
DAY 6

WEEK 1

Classes
As you learned on Day 2, “Understanding C# Programs,” classes are critical to
an object-oriented language. Classes are also critical to C#. You have seen
classes used in every example included in the book so far. Today you

• Revisit the concepts involved in object-oriented programming

• Learn how to declare a class

• Learn how to define a class

• Discover class members

• Create your own data members

• Implement properties in your classes

• Take your first serious look at namespaces

Object-Oriented Programming Revisited
On Day 2, you learned that C# is considered an object-oriented language.
You also learned that to take full advantage of C#, you should understand the
concepts of object-oriented languages. In the next few sections, you briefly
revisit the concepts you learned about in Day 2. You will then begin to see how
these concepts are applied to actual C# programs.

08 0672320711 CH06 10/1/01 11:31 AM Page 137

Recall from Day 2 the key characteristics that make up an object-oriented language:

• Encapsulation

• Polymorphism

• Inheritance

• Reuse

Encapsulation
Encapsulation is the concept of making classes (or “packages”) that contain everything
you need. In object-oriented programming, this means that you can create a class that
stores all the variables that you need and all the routines to commonly manipulate this
data. You can create a Circle class that stores information on a circle. This could include
storing the location of the circle’s center and its radius plus storing routines commonly
used with a circle. These routines could include getting the circles area, getting its cir-
cumference, changing its center point, changing its radius, and much more.

By encapsulating a circle, you allow the user to be oblivious to how the circle works.
You need to know only how to interact with the circle. This provides a shield to the inner
workings of the circle, which means that the variables within the class could be changed
and it would be invisible to the user. For example, instead of storing the radius of the cir-
cle, you could store the diameter. If you have encapsulated the functionality and the data,
making this change impacts only your class. Any programs that use your class should not
need to change. In today’s and tomorrow’s lessons, you see programs that work directly
with a Circle class.

138 Day 6

Encapsulation is often referred to as “black boxing.” Black boxing refers to
hiding the functionality or the inner workings of a process. For a circle, if
you send in the radius, you can get the area. You don’t care how it happens,
as long as you know you are getting back the correct answer.

Note

Polymorphism
Polymorphism means to have the capability of assuming many forms, which means that
the programs can work with what you send them. For example, you have used the
WriteLine() routine in several of the previous days. You have seen that you can create a
parameter field using {0}. What values does this field print? As you have seen, it can
print a variable regardless of its type or it can print another string. The WriteLine()
routine takes care of how it gets printed. The routine is polymorphic in that it adapts to
most of the types you can send it.

08 0672320711 CH06 10/1/01 11:31 AM Page 138

Classes 139

6

Using a circle as an example, you might want to call a circle object to get its area. You
can do this by using three points or by using a single point and the radius. Either way,
you expect to get the same results. Additionally, you know that a circle is a shape. As
such, a polymophic characteristic of a circle is to be capable of understanding and
reacting as a shape.

Inheritance
As you learned in Day 2, inheritance is the most complicated of the object-oriented
concepts. Inheritance is when one class (object) is an expansion of another.

In many object-oriented programming books, an animal analogy is used to illustrate
inheritance. The analogy starts with the concept of an animal as a living being.

Now consider reptiles, which are everything that an animal is, plus they are cold-blood-
ed. A reptile contains all of the features of an animal, but it also adds its own unique fea-
tures. Now consider a snake. A snake is a reptile that is long and skinny that has no legs.
It has all the characteristics of a reptile, but it also has its own unique characteristics. A
snake can be said to inherit the characteristics of a reptile. A reptile can be said to inherit
the characteristics of an animal.

On Day 11, “Inheritance,” you will see how this same concept is applied to classes and
programming.

Reuse
When you create a class, you can reuse it to create lots of objects. By using inheritance
and some of the features described previously, you can create routines that can be used
repeatedly in many programs and in many ways. By encapsulating functionality, you can
create routines that have been tested and proven to work. You won’t have to test the
details of how the functionality works, only that you are using it correctly. This makes
reusing these routines quick and easy.

Objects and Classes
On Day 2, an illustration of a cookie cutter and cookies were used to illustrate classes
and objects. Now you are done with cookies and snakes—it is time to jump into some
code.

Over the next three days you are going to learn about classes, starting with
extremely simple examples and building on them over the next several days.

Note

08 0672320711 CH06 10/1/01 11:31 AM Page 139

Defining a Class
To keep things simple, a keyword called class is used to define classes. The basic
structure of a class is in the following format:

class identifier
{

class-body ;
}

where identifier is the name given to the class and class-body is the code that makes
up the class.

The name of a class is like any other variable name that can be declared. You want to
give a class a meaningful name, something that describes what the class does.

The Microsoft .NET framework has a large number of built-in classes. You have actually
been using one since the beginning of this book: the Console class. The Console class
contains several data members and routines. You’ve already used many of these routines,
including Write and WriteLine. The class name—the identifier—of this class is
Console. The body of the Console class contains the code for the Write and WriteLine
routines. By the end of tomorrow’s lesson, you will be able to create and name your own
classes that have routines similar to the Console class.

Class Declarations
After a class is defined, you use it to create objects. A class is just a definition used to
create objects. A class by itself does not have the capability of holding information or
actually performing routines. Rather, a class is used to declare objects. The object can
then be used to hold the data and perform the routines as defined by the class.

140 Day 6

The declaration of an object is commonly referred to as instantiation. Said
differently, an object is an instance of a class.

Note

The format of declaring an object from a class is as follows:

class_name object_identifier = new class_name();

where class_name is the name of the class and object_identifier is the name of the
object being declared. For example, if you have a class called point, you could create an
object called startingPoint with the following line of code:

08 0672320711 CH06 10/1/01 11:31 AM Page 140

Classes 141

6

point startingPoint = new point();

The name of the class is point, the name of the object declared is startingPoint.
Because startingPoint is an object, it can contain data and routines if they were
defined within the point class.

In looking at this declarative line of code, you might wonder what the other items are.
Most importantly there is a keyword being used that you have not seen before; new.

As its name implies, the new keyword is used to create new items. In this case it creates a
new point. Because point is a class, an object is created. The new keyword indicates that
a new instance is to be created. In this case, the new instance is a point object.

When declaring an object with a class, you also have to provide parentheses to the class
name on the right of the assignment. This enables the class to be constructed into a new
object.

If you don’t add the construction code, new classname, you will have
declared a class, but the compiler won’t have constructed its internal
structure. You need to make sure you assign the new classname code to the
declared object name to make sure everything is constructed. You will learn
more about this initial construction in tomorrow’s lesson.

Caution

Look at the statement again:

point startingPoint = new point();

The following breaks down what is happening:

point startingPoint

The point class is used to declare an object called startingPoint. This piece of the
statement is like what you have seen with other data types, such as integers and
decimals.

startingPoint =

As with variables, you assign the result of the right side of the assignment operator (the
equal sign) to the variable on the left. In this case, the variable happens to be an object—
which you now know is an object of type point called startingPoint.

new point()

This part of the statement does the actual construction of the point object. The class
name with parentheses is a signal to construct—create—an object of the class type. The

08 0672320711 CH06 10/1/01 11:31 AM Page 141

new keyword says to reserve some room in memory of this new object. Remember, a
class is only a definition: it doesn’t store anything. The object needs to store information,
so it needs memory reserved. The new keyword reserves the memory.

Like all statements, this declaration is ended with a semicolon, which signals that the
statement is done.

The Members of a Class
Now that you know the overall structure of a class and how to create objects with a class,
it is time to look at what can be held in a class. There are two primary types of items that
can be contained within the body of a class: data members and function members.

Data members include variables and constants. These include variables of any of the
types you learned about on Day 3, “Storing Information with Variables,” and any of the
more advanced types you will learn about later. These data members can even be other
classes.

The other type of element that is part of a class’s body is function members. Function
members are routines that perform an action. These actions can be as simple as setting a
value to something more complex, such as writing a line of text using a variable number
of values—as you have seen with Write and WriteLine. Write and WriteLine are mem-
ber functions of the Console class. In tomorrow’s lesson, you will learn how to create
and use member functions of your own. For now, it is time to visit data members.

Data Members, aka Fields
Another name for a variable is a field. As stated previously, data members within
a class are variables that are members of a class.

In the point class referenced earlier, you expect a data member to store the x and y
coordinates of the point. These coordinates could be any of a number of data types;
however, if these were integers, you define the point class as such:

class point
{

int x;
int y;

}

That’s it. This is effectively the code for a very simple point class. There is one other
item that you should include for now. This is an access modifier called public. Without
adding the word public, you cannot access x or y outside the point class. A variable is
accessible only within the block you declare it, unless you indicate otherwise. In this
case, the block is the definition of the point class.

142 Day 6

NEW TERM

08 0672320711 CH06 10/1/01 11:31 AM Page 142

Classes 143

6

The change made to the point class is relatively simple. With the public accessor
added, the class becomes

class point
{

public int x;
public int y;

}

Although the point class contains two integers, you can actually use any data type within
this class. For example, you can create a FullName class that contains three strings that
store the first, middle, and last names. You can create an Address class that contains a
name class and additional strings to hold the different address pieces. You can create a
customer class that contains a long value for a customer number, and an address class, a
decimal account balance, a Boolean value for active or inactive, and more.

Accessing Data Members
When you have data members declared, you want to get to their values. As you learned,
the public accessor enables you to get to the data members from outside the class.

You cannot simply access data members from outside the class by their name. For exam-
ple, if you have a program that declares a startingPoint from the point class, it would
seem as if you should be able to get the point by using x and y—the names that are in
the point. What happens if you declare both a startingPoint and an endingPoint in
the same program? If you use x, which point is being accessed?

To access a data member, you use both the name of the object and the data member. The
member operator, which is a period, separates these. To access the startingPoint’s
coordinates, you therefore use

startingPoint.x

and

startingPoint.y

For the ending point, you use

endingPoint.x

and

endingPoint.y

Remember, a block is a section of code between two braces {}. The body of a
class is a block of code.

Note

08 0672320711 CH06 10/1/01 11:31 AM Page 143

At this time, you have the foundation to try out a program. Listing 6.1 presents the point
class. This class is used to declare two objects, starting and ending.

LISTING 6.1 point.cs—Declaring a Class with Data Members

1: // point.cs- A class with two data members
2: //--
3:
4: class point
5: {
6: public int x;
7: public int y;
8: }
9:
10: class pointApp
11: {
12: public static void Main()
13: {
14: point starting = new point();
15: point ending = new point();
16:
17: starting.x = 1;
18: starting.y = 4;
19: ending.x = 10;
20: ending.y = 11;
21:
22: System.Console.WriteLine(“Point 1: ({0},{1})”,
23: starting.x, starting.y);
24: System.Console.WriteLine(“Point 2: ({0},{1})”,
25: ending.x, ending.y);
26: }
27: }

Point 1: (1,4)
Point 2: (10,11)

A simple class called point is declared in lines 4 to 8.This class follows the
structure that was presented earlier. In line 4, the class keyword is being used,

followed by the name of the class, point. Lines 5 and 8 contain the braces that enclose
the body of the class. Within the body of this class, two integers are declared, x and y.
These are each declared as public so that you can use them outside of the class.

Line 10 contains the start of the main portion of your application. It is interesting to note
that the main portion of your application is also a class! You will learn more about this later.

Line 12 contains the main routine that you should now be very familiar with. In lines 14
and 15, two objects are created using the point class, which follow the same format that

144 Day 6

OUTPUT

ANALYSIS

08 0672320711 CH06 10/1/01 11:31 AM Page 144

Classes 145

6

was described earlier. In lines 17 to 20, values are set for each of the data members of
the point objects. In line 17, the value 1 is assigned to the x data member of the starting
class. The member operator, the period, separates the member name from the object
name. Lines 18, 19, and 20 follow the same format.

Line 22 contains a WriteLine routine, which you have also seen before. This one is
unique because you print the values stored within the starting point object. The values
are stored in starting.x and starting.y, not just x and y. Line 24 prints the values for
the ending point.

Using Data Members
Listing 6.1 showed you how to assign a value to a data member as well as how to get its
value. What if you want to do something more complex then a simple assignment or a
simple display?

The data members of a class are like any other variable type. You can use them in opera-
tions, control statements, or anywhere that a regular variable can be accessed. Listing 6.2
expands on the use of the point class. In this example, the calculation is performed to
determine the length of a line between two points. If you’ve forgotten your basic algebra-
ic equation for this, Figure 6.1 illustrates the calculation to be performed.

FIGURE 6.1
Calculating line length
from two points.

C
Starting (x1, y1)

Ending (x2, y2)

y2 – y1
b

x2 – x1
a

c2 = a2 + b2

 or

(x2 – x1)2 + (y2 – y1)2c =

LISTING 6.2 point2.cs—Working with Data Members

1: // line.cs- Calculate the length of a line.
2: //--
3:
4: class point
5: {
6: public int x;
7: public int y;
8: }
9:
10: class lineApp

08 0672320711 CH06 10/1/01 11:31 AM Page 145

LISTING 6.2 continued

11: {
12: public static void Main()
13: {
14: point starting = new point();
15: point ending = new point();
16: double line;
17:
18: starting.x = 1;
19: starting.y = 4;
20: ending.x = 10;
21: ending.y = 11;
22:
23: line = System.Math.Sqrt((ending.x - starting.x)*(ending.x -
➥starting.x) +
24: (ending.y - starting.y)*(ending.y -
➥starting.y));
25:
26: System.Console.WriteLine(“Point 1: ({0},{1})”,
27: starting.x, starting.y);
28: System.Console.WriteLine(“Point 2: ({0},{1})”,
29: ending.x, ending.y);
30: System.Console.WriteLine(“Length of line from Point 1 to Point 2:
➥{0}”,
31: line);
32: }
33: }

Point 1: (1,4)
Point 2: (10,11)
Length of line from Point 1 to Point 2: 11.4017542509914

This listing is very similar to Listing 6.1. The biggest difference is the addition of
a data member and some calculations that determine the length of a line. In line

16, you see that the new data member is declared of type double and called line. This
variable will be used to hold the result of the length of the line between the two declared
points.

Lines 23 and 24 are actually a single statement. This statement looks more complex than
it is. Other than the System.Math.Sqrt part, you should be able to follow what the line is
doing. Sqrt is a routine within the System.Math object that calculates the square root of
a value. If you compare this formula to Figure 6.2, you will see that it is a match. The
end result is the length of the line. The important thing to note is that the data members
are being used within this calculation in the same manner that any other variable would
be used. The only difference is the naming scheme.

146 Day 6

OUTPUT

ANALYSIS

08 0672320711 CH06 10/1/01 11:31 AM Page 146

Classes 147

6

Using Classes as Data Members
It was stated earlier that you can nest one class within another. A class is another type of
data. As such, an object declared with a class type—which is just an advanced variable
type—can be used in the same places as any other variable. Listing 6.3 presents an
example of a line class. This class is composed of two points, starting and ending.

LISTING 6.3 line2.cs—Nested Classes

1: // line2.cs- A class with two data members
2: //--
3:
4: class point
5: {
6: public int x;
7: public int y;
8: }
9:
10: class line
11: {
12: public point starting = new point();
13: public point ending = new point();
14: }
15:
16: class lineApp
17: {
18: public static void Main()
19: {
20: line myLine = new line();
21:
22: myLine.starting.x = 1;
23: myLine.starting.y = 4;
24: myLine.ending.x = 10;
25: myLine.ending.y = 11;
26:
27: System.Console.WriteLine(“Point 1: ({0},{1})”,
28: myLine.starting.x, myLine.starting.y);
29: System.Console.WriteLine(“Point 2: ({0},{1})”,
30: myLine.ending.x, myLine.ending.y);
31: }
32: }

FIGURE 6.2
The myLine class’s
data members. myLine

point starting
int x
int y

point ending
int x
int y

08 0672320711 CH06 10/1/01 11:31 AM Page 147

Point 1: (1,4)
Point 2: (10,11)

Listing 6.3 is very similar to the previous listings. The point class that you are
coming to know and love is defined in lines 4 to 8. There is nothing different

about this from what you have seen before. In lines 10 to 14, however, you see a second
class being defined. This class, called line, is composed of two variables that are of type
point, which is a class. These two variables are called starting and ending. When an
object is declared using the line class, the line class will in turn create two point
objects.

Continuing with the listing, you see in line 20 that a new line is called. This new line is
given the name myLine. Line 20 follows the same format you saw earlier for creating an
object from a class.

Lines 22 to 25 access the data members of the line class and assign them values. It is
beginning to look a little more complex; however, looks can be deceiving. If you break
this down, you will see that it is relatively straightforward. In line 22, you assign the con-
stant value 1 to the variable myLine.starting.x. In other words, you are assigning the
value 1 to the x member of the starting member of myLine. Going from the other direc-
tion, you can say that you are assigning the value 1 to the myLine object’s starting
member’s x member. It is like a tree. Figure 6.2 illustrates the myLine class’s members
and their names.

Nested types
On Day 3, you learned about the different standard data types that could be used. As you
saw in Listing 6.3, an object created with a class can be used in the same places as any
other variable created with a data type.

When used by themselves, classes really do nothing—they are only a description. For
example, in Listing 6.3, the point class in lines 4 to 8, is only a description; nothing is
declared and no memory is used. This description defines a type. In this case, the type is
the class, or specifically a point.

It is possible to nest a type within another class. If point is going to be used only within
the context of a line, it could be defined within the line class. This would enable point
objects to be used in the line class.

The code for the nested point type is

class line
{

public class point
{

148 Day 6

OUTPUT

ANALYSIS

08 0672320711 CH06 10/1/01 11:31 AM Page 148

Classes 149

6

public int x;
public int y;

}

public point starting = new point();
public point ending = new point();

}

One additional change was made. The point class had to be declared as public as well.
If you don’t declare the type as public, you get an error. The reason for the error should
make sense if you think about it. How can the parts of the point or the point objects be
public if the point itself isn’t public?

Static Variables
There are times when you will want a bunch of objects declared with the same class to
share a value. For example, you might want to declare a number of line objects that all
share the same originating point. If one line object changes the originating point, you
want all lines to change it.

To share a single data value across all the objects declared by a single class, you add the
static modifier. Listing 6.4 revisits the line class. This time, the same starting point is
used for all objects declared with the line class.

LISTING 6.4 statline.cs—Using the static Modifier with Data Members

1: // statline.cs- A class with two data members
2: //--
3:
4: class point
5: {
6: public int x;
7: public int y;
8: }
9:
10: class line
11: {
12: static public point origin= new point();
13: public point ending = new point();
14: }
15:
16: class lineApp
17: {
18: public static void Main()
19: {
20: line line1 = new line();

08 0672320711 CH06 10/1/01 11:31 AM Page 149

LISTING 6.4 continued

21: line line2 = new line();
22:
23: // set line origin
24: line.origin.x = 1;
25: line.origin.y = 2;
26:
27:
28: // set line1’s ending values
29: line1.ending.x = 3;
30: line1.ending.y = 4;
31:
32: // set line2’s ending values
33: line2.ending.x = 7;
34: line2.ending.y = 8;
35:
36: // print the values...
37: System.Console.WriteLine(“Line 1 start: ({0},{1})”,
38: line.origin.x, line.origin.y);
39: System.Console.WriteLine(“line 1 end: ({0},{1})”,
40: line1.ending.x, line1.ending.y);
41: System.Console.WriteLine(“Line 2 start: ({0},{1})”,
42: line.origin.x, line.origin.y);
43: System.Console.WriteLine(“line 2 end: ({0},{1})\n”,
44: line2.ending.x, line2.ending.y);
45:
46: // change value of line2’s starting point
47: line.origin.x = 939;
48: line.origin.y = 747;
49:
50: // and the values again...
51:
52: System.Console.WriteLine(“Line 1 start: ({0},{1})”,
53: line.origin.x, line.origin.y);
54: System.Console.WriteLine(“line 1 end: ({0},{1})”,
55: line1.ending.x, line1.ending.y);
56: System.Console.WriteLine(“Line 2 start: ({0},{1})”,
57: line.origin.x, line.origin.y);
58: System.Console.WriteLine(“line 2 end: ({0},{1})”,
59: line2.ending.x, line2.ending.y);
60: }
61: }

Line 1 start: (1,2)
line 1 end: (3,4)
Line 2 start: (1,2)
line 2 end: (7,8)

150 Day 6

OUTPUT

08 0672320711 CH06 10/1/01 11:31 AM Page 150

Classes 151

6

Line 1 start: (939,747)
line 1 end: (3,4)
Line 2 start: (939,747)
line 2 end: (7,8)

If you try to access a static data member with an object name, such as line1,
you will get an error. You must use the class name to access a static data
member.

Caution

Listing 6.4 is not much different from what you have seen before. The biggest
difference is in line 12, where the origin point is declared as static in addition

to being public. The static keyword makes a big difference in this line class. Instead
of each object that is created from the line class containing an origin point, there is only
one origin point that is shared by all instances of line.

Line 18 is the beginning of your Main routine. Lines 20 and 21 declare two line objects
called line1 and line2. Lines 28 and 29 set the ending point of line1, and lines 33 and
34 set the ending point of line2. Going back to lines 24 and 25, you see something
different from what you have seen before. Instead of setting the origin point of line1 or
line2, these lines set the point for the class name, line. This is important. If you try to
set the origin on line1 or line2, you will get a compiler error. In other words, the
following line of code is an error:

line1.origin.x = 1;

Because the origin object is declared static, it is shared across all objects of type line.
Because neither line1 nor line2 own this value, they cannot be used directly to set the
value. Rather, you must use the class name. Remember, a variable declared static in a
class is owned by the class, not the individual objects that are instantiated.

Lines 37 to 44 print the origin point and ending point for line1 and line2. Again,
notice that the class name is used to print the origin values, not the object name. Lines
47 and 48 change the origin, and the final part of the program prints the values again.

ANALYSIS

A common use of a static data member is as a counter. Each time an object
does something, it can increment the counter for all the objects.

Note

08 0672320711 CH06 10/1/01 11:31 AM Page 151

The Application Class
If you haven’t already noticed, there is a class being used in all your applications that has
not been discussed. If you look at line 16 of Listing 6.4, you see the following code:

class lineApp

You will notice a similar class line in every application you have entered in this book. C#
is an object-oriented language. This means everything is an object—even your applica-
tion. To create an object, you need a class to define it. Listing 6.4’s application is
lineApp. When you execute the program, the lineApp class is instantiated and creates a
lineApp object, which just happens to be your program!

Like what you have learned above, your application class declares data members. In
Listing 6.4, the lineApp class’s data members are two classes: line1 and line2. There is
additional functionality in this class as well. In tomorrow’s lesson, you will learn that this
additional functionality can be included in your classes as well.

Properties
Earlier it was stated that one of the benefits of an object-oriented program is the ability
to control the internal representation or access to data. In the examples used so far in
today’s lesson, everything has been public, so access has been freely given to any code
that wants to access the data members.

In an object-oriented program, you want to have more control over who can and can’t get
to data. In general, you won’t want code to access data members directly. If you allow
code to directly access these data members, you might lock yourself into being unable to
change the data types of the values.

C# provides a concept called properties to enable you to create object-oriented fields
within your classes. Properties use the keywords get and set to get the values from your
variables and set the values in your variables. Listing 6.5 illustrates the use of get and
set with the point class that you used earlier.

LISTING 6.5 prop.cs—Using Properties

1: // prop.cs- Using Properties
2: //--
3:
4: class point
5: {
6: int my_X; // my_X is private
7: int my_Y; // my_Y is private

152 Day 6

08 0672320711 CH06 10/1/01 11:31 AM Page 152

Classes 153

6

LISTING 6.5 continued

8:
9: public int x
10: {
11: get
12: {
13: return my_X;
14: }
15: set
16: {
17: my_X = value;
18: }
19: }
20: public int y
21: {
22: get
23: {
24: return my_Y;
25: }
26: set
27: {
28: my_Y = value;
29: }
30: }
31: }
32:
33: class MyApp
34: {
35: public static void Main()
36: {
37: point starting = new point();
38: point ending = new point();
39:
40: starting.x = 1;
41: starting.y = 4;
42: ending.x = 10;
43: ending.y = 11;
44:
45: System.Console.WriteLine(“Point 1: ({0},{1})”,
46: starting.x, starting.y);
47: System.Console.WriteLine(“Point 2: ({0},{1})”,
48: ending.x, ending.y);
49: }
50: }

Point 1: (1,4)
Point 2: (10,11)OUTPUT

08 0672320711 CH06 10/1/01 11:31 AM Page 153

Listing 6.5 creates properties for both the x and y coordinates of the point class.
The point class is defined in lines 4 to 31. Everything on these lines is a part of

the point class’s definition. In lines 6 and 7, you see that two data members are created.
These are called my_X and my_Y. Because these are not declared as public, they cannot
be accessed outside the class. They are considered private variables. You will learn more
about keeping things private on Day 8, “ Advanced Data Storage: Structures,
Enumerators, and Arrays.”

Lines 9 to 19 and lines 20 to 30 operate exactly the same, except the first set of lines
uses the my_X variable and the second set uses the my_Y variable. These sets of lines cre-
ate the property abilities for the my_X and my_Y variables.

Line 9 looks like just another declaration of a data member. In fact, it is. In this line, you
declare a public integer variable called x. Note that there is no semicolon at the end of
this line; therefore, the declaration of the member variable is not complete. Rather, it also
includes what is in the following code block in lines 10 to 19. Within this block of code
you have two commands. Line 11 is a get statement, which is called whenever a pro-
gram tries to get the value of the data member being declared—in this case, x. For exam-
ple, if you assign the value of x to a different variable, you get the value of x and set it
into the new variable. The set statement in line 15 is called whenever you are setting a
value into the x variable. For example, setting x equal to 10 places the value of 10 into x.

When a program gets the value of x, the get property in line 11 is called. This executes
the code within the get, which is line 13. Line 13 returns the value of my_X, which is the
private variable in the point class.

When a program places a value into x, the set property in line 15 is called. This executes
the code within the set, which is line 17. Line 17 sets something called value into the
private variable, my_X, in the point class. value is the value being placed into x. (It is
great when a name actually describes the contents.) For example, value is 10 in the
following statement:

x = 10;

This statement places the value of 10 into x. The set property within x places this value
into my_X.

Looking at the main application in lines 33 to 50, you should see that x is used as it had
been used before. There is absolutely no difference to how you use the point class. The
difference is that the point class could be changed to store my_X and my_Y differently and
it would not impact the program.

Although the code in lines 9 to 30 is relatively simple, it doesn’t have to be. You can do
any coding and any manipulation you want within the get and set. You don’t even have
to write to another data member!

154 Day 6

ANALYSIS

08 0672320711 CH06 10/1/01 11:31 AM Page 154

Classes 155

6

A First Look at Namespaces
As you begin to learn about classes, it is important to know that there is a large number
of classes available that do a wide variety of functions. The .NET framework provides
a substantial number of base classes that you can use. Additionally, you can obtain
third-party classes that you can use.

DO make sure you understand data members and the class information presented in
today’s lesson before going to Day 7.

DO use property accessors to access your class’s data members in programs you create.

DO

Day 16, “Using the .NET Base Classes” focuses specifically on using a number
of key .NET base classes.

Note

As you continue through this book, you will be exposed to a number of key classes.
You’ve actually used a couple of base classes already. As mentioned earlier, Console is a
base class. You also learned that Console has a number of member routines called Write
and WriteLine. For example, the following writes my name to the console:

System.Console.WriteLine(“Bradley L. Jones”);

You now know that “Bradley L. Jones” is a literal. You know that WriteLine is a
routine that is a part of the Console class. You even know that Console is an object
declared from a class. This leaves System.

Because of the number of classes, it is important that they be organized. Classes can be
grouped together into namespaces. A namespace is a named grouping of classes. The
Console class is a part of the System namespace.

System.Console.WriteLine is a fully qualified name. With a fully qualified name, you
point directly to where the code is located. C# provides a shortcut method for using
classes and methods that doesn’t require you to always include the full namespace name.
This is accomplished with the using keyword.

The using keyword enables you to include a namespace in your program. When the
namespace is included, the program knows to search the namespace for routines and
classes that might be used. The format for including a namespace is

using namespace_name

08 0672320711 CH06 10/1/01 11:31 AM Page 155

where namespace_name is the name of the namespace or the name of a nested name-
space. For example, to include the System namespace, you include the following line of
code near the top of your listing:

using System;

If you include this line of code, you do not need to include the System section when
calling classes or routines within the namespace. Listing 6.6 calls the using statement to
include the System namespace.

LISTING 6.6 namesp.cs—Using using and Namespaces

1: // namesp.cs- Namespaces and the using keyword
2: //--
3:
4: using System;
5:
6: class name
7: {
8: public string first;
9: public string last;
10: }
11:
12: class NameApp
13: {
14: public static void Main()
15: {
16: // Create a name object
17: name you = new name();
18:
19: Console.Write(“Enter your first name and press enter: “);
20: you.first = Console.ReadLine();
21: System.Console.Write(“\n{0}, enter your last name and press enter: “,
22: you.first);
23: you.last = System.Console.ReadLine();
24:
25: Console.WriteLine(“\nData has been entered.....”);
26: System.Console.WriteLine(“You claim to be {0} {1}”,
27: you.first, you.last);
28: }
29: }

Enter your first name and press enter: Bradley

Bradley, enter your last name and press enter: Jones

Data has been entered.....
You claim to be Bradley Jones

156 Day 6

OUTPUT

08 0672320711 CH06 10/1/01 11:31 AM Page 156

Classes 157

6

Line 4 of Listing 6.6 is the focus point of this program. The using keyword
includes the System namespace; when you use functions from the Console class,

you don’t have to fully qualify their names. You see this in lines 19, 20, and 25. By
including the using keyword, you are not precluded from continuing to use fully quali-
fied names, as lines 21, 23, and 26 show. There is, however, no need to fully qualify
names, because the namespace was included.

This program uses a second routine from the Console class called ReadLine. As you can
see by running this program, the ReadLine routine reads what is entered by users up to
the time they press Enter. This routine returns what the user enters. In this case, the text
entered by the user is assigned with the assignment operator to one of the data members
in the name class.

Nested Namespaces
Multiple namespaces can be stored together, and also are stored in a namespace. If a
namespace contains other namespaces, you can add them to the qualified name, or you
can include the sub-namespace qualified in a using statement. For example, the System
namespace contains several other namespaces, including ones called Drawing, Data, and
Windows.Forms. When using classes from these namespaces, you can either qualify these
names or you can include them with using statements. To include a using statement for
the Data namespace within the System namespace, you enter the following:

using System.Data;

Summary
Today’s and tomorrow’s lessons are among two of the most important lessons in this
book. Classes are the heart of object-oriented programming languages and therefore are
the heart and key to C#. In today’s lesson, you revisited the concepts of encapsulation,
polymorphism, inheritance, and reuse. You then learned how to define the basic structure
of a class and how to create data members within your class. You learned one of the first
ways to encapsulate your program when you learned how to create properties using the
set and get accessors. The last part of today’s lesson introduced you to namespaces and
the using statement.

The bold text in the output is text that I entered. You can enter any text in
its place. I suggest your own name rather than mine!

Note

ANALYSIS

08 0672320711 CH06 10/1/01 11:31 AM Page 157

Q&A
Q Would you ever use a class with just data members?

A Generally you would not use a class with just data members. The value of a class
and of object-oriented programming is the ability to encapsulate both functionality
and data into a single package. You learned about only data today. In tomorrow’s
lesson, you learn how to add the functionality.

Q Should all data members always be declared public so people can get to them?

A Absolutely not! Although many of the data members were declared as public in
today’s lesson, there are times when you don’t want people to get to your data for a
number of reasons. One reason is to allow the ability to change the way the data is
stored.

Q It was mentioned that there are a bunch of existing classes. How can I find out
about these?

A Microsoft provided a bunch of classes called the .NET base classes. Microsoft also
has provided documentation on what each of these classes can do. The classes are
organized by namespace. At the time this book was written, the only way to get
any information on them was through the use of online help. Microsoft included a
complete references section for the base classes. You will learn more about the
base classes on Day 19 of this book.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. What are the four characteristics of an object-oriented program?

2. What two key things can be stored in a class?

3. What is the difference between a data member declared as public and one that has-
n’t been declared as public?

4. What does adding the keyword static do to a data member?

5. What is the name of the application class in Listing 6.2?

6. What commands are used to implement properties?

158 Day 6

08 0672320711 CH06 10/1/01 11:31 AM Page 158

Classes 159

6

7. When is value used?

8. Is Console a class, a data member, a namespace, a routine, or a type?

9. Is System a class, a data member, a namespace, a routine, or a type?

10. What keyword is used to include a namespace in a listing?

Exercises
1. Create a class to hold the center of a circle and its radius.

2. Add properties to the Circle class created in exercise 1.

3. Create a class that stores an integer called MyNumber. Create properties for this
number. When the number is stored, multiply it by 100. Whenever it is retrieved,
divide it by 100.

4. BUG BUSTER: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?
1:// A bug buster program
2:// Is something wrong? Or not?
3://---
4: using System;
5: using System.Console;
6:
7: class name
8: {
9: public string first;
10: }
11:
12: class NameApp
13: {
14: public static void Main()
15: {
16: // Create a name object
17: name you = new name();
18:
19: Write(“Enter your first name and press enter: “);
20: you.first = ReadLine();
21: Write(“\nHello {0}!”, you.first);
22: }
23: }

5. Write a class called die that will hold the number of sides of a die, sides, and the
current value of a roll, value.

6. Use the class in exercise 5 in a program that declares two dice objects. Set values
into the side data members. Set random values into the stored roll values. Note,
see Listing 5.3 for help with this program.

08 0672320711 CH06 10/1/01 11:31 AM Page 159

