
DAY 16

WEEK 2

Creating Windows Forms
The base class libraries from Microsoft provide a number of classes for creating
and working with forms-based windows applications, including the creation of
Windows forms and controls. Today, you

• Learn how to create a Windows form

• Customize the look and feel of a form

• Ad controls to a Windows form

• Work with text boxes, labels, and more

• Customize the look of a control by setting its properties

• Associate events with a control

Working with Windows and Forms
Most operating systems today use event-driven programming and forms to
interact with users. If you have done development for Microsoft Windows, you
most likely used a set of routines within the Win32 libraries that helped you to

22 0672320711 CH16 10/1/01 11:36 AM Page 459

create windows and forms. Yesterday you learned about the Base Class Libraries (BCL).
Within the BCL is a set of classes for doing similar windows and forms development.
The benefit of the classes in the base classes is that they can be used by any of the pro-
gramming languages within the framework. Additionally, they have been created to make
developing forms-based applications simple.

Creating Windows Forms
To create a windows form application, you create a class that inherits from the Form

class. The Form class is located within the System.Windows.Forms namespace. Listing
16.1 presents firstfrm.cs, which is the code required to create what is probably the most
minimal windows form application.

LISTING 16.1 firstfrm.csA Simple Windows Form Application

1: // firstfrm.cs - A super simplistic windows form application
2: //--
3:
4: using System.Windows.Forms;
5:
6: public class frmHelloApp : Form
7: {
8: public static void Main(string[] args)
9: {
10: frmHelloApp frmHello = new frmHelloApp();
11: Application.Run(frmHello);
12: }
13: }

As you can see, this listing is extremely short when you consider what it can do. To see
what it can do though, you need to compile it. In the next section, you’ll see what you
need to do in order to compile this listing.

Compiling Options
Compiling Listing 16.1 needs to be done differently than you have done before. You
might need to include a reference in the compile command to the base classes you are
using, which was briefly covered yesterday.

The Form classes are contained within an assembly called System.Windows.Forms.dll.
You might need to include a reference to this assembly when you compile the program.
Just including the using statement at the top of a listing does not actually include any

460 Day 16

22 0672320711 CH16 10/1/01 11:36 AM Page 460

Creating Windows Forms 461

16

files in your program; it provides only a reference to a point within the namespace stored
in the file. As you have learned and seen, this enables you to use a shortened version of
the name rather than a fully qualified name. Most of the common windows form controls
and forms functionality is within this assembly.

To ensure that this assembly is used when you compile your program, you use the refer-
ence command-line parameter when you compile. This is /reference:filename, where
filename is the name of the assembly. Using the Forms assembly to compile the
firstfrm.cs program in Listing 16.1, you type the following command line:

csc /reference:System.Windows.Forms.dll firstfrm.cs

Alternatively, you can shorten /reference: to just /r:. When you execute the compile
command, your program will execute.

If you execute the firstfrm application from the command prompt, you will see the win-
dow in Figure 16.1 displayed.

FIGURE 16.1
The firstfrm applica-
tion’s form.

This is exactly what you want. But wait. If you run this program from directly within an
operating system such as Microsoft Windows, you will notice a slightly different result.
The result will be a command-line box as well as the windows form (See Figure 16.2).
The command-line dialog is not something you want created.

To stop this from displaying, you need to tell the compiler that you want the program
created to be targeted to a Microsoft Windows operating system. This is done using the
/target: flag with the winexe option. You can use /t: as an abbreviation. Recompiling
the firstfrm.cs program in Listing 16.1 with the following command results in the solu-
tion wanted:

csc /r:System.Windows.Forms.dll /t:winexe firstfrm.cs

When you execute the program, it does not first create a command window.

22 0672320711 CH16 10/1/01 11:36 AM Page 461

Analyzing Your First Windows Form Application
Now that you can compile and execute a windows form application, you should begin
understanding the code. Look back at the code in Listing 16.1.

In line 4, the listing uses the System.Windows.Forms namespace, which enables the Form
and Application class names to be shortened. In line 6, this application is in a class
called frmHelloApp. The new class you are creating inherits from the Form class, which
provides all the basic functionality of a Windows form.

462 Day 16

FIGURE 16.2
The actual display
from the firstfrm
application.

You should be aware that some of the assemblies might be automatically
included when you compile. For example, development tools such as
Microsoft Visual C# include a few assemblies by default. If an assembly is not
included, you get an error when you compile, stating that an assembly
might be missing.

Note

As you will learn in today’s lesson, the System.Windows.Forms namespace
also includes controls, events, properties, and other code that will make
your windows forms more usable.

Note

With the single line of code (line 4), you have actually created the Forms application
class. In line 10, you instantiate an object from this class. In line 11, you call the Run
method of the Application class. This is covered in more detail in a moment. For now,
know that it causes the application to display the form and keep running until you close

22 0672320711 CH16 10/1/01 11:36 AM Page 462

Creating Windows Forms 463

16

the form. You could call the Show method of the Form class instead by replacing line 11
with the following:

frmHello.Show();

Although this seems more straightforward, you will find the application ends with a flaw.
The program shows the form and then moves on to the next line, which is the end of the
program. Because the end of the program is reached, the processing ends and the form
closes. This is not the result you want. The Application class gets around this problem.

Later today, you will learn about a form method that will display a form and
wait.

Note

The Application.Run Method
A windows application is an event-driven program that will generally display a form
containing controls. The program then spins in a loop until the user does something on
the form or within the windowed environment. Messages are created whenever some-
thing occurs. These messages cause an event to occur. If there is an event handler for a
given message, it will be executed. If there is not, the loop will continue. Figure 16.3
illustrates this looping.

FIGURE 16.3
Flow of a standard
windows program.

Anything
happen

No

Yes

Start Windows Loop

Kick off
event

Display
form

22 0672320711 CH16 10/1/01 11:36 AM Page 463

As you can see, the loop never seems to end. Actually, an event can end the program.
The basic form that you inherit from (Form) includes the close button as well as a close
item in the Command menu. These controls can kick off an event that closes the form
and ends the loop.

By now you should be guessing what the Application class does for you—or more
specifically what the Application class’s Run method does for you. The Run method
takes care of creating the loop and keeping the program running until an event that ends
the program loop is executed. In the case of Listing 16.1, selecting the close button on
the form or selecting the Close option on the command menu causes an event to be fired
that will end the loop and thus close the form.

The Application.Run method also displays a form for you. Line 11 of Listing 16.1
receives a form object—frmHello. This is an object derived from the Form class. The
Application.Run method displays this form and then loops.

464 Day 16

The loop created by the Application class’s Run method actually processes
messages that are created. These messages can be created by the operating
system, your application, or other applications that are running. The loop
will process these methods. For example, when you click a button, there will
be a number of messages created. This will include messages for a mouse
down, mouse up, button click, and more. If a message matches with an
event handler, the event handler will be executed. If no event handler is
defined, the message is ignored.

Note

Customizing a Form’s Look and Feel
In the previous listing, you saw a basic form presented. There are a number of proper-
ties, methods, and events associated with the Form class—too many to cover in this book.
However, it is worth touching on a few of them. You can check the online documentation
for a complete accounting of all the functionality available with this class.

Caption Bar on a Form
Listing 16.1 presented a basic, blank form. The next few listings continue to work with
this blank form; however, with each listing in today’s lesson, you will learn to take a lit-
tle more control of the form.

22 0672320711 CH16 10/1/01 11:36 AM Page 464

Creating Windows Forms 465

16

The form from Listing 16.1 comes with a number of items already available, including
the control menu and the minimize, maximize, and close buttons. You can control
whether these features are on or off with your forms by setting properties:

ControlBox Determines whether the control box is displayed.

HelpButton Indicates whether a help button is displayed on the caption
of the form. This will be displayed only if both the
MaximizeBox and MinimizeBox values are false.

MaximizeBox Indicates whether the maximum button is included.

MinimizeBox Indicates whether the minimize button is included.

Text The Caption for the form.

Some of these values impact others. For example, the HelpButton will display only if
both the MaximizeBox and MinimizeBox properties are false (turned off). Listing 16.2
gives you a short listing that enables you to play with these values; Figure 16.4 shows
the output. Enter this listing, compile it, and run it. Remember to include the /t:winexe
flag when compiling.

LISTING 16.2 form2.cs—Sizing a Form

1: // form2.cs - Caption Bar properties
2: //--
3:
4: using System.Windows.Forms;
5:
6: public class frmHelloApp : Form
7: {
8: public static void Main(string[] args)
9: {
10: frmHelloApp frmHello = new frmHelloApp();
11:
12: // Caption bar properties
13: frmHello.MinimizeBox = true;
14: frmHello.MaximizeBox = false;
15: frmHello.HelpButton = true;
16: frmHello.ControlBox = true;
17: frmHello.Text = @”My Form’s Caption”;
18:
19: Application.Run(frmHello);
20: }
21: }

22 0672320711 CH16 10/1/01 11:36 AM Page 465

This listing is easy to follow. In line 6, a new class is created called frmHelloApp
that inherits from the Form class. In line 10, a new form object is instantiated

from the Application class. This form has a number of caption bar values set in lines 13
to 17. In line 19, the Run method of the Application class is called to display the form.
You should look at the output in Figure 16.4. Both the Maximize and Minimize buttons
are displayed; however, the Maximize button is to be active. This is because you set it to
false in line 14. If you set both values to false, neither button will show.

You should also notice that the Help button is turned to true in line 15. The Help button
displays only if both the Minimize and Maximize buttons are turned off (false). This
means that line 15 is ignored. Change the property in line 13 so that the resulting proper-
ties in lines 14 to 16 are the following:

13: frmHello.MinimizeBox = false;
14: frmHello.MaximizeBox = false;
15: frmHello.HelpButton = true;
16: frmHello.ControlBox = true;

Recompile and run this program. The new output will be Figure 16.5.

466 Day 16

FIGURE 16.4
Output for Listing
16.2.

ANALYSIS

FIGURE 16.5
Output with a help
button.

OUTPUT

22 0672320711 CH16 10/1/01 11:36 AM Page 466

Creating Windows Forms 467

16

As you can see, the output reflects the values that have been set.

One additional combination is worth noting. When you set ControlBox to false, the
Close button and the Control Box are both hidden. Additionally, if ControlBox,
MinimizeBox, and MaximizeBox are all set to false and if there is no text for the caption,
the caption bar will be completely gone. Remove line 17 from Listing 16.2 and set the
values for the properties in lines 13 to 16 to false. Recompile and run the program. The
output you will receive is displayed in Figure 16.6.

You might wonder why you would want to remove the caption bar. One possible reason
is to display a splash screen. You’ll learn more about creating a splash screen later.

FIGURE 16.6
Output without the
caption bar.

The Size of a Form
The next thing to take control of is the form’s size. There are a number of methods and
properties that can be used to manipulate the form’s shape and size. Table 16.1 presents
the ones used here.

TABLE 16.1 Sizing Functionality in the Form Class

AutoScale The form automatically adjusts itself, based on the font and/or
controls used on it.

AutoScaleBaseSize The base size used for autoscaling the form.

AutoScroll The form will have the automatic capability of scrolling.

AutoScrollMargin The size of the margin for the auto-scroll.

AutoScrollMinSize The minimum size of the auto-scroll.

In Microsoft Windows, Alt+F4 closes the current window. If you disable the
Control Box, you end up removing the close button as well. You’ll need
Alt+F4 to close the window!

Note

22 0672320711 CH16 10/1/01 11:36 AM Page 467

TABLE 16.1 continued

AutoScrollPosition The location of the auto-scroll position.

ClientSize The size of the client area of the form.

DefaultSize The protected property that sets the default size of the form.

DesktopBounds The size and location of the form.

DesktopLocation The location of the form.

Height The height of the form

MaximizeSize The maximum size for the form.

MinimizeSize The minimum size for the form.

Size The size of the form. set or get a Size object that contains an x,
y value.

SizeGripStyle The style of the size grip used on the form.
A value from the SizeGripStyle enumerator. Values are Auto
(automatically displayed when needed), Hide (hidden), Show
(always shown).

StartPosition The starting position of the form. This is a value from the
FormStartPosition enumerator. Possible FormStartPosition
enumeration values are CenterParent (centered within the parent
form), CenterScreen (centered in the current display screen),
Manual (location and size determined by starting position),
WindowsDefaultBounds (Positioned at the default location), and
WindowsDefaultLocation (positioned at the default location, with
dimensions based on specified values for the size).

Width The width of the form

The items listed in Table 16.1 are only a few of the methods and properties available that
work with a form’s size. Listing 16.3 presents some of these in another simple applica-
tion; Figure 16.7 shows the output.

LISTING 16.3 form3.cs—Sizing a Form

1: // form3.cs - Form Size
2: //--
3:
4: using System.Windows.Forms;

468 Day 16

22 0672320711 CH16 10/1/01 11:36 AM Page 468

Creating Windows Forms 469

16

LISTING 16.3 continued

5: using System.Drawing;
6:
7: public class frmHelloApp : Form
8: {
9: public static void Main(string[] args)
10: {
11: frmHelloApp myForm = new frmHelloApp();
12: myForm.Text = “Form Sizing”;
13:
14: myForm.Width = 400;
15: myForm.Height = 100;
16:
17: Point FormLoc = new Point(200,350);
18: myForm.StartPosition = FormStartPosition.Manual;
19: myForm.DesktopLocation = FormLoc;
20:
21:
22: Application.Run(myForm);
23: }
24: }

OUTPUT

FIGURE 16.7
Positioning and sizing
the form.

Setting the size of a form is simple. Lines 14 and 15 set the size of the form in
Listing 16.3. As you can see, the Width and Height properties can be set. You

can also set both of these at the same time by using a Size object.

Positioning the form takes a little more effort. In line 17, a Point object is created that
contains the location on the screen that you want the form positioned. This is then used
in line 19 by applying it to the DesktopLocation property. To use the Point object with-
out fully qualifying its name, you need to include the System.Drawing namespace, as in
line 5.

ANALYSIS

22 0672320711 CH16 10/1/01 11:36 AM Page 469

In line 18, you see that an additional property has been set. If you leave line 18 out, you
will not get the results you want. You must set the starting position for the form by set-
ting the StartPosition property to a value in the FormStartPosition enumerator. Table
16.1 contained the possible values for this enumerator. You should note the other values
for FormStartPosition. If you want to center a form on the screen, you can replace
lines 17 to 19 with one line:

myForm.StartPosition = FormStartPosition.CenterScreen;

This single line of code takes care of centering the form on the screen regardless of the
screen’s resolution.

Colors and Background of a Form
Working with the background color of a form requires setting the BackColor property to
a color value. The color values can be taken from the Color structure located in the
System.Drawing namespace. Table 16.2 lists some of the common colors.

To set a color is as simple as assigning a value from Table 16.2:

myForm.BackColor = Color.HotPink;

Of equal value to setting the form’s color is to place a background image on the form.
An image can be set into the form’s BackgroundImage property. Listing 16.4 sets an
image onto the background; Figure 16.8 shows the output. The image placed is passed as
a parameter to the program.

470 Day 16

Be careful with this listing. For brevity, it does not contain exception han-
dling. If you pass a filename that doesn’t exist, the program will throw an
exception.

Caution

22 0672320711 CH16 10/1/01 11:36 AM Page 470

Creating Windows Forms 471

16

TA
B

LE
1
6
.2

C
o

lo
rs

A
l
i
c
e
B
l
u
e

A
n
t
i
q
u
e
W
h
i
t
e

A
q
u
a

A
q
u
a
m
a
r
i
n
e

A
z
u
r
e

B
e
i
g
e

B
i
s
q
u
e

B
l
a
c
k

B
l
a
n
c
h
e
d
A
l
m
o
n
d

B
l
u
e

B
l
u
e
V
i
o
l
e
t

B
r
o
w
n

B
u
r
l
y
W
o
o
d

C
a
d
e
t
B
l
u
e

C
h
a
r
t
r
e
u
s
e

C
h
o
c
o
l
a
t
e

C
o
r
a
l

C
o
r
n
f
l
o
w
e
r
B
l
u
e

C
o
r
n
s
i
l
k

C
r
i
m
s
o
n

C
y
a
n

D
a
r
k
B
l
u
e

D
a
r
k
C
y
a
n

D
a
r
k
G
o
l
d
e
n
r
o
d

D
a
r
k
G
r
a
y

D
a
r
k
G
r
e
e
n

D
a
r
k
K
h
a
k
i

D
a
r
k
M
a
g
e
n
t
a

D
a
r
k
O
l
i
v
e
G
r
e
e
n

D
a
r
k
O
r
a
n
g
e

D
a
r
k
O
r
c
h
i
d

D
a
r
k
R
e
d

D
a
r
k
S
a
l
m
o
n

D
a
r
k
S
e
a
G
r
e
e
n

D
a
r
k
S
l
a
t
e
B
l
u
e

D
a
r
k
S
l
a
t
e
G
r
a
y

D
a
r
k
T
u
r
q
u
o
i
s
e

D
a
r
k
V
i
o
l
e
t

D
e
e
p
P
i
n
k

D
e
e
p
S
k
y
B
l
u
e

D
i
m
G
r
a
y

D
o
d
g
e
r
B
l
u
e

F
i
r
e
b
r
i
c
k

F
l
o
r
a
l
W
h
i
t
e

F
o
r
e
s
t
G
r
e
e
n

F
u
c
h
s
i
a

G
a
i
n
s
b
o
r
o

G
h
o
s
t
W
h
i
t
e

G
o
l
d

G
o
l
d
e
n
r
o
d

G
r
a
y

G
r
e
e
n

G
r
e
e
n
Y
e
l
l
o
w

H
o
n
e
y
d
e
w

H
o
t
P
i
n
k

I
n
d
i
a
n
R
e
d

I
n
d
i
g
o

I
v
o
r
y

K
h
a
k
i

L
a
v
e
n
d
e
r

L
a
v
e
n
d
e
r
B
l
u
s
h

L
a
w
n
G
r
e
e
n

L
e
m
o
n
C
h
i
f
f
o
n

L
i
g
h
t
B
l
u
e

L
i
g
h
t
C
o
r
a
l

L
i
g
h
t
C
y
a
n

L
i
g
h
t
G
o
l
d
e
n
r
o
d
Y
e
l
l
o
w

L
i
g
h
t
G
r
a
y

L
i
g
h
t
G
r
e
e
n

L
i
g
h
t
P
i
n
k

L
i
g
h
t
S
a
l
m
o
n

L
i
g
h
t
S
e
a
G
r
e
e
n

L
i
g
h
t
S
k
y
B
l
u
e

L
i
g
h
t
S
l
a
t
e
G
r
a
y

L
i
g
h
t
S
t
e
e
l
B
l
u
e

L
i
g
h
t
Y
e
l
l
o
w

L
i
m
e

L
i
m
e
G
r
e
e
n

L
i
n
e
n

M
a
g
e
n
t
a

M
a
r
o
o
n

M
e
d
i
u
m
A
q
u
a
m
a
r
i
n
e

M
e
d
i
u
m
B
l
u
e

M
e
d
i
u
m
O
r
c
h
i
d

M
e
d
i
u
m
P
u
r
p
l
e

M
e
d
i
u
m
S
e
a
G
r
e
e
n

M
e
d
i
u
m
S
l
a
t
e
B
l
u
e

M
e
d
i
u
m
S
p
r
i
n
g
G
r
e
e
n

M
e
d
i
u
m
T
u
r
q
u
o
i
s
e

M
e
d
i
u
m
V
i
o
l
e
t
R
e
d

M
i
d
n
i
g
h
t
B
l
u
e

M
i
n
t
C
r
e
a
m

M
i
s
t
y
R
o
s
e

M
o
c
c
a
s
i
n

N
a
v
a
j
o
W
h
i
t
e

N
a
v
y

O
l
d
L
a
c
e

O
l
i
v
e

O
l
i
v
e
D
r
a
b

O
r
a
n
g
e

O
r
a
n
g
e
R
e
d

O
r
c
h
i
d

P
a
l
e
G
o
l
d
e
n
r
o
d

P
a
l
e
G
r
e
e
n

P
a
l
e
T
u
r
q
u
o
i
s
e

P
a
l
e
V
i
o
l
e
t
R
e
d

P
a
p
a
y
a
W
h
i
p

P
e
a
c
h
P
u
f
f

P
e
r
u

P
i
n
k

P
l
u
m

P
o
w
d
e
r
B
l
u
e

P
u
r
p
l
e

R
e
d

R
o
s
y
B
r
o
w
n

R
o
y
a
l
B
l
u
e

S
a
d
d
l
e
B
r
o
w
n

S
a
l
m
o
n

S
a
n
d
y
B
r
o
w
n

S
e
a
G
r
e
e
n

S
e
a
S
h
e
l
l

S
i
e
n
n
a

S
i
l
v
e
r

S
k
y
B
l
u
e

S
l
a
t
e
B
l
u
e

S
l
a
t
e
G
r
a
y

S
n
o
w

S
p
r
i
n
g
G
r
e
e
n

S
t
e
e
l
B
l
u
e

T
a
n

T
e
a
l

T
h
i
s
t
l
e

T
o
m
a
t
o

T
r
a
n
s
p
a
r
e
n
t

T
u
r
q
u
o
i
s
e

V
i
o
l
e
t

W
h
e
a
t

W
h
i
t
e

W
h
i
t
e
S
m
o
k
e
Y
e
l
l
o
w

Y
e
l
l
o
w
G
r
e
e
n

22 0672320711 CH16 10/1/01 11:36 AM Page 471

LISTING 16.4 form4.cs—Using Background Images

1: // form4.cs - Form Backgrounds
2: //--
3:
4: using System.Windows.Forms;
5: using System.Drawing;
6:
7: public class frmApp : Form
8: {
9: public static void Main(string[] args)
10: {
11: frmApp myForm = new frmApp();
12: myForm.BackColor = Color.HotPink;
13: myForm.Text = “Form4 - Backgrounds”;
14:
15: if (args.Length >= 1)
16: {
17: myForm.BackgroundImage = Image.FromFile(args[0]);
18:
19: Size tmpSize = new Size();
20: tmpSize.Width = myForm.BackgroundImage.Width;
21: tmpSize.Height = myForm.BackgroundImage.Height;
22: myForm.ClientSize = tmpSize;
23:
24: myForm.Text = “Form4 - “ + args[0];
25: }
26:
27: Application.Run(myForm);
28: }
29: }

472 Day 16

OUTPUT

FIGURE 16.8
Using a background
image.

22 0672320711 CH16 10/1/01 11:36 AM Page 472

Creating Windows Forms 473

16

This program presents an image on the form background. This image is provided
on the command line. If no image is entered on the command line, the back-

ground color is set to Hot Pink. I ran the listing using a picture of my nephews. The
command line I entered was:

form4 pict1.jpg

The pict1.jpg was in the same directory as the form4 executable. If it was in a different
directory, I would have needed to enter the full path. You can pass a different image as
long as the path is valid. If you enter an invalid filename, you get an exception.

Looking at the listing, you can see that to create an application to display images is
extremely easy. The framework classes take care of all the difficult work for you. In line
12, the background color was set to be Hot Pink. This is done by setting the form’s
BackColor property with a color value from the Color structure.

In line 15, a check is done to see whether a value was included on the command line. If a
value was not included, lines 17 to 24 are skipped and the form is displayed with a hot
pink background. If a value was entered, this programming makes the assumption (which
your programs should not do) that the parameter passed was a valid graphics file. This
file is then set into the BackgroundImage property of the form. The filename needs to be
converted to an actual image for the background by using the Image class. More specifi-
cally, the Image class includes a static method, FromFile, that will take a filename as
an argument and return an Image. This is exactly what is needed for this listing.

ANALYSIS

If you want a specific image for your background, you could get rid of the if
statement and replace line 17’s arg[0] value with the hard-coded name of
the file you want as the background.

Note

The BackgroundImage property holds an Image value. Because of this, properties and
methods from the Image class can be used on this property. The Image class includes
Width and Height properties that are equal to the width and height of the image con-
tained. Lines 20 and 21 use these values to a temporary Size variable that will in turn be
assigned to the form’s client size in line 22. The size of the form’s client area is set to the
same size as the image. The end result is that the form displayed will always display the
full image. If you don’t do this, you will see either only part of the image or tiled copies
of the image.

22 0672320711 CH16 10/1/01 11:36 AM Page 473

Borders
Controlling the border will not only impact the look of the form, but will also determine
whether the form can be resized. To modify the border, you set the Form class’s
BorderStyle property with a value from the FormBorderStyle enumeration. Possible
values for the BorderStyle property are listed in Table 16.3. Listing 16.5 presents a form
with the border modified; Figure 16.9 shows the output.

TABLE 16.3 FormBorderStyle Enumerator Values

Value Description

Fixed3D Fixed, 3D border

FixedDialog Fixed, thick border

FixedSingle Fixed, single-line border

FixedToolWindow Non-resizable, tool window border

None No border

Sizeable Resizable

SizeableToolWindow Resizable tool window border

LISTING 16.5 border.cs—Modifying a Form’s Border

1: // border.cs - Form Borders
2: //--
3:
4: using System.Windows.Forms;
5: using System.Drawing;
6:
7: public class frmApp : Form
8: {
9: public static void Main(string[] args)
10: {
11: frmApp myForm = new frmApp();
12: myForm.BackColor = Color.SteelBlue;
13: myForm.Text = “Borders”;
14:
15: myForm.FormBorderStyle = FormBorderStyle.Fixed3D;
16:
17: Application.Run(myForm);
18: }
19: }

474 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 474

Creating Windows Forms 475

16

As you can see, the border is fixed in size. If you try to resize the form at run-
time you will not be able to.

If you do make the form resizable, you have another option you can set as well:
SizeGripStyle. SizeGripStyle determines whether the form will be marked with a
resize indicator. Figure 16.10 has the resize indicator circled. You can set your form to
automatically show this indicator or to always hide or always show it. This is done using
one of three values in the SizeGripStyle enumerator: Auto, Hide, or Show. The indicator
in Figure 16.10 was shown by including the line

myForm.SizeGripStyle = SizeGripStyle.Show;

OUTPUT

FIGURE 16.9
Modifying a form’s
border.

ANALYSIS

FIGURE 16.10
The size grip.

Don’t get confused by using conflicting properties. For example, if you use a
fixed-sized border and you set the size grip to display, your results will not
match these settings. The fixed border means that the form cannot be
resized; therefore, the size grip will not display regardless of how you set it.

Caution

22 0672320711 CH16 10/1/01 11:37 AM Page 475

Adding Controls to a Form
Up to this point, you have been working with the look and feel of a form; however, with-
out controls a form is virtually worthless. Controls make a windows application usable.

A control can be a button, a list box, a text box, an image, or even simple plain text
being displayed. The easiest way to add such controls is to use a graphical development
tool such as Microsoft’s Visual C#. A graphical tool enables you to drag and drop con-
trols onto a form. It also adds all the basic code needed to display the control.

A graphical development tool, however, is not needed. Even if you use a graphical tool,
it is still valuable to understand what the tool is doing for you. Some of the standard con-
trols provided in the framework are listed in Table 16.4. Additional controls can be creat-
ed and used as well.

TABLE 16.4 Some Standard Controls in the Base Class Libraries

Button CheckBox CheckedListBox ComboBox

ContainerControl DataGrid DateTimePicker DomainUpDown

Form GroupBox HScrollBar ImageList

Label LinkLabel ListBox ListView

MonthCalendar NumericUpDown Panel PictureBox

PrintReviewControl ProgressBar PropertyGrid RadioButton

RichTextBox ScrollableControl Splitter StatusBar

StatusBarPanel TabControl TabPage TabStrip

TextBox Timer ToolBar ToolBarButton

ToolTip TrackBar TreeView VScrollBar

UserControl

476 Day 16

FIGURE 16.11
The control architec-
ture in the .NET
classes.

The controls in Table 16.4 are defined in the System.Windows.Forms namespace. The
following sections cover some of these controls. Be aware, however, that the coverage
here is very minimal. There are hundreds of properties, methods, and events associated
with the controls listed in Table 16.4. It would take a book bigger than this one to cover

22 0672320711 CH16 10/1/01 11:37 AM Page 476

Creating Windows Forms 477

16

all the details of each control. Here, you will learn how to use some of the key controls.
The process of using the other controls will be very similar to those presented here.
Additionally, you will see only a few of the properties. All the properties can be found in
the help documentation available with the C# compiler or with your development tool.

Working with Labels and Text Display
You use the Label control to display simple text on the screen. The Label control is in
the System.Windows.Forms namespace with the other built-in controls.

To add a control to a form, you first create the control. Then you can customize the con-
trol via its properties and methods. When you have made the changes you want, you can
then add it to your form.

A label is a control that displays information to the user, but does not allow the
user to directly change its values. You create a label like any other object:

Label myLabel = new Label();

After it’s created, you have an empty label that can be added to your form. Listing 16.6
illustrates a few of the label’s properties, including setting the textual value with the Text
property; Figure 16.11 shows the output. To add the control to your form, you use the
Add method with the Controls property of your form. Simply shown, to add the myLabel
control to the myForm you’ve used before, you use

myForm.Controls.Add(myLabel);

To add other controls, you replace myLabel with the control’s name.

LISTING 16.6 Control1.cs—Using a Label Control

1: // control1.cs - Working with controls
2: //--
3:
4: using System;
5: using System.Windows.Forms;
6: using System.Drawing;
7:
8: public class frmApp : Form
9: {
10: public static void Main(string[] args)
11: {
12: frmApp myForm = new frmApp();
13:
14: myForm.Text = Environment.CommandLine;
15: myForm.StartPosition = FormStartPosition.CenterScreen;
16:

NEW TERM

22 0672320711 CH16 10/1/01 11:37 AM Page 477

LISTING 16.6 continued

17: // Create the controls...
18: Label myDateLabel = new Label();
19: Label myLabel = new Label();
20:
21: myLabel.Text = “This program was executed at:”;
22: myLabel.AutoSize = true;
23: myLabel.Left = 50;
24: myLabel.Top = 20;
25:
26: DateTime currDate = DateTime.Now;;
27: myDateLabel.Text = currDate.ToString();
28:
29: myDateLabel.AutoSize = true;
30: myDateLabel.Left = 50 + myLabel.PreferredWidth + 10;
31: myDateLabel.Top = 20;
32:
33: myForm.Width = myLabel.PreferredWidth + myDateLabel.PreferredWidth +
➥110;
34: myForm.Height = myLabel.PreferredHeight+ 100;
35:
36: // Add the control to the form...
37: myForm.Controls.Add(myDateLabel);
38: myForm.Controls.Add(myLabel);
39:
40: Application.Run(myForm);
41: }
42: }

478 Day 16

FIGURE 16.11
Using a Label control.

OUTPUT

This program creates two label controls and displays them in your form. Rather
than just plopping the labels anywhere, this listing positions them somewhat cen-

tered in the form.

Stepping back, you can see that the program starts by creating a new form in line 12.
The title on the control bar for the form is set equal to the command-line value from the
Environment class. If you remember this from yesterday, you will know that this is the
program name along with the complete path. In line 15, the StartPosition property for
the form is set to center the form on the screen. At this point, no size for the form has
been indicated. That will be done in a minute.

ANALYSIS

22 0672320711 CH16 10/1/01 11:37 AM Page 478

Creating Windows Forms 479

16

In lines 18 and 19, two label controls are created. The first label, myDateLabel, will be
used to hold the current date and time. The second label control will be used to hold
descriptive text. Recall that a label is a control that displays information to the user, but
does not allow the user to directly change its values—so these two uses of a label are
appropriate.

In lines 21 to 24, properties for the myLabel label are set. In line 21, the text to be dis-
played is assigned to the Text property of the label. In line 22, the AutoSize property is
set to true. You can control the size of the label or you can let it determine the best size
for itself. Setting the AutoSize property to true gives the label the ability to resize itself.
In lines 23 and 24, the Left and Top properties are set to values. These values are for the
location on the form that the control should be placed. In this case, the myLabel control
will be placed 50 pixels from the left side of the form and 20 pixels down into the client
area of the form.

The next two lines of the listing (26 and 27) are a roundabout way to assign the current
date and time to the Text property of your other label control, myDateLabel. As you can
see, a DateTime object is created and assigned the value of Now. This value is then con-
verted to a string and assigned to the myDateLabel.

In line 29, the AutoSize property for the myDateLabel is also set to true so that the label
will be displayed in an appropriately sized manner. In lines 30 and 31, the position of the
myDateLabel are set. The Top position is easy to understand—it will be at the same verti-
cal location as the other label—but the Left position is a little more complex. The
myDateLabel label is to be placed to the right of the other label. To place it to the right of
the other label, you need to move it over a distance equal to the size of the other label plus
any offset from the edge of the window to the other label. This would be 50 plus the width
of the myLabel label. Because you have said to auto size your labels, the width will be
equal to the preferred width. A label’s preferred width can be obtained from the
PreferredWidth property of the control. The end result is that to place the myDateLabel
to the right of myLabel, you add the preferred width of myLabel plus the offset added to
myLabel. To add a little buffer between the two labels, an additional 10 pixels are added.
Figure 16.12 helps illustrate what is happening in line 30.

Label

50
20

FIGURE 16.12
Positioning of the
Label.

22 0672320711 CH16 10/1/01 11:37 AM Page 479

Lines 33 and 34 set the width and height of the form. As you can see, the Width is set to
center the labels on the form. This is done by balancing the offsets and using the widths
of the two labels. The height is set to make sure there is a lot of space around the text.

In lines 37 and 38, you see that adding these controls to the form is a simple call. The
Add method of the Controls property is called for each of the controls. The Run method
of the Application is then executed in line 40 so that the form is displayed. The end
result is that you now have text displayed on your form!

For the most part, this same process is used for all other types of control. This involves
creating the control, setting its properties, and then adding it to the form.

A Suggested Approach for Using Controls
The process presented in the previous section is appropriate for using controls. The most
common development tool for creating windowed applications is expected to be
Microsoft Visual Studio .NET, and thus Microsoft Visual C# for C# applications. This
development tool provides a unique structure to programming controls. Although not
necessary, this structure does organize the code so that the graphical design tools can bet-
ter follow the code. Because the amount of effort to follow this approach is minimal, it is
worth considering. Listing 16.7 represents Listing 16.6 in this slightly altered structure.
This structure is similar to what is generated by Microsoft Visual C#.

LISTING 16.7 ctrl1b.cs—Structuring Your Code for Integrated Development
Environments

1: // cntrl1b.cs - Working with controls
2: //--
3:
4: using System;
5: using System.Windows.Forms;
6: using System.Drawing;
7:
8: public class frmApp : Form
9: {
10: public frmApp()
11: {
12: InitializeComponent();
13: }
14:
15: private void InitializeComponent()
16: {
17: this.Text = Environment.CommandLine;
18: this.StartPosition = FormStartPosition.CenterScreen;
19:
20: // Create the controls...

480 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 480

Creating Windows Forms 481

16

LISTING 16.7 continued

21: Label myDateLabel = new Label();
22: Label myLabel = new Label();
23:
24: myLabel.Text = “This program was executed at:”;
25: myLabel.AutoSize = true;
26: myLabel.Left = 50;
27: myLabel.Top = 20;
28:
29: DateTime currDate = new DateTime();
30: currDate = DateTime.Now;
31: myDateLabel.Text = currDate.ToString();
32:
33: myDateLabel.AutoSize = true;
34: myDateLabel.Left = 50 + myLabel.PreferredWidth + 10;
35: myDateLabel.Top = 20;
36:
37: this.Width = myLabel.PreferredWidth + myDateLabel.PreferredWidth +
➥110;
38: this.Height = myLabel.PreferredHeight+ 100;
39:
40: // Add the control to the form...
41: this.Controls.Add(myDateLabel);
42: this.Controls.Add(myLabel);
43: }
44:
45: public static void Main(string[] args)
46: {
47: Application.Run(new frmApp());
48: }
49: }

The output for this listing is identical to that shown in Figure 16.12 for the previ-
ous listing. This listing illustrates a different structure for coding. Again, I

include this listing and analysis so you won’t be surprised if you use a tool such as
Visual C# and see that it followed a different structure than what I had previously
presented.

Looking at this listing, you can see that the code is broken into a couple of methods
instead of being placed into the Main method. Additionally, you can see that rather than
declaring a specific instance of a form, an instance is created at the same time the
Application.Run method is called.

When this application is executed, the Main method in lines 45 to 48 is executed first.
This method has one line of code that creates a new frmApp instance and passes it to the
Application.Run method. This one line of code kicks off a series of other activities. The

ANALYSIS

22 0672320711 CH16 10/1/01 11:37 AM Page 481

first thing to happen is that the frmApp constructor is called to create the new frmApp. A
constructor has been included in lines 10 to 13 of the listing. The constructor again has
one simple call, InitializeComponent. This call causes the code in lines 17 to 43 to
execute. This is the same code that you saw earlier, with one minor exception. Instead of
using the name of the form, you use the this keyword. Because you are working within
an instance of a form, this refers to the current form. Everywhere you referred to the
myForm instance in the previous listing, you now refer to this. When the initialization of
the form items is completed, control goes back to the constructor, which is also com-
plete. Control is therefore passed back to Main, which then passes the newly initialized
frmApp object to the Application.Run method. This displays the form and takes care of
the windows looping until the program ends.

The nice thing about this structure is that it moves all your component and form initial-
ization into one method that is separate from a lot of your other programming logic. In
larger programs, you will find this more beneficial.

Working Buttons
One of the most common controls used in windows applications are buttons. Buttons can
be created using the—you guessed it—Button class! Buttons differ from labels, so you
will most likely want an action to occur when the user clicks on a button.

Before jumping into creating button actions, it is worth taking a minute to cover creating
and drawing buttons. As with labels, the first step to using a button is to instantiate a but-
ton object with the class:

Button myButton = new Button();

After you’ve created the button object, you can then set properties to customize it to the
look and feel you want. As with the Label control, there are too many properties, data
members, and methods to list here. You can get the complete list from the help
documents. Table 16.5 lists a few of the properties.

TABLE 16.5 A Few Button Properties

Property Description

BackColor Returns or sets the background color of the button.

BackgroundImage Returns or sets an image that will display on the button’s
background.

Bottom Returns the distance between the bottom of the button and the top
of the container the button resides in.

Enabled Returns or sets a value indicating whether the control is enabled.

Height Returns or sets a value indicating the height of the button.

482 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 482

Creating Windows Forms 483

16

TABLE 16.5 continued

Property Description

Image Returns or sets an image on the button.

Left Returns or sets the position of the left side of the button.

Right Returns or sets the position of the right side of the button.

Text Returns or sets the text on the button.

TextAlign Returns or sets the button’s text alignment.

Top Returns or sets a value indicating the location of the top of the
button.

Visible Returns or sets a value indicating whether the button is visible.

Width Returns or sets the width of the button.

Take a close look at the properties in Table 16.5. These should look like
some of the same properties you used with Label. There is a good reason
for this similarity. All the controls inherit from a more general Control class.
This class enables all the controls to use the same methods or the same
names to do similar tasks. For example, Top is the property for the top of a
control regardless of whether it is a button, text, or something else.

Note

Button Events
Recall that buttons differ from labels; you generally use a button to cause an action to
occur. When the user clicks on a button, you want something to happen. To cause the
action to occur, you use events.

After you create a button, you can associate one or more events to it. This is done in the
same manner that you learned on Day 14, “Indexers, Delegates, and Events.” First, you
create a method to handle the event, which will be called when the event occurs. As you
learned on Day 14, this method must take two parameters, the object that caused the
event and a System.EventArgs variable. This method must also be protected and of type
void. The format is

protected void methodName(object sender, System.EventArgs args)

When working with windows, you generally name the method based on what control
caused the event followed by what event occurred. For example, if button ABC was
clicked, the method name for the handler could be ABC_Click.

22 0672320711 CH16 10/1/01 11:37 AM Page 483

To activate the event, you need to associate it to the appropriate delegate. A delegate
object called System.EventHandler takes care of all the windows events. By associating
your event handlers to this delegate object, they will be called when appropriate. The
format is

ControlName.Event += new System.EventHandler(this.methodName);

where ControlName.Event is the name of the control and the name of the event for the
control. this is the current form, and methodName is the method that will handle the
event (as mentioned previously).

Listing 16.8 presents a modified version of Listing 16.7; Figure 16.13 shows the output.
You will see that the date and time are still displayed in the form. You will also see, how-
ever, that a button has been added. When the button is clicked, an event fires that will
update the date and time. Additionally, four other event handlers have been added to this
listing for fun. These events are kicked off whenever the mouse moves over or leaves
either of the two controls.

LISTING 16.8 button1.cs—Using Buttons and Events

1: // button1.cs - Working with buttons and events
2: //--
3:
4: using System;
5: using System.Windows.Forms;
6: using System.Drawing;
7:
8: public class frmApp : Form
9: {
10: private Label myDateLabel;
11: private Button btnUpdate;
12:
13: public frmApp()
14: {
15: InitializeComponent();
16: }
17:
18: private void InitializeComponent()
19: {
20: this.Text = Environment.CommandLine;
21: this.StartPosition = FormStartPosition.CenterScreen;
22: this.FormBorderStyle = FormBorderStyle.Fixed3D;
23:
24: myDateLabel = new Label(); // Create label
25:
26: DateTime currDate = new DateTime();
27: currDate = DateTime.Now;
28: myDateLabel.Text = currDate.ToString();
29:

484 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 484

Creating Windows Forms 485

16

LISTING 16.8 continued

30: myDateLabel.AutoSize = true;
31: myDateLabel.Location = new Point(50, 20);
32: myDateLabel.BackColor = this.BackColor;
33:
34: this.Controls.Add(myDateLabel); // Add label to form
35:
36: // Set width of form based on Label’s width
37: this.Width = (myDateLabel.PreferredWidth + 100);
38:
39: btnUpdate = new Button(); // Create a button
40:
41: btnUpdate.Text = “Update”;
42: btnUpdate.BackColor = Color.LightGray;
43: btnUpdate.Location = new Point(((this.Width/2) - (btnUpdate.Width /
2)),
44: (this.Height - 75));
45:
46: this.Controls.Add(btnUpdate); // Add button to form
47:
48: // Add a click event handler using the default event handler
49: btnUpdate.Click += new System.EventHandler(this.btnUpdate_Click);
50: btnUpdate.MouseEnter += new
➥System.EventHandler(this.btnUpdate_MouseEnter);
51: btnUpdate.MouseLeave += new
➥System.EventHandler(this.btnUpdate_MouseLeave);
52:
53: myDateLabel.MouseEnter += new
➥System.EventHandler(this.myDataLabel_MouseEnter);
54: myDateLabel.MouseLeave += new
➥System.EventHandler(this.myDataLabel_MouseLeave);
55: }
56:
57: protected void btnUpdate_Click(object sender, System.EventArgs e)
58: {
59: DateTime currDate =DateTime.Now ;
60: this.myDateLabel.Text = currDate.ToString();
61: }
62:
63:
64: protected void btnUpdate_MouseEnter(object sender, System.EventArgs e)
65: {
66: this.BackColor = Color.HotPink;
67: }
68:
69: protected void btnUpdate_MouseLeave(object sender, System.EventArgs e)
70: {
71: this.BackColor = Color.Blue;
72: }
73:

22 0672320711 CH16 10/1/01 11:37 AM Page 485

LISTING 16.8 continued

74: protected void myDataLabel_MouseEnter(object sender, System.EventArgs
➥e)
75: {
76: this.BackColor = Color.Yellow;
77: }
78:
79: protected void myDataLabel_MouseLeave(object sender, System.EventArgs
➥e)
80: {
81: this.BackColor = Color.Green;
82: }
83:
84:
85: public static void Main(string[] args)
86: {
87: Application.Run(new frmApp());
88: }
89: }

486 Day 16

OUTPUT

FIGURE 16.13
Using a button and
events.

This listing uses the windows designer format even though a designer was not
used. This is a good way to format your code, so I follow the format here.

You will notice that I made a change to the previous listing. In lines 10 and 11, the label
and button are declared as members of the form rather than members of a method. This
enables all the methods within the form’s class to use these two variables. They are pri-
vate, so only this class can use them.

The Main method and the constructor are no different from the previous listing. The
InitializeComponent method has changed substantially; however, most of the changes
are easy to understand. Line 31 offers the first new item. Instead of using the Top and
Left properties to set the location of the myDateLabel control, a Point object was used.
This Point object was created with the value (50, 20) and immediately assigned to the
Location property of the label.

ANALYSIS

22 0672320711 CH16 10/1/01 11:37 AM Page 486

Creating Windows Forms 487

16In line 39, a button called btnUpdate is created. It is then customized by assigning values
to several properties. Don’t be confused by the calculations in lines 43 and 44. This is
just like line 31, except that instead of using literals, calculations are used. Also keep in
mind that this is the form, so this.Width is the width of the form.

Line 46 adds the button to the form. As you can see, this is done exactly the same way
that any other control would be added to the form.

In lines 49 to 54, you see the fun part of this listing. These lines are assigning handlers to
various events. On the left side of these assignments, you see the controls and one of
their events. This event is assigned to the method name that is being passed to the
System.EventHandler. For example, in line 49, the btnUpdate_Click method is being
assigned to the Click event of the btnUpdate button. In lines 50 and 51, events are being
assigned to the MouseEnter and MouseLeave events of btnUpdate. Lines 53 and 54
assign events to the MouseEnter and MouseLeave events of myDataLabel. Yes, a label
control can have events too! Virtually all controls have events.

You might find that creating an object and immediately assigning it can be
easier to follow than doing multiple assignments. Either method works. Use
whichever you are most comfortable with or whichever is easiest to
understand.

Tip

There are too many events associated with each control type to list in this
book. To know which events are available, check the help documentation.

Note

For the event to work, you must actually create the methods you associated to them. In
lines 57 to 82, you see a number of very simple methods. These are the same methods
that were associated in lines 49 to 54.

Creating an OK Button
A common button that can be found on many forms is an OK button. This button is
clicked when users complete what they are doing. The result of this button is that the
form is usually closed.

If you created the form and are using the Application class’s Run method, you can cre-
ate an event handler for a button click that ends the Run method. This method can be as
simple as

22 0672320711 CH16 10/1/01 11:37 AM Page 487

protected void btnOK_Click(object sender, System.EventArgs e)
{

// Final code logic before closing form
Application.Exit(); // Ends the Application.Run message loop.

}

If you don’t’ want to exit the entire application or application loop, then you can use the
Close method on the form instead. The Close method will close the form.

There is an alternative method for implementing the logic of OK. This involves taking a
slightly different approach. First, instead of using the Application class’s Run method,
you can use a Form object’s ShowDialog method. The ShowDialog method displays a dia-
log and waits for the dialog to complete. A dialog is simply a form. All other logic for
creating the form is the same.

In general, if a user presses the Enter key on a form, the form will activate the OK but-
ton. You can associate the Enter key with a button using the AcceptButton property of
the form. You set this property equal to the button that will be activated when the Enter
key is pressed.

Working with Text Boxes
Another popular control is the text box. The text box control is used to obtain text input
from the users. Using a text box control and events, you can obtain information from
your users that you can then use. Listing 16.9 illustrates the use of text box controls;
Figure 16.14 shows the output.

LISTING 16.9 text1.csUsing Textbox Controls

1: // text1.cs - Working with text controls
2: //--
3:
4: using System;
5: using System.Windows.Forms;
6: using System.Drawing;
7:
8: public class frmGetName : Form
9: {
10: private Button btnOK;
11:
12: private Label lblFirst;
13: private Label lblMiddle;
14: private Label lblLast;
15: private Label lblFullName;
16: private Label lblInstructions;
17:
18: private TextBox txtFirst;
19: private TextBox txtMiddle;

488 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 488

Creating Windows Forms 489

16

LISTING 16.9 continued

20: private TextBox txtLast;
21:
22: public frmGetName()
23: {
24: InitializeComponent();
25: }
26:
27: private void InitializeComponent()
28: {
29: this.FormBorderStyle = FormBorderStyle.Fixed3D;
30: this.Text = “Get User Name”;
31: this.StartPosition = FormStartPosition.CenterScreen;
32:
33: // Instantiate the controls...
34: lblInstructions = new Label();
35: lblFirst = new Label();
36: lblMiddle = new Label();
37: lblLast = new Label();
38: lblFullName = new Label();
39:
40: txtFirst = new TextBox();
41: txtMiddle = new TextBox();
42: txtLast = new TextBox();
43:
44: btnOK = new Button();
45:
46: // Set properties
47:
48: lblFirst.AutoSize = true;
49: lblFirst.Text = “First Name:”;
50: lblFirst.Location = new Point(20, 20);
51:
52: lblMiddle.AutoSize = true;
53: lblMiddle.Text = “Middle Name:”;
54: lblMiddle.Location = new Point(20, 50);
55:
56: lblLast.AutoSize = true;
57: lblLast.Text = “Last Name:”;
58: lblLast.Location = new Point(20, 80);
59:
60: lblFullName.AutoSize = true;
61: lblFullName.Location = new Point(20, 110);
62:
63: txtFirst.Width = 100;
64: txtFirst.Location = new Point(140, 20);
65:
66: txtMiddle.Width = 100;
67: txtMiddle.Location = new Point(140, 50);

22 0672320711 CH16 10/1/01 11:37 AM Page 489

LISTING 16.9 continued

68:
69: txtLast.Width = 100;
70: txtLast.Location = new Point(140, 80);
71:
72: lblInstructions.Width = 250;
73: lblInstructions.Height = 60;
74: lblInstructions.Text = “Enter your first, middle, and last name.” +
75: “\nYou will see your name appear as you
➥type.” +
76: “\nFor fun, edit your name after entering
➥it.”;
77: lblInstructions.TextAlign = ContentAlignment.MiddleCenter;
78: lblInstructions.Location =
79: new Point(((this.Width/2) - (lblInstructions.Width / 2)), 140);
80:
81: this.Controls.Add(lblFirst); // Add label to form
82: this.Controls.Add(lblMiddle);
83: this.Controls.Add(lblLast);
84: this.Controls.Add(lblFullName);
85: this.Controls.Add(txtFirst);
86: this.Controls.Add(txtMiddle);
87: this.Controls.Add(txtLast);
88: this.Controls.Add(lblInstructions);
89:
90: btnOK.Text = “Done”;
91: btnOK.BackColor = Color.LightGray;
92: btnOK.Location = new Point(((this.Width/2) - (btnOK.Width / 2)),
93: (this.Height - 75));
94:
95: this.Controls.Add(btnOK); // Add button to form
96:
97: // Event handlers
98: btnOK.Click += new System.EventHandler(this.btnOK_Click);
99: txtFirst.TextChanged += new
➥System.EventHandler(this.txtChanged_Event);
100: txtMiddle.TextChanged += new
➥System.EventHandler(this.txtChanged_Event);
101: txtLast.TextChanged += new
➥System.EventHandler(this.txtChanged_Event);
102: }
103:
104: protected void btnOK_Click(object sender, System.EventArgs e)
105: {
106: Application.Exit();
107: }
108:
109: protected void txtChanged_Event(object sender, System.EventArgs e)
110: {

490 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 490

Creating Windows Forms 491

16

LISTING 16.9 continued

111: lblFullName.Text = txtFirst.Text + “ “ + txtMiddle.Text + “ “ +
➥txtLast.Text;
112: }
113:
114: public static void Main(string[] args)
115: {
116: Application.Run(new frmGetName());
117: }
118: }

FIGURE 16.14
Using the text box
control.

OUTPUT

As you can see by looking at the output of this listing, the applications you are
creating are starting to look useful. The text box controls in this listing enable

your users to enter their name. This name is concatenated and displayed to the screen.

Although Listing 16.9 is long, much of the code is repetitive because of the three similar
controls for first, middle, and last names. In lines 10 to 20, a number of controls are
declared within the frmGetName class. These controls are instantiated (lines 34 to 44) and
assigned values within the InitializeComponent method. In lines 48 to 58, the three
labels for first, middle, and last names are assigned values. They first have their
AutoSize property set to true so the control will be large enough to hold the informa-
tion. The text value is then assigned. Finally, each are positioned on the form. As you can
see, they are each placed 20 pixels from the edge. They also are spaced vertically at dif-
ferent positions.

In lines 60 to 61, the full name label is declared. Its Text property is not assigned a value
at this point. It will obtain its Text assignment when an event is called.

Lines 63 to 70 assign locations and widths to the text box controls that are being used in
this program. As you can see, these assignments are done in the same manner as for the
controls you’ve already learned about.

In lines 72 to 79, instructions are added via another label control. Don’t be confused by
all the code being used here. In line 74, three lines of text are being added to the control;

ANALYSIS

22 0672320711 CH16 10/1/01 11:37 AM Page 491

however, this is really just one very long string of text that has been broken to make it
easier to read. The plus sign concatenates the three pieces and assigns them all as a sin-
gle string to the lblInstructions.Text property. Line 77 uses another property you
have not seen before. This is the TextAlign property that aligns the text within the label
control. This property is assigned a value from the ContentAlignment enumeration. In
this listing, MiddleCenter was used. Other valid values from the ContentAlignment enu-
merator include BottomCenter, BottomLeft, BottomRight, MiddleLeft, MiddleRight,
TopCenter, TopLeft, and TopRight.

492 Day 16

Although different controls have properties with the same name, such prop-
erties might not accept the same values. For example, the label control’s
TextAlign property is assigned a value from the ContentAlignment enumera-
tion. The text box control’s TextAlign is assigned a HorizontalAlignment
enumeration value.

Caution

Lines 98 to 101 add exception handlers. As you can see, line 98 adds a handler for the
Click event of the btnOK button. The method called is in lines 104 to 107. This method
exits the application loop, thus helping end the program.

Lines 99 to 101 add event handlers for the TextChanged event of the text box buttons.
Whenever the text within one of the three text boxes is changed, the txtChanged_Event
will be called. As you can see, the same method can be used with multiple handlers. This
method concatenates the three name fields and assigns the result to the lblFullNameText
control.

Working with Other Controls
Listing 16.9 provides the basis of what you need to build basic applications. There are a
number of other controls that you can use. For the most part, basic use of the controls is
similar to the use you’ve seen in the listings in today’s lessons. You create the control,
you modify the properties to be what you need, you create event handlers to handle any
actions you want to react to, and finally you place the control on the form. Some con-
trols, such as list boxes, are a little more complex for assigning initial data, but overall
the process of using such controls is the same.

As mentioned earlier, covering all the controls and their functionality would be a very,
very thick book on its own. The online documentation is a great starting point for work-
ing the details of these. Although it is beyond the scope of this book to go into too much
depth, the popularity of windows-based programming warrants covering a few additional
windows topics in tomorrow’s lesson before moving on to Web forms and services.

22 0672320711 CH16 10/1/01 11:37 AM Page 492

Creating Windows Forms 493

16

Summary
Today’s lesson was a lot of fun. As you have learned, using the classes, methods, proper-
ties, and events defined in the System.Windows.Forms namespace can help you create
windows-based applications with very little code. Today, you learned how to create and
customize a form. You also learned how to add basic controls to the form and how to
work with events to give your forms functionality. Although only a few of the controls
were introduced, you will find that using the other controls is similar in a lot of ways to
working with the ones presented today.

Tomorrow, you continue to expand on what you learned today. On Day 18, “Web
Development,” you’ll learn how windows forms differ from Web forms.

Q&A
Q Where can I learn more about Windows forms?

A You can learn more about Windows forms from the documentation that comes with
the .NET SDK. This includes a Windows Forms Quick Start.

Q I noticed that Form is listed in the table of controls. Why?

A A form is a control. Most of the functionality of a control is also available to a
form.

Q Why didn’t you cover all the properties, events, and methods for the controls
presented today?

A There are over 40 controls within the framework classes. Additionally, many of
these controls have well over a hundred methods, events, and properties. To cover
over 4,000 items with just a line each would take roughly 80 pages.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided in Appendix A, “Answers.”

Quiz
1. What is the name of the namespace where most of the windows controls are

located?

2. What method can be used to display a form?

22 0672320711 CH16 10/1/01 11:37 AM Page 493

3. What are the three steps involved in getting a control on a form?

4. What do you enter on the command line to compile the program xyz.cs as a win-
dows program?

5. If you want to include the assembly myAssmb.dll when you compile the program
xyz.cs, what do you enter on the command line?

6. What does the Show() method of the Form class do? What is the problem with
using this method?

7. Which of the following causes the Application.Run method to end?

a. A method

b. An event

c. The last line of code in the program is reached

d. It never ends

e. None of the above

8. What are the possible colors you can use for a form? What namespace needs to be
included to use such colors?

9. What property can be used to assign a text value to a label?

10. What is the difference between a text box and a label?

Exercises
1. Write the shortest Windows application you can.

2. Create a program that centers a 200-x-200–pixel form on the screen.

3. Create a form that contains a text field that can be used to enter a number. When
the user presses a button, display a message in a label that states whether the num-
ber is from 0 to 1000.

4. BUG BUSTER: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?
1: using System.Windows.Forms;
2:
3: public class frmHello : Form
4: {
6: public static void Main(string[] args)
7: {
8: frmHello frmHelloApp = new frmHello();
9: frmHelloApp.Show();
10: }
11: }

494 Day 16

22 0672320711 CH16 10/1/01 11:37 AM Page 494

