the movie is finished:

· Create a tempo setting in the tempo channel using the Wait for End of Digital Video option in the Frame
Properties: Tempo dialog box. This option keeps the playback head from moving to the next frame until the
entire video has finished playing. You can also make the playback head wait for cue points within the video.
See the Using sound and video cue points help topic.

· Use Lingo or behaviors to make the playback head stay in a frame until the end of the video or until a certain
cue point passes.

· Extend the video through enough frames to give it time to play all the way through.

Note: Lingo provides several more advanced digital video controls. See Lingo elements - digital video.
{button See also,AL(`UsersGuide_162_help')}

To crop a video:

1. Select the cast member in the Cast window.

2. Choose Modify > Cast Member Properties.
The Digital Video Cast Member Properties dialog box appears.

3. Select Crop.
If you select Center, as well as Crop, Director automatically centers the video inside the rectangular area
you set as the size of the movie's image.

4. Click OK.

5. Select the video in the Score.

6. Go to the Stage, and drag any of the handles that appear on the selection rectangle that surrounds
the video image.
Director displays only as much of the movie image as will fit in the area defined by the selection rectangle.

Cropping doesn't permanently remove the portions you crop; it just hides them. It's like adjusting shutters
until just the part of the image you want to show is visible.

{button See also,AL(`UsersGuide_163_help')}

Using shapes
Shape cast members are similar to objects in drawing programs. You can resize them and change their
shape and color right on the Stage after you create them.

Because shapes use less memory than bitmaps, they are especially useful for movies that will be distributed
on the internet. However, they animate more slowly.

The tools for creating shapes are in the tool palette. Choose Window > Tool Palette.

To create a shape, select a cell in the frame where you want to draw a shape. Choose color, line thickness,
and pattern settings with the controls in the tool palette. Click a tool and then drag on the Stage to draw the
shape. The new shape appears on the Stage and in the Cast window.

The Radio Button, Checkbox, and Button tools in the tool palette create simple buttons similar to those
defined by your system software. Do not confuse them with more sophisticated Custom buttons created by
the Button Editor. See the Using the Button Editor help topic.

Use the Field button to create Field cast members directly on the Stage.

{button See also,AL(`UsersGuide_164_help')}

Using OLE cast members
You can place linked and embedded (OLE) objects in Director for Windows movies as cast members. An
OLE cast member appears as a bitmap inside of Director. For this reason, you should use OLE objects
primarily to show images, text, or numbers. Sound and video OLE objects are not effective.

The OLE Object command on the Insert menu creates OLE cast members. You create a new OLE object by
launching the source application from Director, or by embedding an existing file.

{button See also,AL(`UsersGuide_165_help')}

To create an OLE cast member:

1. Choose Insert > New OLE Object.

2. In the Insert Object dialog box, choose Create New or Create from File.
- If you choose Create New, choose the type of OLE object you want from the Object Type list. The
objects available depend on the OLE-compatible applications installed in your system.

- If you choose Create from File, enter the path to the file or click Browse to select a file.

3. Click OK to continue.
If you chose Create New, the source application of the OLE object appears. When you finish creating the
object, choose File > Update. The object then appears in Director as a cast member.
If you chose Create from File, the object is immediately placed in the cast.

{button See also,AL(`UsersGuide_166_help')}

Working with OLE cast members
You can use OLE objects as ordinary cast members: place them on the Stage, move them around, tween
them in the Score, and so on.

There are only a few special considerations:

· You can use OLE cast members in movies on any system, but you can edit them only in Windows 95 and
NT.

· Double-click an OLE cast member to launch the application that created it. When you make changes in the
source application and choose Update from the File menu, the OLE cast member is updated within Director.

· OLE cast members are converted to normal bitmaps when you create a projector. They are no longer linked
to their source applications.

{button See also,AL(`UsersGuide_167_help')}

Using Paste Special with OLE objects
Paste Special is the only way to create cast members that display selected portions of OLE objects instead
of the whole object. This is useful for showing items like cells in a spreadsheet, or particular fields in a
database instead of the entire record.

Begin by copying a selected portion of a document to the Clipboard in another application that supports
OLE. Within Director, choose Edit > Paste Special > Using OLE. The OLE object appears as a cast member
and is updated when the source document changes.

{button See also,AL(`UsersGuide_168_help')}

Launching external editors
You can specify external applications to edit bitmap, video, and sound cast members. Once you have set up
an external editor for a particular media type, Director launches or switches to the other application when
you double-click a cast member of that type. When you finish editing a cast member in an external editor
and then close the file, Director re-imports the cast member.

If you know you will be using an external editor to work on a particular file, choose Include Original Data for
External Editing from the Media pop-up in the Import dialog box when you import the file. With this option on,
Director retains a copy of the original data. When you edit the cast member with an external editor, Director
sends the original data to the external editor. This ensures that all of the editor's capabilities to modify the file
are preserved. For example, if you specify xRes to edit PICT images, Director maintains all of the xRes
object data.

None of the original data is included when you create a projector or a Shockwave movie, so you don't need
to worry about it increasing the size of your final work. It only increases the size of the source file.

If you change an image in the Paint window and then edit the image with an external editor such as
PhotoShop or xRes, the changes you made in the Paint window will be lost. Director warns you if this is a
possibility. Registration points that you set in the Paint window are not lost if you later edit the image
externally.

If you've specified an external editor and you want to edit a cast member with Director's internal editors,
select the cast member and choose Edit > Edit Cast Member. To edit externally, double-click the cast
member or choose Edit > Launch External Editor.

{button See also,AL(`UsersGuide_169_help')}

To define external editors:

1. Choose File > Preferences > Editors.

2. Choose a type of media for which you want to define an external editor.

3. Click Edit.

4. Click Use External Editor.

5. Click Browse or Scan to locate the application.
You can specify any application capable of editing the selected type of media.

Tip: If you've specified an external editor and you want to edit a cast member with Director's internal
editors, select the cast member and choose Edit > Edit Cast Member. To edit externally, double-click the cast
member or choose Edit > Launch External Editor.

{button See also,AL(`UsersGuide_170_help')}

Using movies within Director movies
You can import a Director movie into another movie as an internal or linked cast member. You can also play
a Director movie in a window inside another Director movie.

{button See also,AL(`UsersGuide_172_help')}

Importing movies
You import Director movies just as you import other types of media. See the Importing cast members help
topic. As with other media types, you can link to an external movie file, or import it so that it becomes internal
media. Click the Link to File checkbox to link to an external movie file. The way you choose to import a
movie affects its properties.

· For linked movies, cast scripts and behaviors (sprite scripts) function as before. Turn on Enable Scripts in
the Cast Member Properties dialog box to make them work. Frame and movie scripts do not work. As with
other types of linked media, the external movie file must be present on the system when the host movie
plays.

· For movies imported as internal media, scripts do not work and the movie appears as a film loop.

For both types of imported movies, the host movie controls the tempo settings, palette settings, or transitions
and settings in the imported movie are ignored.

Once it is imported, the entire movie appears as a single cast member in the Cast window. You can animate
the cast member just as you would any graphic cast member, film loop, or digital video.

{button See also,AL(`UsersGuide_172_help')}

Playing a movie in a window
You can use a behavior or write a short Lingo script to make Director play another Director movie in a
window. The movie can be played from a local disk, or streamed from the internet. A movie in a window
retains any interactivity you've built into it. Tempo settings, palette settings, and transitions are lost.

Use a movie in a window as a floating controller for your movie, to display help text, or simply to show
several movies at once.

You cannot use a movie in a window in a Shockwave movie. Web browsers do not allow Shockwave to open
new windows.

Tip: A movie-in-a-window (MIAW) cannot take over the host movie's color palette. While preparing a
movie for use as a movie in a window, choose Modify > Movie > Properties and turn on Remap Palettes When
Needed. This option instructs Director to remap the movie's color palette to the host movie's color palette if there
is a conflict.

You can create a basic movie in a window with the Open Movie in a Window behavior, and control it with the
Message Movie in a Window behavior. For more information, see Using included behaviors.

For information about using Lingo to define and control movies in a window, see Chapter Ten, "Movies in a
Window" in Learning Lingo.

{button See also,AL(`UsersGuide_173_help')}

Comparing film loops, digital videos, linked movies, and MIAWs
This information will help you decide which approach you want to use when you need to include a completed
piece of animation in a Director movie.

To Use Film loop Digital video Linked
Director
movie

Movie in a
window

Include tempo settings x

Include palette settings x

Include transitions x

Include sounds x QuickTime only x x

Include interactivity x x* x

Attach a cast member script to
the movie's cast member

x x x

Attach a sprite script to the
movie's sprite

x x x

Edit Score data from original
animation

x x x

Move the movie across the
Stage

x x x x

Edit the movie x** x*** x

* Select Enable Scripts in the Cast Member Properties dialog box.

** Cut, copy, and paste individual frames in Director.

*** Close the current movie and open the linked movie in Director.

{button See also,AL(`UsersGuide_174_help')}

Understanding tempo settings
The tempo setting in the tempo channel is the speed Director tries to achieve. Many factors can make
movies play slower than the specified tempo, such as:

· Animating several large sprites at the same time

· Animating sprites that have blend values

· Running the movie on a slower computer

You can always slow down animation with a tempo setting, but you can't make it go faster than the computer
allows.

Tempo settings don't affect the duration of any transitions you've set in the transition channel, and they don't
control the speed at which a sound plays. They control the maximum speed at which the playback head
moves from frame to frame.

{button See also,AL(`UsersGuide_177_help')}

Using tempo channel settings with interactive elements
With settings in the tempo channel, you can make the movie pause while a sound or video finishes playing.
While the movie is paused, some interactive elements in the movie such as buttons or moveable sprites
don't work.

You can avoid this situation by controlling the tempo with Lingo. Lingo provides more sophisticated control of
the speed of the movie while maintaining interactivity. For more information, see Learning Lingo.

For simple movies, these issues may cause no problem and using the tempo channel may be the best way
to define tempos.

It's also a good idea to avoid setting a tempo, a transition, and a palette change all in the same frame,
because it will be difficult to predict their playing order. Instead, duplicate the frame and assign a different
effect to each frame.

{button See also,AL(`UsersGuide_178_help')}

Using the tempo channel
You enter tempo changes in the tempo channel at the top of the Score. It's best to begin a movie with a
tempo setting in the first cell of the tempo channel.

If you don't set a tempo until later in the movie, the beginning tempo is determined by the setting in the
Control Panel.

Director plays a movie at the tempo you've set until it encounters a new tempo setting in the tempo channel
or a Lingo command. See Chapter 4, "Controlling Score Channels from Lingo," in Learning Lingo.

{button See also,AL(`UsersGuide_179_help')}

To add a tempo setting:

1. In the Score, double-click the cell in the tempo channel where you want the new tempo setting to
appear.
You can also choose Modify > Frame > Tempo.

2. Select the option you want to use in the Frame Properties: Tempo dialog box.
To Do this
Set a new tempo for the
movie

Use the arrows or drag the slider.

Pause the movie at the
current frame for a
specified amount of time

Use the arrows or drag the slider to change the Wait
setting.

Pause the movie until
the user clicks the
mouse or presses a key

Click Wait for Mouse Click or Key Press.

Pause the movie until a
cue point in a sound or
digital video passes

See the Using sound and video cue points help topic.

3. Click OK.
A number that matches the setting you've chosen appears in the tempo channel.

{button See also,AL(`UsersGuide_180_help')}

Using sound and video cue points
Use the Wait for Cue Point option in the Tempo dialog box to pause the playback head until a specified cue
point in a sound or digital video is reached.

For example, you can use cue points to make a bullet point appear at the same time a voice-over reads text.
First, use Macromedia Sound Edit 16 to place cue points corresponding to the bullet point text in the sound
file. In Director, use the Tempo dialog box to pause the playback head at the frame where a bullet appears
until the voice-over reaches the proper cue point.

For a demonstration of using cue points, see the Synchronized Media movie.

Use Macromedia SoundEdit 16 to define cue points in both sounds and digital videos. You can define cue
points in AIFF, Shockwave Audio sounds, and QuickTime digital videos. QuickTime for Windows 2.5 or later
is required to use cue points on the Windows platform.

SoundEdit 16 works only on the Macintosh, but it can place cue points in AIFF and QuickTime files for use
on either Windows or Macintosh systems. AVI digital video does not support cue points.

There are also several Lingo commands that provide additional ways of using cue points. See chapter 8,
"Controlling Sound and Digital Video," in Learning Lingo.

{button See also,AL(`UsersGuide_181_help')}

To use cue points:

1. Place cue points in a sound file or in the audio track of digital video.
Use Macromedia SoundEdit 16 to define cue points in both sounds and digital videos.

2. Import the sound or digital video into Director.
The sound can be imported internally using the Standard Import option, or linked to an external file with the
Link to External File option in the Import dialog box. Cue points work the same way in both cases.

3. Place the sound or digital video in a channel in the Score and extend it through all the frames in
which you want it to play.

4. Double-click the frame in the tempo channel where you want the playback head to wait for a cue
point.

5. In the Tempo dialog box, choose Wait for Cue Point.

6. Select the sound or digital video from the Channel pop-up.

7. Choose the cue point to wait for from the Cue pop-up.
Select the Start or End cue points, the Next cue point, or any named or numbered cue point sound or digital
video.

When the movie plays, the playback head pauses at the frame until the cue point passes.

There are more advanced ways to use cue points with Lingo. See Chapter 8, "Controlling Sound and Digital
Video," in Learning Lingo.

{button See also,AL(`UsersGuide_182_help')}

To compare the actual speed of a movie with the tempos you've set:

1. Use the Step Forward button to step through the movie frame by frame.

2. In each frame, compare the tempo setting shown in the Control Panel with the actual speed shown
there.
If you haven't recorded the actual speed of a movie in a particular frame, the Control Panel displays two
dashes (--).

If the difference between specified and actual tempo is too great, make changes to the movie to make it
perform better. See "Performance tips" in chapter 8, "Completing Movies," of Using Director.

Using sounds
You can control sounds in Director using two basic methods:

· Use the sound channels at the top of the Director Score to add simple sound tracks to your movie. The
sound channel controls the starting and stopping of sounds at particular frames in the movie. This approach
is described later in this section.

· Control sounds more precisely and use more sounds at once with Lingo commands such as puppetSound,
sound close, sound fadeIn, sound fadeOut, sound playFile, sound stop, soundBusy, soundEnabled,
soundLevel, and the volume of sound. For more information, see Chapter 8, "Controlling Sound and Digital
Video" in Learning Lingo or the Lingo elements-sound help topic.

{button See also,AL(`UsersGuide_185_help')}

Importing sounds

Director imports AIFF and WAV sounds, both compressed and uncompressed, and Macintosh System 7
sounds.

For best results, use sounds that are 8- or 16-bit depth, with a sampling rate of 44.1, 22.050, or 11.025 KHz.

Note: If your Macintosh has an audio input or microphone attached, you can record sounds by choosing
Insert > Media Element > Sound. The Sound command opens the Macintosh sound recording dialog box.
There is no equivalent function for Windows.

{button See also,AL(`UsersGuide_186_help')}

Using internal and external sounds
Internal sounds are sounds that have been imported to a cast (it doesn't matter whether the cast itself is
internal or external). For internal sounds, Director stores all of the sound data inside the movie or cast file.
For external sounds, Director maintains a link to an external file.

Director "streams" external sounds. Streaming sounds begin to play while the rest of the sound continues to
load from its source, whether on disk or over the internet.

Director can stream only external sounds; it loads all internal sounds into RAM before playing them. It's best
to link large sounds as external files so they can be streamed. Import smaller sounds that you want to play
instantly as internal cast members.

Streaming sound is especially important for playing larger sounds in movies distributed on the internet.
Shockwave Audio provides powerful compression and streaming capabilities. See the Compressing and
streaming sounds with Shockwave Audio help topic.

{button See also,AL(`UsersGuide_187_help')}

Placing sounds in the Score
Place a sound in a sound channel just as you would create any other type of sprite. Drag a sound cast
member to a frame in the sound channel or drag it to the Stage to place it in the first available sound channel
for the current frame.

Sounds play only as long as the playback head is in the frame containing the sound sprite. Once a sound
begins playing, it plays at its own speed. Director cannot speed up or slow down sounds.

Note Do not place a streaming external Shockwave Audio sound in the sound channels. Place it in a
numbered sprite channel. For more information, see Streaming external Shockwave Audio files.

New sound sprites are assigned the default sprite length defined in Sprite Preferences. You may need to
adjust the length of the sprite to make sure the sound plays completely, or use a tempo setting to make the
Playback Head wait for sound to finish playing. For more information, see Using sound and video cue
points.

The Score displays two channels for sound. Director, however, can mix additional sound channels
simultaneously, but the additional channels are accessible only from Lingo or by using sounds in digital
videos. RAM and processing power are the real constraints for the number of sound channels Director can
use effectively.

Note: In Windows, the default number of sounds that Director can mix is four. This can be increased by
modifying the value for MinMaxChannels in the Director.ini file in the Director folder. For multiple sounds to play
simultaneously, the Macromix.dll file must be installed on your computer.

In Windows, a sound that's already playing in either sound channel overrides the sound in a video and it also
prevents the video sound from playing even after the sound in the sound channel has stopped. Once the
sound in a digital video has started, however, it overrides a sound in either sound channel.

Tip: Sounds can take up considerable disk space. If you know you're going to use the same sounds in
several movies, put the sounds in a shared external cast or use linked external sound files. You can then use the
same sounds in several movies and use much less memory. For information about creating an external cast, see
the Creating casts help topic.

{button See also,AL(`UsersGuide_188_help')}

Repeating a sound
You may find that you want to repeat a sound, such as a footstep, over and over to create one continuous
sound effect-for example, the sound of a person walking. A looped sound repeats as long as the playback
head is in a frame where the sound is set.

To make a sound repeat, select the Looped checkbox in the Cast Member Properties dialog box for the
sound.

Tip: In Director, sound in the last frame of a movie continues to play or loop until the next movie begins or
you exit the application. This sound can be a useful transition while Director loads the next movie. You can
stop the sound using the Lingo puppetSound 0 command, the sound stop Lingo command, or by using the
MCI stop command when an MCI device controls the sound.

{button See also,AL(`UsersGuide_189_help')}

Setting sound volume
Sound volume settings in Windows work differently than on the Macintosh. On the Macintosh, a sound
volume set too high produces a loud but clear sound. In Windows, high sound volume settings usually
produce distorted sound.

The sound volume in Macintosh movies is commonly set to the highest value in an attempt to get loud, clear
sound. For best results when the movie plays back in Windows, avoid setting the sound volume with Lingo
from within the movie. Instead, assume that the user has set the appropriate Windows sound volume. If you
do set the sound level from within the movie, use a medium sound volume setting.

In Director for Windows, the sound volume setting of QuickTime for Windows videos is relative to the WAVE
driver sound volume setting. As a result, many QuickTime for Windows videos can play back louder or softer
than the intended sound volume.

To control the volume of a QuickTime for Windows video when the movie plays back in Director for
Windows, use the volume of sprite command.

{button See also,AL(`UsersGuide_190_help')}

Synchronizing sound
You can synchronize sounds to the rest of your movie by making the playback head wait for cue points in
sound files. See the Using sound and video cue points help topic. There are also many ways to synchronize
sounds with movie events using Lingo. See Chapter 8, "Controlling Sound and Digital Video," in Learning
Lingo.

Compressing and streaming sounds with Shockwave Audio
Shockwave Audio compresses sound and streams it over the internet or off disk. Its compression technology
makes sounds a small fraction of their original size without sacrificing fidelity.

"Streaming" sound means that Shockwave Audio begins playing while it is still downloading. When used
properly, Shockwave Audio's compression and streaming capabilities provide almost instant playback of
high-quality audio, even for users with 28.8 modem connections to the internet.

Shockwave Audio can compress both internal and external sounds. Internal sounds have been imported to a
cast. External sounds are linked sound files that remain separate from the movie file.

Director can stream only external Shockwave Audio files; it loads internal sounds into RAM before playing
them. It's best to convert large sound into the Shockwave Audio format so they can be streamed. Import
smaller sounds as internal cast members.

{button See also,AL(`UsersGuide_192_help')}

Understanding compression quality
Shockwave Audio compresses sounds using advanced methods that are quite different from most other
sound compression schemes. Some of the techniques you currently use to make sounds smaller may be
inappropriate for use with Shockwave Audio.

There is often no advantage to reducing the sampling rate of source sounds before compressing with
Shockwave Audio. Reducing the sampling rate degrades the quality of the final compressed sound and
makes no difference in its size.

When sound is decompressed, it returns to its original size, so make sure internal sounds are not too large
to decompress in available memory. The best audio settings to use for general purpose source material are
16 bit, 22 kHz mono. Internal sounds have to be loaded into RAM and decompressed before playing. Larger
sounds should be converted to external Shockwave Audio files and streamed.

Set the amount of compression for Shockwave Audio by choosing a bit rate setting in any of the Shockwave
Audio Xtras. The bit rate specifies the number of bits per second Shockwave Audio uses to render the
sound, regardless of the source material. One second of any type of sound compressed to 16 Kbps =
16,000 bits = 2 K bytes. The bit rate does not specify the compression ratio or the sampling rate.

For example, 10 seconds of 16 bit audio sampled at 22 Megahertz would be 440K in the AIFF format.
Compressed at 16 Kbps by Shockwave Audio, the same sound would end up being 20 K.

(Do not confuse Kilo bits per seconds (Kbps) with Kilobytes (K). A byte is eight bits. Kilo bits per second is
commonly used to indicate the speed of data transmission; Kilobytes is used for fize sizes. This is,
unfortunately, the accepted industry terminology.)

Although Shockwave Audio uses advanced compression technology that alters original sounds as little as
possible, the more a sound is compressed the more it is changed. Try compressing the same sound at
several different bit rates to see how the sound changes and how much compression is achieved.

Choose the bit rate appropriate for the intended delivery system (modems, ISDN, CD-ROM, hard disk, and
so on), the type of movie, and the nature of the sound itself. A voice-over, for example, may not need to be
as high quality as music. Test the sound on several systems to find the right balance between quality and
performance.

The more compressed a sound is, the better it streams. If you choose to use a high bit stream rate, a slow
delivery system may not be able to send the data fast enough. This causes gaps during playback. Most
developers choose 16 Kbps for the best results for streaming over the internet with 28.8 modems. For
smaller internal sounds, choose 64 Kbps for the best balance of size and quality.

The table below suggests some general guidelines for setting the bit rate for different delivery systems. It
also provides a rough estimate of perceived quality for different rates of compression.

 Delivery Bit rate Quality
T1 64-128 Kbps Equal to source material

ISDN or CD-
ROM

32-56 Kbps FM stereo to CD

28.8 modem 16 Kbps FM mono or good quality AM

14.4 modem 8 Kbps Telephone

Note: Any sound compressed at less than 48 Kbps is converted to mono.

The technology for delivering audio over the internet is developing rapidly. For the latest information, see the
Director Developers Center web site.

{button See also,AL(`UsersGuide_193_help')}

Compressing internal sounds
Shockwave Audio can compress any internal sounds in a movie. (If you're unfamiliar with internal sounds,
see the Using internal and external sounds help topic.) Although internal sounds are not streamed,
compressing them with Shockwave Audio dramatically decreases the size of the movie, shortens the
download time from the internet, and saves disk space.

Use the Shockwave Audio Settings Xtra to specify compression settings for internal sound cast members.
The compression settings you choose apply to all internal sound cast members. You can't specify different
settings for different cast members.

Shockwave Audio works only with compressed Director movies. You can choose compression settings at
any time, but compression occurs only when the Director movie is compressed with either the Create
Projector, Save As Shockwave Movie, or Update Movies command.

When you distribute a movie that contains sounds compressed with Shockwave Audio, you must include the
required Xtras to decompress and play the sounds. In most cases, Director handles this automatically. For
more information on packaging Xtras, see the Managing Xtras for distributed movies help topic.

{button See also,AL(`UsersGuide_194_help')}

To compress internal sound cast members:

1. Choose Xtras > Shockwave for Audio Settings.

2. Choose Enabled to turn on compression.

3. Choose a setting from the Bit Rate pop-up.
The bit rate determines both file size and quality of output. It specifies the number of bits per second
Shockwave Audio uses to render the sound. The lowest available setting, 32 Kbps, provides the best
compression possible without noticably altering the original sound.
See the Understanding compression quality help topic if you're not sure what to choose.

4. Click the Normal or High option for the Accuracy setting.
High provides noticably better quality when lower bit rates are used, but it takes more time to process during
compression. Unless sound quality is critical to your work, leave this option set to Normal.

5. Click Convert Stereo to Mono if you want to convert a stereo file to mono.
At rates lower than 48 bits, all sounds are converted to mono.

6. Click OK to close the dialog box.
Director doesn't compress the sound cast members until you create a projector or a Shockwave movie.
When creating a projector, Director only compresses sounds if the Compressed option is turned on in the
Projector Options dialog box. Compressing sounds can substantially increase the time required to compress
a Director movie.

Note: Shockwave Audio does not compress IMA compressed sounds.

{button See also,AL(`UsersGuide_195_help')}

Streaming external Shockwave Audio files
Director streams external sounds that have been compressed with Shockwave Audio, either from a local
disk or a URL. Create external Shockwave Audio files with the Create Shockwave Audio File Xtras for
Director (Windows only) or SoundEdit 16 (Macintosh only).

To stream an external Shockwave Audio sound:

1. Choose Insert > Media > Shockwave Audio.
This creates an Xtra cast member that controls the streaming Shockwave Audio.
The Cast Member Properties Options dialog box appears.

2. Enter a URL in the Link Address box or click Browse and choose a Shockwave Audio file on a local
disk.
Unless you choose a file in the same folder as the movie, the movie always links to the exact location you
specify. Be sure to link to the correct location.

3. Set the remaining cast member properties according to your needs and click OK when done

Use this option To
Volume Set the volume of the sound.

Sound Channel Choose the sound channel for the sound.
For sounds in cross-platfrom movies, choose
Any.

Preload Time Specify the size of the stream buffer. Director
attempts to load enough sound data to play
for the specified time. Increasing this time
can help avoid gaps in playing sounds on
slow or halting internet connections.

4. Drag the Shockwave Audio cast member to a sprite channel (not one of the sound channels) to
create a sprite. Extend the sprite through all frames in which the sound should play.

Streaming Shockwave Audio files don't work in the sound channels. The sound streams from the source
location when the movie plays. To make sure the sound finishes, use a tempo channel setting to make the
playback head wait for the end of the sound.

Shockwave Audio technology is evolving rapidly. For the latest information, check the Director Developers
Center web site.

{button See also,AL(`UsersGuide_196_help')}

Working with transitions
Director provides dozens of transitions. For example, you can dissolve from one scene to the next, display a
new scene strip by strip, or switch to it as though revealing it through Venetian blinds. You can also use
many of the transitions to make individual elements appear or disappear from the screen.

You can add new transitions to Director as Xtras. Xtra transitions appear with special icons in the Frame
Properties: Transitions dialog box. Install Xtra transitions by placing them in the Xtras folder in the Director
application folder. The Transition Xtras must be present when the movie runs.

Once they are defined, transitions appear in the Cast window as cast members. You can place them in the
transition channel by dragging them from the cast to the Score.

{button See also,AL(`UsersGuide_197_help')}

Creating transitions
Transitions, like tempos, palettes, and sounds, have a channel set aside for them in the Score.

Before you select the frame in which you want to set a transition, it's important to understand how transitions
work. A transition always takes place between the end of the current frame and the beginning of the frame
where the transition is set. If you want to do a dissolve between two scenes, set the transition in the first
frame of the second scene, not the last frame of the first scene.

{button See also,AL(`UsersGuide_198_help')}

To add a transition:

1. In the Score, go to the transition channel and select the frame in which you want the transition to
occur.

2. Choose Modify > Frame > Transition or double-click the frame in the transition channel.
The Frame Properties: Transition dialog box appears. It lists the transitions you can choose from.
Scroll to the transition you want to select in the Transition dialog box by typing the first letter of the
transition's name.

3. Select the transition you want.
For many of the transitions, there is a default setting for Duration and Smoothness. You can adjust the
sliders to change the settings.
For many of the transitions, you can also select whether the transition affects the entire Stage or just the
area that's changing (the area where any sprites that weren't on the Stage in the previous frame appear).
Xtra transitions might offer extra options provided by the developer. If the Options button is available when
you choose an Xtra transition, click the Options button to view and change the transition options.

4. Click Set.
Director displays the number that corresponds to the transition in the transition channel. The transition also
appears in the cast.

{button See also,AL(`UsersGuide_199_help')}

Tips for using transitions
· To play a sound while a transition occurs, place the sound in the frame immediately before the transition.

· The Dissolve Pixels, Dissolve Pixels Fast, or Dissolve Patterns transitions may look different on Windows
and Macintosh systems. Test to ensure satisfactory results.

· Palette transitions (including fade to black and fade to white) and bit and pixel dissolves do not work in 16-,
24-, and 32-bit environments. These features require that the monitor is set to display 256 colors ("Hundreds
of Colors" on the Macintosh).

· If you export a movie that contains transitions as a digital video or PICS file, the transitions might not be
preserved.

· A transition that occurs while a sound is decompressing may require more system resources than available
on less powerful systems. This may cause the sound to stop playing. If you notice this while testing on low-
end systems, try making the transition shorter or not using more complex transitions like Dissolve.

{button See also,AL(`UsersGuide_200_help')}

Changing color palettes
By switching between palettes in a movie you can create a number of color effects without animation. For
example, you can simulate the sun setting by switching to a palette with dimmer colors.

Palettes only work if your system is set to display 256 colors ("Hundreds of Colors" on the Macintosh).
Palette changes and effects may not work for movies playing in web browsers, because they do not control
the system palette the way a stand-alone movie does. See the Managing color palettes for browsers help
topic.

You change the active palette in a movie by placing a new palette in the palette channel.

Tip: You can also switch palettes with the puppetPalette command. Refer to the Lingo help topic.

You can edit color palettes in the color palettes window.

For conceptual information about color and using color palettes in Director, see the Understanding color
palettes help topic or the Color Palettes movie.

Note: Don't change palette colors that are used by your system software for interface elements,
especially if your movie will be used at the same time as other applications. On Windows these colors always
appear as the first ten, and last ten, colors in the palette.

{button See also,AL(`UsersGuide_201_help')}

Changing palettes in a movie
The palette channel in the Score determines which palette is active at any point in a movie.

Use the palette channel to create color effects and specify palette transitions that make the change of
palettes less abrupt. A palette transition can mask a change from one palette to another by fading the screen
to black during the change. It can also gradually change the palette between frames or over a series of
frames, shifting every color gradually through a range of intermediate colors to its counterpart in the new
palette.

You can also use a palette setting to cycle through a range of colors you've selected in a palette. Cycling
colors is a great way to represent flowing, spinning, or pulsing objects.

If you place a cast member with a different palette on the Stage-and it's the first cast member with a different
palette in the frame-Director automatically adds the new palette to the palette channel. The new palette
becomes the active palette unless you clear it from the palette channel or replace it with a different palette,
and it remains in effect until you set a different palette in the palette channel.

Only one palette can be active on an 8-bit monitor at any one time. You may see a palette flash if you try to
display bitmaps with more than one palette.

{button See also,AL(`UsersGuide_202_help')}

To create a palette setting in the palette channel:

1. In the Score, select the frame in the palette channel where you want the new palette setting to take
effect.
To extend a palette transition over time, select the range of frames during which you want the transition to
take place.
You must select at least four frames to make a palette transition span selected frames.

2. Choose Modify > Frame > Palette.
You can also double-click a cell in the palette channel.
When the Frame Properties: Palette dialog box appears, you have many options:

To Do this
Set a new palette without
any transition

1. Choose a new palette from the pop-up.

2. Click the Palette Transition option.

If you've added any palettes to the cast, they appear in the Palette
pop-up.

Hide a palette change within
a fade

1. Choose a new palette from the pop-up.

2. Click the Palette Transition option.

3. Select Fade to Black or Fade to White.

4. Use the Rate slider to set the speed of the fade.

Stop the movie while the
palette changes

1. Choose a new palette from the pop-up.

2. Click the Palette Transition option.

3. Select Between Frames.

4. Use the Rate slider to set the speed of the transition.

Any animation stops during this type of palette transition.

Extend a palette transition
over time

1. Choose a new palette from the pop-up.

2. Click the Palette Transition option.

3. Choose Span Select Frames.

Animation continues during this type of palette transition. This
option is only available if you first select a range of frames in the
palette channel.

Cycle the colors in a
selected range of the
palette.

See the To use color cycling help topic.

3. Click Set.
The palette you chose now appears in the cell you selected in the palette channel of the Score. It remains in
effect in the movie until you set a different palette in the palette channel.

Tip: Since the palette you choose affects everything displayed on the monitor-including Director's
interface-you may find it difficult to see what you're doing after you select a new palette. Use General
Preferences on the File menu to turn on the Classic Look (Monochrome) option for the user interface. This will
make the interface controls black and white.

You can get a better idea of how the palette transitions and color cycling works if you open the Palette
window and observe the transition there.

{button See also,AL(`UsersGuide_203_help')}

To use color cycling:

1. Create cast members using a specific range of colors in the current color palette.
It's important that other cast members that will be on the Stage at the same time not use these colors,
unless you want them to cycle also.

2. Create sprites in the Score using the cast members you created earlier.

3. In the palette channel, choose the range of frames in which the sprites you want to cycle appear and
then choose Modify > Frame > Palette.

4. Choose the palette to cycle from the Palette pop-up. (You don't have to choose a new palette to cycle
colors.)

5. Click the Color Cycling option.

6. Select the colors to cycle in the palette shown on the left side of the dialog box.

7. Choose Between Frames or Span Selected Frames.
- If you choose Between Frames, use the Rate slider to set the speed of cycling. Colors cycle completely

during each frame in the transition.

- If you choose Span Selected Frames, the cycle occurs only once across all selected frames.

8. Enter the number of cycles to complete in the Cycles box.

9. Choose Auto Reverse or Loop to specify the sequence of colors.

10. Use the Color Palettes window to reserve the colors used for cycling.
This prevents new cast members from using the colors that cycle. See the Selecting and reserving colors in
the Using the Color Palettes window help topic.

Color cycling is an excellent way of creating simple movement in a movie without doing any real animation
or using system resources. It's especially effective for creating flashing banners, water effects, and fireworks.

{button See also,AL(`UsersGuide_205_help')}

Using the Color Palettes window
Use the Color Palettes window to change and rearrange color palettes.

To open the Color Palettes window:
· Choose Color Palettes on the Window menu.

· Press Control-Alt-7 (Windows) or Command-Option-7 (Macintosh).

All the functions in the Color Palettes window involve changing the currently active color palette. You choose
the active palette by selecting a palette from the pop-up.

If you add new palettes to your movie from other graphics applications, those palettes appear in the palette
list and in the Cast window.

The row of buttons on the right side of the Color Palettes window are for reserving, selecting, and
rearranging colors in the current palette. If you attempt to change one of the nine built-in palettes, Director
creates a copy of the palette for you to modify.

Note: Choosing a new palette in the Color Palettes window does not change the palette for the movie, or
any frame in the movie. Use Movie Properties on the Modify menu to choose the movie color palette, or use
Frame Palette on the Modify menu to change the color palette at a particular frame.

When you change a palette, all the cast members using the palette change as well, so make sure you
always keep a copy of the original palette. To change a palette already used by cast members in the movie,
use the following procedure.

{button See also,AL(`UsersGuide_206_help')}

To edit a palette already used in a movie:

1. Duplicate and rename the palette.

2. Edit the palette.
Use any of the methods discussed later in this section.

3. Select all the cast members that use the old version of the palette.
Use Find to locate all cast members using a particular palette.

4. Choose Modify > Transform Bitmap and remap all the cast members to the new palette.
Be sure to remap and not dither.

{button See also,AL(`UsersGuide_207_help')}

Selecting and reserving colors in the Color Palettes window
When making fine adjustments to the colors in cast members, you often need to select colors that appear in
images. You also need to select colors in order to reserve them. Reserve colors you intend to use for cycling
to prevent them from being used by non-cycling cast members. Reserved colors are not used in transform
bitmap and import remapping of cast members to new palettes. They are also not used for gradients.
Reserved colors appear striped in the color palette.

To Do this
Select colors 1. Click them in the Color Palettes window. If the selection arrow is not

active, click the selection arrow tool at the bottom of the window.

2. Drag across colors or Shift-click to select a range.

Control-click (Windows) or Command-click (Macintosh) to select multiple
discontinuous colors.

Match the color of any pixel
on the Stage with the same
color in the palette

1. Click the Eyedropper tool.

2. Select any color in the Color Palettes window.

3. Without releasing the mouse button, drag to any point on the Stage.

The selection in the Color Palettes window and the foreground color in the
Tools palette change to the color at the pointer location.

Reserve selected colors in
the palette

1. Select the colors you want to reserve.

2. Click the Reserve Selected Colors button.

Select all reserved colors in
the palette

Click the Select Reserved Colors button.

To make all the reserved colors available again, click the Select Reserved
Colors button and choose All Colors Available in the dialog box.

Select colors in the palette
used in the current cast
member

1. Select a cast member or open it in the Paint window.

2. Click the Select Used button.

Select all colors not
currently selected

Click the Invert Selection button.

{button See also,AL(`UsersGuide_208_help')}

Rearranging and blending colors in the Color Palettes window

To Do this
Move colors within the
palette

Click the Hand tool and drag the selected colors to a new location.

Sort the selected colors in
the palette by hue,
saturation, or brightness

1. Select a range of colors and then click the Sort button.

2. When the Sort dialog box appears, choose Hue, Saturation, or Brightness.

It's best to sort colors in a palette before using the palette in a movie. Cast
members that use the palette will also change color as the colors are sorted.
You can fix this by remapping to the sorted palette with Transform Bitmap.

Reverse the order of the
selected colors

Select the colors you want to reverse and then click the Reverse Colors
button.

The colors themselves remain unchanged.

Cycle selected colors one
position to the left

Select a range of colors and click the Cycle button.

The leftmost color wraps around and appears at the last right square. Each
time you click the Cycle button, the selected colors shift by one more square.
It is the same as the movement of colors you see while colors cycle with the
Cycle ink.

Create a blend of the first
and last colors of a
selected range

Select a range of colors in the Palette window and then click the Blend
button.

{button See also,AL(`UsersGuide_209_help')}

Setting colors
You can define a new color in a color palette by selecting a color you want to change and then using either
the controls at the bottom of the Color Palettes window, or the system color controls (the Windows Color
dialog box or the Macintosh Color Picker).

To edit selected colors in the Color Palettes window using the HSB system, click the arrows at the bottom of
the window to increase or decrease the value of hue, saturation, or brightness.

· Hue is the color created by mixing primary colors.

· Saturation is a measure of how much white is mixed in with the color. A fully saturated color is vivid; a less
saturated color is a washed out pastel or even a shade of gray.

· Brightness controls how much black is mixed in with a color. Colors that are very bright have little or no
black. As the brightness is reduced, the color gets darker as though more black were added. If brightness is
reduced to 0, then no matter what the values are for Hue or Saturation, the color will be black.

For instruction on using the Windows Color dialog box, or the Macintosh Color Picker, see your system
documentation.

{button See also,AL(`UsersGuide_210_help')}

Printing movies
You can print a movie while in authoring mode in a variety of ways. You can print an image of the Stage, the
Score, the cast member number and contents of text cast members in the Cast window, all scripts or a range
of scripts (movie, cast, score, and sprite scripts), the comments in the Markers window, the Cast window
artwork, or all of the Cast window.

Note: Using Cast Text on the Print pop-up, you can print a table of text cast members at the resolution of
your printer.

If you're printing the Stage, click the Options button to specify storyboard printing format.

{button See also,AL(`UsersGuide_211_help')}

Preparing a movie for distribution
Distribute movies either as projectors, Shockwave movies (DCRs), or protected movies (DXRs). You should
not distribute source movies (DIRs) unless you want your users to be able to change the movie in the
Director authoring environment.

· Use projectors for any movie distributed on disk. A projector is a self-running version of a movie. Projectors
contain all the software required to play a Director movie, but none of the software to edit the movie. You can
package several movies, external casts, Xtras, and linked media in a single projector. You can also
compress the movie data within a projector using Shockwave compression. Projectors appear in the system
desktop as applications.

· Use Shockwave movies (DCRs) to distribute on the internet for playback in a web browser. You can also use
them when you want to compress movies distributed on disk that are not contained in a projector. Saving a
movie as a Shockwave movie removes all the information needed to edit the movie and does not include the
software that plays the movie. Therefore, Shockwave movies can only be played in a web browser with the
proper Shockwave player installed, or by a projector.

· Use protected movies (DXRs) when you want to distribute uncompressed movies on disk, but you still want
to prevent users from editing the source file. Protected movies load faster than Shockwave movies from disk
because they do not need to be decompressed. These movies are preferable if disk space isn't limited. Like
Shockwave movies, protected movies do not include the information needed to edit the movie or the
software that plays the movie. They can only be played by a projector.

You cannot edit a projector, Shockwave movie, or protected movie in Director. You must edit the source file
and then create a new movie in one of the distribution formats. Always save your source files.

{button See also,AL(`UsersGuide_213_help')}

Distributing movies on disk
Whenever a movie plays from disk, it accesses all external linked files the same way that it did in the
authoring environment. All linked media-bitmaps, sounds, digital videos, and so on-must be in the same
relative location as they were when the movie was created. The same is true for Xtras. To make sure you
don't forget any linked media or Xtras when you distribute a movie on disk, place linked files in the same
folder as the projector, or in a folder inside the Projector folder.

{button See also,AL(`UsersGuide_214_help')}

Distributing movies on the internet
When distributing a movie on the internet for playback in a web browser, all linked media must be in the
specified URLs when the movie plays. An HTML document must include the correct tags to run the movie.

{button See also,AL(`UsersGuide_215_help')}

Distributing movies on a local network
If you plan to distribute a movie on a local area network (LAN) such as a Novell network, all files must be set
to read-only, and users must have read/write access to their system folders. Otherwise, the requirements are
the same as for normal disk-based distribution.

{button See also,AL(`UsersGuide_216_help')}

Organizing movie files
In most cases, you should divide a larger production into a series of smaller movies. You can combine as
many movies as you want in a projector, but larger files take longer to save and are cumbersome to work
with. Also, movies are easier to change if they are organized in discrete sections.

The best way to organize a larger disk-based production is to create a small projector file that launches the
movie and then branches to Shockwave or protected movies. This saves you the trouble of recreating the
projector every time you change one part of a movie.
This approach also makes sense for movies on the internet, but for different reasons. If the first movie is
small, users don't have to wait as long for something to happen. Branching to a series of smaller movies
also avoids downloading time for parts of the movie that may not be used.

The size of your movie may be less of an issue if you properly use progressive play. See the Setting
streaming playback options help topic.

{button See also,AL(`UsersGuide_217_help')}

Creating projectors
To create projectors for any version of Windows, you must use the Windows version of Director; likewise you
can create Macintosh projectors only with the Macintosh version of Director.

Certain Xtras must be included with a projector for it to be able to retrieve media from the internet during
playback. You can include these Xtras automatically with the Include Network Xtras in the Projector Options
dialog box. Shockwave movies do not require these Xtras.

Note: You can only include Director 6 movies in projectors. Use Update Movies to convert older movies to
the latest version of Director. See the Processing movies with Update Movies help topic.

{button See also,AL(`UsersGuide_218_help')}

To create a projector:

1. Choose Create Projector from the File menu.
The Create Projector dialog box appears.

2. Double-click movies, external casts, or Xtras to include in the projector.
Director transfers the name of the selected items to the file list. You don't need to manually select every Xtra
required by the movie. As explained later in this procedure, the Check Movie for Xtras option automatically
adds most required Xtras to the projector.
Click Add All to include all the movies in the open folder.

3. Use the Move Up and Move Down buttons to arrange the movies in the proper order.
Be sure to place the starting movie at the top of the list. If the Play Every Movie option in the Projector
Options dialog box is on, Movies play in the order they appear on the list. If the option is off, only the first
movie plays. If your movie contains Lingo that switches between movies, the order of the other movies may
not be important.

4. Click Options.
The following projector options are most important. Director retains these settings once you define them, so
you don't have to do this every time.

- Select the type of computer the projector will run on.

Windows
projector options

 Runs on

Windows NT and
95

Windows NT and 95

Windows 3.1 Windows 3.1-also runs on Windows 95 and NT,
but slower than native versions

Macintosh
projector options

 Runs on

Power Macintosh
Native

Power Macintosh only

Standard
Macintosh

Macintosh systems older than the Power
Macintosh-also runs on the Power Macintosh, but
is slower than native versions

All Macintosh
Models

All Macintosh systems at optimal speed, but the
projector file is much larger

- If your movie uses any Xtras, choose Check Movie for Xtras. This option ensures that all Xtras listed
in the Movie Xtras dialog box are included in the projector. See the Managing Xtras for distributed
movies help topic.

- If you want to compress the projector's movie data in the Shockwave format, click Compress.

This makes the projector smaller but increases the load time.

5. Click OK once all projector options are set.

6. Click Create in the Projector dialog box and then enter a name and location for the projector.
To avoid problems with linked media, it's best to create the new projector in its final folder location and not
move it to a different folder after creation.
Director turns the movies, casts, and Xtras you've selected into a single projector.

Use the Update Movies command on the Xtras menu to compress movies that are part of a production but
are not in a projector. See the Processing movies with Update Movies help topic.

{button See also,AL(`UsersGuide_219a_help')}

Creating Shockwave movies
Save your work as a Shockwave movie to prepare it for playback in a web browser with Shockwave, or to
make disk-based movies smaller. Shockwave movies also prevent users from editing the movie if they own
Director.

Unlike projectors, a Shockwave movie does not have to be made for a particular platform. Any Shockwave
movie plays on all compatible platforms, provided users have installed the correct version of Shockwave in
their web browser.

If the Shockwave movie you're creating will be distributed on the internet and requires any Xtras, make sure
the user can download the Xtras from your web site into the Support folder of their browser. See the
Managing Xtras for distributed movies help topic.

Save as Shockwave Movie does not work like other Save As commands. The new Shockwave movie file is
created on disk, but you continue to work on the original DIR file. You cannot edit a Shockwave movie file.

Tip: You can play a movie in a browser without creating an HTML page, or even saving the movie as a
Shockwave movie. Just drag the movie from the system desktop to a web browser window.

{button See also,AL(`UsersGuide_219b_help')}

To create a Shockwave movie:

1. Open the movie you want to save.

2. Choose File > Save as Shockwave Movie.

3. Enter a name and location for the new file.
To avoid problems with linked media, you should always save new Shockwave movies in the same folder as
the original DIR file.
Director automatically adds the DCR extension. Shockwave only plays movies with the DCR or DIR
extensions.

Unlike projectors, a Shockwave movie does not have to be made for a particular platform. Any Shockwave
movie plays on all compatible platforms, provided users have installed the correct version of Shockwave in
their web browser.

Tip: Use Update Movies to convert several movies at once to the Shockwave format. See the
Processing movies with Update Movies help topic.

{button See also,AL(`UsersGuide_220_help')}

Managing Xtras for distributed movies
If certain types of Xtras are used in a movie, the Xtras must be present when the movie runs. These include:

· Xtras that create and manage cast members (Button Editor, QuickDraw 3D, QuickTime VR, and so on)

· Shockwave Audio Xtras

· Transition Xtras

· Importing Xtras, if the movie uses any type of linked external cast members

· Network Xtras required for a projector to access the internet

· Lingo Xtras

Determining which Xtras are required
Choose Modify > Movie > Xtras to see which Xtras are required by your movie. The Movie Xtras dialog box
shows any Xtras that control or import cast members referenced in the Score.

If you use Xtras that are referenced only in Lingo, they do not show up in Movie Xtras. Use the Add button in
the Movie Xtras dialog box to add these Xtras to the list.

Any Xtra listed in Movie Xtras will be automatically included with a projector, as long as the Check Movie for
Xtras option in the Projector Options is turned on.

Including importing Xtras
Director uses different Xtras to import media of each type. The Xtras that import the media types for all
linked cast members must be present when a movie runs. The Shockwave players for Netscape Navigator
and Microsoft Internet Explorer include the Xtras required to import the following media:

· GIF and JPEG graphics

· AIFF (compressed and uncompressed), Shockwave Audio, and WAV (uncompressed only) sounds.

Shockwave movies playing in web browsers can import these media types without first downloading
importing Xtras. To import other types of media, the required Xtras must first be downloaded and installed.

For projectors, the Xtra for each type of file being imported must be included with the projector. In most
cases, Director handles this automatically when you turn on Check Movie For Xtras option in the Projector
Options dialog box.

{button See also,AL(`UsersGuide_221_help')}

Processing movies with Update Movies
Use the Update Movies command on the Xtras menu to:

· Update movies and casts from Director 4 and later to the latest file format.

· Compress movies for faster downloading from the internet.

· Remove redundant and fragmented data in movie and cast files. Save and Compact, and Save As do this as
well.

· Prevent users from opening movie and cast files.

· Batch-process movie and cast files in large projects.

When beginning a project, use Update Movies to convert Director 4.x and 5.x files to the latest file format.
(See the Converting existing movies help topic for details on how movies are converted.)

At the end of a project, use this command to compress all your movies and casts at once.

Update Movies copies the old files to a new folder and creates the new updated or compress files in the
original location. This avoids problems with linked media.

Note: A Shockwave movie can only be played by a web browser with the Shockwave player installed,
from a projector, or as a movie in a window. To play a protected movie from a projector, you must use Lingo to go
to or play the protected movie. Protected casts can only be opened by protected movies.

{button See also,AL(`UsersGuide_225_help')}

To update and compress movies and casts:

1. Choose Update Movies from the Xtras menu.
The Update Movies dialog box appears.

2. Choose one of the options for Action.
- Update converts movies from Director 4 or later to the latest file format. As it updates movies, Director

consolidates and removes fragmented data, the same as when you use Save As. (To update movies
from older versions, you must first convert them to the Director 4 file format.)

- Protect removes all the data required to edit the movie, but does not compress it further.

- Convert to Shockwave Movie(s) rewrites movies in the compressed Shockwave file format and adds the
DCR extension. This options also prevents users from opening the movie or cast and making changes.
Once a movie is compressed, there is no way to "decompress" it, so be sure to keep the original movie.

3. Choose one of the options for Original Files.
- Back Up Into Folder specifies that the original files should be placed in a selected folder. Click Browse

to select the folder for the original files. To avoid overwriting old backups, you should choose a new
folder each time you run Update Movies.

- Delete specifies that the original files should be overwritten by the newly updated files. Be very careful
using this option. Once a file is converted, you cannot open it again in Director.

4. Click OK.
A dialog box appears from which you select files to change:

5. Select the movies and casts you want to change and click Add.
Click Add All to add all the movies in the current folder. The items you select appear in the file list at the
bottom of the dialog box. You can update movies in different folders at the same time.
Choose Add All Includes Folders before you click the Add All button to make it include any movies or casts
inside folders appearing in the upper list. This option is useful for updating large projects with several levels
of folders.

6. Click Update.
Director saves new versions of the selected movies with the same names and locations as the original
movies. This ensures that all links and references to other files continue to work properly. Director copies the
original movies to the folder you specified, recreating their original folder structure. If you didn't specify a
folder for the original movies, Director prompts you to select one.
Director adds a DCR extension to Shockwave movies, and CCT to external casts in the Shockwave format.
Protected moves have the DXR extension and protected casts have the CXT extension.

{button See also,AL(`UsersGuide_226_help')}

Converting existing movies
Director 6 can convert movies from Director 4 and 5. You can update movies to Director 6 by simply opening
and saving them, but Update Movies is faster for converting large projects. It also is more effective for
preserving links to external media.

Note: The Director 6 Shockwave plug-in for Netscape and the controller for Internet Explorer can play
Shockwave movies created with Director 4 and 5.

Director 5 movies
When you open a Director 5 movie in Director 6, or convert it to the new format with Update Movies, Director
converts the old Score data to the new Score. It combines adjacent frames in the old Score containing the
same cast members into single sprites in the new Score. The movie will run exactly as it did in Director 5,
but you may want to split or join sprites to make working in the Score more convenient. For more information
about using old movies in Director 6, see the Using Director 5 Score options help topic.

Converting Director 4 movies
You must use Update Movies to convert any Director 4 movies with a shared cast (Shared.dir) to Director 6.
To update movies from older versions (pre-4.0), you must first convert them to the Director 4 file format.

Using Update Movies makes the following changes to movie files from Director 4:

· Converts the movie into a Director 6.0 format file.

· Converts a shared cast (Shared.dir) to a linked external cast named Shared.cst. It renumbers the cast
members so they begin at 1 and updates all Score references to the new numbers. Make sure you select
Shared.dir as one of the files to be updated while using Update Movies.

· Places transitions in the cast.

Note: Lingo from pre-4.0 versions that was allowed in Director 4 may not work in Director 6. If error
messages inform you of script errors during Update Movies, this may be the problem. Update Movies converts
movies with old Lingo to the new file format, but they will probably not run. To use these movies in Director 6, you
have to find and change the old Lingo. For information on outdated Lingo, see "Using outdated Lingo" in the
introduction to Learning Lingo.

{button See also,AL(`UsersGuide_227_help')}

Including required system elements
Depending on the type of project you are creating, you may have requirements for special system utilities
that are not part of the project but must be present on the computer before your project can run correctly.

Fonts
Since text cast members are converted to bitmaps when a movie plays, you don't need to worry about what
fonts are installed on other systems. For more about text cast members, see the Using different types of
text in Director help topic.

If your project's field cast members require non-system fonts, you need to provide the font files and
installation instructions for installing them. Your users will have to run an installer (either an installer that you
create, or one that was provided by the font manufacturer) before they can run your projector.

Any installer you use will retrieve the fonts from your CD-ROM or floppy disks and install them in the
appropriate location on the user's system. There is no requirement to store any of these font-related
materials in the same folder as the projector.

For information on managing fonts for Shockwave movies, see the Mapping fonts on the internet help
topic.

Note: If you distribute font software with your movie, you must honor all licensing agreements specified
by the font manufacturer. You can also create your own fonts with Fontographer from Macromedia.

Video for Windows and QuickTime
If your project uses Video for Windows or QuickTime for Windows or Macintosh, you should inform the users
to whom you distribute it that they need to install the current version of Video for Windows or QuickTime
before they can run your project.

You may wish to simply leave the task of acquiring Video for Windows and QuickTime to users. However,
you may decide to provide users with some type of installer.

To distribute Video for Windows Runtime, provide the entire folder that you received when you installed
Director for Windows.

{button See also,AL(`UsersGuide_228_help')}

Video for Windows and QuickTime
If your project uses Video for Windows or QuickTime for Windows or Macintosh, you should inform the users
to whom you distribute it that they need to install the current version of Video for Windows or QuickTime
before they can run your project.

You may wish to simply leave the task of acquiring Video for Windows and QuickTime to users. However,
you may decide to provide users with some type of installer.

To distribute Video for Windows Runtime, provide the entire folder that you received when you installed
Director for Windows.

Naming files and folders
Macintosh and Windows have different file name and folder name conventions. Windows 95 and NT support
and the Macintosh operating system support 32 character file names. For Windows 3.1, the file or folder
name must be eight or fewer characters followed by an optional three-character extension (referred to as 8.3
format). Windows 95, NT, and 3.1 file names cannot include any of the following characters:

asterisk (*) semicolon (;) (Windows 3.1 only)
less than (<) double quotation mark (")
backslash (\) slash (/)
period (.) (Windows 3.1 only)* equal sign (=) (Windows 3.1 only)
brackets ([]) (Windows 3.1 only) space () (Windows 3.1 only)
plus sign (+) (Windows 3.1 only) greater than (>)
colon (:) vertical bar (|)
question mark (?) at sign (@)
comma (,) (Windows 3.1 only) characters with ASCII values less than 32
* Windows 3.1 interprets periods differently than the Macintosh does. In Windows, a period indicates
the beginning of the file extension. This causes difficulty when names are converted for Windows.

If you are likely to distribute movies to both Windows 3.1 and Windows 95 users, it is best to adopt the
Windows 3.1 naming conventions.

Tip: The best way to ensure that Director for Windows locates movies and external resources is to
assign Macintosh files and folders names that are acceptable to Windows. That way, the file names and
pathnames are consistent and usable when your movie plays back on Windows systems. Director for Windows
does not convert file names.

{button See also,AL(`UsersGuide_230_help')}

Choosing file names and folder names for Windows 3.1
Follow these rules when assigning names to files and folders:

· Use eight or fewer characters, followed by an optional period and a three-character extension, for example,
Mymovie.dir.

· Don't use a period within the Macintosh file name or folder name.

· Don't use any of the characters that are unacceptable in Windows 3.1 file or folder names. Unacceptable
characters are listed in the previous section.

For example, these Macintosh file names can be used on Windows 3.1: Mymovie, Movie1, Movie2.

{button See also,AL(`UsersGuide_231a_help')}

Assigning pathnames
Director uses pathnames to locate files for external resources-such as linked cast members-and in Lingo
statements that refer to external files.

On all systems, there is a maximum number of folder levels. Avoid using folders more than eight levels from
the root. Also, hundreds of file in a single folder can slow down searches.

Pathname conventions are different in Windows and on the Macintosh:

· Windows 3.1 folder names must have eight or fewer characters and not use any of the characters that are
unacceptable in Windows.

· Windows pathnames use back slashes (\) to separate folder names; Macintosh pathnames use colons (:).
For example, the Macintosh pathname "Hard disk:Director:Projects:Movie 1:Sounds" is equivalent to the
Windows pathname "C:\Director\Projects\Movie1\Sounds".

· Duplicate the folder structure between the movie and external resources on Windows systems. Folders do
not have to be on drive C, but they should be on the same drive.

Also, the folder structure does not need to duplicate the entire absolute pathname of the original system, but
the structure must duplicate the relation between the files.

{button See also,AL(`UsersGuide_231b_help')}

Exporting digital video
You can export all or part of a movie as a digital video and then import the video into a Director movie. The
entire animation becomes a single cast member, which you can then move around the Stage as the movie
plays. Exporting animation as a video captures not just the movement of the sprites on the Stage, but any
tempos, palette effects, or transitions you've set. Any interactivity in the movie is lost when exported as
digital video.

Export the Video for Windows (AVI) format using the Windows version of Director, or the QuickTime format
on the Macintosh. Director cannot export to QuickTime for Windows.

Note: When you export to AVI, all sounds are lost. There is no way to preserve sounds in Director movies
when exporting to AVI.

When Director exports animation as a video, it plays the animation, takes snapshots of the Stage moment by
moment, and turns each snapshot into a frame in the video.

When Director exports animation as a video, it always uses the entire Stage. If you want to export a digital
video that is smaller than your current Stage size, move the animation you want to export to the upper left
corner of the Stage and reduce the size of the Stage to the size of the animation, as explained in the
following procedure. If you don't need to change the Stage size, skip the procedure.

{button See also,AL(`UsersGuide_232_help')}

To prepare the animation for export:

1. Select the animation in the Score, and then choose Modify > Sprite > Properties .
When you have more than one sprite selected, the size and location displayed in the Sprite Properties dialog
box apply to a selection that surrounds all the frames and channels of the animation.

2. Write down the width and height displayed in the dialog box.
The width and height tell you how big the Stage needs to be to accommodate the animation.

3. Change the distance from both the top and left edges of the Stage to zero, and then click OK.
Director moves the animation to the upper left corner of the Stage.

4. Choose Modify > Movie > Properties.
The size of the Stage needs to be as close as possible to the size of the area the animation occupies. On
Macintosh systems, the width of the Stage must be divisible by 16.

- If the area the animation occupies is smaller than 160 pixels wide by 120 pixels high, choose
QuickTime 160 x 120 from the Stage Size pop-up.

- If the area the animation occupies is larger than 160 pixels wide by 120 pixels high, round the width
up to the nearest number divisible by 16 and type the number in the Width field.

Note: Turn off any screen savers before you export a movie as a digital video. Creating a digital video can
take a long time, and if your screen saver comes on, Director will save it as part of the video.

{button See also,AL(`UsersGuide_233_help')}

To turn the animation into digital video:

1. Choose File > Export.
The Export dialog box appears.

2. Select the range of frames you want from the Export options at the top of the dialog box.

3. From the Format pop-up in the Destination section at the bottom of the dialog box, choose Video for
Windows (AVI) or QuickTime Movie.

4. Click the Options button.
The Video for Windows or QuickTime Export Options dialog box appears.

5. Select the options you want to use and then click OK.
The Export dialog box reappears when you click OK.

6. Click Export.
A dialog box appears, prompting you to save the movie.

7. Name the file and then click Save.
Note: If you turn an animated sequence that includes a transition into a video, but the transition doesn't
appear when you play the video, try increasing the Duration and Smoothness settings in the Frame Properties:
Transition dialog box.

{button See also,AL(`UsersGuide_234_help')}

Shockwave Director basics
Shockwave for Director downloads and plays Director movies in Microsoft Internet Explorer and Netscape
Navigator. Millions of web users have downloaded Shockwave from the Macromedia web site; others have
received it with their operating system or web browser.

When Director creates a Shockwave movie, it compresses the movie's data to the smallest possible size for
downloading. When a user views a web page that includes a Shockwave movie, the data from the movie
begins downloading. Shockwave decompresses the data and plays the movie in the user's web browser. If
the movie was created for streaming, it begins playing as soon as the data for the first frame has arrived.

For a demonstration and tutorial on Streaming Shockwave movies, see the Streaming Shockwave movie.

For a conceptual overview of developing content for Streaming Shockwave Movies, see Chapter 9,
"Creating Shockwave Movies for the Web," in Using Director.

Note Director uses different Xtras to import media of each type. The Xtras that import the media types for
all linked cast members must be present when a movie runs. The Shockwave players for Netscape Navigator
and Microsoft Internet Explorer include the Xtras required to import GIF and JPEG graphics; AIFF (compressed
and uncompressed), Shockwave Audio, and WAV (uncompressed only) sounds. Shockwave movies playing in
web browsers can import these media types without downloading Xtras. To import other types of media, the
required Xtras must first be downloaded and installed.

For projectors, the Xtra for each type of file being imported must be included with the projector. In most cases,
Director handles this automatically. For more information, see the Managing Xtras for distributed movies help
topic

{button See also,AL(`UsersGuide_246b_help')}

To set streaming options:

1. Choose Modify > Movie > Playback to define streaming options.

2. Choose either Wait For All Media, Use Media as Available, or Show Placeholders.
- Wait For All Media makes the movie download completely before playing in the browser.

- Use Media as Available turns on streaming playback. Unavailable cast members are ignored. Once
they've downloaded, cast members appear in the movie and function as usual. This is the standard
option to choose for distributing streaming movies.

- Show Placeholders turns on streaming but makes the movie display placeholders for media that has not
downloaded yet. This option can be very useful for testing.

3. Set the Pre-Fetch box to the number of frames you want to download before the movie starts
playing.
It's often a good idea to enter about 5 frames to make sure all the cast members for the first few frames of
the movie are downloaded before the movie starts. This depends on how the movie is made.

With streaming playback, a movie begin playing as soon as a specified number of frames reaches the user's
system. Without streaming playback, a movie downloads completely and then begin playing.

For a demonstration and tutorial on Streaming Shockwave movies, see the Streaming Shockwave movie.

Note If you want to test a movie streaming from a server before saving the movie as a Shockwave
movie, first use File > Save and Compact to make sure the data in the movie is properly ordered and redundant
data is removed.

{button See also,AL(`UsersGuide_251_help')}

Managing color palettes for browsers
 When playing in a web browser, movies don't take over the color palette of a user's system the way stand-
alone projectors do. Shockwave remaps the colors in Director movies to the most similar colors in the palette
active in the user's system.

To get the best results in all types of browsers and systems, map all the images in your movie to the
Netscape palette included with Director. Choose Xtras > Palettes to open the cast of included palettes.

Do not use any custom palettes in a movie or attempt to manipulate the user's palette in any way while the
movie plays.

 If you are not familiar with basic color palette concepts, see the Understanding color palettes help topic.

{button See also,AL(`UsersGuide_253_help')}

Total number of network operations
Most browsers support a limited number of concurrent network operations. A network operation is a distinct
item that is being retrieved or sent over the internet. For example, downloading a movie counts as one
operation, retrieving a linked media file counts as a second, and using getNetText would be a third. Try to
keep your movies from performing more than four network operations at once.

{button See also,AL(`UsersGuide_254_help')}

Mapping fonts on the internet
If you use text cast members, font mapping between different platforms will not be an issue when distributing
Shockwave movies on the internet. Shockwave treats text cast members exactly like bitmaps.

For field cast members, use standard system fonts that map well between platforms. If you use system
fonts, you don't need to include a Fontmap.txt file. Shockwave maps the fonts between platforms using the
default settings. Be sure to test the movie on all platforms to make sure this causes no problems.

If you use field cast members with non-system fonts, you must distribute the font itself and a customized
Fontmap.txt file with the Shockwave movie. A typical Fontmap.txt is about 3K. For a description of font
mapping, see the Mapping fonts between platforms help topic.

Linking to the Macromedia web site
To give potential viewers of your movie a quick way to download Shockwave, provide a link on your site to
the Shockwave Central page in the Macromedia web site. The URL is:

http://www.macromedia.com/shockwave/index.html

You can also use the Shockwave logo graphic as part of your link.

Features disabled in browsers
The following features do not work for movies playing in a web browser.

· Movie-in-a-window

· Custom menus

· Looping playback specified with the Control Panel (use Lingo instead)

There are some Lingo commands that don't work in browsers. See "Shockwave, the internet, and Lingo" in
Learning Lingo.

{button See also,AL(`UsersGuide_258_help')}

Downloading considerations
Multimedia delivered over the Internet is limited in size, primarily because the majority of users dial in at
relatively slow speeds-14,400 or 28,800 bits per second. At 14,400 bps, a user receives only about 1400
data bytes per second. At 28,800 bps the rate increases to approximately 2800 bytes per second. At these
speeds, it takes 30 seconds to one minute to download a 60K file.

Using streaming playback can help you avoid some of the problems caused by using large files, but it's
important to be aware of downloading times.

If there is heavy traffic at the internet access point, or on the internet host, or if there's network congestion,
the rate drops even lower-to as low as a few hundred bytes per second. For now, it is a good idea to assume
your movies will download at a rate of about 1K per second.

The chart that follows shows theoretical throughput times for modems of different speeds. The speeds
14,400 and 28,800 bps are common for modems, 64 kbps and 128 kbps are the throughput of an ISDN line,
1.5 mbps is the throughput of a standard high-speed Internet connection (T1).

Download times at common modem speeds

Content 14.4 28.8 64 1.5
Small graphics and
animation, 30K

30 secs 10 secs 6 secs 1 sec

Small complete movie,
100-200K

100-200 secs. 50-100 secs 20-40 secs 1 sec

500K movie 500 secs 120-240 secs 90 secs 3 secs

1MB movie NA NA 180 secs 6 secs

{button See also,AL(`UsersGuide_260_help')}

Download times at common modem speeds

Content 14.4 28.8 64 1.5
Small graphics and
animation, 30K

30 secs 10 secs 6 secs 1 sec

Small complete movie,
100-200K

100-200 secs. 50-100 secs 20-40 secs 1 sec

500K movie 500 secs 120-240 secs 90 secs 3 secs

1MB movie NA NA 180 secs 6 secs

Shockwave browser compatibility
Shockwave works with Netscape Navigator as a plug-in, and with Microsoft Internet Explorer for Windows 95
and NT as an ActiveX control.

Shockwave can play Director movies in the following browsers:

Browser Version Platform
Netscape Navigator 2.0 or later Windows and Macintosh

Microsoft Internet
Explorer

3.0 or later Windows and Macintosh

Shockwave also works with browsers that are compatible with the plug-in architecture of Netscape Navigator
3.0, including America Online.

The Director 6 Shockwave plug-in for Netscape and the ActiveX control for Internet Explorer can play
Shockwave movies created with Director 4 and 5.

Note: When it first encounters an HTML page that references Shockwave, Internet Explorer for Windows
asks the user for permission to download the Shockwave Active-X control. If the user approves, it downloads and
installs the control.

{button See also,AL(`UsersGuide_261_help')}

Creating an HTML page to run a Shockwave movie
 To make a movie play from a page on the web, you need to add the necessary tags to an HTML document.

To run a Director movie from an HTML document, use the EMBED or OBJECT tags. EMBED is the original
tag defined by Netscape Navigator. OBJECT is the newer Microsoft Internet Explorer tag. All Shockwave
compatible browsers support EMBED; newer browsers support the added functionality of OBJECT. To make
sure a movie plays on as many compatible browsers as possible, it's best to use both tags.

The HTML statement that follows runs a movie from both Internet Explorer and Netscape Navigator. It is
intended for use with Netscape Navigator versions 2.0 or later, and Internet Explorer version 3.0 or later.
Because HTML is under constant revision, check the Director Developers Center web site for the latest
information if you have any trouble.

For most Shockwave applications, you can enter the statement as shown and simply substitute your own
values for the location and size of the movie. For more sophisticated applications, you may need to use
additional parameters. For more information about OBJECT and EMBED parameters, see Parameters for
OBJECT and EMBED tags help topic.

<OBJECT CLASSID="clsid:166B1BCA-3F9C-11CF-8075-444553540000"
CODEBASE="http://active.macromedia.com/director/cabs/
sw.cab#version=6,0,0,0"
WIDTH="512"
HEIGHT="480"
NAME="MovieName">
<PARAM NAME="SRC" VALUE="MYMOVIE.DCR">
<EMBED SRC="MYMOVIE.DCR" HEIGHT=480 WIDTH=512 NAME="MovieName">
</OBJECT>

For WIDTH and HEIGHT, enter the Stage size of your movie in pixels.

For MYMOVIE.DCR, enter the URL of your movie.

For NAME, enter a name to identify the movie for browser scripting (optional).

Tip You can play a movie in a browser without creating an HTML page, or even saving the movie as a
Shockwave movie. Just drag the movie from the system desktop to a web browser window.

{button See also,AL(`UsersGuide_262_help')}

Parameters for OBJECT and EMBED tags
Both OBJECT and EMBED have a number of definable parameters. This table lists the syntax for using the
parameter with both the OBJECT and EMBED tags.

Parameter Definition OBJECT syntax EMBED syntax
CLASSID The CLASSID parameter specifies

the universal class identifier for the
Shockwave ActiveX Control. Enter
it exactly as shown in the next
column.

CLASSID="clsid:166B1BCA-3F9C-
11CF-8075-444553540000"

NA

CODEBASE The CODEBASE parameter of the
OBJECT tag specifies where the
Director Shockwave ActiveX
Control can be obtained if the user
doesn't already have it installed in
the browser, or if the user has a
previous version installed. Enter it
exactly as shown in the next
column, except you may need to
change the version number for
sw.cab#version=.

CODEBASE="http://
active.macromedia.com/director/
cabs/sw.cab#version=6,0,0,0"

NA

WIDTH and
HEIGHT

Use the WIDTH=width and
HEIGHT=height parameters to
specify the width and height of the
image in pixels. The browser crops
the image to the size you specify. In
most cases, enter the exact Stage
size of the movie.

WIDTH="356" HEIGHT="128" WIDTH="356"
HEIGHT="128"

ID The ID parameter specifies a
document-wide identifier. This
identifier can be used for naming
positions within documents to use
as destinations of hypertext links. It
can also be used by the browser or
objects in the document to find and
communicate with other objects
embedded in the document.
Replace document identifier with
an identifier (SGML NAME token)
that is unique to the HTML
document.

ID="document identifier" NA

NAME The NAME parameter also
provides a way for browsers that
support FORMs to determine
whether an object within a FORM
block should participate in the
"submit" process. The NAME
parameter can be used by the
browser or objects in the document
to find and communicate with the

NAME="MovieName" NAME="MovieName"

movie. If NAME is specified, the
browser should include the value of
the NAME attribute and data
obtained from the object along with
the information derived from other
form fields.

SRC Use the SRC parameter to specify
the URL of the movie. The file's
extension should be DCR. The file
name is the name of your movie.
The path is the path to the movie.

<PARAM NAME="SRC"
VALUE="movie url">

SRC="movie url"

PLUGINSPAGE If a Netscape Navigator user does
not have Shockwave installed, the
PLUGINSPAGE="url" parameter
tells the browser to open a
specified URL. Enter the parameter
as shown at right to link to the right
page in Macromedia's web site.

If the PLUGINSPAGE parameter is
not used, Netscape refers users to
the page on its site that lists current
plug-ins.

NA PLUGINSPAGE="http://
www.macromedia.com/
shockwave"

PALETTE PALETTE determines how the
movie's palette affects the user's
system when Shockwave plays the
movie.

PALETTE=background prevents
the palette of the Director movie
from loading and uses the system
palette instead. This the correct
setting for most movies. If this
parameter is undefined,
PALETTE=background is the
default.

When PALETTE=foreground, the
palette of the movie takes over the
user's system. This affects how
other images and movies appear
on the page and should not be
used by those unfamiliar with these
issues.

PALETTE=background is the
default when this attribute is not
specified in the tag.

Internet Explorer does not support
PALETTE=foreground.

NA PALETTE=background

PALETTE=foreground

BGCOLOR Defines the color of the movie
rectangle before the movie itself
appears. Use standard six
character HTML RGB color
descriptions to specify the color.

BGCOLOR=#FFFF00 BGCOLOR=#FFFF00

{button See also,AL(`UsersGuide_263_help')}

Parameters accessible from Lingo
There are several optional parameters for passing information from HTML to Lingo inside a movie. They are
useful for a wide variety of functions in a movie. For an explanation of the Lingo that uses these parameters,
see "External Parameter Access from Lingo" in Learning Lingo.

The parameters listed here work for both Navigator and Internet Explorer. Navigator allows you to name your
own parameters, but to make sure a parameter is recognized on both browsers, use only these parameters.

Note: The maximum length of the strings passed to these parameters is specific to each browser. The
parameter names have been prefixed with sw to avoid conflict with future HTML standards that may define
additional tags such as URL or TEXT. Netscape Navigator 2.0 and later versions support user-defined parameter
names on the EMBED tag. In future versions, the Shockwave ActiveX controller for Internet Explorer might
support user-defined parameter names for the OBJECT tag. Currently, it supports only the parameters listed
here.

Parameter Suggested use OBJECT syntax EMBED syntax
swURL Use this parameter to pass a

URL to Lingo for use in a net
Lingo command, such as
gotoNetPage to include a
dynamic linking movie, or an
audio URL to alter the
background music.

PARAM NAME="swURL"
VALUE="parm value"

swURL="VALUE"

swText Use HTML-specified variable
text in the movie. Examples of
use include creating text
banners, showing a company
name, phone number, name of
a web page, and so on.

PARAM NAME="swText"
VALUE="some text"

swText="VALUE"

swForeColor Use colorCode to modify the
foreground color of an object in
the movie.

PARAM NAME="swForeColor"
VALUE="colorCode"

swForeColor="VALUE"

swBackColor Use colorCode to modify the
background color of an object in
the movie.

PARAM NAME="swBackColor"
VALUE="colorCode"

swBackColor="VALUE"

swFrame Use frameName to target a
specific frame in a URL or to set
a start frame of the movie.

PARAM NAME="swFrame"
VALUE="frameName"

swFrame="VALUE"

swColor Use objectColor to specify the
color of a specific object in a
movie.

PARAM NAME="swColor"
VALUE="objectColor"

swColor="VALUE"

swName Use userName to specify a
name, such as a user name, to
be displayed or used within the
movie.

PARAM NAME="swName
VALUE="userName"

swName="VALUE"

swPassword Use userPassword to specify a
password for some aspect of
the movie.

PARAM NAME="swPassword"
VALUE="userPassword"

swPassword="VALUE"

swBanner Use theBanner to display
specific text as a banner in the
movie.

PARAM NAME="swBanner"
VALUE="theBanner"

swBanner="VALUE"

swSound Use theSound to name a PARAM NAME="swSound" swSound="VALUE"

specific sound to be played.
This allows the HTML author to
determine the sound to be
played. It can also be used as
an indicator to turn on or off the
sound.

VALUE="theSound"

swVolume Use theVolume to specify the
sound volume for part or all of a
movie. An integral value range
between 0 and 10 is
recommended, where 0 means
that the sound is off and 10
means the sound is at maximum
volume.

PARAM NAME="swVolume"
VALUE="theVolume"

swVolume="VALUE"

swPreloadTime Use theTime to specify with
Shockwave Audio how many
seconds of an audio file sound
should be preloaded before
playback starts.

PARAM NAME="swPreloadTime"
VALUE="theTime"

swPreloadTime="VALUE"

swAudio Use theAudio to specify the URL
of an audio file to be played with
a movie.

PARAM NAME="swAudio"
VALUE="theAudio"

swAudio="VALUE"

swList Put a comma-delimited list of
items into theList that an author
can parse and use in Lingo, for
either key/value pairs or
Boolean items, such as
NoSound.

PARAM NAME="swList"
VALUE="theList"

swList="VALUE"

sw1 through sw9 Additional parameters for
authoring use. There are nine
author-definable parameters,
sw1 through sw9.

PARAM NAME="sw1" VALUE="Value" sw1="VALUE"

Multiple movies in an HTML document
HTML documents can include more than one movie per page. The user can also scroll through the HTML
page containing the movie while the movie is playing. Although technically there's no limit to how many
movies you can incorporate into a web page, it's best to include no more than three. When a user leaves a
page containing Shockwave movies, Shockwave frees the memory it was using to play the movies.

Browsers may have difficulty playing two movies with sound at once. Try to use sound in only one movie per
HTML document, or program the movies so that the user activates the sound tracks by clicking the mouse.

{button See also,AL(`UsersGuide_265_help')}

Sound and multiple Shockwave movies
Browsers may have difficulty playing two movies with sound at once. Try to use sound in only one movie per
HTML document, or program the movies so that the user activates the sound tracks by clicking the mouse.

{button See also,AL(`UsersGuide_266_help')}

Using Xtras
Xtras are software components that extend Director's functionality. They provide important capabilities such
as importing filters and connecting to the internet. They also allow third-party developers to add specialized
features to Director.

Xtras are also important for keeping movies small for distribution and downloading. There's no reason a
movie should include code for importing media types it doesn't use, or networking code if it doesn't connect
to the internet.

Although Xtras are written in C, you don't need to be a programmer to use them in a movie. Finished Xtras
already exist; you just need to make them available to Director.

For more information about creating Xtras, see the Xtras Developer's Kit on the Director 6 CD.

{button See also,AL(`UsersGuide_268_help')}

Types of Xtras
· Transition Xtras-Transition Xtras supply transitions in addition to the predefined transitions available in the

Frame Properties: Transition dialog box. After they are used in the Score's transition channel, Xtra
transitions appear in the Cast window.
An Xtra transition cast member can have its own custom properties, Properties dialog box, animated
thumbnail, Cast window icon, and About box. When you use a transition Xtra, you must distribute it with your
movie. In most cases this is handled automatically by turning on the Check Movie for Xtra option in the
Projector Options dialog box.

· Cast member Xtras-Xtras can create a wide range of objects for use as cast members. These include
databases, text managers, special types of graphics, and so on. Xtras that create cast members appear in
the Insert menu. The Button Editor and QuickDraw 3D are examples of cast member Xtras. Cast member
Xtras are also called asset Xtras.
An Xtra cast member can have its own custom properties, Properties dialog box, media editor, animated
thumbnail, Cast window icon, and About box. Open the dialog box that sets the Xtra's properties by opening
the cast member's Properties dialog box and then clicking Options. Open the Xtra's media editor by double-
clicking the cast member's thumbnail in the Cast window.
When you use an Xtra cast member, you must distribute the Xtra that controls it with your movie. In most
cases this is handled automatically by turning on the Check Movie for Xtras option in the Projector Options
dialog box.

· Scripting Xtras-Scripting Xtras add Lingo elements to predefined Lingo. The Shockwave Audio Xtra, for
example, provides special Lingo elements for controlling Shockwave Audio.
Scripting Xtras must be distributed with any movie in which they are used. Since they do not appear in the
Score, you must manually add them to the list of Xtras in the Movie Xtras dialog box. Choose Modify >
Movie > Xtras and then click Add. Once they appear on the list in Movie Xtras, Scripting Xtras are
automatically included with projectors as long as Check Movie for Xtras is turned on in Projector Options.
For more information about using Xtras and Lingo, see the Using Xtras help topic.

· Tool Xtras-Tool Xtras provide useful functions in the authoring environment, but they don't do anything while
a movie runs. They do not have to be distributed with movies.
Bitmap filter Xtras (PhotoShop filters) are a good example of this type of Xtra. They create bitmapped cast
members, but they don't do anything while the movie runs.
Place any external cast in the Xtras folder to make it appear on the Xtras menu within Director. The Behavior
Library is an example of this type of Xtra.
Place any Director movie in the Xtras folder to make it appear on the Xtras menu and open as a movie in a
window.

· Importing Xtras-Importing Xtras provide the code required for importing various types of media into
Director. When you link a movie to an external file, Director uses the importing Xtra to import the media
every time the movie runs. To distribute a movie with external linked media, you must also include the Xtra
required to import that type of media. In most cases this is handled automatically by turning on the Check
Movie for Xtra option in the Projector Options dialog box. For more information, see the Managing Xtras for
distributed movies help topic.
The Shockwave players for Netscape Navigator and Microsoft Internet Explorer include the Xtras required to
import GIF and JPEG graphics; AIFF (compressed and uncompressed), Shockwave Audio, and WAV
(uncompressed only) sounds. Shockwave movies playing in web browsers can import these media types
without downloading Xtras. To import other types of media, the required Xtras must first be downloaded and
installed.
{button See also,AL(`UsersGuide_269_help')}

Installing Xtras
When Director launches, it automatically recognizes Xtras in the Xtras folder in the same folder that contains
the Director application.

To make an Xtra available, place it in this folder before you launch Director. (The Xtra can be in a folder
within the Xtras folder up to five layers deep.) Director also automatically closes these Xtras when the
application quits.

You can also open Scripting Xtras after Director is running by using the openXlib command. The Scripting
Xtra can be in any folder if you open it this way. However, you must use the closeXlib command to close
the Xtra after Director is finished with it.

Xtras can be packaged with projectors. For more information, see Managing Xtras for distributed movies.

If an Xtra that Director uses is missing, an alert appears when the movie opens. For missing Xtra transition
cast members, the movie performs a simple cut transition instead. For other missing Xtra cast members,
Director displays a red X as a placeholder for the missing Xtra.

Copies of the same Xtra can have different file names or have the same file name but reside in different
folders. If duplicate Xtras are available when Director launches, Director displays an alert. Delete any
duplicate Xtras if this occurs.

{button See also,AL(`UsersGuide_270_help')}

Checking which Xtras are available
Lingo can specify how many Scripting Xtras are available and the name of each.

The the number of xtras property indicates how many Scripting Xtras are available in the current
movie.

The the name of xtra property determines the name of a specific Scripting Xtra. The the name of
xtra property can be tested and set.

For example, the following repeat loop displays the name of each Xtra in the message window:

repeat with counter = 1 to (the number of xtras)
put the name of xtra counter

The showXLib command displays each Xtra file and its contents. For example, suppose that a Scripting Xtra
Friends is in the folder c:\Xtra Reserve. If the Xtra file Friends contains the modules Fred and Joe, the
showXlib command displays the following results:

c:\xtra reserve
xtra Fred
xtra Joe

Use mMessageList to display messages with information about the Xtra. For example, the statement
mMessageList(xtra "Fred") displays information about the Xtra Fred.

{button See also,AL(`UsersGuide_271_help')}

