
http://www.sjhdesign.com/

SJHb64 1.6
©copyright 1996, SJHdesign

Help Index
Loading Files for Encoding and Decoding
Menu Commands

Base64 Help

    Mime Posts with Multiple Base64 Encoded Files
    SJHb64 and Long File Names
    Non MIME Compliant Base64 Files
    Base64 and File Extensions
    Other Sources of Information



Menu Commands
File Menu

DECODE FILE - pops up a file open dialog box to open a base64 encoded file with any 
extension. The most common ones are .b64, .txt, .enc, .asc and .dat.

ENCODE FILE - also pops up a file open dialog which you can use to load any type of file 
for base64 encoding.

Options Menu

DIRECTORIES - This menu item has two subitems where you can choose    TWO sets of 
default directories, one set for encoding and one for decoding.

DECODING - here you can specify the decoding input directory(from which    you load 
base64 encoded files for decoding) and the decoding output directory, where your 
decoded files will be written to. If you are using SJHB64 as a decoding extension to a 
newsreader or web browser, it's important that you at least specify a decoding output
directory. It's also helpful    for those who use the Auto-Decode feature(see below) to 
specify default directories.    Even if you don't use    SJHB64 in this manner, most 
people like to use one directory for storing encoded files that we've downloaded and 
another directory for the decoded    output of those files. Specifying these directories 
in SJHB64 always makes    it easy to locate your files. In other words, when you 
specify a default input directory, every time you bring up the File Open dialog to load 
files, that's the directory the dialog will show. When you specify a default output 
directory, the Save As dialog will always show that directory and if you use the auto 
decoding option, your decoded files will automatically be written to that directory.

ENCODING - here you can specify the encoding input directory, where    you load files 
for base64 encoding, and the encoding output directory,    where your base64 
encoded files will be written to. 

NOTE : If no directories are specified by the user the program uses the most recently 
used directory as it's default input directory. For example, if you last loaded a base64 
file from directory c:for decoding, the next time you choose DECODE FILE, the file 
open dialog will come up with c:as it's directory. If no output directory is chosen, the 
programs default behavior is to write decoded files to the same directory as the 
source file. The same goes for encoding - SJHB64's default behavior is to write an 
encoded file to the same directory as it's source file.

AUTO CLOSE - this feature was added those for who use the Windows ASSOCIATE    
command to launch SJHB64 and decode a file by clicking on a base64 file with a default 
extension(like .b64). The program will automatically shut down after the decoding 
operation is complete. This feature also comes in handy for those using SJHB64 as a 
decoding extension for a Newsreader or Web Browser-you don't    have to manually close 
the program after each file is decoded.

AUTO DECODE - this choice allows the user to choose a file for decoding (via the DECODE 
FILE menu command or by dragging and dropping the file from Explorer or File Manager) 
and SJHB64 does the rest without user intervention. The file is automatically decoded to 



the decoding output directory, if one is specified in advance with the DIRECTORIES menu 
choice, or else to the same directory as the source encoded file.



Loading Files for Encoding and Decoding
There are three ways to load files for encoding and decoding in SJHB64:

Drag and Drop

This is the fastest way to do it. Just drag a bunch of files from the Win 3X File Manager or 
Win95 Explorer, drop them on SJHB64 and decode or encode them all in one shot. If the Auto
decode feature described above is enabled, you don't have to do anything-they're all 
decoded to your default directory. You can even combine files for    encoding and decoding in 
the same batch and SJHB64 is smart enough to figure out which ones to encode and which 
ones to decode! If auto decode is not enabled, a dialog will pop up asking you to confirm the
file name and location for your decoded files.

The File Open Dialog

For those who prefer the old fashioned way, choose either ENCODE FILE    or DECODE FILE on
the FILE Menu    and a standard File Open dialog will pop up, allowing you to choose files for 
encoding or decoding.

The Windows ASSOCIATE Command

File Manager and Explorer both support the ASSOCIATE command, which allows you to 
launch    SJHB64 and decode a base64 encoded file simply by clicking on the file. For 
example, if    you would like to automatically decode .B64 files by double clicking them in File
Manager or Explorer, highlight a file with the .B64 extension and choose ASSOCIATE from File
Manager's    FILE menu. A dialog will pop up, into which you will type the full path to SJHB64. 
Choose OK,    and everytime you click on a file with the .B64 extension in File Manager, 
SJHB64 will be    launched and your file decoded. Combine this with SJHb64's AUTO CLOSE 
and AUTO DECODE    options and you have one click decoding-just double click on a .B64 file 
and it's automatically decoded and SJHB64 closes, all in one step!



BASE64 AND FILE EXTENSIONS:

There is no standard extension for base64\Mime files, which is a source of much 
confusion among users. While most uuencoded files have the .uue extension, 
base64 encoded data comes in various mime compliant and non mime compliant 
file types with many extensions like .txt, .asc, .b64 or no extension at all depending
on the program used to encode and post the data. SJHB64 will accept a file with 
any extension and check to see if there is any Base64 encoded data in it. If there's 
none, the program will pop up a 'No data to decode' message and terminate the 
operation. Likewise, you can    write base64 files with any extension you like-just 
type it into the filename field of the SAVE AS dialog.



NON MIME COMPLIANT BASE64 FILES:
There are many files on USENET that don't comply with the MIME standard    for 
email exchange. The standard specifies that the file header should contain 
information about the file type, filename and extension, but you often run across 
USENET posts that don't have this information. In the past, these files have been a 
major source of frustration for users. SJHb64 tries    to simplify this difficult 
operation for you - here's how:

Instead of just decoding files like this and creating a generically named    file with 
no extension or popping up a dialog asking you to supply the    file type(if you 
remember), SJHb64 analyzes the Base64 data to determine if the encoded file 
contains a 'recognized' data type and if it does, adds the extension for you. Since 
we also have to have a name to write the file, the name of the source base64 file is
used by default. If the Auto Decode option is not used, the program will pop up a 
Save As dialog allowing you to change the name if desired-do NOT change the 
extension, though. For example, let's say that you have a base64 file named 
MYSTERY.B64 that contains a gif    file but no mime header containing this 
information. After SJHb64 decodes it, the resulting gif will be in the same directory 
with the name MYSTERY.GIF. While that was probably not the original name of the 
gif file, it's impossible for SJHb64 to determine the real name if no Mime header 
data is present.    These are the data types that SJHb64 can recognize in encoded 
form:

.JPG(JPEG image files)

.TIF(TIFF image files)

.BMP(Windows bitmap files)

.ZIP(PKzip compatible archive files)

.AVI(MS video files)

.MOV(Quicktime video files)

.PCX(PCX image files)

.EXE(executable files)

.WRI(Windows Write files)

.XLS(MS Excel files)

.GIF(GIF image files)

.EPS(Postscript printer files)

.MPG(Mpeg video files)

.WAV(MS sound files)

.MID(MIDI music files)

.VOC(VOC sound files)

.DLL(Windows dynamic link libraries)

.DOC(MS Word documents)

.PPT(MS PowerPoint presentation files)

This list does not include various subformats that are also recognized.



WINDOWS 95 LONG FILE NAMES-
At this writing, Windows95 long filenames are not fully supported, so    if the MIME 
file you are decoding contains an encoded binary with a long filename, SJHb64 will 
truncate the name of the encoded file to something conforming    to the DOS 8.3 
filename standard. In general, the program will use the first 8 characters of the 
long filename to make a DOS compliant name. If any of    those first eight 
characters contains a space, the program will insert a dash<-> where the space 
was. So

trytoloadthis.gif              becomes        trytoloa.gif

some long name.jpg            becomes        some-lon.jpg

If you need to know what the original long filename of the embedded binary    was, 
you'll have to load the file into a text editor and look through the    MIME header for a 
line containing:

Content-Disposition: inline; filename="some long filename.jpg"

or:

Content-Disposition: attachment; filename="some long filename.jpg"

If the filename contains any other non-dos-supported characters besides spaces in 
the first eight characters, SJHb64 will pop up a dialog announcing that it cancelled 
the save operation.

This applies even if you are running Windows 95. Of course, you can also use Explorer
to restore the original long filename if you are running Windows 95.



MIME FILES WITH MULTIPLE BASE64 ENCODED SECTIONS:
The MIME specification supports multiple messages and binaries    within the same 
file. These multiple encoded segments can also    be of different types. A common 
example is what happens when you    email your multimedia Word document 
containing linked BMP images and    WAV sounds. Your mail program will often 
create one MIME file with a base64 encoded section    for the Word document itself 
(content\type : application\msword),    seperate encoded sections for each 
linked .BMP file    (content\type: application\x-bitmap) and for each WAV file 
(content\type: audio\x-wav). If the recipient has a decoder like SJHb64 that 
supports multiple encoded segments within one MIME file, it's simple    to decode-
the program will pop up a Save As dialog as it encounters each file, and then write 
all the decoded files to the same directory so the recipient can easily load the 
document with all of it's linked files.



OTHER SOURCES OF MIME AND BASE64 INFORMATION:

MIME(the Multi-purpose Internet Mail Extensions) has made it possible for us to 
send E-Mail messages containing images, sound, video and many other binary 
formats, which are usually Base64 encoded. This MIME\Base64 relationship can be 
difficult for the average user to understand-MIME is    not a file type, but a method 
of structuring text and encoded binary    information in E-Mail messages so that the
software on the other end of    the line can understand and use it. Base64 is the 
method used to encode binary information(like images, sound, video, etc.) into 
ASCII text form so that it can pass through e-mail gateways, which cannot 
transport    binary data. All this can be confusing, so it might help if you take a    
look at these additional sources of information:

The MIME FAQ - a regularly updated list of frequently asked questions about 
MIME, available on the comp.mail.mime newsgroup. We also keep a current 
copy of this FAQ at our site for downloading.

The Base64 Guide for USENET Types - our own guide to base64 decoding, 
available at our site:

http://www.sjhdesign.com/






