
Table of Contents
Copyright Information Technical Support Company Commitment

Event Reference Property Reference
Function Call Reference Worksheet Function Reference

Chapter 1
 Getting Started

Introduction
Installing Formula One
Loading Formula One
Autoloading Formula One
Using Help
Basic Concepts
Placing Controls on Forms
Placing Edit Bars on Forms
Distributing Applications

Redistributing Files

Chapter 2
Programming Tools

Using Properties
Properties Summary

Using Function Calls
Calling Functions
Using Built-In Dialog Boxes
Trapping for Errors
Function Call Summary

Dialog Box Function Calls
Edit Bar Function Calls
Formatting Function Calls
Data Entry Function Calls
Printing Function Calls
Range Editing Function Calls
Recalculation Function Calls
Selection Function Calls
Worksheet Function Calls
Miscellaneous Function Calls

Using Events
Validating Data
Drilling for Data
Events and Other Controls
Event Summary

Chapter 3
Using Views and Worksheets

Working with Worksheets
Working with Views

Using View Information
Saving View Information

Attaching Views to Worksheets
One View with Multiple Worksheets
One Worksheet with Multiple Views

Saving Worksheets
Reading and Writing Files

Using the Worksheet Designer

Chapter 4
Using Edit Bar Controls

Creating Edit Bar Controls
Edit Bar Properties
Edit Bar Events
Edit Bar Function Calls

Chapter 5
Worksheet Fundamentals

Navigating through Worksheets
Using Keyboard Commands
Performing Mouse Actions
Selecting Cells

Selecting Cells with the Mouse
Selecting Cells with Properties

Using the Selection Property
Selecting Cells with Function Calls
Selecting Rows and Columns

Selecting Rows and Columns with Properties

Chapter 6
Working with Data

Worksheet Data Entry
Entering Data with Properties
Entering Data with Function Calls

Limiting Data Entry
Limiting Formula Entry
Locking Cells

Worksheet Data Types
Entering Constant Values
Entering Formulas

Formula Operators
Operator Precedence
Cell References

Absolute and Relative References
External References
Automatically Entering Cell References

Worksheet Errors
Displaying Formulas
Custom Functions

Built-In Worksheet Functions
Understanding Functions
Entering Functions

Nesting Functions
Entering Arguments
Syntax Errors

Using Names
Calculating Worksheets

Setting Automatic Recalculation
Solving Circular References

Chapter 7
Editing Worksheets

Cut, Copy, and Paste Function Calls

Copying Data Across Ranges
Copying Data Interactively

Moving Data
Moving Data Interactively

Inserting Cells, Rows, and Columns
Clearing and Deleting Cells, Rows, and Columns
Sorting Worksheets

Chapter 8
Formatting Worksheets

Built-In Number Formats
Formatting Rows and Columns
Obtaining Formatted Text

Custom Formatting
Aligning Data
Changing Row Heights and Column Widths

Interactively Sizing Rows and Columns
Sizing Rows and Columns with Function Calls

Setting Cell Borders and Colors
Formatting Row and Column Headings

Chapter 9
Printing Worksheets

Printing with Function Calls
Specifying Print Areas
Specifying Row and Column Print Titles
Specifying Print Headers and Footers
Specifying Page Breaks

Page Break Function Calls

Chapter 10
Working with Databases

Accessing Databases
Using Virtual Record Buffers

DataChanged and DataFieldChanged Properties
RowMode Property

Deleting Records
DataRowLoad and DataNewRow Events
Specifying Database Column Display

Calculating Database Formulas
Displaying and Using Field Names

Chapter 11
Performance Tuning
Worksheet Specifications

Chapter 12
Formula One and Visual C++

CVBControl Class
Getting and Setting Properties with Visual C++
Differences Between Visual Basic and Visual C++

Chapter 13
Worksheet Designer Overview

File Menu Commands
Edit Menu Commands

View Menu Commands
Format Menu Commands
Window Menu Commands

Chapter 14
A-Z Event Reference

Chapter 15
A-Z Property Reference

Chapter 16
A-Z Function Call Reference

Chapter 17
A-Z Worksheet Function Reference

Company Commitment
The phenomenal increase in computing power in recent years has given rise to applications that are
increasingly complex. This trend has made it all but impossible to develop applications from raw code.
Instead, developers need high-quality tools if they are to build world class applications. VisualTools, Inc.
was formed in February 1993, to supply those tools. Our guiding principles are:

Integrity is our highest concern

Customers are the reason we exist

Quality is not available for compromise

Employee involvement is our basic business model

Introduction
Formula One is a high performance spreadsheet control that allows you to create, manipulate and print
worksheets. It contains the tools needed to store, analyze, manipulate, and present your data. Its major
features include:

Excel Compatible. Formula One reads and writes Excel 4.0 compatible worksheets. Developers
can create applications that share information with all major Windows applications.

Database Access. Formula One is a bound control, allowing connection to Access databases.

Multiple Worksheets. With Formula One, you can work with multiple worksheets simultaneously.

Drag-and-Drop. Formula One allows you to move and copy data in ranges by dragging ranges.

Superior Data Formatting. Excel-style custom formatting is supported, allowing unlimited
formatting options.

Worksheet Designer. The Worksheet Designer is an interactive program that allows you to
design and format the worksheet for your application by pointing and clicking, and choosing format
commands from menus.

Ease of Use. Formula One has many features that make it one of the easiest data aware controls
to use, including built-in dialog boxes for your applications, the complete documentation available through
on-line help, and endless flexibility for customizing the control.

Getting Technical Support
The VisualTools technical support staff can help you with any problem you encounter installing or using
Formula One. If you need assistance, contact VisualTools in any of the following ways:

By telephone. You can contact our technical support staff at (913)599-6500 on weekdays
between 8:30 a.m. and 5:30 p.m., central time.

By FAX. You can contact us by FAX at (913)599-6597.

Via BBS. You can contact us through our 24-hour bulletin board service at (913)599-6713.

Via CompuServe. You can contact us through CompuServe 72204,3521.

By mail. Address your correspondence to:
Customer Service Department
VisualTools, Inc.
15721 College Blvd.
Lenexa, Kansas 66219

Getting Started
Before you can use the Formula One control, it must be installed on your system. The following sections
provide instructions for installing the Formula One files, including the sample applications. Information is
also provided about how to load the control in your Visual Basic tool box and place a control on a form.

Installing Formula One
The Setup program creates new directories and copies the Formula One files to your hard disk.

 To install Formula One on your hard disk:
1. Start Microsoft Windows.
2. Insert the Formula One disk in your floppy drive.
3. From Program Manager, select the File menu and choose Run.
4. In the Run dialog box, type a:\setup or b:\setup, depending on where you placed the Formula One disk.

There are eight basic Formula One components:

File Description
VTSS.VBX Visual Basic control

VTSSDLL.DLL Worksheet engine

VTSSAPP.EXE Worksheet Designer application

VTSS.LIC License file necessary to run in design mode

VTSS.HLP Help file

VTSS.TXT Text file containing all declarations and constants

VTSS.H Header file containing all declarations and constants

VTSS.BAS Declarations and contstants in Basic form

In addition to the files listed in the preceding table, several sample applications are installed
subdirectories in the VTFORM1 directory, unless you specify another location for installation.

The program group VisualTools is created in your Program Manager. The Worksheet Designer application
and sample applications are installed in this program group.

Loading Formula One
To use Formula One in Visual Basic, you must add the Formula One controls to the Visual Basic toolbox.

 To add the Formula One control to the Visual Basic toolbox:
1. Start Visual Basic.
2. From Visual Basic, select the File menu and choose Add File.
3. Select the WINDOWS\SYSTEM directory on your hard disk and double click VTSS.VBX. If you

installed the Formula One files in a custom location, you must open the directory in which you installed
VTSS.VBX.

The Formula One icons are added to the Visual Basic toolbox.

Autoloading Formula One
You can configure Visual Basic to automatically load the Formula One controls when you start a new
project in Visual Basic.

 To configure Visual Basic to automatically load VTSS.VBX:
1. Start Visual Basic and open AUTOLOAD.MAK.

2. Choose Add File from the File menu.

The Add File dialog box appears.

3. Select VTSS.VBX and choose OK.

The control is added to the project list.

4. Choose Save Project from the File menu.

Using Help
Comprehensive on-line help is available to assist you as you learn and use the Formula One controls.
The complete set of Formula One documentation is available through on-line help. In addition, you can
receive context-sensitive help for properties.

 To access the help index:
1. Click the Formula One icon (on the toolbox).
2. Press F1.

 To access context-sensitive help for properties:
1. Select a Formula One control on your form.
2. Highlight a Formula One property in the Properties dialog box.
3. Press F1.

Basic Concepts
Formula One is a Visual Basic Custom Control (VBX). It can be accessed directly by Microsoft's Visual
Basic or Visual C++.

The Formula One control is a compatible subset of Microsoft's Excel spreadsheet application. You
can design complex models either directly in Formula One or import data from Excel. Similarly, data
collected and manipulated in an application using Formula One can be exported to Excel or other
applications that read Excel 4.0 files.

Data, formulas, and formatting information can be entered in the Formula One control at design
time or run time.

When using the Formula One control at design time, you have access to the Worksheet Designer
application. With this application, you can manipulate the worksheet control just like it was a part of
spreadsheet application.

The Worksheet Designer is accessed by double clicking the control with the right mouse button.

Worksheet controls can be saved with a form or in a separate file.

The Formula One control can be used as a bound control. It automatically handles adding,
deleting, updating, and displaying data from Access databases. With this feature, building database
applications is greatly simplified.

You can also store a complete worksheet in a single field of each record, allowing you to create a
database of worksheets. Access databases refer to these fields as OLE fields.

Placing Formula One Controls on Forms
Creating a new worksheet control and placing it on a form is as simple as point, click, and drag.

 To place the Formula One control on a form:
1. Select the Formula One tool in the Visual Basic tool box.
2. Position the mouse in the form at the location where you want to draw the control.
3. Click and drag to draw the outline of the worksheet on the form.

When you release the mouse, the new worksheet control is placed in the location you specified.

Once the worksheet is placed on the form, you can immediately use the control. Formula One's control
defaults are set so you can add data and formulas, navigate through the worksheet, and access the
Worksheet Designer without writing any code.

Placing an Edit Bar Control on a Form
An edit bar is an auxiliary control that interacts with worksheet controls. An edit bar allows you to enter
and edit data in worksheet controls. Edit bar controls are not required because you can edit data directly
in a worksheet control. However, edit bars are convenient if you have long text or complex formulas to
enter.

You can place an edit bar control on a form in the same manner as a worksheet control.

 To place an edit bar control on a form:
1. Select the edit bar tool in the Visual Basic tool box.
2. Position the mouse in the form at the location where you want to draw the edit bar.
3. Click and drag to draw the outline of the edit bar on the form.

When you release the mouse, the new edit bar control is placed in the location you specified.

Distributing Formula One Applications
Please read the license agreement that was shipped with this package. You are bound by the licensing
restrictions contained in that document.

Redistributing Files
You can use all the files accompanying this product for development of an application. You can
redistribute the run time version of the software according to the terms of the license agreement.

You can ship the following files with your application:

File Description
VTSS.VBX Visual Basic control

VTSSDLL.DLL Worksheet engine

Copyright © 1994 VisualTools, Inc. All rights reserved.
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of VisualTools, Inc.

© 1994 VisualTools, Inc. All rights reserved.

Microsoft, MS, MS-DOS, and GW-BASIC are registered trademarks and Microsoft Access, QuickBasic,
Visual Basic, and Windows are trademarks of Microsoft Corporation in the USA and other countries.

CompuServe is a registered trademark of CompuServe, Inc.

TrueType is a registered trademark of Apple Computer, Inc.

The VisualTools License Agreement, included with the product, specifies the permitted and prohibited
uses of the product. Any unauthorized reproduction or use of the product, or breach of the terms and
conditions of the License Agreement, is forbidden. The VisualTools License Agreement sets forth the only
warranties applicable to the product and documentation. All warranty disclaimers and exclusions set forth
therein apply to the information contained in this document.

Created and published by
VisualTools, Inc.

15721 College Boulevard
Lenexa, Kansas 66219
913-599-6500
FAX: 913-599-6597

Programming Tools
Although many applications can be created "visually" via the Visual Basic interface and Worksheet
Designer, your application may require more complex functionality. Formula One/ VB properties and
function calls are programming tools that provide access to that functionality.

Formula One properties provide a subset of the complete control functionality that is sufficient for
most applications. Properties are easy to use, yet powerful tools. Formula One properties include some
standard Visual Basic properties.

For more complex applications, application developers can use function calls to access the
complete range of the controls functionality. In addition, function calls allow you to access the suite of
built-in dialog boxes.

Using Properties
Formula One provides 112 properties. With properties, you can perform a variety of tasks, such as hiding
and displaying elements of a worksheet, selecting cells and ranges, setting print margins, and counting
the number of database records displayed in a worksheet. Many properties allow you to perform complex
tasks with very little coding.

The following example shows the code required to read an Excel worksheet from disk using the read file
property:

Sheet1.ReadFile = "c:\excel\examples\amortize.xls"
The following example uses the Row, Col, Number, Formula, and Text properties to enter data in a
worksheet. Numbers, 1 and 2, are entered in A1 and A2. A formula, SIN(A1) + COS(A2), is entered in A3.
A text string is entered in B4.

Sheet1.Row = 1
Sheet1.Col = 1
Sheet1.Number = 1
Sheet1.Row = 2
Sheet1.Number = 2
Sheet1.Row = 3
Sheet1.Formula = "sin(A1) + cos(A2)"
Sheet1.Row = 4
Sheet1.Col = 2
Sheet1.Text = "The End!"

The following illustration shows the result of the preceding example.

Properties Summary
The following table lists the properties available in Formula One

Property Description
AllowAppLaunch Determines if the Worksheet Designer is allowed to launch when the user double clicks the

Formula One window.

AllowArrows Determines if the arrow keys can move the active cell.

AllowDelete Determines if the Delete key can delete the current record or clear the current selection.

AllowEditHeaders Determines if row, column, and top left header text can be edited.

AllowFillRange Determines if the user is allowed to fill a range by dragging a selection's fill handle.

AllowFormulas Determines if the user can enter new formulas or edit existing formulas.

AllowInCellEditing Determines if in-cell editing is allowed.

AllowMoveRange Determines if the user can move a selection by dragging it to a new location.

AllowResize Determines if the user is allowed to resize rows or columns.

AllowSelections Determines if the user is allowed to make selections.

AllowTabs Determines if the Tab and Shift Tab keys can move the active cell within the current selection.

AutoRecalc Determines if automatic recalculation is enabled. Forces the worksheet to be recalculated
immediately when set to True.

BackColor Determines the background color of the Formula One window.

BorderStyle Determines the border style for the Formula One window.

Col Determines the active column in the worksheet. This is a run time only property.

DataAutoAddNew Determines if the worksheet has an empty row at the end for adding new records.

DataChanged Indicates that the data in the current record has changed.

DataConnected Specifies whether the worksheet is connected to a data control. This can be useful for
downloading data and disconnecting before performing analysis or operations on the data.

DataField Binds the Formula One control to a database field. Used for storing an entire Formula One
worksheet within a single field.

DataFieldChanged Indicates whether the specified field has been changed by the user. This is a run time only
property.

DataFieldCount Returns the number of database fields displayed in the worksheet. This is a run time, read only
property.

DataFieldNumber Returns the database field number of the specified column. This is a run time, read only
property.

DataFields Binds the Formula One control to one or more database fields. Used for displaying one record
per row.

DataHdrField Allows a field's value to be specified as the row headers.

DataRowBase Returns the row number of the record in row 1 of the worksheet. Used only when the virtual
record mode is used. This number is invalid after a find or if other users add or delete
records to the database. When valid, DataRowBase plus Row equals the database record
number.

DataRowCount Returns the number of database records currently loaded in the worksheet. This is a run time,
read only property.

DataRowsBuffered Specifies how many rows are held in memory at one time.

DataSetColumnFormats Determines if formats for date, time, and currency fields are set automatically.

DataSetColumnNames Determines if the column headings are replaced by the field names.

DataSetColumnWidths Determines if the column widths are automatically set to the widest data in the column.

DataSetMaxCol Determines if the MaxCol property is set to the number of columns containing fields.

DataSetMaxRow Determines if the MaxRow property is set to the number of rows containing records.

DataSource Determines the data control through which the current Formula One control is bound to a
database. This is a design time only property.

DoCancelEdit Determines if the CancelEdit event can be fired.

DoClick Determines if the Click event can be fired.

DoDataNewRow Specifies whether the DataNewRow event gets fired when the data control sends the AddNew
message.

DoDataRowLoad Specifies whether the DataRowLoad event gets fired after each row is loaded from the data
control.

DoDblClick Determines if the DblClick Event can be fired.

DoEndEdit Determines if the EndEdit Event can be fired.

DoEndRecalc Determines if the EndRecalc Event can be fired.

DoSelChange Determines if the SelChange Event can be fired.

DoStartEdit Determines if the StartEdit Event can be fired.

DoStartRecalc Determines if the StartRecalc Event can be fired.

DoTopLeftChanged Determines if the TopLeftChanged Event can be fired.

DragIcon Determines the icon to be displayed in a drag-and-drop operation.

DragMode Specifies manual or automatic dragging mode for drag-and-drop operations.

EditName Determines the edit bar that is used with this worksheet.

Enabled Determines if the Formula One object is enabled.

EnableProtection Enables cell protection for the current worksheet.

Entry Specifies the formatted contents of a cell.
ExtraColor Determines the color of the Formula One window outside the active cell area.

FileName Specifies the name from which a worksheet is loaded and to which it is saved. If this property
is empty the worksheet is saved in the form.

FixedCol Determines the starting fixed column in the Formula One window.

FixedCols Determines how many columns to fix at the left edge of the worksheet.

FixedRow Determines the starting fixed row in the Formula One window.

FixedRows Determines how many rows to fix at the top of the worksheet.

FormattedText Returns the formatted text of a cell. The text is the same as displayed in the worksheet,
including all formatting.

Formula Specifies a formula as a text string for the active cell. This is a run time only property.

Height Determines the dimensions of an object.

HelpContextID Determines the associated help context number for an object. Used to provide context
sensitive help in an application.

hWnd Specifies a handle to the control. This property is a run time, read only property.

Index Specifies a unique number that identifies a control in a control array. This property is a run
time, read only property.

Left Determines the distance between the internal left edge of an object and the left edge of the

container.

LeftCol Determines the leftmost column displayed in the worksheet window.

MaxCol Specifies the last displayable column.

MaxRow Specifies the last displayable row.

MinCol Specifies the first displayable column.

MinRow Specifies the first displayable row.

MousePointer Determines the type of mouse pointer displayed when the cursor is in the Formula One control.

Name Specifies the name by which the object can be referred in the program code. This name cannot
be changed at run time.

Number Specifies a numeric value for the active cell. This is a run time only property.

Parent Specifies the form on which the control is located. This is a run time, read only property.

PrintArea Specifies the worksheet ranges to be printed.

PrintBottomMargin Determines the bottom page margin.

PrintColHeading Determines if the worksheet column headings are printed.

PrintFooter Determines the contents of the page footer.

PrintGridLines Determines if the grid lines are printed.

PrintHCenter Determines if the worksheet is horizontally centered on the page.

PrintHeader Determines the contents of the page header.

PrintLeftMargin Determines the left page margin.

PrintLeftToRight Determines if the worksheet pages print from top to bottom or left to right.

PrintNoColor Determines if the worksheet pages are printed in color.

PrintRightMargin Determines the right page margin.

PrintRowHeading Determines if the worksheet row headings are printed.

PrintTitles Determines the rows and columns printed as titles on each page.

PrintTopMargin Determines the top page margin.

PrintVCenter Determines if the worksheet is vertically centered on the page.

ReadFile Reads a worksheet from a file into the control.

Repaint Determines if Formula One repaints after a change is made to the worksheet.

Row Determines the active row in the worksheet. This is a run time only property.

RowMode Specifies whether individual cells or entire rows can be selected.

Selection Determines the current selection.

SelEndCol Determines the ending column of a selected range.

SelEndRow Determines the ending row of a selected range.

SelStartCol Determines the starting column of a selected range.

SelStartRow Determines the starting row of a selected range.

ShowColHeading Determines if the column headings are displayed in the Formula One window.

ShowGridLines Determines if the grid lines are displayed in the Formula One window.

ShowHScrollBar Determines how the horizontal scroll bar is displayed.

ShowRowHeading Determines if the row headings are displayed in the Formula One window.

ShowSelections Determines how selections are displayed.

ShowVScrollBar Determines how the vertical scroll bar is displayed.

SS Property Specifies the handle to a worksheet view. This is a run time only, read only property.

TabIndex Determines the tab order of the Formula One control within its parent form.

TableName Specifies the name by which the worksheet is referred in formulas in other worksheets.

TabStop Determines if the user can use the Tab key to set the focus to this control.

Tag Stores any extra data needed by your application. This property is not used by Visual Basic or
Formula One.

Text Specifies a text string for the active cell. This is a run time only property.

Top Determines the distance between the internal top edge of an object and the top edge of the
container.

TopRow Determines the top row displayed in the worksheet window.

Visible Determines if the Formula One object is visible.

Width Determines the width of a Formula One object.

WriteExcel4 Writes the current worksheet to the specified Excel 4.0 file.

WriteFile Writes the current worksheet to the specified file.

Using Function Calls
Function calls provide access to the complete set of Formula One functionality. In fact, function calls
provide enough functionality to build a complete stand-alone spreadsheet, if desired.

Function calls can be easily accessed from Visual Basic, Visual C++, C, and many other Windows
applications.

To access function calls from Visual Basic, include the file VTSS.TXT in your project.

To access function calls from Visual C++ or C, include the header files VTSS.H and SSERROR.H
and the library VTSSDLL.LIB.
These files contain the function declarations and constants.

Calling Functions
Function calls operate on a worksheet through a specific view. Each function call requires a handle to a
view to tell it on which view and worksheet it is operating. This handle is available as the SS Property
property. The handle is a run time only, read only property. You cannot change the setting of this property.
There are two basic types of function calls.

Some functions set values or perform operations and do not return data.

Other functions perform an operation and return a value or string to the caller.
Functions that do not return data are the simplest to call. An example of this type of function is
SSSetNumber. This function call places a number in the active cell. The following code uses this function
call:

hSS = Sheet1.SS
SSERROR = SSSetNumber (hSS, 1234.56)

After calling a function, test SSERROR to determine if the operation succeeded. If its value is zero, the
function succeeded. If the value is non-zero, an error occurred. The list of possible error values is
provided in the section Trapping Errors.

Function calls that return values or strings require a destination for the result. In the case of a value, you
must supply a variable in which the value is returned. An example of a function call that returns a value is
SSGetNumber. This function call returns the number in the active cell. The following code uses this
function call:

Dim TheNumber#
hSS = sheet1.SS
SSERROR = SSGetNumber (hSS, TheNumber#)

The value of the active cell is placed in the variable TheNumber. As in the previous example, SSERROR
is tested to determine if the operation succeeded.

Function calls that return strings need both a buffer and a place in which to return the string. In addition,
you must specify the size of the buffer, insuring that the buffer is not overrun. Space for the buffer must be
allocated using Space$(n), where n is the size of the buffer, prior to calling the function.

An example of a function call that returns a string is SSGetText. This function call returns the text of the
active cell. The following code uses this function call:

hssView = sheet1.SS
TheBuffer$ = Space$(50)
BuffSize = 50
SSERROR = SSGetText (hssView, TheBuffer$, BuffSize)

As in the previous examples, SSERROR is tested to determine if the operation succeeded.

Built-In Dialog Boxes
To make application development easier, Formula One provides a suite of built-in dialog boxes that can
be invoked by function calls. These dialog boxes provide yet another avenue for accessing the Formula
One functionality.

The dialog boxes can be displayed by your application to allow the application user to provide input for
the worksheet control. Refer to the dialog box function call summary for a list of the dialog box function
calls.

Trapping Errors
Formula One errors that occur during Visual Basic execution are handled like other Visual Basic errors.
An error sets the Err error status function and forces an error. These errors can be caught with the On
Error statement and tested with the Err function.

Function calls also return an error status. This status should be checked after each function call is
executed. The following table lists the errors that can be generated by function calls. These error values
are contained in VTSS.TXT for Visual Basic projects, and SSERROR.H for C and C++ projects.

Note Formula One error numbers are incremented by 20,000 to avoid conflict with Visual Basic error
numbers.

Error Name Error Number Description
SSERROR_NONE 0 Function succeeded.

SSERROR_GENERAL 1 Function failed with a non-specific error.

SSERROR_BAD_ARGUMENT 2 One of the function arguments was invalid.

SSERROR_NO_MEMORY 3 Not enough memory to complete the task.

SSERROR_BAD_FORMULA 4 The formula syntax is incorrect.

SSERROR_BUF_TOO_SHORT 5 The returned result is longer than the return buffer size. A
NULL string is placed in the buffer.

SSERROR_NOT_FOUND 6 Cannot find item for which function is looking.

SSERROR_BAD_RC 7 The row/column reference is invalid.

SSERROR_BAD_HSS 8 Invalid view handle passed.

SSERROR_TOO_MANY_HSS 9 Unable to create additional view handles.

SSERROR_NO_TABLE 10 No worksheet attached to the view.

SSERROR_UNABLE_TO_OPEN_FILE 11 Cannot open the specified file.

SSERROR_INVALID_FILE 12 Cannot read invalid file.

SSERROR_INSERT_SHIFT_OFF_TABLE 13 Insert pushes cells outside of worksheet bounds.

SSERROR_ONLY_ONE_RANGE 14 Specified command expects only one selected range.

SSERROR_NOTHING_TO_PASTE 15 Nothing to paste when a paste operation was requested.

SSERROR_BAD_NUMBER_FORMAT 16 Invalid custom format string.

SSERROR_TOO_MANY_FONTS 17 Cannot add fonts to the table.

SSERROR_TOO_MANY_SELECTED_
RANGES 18 Cannot add selected ranges.

SSERROR_UNABLE_TO_WRITE_FILE 19 An error occurred while writing the file.

SSERROR_NO_TRANSACTION 20 SSTransactCommit or SSTransactRollback was called
without first calling SSTransactStart.

SSERROR_NOTHING_TO_PRINT 21 No data to print in the table or selected range.

SSERROR_PRINT_MARGINS_DONT_FIT 22 Print margins are out of range.

SSERROR_CANCEL 23 Returned if the user presses Cancel in a built-in dialog box.

SSERROR_UNABLE_TO_INITIALIZE_
PRINTER 24 Cannot initialize the printer.

SSERROR_STRING_TOO_LONG 25 An argument to a C function specified a string that was too
long.

SSERROR_FORMULA_TOO_LONG 26 Specified formula is too long.

SSERROR_UNABLE_TO_OPEN_CLIPBOARD 27 Cannot open the Windows clipboard.

SSERROR_PASTE_WOULD_OVERFLOW_
SHEET 28 The paste operation extends beyond the last row or last

column of the worksheet.

SSERROR_LOCKED_CELLS_CANNOT_BE_
MODIFIED 29 Attempted to modify cells that are locked with protection

enabled.

SSERROR_LOCKED_DOCUMENT_
CANNOT_BE_MODIFIED 30 Attempted to modify a document that has protection enabled.

SSERROR_INVALID_NAME 31 Specified a user defined name that is invalid.

SSERROR_CANT_DELETE_NAME_IN_USE 32 Attempted to delete a user defined name that is currently in
use by a formula.

SSERROR_UNABLE_TO_FIND_NAME 33 Could not find specified user defined name.

Dialog Box Function Call Summary
Dialog box function calls invoke the Formula One built-in dialog boxes. The following table lists the dialog
box function calls.

Dialog Box Functions Operation
SSCalculationDlg This dialog box allows you to enable and disable automatic recalculation and specify

iteration values for calculating circular references.

SSColorPaletteDlg This dialog box allows you to edit colors in the color palette, specify a default color, and
use the default color palette.

SSColWidthDlg This dialog box allows you to set the width of the selected columns, specify default column
widths, and specify automatic column width. In addition, you can specify whether the
selected columns are shown or hidden.

SSDefinedNameDlg This dialog box allows you to add and delete user defined names.

SSFilePageSetupDlg This dialog box allows you to define header and footer text, page margins, page print
order, page centering, worksheet-related print options.

SSFilePrintSetupDlg This dialog box allows you to select the printer to which the worksheet is sent, the page
orientation, and paper size.

SSFormatAlignmentDlg This dialog box allows you to specify the horizontal and vertical alignment of data in the
selected range. In addition, you can enable and disable word wrapping.

SSFormatBorderDlg This dialog box allows you to specify the placement of borders in the selected range. In
addition, you can specify the border line style and color.

SSFormatFontDlg This dialog box allows you to specify the font, point size, font style, and color of data in the
selected range.

SSFormatNumberDlg This dialog box allows you to define custom number formats for data in the selected
range.

SSFormatPatternDlg This dialog box allows you to specify the fill pattern and foreground and background colors
for the selected range.

SSGotoDlg This dialog box allows you to select the worksheet page to display.

SSOpenFileDlg This dialog box allows you to open worksheets from disk.

SSProtectionDlg This dialog box allows you to specify whether the cells in the selected range are locked
and hidden.

SSRowHeightDlg This dialog box allows you to set the height of the selected rows, specify default row
heights, and specify automatic row height. In addition, you can specify whether the
selected rows are shown or hidden.

SSSaveFileDlg This dialog box allows you to save the current file in Formula One or Excel 4.0 format.

SSSortDlg This dialog box allows you to set the sorting method and sort keys for data sorting.

Edit Bar Function Call Summary
Edit bar function calls manipulate edit bar controls. The following table lists the edit bar function calls.
These function calls are not normally called from Visual Basic.

Edit bar Functions Operation
SSEditBarDelete Deletes an edit bar.

SSEditBarHeight Returns the default height of an edit bar.

SSEditBarMove Moves an edit bar.

SSEditBarNew Creates a new edit bar.

Formatting Function Call Summary
Formatting function calls control the appearance of worksheets and the data they contain. The following
table lists the formatting function calls.

Formatting Functions Operation
SSFormatCurrency0 Formats selected ranges with currency format and no decimal places.

SSFormatCurrency2 Formats selected ranges with currency format and two decimal places.

SSFormatFixed Formats selected ranges with fixed format and no decimal places.

SSFormatFixed2 Formats selected ranges with fixed format and two decimal places.

SSFormatFraction Formats the selected ranges with the fraction format.

SSFormatGeneral Formats the selected ranges with the general format.

SSFormatHmmampm Formats the selected ranges in 12-hour time format.

SSFormatMdyy Formats the selected ranges with the date format.

SSFormatPercent Formats the selected ranges in percent format.

SSFormatScientific Formats the selected ranges in scientific format.

SSGetAllowResize Returns the state of the resize flag.

SSGetBackColor Returns the background color of the view.

SSGetColWidth Returns the width of the specified column.

SSGetExtraColor Returns the color outside the worksheet.

SSGetMaxCol Returns the last displayable column.

SSGetMaxRow Returns the last displayable row.

SSGetMinCol Returns the first displayable column.

SSGetMinRow Returns the first displayable row.

SSGetRowHeight Returns the height of the specified row.

SSGetShowColHeading Returns the show column heading flag.

SSGetShowFormulas Returns the show formulas flag.

SSGetShowGridLines Returns the show grid lines flag.

SSGetShowHScrollBar Returns the show horizontal scroll bar flag.

SSGetShowRowHeadingReturns the show row heading flag.

SSGetShowSelections Returns the show selections flag.

SSGetShowVScrollBar Returns the show vertical scroll bar flag.

SSGetShowZeroValues Returns the show zero values flag.

SSSetAlignment Specifies data alignment for a selection.

SSSetAllowResize Specifies whether resizing rows and columns by dragging is allowed.

SSSetBackColor Specifies the background color of the worksheet.

SSSetBorder Specifies the border for all selected cells.

SSSetColText Specifies the text for a column header.

SSSetColWidth Determines the width for the specified columns.

SSSetColWidthAuto Specifies that column widths are set automatically.

SSSetExtraColor Specifies the color of the view area outside the worksheet.

SSSetFont Specifies the font information for all selected cells.

SSSetHdrHeight Specifies the height of column headers.

SSSetHdrWidth Specifies the width of row headers.

SSSetLeftCol Specifies the leftmost column in the view.

SSSetMaxCol Specifies the last displayable column.

SSSetMaxRow Specifies the last displayable row.

SSSetMinCol Specifies the first displayable column.

SSSetMinRow Specifies the first displayable row.

SSSetNumberFormat Specifies the number format for all selected cells.

SSSetPattern Specifies the fill pattern and colors for the selected cells.

SSSetRowHeight Specifies the height for the specified rows.

SSSetRowHeightAuto Specifies that row heights are set automatically.

SSSetRowText Specifies the text for a row header.

SSSetShowColHeading Specifies whether column headings are displayed.

SSSetShowFormulas Specifies whether formulas are displayed in place of cell values.

SSSetShowGridLines Specifies whether grid lines are displayed.

SSSetShowHScrollBar Determines how the horizontal scroll bar is displayed .

SSSetShowRowHeading Specifies whether row heading are displayed.

SSSetShowSelections Specifies how selections are displayed.

SSSetShowVScrollBar Determines how the vertical scroll bar is displayed.

SSSetShowZeroValues Determines whether zero value cells are displayed.

SSSetTopLeftText Specifies the text for the top left header.

SSSetTopRow Sets the top row displayed in the view.

Data Entry Function Call Summary
Data entry function calls allow you to enter, edit, and obtain data. The following table lists the data entry
function calls.

Data Entry Functions Operation
SSCancelEdit Aborts edit mode and leaves current cell unchanged.

SSEndEdit Exits edit mode and commits changes to current cell.

SSGetAllowEditHeaders Returns the state of the edit headers flag.

SSGetAllowInCellEditingReturns the state of the in-cell editing flag.

SSGetEntry Returns the value of the current cell in edit mode format.

SSGetEntryRC Returns the value of the specified cell in edit mode format.

SSGetFormattedText Returns the value of the current cell as it appears in the worksheet.

SSGetFormattedTextRC Returns the value of the specified cell as it appears in the worksheet.

SSGetFormula Returns the text version of the formula in the active cell.

SSGetFormulaRC Returns the text version of the formula of the specified cell.

SSGetLogicalRC Returns the logical (True or False) value of the specified cell.

SSGetNumber Returns the numeric value of the active cell.

SSGetNumberRC Returns the numeric value of the specified cell.

SSGetText Returns the text value of the active cell.

SSGetTextRC Returns the text value of the specified cell.

SSSetAllowEditHeaders Specifies whether header text can be edited.

SSSetAllowInCellEditing Specifies whether in-cell editing is allowed.

SSSetEntry Sets the value of the current cell in edit mode format.

SSSetEntryRC Sets the value of the specified cell in edit mode format.

SSSetFormula Sets the formula of the active cell.

SSSetFormulaRC Sets the formula of the specified cell.

SSSetLogicalRC Sets the logical value of a specified cell.

SSSetNumber Sets the numeric value of the active cell.

SSSetNumberRC Sets the numeric value of a specified cell.

SSSetText Sets the text value of the active cell.

SSSetTextRC Sets the text of a specified cell.

SSStartEdit Begins edit mode.

Printing Function Call Summary
Printing function calls allow you to set printing specifications and print worksheets. The following table
lists the printing function calls.

Printing Functions Operation
SSAddColPageBreak Adds a vertical page break adjacent to the current cell.

SSAddPageBreak Adds vertical and horizontal page breaks adjacent to the current cell.

SSAddRowPageBreak Adds a horizontal page break adjacent to the current cell.

SSFilePrint Prints a worksheet.

SSGetPrintArea Returns the current print area.

SSGetPrintBottomMargin Returns the bottom page margin used during printing.

SSGetPrintColHeading Returns the print column heading flag.

SSGetPrintFooter Returns the page footer.

SSGetPrintGridLines Returns the print grid lines flag.

SSGetPrintHCenter Returns the horizontal center flag.

SSGetPrintHeader Returns the page header.

SSGetPrintLeftMargin Returns the left page margin used during printing.

SSGetPrintLeftToRight Returns the left to right flag.

SSGetPrintNoColor Returns the print no color flag.

SSGetPrintRightMargin Returns the right page margin used during printing.

SSGetPrintRowHeading Returns the print row heading flag.

SSGetPrintTitles Returns the print titles.

SSGetPrintTopMargin Returns the top page margin used during printing.

SSGetPrintVCenter Returns the vertical center flag.

SSNextColPageBreak Returns the next column where there is a page break.

SSNextRowPageBreak Returns the next row where there is a page break.

SSRemoveColPageBreak Removes a vertical page break adjacent to the current cell.

SSRemovePageBreak Removes vertical and horizontal page breaks adjacent to the current cell.

SSRemoveRowPageBreak Removes a horizontal page break adjacent to the current cell.

SSSetPrintArea Specifies the print area.

SSSetPrintAreaFromSelection Sets the print range to the currently selected ranges.

SSSetPrintBottomMargin Specifies the bottom page margin used during printing.

SSSetPrintColHeading Specifies whether column headings are printed.

SSSetPrintFooter Specifies the footer to print at the bottom of each page.

SSSetPrintGridLines Specifies whether grid lines are printed.

SSSetPrintHCenter Specifies whether the worksheet is horizontally centered when printed.

SSSetPrintHeader Specifies the header to print at the top of each page.

SSSetPrintLeftMargin Specifies the left page margin used during printing.

SSSetPrintLeftToRight Specifies the order in which worksheet pages are printed.

SSSetPrintNoColor Specifies whether the worksheet is printed in color.

SSSetPrintRightMargin Specifies the right page margin used during printing.

SSSetPrintRowHeading Specifies whether row headings are printed.

SSSetPrintTitles Specifies titles to be printed at the top or left of each page.

SSSetPrintTitlesFromSelection Specifies the current selection as print titles to be printed at the top or left of each
page.

SSSetPrintTopMargin Specifies the top page margin used during printing.

SSSetPrintVCenter Specifies whether the worksheet is vertically centered when printed.

Range Editing Function Call Summary
Range editing function calls perform editing operations on worksheet ranges and the data they contain.
The following table lists the range editing function calls.

Range Editing Functions Operation
SSCanEditPaste Determines if there is something on the internal clipboard that can be pasted to the

worksheet.

SSClearRange Clears the specified range.

SSCopyAll Copies the contents of one worksheet to another.

SSCopyRange Copies a range from one worksheet to another.

SSDeleteRange Deletes cells, rows, or columns from the specified range.

SSEditClear Clears all cells in the selected ranges.

SSEditCopy Copies the selected range to the internal clipboard.

SSEditCopyDown Copies cells in the top row of a selection down.

SSEditCopyRight Copies cells in the left column of a selection to columns to the right.

SSEditCut Cuts the selected range to the internal clipboard.

SSEditDelete Deletes cells, rows, or columns from the selected range.

SSEditInsert Inserts cells, rows, or columns in the selected range.

SSEditPaste Pastes the internal clipboard to the selected range.

SSGetAllowArrows Returns the state of the allow arrows flag.

SSGetAllowDelete Returns the state of the allow delete flag.

SSGetAllowFillRange Returns the state of the fill range flag.

SSGetAllowMoveRange Returns the state of the move range flag.

SSGetAllowTabs Returns the state of the allow tabs flag.

SSGetEnterMovesDown Returns the state of the enter moves down flag.

SSInsertRange Inserts cells, rows, or columns in the specified range.

SSMoveRange Moves a range.

SSSetAllowArrows Specifies whether arrow keys can move the active cell.

SSSetAllowDelete Specifies whether the delete key deletes the current selection or a record.

SSSetAllowFillRange Specifies whether filling by dragging a range is allowed.

SSSetAllowMoveRange Specifies whether moving ranges by dragging is allowed.

SSSetAllowTabs Specifies whether the tab key can move the active cell through a selected range.

SSSetEnterMovesDown Specifies whether the enter key moves the active cell down to the next cell, even if a
range is not selected.

Recalculation Function Call Summary
Recalculation function calls control the manner in which worksheets are recalculated. The following table
lists the recalculation function calls.

Recalculation Functions Operation
SSCalculationDlg Displays the Calculations dialog box.

SSCheckRecalc Recalculates the worksheet if needed.

SSGetAllowFormulas Returns the state of the user formula flag.

SSGetAutoRecalc Returns the state of the automatic recalc flag.

SSGetIteration Returns the iteration information.

SSRecalc Recalculates the worksheet attached to a view.

SSSetAllowFormulas Specifies whether the user is allowed to enter formulas.

SSSetAutoRecalc Specifies whether automatic recalculation is enabled.

SSSetIteration Sets the iteration information.

Selection Function Call Summary
Selection function calls select cells and ranges of cells in the worksheet. The following table lists the
selection function calls.

Selection Functions Operation
SSAddSelection Adds a new selection to the current selection list.

SSFormatRCNr Creates a string containing a formatted row and column reference.

SSGetActiveCell Returns the row and column of the active cell.

SSGetAllowSelections Returns the state of the select range flag.

SSGetHdrSelection Returns the state of the header selection flags.

SSGetRowMode Returns the state of the row mode flag.

SSGetSelection Returns the start and end row and column of the specified selection.

SSGetSelectionCount Returns the number of selected ranges.

SSGetSelectionRef Returns the current selection as a formula.

SSSetActiveCell Sets the active cell to the specified row and column.

SSSetAllowSelections Specifies whether selecting ranges is allowed.

SSSetHdrSelection Specifies whether the column, row, and top left header are selected.

SSSetRowMode Specifies whether individual cells or entire rows are selected.

SSSetSelection Selects the specified range and moves the active cell to the top left cell in the range.

SSSetSelectionRef Sets the current selection from a formula.

SSSetShowSelections Specifies whether selections are displayed.

SSShowActiveCell Positions the view to show the active cell if it is not currently in the window.

Worksheet Function Call Summary
Worksheet function calls create, manipulate, and delete worksheets. The following table lists the
worksheet function calls.

Worksheet Functions Operation
SSAttach Searches for a worksheet with the given title and attaches it to a view.

SSAttachToSS Attaches a worksheet from one view to another.

SSCheckModified Checks to see if the view or worksheet has been modified since the last
SSM_MODIFIED; sends an SSM_MODIFIED message if necessary.

SSDelete Deletes a view and its worksheet.

SSDeleteTable Deletes a worksheet.

SSInitTable Initializes a view.

SSNew Creates a new worksheet view.

SSSwapTables Exchanges the worksheets attached to two views.

SSUpdate Updates all worksheets.

Miscellaneous Function Call Summary
Miscellaneous function calls provide varied functionality including controlling events, defining names,
reading and writing files, protecting cells, and manipulating worksheet rows and columns. The following
table lists the miscellaneous function calls.

Misc. Functions Operation
SSCallWindowProc Used to pass Windows messages to the view.

SSClearClipboard Clears the clipboard.

SSDeleteDefinedName Deletes a user defined name.

SSErrorNumberToText Returns the error text corresponding to the specified error number.

SSGetDefinedName Returns the range definition for a user defined name.

SSGetEnableProtection Returns the state of the enable protection flag.

SSGetFireEvent Returns the flag for whether a given event is enabled.

SSGetFixedCols Returns the starting and number of fixed columns.

SSGetFixedRows Returns the starting and number of fixed rows.

SSGetLastCol Returns the column number of the last occupied column.

SSGetLastColForRow Returns the number of the last occupied column for the specified row.

SSGetLastRow Returns the row number of the last occupied row.

SSGetLeftCol Returns the leftmost column displayed in the view.

SSGetRepaint Returns the repaint status of the worksheet.

SSGetTitle Returns the title of the worksheet.

SSGetTopRow Returns the top row displayed in the view.

SSGetTypeRC Returns the cell type of the specified cell.

SSMaxCol Returns the maximum number of columns supported by this version.

SSMaxRow Returns the maximum number of rows supported by this version.

SSRangeToTwips Returns the offset, height, and width in twips of a specified range.

SSRead Reads a worksheet from disk.

SSReadIO Reads a worksheet using a user specified read function.

SSSaveWindowInfo Saves the window specific information from a view to its worksheet.

SSSetAppName Defines the application name that appears in the title bar of error dialog boxes.

SSSetDefinedName Defines or changes a user defined name.

SSSetDefWindowProc Sets the default window procedure for a worksheet view.

SSSetDoSetCursor Specifies how the cursor is set.

SSSetEnableProtection Specifies that protection for cells marked as locked or hidden is enabled.

SSSetFireEvent Determines whether an event is allowed to fire.

SSSetFixedCols Sets the number of fixed columns.

SSSetFixedRows Sets the number of fixed rows.

SSSetProtection Specifies the protection of the currently selected cells.

SSSetRepaint Sets the repaint status of the worksheet.

SSSetTitle Sets the title of the worksheet.

SSSetTopRow Sets the top row displayed in the view.

SSSort Sorts the selected range of data with an unlimited number of sort keys.

SSSort3 Sorts the selected range of date with as many as three sort keys.

SSTransactCommit Commits all changes since transaction began.

SSTransactRollback Undoes all changes since transaction began.

SSTransactStart Starts a transaction.

SSTwipsToRC Returns the row and column that correspond to a given point.

SSVBXCopyCellsFromDoubleArray Copies a two-dimensional array of numbers to a range.

SSVBXCopyCellsToDoubleArray Copies a range of numbers to a two-dimensional array.

SSVersion Returns the version number of the Formula One control.

SSWrite Saves the worksheet to a file.

SSWriteIO Writes a worksheet using the specified write function.

Using Events
Formula One provides a set of 17 events that allow you to track and monitor actions performed on a
worksheet control by users of your application. Events allow you to respond to users actions and control
the operations of the worksheet control.

The following sections describe situations in which events can be used.

Validating Data
You can use the EndEdit event to validate cell entries. If the cell entry is out of range, the proper actions
can be taken. The following example demonstrates checking column 1 for values between 0 and 1000.

Sub Sheet1_EndEdit (EditString As String, Cancel As Integer)
Dim Thevalue#
Thevalue# = Val(EditString)
' Demonstrates how to check entries for a valid range
If sheet1.Col = 1 Then

If Thevalue# < 0 Or Thevalue# > 1000 Then
Beep
MsgBox "Value must be between 0 and 1000."
Cancel = True

End If
End If

End Sub

Drilling for Data
Many applications consist of summary forms backed up by detail forms. For example, you may have a
sales management application that reports your company's sales by region. The summary screen shows
the total sales for each region. Other worksheets show the various regions and their sales breakdowns. If
the user double clicks one of the summary region columns, a second worksheet is displayed that shows
the sales breakdown in that region.

This type of operation is referred to as drilling. Drilling is generally defined as the ability to see greater
levels of detail by double clicking a worksheet. The area clicked defines the additional information that is
displayed.

Drilling can be implemented using the DblClick event. The following example demonstrates how to catch
the event.

Sub Sheet1_DblClick (nrow As Long, nCol As Long)
If nCol = 3 Then

' Here you would bring up another worksheet!
MsgBox "Drilling on row " & nrow

End If
End Sub

Formula One is especially capable of handling this type of model since it can handle multiple worksheets
and external references.

Events and Other Controls
If is often necessary to use one of the Visual Basic controls during data entry. For example, you might use
a pop up list box to display a list of items that can be entered in a worksheet. This is easily accomplished
by designing a form with a list box and displaying it when the user clicks a cell.

The following example creates and fills a list box; then, it displays the list box when the user clicks column
five.

' Fill list box with font names when loading form 2

Sub Form_Load ()
Dim i
List1.Move 50, 50, 2000, 1750
For i = 0 To screen.FontCount - 1

List1.AddItem Screen.Fonts(i)
Next i

End Sub

' Get the user's selection and put the value in the clicked cell

Sub List1_DblClick()
popup$ = List1.List (List1.ListIndex)
form1.Sheet1.Text = popup$
Unload form2

End Sub

' Catch the click on the column and display the list box form

Sub Sheet1_DblClick (nrow As Long, nCol As Long)
If nCol = 4 Then

form2.Show
End If

End Sub
Other controls can be displayed in the same manner, including built-in controls such as combo boxes and
menus. In addition, many custom controls that are built in Visual Basic can be used in this manner.

Event Summary
The following table lists the events available in Formula One.

Event Description
CancelEdit Occurs if the user leaves edit mode without making changes or presses the Escape key.

Click Occurs when the user presses and releases the mouse button while the mouse pointer is in
the Formula One window.

DataNewRow Occurs when a new record is created.

DataRowLoad Occurs after a new row is loaded from the data control.

DblClick Occurs when the user double clicks the mouse button while the mouse pointer is in the
Formula One window.

DragDrop Occurs when a Drag-Drop operation is completed.

DragOver Occurs when a Drag-Drop operation is in process.

EndEdit Occurs when an editing operation is completed.

EndRecalc Occurs when the recalculation process is completed.

GotFocus Occurs when the Formula One window receives focus, either by clicking the object or changing
the focus in code using the SetFocus method.

KeyDown Occurs when the user presses a key while the Formula One object has the focus.

KeyUp Occurs when the user releases a key while the Formula One object has the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

LostFocus Occurs when the Formula One window loses focus.

SelChange Occurs when the active cell or selected range changes.

StartEdit Occurs when an editing operation is started.

StartRecalc Occurs when the recalculation process is started.

TopLeftChanged Occurs when the cell displayed as the top left cell of the worksheet changes.

Using Views and Worksheets
Views and worksheets are important parts of Formula One. With an understanding of how views and
worksheets work and interact, you can more effectively use the Formula One control.

Worksheets are objects that are maintained by the Formula One engine.

A view is a window into a specific worksheet.

Working with Worksheets
A worksheet and a view of that worksheet are created when you draw a Formula One control on a form.
When you double-click a worksheet to launch the Worksheet Designer, a second view of the worksheet is
created.

Worksheets include:

cell data

cell formulas

worksheet formatting information

worksheet specific information such as printing attributes and calculation attributes.
Multiple worksheets can be open simultaneously. Formulas in one worksheet can refer to cells in other
worksheets. The Formula One engine manages all open worksheets.

Working with Views
Views provide access to and allow interaction with worksheets. Without a view, you cannot observe the
work that you have performed in a worksheet.

Each view has only one worksheet to which it is attached.

There can be multiple views into one worksheet.
When you place a Formula One control on a form, a view and a worksheet are automatically created.
After a view is created, you can change the worksheet to which it is attached at any time.

This figure illustrates the concept of one view and one worksheet.

This figure illustrates the concept of multiple views into one worksheet.

Using View Information
Associated with views is information that describes how the worksheet is displayed. Views contain
information about:

grid line display

column and row heading display

fixed row and column specifications

maximum worksheet viewing size
Views also contain information about user permissions such as whether the user is allowed to mark cells,
enter or edit data, or resize rows and columns.

Much of the information stored by the view can be accessed and changed through the control's
properties.

Saving View Information
When a worksheet is saved to a form or a file, the settings from the view that requested the save
operation are saved with the worksheet. When a view is attached to a worksheet, the view settings are
retrieved from the worksheet.

Attaching Views to Worksheets
The requirements of your application may require that you alter the views to which a worksheet is
attached, and vice versa. For example, some applications may have only one view on a form, but work
with multiple worksheets. Other applications may have more than one view connected to only one
worksheet.

When interchanging views and worksheets, there are several important rules to remember.

A view can be connected to only one worksheet.

A worksheet can have multiple views to which it is attached.

A worksheet must have at least one view to which it is attached. A worksheet ceases to exist if it
is not attached to a view.

One View with Multiple Worksheets
Because a view can be connected to only one worksheet, you must employ invisible views to
accommodate an application that uses one view with multiple worksheets.

To accomplish this, set the Visible property to False for all views in your application except the view you
want displayed. Then, use the SSSwapTables function call to connect any worksheet to the visible view.

One Worksheet with Multiple Views
When multiple views are attached to a single worksheet, any change made in one view is reflected in the
other views. The views are independent, so you can view different parts of the same worksheet.

The manner in which you attach multiple views to a single worksheet depends on whether the
worksheet is stored as a file or on a form.

If you are loading a worksheet from disk, the views should have the same FileName property and
the same TableName property. This causes the worksheet to load once, and the views are connected to
the same worksheet.

If the worksheet is saved with a form, or if it is created dynamically, you can use the
SSAttachToSS function call to attach views. The worksheet is attached to the current view; however, the
worksheet also remains attached to any previous views to which it was attached.

Saving Worksheets
Each worksheet control can be saved with the form on which it resides or to a separate file. The
FileName property determines where worksheets are stored. The method you use for your application
depends on which is more advantageous.

Saving worksheets with the form. This method reduces the number of files needed to run an
application. It also reduces the potential that a worksheet can be separated from its application.

If the FileName property is blank, the worksheet is stored with the form.

Saving worksheets in separate files. This method allows files to be shared among multiple
Formula One users as well as with other applications such as Excel. Worksheets saved to a file are also
easier to create and modify.

If the FileName property contains a valid path and file name, the worksheet is stored in a file.

Reading and Writing Files
Formula One can read and write two different file formats. The following table lists the formats and the
associated file name extensions.

File extension Description
.VTS Formula One native format; an extension of Excels BIFF 4 format.

.XLS BIFF 4 format

Since Formula One has some features not supported by Excel, files saved in the VTS file format cannot
be read by Excel. The XLS format is based on records where each record represents a unique feature or
property of the worksheet.

If the file you save contains features not supported by Excel, they are removed when the worksheet is
saved as an XLS file. Likewise, Excel contains features not supported by Formula One. Unsupported
features are ignored when Formula One loads an Excel worksheet.

Important If you load an Excel worksheet that contains features not supported by Formula One, such as
graphics, those features are ignored. If the imported worksheet is written from Formula One as an Excel
worksheet and subsequently read by Excel, those features are omitted and irretrievable.

Formula One cannot read password protected Excel files. If you intend to read files from Excel, they
should not be password protected.

Formula One applications read and write worksheets using the ReadFile, WriteFile and WriteExcel4
properties. The WriteExcel4 property writes an Excel 4.0 compatible worksheet. In the following
examples, a native worksheet and an Excel worksheet are read.

Sheet1.ReadFile = "c:\vtss\samples\amortize.vts" ' Reads Native
Sheet1.ReadFile = "c:\vtss\samples\amortize.xls" ' Reads Excel 4.0

In the following examples, a worksheet is written to a file twice, once as a native worksheet and once as
an Excel worksheet.

Sheet1.WriteFile = "c:\vtss\samples\newone.vts" ' Write Native
Sheet1.WriteExcel4 = "c:\vtss\samples\newone.xls" ' Write Excel

Using the Worksheet Designer
The Worksheet Designer is a Windows application that can be accessed directly from a Formula One
control, either at design time or run time. The designer allows you to visually design worksheet controls
for your application. With the designer, you can:

enter data and formulas in worksheet cells

size rows and columns

format data

set the font attributes for data and headers

set column and row header text

format worksheet cells with colors and patterns

specify cell borders and border types

define names

protect and hide cells

set user permissions

select items to be shown and hidden

The Worksheet Designer appears and behaves much like a commercial spreadsheet application.

The Worksheet Designer is accessed by double clicking a worksheet control with the right mouse button.
When launched, a new window is displayed containing the Worksheet Designer.

The Worksheet Designer looks much like a commercial spreadsheet application. In fact, it is a stand-
alone Windows application that accesses the Formula One engine. Any changes made to the worksheet
in the Worksheet Designer are reflected in the Formula One worksheet control on your form. Using the
Worksheet Designer greatly accelerates application development.

Refer Worksheet Designer Overview for information about the menus and commands available in the
Worksheet Designer.

Using Edit Bar Controls
The edit bar control is similar to the edit bar on most commercial spreadsheets such as Excel or 1-2-3.
The edit bar is used to enter or edit data and formulas.

The edit bar is optional and is most applicable when in-cell editing is not appropriate. For example, long
entries, particularly formulas, can be more easily entered and edited using an edit bar. If your application
manipulates data and formulas using Visual Basic code or with in-cell editing, you do not need an edit bar.

Creating Edit Bar Controls
The edit bar is a separate custom control that works in conjunction with the worksheet control. Each
worksheet control has a property called EditName to specify with which edit bar control it is used.

If EditName is blank, the user cannot enter or edit data or formulas unless the AllowInCellEditing
property is True.

If the EditName property of a worksheet control matches the EditName property of an existing
edit bar, the existing edit bar interacts with the worksheet control.
In simple applications, you can use one edit bar with one worksheet control. For more complex
applications, you can use one or more edit bars with multiple worksheet controls.

For example, if your application contains two or more worksheet controls on the same form, you can use
one edit bar for all the worksheet controls. All worksheet controls can reference the same edit bar by
setting the EditName property of the worksheet controls to match the name of the edit bar. Then, the edit
bar interacts with the worksheet control that is active.

This illustration shows one edit bar with two worksheet controls.
When you place a new worksheet control on a form, its EditName property is set to the default name,
SSEdit1. This is also the default setting of the EditName property for a newly created edit bar.

If you add more than one worksheet control to a form, they all have SSEdit1 as the default edit bar name.
As a result, multiple worksheet controls work with one edit bar without any programmer intervention.

When you place a second edit bar on a form, its EditName property is also set to SSEdit1. To eliminate
confusion, you should change the EditName property of the second edit bar and it's corresponding
worksheet control.

Edit Bar Properties
The EditName property is the only non-standard Visual Basic property. When connecting an edit bar to a
worksheet control, the EditName property in both controls must match.

The edit bar control contains the following standard Visual Basic properties:

Properties
DragIcon HelpContextID TabStop

DragMode Index Tag

EditName Left Top

Enabled Name Visible

Height TabIndex Width

For additional information about edit bar properties, refer to the property descriptions in the Microsoft
Visual Basic Language Reference Manual.

Edit Bar Events
The edit bar control contains the following standard Visual Basic events:

Events
Click DragDrop DragOver

Edit Bar Function Calls
Formula One provides the following function calls that can be used with edit bars:
Function calls
SSEditBarDelete SSEditBarMove SSGetSSEdit

SSEditBarHeight SSEditBarNew SSSetSSEdit

Worksheet Fundamentals
Before you can successfully use a worksheet control, you must understand some basic concepts about
the worksheet. You must understand how to select cells, ranges, rows, and columns, enter and delete
data, and display specific sections of a worksheet.

The following sections discuss:

navigating through a worksheet with keyboard commands.

mouse actions executed in the worksheet control.

selecting cells and ranges with the mouse, properties, and function calls.

selecting entire rows and columns.

Navigating through Worksheets
When working in the Worksheet Designer or in a worksheet at run time, you can navigate through a
worksheet using keyboard commands or mouse actions. In addition to navigating through worksheets,
keyboard commands allow you to perform a variety of other tasks.

Keyboard commands allow you to:

position the active cell in the worksheet

page through a worksheet

enter data typed in a cell

move the active cell within a selected range

enter and exit edit mode

recalculate a worksheet

delete data from a selected cell or range

Using Keyboard Commands
The tables in this section list the keyboard commands you can use when working in the Worksheet
Designer or a worksheet at run time. The following table lists action keys that allow you to enter and edit
data, move the active cell within a selected range, and recalculate the worksheet.

Key Description
Enter When in edit mode, accepts the current entry. When a range is selected, accepts the

current entry and moves active cell vertically to next cell in selection.

Shift-Enter When in edit mode, accepts the current entry. When a range is selected, accepts the
current entry and moves active cell vertically to previous cell in selection.

Tab When in edit mode, accepts the current entry. When a range is selected, accepts the
current entry and moves active cell horizontally to next cell in selection.

Shift-Tab When in edit mode, accepts the current entry. When a range is selected, accepts the
current entry and moves active cell horizontally to previous cell selection.

F2 Enters edit mode.

F9 Recalculates worksheet.

Del Clears current selection or deletes the current record depending on the setting of the
AllowDelete property.

Escape Cancels current data entry or editing operation. If you are not editing and are currently in a
database row, refreshes current database row.

The following table lists the movement keys that allow you to move the active cell within a worksheet and
display different sections of the worksheet.

Key Description
Up Arrow Moves active cell up one row.

Down Arrow Moves active cell down one row.

Left Arrow Moves active cell left one column.

Right Arrow Moves active cell right one column.

CTRL Up/Down/Left/Right Moves to the next range of cells containing data. If there is no additional data in the
direction in which you are moving, moves to the edge of the worksheet.

Page Up Moves up one screen.

Page Down Moves down one screen.

CTRL Page Up Moves left one screen.

CTRL Page Down Moves right one screen.

Home Goes to first column of current row.

End Goes to last column of current row that contains data.

CTRL Home Goes to row 1 column 1.

CTRL End Goes to last row and column that contains data.

The following table lists the keys that modify the action of the movement keys.

Key Description
Scroll lock Causes the worksheet window to scroll without changing current selection with all

movement keys except Home, End, CTRL Home, and CTRL End.

Shift plus any movement key Extends the current selection.

Performing Mouse Actions
Primarily the mouse is used to select items in a worksheet at run time. In addition, mouse actions at
design time can select the worksheet control, display the control code window, and launch the Worksheet
Designer. The following table lists the mouse actions you can perform at design time.

Action Description
Left Click or
Right Click Selects the Formula One control.

Left Double Click Displays the code window for the Formula One control.

Right Double Click Launches and displays the Worksheet Designer application.

The following table lists the mouse actions you can perform at run time or in the Worksheet Designer.

Action Description
Left Click Moves the active cell to the pointer position.

Right Click Does nothing.

Left Click in Row or Column
Headings Selects entire row or column.

Left Click in Top Left Corner Selects entire worksheet.

Left Double Click in Top Left
Corner, Row Headings, or
Column Headings Displays a dialog box that allows you to enter a label for the top left corner or the

column or row heading that was double clicked. Available only in the Worksheet
Designer.

Left Double Click In the Worksheet Designer, invokes in-cell editing.

At run time, if the DoDblClick property is True, a DblClick event is fired. If the
property is False, in-cell editing is invoked (if the AllowInCellEditing property is
True).

Right Double Click In the Worksheet Designer, does nothing.

At run time, if the AllowAppLaunch property is True, the Worksheet Designer
application is launched.

Left Click and Drag Selects a range. If other ranges are selected, the previously selected ranges are
unselected.

Ctrl + Left Click and Drag Selects a range. If other ranges are selected they remain selected.

Shift + Left Click and Drag Extends the current selection.

Ctrl + Shift Click on Row
Headings, Column Headings,
or Top Left Corner Selects the row headings, column headings, or top left corner of the worksheet.

Drag a Selection's Copy Handle Copies the selection into the newly selected area.

Drag a Selection's Border Moves the selection to a new location.

Selecting Cells
Many operations require one or more cells to be selected. There are three kinds of worksheet selections:
a single cell, a range of cells, and multiple ranges of cells (non-adjacent). The following illustration shows
the three types of selections.

Selecting Cells with the Mouse
The worksheet cursor is always located on a cell. The cell on which the worksheet cursor is located is
called the active cell. The active cell is also a selection or part of a selection. Any data the user enters is
always placed in the active cell.

To select a range of cells, click and hold the left mouse button and drag through the range you
want to select. When a range is selected, It becomes highlighted.

To select multiple ranges, press the Ctrl key while selecting a range with the mouse. Any
previously selected ranges remain selected.
Once a range is selected, you can move the active cell within the range using the Enter, Shift + Enter,
Tab, and Shift + Tab keys. When you use these keys to move the active cell, the range remains selected.

Selecting Cells with Properties
The first range selected is always reflected in the SelStartRow, SelStartCol, SelEndRow, and
SelEndCol properties. You can also set these properties to select a range. For example, to select the
range C2:E4, use the following Visual Basic code:

Sheet1.SelStartRow = 2 ' Row 2
Sheet1.SelStartCol = 3 ' Column C
Sheet1.SelEndRow = 4 ' Row 4
Sheet1.SelEndCol = 5 ' Column E

These properties are the easiest way to determine the current selection, or to create a selection in
preparation for performing a selection-based operation (e.g., copying data). For example, the following
code selects a range and copies the top row down to the rows below.

Sheet1.SelStartRow = 2 ' Row 2
Sheet1.SelStartCol = 3 ' Column C
Sheet1.SelEndRow = 4 ' Row 4
Sheet1.SelEndCol = 5 ' Column E
sserror = SSEditCopyDown (Sheet1.SS)

Using properties to perform this task is much faster than performing the same operation with Visual Basic
code.

Using the Selection Property
All selections are reflected in the Selection property. This property contains a text representation of the
cells selected in the worksheet. You can use this property to select a cell, range, or multiple ranges.

For example, to select the ranges A1:C3 and A11:C13, set the Selection property to "A1:C3, A11:C13".
This property can be set to any Formula One formula that returns one or more ranges.

Selecting Cells with Function Calls
Function calls can be used to select ranges.

SSSetSelection removes all current selections and selects a range.

SSAddSelection adds a selection to the current selection list. Continue calling SSAddSelection
to create multiple selections.
The following example selects two ranges, A1:D4 and E5:H8.

sserror = SSSetSelection (Sheet1.SS, 1, 1, 4, 4) ' Select A1:D4
sserror = SSAddSelection (Sheet1.SS, 5, 5, 8, 8) ' Add E5:H8

In addition, SSGetSelectionCount, SSGetSelection, SSGetSelectionRef are function calls that help
you work with multiple selections.

SSGetSelectionCount returns the number of selections. Use this function if a selection is made
by the user and you need to determine how many ranges are selected.

SSGetSelection returns all current selections in the form of a formula (e.g. A1:D4,E5:H8) The
formula returned by this function call is the same as the string contained by the Selection property.

SSGetSelectionRef returns the row and column reference for an individual selection.

Selecting Rows and Columns
Entire rows and columns can be selected in the worksheet at run time or in the Worksheet Designer using
the mouse. To select a row or column, position the pointer on the header of the row or column you want to
select. When you click the header, the row or column is selected.

You can also select all rows and columns in the worksheet. To do this, position the pointer in the upper left
corner of the worksheet and click.

Selecting Rows and Columns with Properties
The SelStartRow and SelStartCol properties can be used to select entire rows and columns. To select
an entire row, set SelStartCol to -1; to select an entire column, set SelStartRow to -1.

For example, if you want to select all of column 2 and column 3, use the following code:

Sheet1.SelStartRow = -1 ' Selects all rows
Sheet1.SelStartCol = 2 ' Selects starting column as 2
Sheet1.SelEndCol = 3 ' Selects ending column as 3

Notice that the SelEndRow property is not set in the preceding sample code. Since setting SelStartRow
to -1 selects all rows, SelEndRow is set automatically. After the previous example, SelStartRow returns
1 and SelEndRow returns 16384.

NOTE You can also use -1 to select rows or columns in the Row and Col properties, and any function
call that requires row and column parameters.

Working with Data
Entering and manipulating data is the basis for nearly all work performed in a Formula One control. In a
worksheet control, you can enter virtually any type of data and formula. With formulas and built-in
functions, you can evaluate and calculate that data and make decisions based on the results of those
operations.

The following help topics discuss:

how to enter data directly, with properties, and with function calls.

how to limit user data entry.

the types of constant values that can be entered.

how to construct and use formulas.

the suite of built-in worksheet functions

using names.

the methods for calculating worksheets.

Worksheet Data Entry
One of the basic tasks encountered when working with a worksheet control is data entry. Formula One
provides several methods for entering data.

Direct Entry. This is the most direct method of data entry. Data can be entered directly in the
worksheet control at run time. Or, you can enter data in the Worksheet Designer at design time.

Properties. Numbers, text, and formulas can be entered in the active cell via properties.

Function calls. Several function calls are provided that allow you to enter data in the active cell
or a specified cell.

Entering Data with Properties
The following table lists the properties that can enter data in the active cell.

Property Description
Entry Specifies data of any type for the active cell.

Formula Specifies a formula, as a text string, for the active cell.

Number Specifies a numeric value for the active cell.

Text Specifies a text string for the active cell.

Formula, Number, and Text are run time only properties. In addition to placing data in a cell, all three
properties can retrieve data from a cell.

When specifying a formula with the Formula property, the formula should be provided as a text string
without the leading equal sign (=).

To specify the cell that is active, you can use the Row and Col properties. The Row property specifies the
row containing the active cell; the Col property specifies the column containing the active cell.

The following example uses the Formula property to place the RAND function in columns 1 through 10 of
row 1.

Dim TheCol%
Sheet1.Row = 1
For TheCol = 1 to 10

Sheet1.Col = TheCol
Sheet1.Formula = "RAND()"

Next TheCol

Entering Data with Function Calls
Formula One provides a full complement of function calls for entering data. In addition to entering data in
the active cell, function calls allow you to enter data in a cell other than the active cell.

The following table lists the function calls that enter data.

Function call Description
SSSetActiveCell Sets the active cell in the worksheet.

SSSetEntry Sets the value of the current cell in edit mode format.

SSSetEntryRC Sets the value of the specified cell in edit mode format.

SSSetFormula Sets the formula of the active cell.

SSSetFormulaRC Sets the formula of the specified cell.

SSSetLogicalRC Sets the logical value of the specified cell.

SSSetNumber Specifies the numeric value of the active cell.

SSSetNumberRC Sets the numeric value of the specified cell.

SSSetText Sets the text value of the active cell.

SSSetTextRC Sets the text of the specified cell.

Limiting Data Entry
Some applications may require that the user not be allowed to enter or edit data. To prevent data entry,
the AllowInCellEditing property must be False, and there must not be an edit bar whose EditName
property matches the EditName property of the worksheet control. Data and formula entry and editing is
thus prevented. Any data manipulation must be performed through program code.

Limiting Formula Entry
If you only want to prevent the entering and editing of formulas, set the AllowFormulas property to False.
Setting this property to false does not affect the entry and editing of constant values.

Locking Cells
To set editing permissions on a per cell basis, set the locked attribute of each cell to the appropriate value
with the Cell Protection command in the Format menu of the Worksheet Designer. Then, enable
protection for the worksheet with the Enable Protection command.

You can also set the locked status of the currently selected cells with the SSSetProtection function call.

Worksheet Data Types
Cells can contain two types of information - constant values and formulas.

Constant values are numbers, including dates and times, logical values, error values, and text.

Formulas are groups of constant values, cell references, names, functions, and operators that
result in a new value when calculated or evaluated.

Entering Constant Values
Numbers. Numeric entries can contain numeric characters (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0) and the
special characters (e.g., +, -, (,), /, $, %, ., E, and e).

Negative numbers can be preceded by a minus sign or enclosed in parentheses.

Commas can be included in numeric entries as thousands separators.

Numeric entries containing leading dollar signs are formatted as currency.

Numeric entries containing trailing percent signs are formatted as percentages.
Formula One accepts numeric entries as fractions. If the fraction contains a leading integer (e.g., 1 1/3) it
can be entered directly. If there is no leading integer, the fraction should be preceded by a zero (e.g., 0
2/3).

Numbers larger than the cell in which they are entered are displayed as a series of number signs across
the cell (e.g., ######). You must widen the cell to display the number.

Use the SSSetColWidthAuto function call to automatically set the column width to the correct size for all
data in the column. The following code automatically sets the widths of columns 1 through 10.

sserror = SSSetColWidthAuto (Sheet1.SS, 1, 10)
Dates and Times. Dates and times are automatically recognized by Formula One. They are entered in
the cell as values and automatically formatted. The following date and time formats are automatically
recognized.

Entered Format Assigned
3/15/94 m/d/yy

15-Mar-94 d-mmm-yy

15-Mar d-mmm

Mar-94 mmm-yy

9:55 PM h:mm AM/PM

9:55:33 PM h:mm:ss AM/PM

21:55 h:mm

21:55:33 h:mm:ss

3/15/94 21:55 m/d/yy h:mm

Text. Text is any set of characters that Formula One does not recognize. To enter a number as text,
precede it with a single quotation mark (').

Text that is wider than a cell ordinarily spills over into the cell immediately to the right. You can specify that
text should wrap within the cell by enabling word wrap in your data alignment settings.

Logical and Error Values. Logical and error values are not normally entered directly in cells; they are
usually the result of a formula. However, entering these values can be useful for testing formulas.

The logical values that can be entered are True and False. The error values that can be entered are #N/A,
#VALUE!, #REF!, #NULL!, #DIV/0!, #NUM!, and #NAME?.

Entering Formulas
Formulas are the basic building blocks for analyzing and calculating worksheet data. A formula is a string
containing numbers, operators, worksheet functions, cell references, and names. A formula can contain
as many as 1024 characters.

When you manually enter a formula in a worksheet, you must begin the entry with an equal sign
(=). Formula One recognizes this entry as a formula.

When entering a formula in the Formula property or the SSSetFormula and SSSetFormulaRC
function calls, exclude the leading equal sign. These entities expect strings.
Numbers in formulas can be followed by a percent sign (%). Numbers with trailing percent signs are
treated as percentages (e.g., 100% is evaluated as 1).

If text is encountered when a number is expected, the text is converted to a number. For example, the
formula 1 + "3" returns 4, because "3" is converted to a number. If the text cannot be converted to a valid
number (e.g., 1 + "Text"), #VALUE! is returned.

Likewise, if a number is encountered when text is expected, the number is converted to text. The formula
"The number is "&3 converts to the text string "The number is 3".

The value True always converts to 1; while False converts to 0. If a number is encountered when a logical
value is expected, a zero is converted to False. All other numbers are converted to True. If text is
encountered when a logical value is expected, "True" is converted to True; "False" is converted to False.
All other text returns #VALUE!.

Dates and times are recognized and converted to their serial values. For example, "10/10/94" - "10/1/94"
equals 9.

Formula Operators
When creating formulas, Formula One provides a set of operators for specifying the type of calculation or
evaluation to be performed on the formula data. The following table lists the formula operators.

Operator Type Operator Description

Arithmetic + Addition

- Subtraction

/ Division

* Multiplication

% Percentage

^ Exponentiation

Text & Concatenation

Comparison = Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less then or equal to

<> Not equal to

Reference : Range - produces a reference that includes all the cells between the two
references (e.g., A1:A5 includes cells A1 and A5 and all cells in between).

Space Intersection - produces a reference that contains all cells common to the two
references (e.g., A1:A10 A10:A20 returns A10).

, Union - produces one reference that includes the two references (e.g.,
A1:A10,C1:C10).

Operator Precedence
When combining operators in a formula, Formula One uses a specific order of precedence to calculate
the formula. The following table lists the order of precedence for formula operators.

Operator Description
() Parentheses

: Range

Space Intersection

, Union

- Negation (single operand)

% Percentage

^ Exponentiation

* and / Multiplication and Division

+ and - Addition and Subtraction

& Text concatenation

= < > <= >= <> Comparison

Operators of like precedence are evaluated left to right. Parentheses should be used when it is necessary
to change the order of evaluation. The following example illustrates how the result of a formula can be
altered by adding parentheses to change the order of precedence.

Formula Result
1+2*37 75

(1+2)*37 111

As illustrated in the previous table, the multiplication operator (*) has higher precedence than the addition
operator (+). It is evaluated first unless parentheses are used to force the addition to take place first.

Cell References
A reference identifies a cell by referring to the row and column coordinates of the cell. References are
based on the row and column headings. For example, A1 refers to the cell at the intersection of row 1 and
column A. References can be used in formulas to access data from a worksheet.

A range of cells is specified by placing a colon (:) between two cell references. For example, the reference
A1:C3 refers to the range anchored by cells A1 and C3. The range includes all cells in columns A, B, and
C of rows 1, 2, and 3.

Absolute and Relative References
There are two types of cell references - relative and absolute.

Relative references point to a cell based on its relative position to the current cell. When the cell
containing the reference is copied or moved, the reference is adjusted to point to a new cell with the same
relative offset as the originally referenced cell.

Absolute references point to a cell at an exact location. When the cell containing the formula is
copied or moved, the reference does not change. Absolute references are designated by placing a dollar
sign ($) in front of the row or column that is to be absolute.
References can be part absolute and part relative. These are called mixed references. The following table
lists the reference types.

Reference Type
A1 Relative reference pointing to cell A1.

A1 Absolute reference pointing to cell A1.

$A1 Absolute column reference, relative row reference pointing to cell A1.

A$1 Relative column reference, absolute row reference pointing to cell A1.

The reference operators can be used to specify multiple ranges in the same reference. For example,
A1:C1,A10:C10 specifies the three cells A1, B1, and C1 and the three cells A10, B10, and C10. The
formula =SUM(A1:C1,A10:C10) adds the values in all six cells.

External References
References can point to cells in other worksheets. This type of reference is called an external reference.
An external reference is created by placing a worksheet name before the cell reference, separated by an
exclamation point. The following table shows examples of external references.

Reference Type
Sales!A1 Relative reference pointing to cell A1 in the worksheet named Sales.

FY91!A1 Absolute reference pointing to cell A1 in the worksheet named FY91.

Q1!$A1 Absolute column reference, relative row reference pointing to cell A1 in the worksheet
named Q1.

Store1!A$1 Relative column reference, absolute row reference pointing to cell A1 in the worksheet
named Store1.

Automatically Entering Cell References
Cell references can be automatically entered as you enter a formula.

 To automatically enter a cell reference:
1. Enter the formula to the point of the range reference.
2. With the mouse, select the cell or range you want to reference.

The reference of the range you select is automatically placed in the formula.

When you enter a cell reference in this manner, Formula One assumes it is a relative reference.

Worksheet Errors
When a formula cannot be properly calculated, an error is returned in the cell. The following table lists the
errors that can be generated.

Error Cause
#DIV/0! Divide by zero. May be caused by a reference to a blank cell or a cell containing zero.

#N/A No value is available. May be caused by inappropriate values in the formula or a reference to a
cell containing the #N/A value.

#NAME? Name is not recognized. May be caused by a user defined name that is not defined.

#NULL! Null intersection. An intersection of two ranges was defined that does not intersect.

#NUM! Number problem. May be caused by inappropriate numbers in functions, an iteration that
cannot solve for a value, or a formula that results in a number too large or too small to
represent.

#REF! Reference error. May be caused by referring to a cell that was deleted.

#VALUE! Wrong argument type. May be caused by entering text where a number was expected, or
supplying a range to an operator or function that was expecting a single value.

Displaying Formulas
It is often convenient to display formula text instead of the values they produce. SSSetShowFormulas
causes the worksheet to display formula text instead of formula results. Displaying formula text can help
you debug formula- related problems.

The following example enables and disables the display of formulas.

sserror = SSSetShowFormulas (sheet1.SS, True) ' Displays formulas
sserror = SSSetShowFormulas (sheet1.SS, False) ' Displays formula text

Custom Functions
Formula One allows you to create custom functions. Custom functions must be supplied in a DLL. Use
the worksheet function CALL to call custom functions.

Refer to the sample worksheet CUSTFUNC.VTS for an example of a custom function call in a worksheet.
The sample worksheet calls a custom function from the CUSTFUNC.C DLL file. Both files are provided
with your Formula One installation media.

Built-In Worksheet Functions
Formula One contains a set of 125 built-in worksheet functions that provide the ability to perform complex
calculations with very little work.

Worksheet functions:

calculate and evaluate data.

can be used alone or in a formula.

are entered directly in the worksheet.
Like formulas, worksheet functions return data to the cell in which they are entered.

Each function performs a specific calculation. The SQRT function is an example of a built in function. With
this function, you can easily calculate the square root of a number. The following example calculates the
square root of 118:

=SQRT(118)

Understanding Functions
Most worksheet functions are composed of keywords and arguments. Every worksheet function contains
a keyword, but not all functions require arguments.

The keyword identifies the function and tells the worksheet what type of calculation or evaluation
is performed. Each function keyword is unique.

Arguments provide the data for the function to calculate or evaluate. The arguments for a function
immediately follow the function keyword and are enclosed in parentheses.

Entering Functions
When entering functions in a worksheet, all functions are preceded by an equal sign (=). The leading
equal sign tells the worksheet that the following information is to be evaluated or calculated.

The function keyword follows the equal sign. It can be entered in lowercase or uppercase characters.
After the function is entered, the worksheet records the function keyword in uppercase characters,
regardless of how it was entered.

If a function requires multiple arguments, the arguments are separated by commas. Some functions
contain optional arguments. If you omit an optional argument, a default value is assumed for the
argument.

Functions that do not require arguments still require a set of parentheses following the function keyword.

Nesting Functions
A function can be used as an argument for another function. When a function is used in this manner, you
are nesting functions. The nested function must return the appropriate type of data for the function in
which it is nested. You must also provide the necessary arguments for the nested function.

In the following example, the AVERAGE function is used as an argument for the SUM function. In this
case, AVERAGE is nested in SUM.

=SUM(5.23, 6.82, AVERAGE(2.45, 5.62, 7.74), 8.95, 9.01)

Entering Arguments
The arguments for a function can be:

Numerical values

Logical values

Text strings

Error values

References to cells or ranges
Each argument requires a specific type of data. Refer to the Worksheet Function Reference to
determine the type of data required for the function you are entering.

For most arguments, you can substitute a cell or range reference for the data required by an argument.
For example, if an argument requires a number, you can substitute a reference to a cell that contains a
number. The number in the referenced cell is used in the calculation of the function. The data in the
referenced cell must be appropriate for the argument for which it is used.

Syntax Errors
If the worksheet function you enter contains syntax errors, Formula One does not allow the function to be
entered. You must correct the errors before proceeding with other tasks.

Using Names
User defined names are an easy way to identify a cell, a group of cells, a value, or a formula. For
example, the formula "= Sales - Expenses" is much clearer than "=A10 - A6".

You can also use names to identify constants and formula expressions. For example, you might define
the name LightSpeed as 186000. You could then use the name LightSpeed in all your formulas. Or, you
could define the name SqRtTwo as the formula =SQRT(2).

You can define names using the Worksheet Designer. Or, you can define names using the
SSSetDefinedName function call. The following code uses this function call to define a name.

sserror = SSSetDefinedName (Sheet1.SS, "Sales", "A10")
This example defines the name "Sales" as A10. The name "Sales" can then be used in formulas
instead of the reference.

Formula One has a set of built-in names. These names are used by the print functions. The built-in
names are listed in the following table.

Built in Name Purpose
Print_Area Defines the print area used during printing. This name can contain one or more ranges

(e.g., A1:C3,A11:C13).

Print_Titles Defines the row and column titles that are printed on each new page.

Calculating Worksheets
Formula One calculates cells in natural order. In natural order calculation, formulas are calculated in such
a way that all dependencies are calculated before their dependents. This insures that the formula results
are always correct.

When the worksheet is edited, formula references are adjusted so they point to the correct cells. Then,
Formula One determines the natural order of the formulas.

When a change is made to a cell, the formulas are recalculated to keep the worksheet current, insuring
that data is always valid.

Setting Automatic Recalculation
Normally, automatic recalculation is enabled. In this mode, the worksheet is recalculated each time a cell
is changed and system processing is idle.

For moderate sized worksheets, recalculation operations happen in a fraction of a second. But for large
worksheets or situations where many cells are changed by code, this reorganization and recalculation
process can slow system processing.

In these situations, it is sometimes desirable to disable automatic recalculation while your code operates
on the worksheet. Automatic recalculation can be disabled with the AutoRecalc property or the
SSSetAutoRecalc function call. After the completion of an operation, automatic recalculation can be
enabled and the worksheet updated.

Solving Circular References
There are some circumstances where a formula refers to its own cell, either directly or indirectly. This is
called a circular reference. To solve a formula that contains a circular reference, iteration must be used.
Iteration is the process of repeatedly calculating a worksheet until a specific condition is met.

Formula One supports iteration using the SSSetIteration and SSCalculationDlg function calls. These
functions allow you to specify the maximum number of iterations and the maximum change between
iterations. The iteration continues until one of those two conditions is met.

The following example includes a circular reference:

Suppose your small business has 10,000 shares of stock owned by four shareholders. You decide to let a
fifth shareholder enter your partnership. In return for his investment, you give him 10 percent of the
company. How many more shares will the company have to issue to give the new investor 10% of the
company?

The following illustration shows the results of this example as it is entered in a worksheet.

The formulas in B2 and B3 create a circular reference in this example worksheet. The first
worksheet shows the formula text, the second worksheet shows the results of the formulas.

Editing Worksheets
Formula One provides a variety of methods for moving data within a worksheet.

Data can be cut, copied, and pasted using function calls.

You can interactively copy data in a worksheet by clicking and dragging the copy handle on a
worksheet selection.

Data can be moved interactively by clicking and dragging the border of a worksheet selection.

Function calls allow you to insert data in and delete data from ranges, rows, and columns.

A selected range of data can be sorted according to keys that you specify.

Cut, Copy, and Paste Function Calls
Ranges of data can be edited using one of several editing function calls. Formula One automatically
adjusts cell references when cells are moved. Thus, the integrity of worksheet formulas remains intact.

Formula One maintains its own internal clipboard and also supports text on the Windows clipboard. The
internal clipboard is more flexible than the Windows clipboard. The internal clipboard retains formulas and
allows cell references to be adjusted when cells are pasted. The Windows clipboard only holds text,
formatting, and formulas; cell references are not maintained by the Windows clipboard.

The following table describes the function calls that interact with the clipboards.

Function Name Operation
SSClearClipboard Clears the internal clipboard.

SSEditCopy Copies the current selection to the internal clipboard and the Windows clipboard (in text
format only). If there is more than one selection, only the first selection is copied.

SSEditCut Cuts the current selection to the internal clipboard. If there is more than one selection,
only the first selection is cut.

SSEditPaste Pastes the contents of the internal clipboard to the current selection. If the internal
clipboard is empty, text is pasted from the Windows clipboard. You can also paste tab-
delimited blocks of data.

SSCanEditPaste Determines if the internal clipboard or the Windows clipboard contains data.

If you cut a cell to which formulas refer, the formula references are maintained while the cell
remains in the clipboard. If the cell is subsequently pasted, references in the original formulas are
adjusted to point to the cell's new location.

If a cell containing a formula is copied and subsequently pasted, its relative references are
adjusted to point to a new location.

Copying Data Across Ranges
Three function calls copy data within and between worksheets. The following table describes these
function calls.

Function Name Operation
SSEditCopyDown Copies the top row of the selection down. Relative references are automatically adjusted.

SSEditCopyRight Copies the left column of the selection right. Relative references are automatically
adjusted.

SSCopyRange Copies a range from one range to another, within the same worksheet or between
worksheets.

Copying Data Interactively
You can copy data interactively by dragging the copy handle of a selection. The copy handle is the small
knob in the lower right corner of a selection. When you copy data using the copy handle, the pointer
changes to a small crosshair.

You can disable the user's ability to copy data by setting the AllowFillRange property to False. Or, you
can call the SSSetAllowFillRange function to disable interactive data copying.

Moving Data
Several methods can be used to move ranges of data. The easiest method uses the SSMoveRange
function call. When you use this function call, the integrity of formula cell references is maintained.

If there is special processing that must be performed when data is moved, you can use a loop in Visual
Basic code to move the data. However, cell references are not adjusted using this technique.

Moving Data Interactively
You can move data interactively by dragging a selection to a new location. This is accomplished by
positioning the pointer on the border of the selection you want to move. When placed on the selection
border, the pointer changes to an arrow. You can then drag the selection to a new location.

You can disable the user's ability to move data by setting the AllowMoveRange property to False. Or,
use the SSSetAllowMoveRange function call to disable interactive data moving.

If you press the CONTROL key as you click and drag a selection border, a copy of the selected range is
created and moved as you drag the pointer. The copied range is placed at the point where you release
the mouse button. The original range is not moved.

Inserting Cells, Rows, and Columns
The SSInsertRange function call inserts new cells in a worksheet. For this function call, you supply a
range where new cells are inserted and specify how the current cells in that range should be shifted to
make room for the new cells.

The following example inserts a two by two block of cells starting at B2. The current cells in the range
B2:C3 are shifted downward to make room for the new cells.

sserror = SSInsertRange(Sheet1.SS, 2, 2, 3, 3, kShiftVertical)
The SSEditInsert function call can insert cells, rows, and columns. You specify whether rows, columns,
or cells should be inserted. This function call uses the currently selected range to determine how many
rows, columns, or cells to insert.

When new cells are inserted, cell references in formulas are adjusted so the formulas remain correct.

The next four examples assume the range A4:B5 is selected (a two by two range). In the following code,
data in all columns and rows 4 and below is shifted down two rows to allow room for the inserted cells.

sserror = SSEditInsert (Sheet1.SS, kShiftRows)
The following code shifts all data in the worksheet right two columns to allow room for the inserted cells.

sserror = SSEditInsert (Sheet1.SS, kShiftColumns)
In the following code, data in all columns of rows 4 and 5 is shifted right two columns to allow room for the
inserted cells

sserror = SSEditInsert (Sheet1.SS, kShiftHorizontal)
In the following code, data in columns A and B in rows 4 and below is shifted down two rows to allow
room for the inserted cells

sserror = SSEditInsert (Sheet1.SS, kShiftVertical)
The shift constants (e.g., kShiftRows, kShiftColumns, kShiftHorizontal, kShiftVertical) are defined in
VTSS.H and VTSS.TXT.

Clearing and Deleting Cells, Rows, and Columns
Several function calls delete and clear data. The following table lists these function calls.

Function Name Operation
SSEditDelete Deletes the current selection.

SSDeleteRange Deletes the specified range.

SSEditClear Clears the current selection.

SSClearRange Clears the specified range.

SSEditDelete is similar to the SSEditInsert function call. For SSEditDelete, you specify whether cells,
rows, or columns should be deleted. The number of cells, rows, or columns deleted is determined from
the current selection. For example, to delete rows (based on the current selection), you could use the
following Visual Basic code:

sserror = SSEditDelete (Sheet1.SS, kShiftRows)
If you delete cells (e.g., using SSEditDelete or SSDeleteRange) to which a formula refers, those
formulas return a #REF! error because the referenced cells no longer exist.

To delete a specific range instead of the current selection, use the SSDeleteRange function call. This
function call allows you to explicitly specify the range to delete. The following code uses this function call.

sserror = SSDeleteRange (Sheet1.SS, 1, 1, 3, 3, kShiftRows)
Clearing a cell clears the value, format, and formula from that cell, but does not shift other cells in the
worksheet. The cleared cell has a value of zero. Formulas that refer to cleared cells obtain a value of zero
from those cells.

You can use SSEditClear or SSClearRange to clear a cell or range of cells. The following example clears
the current selection.

sserror = SSEditClear (Sheet1.SS)
Alternately, you can use the following example to clear specific rows or columns instead of the current
selection.

sserror = SSClearRange (Sheet1.SS, 1, 1, 3, 3)

Sorting Worksheets
You can sort the data in a worksheet and specify the keys by which the data is sorted. SSSortDlg
displays a dialog box that allows the user to specify sort keys, sort rows or columns, and ascending or
descending sort order. Before using the sort dialog box, a range in a worksheet must be selected. The
data in the selected range is the data that is sorted.

You can also sort worksheet data using the SSSort function call. This function call provides the same
functionality as the sort dialog box. Refer to Chapter 16, AZ Function Call Reference, for information
about this function call.

For Visual Basic programmers, sorting data is made easier with the SSSort3 function call. This function
call allows you to specify the sort keys directly in the function call parameters; SSSort references an array
to determine sort keys. However, SSSort3 limits you to three sort keys.

Formatting Worksheets
Formula One supports a rich set of data formatting capabilities. When a worksheet is first created, all cells
use the General format. As you enter data in the worksheet, Formula One determines the type of data
and applies the appropriate format (e.g., if you enter a date, a date format is applied).

Built-in Number Formats
The following table lists the built-in number formats and the result if the format is applied to a positive,
negative, and decimal number.

Category Format 3 -3 .3

All General 3 -3 .3

Fixed 0 3 -3 0

0.003.00 -3.00 0.30

#,##0 3 -3 0

#,##0.00 3.00 -3.00 0.30

#,##0_);(#,##0) 3 (3) 0

#,##0_);[RED](#,##0) 3 (3) in red 0

#,##0.00_);(#,##0.00) 3.00 (3.00) 0.30

#,##0.00_);[RED](#,##0.00) 3.00 (3.00) in red 0.30

Currency $#,##0_);($#,##0) $3 ($3) $0

$#,##0_);[RED]($#,##0) $3 ($3) in red $0

$#,##0.00_);($#,##0.00) $3.00 ($3.00) $0.30

$#,##0.00_);[RED]$(#,##0.00) $3.00 ($3.00) in red $0.30

Percentage 0% 300% -300% 30%

0.00% 300.00% -300.00% 30.00%

Fraction # ?/? 3 -3 2/7

??/?? 3 -3 3/10

Scientific 0.00E+00 3.00E+00 -3.00E+00 3.00E-01

Formatting Rows and Columns
If you format a row or column, that format is applied to all cells in the row or column. When you enter data
in a cell in a formatted row or column, the data assumes the designated format.

Formula One allocates memory by rows. Formatting empty rows or columns does not use memory. A
format is merely attached to a row or column. Formatting empty ranges is treated differently. If you format
a range of empty cells, a group of formatted, empty cells is created. Each new row containing formatted,
empty cells consumes memory.

Obtaining Formatted Text
You can obtain the formatted text from a cell by using the FormattedText property or the
SSGetFormattedText or SSGetFormattedTextRC function calls. These function calls return text exactly
as it is displayed in the worksheet.

Custom Formatting
In addition to the built-in formats, you can define custom formats. Each custom format can have as many
as four sections - one for positive numbers, one for negative numbers, one for zeros, and one for text.
Each section is optional, The sections are separated by semicolons. The following example shows a
custom format.

#,###;(#,###);0;"Error: Entry must be numeric"
In the Worksheet Designer, custom number formats can be defined by choosing Custom Number in the
Format menu. This command displays the Custom Format dialog box where you can enter custom
formats.

If you want to specify a custom format by function call, use the SSSetNumberFormat function call. The
following code uses SSSetNumberFormat to format numbers in the current selection with two decimal
places and negative numbers with parentheses.

sserror = SSSetNumberFormat (Sheet1.SS, "#,##0.00_);(#,##0.00)")
The Custom Format dialog box can also be displayed by calling SSFormatNumberDlg. This dialog box
allows you to select existing formats as well as define custom formats. The selected format is applied to
all selections. The following code displays the Custom Format dialog box.

sserror = SSFormatNumberDlg (Sheet1.SS)
The following table lists the format symbols that can be used in a custom format string.

Format Symbol Description
General Displays the number in General format.

0 Digit placeholder. If the number contains fewer digits than the format contains placeholders,
the number is padded with 0's. If there are more digits to the right of the decimal than there are
placeholders, the decimal portion is rounded to the number of places specified by the
placeholders. If there are more digits to the left of the decimal than there are placeholders, the
extra digits are retained.

Digit placeholder. This placeholder functions the same as the 0 placeholder except the number
is not padded with 0's if the number contains fewer digits than the format contains
placeholders.

? Digit placeholder. This placeholder functions the same as the 0 placeholder except that spaces
are used to pad the digits.

. (period) Decimal point. Determines how many digits (0's or #'s) are displayed on either side of the
decimal point. If the format contains only #'s left of the decimal point, numbers less than 1
begin with a decimal point. If the format contains 0s left of the decimal point, numbers less
than 1 begin with a 0 left of the decimal point.

% Displays the number as a percentage. The number is multiplied by 100 and the % character is
appended.

, (comma) Thousands separator. If the format contains commas separated by #'s or 0's, the number is
displayed with commas separating thousands. A comma following a placeholder scales the
number by a thousand. For example, the format 0, scales the number by 1000 (e.g., 10,000
would be displayed as 10).

E- E+ e- e+ Displays the number as scientific notation. If the format contains a scientific notation symbol to
the left of a 0 or # placeholder, the number is displayed in scientific notation and an E or an e is
added. The number of 0 and # placeholders to the right of the decimal determines the number
of digits in the exponent. E- and e- place a minus sign by negative exponents. E+ and e+ place
a minus sign by negative exponents and a plus sign by positive exponents.

$ - + / () : space Displays that character. To display a character other than those listed, precede the character
with a back slash (\) or enclose the character in double quotation marks (" "). You can also use
the slash (/) for fraction formats.

\ Displays the next character. The backslash is not displayed. You can also display a character

or string of characters by surrounding the characters with double quotation marks (" ").

The backslash is inserted automatically for the following characters:
! ^ & ` (left quote) ' (right quote) ~ { } = < >

* (asterisk) Repeats the next character until the width of the column is filled. You cannot have more than
one asterisk in each format section.

_ (underline) Skips the width of the next character. For example, to make negative numbers surrounded by
parentheses align with positive numbers, you can include the format _) for positive numbers to
skip the width of a parenthesis.

"text" Displays the text inside the quotation marks.

@ Text placeholder. If there is text in the cell, the text replaces the @ format character.

m Month number. Displays the month as digits without leading zeros (e.g., 1-12). Can also
represent minutes when used with h or hh formats.

mm Month number. Displays the month as digits with leading zeros (e.g., 01-12). Can also
represent minutes when used with the h or hh formats.

mmm Month abbreviation. Displays the month as an abbreviation (e.g., Jan-Dec).

mmmm Month name. Displays the month as a full name (e.g., January-December).

d Day number. Displays the day as digits with no leading zero (e.g., 1-2).

dd Day number. Displays the day as digits with leading zeros (e.g., 01-02).

ddd Day abbreviation. Displays the day as an abbreviation (e.g., Sun-Sat).

dddd Day name. Displays the day as a full name (e.g., Sunday-Saturday).

yy Year number. Displays the year as a two-digit number (e.g., 00-99).

yyyy Year number. Displays the year as a four-digit number (e.g., 1900-2078).

h Hour number. Displays the hour as a number without leading zeros (1-23). If the format
contains one of the AM or PM formats, the hour is based on a 12-hour clock. Otherwise, it is
based on a 24-hour clock.

hh Hour number. Displays the hour as a number with leading zeros (01-23). If the format contains
one of the AM or PM formats, the hour is based on a 12-hour clock. Otherwise, it is based on a
24-hour clock.

m Minute number. Displays the minute as a number without leading zeros (0-59). The m format
must appear immediately after the h or hh symbol. Otherwise, it is interpreted as a month
number.

mm Minute number. Displays the minute as a number with leading zeros (00-59). The mm format
must appear immediately after the h or hh symbol. Otherwise, it is interpreted as a month
number.

s Second number. Displays the second as a number without leading zeros (0-59).

ss Second number. Displays the second as a number with leading zeros (00-59).

AM/PM
am/pm
A/P
a/p 12-hour time. Displays time using a 12-hour clock. Displays AM, am, A, or a for times between

midnight and noon; displays PM, pm, P, or p for times from noon until midnight.

[BLACK] Displays cell text in black.

[BLUE] Displays cell text in blue.

[CYAN] Displays cell text in cyan.

[GREEN] Displays cell text in green.

[MAGENTA] Displays cell text in magenta.

[RED] Displays cell text in red.

[WHITE] Displays cell text in white.

[YELLOW] Displays cell text in yellow.

[COLOR n] Displays cell text using the corresponding color in the color palette. n is a color in the color
palette.

[conditional value] Each format can have as many as four sections - one each for positive numbers, negative
numbers, zeros, and text. Using the conditional value brackets ([]), you can designate a
different condition for each section. For example, you might want positive numbers displayed in
black, negative numbers in red, and zeros in blue. The following string formats a number for
these conditions:

[>=0] [BLACK]General; [<0] [RED]General; [BLUE]General
The following table shows some examples of custom number formats and numbers displayed using the
custom formats.

Format Cell Data Display

#.## 123.456 123.46

0.2 .2

#.0# 123.456 123.46

123 123.0

#,##0"CR";#,##0"DR";0 1234.567 1,235CR

0 0

-123.45 123DR

#, 10000 10

"Sales="0.0 123.45 Sales=123.5

-123.45 -Sales=123.5

"X="0.0;"x="-0.0 -12.34 x=-12.3

$* #,##0.00;$* -#,##0.00 1234.567 $ 1,234.57

-12.34 $ -12.34

000-00-0000 123456789 123-45-6789

"Cust. No." 0000 1234 Cust. No. 1234

;;; Anything (Not Displayed)

"The End" 123.45 The End

-123.45 - The End

text text

m-d-yy 2/3/94 2-3-94

mm dd yy 2/3/94 02 03 94

mmm d, yy 2/3/94 Feb 3, 94

mmmm d, yyyy 2/3/94 February 3, 1994

d mmmm yyyy 2/3/94 3 February 1994

hh"h" mm"m" 1:32 AM 01h 32m

h.mm AM/PM 14:56 2.56 PM

hhmm "hours" 3:15 0315 hours

Aligning Data
Formula One allows you to specify how data is aligned within a cell. The standard alignment places text
along the left edge of the cell and numbers along the right edge of the cell. Logical and error values are
centered.

If you are using the Worksheet Designer, data alignment can be set by choosing Alignment from the
Format menu. This command displays the Alignment dialog box. In this dialog box, you can specify the
horizontal and vertical alignment of data in the selected cells. In addition, you can specify whether long
strings of data can wrap to multiple lines within the cell.

The SSSetAlignment function call also allows you to set horizontal and vertical alignment and word
wrapping for data in the selected cells. To set the alignment in the currently selected ranges, you could
use the following code:

sserror = SSSetAlignment (Sheet1.SS, 2, False, 3, 0)
In the preceding example, 2 specifies that the cell data is left aligned, False specifies that word wrap is
disabled, 3 indicates that text is positioned at the bottom of the cell. The 0 is a placeholder for the
orientation argument (not implemented in this version).

The Alignment dialog box can also be invoked by calling the SSFormatAlignmentDlg function call. The
following code invokes the Alignment dialog box.

sserror = SSFormatAlignmentDlg (Sheet1.SS)

Changing Row Heights and Column Widths
The width of columns and the height of rows can be changed interactively or set with function calls.
Interactive column and row sizing can be performed in the Worksheet Designer at design time or in a
worksheet control at run time.

Interactively Sizing Rows and Columns
When you position the pointer on the right edge of a column heading or the bottom edge of a row
heading, the pointer changes to a double arrow to indicate that the row or column can be resized. Simply
click and drag to resize the column or row.

If multiple rows are selected when you resize a row, all selected rows are resized as you drag a row
border. Multiple columns can be resized in the same manner.

You can also set the size of a selected group of columns or rows to match the size of an existing row or
column. First, select the group of rows or columns you want to resize, including the row or column whose
size you want to match. Then, click the right border of the column header or the bottom border of the row
whose size you want to match. The selected rows are resized to match the size of the row or column you
clicked.

You can disable interactive sizing of rows and columns by setting the AllowResize property to False.

Sizing Rows and Columns with Function Calls
The following table lists the function calls that allow you to size rows and columns.

Function Name Operation
SSSetColWidth Sets the width of the specified columns. Column width is specified in units of 1/256 of an

average characters width in the default font.

SSSetColWidthAuto Automatically sets the width of the specified columns to accommodate the largest data in
the column.

SSColWidthDlg Displays the Column Width dialog box.

SSSetRowHeight Sets the height of the specified rows. Row height is specified in twips (one twip equals
1/1440 inch).

SSSetRowHeightAuto Automatically sets the height of the specified rows to accommodate the tallest data in the
row.

SSRowHeightDlg Displays the Row Height dialog box.

SSSetRowHeight and SSSetColWidth set the size of one or more rows or columns. For example, the
following code sets the height of rows 1 through 10 to 1/2 inch, and the width of columns 1 through 10 (A
through J) to 10 characters wide.

sserror = SSSetRowHeight (Sheet1.SS, 1, 10, 720, FALSE)
sserror = SSSetColWidth (Sheet1.SS, 1, 10, 2560, FALSE)

SSSetColWidthAuto and SSSetRowHeightAuto automatically size rows and columns to accommodate the
largest data in the row or column. For example, the following code automatically sets the row and column
sizes of rows 1 through 10, and columns 1 through 10 (A through J).

sserror = SSSetRowHeightAuto (Sheet1.SS, 1, 1, 10, 10, True)
sserror = SSSetColWidthAuto (Sheet1.SS, 1, 1, 10, 10, True)

Setting Cell Borders and Colors
Cells and ranges can be formatted with borders, colors, and patterns. These attributes can be set using
the Worksheet Designer or function calls.

Borders can be applied to the top, bottom, left, and right sides of a cell. You can select the type and color
of line used for the border. When adding a border to a range, you can place a border around the outside
of the range.

When applying colors and patterns to a cell or range, you specify the pattern and foreground and
background colors used to fill the cells.

From the Worksheet Designer:

Choose Border from the Format menu to specify the borders for the currently selected cells. The
Borders dialog box is displayed when you choose this command.

To specify cell colors and patterns, choose Pattern from the Format menu. This command
invokes the Pattern dialog box.
SSSetBorder is the function call that sets the border, outline, shading, and color for the selected cells.
The following code uses this function call:

sserror = SSSetBorder (Sheet1.SS, 2, 1, 1, 1, 1, 1, 3, 4, 4, 4, 4)
SSSetPattern is the function call that sets the color and pattern for the selected cells. The following code
uses this function call:

sserror = SSSetPattern (Sheet1.SS, 2, 128, 0)
To invoke the Borders dialog box by function call, call SSFormatBorderDlg. The following code displays
this dialog box:

sserror = SSFormatBorderDlg (Sheet1.SS)
To invoke the Pattern dialog box by function call, call SSFormatPatternDlg. The following code displays
this dialog box:

sserror = SSFormatPatternDlg (Sheet1.SS)

Formatting Row and Column Headings
In addition to formatting worksheet cells, you can format the fonts and colors used for row and column
headings. You can also specify the text used to label rows and columns.

Worksheet headings contain three pieces: the row headings, column headings, and the box in the upper
left corner of the worksheet where the row and column headings intersect.

In the Worksheet Designer or a worksheet control at run time, you can select a heading area by pressing
CTRL+Shift and clicking the heading. After a heading area is selected, you can use the Alignment, Font,
Border, and Pattern commands in the Format menu to format the selected headings.

You can also change the row heading width and column heading height by dragging the right and bottom
edges of the upper left corner heading. You can also set the heading sizes by calling SSSetHdrWidth
and SSSetHdrHeight.
To select a heading area by function call, use SSSetHdrSelection. The following code selects the column
headings.

sserror = SSSetHdrSelection (Sheet1.SS, False, False, True)
Several function calls and properties allow you to change the text that appears in the headings.
SSSetColText allows you to set the text heading for a specific column. Likewise, SSSetRowText and
SSSetTopLeftText set row heading text and the text in the upper left corner box.

The following code sets the heading for column 10 to "Sales" instead of the default "J".

sserror = SSSetColText (Sheet1.SS, 10, "Sales")
If you use the worksheet as a bound control, you can specify that a row header contain the contents of a
field by setting the DataHdrField property. Refer Accessing Databases for information about the
DataHdrField property.

Printing Worksheets
Formula One provides several options for printing worksheets and setting printing specifications.

Worksheets can be printed through the Worksheet Designer, either at design time or run time.

Function calls allow you to print a worksheet directly. You can also use function calls to display
the page setup and printer setup dialog boxes.

Properties can be used to set printing attributes.

Printing with Function Calls
Printing a worksheet is easily implemented using the SSFilePrint function call. The following code uses
this function call to print a worksheet.

sserror = SSFilePrint (Sheet1.SS, True)
When you call SSFilePrint, the Print dialog box is displayed, allowing you to specify the pages to print,
the number of copies to print, and other related items.

You can also use function calls to display dialog boxes for specifying page setup and printer setup. The
Page Setup dialog box gives easy access to setting margins, headers, footers, headings, grid printing,
page ordering, and output alignment. The following code displays the Page Setup dialog box.

sserror = SSFilePageSetupDlg (Sheet1.SS)
When you invoke the Print Setup dialog box, the standard Windows printer setup dialog box is displayed.
It allows you to select a printer, select the paper source, and select the page orientation (portrait or
landscape). The following code displays the Print Setup dialog box.

sserror = SSFilePrintSetupDlg (Sheet1.SS)

Specifying Print Areas
SSFilePrint prints the entire worksheet unless you specify the ranges you want to print. To specify the
areas you wan to print, you must set the Print_Area name to reflect the worksheet area to be printed. To
set the Print_Area name, you can:

set the PrintArea property.

call the SSSetPrintArea function.

launch the Worksheet Designer and select the ranges to print. Then, choose Print Area from the
File menu.
The following example uses the PrintArea property and the SSSetPrintArea function call to set A1:D25
as the area to be printed.

Sheet1.PrintArea = "A1:D25"
sserror = SSSetPrintArea (Sheet1.SS, "A1:D25")

You can select multiple ranges to print. If you specify multiple ranges, the ranges do not have to be
adjacent. For example, a print area could be comprised of two ranges, A1:D4 and F5:I8.

The following example uses the PrintArea property and the SSSetPrintArea function call to set the
ranges A1:D4 and F5:I8 as the areas to use as the print area.

Sheet1.PrintArea = "A1:D4,F5:I8"
sserror = SSSetPrintArea (Sheet1.SS, "A1:D4,F5:I8")

Specifying Row and Column Print Titles
You can specify row or column titles that you want printed on each page of your worksheet. If you select a
row, it is printed at the top of each page. If you select a column, it is printed at the left edge of each page.
You can select multiple rows or columns, but they must be adjacent.

The Print_Titles name holds the row and column titles specification. To set the Print_Titles name, you can:

set the PrintTitles property.

call the SSSetPrintTitles function call.

launch the Worksheet Designer and select the cells to use as print titles. Then, choose Print Titles
from the File menu.
Important When setting print titles, you must select entire rows and columns.

The following example uses the PrintTitles property and the SSSetPrintTitles function call to set A1:A10
as the area to use as print titles.

Sheet1.PrintTitles = "A1:A10"
sserror = SSSetPrintTitles (Sheet1.SS, "A1:A10")

Specifying Print Headers and Footers
Headers and footers are printed at the top and bottom of each page. The header and footer definition is
accessible in the Page Setup dialog box. You can also define headers and footers through the
PrintFooter and PrintHeader properties and the SSSetPrintFooter and SSSetPrintHeader function
calls.

Headers and footers can contain text and special formatting codes. The following table lists the special
formatting codes. Header and footer codes can be entered in upper or lower case.

Format Code Description
&L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&D Prints the current date

&T Prints the current time

&F Prints the worksheet name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

Codes and text are, by default, centered unless &L or &R is specified.

The following font codes must appear before other codes and text or they are ignored. The alignment
codes (e.g., &L, &C, and &R) restart each section; new font codes can be specified after an alignment
code.

Format Code Description
&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored

&H Ignored

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

The following example uses the PrintHeader property to specify the header text and center the header.

Sheet1.PrintHeader = "&CThis is a centered title"

Specifying Page Breaks
Both horizontal and vertical page breaks can be specified on a worksheet. Page breaks can be specified
interactively using the Worksheet Designer, or you can use function calls.

In the Worksheet Designer, page breaks are always placed adjacent to the active cell. When using
function calls, page breaks can be placed adjacent to the active cell or a cell that you specify.

Horizontal (row) page breaks are placed adjacent to the top edge of the active or specified cell.

Vertical (column) page breaks are placed adjacent to the left edge of the active or specified cell.

Page Break Function Calls
There are several categories of page break function calls. The SSAddPageBreak and
SSRemovePageBreak function calls add page breaks adjacent to the active cell. The following example
uses these function calls:

sserror = SSAddPageBreak (Sheet1.SS)
sserror = SSRemovePageBreak (Sheet1.SS)

SSAddRowPageBreak, SSAddColPageBreak, SSRemoveRowPageBreak, and
SSRemoveColPageBreak add and remove page breaks adjacent to the row or column that you specify
in the function call. The following example uses the SSAddRowPageBreak function call:

sserror = SSAddRowPageBreak (Sheet1.SS, therow)
SSNextRowPageBreak returns the next page break below the row that you specify in the function call.
SSNextColPageBreak returns the next page break to the right of the column that you specify in the
function call. The following example uses the SSNextRowPageBreak function call:

sserror = SSNextRowPageBreak (Sheet1.SS, therow, nextbreak)

Working with Databases
Database connectivity is one of Formula One's most powerful features. Formula One can access
database information in two ways - in table mode or in BLOB mode. Visual Basic refers to controls with
database access ability as bound controls.

Accessing Databases
When used as a bound control in table mode, each worksheet row represents a record from the current
database record set. Each worksheet column represents a database field. The worksheet is filled from the
database when the data control is refreshed or rolled back. If data is changed, added, or deleted in the
worksheet, the database is automatically updated to reflect the changes.

When used as a bound control in BLOB mode, a complete worksheet can be stored in a single database
field. Therefore, you can have a database of worksheets. As an example, this can be useful in a real
estate application where each record contains a picture of a property, information about the property, and
a worksheet showing the financial history of the property.

Formula One also supports virtual mode for record buffering. Virtual mode allows only a subset of a large
record set to be loaded in memory. Records not currently in memory are fetched automatically when
needed. This feature allows you to easily create an application designed for maximum speed and
minimum memory usage.

To use Formula One as a bound control, the database properties must be used. The following table lists
the properties that control the worksheet when used as a bound control.

Data Property Operation
AllowDelete Determines whether the Delete key can delete records.

DataAutoAddNew Determines whether the worksheet has an empty row at the end for adding new
records.

DataChanged Determines if the data has changed. May be set to force data to be rewritten.

DataConnected Specifies whether the worksheet is connected to the data control. This property
can be used to download data and then disconnect before performing analysis or
operations on the data.

DataField Specifies the field in which to put the table when used in BLOB mode.

DataFieldChanged(#) This is a Boolean array that indicates whether the specified column has been
changed by the user.

DataFieldCount Returns the number of database fields in the table.

DataFieldNumber(Column#) Returns the ordinal field number of the specified column. Used if the fields are
displayed in a different order than they occur in the database.

DataFields Specifies the fields to display when used in table mode. This is a list of as many
as 256 semicolon-separated field names. The list can include blank columns(;;)
and calculated columns (=formula).

DataHdrField Allows a field's value to be specified as the row headers.

DataRowBase Returns the row number of the record in row 1 of the worksheet. Used only when
virtual record mode is enabled. This number may be invalid after a find or if other
users are adding or deleting records to the database. When valid, DataRowBase
plus Row equals the actual database record number.

DataRowCount Returns the number of database rows in the table.

DataRowsBuffered Specifies how many rows are held in memory simultaneously.

DataSetColumnNames Determines if field names are used as column headings instead of the regular
column headings. If True, when the data control is refreshed, the previous
column headings are removed and the column headings are set to the field
names for each column. If False, when the data control is refreshed, the column
headings are not changed.

DataSetColumnWidths Automatically sizes the column widths to fit the data in the columns.

DataSetMaxCol If True, MaxCol is set to the number of fields displayed when the data control is
refreshed. Otherwise, MaxCol is left unchanged when the data control is
refreshed.

DataSetMaxRow If True, MaxRow is set to the number of records returned from the database plus
1. The additional blank row is used for adding new records. MaxRow is also
incremented by one each time a new record is added and decremented by one
each time a record is deleted.

DataSource Specifies to which data control to connect this worksheet.

DoDataNewRow Specifies whether the DataNewRow event gets fired when the data control
sends the AddNew message.

DoDataRowLoad Specifies whether the DataRowLoad event gets fired after each row is loaded
from the data control.

RowMode Specifies whether only entire rows can be selected, or if individual cells can be
selected.

Note The DataFieldChanged, DataFieldCount, DataFieldNumber, DataRowBase, and
DataRowCount properties are valid only when a Formula One control is connected to a data control
(e.g., the DataConnected property is True). The other database properties can be set when a Formula
One control is disconnected from a data control; however, they have no effect until a Formula One control
is connected to a data control.

The following examples illustrate how Formula One's data properties are used. The first example displays
the fields from the Authors table in the Biblio database shipped with Visual Basic 3.0.

The column headings are replaced by field titles.

The number of rows in the table are limited to the number of records in the database plus one (for
adding new data).

The number of columns are limited to the number of fields in the database table.

The columns are automatically sized to fit the data.
These specifications can be achieved just by setting Formula One's DataSource property to the name of
the data control (Data1 is the default name). All other properties use their default value.

The following illustration shows the result of this example.

The second example demonstrates how a worksheet can be stored in a database field. This is useful for
applications where each record must contain one or more tables. In the example, a real estate database
is opened that contains information about houses for sale. This simple database has the following fields:

Field Name Type Length

Property Number Counter

Subdivision Text 20

Address Text 25

Sqrft Number

Price Number

Picture OLE Object

Amortization Schedule OLE Object

The table is called Houses and has seven fields. The field Amortization Schedule holds the loan
amortization spreadsheet for each house. Note that it is designed as an OLE Object even though it is
used as a long binary data field. The field stores large, undefined pieces of data. In this case, the
amortization table is stored in the field.

Creating a field that holds a table is accomplished by setting the DataField property. In our example,
DataField is set to "Amortization Schedule" to tell Formula One that a worksheet is stored in the
amortization field. The real estate application is shown in the following illustration.

Using Virtual Record Buffers
When connected to large record sets, you may not want all the records loaded into memory
simultaneously. Formula One allows you to load part of the database table in memory, maximizing speed
and minimizing memory requirements.

The DataRowsBuffered property allows you to specify how many records to hold in memory at one time.
If a record is needed that is not currently in the buffer, Formula One automatically retrieves that record
and adjusts the buffer.

The default value for this property is 128 records. This setting is sufficient for applications that have a
small number of records or for data browsing applications. In these situations, Formula One handles all
the virtual operations transparently.

Note It is recommended that the number of rows specified in DataRowsBuffered be at least twice the
number of rows displayed on the screen.

If your application performs a complex operation on a larger number of records, the DataRowsBuffered
setting should be increased to get as many records into memory as possible. For example, if you perform
a mathematical operation on each record in a large database, you should set this number as high as
possible, reducing the number of times the program has to retrieve records from disk.

If you want to make the buffer large enough to hold all the records of the current record set, you can use
the RecordCount property of the data control. This property indicates the number of records in the record
set. However, remember that the number of records can change at any time in a multi-user environment.
Refer to the RecordCount property description in the Visual Basic documentation for additional
information about this property.

Important Formula One can hold a maximum of 16384 rows.

DataChanged And DataFieldChanged Properties
If the user enters or edits data at run time, Formula One automatically updates the database. However, if
the record data is changed through Visual Basic code, the programmer needs to set the
DataFieldChanged array property for any modified column.

Sheet1.DataFieldChanged(1) = True
There is one array member for each field displayed by Formula One. The DataFieldChanged property
array is based at 1. Setting a DataFieldChanged array member causes the modified column to be written
back to disk before another record is fetched.

You can also read the DataFieldChanged array to determine if a field has been modified (e.g., modified
by a user at run time). The following example displays the field number, field name, and modified flag for
all currently displayed fields.

For i = 1 to Sheet1.DataFieldCount
n = Sheet1.DataFieldNumber(i)
s = "Column " + i + " Field Number " + Str$(n)
s = s + " [" + data1.Recordset.Fields(n).Name + "]."
If Sheet1.DataFieldChanged(i) Then

s = s + " It IS modified."
Else

s = s + " It is NOT modified."
End If
Msgbox s

Next i
In this example, Formula One cycles through the fields from 1 to DataFieldCount. DataFieldCount is the
number of fields displayed in the table. The DataFieldNumber property returns the actual field number
since it may not be the same as the column number (if you omitted some fields or displayed fields out of
order in the worksheet). The DataFieldChanged property returns True or False depending on whether
the field has been modified.

RowMode Property
Many database applications handle data in complete records as opposed to specific cells or fields. These
types of applications often require the current row be marked as the user moves through the database.

The RowMode property makes this type of operation easy. When this property is True, only entire rows
can be marked. One row is always highlighted and represents the current record. In addition, the active
cell within the record is highlighted so the user knows which field is current.

When RowMode is enabled, it is possible to select a group of records (assuming the AllowSelections
property is True). This is useful for group edits. If you want to disallow multiple selected records, disable
the AllowSelections property.

Deleting Records
The AllowDelete property makes it easy for the user to delete records. When this property is True, the
user is allowed to delete the current record by pressing the Delete key. A dialog box is displayed to
confirm that the record should be deleted.

Rows can also be deleted using the Delete method of the data control.

DataRowLoad and DataNewRow Events
Two important database specific events are the DataRowLoad and DataNewRow events. The
DataRowLoad event is fired each time a new row is loaded from the data control. This allows the
program to perform any processing on a record before it is made available to the user.

For example, certain fields may contain integer numbers that represent specific items. You may want to
store the integers in the database to minimize disk usage. But when you present the integers to the user,
you want full text explanations, not just numbers. The DataRowLoad event can expand these integers
into text as the records are loaded.

You can also use the data control's Validate event to reverse this example. It allows you to make
modifications to the data before the record is written back to disk.

The DataNewRow event is fired each time the program prepares to create a new record. When the user
moves into the blank row at the end of a worksheet, the DataNewRow event is fired. The record is not
written to the database until the user exits that row, or the UpdateRecord method of the data control is
used. This event is useful for making changes to the record before it is written to the database. For
example, you may want to place the current date and time in a cell each time a new record is created.

Specifying Database Column Display
By default, when you connect Formula One to a data control and open a database, all fields are displayed
in the worksheet. However, Formula One allows you to specify which database fields are displayed by
entering a field list in the DataFields property.

The following example shows a typical field list:

Sheet1.DataFields = "Item;Qty;Price"
You can enter null field entries by using two semicolons with no field name between them. For example, if
you wanted a blank column between the Item field and the Qty field, enter the following field list:

Sheet1.DataFields = "Item;;Qty;Price"
You can also enter formula columns that are automatically calculated for each record. To do this, place a
formula between semicolons instead of a field name. For example, if you wanted to multiply Qty by Price
for each record and display the result in a new column, add =Qty*Price to the field list, as shown in the
following example:

Sheet1.DataFields = "Item;;Qty;Price;=Qty*Price"
Column formulas can access all functions, cell references, and fields. Displayed fields can be referred to
by name, as in the previous example. Fields accessed in this manner refer to the values in the Formula
One control. If the user has changed the value of the field, the new data is used in the calculation, even
though it has not yet been written to the database.

Formulas should only refer to fields by name and not cell reference. They should also avoid referring to
cells in other rows. Otherwise, you may encounter unpredicted results.

You can refer to a database field by enclosing the field name in square brackets. This returns the field's
current value in the database, regardless of the editing performed in the Formula One control. You can
also use this method to refer to fields not displayed on the Formula One control. For example, to access a
field not currently displayed, you could use the following column formula:

Sheet1.DataFields = "=Qty*Price+[Freight]"

Calculating Database Formulas
Formulas work differently when the Formula One control is connected to a database. When a single
record is changed only the calculations in that row are updated - not all formulas in the worksheet. When
not connected to a database, all formulas in the worksheet are recalculated whenever a value is changed.

Displaying and Using Field Names
The names of database fields can be used to label columns in your worksheet if the
DataSetColumnNames property is set to True. By default, this property is True.

When you load a database in a worksheet, each field name becomes a user defined name in the
worksheet. The user defined name identifies the column that the field occupies, allowing you to easily
make formula references to those columns.

If a field name contains spaces, the spaces are replaced by underscores (_) in the user defined name.
Underscores are not used for spaces when labeling columns.

Performance Tuning
The following tips can help you make the most efficient use of memory and get the best performance from
Formula One.

Avoid formatting blank cells. It is more efficient to format an entire row or column because no
cells are created. When you format a blank range, Formula One must create empty cells before it can
apply the format.

Build worksheets by rows instead of columns. Formula One allocates memory by rows. You
can save memory by building tables down a worksheet by rows, rather than across a worksheet by
columns. Any spacing between data blocks occupies less memory if the data blocks are underneath one
another than if they are across from each other.

Build ranges from the lower right corner. When building a table one cell at a time from code, it
is faster and more efficient to start in the lower right corner of the area in which you are working. This
insures that the row pointers are allocated simultaneously instead of one at a time. Likewise, each row is
allocated once instead of being reallocated as each cell is added.

Use values instead of formulas whenever possible.

Avoid adding empty rows and columns for white space. Adjust the row height or column
width to create white space instead of adding empty rows or columns.

Disable repainting when performing a series of operations. When performing a number of
sequential operations on a worksheet, disable repainting with the Repaint property so the screen does
not repaint after each operation. This increases the speed of the operation and avoids unnecessary
screen flashing.

Use function calls when setting and getting numbers, text and formulas. When possible,
use the function calls SSGetNumberRC, SSSetNumberRC, SSGetTextRC, SSSetTextRC,
SSGetFormulaRC, and SSSetFormulaRC rather than the Number, Text, and Formula properties.

Function calls allow for greater numeric precision (64 bit, double precision) than properties (32 bit,
single precision). In addition, these function calls allow you to obtain data from a cell and place data in
a cell without changing the current selection, thus reducing processing.

Save the SS Property property in a variable if it is used frequently.

Disable events not in use. For example, set the DoSelChange property to False if you do not
have a SelChange event. SelChange is usually the most costly event since it is fired every time Row,
Col, SelStartRow, SelEndRow, SelStartCol, or SelEndCol is changed.

Use function calls to copy and move data. Use SSEditCopyRight, SSEditCopyDown,
SSCopyRange, and SSMoveRange to copy and move cells. These functions are much faster than using
the clipboard or copying the data yourself from Visual Basic. In addition, these function calls update cell
references to maintain the integrity of your formulas.

Specifications
The following table lists the technical specifications for the Formula One control.

Specifications

Maximum worksheet size 16,384 Rows by 256 Columns

Column width 0 to 255 characters

Row height 0 to 409 points

Text length 255 characters

Formula length 1024 characters

Number precision 15 digits

Largest positive number 9.99999999999999E307

Largest negative number -9.99999999999999E307

Smallest positive number 1E-307

Smallest negative number -1E-307

Maximum number of iterations 32,767

Maximum number of colors 16

Maximum number of available colors Limited by your display card and monitor

Maximum number of fonts per sheet 256

Maximum number of selected ranges 2048

Maximum number of names per sheet Limited by memory

Maximum length of name 255

Maximum number of function arguments 30

Maximum length of format string 255

Maximum number of tables 256

Excel file format version BIFF4 - Excel 4.0

Formula One and Visual C++
Before using Formula One with Visual C++, you should read the following chapters:

"Using Custom Controls," Chapter 3 in the Microsoft App Studio User's Guide.

"Programming with VBX Controls," Chapter 17 in the Microsoft Visual C++ Class Library User's
Guide.

"CVBControl Class" in the Microsoft Visual C++ Class Library Reference. It is also documented in
on-line help under "Visual Object Classes."

Technical Note 27 in MSVC\HELP\MFCNOTES.HLP

 To add the Formula One Control to the Visual C++ Control Palette:
1. Start Visual C++.
2. From the Tools menu, choose App Studio.
3. From the File menu in App Studio, choose Install Controls.
4. Select the WINDOWS\SYSTEM directory on your hard disk and double click VTSS.VBX.

CVBControl Class
The CVBControl Class is a special class defined in the Microsoft Foundation class library. It is specifically
designed to allow easy integration of Visual Basic Custom Controls into Visual C++ programs.

The CVBControl Class allows you to load controls, get their properties, set their properties, change their
screen locations, and perform other operations. It also provides support for custom control events and
methods. Within your application, every VBX control becomes an object of class CVBControl.

The easiest way to use a VBX control with Visual C++ is to load the control in App Studio. You can then
drag the control to a dialog box, set properties, and connect code.

You can also use the Formula One Control with C++ without the aid of the App Studio. To use a VBX
Control in Visual C++ without App Studio, you must create a VBX-control object and load the Formula
One control.

The following code performs this function:

CVBControl *pSSvb = new CVBControl;
pSSvb->Create("VTSS.VBX;SSView;MySheet", NULL, rect, pParentWnd, nID, NULL,

TRUE);
This code creates a CVBControl object named pSSVB and loads the Formula One control. Then, it
creates a control named SS with window text of SpreadSheet.

Getting and Setting Properties in Visual C++
Within the CVBControl Class there is a set of functions designed to access VBX properties. These
functions are called the Property Access Member Functions. You must select the proper function
depending on the data type you are accessing. Examples for each of the Formula One properties are
shown in Chapter 15, A-Z Property Reference.

The following example code enables the Formula One gridlines:

pSSVB->SetNumProperty ("ShowGridLines", True);

Differences between Visual Basic and Visual C++
Visual C++ supports only version 1.0 VBXs. The functionality supported by Visual Basic 3.0 is not
supported by Visual C++ 1.0. This functionality includes the HelpContextID, HWnd, and Data...
properties.

Worksheet Designer Overview
The Worksheet Designer is an interactive program that allows you to design and format the worksheet for
your application by pointing and clicking, and choosing format commands from menus. The Worksheet
Designer allows you to manipulate a worksheet control just like it was a part of spreadsheet application.

File Menu Commands
The following table lists the commands available in the File menu

Command Description
New Creates a new worksheet. When you create a new worksheet with this command, it does

not create a new worksheet control on a form. The new worksheet can be saved to disk.

Open Opens a worksheet file from disk. Files saved in Formula One format (.VTS files) or Excel
4.0 format (.XLS files) can be opened.

Close Closes the current worksheet.

Save Saves the current worksheet. Files can be saved in Formula One format (.VTS files) or
Excel 4.0 format (.XLS files).

Save As Allows you to save the current worksheet with a different name or format.

Print Area Defines the currently selected range as the Print_Area user-defined name.

Print Titles Defines the currently selected range as the Print_Titles user-defined name.

Set Page Breaks Places a horizontal page break adjacent to the top edge of the active cell and a vertical
page break adjacent to the left edge of the active cell. If a row or column is selected, a
page break is placed adjacent to the selected row or column.

Remove Page Breaks This command replaces Set Page Breaks if page breaks are adjacent to the active cell.
Removes page breaks adjacent to the top edge and left edge of the active cell.

Print Prints the worksheet.

Page Setup Displays the Page Setup dialog box. This dialog box allows you to define header and
footer text, page margins, page print order, page centering, worksheet-related print
options.

Print Setup Displays the standard Windows Print Setup dialog box. This dialog box allows you to
select the printer to which the worksheet is sent, the page orientation, and paper size.

Exit Exits the Worksheet Designer application.

Edit Menu Commands
The following table lists the commands available in the Edit menu

Command Description
Cut Cuts the current worksheet selection to the clipboard.

Copy Copies the current worksheet selection to the clipboard.

Paste Pastes the contents of the clipboard to the current worksheet selection.

Clear Displays a submenu that allows you to clear data from the current selection. You can clear
only formats, only values (including formulas), or both formats and values.

Insert Inserts cells at the location of the current selection. Cells adjacent to the insertion are
shifted to make room for the new cells.

If you use the keyboard shortcut CTRL + I, the selected cells are shifted right to make
room for the inserted cells. If you use SHIFT + CTRL + I, the selected cells are shifted
down.

Delete Deletes the current selection. Cells adjacent to the deleted cells are shifted to fill the
space left by the vacated cells.

If you use the keyboard shortcut CTRL + K, cells to the right of the selected cells are
shifted left to fill the space left by the vacated cells. If you use SHIFT + CTRL + K, cells
below the selected cells are shifted up.

Copy Right Data in the leftmost cell of the selected range is copied right to fill the range.

Copy Down Data in the top cell of the selected range is copied down to fill the range.

Goto Displays the Goto dialog box. This dialog box allows you to select the worksheet page to
display.

Recalc Recalculates the worksheet.

Calculation Displays the Calculation dialog box. This dialog box allows you to enable and disable
automatic recalculation and specify iteration values for calculating circular references.

Define Name Displays the Define Name dialog box. This dialog box allows you to add and delete user
defined names.

Sort Displays the Sort dialog box. This dialog box allows you to set the sorting method and sort
keys for data sorting.

View Menu Commands
The following table lists the commands available in the View menu

Command Description
Show Displays the Show dialog box. This dialog box allows you to determine if formulas,

gridlines, row headings, column headings, and zero values are shown or hidden. In
addition, you can specify the display status of the vertical and horizontal scroll bars and
worksheet selections. You can also set the maximum number of rows and columns
displayed.

Allow Displays the Allow dialog box. This dialog box allows you to determine whether interactive
actions such as row and column resizing, range filling, range moving, formula entry, in-cell
editing, and range selection can be performed. In addition, you can enable and disable the
actions of the arrow, tab, delete, and return keys.

Fix Rows/Columns If rows are selected, they are fixed at the left edge of the worksheet; if columns are
selected, they are fixed at the top edge of the worksheet.

Fixed rows and columns do not scroll out of view.

Unfix Rows/Columns This command replaces Fix Rows/Columns if the worksheet contains fixed rows or
columns. Returns fixed rows and columns to their normal, scrollable status.

Toolbar When enabled, the tool bar at the top of the Worksheet Designer, including the entry bar,
is displayed; when disabled, it is hidden.

Status Bar When enabled, the status bar at the bottom of the Worksheet Designer is displayed; when
disabled, it is hidden.

Format Menu Commands
The following table lists the commands available in the Format menu

Command Description
Alignment Displays the Alignment dialog box. This dialog box allows you to specify the horizontal and

vertical alignment of data in the selected range. In addition, you can enable and disable
word wrapping.

Font Displays the Font dialog box. This dialog box allows you to specify the font, point size, font
style, and color of data in the selected range.

Border Displays the Border dialog box. This dialog box allows you to specify the placement of
borders in the selected range. In addition, you can specify the border line style and color.

The check boxes in the Border dialog box are three-state check boxes, allowing "as is"
selections to be made.

Pattern Displays the Pattern dialog box. This dialog box allows you to specify the fill pattern and
foreground and background colors for the selected range.

Cell Protection Displays the Cell Protection dialog box. This dialog box allows you to specify whether the
cells in the selected range are locked and hidden.

Enable Protection Enables protection for protected cells in the worksheet.

Disable Protection Disables protection for protected cells in the worksheet.

General Formats data in the selected range with the General format.

Currency (0) Formats data in the selected range with the Currency format and a decimal precision of 0.

Currency (2) Formats data in the selected range with the Currency format and a decimal precision of 2.

Fixed Formats data in the selected range with the Fixed format.

Percent Formats data in the selected range with the Percent format. Numbers with this format are
displayed as percentages with a trailing percent sign (%).

Fraction Formats data in the selected range with the Fraction format. Numbers with this format are
displayed as fractions.

Scientific Formats data in the selected range with the Scientific format.

M/D/YY Formats data in the selected range with the M/D/YY date format. Numbers with this format
are displayed as dates.

H:MM AM/PM Formats data in the selected range with the H:MM AM/PM time format. Numbers with this
format are displayed as times.

Custom Number Displays the Custom Number dialog box. This dialog box allows you to define custom
number formats for data in the selected range.

Column Width Displays the Column Width dialog box. This dialog box allows you to set the width of the
selected columns, specify default column widths, and specify automatic column width. In
addition, you can specify whether the selected columns are shown or hidden.

Row Height Displays the Row Height dialog box. This dialog box allows you to set the height of the
selected rows, specify default row heights, and specify automatic row height. In addition,
you can specify whether the selected rows are shown or hidden.

Color Palette Displays the Color Palette dialog box. This dialog box allows you to edit colors in the color
palette, specify a default color, and use the default color palette.

Window Menu Commands
The following table lists the commands available in the Window menu

Command Description
New Window Creates an additional window that displays the current worksheet.

Cascade If multiple worksheet windows are displayed, the windows are placed in a cascading
arrangement in the Formula One window.

Tile If multiple worksheet windows are displayed, the windows are tiled in the Formula One
window so that each worksheet is displayed.

Arrange Icons Arranges the icons of minimized worksheets in the Formula One window.

A-Z Event Reference
See also Event Summary

This section provides a complete alphabetical reference for the Formula One events. Refer to Using
Events for additional information about using events. The events listed in this section are:

CancelEdit Event
Click Event
DataNewRow Event
DataRowLoad Event
DblClick Event
DragDrop Event
DragOver Event
EndEdit Event
EndRecalc Event
GotFocus Event
KeyDown, KeyUp Events
KeyPress Event
LostFocus Event
SelChange Event
StartEdit Event
StartRecalc Event
TopLeftChanged

CancelEdit Event
See also A-Z Event List

Description This event occurs when the user leaves edit mode without making changes or
presses the Escape key.

Syntax Sub Sheet1_CancelEdit ([Index As Integer])

Click Event
See also A-Z Event List

Description The Click event occurs when the user presses and releases the mouse button while
the pointer is in the Formula One window.

Syntax Sub Sheet1_Click ([Index As Integer,] nRow as Long, nCol as Long)

Remarks nRow and nCol specify the cell in which the user clicks. If a click does not occur on a
cell, nRow and nCol are zero.

For additional information, refer to the description of the Click event in the Microsoft
Visual Basic Language Reference Manual.

DataNewRow Event
See also A-Z Event List

Description This event occurs when a new record is added.

Syntax Sub Sheet1_DataNewRow ([Index As Integer,] nRow as Long)

Remarks The DataNewRow event occurs when the data control sends the AddNew message
to Formula One. This includes when the user enters the empty row at the end of a
worksheet. nRow is the worksheet row number in which the new record is stored; it is
not the row number of the record set.

This event does not fire unless the worksheet control is bound to a data control.

DataRowLoad Event
See also A-Z Event List

Description This event occurs after a new row is loaded from the data control.

Syntax Sub Sheet1_DataRowLoad ([Index As Integer,] nRow as Long)

Remarks nRow is the worksheet row number in which the data is stored; it is not the row
number of the data set.

This event does not fire unless the worksheet control is bound to a data control.

Important The code in this event must not change the active cell or selection using properties or function
calls. It is permissible to use the function calls that take a row and column number directly but do not
change them (e.g., SSSetTextRC).

DblClick Event
See also A-Z Event List

Description The DblClick event occurs when the user double clicks the mouse button while the
pointer is in the Formula One window.

Syntax Sub Sheet1_DblClick ([Index As Integer,] nRow as Long, nCol as Long)

Remarks nRow and nCol specify the cell in which the user double clicks. If a double click does
not occur on a cell, nRow and nCol are zero.

For additional information, refer to the description of the DblClick event in the
Microsoft Visual Basic Language Reference Manual.

DragDrop Event
See also A-Z Event List

Description This event occurs when a drag-drop operation is completed.

Syntax Sub Sheet1_DragDrop ([Index As Integer,] Source As Control, X As Single, Y As
Single)

Remarks For additional information, refer to the description of the DragDrop event in the
Microsoft Visual Basic Language Reference Manual.

DragOver Event
See also A-Z Event List

Description This event occurs when a drag-drop operation is in process.

Syntax Sub Sheet1_DragOver ([Index As Integer,] Source As Control, X As Single, Y As
Single, State As Integer)

Remarks For additional information, refer to the description of the DragOver event in the
Microsoft Visual Basic Language Reference Manual.

EndEdit Event
See also A-Z Event List

Description This event occurs when an editing operation is completed.

Syntax Sub Sheet1_EndEdit ([Index As Integer,] EditString As String, Cancel As Integer)

Remarks EditString is the edited text to be entered in the active cell. This value can be
changed to modify what is placed in the cell.

Cancel can be set to True to force edit mode to continue. This is often used for data
validation when you do not want the user to exit edit mode until data is correct.

EndRecalc Event
See also A-Z Event List

Description This event occurs when the recalculation process is completed.

Syntax Sub Sheet1_EndRecalc ([Index As Integer])

Remarks The EndRecalc event occurs after a worksheet has been recalculated.

GotFocus Event
See also A-Z Event List

Description The GotFocus event occurs when the Formula One window receives focus, either by
clicking the object or changing the focus in code using the SetFocus method.

Syntax Sub Sheet1_GotFocus ([Index As Integer])

Remarks For additional information, refer to the description of the GotFocus event in the
Microsoft Visual Basic Language Reference Manual.

KeyDown, KeyUp Events
See also A-Z Event List

Description These events occur when the user presses (KeyDown) and releases (KeyUp) a key
while the Formula One object has the focus.

Syntax Sub Sheet1_KeyDown ([Index As Integer,] KeyCode As Integer, Shift As Integer)

Sub Sheet1_KeyUp ([Index As Integer,] KeyCode As Integer, Shift As Integer)

Remarks For additional information, refer to the descriptions of the KeyDown and KeyUp
events in the Microsoft Visual Basic Language Reference Manual.

KeyPress Event
See also A-Z Event List

Description Occurs when the user presses and releases an ANSI key.

Syntax Sub Sheet1_KeyPress ([Index As Integer,] KeyAscii As Integer)

Remarks For additional information, refer to the description of the KeyPress event in the
Microsoft Visual Basic Language Reference Manual.

LostFocus Event
See also A-Z Event List

Description The LostFocus event occurs when the Formula One window loses focus, either by
clicking the object or changing the focus in code using the SetFocus method.

Syntax Sub Sheet1_LostFocus ([Index As Integer])

Remarks For additional information, refer to the description of the LostFocus event in the
Microsoft Visual Basic Language Reference Manual.

SelChange Event
See also A-Z Event List

Description This event occurs when the active cell is changed or the current selection is changed.

Syntax Sub Sheet1_SelChange ([Index As Integer])

Important Actions that change the row and column selection (e.g., using the Row
or Col properties) should not be used within this event as you will encounter
unexpected results.

StartEdit Event
See also A-Z Event List

Description This event occurs when an editing operation is started.

Syntax Sub Sheet1_StartEdit ([Index As Integer,] EditString As String, Cancel As Integer)

Remarks EditString is the text to be edited. Cancel can be set to True to cancel edit mode. In
this case, edit mode is not entered.

StartRecalc Event
See also A-Z Event List

Description This event occurs when the recalculation process is started.

Syntax Sub Sheet1_StartRecalc ([Index As Integer])

Remarks The StartRecalc event occurs when the worksheet is about to be recalculated.

TopLeftChanged Event
See also A-Z Event List

Description This event occurs when the cell that is displayed as the top left cell of the worksheet
changes (e.g., when the user scrolls the worksheet). The execution of this event is
deferred until the system is idle.

Syntax Sub Sheet1_TopLeftChanged ([Index As Integer])

A-Z Property Reference
See also Property Summary

This chapter provides a complete alphabetical reference for the Formula One properties. Refer to Using
Properties for additional information about using properties.

AllowAppLaunch Property Formula Property
AllowArrows Property Height Property
AllowDelete Property HelpContextID Property
AllowEditHeaders Property hWnd Property
AllowFillRange Property Index Property
AllowFormulas Property Left Property
AllowInCellEditing Property LeftCol Property
AllowMoveRange Property MaxCol Property
AllowResize Property MaxRow Property
AllowSelections Property MinCol Property
AllowTabs Property MinRow Property
AutoRecalc Property MousePointer Property
BackColor Property Name Property
BorderStyle Property Number Property
Col Property Parent Property
DataAutoAddNew Property PrintArea Property
DataChanged Property PrintBottomMargin Property
DataConnected Property PrintColHeading Property
DataField Property PrintFooter Property
DataFieldChanged Property PrintGridLines Property
DataFieldCount Property PrintHCenter Property
DataFieldNumber Property PrintHeader Property
DataFields Property PrintLeftMargin Property
DataHdrField Property PrintLeftToRight Property
DataRowBase Property PrintNoColor Property
DataRowCount Property PrintRightMargin Property
DataRowsBuffered Property PrintRowHeading Property
DataSetColumnFormats Property PrintTitles Property
DataSetColumnNames Property PrintTopMargin Property
DataSetColumnWidths Property PrintVCenter Property
DataSetMaxCol Property ReadFile Property
DataSetMaxRow Property Repaint Property
DataSource Property Row Property
DoCancelEdit Property RowMode Property
DoClick Property Selection Property
DoDataNewRow Property SelEndCol Property
DoDataRowLoad Property SelEndRow Property
DoDblClick Property SelStartCol Property
DoEndEdit Property SelStartRow Property
DoEndRecalc Property ShowColHeading Property
DoSelChange Property ShowGridLines Property
DoStartEdit Property ShowHScrollBar Property
DoStartRecalc Property ShowRowHeading Property
DoTopLeftChanged Property ShowSelections Property
DragIcon Property ShowVScrollBar Property
DragMode Property SS Property
EditName Property TabIndex Property
Enabled Property TableName Property
EnableProtection Property TabStop Property
Entry Property Tag Property
ExtraColor Property Text Property

FileName Property Top Property
FixedCol Property TopRow Property
FixedCols Property Visible Property
FixedRow Property Width Property
FixedRows Property WriteExcel4 Property
FormattedText Property WriteFile Property

AllowAppLaunch Property
See also A-Z Property List

Description Determines if the Worksheet Designer is allowed to launch at run time when the user
double clicks the Formula One window with the right mouse button.

Syntax (VB) [form.][control.]AllowAppLaunch [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowAppLaunch")
pSSVB->SetNumProperty("AllowAppLaunch", {True|False})

Remarks When True, this property allows the user to invoke the Worksheet Designer at run
time by double clicking the Formula One window with the right mouse button. Double
click events can be received when the left mouse button is double clicked.

When False, the Worksheet Designer cannot be launched at run time. The
Worksheet Designer can always be launched at design time by double clicking the
Formula One window with the right mouse button.

Data Type Integer (Boolean)

Example Sheet1.AllowAppLaunch = True ' Allow user to launch Worksheet
Designer

AllowArrows Property
See also A-Z Property List

Description Determines if the arrow keys can move the active cell.

Syntax (VB) [form.][control.]AllowArrows [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowArrows")
pSSVB->SetNumProperty("AllowArrows", {True|False})

Remarks When True, this property allows the user to move the active cell using the four arrow
keys.

Data Type Integer (Boolean)

See Also AllowTabs property and SSGetAllowArrows and SSSetAllowArrows functions

Example Sheet1.AllowArrows = True ' Allow arrows to move active cell

AllowDelete Property
See also A-Z Property List

Description Determines if the Delete key can delete the current record or clear the current
selection.

Syntax (VB) [form.][control.]AllowDelete [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowDelete")
pSSVB->SetNumProperty("AllowDelete", {True|False})

Remarks When not connected to a data control, this property allows the user to specify
whether the Delete key can clear the current selection. When connected to a data
control, this property allows the user to specify whether the Delete key can delete the
current record, if the whole row is marked, or clear the current selection if less than a
row is marked.

Data Type Integer (Boolean)

See Also SSGetAllowDelete and SSSetAllowDelete functions

Example Sheet1.AllowDelete = True ' Allow Delete key to delete record

AllowEditHeaders Property
See also A-Z Property List

Description Determines if the user is allowed to edit row, column, and top left headers by double
clicking a header.

Syntax (VB) [form.][control.]AllowEditHeaders [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowEditHeaders")
pSSVB->SetNumProperty("AllowEditHeaders", {True|False})

Remarks When this property is True, the names displayed in row, column, and top left headers
can be edited by double clicking the header to be edited. The Header Name dialog
box is displayed, allowing you to enter a new header name.

If False, editing of headers is not allowed and a DblClick event is passed when a
header is double clicked.

Return Value Integer (Boolean)

See Also SSGetAllowEditHeaders and SSSetAllowEditHeaders functions and DblClick
event.

Example Sheet1.AllowEditHeaders = False ' Disallow header editing

AllowFillRange Property
See also A-Z Property List

Description Determines if the user is allowed to fill a range by dragging a selection's copy handle.

Syntax (VB) [form.][control.]AllowFillRange [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowFillRange")
pSSVB->SetNumProperty("AllowFillRange", {True|False})

Remarks When True, this property allows the user to automatically copy a selection by
dragging the copy handle on a selection. The copy handle is the small knob at the
lower right corner of a selection.

Data Type Integer (Boolean)

See Also SSGetAllowFillRange and SSSetAllowFillRange functions

Example Sheet1.AllowFillRange = True ' Allow automatic filling

AllowFormulas Property
See also A-Z Property List

Description Determines if the user can enter new formulas or edit existing formulas.

Syntax (VB) [form.][control.]AllowFormulas [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowFormulas")
pSSVB->SetNumProperty("AllowFormulas", {True|False})

Remarks When True, the user is allowed to enter new formulas in the worksheet. When False,
the user cannot enter new formulas. However, existing formulas are retained and
new formulas can be added by program code.

Data Type Integer (Boolean)

See Also Formula property and SSGetAllowFormulas, SSSetAllowFormulas, and
SSSetFormula functions

Example Sheet1.AllowFormulas = True ' Allow the user to enter formulas

AllowInCellEditing Property
See also A-Z Property List

Description Determines if in-cell editing is allowed.

Syntax (VB) [form.][control.]AllowInCellEditing [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowInCellEditing")
pSSVB->SetNumProperty("AllowInCellEditing", {True|False})

Remarks When True, this property allows data and formulas to be entered or edited directly in
a cell without using an edit bar. However, if entering long data or formulas, it is often
more convenient to use an edit bar.

Data Type Integer (Boolean)

See Also SSGetAllowInCellEditing and SSSetAllowInCellEditing functions

Example Sheet1.AllowInCellEditing = True ' Allow user to edit data
within the cell

AllowMoveRange Property
See also A-Z Property List

Description Determines if the user can move a selection by dragging it to a new location.

Syntax (VB) [form.][control.]AllowMoveRange [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowMoveRange")
pSSVB->SetNumProperty("AllowMoveRange", {True|False})

Remarks When True, this property allows the user to move the current selection to another
area by dragging the border surrounding the selection.

Data Type Integer (Boolean)

See Also SSGetAllowMoveRange and SSSetAllowMoveRange functions

Example Sheet1.AllowMoveRange = True ' Allow drag and drop moving

AllowResize Property
See also A-Z Property List

Description Determines if the user can resize rows or columns.

Syntax (VB) [form.][control.]AllowResize [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowResize")
pSSVB->SetNumProperty("AllowResize", {True|False})

Remarks When True, this property allows the user to resize rows or columns by dragging the
line to the right of a column heading or at the bottom of a row heading.

Data Type Integer (Boolean)

See Also SSGetAllowResize and SSSetAllowResize functions

Example Sheet1.AllowResize = True ' Allow resizing

AllowSelections Property
See also A-Z Property List

Description Determines if the user can make selections.

Syntax (VB) [form.][control.]AllowSelections [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowSelections")
pSSVB->SetNumProperty("AllowSelections", {True|False})

Remarks When True, this property allows the user to select a cell or range of cells. When
False, selections cannot be made with the mouse or keyboard.

Data Type Integer (Boolean)

See Also ShowSelections property and SSGetAllowSelections and SSSetAllowSelections
functions

Example Sheet1.AllowSelections = True ' Allow selections

AllowTabs Property
See also A-Z Property List

Description Determines if the Tab and Shift Tab keys can move the active cell within the current
selection.

Syntax (VB) [form.][control.]AllowTabs [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AllowTabs")
pSSVB->SetNumProperty("AllowTabs", {True|False})

Remarks When True, this property allows the Tab and Shift Tab keys to move the active cell
within the current selection. Tab moves the cell right through the selected range,
wrapping to the left if it reaches the right edge of the selection. Shift Tab moves the
active cell in the opposite direction in the selected range.

Data Type Integer (Boolean)

See Also AllowArrows and AllowSelections properties and SSGetAllowTabs and
SSSetAllowTabs functions

Example Sheet1.AllowTabs = True ' Tabs can move the active cell

AutoRecalc Property
See also A-Z Property List

Description Determines if automatic recalculation is enabled. Forces the worksheet to be
recalculated immediately, if needed, when set to True.

Syntax (VB) [form.][control.]AutoRecalc [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("AutoRecalc")
pSSVB->SetNumProperty("AutoRecalc", {True|False})

Remarks When True, this property enables automatic recalculation and recalculates the
worksheet if needed. Thereafter, any change to the worksheet causes all formulas to
be recalculated.

Notice that the screen may not be updated if the worksheet is manipulated with a
tight Visual Basic loop. If you want the screen to be updated in this circumstance, you
must call SSUpdate after each cell is processed. This slows worksheet processing
significantly.

Data Type Integer (Boolean)

See Also SSGetAutoRecalc, SSSetAutoRecalc, and SSUpdate functions

Example Sheet1.AutoRecalc = True ' Automatic recalc is on

BackColor Property
See also A-Z Property List

Description Determines the background color of the Formula One window.

Syntax (VB) [form.][control.]BackColor [= color]

Syntax (VC++) pSSVB->GetNumProperty("BackColor")
pSSVB->SetNumProperty("BackColor", color)

Remarks This property expects a color in the standard Windows environment RGB scheme.
The Formula One window is displayed in this color.

This value can be one of the following:

Normal RGB Colors. These colors are specified using the color palette, or by using the RGB or
QBColor functions.

System default colors. System color constants are specified in the Visual Basic
CONSTANT.TXT file.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).

For additional information, refer to the description of the BackColor property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Long

See Also SSSetBackColor function

Example Sheet1.BackColor = QBColor(Rnd * 15) ' Random Color
Sheet1.BackColor = RGB(0, 255, 255) ' Cyan

BorderStyle Property
See also A-Z Property List

Description Determines the border style for the Formula One window.

Syntax (VB) [form.][control.]BorderStyle = {0|1}

Syntax (VC++) pSSVB->GetNumProperty("BorderStyle")
pSSVB->SetNumProperty("BorderStyle", {0|1})

Remarks The BorderStyle property settings are:

Setting Description

0 None

1 Fixed Single

Data Type Integer (Enumerated)

Example Sheet1.BorderStyle = 1 ' Single line border

Col Property
See also A-Z Property List

Description Determines the active column in the worksheet. This is a run time only property.

Syntax (VB) [form.][control.]Col [= Column]

Syntax (VC++) pSSVB->GetNumProperty("Col")
pSSVB->SetNumProperty("Col", Column)

Remarks The Col property is used with the Row property to set the active cell in the
worksheet. The Col property is automatically changed if a range is selected using the
SelStart... and SelEnd... properties.

You can specify -1 as the row and column number to indicate all rows or all columns.
For example, setting Row to 1 and Col to -1 causes all columns in row 1 to be
selected. Setting both Row and Col to -1 selects the entire worksheet.

Data Type Long

See Also Row, SelStart..., and SelEnd... properties and SSSetActiveCell function

Example Sheet1.Col = 5 ' Select row 3 column 5 as the active cell
Sheet1.Row = 3
Sheet1.Col = -1 ' Select all of row one
Sheet1.Row = 1

DataAutoAddNew Property
See also A-Z Property List

Description Determines if the worksheet has an empty row at the end for adding new records.

Syntax (VB) [form.][control.]DataAutoAddNew [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataAutoAddNew")
pSSVB->SetNumProperty("DataAutoAddNew", {True|False})

Remarks The DataAutoAddNew property determines if an empty row is placed at the end of
the worksheet. The empty row is used to add a new record to the database table.
When the user enters this row, Formula One calls the AddNew method of the
attached data control. After each new record is added, a new blank row is placed at
the bottom for the next new record.

Data Type Integer (Boolean)

Example Sheet1.DataAutoAddNew = True ' A blank row is added to the end

DataChanged Property
See also A-Z Property List

Description Indicates that the data in the current record has changed. This is a run time only
property.

Syntax (VB) [form.][control.]DataChanged [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataChang*ed")
pSSVB->SetNumProperty("DataChanged", {True|False})

Remarks The DataChanged property indicates whether data in the current record has
changed. If True, the data in the control is not the same as in the current record.
When the cursor moves out of the current row (record), the data is written to the
database.

The DataChanged property is automatically set if a change is made to the current
record by the user at run time. It is not set if changes are made to the record using
Visual Basic code. In this case, the programmer should set the DataFieldChanged
property to indicate modified fields. This causes the DataChanged property to be
automatically set and the changed fields to be written to the database.

Data Type Integer (Boolean)

See Also DataFieldChanged property

Example AnyChange = Sheet1.DataChanged

DataConnected Property
See also A-Z Property List

Description Specifies whether the worksheet is connected to a data control.

Syntax (VB) [form.][control.]DataConnected [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataConnected")
pSSVB->SetNumProperty("DataConencted", {True|False})

Remarks The DataConnected property determines if the Formula One control is currently
connected to the data control specified in the DataSource property. When True, the
control responds to Refresh messages sent by the data control. When False, the
worksheet is disconnected from the data control and all future Refresh messages are
ignored. The contents of the worksheet is still available. To reconnect, set
DataConnected to True and refresh the data control.

Use this property when you want to disconnect a data control and perform data
analysis on static data.

Note that only rows that are currently buffered when the control is disconnected are
available in the worksheet. If you want all rows available in the worksheet, set the
DataRowsBuffered property to a number large enough to hold all the records and
refresh the data control.

Data Type Integer (Boolean)

Example Sheet1.DataConnected = False ' Disconnect from the data control

DataField Property
See also A-Z Property List

Description Binds the Formula One control to a database field. Used for storing an entire Formula
One worksheet in a single field.

Syntax (VB) [form.][control.]DataField [= fieldname]

Syntax (VC++) pSSVB->GetStrProperty("DataField")
pSSVB->SetStrProperty("DataField", fieldname)

Remarks The DataField property is used when a complete worksheet is stored in a database
field. This field must be a long binary field; however, Access refers to these fields as
OLE fields. Each record in the database contains a unique instance of a Formula
One control.

If you want the Formula One control to display one record from the data control in
each row of the Formula One control, leave this property blank. To control which
fields appear in which columns when displaying one record per row, use the
DataFields property.

Data Type String

See Also DataFields property

Example Sheet1.DataField = "Financials"

DataFieldChanged Property
See also A-Z Property List

Description Indicates whether the specified field has been changed by the user. This is a run time
only property; it is valid only when a worksheet control is connected to a data control.

Syntax (VB) [form.][control.]DataFieldChanged(column number) [= {True|False}]

Remarks The DataFieldChanged property is a boolean array that indicates whether the
specified field has been changed by the user. If any member of DataFieldChanged
is True, the DataChanged property is automatically set to True, causing the database
to be updated.

If any field is modified by Visual Basic code, the DataFieldChanged array member
must be set to True, or this change is not reflected in the database.

Data Type Integer (Boolean)

See Also DataChanged property

Example Sheet1.DataFieldChanged(1) = True

DataFieldCount Property
See also A-Z Property List

Description Returns the number of database fields displayed in the worksheet. This is a run time,
read only property; it is valid only when a worksheet control is connected to a data
control

Syntax (VB) [form.][control.]DataFieldCount

Syntax (VC++) pSSVB->GetNumProperty("DataFieldCount")

Remarks The DataFieldCount property returns the number of fields displayed in the
worksheet. It returns 0 if no database is attached, or if there were no fields specified
that the worksheet could handle (e.g., memo fields).

Data Type Integer

See Also DataRowCount property

Example NumFields = Sheet1.DataFieldCount

DataFieldNumber Property
See also A-Z Property List

Description Returns the number of the database field in the specified column. This is a read only,
run time only property; it is valid only when a worksheet control is connected to a
data control

Syntax (VB) [form.][control.]DataFieldNumber(Column)

Remarks The DataFieldNumber property is an array of field numbers representing the number
of the field to which the specified column is pointing. The property is used when the
fields are displayed in a different order than they exist in the database. This property
is not valid for bound and calculated fields.

It is important to note that field numbers are based at 0 and column numbers are
based at 1. Fields not supported in Formula One (e.g., memo fields) are skipped.

Data Type Integer

See Also DataFields property

Example OrdNum = Sheet1.DataFieldNumber(1)

DataFields Property
See also A-Z Property List

Description Binds the Formula One control to one or more database fields. This property is used
for displaying one record per row.

Syntax (VB) [form.][control.]DataFields [= fieldnames]

Syntax (VC++) pSSVB->GetStrProperty("DataFields")
pSSVB->SetStrProperty("DataFields", [= fieldnames])

Remarks The DataFields property specifies the fields with which to fill the worksheet. If the
property is blank (and the DataField property is blank), all the Formula One
supported fields are brought into the worksheet. Fields not supported are skipped.
The number of fields is limited to 256.

If you do not want to display all the fields, or do not want them in the default order, a
semi-colon separated list of field names can be used to specify the field to display in
each column. The first field is placed in column 1, the second field in column 2, and
so on.

This property is referenced when the worksheet gets a refresh or rollback message
from the data control.

You can enter null field entries by specifying two semicolons with no field name
between them. For example, if you want a blank column between the Item field and
the Qty field, enter the following field list.

Sheet1.DataFields = "Item;;Qty;Price"
You can also enter formula columns that are automatically calculated for each record.
To accomplish this, place a formula between semicolons instead of a field name. For
example, to multiply Qty by Price for each record and display the result in a new
column, enter the following field list.

Sheet1.DataFields = "Item;;Qty;Price;=Qty*Price"
Column formulas can access all functions, operators, and fields. Displayed fields can
be referred to by name, as in the previous example. Fields accessed in this manner
refer to the values in the Formula One control. If the user has changed the value of
the field, the new data is used in the calculation, even though it is not yet written to
the database.

Formulas should only refer to fields by name and not by cell reference. They should
also avoid referring to cells in other rows. Otherwise, you may encounter unpredicted
results. To refer to a column that does not contain a field, you must use a reference to
the entire column. The following example puts the result of Qty*Price in column 3 and
multiplies this value by 0.065 for column 4.

Sheet1.DataFields = "Qty;Price; =Qty*Price; =C1:C16384*.065"
You can also refer to a field by enclosing the field name in square brackets. This
returns the field's current value in the database, regardless of editing performed in
the Formula One control. You can also use this method to refer to fields that are not
displayed on the Formula One control. For example, to access a field not currently
displayed, use the following column formula.

Sheet1.DataFields = "=Qty*Price+[Freight]"
Formulas work differently when the Formula One control is connected to a database.
When a single record is changed only the calculations in that row are updated, not all
formulas in the worksheet. When not connected to a database, all formulas in a

worksheet are recalculated when a value changes.

Data Type String

See Also DataField and DataFieldNumber properties

Example Sheet1.DataFields = "Name;Address;City;State;Zip"

DataHdrField Property
See also A-Z Property List

Description Allows a fields data to be specified as the row header names.

Syntax (VB) [form.][control.]DataHdrField [= fieldname]

Syntax (VC++) pSSVB->GetStrProperty("DataHdrField")
pSSVB->SetStrProperty("DataHdrField", fieldname)

Remarks The DataHdrField property displays a field's data as the row header names. The
field's data replaces the row numbers normally displayed at the left of each row.

Data Type String

See Also DataFields property

Example Sheet1.DataHdrField = "Name"

DataRowBase Property
See also A-Z Property List

Description Returns the row number of the record in row 1 of the worksheet. This is a run time,
read only property; it is valid only when a worksheet control is connected to a data
control

Syntax (VB) [form.][control.]DataRowBase

Syntax (VC++) pSSVB->GetNumProperty("DataRowBase")

Remarks The DataRowBase property returns the row number of the record in row 1 of the
worksheet. This number is only relevant when using the virtual record mode since the
first record in the worksheet may not be the first record in the record set. This number
is based at 0; thus, when a table is first loaded, the number is 0. This number, when
added to the number in the Row property, is equal to the actual record number in the
database.

This number becomes invalid after a find, or if multiple applications add or delete
records in the database. You can force the number to become valid by executing a
MoveFirst or MoveLast method.

Data Type Integer

See Also DataRowsBuffered property

Example FirstRow = Sheet1.DataRowBase

DataRowCount Property
See also A-Z Property List

Description Returns the number of database records displayed in the worksheet. This is a run
time, read only property; it is valid only when a worksheet control is connected to a
data control

Syntax (VB) [form.][control.]DataRowCount

Syntax (VC++) pSSVB->GetNumProperty("DataRowCount")

Data Type Integer

See Also DataFieldCount property

Example NumRows = Sheet1.DataRowCount

DataRowsBuffered Property
See also A-Z Property List

Description Specifies how many database rows are kept in memory simultaneously.

Syntax (VB) [form.][control.]DataRowsBuffered [= Rows]

Syntax (VC++) pSSVB->GetNumProperty("DataRowsBuffered")

pSSVB->SetNumProperty("DataRowsBuffered", Rows)

Remarks The DataRowsBuffered property determines how many database rows are held in
memory simultaneously. If there are more rows in the data set than specified in
DataRowsBuffered, new rows are automatically brought into the buffer as needed.
The default is 128 rows.

Note It is recommended that the number of rows specified in DataRowsBuffered be
at least twice the number of rows displayed on the screen. The minimum number of
rows that can be specified is 32.

The worksheet is limited to as many rows as specified in DataRowsBuffered. For
example, if you specify 1000 rows for the buffer, there are only 1000 rows displayed
in your worksheet. When you move beyond 1000 records, all current records are
scrolled up and the top record is scrolled out of the buffer.

The DataRowBase property determines the offset in the worksheet. It indicates how
many records are scrolled off the top of the worksheet.

To turn off virtual mode, you must set DataRowsBuffered greater than or equal to
the number of records in the database.

When in virtual mode, the Row property does not work as it normally would. For
example, the following code fragment does not work because records are shuffled
through the first 'DataRowsBuffered' rows of the worksheet.

nTotal# = 0#
Sheet1.Col = 1 ' Column with Quantity field
For nRow = 1 To Data1.RecordSet.RecordCount

Sheet1.Row = nRow
nTotal# = nTotal# + Sheet1.Number

Next nRow
The following code is correct.

nTotal# = 0#
Sheet1.Col = 1 ' Column with Quantity field
data1.Recordset.MoveFirst
While Not data1.Recordset.EOF

DataSetColumnFormats Property
See also A-Z Property List

Description Determines if formats for date, time, and currency fields are set automatically.

Syntax (VB) [form.][control.]DataSetColumnFormats [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataSetColumnFormats")
pSSVB->SetNumProperty("DataSetColumnFormats", {True|False})

Remarks The DataSetColumnFormats property determines if the formats for date, time, and
currency fields are set automatically when data is placed in a spreadsheet control. If
True, formats for columns containing these fields are set automatically. If False, you
must set the formats for these columns manually in the Worksheet Designer or in
code after the data control is refreshed.

Data Type Integer (Boolean)

See Also DataFields property

Example Sheet1.DataSetColumnFormats = False

DataSetColumnNames Property
See also A-Z Property List

Description Determines if the column headings are replaced by field names.

Syntax (VB) [form.][control.]DataSetColumnNames [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataSetColumnNames")
pSSVB->SetNumProperty("DataSetColumnNames", {True|False})

Remarks The DataSetColumnNames property determines if the column headings are
replaced by field names. If True, field names are displayed instead of the standard
alphabetic column headings.

Even though field names are displayed as the column headings, formulas must still
use the standard cell referencing conventions (e.g., A1).

This property is referenced when the worksheet gets a refresh or rollback message
from the data control.

Data Type Integer (Boolean)

See Also DataFields property

Example Sheet1.DataSetColumnNames = True

DataSetColumnWidths Property
See also A-Z Property List

Description Determines if column widths are automatically set to accommodate the widest data in
the column.

Syntax (VB) [form.][control.]DataSetColumnWidths [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataSetColumnWidths")
SSVB->SetNumProperty("DataSetColumnWidths", {True|False})

Remarks If True, this property automatically sets the width of each column to be wide enough
to display the widest data in the column.

When the worksheet gets a refresh or rollback message from the data control the
column widths are updated based on the data in the columns.

Data Type Integer (Boolean)

See Also DataFields property and SSSetColWidthAuto function

Example Sheet1.DataSetColumnWidths = True

DataSetMaxCol Property
See also A-Z Property List

Description Determines if the maximum number of worksheet columns is set to the number of
fields currently displayed.

Syntax (VB) [form.][control.]DataSetMaxCol [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataSetMaxCol")
pSSVB->SetNumProperty("DataSetMaxCol", {True|False})

Remarks If True, this property sets the MaxCol property to limit the number of displayed
columns to the number of fields currently loaded from the database.

This property is referenced when the worksheet gets a refresh or rollback message
from the data control.

Data Type Integer (Boolean)

See Also DataSetMaxRow property and SSSetMaxCol function

Example Sheet1.DataSetMaxCol = True

DataSetMaxRow Property
See also A-Z Property List

Description Determines if the MaxRow property is set to the number of records currently loaded
from the database.

Syntax (VB) [form.][control.]DataSetMaxRow [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DataSetMaxRow")
pSSVB->SetNumProperty("DataSetMaxRow", {True|False})

Remarks If True, this property sets the MaxRow property to limit the number of displayed rows
to the number of records currently loaded from the database. If DataAutoAddNew is
True, an additional row is allowed. The additional row is the blank row at the end of
the worksheet for adding new records.

This property is referenced when the worksheet gets a refresh or rollback message
from the data control and when a record is added to or deleted from the data set.

Data Type Integer (Boolean)

See Also DataSetMaxCol property and SSSetMaxRow function

Example Sheet1.DataSetMaxRow = True

DataSource Property
See also A-Z Property List

Description Determines the data control through which the current Formula One control is bound
to a database. The property allows read and write capabilities at design time; it is not
available at run time.

Remarks For additional information, refer to the description of the DataSource property in the
Microsoft Visual Basic Language Reference Manual.

DoCancelEdit Property
See also A-Z Property List

Description Determines if the CancelEdit event can be fired.

Syntax (VB) [form.][control.]DoCancelEdit [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoCancelEdit")
pSSVB->SetNumProperty("DoCancelEdit", {True|False})

Remarks If True, this property allows the CancelEdit event to be fired when the user aborts
editing a cell.

Data Type Integer (Boolean)

See Also CancelEdit, EndEdit and StartEdit events, DoEndEdit and DoStartEdit properties,
and SSSetFireEvent function

Example Sheet1.DoCancelEdit = True

DoClick Property
See also A-Z Property List

Description Determines if the Click event can be fired.

Syntax (VB) [form.][control.]DoClick [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoClick")
pSSVB->SetNumProperty("DoClick", {True|False})

Remarks If True, this property allows the Click event to be fired when the user clicks the
Formula One control. If False, the event is not fired.

Data Type Integer (Boolean)

See Also Click event and SSSetFireEvent function

Example Sheet1.DoClick = True

DoDataNewRow Property
See also A-Z Property List

Description Determines if the DataNewRow event can be fired when the data control sends the
AddNew message.

Syntax (VB) [form.][control.]DoDataNewRow [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoDataNewRow")
pSSVB->SetNumProperty("DoDataNewRow", {True|False})

Remarks If True, this property allows the DataNewRow event to be fired when the data control
issues an AddNew message. The event is also fired when the user enters the empty
row at the end of a worksheet or any call is made to the AddNew method.

Data Type Integer (Boolean)

See Also DataNewRow event and SSSetFireEvent function

Example Sheet1.DoDataNewRow = True

DoDataRowLoad Property
See also A-Z Property List

Description Determines if the DataRowLoad event can be fired after each row is loaded from the
data control.

Syntax (VB) [form.][control.]DoDataRowLoad [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoDataRowLoad")
pSSVB->SetNumProperty("DoDataRowLoad", {True|False})

Remarks If True, the DoDataRowLoad property allows the DataRowLoad event to be fired
each time a new record is loaded from the data control.

This event is often used when performing processes or calculations on a record
before it is displayed.

Data Type Integer (Boolean)

See Also DataRowLoad event and SSSetFireEvent function

Example Sheet1.DoDataRowLoad = True

DoDblClick Property
See also A-Z Property List

Description Determines if the DblClick event can be fired.

Syntax (VB) [form.][control.]DoDblClick [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoDblClick")
pSSVB->SetNumProperty("DoDblClick", {True|False})

Remarks If True, this property allows the DblClick event to be fired when the user double
clicks the Formula One control with the left mouse button. If False, the event is not
fired and in-cell editing is activated when the user double clicks the control.

The default for this property is True.

Note Double clicking a Formula One control with the right mouse button always
launches the Worksheet Designer.

Data Type Integer (Boolean)

See Also DblClick event and SSSetFireEvent function

Example Sheet1.DoDblClick = False

DoEndEdit Property
See also A-Z Property List

Description Determines if the EndEdit event can be fired.

Syntax (VB) [form.][control.]DoEndEdit [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoEndEdit")
pSSVB->SetNumProperty("DoEndEdit", {True|False})

Remarks If True, this property allows the EndEdit event to be fired when the user finishes
editing a cell.

Data Type Integer (Boolean)

See Also CancelEdit, EndEdit and StartEdit events, DoCancelEdit and DoStartEdit
properties, and SSSetFireEvent function

Example Sheet1.DoEndEdit = True

DoEndRecalc Property
See also A-Z Property List

Description Determines if the EndRecalc event can be fired.

Syntax (VB) [form.][control.]DoEndRecalc [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoEndRecalc")
pSSVB->SetNumProperty("DoEndRecalc", {True|False})

Remarks If True, this property allows the EndRecalc event to be fired when the worksheet
finishes recalculation. If you disable this event, processing is accelerated when you
perform large operations on a worksheet with Visual Basic code.

Data Type Integer (Boolean)

See Also AutoRecalc and DoStartRecalc properties, EndRecalc event, and SSSetFireEvent
function

Example Sheet1.DoEndRecalc = True

DoSelChange Property
See also A-Z Property List

Description Determines if the SelChange event can be fired.

Syntax (VB) [form.][control.]DoSelChange [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoSelChange")
pSSVB->SetNumProperty("DoSelChange", {True|False})

Remarks If True, this property allows the SelChange event to be fired when the current
selection changes. If you disable this event, processing is accelerated when you
perform large operations on a worksheet with Visual Basic code.

Data Type Integer (Boolean)

See Also SelChange event and SSSetFireEvent function

Example Sheet1.DoSelChange = True

DoStartEdit Property
See also A-Z Property List

Description Determines if the StartEdit event can be fired.

Syntax (VB) [form.][control.]DoStartEdit [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoStartEdit")

pSSVB->SetNumProperty("DoStartEdit", {True|False})

Remarks If True, this property allows the StartEdit event to be fired when the current cell
enters edit mode.

Data Type Integer (Boolean)

See Also CancelEdit, EndEdit and StartEdit events, DoCancelEdit and DoEndEdit
properties, and SSSetFireEvent function

Example Sheet1.DoStartEdit = True

DoStartRecalc Property
See also A-Z Property List

Description Determines if the StartRecalc event can be fired.

Syntax (VB) [form.][control.]DoStartRecalc [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoStartRecalc")
pSSVB->SetNumProperty("DoStartRecalc", {True|False})

Remarks If True, this property allows the StartRecalc event to be fired when the worksheet
begins recalculation. If you disable this event, processing is accelerated when you
perform large operations on a worksheet with Visual Basic code.

Data Type Integer (Boolean)

See Also DoEndRecalc property, StartRecalc event, and SSSetFireEvent function

Example Sheet1.DoStartRecalc = True

DoTopLeftChanged Property
See also A-Z Property List

Description Determines if the TopLeftChanged event can be fired.

Syntax (VB) [form.][control.]DoTopLeftChanged[= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("DoTopLeftChanged")
pSSVB->SetNumProperty("DoTopLeftChanged", {True|False})

Remarks If True, this property allows the TopLeftChanged event to be fired when the cell that
is displayed as the top left cell of the worksheet changes (e.g., when the user scrolls
the worksheet). The execution of this event is deferred until the system is idle.

Data Type Integer (Boolean)

See Also TopLeftChanged event and SSSetFireEvent function

Example Sheet1.DoTopLeftChanged = True

DragIcon Property
See also A-Z Property List

Description Determines the icon displayed in a drag-and-drop operation.

Syntax (VB) [form.][control.]DragIcon [= icon]

Syntax (VC++) pSSVB->GetPictureProperty("DragIcon")
pSSVB->SetPictureProperty("DragIcon", icon)

Remarks The DragIcon property settings are:

Setting Description
(None) Default Windows Icon.

Icon A custom mouse pointer. See Microsoft documentation.

For additional information, refer to the description of the DragIcon property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer

See Also DragMode property

DragMode Property
See also A-Z Property List

Description Determines the dragging mode for drag-and-drop operations.

Syntax (VB) [form.][control.]DragMode [= mode]

Syntax (VC++) pSSVB->GetNumProperty("DragMode")
pSSVB->SetNumProperty("DragMode", mode)

Remarks The DragMode property settings are:

Setting Description
0 (Default) Manual: Requires the drag method to initiate dragging.

1 Automatic: Clicking the source control initiates dragging.

For additional information, refer to the description of the DragMode property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer (Enumerated)

See Also DragIcon property

EditName Property
See also A-Z Property List

Description Determines the edit bar to be used with this worksheet.

Syntax (VB) [form.][control.]EditName [= Editname]

Syntax (VC++) pSSVB->GetStrProperty("EditName")

pSSVB->SetStrProperty("EditName", Editname)

Remarks This property allows you to connect an edit bar control to a worksheet control. Using
an edit bar to enter and edit formulas and values is an alternative to in-cell editing.
Without the edit bar, all cell values must be manipulated through in-cell editing or with
Visual Basic code.

To connect a worksheet to an edit bar, the EditName property of the worksheet must
match the EditName property of the edit bar. By default both are set to SSEdit1.

Data Type String

Example Sheet1.EditName = "editbar1" ' editbar1 is used

Enabled Property
See also A-Z Property List

Description Determines if the Formula One object is enabled.

Syntax (VB) [form.][control.]Enabled [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("Enabled")
pSSVB->SetNumProperty("Enabled", {True|False})

Remarks When True, this property enables the Formula One object; when False, the Formula
One object is disabled.

Data Type Integer (Boolean)

Example Sheet1.Enabled = True ' This worksheet object is enabled

EnableProtection Property
See also A-Z Property List

Description Specifies whether cell protection is enabled in a worksheet control.

Syntax (VB) [form.][control.]EnableProtection [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("EnableProtection")
pSSVB->SetNumProperty("EnableProtection", {True|False})

Remarks When True, cell protection is enabled in the worksheet control; when False, cell
protection is disabled.

Data Type Integer (Boolean)

See Also SSProtectionDlg, SSSetEnableProtection, and SSSetProtection functions

Example Sheet1.EnableProtection = True ' Cell protection is enabled

Entry Property
See also A-Z Property List

Description Specifies the formatted contents of a cell.

Syntax (VB) [form.][control.]Entry [= Entry]

Syntax (VC++) pSSVB->GetStrProperty("Entry")
pSSVB->SetStrProperty("Entry", Entry)

Remarks This property allows you to enter information in a cell as a user would enter
information. The program automatically determines the type of data entered (e.g.,
number, text, formula). It also recognizes date, time, percentage, currency, fraction,
and scientific formats.

The Entry property also returns the value of a cell. The value is returned in the same
format as it is displayed in the worksheet while entering or editing a cell.

Data Type String

See Also Text and Number properties

Example Sheet1.Entry = "10%" ' Enter 10% (0.10) into current cell

ExtraColor Property
See also A-Z Property List

Description Determines the color of the Formula One window outside the active cell area.

Syntax (VB) [form.][control.]ExtraColor [= color]

Syntax (VC++) pSSVB->GetNumProperty("ExtraColor")
pSSVB->SetNumProperty("ExtraColor", color)

Remarks This property expects a color in the standard Windows environment RGB scheme.
The Formula One window outside the active cell area is displayed in this color.

This value can be one of the following:

Normal RGB Colors. These colors are specified using the color palette, or by using the RGB or
QBColor functions.

System default colors. System color constants are specified in the Visual Basic
CONSTANT.TXT file.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).

Data Type Long

See Also BackColor property and SSSetExtraColor function

Example Sheet1.ExtraColor = QBColor(Rnd * 15) ' Random Color
Sheet1.ExtraColor = RGB(0, 255, 255) ' Cyan

FileName Property
See also A-Z Property List

Description Specifies the name by which a worksheet is loaded and saved.

Syntax (VB) [form.][control.]FileName [= Filename]

Syntax (VC++) pSSVB->GetStrProperty("FileName")
pSSVB->SetStrProperty("FileName", Filename)

Remarks If FileName is set to an existing file at design time, a dialog box asks whether the file
should be read immediately, not read immediately, or if the read request should be
canceled. If the file is read immediately, the worksheet is loaded. The file can be a
Formula One file or an Excel 4.0 file. When the form is saved, the worksheet is saved
in the file specified in the FileName property as a Formula One file.

If the FileName property is blank, the worksheet is saved with the form instead of in a
separate file.

Caution If you set FileName to the name of an Excel 4.0 file, this file is overwritten
with a Formula One file when the form is saved. Excel 4.0 features not supported in
Formula One are lost.

Data Type String

See Also ReadFile, WriteFile, and WriteExcel4 properties

Example Sheet1.FileName = "c:\vtss\samples\mysheet.vts" ' Save the
worksheet in mysheet.vts

FixedCol Property
See also A-Z Property List

Description Determines the starting fixed column in the Formula One window.

Syntax (VB) [form.][control.]FixedCol [= Column]

Syntax (VC++) pSSVB->GetNumProperty("FixedCol")
pSSVB->SetNumProperty("FixedCol", Column)

Remarks The FixedCol property is used with the FixedCols property to fix one or more
columns at the left edge of the worksheet. The fixed columns do not scroll when the
worksheet is scrolled horizontally.

Data Type Integer

See Also FixedCols, FixedRow, and FixedRows properties and SSSetFixedCols function

Example Sheet1.FixedCols = 2 ' Fix 2 columns
Sheet1.FixedCol = 10 ' Starting with column 10 at the left of
the window

FixedCols Property
See also A-Z Property List

Description Determines how many columns to fix at the left edge of the worksheet.

Syntax (VB) [form.][control.]FixedCols [= Columns]

Syntax (VC++) pSSVB->GetNumProperty("FixedCols")
pSSVB->SetNumProperty("FixedCols", Columns)

Remarks The FixedCols property is used with the FixedCol property to fix one or more
columns at the left edge of the worksheet. The fixed columns do not scroll when the
worksheet is scrolled horizontally.

Data Type Integer

See Also FixedCol, FixedRow, and FixedRows properties and SSSetFixedCols function

Example Sheet1.FixedCols = 5 ' Fix 5 columns
Sheet1.FixedCol = 1 ' Starting with column 1

FixedRow Property
See also A-Z Property List

Description Determines the starting fixed row in the Formula One window.

Syntax (VB) [form.][control.]FixedRow [= Row]

Syntax (VC++) pSSVB->GetNumProperty("FixedRow")

pSSVB->SetNumProperty("FixedRow", Row)

Remarks The FixedRow property is used with the FixedRows property to fix one or more rows
at the top of the worksheet. The fixed rows do not scroll when the worksheet is
scrolled vertically.

Data Type Integer

See Also FixedCol, FixedCols, and FixedRows properties and SSSetFixedRows function

Example Sheet1.FixedRows = 1 ' Fix 1 row
Sheet1.FixedRow = 3 ' Starting with row 3 at the top of the
window

FixedRows Property
See also A-Z Property List

Description Determines how many rows to fix at the top of the worksheet.

Syntax (VB) [form.][control.]FixedRows [= Rows]

Syntax (VC++) pSSVB->GetNumProperty("FixedRows")
pSSVB->SetNumProperty("FixedRows", Rows)

Remarks The FixedRows property is used with the FixedRow property to fix one or more rows
at the top of the worksheet. The fixed rows do not scroll when the worksheet is
scrolled vertically.

Data Type Integer

See Also FixedCol, FixedCols, and FixedRow properties and SSSetFixedRows function

Example Sheet1.FixedRows = 2 ' Fix 2 rows at the top of the window
Sheet1.FixedRow = 1 ' Starting with row 1

FormattedText Property
See also A-Z Property List

Description Returns the formatted text string from the active cell. This is a run time, read only
property.

Syntax (VB) [form.][control.]FormattedText

Syntax (VC++) pSSVB->GetStrProperty("FormattedText")

Remarks The FormattedText property returns the formatted text of the active cell. The text
returned is the same as displayed on the screen, with the exception of fill characters
created by the '*' character in a custom number format.

Data Type String

See Also Text property and SSGetFormattedText and SSGetFormattedTextRC functions

Example TheText = Sheet1.FormattedText ' Get the formatted text of the
active cell

Formula Property
See also A-Z Property List

Description Returns or specifies a formula in the active cell as a text string. This is a run time only
property.

Syntax (VB) [form.][control.]Formula [= Formula]

Syntax (VC++) pSSVB->GetStrProperty("Formula")
pSSVB->SetStrProperty("Formula", Formula)

Remarks The Formula property sets or gets the formula of the active cell. If the cell does not
contain a formula, the Formula property is blank.

Data Type String

See Also Number and Text properties and SSSetFormula function

Example Sheet1.Formula = "sum(a1:a10)" ' Set the active cell's formula
to sum a1:a10
TheFormula$ = Sheet1.Formula ' Get the current formula of the
active cell

Height Property
See also A-Z Property List

Description Determines the dimensions of an object.

Syntax (VB) [form.][control.]Height [= height]

Syntax (VC++) pSSVB->GetFloatProperty("Height")
pSSVB->SetFloatProperty("Height", height)

Remarks Measurements are calculated from the center of the control's border. This property
uses the scale units of the control's container.

For additional information, refer to the description of the Height property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Single

Example Sheet1.Height = 3375 ' Set the height of the worksheet control

HelpContextID Property
See also A-Z Property List

Description Determines the associated help context number for an object. This property is used
to provide context sensitive help in an application.

Syntax (VB) [form.][control.]HelpContextID [= helpid]

Syntax (VC++) pSSVB->GetNumProperty("HelpContextID")
pSSVB->SetNumProperty("HelpContextID", helpid)

Remarks For additional information, refer to the description of the HelpContextID property in
the Microsoft Visual Basic Language Reference Manual.

Data Type Long

hWnd Property
See also A-Z Property List

Description Specifies a handle to the control. This is a run time, read only property.

Syntax (VB) [form.][control.]hWnd

Syntax (VC++) pSSVB->GetNumProperty("hWnd")

Remarks For additional information, refer to the description of the hWnd property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer

Index Property
See also A-Z Property List

Description Specifies a unique number that identifies a control in a control array. This is a run
time, read only property.

Syntax (VB) [form.][control(i).]Index

Syntax (VC++) pSSVB->GetNumProperty("Index")

Remarks For additional information, refer to the description of the Index property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer

Left Property
See also A-Z Property List

Description Determines the distance between the internal left edge of an object and the left edge
of the container.

Syntax (VB) [form.][control.]Left [= x]

Syntax (VC++) pSSVB->GetFloatProperty("Left")
pSSVB->SetFloatProperty("Left", x)

Remarks For additional information, refer to the description of the Left property in the Microsoft
Visual Basic Language Reference Manual.

Data Type Single

See Also Top property

Example Sheet1.Left = 900 ' Sets object 900 units from left edge of
container

LeftCol Property
See also A-Z Property List

Description Determines the leftmost column displayed in the worksheet window.

Syntax (VB) [form.][control.]LeftCol [= Column]

Syntax (VC++) pSSVB->GetNumProperty("LeftCol")
pSSVB->SetNumProperty("LeftCol", Column)

Data Type Integer

See Also TopRow property and SSSetLeftCol function

Example Sheet1.LeftCol = 3 ' Display column 3 as the leftmost column

MaxCol Property
See also A-Z Property List

Description Specifies the last displayable column in a worksheet.

Syntax (VB) [form.][control.]MaxCol [= Column]

Syntax (VC++) pSSVB->GetNumProperty("MaxCol")
pSSVB->SetNumProperty("MaxCol", Column)

Remarks This property determines the last column that can be displayed in a worksheet. Extra
space in the Formula One window is displayed as a solid color using the ExtraColor
property.

Columns not displayed can still be accessed so an application can use them for data
storage and calculations.

Data Type Integer

See Also MaxRow, MinCol, and MinRow properties and SSSetMaxCol function

Example Sheet1.MaxCol = 10 ' End worksheet display with column J

MaxRow Property
See also A-Z Property List

Description Specifies the last displayable row in a worksheet.

Syntax (VB) [form.][control.]MaxRow [= Row]

Syntax (VC++) pSSVB->GetNumProperty("MaxRow")
pSSVB->SetNumProperty("MaxRow", Row)

Remarks This property determines the last row that can be displayed in a worksheet. Extra
space in the Formula One window is displayed as a solid color using the ExtraColor
property.

Rows not displayed can still be accessed so an application can use them for data
storage and calculations.

Data Type Integer

See Also MaxCol, MinCol, and MinRow properties and SSSetMaxRow function

Example Sheet1.MaxRow = 15 ' End worksheet display with row 15

MinCol Property
See also A-Z Property List

Description Specifies the first column that can be displayed in a worksheet.

Syntax (VB) [form.][control.]MinCol [= Column]

Syntax (VC++) pSSVB->GetNumProperty("MinCol")
pSSVB->SetNumProperty("MinCol", Column)

Data Type Integer

See Also MaxCol , MaxRow, and MinRow properties and SSSetMinCol function

Example Sheet1.MinCol = 3 ' Start worksheet display with column C

MinRow Property
See also A-Z Property List

Description Specifies the first row that can be displayed in a worksheet.

Syntax (VB) [form.][control.]MinRow [= Row]

Syntax (VC++) pSSVB->GetNumProperty("MinRow")
pSSVB->SetNumProperty("MinRow", Row)

Data Type Integer

See Also MaxCol, MaxRow, and MinCol properties and SSSetMinRow function

Example Sheet1.MinRow = 5 ' Start worksheet display with row 5

MousePointer Property
See also A-Z Property List

Description Determines the type of mouse pointer displayed when the pointer is in the Formula
One control.

Syntax (VB) [form.][control.]MousePointer [= setting]

Syntax (VC++) pSSVB->GetNumProperty("MousePointer")
pSSVB->SetNumProperty("MousePointer", setting)

Remarks For additional information, refer to the description of the MousePointer property in
the Microsoft Visual Basic Language Reference Manual.

Data Type Integer

See Also SSSetDoSetCursor function

Name Property
See also A-Z Property List

Description Specifies the name by which the object can be referred in the program code. This is a
design time only property.

Remarks The default name is the object type plus a unique integer. For example, the first
Formula One object created is Sheet1.

For additional information about this property as it refers to objects, refer to the
description of the Name property in the Microsoft Visual Basic Language Reference
Manual.

Data Type String

Number Property
See also A-Z Property List

Description Specifies the numeric value of the active cell. This is a run time only property.

Syntax (VB) [form.][control.]Number [= Number]

Syntax (VC++) pSSVB->GetNumProperty("Number")
pSSVB->SetNumProperty("Number", Number)

Remarks The Number property can set or get the numeric value of the active cell. If the cell
contains text, the property attempts to convert the text to a number.

Data Type Long

See Also Formula and Text properties and SSSetNumber function

Examples Sheet1.Number = 10 ' Set the active cell to 10
TheNumber = Sheet1.Number ' Get the current value of the active
cell

Parent Property
See also A-Z Property List

Description Specifies the form on which the control is located. This is a run time, read only
property.

Syntax (VB) [control.]Parent

Remarks For additional information, refer to the description of the Parent property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Form

PrintArea Property
See also A-Z Property List

Description Specifies the worksheet areas to be printed.

Syntax (VB) [form.][control.]PrintArea [= Areas]

Syntax (VC++) pSSVB->GetStrProperty("PrintArea")
pSSVB->SetStrProperty("PrintArea", "Areas")

Remarks The PrintArea property sets the Print_Area user defined name to the worksheet
regions specified in Areas. This name defines the worksheet range(s) to be printed. It
can contain multiple ranges (e.g., A1:C3,A11:C13). If PrintArea is set to Null (""), the
worksheet is printed from A1 to the last row and last column containing data.

Data Type Integer (Boolean)

See Also SSFilePrint and SSSetPrintArea functions

Example Sheet1.PrintArea = "A1:C3,A11:C13"

PrintBottomMargin, PrintLeftMargin,
PrintRightMargin, and PrintTopMargin Properties
See also A-Z Property List

Description Determines the top, left, bottom, and right page margins.

Syntax (VB) [form.][control.]Print...Margin [= Margin]

Syntax (VC++) pSSVB->GetFloatProperty("Print...Margin")
pSSVB->SetFloatProperty("Print...Margin", Margin)

Remarks These properties specify the page margins when printing. They are used to increase
or decrease the amount of white space between the worksheet and the edge of the
paper. The margins are specified in inches and can be a maximum of 48 inches.

Data Type Single

See Also SSFilePrint, SSSetPrintArea, SSSetPrintBottomMargin, SSSetPrintLeftMargin,
SSSetPrintRightMargin, and SSSetPrintTopMargin functions

Examples Sheet1.PrintTopMargin = .75 ' .75" top margin
Sheet1.PrintLeftMargin = 1.5 ' 1.5" left margin
Sheet1.PrintBottomMargin = 1 ' 1" bottom margin
Sheet1.PrintRightMargin = .75 ' .75" right margin

PrintColHeading Property
See also A-Z Property List

Description Determines if the worksheet column headings are printed.

Syntax (VB) [form.][control.]PrintColHeading [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("PrintColHeading")
pSSVB->SetNumProperty("PrintColHeading", {True|False})

Data Type Integer (Boolean)

See Also SSFilePrint and SSSetPrintArea functions

Example Sheet1.PrintColHeading = True ' Print the column heading

PrintFooter, PrintHeader Properties
See also A-Z Property List

Description Determines the contents of the page headers and footers.

Syntax (VB) [form.][control.]Print... [= String]

Syntax (VC++) pSSVB->GetStrProperty("Print...")
pSSVB->SetStrProperty("Print...", String)

Remarks These properties specify the contents of the header and footer. You can enter text
with the following special codes:

Format Code Description
 &L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&D Prints the current date

&T Prints the current time

&F Prints the worksheet name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

Codes and text are, by default, centered unless &L or &R is specified.

The following font codes must appear before other codes and text or they are
ignored. The alignment codes (e.g., &L, &C, and &R) restart each section; new font
codes can be specified after an alignment code.

Format Code Description
&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored

&H Ignored

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

Data Type String

See Also SSFilePrint, SSSetPrintArea , SSSetPrintFooter, and SSSetPrintHeader functions

Examples Sheet1.PrintHeader = "Page &p of &n" ' Print page and total
number of pages
Sheet1.PrintFooter = "&d &t &f" ' Print date, time, and
filename

PrintGridLines Property
See also A-Z Property List

Description Determines if the grid lines are printed.

Syntax (VB) [form.][control.]PrintGridLines [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("PrintGridLines")
pSSVB->SetNumProperty("PrintGridLines", {True|False})

Remarks The PrintGridLines property determines if the grid lines are included when you print
a worksheet. This property does not affect the display of grid lines in the worksheet.

Data Type Integer (Boolean)

See Also SSFilePrint and SSSetPrintArea functions

Example Sheet1.PrintGridLines = True ' Print the grid lines

PrintHCenter, PrintVCenter Properties
See also A-Z Property List

Description Determines how the worksheet is centered on a page.

Syntax (VB) [form.][control.]Print...Center [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("Print...Center")
pSSVB->SetNumProperty("Print...Center", {True|False})

Remarks The PrintHCenter and PrintVCenter properties determine how the worksheet is
centered on a page.

If PrintHCenter is True, the printed area of each page is centered between the left and right
margins. If False, the printed area is positioned against the left margin.

If PrintVCenter is True, the printed area of each page is centered between the top and bottom
margins. If False, the printed area is positioned against the top margin.
Data Type Integer (Boolean)

See Also SSFilePrint, SSSetPrintArea, SSSetPrintHCenter, and SSSetPrintVCenter
functions

Examples Sheet1.PrintHCenter = True ' Center horizontally
Sheet1.PrintVCenter = True ' Center vertically

PrintHeader Property
See also A-Z Property List

See PrintFooter property.

PrintLeftMargin Property
See also A-Z Property List

See PrintBottomMargin property.

PrintLeftToRight Property
See also A-Z Property List

Description Determines if the worksheet pages print from top to bottom or left to right.

Syntax (VB) [form.][control.]PrintLeftToRight [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("PrintLeftToRight")
pSSVB->SetNumProperty("PrintLeftToRight", {True|False})

Remarks Setting the PrintLeftToRight property to True causes the worksheet pages to be
printed left to right. Setting the property to False causes the pages to be printed top
to bottom.

When a worksheet is printed left to right, the second page contains columns to the right of the first
page. When there are no more columns to print, the rows below the first page are printed from left to right.

When a worksheet is printed top to bottom, the second page contains rows below the first page.
When there are no more rows to print, the columns to the right of the first page are printed from top to
bottom.
Data Type Integer (Boolean)

See Also SSFilePrint, SSSetPrintArea, and SSSetPrintLeftToRight functions

Example Sheet1.PrintLeftToRight = True ' Print the pages left to right

PrintNoColor Property
See also A-Z Property List

Description Determines if worksheet pages are printed in color or black and white.

Syntax (VB) [form.][control.]PrintNoColor [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("PrintNoColor")
pSSVB->SetNumProperty("PrintNoColor", {True|False})

Remarks Setting the PrintNoColor property to True causes the worksheet pages to print in
black and white only. Setting the property to False causes the pages to be printed in
color.

Data Type Integer (Boolean)

See Also SSFilePrint, SSSetPrintArea , and SSSetPrintNoColor functions

Example Sheet1.PrintNoColor = True ' Print the pages in black and white
only

PrintRightMargin Property
See also A-Z Property List

See PrintBottomMargin property.

PrintRowHeading Property
See also A-Z Property List

Description Determines if the worksheet row headings are printed.

Syntax (VB) [form.][control.]PrintRowHeading [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("PrintRowHeading")
pSSVB->SetNumProperty("PrintRowHeading", {True|False})

Data Type Integer (Boolean)

See Also SSFilePrint and SSSetPrintArea functions

Example Sheet1.PrintRowHeading = True ' Print the row heading

PrintTitles Property
See also A-Z Property List

Description Specifies the row and column titles printed on each page.

Syntax (VB) [form.][control.]PrintTitles [= row/col titles]

Syntax (VC++) pSSVB->GetStrProperty("PrintTitles")
pSSVB->SetStrProperty("PrintTitles", row/col titles)

Remarks The PrintTitles property specifies the rows and columns printed on each new page.
You must specify a row or column reference. In addition, you must specify entire rows
and columns.

Data Type String

See Also SSFilePrint and SSSetPrintArea functions

Examples Sheet1.PrintTitles = "A1:IV1" ' Print row 1 on each page
Sheet1.PrintTitles = "A1:A16384" ' Print column 1 on each
page
Sheet1.PrintTitles = "A1:IV1;A1:A16384 ' Print row 1
and column 1 on each page

PrintTopMargin Property
See also A-Z Property List

See PrintBottomMargin property.

PrintVCenter Property
See also A-Z Property List

See PrintHCenter property.

ReadFile Property
See also A-Z Property List

Description Reads a worksheet from a file into a control.

Syntax (VB) [form.][control.]ReadFile [= Filename]

Syntax (VC++) pSSVB->GetStrProperty("ReadFile")
pSSVB->SetStrProperty("ReadFile", Filename)

Remarks The ReadFile property causes the specified worksheet file to be loaded in the
control. The property does not establish a permanent reference to the worksheet. Any
changes made to the file on disk are not automatically reflected in the file loaded by
the ReadFile property.

To establish a permanent reference to a worksheet file, use the FileName property.

Formula One can read native files (.VTS extension), Excel 4.0 files (.XLS extension),
and tab-delimited text files.

Data Type String

See Also FileName, WriteExcel4, and WriteFile properties and SSRead function

Examples Sheet1.ReadFile = "c:\vtss\samples\amort.vts" ' Read a Formula
One file
Sheet1.ReadFile = "c:\vtss\samples\amort.xls" ' Read an Excel
file

Repaint Property
See also A-Z Property List

Description Determines if the Formula One control is repainted after a change is made to the
worksheet.

Syntax (VB) [form.][control.]Repaint [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("Repaint")
pSSVB->SetNumProperty("Repaint", {True|False})

Remarks Setting the Repaint property to False does not allow the Formula One control to
repaint when a change is made to the worksheet. This is useful when several
operations are performed on the worksheet and you do not want the worksheet to
continually repaint during the process. Setting this property to True causes the control
to be refreshed.

Data Type Integer (Boolean)

See Also SSGetRepaint and SSSetRepaint functions

Example Sheet1.Repaint = False ' Turn repainting off

Row Property
See also A-Z Property List

Description Determines the active row in the worksheet. This is a run time only property.

Syntax (VB) [form.][control.]Row [= Row]

Syntax (VC++) pSSVB->GetNumProperty("Row")
pSSVB->SetNumProperty("Row", Row)

Remarks The Row property is used along with the Col property to set the active cell in the
worksheet. The Row property is automatically changed if a range is selected using
the SelStart... and SelEnd... properties.

You can specify -1 as the row and column number to indicate all rows or all columns.
For example, setting Row to -1 and Col to 1 causes all rows in column 1 to be
selected. Setting both Row and Col to -1 selects the entire worksheet.

Data Type Long

See Also Col, SelStart..., and SelEnd... properties and SSSetActiveCell function

Examples Sheet1.Row = 10 ' Select row 10 column 1 as the active cell
Sheet1.Col = 1
Sheet1.Row = -1 ' Select all of column one
Sheet1.Col = 1

RowMode Property
See also A-Z Property List

Description Specifies whether individual cells or entire rows can be selected.

Syntax (VB) [form.][control.]RowMode [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("RowMode")
pSSVB->SetNumProperty("RowMode", {True|False})

Remarks The RowMode property determines how rows are marked. If True, any selection in a
row causes the entire row to be selected. This is especially useful when using the
control as a database browsing tool.

If False, individual cells can be selected. This is the default mode.

Data Type Integer (Boolean)

See Also SSGetRowMode and SSSetRowMode functions

Example Sheet1.RowMode = True ' Enable row mode

Selection Property
See also A-Z Property List

Description Determines the current selection.

Syntax (VB) [form.][control.]Selection [= Range]

Syntax (VC++) pSSVB->GetStrProperty("Selection")
pSSVB->SetStrProperty("Selection", Range)

Remarks Selection contains the string representation of the range specified in SelEndCol,
SelEndRow, SelStartCol, and SelStartRow. Alternately, you can specify a selection
using the Selection property. When a range is selected in this manner, SelEndCol,
SelEndRow, SelStartCol, and SelStartRow are automatically updated. Use these
properties to select a range before performing operations such as copying or deleting
data.

To select more than one range, separate the ranges with a comma.

The Selection property can also be set to a formula that returns one or more ranges.
However, it always returns a simple reference. For example:

Sheet1.Selection = "OFFSET(A1:C1, 1, 0)" ' Select cells A2:C2
MsgBox Sheet1.Selection ' Displays "A2:C2" instead of the

original formula
Data Type String

See Also SelEndCol, SelEndRow, SelStartCol, and SelStartRow properties and
SSSetActiveCell and SSSetSelection functions

Examples Sheet1.Selection = "A1:J10" ' Select a 10 by 10 range
Sheet1.Selection = "A1:C1,A3:C3" ' Select ranges A1:C1 and
A3:C3

SelEndCol, SelEndRow, SelStartCol,
and SelStartRow Properties
See also A-Z Property List

Description These properties determine the starting column, starting row, ending column, and
ending row of a selected range.

Syntax (VB) [form.][control.]Sel...Col [= Column]
[form.][control.]Sel...Row [= Row]

Syntax (VC++) pSSVB->GetNumProperty("Sel...Col")
pSSVB->SetNumProperty("Sel...Col", Column)

pSSVB->GetNumProperty("Sel...Row")
pSSVB->SetNumProperty("Sel...Row", Row)

Remarks SelEndCol, SelEndRow, SelStartCol, and SelStartRow define the starting and
ending rows and columns when selecting a range. Use these properties to select a
range before performing operations such as copying or deleting data.

If you need to select multiple ranges, you must use the Selection property or one of
the selection function calls.

Data Type Integer

See Also Selection property and SSSetSelection function

Examples Sheet1.SelStartCol = 1 ' Select a 10 by 10 range
Sheet1.SelEndCol = 10 ' Starting at row 1 column 1
Sheet1.SelStartRow = 1 ' Ending at row 10 column 10
Sheet1.SelEndRow = 10

SelEndRow Property
See also A-Z Property List

See SelEndCol property.

SelStartCol Property
See also A-Z Property List

See SelEndCol property.

SelStartRow Property
See also A-Z Property List

See SelEndCol property.

ShowColHeading Property
See also A-Z Property List

Description Determines if column headings are displayed in the Formula One window.

Syntax (VB) [form.][control.]ShowColHeading [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("ShowColHeading")
pSSVB->SetNumProperty("ShowColHeading", {True|False})

Remarks When True, this property displays column headings in the Formula One window.
When False, no column headings are displayed.

Data Type Integer (Boolean)

See Also ShowRowHeading properties and SSSetShowColHeading function

Example Sheet1.ShowColHeading = False ' Disable the column heading
display

ShowGridLines Property
See also A-Z Property List

Description Determines if the grid lines are displayed in the Formula One window.

Syntax (VB) [form.][control.]ShowGridLines [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("ShowGridLines")
pSSVB->SetNumProperty("ShowGridLines", {True|False})

Remarks When True, this property displays gridlines in the Formula One window. When False,
no grid lines are displayed.

Data Type Integer (Boolean)

See Also PrintGridLines property and SSSetShowGridLines function

Example Sheet1.ShowGridLines = False ' Disable grid lines display

ShowHScrollBar Property
See also A-Z Property List

Description Determines how the horizontal scroll bar is displayed.

Syntax (VB) [form.][control.]ShowHScrollBar = {0|1|2}

Syntax (VC++) pSSVB->GetNumProperty("ShowHScrollBar")
pSSVB->SetNumProperty("ShowHScrollBar", {0|1|2})

Remarks The ShowHScrollBar property settings are:

Setting Description
0 Off

1 On

2 Automatic

Setting this property to 0 removes the horizontal scroll bar. Setting this property to 1
displays the horizontal scroll bar. Setting this property to 2 causes the horizontal
scroll bar to be displayed if the worksheet is larger than the window and the
worksheet is active.

Data Type Integer (Enumerated)

See Also ShowVScrollBar property and SSSetShowHScrollBar function

Example Sheet1.ShowHScrollBar = 2 ' Set scroll bar display to automatic

ShowRowHeading Property
See also A-Z Property List

Description Determines if row headings are displayed in the Formula One window.

Syntax (VB) [form.][control.]ShowRowHeading [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("ShowRowHeading")
pSSVB->SetNumProperty("ShowRowHeading", {True|False})

Remarks When True, this property displays row headings in the Formula One window. When
False, no row headings are displayed.

Data Type Integer (Boolean)

See Also ShowColHeading property and SSSetShowRowHeading function

Example Sheet1.ShowRowHeading = False ' Disable the row heading display

ShowSelections Property
See also A-Z Property List

Description Determines how selections are displayed.

Syntax (VB) [form.][control.]ShowSelections = {0|1|2}

Syntax (VC++) pSSVB->GetNumProperty("ShowSelections")
pSSVB->SetNumProperty("ShowSelections", {0|1|2})

Remarks The ShowSelections property settings are:

Setting Description
0 Do not display selections

1 Display all selections

2 Display selections in this control only

Setting this property to 0 disables the display of all selections. Setting this property to
1 forces the display of all selections. Setting this property to 2 causes the display of
selections in the Formula One control only when the control is active.

Data Type Integer (Enumerated)

See Also AllowSelections property and SSSetShowSelections function

Example Sheet1.ShowSelections = 2 ' Display selections in this control
only

ShowVScrollBar Property
See also A-Z Property List

Description Determines how the vertical scroll bar is displayed.

Syntax (VB) [form.][control.]ShowVScrollBar = {0|1|2}

Syntax (VC++) pSSVB->GetNumProperty("ShowVScrollBar")
pSSVB->SetNumProperty("ShowVScrollBar", {0|1|2})

Remarks The ShowVScrollBar property settings are:

Setting Description
0 Off

1 On

2 Automatic

Setting this property to 0 removes the vertical scroll bar. Setting this property to 1
displays the vertical scroll bar. Setting this property to 2 causes the vertical scroll bar
to be displayed if the worksheet is larger than the window and the control is active.

Data Type Integer (Enumerated)

See Also ShowHScrollBar property and SSSetShowVScrollBar function

Example Sheet1.ShowVScrollBar = 2 ' Set scroll bar display to automatic

SS Property
See also A-Z Property List

Description Specifies the handle to a worksheet view. This is a run time, read only property.

Syntax (VB) [form.][control.]SS

Syntax (VC++) pSSVB->GetNumProperty("SS")

Remarks The SS property specifies the handle to a worksheet view. The handle is needed as
an argument for all the worksheet related function calls.

Data Type Long

Example sserror = SSFilePrint(Sheet1.SS, True) ' Print the worksheet

TabIndex Property
See also A-Z Property List

Description Determines the tab order of the Formula One control within its parent form.

Syntax (VB) [form.][control.]TabIndex [= index]

Syntax (VC++) pSSVB->GetNumProperty("TabIndex")
pSSVB->SetNumProperty("TabIndex", index)

Remarks For additional information, refer to the description of the TabIndex property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer

TableName Property
See also A-Z Property List

Description Specifies the name by which the worksheet is referred in formulas in other
worksheets.

Syntax (VB) [form.][control.]TableName [= string]

Syntax (VC++) pSSVB->GetStrProperty("TableName")
pSSVB->SetStrProperty("TableName", string)

Remarks This property defaults to the value in the Name property when a view is first created.
For example, if this worksheet is named Sales, the formula Sales.A1 in another
worksheet returns the value from A1 in this worksheet.

It is helpful to name worksheet something meaningful instead of using the default
name (e.g., Sheet1, Sheet2, etc.)

Normally a worksheet can be accessed by multiple users. If you want exclusive
access to a worksheet, you can set the TableName property to Null (""). This prohibits
someone from attaching to this worksheet or referencing it in a formula.

Data Type String

Example Sheet1.Formula = "Sales.A1" ' Enter a formula referring to an
external worksheet

TabStop Property
See also A-Z Property List

Description Determines if the user can use the Tab key to set the focus to this control.

Syntax (VB) [form.][control.]TabStop [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("TabStop")
pSSVB->SetNumProperty("TabStop", {True|False})

Remarks For additional information, refer to the description of the TabStop property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer (Boolean)

Tag Property
See also A-Z Property List

Description Stores any extra data needed by your application. This property is not used by Visual
Basic.

Syntax (VB) [form.][control.]Tag [= string]

Syntax (VC++) pSSVB->GetStrProperty("Tag")
pSSVB->SetStrProperty("Tag", string)

Remarks For additional information, refer to the description of the Tag property in the Microsoft
Visual Basic Language Reference Manual.

Data Type String

Text Property
See also A-Z Property List

Description Specifies a text string for the active cell. This is a run time only property.

Syntax (VB) [form.][control.]Text [= Text]

Syntax (VC++) pSSVB->GetStrProperty("Text")
pSSVB->SetStrProperty("Text", Text)

Remarks The Text property can set or get the text of the active cell. If the cell does not contain
text, the Text property is blank.

Data Type String

See Also FormattedText, Formula, and Number properties and SSSetText function

Examples Sheet1.Text = "Total Sales" ' Set the active cell's text to
"Total Sales"
TheText = Sheet1.Text ' Get the current text of the active cell

Top Property
See also A-Z Property List

Description Determines the distance between the internal top edge of an object and the top edge
of the container.

Syntax (VB) [form.][control.]Top [= y]

Syntax (VC++) pSSVB->GetFloatProperty("Top")
pSSVB->SetFloatProperty("Top", y)

Remarks For additional information, refer to the description of the Top property in the Microsoft
Visual Basic Language Reference Manual.

Data Type Single

See Also Left property

Example Sheet1.Top = 900 ' Sets object 900 units from top edge of
container

TopRow Property
See also A-Z Property List

Description Determines the top row displayed at the top edge of the Formula One window.

Syntax (VB) [form.][control.]TopRow [= Row]

Syntax (VC++) pSSVB->GetNumProperty("TopRow")
pSSVB->SetNumProperty("TopRow", Row)

Data Type Integer

See Also LeftCol property and SSSetTopRow function

Example Sheet1.TopRow = 10 ' Top row displayed is row 10

Visible Property
See also A-Z Property List

Description Determines if the Formula One object is visible.

Syntax (VB) [form.][control.]Visible [= {True|False}]

Syntax (VC++) pSSVB->GetNumProperty("Visible")
pSSVB->SetNumProperty("Visible", {True|False})

Remarks For additional information, refer to the description of the Visible property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Integer (Boolean)

Width Property
See also A-Z Property List

Description Determines the width of a Formula One object.

Syntax (VB) [form.][control.]Width [= width]

Syntax (VC++) pSSVB->GetFloatProperty("Width")

pSSVB->SetFloatProperty("Width", width)

Remarks Measurements are calculated from the center of the control's border. This property
uses the scale units of the control's container.

For additional information, refer to the description of the Width property in the
Microsoft Visual Basic Language Reference Manual.

Data Type Single

WriteExcel4 Property
See also A-Z Property List

Description Writes the current worksheet to the specified file in Excel 4.0 file format.

Syntax (VB) [form.][control.]WriteExcel4 [= Filename]

Syntax (VC++) pSSVB->GetStrProperty("WriteExcel4")
pSSVB->SetStrProperty("WriteExcel4", Filename)

Remarks The WriteExcel4 property causes the current worksheet to be written to disk in Excel
4.0 file format using the specified filename.

This does not establish a permanent reference to the file on disk. To establish a
permanent reference to a file, use the FileName property.

Data Type String

See Also FileName, ReadFile, and WriteFile properties and SSWrite function

Example Sheet1.WriteExcel4 = "c:\vtss\samples\new.xls" ' Write an Excel
4.0 file

WriteFile Property
See also A-Z Property List

Description Writes the current worksheet to the specified file in Formula One format.

Syntax (VB) [form.][control.]WriteFile [= Filename]

Syntax (VC++) pSSVB->GetStrProperty("WriteFile")

pSSVB->SetStrProperty("WriteFile", Filename)

Remarks The WriteFile property causes the current worksheet to be written to disk using the
specified filename.

This does not establish a permanent reference to the file on disk. To establish a
permanent reference to a file, use the FileName property.

Data Type String

See Also FileName, ReadFile, and WriteExcel4 properties and SSWrite function

Example Sheet1.WriteFile = "c:\vtss\samples\new.vts" ' Write Formula
One file

A-Z Worksheet Function Reference
This chapter provides a complete alphabetical reference for the Formula One worksheet functions. Refer
to Built-In Worksheet Functions, for additional information about using worksheet functions.

ABS INDEX PROPER
ACOS INDIRECT PV
ACOSH INT RAND
ADDRESS IPMT RATE
AND IRR REPLACE
ASIN ISBLANK REPT
ASINH ISERR RIGHT
ATAN ISERROR ROUND
ATAN2 ISLOGICAL ROW
ATANH ISNA ROWS
AVERAGE ISNONTEXT SEARCH
CALL ISNUMBER SECOND
CEILING ISREF SIGN
CHAR ISTEXT SIN
CHOOSE LEFT SINH
CLEAN LEN SLN
CODE LN SQRT
COLUMN LOG STDEV
COLUMNS LOG10 STDEVP
COS LOOKUP SUBSTITUTE
COSH LOWER SUM
COUNT MATCH SUMSQ
COUNTA MAX SYD
DATE MID T
DATEVALUE MIN TAN
DAY MINUTE TANH
DB MIRR TEXT
DDB MOD TIME
DOLLAR MONTH TIMEVALUE
ERROR.TYPE N TODAY
EVEN NA TRIM
EXACT NOT TRUE
EXP NOW TRUNC
FACT NPER TYPE
FALSE NPV UPPER
FIND ODD VALUE
FIXED OFFSET VAR
FLOOR OR VARP
FV PI VDB
HLOOKUP PMT VLOOKUP
HOUR PPMT WEEKDAY
IF PRODUCT YEAR

ABS
See also A-Z Worksheet Function List

Description Returns the absolute value of a number.

Syntax ABS(number)

number is any integer.

Remarks An absolute value does not display a positive or negative sign.

See Also SIGN function

Examples ABS(-1) returns 1
ABS(1) returns 1

ACOS
See also A-Z Worksheet Function List

Description Returns the arc cosine of a number.

Syntax ACOS(number)

number is the cosine of the angle. The cosine can range from 1 to -1.

Remarks The resulting angle is returned in radians (from 0 to p).

See Also COS and PI functions

Examples ACOS(.5) returns 1.05
ACOS(-.2) returns 1.77

ACOSH
See also A-Z Worksheet Function List

Description Returns the inverse hyperbolic cosine of a number.

Syntax ACOSH(number)

number is any number equal to or greater than 1.

See Also ASINH, ATANH, and COSH functions

Examples ACOSH(1.2) returns .62
ACOSH(3) returns 1.76

ADDRESS
See also A-Z Worksheet Function List

Description Creates a cell address as text.

Syntax ADDRESS(row, column, ref_type [, a1] [, sheet])

row is the row number for the cell address.

column is the column number for the cell address.

ref_type is the cell reference type. The following table lists the values for this
argument.

Argument Reference type
1 Absolute

2 Absolute row, relative column

3 Relative row, absolute column

4 Relative

a1 is the reference format. This argument must be TRUE() to represent an A1
reference format; Formula One does not support the R1C1 reference format.

sheet is the name of an external spreadsheet. Omitting this argument assumes that
the reference exists in the current spreadsheet.

See Also COLUMN, OFFSET, and ROW functions

Examples ADDRESS(5, 6, 1) returns F5
ADDRESS(5, 6, 4, TRUE(), SALES.VTS) returns SALES.VTS!F5

AND
See also A-Z Worksheet Function List

Description Returns True if all arguments are true; returns False if at least one argument is false.

Syntax AND(logical_list)

logical_list is a list of conditions separated by commas. You can include as many as
30 conditions in the list. The list can contain logical values or a reference to a range
containing logical values. Text and empty cells are ignored. If there are no logical
values in the list, #VALUE! is returned.

See Also IF , NOT, and OR functions

Examples AND(1+1=2, 5+5=10) returns True because both arguments are true.
AND(TRUE(), FALSE()) returns False

ASIN
See also A-Z Worksheet Function List

Description Returns the arcsine of a number.

Syntax ASIN(number)

number is the sine of the resulting angle, ranging from -1 to 1.

Remarks The resulting angle is returned in radians (ranging from -p/2 to p/2).

See Also ASINH, PI , and SIN functions

Examples ASIN(-1) returns -1.57
ASIN(.4) returns .41

ASINH
See also A-Z Worksheet Function List

Description Returns the inverse hyperbolic sine of a number.

Syntax ASINH(number)

number is any number.

See Also ACOSH, ASIN, ATANH, and SINH functions

Examples ASINH(5.3) returns 2.37

ASINH(-4) returns -2.09

ATAN
See also A-Z Worksheet Function List

Description Returns the arctangent of a number.

Syntax ATAN(number)

number is the tangent of the angle.

Remarks The resulting angle is returned in radians, ranging from -p/2 to p/2. To find the result
in degrees, multiply the result by 180/PI().

See Also ATAN2, ATANH, PI , and TAN functions

Examples ATAN(3.5) returns 1.29
ATAN(-4) returns -1.33

ATAN2
See also A-Z Worksheet Function List

Description Returns the arctangent of the specified coordinates.

Syntax ATAN2(x, y)

x is the x coordinate.

y is the y coordinate.

Remarks The arctangent is the angle from the x axis to a line with end points at the origin (0, 0)
and a point with the given coordinates (x, y). The angle is returned in radians, ranging
from -p to p, excluding -p.

See Also ATAN, ATANH, PI , and TAN functions

Examples ATAN2(3, 6) returns 1.11
ATAN2(-1, .1) returns 3.04

ATANH
See also A-Z Worksheet Function List

Description Returns the inverse hyperbolic tangent of a number.

Syntax ATANH(number)

number is a number between -1 and 1, excluding -1 and 1.

See Also ACOS, ASINH, and TANH functions

Examples ATANH(.5) returns .55
ATANH(-.25) returns -.26

AVERAGE
See also A-Z Worksheet Function List

Description Returns the average of the supplied numbers. The result of AVERAGE is also known
as the arithmetic mean.

Syntax AVERAGE(number_list)

number_list is a list of numbers separated by commas. As many as 30 numbers can
be included in the list, and the list can contain numbers or a reference to a range that
contains numbers. Text, logical expressions, or empty cells in a referenced range are
ignored. All numeric values (including 0) are used.

See Also MIN and MAX functions

Examples AVERAGE(5, 6, 8, 14) returns 8.25
AVERAGE(C15:C17) returns 134; C15:C17 contains 24,144, and 234

CALL
See also A-Z Worksheet Function List

Description Calls a custom function in a dynamic linked library (DLL).

Syntax CALL(file_name, func_name, data_type, argument_list)

file_name is the name of the DLL that contains the custom function. The file name
should be provided as a quoted text string. You can also provide the path for the file.

func_name is the name of the custom function to be called from the DLL. The
function name should be provided as a quoted text string.

argument_list is the list of arguments supplied to the custom function.

data_type is the data type, as a quoted text string, of the arguments and return value
of the custom function. The following table lists the data type codes that can be used
for this argument.
Data type Description Pass by C declaration

A Logicial (False =0, True =1) Value short int
B IEEE 8-byte floating point

number
Value double

C Null-terminated string (255
characters maximum)

Reference char*

D Byte-counted string (first byte
contains string length; 255
characters maximum)

Reference unsigned char *

E IEEE 8-byte floating point
number

Reference double*

F Null-terminated string (255
characters maximum)

Reference char*

G Byte-counted string (first byte
contains string length; 255
characters maximum)

Reference unsigned char*

H Unsigned 2-byte integer Value unsigned short int
I Signed 2-byte integer Value short int
J Signed 4-byte integer Value long int
L Logical (False=0, True =1) Reference short int*
M Signed 2-byte integer Reference short int*
N Signed 4-byte integer Reference long int*

Remarks For declarations made in C, it is assumed that your compiler defaults to 8-byte
doubles, 2-byte short integers, and 4-byte long integers. In the Windows
programming environment, all pointers should be far pointers.

Pascal calling conventions are used for all functions called from DLLs. For most C
compilers, you must add the --Pascal keyword to the function declaration.

If the return value for your custom function uses a pass-by-reference data type, a null
pointer can be passed as the return value. The null pointer is interpreted as the
#NUM! error value.

For F and G data types, a custom function can modify an allocated string buffer. If the

return value type code is F or G, the value returned by the function is ignored. The list
of function arguments is searched for the first data type that corresponds to the return
value type. The current contents of the allocated string buffer is taken for the return
value. 256 bytes is allocated for the argument; therefore, a function can return a
larger string than it receives.

You can use a single digit (n), with a value from 1 to 9, as the code for data_type. The
variable in the location pointed to by the nth argument is modified instead of the
return value; this process is referred to as modifying in place. The nth argument must
be a pass-by-reference data type. In addition, you must declare the function void. For
most C compilers, you can add the Void keyword to the function declaration.

Example CALL("\VTFORM1\DEMO4\CUSTFUNC.DLL", "Quotient", "BBB", 3, 2)

CEILING
See also A-Z Worksheet Function List

Description Rounds a number up to the nearest multiple of a specified significance.

Syntax CEILING(number, significance)

number is the value to round.

significance is the multiple to which to round.

Remarks Regardless of the sign of the number, the value is rounded up, away from zero. If
number is an exact multiple of significance, no rounding occurs.

If number or significance is non-numeric, #VALUE! is returned. When the arguments
have opposite signs, #NUM! is returned.

See Also EVEN, FLOOR, INT, ODD, ROUND, and TRUNC functions

Examples CEILING(1.23459, .05) returns 1.25
CEILING(-148.24, -2) returns -150

CHAR
See also A-Z Worksheet Function List

Description Returns a character that corresponds to the supplied ANSI code.

Syntax CHAR(number)

number is a value between 1 and 255 that specifies an ANSI character.

Remarks The character and associated numeric code are defined by Windows in the ANSI
character set.

See Also CODE function

Examples CHAR(70) returns F
CHAR(35) returns #

CHOOSE
See also A-Z Worksheet Function List

Description Returns a value from a list of numbers based on the index number supplied.

Syntax CHOOSE(index, item_list)

index is a number that refers to an item in item_list.

index can be a cell reference. index can also be a formula that returns any value from 1 to 29.

If index is less than 1 or greater than the number of items in item_list, #VALUE! is returned.

If index is a fractional number, it is truncated to an integer.
item_list is a list of numbers, formulas, or text separated by commas. This argument
can also be a range reference. You can specify as many as 29 items in the list.

See Also INDEX function

Examples CHOOSE(2,Q1, Q2, Q3, Q4) returns Q2

AVERAGE(CHOOSE(1, A1:A10, B1:B10, C1:C10)) returns the average of the
contents of range A1:A10.

CLEAN
See also A-Z Worksheet Function List

Description Removes all non-printable characters from the supplied text.

Syntax CLEAN(text)

text is any worksheet information.

Remarks Text that is imported from another environment may require this function.

See Also CHAR and TRIM functions

Example CLEAN(Payments & CHAR(8) & Due) returns Payments Due because the
character returned by CHAR(8) is non-printable.

CODE
See also A-Z Worksheet Function List

Description Returns a numeric code representing the first character of the supplied string.

Syntax CODE(text)

text is any string.

Remarks The numeric code and associated string are defined in your computers character set.
The character set used by Windows is the ANSI character set.

See Also CHAR function

Examples CODE(A) returns 65
CODE(b) returns 98

COLUMN
See also A-Z Worksheet Function List

Description Returns the column number of the supplied reference.

Syntax COLUMN(reference)

reference is a reference to a cell or range. Omitting the argument returns the number
of the column in which COLUMN is placed.

See Also COLUMNS and ROW functions

Examples COLUMN(B3) returns 2
COLUMN() returns 4 if the function is entered in cell D2.

COLUMNS
See also A-Z Worksheet Function List

Description Returns the number of columns in a range reference.

Syntax COLUMNS(range)

range is a reference to a range of cells.

See Also COLUMN and ROWS functions

Example COLUMNS(A1:D5) returns 4

COS
See also A-Z Worksheet Function List

Description Returns the cosine of an angle.

Syntax COS(number)

number is any number.

See Also ACOS, ASINH, ATANH, COSH, and PI functions

Examples COS(1.444) returns .126
COS(5) returns .28

COSH
See also A-Z Worksheet Function List

Description Returns the hyperbolic cosine of a number.

Syntax COSH(number)

number is any number.

See Also ASINH, ATANH, and COS functions

Examples COSH(2.10) returns 4.14
COSH(.24) returns 1.03

COUNT
See also A-Z Worksheet Function List

Description Returns the number of values in the supplied list.

Syntax COUNT(value_list)

value_list is a list of values. The list can contain as many as 30 values.

Remarks COUNT only numerates numbers or numerical values (e.g., logical values, dates, or
text representations of dates). If you supply a range, only numbers and numerical
values in the range are counted. Empty cells, logical values, text, and error values in
the range are ignored.

See Also AVERAGE, COUNTA, and SUM functions

Examples COUNT(5, 6, Q2) returns 2
COUNT(03/06/94, 06/21/94, 10/19/94) returns 3

COUNTA
See also A-Z Worksheet Function List

Description Returns the number of non-blank values in the supplied list.

Syntax COUNTA(expression_list)

expression_list is a list of expressions. As many as 30 expressions can be included in
the list.

Remarks COUNTA returns the number of cells that contain data in a range. Null values ("") are
counted, but references to empty cells are ignored.

See Also AVERAGE, COUNT, PRODUCT, and SUM functions

Examples COUNTA(32, 45, Earnings, "") returns 4

COUNTA(C38:C40) returns 0 when the specified range contains empty cells

DATE
See also A-Z Worksheet Function List

Description Returns the serial number of the supplied date.

Syntax DATE(year, month, day)

year is a number from 1900 to 2078. If year is between 1920 to 2019, you can specify
two digits to represent the year; otherwise specify all four digits.

month is a number representing the month (e.g., 12 represents December). If a
number greater than 12 is supplied, the number is added to the to the first month of
the specified year.

day is a number representing the day of the month. If the number you specify for day
exceeds the number of days in that month, the number is added to the first day of the
specified month.

See Also DATEVALUE, DAY, MONTH, NOW, TIMEVALUE, TODAY, and YEAR functions

Examples DATE(94, 6, 21) returns 34506
DATE(99, 3, 6) returns 36225

DATEVALUE
See also A-Z Worksheet Function List

Description Returns the serial number of a date supplied as a text string.

Syntax DATEVALUE(text)

text is a date, in text format, between January 1, 1900, and December 31, 2078. If
you omit the year, the current year is used.

See Also NOW, TIMEVALUE, and TODAY functions

Examples DATEVALUE(3/6/94) returns 34399
DATEVALUE(12/25/95) returns 35058

DAY
See also A-Z Worksheet Function List

Description Returns the day of the month that corresponds to the date represented by the
supplied number.

Syntax DAY(serial_number)

serial_number is a date represented as a serial number or as text (e.g., 06-21-94 or
21-Jun-94).

See Also HOUR, MINUTE, MONTH, NOW, SECOND, TODAY, WEEKDAY, and YEAR
functions

Examples DAY(34399) returns 6
DAY(06-21-94) returns 21

DB
See also A-Z Worksheet Function List

Description Returns the real depreciation of an asset for a specific period of time using the fixed-
declining balance method.

Syntax DB(cost, salvage, life, period [, months])

cost is the initial cost of the asset.

salvage is the salvage value of the asset.

life is the number of periods in the useful life of the asset.

period is the period for which to calculate the depreciation. The time units used to
determine period and life must match.

months is the number of months in the first year of the items life. Omitting this
argument assumes there are 12 months in the first year.

See Also DDB, SLN, SYD, and VDB functions

Example DB(10000, 1000, 7, 3) returns 1451.52

DDB
See also A-Z Worksheet Function List

Description Returns the depreciation of an asset for a specific period of time using the double-
declining balance method or a declining balance factor you supply.

Syntax DDB(cost, salvage, life, period [, factor])

cost is the initial cost of the asset.

salvage is the salvage value of the asset.

life is the number of periods in the useful life of the asset.

period is the period for which to calculate the depreciation. The time units used to
determine period and life must match.

factor is the rate at which the balance declines. Omitting this argument assumes a
default factor of 2, the double-declining balance factor.

Remarks The double-declining balance method uses an accelerated rate where the highest
depreciation occurs in the first period, decreasing in successive periods.

All arguments for this function must be positive numbers.

See Also DB , SLN, SYD, and VDB functions

Example DDB(10000,1000, 7, 3) returns 1457.73

DOLLAR
See also A-Z Worksheet Function List

Description Returns the specified number as text, using currency format and the supplied
precision.

Syntax DOLLAR(number [, precision])

number is a number, a formula that evaluates to a number, or a reference to a cell
that contains a number.

precision is a value representing the number of decimal places to the right of the
decimal point. Omitting this argument assumes two decimal places.

See Also FIXED, TEXT, and VALUE functions

Examples DOLLAR(1023.789) returns $1023.79
DOLLAR(495.301, -2) returns $500

ERROR.TYPE
See also A-Z Worksheet Function List

Description Returns a number corresponding to an error.

Syntax ERROR.TYPE(error_ref)

error_ref is a cell reference.

Remarks The following table lists the error text and associated error numbers returned by this
function.

Number Error text
1 #NULL!

2 #DIV/0!

3 #VALUE!

4 #REF!

5 #NAME?

6 #NUM!

7 #N/A

#N/A Other

See Also ISERR and ISERROR functions

Example ERROR.TYPE(A1) returns 2 if the formula in cell A1 attempts to divide by zero.

EVEN
See also A-Z Worksheet Function List

Description Rounds the specified number up to the nearest even integer.

Syntax EVEN(number)

number is any number, a formula that evaluates to a number, or a reference to a cell
that contains a number.

See Also CEILING, FLOOR, INT, ODD, ROUND, and TRUNC functions

Examples EVEN(2.5) returns 4
EVEN(2030.45) returns 2032

EXACT
See also A-Z Worksheet Function List

Description Compares two expressions for identical, case-sensitive matches. True is returned if
the expressions are identical; False is returned if they are not.

Syntax EXACT(expression1, expression2)

expression1 is any text.

expression2 is any text.

See Also LEN and SEARCH functions

Examples EXACT(Match, Match) returns True
EXACT(Match, match) returns False

EXP
See also A-Z Worksheet Function List

Description Returns e raised to the specified power. The constant e is 2.71828182845904 (the
base of the natural logarithm).

Syntax EXP(number)

number is any number as the exponent.

See Also LN and LOG functions

Examples EXP(2.5) returns 12.18
EXP(3) returns 20.09

FACT
See also A-Z Worksheet Function List

Description Returns the factorial of a specified number.

Syntax FACT(number)

number is any non-negative integer. If you supply a real number, FACT truncates the
number to an integer before calculation.

See Also PRODUCT function

Examples FACT(2.5) returns 2
FACT(6) returns 720

FALSE
See also A-Z Worksheet Function List

Description Returns the logical value False. This function always requires the trailing
parentheses.

Syntax FALSE()

See Also TRUE function

FIND
See also A-Z Worksheet Function List

Description Searches for a string of text within another text string and returns the character
position at which the search string first occurs.

Syntax FIND(search_text, text [, start_position])

search_text is the text to find. If you specify an empty string (""), FIND matches the
first character in text.

text is the text to be searched.

start_position is the character position in text where the search begins. The first
character in text is character number 1. When you omit this argument, the default
starting position is character number 1.

Remarks FIND is case-sensitive. You cannot use wildcard characters in the search_text.

See Also EXACT, LEN, MID, and SEARCH functions

Examples FIND(time, Theres no time like the present) returns 12
FIND(4, Aisle 4, Part 123-4-11, 9) returns 19

FIXED
See also A-Z Worksheet Function List

Description Rounds a number to the supplied precision, formats the number in decimal format,
and returns the result as text.

Syntax FIXED(number [, precision][, no_commas])

number is any number.

precision is the number of digits that appear to the right of the decimal place. When
this argument is omitted, a default precision of 2 is used. If you specify negative
precision, number is rounded to the left of the decimal point. You can specify a
precision as great as 127 digits.

no_commas determines if thousands separators (commas) are used in the result.
Use 1 to exclude commas in the result. If no_commas is 0 or the argument is omitted,
thousands separators are included (e.g., 1,000.00).

See Also DOLLAR, ROUND, TEXT, and VALUE functions

Examples FIXED(2000.5, 3) returns 2,000.500
FIXED(2009.5, -1, 1) returns 2010

FLOOR
See also A-Z Worksheet Function List

Description Rounds a number down to the nearest multiple of a specified significance.

Syntax FLOOR(number, significance)

number is the value to round.

significance is the multiple to which to round.

Remarks Regardless of the sign of the number, the value is rounded down, toward zero. If
number is an exact multiple of significance, no rounding occurs.

If number or significance is non-numeric, #NAME? is returned. When the arguments
have opposite signs, #NUM! is returned.

See Also CEILING, EVEN, INT, ODD, ROUND, and TRUNC functions

Examples FLOOR(1.23459, .05) returns 1.2
FLOOR(-148.24, -2) returns -148

FV
See also A-Z Worksheet Function List

Description Returns the future value of an annuity based on regular payments and a fixed interest
rate.

Syntax FV(interest, nper, payment [, pv] [, type])

interest is the fixed interest rate.

nper is the number of payments in an annuity.

payment is the fixed payment made each period.

pv is the present value, or the lump sum amount, the annuity is currently worth. When
you omit this argument, a present value of 0 is assumed.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8% annual interest rate over a period of 5 years, specify 8%/12 for
interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

See Also IPMT, NPER, PMT, PPMT, PV , and RATE functions

Examples FV(5%, 8, -500) returns 4,774.55
FV(10%/12, 240, -700, 1) returns 531,550.86

HLOOKUP
See also A-Z Worksheet Function List

Description Searches the top row of a table for a value and returns the contents of a cell in that
table that corresponds to the location of the search value.

Syntax HLOOKUP(search_item, search_range, row_index)

search_item is a value, text string, or reference to a cell containing a value that is
matched against data in the top row of search_range.

search_range is a reference to the range (table) to be searched. The cells in the first
row of search_range can contain numbers, text, or logical values. The contents of the
first row must be in ascending order (e.g., -2, -1, 0, 2...A through Z, False, True). Text
searches are not case-sensitive.

row_index is the row in search_range from which the matching value is returned.

row_index can be a number from 1 to the number of rows in search_range.

If row_index is less than 1, #VALUE! is returned.

When row_index is greater than the number of rows in the table, #REF! is returned.
Remarks HLOOKUP compares the information in the top row of search_range to the supplied

search_item. When a match is found, information located in the same column and
supplied row (row_index) is returned.

If search_item cannot be found in the top row of search_range, the largest value that
is less than search_item is used. When search_item is less than the smallest value in
the first row of the search_range, #REF! is returned.

See Also INDEX, LOOKUP, MATCH, and VLOOKUP functions

Examples In the preceding worksheet:

HLOOKUP(Northeast, B1:E5, 3) returns 22.63
HLOOKUP(Pacific, B1:E5, 7) returns #REF!

HOUR
See also A-Z Worksheet Function List

Description Returns the hour component of the specified time in 24-hour format.

Syntax HOUR(serial_number)

serial_number is the time as a serial number. The decimal portion of the number
represents time as a fraction of the day.

Remarks The result is an integer ranging from 0 (12:00 AM) to 23 (11:00 PM).

See Also DAY, MINUTE, MONTH, NOW, SECOND, WEEKDAY, and YEAR functions

Examples HOUR(34259.4) returns 9
HOUR(34619.976) returns 23

IF
See also A-Z Worksheet Function List

Description Tests the condition and returns the specified value.

Syntax IF(condition, true_value, false_value)

condition is any logical expression.

true_value is the value to be returned if condition evaluates to True.

false_value is the value to be returned if condition evaluates to False.

See Also AND, FALSE, NOT, OR , and TRUE functions

Example IF(A1>10, Greater, Less) returns Greater if the contents of A1 is greater than
10 and Less if the contents of A1 is less than 10.

INDEX
See also A-Z Worksheet Function List

Description Returns the contents of a cell from a specified range.

Syntax INDEX(reference [, row] [, column] [, range_number])

reference is a reference to one or more ranges.

If reference specifies more than one range, separate each reference with a comma and enclose
reference in parentheses (e.g., (A1:C6, B7:E14, F4)).

If each range in reference contains only one row or column, you can omit the row or column
argument. For example, if reference is A1:A15, you can omit the column argument (e.g., INDEX(A1:A15,
3,, 1)).

row is the row number in reference from which to return data.

column is column number in reference from which to return data.

range_number specifies the range from which data is returned if reference contains
more than one range. For example, if reference is (A1:A10, B1:B5, D14:E23), A1:A10
is range_number 1, B1:B5 is range_number 2, and D14:E23 is range_number 3.

Remarks If row, column, and range_number do not point to a cell within reference, #REF! is
returned. If row and column are omitted, INDEX returns the range in reference
specified by range_number.

See Also CHOOSE, HLOOKUP, LOOKUP, MATCH, and VLOOKUP functions

Examples In the preceding worksheet:

INDEX(A2:B6, 2, 2) returns $1415.35
INDEX((A2:B6, D2:E6), 4, 2, 2) returns $1634.58

INDIRECT
See also A-Z Worksheet Function List

Description Returns the contents of the cell referenced by the specified cell.

Syntax INDIRECT(ref_text [, a1])

ref_text is a reference to a cell that references a third cell. If ref_text is not a valid
reference, #REF! is returned.

a1 is the reference format. This argument must be TRUE() to represent an A1
reference format; Formula One does not support the R1C1 reference format.

See Also OFFSET function

Example INDIRECT(C1) returns the contents of the cell that C1 references. If C1 contains
D1, the contents of D1 is returned by INDIRECT.

INT
See also A-Z Worksheet Function List

Description Rounds the supplied number down to the nearest integer.

Syntax INT(number)

number is any real number.

See Also CEILING, FLOOR, MOD, ROUND, and TRUNC functions

Examples INT(10.99) returns 10
INT(-10.99) returns -11

IPMT
See also A-Z Worksheet Function List

Description Returns the interest payment of an annuity for a given period, based on regular
payments and a fixed periodic interest rate.

Syntax IPMT(interest, per, nper, pv, [fv], [type])

interest is the fixed periodic interest rate.

per is the period for which to return the interest payment. This number must be
between 1 and nper.

nper is the number of payments.

pv is the present value, or the lump sum amount the annuity is currently worth.

fv is the future value, or the value after all payments are made. If this argument is
omitted, the future value is assumed to be 0.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8% annual interest rate over a period of 5 years, specify 8%/12 for
interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

See Also FV , PMT, PPMT, and RATE functions

Examples IPMT(8%/12, 2, 48, 18000) returns -117.87
IPMT(8%/12, 2, 48, 18000, 0, 1) returns -117.09

IRR
See also A-Z Worksheet Function List

Description Returns internal rate of return for a series of periodic cash flows.

Syntax IRR(cash_flow [, guess])

cash_flow is a reference to a range that contains values for which to calculate the
internal rate of return. The values must contain at least one positive and one negative
value.

During calculation, IRR uses the order in which the values appear to determine the order of the
cash flow.

Text, logical values, and empty cells in the range are ignored.
guess is the estimate of the internal rate of return. If no argument is supplied, a rate
of return of 10 percent is assumed.

Remarks The internal rate of return is the interest rate received for an investment consisting of
payments (specified by negative numbers) and investments (specified by positive
numbers).

IRR is calculated iteratively, cycling through the calculation until the result is accurate
to .00001 percent. If the result cannot be found after 20 iterations, #NUM! is returned.
When this occurs, supply a different value for guess.

See Also MIRR, NPV, and RATE functions

Examples In the preceding worksheet:

IRR(B1:B6) returns 3.72%
IRR(B1:B3, -20%) returns -49.26%

ISBLANK
See also A-Z Worksheet Function List

Description Determines if the specified cell is blank.

Syntax ISBLANK(reference)

reference is a reference to any cell.

Remarks If the referenced cell is blank, True is returned. False is returned if the cell is not
blank.

See Also ISERR, ISERROR, ISLOGICAL, ISNA, ISNONTEXT, ISNUMBER, ISREF, and
ISTEXT functions

Example ISBLANK(A1) returns True if A1 is a blank cell.

ISERR
See also A-Z Worksheet Function List

Description Determines if the specified expression returns an error value.

Syntax ISERR(expression)

expression is any expression.

Remarks If the expression returns any error except #N/A!, True is returned. Otherwise, False is
returned.

See Also ISBLANK, ISERROR, ISLOGICAL, ISNA, ISNONTEXT, ISNUMBER, ISREF, and
ISTEXT functions

Example ISERR(A1) returns True if A1 contains a formula that returns an error (e.g., #NUM!).

ISERROR
See also A-Z Worksheet Function List

Description Determines if the specified expression returns an error value.

Syntax ISERROR(expression)

expression is any expression.

Remarks If the expression returns any error value (e.g., #N/A!, #VALUE!, #REF!, #DIV/0!,
#NUM!, #NAME?, or #NULL!), True is returned. Otherwise, False is returned.

See Also ISBLANK, ISERR, ISLOGICAL, ISNA, ISNONTEXT, ISNUMBER, ISREF, and
ISTEXT functions

Examples ISERROR(4/0) returns True
ISERROR(A1) returns False if A1 contains a formula that does not return an error.

ISLOGICAL
See also A-Z Worksheet Function List

Description Determines if the specified expression returns a logical value.

Syntax ISLOGICAL(expression)

expression is any expression.

Remarks If the expression returns a logical value, True is returned. Otherwise, False is
returned.

See Also ISBLANK, ISERR, ISERROR, ISNA, ISNONTEXT, ISNUMBER, ISREF, and ISTEXT
functions

Example ISLOGICAL(ISBLANK(A1)) returns True because ISBLANK returns a logical value.

ISNA
See also A-Z Worksheet Function List

Description Determines if the specified expression returns the value not available error.

Syntax ISNA(expression)

expression is any expression.

Remarks If the expression returns the #N/A! error, True is returned. Otherwise, False is
returned.

See Also ISBLANK, ISERR, ISERROR, ISLOGICAL, ISNONTEXT, ISNUMBER, ISREF, and
ISTEXT functions

Example ISNA(A1) returns True if cell A1 contains the NA() function or returns the error value
#N/A!.

ISNONTEXT
See also A-Z Worksheet Function List

Description Determines if the specified expression is not text.

Syntax ISNONTEXT(expression)

expression is any expression.

Remarks If the expression returns any value that is not text, True is returned. Otherwise, False
is returned.

See Also ISBLANK, ISERR, ISERROR, ISLOGICAL, ISNA, ISNUMBER, ISREF, and ISTEXT
functions

Examples ISNONTEXT(F3) returns True if cell F3 contains a number or is a blank cell.
ISNONTEXT(text) returns False.

ISNUMBER
See also A-Z Worksheet Function List

Description Determines if the specified expression is a number.

Syntax ISNUMBER(expression)

expression is any expression.

Remarks If the expression returns a number, True is returned. Otherwise, False is returned. If
expression returns a number represented as text (e.g., 12), False is returned.

See Also ISBLANK, ISERR, ISERROR, ISLOGICAL, ISNA, ISNONTEXT, ISREF, and
ISTEXT functions

Examples ISNUMBER(123.45) returns True
ISNUMBER(123) returns False

ISREF
See also A-Z Worksheet Function List

Description Determines if the specified expression is a range reference.

Syntax ISREF(expression)

expression is any expression.

Remarks If the expression returns a range reference, True is returned. Otherwise, False is
returned.

See Also ISBLANK, ISERR, ISERROR, ISLOGICAL, ISNA, ISNONTEXT, ISNUMBER, and
ISTEXT functions

Example ISREF(A3) returns True

ISTEXT
See also A-Z Worksheet Function List

Description Determines if the specified expression is text.

Syntax ISTEXT(expression)

expression is any expression.

Remarks If the expression returns text, True is returned. Otherwise, False is returned.

See Also ISBLANK, ISERR, ISERROR, ISLOGICAL, ISNA, ISNONTEXT, ISNUMBER, and
ISREF functions

Example ISTEXT(2nd Quarter) returns True

LEFT
See also A-Z Worksheet Function List

Description Returns the leftmost characters from the specified text string.

Syntax LEFT(text [, num_chars])

text is any text string.

num_chars is the number of characters to return. This value must be greater than or
equal to zero. If num_chars is greater than the number of characters in text, the
entire string is returned. Omitting this argument assumes a value of 1.

See Also MID and RIGHT functions

Examples LEFT(2nd Quarter) returns 2
LEFT(2nd Quarter, 3) returns 2nd

LEN
See also A-Z Worksheet Function List

Description Returns the number of characters in the supplied text string.

Syntax LEN(text)

text in any text string. Spaces in the string are counted as characters.

See Also EXACT and SEARCH functions

Examples LEN(3rd Quarter) returns 11
LEN(1-3) returns 3

LN
See also A-Z Worksheet Function List

Description Returns the natural logarithm (based on the constant e) of a number.

Syntax LN(number)

number is any positive real number.

Remarks LN is the inverse of the EXP function.

See Also EXP, LOG, and LOG10 functions

Examples LN(12.18) returns 2.50
LN(20.09) returns 3.00

LOG
See also A-Z Worksheet Function List

Description Returns the logarithm of a number to the specified base.

Syntax LOG(number [, base])

text is any positive real number.

base is the base of the logarithm. Omitting this argument assumes a base of 10.

See Also EXP, LN, and LOG10 functions

Examples LOG(1) returns 0
LOG(10) returns 1

LOG10
See also A-Z Worksheet Function List

Description Returns the base-10 logarithm of a number.

Syntax LOG10(number)

number is any positive real number.

See Also EXP, LN, and LOG functions

Examples LOG10(260) returns 2.41
LOG10(100) returns 2

LOOKUP
See also A-Z Worksheet Function List

Description Searches for a value in one range and returns the contents of the corresponding
position in a second range.

Syntax LOOKUP(lookup_value, lookup_range, result_range)

lookup_value is the value for which to search in the first range.

lookup_range is the first range to search and contains only one row or one column.

The range can contain numbers, text, or logical values.

To search lookup_range correctly, the expressions in the range must be placed in ascending
order (e.g., -2, -1, 0, 1, 2...A through Z, False, True). The search is not case-sensitive.

result_range is a range of one row or one column that is the same size as
lookup_range.

Remarks If lookup_value does not have an exact match in lookup_range, the largest value that
is less than or equal to lookup_value is found and the corresponding position in
result_range is returned. When lookup_value is smaller than the data in
lookup_range, #N/A is returned.

See Also HLOOKUP, INDEX, and VLOOKUP functions

Examples In the preceding worksheet:

LOOKUP(North, A2:A7, B2:B7) returns Detroit
LOOKUP(Alabama, A2:A7, B2:B7) returns #N/A

LOWER
See also A-Z Worksheet Function List

Description Changes the characters in the specified string to lowercase characters. Numeric
characters in the string are not changed.

Syntax LOWER(text)

text is any string.

See Also PROPER and UPPER functions

Examples LOWER(3rd Quarter) returns 3rd quarter
LOWER(JOHN DOE) returns john doe

MATCH
See also A-Z Worksheet Function List

Description A specified value is compared against values in a range. The position of the matching
value in the search range is returned.

Syntax MATCH(lookup_value, lookup_range, comparison)

lookup_value is the value against which to compare. It can be a number, text, or
logical value or a reference to a cell that contains one of those values.

lookup_range is the range to search and contains only one row or one column. The
range can contain numbers, text, or logical values.

comparison is a number that represents the type of comparison to be made between
lookup_value and the values in lookup_range. When you omit this argument,
comparison method 1 is assumed.

When comparison is 1, the largest value that is less than or equal to lookup_value is matched.
When using this comparison method, the values in lookup_range must be in ascending order (e.g., ...-2, -
1, 0, 1, 2..., A through Z, False, True).

When comparison is 0, the first value that is equal to lookup_value is matched. When using this
comparison method, the values in lookup_range can be in any order.

When comparison is -1, the smallest value that is greater than or equal to lookup_value is
matched. When using this comparison method, the values in lookup_range must be in descending order
(e.g., True, False, Z through A, ...2, 1, 0, -1, -2...).
Remarks When using comparison method 0 and lookup_value is text, lookup_value can

contain wildcard characters. The wildcard characters are * (asterisk), which matches
any sequence of characters, and ? (question mark), which matches any single
character.

When no match is found for lookup_value, #N/A is returned.

See Also HLOOKUP, INDEX, LOOKUP, and VLOOKUP functions

Examples In the preceding worksheet:

MATCH(7600, B2:B7,1) returns 5
MATCH("D*", A2:A7,0) returns 2

MAX
See also A-Z Worksheet Function List

Description Returns the largest value in the specified list of numbers.

Syntax MAX(number_list)

number_list is a list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of numbers, or a reference to a
range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range
are ignored.

If there are no numbers in the list, 0 is returned.
See Also AVERAGE and MIN functions

Examples MAX(50, 100, 150, 500, 200) returns 500
MAX(A1:F12) returns the largest value in the range

MID
See also A-Z Worksheet Function List

Description Returns the specified number of characters from a text string, beginning with the
specified starting position.

Syntax MID(text, start_position, num_chars)

text is the string from which to return characters.

start_position is the position of the first character to return from text.

If start_position is 1, the first character in text is returned.

If start_position is greater than the number of characters in text, an empty string ("") is returned.

If start_position is less than 1, #VALUE! is returned.
num_chars is the number of characters to return. If num_chars is negative, #VALUE!
is returned.

Remarks If start_position plus the number of characters in num_chars exceeds the length of
text, the characters from start_position to the end of text are returned.

See Also CODE, FIND, LEFT, RIGHT, and SEARCH functions

Examples MID(Travel Expenses, 8, 8) returns Expenses
MID(Part #45-7234, 7, 2) returns 45

MIN
See also A-Z Worksheet Function List

Description Returns the smallest value in the specified list of numbers.

Syntax MIN(number_list)

number_list is a list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of numbers, or a reference to a
range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range
are ignored.

If there are no numbers in the list, 0 is returned.
See Also AVERAGE and MAX functions

Examples MIN(50, 100, 150, 500, 200) returns 50
MIN(A1:F12) returns the smallest value in the range

MINUTE
See also A-Z Worksheet Function List

Description Returns the minute that corresponds to the supplied date.

Syntax MINUTE(serial_number)

serial_number is the time as a serial number. The decimal portion of the number
represents time as a fraction of the day.

Remarks The result is an integer ranging from 0 to 59.

See Also DAY, HOUR, MONTH, NOW, SECOND, WEEKDAY, and YEAR functions

Examples MINUTE(34506.4) returns 36
MINUTE(34399.825) returns 48

MIRR
See also A-Z Worksheet Function List

Description Returns the modified internal rate of return for a series of periodic cash flows.

Syntax MIRR(cash_flows, finance_rate, reinvest_rate)

cash_flow is a reference to a range that contains values for which to calculate the
modified internal rate of return. The values must contain at least one positive and one
negative value.

During calculation, MIRR uses the order in which the values appear to determine the order of
cash flow.

Values that represent cash received should be positive; negative values represent cash paid.

Text, logical values, and empty cells in the range are ignored.
finance_rate is the interest rate paid on money used in the cash flow.

reinvest_rate is the interest rate received on money reinvested from the cash flow.

Remarks The modified internal rate of return considers the cost of the investment and the
interest received on the reinvestment of cash.

See Also IRR, NPV, and RATE functions

Examples In the preceding worksheet:

MIRR(B1:B6, 12%, 8%) returns 5.20%
MIRR(B1:B3, 12%, 8%) returns -40.93%

MOD
See also A-Z Worksheet Function List

Description Returns the remainder after dividing a number by a specified divisor.

Syntax MOD(number, divisor)

number is any number.

divisor is any non-zero number. If divisor is 0, #DIV/0! is returned.

See Also INT, ROUND, and TRUNC functions

Examples MOD(-23, 3) returns 1
MOD(-23, -3) returns -2

MONTH
See also A-Z Worksheet Function List

Description Returns the month that corresponds to the supplied date.

Syntax MONTH(serial_number)

serial_number is the date as a serial number or as text (e.g., 06-21-94 or 21-Jun-94).

Remarks MONTH returns a number ranging from 1 (January) to 12 (December).

See Also DAY, HOUR, MINUTE, NOW, SECOND, TODAY, WEEKDAY, and YEAR functions

Examples MONTH(06-21-94) returns 6
MONTH(34626) returns 10

N
See also A-Z Worksheet Function List

Description Tests the supplied value and returns the value if it is a number.

Syntax N(value)

value is a value or a reference to a cell containing a value to test.

Remarks Numbers are returned as numbers, serial numbers formatted as dates are returned
as serial numbers, and the logical function TRUE() is returned as 1. All other
expressions return 0.

See Also T and VALUE functions

Examples N(32467) returns 32467
N(A4) returns 1 if A4 contains the logical function True

NA
See also A-Z Worksheet Function List

Description Returns the error value #N/A, which represents not available.

Syntax NA()

Remarks Use NA to mark cells that lack data without leaving them empty. Empty cells may not
be correctly represented in some calculations.

Although NA does not use arguments, you must supply the empty parentheses to
correctly reference the function.

See Also ISNA function

NOT
See also A-Z Worksheet Function List

Description Returns a logical value that is the opposite of its value.

Syntax NOT(logical)

logical is an expression that returns a logical value (e.g., True or False).

Remarks If logical is false, NOT returns True. Conversely, if logical is true, NOT returns False.

See Also AND, IF , and OR functions

Examples NOT(TRUE()) returns False
NOT(MONTH(12/25/94) = 12) returns False

NOW
See also A-Z Worksheet Function List

Description Returns the current date and time as a serial number.

Syntax NOW()

Remarks In a serial number, numbers to the left of the decimal point represent the date;
numbers to the right of the decimal point represent the time. The result of this
function changes only when a recalculation of the worksheet occurs.

See Also DATE, DAY, HOUR, MINUTE, MONTH, SECOND, TODAY, WEEKDAY, and YEAR
functions

NPER
See also A-Z Worksheet Function List

Description Returns the number of periods of an investment based on regular periodic payments
and a fixed interest rate.

Syntax NPER(interest, pmt, pf [, fv] [, type])

interest is the fixed interest rate.

pmt is the fixed payment made each period. Generally, pmt includes the principle and
interest, not taxes or other fees.

pf is the present value, the lump-sum amount that a series of future payments is
currently worth.

fv is the future value, the balance to attain after the final payment. Omitting this
argument assumes a future balance of 0.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

See Also FV , IPMT, PMT, PPMT, PV , and RATE functions

Examples NPER(12%/12, -350, -300, 16000, 1) returns 36.67
NPER(1%, -350, -300, 16000) returns 36.98

NPV
See also A-Z Worksheet Function List

Description Returns the net present value of an investment based on a series of periodic
payments and a discount rate.

Syntax NPV(discount_rate, value_list)

discount_rate is the rate of discount for one period.

value_list is a list of as many as 29 arguments or a reference to a range that contains
values that represent payments and income.

During calculation, NPV uses the order in which the values appear to determine the order of cash
flow.

Numbers, empty cells, and text representations of numbers are included in the calculation. Errors
and text that cannot be translated into numbers are ignored.

If value_list is a range reference, only numeric data in the range is included in the calculation.
Other types of data in the range (e.g., empty cells, logical values, text, and error values) are ignored.
Remarks The time span NPV uses for calculation begins one period before the first cash flow

date and ends when the last cash flow payment is made. This function is based on
future cash flows. When your first cash flow occurs at the beginning of the first
period, the first value must be added to the NPV result, not supplied as a value in
value_list.

See Also FV , IRR, and PV functions

Example NPV(8%, -12000, 3000, 3000, 3000, 7000) returns 811.57

ODD
See also A-Z Worksheet Function List

Description Rounds the specified number up to the nearest odd integer.

Syntax ODD(number)

number is any number, a formula that evaluates to a number, or a reference to a cell
that contains a number.

See Also CEILING, EVEN, FLOOR, INT, ROUND, and TRUNC functions

Examples ODD(3.5) returns 5
ODD(6) returns 7

OFFSET
See also A-Z Worksheet Function List

Description Returns the contents of a range that is offset from a starting point in the spreadsheet.

Syntax OFFSET(reference, rows, columns [, height] [, width])

reference is a reference to a cell from which the offset reference is based. If you
specify a range reference, #VALUE! is returned.

rows is the number of rows from reference that represents the upper-left cell of the
offset range. A positive number represents rows below the starting cell; a negative
number represents rows above the starting cell. If rows places the upper-left cell of
the offset range outside the spreadsheet boundary, #REF! is returned.

columns is the number of columns from reference that represents the upper-left cell
of the offset range. A positive number represents columns right of the starting cell; a
negative number represents columns left of the starting cell. If columns places the
upper-left cell of the offset range outside the spreadsheet boundary, #REF! is
returned.

height is a positive number representing the number of rows to include in the offset
range. Omitting this argument assumes a single row .

width is a positive number representing the number of columns to include in the offset
range. Omitting this argument assumes a single column.

Remarks OFFSET does not change the current selection in the worksheet. Because it returns
a reference, OFFSET can be used in any function that requires or uses a cell or
range reference as an argument.

See Also COLUMN, INDIRECT, and ROW functions
Examples OFFSET(B1, 3, 2, 1, 1) returns the contents of cell D4

SUM(OFFSET(A1, 2, 4, 3, 2)) equals the sum of the range E3:F5

OR
See also A-Z Worksheet Function List

Description Returns True if at least one of a series of logical arguments is true.

Syntax OR(logical_list)

logical_list is a list of conditions separated by commas. You can include as many as
30 conditions in the list. The list can contain logical values or a reference to a range
containing logical values. Text and empty cells are ignored. If there are no logical
values in the list, the error value #VALUE! is returned.

See Also AND, IF , and NOT functions

Example OR(1 + 1 = 1, 5 + 5 = 10) returns True because one of the arguments is true.

PI
See also A-Z Worksheet Function List

Description Returns the value of pi (p), which is approximately 3.14159265358979 when
calculated to 15 significant digits.

Syntax PI()

Remarks Although PI does not use arguments, you must supply the empty parentheses to
correctly reference the function.

See Also COS, SIN, and TAN functions

PMT
See also A-Z Worksheet Function List

Description Returns the periodic payment of an annuity, based on regular payments and a fixed
periodic interest rate.

Syntax PMT(interest, nper, pv [, fv] [, type])

interest is the fixed periodic interest rate.

nper is the number of periods in the annuity.

pv is the present value, or the amount the annuity is currently worth.

fv is the future value, or the amount the annuity will be worth. When you omit this
argument, a future value of 0 is assumed.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

Remarks PMT returns only the principal and interest payment, it does not include taxes or
other fees.

The units used for interest must match those used for nper. For example, if the
annuity has an 8% annual interest rate over a period of 5 years, specify 8%/12 for
interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

See Also FV , IPMT, NPER, PPMT, PV , and RATE functions

Examples PMT(8%/12, 48, 18000) returns -439.43
PMT(8%/12, 48, 18000, 0, 1) returns -436.52

PPMT
See also A-Z Worksheet Function List

Description Returns the principle paid on an annuity for a given period.

Syntax PPMT(interest, per, nper, pv, [fv], [type])

interest is the fixed periodic interest rate.

per is the period for which to return the principle.

nper is the number of periods in the annuity.

pv is the present value, or the amount the annuity is currently worth.

fv is the future value, or the amount the annuity will be worth. When you omit this
argument, a future value of 0 is assumed.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8% annual interest rate over a period of 5 years, specify 8%/12 for
interest and 5*12 for nper.

See Also FV , IPMT, NPER, PMT, PV , and RATE functions

Examples PPMT(8%/12, 2, 48, 18000) returns -321.56
PPMT(8%/12, 2, 48, 18000, 0, 1) returns -319.43

PRODUCT
See also A-Z Worksheet Function List

Description Multiplies a list of numbers and returns the result.

Syntax PRODUCT(number_list)

number_list is a list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of numbers, or a reference to a
range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range
are ignored.

All numeric values, including 0, are used in the calculation.
See Also FACT and SUM functions

Example PRODUCT(1, 2, 3, 4) returns 24

PROPER
See also A-Z Worksheet Function List

Description Returns the specified string in proper-case format.

Syntax PROPER(text)

text is any string.

Remarks In proper-case format, the first alphabetic character in a word is capitalized. If an
alphabetic character follows a number, punctuation mark, or space, it is capitalized.
All other alphabetic characters are lowercase. Numbers are not changed by
PROPER.

See Also LOWER and UPPER functions

Examples PROPER(3rd Quarter) returns 3Rd Quarter
PROPER(JOHN DOE) returns John Doe

PV
See also A-Z Worksheet Function List

Description Returns the present value of an annuity, considering a series of constant payments
made over a regular payment period.

Syntax PV(interest, nper, pmt [, fv] [, type])

interest is the fixed periodic interest rate.

nper is the number of payment periods in the investment.

pmt is the fixed payment made each period.

fv is the future value, or the amount the annuity will be worth. When you omit this
argument, a future value of 0 is assumed.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8% annual interest rate over a period of 5 years, specify 8%/12 for
interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

See Also FV , IPMT, NPER, PMT, PPMT, and RATE functions

Examples PV(8%/12, 48, 439.43) returns -17999.89
PV(8%/12, 48, -439.43) returns 17999.89

RAND
See also A-Z Worksheet Function List

Description Returns a number selected randomly from a uniform distribution greater than or equal
to 0 and less than 1.

Syntax RAND()

Remarks Although RAND does not use arguments, you must supply the empty parentheses to
correctly reference the function.

Example RAND()*10 returns a random number greater than or equal to 0 and less than 10.

RATE
See also A-Z Worksheet Function List

Description Returns the interest rate per period of an annuity, given a series of constant cash
payments made over a regular payment period.

Syntax RATE(nper, pmt, pv [, fv] [, type] [, guess])

nper is the number of periods in the annuity.

pmt is the fixed payment made each period. Generally, pmt includes only principle
and interest, not taxes or other fees.

pv is the present value of the annuity.

fv is the future value, or the amount the annuity will be worth. When you omit this
argument, a future value of 0 is assumed.

type indicates when payments are due. Use 0 if payments are due at the end of the
period or 1 if payments are due at the beginning of the period. When you omit this
argument, 0 is assumed.

guess is your estimate of the interest rate. If no argument is supplied, a value of .1
(10%) is assumed.

Remarks RATE is calculated iteratively, cycling through the calculation until the result is
accurate to .00001 percent. If the result cannot be found after 20 iterations, #NUM! is
returned. When this occurs, supply a different value for guess.

See Also FV , IPMT, NPER, PMT, PPMT, and PV functions

Example RATE(48, -439.43, 18000) returns .0067 (rounded to 4 decimals), which is the
monthly interest rate. The annual interest rate (.0067 multiplied by 12) is 8%.

REPLACE
See also A-Z Worksheet Function List

Description Replaces part of a text string with another text string.

Syntax REPLACE(orig_text, start_position, num_chars, repl_text)

orig_text is the original text string.

start_position is the character position where the replacement begins.

If start_position is greater than the number of characters in orig_text, repl_text is appended to the
end of orig_text.

If start_position is less than 1, #VALUE! is returned.
num_chars is the number of characters to replace. If this argument is negative,
#VALUE! is returned.

repl_text is the replacement text string.

See Also MID, SEARCH, and TRIM functions

Examples REPLACE(For the year: 1993, 18, 1, 4) returns For the year: 1994

REPT
See also A-Z Worksheet Function List

Description Repeats a text string the specified number of times.

Syntax REPT(text, number)

text is any text string.

number is the number of times you want text to repeat. If number is 0, empty text ("")
is returned.

Remarks The result of REPT cannot exceed 255 characters.

Example REPT(error-, 3) returns error-error-error-

RIGHT
See also A-Z Worksheet Function List

Description Returns the rightmost characters from the given text string.

Syntax RIGHT(text [, num_chars])

text is any text string.

num_chars is the number of characters to return. The value must be greater than or
equal to zero. If num_chars is greater than the number of characters in text, the
entire string is returned. Omitting this argument assumes a value of 1.

See Also LEFT and MID functions

Examples RIGHT(2nd Quarter) returns r
RIGHT(2nd Quarter, 7) returns Quarter

ROUND
See also A-Z Worksheet Function List

Description Rounds the given number to the supplied number of decimal places.

Syntax ROUND(number, precision)

number is any value.

precision is the number of decimal places to which number is rounded.

When a negative precision is used, the digits to the right of the decimal point are dropped and the
absolute number of significant digits specified by precision are replaced with zeros.

If precision is 0, number is rounded to the nearest integer.
See Also CEILING, FLOOR, INT, MOD, and TRUNC functions

Examples ROUND(123.456, 2) returns 123.46
ROUND(9899.435, -2) returns 9900

ROW
See also A-Z Worksheet Function List

Description Returns the row number of the supplied reference.

Syntax ROW(reference)

reference is a cell or range reference. Omitting this argument returns the row number
of the cell in which ROW is entered.

See Also COLUMN and ROWS function

Examples ROW(B3) returns 3

ROWS
See also A-Z Worksheet Function List

Description Returns the number of rows in a range reference.

Syntax ROWS(range)

range is a reference to a range of cells.

See Also COLUMNS and ROW functions

Examples ROWS(A1:D5) returns 5
ROWS(C30:F35) returns 6

SEARCH
See also A-Z Worksheet Function List

Description Locates the position of the first character of a specified text string within another text
string.

Syntax SEARCH(search_text, text [, start_position])

search_text is the text to find.

The search string can contain wildcard characters. The available wildcard characters are *
(asterisk), which matches any sequence of characters, and ? (question mark), which matches any single
character.

To search for an asterisk or question mark, include a tilde (~) before the character.
text is the text to be searched.

start_position is the character position where the search begins. If the number you
specify is less than 0 or greater than the number of characters in text, #VALUE! is
returned. Omitting this argument assumes a starting position of 1.

Remarks Text is searched from left to right, starting at the position specified. The search is not
case-sensitive. If text does not contain the search string, #VALUE! is returned.

See Also FIND, MID, REPLACE, and SUBSTITUTE functions

Examples SEARCH(?5, Bin b45) returns 6
SEARCH(b, Bin b45, 4) returns 5

SECOND
See also A-Z Worksheet Function List

Description Returns the second that corresponds to the supplied date.

Syntax SECOND(serial_number)

serial_number is the time as a serial number. The decimal portion of the number
represents time as a fraction of the day.

See Also DAY, HOUR, MINUTE, MONTH, NOW, WEEKDAY, and YEAR functions

Examples SECOND(.259) returns 58
SECOND(34657.904) returns 46

SIGN
See also A-Z Worksheet Function List

Description Determines the sign of the specified number.

Syntax SIGN(number)

number is any number.

Remarks SIGN returns 1 if the specified number is positive, -1 if it is negative, and 0 if it is 0.

See Also ABS function

Examples SIGN(-123) returns -1
SIGN(123) returns 1

SIN
See also A-Z Worksheet Function List

Description Returns the sine of the supplied angle.

Syntax SIN(number)

number is the angle in radians. If the angle is in degrees, convert the angle to radians
by multiplying the angle by PI()/180.

See Also ASIN and PI functions

Examples SIN(45) returns .85
SIN(90) returns .89

SINH
See also A-Z Worksheet Function List

Description Returns the hyperbolic sine of the specified number.

Syntax SINH(number)

number is any number.

See Also ASINH and PI functions

Examples SINH(1) returns 1.18
SINH(3) returns 10.02

SLN
See also A-Z Worksheet Function List

Description Returns the depreciation of an asset for a specific period of time using the straight-
line balance method.

Syntax SLN(cost, salvage, life)

cost is the initial cost of the asset.

salvage is the salvage value of the asset.

life is the number of periods of the useful life of the asset.

See Also DDB, SYD, and VDB functions

Example SLN(10000, 1000, 7) returns 1285.71

SQRT
See also A-Z Worksheet Function List

Description Returns the square root of the specified number.

Syntax SQRT(number)

number is any positive number. If you specify a negative number, #NUM! is returned.

See Also SUMSQ function

Examples SQRT(9) returns 3
SQRT(2.5) returns 1.58

STDEV
See also A-Z Worksheet Function List

Description Returns the standard deviation of a population based on a sample of supplied values.
The standard deviation of a population represents an average of deviations from the
population mean within a list of values.

Syntax STDEV(number_list)

number_list is a list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

See Also STDEVP, VAR, and VARP functions

Example STDEV(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5) returns .56

STDEVP
See also A-Z Worksheet Function List

Description Returns the standard deviation of a population based on an entire population of
values. The standard deviation of a population represents an average of deviations
from the population mean within a list of values.

Syntax STDEVP(number_list)

number_list is a list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

See Also STDEV, VAR, and VARP functions

Example STDEVP(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5) returns .52

SUBSTITUTE
See also A-Z Worksheet Function List

Description Replaces a specified part of a text string with another text string.

Syntax SUBSTITUTE(text, old_text, new_text [, instance])

text is a text string that contains the text to replace. You can also specify a reference
to a cell that contains text.

old_text is the text string to be replaced.

new_text is the replacement text.

instance specifies the occurrence of old_text to replace. If this argument is omitted,
every instance of old_text is replaced.

See Also REPLACE and TRIM functions

Examples SUBSTITUTE(First Quarter Results, First, Second) returns Second
Quarter Results

SUBSTITUTE(Shipment 45, Bin 45, 45, 52, 2) returns Shipment 45, Bin
52

SUM
See also A-Z Worksheet Function List

Description Returns the sum of the supplied numbers.

Syntax SUM(number_list)

number_list is a list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of numbers, or a reference to a
range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range
are ignored.
See Also AVERAGE, COUNT, COUNTA, PRODUCT, and SUMSQ functions

Examples SUM(1000, 2000, 3000) returns 6000

SUM(A10:D10) returns 4000 when each cell in the range contains 1000

SUMSQ
See also A-Z Worksheet Function List

Description Squares each of the supplied numbers and returns the sum of the squares.

Syntax SUMSQ(number_list)

number_list is a list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of numbers, or a reference to a
range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range
are ignored.
See Also SUM function

Example SUMSQ(9, 10, 11) returns 302

SYD
See also A-Z Worksheet Function List

Description Returns the depreciation of an asset for a specified period using the sum-of-years
method. This depreciation method uses an accelerated rate, where the greatest
depreciation occurs early in the useful life of the asset.

Syntax SYD(cost, salvage, life, per)

cost is the initial cost of the asset.

salvage is the salvage value of the asset.

life is the number of periods in the useful life of the asset.

period is the period for which to calculate the depreciation. The time units used to
determine period and life must match.

See Also DDB, SLN, and VDB functions

Example SYD(10000, 1000, 7, 3) returns 1607.14

T
See also A-Z Worksheet Function List

Description Tests the supplied value and returns the value if it is text.

Syntax T(value)

value is the value to test.

Remarks Empty text ("") is returned for any value that is not text.

See Also N , and VALUE functions

Examples T(Report) returns Report

T(A4) returns empty text ("") if A4 contains a number

TAN
See also A-Z Worksheet Function List

Description Returns the tangent of the specified angle.

Syntax TAN(number)

number is the angle in radians. To convert a number expressed as degrees to
radians, multiply the degrees by 180/PI().

See Also ATAN, ATAN2, PI , and TANH functions

Examples TAN(45) returns 1.62
TAN(90) returns -2.00

TANH
See also A-Z Worksheet Function List

Description Returns the hyperbolic tangent of a number.

Syntax TANH(number)

number is any number.

See Also ATANH, COSH, SINH, and TAN functions

Examples TANH(-2) returns -.96
TANH(1.2) returns .83

TEXT
See also A-Z Worksheet Function List

Description Returns the given number as text, using the specified formatting.

Syntax TEXT(number, format)

number is any value, a formula that evaluates to a number, or a reference to a cell
that contains a value.

format is a string representing a number format. The string can be any valid format
string including General, M/DD/YY, or H:MM AM/PM. The format must be surrounded
by a set of double quotation marks. Asterisks cannot be included in format.

See Also DOLLAR, FIXED, T , and VALUE functions

Examples TEXT(123.62, 0.000) returns 123.620
TEXT(34626.2, MM/DD/YY) returns 10/19/94

TIME
See also A-Z Worksheet Function List

Description Returns a serial number for the supplied time.

Syntax TIME(hour, minute, second)

hour is a number from 0 to 23.

minute is a number from 0 to 59.

second is a number from 0 to 59.

See Also HOUR, MINUTE, NOW, SECOND, and TIMEVALUE functions

Examples TIME(12, 26, 24) returns .52
TIME(1, 43, 34) returns .07

TIMEVALUE
See also A-Z Worksheet Function List

Description Returns a serial number for the supplied text representation of time.

Syntax TIMEVALUE(text)

text is a time in text format.

See Also HOUR, MINUTE, NOW, SECOND, and TIME functions

Examples TIMEVALUE(1:43:43 am) returns .07
TIMEVALUE(14:10:07) returns .59

TODAY
See also A-Z Worksheet Function List

Description Returns the current date as a serial number.

Syntax TODAY()

Remarks This function is updated only when the worksheet is recalculated.

See Also DATE, DAY, and NOW functions

TRIM
See also A-Z Worksheet Function List

Description Removes all spaces from text except single spaces between words.

Syntax TRIM(text)

text is any text string or a reference to a cell that contains a text string.

Remarks Text that is imported from another environment may require this function.

See Also CLEAN, MID, REPLACE, and SUBSTITUTE functions

Example TRIM(Level 3, Gate 45) returns Level 3, Gate 45

TRUE
See also A-Z Worksheet Function List

Description Returns the logical value True. This function always requires the trailing parentheses.

Syntax TRUE()

See Also FALSE function

TRUNC
See also A-Z Worksheet Function List

Description Truncates the given number to an integer.

Syntax TRUNC(number [, precision])

number is any value.

precision is the number of decimal places allowed in the truncated number. Omitting
this argument assumes a precision of 0.

Remarks TRUNC removes the fractional part of a number to the specified precision without
rounding the number.

See Also CEILING, FLOOR, INT, MOD, and ROUND functions

Examples TRUNC(123.456, 2) returns 123.45
TRUNC(9899.435, -2) returns 9800

TYPE
See also A-Z Worksheet Function List

Description Returns the argument type of the given expression.

Syntax TYPE(expression)

expression is any expression.

Remarks The following table lists the expression types and numbers.

Expression type Number

Number 1

Text string 2

Logical value 4

Error value 16

See Also ISBLANK, ISERR, ISERROR, ISLOGICAL, ISNA, ISNONTEXT, ISNUMBER,
ISREF, and ISTEXT functions

Examples TYPE(A1) returns 1 if cell A1 contains a number.
TYPE(Customer) returns 2

UPPER
See also A-Z Worksheet Function List

Description Changes the characters in the specified string to uppercase characters.

Syntax UPPER(text)

text is any string.

Remarks Numeric characters in the string are not changed.

See Also LOWER and PROPER functions

Examples UPPER(3rd Quarter) returns 3RD QUARTER
UPPER(JOHN DOE) returns JOHN DOE

VALUE
See also A-Z Worksheet Function List

Description Returns the specified text as a number.

Syntax VALUE(text)

text is any text string, a formula that evaluates to a text string, or a cell reference that
contains a text string. You can also specify a date or time in a recognizable format
(e.g., M/DD/YY for dates or H:MM AM/PM for time). If the format is not recognized,
#VALUE! is returned.

See Also DOLLAR, FIXED, and TEXT functions

Examples VALUE(9800) returns 9800
VALUE(123) returns 123

VAR
See also A-Z Worksheet Function List

Description Returns the variance of a population based on a sample of values.

Syntax VAR(number_list)

number_list is a list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

See Also STDEV, STDEVP, and VARP functions

Example VAR(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5) returns .31

VARP
See also A-Z Worksheet Function List

Description Returns the variance of a population based on an entire population of values.

Syntax VARP(number_list)

number_list is a list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

See Also STDEV, STDEVP, and VAR functions

Example VARP(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5) returns .27

VDB
See also A-Z Worksheet Function List

Description Returns the depreciation of an asset for a specified period using a variable method of
depreciation.

Syntax VDB(cost, salvage, life, start_period, end_period [, factor] [, method])

cost is the initial cost of the asset.

salvage is the salvage value of the asset.

life is the number of periods in the useful life of the asset.

start_period is the beginning period for which to calculate the depreciation. The time
units used to determine start_period and life must match.

end_period is the ending period for which to calculate the depreciation. The time
units used to determine end_period and life must match.

factor is the rate at which the balance declines. Omitting this argument assumes a
default of 2, which is the double-declining balance factor.

method is a logical value that determines if you want to switch to straight-line
depreciation when depreciation is greater than the declining balance calculation. Use
True to maintain declining balance calculation; use False or omit the argument to
switch to straight-line depreciation calculation.

See Also DDB, SLN, and SYD functions

Examples VDB(10000, 1000, 7, 3, 4) returns 1041.23

VLOOKUP
See also A-Z Worksheet Function List

Description Searches the first column of a table for a value and returns the contents of a cell in
that table that corresponds to the location of the search value.

Syntax VLOOKUP(search_item, search_range, column_index)

search_item is a value, text string, or reference to a cell containing a value that is
matched against data in the top row of search_range.

search_range is the reference of the range (table) to be searched. The cells in the
first column of search_range can contain numbers, text, or logical values. The
contents of the first column must be in ascending order (e.g., -2, -1, 0, 2...A through
Z, False, True). Text searches are not case-sensitive.

column_index is the column in the search range from which the matching value is
returned.

column_index can be a number from 1 to the number of rows in the search range.

If column_index is less than 1, #VALUE! is returned.

When column_index is greater than the number of rows in the table, #REF! is returned.
Remarks VLOOKUP compares the information in the first column of search_range to the

supplied search_item. When a match is found, information located in the same row
and supplied column (column _index) is returned.

If search_item cannot be found in the first column of search_range, the largest value
that is less than search_item is used. When search_item is less than the smallest
value in the first column of the search_range, #REF! is returned.

See Also HLOOKUP, INDEX, LOOKUP, and MATCH functions

Examples In the preceding worksheet:

VLOOKUP("Clark", A2:E9, 4) returns $28,700
VLOOKUP("Lee", A2:E9, 3) returns 3961

WEEKDAY
See also A-Z Worksheet Function List

Description Returns the day of the week that corresponds to the supplied date.

Syntax WEEKDAY(serial_number)

serial_number is the date as a serial number or as text (e.g., 06-21-94 or 21-Jun-94).

Remarks WEEKDAY returns a number ranging from 1 (Sunday) to 7 (Saturday).

See Also DAY, NOW, TEXT, and TODAY functions

Examples WEEKDAY(34399.92) returns 1, indicating Sunday
WEEKDAY(06/21/94) returns 3, indicating Tuesday

YEAR
See also A-Z Worksheet Function List

Description Returns the year that corresponds to the supplied date.

Syntax YEAR(serial_number)

serial_number is the date as a serial number or as text (e.g., 06-21-94 or 21-Jun-94).

See Also DAY, HOUR, MINUTE, MONTH, NOW, SECOND, TODAY, and WEEKDAY functions

Examples YEAR(34328) returns 1993
YEAR(06/21/94) returns 1994

A-Z Function Call Reference
See also the function call summaries

Dialog Box Function Call Summary Range Editing Function Call Summary
Edit Bar Function Call Summary Recalculation Function Call Summary
Formatting Function Call Summary Selection Function Call Summary
Data Entry Function Call Summary Worksheet Function Call Summary
Printing Function Call Summary Miscellaneous Function Call Summary

This chapter provides a complete alphabetical reference for the Formula One function calls. Refer to
Using Function Calls for additional information about using function calls.

SSAddColPageBreak SSGetLastCol SSSetColWidthAuto
SSAddPageBreak SSGetLastColForRow SSSetDefinedName
SSAddRowPageBreak SSGetLastRow SSSetDefWindowProc
SSAddSelection SSGetLeftCol SSSetDoSetCursor
SSAttach SSGetLogicalRC SSSetEnableProtection
SSAttachToSS SSGetMaxCol SSSetEnterMovesDown
SSCalculationDlg SSGetMaxRow SSSetEntry
SSCallWindowProc SSGetMinCol SSSetEntryRC
SSCancelEdit SSGetMinRow SSSetExtraColor
SSCanEditPaste SSGetNumber SSSetFireEvent
SSCheckModified SSGetNumberRC SSSetFixedCols
SSCheckRecalc SSGetPrintArea SSSetFixedRows
SSClearClipboard SSGetPrintBottomMargin SSSetFont
SSClearRange SSGetPrintColHeading SSSetFormula
SSColorPaletteDlg SSGetPrintFooter SSSetFormulaRC
SSColWidthDlg SSGetPrintGridLines SSSetHdrHeight
SSCopyAll SSGetPrintHCenter SSSetHdrSelection
SSCopyRange SSGetPrintHeader SSSetHdrWidth
SSDefinedNameDlg SSGetPrintLeftMargin SSSetIteration
SSDelete SSGetPrintLeftToRight SSSetLeftCol
SSDeleteDefinedName SSGetPrintNoColor SSSetLogicalRC
SSDeleteRange SSGetPrintRightMargin SSSetMaxCol
SSDeleteTable SSGetPrintRowHeading SSSetMaxRow
SSEditBarDelete SSGetPrintTitles SSSetMinCol
SSEditBarHeight SSGetPrintTopMargin SSSetMinRow
SSEditBarMove SSGetPrintVCenter SSSetNumber
SSEditBarNew SSGetRepaint SSSetNumberFormat
SSEditClear SSGetRowHeight SSSetNumberRC
SSEditCopy SSGetRowMode SSSetPattern
SSEditCopyDown SSGetSelection SSSetPrintArea
SSEditCopyRight SSGetSelectionCount SSSetPrintAreaFromSelection
SSEditCut SSGetSelectionRef SSSetPrintBottomMargin
SSEditDelete SSGetShowColHeading SSSetPrintColHeading
SSEditInsert SSGetShowFormulas SSSetPrintFooter
SSEditPaste SSGetShowGridLines SSSetPrintGridLines
SSEndEdit SSGetShowHScrollBar SSSetPrintHCenter
SSErrorNumberToText SSGetShowRowHeading SSSetPrintHeader
SSFilePageSetupDlg SSGetShowSelections SSSetPrintLeftMargin
SSFilePrint SSGetShowVScrollBar SSSetPrintLeftToRight
SSFilePrintSetupDlg SSGetShowZeroValues SSSetPrintNoColor
SSFormatAlignmentDlg SSGetSSEdit SSSetPrintRightMargin
SSFormatBorderDlg SSGetText SSSetPrintRowHeading
SSFormatCurrency0 SSGetTextRC SSSetPrintTitles
SSFormatCurrency2 SSGetTitle SSSetPrintTitlesFromSelection
SSFormatFixed SSGetTopRow SSSetPrintTopMargin
SSFormatFixed2 SSGetTypeRC SSSetPrintVCenter
SSFormatFontDlg SSGotoDlg SSSetProtection
SSFormatFraction SSInitTable SSSetRepaint
SSFormatGeneral SSInsertRange SSSetRowHeight
SSFormatHmmampm SSMaxCol SSSetRowHeightAuto
SSFormatMdyy SSMaxRow SSSetRowMode
SSFormatNumberDlg SSMoveRange SSSetRowText

SSFormatPatternDlg SSNew SSSetSelection
SSFormatPercent SSNextColPageBreak SSSetSelectionRef
SSFormatRCNr SSNextRowPageBreak SSSetShowColHeading
SSFormatScientific SSOpenFileDlg SSSetShowFormulas
SSGetActiveCell SSProtectionDlg SSSetShowGridLines
SSGetAllowArrows SSRangeToTwips SSSetShowHScrollBar
SSGetAllowDelete SSRead SSSetShowRowHeading
SSGetAllowEditHeaders SSReadIO SSSetShowSelections
SSGetAllowFillRange SSRecalc SSSetShowVScrollBar
SSGetAllowFormulas SSRemoveColPageBreak SSSetShowZeroValues
SSGetAllowInCellEditing SSRemovePageBreak SSSetSSEdit
SSGetAllowMoveRange SSRemoveRowPageBreak SSSetText
SSGetAllowResize SSRowHeightDlg SSSetTextRC
SSGetAllowSelections SSSaveFileDlg SSSetTitle
SSGetAllowTabs SSSaveWindowInfo SSSetTopLeftText
SSGetAutoRecalc SSSetActiveCell SSSetTopRow
SSGetBackColor SSSetAlignment SSShowActiveCell
SSGetColWidth SSSetAllowArrows SSSort
SSGetDefinedName SSSetAllowDelete SSSort3
SSGetEnableProtection SSSetAllowEditHeaders SSSortDlg
SSGetEnterMovesDown SSSetAllowFillRange SSStartEdit
SSGetEntry SSSetAllowFormulas SSSwapTables
SSGetEntryRC SSSetAllowInCellEditing SSTransactCommit
SSGetExtraColor SSSetAllowMoveRange SSTransactRollback
SSGetFireEvent SSSetAllowResize SSTransactStart
SSGetFixedCols SSSetAllowSelections SSTwipsToRC
SSGetFixedRows SSSetAllowTabs SSUpdate
SSGetFormattedText SSSetAppName SSVBXCopyCellsFromDoubleArray
SSGetFormattedTextRC SSSetAutoRecalc SSVBXCopyCellsToDoubleArray
SSGetFormula SSSetBackColor SSVersion
SSGetFormulaRC SSSetBorder SSWrite
SSGetHdrSelection SSSetColText SSWriteIO
SSGetIteration SSSetColWidth

SSAddColPageBreak
See also A-Z Function Call List

Description Adds a vertical page break adjacent to the left edge of the specified column.

Syntax (VB) SSAddColPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSAddColPageBreak (HSS hSS, RC nCol)

hSS is a handle to a view.

nCol is the column where the page break is added.

Return Value Integer

See Also SSAddPageBreak, SSAddRowPageBreak, SSNextColPageBreak,
SSNextRowPageBreak, SSRemoveColPageBreak, SSRemovePageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSAddColPageBreak(Sheet1.SS, 2)

SSAddPageBreak
See also A-Z Function Call List

Description Adds a horizontal and vertical page break adjacent to the active cell.

Syntax (VB) SSAddPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSAddPageBreak (HSS hSS)

hSS is a handle to a view.

Remarks When page breaks are added adjacent to the active cell, the horizontal page break is
added adjacent to the cells top edge; the vertical page break is added adjacent to the
cells left edge.

Return Value Integer

See Also SSAddColPageBreak, SSAddRowPageBreak, SSNextColPageBreak,
SSNextRowPageBreak, SSRemoveColPageBreak, SSRemovePageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSAddPageBreak(sheet1.SS)

SSAddRowPageBreak
See also A-Z Function Call List

Description Adds a horizontal page break adjacent to the top edge of the specified row.

Syntax (VB) SSAddRowPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSAddRowPageBreak (HSS hSS, RC nRow)

hSS is a handle to a view.

nRow is the row where the page break is added.

Return Value Integer

See Also SSAddColPageBreak, SSAddPageBreak, SSNextColPageBreak,
SSNextRowPageBreak, SSRemoveColPageBreak, SSRemovePageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSAddRowPageBreak(sheet1.SS, 2)

SSAddSelection
See also A-Z Function Call List

Description Adds a new selection to the current selection list.

Syntax (VB) SSAddSelection% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%)

Syntax (VC++) SSERROR SSEXPORTAPI SSAddSelection (HSS hSS, RC nRow1, RC nCol1, RC
nRow2, RC nCol2)

hSS is a handle to a view.

nRow1, nRow2, nCol1 and nCol2 are the row and column numbers of the selection to
add to the selection list. If nRow1 is -1, all rows are included in the selection; if nCol1
is -1, all columns are included.

Remarks Multiple selections allow operations such as formatting or clearing to be performed on
non-contiguous areas.

Return Value Integer

See Also SSSetSelection function and Selection property

Example sserror = SSAddSelection(sheet1.SS, 1, 1, 4, 4)

SSAttach
See also A-Z Function Call List

Description Searches for a worksheet with the given title and attaches it to a view.

Syntax (VB) SSAttach% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pTitle$)

Syntax (VC++) SSERROR SSEXPORTAPI SSAttach (HSS FAR hSS, LPCSTR pTitle)

hSS is a handle to a view.

pTitle is a string containing the name of the worksheet for which to search.

Remarks SSAttach searches for a worksheet with the given title. If a worksheet is found, it is
attached to the specified view. If there was already a worksheet attached to the view,
it is deleted as the specified worksheet is attached.

To delete the worksheet when it is no longer needed, call SSDelete.

Return Value Integer

See Also SSAttachToSS, SSDelete, SSGetTitle, SSNew, and SSSetTitle functions

Example sserror = SSAttach (Sheet1.SS, "Sheet2")

SSAttachToSS
See also A-Z Function Call List

Description Attaches a worksheet from one view to another.

Syntax (VB) SSAttachToSS% Lib "VTSSDLL.DLL" (ByVal hDstSS&, ByVal hSrcSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSAttachToSS (HSS hDstSS, HSS hSrcSS)

hDstSS is a handle to the destination view.

hSrcSS is a handle to the source view.

Remarks SSAttachToSS attaches the worksheet of the source view to the destination view. If
there was already a worksheet attached to the destination view, it is deleted as the
source view is attached. After calling SSAttachToSS, both hSrcSS and hDstSS
display the same worksheet.

To delete the worksheet when it is no longer needed, call SSDelete.

Return Value Integer

See Also SSAttach, SSDelete, SSGetTitle, SSNew, and SSSetTitle functions

Example sserror = SSAttachToSS (Sheet1.SS, Sheet2.SS)

SSCalculationDlg
See also A-Z Function Call List

Description Displays the Calculation dialog box.

Syntax (VB) SSCalculationDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSCalculationDlg (HSS hSS)

hSS is a handle to a view.

Remarks SSCalculationDlg displays the Calculation dialog box. This dialog box allows you to
enable and disable automatic recalculation and specify iteration values for calculating
circular references.

Return Value Integer

See Also SSGetAutoRecalc, SSGetIteration, SSSetAutoRecalc, and SSSetIteration
functions and AutoRecalc property

Example sserror = SSCalculationDlg(Sheet1.SS)

SSCallWindowProc
See also A-Z Function Call List

Description Passes Windows messages to the view.

Syntax (VB) SSCallWindowProc% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal message%, ByVal
wParam%, ByVal lParam&)

Syntax (VC++) LRESULT SSEXPORTAPI SSCallWindowProc (HSS hSS, UINT message,
WPARAM wParam, LPARAM lParam)

hSS is a handle to a view.

message is the message being passed.

wParam and lParam are standard Windows procedure parameters passed to all
Windows procedures.

Remarks Window messages are passed to the worksheet view by calling SSCallWindowProc.
All window messages should be passed to SSCallWindowProc for the worksheet
view to work properly.

Messages not used by the worksheet view are passed to the function provided via
SSSetDefWindowProc. If a valid callback procedure is not specified by
SSSetDefWindowProc, the Windows API function DefWindowProc is called.

This function is not normally called from Visual Basic.

Return Value Integer

See Also SSSetDefWindowProc function

SSCancelEdit
See also A-Z Function Call List

Description Cancels edit mode and leaves the contents of the active cell unchanged.

Syntax (VB) SSCancelEdit% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSCancelEdit (HSS hSS)

hSS is a handle to a view.

Remarks SSCancelEdit aborts cell editing and exits edit mode without altering the contents of
the active cell.

Return Value Integer

See Also SSEndEdit and SSStartEdit functions

Example sserror = SSCancelEdit(Sheet1.SS)

SSCanEditPaste
See also A-Z Function Call List

Description Determines if the internal clipboard or Windows clipboard contain items that can be
pasted to the worksheet.

Syntax (VB) SSCanEditPaste% Lib "VTSSDLL.DLL" (ByVal hSS&, pCanEditPaste%)

Syntax (VC++) BOOL SSEXPORTAPI SSCanEditPaste (HSS hSS, BOOL FAR *pCanEditPaste)

hSS is a handle to a view.

pCanEditPaste is a reference to a boolean that indicates if anything is in the
clipboard.

Remarks SSCanEditPaste returns True in the boolean referred to by pCanEditPaste if there is
something in the internal clipboard or the Windows clipboard that can be pasted to
the worksheet.

Return Value Integer

See Also SSEditCopy, SSEditCut, and SSEditPaste functions

Example sserror = SSCanEditPaste(Sheet1.SS, canpaste)

SSCheckModified
See also A-Z Function Call List

Description Checks to see if the view or worksheet has been modified since the last
SSM_MODIFIED message was sent.

Syntax (VB) SSCheckModified% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSCheckModified (HSS hSS)

hSS is a handle to a view.

Remarks SSCheckModified checks to see if the view or its worksheet has been modified
since the last SSM_MODIFIED message was sent. If so, then another
SSM_MODIFIED message is sent, causing the DataChanged property to be
updated.

Return Value Integer

See Also DataChanged property

Example sserror = SSCheckModified(Sheet1.SS)

SSCheckRecalc
See also A-Z Function Call List

Description Recalculates the worksheet if needed.

Syntax (VB) SSCheckRecalc% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSCheckRecalc (HSS hSS)

hSS is a handle to a view.

Remarks SSCheckRecalc determines if the worksheet needs to be recalculated as a result of
a change. If so, the worksheet is recalculated.

Return Value Integer

See Also SSGetAutoRecalc and SSSetAutoRecalc functions and AutoRecalc property

Example sserror = SSCheckRecalc(Sheet1.SS)

SSClearClipboard
See also A-Z Function Call List

Description Clears the internal clipboard.

Syntax (VB) SSClearClipboard% Lib "VTSSDLL.DLL" ()

Syntax (VC++) SSERROR SSEXPORTAPI SSClearClipboard ();

Remarks SSClearClipboard clears the contents of the internal clipboard and releases all
resources associated with it.

Return Value Integer

See Also SSCanEditPaste and SSEditPaste functions

Example sserror = SSClearClipboard()

SSClearRange
See also A-Z Function Call List

Description Clears the specified range.

Syntax (VB) SSClearRange% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, ByVal nClearType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSClearRange (HSS hSS, RC nRow1, RC nCol1,
RC nRow2, RC nCol2, int nClearType)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range to clear. If nRow1 is -1, all rows
are included in the range; if nCol1 is -1, all columns are included.

nClearType determines what is cleared from the specified range. The following table
lists the options for this argument.

Option Description
0 Displays the Clear dialog box. This dialog box allows the user to specify whether

only formats, only values, or both formats and values are cleared.

1 All (values and formats)

2 Formats only

3 Values only (including formulas)

Return Value Integer

See Also SSDeleteRange function

Example sserror = SSClearRange(Sheet1.SS, 1, 1, 10, 10, 0)

SSColorPaletteDlg
See also A-Z Function Call List

Description Displays the Color Palette dialog box.

Syntax (VB) SSColorPaletteDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSColorPaletteDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Color Palette dialog box allows you to edit colors in the color palette, specify a
default color, and use the default color palette. Color palettes are worksheet specific.

Return Value Integer

See Also SSSetBackColor, SSSetBorder, SSSetExtraColor, SSSetFont, and SSSetPattern
functions

Example sserror = SSColorPaletteDlg(Sheet1.SS)

SSColWidthDlg
See also A-Z Function Call List

Description Displays the Column Width dialog box.

Syntax (VB) SSColWidthDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSColWidthDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Column Width dialog box allows you to set the width of the selected columns,
specify default column widths, and specify automatic column width. In addition, you
can specify whether the selected columns are shown or hidden.

Return Value Integer

See Also SSSetColWidth and SSSetColWidthAuto functions

Example sserror = SSColWidthDlg(Sheet1.SS)

SSCopyAll
See also A-Z Function Call List

Description Copies the contents of one worksheet to another worksheet.

Syntax (VB) SSCopyAll% Lib "VTSSDLL.DLL" (ByVal hDstSS&, ByVal hSrcSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSCopyAll (HSS hDstSS, HSS hSrcSS)

hDstSS is a handle to the destination view.

hSrcSS is a handle to the source view.

Remarks SSCopyAll copies an entire worksheet from hSrcSS view to hDstSS view.

Return Value Integer

See Also SSCopyRange and SSMoveRange functions

Example sserror = SSCopyAll(Sheet1.SS, Sheet2.SS)

SSCopyRange
See also A-Z Function Call List

Description Copies a range within a worksheet or from one worksheet to another.

Syntax (VB) SSCopyRange% Lib "VTSSDLL.DLL" (ByVal hDstSS&, ByVal nDstR1%, ByVal
nDstC1%, ByVal nDstR2%, ByVal nDstC2%, ByVal hSrcSS&, ByVal nSrcR1%, ByVal
nSrcC1%, ByVal nSrcR2%, ByVal nSrcC2%)

Syntax (VC++) SSERROR SSEXPORTAPI SSCopyRange (HSS hDstSS, RC nDstR1, RC nDstC1,
RC nDstR2, RC nDstC2, HSS hSrcSS, RC nSrcR1, RC nSrcC1, RC nSrcR2, RC
nSrcC2)

hDstSS is a handle to the destination view.

nDstR1, nDstC1, nDstR2, and nDstC2 define the destination range.

hSrcSS is a handle to the source view.

nSrcR1, nSrcC1, nSrcR2, and nSrcC2 define the source range.

Remarks SSCopyRange copies the specified range from the hSrcSS view to the hDstSS view.
The source and the destination ranges can be in different views, allowing ranges to
be copied between worksheets. The copy operation is the same as if a copy and
paste operation had occurred. Cell references are adjusted appropriately in the
destination range.

Return Value Integer

See Also SSCopyAll, SSEditCopy, and SSEditPaste functions

Example sserror = SSCopyRange(Sheet1.SS, 1, 1, 10, 10, Sheet1.SS, 10,
10, 50, 50)

SSDefinedNameDlg
See also A-Z Function Call List

Description Displays the Define Name dialog box.

Syntax (VB) SSDefinedNameDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSDefinedNameDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Define Name dialog box allows you to add and delete user defined names.

Return Value Integer

See Also SSDeleteDefinedName, SSGetDefinedName, and SSSetDefinedName functions

Example sserror = SSDefinedNameDlg(Sheet1.SS)

SSDelete
See also A-Z Function Call List

Description Deletes a view.

Syntax (VB) SSDelete% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bSendDeleteTableMsg%)

Syntax (VC++) SSERROR SSEXPORTAPI SSDelete (HSS hSS, BOOL bSendDeleteTableMsg)

hSS is a handle to a view.

Remarks SSDelete deletes the specified view. If no other views are attached to the worksheet,
the worksheet is also deleted. If bSendDeleteTableMsg is True, a message is sent to
all other views accessing this worksheet. The message tells the views that the
worksheet is to be deleted.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSAttach, SSAttachToSS, SSNew, and SSInitTable functions

SSDeleteDefinedName
See also A-Z Function Call List

Description Deletes the specified user-defined name.

Syntax (VB) SSDeleteDefinedName% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pName$)

Syntax (VC++) SSERROR SSEXPORTAPI SSDeleteDefinedName (HSS hSS, LPCSTR pName)

hSS is a handle to a view.

pName is the user defined name to delete.

Return Value Integer

See Also SSDefinedNameDlg, SSGetDefinedName, and SSSetDefinedName functions

Example sserror = SSDeleteDefinedName(Sheet1.SS, "Gross_Sales")

SSDeleteRange
See also A-Z Function Call List

Description Deletes cells, rows, or columns from the specified range.

Syntax (VB) SSDeleteRange% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, ByVal nShiftType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSDeleteRange (HSS hSS, RC nRow1, RC nCol1, RC
nRow2, RC nCol2, int nShiftType)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range to delete. If nRow1 is -1, all rows
are included in the range; if nCol1 is -1, all columns are included.

nShiftType determines how the delete should occur.

Remarks SSDeleteRange deletes cells, rows, or columns from the given range. nShiftType
specifies how the delete occurs. The following table lists the settings for nShiftType.
These values are defined in VTSS.H and VTSS.TXT.

Setting Number Description

kShiftHorizontal 1 Cells to the right of the range are shifted left to fill the
vacated space

kShiftVertical 2 Cells below the range are shifted up to fill the vacated space

kShiftRows 3 Rows in which the range resides are deleted and lower rows
are shifted up to fill the vacated space

kShiftCol 4 Columns in which the range resides are deleted and the
rightmost columns are shifted left to fill the vacated space

Return Value Integer

See Also SSClearRange and SSEditDelete functions

Example sserror = SSDeleteRange(Sheet1.SS, 1, 1, 10, 10,
kShiftHorizontal)

SSDeleteTable
See also A-Z Function Call List

Description Deletes a worksheet.

Syntax (VB) SSDeleteTable% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSDeleteTable (HSS hSS)

hSS is a handle to a view.

Remarks SSDeleteTable detaches a view from a worksheet and deletes the worksheet if no
other views are attached to the worksheet. A view must be reattached to a worksheet
before it can be used.

Return Value Integer

See Also SSAttach, SSAttachToSS, SSNew, and SSInitTable functions

Example sserror = SSDeleteTable(Sheet1.SS)

SSEditBarDelete
See also A-Z Function Call List

Description Deletes the specified edit bar.

Syntax (VB) SSEditBarDelete% Lib "VTSSDLL.DLL" (ByVal hSSEdit&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditBarDelete (HSSEDIT hSSEdit)

hSSEdit is a handle to an edit bar.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSEditBarNew function

SSEditBarHeight
See also A-Z Function Call List

Description Returns the default height of an edit bar.

Syntax (VB) SSEditBarHeight% Lib "VTSSDLL.DLL" ()

Syntax (VC++) int SSEXPORTAPI SSEditBarHeight ()

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSEditBarNew function

SSEditBarMove
See also A-Z Function Call List

Description Moves an edit bar.

Syntax (VB) SSEditBarMove% Lib "VTSSDLL.DLL" (ByVal hSSEdit&, ByVal x%, ByVal y%,
ByVal cx%, ByVal cy%)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditBarMove (HSSEDIT hSSEdit, int x, int y, int cx,
int cy)

hSSEdit is a handle to an edit bar.

x and y are the coordinates of the upper left corner of the edit bar.

cx is the width of the edit bar.

cy is the height of the edit bar.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSEditBarNew function

SSEditBarNew
See also A-Z Function Call List

Description Creates a new edit bar.

Syntax (VB) SSEditBarNew% Lib "VTSSDLL.DLL" (ByVal hWndParent%, hSSEdit&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditBarNew (HWND hWndParent, HSSEDIT FAR
*hSSEdit)

hWndParent is a handle to a parent window.

hSSEdit is the handle for the new edit bar.

Remarks SSEditBarNew creates a new edit bar. hWndParent is the parent window of the edit
bar.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSEditBarDelete, SSEditBarMove, and SSEditBarHeight functions

SSEditClear
See also A-Z Function Call List

Description Clears all cells in the selected ranges.

Syntax (VB) SSEditClear% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nClearType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditClear (HSS hSS, int nClearType)

hSS is a handle to a view.

nClearType determines what is cleared from the selected range. The following table
lists the options for this argument.

Option Description
0 Displays the Clear dialog box. This dialog box allows the user to specify whether

only formats, only values, or both formats and values are cleared.

1 All (values and formats)

2 Formats only

3 Values only (including formulas)

Remarks SSEditClear clears cells in all selected ranges. Non-contiguous ranges can be
cleared simultaneously if SSAddSelection was used to select multiple ranges.

Return Value Integer

See Also SSClearRange and SSEditDelete functions

Example sserror = SSEditClear(Sheet1.SS, 1)

SSEditCopy
See also A-Z Function Call List

Description Copies the selected range to the clipboard.

Syntax (VB) SSEditCopy% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditCopy (HSS hSS)

hSS is a handle to a view.

Remarks SSEditCopy copies the selected range to the clipboard. Only one range can be
selected. If more than one range is selected, the error
SSERROR_ONLY_ONE_RANGE is returned.

Cells copied to the internal clipboard retain their formulas, formatting, and data.
When cells are copied to the Windows clipboard and the internal clipboard is deleted,
the cells become formatted text representations of the data they contain. This usually
happens when the application is exited.

Return Value Integer

See Also SSEditCut and SSEditPaste functions

Example sserror = SSEditCopy(Sheet1.SS)

SSEditCopyDown
See also A-Z Function Call List

Description Copies cells in the top row of a selection to the other rows in the selected range.

Syntax (VB) SSEditCopyDown% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditCopyDown (HSS hSS)

hSS is a handle to a view.

Remarks SSEditCopyDown copies data in the top row of a selection to the other rows in the
selection and adjusts relative cell references appropriately.

Return Value Integer

See Also SSEditCopyRight function

Example sserror = SSEditCopyDown(Sheet1.SS)

SSEditCopyRight
See also A-Z Function Call List

Description Copies cells in the left column of a selection to the other columns in the selected
range.

Syntax (VB) SSEditCopyRight% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditCopyRight (HSS hSS)

hSS is a handle to a view.

Remarks SSEditCopyRight copies data in the left column of a selection to the other columns
in the selection and adjusts relative cell references appropriately.

Return Value Integer

See Also SSEditCopyDown function

Example sserror = SSEditCopyRight(Sheet1.SS)

SSEditCut
See also A-Z Function Call List

Description Cuts the selected range to the clipboard.

Syntax (VB) SSEditCut% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditCut (HSS hSS)

hSS is a handle to a view.

Remarks SSEditCut cuts the selected range to the internal clipboard and clears it from the
worksheet. Only one range can be selected. If more than one range is selected, the
error SSERROR_ONLY_ONE_RANGE is returned.

Cells cut to the internal clipboard retain their formulas, formatting, and data. When
cells are copied to the Windows clipboard and the internal clipboard is deleted, the
cells become formatted text representations of the data they contain. This usually
happens when the application is exited.

Return Value Integer

See Also SSEditCopy and SSEditPaste functions

Example sserror = SSEditCut(Sheet1.SS)

SSEditDelete
See also A-Z Function Call List

Description Deletes cells, rows, or columns from the selected range.

Syntax (VB) SSEditDelete% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nShiftType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditDelete (HSS hSS, int nShiftType)

hSS is a handle to a view.

nShiftType determines how the delete should occur.

Remarks SSEditDelete deletes cells, rows, or columns from the selected range. The following
table lists the settings for nShiftType. These values are defined in VTSS.H and
VTSS.TXT.

Setting Number Description

kShiftHorizontal 1 Cells to the right of the range are shifted left to fill the vacated
space

kShiftVertical 2 Cells below the range are shifted up to fill the vacated space

kShiftRows 3 Rows in which the range resides are deleted and lower rows
are shifted up to fill the vacated space

kShiftCols 4 Columns in which the range resides are deleted and the
rightmost columns are shifted left to fill the vacated space

Return Value Integer

See Also SSDeleteRange and SSEditInsert functions

Example sserror = SSEditDelete(Sheet1.SS, kShiftHorizontal)

SSEditInsert
See also A-Z Function Call List

Description Insert cells, rows, or columns in the selected range.

Syntax (VB) SSEditInsert% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nShiftType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditInsert (HSS hSS, int nShiftType)

hSS is a handle to a view.

nShiftType determines how the insert should occur.

Remarks SSEditInsert inserts cells, rows, or columns in the selected range. The following
table lists the settings for nShiftType. These values are defined in VTSS.H and
VTSS.TXT.

Setting Number Description

kShiftHorizontal 1 Cells of the selected range are shifted right to make room for
the inserted cells.

kShiftVertical 2 Cells of the selected range are shifted down to make room for
the inserted cells.

kShiftRows 3 Rows in which the range resides are shifted down to make
room for the inserted cells.

kShiftCols 4 Columns in which the range resides are shifted right to make
room for the inserted cells.

Return Value Integer

See Also SSEditDelete and SSInsertRange functions

Example sserror = SSEditInsert(Sheet1.SS, kShiftHorizontal)

SSEditPaste
See also A-Z Function Call List

Description Pastes the contents of the clipboard to the selected range.

Syntax (VB) SSEditPaste% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEditPaste (HSS hSS)

hSS is a handle to a view.

Remarks SSEditPaste pastes information from the clipboard to the selected range in the
worksheet. How the information is pasted in the worksheet depends on the size of
the selected range.

If the selected range consists of a single cell, all information in the clipboard is pasted to the
worksheet.

If the selected range is smaller than the clipboard information, only as much information as will fit
in the range is pasted.

If the selected range is larger than the clipboard information, the clipboard information is
replicated to fill the range.

Formula One can also paste tab-delimited blocks of data from the clipboard.

Return Value Integer

See Also SSCanEditPaste, SSEditCopy, and SSEditCut functions

Example sserror = SSEditPaste(Sheet1.SS)

SSEndEdit
See also A-Z Function Call List

Description Ends edit mode and applies changes to the active cell.

Syntax (VB) SSEndEdit% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSEndEdit (HSS hSS)

hSS is a handle to a view.

Remarks SSEndEdit ends cell editing and applies any changes made during edit mode to the
active cell. If an invalid entry has been made (e.g., an incorrect formula), edit mode
cannot end. In this case, SSERROR_GENERAL is returned.

Return Value Integer

See Also SSCancelEdit and SSStartEdit functions

Example sserror = SSEndEdit(Sheet1.SS)

SSErrorNumberToText
See also A-Z Function Call List

Description Returns the error text corresponding to the specified error number.

Syntax (VB) SSErrorNumberToText% Lib "VTSSDLL.DLL" (ByVal nError%, ByVal pBuf$, ByVal
nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSErrorNumberToText (SSERROR nError, LPSTR
pBuf, int nBufSize)

nError is the number of the error for which to return error text.

pBuf is a string in which the error text is returned. The string must be of sufficient
length to hold the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must allocate space for the pBuf string
using Space$(n), where n is the nBufSize value you pass to the function.

Return Value Integer

Example sserror = SSErrorNumberToText(ErrorNumber, Buffer, Size)

SSFilePageSetupDlg
See also A-Z Function Call List

Description Displays the Page Setup dialog box.

Syntax (VB) SSFilePageSetupDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFilePageSetupDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Page Setup dialog box allows you to define header and footer text, page
margins, page print order, page centering, worksheet-related print options.

Return Value Integer

See Also SSFilePrint function

Example sserror = SSFilePageSetupDlg(Sheet1.SS)

SSFilePrint
See also A-Z Function Call List

Description Prints a worksheet.

Syntax (VB) SSFilePrint% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bShowPrintDlg%)

Syntax (VC++) SSERROR SSEXPORTAPI SSFilePrint (HSS hSS, BOOL bShowPrintDlg)

hSS is a handle to a view.

bShowPrintDlg sets the show print dialog flag.

Remarks SSFilePrint prints the worksheet or selections as directed by the user. If
bShowPrintDlg is True, the Print dialog box is displayed before printing. The Print
dialog box allows the user to set printing parameters such as the page range and
number of copies to print.

If the user defined name Print_Area is defined, only those ranges specified in
Print_Area are printed. If Print_Area is not defined, the entire worksheet is printed.

Return Value Integer

See Also SSFilePageSetupDlg and SSFilePrintSetupDlg functions

Example sserror = SSFilePrint(Sheet1.SS)

SSFilePrintSetupDlg
See also A-Z Function Call List

Description Displays the standard Windows Print Setup dialog box.

Syntax (VB) SSFilePrintSetupDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFilePrintSetupDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Print Setup dialog box allows you to select the printer to which the worksheet is
sent, the page orientation, and paper size.

Return Value Integer

See Also SSFilePageSetupDlg and SSFilePrint functions

Example sserror = SSFilePrintSetupDlg(Sheet1.SS)

SSFormatAlignmentDlg
See also A-Z Function Call List

Description Displays the Alignment dialog box.

Syntax (VB) SSFormatAlignmentDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatAlignmentDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Alignment dialog box allows you to specify the horizontal and vertical alignment
of data in the selected range. In addition, you can enable and disable word wrapping.

Return Value Integer

See Also SSSetAlignment function

Example sserror = SSFormatAlignmentDlg(Sheet1.SS)

SSFormatBorderDlg
See also A-Z Function Call List

Description Displays the Border dialog box.

Syntax (VB) SSFormatBorderDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatBorderDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Border dialog box allows you to specify the placement of borders in the selected
range. In addition, you can specify the border line style and color.

Return Value Integer

See Also SSSetBorder function

Example sserror = SSFormatBorderDlg(Sheet1.SS)

SSFormatCurrency0
See also A-Z Function Call List

Description Formats selected ranges with currency format and no decimal places.

Syntax (VB) SSFormatCurrency0% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatCurrency0 (HSS hSS)

hSS is a handle to a view.

Remarks Currency (0) format displays numbers with a leading dollar sign and no decimal
places.

Return Value Integer

See Also SSFormatCurrency2 and SSSetNumberFormat functions

Example sserror = SSFormatCurrency0(Sheet1.SS)

SSFormatCurrency2
See also A-Z Function Call List

Description Formats selected ranges with currency format and two decimal places.

Syntax (VB) SSFormatCurrency2% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatCurrency2 (HSS hSS)

hSS is a handle to a view.

Remarks Currency (2) format displays numbers with a leading dollar sign and two decimal
places.

Return Value Integer

See Also SSFormatCurrency0 and SSSetNumberFormat functions

Example sserror = SSFormatCurrency2(Sheet1.SS)

SSFormatFixed
See also A-Z Function Call List

Description Formats selected ranges with fixed format and no decimal places.

Syntax (VB) SSFormatFixed% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatFixed (HSS hSS)

hSS is a handle to a view.

Remarks Fixed format includes thousands separators (commas).

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatFixed(Sheet1.SS)

SSFormatFixed2
See also A-Z Function Call List

Description Formats selected ranges with fixed format and two decimal places.

Syntax (VB) SSFormatFixed2% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatFixed2 (HSS hSS)

hSS is a handle to a view.

Remarks Fixed format includes thousands separators (commas).

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatFixed2(Sheet1.SS)

SSFormatFontDlg
See also A-Z Function Call List

Description Displays the Font dialog box.

Syntax (VB) SSFormatFontDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatFontDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Font dialog box allows you to specify the font, point size, font style, and color of
data in the selected range.

Return Value Integer

See Also SSSetFont function

Example sserror = SSFormatFontDlg(Sheet1.SS)

SSFormatFraction
See also A-Z Function Call List

Description Formats the selected ranges with the fraction format.

Syntax (VB) SSFormatFraction% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatFraction (HSS hSS)

hSS is a handle to a view.

Remarks The fraction format displays numbers in a fractional format - with a numerator and
denominator separated by a slash (e.g. .5 is displayed as 1/2).

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatFraction(Sheet1.SS)

SSFormatGeneral
See also A-Z Function Call List

Description Formats the selected ranges with the general format.

Syntax (VB) SSFormatGeneral% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatGeneral (HSS hSS)

hSS is a handle to a view.

Remarks The general format displays numbers with as many decimal places as necessary;
thousands separators (commas) are not used.

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatGeneral(Sheet1.SS)

SSFormatHmmampm
See also A-Z Function Call List

Description Formats the selected ranges with the 12-hour time format.

Syntax (VB) SSFormatHmmampm% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatHmmampm (HSS hSS)

hSS is a handle to a view.

Remarks All selected ranges are formatted with the h:mm am/pm format (e.g., 1:00 am).

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatHmmampm(Sheet1.SS)

SSFormatMdyy
See also A-Z Function Call List

Description Formats the selected ranges with the date format.

Syntax (VB) SSFormatMdyy% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatMdyy (HSS hSS)

hSS is a handle to a view.

Remarks All selected ranges are formatted with the m/d/yy format (e.g., 12/31/93).

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatMdyy(Sheet1.SS)

SSFormatNumberDlg
See also A-Z Function Call List

Description Displays the Custom Number dialog box.

Syntax (VB) SSFormatNumberDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatNumberDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Custom Number dialog box allows you to define custom number formats for data
in the selected range.

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatNumberDlg(Sheet1.SS)

SSFormatPatternDlg
See also A-Z Function Call List

Description Displays the Pattern dialog box.

Syntax (VB) SSFormatPatternDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatPatternDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Pattern dialog box allows you to specify the fill pattern and foreground and
background colors for the selected range.

Return Value Integer

See Also SSSetPattern function

Example sserror = SSFormatPatternDlg(Sheet1.SS)

SSFormatPercent
See also A-Z Function Call List

Description Formats the selected ranges in percent format.

Syntax (VB) SSFormatPercent% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatPercent (HSS hSS)

hSS is a handle to a view.

Remarks Percent format displays numbers with a trailing percent sign and no decimal places.

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatPercent(Sheet1.SS)

SSFormatRCNr
See also A-Z Function Call List

Description Creates a string containing a formatted row and column reference.

Syntax (VB) SSFormatRCNr% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
ByVal bDoAbsolute%, ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatRCNr (HSS hSS, RC nRow, RC nCol, BOOL
bDoAbsolute, LPSTR pBuf, int nBufSize)

hSS is a handle to a view, though it is not used in this version of the program.

nRow and nCol are the row and column references to format.

bDoAbsolute specifies whether absolute or relative cell references are used. Use
True for absolute references, False for relative references.

pBuf is a string in which the reference is returned. This string must be of sufficient
length to hold the returned reference.

nBufSize if the size of the return buffer. If the string is larger than nBufSize, an error is
returned and an empty string is put in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSFormatRCNr formats a row and column reference and creates a string containing
the reference. The string is returned in pBuf.

Return Value Integer

See Also Selection property

Example sserror = SSFormatRCNr (Sheet1.SS, 2, 3, True, buff$, 10) '
Puts the null terminated string "C2" into buff$.

SSFormatScientific
See also A-Z Function Call List

Description Formats the selected ranges in scientific format.

Syntax (VB) SSFormatScientific% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSFormatScientific (HSS hSS)

hSS is a handle to a view.

Return Value Integer

See Also SSSetNumberFormat function

Example sserror = SSFormatScientific(Sheet1.SS)

SSGetActiveCell
See also A-Z Function Call List

Description Returns the row and column of the active cell.

Syntax (VB) SSGetActiveCell% Lib "VTSSDLL.DLL" (ByVal hSS&, pRow%, pCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetActiveCell (HSS hSS, LPRC pRow, LPRC pCol)

hSS is a handle to a view.

pRow and pCol return the row and column of the active cell.

Remarks The active cell is the cell on which the cursor is currently located.

Cell A1 is the active cell in this worksheet. The active cell is highlighted by a heavy border.
Return Value Integer

See Also SSSetActiveCell function and Col and Row properties

Example sserror = SSGetActiveCell(Sheet1.SS, therow, thecol)

SSGetAllowArrows
See also A-Z Function Call List

Description Returns the state of the allow arrows flag.

Syntax (VB) SSGetAllowArrows% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowArrows%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowArrows (HSS hSS, BOOL FAR
*pAllowArrows)

hSS is a handle to a view.

pAllowArrows is the destination of the allow arrows flag.

Remarks SSGetAllowArrows returns the state of the allow arrows flag. If the flag is True, the
arrow keys on your keyboard can move the active cell in the spreadsheet.

Return Value Integer

See Also SSSetAllowArrows function and AllowArrows property

Example sserror = SSGetAllowArrows(Sheet1.SS, allowarrows)

SSGetAllowDelete
See also A-Z Function Call List

Description Returns the state of the allow delete flag.

Syntax (VB) SSGetAllowDelete% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowDelete%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowDelete (HSS hSS, BOOL FAR
pAllowDelete)

hSS is a handle to a view.

pAllowDelete is the destination of the allow delete flag.

Remarks If the allow delete flag is True and data browsing mode is enabled, the delete key
deletes a record if an entire row is selected. The current selection is cleared if less
than a row is selected or if data browsing mode is disabled.

If the flag is False, the delete key does not delete records or clear selections.
By default, the allow delete flag is True.

Return Value Integer

See Also SSSetAllowDelete function and AllowDelete property

Example sserror = SSGetAllowDelete(Sheet1.SS, allowdelete)

SSGetAllowEditHeaders
See also A-Z Function Call List

Description Returns the state of the edit headers flag.

Syntax (VB) SSGetAllowEditHeaders% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowEditHeaders
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowEditHeaders (HSS hSS, BOOL FAR
*pAllowEditHeaders)

hSS is a handle to a view.

pAllowEditHeaders is the destination of the edit headers flag.

Remarks If the edit headers flag is True, the names displayed in row, column, and top left
headers can be edited by double clicking the header to be edited. The Header Name
dialog box is displayed, allowing you to enter a new header name.

If the flag is False, editing of headers is not allowed and a DblClick event is passed
when a header is double clicked.

Return Value Integer

See Also SSSetAllowEditHeaders function, AllowEditHeaders property, and DblClick event

Example sserror = SSGetAllowEditHeaders(Sheet1.SS, alloweditheaders)

SSGetAllowFillRange
See also A-Z Function Call List

Description Returns the state of the fill range flag.

Syntax (VB) SSGetAllowFillRange% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowFillRange%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowFillRange (HSS hSS, BOOL FAR
*pAllowFillRange)

hSS is a handle to a view.

pAllowFillRange is the destination of the fill range flag.

Remarks If the fill range flag is True, filling ranges by dragging a selection is allowed.

Return Value Integer

See Also SSSetAllowFillRange function and AllowFillRange property

Example sserror = SSGetAllowFillRange(Sheet1.SS, allowfillrange)

SSGetAllowFormulas
See also A-Z Function Call List

Description Returns the state of the user formulas flag.

Syntax (VB) SSGetAllowFormulas% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowFormulas%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowFormulas (HSS hSS, BOOL FAR
*pAllowFormulas)

hSS is a handle to a view.

pAllowFormulas is the destination of the user formulas flag.

Remarks If the user formulas flag is True, formulas can be added by the user at run time.

Return Value Integer

See Also SSSetAllowFormulas function and AllowFormulas property

Example sserror = SSGetAllowFormulas(Sheet1.SS, allowformulas)

SSGetAllowInCellEditing
See also A-Z Function Call List

Description Returns the state of the in-cell editing flag.

Syntax (VB) SSGetAllowInCellEditing% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowInCellEditing
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowInCellEditing (HSS hSS, BOOL FAR
*pAllowInCellEditing)

hSS is a handle to a view.

pAllowInCellEditing is the destination of the in-cell editing flag.

Remarks If the in-cell editing flag is True, in-cell editing is active and data can be entered and
edited in a cell without the use of the edit bar.

Return Value Integer

See Also SSSetAllowInCellEditing function and AllowInCellEditing property

Example sserror = SSGetAllowInCellEditing(Sheet1.SS,
allowincellediting)

SSGetAllowMoveRange
See also A-Z Function Call List

Description Returns the state of the move range flag.

Syntax (VB) SSGetAllowMoveRange% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowMoveRange
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowMoveRange (HSS hSS, BOOL FAR
*pAllowMoveRange)

hSS is a handle to a view.

pAllowMoveRange is the destination of the move range flag.

Remarks If the move range flag is True, moving ranges by dragging a cell is allowed.

Return Value Integer

See Also SSSetAllowMoveRange function and AllowMoveRange property

Example sserror = SSGetAllowMoveRange(Sheet1.SS, allowmoverange)

SSGetAllowResize
See also A-Z Function Call List

Description Returns the state of the resize flag.

Syntax (VB) SSGetAllowResize% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowResize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowResize (HSS hSS, BOOL FAR
*pAllowResize)

hSS is a handle to a view.

pAllowResize is the destination of the resize flag.

Remarks If the resize flag is True, rows and columns can be sized by dragging row or column
heading borders.

Return Value Integer

See Also SSSetAllowResize function and AllowResize property

Example sserror = SSGetAllowResize(Sheet1.SS, allowresize)

SSGetAllowSelections
See also A-Z Function Call List

Description Returns the state of the select range flag.

Syntax (VB) SSGetAllowSelections% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowSelections%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowSelections (HSS hSS, BOOL FAR
*pAllowSelections)

hSS is a handle to a view.

pAllowSelections is the destination of the select range flag.

Remarks If the select range flag is True, ranges can be selected with the keyboard and by
clicking and dragging with the mouse.

Return Value Integer

See Also SSSetAllowSelections function and AllowSelections property

Example sserror = SSGetAllowSelections(Sheet1.SS, allowselections)

SSGetAllowTabs
See also A-Z Function Call List

Description Returns the state of the allow tabs flag.

Syntax (VB) SSGetAllowTabs% Lib "VTSSDLL.DLL" (ByVal hSS&, pAllowTabs%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAllowTabs (HSS hSS, BOOL FAR *pAllowTabs)

hSS is a handle to a view.

pAllowTabs is the destination of the allow tabs flag.

Remarks If the allow tabs flag is True, the tab key can move the active cell through a selected
range. When tabbing through a range, the active cell moves from left to right through
each row in the range.

By default, the allow tabs flag is True.

Return Value Integer

See Also SSSetAllowTabs function and AllowTabs property

Example sserror = SSGetAllowTabs(Sheet1.SS, allowtabs)

SSGetAutoRecalc
Description Returns the state of the automatic recalc flag.

Syntax (VB) SSGetAutoRecalc% Lib "VTSSDLL.DLL" (ByVal hSS&, pAutoRecalc%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetAutoRecalc (HSS hSS, BOOL FAR
*pAutoRecalc)

hSS is a handle to a view.

pAutoRecalc is the destination of the automatic recalc flag.

Remarks If the automatic recalculation flag is True, automatic recalculation is enabled.

Return Value Integer

See Also SSRecalc and SSSetAutoRecalcfunctions and AutoRecalc property

Example sserror = SSGetAutoRecalc(Sheet1.SS, autorecalc)

SSGetBackColor
Description Returns the background color of the view.

Syntax (VB) SSGetBackColor% Lib "VTSSDLL.DLL" (ByVal hSS&, pBackColor&)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetBackColor (HSS hSS, COLORREF FAR
*pBackColor)

hSS is a handle to a view.

pBackColor is the destination of the background color value.

Remarks SSGetBackColor returns the background color of the worksheet attached to the
specified view. All cells within the view are set to the background color except those
with patterns.

Return Value Integer

See Also SSSetBackColor function and BackColor property

Example sserror = SSGetBackColor(Sheet1.SS, backcolor)

SSGetColWidth
See also A-Z Function Call List

Description Returns the width of the specified column.

Syntax (VB) SSGetColWidth% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol%, pWidth&)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetColWidth (HSS hSS, RC nCol, int FAR *pWidth)

hSS is a handle to a view.

nCol is the column number for which to return the width.

pWidth is the destination of the column width value.

Remarks SSGetColWidth returns the width of the specified column in units equal to 1/256th of
an average character's width in the default font.

Return Value Integer

See Also SSGetRowHeight and SSSetColWidth functions

Example sserror = SSGetColWidth(Sheet1.SS, 1, colwidth)

SSGetDefinedName
See also A-Z Function Call List

Description Returns the range definition for a user-defined range name.

Syntax (VB) SSGetDefinedName% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pName$, ByVal
pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetDefinedName (HSS hSS, LPCSTR pName,
LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pName is the range name for which the range definition is returned.

pBuf is the destination buffer of the range definition.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetDefinedName returns a string containing the range of the specified user-
defined name. For example, if the range B10:F10 is named TotalSales, a string is
returned containing the range reference B10:F10.

Return Value Integer

See Also SSDefinedNameDlg, SSDeleteDefinedName, and SSSetDefinedName functions

Example sserror = SSGetDefinedName(Sheet1.SS, name$, namebuf$, bufsize)

SSGetEnableProtection
See also A-Z Function Call List

Description Returns the enable protection flag.

Syntax (VB) SSGetEnableProtection% Lib "VTSSDLL.DLL" (ByVal hSS&, pEnableProtection%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetEnableProtection (HSS hSS, BOOL FAR
*pEnableProtection)

hSS is a handle to a view.

pEnableProtection is the destination of the enable protection flag.

Remarks If the enable protection flag is True, worksheet protection is enabled and worksheet
cells are locked and formulas are hidden. Cells can be marked as locked and hidden
using the SSSetProtection and SSProtectionDlg function calls.

Return Value Integer

See Also SSProtectionDlg, SSSetEnableProtection, and SSSetProtection functions and
EnableProtection property

Example sserror = SSGetEnableProtection(Sheet1.SS, enableprotection)

SSGetEnterMovesDown
See also A-Z Function Call List

Description Returns the enter moves down flag.

Syntax (VB) SSGetEnterMovesDown% Lib "VTSSDLL.DLL" (ByVal hSS&, pEnterMovesDown
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetEnterMovesDown (HSS hSS, BOOL FAR
*pEnterMovesDown)

hSS is a handle to a view.

pEnterMovesDown is the destination of the enter moves down flag.

Remarks If the enter moves down flag is True, the enter key moves the active cell down to the
next row, even if no range is selected. If False, the enter key does not advance the
active cell.

Return Value Integer

See Also SSSetEnterMovesDown function

Example sserror = SSGetEnterMovesDown(Sheet1.SS, entermovesdown)

SSGetEntry
See also A-Z Function Call List

Description Returns the text value of the active cell in the same format as displayed while in edit
mode.

Syntax (VB) SSGetEntry% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetEntry (HSS hSS, LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The text returned is in the same format as if you were entering or editing the cell's
value. If the cell contains a formula, the text of the formula is returned.

Return Value Integer

See Also SSGetEntryRC and SSSetEntry functions and Entry and Text properties

Example sserror = SSGetEntry(Sheet1.SS, textbuf$, bufsize)

SSGetEntryRC
See also A-Z Function Call List

Description Returns the text value of the specified cell in the same format as displayed while in
edit mode.

Syntax (VB) SSGetEntryRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetEntryRC (HSS hSS, RC nRow, RC nCol, LPSTR
pBuf, int nBufSize);

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which to return the
text.

pBuf is the destination buffer of the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The text returned is in the same format as if you were entering or editing the cell's
value. If the cell contains a formula, the text of the formula is returned.

Return Value Integer

See Also SSGetEntry and SSSetEntryRC functions and Entry and Text properties

Example sserror = SSGetEntryRC(Sheet1.SS, 1, 1, textbuf$, bufsize)

SSGetExtraColor
See also A-Z Function Call List

Description Returns the extra color.

Syntax (VB) SSGetExtraColor% Lib "VTSSDLL.DLL" (ByVal hSS&, pExtraColor&)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetExtraColor (HSS hSS, COLORREF FAR
*pExtraColor)

hSS is a handle to a view.

pExtraColor is the destination of the extra color value.

Remarks SSGetExtraColor returns the extra color that is used to fill the space in the view
window not covered by the worksheet. This space occurs when the worksheet is
smaller than the view window.

Return Value Integer

See Also SSSetExtraColor function and ExtraColor property

Example sserror = SSGetExtraColor(Sheet1.SS, extracolor)

SSGetFireEvent
See also A-Z Function Call List

Description Returns the flag that indicates whether the given event is enabled.

Syntax (VB) SSGetFireEvent% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nEvent%, pFireIt%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFireEvent (HSS hSS, UINT nEvent, BOOL FAR
*pFireIt)

hSS is a handle to a view.

nEvent is the event to test.

pFireIt is the destination of the event enabled value.

Remarks See the event list in SSSetFireEvent.

Return Value Integer

See Also SSSetFireEvent function

Example sserror = SSGetFireEvent(Sheet1.SS, SSM_STARTEDIT, fireit)

SSGetFixedCols
See also A-Z Function Call List

Description Returns the starting fixed column and the number of fixed columns in a view.

Syntax (VB) SSGetFixedCols% Lib "VTSSDLL.DLL" (ByVal hSS&, pCol1%, pCols%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFixedCols (HSS hSS, LPRC pCol1, LPRC pCols)

hSS is a handle to a view.

pCol1 is the destination of the starting fixed column.

pCols is the destination of the number of fixed columns.

Remarks Fixed columns are columns that do not scroll. The columns are fixed at the left edge
of the worksheet window.

Return Value Integer

See Also SSSetFixedCols function and FixedCol and FixedCols properties

Example sserror = SSGetFixedCols(Sheet1.SS, startcol, numbercols)

SSGetFixedRows
See also A-Z Function Call List

Description Returns the starting fixed row and the number of fixed rows in a view.

Syntax (VB) SSGetFixedRows% Lib "VTSSDLL.DLL" (ByVal hSS&, pRow1%, pRows%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFixedRows (HSS hSS, LPRC pRow1, LPRC
pRows)

hSS is a handle to a view.

pRow1 is the destination of the starting fixed row.

pRows is the destination of the number of fixed rows.

Remarks Fixed rows are rows that do not scroll. The rows are fixed at the top of the worksheet
window.

Return Value Integer

See Also SSSetFixedRows function and FixedRow and FixedRows properties

Example sserror = SSGetFixedRows(Sheet1.SS, startrow, numberrows)

SSGetFormattedText
See also A-Z Function Call List

Description Returns the formatted text value of the active cell.

Syntax (VB) SSGetFormattedText% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal
nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFormattedText (HSS hSS, LPSTR pBuf, int
nBufSize);

hSS is a handle to a view.

pBuf is the destination buffer of the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetFormattedText returns the text as it is seen in the spreadsheet, including all
formatting.

Return Value Integer

See Also SSGetEntry, SSGetFormattedTextRC, and SSSetEntry functions and Entry,
FormattedText, and Text properties

Example sserror = SSGetFormattedText(Sheet1.SS, textbuf$, bufsize)

SSGetFormattedTextRC
See also A-Z Function Call List

Description Returns the formatted text value of the specified cell.

Syntax (VB) SSGetFormattedTextRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal
nCol%, ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFormattedTextRC (HSS hSS, RC nRow, RC
nCol, LPSTR pBuf, int nBufSize);

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which to return the
text.

pBuf is the destination buffer of the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetFormattedTextRC returns the text as it is seen in the spreadsheet, including
all formatting.

Return Value Integer

See Also SSGetEntryRC, SSGetFormattedText, and SSSetEntryRC functions and Entry,
FormattedText, and Text properties

Example sserror = SSGetFormattedTextRC(Sheet1.SS, 1, 1, textbuf$,
bufsize)

SSGetFormula
See also A-Z Function Call List

Description Returns the text version of the formula in the active cell.

Syntax (VB) SSGetFormula% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal nBufSize
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFormula (HSS hSS, LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the returned formula text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Return Value Integer

See Also SSGetFormulaRC, SSSetFormula and SSSetFormulaRC functions and Formula
property

Example sserror = SSGetFormula(Sheet1.SS, formulabuf$, bufsize)

SSGetFormulaRC
See also A-Z Function Call List

Description Returns the text version of the formula of the specified cell.

Syntax (VB) SSGetFormulaRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol
%, ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetFormulaRC (HSS hSS, RC nRow, RC nCol,
LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which to return the
formula text.

pBuf is the destination buffer of the returned formula text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Return Value Integer

See Also SSGetFormula and SSSetFormulaRC functions and Formula property

Example sserror = SSGetFormulaRC(Sheet1.SS, 1, 1, formulabuf$, bufsize)

SSGetHdrSelection
See also A-Z Function Call List

Description Returns the state of the header selection flags.

Syntax (VB) SSGetHdrSelection% Lib "VTSSDLL.DLL" (ByVal hSS&, pTopLeftHdr%, pRowHdr
%, pColHdr%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetHdrSelection (HSS hSS, BOOL FAR
*pTopLeftHdr, BOOL FAR *pRowHdr, BOOL FAR *pColHdr)

hSS is a handle to a view.

pTopLeftHdr is the destination of the top left header selection flag.

pRowHdr is the destination of the row header selection flag.

pColHdr is the destination of the column header selection flag.

Remarks SSGetHdrSelection returns the states of the header selection flags. The flags
determine if the row headings, column headings, and the cell at the intersection of
the row and column headings are selected. If a flag is True, the corresponding
heading is selected. If False, the heading is not selected.

Return Value Integer

See Also SSSetHdrSelection function

Example sserror = SSGetHdrSelection(Sheet1.SS, toplefthdr, rowhdr,
colhdr)

SSGetIteration
See also A-Z Function Call List

Description Returns iteration information.

Syntax (VB) SSGetIteration% Lib "VTSSDLL.DLL" (ByVal hSS&, pIteration%, pMaxIterations%,
pMaxChange#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetIteration (HSS hSS, BOOL FAR *pIteration, int
FAR *pMaxIterations, double FAR *pMaxChange)

hSS is a handle to a view.

pIteration is the destination of the iteration flag.

pMaxIterations is the destination of the maximum iterations value.

pMaxChange is the destination of the maximum change value.

Remarks SSGetIteration returns the iteration flag, maximum number of iterations, and the
maximum change value. Iteration can be used to solve circular references. The
program calculates until it iterates the number of times specified by pMaxIterations or
until all cells change by less than the amount specified in pMaxChange.

Return Value Integer

See Also SSSetIteration function

Example sserror = SSGetIteration(Sheet1.SS, iteration, maxiterations,
maxchange)

SSGetLastCol
See also A-Z Function Call List

Description Returns the number of the last occupied column.

Syntax (VB) SSGetLastCol% Lib "VTSSDLL.DLL" (ByVal hSS&, pLastCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetLastCol (HSS hSS, LPRC pLastCol)

hSS is a handle to a view.

pLastCol is the destination for the last column value.

Remarks SSGetLastCol returns the last column that is not empty, including columns that
contain only formatting.

Return Value Integer

See Also SSGetLastRow and SSGetLastColForRow functions

Example sserror = SSGetLastCol(Sheet1.SS, lastcol)

SSGetLastColForRow
See also A-Z Function Call List

Description Returns the last occupied column in the specified row.

Syntax (VB) SSGetLastColForRow% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%,
pLastColForRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetLastColForRow (HSS hSS, RC nRow, LPRC
pLastColForRow)

hSS is a handle to a view.

nRow is the row number for which to set the tag.

pLastColForRow is the destination of the last column value.

Remarks SSGetLastColForRow returns the last column in the specified row that is not empty,
including columns that contain only formatting.

Return Value Integer

See Also SSGetLastCol and SSGetLastRow functions

Example sserror = SSGetLastColForRow(Sheet1.SS, 1, lastcol)

SSGetLastRow
See also A-Z Function Call List

Description Returns the number of the last occupied row.

Syntax (VB) SSGetLastRow% Lib "VTSSDLL.DLL" (ByVal hSS&, pLastRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetLastRow (HSS hSS, LPRC pLastRow)

hSS is a handle to a view.

pLastRow is the destination for the last row value.

Remarks SSGetLastRow returns the last row that is not empty, including rows that contain
only formatting.

Return Value Integer

See Also SSGetLastCol and SSGetLastColForRow functions

Example sserror = SSGetLastRow(Sheet1.SS, lastrow)

SSGetLeftCol
See also A-Z Function Call List

Description Returns the leftmost column displayed in the view.

Syntax (VB) SSGetLeftCol% Lib "VTSSDLL.DLL" (ByVal hSS&, pLeftCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetLeftCol (HSS hSS, LPRC pLeftCol)

hSS is a handle to a view.

pLeftCol is the destination of the left column value.

Return Value Integer

See Also SSSetLeftCol function and LeftCol property

Example sserror = SSGetLeftCol(Sheet1.SS, leftcol)

SSGetLogicalRC
See also A-Z Function Call List

Description Returns the logical (True or False) value of the specified cell.

Syntax (VB) SSGetLogicalRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol
%, plsTrue%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetLogicalRC (HSS hSS, RC nRow, RC nCol, BOOL
FAR *plsTrue)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which the logical
value is returned.

plsTrue is the destination of the cell's logical value.

Remarks SSGetLogicalRC returns the logical value of the specified cell. If the cell contains a
number, True is returned for nonzero values, and False for zero values. If the cell has
text that can be converted to a number, the text is converted and treated as a
numeric cell. If the cell contains a formula, the above rules apply depending on the
formula's result. All other cells, including empty cells, return False.

Return Value Integer

See Also SSSetLogicalRC function

Example sserror = SSGetLogicalRC(Sheet1.SS, 1, 1, logicalvalue)

SSGetMaxCol
See also A-Z Function Call List

Description Returns the last displayable column in a view.

Syntax (VB) SSGetMaxCol% Lib "VTSSDLL.DLL" (ByVal hSS&, pMaxCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetMaxCol (HSS hSS, LPRC pMaxCol)

hSS is a handle to a view.

pMaxCol is the destination of the maximum column value.

Remarks Columns beyond the last column are not displayed but can be used to hold data and
formulas.

Return Value Integer

See Also SSSetMaxCol function and MaxCol property

Example sserror = SSGetMaxCol(Sheet1.SS, maxcol)

SSGetMaxRow
See also A-Z Function Call List

Description Returns the last displayable row in a view.

Syntax (VB) SSGetMaxRow% Lib "VTSSDLL.DLL" (ByVal hSS&, pMaxRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetMaxRow (HSS hSS, LPRC pMaxRow)

hSS is a handle to a view.

pMaxRow is the destination of the maximum row value.

Remarks Rows beyond the last row are not displayed but can be used to hold data and
formulas.

Return Value Integer

See Also SSSetMaxRow function and MaxRow property

Example sserror = SSGetMaxRow(Sheet1.SS, maxrow)

SSGetMinCol
See also A-Z Function Call List

Description Returns the first column that can be displayed in a view.

Syntax (VB) SSGetMinCol% Lib "VTSSDLL.DLL" (ByVal hSS&, pMinCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetMinCol (HSS hSS, LPRC pMinCol)

hSS is a handle to a view.

pMinCol is the destination of the minimum column value.

Return Value Integer

See Also SSSetMinCol function and MinCol property

Example sserror = SSGetMinCol(Sheet1.SS, mincol)

SSGetMinRow
See also A-Z Function Call List

Description Returns the first row that can be displayed in a view.

Syntax (VB) SSGetMinRow% Lib "VTSSDLL.DLL" (ByVal hSS&, pMinRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetMinRow (HSS hSS, LPRC pMinRow)

hSS is a handle to a view.

pMinRow is the destination of the minimum row value.

Return Value Integer

See Also SSSetMinRow function and MinRow property

Example sserror = SSGetMinRow(Sheet1.SS, minrow)

SSGetNumber
See also A-Z Function Call List

Description Returns the numeric value of the active cell.

Syntax (VB) SSGetNumber% Lib "VTSSDLL.DLL" (ByVal hSS&, pNumber#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetNumber (HSS hSS, double FAR *pNumber)

hSS is a handle to a view.

pNumber is the destination of the cell value.

Remarks If the active cell contains a formula, the numeric result of the formula is returned. If
the cell contains text, an attempt is made to convert the text to a number. If the text
cannot be converted, 0 is returned.

Return Value Integer

See Also SSGetNumberRC and SSSetNumber functions and Number property

Example sserror = SSGetNumber(Sheet1.SS, thenumber)

SSGetNumberRC
See also A-Z Function Call List

Description Returns the numeric value of the specified cell.

Syntax (VB) SSGetNumberRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol
%, pNumber#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetNumberRC (HSS hSS, RC nRow, RC nCol,
double FAR *pNumber)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which to return the
numeric value.

pNumber is the destination of the cell value.

Remarks If the specified cell contains a formula, the numeric result of the formula is returned. If
the cell contains text, an attempt is made to convert the text to a number. If the text
cannot be converted, 0 is returned.

Return Value Integer

See Also SSSetNumber, SSSetNumberRC functions and Number property

Example sserror = SSGetNumberRC(Sheet1.SS, 1, 1, thenumber)

SSGetPrintArea
See also A-Z Function Call List

Description Returns the current print area.

Syntax (VB) SSGetPrintArea% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal nBufSize
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintArea (HSS hSS, LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the print area formula.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetPrintArea returns a string containing a formula for the Print_Area user defined
name. The formula can contain one or more ranges (e.g., A1:C3, A11:C13).

Return Value Integer

See Also SSSetPrintArea function and PrintArea property

Example sserror = SSGetPrintArea(Sheet1.SS, areabuf$, bufsize)

SSGetPrintBottomMargin
See also A-Z Function Call List

Description Returns the bottom page margin used during printing.

Syntax (VB) SSGetPrintBottomMargin% Lib "VTSSDLL.DLL" (ByVal hSS&,
pPrintBottomMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintBottomMargin (HSS hSS, double FAR
*pPrintBottomMargin)

hSS is a handle to a view.

pPrintBottomMargin is the destination of the bottom margin value.

Remarks Page margins can range from 0 to 48 inches.

Return Value Integer

See Also SSSetPrintBottomMargin function and PrintBottomMargin property

Example sserror = SSGetPrintBottomMargin(Sheet1.SS, bottommargin)

SSGetPrintColHeading
See also A-Z Function Call List

Description Returns the print column heading flag.

Syntax (VB) SSGetPrintColHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintColHeading%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintColHeading (HSS hSS, BOOL FAR
*pPrintColHeading)

hSS is a handle to a view.

pPrintColHeading is the destination of the print column heading flag.

Remarks If the print column heading flag is True, column headings are enabled and printed at
the top of the worksheet.

Return Value Integer

See Also SSSetPrintColHeading function and PrintColHeading property

Example sserror = SSGetPrintColHeading(Sheet1.SS, colheading)

SSGetPrintFooter
See also A-Z Function Call List

Description Returns the current page footer.

Syntax (VB) SSGetPrintFooter% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal
nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintFooter (HSS hSS, LPSTR pBuf, int
nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the footer string.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The page footer is printed at the bottom of each page.

Return Value Integer

See Also SSSetPrintFooter function and PrintFooter property

Example sserror = SSGetPrintFooter(Sheet1.SS, footbuf$, bufsize)

SSGetPrintGridLines
See also A-Z Function Call List

Description Returns the print grid lines flag.

Syntax (VB) SSGetPrintGridLines% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintGridLines%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintGridLines (HSS hSS, BOOL FAR
*pPrintGridLines)

hSS is a handle to a view.

pPrintGridLines is the destination of the print grid lines flag.

Remarks If the print grid lines flag is True, grid lines are printed.

Return Value Integer

See Also SSSetPrintGridLines function and PrintGridLines property

Example sserror = SSGetPrintGridLines(Sheet1.SS, gridlines)

SSGetPrintHCenter
See also A-Z Function Call List

Description Returns the horizontal center flag.

Syntax (VB) SSGetPrintHCenter% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintHCenter%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintHCenter (HSS hSS, BOOL FAR
*pPrintHCenter)

hSS is a handle to a view.

pPrintHCenter is the destination of the horizontal center flag.

Remarks If the horizontal center flag is True, the worksheet is centered horizontally on the
page when printed.

Return Value Integer

See Also SSSetPrintHCenter function and PrintHCenter property

Example sserror = SSGetPrintHCenter(Sheet1.SS, hcenter)

SSGetPrintHeader
See also A-Z Function Call List

Description Returns the page header.

Syntax (VB) SSGetPrintHeader% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal
nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintHeader (HSS hSS, LPSTR pBuf, int
nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the page header.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The page header is printed at the top of each page.

Return Value Integer

See Also SSSetPrintHeader function and PrintHeader property

Example sserror = SSGetPrintHeader(Sheet1.SS, headerbuf$, bufsize)

SSGetPrintLeftMargin
See also A-Z Function Call List

Description Returns the left page margin used during printing.

Syntax (VB) SSGetPrintLeftMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintLeftMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintLeftMargin (HSS hSS, double FAR
*pPrintLeftMargin)

hSS is a handle to a view.

pPrintLeftMargin is the destination of the left margin value.

Remarks Page margins can range from 0 to 48 inches.

Return Value Integer

See Also SSSetPrintLeftMargin function and PrintLeftMargin property

Example sserror = SSGetPrintLeftMargin(Sheet1.SS, leftmargin)

SSGetPrintLeftToRight
See also A-Z Function Call List

Description Returns the left to right flag.

Syntax (VB) SSGetPrintLeftToRight% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintLeftToRight%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintLeftToRight (HSS hSS, BOOL FAR
*pPrintLeftToRight)

hSS is a handle to a view.

pPrintLeftToRight is the destination of the left to right flag.

Remarks If the left to right flag is True, pages in a worksheet are printed left to right before
printing top to bottom.

Return Value Integer

See Also SSSetPrintLeftToRight function and PrintLeftToRight property

Example sserror = SSGetPrintLeftToRight(Sheet1.SS, lefttoright)

SSGetPrintNoColor
See also A-Z Function Call List

Description Returns the print no color flag.

Syntax (VB) SSGetPrintNoColor% Lib "VTSSDLL.DLL" (ByVal hSS&, pNoColor%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintNoColor (HSS hSS, BOOL FAR *pNoColor)

hSS is a handle to a view.

pNoColor is the destination of the print no color flag.

Remarks Color formats are translated by the printer driver and printed as patterns. This
translation sometimes makes text unreadable. If the print no color flag is True, all
worksheet colors are converted to black and white, and all patterns are removed. A
cleaner output is produced.

Return Value Integer

See Also SSSetPrintNoColor function and PrintNoColor property

Example sserror = SSGetPrintNoColor(Sheet1.SS, nocolor)

SSGetPrintRightMargin
See also A-Z Function Call List

Description Returns the right page margin used during printing.

Syntax (VB) SSGetPrintRightMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintRightMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintRightMargin (HSS hSS, double FAR
*pPrintRightMargin)

hSS is a handle to a view.

pPrintRightMargin is the destination of the right margin value.

Remarks Page margins can range from 0 to 48 inches.

Return Value Integer

See Also SSSetPrintRightMargin function and PrintRightMargin property

Example sserror = SSGetPrintRightMargin(Sheet1.SS, rightmargin)

SSGetPrintRowHeading
See also A-Z Function Call List

Description Returns the print row heading flag.

Syntax (VB) SSGetPrintRowHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintRowHeading
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintRowHeading (HSS hSS, BOOL FAR
*pPrintRowHeading)

hSS is a handle to a view.

pPrintRowHeading is the destination of the print row heading flag.

Remarks If the print row heading flag is True, row headings are enabled and printed at the left
edge of the worksheet.

Return Value Integer

See Also SSSetPrintRowHeading function and PrintRowHeading property

Example sserror = SSGetPrintRowHeading(Sheet1.SS, rowheading)

SSGetPrintTitles
See also A-Z Function Call List

Description Returns the print titles.

Syntax (VB) SSGetPrintTitles% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal nBufSize
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintTitles (HSS hSS, LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the print titles.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetPrintTitles returns a string containing the formula for the Print_Titles user
defined name. Print titles are row or column titles that are printed on each page. Row
titles are printed at the top of each new page; column titles are printed on the left of
each new page. If the function returns null (""), no titles are printed.

Return Value Integer

See Also SSSetPrintTitles function and PrintTitles property

Example sserror = SSGetPrintTitles(Sheet1.SS, titlebuf$, bufsize)

SSGetPrintTopMargin
See also A-Z Function Call List

Description Returns the top page margin used during printing.

Syntax (VB) SSGetPrintTopMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintTopMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintTopMargin (HSS hSS, double FAR
*pPrintTopMargin)

hSS is a handle to a view.

pPrintTopMargin is the destination of the top margin value.

Remarks Page margins can range from 0 to 48 inches.

Return Value Integer

See Also SSSetPrintTopMargin function and PrintTopMargin property

Example sserror = SSGetPrintTopMargin(Sheet1.SS, topmargin)

SSGetPrintVCenter
See also A-Z Function Call List

Description Returns the vertical center flag.

Syntax (VB) SSGetPrintVCenter% Lib "VTSSDLL.DLL" (ByVal hSS&, pPrintVCenter%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetPrintVCenter (HSS hSS, BOOL FAR
*pPrintVCenter)

hSS is a handle to a view.

pPrintVCenter is the destination of the vertical center flag.

Remarks If the vertical center flag is True, the worksheet is centered vertically on the page
when printed.

Return Value Integer

See Also SSSetPrintVCenter function and PrintVCenter property

Example sserror = SSGetPrintVCenter(Sheet1.SS, vcenter)

SSGetRepaint
See also A-Z Function Call List

Description Returns the repaint flag.

Syntax (VB) SSGetRepaint% Lib "VTSSDLL.DLL" (ByVal hSS&, pRepaint%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetRepaint (HSS hSS, BOOL FAR *pRepaint)

hSS is a handle to a view.

pRepaint is the destination of the repaint flag.

Remarks If the repaint flag is True, repainting occurs in the entire window when Windows
sends a WM_PAINT message. No repainting occurs when the repaint flag is False.

Return Value Integer

See Also SSSetRepaint function and Repaint property

Example sserror = SSGetRepaint(Sheet1.SS, repaint)

SSGetRowHeight
See also A-Z Function Call List

Description Returns the height of the specified row.

Syntax (VB) SSGetRowHeight% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, pHeight%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetRowHeight (HSS hSS, RC nRow, int FAR
*pHeight)

hSS is a handle to a view.

nRow is the row for which to return the height.

pHeight is the destination of the row height value.

Remarks SSGetRowHeight returns the height of the specified row in twips. A twip is 1/1440th
of an inch.

Return Value Integer

See Also SSGetColWidth and SSSetRowHeight functions

Example sserror = SSGetRowHeight(Sheet1.SS, 1, height)

SSGetRowMode
See also A-Z Function Call List

Description Returns the row mode flag.

Syntax (VB) SSGetRowMode% Lib "VTSSDLL.DLL" (ByVal hSS&, pRowMode%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetRowMode (HSS hSS, BOOL FAR *pRowMode)

hSS is a handle to a view.

pRowMode is the destination of the row mode flag.

Remarks If the row mode flag is True, an entire row is selected when you select a cell. Normal
cell selection occurs when the flag is False.

Return Value Integer

See Also SSSetRowMode function and RowMode property

Example sserror = SSGetRowmode(Sheet1.SS, rowmode)

SSGetSelection
See also A-Z Function Call List

Description Returns the start and end row and column of the specified selection.

Syntax (VB) SSGetSelection% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nSel%, pRow1%,
pCol1%, pRow2%, pCol2%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetSelection (HSS hSS, int nSel, LPRC pRow1,
LPRC pCol1, LPRC pRow2, LPRC pCol2)

hSS is a handle to a view.

nSel is the selection number for which to return the row and column.

pRow1, pCol1, pRow2, and pCol2 are the returned row and column numbers.

Remarks SSGetSelection returns the start and end row and column numbers for the specified
selection. An index of 0 returns the row and column coordinates of the first selection.

Return Value Integer

See Also SSGetSelectionCount and SSSetSelection functions and Selection property

Example sserror = SSGetSelection(Sheet1.SS, 0, row1, col1, row2, col2)

SSGetSelectionCount
See also A-Z Function Call List

Description Returns the number of selected ranges.

Syntax (VB) SSGetSelectionCount% Lib "VTSSDLL.DLL" (ByVal hSS&, pCount%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetSelectionCount (HSS hSS, int FAR *pCount)

hSS is a handle to a view.

pCount is the destination of the selected ranges count.

Return Value Integer

See Also SSAddSelection function and Selection property

Example sserror = SSGetSelectionCount(Sheet1.SS, selcount)

SSGetSelectionRef
See also A-Z Function Call List

Description Returns the current selection as a formula.

Syntax (VB) SSGetSelectionRef% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal
nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetSelectionRef (HSS hSS, LPSTR pBuf, int
nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer for the current selection formula.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetSelectionRef returns the current selection as a formula without the leading
equal sign (=).

Return Value Integer

See Also SSGetSelection function and Selection property

Example sserror = SSGetSelectionRef(Sheet1.SS, selectionbuf$, bufsize)

SSGetShowColHeading
See also A-Z Function Call List

Description Returns the show column heading flag.

Syntax (VB) SSGetShowColHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowColHeading%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowColHeading (HSS hSS, BOOL FAR
*pShowColHeading)

hSS is a handle to a view.

pShowColHeading is the destination of the show column heading flag.

Remarks If the show column heading flag is True, column headings are displayed.

Return Value Integer

See Also SSSetShowColHeading function and ShowColHeading property

Example sserror = SSGetShowColHeading(Sheet1.SS, showcolheading)

SSGetShowFormulas
See also A-Z Function Call List

Description Returns the show formulas flag.

Syntax (VB) SSGetShowFormulas% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowFormulas%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowFormulas (HSS hSS, BOOL FAR
*pShowFormulas)

hSS is a handle to a view.

pShowFormulas is the destination of the show formulas flag.

Remarks If the show formulas flag is True, formula text is displayed in cells instead of the
values formulas produce.

Return Value Integer

See Also SSSetShowFormulas function

Example sserror = SSGetShowFormulas(Sheet1.SS, showformulas)

SSGetShowGridLines
See also A-Z Function Call List

Description Returns the show grid lines flag.

Syntax (VB) SSGetShowGridLines% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowGridLines%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowGridLines (HSS hSS, BOOL FAR
*pShowGridLines)

hSS is a handle to a view.

pShowGridLines is the destination of the show grid lines flag.

Remarks If the show grid lines flag is True, grid lines are displayed.

Return Value Integer

See Also SSSetShowGridLines function and ShowGridLines property

Example sserror = SSGetShowGridLines(Sheet1.SS, gridlines)

SSGetShowHScrollBar
See also A-Z Function Call List

Description Returns the show horizontal scroll bar flag.

Syntax (VB) SSGetShowHScrollBar% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowHScrollBar%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowHScrollBar (HSS hSS, int FAR
*pShowHScrollBar)

hSS is a handle to a view.

pShowHScrollBar is the destination of the show horizontal scroll bar flag.

Remarks The show horizontal scroll bar flag has three settings. The following table lists the
settings for this flag.

Setting Description

0 Off

1 On

2 Automatic

If the flag is 0, the horizontal scroll bar is hidden. If the flag is 1, the horizontal scroll
bar is displayed. If the flag is 2, the horizontal scroll bar is displayed if the worksheet
is wider than the window and the worksheet is active.

Return Value Integer

See Also SSGetShowVScrollBar and SSSetShowHScrollBar functions and
ShowHScrollBar property

Example sserror = SSGetShowHScrollBar(Sheet1.SS, hscrollbars)

SSGetShowRowHeading
See also A-Z Function Call List

Description Returns the show row heading flag.

Syntax (VB) SSGetShowRowHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowRowHeading
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowRowHeading (HSS hSS, BOOL FAR
*pShowRowHeading)

hSS is a handle to a view.

pShowRowHeading is the destination of the show row heading flag.

Remarks If the show row heading flag is True, row headings are displayed.

Return Value Integer

See Also SSSetShowRowHeading function and ShowRowHeading property

Example sserror = SSGetShowRowHeading(Sheet1.SS, rowheading)

SSGetShowSelections
See also A-Z Function Call List

Description Returns the show selections flag.

Syntax (VB) SSGetShowSelections% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowSelections%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowSelections (HSS hSS, int FAR
*pShowSelections)

hSS is a handle to a view.

pShowSelections is the destination of the show selections flag.

Remarks If the show selections flag is True, selections are displayed.

Return Value Integer

See Also SSSetShowSelections function and ShowSelections property

Example sserror = SSGetShowSelections(Sheet1.SS, showselections)

SSGetShowVScrollBar
See also A-Z Function Call List

Description Returns the show vertical scroll bar flag.

Syntax (VB) SSGetShowVScrollBar% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowVScrollBar%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowVScrollBar (HSS hSS, int FAR
*pShowVScrollBar)

hSS is a handle to a view.

pShowVScrollBar is the destination of the show vertical scroll bar flag.

Remarks The show vertical scroll bar flag has three settings. The following table lists the
settings for this flag.

Setting Description

0 Off

1 On

2 Automatic

If the flag is 0, the vertical scroll bar is hidden. If the flag is 1, the vertical scroll bar is
displayed. If the flag is 2, the vertical scroll bar is displayed if the worksheet is taller
than the window and the worksheet is active.

Return Value Integer

See Also SSGetShowHScrollBar and SSSetShowVScrollBar functions and
ShowVScrollBar property

Example sserror = SSGetShowVScrollBar(Sheet1.SS, vscrollbar)

SSGetShowZeroValues
See also A-Z Function Call List

Description Returns the show zero values flag.

Syntax (VB) SSGetShowZeroValues% Lib "VTSSDLL.DLL" (ByVal hSS&, pShowZeroValues%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetShowZeroValues (HSS hSS, BOOL FAR
*pShowZeroValues)

hSS is a handle to a view.

pShowZeroValues is the destination of the show zero values flag.

Remarks If the show zero values flag is True, cells with zero values are displayed. If False,
zero value cells are displayed as blanks.

Return Value Integer

See Also SSSetShowZeroValues function

Example sserror = SSGetShowZeroValues(Sheet1.SS, zerovalues)

SSGetSSEdit
See also A-Z Function Call List

Description Returns the handle of the edit bar attached to the view.

Syntax (VB) SSGetSSEdit% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pSSEdit&)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetSSEdit (HSS hSS, HSSEDIT *pSSEdit)

hSS is a handle to a view.

pSSEdit is the destination of the returned edit bar handle.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSSetSSEdit function and EditName property

SSGetText
See also A-Z Function Call List

Description Returns the text value of the active cell.

Syntax (VB) SSGetText% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetText (HSS hSS, LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pBuf is the destination buffer of the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetText returns the text value of the active cell. If the cell contains a formula, the
result of the formula is returned.

Return Value Integer

See Also SSGetTextRC and SSSetText functions and Text property

Example sserror = SSGetText(Sheet1.SS, textbuf$, bufsize)

SSGetTextRC
See also A-Z Function Call List

Description Returns the text value of the specified cell.

Syntax (VB) SSGetTextRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetTextRC (HSS hSS, RC nRow, RC nCol, LPSTR
pBuf, int nBufSize)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which text is
returned.

pBuf is the destination buffer of the returned text.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks SSGetTextRC returns the text value of the specified cell. If the cell contains a
formula, the text result of the formula is returned.

Return Value Integer

See Also SSGetText, SSSetTextRC functions and Text property

Example sserror = SSGetText(Sheet1.SS, 1, 1, textbuf$, bufsize)

SSGetTitle
See also A-Z Function Call List

Description Returns the title of the worksheet.

Syntax (VB) SSGetTitle% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetTitle (HSS hSS, LPSTR pBuf, int nBufSize)

hSS is a handle to a view.

pBuf is a string in which the title is returned. A title can be of any length. This string
must be of sufficient length to hold the returned title.

nBufSize is the size of the string in which the title is returned. If the title is longer than
nBufSize, an error is returned and an empty string is returned in pBuf.

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The title of a worksheet can be used in external references to access multiple
worksheets.

Return Value Integer

See Also SSAttach and SSSetTitle functions

Example sserror = SSGetTitle(Sheet1.SS, titlebuf$, bufsize)

SSGetTopRow
See also A-Z Function Call List

Description Returns the top row displayed in the view.

Syntax (VB) SSGetTopRow% Lib "VTSSDLL.DLL" (ByVal hSS&, pTopRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetTopRow (HSS hSS, LPRC pTopRow)

hSS is a handle to a view.

pTopRow is the destination of the top row value.

Return Value Integer

See Also SSSetTopRow function and TopRow property

Example sserror = SSGetTopRow(Sheet1.SS, toprow)

SSGetTypeRC
See also A-Z Function Call List

Description Returns the cell type of the specified cell.

Syntax (VB) SSGetTypeRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
pType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSGetTypeRC (HSS hSS, RC nRow, RC nCol, int FAR
*pType);

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell from which to return the
type.

pType is the returned cell type.

Remarks The following table lists the cell types that can be returned.

Value Cell Type
-0 Empty

-1 Number

-1 Formula returning number

-2 Text

-2 Formula returning text

-3 Logical

-3 Formula returning logical

-4 Error

-4 Formula returning error

Return Value Integer

See Also Entry, Formula, and Text properties

Example sserror = SSGetTypeRC(Sheet1.SS, 1, 1, type)

SSGotoDlg
See also A-Z Function Call List

Description Displays the Goto dialog box.

Syntax (VB) SSGotoDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSGotoDlg (HSS hSS)

hSS is a handle to a view.

Remarks SSGotoDlg displays the Goto dialog box. This dialog box allows you to select the
worksheet page to display.

Return Value Integer

Example sserror = SSGotoDlg(Sheet1.SS)

SSInitTable
See also A-Z Function Call List

Description Initializes a view.

Syntax (VB) SSInitTable% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSInitTable (HSS hSS)

hSS is a handle to a view.

Remarks SSInitTable initializes the worksheet attached to a view. If there is no worksheet
attached to the view, a new worksheet is created. Use this function after calling
SSNew.

Return Value Integer

See Also SSDelete and SSNew functions

SSInsertRange
See also A-Z Function Call List

Description Inserts cells, rows, or columns in the specified range.

Syntax (VB) SSInsertRange% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, ByVal nShiftType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSInsertRange (HSS hSS, RC nRow1, RC nCol1, RC
nRow2, RC nCol2, int nShiftType)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range where cells, rows, or columns
are inserted. If nRow1 is -1, all rows are included in the selection; if nCol1 is -1, all
columns are included.

nShiftType determines how the insert should occur.

Remarks SSInsertRange inserts empty cells, rows, or columns from the given range.
nShiftType specifies how the insert occurs. The following table lists the settings for
nShiftType. These values are defined in VTSS.H and VTSS.TXT.

Setting Number Description

kShiftHorizontal 1 Cells of the specified range are shifted right to make room for
the inserted cells.

kShiftVertical 2 Cells of the specified range are shifted down to make room for
the inserted cells.

kShiftRows 3 Rows in which the specified range resides are shifted down to
make room for the inserted cells.

kShiftCols 4 Columns in which the specified range resides are shifted right
to make room for the inserted cells.

Return Value Integer

See Also SSDeleteRange, SSEditInsert, and SSEditDelete functions

Example sserror = SSInsertRange(Sheet1.SS, 1, 1, 10, 10,
kShiftHorizontal)

SSMaxCol
See also A-Z Function Call List

Description Returns the maximum number of columns supported by this version of
VTSSDLL.DLL.

Syntax (VB) SSMaxCol% Lib "VTSSDLL.DLL" ()

Syntax (VC++) RC SSEXPORTAPI SSMaxCol ()

Return Value Integer

See Also SSMaxRow and SSVersion functions

Example maxcol = SSMaxCol()

SSMaxRow
See also A-Z Function Call List

Description Returns the maximum number of rows supported by this version of VTSSDLL.DLL.

Syntax (VB) SSMaxRow% Lib "VTSSDLL.DLL" ()

Syntax (VC++) RC SSEXPORTAPI SSMaxRow ()

Return Value Integer

See Also SSMaxCol and SSVersion functions

Example maxrow = SSMaxRow()

SSMoveRange
See also A-Z Function Call List

Description Moves a range.

Syntax (VB) SSMoveRange% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, ByVal nRowOffset%, ByVal nColOffset%)

Syntax (VC++) SSERROR SSEXPORTAPI SSMoveRange (HSS hSS, RC nRow1, RC nCol1, RC
nRow2, RC nCol2, RC nRowOffset, RC nColOffset)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the source range. If nRow1 is -1, all rows
are included in the selection; if nCol1 is -1, all columns are included.

nRowOffset and nColOffset specify the offset of the destination range from the
source range.

Remarks When SSMoveRange moves a range, the source range becomes blank. If the cells
in the destination range contain data, the data in those cells is lost. References to the
moved cells are adjusted to refer to their new location. References to any cells that
are overwritten by the moved cells are converted to errors.

Return Value Integer

See Also SSEditCut and SSEditPaste functions

Example sserror = SSMoveRange(Sheet1.SS, 1, 1, 10, 10, 15, 15)

SSNew
See also A-Z Function Call List

Description Creates a new worksheet view.

Syntax (VB) SSNew% Lib "VTSSDLL.DLL" (ByVal hWnd%, phSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSNew (HWND hWnd, HSS FAR *phSS)

hWnd is the handle of the window used by the view.

phSS is the destination of the returned view handle.

Remarks SSNew creates a new worksheet view and returns a handle to it. This worksheet
view does not have a worksheet to which it is attached. It must be attached to a
worksheet before it can be used.

To create a new worksheet and attach it to the view, call SSInitTable. To attach the
view to a worksheet that was previously created, call SSAttach or SSAttachToSS.
To read a worksheet from an Excel 4.0 file, call SSRead. To read a worksheet
embedded in a file, call SSReadIO.

Important This function should not normally be called from Visual Basic.

Return Value Integer

See Also SSAttach, SSAttachToSS, SSDelete, SSDeleteTable, SSInitTable, SSRead, and
SSReadIO functions

SSNextColPageBreak
See also A-Z Function Call List

Description Returns the next column where there is a page break.

Syntax (VB) SSNextColPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol%, pNextCol
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSNextColPageBreak (HSS hSS, RC nCol, LPRC
pNextCol)

hSS is a handle to a view.

nCol is the starting column.

pNextCol is set to the next column where there is a page break, or zero if there is no
page break after nCol.

Return Value Integer

See Also SSAddColPageBreak, SSAddPageBreak, SSAddRowPageBreak,
SSNextRowPageBreak, SSRemoveColPageBreak, SSRemovePageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSNextColPageBreak(Sheet1.SS, currcol, nextcol)

SSNextRowPageBreak
See also A-Z Function Call List

Description Returns the next row where there is a page break.

Syntax (VB) SSNextRowPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%,
pNextRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSNextRowPageBreak (HSS hSS, RC nRow, LPRC
pNextRow)

hSS is a handle to a view.

nRow is the starting row.

pNextRow is set to the next row where there is a page break, or zero if there is no
page break after nRow.

Return Value Integer

See Also SSAddColPageBreak, SSAddPageBreak, SSAddRowPageBreak,
SSNextColPageBreak, SSRemoveColPageBreak, SSRemovePageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSNextRowPageBreak(sheet1.SS, currrow, nextrow)

SSOpenFileDlg
See also A-Z Function Call List

Description Displays the Open File dialog box.

Syntax (VB) SSOpenFileDlg% Lib "VTSSDLL.DLL" (ByVal pTitle$, ByVal hWndParent%, ByVal
pBuf$, ByVal nBufSize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSOpenFileDlg (LPCSTR pTitle, HWND hWndParent,
LPSTR pBuf, int nBufSize)

pTitle is the title of the dialog box. Use 0 for the default title.

hWndParent is a handle to a parent window.

pBuf is the destination buffer for the name of the file to open.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The Open File dialog box allows you to select a file to open.

Return Value Integer

See Also SSSaveFileDlg function

SSProtectionDlg
See also A-Z Function Call List

Description Displays the Cell Protection dialog box.

Syntax (VB) SSProtectionDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSProtectionDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Cell Protection dialog box allows you to set the locked attributes of a cell and
hidden attributes of a formula. When a cell is locked, its contents cannot be altered.
When a formula is hidden, formula text is hidden but formula results are still
displayed.

After locking cells and hiding formulas, you must enable protection for the worksheet
before cell locking and formula hiding is enabled. Protection for a worksheet is
enabled using the EnableProtection property or the SSSetEnableProtection
function call.

Return Value Integer

See Also SSGetEnableProtection, SSSetEnableProtection, SSSetProtection functions and
EnableProtection property

Example sserror = SSProtectionDlg(Sheet1.SS)

SSRangeToTwips
See also A-Z Function Call List

Description Determines the offset, width, and height of the specified range in twips.

Syntax (VB) SSRangeToTwips% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, pX&, pY&, pCX&, pCY&, pShown%)

Syntax (VC++) SSERROR SSEXPORTAPI SSRangeToTwips (HSS hSS, RC nRow1, RC nCol1,
RC nRow2, RC nCol2, LONG FAR *pX, LONG FAR *pY, LONG FAR *pCX, LONG
FAR *pCY, int *pShown)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range for which to find the offset, width,
and height.

X is the returned horizontal offset of the range

Y is the returned vertical offset of the range.

pCX is the width of the range.

pCY is the height of the range.

pShown indicates whether the specified range is displayed, not displayed, or partially
displayed in the worksheet. The following table lists the values returned by pShown.

Value Description
0 Not shown

1 Shown

2 Partially shown

Remarks The coordinates returned by this function are measured in twips from the upper left
corner of the worksheet control. The height and width of the range are also returned
in twips.

Use SSRangeToTwips if you want to place a control or object in a worksheet at a
specific range location.

Return Value Integer

See Also SSTwipsToRC function and TopLeftChanged event

Example sserror = SSRangeToTwips(Sheet1.SS, 2, 2, 4, 2, xoffset,
yoffset, xwidth, yheight, shown)

SSRead
Description Reads a worksheet from disk.

Syntax (VB) SSRead% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pPathName$, pFileType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSRead (HSS hSS, LPCSTR pPathName, int FAR
*pFileType)

hSS is a handle to a view.

pPathName is a string containing the name of the file to read. The name can include
drive, path, and file name.

pFileType returns the type of file that is read. The following table lists the values
returned by this parameter.

Setting Description
1 Formula One format

2 Excel 4.0 format

3 Tab-delimited text file

The parameter is undefined if SSRead returns an error.

Remarks SSRead initializes a worksheet structure and reads a worksheet from the specified
file. If there is not a worksheet attached to the view, a new worksheet is created.

Return Value Integer

See Also SSReadIO, SSWrite, and SSWriteIO functions

Example sserror = SSRead(Sheet1.SS, filename$, filetype)

SSReadIO
See also A-Z Function Call List

Description Reads a worksheet using a user specified read function.

Syntax (VB) SSReadIO% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal dwUserData&, ByVal
ioFunc&, pUserRet&)

Syntax (VC++) SSERROR SSEXPORTAPI SSReadIO (HSS hSS, DWORD dwUserData, IOFUNC
ioFunc, DWORD FAR *pUserRet)

hSS is a handle to a view.

dwUserData is passed to ioFunc each time ioFunc is called.

ioFunc is the function called to read data from the worksheet. It takes the following
form:

typedef DWORD (FAR PASCAL *IOFUNC)(DWORD dwUserData, LPVOID
p, UINT nBytes);

pUserRet returns the last value returned by ioFunc. If this pointer is not null, it returns
the last value returned by ioFunc. Any non-zero value returned by ioFunc causes
reading to fail immediately.

Remarks SSReadIO is the same as SSRead except that ioFunc is called to read data instead
of reading from a specified file. If a worksheet is not attached to the view, a new
worksheet is created. If ioFunc returns a non-zero value, the value ioFunc returned is
returned by SSReadIO in pUserRet. If the file is successfully read, 0 is returned.

Return Value Integer

See Also SSRead, SSWrite, and SSWriteIO functions

SSRecalc
See also A-Z Function Call List

Description Recalculates the worksheet attached to a view.

Syntax (VB) SSRecalc% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSRecalc (HSS hSS)

hSS is a handle to a view.

Remarks SSRecalc recalculates all formulas in the worksheet attached to the specified view.

Return Value Integer

See Also SSSetAutoRecalc function and AutoRecalc property

Example sserror = SSRecalc(Sheet1.SS)

SSRemoveColPageBreak
See also A-Z Function Call List

Description Removes a vertical page break adjacent to the left edge of the specified column.

Syntax (VB) SSRemoveColPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSRemoveColPageBreak (HSS hSS, RC nCol)

hSS is a handle to a view.

nCol is the column where the page break is removed.

Return Value Integer

See Also SSAddColPageBreak, SSAddPageBreak, SSAddRowPageBreak,
SSNextColPageBreak, SSNextRowPageBreak, SSRemovePageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSRemoveColPageBreak(Sheet1.SS, 2)

SSRemovePageBreak
See also A-Z Function Call List

Description Removes page breaks adjacent to the active cell.

Syntax (VB) SSRemovePageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSRemovePageBreak (HSS hSS)

hSS is a handle to a view.

Remarks If a horizontal page break is adjacent to the top edge of the active cell, it is removed.
In addition, if a vertical page break is adjacent to the left edge of the active cell, it is
also removed.

Return Value Integer

See Also SSAddColPageBreak, SSAddPageBreak, SSAddRowPageBreak,
SSNextColPageBreak, SSNextRowPageBreak, SSRemoveColPageBreak, and
SSRemoveRowPageBreak functions

Example sserror = SSRemovePageBreak(Sheet1.SS)

SSRemoveRowPageBreak
See also A-Z Function Call List

Description Removes a horizontal page break adjacent to the top edge of the specified row.

Syntax (VB) SSRemoveRowPageBreak% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSRemoveRowPageBreak (HSS hSS, RC nRow)

hSS is a handle to a view.

nRow is the row where the page break is removed.

Return Value Integer

See Also SSAddColPageBreak, SSAddPageBreak, SSAddRowPageBreak,
SSNextColPageBreak, SSNextRowPageBreak, SSRemoveColPageBreak, and
SSRemovePageBreak functions

Example sserror = SSRemoveRowPageBreak(Sheet1.SS, 2)

SSRowHeightDlg
See also A-Z Function Call List

Description Displays the Row Height dialog box.

Syntax (VB) SSRowHeightDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSRowHeightDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Row Height dialog box allows you to set the height of the selected rows, specify
default row heights, and specify automatic row height. In addition, you can specify
whether the selected rows are shown or hidden.

Return Value Integer

See Also SSSetRowHeight and SSSetRowHeightAuto functions.

Example sserror = SSRowHeightDlg(Sheet1.SS)

SSSaveFileDlg
See also A-Z Function Call List

Description Displays the Save As dialog box.

Syntax (VB) SSSaveFileDlg% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pTitle$, ByVal pBuf$,
ByVal nBufSize%, pFileType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSaveFileDlg (HSS hSS, LPCSTR pTitle, LPSTR
pBuf, int nBufSize, int FAR *pFileType)

hSS is a handle to a view.

pTitle is the title of the dialog box. Use 0 for the default title.

pBuf is the destination buffer for the name by which the worksheet is saved.

nBufSize is the maximum buffer size. If the returned string is larger than the buffer, an
error is returned and an empty string is placed in pBuf.

pFileType is the file type used when saving the file. The following table lists the
settings for this parameter.

Setting Description
1 Formula One format

2 Excel 4.0 format

Important Before calling this function, you must initialize a string to Space$(n),
where n is the nBufSize value you pass to the function.

Remarks The Save As dialog box allows you to save and name a file.

Return Value Integer

See Also SSOpenFileDlg function

SSSaveWindowInfo
See also A-Z Function Call List

Description Saves the window specific information from a view to its worksheet.

Syntax (VB) SSSaveWindowInfo% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSaveWindowInfo (HSS hSS)

hSS is a handle to a view.

Remarks Window specific information from the view must be saved to its worksheet if the
information is to be saved the next time the worksheet is written to disk.

The following table lists the window information that is saved.

Saved information

AllowArrows DataRowMode Selection

AllowDelete EnterMovesDown ShowFormulas

AllowFillRange ExtraColor ShowGridLines

AllowInCellEditing FixedCol ShowColHeading

AllowMoveRange FixedCols ShowHScrollBar

AllowSelections FixedRow ShowRowHeading

AllowResize FixedRows ShowSelections

AllowTabs LeftCol ShowVScrollBar

AllowFormulas MaxCol ShowZeroValues

BackColor MaxRow TopRow

Return Value Integer

See Also SSWrite and SSWriteIO Functions

Example sserror = SSSaveWindowInfo(Sheet1.SS)

SSSetActiveCell
See also A-Z Function Call List

Description Sets the active cell to the specified row and column.

Syntax (VB) SSSetActiveCell% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetActiveCell (HSS hSS, RC nRow, RC nCol)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the new active cell.

Remarks The active cell is the cell in which data is entered or edited if the user starts typing.
When SSSetActiveCell is called, the active cell becomes the cell specified by this
function. If this cell is within a selection only the active cell changes.

Return Value Integer

See Also SSGetActiveCell function and Col and Row properties

Example sserror = SSSetActiveCell(Sheet1.SS, 1, 1)

SSSetAlignment
See also A-Z Function Call List

Description Specifies the data alignment for a selection.

Syntax (VB) SSSetAlignment% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nHorizontal%, ByVal
bWordWrap%, ByVal nVertical%, ByVal nOrientation%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAlignment (HSS hSS, int nHorizontal, BOOL
bWordWrap, int nVertical, int nOrientation)

hSS is a handle to a view.

nHorizontal specifies the horizontal alignment.

bWordWrap specifies whether word wrap is enabled.

nVertical specifies the vertical alignment.

nOrientation specifies the text orientation. (Not implemented in this version.)

Remarks SSSetAlignment sets the alignment and word wrap for data in the current selection.
The following table lists the settings and constants for nHorizontal.

Setting Description Constants
1 General kHAlignGeneral

2 Left kHAlignLeft

3 Center kHAlignCenter

4 Right kHAlignRight

5 Fill kHAlignFill

6 Justify kHAlignJustify

7 Center across cells kHAlignCenterAcrossCells

The following table lists the settings for nVertical.

Setting Description Constants
1 Top kVAlignTop

2 Center kVAlignCenter

3 Bottom kVAlignBottom

The following table lists the settings for nOrientation.

Setting Description

0 Horizontal

1 Vertical

2 Upward

3 Downward

Return Value Integer

See Also SSFormatAlignmentDlg function

Example sserror = SSSetAlignment(Sheet1.SS, 4, False, 3, 0)

SSSetAllowArrows
See also A-Z Function Call List

Description Specifies whether the arrow keys can reposition the active cell.

Syntax (VB) SSSetAllowArrows% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAllowArrows%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowArrows (HSS hSS, BOOL bAllowArrows)

hSS is a handle to a view.

bAllowArrows specifies the setting of the allow arrows flag.

Remarks SSSetAllowArrows sets the allow arrows flag. If the flag is True, the arrow keys on
your keyboard can move the active cell in the worksheet. By default, the allow arrows
flag is True.

Return Value Integer

See Also SSGetAllowArrows function and AllowArrows property

Example sserror = SSSetAllowArrows(Sheet1.SS, False)

SSSetAllowDelete
See also A-Z Function Call List

Description Specifies whether the delete key deletes records and clears selections.

Syntax (VB) SSSetAllowDelete% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAllowDelete%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowDelete (HSS hSS, BOOL bAllowDelete)

hSS is a handle to a view.

bAllowDelete specifies the setting of the allow delete flag.

Remarks SSSetAllowDelete sets the allow delete flag. If the flag is True and data browsing
mode is enabled, the delete key deletes a record if an entire row is selected. The
current selection is cleared if less than a row is selected or if data browsing mode is
disabled.

If the flag is False, the delete key does not delete records or clear selections.
By default, the allow delete flag is True.

Return Value Integer

See Also SSGetAllowDelete function and AllowDelete property

Example sserror = SSSetAllowDelete(Sheet1.SS, False)

SSSetAllowEditHeaders
See also A-Z Function Call List

Description Specifies whether row, column, and top left headers can be edited.

Syntax (VB) SSSetAllowEditHeaders% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
bAllowEditHeaders%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowEditHeaders (HSS hSS, BOOL
bAllowEditHeaders)

hSS is a handle to a view.

bAllowEditHeaders specifies the setting of the edit headers flag.

Remarks If the edit headers flag is True, the names displayed in row, column, and top left
headers can be edited by double clicking the header to be edited. The Header Name
dialog box is displayed, allowing you to enter a new header name.

If the flag is False, editing of headers is not allowed; a DblClick event is passed
when a header is double clicked.

Return Value Integer

See Also SSGetAllowEditHeaders function, AllowEditHeaders property, and DblClick event.

Example sserror = SSSetAllowEditHeaders(Sheet1.SS, False)

SSSetAllowFillRange
See also A-Z Function Call List

Description Specifies whether filling by dragging a range is allowed.

Syntax (VB) SSSetAllowFillRange% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAllowFillRange
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowFillRange (HSS hSS, BOOL
bAllowFillRange)

hSS is a handle to a view.

bAllowFillRange specifies the setting of the fill range flag.

Remarks SSSetAllowFillRange sets the fill range flag. If the flag is True, filling ranges by
dragging a selection is allowed.

Return Value Integer

See Also SSGetAllowFillRange function and AllowFillRange property

Example sserror = SSSetAllowFillRange(Sheet1.SS, True)

SSSetAllowFormulas
See also A-Z Function Call List

Description Specifies whether the user is allowed to enter formulas.

Syntax (VB) SSSetAllowFormulas% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAllowFormulas
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowFormulas (HSS hSS, BOOL bAllowFormulas)

hSS is a handle to a view.

bAllowFormulas specifies the setting of the user formula flag.

Remarks SSSetAllowFormulas sets the user formula flag. If the flag is True, formulas can be
added by the user at run-time.

Return Value Integer

See Also SSGetAllowFormulas function and AllowFormulas property

Example sserror = SSSetAllowFormulas(Sheet1.SS, True)

SSSetAllowInCellEditing
See also A-Z Function Call List

Description Specifies whether in-cell editing is allowed.

Syntax (VB) SSSetAllowInCellEditing% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
bAllowInCellEditing%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowInCellEditing (HSS hSS, BOOL
bAllowInCellEditing)

hSS is a handle to a view.

bAllowInCellEditing specifies the setting of the in-cell editing flag.

Remarks SSSetAllowInCellEditing sets the in-cell editing flag. If the flag is True, data can be
entered and edited directly in the cell without using an edit bar.

If a double click event is defined for a control, the blinking cursor does not appear
when you invoke edit mode for in-cell editing.

Return Value Integer

See Also SSGetAllowInCellEditing function and AllowInCellEditing property

Example sserror = SSSetAllowInCellEditing(Sheet1.SS, True)

SSSetAllowMoveRange
See also A-Z Function Call List

Description Specifies whether moving ranges by dragging is allowed.

Syntax (VB) SSSetAllowMoveRange% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
bAllowMoveRange%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowMoveRange (HSS hSS, BOOL
bAllowMoveRange)

hSS is a handle to a view.

bAllowMoveRange specifies the setting of the move range flag.

Remarks SSSetAllowMoveRange sets the move range flag. If the flag is True, moving ranges
by dragging a cell is allowed.

Return Value Integer

See Also SSGetAllowMoveRange function and AllowMoveRange property

Example sserror = SSSetAllowMoveRange(Sheet1.SS, True)

SSSetAllowResize
See also A-Z Function Call List

Description Specifies whether resizing rows and columns by dragging is allowed.

Syntax (VB) SSSetAllowResize% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAllowResize%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowResize (HSS hSS, BOOL bAllowResize)

hSS is a handle to a view.

bAllowResize specifies the setting of the resize flag.

Remarks SSSetAllowResize sets the resize flag. If the flag is True, the size of rows and
columns can be set by dragging row and column heading borders.

Return Value Integer

See Also SSGetAllowResize function and AllowResize property

Example sserror = SSSetAllowResize(Sheet1.SS, True)

SSSetAllowSelections
See also A-Z Function Call List

Description Specifies whether selecting ranges is allowed.

Syntax (VB) SSSetAllowSelections% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
bAllowSelections%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowSelections (HSS hSS, BOOL
bAllowSelections)

hSS is a handle to a view.

bAllowSelections specifies the setting of the select range flag.

Remarks SSSetAllowSelections sets the select range flag. If the flag is True, ranges can be
selected with the keyboard and by clicking and dragging with the mouse.

Return Value Integer

See Also SSGetAllowSelections function and AllowSelections property

Example sserror = SSSetAllowSelections(Sheet1.SS, True)

SSSetAllowTabs
See also A-Z Function Call List

Description Specifies whether the tab key can reposition the active cell in a selected range.

Syntax (VB) SSSetAllowTabs% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAllowTabs%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAllowTabs (HSS hSS, BOOL bAllowTabs)

hSS is a handle to a view.

bAllowTabs specifies the setting of the allow tabs flag.

Remarks SSSetAllowTabs sets the allow tabs flag. If the flag is True, the tab key can move
the active cell through a selected range. When tabbing through a range, the active
cell moves from left to right through each row in the range.

By default, the allow tabs flag is True.

Return Value Integer

See Also SSGetAllowTabs function and AllowTabs property

Example sserror = SSSetAllowTabs(Sheet1.SS, False)

SSSetAppName
See also A-Z Function Call List

Description Specifies the application name that is displayed in the title bar of error dialog boxes.

Syntax (VB) SSSetAppName% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pAppName$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAppName(HSS hSS, LPCSTR pAppName)

hSS is a handle to a view.

pAppName specifies the application name to be displayed.

Remarks Only the name displayed in the title bar of error dialog boxes is affected by this
function. Other dialog boxes display functional names (e.g., Alignment, Custom
Format, Font)

Return Value Integer

Example sserror = SSSetAppName(Sheet1.SS, "Application Name")

SSSetAutoRecalc
See also A-Z Function Call List

Description Specifies whether automatic recalculation is enabled.

Syntax (VB) SSSetAutoRecalc% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bAutoRecalc%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetAutoRecalc (HSS hSS, BOOL bAutoRecalc)

hSS is a handle to a view.

bAutoRecalc specifies the setting of the automatic recalc flag.

Remarks SSSetAutoRecalc sets the automatic recalc flag. If the flag is True, the worksheet is
recalculated if needed. Thereafter, any change to the worksheet causes all formulas
to be recalculated.

You may notice that the worksheet is not recalculated immediately after each change
you make from your program. To force the worksheet to be recalculated immediately,
call SSSetAutoRecalc with bAutoRecalc set to True. The worksheet is recalculated
immediately, if needed.

Calling SSGetText, SSGetTextRC, SSGetNumber, SSGetNumberRC,
SSGetFormattedText, SSGetFormattedTextRC, SSGetTypeRC and
SSGetLogicalRC also causes the worksheet to be recalculated immediately, if
needed.

Return Value Integer

See Also SSGetAutoRecalc, SSRecalc, and SSUpdate functions and AutoRecalc property

Example sserror = SSSetAutoRecalc(Sheet1.SS, True)

SSSetBackColor
See also A-Z Function Call List

Description Specifies the background color of the worksheet.

Syntax (VB) SSSetBackColor% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal crBackColor&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetBackColor (HSS hSS, COLORREF crBackColor)

hSS is a handle to a view.

crBackColor is an RGB background color. This value can be one of the following:

Normal RGB Colors. These colors are specified using the color palette, or by using the RGB or
QBColor functions.

System default colors. System color constants are specified in the Visual Basic
CONSTANT.TXT file.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).

Remarks All cells within the view are set to the background color except those with patterns.

Return Value Integer

See Also SSGetBackColor function and BackColor property

Example sserror = SSSetBackColor(Sheet1.SS, 2)

SSSetBorder
See also A-Z Function Call List

Description Specifies the border for all selected cells.

Syntax (VB) SSSetBorder% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nOutline%, ByVal nLeft%,
ByVal nRight%, ByVal nTop%, ByVal nBottom%, ByVal nShade%, ByVal crOutline&,
ByVal crLeft&, ByVal crRight&, ByVal crTop&, ByVal crBottom&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetBorder (HSS hSS, int nOutline, int nLeft, int
nRight, int nTop, int nBottom, int nShade, COLORREF crOutline, COLORREF crLeft,
COLORREF crRight, COLORREF crTop, COLORREF crBottom)

hSS is a handle to a view.

nOutline specifies the outline border for the selected range. This border type is
assigned to the top edge of cells in the top row, the left edge of cells in the left
column, the right edge of cells in the right column, and the bottom edge of cells in the
bottom row.

nLeft, nRight, nTop, and nBottom specify the border type for the sides of cells in the
selected range.

nShade specifies the border shading; it must correspond to the built-in shades (not
implemented in this version).

crOutline specifies the color of the outline border. This is an RGB color. It is translated
into one of the 16 colors in the color palette.

crLeft, crRight, crTop, and crBottom specify the colors of the cell border sides.
This is an RGB color. It is translated into one of the 16 colors in the color palette.

Remarks SSSetBorder determines the border for all selected cells. The following table lists the
border and outline settings.

Setting Description

0 No Border

1 Thin Line

2 Medium Line

3 Dashed Line

4 Dotted Line

5 Thick Line

6 Double Line

7 Hairline

This range has a double line border placed along the top and bottom of the range. The first
three ranges of data in this worksheet each have a thick outline border.

Return Value Integer

See Also SSFormatBorderDlg function

Example thin = 1
thick = 5
shade = 0
acolor = RGB(255, 0, 255)
sserror = SSSetBorder(form1.Sheet1.SS, thick, thin, thin, thin,
thin, shade, acolor, acolor, acolor, acolor, acolor)

SSSetColText
See also A-Z Function Call List

Description Specifies the name for a column.

Syntax (VB) SSSetColText% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol%, ByVal pColText$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetColText (HSS hSS, RC nCol, LPCSTR pColText)

hSS is a handle to a view.

nCol is the column to be named.

pColText is the new column name.

Remarks Naming a column is useful for labeling columns so they reflect the data in the column
(e.g., column G might be named Total Sales). The new column name is displayed in
the column heading and is used for display purposes only. The column is still referred
to by letter reference in formulas.

Return Value Integer

See Also SSSetRowText and SSSetTopLeftText functions

Example sserror = SSSetColText(Sheet1.SS, 1, "Sales")

SSSetColWidth
See also A-Z Function Call List

Description Determines the width of the specified columns.

Syntax (VB) SSSetColWidth% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol1%, ByVal nCol2%,
ByVal nWidth%, ByVal bDefColWidth%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetColWidth (HSS hSS, RC nCol1, RC nCol2, int
nWidth, BOOL bDefColWidth)

hSS is a handle to a view.

nCol1 specifies the starting column to change.

nCol2 specifies the ending column to change.

nWidth is the new column width.

bDefColWidth specifies whether the default column width is changed. True specifies
that the default width is set to nWidth, and the specified columns are set to the
default width. In addition, any columns that use the default width are updated with the
new default. False specifies that the default width is unchanged.

Remarks SSSetColWidth specifies the width of the specified columns. The width is specified
by nWidth in units equal to 1/256th of an average character's width in the default font.

Return Value Integer

See Also SSColWidthDlg, SSGetColWidth, and SSSetColWidthAuto functions

Example sserror = SSSetColWidth(Sheet1.SS, 1, 10, (5*256), False)

SSSetColWidthAuto
See also A-Z Function Call List

Description Sets the widths of the specified columns automatically.

Syntax (VB) SSSetColWidthAuto% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, ByVal bSetDefaults%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetColWidthAuto (HSS hSS, RC nRow1, RC nCol1,
RC nRow2, RC nCol2, BOOL bSetDefaults)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range containing the columns for which
to set the width.

bSetDefaults determines when the specified columns are resized. If True, all
specified columns are adjusted automatically. If False, only columns in the specified
column range that need to be larger than their current size are adjusted.

Remarks SSSetColWidthAuto specifies that the widths of the columns in the specified range
are automatically set to display the largest entry in the columns. The columns are set
at least as wide as the default column width.

Return Value Integer

See Also SSColWidthDlg, SSGetColWidth, and SSSetColWidth functions

Example sserror = SSSetColWidthAuto(Sheet1.SS, 1, 1, 5, 6, False)

SSSetDefinedName
See also A-Z Function Call List

Description Defines or changes a user-defined name.

Syntax (VB) SSSetDefinedName% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pName$, ByVal
pFormula$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetDefinedName (HSS hSS, LPCSTR pName,
LPCSTR pFormula)

hSS is a handle to a view.

pName is the user defined name.

pFormula is the formula that describes the item to which pName refers (e.g.,
"A1:C3"). The formula should not contain a leading equal sign (=).

Remarks SSSetDefinedName allows a user-defined name to be defined or changed. A name
can refer to a cell, a group of cells, a value, or a formula.

Return Value Integer

See Also SSDeleteDefinedName, SSDefinedNameDlg, and SSGetDefinedName functions

Example sserror = SSSetDefinedName(Sheet1.SS, "Gross_Sales",
"C1:C20")

SSSetDefWindowProc
See also A-Z Function Call List

Description Sets the default window procedure for a worksheet view.

Syntax (VB) SSSetDefWindowProc% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pWindowProc&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetDefWindowProc (HSS hSS, WNDPROC
pWindowProc)

hSS is a handle to a view.

pWindowProc is a standard Windows procedure parameter.

Remarks If a message is passed to SSCallWindowProc and it is not needed by the worksheet
view, it is passed to the default window procedure.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSCallWindowProc function

SSSetDoSetCursor
See also A-Z Function Call List

Description Determines how the cursor is set.

Syntax (VB) SSSetDoSetCursor% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bDoSetCursor%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetDoSetCursor (HSS hSS, BOOL bDoSetCursor)

hSS is a handle to a view.

bDoSetCursor specifies the setting of the set cursor flag.

Remarks SSSetDoSetCursor sets the set cursor flag. If the flag is True, the spreadsheet sets
the cursor normally. If the flag is False, the spreadsheet never sets the cursor and
passes WM_SETCURSOR messages to the default window procedure.

The set cursor flag is not saved to disk. The default set cursor setting for a new view
is always True.

Return Value Integer

See Also MousePointer property

Example sserror = SSSetDoSetCursor(Sheet1.SS, True)

SSSetEnableProtection
See also A-Z Function Call List

Description Specifies whether protection is enabled for a worksheet.

Syntax (VB) SSSetEnableProtection% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
bEnableProtection%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetEnableProtection (HSS hSS, BOOL
bEnableProtection)

hSS is a handle to a view.

bEnableProtection specifies the setting of the enable protection flag.

Remarks If the enable protection flag is True, protection is activated for cells that have been
locked and formulas that have been hidden in the worksheet. Cells can be marked as
locked and formulas marked as hidden using the SSSetProtection and
SSProtectionDlg function calls.

Return Value Integer

See Also SSGetEnableProtection, SSProtectionDlg, and SSSetProtection functions and
EnableProtection property

Example sserror = SSSetEnableProtection(Sheet1.SS, True)

SSSetEnterMovesDown
See also A-Z Function Call List

Description Specifies whether protection is enabled for a worksheet.

Syntax (VB) SSSetEnterMovesDown% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
bEnterMovesDown%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetEnterMovesDown (HSS hSS, BOOL
bEnterMovesDown)

hSS is a handle to a view.

bEnterMovesDown specifies the setting of the enter moves down flag.

Remarks If the enter moves down flag is True, the enter key moves the active cell down to the
next row, even if no range is selected. If False, the enter key does not advance the
active cell.

Return Value Integer

See Also SSGetEnterMovesDown function

Example sserror = SSSetEnterMovesDown(Sheet1.SS, False)

SSSetEntry
See also A-Z Function Call List

Description Sets the value of the active cell based on the entry format.

Syntax (VB) SSSetEntry% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pEntry$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetEntry (HSS hSS, LPCSTR pEntry)

hSS is a handle to a view.

pEntry is a string containing the value to put in the cell.

Remarks SSSetEntry allows you to enter information in a cell just as a user would enter
information. The program automatically determines the kind of data entered (e.g.,
number, text, formula). It also recognizes dates, times, percentages, currency,
fractions, and scientific notation.

Return Value Integer

See Also SSSetEntryRC and SSGetEntry functions and Entry and Text properties

Example sserror = SSSetEntry(Sheet1.SS, "10%")

SSSetEntryRC
See also A-Z Function Call List

Description Sets the value of the specified cell based on the entry format.

Syntax (VB) SSSetEntryRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
ByVal pEntry$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetEntryRC (HSS hSS, RC nRow, RC nCol,
LPCSTR pEntry)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell in which a value is
entered.

pEntry is a string containing the value to put in the cell.

Remarks SSSetEntryRC allows you to enter information in a cell just as a user would enter
information. The program automatically determines the kind of data entered (e.g.,
number, text, formula). It also recognizes dates, times, percentages, currency,
fractions, and scientific notation.

Return Value Integer

See Also SSSetEntry and SSGetEntryRC functions and Entry and Text properties

Example sserror = SSSetEntryRC(Sheet1.SS, 1, 1, "10%")

SSSetExtraColor
See also A-Z Function Call List

Description Specifies the color of the view area outside the worksheet.

Syntax (VB) SSSetExtraColor% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal crExtraColor&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetExtraColor (HSS hSS, COLORREF crExtraColor)

hSS is a handle to a view.

crExtraColor is an RGB color. This value can be one of the following:

Normal RGB Colors. These colors are specified using the color palette, or by using the RGB or
QBColor functions.

System default colors. System color constants are specified in the Visual Basic
CONSTANT.TXT file.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).

Remarks SSSetExtraColor sets the extra color. The extra color fills the space in the view
window not covered by the worksheet. This space occurs when the worksheet is
smaller than the view window.

Return Value Integer

See Also SSGetExtraColor function and ExtraColor, MaxCol, and MaxRow properties

Example sserror = SSSetExtraColor(Sheet1.SS, extracolor)

SSSetFireEvent
See also A-Z Function Call List

Description Determines if an event can be fired.

Syntax (VB) SSSetFireEvent% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nEvent%, ByVal bFireIt
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetFireEvent (HSS hSS, UINT nEvent, BOOL bFireIt)

hSS is a handle to a view.

nEvent specifies the event on which to operate.

bFireIt determines if the event can be fired.

Remarks SSSetFireEvent sets an event flag to determine if the given event can be fired. If
bFireIt is True, the event is enabled and can be fired; False disables the event. If you
are calling these functions from C/C++ and not using the Visual Basic VBX, bFireIt is
False by default. The Visual Basic VBX sets this value to True when a new view is
created.

The following table lists the events defined in VTSS.TXT and VTSS.H that can be
affected by this function call.

Event Description

SSM_SELCHANGE Selection changes

SSM_STARTEDIT Edit mode is entered

SSM_ENDEDIT Edit mode is exited

SSM_STARTRECALC Recalc is started

SSM_ENDRECALC Recalc ends

SSM_CLICK Click

SSM_DBLCLICK Double Click

SSM_CANCELEDIT Edit mode is canceled

Return Value Integer

See Also SSGetFireEvent function

Example sserror = SSSetFireEvent(Sheet1.SS, SSM_SelChange, True)

SSSetFixedCols
See also A-Z Function Call List

Description Sets the number of fixed columns.

Syntax (VB) SSSetFixedCols% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nCol1%, ByVal nCols
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetFixedCols (HSS hSS, RC nCol1, RC nCols)

hSS is a handle to a view.

nCol1 is the starting column to fix.

nCols is the number of columns to fix.

Remarks Fixed columns do not scroll and are fixed at the left edge of the worksheet window.

Return Value Integer

See Also SSGetFixedCols function and FixedCol and FixedCols properties

Example sserror = SSSetFixedCols(Sheet1.SS, 1, 2)

SSSetFixedRows
See also A-Z Function Call List

Description Sets the number of fixed rows.

Syntax (VB) SSSetFixedRows% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nRows%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetFixedRows (HSS hSS, RC nRow1, RC nRows)

hSS is a handle to a view.

nRow1 is the starting row to fix.

nRows is the number of rows to fix.

Remarks Fixed rows do not scroll and are fixed at the top edge of the worksheet window.

Return Value Integer

See Also SSGetFixedRows function and FixedRow and FixedRows properties

Example sserror = SSSetFixedRows(Sheet1.SS, 1, 2)

SSSetFont
See also A-Z Function Call List

Description Specifies the font information for all selected cells.

Syntax (VB) SSSetFont% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pName$, ByVal nSize%,
ByVal bBold%, ByVal bItalic%, ByVal bUnderline%, ByVal bStrikeout%, ByVal
crColor&, ByVal bOutline%, ByVal bShadow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetFont (HSS hSS, LPCSTR pName, int nSize,
BOOL bBold, BOOL bItalic, BOOL bUnderline, BOOL bStrikeout, COLORREF
crColor, BOOL bOutline, BOOL bShadow)

hSS is a handle to a view.

pName is the font name.

nSize is the font size in points or twips.

bBold, bItalic, bUnderline, and bStrikeout specify the bold, italic, strikeout, and
underline attributes for the font.

crColor specifies the font color. crColor is an RGB color and is translated into one of
the 16 colors in the color palette.

bOutline and bShadow specify the outline and shadow attributes for the font. These
attributes are not supported in this version of Formula One.

Remarks When specifying point sizes, use positive numbers for nSize when specifying point
sizes in points; use negative numbers when specifying point sizes in twips.
SSSetFont uses the absolute value of the number you specify.

Return Value Integer

See Also SSFormatFontDlg function

Example sserror = SSSetFont(Sheet1.SS, "Arial", 14, False, False,
False, False, acolor, False, False)

SSSetFormula
See also A-Z Function Call List

Description Specifies the formula of the active cell.

Syntax (VB) SSSetFormula% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pFormula$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetFormula (HSS hSS, LPCSTR pFormula)

hSS is a handle to a view.

pFormula is a string containing the formula to put in the cell.

Remarks SSSetFormula places a formula in the active cell. The formula should not have a
leading equal sign (=).

Return Value Integer

See Also SSGetFormula, SSSetFormulaRC function and Formula property

Example sserror = SSSetFormula(Sheet1.SS, "A1+B1")

SSSetFormulaRC
See also A-Z Function Call List

Description Sets the formula of the specified cell.

Syntax (VB) SSSetFormulaRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol
%, ByVal pFormula$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetFormulaRC (HSS hSS, RC nRow, RC nCol,
LPCSTR pFormula)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell in which the formula is
placed.

pFormula is a string containing the formula to put in the cell.

Remarks SSSetFormulaRC places a formula in the specified cell. The formula should not have
a leading equal sign (=).

Return Value Integer

See Also SSGetFormulaRC, SSSetFormula function and Formula property

Example sserror = SSSetFormulaRC(Sheet1.SS, 3, 1, "A1+A2")

SSSetHdrHeight
See also A-Z Function Call List

Description Sets the height of the column headers.

Syntax (VB) SSSetHdrHeight% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nHeight%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetHdrHeight (HSS hSS, int nHeight)

hSS is a handle to a view.

nHeight is the height of the column headers.

Remarks SSSetHdrHeight specifies the height of the column headers. The height is specified
by nHeight in twips. A twip is 1/1440 of an inch.

Return Value Integer

See Also SSSetRowHeight and SSSetHdrWidth functions

Example sserror = SSSetHdrHeight(Sheet1.SS, 1440)

SSSetHdrSelection
See also A-Z Function Call List

Description Selects the column headings, row headings, and cell at the intersection of the column
and row headings.

Syntax (VB) SSSetHdrSelection% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bTopLeftHdr%,
ByVal bRowHdr%, ByVal bColHdr%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetHdrSelection (HSS hSS, BOOL bTopLeftHdr,
BOOL bRowHdr, BOOL bColHdr)

hSS is a handle to a view.

bTopLeftHdr specifies the setting of the top left header selection flag.

bRowHdr specifies the setting of the row header selection flag.

bColHdr specifies the setting of the column header selection flag.

Remarks SSSetHdrSelection sets the header selection flags. The flags allow you to select the
row headings, column headings, and the cell at the intersection of the row and
column headings. If a flag is True, the corresponding heading is selected. If False,
the heading is not selected.

Return Value Integer

See Also SSGetHdrSelection function

Example sserror = SSSetHdrSelection(Sheet1.SS, True, False, True)

SSSetHdrWidth
See also A-Z Function Call List

Description Sets the width of the row headers.

Syntax (VB) SSSetHdrWidth% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nWidth%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetHdrWidth (HSS hSS, int nWidth)

hSS is a handle to a view.

nWidth is the width of the row headers.

Remarks SSSetHdrWidth specifies the width of the row headers. The width is specified by
nWidth in units equal to 1/256th of an average character's width in the default font.

Return Value Integer

See Also SSSetColWidth and SSSetHdrHeight functions

Example sserror = SSSetHdrWidth(Sheet1.SS, (5*256))

SSSetIteration
See also A-Z Function Call List

Description Sets the iteration information.

Syntax (VB) SSSetIteration% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bIteration%, ByVal
nMaxIterations%, ByVal nMaxChange#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetIteration (HSS hSS, BOOL bIteration, int
nMaxIterations, double nMaxChange)

hSS is a handle to a view.

bIteration specifies whether iteration is enabled.

nMaxIterations specifies the maximum number of iterations to perform.

nMaxChange specifies the maximum change between iterations.

Remarks SSSetIteration sets the iteration flag, maximum number of iterations, and the
maximum change value. Iteration is used to solve circular references. The program
continues to calculate until it iterates the number of times specified by pMaxIterations
or until all cells change by less than the amount specified by nMaxChange.

Return Value Integer

See Also SSGetIteration function

Example sserror = SSSetIteration(Sheet1.SS, True, 100, 0.01)

SSSetLeftCol
See also A-Z Function Call List

Description Specifies the leftmost column in the view.

Syntax (VB) SSSetLeftCol% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nLeftCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetLeftCol (HSS hSS, RC nLeftCol)

hSS is a handle to a view.

nLeftCol is the leftmost column in the view.

Return Value Integer

See Also SSGetLeftCol function and LeftCol property

Example sserror = SSSetLeftCol(Sheet1.SS, 1)

SSSetLogicalRC
See also A-Z Function Call List

Description Sets the logical value of the specified cell.

Syntax (VB) SSSetLogicalRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
ByVal blsTrue%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetLogicalRC (HSS hSS, RC nRow, RC nCol, BOOL
bIsTrue)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell in which to place the
logical value.

blsTrue is the logical value to put in the cell.

Remarks SSSetLogicalRC sets the logical value (True or False) of the specified cell. If the cell
contains a formula, the formula is deleted when the logical value is placed.

Return Value Integer

See Also SSGetLogicalRC function

Example sserror = SSSetLogicalRC(Sheet1.SS, 1, 2, True)

SSSetMaxCol
See also A-Z Function Call List

Description Specifies the last column that can be displayed in a view.

Syntax (VB) SSSetMaxCol% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMaxCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetMaxCol (HSS hSS, RC nMaxCol)

hSS is a handle to a view.

nMaxCol specifies the number of the last column.

Remarks Columns beyond the last displayable column are not displayed but can hold data and
formulas.

Return Value Integer

See Also SSGetMaxCol function and MaxCol property

Example sserror = SSSetMaxCol(Sheet1.SS, 5)

SSSetMaxRow
See also A-Z Function Call List

Description Specifies the last row that can be displayed in a view.

Syntax (VB) SSSetMaxRow% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMaxRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetMaxRow (HSS hSS, RC nMaxRow)

hSS is a handle to a view.

nMaxRow specifies the number of the last row.

Remarks Rows beyond the last displayable row are not displayed but can hold data and
formulas.

Return Value Integer

See Also SSGetMaxRow function and MaxRow property

Example sserror = SSSetMaxRow(Sheet1.SS, 1000)

SSSetMinCol
See also A-Z Function Call List

Description Specifies the first column that can be displayed in a view.

Syntax (VB) SSSetMinCol% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMinCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetMinCol (HSS hSS, RC nMinCol)

hSS is a handle to a view.

nMinCol specifies the number of the first column displayed.

Return Value Integer

See Also SSGetMinCol function and MinCol property

Example sserror = SSSetMinCol(Sheet1.SS, 3)

SSSetMinRow
See also A-Z Function Call List

Description Specifies the first row that can be displayed in a view.

Syntax (VB) SSSetMinRow% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMinRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetMinRow (HSS hSS, RC nMinRow)

hSS is a handle to a view.

nMinRow specifies the number of the first row displayed.

Return Value Integer

See Also SSGetMinRow function and MinRow property

Example sserror = SSSetMinRow(Sheet1.SS, 5)

SSSetNumber
See also A-Z Function Call List

Description Specifies the numeric value of the active cell.

Syntax (VB) SSSetNumber% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nNumber#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetNumber (HSS hSS, double nNumber)

hSS is a handle to a view.

nNumber is the number to put in the cell.

Remarks If the active cell contains a formula, the formula is deleted when the numeric value is
placed.

Return Value Integer

See Also SSGetNumber, SSGetNumberRC, and SSSetNumberRC functions and Number
property

Example sserror = SSSetNumber(Sheet1.SS, 1234.567)

SSSetNumberFormat
See also A-Z Function Call List

Description Specifies the number format for all selected cells.

Syntax (VB) SSSetNumberFormat% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
pNumberFormat$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetNumberFormat (HSS hSS, LPCSTR
pNumberFormat)

hSS is a handle to a view.

pNumberFormat is a string that specifies the format for the cells.

Remarks pNumberFormat is a format string that specifies how numbers in the selected range
are displayed. The following table lists the symbols that can be used in the format
string.

Format Symbol Description

General Displays the number in General format.

0 Digit placeholder. If the number contains fewer digits than the format
contains placeholders, the number is padded with 0's. If there are more
digits to the right of the decimal than there are placeholders, the decimal
portion is rounded to the number of places specified by the
placeholders. If there are more digits to the left of the decimal than there
are placeholders, the extra digits are retained.

Digit placeholder. This placeholder functions the same as the 0
placeholder except the number is not padded with 0's if the number
contains fewer digits than the format contains placeholders.

? Digit placeholder. This placeholder functions the same as the 0
placeholder except that spaces are used to pad the digits.

. (period) Decimal point. Determines how many digits (0's or #'s) are displayed on
either side of the decimal point. If the format contains only #'s left of the
decimal point, numbers less than 1 begin with a decimal point. If the
format contains 0s left of the decimal point, numbers less than 1 begin
with a 0 left of the decimal point.

% Displays the number as a percentage. The number is multiplied by 100
and the % character is appended.

, (comma) Thousands separator. If the format contains commas separated by #'s
or 0's, the number is displayed with commas separating thousands. A
comma following a placeholder scales the number by a thousand. For
example, the format 0, scales the number by 1000 (e.g., 10,000 would
be displayed as 10).

E- E+ e- e+ Displays the number as scientific notation. If the format contains a
scientific notation symbol to the left of a 0 or # placeholder, the number
is displayed in scientific notation and an E or an e is added. The number
of 0 and # placeholders to the right of the decimal determines the
number of digits in the exponent. E- and e- place a minus sign by
negative exponents. E+ and e+ place a minus sign by negative
exponents and a plus sign by positive exponents.

$ - + / () : space Displays that character. To display a character other than those listed,
precede the character with a back slash (\) or enclose the character in
double quotation marks (" "). You can also use the slash (/) for fraction
formats.

\ Displays the next character. The backslash is not displayed. You can
also display a character or string of characters by surrounding the
characters with double quotation marks (" ").

The backslash is inserted automatically for the following characters:

! ^ & ` (left quote) ' (right quote) ~ { } = < >

* (asterisk) Repeats the next character until the width of the column is filled. You
cannot have more than one asterisk in each format section.

_ (underline) Skips the width of the next character. For example, to make negative
numbers surrounded by parentheses align with positive numbers, you
can include the format _) for positive numbers to skip the width of a
parenthesis.

"text" Displays the text inside the quotation marks.

@ Text placeholder. If there is text in the cell, the text replaces the @
format character.

m Month number. Displays the month as digits without leading zeros (e.g.,
1-12). Can also represent minutes when used with h or hh formats.

mm Month number. Displays the month as digits with leading zeros (e.g., 01-
12). Can also represent minutes when used with the h or hh formats.

mmm Month abbreviation. Displays the month as an abbreviation (e.g., Jan-
Dec).

mmmm Month name. Displays the month as a full name (e.g., January-
December).

d Day number. Displays the day as digits with no leading zero (e.g., 1-2).

dd Day number. Displays the day as digits with leading zeros (e.g., 01-02).

ddd Day abbreviation. Displays the day as an abbreviation (e.g., Sun-Sat).

dddd Day name. Displays the day as a full name (e.g., Sunday-Saturday).

yy Year number. Displays the year as a two-digit number (e.g., 00-99).

yyyy Year number. Displays the year as a four-digit number (e.g., 1900-
2078).

h Hour number. Displays the hour as a number without leading zeros (1-
23). If the format contains one of the AM or PM formats, the hour is
based on a 12-hour clock. Otherwise, it is based on a 24-hour clock.

hh Hour number. Displays the hour as a number with leading zeros (01-23).
If the format contains one of the AM or PM formats, the hour is based on
a 12-hour clock. Otherwise, it is based on a 24-hour clock.

m Minute number. Displays the minute as a number without leading zeros
(0-59). The m format must appear immediately after the h or hh symbol.
Otherwise, it is interpreted as a month number.

mm Minute number. Displays the minute as a number with leading zeros
(00-59). The mm format must appear immediately after the h or hh
symbol. Otherwise, it is interpreted as a month number.

s Second number. Displays the second as a number without leading
zeros (0-59).

ss Second number. Displays the second as a number with leading zeros
(00-59).

AM/PM, am/pm
A/P, a/p 12-hour time. Displays time using a 12-hour clock. Displays AM, am, A,

or a for times between midnight and noon; displays PM, pm, P, or p for

times from noon until midnight.

[BLACK] Displays cell text in black.

[BLUE] Displays cell text in blue.

[CYAN] Displays cell text in cyan.

[GREEN] Displays cell text in green.

[MAGENTA] Displays cell text in magenta.

[RED] Displays cell text in red.

[WHITE] Displays cell text in white.

[YELLOW] Displays cell text in yellow.

[COLOR n] Displays cell text using the corresponding color in the color palette. n is
a color in the color palette.

[conditional value] Each format can have as many as four sections - one each for positive
numbers, negative numbers, zeros, and text. Using the conditional
value brackets ([]), you can designate a different condition for each
section. For example, you might want positive numbers displayed in
black, negative numbers in red, and zeros in blue. The following string
formats a number for these conditions:

[>=0] [BLACK]General; [<0] [RED]General; [BLUE]General

The following table shows examples of custom number formatting.

Format Cell Data Display

#.## 123.456 123.46

0.2 .2

#.0# 123.456 123.46

123 123.0

#,##0"CR";#,##0"DR";0 1234.567 1,235CR

0 0

-123.45 123DR

#, 10000 10

"Sales="0.0 123.45 Sales=123.5

-123.45 -Sales=123.5

"X="0.0;"x="-0.0 -12.34 x=-12.3

$* #,##0.00;$* -#,##0.00 1234.567 $ 1,234.57

-12.34$ 12.34$

000-00-0000 123456789 123-45-6789

"Cust. No." 0000 1234 Cust. No. 1234

;;; Anything (Not Displayed)

"The End" 123.45 The End

-123.45 -The End

text text

m-d-yy 2/3/94 2-3-94

mm dd yy 2/3/94 02 03 94

mmm d, yy 2/3/94 Feb 3, 94

mmmm d, yyyy 2/3/94 February 3, 1994

d mmmm yyyy 2/3/94 3 February 1994

hh"h" mm"m" 1:32 AM 01h 32m

h.mm AM/PM 14:56 2.56 PM

hhmm "hours" 3:15 0315 hours

Return Value Integer

See Also SSFormatNumberDlg function

Example sserror = SSSetNumberFormat(Sheet1.SS, "#,##0")

SSSetNumberRC
See also A-Z Function Call List

Description Sets the numeric value of the specified cell.

Syntax (VB) SSSetNumberRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol
%, ByVal nNumber#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetNumberRC (HSS hSS, RC nRow, RC nCol,
double nNumber)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell in which to place the
number.

nNumber is the number to place in the cell.

Remarks If the cell contains a formula, the formula is deleted when the number is placed.

Return Value Integer

See Also SSGetNumber, SSGetNumberRC, and SSSetNumber functions

Example sserror = SSSetNumberRC(Sheet1.SS, 1, 2, 1234.567)

SSSetPattern
See also A-Z Function Call List

Description Specifies the pattern for the selected cells.

Syntax (VB) SSSetPattern% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nPattern%, ByVal crFG&,
ByVal crBG&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPattern (HSS hSS, int nPattern, COLORREF
crFG, COLORREF crBG)

hSS is a handle to a view.

nPattern specifies the cell pattern. nPattern can range from 0 to 18 and represents
one of the 18 patterns, as shown in the following illustration; 0 represents no pattern.

crFG and crBG specify the foreground and background colors for the pattern.

Remarks SSSetPattern sets the pattern, foreground color, and background color for all
selected cells.

Return Value Integer

See Also SSFormatPatternDlg function

Example sserror = SSSetPattern(Sheet1.SS, 2, 128, 0)

SSSetPrintArea
See also A-Z Function Call List

Description Specifies the print area.

Syntax (VB) SSSetPrintArea% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pFormula$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintArea (HSS hSS, LPCSTR pFormula)

hSS is a handle to a view.

pFormula is a formula describing the print area.

Remarks SSSetPrintArea sets the "Print_Area" user-defined name to the formula pointed to
by pFormula. This name defines the worksheet ranges to be printed. It can contain
one or more ranges (e.g. A1:C3,A11:C13). If "Print_Area" is Null (""), the active
portion of the worksheet is printed.

Return Value Integer

See Also SSGetPrintArea function and PrintArea property

Example sserror = SSSetPrintArea(Sheet1.SS, "A1:D20, F1:J20")

SSSetPrintAreaFromSelection
See also A-Z Function Call List

Description Sets the print range to the currently selected ranges.

Syntax (VB) SSSetPrintAreaFromSelection% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintAreaFromSelection (HSS hSS)

hSS is a handle to a view.

Return Value Integer

See Also SSSetPrintArea and SSGetPrintArea functions and PrintArea property

Example sserror = SSSetPrintAreaFromSelection(Sheet1.SS)

SSSetPrintBottomMargin
See also A-Z Function Call List

Description Specifies the bottom page margin used during printing.

Syntax (VB) SSSetPrintBottomMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintBottomMargin (HSS hSS, double nMargin)

hSS is a handle to a view.

nMargin specifies the bottom margin in inches.

Remarks Margins can range from 0 to 48 inches.

Return Value Integer

See Also SSGetPrintBottomMargin function and PrintBottomMargin property

Example sserror = SSSetPrintBottomMargin(Sheet1.SS, 2.25)

SSSetPrintColHeading
See also A-Z Function Call List

Description Specifies whether column headings are printed.

Syntax (VB) SSSetPrintColHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bColHeading%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintColHeading (HSS hSS, BOOL bColHeading)

hSS is a handle to a view.

bColHeading specifies the setting of the print column heading flag.

Remarks If the print column heading flag is True, column headings are enabled and printed at
the top of the worksheet.

Return Value Integer

See Also SSGetPrintColHeading function and PrintColHeading property

Example sserror = SSSetPrintColHeading(Sheet1.SS, True)

SSSetPrintFooter
See also A-Z Function Call List

Description Specifies the footer to print at the bottom of each page.

Syntax (VB) SSSetPrintFooter% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pPrintFooter$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintFooter (HSS hSS, LPCSTR pPrintFooter)

hSS is a handle to a view.

pPrintFooter is a string specifying the footer.

Remarks The following tables list the special codes the footer text string can contain. By
default, footer text is centered unless &L or &R is specified.

Format Code Description
&L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&D Prints the current date

&T Prints the current time

&F Prints the worksheet name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

The following font codes must appear before other codes and text or they are
ignored. The alignment codes (e.g., &L, &C, and &R) restart each section; new font
codes can be specified after an alignment code.

Format Code Description
&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored

&H Ignored

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

Return Value Integer

See Also SSGetPrintFooter function and PrintFooter property

Example sserror = SSSetPrintFooter(Sheet1.SS, "&L Page: &P")

SSSetPrintGridLines
See also A-Z Function Call List

Description Specifies whether grid lines are printed.

Syntax (VB) SSSetPrintGridLines% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bGridLines%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintGridLines (HSS hSS, BOOL bGridLines)

hSS is a handle to a view.

bGridLines specifies the setting of the print grid lines flag.

Remarks If the print grid lines flag is True, grid lines are printed.

Return Value Integer

See Also SSGetPrintGridLines function and PrintGridLines property

Example sserror = SSSetPrintGridLines(Sheet1.SS, True)

SSSetPrintHCenter
See also A-Z Function Call List

Description Specifies whether a worksheet is horizontally centered when printed.

Syntax (VB) SSSetPrintHCenter% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bHCenter%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintHCenter (HSS hSS, BOOL bHCenter)

hSS is a handle to a view.

bHCenter specifies the setting of the horizontal center flag.

Remarks If the horizontal center flag is True, the worksheet is centered between the left and
right margins when printed.

Return Value Integer

See Also SSGetPrintHCenter function and PrintHCenter property

Example sserror = SSSetPrintHCenter(Sheet1.SS, True)

SSSetPrintHeader
See also A-Z Function Call List

Description Specifies the header to print at the top of each page.

Syntax (VB) SSSetPrintHeader% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pPrintHeader$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintHeader (HSS hSS, LPCSTR pPrintHeader)

hSS is a handle to a view.

pPrintHeader is a string specifying the header.

Remarks The following tables list the special codes the header text string can contain. By
default, header text is centered unless &L or &R is specified.

Format Code Description
&L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&D Prints the current date

&T Prints the current time

&F Prints the worksheet name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

The following font codes must appear before other codes and text or they are
ignored. The alignment codes (e.g., &L, &C, and &R) restart each section; new font
codes can be specified after an alignment code.

Format Code Description
&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored

&H Ignored

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

Return Value Integer

See Also SSGetPrintHeader function and PrintHeader property

Example sserror = SSSetPrintHeader(Sheet1.SS, "&C October Sales
Report")

SSSetPrintLeftMargin
See also A-Z Function Call List

Description Specifies the left page margin used during printing.

Syntax (VB) SSSetPrintLeftMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintLeftMargin (HSS hSS, double nMargin)

hSS is a handle to a view.

nMargin specifies the left margin in inches.

Remarks Margins can range from 0 to 48 inches.

Return Value Integer

See Also SSGetPrintLeftMargin function and PrintLeftMargin property

Example sserror = SSSetPrintLeftMargin(Sheet1.SS, 1.5)

SSSetPrintLeftToRight
See also A-Z Function Call List

Description Specifies the order in which pages are printed.

Syntax (VB) SSSetPrintLeftToRight% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bLeftToRight%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintLeftToRight (HSS hSS, BOOL bLeftToRight)

hSS is a handle to a view.

bLeftToRight specifies the setting of the print left to right flag.

Remarks If the print left to right flag is True, pages in a worksheet are printed left to right before
printing top to bottom.

Return Value Integer

See Also SSGetPrintLeftToRight function and PrintLeftToRight property

Example sserror = SSSetPrintLeftToRight(Sheet1.SS, True)

SSSetPrintNoColor
See also A-Z Function Call List

Description Specifies whether the worksheet is printed in color.

Syntax (VB) SSSetPrintNoColor% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bNoColor%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintNoColor (HSS hSS, BOOL bNoColor)

hSS is a handle to a view.

bNoColor specifies the setting of the print no color flag.

Remarks Color formats are translated by the printer driver and printed as patterns. This
translation sometimes makes text unreadable. If the print no color flag is True, all
worksheet colors are converted to black and white, and all patterns are removed. A
cleaner output is produced.

Return Value Integer

See Also SSGetPrintNoColor function and PrintNoColor property

Example sserror = SSSetPrintNoColor(Sheet1.SS, True)

SSSetPrintRightMargin
See also A-Z Function Call List

Description Specifies the right page margin used during printing.

Syntax (VB) SSSetPrintRightMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintRightMargin (HSS hSS, double nMargin)

hSS is a handle to a view.

nMargin specifies the right margin in inches.

Remarks Margins can range from 0 to 48 inches.

Return Value Integer

See Also SSGetPrintRightMargin function and PrintRightMargin property

Example sserror = SSSetPrintRightMargin(Sheet1.SS, 1.5)

SSSetPrintRowHeading
See also A-Z Function Call List

Description Specifies whether row headings are printed.

Syntax (VB) SSSetPrintRowHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bRowHeading
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintRowHeading (HSS hSS, BOOL
bRowHeading)

hSS is a handle to a view.

bRowHeading specifies the setting of the print row heading flag.

Remarks If the print row heading flag is True, row headings are enabled and printed at the left
edge of the worksheet.

Return Value Integer

See Also SSGetPrintRowHeading function and PrintRowHeading property

Example sserror = SSSetPrintRowHeading(Sheet1.SS, True)

SSSetPrintTitles
See also A-Z Function Call List

Description Specifies titles to be printed at the top or left of each page.

Syntax (VB) SSSetPrintTitles% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pFormula$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintTitles (HSS hSS, LPCSTR pFormula)

hSS is a handle to a view.

pFormula is a string containing a formula to which the Print_Titles name is set.

Remarks SSSetPrintTitles sets the user defined name Print_Titles to the formula specified by
pFormula. This formula can contain a single range or multiple ranges (e.g., A1:IV2,
A1:A16384 prints the first two rows and the first column on every page). Row titles
are printed at the top of each page; column titles are printed on the left of each page.
The name defines the fixed columns and rows that are printed. If set to null (""), no
titles are printed.

Important When setting print titles, you must specify entires rows and columns.

Return Value Integer

See Also SSGetPrintTitles and SSSetPrintTitlesFromSelection functions and PrintTitles
property

Example sserror = SSSetPrintTitles(Sheet1.SS, "A1:IV2, A1:A16384")

SSSetPrintTitlesFromSelection
See also A-Z Function Call List

Description Specifies the current selection as print titles to be printed at the top or left of each
page.

Syntax (VB) SSSetPrintTitlesFromSelection% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintTitlesFromSelection (HSS hSS)

hSS is a handle to a view.

Remarks SSSetPrintTitlesFromSelection sets the "Print_Titles" user-defined name to a
formula referring to the current selection. The entire rows and columns to be print
titles must be selected.

Print titles are row or column titles that are printed on each page. Row titles are
printed at the top of each page; column titles are printed on the left of each page. The
name defines the fixed columns and rows that are printed. If set to null (""), no titles
are printed.

Return Value Integer

See Also SSGetPrintTitles and SSSetPrintTitles functions and PrintTitles property

Example sserror = SSSetPrintTitlesFromSelection(Sheet1.SS)

SSSetPrintTopMargin
See also A-Z Function Call List

Description Specifies the top page margin used during printing.

Syntax (VB) SSSetPrintTopMargin% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nMargin#)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintTopMargin (HSS hSS, double nMargin)

hSS is a handle to a view.

nMargin specifies the top page margin in inches.

Remarks Margins can range from 0 to 48 inches.

Return Value Integer

See Also SSGetPrintTopMargin function and PrintTopMargin property

Example sserror = SSSetPrintTopMargin(Sheet1.SS, 1.5)

SSSetPrintVCenter
See also A-Z Function Call List

Description Specifies whether a worksheet is vertically centered when printed.

Syntax (VB) SSSetPrintVCenter% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bVCenter%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetPrintVCenter (HSS hSS, BOOL bVCenter)

hSS is a handle to a view.

bVCenter specifies the setting of the vertical center flag.

Remarks If the vertical center flag is True, the worksheet is centered between the top and
bottom margins when printed.

Return Value Integer

See Also SSGetPrintVCenter function and PrintVCenter property

Example sserror = SSSetPrintVCenter(Sheet1.SS, True)

SSSetProtection
See also A-Z Function Call List

Description Specifies the protection of all currently selected cells.

Syntax (VB) SSSetProtection% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bLocked%, ByVal
bHidden%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetProtection (HSS hSS, BOOL bLocked, BOOL
bHidden)

hSS is a handle to a view.

bLocked specifies the setting of the locked cell flag.

bHidden specifies setting of the hide formulas flag.

Remarks If the locked cell flag is True, all selected cells are locked. If the hide formulas flag is
True, all formulas are hidden (formula results are not hidden).

After locking cells and hiding formulas, you must enable protection for the worksheet
before cell locking and formula hiding is enabled. Protection for a worksheet is
enabled using the EnableProtection property or the SSSetEnableProtection
function call.

Return Value Integer

See Also SSGetEnableProtection, SSProtectionDlg, and SSSetEnableProtection functions
and EnableProtection property

Example sserror = SSSetProtection(Sheet1.SS, True, False)

SSSetRepaint
See also A-Z Function Call List

Description Sets the repaint status for a view.

Syntax (VB) SSSetRepaint% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bRepaint%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetRepaint (HSS hSS, BOOL bRepaint)

hSS is a handle to a view.

bRepaint specifies the setting of the repaint flag.

Remarks If the repaint flag is True, repainting occurs in the entire window when Windows
sends a WM_PAINT message. No repainting occurs when the repaint flag is False.

The repaint flag is not saved to disk. The default repaint setting for a new view is
always True.

Return Value Integer

See Also SSGetRepaint function and Repaint property

Example sserror = SSSetRepaint(Sheet1.SS, True)

SSSetRowHeight
See also A-Z Function Call List

Description Specifies the height for the specified rows.

Syntax (VB) SSSetRowHeight% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nRow2%, ByVal nHeight%, ByVal bDefRowHeight%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetRowHeight (HSS hSS, RC nRow1, RC nRow2, int
nHeight, BOOL bDefRowHeight)

hSS is a handle to a view.

nRow1 specifies the starting row to change.

nRow2 specifies the ending row to change.

nHeight is the new row height.

bDefRowHeight specifies whether the default row height is changed. True specifies
that the default height is set to nHeight, and the specified rows are set to the default
height. In addition, any rows that use the default height are updated with the new
default. False specifies that the default height is unchanged.

Remarks SSSetRowHeight specifies the height of the specified rows. The height is specified
by nHeight in twips. A twip is 1/1440 of an inch.

Return Value Integer

See Also SSRowHeightDlg, SSGetRowHeight, and SSSetRowHeightAuto functions

Example sserror = SSSetRowHeight(Sheet1.SS, 1, 10, 1440, False)

SSSetRowHeightAuto
See also A-Z Function Call List

Description Sets the height of the specified rows automatically.

Syntax (VB) SSSetRowHeightAuto% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%, ByVal bSetDefaults%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetRowHeightAuto (HSS hSS, RC nRow1, RC
nCol1, RC nRow2, RC nCol2, BOOL bSetDefaults)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range containing the rows for which to
set the height.

bSetDefaults determines when the specified rows are resized. If True, all specified
rows are adjusted automatically. If False, only rows in the specified row range that
need to be larger than their current size are adjusted.

Remarks SSSetRowHeightAuto specifies that the heights of the rows in the specified range
are automatically set to display the tallest entry in the specified rows. The rows are
set at least as tall as the default row height.

Return Value Integer

See Also SSRowHeightDlg, SSGetRowHeight, and SSSetRowHeight functions

See Also SSRowHeightDlg, SSGetRowHeight, and SSSetRowHeight functions

Example sserror = SSSetRowHeightAuto(Sheet1.SS, 1, 1, 8, 4, True)

SSSetRowMode
See also A-Z Function Call List

Description Sets the row mode status for a view.

Syntax (VB) SSSetRowMode% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bRowMode%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetRowMode (HSS hSS, BOOL bRowMode)

hSS is a handle to a view.

bRowMode specifies the setting of the row mode flag.

Remarks If the row mode flag is True, an entire row is selected when you select a cell. Normal
cell selection occurs when the flag is False. The default row mode flag is True.

Return Value Integer

See Also SSGetRowMode function and RowMode property

Example sserror = SSSetRowMode(Sheet1.SS, True)

SSSetRowText
See also A-Z Function Call List

Description Specifies the name for a row.

Syntax (VB) SSSetRowText% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal
pRowText$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetRowText (HSS hSS, RC nRow, LPCSTR
pRowText)

hSS is a handle to a view.

nRow is the row to be named.

pRowText is the new row name.

Remarks Naming a row is useful for labeling rows so they reflect the data in the row (e.g., row
2 might be named Central Region). The new row name is displayed in the row
heading and is used for display purposes only. The row is still referred to by normal
cell references in formulas.

Return Value Integer

See Also SSSetColText and SSSetTopLeftText functions

Example sserror = SSSetRowText(Sheet1.SS, 1, "Region 1")

SSSetSelection
See also A-Z Function Call List

Description Selects the specified range and moves the active cell to the top left cell in the range.

Syntax (VB) SSSetSelection% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal
nCol1%, ByVal nRow2%, ByVal nCol2%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetSelection (HSS hSS, RC nRow1, RC nCol1, RC
nRow2, RC nCol2)

hSS is a handle to a view.

nRow1, nRow2, nCol1, and nCol2 specify the range. If nRow1 is -1, all rows are
included in the selection; if nCol1 is -1, all columns are included.

Return Value Integer

See Also SSGetSelection and SSSetSelectionRef functions and Selection property

Example sserror = SSSetSelection(Sheet1.SS, 1, 1, 4, 4)

SSSetSelectionRef
See also A-Z Function Call List

Description Sets the current selection from a formula.

Syntax (VB) SSSetSelectionRef% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pFormula$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetSelectionRef (HSS hSS, LPCSTR pFormula)

hSS is a handle to a view.

pFormula is a formula specifying one or more ranges.

Remarks SSSetSelectionRef sets the current selection from a formula that returns one or
more ranges. For example "A1:C2,D4" selects two ranges. The first range
encompasses column 1 through 3 and rows 1 and 2. The second range contains a
single cell at the intersection of column 4 and row 4.

Return Value Integer

See Also SSGetSelectionRef and SSSetSelection functions and Selection property

Example sserror = SSSetSelectionRef(sheet1.SS, "A1:C2,A4:D7")

SSSetShowColHeading
See also A-Z Function Call List

Description Specifies whether column headings are displayed.

Syntax (VB) SSSetShowColHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bColHeading
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowColHeading (HSS hSS, BOOL
bColHeading)

hSS is a handle to a view.

bColHeading specifies the setting of the show column headings flag.

Remarks If the show column headings flag is True, column headings are displayed.

Return Value Integer

See Also SSGetShowColHeading function and ShowColHeading property

Example sserror = SSSetShowColHeading(Sheet1.SS, True)

SSSetShowFormulas
See also A-Z Function Call List

Description Specifies whether formulas are displayed in place of cell values.

Syntax (VB) SSSetShowFormulas% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bFormulas%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowFormulas (HSS hSS, BOOL bFormulas)

hSS is a handle to a view.

bFormulas specifies the setting of the show formulas flag.

Remarks If the show formulas flag is True, formula text is displayed in cells instead of the
values formulas produce.

Return Value Integer

See Also SSGetShowFormulas function

Example sserror = SSSetShowFormulas(Sheet1.SS, True)

SSSetShowGridLines
See also A-Z Function Call List

Description Specifies whether grid lines are displayed.

Syntax (VB) SSSetShowGridLines% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bGridLines%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowGridLines (HSS hSS, BOOL bGridLines)

hSS is a handle to a view.

bGridLines specifies the setting of the show grid lines flag.

Remarks If the show grid lines flag is True, grid lines are displayed.

Return Value Integer

See Also SSGetShowGridLines function and ShowGridLines property

Example sserror = SSSetShowGridLines(Sheet1.SS, True)

SSSetShowHScrollBar
See also A-Z Function Call List

Description Determines how the horizontal scroll bar is displayed.

Syntax (VB) SSSetShowHScrollBar% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
nShowHScrollBar%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowHScrollBar (HSS hSS, int
nShowHScrollBar)

hSS is a handle to a view.

nShowHScrollBar specifies the setting for the show horizontal scroll bar flag.

Remarks The following table lists the settings for the show horizontal scroll bar flag.

Setting Description

0 Off

1 On

2 Automatic

When the flag is 0, the horizontal scroll bar is hidden; when the flag is 1, the
horizontal scroll bar is displayed. Setting the flag to 2 causes the horizontal scroll bar
to display if the worksheet is active and it is larger than the window.

Return Value Integer

See Also SSGetShowHScrollBar function and ShowHScrollBar property

Example sserror = SSSetShowHScrollBar(Sheet1.SS, 2)

SSSetShowRowHeading
See also A-Z Function Call List

Description Specifies whether row headings are displayed.

Syntax (VB) SSSetShowRowHeading% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bRowHeading
%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowRowHeading (HSS hSS, BOOL
bRowHeading)

hSS is a handle to a view.

bRowHeading specifies the setting for the show row headings flag.

Remarks If the show row headings flag is True, row headings are displayed.

Return Value Integer

See Also SSGetShowRowHeading function and ShowRowHeading property

Example sserror = SSSetShowRowHeading(Sheet1.SS, True)

SSSetShowSelections
See also A-Z Function Call List

Description Specifies whether selections are displayed.

Syntax (VB) SSSetShowSelections% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nSelections%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowSelections (HSS hSS, int nSelections)

hSS is a handle to a view.

nSelections specifies the setting for the show selections flag.

Remarks The following table lists the settings for the show selections flag.

Setting Description

0 Do not display selections

1 Display all selections

2 Display selections in this control only

When the flag is 0, the display of selections is disabled; when the flag is 1, all
selections are displayed at all times. When the flag is 2, selections are displayed in
the Formula One/VB control only when the control is active.

Return Value Integer

See Also SSGetShowSelections function and ShowSelections property

Example sserror = SSSetShowSelections(Sheet1.SS, 1)

SSSetShowVScrollBar
See also A-Z Function Call List

Description Determines how the vertical scroll bar is displayed.

Syntax (VB) SSSetShowVScrollBar% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
nShowVScrollBar%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowVScrollBar (HSS hSS, int
nShowVScrollBar)

hSS is a handle to a view.

nShowVScrollBar specifies the setting for the show vertical scroll bar flag.

Remarks The following table lists the settings for the show vertical scroll bar flag.

Setting Description

0 Off

1 On

2 Automatic

When the flag is 0, the vertical scroll bar is hidden; when the flag is 1, the vertical
scroll bar is displayed. Setting the flag to 2 causes the vertical scroll bar to display if
the worksheet is active and it is larger than the window.

Return Value Integer

See Also SSGetShowVScrollBar function and ShowVScrollBar property

Example sserror = SSSetShowVScrollBar(Sheet1.SS, 2)

SSSetShowZeroValues
See also A-Z Function Call List

Description Specifies whether zero value cells are displayed.

Syntax (VB) SSSetShowZeroValues% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bZeroValues%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetShowZeroValues (HSS hSS, BOOL bZeroValues)

hSS is a handle to a view.

bZeroValues specifies the setting for the show zero values flag.

Remarks If the show zero values flag is True, zero values are displayed.

Return Value Integer

See Also SSGetShowZeroValues function

Example sserror = SSSetShowZeroValues(Sheet1.SS, True)

SSSetSSEdit
See also A-Z Function Call List

Description Attaches a view to the specified edit bar.

Syntax (VB) SSSetSSEdit% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal hSSEdit&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetSSEdit (HSS hSS, HSSEDIT hSSEdit)

hSS is a handle to a view.

hSSEdit is a handle to an edit bar.

Important This function should not be called from Visual Basic.

Return Value Integer

See Also SSGetSSEdit function and EditName property

SSSetText
See also A-Z Function Call List

Description Places text in the active cell.

Syntax (VB) SSSetText% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pText$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetText (HSS hSS, LPCSTR pText)

hSS is a handle to a view.

pText is the text to put in the cell.

Remarks If the active cell contains a formula, the formula is deleted when the text is placed in
the cell.

Return Value Integer

See Also SSGetText and SSSetTextRC functions and Text property

Example sserror = SSSetText(Sheet1.SS, "Some Text")

SSSetTextRC
See also A-Z Function Call List

Description Places text in the specified cell.

Syntax (VB) SSSetTextRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow%, ByVal nCol%,
ByVal pText$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetTextRC (HSS hSS, RC nRow, RC nCol, LPCSTR
pText)

hSS is a handle to a view.

nRow and nCol are the row and column numbers of the cell in which the text is
placed.

pText is a string containing the text to put in the cell.

Remarks If the specified cell contains a formula, the formula is deleted when the text is placed
in the cell.

Return Value Integer

See Also SSSetText, SSGetTextRC Functions and Text Property

Example sserror = SSSetTextRC(Sheet1.SS, 1, 1, "Some Text")

SSSetTitle
See also A-Z Function Call List

Description Sets the title of the worksheet.

Syntax (VB) SSSetTitle% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pTitle$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetTitle (HSS hSS, LPCSTR pTitle)

hSS is a handle to a view.

pTitle is a string containing the new title.

Remarks The worksheet title can be used in external references to access multiple
worksheets.

Return Value Integer

See Also SSGetTitle function

Example sserror = SSSetTitle(Sheet1.SS, "Table1")

SSSetTopLeftText
See also A-Z Function Call List

Description Specifies the text displayed at the intersection of the row and column headings in the
top left corner of the spreadsheet.

Syntax (VB) SSSetTopLeftText% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pTopLeftText$)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetTopLeftText (HSS hSS, LPCSTR pTopLeftText)

hSS is a handle to a view.

pTopLeftText is the text for the top left corner.

Remarks The text placed in the top left corner of the spreadsheet is used for display purposes
only.

Return Value Integer

See Also SSSetColText and SSSetRowText functions

Example sserror = SSSetTopLeftText(Sheet1.SS, "Current Sales")

SSSetTopRow
See also A-Z Function Call List

Description Sets the top row displayed in the view.

Syntax (VB) SSSetTopRow% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nTopRow%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSetTopRow (HSS hSS, RC nTopRow)

hSS is a handle to a view.

nTopRow is the row number of the top row.

Return Value Integer

See Also SSGetTopRow function and TopRow property

Example sserror = SSSetTopRow(Sheet1.SS, 10)

SSShowActiveCell
See also A-Z Function Call List

Description Positions the view to show the active cell if it is not currently displayed in the window.

Syntax (VB) SSShowActiveCell% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSShowActiveCell (HSS hSS)

hSS is a handle to a view.

Remarks If the active cell is not displayed in the view window the worksheet is repositioned so
the active cell is visible. The worksheet is repositioned by scrolling the worksheet until
the cell becomes visible.

Return Value Integer

See Also SSGetActiveCell and SSSetActiveCell functions and Row and Col properties

Example sserror = SSShowActiveCell(Sheet1.SS)

SSSort
See also A-Z Function Call List

Description Specifies a range of data to be sorted and the keys by which to sort the data.

Syntax (VB) SSSort% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal nCol1%, ByVal
nRow2%, ByVal nCol2%, ByVal bSortByRows%, pkeys%, ByVal nKeys%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSort (HSS hSS, RC nRow1, RC nCol1, RC nRow2,
RC nCol2, BOOL bSortByRows, int FAR *pkeys, int nKeys)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range of data to be sorted.

bSortByRows specifies how data is sorted. If True, data is sorted by rows; if False,
data is sorted by columns.

pKeys is an array of integers specifying the sort keys. If the data is sorted by rows,
columns are specified as sort keys; rows are specified as sort keys if the data is
sorted by columns.

nKeys is the number of sort keys specified in pKeys.

Remarks If the data is sorted by rows, each row of data in the specified range is considered a
record and sorted together. If data is sorted by columns, each column in the specified
range is considered a record.

When defining sort keys, specify the number of the row or column in the selected
range that is to serve as a key. Use a positive number to define an ascending key;
use a negative number to define a descending key.

Return Value Integer

See Also SSSort3 and SSSortDlg functions

Example sserror = SSSort(Sheet1.SS, 1, 1, 10, 6, True, sortkeys, 4)

SSSort3
See also A-Z Function Call List

Description Specifies a range of data to be sorted and as many as three keys by which to sort the
data. For Visual Basic programmers, this function call provides an easier method for
sorting data than SSSort.

Syntax (VB) SSSort3% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal nRow1%, ByVal nCol1%, ByVal
nRow2%, ByVal nCol2%, ByVal bSortByRows%, ByVal nKey1%, ByVal nKey2%,
ByVal nKey3%)

Syntax (VC++) SSERROR SSEXPORTAPI SSSort3 (HSS hSS, RC nRow1, RC nCol1, RC nRow2,
RC nCol2, BOOL bSortByRows, int nKey1, int nKey2, int nKey3)

hSS is a handle to a view.

nRow1, nCol1, nRow2, and nCol2 specify the range of data to be sorted.

bSortByRows specifies how data is sorted. If True, data is sorted by rows; if False,
data is sorted by columns.

nKey1, nKey2, and nKey3 specify the sort keys. If the data is sorted by rows,
columns are specified as sort keys; rows are specified as sort keys if the data is
sorted by columns. nKey1 is the primary key, nKey2 is the secondary key, and nKey3
is the last sort key.

Remarks If the data is sorted by rows, each row of data in the specified range is considered a
record and sorted together. If data is sorted by columns, each column in the specified
range is considered a record.

When defining sort keys, specify the number of the row or column in the selected
range that is to serve as a key. Use a positive number to define an ascending key;
use a negative number to define a descending key.

For example, to specify the second column in the selected range as a primary
descending key, enter -2 for nKey1.

To sort on one key, nKey2 must be zero. To sort on two keys, nKey3 must be zero.

Return Value Integer

See Also SSSort and SSSortDlg functions

Example sserror = SSSort3(Sheet1.SS, 1, 1, 10, 6, True, 2, -4, 5)

SSSortDlg
See also A-Z Function Call List

Description Displays the Sort dialog box.

Syntax (VB) SSSortDlg% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSortDlg (HSS hSS)

hSS is a handle to a view.

Remarks The Sort dialog box allows you to sort the data in the currently selected range. The
dialog box allows you to specify sort keys, whether those sort keys are ascending or
descending, and whether data is sorted by rows or columns.

Return Value Integer

See Also SSSort and SSSort3 functions

Example sserror = SSSortDlg(Sheet1.SS)

SSStartEdit
See also A-Z Function Call List

Description Begins edit mode for the active cell.

Syntax (VB) SSStartEdit% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal bClear%, ByVal
bInCellEditFocus%, ByVal bArrowsExitEditMode%)

Syntax (VC++) SSERROR SSEXPORTAPI SSStartEdit (HSS hSS, BOOL bClear, BOOL
bInCellEditFocus, BOOL bArrowsExitEditMode)

hSS is a handle to a view.

bClear sets the clear edit bar flag.

bInCellEditFocus sets the in cell edit flag.

bArrowsExitEditMode sets the arrows exit edit mode flag.

SSStartEdit starts edit mode for the active cell and allows you to specify how the cell
is edited. If bClear is True, the edit bar is cleared as edit mode commences. If
bInCellEditFocus is True, editing focus is given to in-cell editing; if False, editing
focus is given to the edit bar. If bArrowsExitEditMode is True, edit mode is exited if
you press an arrow key on the keyboard.

Return Value Integer

See Also SSCancelEdit and SSEndEdit functions

Example sserror = SSStartEdit(Sheet1.SS, False, True, True)

SSSwapTables
See also A-Z Function Call List

Description Exchanges the worksheets attached to two views.

Syntax (VB) SSSwapTables% Lib "VTSSDLL.DLL" (ByVal hSS1&, ByVal hSS2&)

Syntax (VC++) SSERROR SSEXPORTAPI SSSwaptables (HSS hSS1, HSS hSS2)

hSS1 and hSS2 are handles to views.

Remarks When the worksheets are exchanged, the view information is not swapped - only the
worksheets are swapped. The following properties are not swapped when
SSSwapTables is called: EditName, AllowAppLaunch, Tablename, all Data
properties, all Do properties, and FileName. If you want to swap both worksheets
and view information between two views, then you must swap these properties using
Visual Basic code.

Return Value Integer

See Also SSAttach and SSAttachToSS functions

Example sserror = SSSwapTables(Sheet1.SS, Sheet2.SS)

SSTransactCommit
See also A-Z Function Call List

Description Commits changes made during a transaction.

Syntax (VB) SSTransactCommit% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSTransactCommit (HSS hSS)

hSS is a handle to a view.

Remarks Transactions perform multiple operations with the ability to undo changes if all
operations do not succeed. Every operation between the start of a transaction and
the end of a transaction can be undone by calling SSTransactRollback. If all
operations succeed, SSTransactCommit should be called to make the changes
permanent and release resources associated with the transaction.

Every SSTransactStart call must have a matching SSTransactCommit or
SSTransactRollback call.

Return Value Integer

See Also SSTransactRollback and SSTransactStart functions

Example sserror = SSTransactCommit(Sheet1.SS)

SSTransactRollback
See also A-Z Function Call List

Description Undoes all changes made to a table since the last SSTransactStart function was
called.

Syntax (VB) SSTransactRollback% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSTransactRollback (HSS hSS)

hSS is a handle to a view.

Remarks Transactions perform multiple operations with the ability to undo changes if all
operations do not succeed. Every operation between the start of a transaction and
the end of a transaction can be undone by calling SSTransactRollback. If all
operations succeed, SSTransactCommit should be called to make the changes
permanent and release resources associated with the transaction.

Every SSTransactStart call must have a matching SSTransactCommit or
SSTransactRollback call.

Return Value Integer

See Also SSTransactCommit and SSTransactStart functions

Example sserror = SSTransactRollback(Sheet1.SS)

SSTransactStart
See also A-Z Function Call List

Description Starts a transaction.

Syntax (VB) SSTransactStart% Lib "VTSSDLL.DLL" (ByVal hSS&)

Syntax (VC++) SSERROR SSEXPORTAPI SSTransactStart (HSS hSS)

hSS is a handle to a view.

Remarks Transactions perform multiple operations with the ability to undo changes if all
operations do not succeed. Every operation between the start of a transaction and
the end of a transaction can be undone by calling SSTransactRollback. If all
operations succeed, SSTransactCommit should be called to make the changes
permanent and release resources associated with the transaction.

Every SSTransactStart call must have a matching SSTransactCommit or
SSTransactRollback call.

Return Value Integer

See Also SSTransactCommit and SSTransactRollback functions

Example sserror = SSTransactStart(Sheet1.SS)

SSTwipsToRC
See also A-Z Function Call List

Description Converts a point in a worksheet, as specified by a set of coordinates, to the
corresponding row and column at which the point is located.

Syntax (VB) SSTwipsToRC% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pX&, ByVal pY&, pRow
%, pCol%)

Syntax (VC++) SSERROR SSEXPORTAPI SSTwipsToRC (HSS hSS, LONG pX LONG pY, LPRC
pRow, LPRC pCol)

hSS is a handle to a view.

pX is the horizontal coordinate of the point to convert.

pY is the vertical coordinate of the point to convert.

pRow is the number of the row returned.

pCol is the number of the column returned.

Remarks The coordinates specified by this function are measured in twips from the upper left
corner of the worksheet control.

SSTwipsToRC can determine the row and column that corresponds to a point
returned by the DragDrop and DragOver events. SSTwipsToRC returns 0 if the
referenced point is located in a row or column heading.

Return Value Integer

See Also SSRangeToTwips function and DragDrop and DragOver events

Example sserror = SSTwipsToRC(Sheet1.SS, 50, 100, therow, thecol)

SSUpdate
See also A-Z Function Call List

Description Updates all worksheets.

Syntax (VB) Declare Sub SSUpdate Lib "VTSSDLL.DLL" ()

Syntax (VC++) Void SSEXPORTAPI SSUpdate ()

Remarks SSUpdate updates everything that might be delayed. This includes recalculating any
worksheets with the AutoRecalc property set to True, updating the scroll bar
position, and sending the SSM_MODIFIED message if needed.

Return Value Nothing

See Also SSCheckRecalc and SSSetAutoRecalc functions and AutoRecalc property

Example Call SSUpdate()

SSVBXCopyCellsFromDoubleArray
See also A-Z Function Call List

Description Copies an array of numbers to a range.

Syntax (VB) SSVBXCopyCellsFromDoubleArray% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
Row1%, ByVal nCol1%, ByVal nRow2%, ByVal nCol2%, hArray() As Double)

Syntax (VC++) SSERROR SSEXPORT API SSVBXCopyCellsFromDoubleArray (HSS hSS, RC
nRow1, RC nCol1, RC nRow2, RC nCol2, HAD hArray)

hSS is a handle to a view

nRow1, nCol1, nRow2 and nCol2 are the row and column numbers of the range to
which the array is copied.

hArray is a two-dimensional array from which numbers are copied.

Remarks The size of the range and the size of the array must match. The first dimension of the
array must match the number of rows in the range; the second dimension of the array
must match the number of columns in the range.

Return Value Integer

See Also SSVBXCopyCellsToDoubleArray function call

SSVBXCopyCellsToDoubleArray
See also A-Z Function Call List

Description Copies a range of numbers to an array.

Syntax (VB) SSVBXCopyCellsToDoubleArray% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal
nRow1%, ByVal nCol1%, ByVal nRow2%, ByVal nCol2%, hArray() As Double)

Syntax (VC++) SSERROR SSEXPORT API SSVBXCopyCellsToDoubleArray (HSS hSS, RC
nRow1, RC nCol1, RC nRow2, RC nCol2, HAD hArray)

hSS is a handle to a view

nRow1, nCol1, nRow2 and nCol2 are the row and column numbers of the range from
which numbers are copied.

hArray is a two-dimensional array to which the range of numbers is copied.

Remarks The size of the range and the size of the array must match. The first dimension of the
array must match the number of rows in the range; the second dimension of the array
must match the number of columns in the range.

Return Value Integer

See Also SSVBXCopyCellsFromDoubleArray function call

SSVersion
See also A-Z Function Call List

Description Returns the version number of the Formula One control.

Syntax (VB) SSVersion% Lib "VTSSDLL.DLL" ()

Syntax (VC++) WORD SSEXPORTAPI SSVersion ()

Remarks SSVersion returns the version number of the Formula One control. The major
version number is stored in the high byte. Minor version numbers are stored in the
low byte. For example, 0x0100 is version 1.0, while 0x0301 is version 3.01.

Return Value Integer

See Also SSMaxCol and SSMaxRow functions

Example Dim ver%
ver = SSVersion()
MsgBox "Version: " & (ver / 256) & "." & (ver And &HFF)

SSWrite
See also A-Z Function Call List

Description Saves the worksheet to the specified file.

Syntax (VB) SSWrite% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal pPathName$, ByVal
nSaveType%)

Syntax (VC++) SSERROR SSEXPORTAPI SSWrite (HSS hSS, LPCSTR pPathName, int
nSaveType)

hSS is a handle to a view.

pPathName is a string containing the name of the file to write. The name can include
drive, path, and filename.

nSaveType is the file type used when writing the file. The following table lists the
settings for this parameter.

Setting Description
1 Formula One format

2 Excel 4.0 format

Return Value Integer

See Also SSRead, SSReadIO, SSSaveWindowInfo, and SSWriteIO functions

See Also SSRead, SSReadIO, SSSaveWindowInfo, and SSWriteIO functions

Example sserror = SSWrite(Sheet1.SS, filename, 1)

SSWriteIO
See also A-Z Function Call List

Description Writes a worksheet using the specified write function.

Syntax (VB) SSWriteIO% Lib "VTSSDLL.DLL" (ByVal hSS&, ByVal dwUserData&, ByVal
ioFunc&, pUserRet&)

Syntax (VC++) SSERROR SSEXPORTAPI SSWriteIO (HSS hSS, DWORD dwUserData, IOFUNC
ioFunc, DWORD FAR *pUserRet)

hSS is a handle to a view.

dwUserData is passed to ioFunc each time ioFunc is called.

ioFunc is the function called to write data from the worksheet. It has following form:

typedef DWORD (FAR PASCAL *IOFUNC)(DWORD dwUserData, LPVOID
p, UINT nBytes);

pUserRet returns the last value returned by ioFunc. If this pointer is not null, it returns
the last value returned by ioFunc. Any non-zero value returned by ioFunc causes
writing to fail immediately.

Remarks SSWriteIO is the same as SSWrite except that ioFunc is called to write data instead
of writing to a specified file.

If ioFunc returns non-zero, the value is returned by SSWriteIO. If the file is
successfully written, 0 is returned.

Return Value Integer

See Also SSRead, SSReadIO, SSSaveWindowInfo, and SSWrite functions

See Also SSRead, SSReadIO, SSSaveWindowInfo, and SSWrite functions

