
Visual Cafe
Sourcebook

TM

Symantec Visual CafeTM Sourcebook
The software described in this book is furnished under a license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Notice
Copyright © 1997-1998 Symantec Corporation.

All Rights Reserved.

Released:11/98 for Visual Cafe 3.0

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior consent in writing from Symantec
Corporation, 10201 Torre Avenue, Cupertino, CA 95014.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR IN THIS MANUAL
ARE IMAGINARY AND DO NOT REFER TO, OR PORTRAY, IN NAME OR SUBSTANCE, ANY ACTUAL
NAMES, COMPANIES, ENTITIES, OR INSTITUTIONS. ANY RESEMBLANCE TO ANY REAL PERSON,
COMPANY, ENTITY, OR INSTITUTION IS PURELY COINCIDENTAL.

Every effort has been made to ensure the accuracy of this manual. However, Symantec makes no
warranties with respect to this documentation and disclaims any implied warranties of merchantability
and fitness for a particular purpose. Symantec shall not be liable for any errors or for incidental or
consequential damages in connection with the furnishing, performance, or use of this manual or the
examples herein. The information in this document is subject to change without notice.

Trademarks
Symantec Visual Cafe, Symantec, and the Symantec logo are U.S. registered trademarks of Symantec
Corporation.

Other product names mentioned in this manual may be trademarks or registered trademarks of their
respective companies and are the sole property of their respective manufacturers.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

The software which accompanies this license (the "Software") is the property of Symantec or its licensors and is protected by copy-
right law. While Symantec continues to own the Software, you will have certain rights to use the Software after your acceptance of
this license. Except as may be modified by a license addendum which accompanies this license, your rights and obligations with
respect to the use of this Software are as follows:

• You may:

(i) use one copy of the Software on a single computer;

(ii) make one copy of the Software for archival purposes, or copy the software onto the hard disk of your computer and retain
the original for archival purposes;

(iii) use the Software on a network, provided that you have a licensed copy of the Software for each computer that can access
the Software over that network;

(iv) after written notice to Symantec, transfer the Software on a permanent basis to another person or entity, provided that
you retain no copies of the Software and the transferee agrees to the terms of this agreement; and

(v) if a single person uses the computer on which the Software is installed at least 80% of the time, then after returning the
completed product registration card which accompanies the Software, that person may also use the Software on a single home com-
puter.

• You may not:

(i) copy the documentation which accompanies the Software;

(ii) sublicense, rent or lease any portion of the Software;

(iii) reverse engineer, decompile, disassemble, modify, translate, make any attempt to discover the source code of the Soft-
ware, or create derivative works from the Software; or

(iv) use a previous version or copy of the Software after you have received a disk replacement set or an upgraded version as
a replacement of the prior version, unless you donate a previous version of an upgraded version to a charity of your choice, and
such charity agrees in writing that it will be the sole end user of the product, and that it will abide by the terms of this agreement.
Unless you so donate a previous version of an upgraded version, upon upgrading the Software, all copies of the prior version must
be destroyed.

• Sixty Day Money Back Guarantee:

If you are the original licensee of this copy of the Software and are dissatisfied with it for any reason, you may return the complete
product, together with your receipt, to Symantec or an authorized dealer, postage prepaid, for a full refund at any time during the
sixty day period following the delivery to you of the Software.

• Limited Warranty:

Symantec warrants that the media on which the Software is distributed will be free from defects for a period of sixty (60) days from
the date of delivery of the Software to you. Your sole remedy in the event of a breach of this warranty will be that Symantec will,
at its option, replace any defective media returned to Symantec within the warranty period or refund the money you paid for the
Software. Symantec does not warrant that the Software will meet your requirements or that operation of the Software will be unin-
terrupted or that the Software will be error-free.

THE ABOVE WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUD-
ING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO
STATE.

• Disclaimer of Damages:

REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL PURPOSE, IN NO EVENT WILL SYMAN-
TEC BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROF-
ITS OR LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF SYMANTEC HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

IN NO CASE SHALL SYMANTEC’S LIABILITY EXCEED THE PURCHASE PRICE FOR THE SOFTWARE. The disclaimers and limitations
set forth above will apply regardless of whether you accept the Software.

• U.S. Government Restricted Rights:

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subpara-
graph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c) (1) and
(2) of the Commercial Computer Software-Restricted Rights clause at 48 CFR 52.227-19, as applicable, Symantec Corporation, 10201
Torre Avenue, Cupertino, CA 95014.

SYMANTEC LICENSE AND WARRANTY

Language Addendum
If the Software is a Symantec language product, then you have a royalty-free right to include object code
derived from the Symantec component (java source or class) files in programs that you develop using
the Software and you also have the right to use, distribute, and license such programs to third parties
without payment of any further license fees, so long as a copyright notice sufficient to protect your
copyright in the program is included in the graphic display of your program and on the labels affixed to
the media on which your program is distributed. You have the right to make changes to the Symantec
components, but only to the extent necessary to correct bugs in such components, and not for any other
purpose. You also have a royalty-free right to include unmodified (except as stated in the previous
sentence) Symantec component files required by your programs, but not as components of any
development environment or component library you are distributing. The Symantec component files that
may be redistributed are in the following folder in the Visual Cafe directory - VisualCafe\redist. The Java
Virtual Machine (VM) or Just In Time (JIT) compiler may not be redistributed.

C O N T E N T S
Chapter 1 Introduction
Purpose ... 1-1
Conventions ... 1-1
How to Use This Book ... 1-1
Additional Information ... 1-2
What you should know ... 1-2
The programs in this book .. 1-2

Chapter 2 Web Log Analysis Tool
Overview of the Weblog application ... 2-1

Using Weblog .. 2-2
How Weblog works .. 2-11

Serializing: saving and loading program data .. 2-11
Using threads .. 2-14
Giving the user progress-tracking feedback ... 2-16
Creating a wizard ... 2-17
Validating input with the Wizard component ... 2-21
Parsing and validating date entries ... 2-23
Accessing files using URL and URLConnection ... 2-25
Adding a splash screen .. 2-28

Limitations and known problems ... 2-31
Limitation due to Jav .. 2-32

Chapter 3 Electronic Software Distribution Servlet
Setting up the servlet ... 3-2
Operational overview of the ESD servlet .. 3-3
How the servlet works .. 3-5

Deeper into the classes ... 3-6
HTML forms .. 3-6

ESD servlet Code .. 3-7
The ESDServlet project ... 3-8

Index .. Index-1

vi

C H A P T E R 1
Introduction

This book has example applications with in-depth explanations so you can
use them, learn from them, or adapt code from them for your own
programming purposes.

Purpose

We want to help you program effectively. Some people learn better by
working with examples. Our examples are tailored to work with our
product.

Conventions

The small pieces of code that are explained are referred to as snippets.

All code is in Courier.

How to Use This Book

In addition to the code snippets printed throughout this book, you may
also view the complete source code for each example inside Visual Cafe.
You can run any of the examples from VisualCafe\Sourcebook\ .

1-1

Chapter 1: Introduction
Additional Information

Before you use this book, you should be familiar with how to use Visual
Cafe. You can learn about Visual Cafe by using the tour or the Getting
Started Guide. If you need to learn how to do a certain task, we will refer
you to the User’s Guide or online help for that information. For general
Java information, see one of the many Java books available, the Visual Cafe
online help files, or the web-based documentation you can find at
www.java.sun.com.

What you should know

You should be familiar with programming in general and Java in particular.
In addition, you should be familiar with the general use of Visual Cafe.

The programs in this book

This book contains two sample programs.

◆ Weblog is a program with a graphical user interface that reads Web
usage log files, analyzes them, and produces charts from the
information.

◆ ESDServlet is a simulated electronic software distribution servlet. A
servlet is the program that runs in connection with a web server and
extends the capabilities of the server in the same way an applet
extends the capabilities of a browser.
1-2

C H A P T E R 2
Web Log Analysis Tool

This chapter discusses a Java application called Weblog which processes
website traffic information and presents it in a report. The code created for
this example is available in:

VisualCafe\Sourcebook\Weblog

You can run Weblog, view the source code in Visual Cafe, and copy classes
and methods into your own applications or applets. This chapter discusses
parts of the code in detail to illustrate how you can implement typical
application tasks using Visual Cafe.

Overview of the Weblog application

Weblog is a complete application that has a user interface, displays a
splash screen while initializing, allows the user to control the application
with buttons and menus, collects information with modal dialogs, and
reads and writes files.

Your company, organization, or you as an individual may have set up a
Web server or may have plans to do so in the future. When you set up a
server, you can generate an access log file that tracks user traffic on your
website. Reading a raw log file can be difficult, so many website
administrators purchase a Web log analysis tool that can arrange the raw
data into more useful statistics. Weblog is such a tool.

Weblog allows you to answer the following questions about the traffic on
your Web server:

◆ When do I have the most and least activity on my site?

2-1

Chapter 2: Web Log Analysis Tool
◆ How many times was my home page visited?

Because Weblog is an application rather than an applet, it does not require
a Web browser to run. (Java security rules keep applets from accessing
local files, so an applet couldn’t read local log files or save reports to the
local disk.)

Weblog uses standard Java components and Visual Cafe components to
create the user interface (UI). Much of the program was created without
manual coding by using Visual Cafe’s Interaction Wizard, and Form
Designer.

Weblog illustrates:

◆ Saving and loading program data (serializing)

◆ Using threads

◆ Giving the user progress-tracking feedback

◆ Creating a wizard

◆ Validating input with the Wizard component

◆ Parsing and validating date entries

◆ Accessing files using URL and URLConnection

◆ Adding a splash screen

Weblog can analyze any Common Log File or Combined Log File from a
Web server such as Netscape, NCSA, O’Reilly WebSite, Apache,
Quarterdeck, Oracle, and other Windows, Unix, and Mac OS Web servers.

Using Weblog

This section shows you the user interface of Weblog, and shows you how
to:

◆ Start Weblog
◆ Define a report
◆ Change a report definition
◆ Analyze data
◆ View a report

Weblog comes with some sample log files that you can use to see what the
program does; if you want to analyze your own log files, you need to set
2-2

Overview of the Weblog application
up your server to generate log files. See your server administrator
documentation for how to do that.

Starting Weblog

You can open Weblog as a project in Visual Cafe and run it there or you
can run it from a DOS command line.

To start Weblog in Visual Cafe:

1 Choose Open Project from the File menu.

2 Find weblog.vep in
VisualCafe\Sourcebook\Samples\Weblog and open it.

3 Choose Execute from the Project menu.

To start Weblog in a DOS window:

Since Weblog is written in Java, and is an application and not an applet,
you must start Weblog by using the Java virtual machine (JVM).

1 Make certain that the directory where javaw.exe is included in
the value of your PATH environment variable.

2 Open a DOS command window.

3 Change to the directory:
VisualCafe\Sourcebook\Samples\Weblog\class

4 Enter:

java WebLogAnalyzer

If you receive an error, check to make sure your java.exe file is in
your path. You can also try typing the following:

c:\VisualCafe\java\bin\java WebLogAnalyzer

where c:\VisualCafe\java\bin\ is the location of javaw.exe .
2-3

Chapter 2: Web Log Analysis Tool
When Weblog starts, you see its main window:

Defining a report

Before you can analyze a log file, you must set up the report.

To create a new report for a log file:

1 Click the New Report button.
2-4

Overview of the Weblog application
The New Report Wizard appears.

2 Enter a report title or description.

3 Pull down the Select Date Range for Report list and choose a date
range.

If you want to create your own date range, choose Specific Date
Range, and type in the beginning and ending dates.

4 Click Next.
2-5

Chapter 2: Web Log Analysis Tool
You see the second page of the wizard:

5 Enter the location of the log file or use the Browse button to find a
file.

The Weblog sample code includes a number of log files that you can
use. If you wish, you can choose your own log file, as long as it’s in
Common Log File or Combined Log File format.

Note: In order to access a log file on a server, you need to have
anonymous FTP access to that server. If you don’t, you need to copy the
log files to your local disk.

6 If you know the log file format you can select it, or choose Detect
Format Automatically.

7 If you wish, enter a home page file, generally index.htm or
default.htm .

You do not have to enter a home page file.

8 Click Next.
2-6

Overview of the Weblog application
You see the third page of the wizard:

9 Select the items you want to show in your report.

The default setting is for all options to be selected.

10 Click Finish.

You are now ready to analyze your log file.

Editing a Report Definition

You can change a report definition after you’ve created it.

To edit report analysis settings:

1 Select a report from the Report list in the main window.
2-7

Chapter 2: Web Log Analysis Tool
2 Click Edit.

The Edit Report dialog looks like this:

3 Make changes to the options on each tab as you wish.

4 Click OK.

Analyzing a log file

Once you’ve defined a report, you can tell Weblog to analyze the file.

To analyze a log file:

1 Select a report from the Report window.
2-8

Overview of the Weblog application
2 Click Analyze Log.

The Analyze Dialog appears:

3 When the Analyzer finishes, click Done.

You are now ready to view the report of your log file.

Viewing a report

Once the log file is analyzed, the Weblog activates the View Report button.

To view a log file’s report:

1 Select a report from the Report window.

2 Click View Report.
2-9

Chapter 2: Web Log Analysis Tool
The report displays in a scrollable window:

3 When you’re done viewing the report, click the close box in the
upper right corner of the window.

Ending your Weblog session

You can exit Weblog by choosing Exit from the File menu or clicking the
close button on the upper right side of the application window. Weblog
saves the current report definitions (though not the reports themselves)
and closes.
2-10

How Weblog works
How Weblog works

When you run Weblog, the WebLogAnalyzer.main method executes.
This method has three lines:

◆ It creates a WebLogAnalyzer object, calling the WebLogAnalyzer
constructor. The constructor, which is automatically generated by
Visual Cafe, instantiates and initializes the main window and its
controls.

◆ It calls the splashNLoad method, which puts up the splash screen
and loads previously saved data.

◆ It shows the main window.

Once the program shows the main window, it waits for user actions. The
user can click on buttons or pick menu commands. Any of those actions
cause events, which are caught by the corresponding components and
processed. As is typical of well-behaved applications, Weblog thus spends
most of its time waiting for the user to ask it to do something and then
goes off and does it.

You can build an application like this in Visual Cafe by using the Form
Designer to lay out components and then giving behavior to the
components using the Interaction Wizard, which lets you associate code or
actions with events. See the Chapter 9 of the Visual Cafe User’s Guide for
information. The rest of this chapter shows you some of the more
interesting parts of Weblog, so you can see how you can do similar things
in your own programs.

Serializing: saving and loading program data

Weblog keeps its data in an object of type Data , a class defined as part of
this project, in Data.java . The program saves the contents of the data
object so they will be available the next time you open the project.

When you want to save an object in Java, its class needs to implement the
Serializable interface. To implement the Serializable interface
you simply state that your class implements it; Serializable doesn’t
have any methods or fields, and just exists to tell Java that this class expects
to save itself to disk. The Weblog Data class thus needs to fully define
how the program’s data is going to be saved. Data also contains methods
for manipulating the data—creating new reports, deleting old ones, and so
2-11

Chapter 2: Web Log Analysis Tool
on—that are called by the program when the user gives a command that
changes the data.

The fields of class Data hold the program’s data. You can break that data
up into two groups:

◆ A set of program options

◆ The reports and an index for the current report

There is also a field that defines the name of the data file and a field,
theData , that needs some more explanation.

Here’s the part of the class definition that defines the fields:

public class Data implements Serializable {

static final String INI_FILENAME = "WLA.dat";

static Data theData = null;

// Program Options

int userSessionIdleLimit = 30;

boolean ignoreUnexpectedLogFileErrors = false;

// All of the reports

 Vector reports = new Vector();

 // The index of the currently selected report, or

// -1 if none selected

int currentReportIndex = -1;

The second field, theData , is an object of type Data . It is the only field
that’s initialized in the class constructor:

public Data() {

 theData = this;

 }

Whenever the Data object needs to access the current data, it uses the
field theData . Initially, this is the same as accessing the current object
directly, but the program can create a new Data object and replace the
program’s data by simply setting the value of theData .

You can see how this works by looking at the loadDataInstance
method, which runs when the program starts and tries to load a previously
serialized Data object. (Most of the try and catch statements were
removed from the code here for clarity.)

public static String loadDataInstance() {

 String msg = null;

 Data data = null;
2-12

How Weblog works
 try

{FileInputStream istream = istream = new

FileInputStream(INI_FILENAME);

 ObjectInputStream p = new

ObjectInputStream(istream);

data = (Data)p.readObject();

 p.close();

istream.close();

 } catch(java.io.FileNotFoundException x) {}

The one catch statement that this copy of the code includes executes if
the data file isn’t found. In that case, the value of the variable data is
never reset, so its value is null . The next lines in the method deal with
that situation, which would occur the first time the program is run.

} if(data == null) {

data = new Data();

 }

The next lines of code deal with the situation when a file is found and
there is data in it.

else {

Data.setDataInstance(data);

 }

}

The setDataInstance method sets the value of theData so that it
points to the object passed in, so theData now contains the previously
saved data.

The method saveDataInstance saves the data when the program quits.
The saveDataInstance method first calls the method freeUpMem ,
which decreases the size of the resulting file by clearing out the vectors
that contain the reports. It then opens a stream and uses the Java
writeObject method to serialize the program’s data.

public static String saveDataInstance() {

freeUpMem();

 String msg = null;

 try {

FileOutputStream ostream = ostream = new

FileOutputStream(INI_FILENAME);

 try {

 ObjectOutputStream p = new
2-13

Chapter 2: Web Log Analysis Tool
ObjectOutputStream(ostream);

 try {

 p.writeObject(getDataInstance());

 } catch(java.io.OptionalDataException x) {

 msg = x.toString();

 }

 // close the object output stream

 p.close();

 } catch(java.io.StreamCorruptedException x) {

 msg = x.toString();

 }

 ostream.close();

 } catch(java.io.IOException x) {

 x.printStackTrace();

 msg = x.toString();

 }

 return msg;

 }

Using threads

A Java program can have multiple threads of execution. This means,
conceptually, that there can be more than one thing going on at a time. In
most cases, since most computers have only one processor, a multi-
threaded program really does only one thing at a time, but having multiple
threads allows the program to take actions in one area, while waiting for
something to happen in another area and allows you to conceptually
divide up tasks.

Weblog uses a separate thread, defined in Analyzer.java , to analyze
the log files.

A thread needs to either subclass java.Thread or implement the
Runnable interface, and needs to define a run method. The
Thread.run method is similar to the main method of an application in
that it’s the entry point for the thread. The run method is also like main in
that you never call run . When you want to run the thread, you call start .
When you call the start method, Java sets up the thread and then calls
run .
2-14

How Weblog works
When the Analyze dialog opens, Weblog creates an analyzer thread and
calls start . Here’s the method that creates and starts the analyzer thread:

void AnalyzeDialog_WindowOpen

(java.awt.event.WindowEvent event)

{

analyzer = new Analyzer(this);

analyzer.start();

}

The program calls this method when a window open event occurs and the
window that’s opening is the Analyze dialog.

The Analyzer constructor does only one thing: it creates a progress
tracking object that will show the user how the analysis is going. Here’s the
code:

public Analyzer(TrackProgress trackProgress) {

 this.trackProgress = trackProgress;

 }

(“Giving the user progress-tracking feedback” on page 2-16 discusses the
progress tracking code.)

Analyzer extends the Thread class, so it doesn’t need to implement the
start method. It implements the run method, which the Java code calls
when the thread starts. The Analyzer.run method does two things:

◆ It uses the program’s data to get the current report

◆ It tells the report to run, passing it the trackProgress object.

Here’s the Analyzer.run method:

public void run() {

 Report report =

Data.getDataInstance().getCurrentReport();

 report.run(trackProgress);

 }

The analyzer runs until the user dismisses the Analyze dialog. When that
happens, the program generates a window-closing event, and this code
executes:

void AnalyzeDialog_WindowClosing

(java.awt.event.WindowEvent event)

{

// Stop the analyzer
2-15

Chapter 2: Web Log Analysis Tool
Analyzer.cancel(analyzer);

 // get rid of this dialog

 dispose();

}

The method that stops a thread is actually Thread.stop . Thread.stop
can leave objects in an uncertain state if it’s called abruptly. That might
happen if the user closed the dialog before the analysis was finished, so
the Analyzer class provides a cancel method that waits for a while
before calling Thread.stop . You may want to look at the code in
Analyzer.java to see how you can make sure your program waits
before stopping a thread.

Giving the user progress-tracking feedback

When a process might take a while, you want to give the user feedback
about what’s going on and how the process is progressing. Typically, you
do that with a progress bar in a dialog box. The component library in
Visual Cafe includes two progress bars: a Swing progress bar and a
“heavyweight” progress bar for use in AWT applications. Weblog uses the
heavyweight progress bar in its analyze dialog box.

Weblog organizes the progress tracking code by defining the
TrackProgress interface in TrackPrgress.java , which is
implemented by the AnalyzeDialog class in AnalyzeDialog.java .
By using an interface, AnalyzeDialog encapsulates the progress-
tracking code and separates it from the standard dialog box code.
TrackProgress declares the following methods:

◆ step . This method takes a message and a progress percentage as
parameters. It uses the progress percentage to set the current value of
the progress bar and displays the message in a text label in the dialog
box.

◆ done . This method changes the Cancel button to a Done button.

◆ okCancelAlert . This method puts up an OK/Cancel dialog that lets
a user confirm a choice.

◆ okAlert . This method puts up a confirmation dialog that only has an
OK button.

When the user clicks the Analyze Log button, and thus asks Weblog to
analyze a log file, the code creates an AnalyzeDialog object. The
2-16

How Weblog works
AnalyzeDialog code starts the analyzer thread, which actually does the
analysis. Periodically, the analyzer thread calls the
TrackProgress.step method with a call like this:

trackProgress.step("Parsing log file...", percent);

This call updates the position of the progress bar and also updates the
progress message.

Creating a wizard

Weblog uses a wizard to gather information for a new report. In Visual
Cafe, you create a wizard by putting a Wizard component onto a form
and adding panels. Weblog uses a wizard in its New Report dialog; if you
want to see the Weblog implementation, see NewReportDialog.java
and the Form Designer for the NewReportDialog object.

To create a wizard:

1 Create a new project or open an existing project.

The project can use any project template.

2 In the Objects view of the Project window, select the top-level
container in the project.

The top-level container is at the top of the Objects list.

3 Choose Form from the Insert menu.

The form is the top-level container for the wizard. Usually you put a
wizard in a dialog box so that you can make it appear and disappear
at appropriate times.

4 Choose Dialog or, for a Swing project, JDialog .

A new Form Designer appears, showing an empty dialog box.

5 From the AWT Additions tab of the Component Palette, add a
Wizard component.

6 Expand the Wizard component so it fills the part of the dialog
box that you want it to fill.

You will often want the wizard to fill the entire box, but you might
want to reserve part of the box for some constant information, such
as a picture. Weblog does this.

Notice that the wizard contains the usual set of wizard buttons (Back,
Next, Finish, Cancel, and Help). This lower section of the wizard
2-17

Chapter 2: Web Log Analysis Tool
doesn’t change when the user moves between pages, except that the
wizard enables and disables buttons as appropriate.

7 From the AWT tab of the Component Palette, choose Panel or, for
a Swing project, from the Swing Containers tab of the Component
Palette, choose JPanel .

You can add any component to a wizard, but you usually want to add
panels.

8 Drop the panel into the Wizard .

The panel is automatically sized to fill the wizard’s page area.

9 Add a panel for each wizard page that you want.

Check in the Objects view of the Project window to make sure that
the panels are added at the correct level. They should all be
contained in the wizard.

For example, in this example, JPanel3 is at the wrong level; it is
contained in JPanel2 rather than directly in the wizard:

You can change the container of an object by dragging it in the
Objects view. Click the object you want to move and drag it to the
2-18

How Weblog works
object that you want to contain it:. (A shadow of the object follows
the mouse pointer.)

After performing this move operation, the JPanel is on the correct
level:

Once you have more than one panel in the wizard, the Back and Next
buttons in the wizard become enabled and you can use them to
navigate between the panels, even in the Form Designer

10 Design the panels as you would any GUI.

The Wizard component handles the Back, Next, and Cancel buttons for
you; unless you want to do something special when the user presses any
of those buttons, you don’t have to do anything about them. You wait until
2-19

Chapter 2: Web Log Analysis Tool
the user presses Finish, and then you collect the data from the wizard and
take whatever action the wizard promised.

To handle the Finish button:

1 In Visual Cafe, right click on the Wizard component.

2 From the pop-up menu, choose Add Interaction.

3 Add an actionPerformed event interaction. Make the action to
hide the wizard. (Doing this requires several steps in the Add
Interaction wizard. See the User’s Guide or the Getting Started
Guide for details of how to use the wizard.)

4 In the Visual Cafe Source window, open up the Java file for the
form that contains the wizard.

5 Find the wizard1_actionPerformed_Interaction1
method.

If the name of the Wizard component is something other than
wizard1 , that will show in the name of this method. Similarly, if
you’ve already added an interaction to this wizard, the interaction
number will be something other than 1.

The code will be something like this:

wizard1_actionPerformed_Interaction1(

java.awt.event.ActionEvent event)

{

try {

wizard1.setVisible(false);

} catch (Exception e) {}

}

This code executes when any action-performed event occurs in the
wizard, which isn’t normally what you want to do. You need to take
action only if the user pressed the Finish button.

The event includes the name of the button that caused the event, and
you can use that to make the method do what it should do.

6 Add the following code to the beginning of the method, before the
try statement:

String cmd = event.getActionCommand();

if(cmd.equals("Finish")) {

//your code goes here
2-20

How Weblog works
If you want to take special action with the Next, Previous, Cancel, or
Help buttons, you can do so by looking for those command names.

7 Add a } before the end of the method.

The method should now look like this:

wizard1_actionPerformed_Interaction1(

java.awt.event.ActionEvent event)

{

String cmd = event.getActionCommand();

if(cmd.equals("Finish")) {

//your code goes here

try {

wizard1.setVisible(false);

} catch (Exception e) {}

}

}

Validating input with the Wizard component

When the user presses the Next button in your wizard, you should check
the entries on that page to make sure that everything is valid. The best way
to do that is by extending SimpleWizardControlle .

A Wizard component is controlled by a wizard controller, which is an
object that implements the WizardController interface.
SimpleWizardController is the default controller, which is generally
sufficient except for its lack of validation. Extending
SimpleWizardController to add validation is fairly easy—the only
method you need to override is validatePage . The wizard calls this
method whenever the user presses any of the wizard buttons. If you return
false from this method, the wizard ignores the button press and stays on
the same page.

Here’s the header of validatePage :

public boolean validatePage(Component comp,

Component target,

int action)

The first parameter, comp, is the component that occupies the page of the
wizard that the user was on when the button was pressed.
2-21

Chapter 2: Web Log Analysis Tool
The second parameter, target , is the component that occupies the page
of the wizard that will show next.

The third parameter, action , indicates which button the user pressed. It is
an integer, but WizardController defines a set of constants (NEX ,
PREVIOUS, FINISH , CANCEL, and HELP) that you should use instead of
the integers.

The body of Weblog’s validatePage method is described below.

First, validatePage gives the standard validation method a chance to
pass on the page:

if(!super.validatePage(comp, target, action)) {

return false;

 }

Before checking if the page is valid, this version of the method checks if
the user has pressed the Next button. In general, you probably don’t want
to validate a page when the user presses Cancel, Previous, or Help. You
might want to when the user presses Finish. Weblog doesn’t need to
validate the last page because it’s not possible for the entries on that page
to be invalid (that page just contains a set of checkboxes).

if(action != WizardController.NEXT) {

 return true;

 }

The validation methods need to know what kind of data to expect, so
Weblog checks which page (panel1 or panel2) of the wizard the user is
leaving, and calls the appropriate validation method. If the validation
method returns false , then the validatePage method returns false ;
otherwise, validatePage returns true .

// Handle according to page leaving

 if(comp == panel1) {

if(!validatePage1()) {

return false;

}

} else if(comp == panel2) {

if(!validatePage2()) {

return false;

}

}

// Passed validation check OK

return true;
2-22

How Weblog works
 }

 }

Returning false from validatePage makes the wizard ignore the
button click and remain on the same page, but you also need to give the
user feedback about what’s happening. The validation methods put up
dialog boxes notifying the user of the validation problem.

Parsing and validating date entries

Weblog encapsulates a number of date-format validation and conversion
methods in the WLAUtil class, defined in WLAUtil.java . These
methods are used as static calls—you can’t instantiate WLAUtil . You may
find this class useful if you write a program that needs to validate and
parse dates.

WLAUtil has a large number of utility methods. This section discusses
only a small part of what’s available.

The wizard validation code uses the validateDateField to check if an
entered date is valid. Here’s the method that calls validateDateField :

boolean validatePage1() {

 // Only validate start/end date if specific

// user-supplied dates

 int timeframe = timeframeChoice.getSelectedIndex();

 if(timeframe == Report.TIMEFRAME_SPECIFIC) {

 if(!WLAUtil.validateDateField(this, startDateText)) {

 return false;

 }

 if(!WLAUtil.validateDateField(this, endDateText)) {

 return false;

 }

 }

 return true;

 }

TIMEFRAME_SPECIFIC is a constant that indicates that the user chose to
put in specific dates. (This page of the wizard allows the user to choose a
range of dates such as Past two days or Yesterday or to enter a specific date
range.) If the user did enter specific dates, then the dates need to be
validated. That’s done by WLAUtil.validateDateField . That method
gets passed the text field that contains the data that needs to be checked. If
2-23

Chapter 2: Web Log Analysis Tool
the method can parse the value as a date, it returns true . If the method
can’t parse the value as a date, the method:

◆ moves the focus to the text field,

◆ selects the contents so that they’re highlighted for the user,

◆ puts up a dialog box that tells the user of the problem, and

◆ returns false

Here’s the method:

static boolean validateDateField(Window dialogOrFrame,

TextField dateField) {

try {

// Parse the date to ensure OK

string2Date(dateField.getText());

// Parsed OK. Passes validation

return true;

} catch(java.text.ParseException x) {

 // Can't parse the given date. Move focus to

// offending field

 dateField.requestFocus();

 dateField.selectAll();

// Alert user

new AlertDialog(getFrame(dialogOrFrame), false,

x.getMessage());

 return false;

 }

 }

The method that’s called to parse the text is string2Date . It’s a very
simple method:

static Date string2Date(String dateString)

throws java.text.ParseException {

 return dateFormat.parse(dateString);

 }

Java supplies the dateFormat.parse method, so the hard work of
actually parsing the text is taken care of for you.

WLAUtil has a number of methods that you may find useful in handling
date and time strings. See the code for information.
2-24

How Weblog works
Accessing files using URL and URLConnection

You can access files on a local system or over a network using the Java
URL and URLConnection classes. In Weblog, the parse method that’s
part of the Parser class (defined in LogFile.java) uses these classes
to open the log file that the user specifies in the New Report wizard.

Letting the user browse for a file

The New Report wizard lets the user enter a file specification or browse the
file system to find a file. When the user clicks on the Browse button, the
button code calls the WLAUtil.browseForURL method. That method
returns a URL string.

public static String browseForURL(String template) {

 // Access main frame which has the open dialog off it

WebLogAnalyzer wla = WebLogAnalyzer.theWLA;

// set the default suffix

 wla.openFileURLDialog.setFile(template);

// Show the OpenFileDialog

wla.openFileURLDialog.show();

// get the results

String results = wla.openFileURLDialog.getFile();

if(results != null) {

 results = wla.openFileURLDialog.getDirectory() +

results;

 results = WLAUtil.cleanupURLName(results);

 }

return results;

}

When you create an application project using the Visual Cafe application
template, Visual Cafe automatically adds an OpenFileDialog object. In
Weblog, the name of that object was changed to openFileURLDialog ,
but it’s still just the standard Open File dialog box. The method
WLAUtil.cleanupURLName modifies the result of the file dialog to
produce a URL. (URLs consist of a protocol string, such as http or file ,
a colon, and a path string.) In addition to being called from
browseForURL , this method is called when the URL text field loses focus,
so it must be able to understand and fix URLs that the user typed in as well
as file information returned by the Open File dialog. The
2-25

Chapter 2: Web Log Analysis Tool
cleanupURLName method actually looks for only a few features of
correctly written URLs, and will accept any string that contains a colon.
When it receives the result of the Open File dialog, it adds file:/// to
the beginning of the string.

static String cleanupURLName(String messyURLText) {

 // Infer starting "file://", etc as needed

 try {

 char ch;

 StringBuffer buf;

 // Colon?

 int idx = messyURLText.indexOf(':');

 if(idx < 0) {

 // No colon.

 buf = new StringBuffer(messyURLText.length() +

9);

 ch = messyURLText.charAt(0);

 if(ch == java.io.File.separatorChar) {

 // Presume file entry

 buf.append("file:///");

 buf.append(messyURLText);

 } else {

 //Prepend http:// by default

 buf.append("http://");

 buf.append(messyURLText);

 // if no slashes in messyURL, presume

// only domain given and end with one

 if(-1 == messyURLText.indexOf('/')) {

buf.append('/');

}

}

 return buf.toString();

 }

 // Have a colon in the messyURLText,

// look at char after the colon

 ch = messyURLText.charAt(++idx);

 if(ch == '/') {

 ch = messyURLText.charAt(++idx);

 if(ch == '/') {

 idx = messyURLText.indexOf(':',

++idx);
2-26

How Weblog works
 if(idx < 0) {

 // only initial "//" provided.

// Add ending one.

 buf = new StringBuffer

(messyURLText.length() + 2);

 buf.append(messyURLText);

 buf.append('/');

 return buf.toString();

 }

 }

 // protocol specified. Nothing to do.

 return messyURLText;

 }

 if(ch == '\\') {

 // MSDOS file path. Prefix file:

// protocol

 return "file:///" + messyURLText;

 }

 //colon, but no slash...do nothing

 } catch(StringIndexOutOfBoundsException x) {

 // if get this, no cleanup

 }

 return messyURLText;

}

Opening a connection to a URL

The parse method, defined in LogFile.java , begins by

◆ creating a URL object,

◆ opening a connection to it,

◆ opening an input stream using the connection, and

◆ creating a stream reader for the file

Between each of these steps, the method checks to make sure that the
thread hasn’t been cancelled and updates the progress information in the
New Report dialog.

Here’s the beginning of the parse method:

public void parse(TrackProgress trackProgress)
2-27

Chapter 2: Web Log Analysis Tool
throws ParseLogException {

 URL url;

 URLConnection con;

 InputStream is;

 int contentLength;

 int lineCount = 0;

// Collect garbage mem before doing this

// potentially memory-intesive task

 System.gc();

 Vector recordVector = new Vector();

 // Initialize File

 try {

 // Create URL

 Analyzer.throwExceptionIfCurrentThreadCancelled();

 trackProgress.step("Creating URL...", 1);

 url = new URL(logFileURL);

 // Get connection to log file

 Analyzer.throwExceptionIfCurrentThreadCancelled();

 trackProgress.step("Opening connection...", 2);

 con = url.openConnection();

 // Get input stream of log file

 Analyzer.throwExceptionIfCurrentThreadCancelled();

 trackProgress.step("Accessing log file...", 3);

 is = con.getInputStream();

 logReader = new BufferedReader(

new InputStreamReader(is));

Once the stream reader has been instantiated, you can use it to read the
file:

if(null == (aLine = logReader.readLine())) {

 break;

 }

Adding a splash screen

A splash screen lets the user know what a product is, who makes the
product, and who owns the copyright. It also places something on the
screen so the user knows that the program is starting.
2-28

How Weblog works
A splash screen can be created easily in Visual Cafe by using the Form
Designer and the Dialog and ImageViewer components.

The code that’s automatically generated by Visual Cafe:

◆ instantiates/creates a dialog,

◆ sets the size of the dialog,

◆ sets the background color to light gray,

◆ instantiates the ImageViewer component as imageViewer1,

◆ sets the size of the imageViewer1 component,

◆ provides the location of the image to view, and

◆ provides exception handing using try and catch

To autogenerate code similar to the code in SplashDialog.java:

1 Create a new project.

2 Drag the Dialog component from the Forms folder in the
Component Library into the Objects tab of the Project window.

Visual Cafe instantiates the Dialog component as dialog1 and
displays a Form Designer for the dialog.

3 Double-click on the Bounds property in the Property List. Change
the Width to 419 and the Height to 290.

This setting determines how large the splash screen will be.

4 Change the Background color to light gray.

5 Change the name from dialog1 to SplashDialog .

6 Drag the ImageViewer component from the Multimedia folder in
the Component Library into the SplashDialog Form Designer

Visual Cafe instantiates the ImageViewer as imageViewer1 .

7 Make sure imageViewer1 is selected and double-click on the
Bounds property in the Property List. Change:

a Width to 419

b Height to 290

c X to 0

d Y to 0

8 Double-click ImageURL in the Property List. Click the Browse
button to select weblog\images from the Visual Cafe CD.
2-29

Chapter 2: Web Log Analysis Tool
Displaying the splash screen during loading

You want the user to be able to see the splash screen for a few seconds, to
appreciate your artistry and read the copyright, but you don’t want things
to grind to a halt while the user is reading. That’s easy enough to do.
Weblog keeps the splash screen visible long enough for the user to read it,
while at the same time continuing to load the application; it does so in a
method called SplashNLoad .

SplashNLoad :

◆ displays the splash screen,

◆ checks the time,

◆ loads serialized data,

◆ uses the data to initialize the report list,

◆ enables the components,

◆ checks the time again,

◆ if it hasn’t been three and a half seconds yet, goes to sleep until three-
and-a-half seconds have passed, and

◆ takes down the splash screen

Here’s the code:

void splashNLoad() {

// display the splash screen

SplashDialog splash = new SplashDialog(this,false);

splash.show();

// note time that it was displayed

long startMillisecs = System.currentTimeMillis();

 // Load data

 String msg = Data.loadDataInstance();

 // Display msg, as needed

 if(msg != null) {

 new AlertDialog(this, false, "Error reading
program initialization file (" + msg + "). Using
defaults.");

 }

 // Get my data instance
2-30

Limitations and known problems
 data = Data.getDataInstance();

 // Initialize report list component with program data

 initializeReportList();

 // Enable/disable components as needed

 enableComponents();

// be sure splash shows for at least a few seconds

long millisecs = System.currentTimeMillis();

 // get length of time to load data

 millisecs -= startMillisecs;

 // want to splash for about 3.5 secs, total

 millisecs = 3500 - millisecs;

 if(millisecs > 0) {

 try {

 Thread.sleep(millisecs);

} catch(java.lang.InterruptedException x) {

 }

 }

 // take down splash screen

 splash.hide();

 }

Limitations and known problems

If your log file is extremely large, you may get a
java.lang.OutOfMemory error. You can use the -mx option to
increase the amount of memory the VM is using for Weblog. Do not
exceed the total amount of physical RAM on your PC as the VM hangs
when it runs out of physical memory.

To increase the amount of memory the JVM uses:

◆ Enter a command like this:

java -mx64M weblog

where 64 is the total amount of physical memory (in megabytes)
present in your computer.
2-31

Chapter 2: Web Log Analysis Tool
Limitation due to Java

A dialog’s parent must be a frame. This means you can't have a modal
dialog (like AlertDialog) that modally appears when a dialog (like
EditReportDialog) requests it. When an alert appears in this situation
it is modal to the main frame, not to the dialog that created the alert. A
similar problem exists with the FileDialog .

Note: The parsed log file is not stored when the user quits the program.
So, if the user re-runs the program and changes a report parameter, the log
file needs to be read again so that it can be reanalyzed.
2-32

C H A P T E R 3
Electronic Software
Distribution Servlet

This chapter discusses the Electronic Software Distribution (ESD) servlet,
which allows a user to buy a piece of software over the Internet. The code
created for this example is available in :

VisualCafe\Sourcebook\Servlet

You can view the source code in Visual Cafe and copy classes and methods
into your own servlets, applications, or applets. This chapter discusses the
code in detail to show how the servlet was implemented in Visual Cafe.

A servlet is a Java program that can be thought of as a server-side applet.
That is, a servlet extends the capabilities of a server in the way that an
applet extends the capabilities of a browser.

More precisely, a servlet is a Java class based on the Java Servlet
interface. A servlet runs on a Web server and, in general, does the kinds of
things that you might do with CGI scripts, with these advantages:

◆ Servlets are written in Java.

◆ Where a CGI script needs a new process to handle each request, a
servlet can handle many requests at a time. The fact that there is only
one instance of a servlet also means that the servlet only needs to load
once. Also, a servlet can share information between users.

Since a servlet runs on a server, it has no graphical user interface. Servlets
can extend server functionality in any way you want, but they generally
serve Web pages to users and read and respond to user input on HTML
forms. The sample servlet in this chapter serves preexisting Web pages, but
many servlets create Web pages in response to user input.

3-1

Chapter 3: Electronic Software Distribution Servlet
Setting up the servlet

You need a server that can run Java servlets in order to use the ESD servlet.
Sun’s Java Web Server, which is written in Java, is one choice, but most
other Web servers currently support the servlet extension.

To set up the servlet:

1 Install a Web server that can run Java servlets, if you don’t already
have one installed. The rest of these instructions assume that
you’ve installed the Web server in a directory with the name
serve .

2 Set up the server to respond to requests on port 80, which is the
default port for Web services.

3 You need to copy some of the files in
VisualCafe\Sourcebook\Servlet into the server’s directory
structure.

a The server should have a public_html , a private_html
directory, and a servlets directory. If it doesn’t, create them.

b Create a symantec directory in public_html .

c Find the image directory in
VisualCafe\Sourcebook\Servlet\ESDServlet and copy
it into the server\public_html\symantec directory.

d In the server\servlets directory, create a
symantec\sourcebook\ directory.

e Copy the servlet directory from
ESDServlet\symantec\sourcebook into the
symantec\sourcebook\ directory you just created,

f Copy the creditcheck directory from
CCServlet\symantec\sourcebook into the same directory.

4 Using your server’s administrative tool, you need to define aliases
for the ESDServlet and CreditCheck:

Alias Servlet

purchase symantec.sourcebook.servlet.ESDServlet

creditcheck symantec.sourcebook.creditcheck.CreditCheck
3-2

Operational overview of the ESD servlet
5 Change the value of the successCGI field in
verifyinfo.html to reflect the actual address of your server.
For example:

<P><INPUT TYPE="HIDDEN" NAME="successCGI" SIZE="-1"
VALUE="http://www.mysite.com/servlet/purchase/down">
<!--fieldPosition--></P>

Replace www.mysite.com with the domain you are using.

Caution: Purchasing servlets must be run on a secure server (https
protocol) to assure credit card security. Private_html should be a
private directory, not accessible to the Web page service. Even though the
ESD servlet does not actually make purchases, you should observe these
security precautions if you plan on using real credit card numbers for
testing.

Operational overview of the ESD servlet

The ESD servlet mimics a servlet that accepts a user's credit card number
over the Internet, charges the card, and download the software package
that the user has purchased. (It doesn’t use a real credit checking service,
and doesn’t actually charge the credit card.)

The ESD servlet works as follows:

1 The client performs an HTTP GET operation on the servlet's base
URL (for example, http://www.yoursite.com/servlet/
purchase).

2 The servlet serves a blank form containing the following fields:

page - A hidden field containing the form's page number, in this case
"1".

name - The name on user's credit card.

company - The name of company.

email - The user's e-mail address.

address - The user's physical address.

city - The user's city.

state - The user's state.

zip - The user's zip.
3-3

Chapter 3: Electronic Software Distribution Servlet
country - The user's country.

phone - The user's phone.

3 The user fills in the fields and presses the Continue button. This
causes the client to do an HTTP POST command, sending the field
data to the servlet.

4 The servlet examines the posted fields. If the fields are ok, the
servlet serves the verification form. The verification form contains
the following fields:

successCGI - The URL to be accessed if the credit card is processed
successfully.

orderId - The unique ID assigned for this order.

ccTotal - The total dollar amount to charge the user's credit card.

ccName - The name that appears on the credit card.

5 The user examines the values on the screen and presses the
Continue button if everything looks OK. This causes the client to
perform an HTTP POST command to the Credit Check servlet. (In
this example the Credit Check servlet does no actual card
verification. In a live system this form would be processed by a
third party credit card house.)

6 The Credit Check servlet serves a form that allows the user to enter
the card number, expiration date, and card type. When the user
presses the Continue button, the servlet theoretically charges the
credit card. If the charge is accepted, the Credit Check servlet
redirects the browser to the URL indicated by the successCGI
field. The successCGI is passed the unique orderID for this
order. We have set the successCGI field to direct control back to
the ESD servlet.

7 The ESD servlet then validates the orderId. If the orderId is valid,
the ESD servlet checks with the Credit Check servlet to be sure the
card has cleared (this step is required to prevent someone from
simply running the successCGI directly, bypassing the credit
check). If things check out OK, the servlet serves the software
owner's page. The owner's page contains the following fields:

orderId - Hidden field with this owner's unique order ID.

page - Hidden field with the current page number

8 The user presses the Download button and this form is posted to
the servlet. The servlet verifies the order ID and the card's
approval (again to prevent hacking). If all is in order the servlet
downloads the file that the user has just purchased.
3-4

How the servlet works
How the servlet works

The ESD servlet is based on the Sun HttpServlet class, which is an
abstract class designed to handle HTTP requests.

When a server receives an HTTP request directed to a servlet, the server
calls the servlet’s service method. In general, servlets receive GET
requests and POST requests—a GET is usually a request for a Web page
while POST is usually information sent from a filled-out form.

When the HttpServlet.service method receives a GET or a POST
request, it calls the servlet.doGet or servlet.doPost method, as
appropriate. When you want to write a servlet that handles HTTP requests,
you usually subclass HttpServlet and override the appropriate “do”
methods rather than overriding the service method. In the ESD servlet,
doGet calls doPost , so POST and GET requests are handled in the same
way. The ESD servlet’s doPost method does this:

◆ If this is the first request, it puts up an initial HTML page, which is a
form asking for user information.

◆ For subsequent requests, it determines which form was filled out and
creates an object, called a page handler, that knows how to handle that
form.

◆ It asks the page handler to check if submitted information is valid.

◆ It asks the page handler what the next page should be.

◆ It creates a page handler for the next page.

◆ It asks the new page handler to serve up the next page.

Thus, the servlet class itself is fairly simple. The “knowledge” about where
the forms are located, how to understand the information in the form, the
order the forms need to be presented, and what to do when information is
invalid, is in the page handlers. If you want to make your own servlet that
handles similar tasks, you may be able to simply use the ESD servlet code,
and implement your own page handlers. In the case of this servlet, the
pages are fixed HTML pages, rather than pages created on-the-fly by the
page handlers, but you could modify the page handler classes to build
custom pages for each user.
3-5

Chapter 3: Electronic Software Distribution Servlet
Deeper into the classes

The Java Servlet interface is defined in javax.servlet.Servlet .
(The “x” in “javax ” indicates that the servlet package is a Java
extension, rather than a required part of every Java VM.) The Servlet
interface defines the minimum set of methods that a servlet needs to have.
The most important method for our purposes is service . The service
method handles a single request from a client. At this level, “a client” is not
defined, and neither is a request.

The javax.servlet package also defines the abstract class
GenericServlet . It adds more definition to the Servlet interface, and
provides default implementations for some of the methods.

Finally, the javax.servlet package defines the abstract HttpServlet
class. HttpServlet extends GenericServlet to handle the HTTP
protocol by defining the service method so that it understands HTTP
service requests such as POST and GET, and calls corresponding
HttpServlet methods like doPost and doGet . Thus, we now have a
definition for a client and a request: a client is a Web client, and a request
is an HTTP request. To define a servlet that can handle HTTP requests, all
you have to do is subclass HttpServlet and define the methods that
correspond to the HTTP requests that you want to handle.

The symantec.sourcebook.ESDservlet package defines the
ESDServlet class, which extends HttpServlet . ESDServlet
implements doGet so that it calls doPost and implements doPost so
that it can handle a series of HTML forms by creating page handlers that
correspond to the forms.The ESDservlet package also defines a set of
pages and page handlers. All of the “intelligence” needed to supply the
forms and understand the input is pushed down into the page handlers.

HTML forms

HTML forms are outside the scope of this book, but here’s a little
background to enable you to understand how the servlets use them.

HTML includes the FORM tag. The FORM tag defines a fill-in form. A form
can contain INPUT tags, which define and name input fields, and also
declare the types of the fields. Aside from the obvious types like text fields
and checkboxes, you can have INPUT fields that are hidden. Hidden fields
3-6

ESD servlet Code
send information back to the server that the user doesn’t see. Hidden fields
are used by the ESD servlet to identify the different HTML pages.

If you’re wondering how the page knows when to send information back
to the server, one of the INPUT types defines a Submit button, which
allows the user to send the information in the form to the server.

Here’s a very simple form:

<HTML>

<FORM METHOD = POST>

<INPUT TYPE = "HIDDEN" NAME = "SILLY FORM" VALUE = "1">

<INPUT TYPE = "TEXT" NAME = "NAME">

<INPUT TYPE = "SUBMIT">

</FORM>

</HTML>

In a browser, this code produces a form like this:

The METHOD parameter of the FORM tag defines the HTTP request type.
Thus, when the user presses the Submit Query button, this code sends an
HTTP POST request with two parameters: one called NAME, whose value is
the text the user entered in the text box and one called SILLY FORM
whose value is 1. Since the input named SILLY FORM is marked as
TYPE=HIDDEN, the user does not see it in the form, but it is still in the
stream of data that the servlet receives.

ESD servlet Code

The ESD servlet example consists of two Visual Cafe projects.

◆ The ESDServlet project defines the ESDServlet class, which is the
class for the ESD servlet, and a set of page handlers for the forms used
by this servlet. It also defines a Transaction class that handles the
data of the transaction and a PageData class to hold the data for a
single page.

◆ The creditcheck project defines a “place holder” servlet that checks the
validity of the credit card number that the user submits. In a real
servlet, you would have the credit card validated by an outside service;
3-7

Chapter 3: Electronic Software Distribution Servlet
this example includes the Credit Check servlet so that you can see the
servlet work without setting up a real credit-checking account. Since
this is just a place holder class, it is not discussed in this chapter.

The ESDServlet project

The Servlet project defines the ESDServlet class, the Transaction
class, the PageData class, and seven page handler classes.

The ESDServlet class

The ESDServlet class, defined in ESDServlet.java , extends the
HttpServlet class, filling in the specific behavior required for the ESD
servlet. It was made by:

◆ Choosing the New Project command from the File menu

◆ Choosing the Servlet template for the project

◆ Filling out the pages of the Servlet wizard to create the basis for the
code

◆ Finishing the project by hand-coding

As noted, the class extends the HttpServlet class, so it begins like this:

public class ESDServlet extends HttpServlet

{

The class defines constants for seven page names:

protected static int NOFORM_PAGE_NUM = 0;

protected static int ENTERINFO_PAGE_NUM = 1;

protected static int VERIFYINFO_PAGE_NUM = 2;

protected static int OWNER_PAGE_NUM = 3;

protected static int DOWNLOAD_PAGE_NUM = 4;

protected static int SUCCESS_PAGE_NUM = 5;

protected static int ERROR_PAGE_NUM = 6;

The class adds a field that stores an array of page handler names. The
servlet uses these to create page handler objects that actually do the work
of the servlet.

public String[] pageHandlerNames = {

"symantec.sourcebook.servlet.PHNoForm",
3-8

ESD servlet Code
"symantec.sourcebook.servlet.PHEnterInfo",

"symantec.sourcebook.servlet.PHVerifyInfo",

"symantec.sourcebook.servlet.PHOwner",

"symantec.sourcebook.servlet.PHDownload",

"symantec.sourcebook.servlet.PHSuccess",

"symantec.sourcebook.servlet.PHError"};

The getServeletInfo method returns a brief description of the servlet.
This method may be called by server administrator functions. It was
created by the Servlet wizard.

public String getServeltInfo()

{

return "Sample ESD servlet";

}

In general, the HTML pages that the ESD servlet uses send HTTP POST
requests, but when the user first invokes the servlet it may receive a GET
request. In any case, ESDServlet forwards GET requests to the method
that handles POST requests.

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

 doPost(request,response);

}

The doPost method is the center of ESDServlet .

public void doPost(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException}

The method first takes a look at the grossest characteristic of the
information received. If it is very large, then there is certainly something
wrong with it, and it should be rejected.

if(request.getContentLength() > 4096)

{

3-9

Chapter 3: Electronic Software Distribution Servlet
resp.sendError(HttpServletResponse.SC_BAD_REQUEST);

return;

}

Once the message has passed that simple test, doPost finds out what
form was submitted.

int pageNumber = getPageNumber(req);

(The getPageNumber method is shown later.)

Once doPost knows what the page number of the form is, it can get the
page handler for that page from the getPageHandler method (which is
also shown later).

PageHandler pageHandler = getPageHandler(pageNumber);

The page handler knows what the information from this form is supposed
to look like, so doPost asks the page handler if the information is valid.

Object pageData = pageHandler.validate

(getServletConfig(),req,resp);

The doPost method then asks the page handler for the page number of
the next form. It then creates a page handler for that page, and serves the
page to the user

pageNumber = pageHandler.nextPage();

pageHandler = getPageHandler(pageNumber);

pageHandler.serve(pageData,resp);

}

That is the end of the doPost method.

The next method gets the page handler for a given page number.

protected PageHandler getPageHandler(int pageNumber)

throws ServletException

{

First, the getPageHandler method gets the page handler’s name from
the list of page handler names that the class holds. It then uses that string
in a Java static method that creates an instance of a class with a given
name. Finally, it returns that new object. The method ends with some code
to handle potential errors.

String pageHandlerName = pageHandlerNames[pageNumber];

try

{

PageHandler pageHandler = (PageHandler)
3-10

ESD servlet Code
(Class.forName(pageHandlerName)).newInstance();

return pageHandler;

}

catch(Exception e)

{

}

// some sort of exception occurred trying to instantiate

throw new ServletException(

"(Order) Internal servlet error (1)");

}

The server calls the init method when it instantiates the servlet.

public void init(ServletConfig config) throws
ServletException

{

// perform standard init

super.init(config);

// try to initialize the recent transaction info

try

{

Transaction.InitializeTransactions();

}

catch(Exception e)

{

// Some exception occurred. Let server know that this

// servlet is unavailable.

UnavailableException u = new

UnavailableException(this,e + " " +

e.getMessage());

throw u;

}

}

The server calls the destroy method when the servlet is shut down.

public void destroy()

{

try

{

Transaction.WriteTransactions();

}

3-11

Chapter 3: Electronic Software Distribution Servlet
catch(IOException e) {}

super.destroy();

}

The getPageNumber method returns the current page number, which is
kept in a hidden field in each page and can be obtained from the HTTP
request. If there isn’t a page parameter available (pageString ==
null), then that means that either:

◆ this is the initial request, so this method should return “page 0” so that
the next page served up is page 1,

◆ or, this is a request to re-download the purchased program, so the
download page (SUCCESS_PAGE_NUM) should be reloaded.

public int getPageNumber(HttpServletRequest request)

{

int pageNumber = NOFORM_PAGE_NUM;

String pageString = request.getParameter("page");

if(pageString == null)

{

// we've set up the HTML so that the download page

// has a specific URL... this allows the user to
bookmark

// the page and return there if the initial

// download attempt fails

if(request.getRequestURI().startsWith("/servlet/
purchase/down"))

pageNumber = SUCCESS_PAGE_NUM;

db("request.getRequestURI()="

+request.getRequestURI());

db("getParameter(orderid)="+request.getParameter

("orderId"));

return pageNumber;

}

// ok, we have a page number, make sure it’s good and
within

// range. (It always should be unless we made an error on
one

// of our HTML forms, or a user has modified the form)

try
3-12

ESD servlet Code
{pageNumber = Integer.parseInt(pageString);

if(pageNumber >= pageHandlerNames.length)

pageNumber = NOFORM_PAGE_NUM;}

catch(NumberFormatException e)

{

pageNumber = NOFORM_PAGE_NUM;

}

return pageNumber;

}

The final two methods in this class log errors. They were used in the
debugging phase of the project.

private static void logError(String methodName,

String messageText,Exception e)

{

ByteArrayOutputStream bout = new ByteArrayOutputStream();

PrintStream p = new PrintStream(bout);

db(methodName + ": " + messageText);

if(e != null)

 {

 db(e + " " + e.getMessage());

 e.printStackTrace(p);

 db(bout.toString());

 }

}

protected static void db(String s)

{

FileOutputStream out = null;

DataOutputStream dout = null;

try

 {

 out = new FileOutputStream("debug.log",true);

 dout = new DataOutputStream(out);

 dout.writeBytes(s + "\r\n");

 dout.flush();

 dout.close();
3-13

Chapter 3: Electronic Software Distribution Servlet
 out.close();

 System.out.println(s);

 }

catch(IOException e)

 {

 try

 {

 if(dout != null) dout.close();

 if(out != null) out.close();

 }

 catch(IOException x)

 {

 }

 }

 }

}

The Transaction class

The ESD servlet uses a Transaction object to store the details of a single
transaction.

The Transaction class declares that it implements the Serializable
interface so that the class can be saved and later reloaded.

class Transaction extends Object implements Serializable

{

The class has a fairly large set of member variables that store the details of
the transaction. The first member variable is a static Hashtable that is
available to all Transaction objects. This Hashtable contains all of the
Transaction objects so that you can reach all of the other transactions if
you have any transaction.

// static transaction table shared with other threads

static Hashtable transactions;

String orderID; // ID of the order

long recordCreated;// time this record was created

boolean verified; // order ID has been verified with

// Web order

boolean accepted; // if verified is true,
3-14

ESD servlet Code
// accepted = true

// if order OK, false if

// order declined

long downloadCount;// number of times this order has

// attempted download

// pricing information

int price;

int tax;

int total;

boolean chargeTax;

// license information:

String name;

String company;

String email;

String address;

String city;

String state;

String zip;

String country;

String phone;

// authorization information

String AuthCode;

String ccOID;

The constructor loads data into the Transaction object.

public Transaction(String name,

 String email,

 String address,

 String city,

 String company,

 String state,

 String country,

 String zip,

 String phone)

{

orderID = null;

recordCreated = System.currentTimeMillis();
3-15

Chapter 3: Electronic Software Distribution Servlet
verified = false;

accepted = false;

downloadCount = 0;

// pricing information (in cents)

 price = 9900;

 tax = 817;

 total = 10717;

 chargeTax = false;

// license information:

 this.name = name;

 this.email = email;

 this.address = address;

 this.city = city;

 this.state = state;

 this.country = country;

 this.zip = zip;

 this.phone = phone;

 this.company = company;

// authroization information

AuthCode = "";

ccOID = "";

}

The findTransaction method takes an order ID and uses the static
hashtable to return the corresponding Transaction object. The
synchronized declaration insures that only one thread will try to access
the hashtable at a time. (That isn’t a problem if two threads are trying to
read the hashtable, but might be if one thread is trying to write to the
hashtable while another is reading.)

 public static synchronized Transaction findTransaction(

String orderId)

 {

Transaction t = (Transaction)
transactions.get(orderId);
3-16

ESD servlet Code
return t;

 }

The record method, which is also synchronized, saves the transaction to
disk. Since each transaction contains the hashtable of all transactions,
saving one transaction saves all of them.

public synchronized void record() throws IOException

{

transactions.put(orderID,this);

WriteTransactions();

}

The selectID method returns an ID for a new transaction. This sample
gets an ID in a way that is not secure; if you do this in a real servlet, you
should use a way of creating an ID that is guaranteed to be unique and
impossible to guess.

public synchronized void selectId() throws IOException

{

File fOrderId = new File("order.id");

RandomAccessFile inOrderId = new

RandomAccessFile(fOrderId,"rw");

// Order IDs are assured uniqueness using a

// counter on disk. Read and update the counter

// creating it if needed.

int id = 1;

if(inOrderId.length() > 0)

{

id = inOrderId.readInt();

inOrderId.seek(0);

}

inOrderId.writeInt(id+1);

inOrderId.close();

// Now add some data to the order ID to make it more

// difficult to guess.

long now = System.currentTimeMillis();

long orderid = ((((now & 0x0000000000000FFF) ^
3-17

Chapter 3: Electronic Software Distribution Servlet
0x0000000000000b2E))) |

(((long)id) << 12) ;

// ENCHANCE: to make the order ID unguessable you can

// encrypt it with a fixed key at this stage.

orderID = Long.toString(orderid,46);

}

The ESDServlet.init method calls InializeTransactions
method to load any pre-existing transations. It tries to open three files:
transactions.current , transactions.new , and
transactions.log .

public synchronized static void InitializeTransactions()

throws

ServletException,

IOException,

OptionalDataException,

ClassNotFoundException

{

File currentTransactions = new

File("transactions.current");

File newTransactions = new File("transactions.new");

The transactions.new file is a temporary file that is supposed to be
deleted, so if it exists already the servlet must have terminated abnormally.

if(newTransactions.exists())

{

System.out.println("Transaction files in an
inconsistent state");

throw new ServletException("Transaction files in
an inconsistent state");

}

// if the current transaction file exists, read it in

if(currentTransactions.exists())

{

FileInputStream fIn = new

FileInputStream(currentTransactions);

ObjectInputStream in = new ObjectInputStream(fIn);
3-18

ESD servlet Code
transactions = (Hashtable) in.readObject();

in.close();

fIn.close();

}

else

{ // if there is no transaction file, start a new one

transactions = new Hashtable();

}

}

The ESDServlet.destroy method calls the WriteTransactions
method to save the transaction table to disk.

public synchronized static void WriteTransactions()

throws IOException

{

// Remove transactions more than 48 hours old

Enumeration key = transactions.keys();

while(key.hasMoreElements())

{

String keyName = (String) key.nextElement();

Transaction t =

(Transaction)transactions.get(keyName);

if(t.recordCreated + (48 * 3600 * 1000) <

System.currentTimeMillis())

{

transactions.remove(keyName);

}

}

// write updated transactions to file

File newTrans = new File("transactions.new");

FileOutputStream fOut = new

FileOutputStream(newTrans);

ObjectOutputStream out = new

ObjectOutputStream(fOut);

out.writeObject(transactions);

out.close();

fOut.close();
3-19

Chapter 3: Electronic Software Distribution Servlet
// rename files, and delete old ones

// Note: failure during the execution of this section

// of code may leave files in an inconsistent state

if(oldTrans.exists()) oldTrans.delete();

if(currentTrans.exists())

currentTrans.renameTo(oldTrans);

newTrans.renameTo(currentTrans);

}

}

The PageData class

This class encapsulates the servlet’s information about a page.

public class PageData

{

HttpServletRequest request;

HttpServletResponse response;

ServletConfig config;

Transaction transaction;

String messageText;

public PageData(ServletConfig config,

HttpServletRequest request,

HttpServletResponse response)

{

this.config = config;

this.request = request;

this.response = response;

}

}

The PageHandler class

PageHandler is a superclass for the page handlers that know how to
handle the forms used in the ESD servlet.

public class PageHandler

{

3-20

ESD servlet Code
The page handler has a field that stores the HTML code for this page.
When the servlet tells the page handler to serve the page, the page handler
first loads the page into this field. It then calls a method that can customize
the page, and sends the customized code to the user.

public String pageHtml;

PageHandler then defines a constant that holds the base location for the
ESD servlet’s HTML pages. If you want to use ESDServlet as a basis for
your own servlets, you need to change this value.

protected static final String PAGEBASE = "private_html" +

File.separator +

"symantec" +

File.separator;

The default constructor does nothing.

public PageHandler()

{

}

The pageName method exists to return the name, or page number, of this
page. Since this is a superclass that won’t be instantiated, this version
returns nothing.

public String pageName()

 {

 return null;

 }

Next comes the serve method, which reads the HTML page, calls a
method that can customize it, and writes the resulting page. Following that
is the method that reads the HTML file. Subclasses don’t need to override
these methods.

protected void serve(Object pageData,

HttpServletResponse response)

throws IOException

{

read();

customize(pageData);

write(response);

}

protected void read() throws IOException

{

3-21

Chapter 3: Electronic Software Distribution Servlet
FileInputStream in = new FileInputStream(pageName());

byte[] b = new byte[in.available()];

in.read(b);

in.close();

pageHtml = new String(b);

}

Subclasses can override the customize method to alter the HTML based
on input to the previous page.

protected void customize(Object pageData) throws IOException

{

}

The following method serves the HTML page to the user. Subclasses don’t
need to override this.

protected void write(HttpServletResponse response)

throws IOException

{

response.setContentType("text/html");

response.setContentLength(pageHtml.length());

ServletOutputStream out = response.getOutputStream();

out.print(pageHtml);

}

Subclasses need to override the validate method so that it validates the
data the user put in the form and returns a PageData object that contains
either the page data or error information. The default version returns
null .

protected Object validate(ServletConfig
config,HttpServletRequest request,HttpServletResponse
response) throws IOException

{

 return null;

}

The nextPage method needs to pass back the number for the next page
that the user should see. The subclasses usually determine the next page
number in validate , and nextPage just passes the number back. Thus,
if information was invalid, the validate method simply sets the next
page value so that the same page is served again, probably customized
with error text.

public int nextPage()
3-22

ESD servlet Code
{

return 0;

}

The insert method replaces a special marker in the HTML file with some
specified text. A page handler can call this from its customize method.

protected void insert(String marker,String text)

{

String replaceThis = "<!--"+marker+"-->";

int pos = pageHtml.indexOf(replaceThis);

if(pos >= 0)

{String newpageHtml = "";

if(pos > 0) newpageHtml += pageHtml.substring(0,pos);

newpageHtml += text;

if(pos+replaceThis.length() < pageHtml.length())

newpageHtml +=

pageHtml.substring(pos+replaceThis.length());

pageHtml = newpageHtml;

}

}

The getParameter method returns the request parameter or, if there is
no parameter, returns a default value.

protected String getParameter(HttpServletRequest request,

String name,String defaultValue)

{

String value = request.getParameter(name);

if(value != null) return value;

return defaultValue;

}

Page handlers

The rest of the classes in the Servlet project are page handlers. They are all
fairly similar. Here is the page handler for enterinfo.html :

public class PHEnterInfo extends PageHandler

{

3-23

Chapter 3: Electronic Software Distribution Servlet
This page handler adds two member variables: the constant PAGENAME,
which has the path for the enterinfo page and the variable pagenumbe ,
which gives the number for the page that should be served next.

 private final static String PAGENAME = PAGEBASE +

"enterinfo.html";

 int pagenumber = ESDServlet.VERIFYINFO_PAGE_NUM;

The constructor doesn’t do anything.

 public PHEnterInfo()

 {

 }

The pageName method is overridden to return the value of the PAGENAME
constant. The serve method uses this to get the text of the HTML page.

 public String pageName()

 {

return PAGENAME;

 }

The nextPage method is overridden to return the value of the
pagenumber variable. The servlet code uses this to create a page handler
that will be used to serve the next page.

 public int nextPage()

 {

return pagenumber;

 }

The validate method checks the information entered in the page.

 public Object validate(ServletConfig config,

HttpServletRequest request,

HttpServletResponse response)

{

First, the method creates a PageData object. This object will eventually
store the information from the form or error text information.

PageData pageData = new
PageData(config,request,response);

String errorText = "";

The method loads the information from the form.

String name = getParameter(request,"name","");

String email = getParameter(request,"email","");

String address= getParameter(request,"address","");
3-24

ESD servlet Code
String city = getParameter(request,"city","");

String company= getParameter(request,"company","");

String state = getParameter(request,"state","");

String country= getParameter(request,"country","");

String zip = getParameter(request,"zip","");

String phone = getParameter(request,"phone","");

Next, the method does some basic validity checks on the information and
sets the error text appropriately if it finds a problem.

if(name.length() < 2) errorText += "Please enter
your full name in the name field
";

if(email.length() < 5) errorText +="Your e-mail
address is required. (It will not be sold to
spammers)
";

if(address.length() < 2)errorText += "Please provide
your full mailing address
";

if(city.length() < 2) errorText +="Please include a
city in your address
";

If there is any error text, then there was a problem with the information
entered on the form. The method sets the pagenumber so that the
enterinfo page will be served again, places the error text in the pageData
object, and returns the pageData object.

if(errorText.length() > 0)

{

pagenumber = ESDServlet.ENTERINFO_PAGE_NUM;

pageData.messageText = errorText;

return pageData;

}

If there was no problem found with the information on the form, then the
method creates a new Transaction object using that information, stores
the Transaction object in the pageData object, and returns the
pageData object.

pageData.transaction = new Transaction(name,

email,

address,

city,

company,

state,

country,

zip,

phone);
3-25

Chapter 3: Electronic Software Distribution Servlet
return pageData;

}

}

3-26

I N D E X
A
amount of memory the JVM uses, increasing, 2-

31
Analyze dialog, 2-15–2-16
AnalyzeDialog_WindowClosing method, 2-15

B
browseForURL method, 2-25

C
CGI script, and servlets, 3-1
changing the container of an object, 2-18
cleanupURLName method, 2-25
connection to a URL, opening, 2-27
container of an object, changing, 2-18
Continue button, 3-4
copyright. and splash screen, 2-28
Credit Check servlet, 3-4
creditcheck project, 3-7

D
Data object, in Weblog, 2-11
date entries

validating, 2-23–2-24
dateFormat.parse method, 2-24
default port for Web services, 3-2
destroy method, 3-11, 3-19
doGet method, 3-5, 3-9
doPost method, 3-5, 3-9
DOS window, running a Java program, 2-3
Download button, 3-4

E
enterinfo page, 3-25
extending the capabilities of a server, 3-1

F
findTransaction method, 3-16
FORM tag, 3-6, 3-7
forms in HTML, 3-6

G
GenericServlet class, 3-6
GET operation, 3-3
getPageHandler method, 3-10
getPageNumber method, 3-10, 3-12
getServeletInfo method, 3-9

H
hidden fields in HTML forms, 3-6–3-7
HTML forms, 3-6
HTTP GET, 3-3, 3-9
HTTP POST, 3-4, 3-9
HTTP request type, 3-7
HTTP requests, 3-5, 3-12
HttpServlet class, 3-5, 3-6, 3-8

I
image directory, 3-2
InializeTransactions method, 3-18
init method, 3-11, 3-18
INPUT tag, 3-6
insert method, 3-23
instance of a servlet, 3-1

J
Java programs, running, 2-3
Java Servlet interface, 3-1
javax.servlet.Servlet, 3-6
JVM, increasing memory allocation, 2-31

L
Limitation s, web log analyzer, 2-31
loadDataInstance method, 2-12

M
METHOD parameter of the FORM tag, 3-7
multiple threads, 2-14–2-16

N
nextPage method, 3-22, 3-24
Index-1

O
openFileURLDialog object, 2-25

P
page handler, 3-5
page handler names, 3-8
PageData class, 3-20
PageData object, 3-22, 3-24
PageHandler class, 3-20
PAGENAME constant, 3-24
pageName method, 3-21, 3-24
panels in wizards, 2-18
parse method, 2-27
Parser class, 2-25
private_html directory, 3-2
progress bar, 2-16
progress tracking feedback, 2-16–2-17
public_html directory, 3-2

R
record method, 3-17

S
saveDataInstance method, 2-13
saving program data, 2-11–2-14
selectID method, 3-17
Serializable interface, 2-11, 3-14
serve method, 3-24
server

extending the capabilities, 3-1
service method, 3-5, 3-6
servlet

advantages, 3-1
CGI scripts and, 3-1
definition, 3-1
instances, 3-1

Servlet interface, 3-6
Servlet wizard, 3-9
servlet’s information about a page, 3-20
servlets directory, 3-2
setDataInstance method, 2-13
splash screen, 2-28
SplashNLoad method, 2-30–2-31
stop method for threads, 2-16
string2Date method, 2-24

Submit button, 3-7
SUCCESS_PAGE_NUM, 3-12
successCGI field, 3-3, 3-4
symantec directory, 3-2
symantecsourcebookdirectory, 3-2
synchronized declaration, 3-16

T
Thread.stop method, 2-16
threads of execution, 2-14–2-16
tracking progress feedback, 2-16–2-17
TrackProgress interface, 2-16
Transaction class, 3-14
transactions.new file, 3-18

U
UI Classes, 2-31
URL

opening a connection, 2-27
URL, URLConnection classes, 2-25
URLs, form, 2-25

V
validate method, 3-22, 3-24
validateDateField method, 2-23
validatePage method, 2-21
validatePage1 method, 2-23
validation

date entries, 2-23–2-24
wizard entries, 2-21–2-23

verifyinfo.html, 3-3
virtual machine, increasing memory allocation, 2-

31

W
Web Log Analysis Tool, 2-1
Weblog

what it does, 2-1–2-2
wizard

buttons, 2-19–2-21
creating, 2-17
validating input, 2-21–2-23

WLAUtil class, 2-23–2-24, 2-25–2-27
WriteTransactions method, 3-19
Index-2

	Introduction
	Purpose
	Conventions
	How to Use This Book
	Additional Information
	What you should know
	The programs in this book

	Web Log Analysis Tool
	Overview of the Weblog application
	Using Weblog
	Starting Weblog
	Defining a report
	Editing a Report Definition
	Analyzing a log file
	Viewing a report
	Ending your Weblog session

	How Weblog works
	Serializing: saving and loading program data
	Using threads
	Giving the user progress-tracking feedback
	Creating a wizard
	Validating input with the Wizard component
	Parsing and validating date entries
	Accessing files using URL and URLConnection
	Letting the user browse for a file
	Opening a connection to a URL

	Adding a splash screen
	Displaying the splash screen during loading

	Limitations and known problems
	Limitation due to Java

	Electronic Software Distribution Servlet
	Setting up the servlet
	Operational overview of the ESD servlet
	How the servlet works
	Deeper into the classes
	HTML forms

	ESD servlet Code
	The ESDServlet project
	The ESDServlet class
	The Transaction class
	The PageData class
	The PageHandler class
	Page handlers

	Index

