
The ID Database
mkid and friends

lid, gid, aid, eid, pid, iid

Tom Horsley

This manual is not copyrighted, but for your information it was written in 1991 by Tom
Horsley.

As far as I am concerned, this manual is in the public domain. Not even copyleft applies.
If you think you can sell it for a profit, go right ahead...

The above non-copyright notice applies only to this manual, refer to the source code for
information on the copyright status (if any) of the files.

This document was prepared using version 2.32 of the texinfo.tex macro package, but I
suspect any version greater or equal to 2.0 will work.

1

1 Overview

An ID database is simply a file containing a list of file names, a list of identifiers, and a
binary relation (stored as a bit matrix) indicating which of the identifiers appear in each
file. With this database and some tools to manipulate the data, a host of tasks become
simpler and faster. You can grep through hundreds of files for a name, skipping the files
that don’t contain the name. You can search for all the memos containing references to a
project. You can edit every file that calls some function, adding a new required argument.
Anyone with a large software project to maintain, or a large set of text files to organize can
benefit from the ID database and the tools that manipulate it.

There are several programs in the ID family. The mkid program scans the files, finds the
identifiers and builds the ID database. The lid and aid tools are used to generate lists of
file names containing an identifier (perhaps to recompile every file that references a macro
which just changed). The eid program will invoke an editor on each of the files containing
an identifier and the gid program will grep for an identifier in the subset of files known to
contain it. The pid tool is used to query the path names of the files in the database (rather
than the contents). Finally, the iid tool is an interactive program supporting complex
queries to intersect and join sets of file names.

1.1 History

Most of the ID programs were written by Greg McGary and first posted to the net in
1987. Since then several versions have diverged from the original source. The iid program
was written by Tom Horsley at Harris. This version (the one you are getting with this
document) is based on the latest source in use at Harris Computer Systems Division. It
contains a few patches from other sources, but none of the major changes made at other
sites. This release is the first attempt to start the process of merging the separate versions.

A pre-release version of mkid was posted to alt.sources near the end of 1990. At
that time I mentioned that I was thinking about writing a texinfo manual. I got a lot of
encouragement from the net to do so, and this manual is the result. I would like to thank
Doug Scofield and Bill Leonard whom I dragooned into helping me poorf raed and edit —
they found several problems in the initial version.

3

2 Mkid

The mkid program builds the ID database. To do this it must scan each of the files included
in the database. This often takes quite a while, but once the work is done the query
programs run very rapidly.

The mkid program knows how to scan a variety of of files. For example, it knows how
to skip over comments and strings in a C program, only picking out the identifiers used in
the code.

Identifiers are not the only thing included in the database. Numbers are also scanned
and included in the database indexed by their binary value. Since the same number can be
written many different ways (47, 0x2f, 057 in a C program for instance), this feature allows
you to find hard coded uses of constants without regard to the radix used to specify them.

All the places in this document where identifiers are written about should really mention
identifiers and numbers, but that gets fairly clumsy after a while, so you should always keep
in mind that numbers are included in the database as well as identifiers.

2.1 Mkid Command Line Options

[Command]mkid [-v] [-Sscanarg] [-aarg-file] [-] [-fout-file]
[-sdirectory] [-rdirectory] [-u] [files. . .]

-v Verbose. Mkid tells you as it scans each file and indicates which scanner
it is using. It also summarizes some statistics about the database at the
end.

-Sscanarg

The -S option is used to specify arguments to the various language scan-
ners. See Section 2.1.1 [Scanner Arguments], page 4, for details.

-aarg-file

Name a file containing additional command line arguments (one per line).
This may be used to specify lists of file names longer than will fit on a
command line.

- A simple - by itself means read arguments from stdin.

-fout-file

Specify the name of the database file to create. The default name is ID
(in the current directory), but you may specify any name. The file names
stored in the database will be stored relative to the directory containing
the database, so if you move the database after creating it, you may have
trouble finding files unless they remain in the same relative position.

-sdirectory

Specify a directory to search for SCCS files in case a file named on the
command line does not exist.

-rdirectory

Specify a directory to search for RCS files in case a file named on the
command line does not exist.

4 The ID Database

-u The -u option updates an existing database by rescanning any files that
have changed since the database was written. Unfortunately you cannot
incrementally add new files to a database.

files Remaining arguments are names of files to be scanned and included in
the database.

2.1.1 Scanner Arguments

Scanner arguments all start with -S. Scanner arguments are used to tell mkid which lan-
guage scanner to use for which files, to pass language specific options to the individual
scanners, and to get some limited online help about scanner options.

Mkid usually determines which language scanner to use on a file by looking at the suffix
of the file name. The suffix starts at the last ‘.’ in a file name and includes the ‘.’ and all
remaining characters (for example the suffix of fred.c is .c). Not all files have a suffix,
and not all suffixes are bound to a specific language by mkid. If mkid cannot determine
what language a file is, it will use the language bound to the .default suffix. The plain
text scanner is normally bound to .default, but the -S option can be used to change any
language bindings.

There are several different forms for scanner options:

-S.<suffix>=<language>

Mkid determines which language scanner to use on a file by examining the file
name suffix. The ‘.’ is part of the suffix and must be specified in this form of
the -S option. For example ‘-S.y=c’ tells mkid to use the ‘c’ language scanner
for all files ending in the ‘.y’ suffix.

-S.<suffix>=?

Mkid has several built in suffixes it already recognizes. Passing a ‘?’ will cause
it to print the language it will use to scan files with that suffix.

-S?=<language>

This form will print which suffixes are scanned with the given language.

-S?=? This prints all the suffix 7→language bindings recognized by mkid.

-S<language>-<arg>

Each language scanner accepts scanner dependent arguments. This form of the
-S option is used to pass arbitrary arguments to the language scanners.

-S<language>?

Passing a ‘?’ instead of a language option will print a brief summary of the
options recognized by the specified language scanner.

-S<new language>/<builtin language>/<filter command>

This form specifies a new language defined in terms of a builtin language and
a shell command that will be used to filter the file prior to passing on to the
builtin language scanner.

Chapter 2: Mkid 5

2.2 Builtin Scanners

If you run mkid -S?=? you will find bindings for a number of languages; unfortunately
pascal, though mentioned in the list, is not actually supported. The supported languages
are documented below1.

2.2.1 C

The C scanner is probably the most popular. It scans identifiers out of C programs, skipping
over comments and strings in the process. The normal .c and .h suffixes are automatically
recognized as C language, as well as the more obscure .y (yacc) and .l (lex) suffixes.

The -S options recognized by the C scanner are:

-Sc-s<character>

Allow the specified <character> in identifiers (some dialects of C allow $ in
identifiers, so you could say -Sc-s$ to accept that dialect).

-Sc-u Don’t strip leading underscores from identifier names (this is the default mode
of operation).

-Sc+u Do strip leading underscores from identifier names (I don’t know why you would
want to do this in C programs, but the option is available).

2.2.2 Plain Text

The plain text scanner is designed for scanning documents. This is typically the scanner
used when adding custom scanners, and several custom scanners are built in to mkid and
defined in terms of filters and the text scanner. A troff scanner runs deroff over the file
then feeds the result to the text scanner. A compressed man page scanner runs pcat piped
into col -b, and a TEX scanner runs detex.

Options:

-Stext+a<character>

Include the specified character in identifiers. By default, standard C identifiers
are recognized.

-Stext-a<character>

Exclude the specified character from identifiers.

-Stext+s<character>

Squeeze the specified character out of identifiers. By default, the characters ‘’’,
‘-’, and ‘.’ are squeezed out of identifiers. This generates transformations like
fred’s 7→freds or a.s.p.c.a.7→aspca.

-Stext-s<character>

Do not squeeze out the specified character.

1 This is not strictly true — vhil is a supported language, but it is an obsolete and arcane dialect of C
and should be ignored

6 The ID Database

2.2.3 Assembler

Assemblers come in several flavors, so there are several options to control scanning of as-
sembly code:

-Sasm-c<character>

The specified character starts a comment that extends to end of line (in many
assemblers this is a semicolon or number sign — there is no default value for
this).

-Sasm+u Strip the leading underscores off identifiers (the default behavior).

-Sasm-u Do not strip the leading underscores.

-Sasm+a<character>

The specified character is allowed in identifiers.

-Sasm-a<character>

The specified character is allowed in identifiers, but any identifier containing
that character is ignored (often a ‘.’ or ‘@’ will be used to indicate an internal
temp label, you may want to ignore these).

-Sasm+p Recognize C preprocessor directives in assembler source (default).

-Sasm-p Do not recognize C preprocessor directives in assembler source.

-Sasm+C Skip over C style comments in assembler source (default).

-Sasm-C Do not skip over C style comments in assembler source.

2.3 Adding Your Own Scanner

There are two ways to add new scanners to mkid. The first is to modify the code in
getscan.c and add a new scan-*.c file with the code for your scanner. This is not
too hard, but it requires relinking and installing a new version of mkid, which might be
inconvenient, and would lead to the proliferation of mkid versions.

The second technique uses the -S<lang>/<lang>/<filter> form of the -S option to
specify a new language scanner. In this form the first language is the name of the new
language to be defined, the second language is the name of an existing language scanner to
be invoked on the output of the filter command specified as the third component of the -S
option.

The filter is an arbitrary shell command. Somewhere in the filter string, a %s should
occur. This %s is replaced by the name of the source file being scanned, the shell command
is invoked, and whatever comes out on stdout is scanned using the builtin scanner.

For example, no scanner is provided for texinfo files (like this one). If I wished to index
the contents of this file, but avoid indexing the texinfo directives, I would need a filter that
stripped out the texinfo directives, but left the remainder of the file intact. I could then
use the plain text scanner on the remainder. A quick way to specify this might be:

’-S/texinfo/text/sed s,@[a-z]*,,g < %s’

This defines a new language scanner (texinfo) defined in terms of a sed command to
strip out texinfo directives (at signs followed by letters). Once the directives are stripped,
the remaining text is run through the plain text scanner.

Chapter 2: Mkid 7

This is just an example, to do a better job I would actually need to delete some lines
(such as those beginning with @end) as well as deleting the @ directives embedded in the
text.

2.4 Mkid Examples

The simplest example of mkid is something like:

mkid *.[chy]

This will build an ID database indexing all the identifiers and numbers in the .c, .h,
and .y files in the current directory. Because those suffixes are already known to mkid as
C language files, no other special arguments are required.

From a simple example, lets go to a more complex one. Suppose you want to build a
database indexing the contents of all the man pages. Since mkid already knows how to deal
with .z files, let’s assume your system is using the compress program to store compressed
cattable versions of the man pages. The compress program creates files with a .Z suffix,
so mkid will have to be told how to scan .Z files. The following code shows how to combine
the find command with the special scanner arguments to mkid to generate the required ID
database:

cd /usr/catman

find . -name ’*.Z’ -print | mkid ’-Sman/text/uncompress -c < %s’ -S.Z=man -

This example first switches to the /usr/catman directory where the compressed man
pages are stored. The find command then finds all the .Z files under that directory and
prints their names. This list is piped into the mkid program. The - argument by itself (at
the end of the line) tells mkid to read arguments (in this case the list of file names) from
stdin. The first -S argument defines a new language (man) in terms of the uncompress

utility and the existing text scanner. The second -S argument tells mkid to treat all .Z files
as language man. In practice, you might find the mkid arguments need to be even more
complex, something like:

mkid ’-Sman/text/uncompress -c < %s | col -b’ -S.Z=man -

This will take the additional step of getting rid of any underlining and backspacing which
might be present in the compressed man pages.

9

3 Database Query Tools

The ID database is useless without database query tools. The remainder of this document
describes those tools.

The lid, gid, aid, eid, and pid programs are all the same program installed with links
to different names. The name used to invoke the program determines how it will act.

The iid program is an interactive query shell that sits on top of the other query tools.

3.1 Common Options

Since many of the programs are really links to one common program, it is only reasonable
to expect that most of the query tools would share common command line options. Not
all options make sense for all programs, but they are all described here. The description of
each program gives the options that program uses.

-f<file> Read the database specified by <file>. Normally the tools look for a file named
ID in either the current directory or in any of the directories above the current
directory. This means you can keep a global ID database in the root of a large
source tree and use the query tools from anywhere within that tree.

-r<directory>

The query tools usually assume the file names in the database are relative to
the directory holding the database. The -r option tells the tools to look for the
files relative to <directory> regardless of the location of the database.

-c This is shorthand for -r‘pwd‘. It tells the query tools to assume the file names
are stored relative to the current working directory.

-e Force the pattern arguments to be treated as regular expressions. Normally the
query tools attempt to guess if the patterns are regular expressions or simple
identifiers by looking for special characters in the pattern.

-w Force the pattern arguments to be treated as simple words even if they contain
special regular expression characters.

-k Normally the query tools that generate lists of file names attempt to compress
the lists using the csh brace notation. This option suppresses the file name
compression and outputs each name in full. (This is particularly useful if you
are a ksh user and want to feed the list of names to another command — the
-k option comes from the k in ksh).

-g It is possible to build the query tools so the -k option is the default behavior.
If this is the case for your system, the -g option turns on the globbing of file
names using the csh brace notation.

-n Normally the query tools that generate lists of file names also list the matching
identifier at the head of the list of names. This is irritating if you want just
a list of names to feed to another command, so the -n option suppresses the
identifier and lists only file names.

-b This option is only used by the pid tool. It restricts pid to pattern match only
the basename part of a file name. Normally the absolute file name is matched
against the pattern.

10 The ID Database

-d -o -x -a

These options may be used in any combination to limit the radix of numeric
matches. The -d option will allow matches on decimal numbers, -o on octal,
and -x on hexadecimal numbers. The -a option is shorthand for specifying all
three. Any combination of these options may be used.

-m Merge multiple lines of output into a single line. (If your query matches more
than one identifier the default action is to generate a separate line of output for
each matching identifier).

-s Search for identifiers that appear only once in the database. This helps to locate
identifiers that are defined but never used.

-u<number>

List identifiers that conflict in the first <number> characters. This could be
useful porting programs to brain-dead computers that refuse to support long
identifiers, but your best long term option is to set such computers on fire.

3.2 Patterns

You can attempt to match either simple identifiers or numbers in a query, or you can specify
a regular expression pattern which may match many different identifiers in the database.
The query programs use either regex and regcmp or re comp and re exec, depending on
which one is available in the library on your system. These might not always support the
exact same regular expression syntax, so consult your local man pages to find out. Any
regular expression routines should support the following syntax:

. A dot matches any character.

[] Brackets match any of the characters specified within the brackets. You can
match any characters except the ones in brackets by typing ^ as the first char-
acter. A range of characters can be specified using -.

* An asterisk means repeat the previous pattern zero or more times.

^ An ^ at the beginning of a pattern means the pattern must match starting at
the first character of the identifier.

$ A $ at the end of the pattern means the pattern must match ending at the last
character in the identifier.

3.3 Lid

[Command]lid [-f<file>] [-u<n>] [-r<dir>] [-ewdoxamskgnc] patterns. . .
The lid program stands for lookup identifier. It searches the database for any identifiers

matching the patterns and prints the names of the files that match each pattern. The exact
format of the output depends on the options.

Chapter 3: Database Query Tools 11

3.4 Aid

[Command]aid [-f<file>] [-u<n>] [-r<dir>] [-doxamskgnc] patterns. . .
The aid command is an abbreviation for apropos identifier. The patterns cannot be

regular expressions, but it looks for them using a case insensitive match, and any pattern
that is a substring of an identifier in the database will match that identifier.

For example ‘aid get’ might match the identifiers fgets, GETLINE, and getchar.

3.5 Gid

[Command]gid [-f<file>] [-u<n>] [-r<dir>] [-doxasc] patterns. . .
The gid command stands for grep for identifiers. It finds identifiers in the database

that match the specified patterns, then greps for those identifiers in just the set of files
containing matches. In a large source tree, this saves a fantastic amount of time.

There is an emacs interface to this program (see Section 5.1 [Gnuemacs Interface],
page 17). If you are an emacs user, you will probably prefer the emacs interface over
the eid tool.

3.6 Eid

[Command]eid [-f<file>] [-u<n>] [-r<dir>] [-doxasc] patterns. . .
The eid command allows you to invoke an editor on each file containing a matching

pattern. The EDITOR environment variable is the name of the program to be invoked. If
the specified editor can accept an initial search argument on the command line, you can
use the EIDARG, EIDLDEL, and EIDRDEL environment variables to specify the form of that
argument.

EDITOR The name of the editor program to invoke.

EIDARG A printf string giving the form of the argument to pass containing the initial
search string (the matching identifier). For vi it should be set to ‘+/%s/’’.

EIDLDEL A string giving the regular expression pattern that forces a match at the be-
ginning (left end) of a word. This string is inserted in front of the matching
identifier when composing the search argument. For vi, this should be ‘\<’.

EIDRDEL The matching right end word delimiter. For vi, use ‘\>’.

3.7 Pid

[Command]pid [-f<file>] [-u<n>] [-r<dir>] [-ebkgnc] patterns. . .
The pid tool is unlike all the other tools. It matches the patterns against the file names

in the database rather than the identifiers in the database. Patterns are treated as shell wild
card patterns unless the -e option is given, in which case full regular expression matching
is done.

The wild card pattern is matched against the absolute path name of the file. Most shells
treat slashes ‘/’ and file names that start with dot ‘.’ specially, pid does not do this. It
simply attempts to match the absolute path name string against the wild card pattern.

12 The ID Database

The -b option restricts the pattern matching to the base name of the file (all the leading
directory names are stripped prior to pattern matching).

13

4 Iid

[Command]iid [-a] [-c<command>] [-H]

-a Normally iid uses the lid command to search for names. If you give the
-a option on the command line, then it will use aid as the default search
engine.

-c<command>

In normal operation, iid starts up and prompts you for commands used
to build sets of files. The -c option is used to pass a single query command
to iid which it then executes and exits.

-H The -H option prints a short help message and exits. To get more help
use the help command from inside iid.

The iid program is an interactive ID query tool. It operates by running the other query
programs (such as lid and aid) and creating sets of file names returned by these queries.
It also provides operators for anding and oring these sets to create new sets.

The PAGER environment variable names the program iid uses to display files. If you use
emacs, you might want to set PAGER so it invokes the emacsclient program. Check the file
lisp/server.el in the emacs source tree for documentation on this. It is useful not only
with X windows, but also when running iid from an emacs shell buffer. There is also a
somewhat spiffier version called gnuserv by Andy Norman (ange%anorman@hplabs.hp.com)
which appeared in comp.emacs sometime in 1989.

4.1 Ss and Files commands

The primary query commands are ss (for select sets) and files (for show file names).
These commands both take a query expression as an argument.

[Subcommand]ss query
The ss command runs a query and builds a set (or sets) of file names. The result
is printed as a summary of the sets constructed showing how many file names are in
each set.

[Subcommand]files query
The files command is like the ss command, but rather than printing a summary, it
displays the full list of matching file names.

[Subcommand]f query
The f command is merely a shorthand notation for files.

Database queries are simple expressions with operators like and and or. Parentheses can
be used to group operations. The complete set of operators is summarized below:

pattern Any pattern not recognized as one of the keywords in this table is treated as
an identifier to be searched for in the database. It is passed as an argument to
the default search program (normally lid, but aid is used if the -a option was
given when iid was started). The result of this operation is a set of file names,
and it is assigned a unique set number.

14 The ID Database

lid lid is a keyword. It is used to invoke lid with the list of identifiers following
it as arguments. This forces the use of lid regardless of the state of the -a

option (see Section 3.3 [Lid], page 10).

aid The aid keyword is like the lid keyword, but it forces the use of the aid

program (see Section 3.4 [Aid], page 11).

match The match operator invokes the pid program to do pattern matching on file
names rather than identifiers. The set generated contains the file names that
match the specified patterns (see Section 3.7 [Pid], page 11).

or The or operator takes two sets of file names as arguments and generates a new
set containing all the files from both sets.

and The and operator takes two sets of file names and generates a new set containing
only files from both sets.

not The not operator inverts a set of file names, producing the set of all files not
in the input set.

set number

A set number consists of the letter s followed immediately by a number. This
refers to one of the sets created by a previous query operation. During one iid
session, each query generates a unique set number, so any previously generated
set may be used as part of any new query by referring to the set number.

The not operator has the highest precedence with and coming in the middle and or

having the lowest precedence. The operator names are recognized using case insensitive
matching, so AND, and, and aNd are all the same as far as iid is concerned. If you wish to
use a keyword as an operand to one of the query programs, you must enclose it in quotes.
Any patterns containing shell special characters must also be properly quoted or escaped,
since the query commands are run by invoking them with the shell.

Summary of query expression syntax:

A <query> is:

<set number>

<identifier>

lid <identifier list>

aid <identifier list>

match <wild card list>

<query> or <query>

<query> and <query>

not <query>

(<query>)

4.2 Sets

[Subcommand]sets
The sets command displays all the sets created so far. Each one is described by the

query command that generated it.

Chapter 4: Iid 15

4.3 Show

[Subcommand]show set

[Subcommand]p set

The show and p commands are equivalent. They both accept a set number as an argu-
ment and run the program given in the PAGER environment variable with the file names in
that set as arguments.

4.4 Begin

[Subcommand]begin directory

[Subcommand]b directory

The begin command (and its abbreviated version b) is used to begin a new iid session
in a different directory (which presumably contains a different database). It flushes all the
sets created so far and switches to the specified directory. It is equivalent to exiting iid,
changing directories in the shell, and running iid again.

4.5 Help

[Subcommand]help

[Subcommand]h

[Subcommand]?
The help, h, and ? command are three different ways to ask for help. They all invoke

the PAGER program to display a short help file.

4.6 Off

[Subcommand]off

[Subcommand]quit

[Subcommand]q
These three command (or just an end of file) all cause iid to exit.

4.7 Shell Commands as Queries

When the first word on an iid command is not recognized as a builtin iid command, iid
assumes the command is a shell command which will write a list of file names to stdout.
This list of file names is used to generate a new set of files.

Any set numbers that appear as arguments to this command are expanded into lists of
file names prior to running the command.

4.8 Shell Escape

If a command starts with a bang (!) character, the remainder of the line is run as a shell
command. Any set numbers that appear as arguments to this command are expanded into
lists of file names prior to running the command.

17

5 Other Tools

This chapter describes some support tools that work with the other ID programs.

5.1 Gnuemacs Interface

The source distribution comes with a file named gid.el. This is a Gnuemacs interface to
the gid tool. If you put the file where emacs can find it (somewhere in your EMACSLOADPATH)
and put (autoload ’gid "gid" nil t) in your .emacs file, you will be able to invoke the
gid function using M-x gid.

This function prompts you with the word the cursor is on. If you want to search for a
different pattern, simply delete the line and type the pattern of interest.

It runs gid in a *compilation* buffer, so the normal next-error function can be used
to visit all the places the identifier is found (see Section “Compilation” in The Gnuemacs
Manual).

5.2 Fid

[Command]fid [-f<file>] file1 [file2]

-f<file> Look in the named database.

file1 List the identifiers contained in file1 according to the database.

file2 If a second file is given, list only the identifiers both files have in common.

The fid program provides an inverse query. Instead of listing files containing some
identifier, it lists the identifiers found in a file.

5.3 Idx

[Command]idx [-s<directory>] [-r<directory>] [-S<scanarg>] files. . .
The -s, -r, and -S arguments to idx are identical to the same arguments on mkid

(see Section 2.1 [Mkid Command Line Options], page 3).

The idx command is more of a test frame for scanners than a tool designed to be
independently useful. It takes the same scanner arguments as mkid, but rather than building
a database, it prints the identifiers found to stdout, one per line. You can use it to try out
a scanner on a sample file to make sure it is extracting the identifiers you believe it should
extract.

19

Command Index

?
? . 15

A
aid . 11

B
b . 15
begin . 15

E
eid . 11

F
f . 13
fid . 17
files . 13

G
gid . 11

H
h . 15
help . 15

I
idx . 17
iid . 13

L
lid . 10

M
mkid . 3

O
off . 15

P
p . 15
pid . 11

Q
q . 15
quit . 15

S
sets . 14
show . 15
ss . 13

i

Table of Contents

1 Overview . 1
1.1 History . 1

2 Mkid . 3
2.1 Mkid Command Line Options . 3

2.1.1 Scanner Arguments . 4
2.2 Builtin Scanners . 5

2.2.1 C . 5
2.2.2 Plain Text . 5
2.2.3 Assembler . 6

2.3 Adding Your Own Scanner . 6
2.4 Mkid Examples . 7

3 Database Query Tools . 9
3.1 Common Options . 9
3.2 Patterns . 10
3.3 Lid . 10
3.4 Aid . 11
3.5 Gid . 11
3.6 Eid . 11
3.7 Pid . 11

4 Iid . 13
4.1 Ss and Files commands . 13
4.2 Sets . 14
4.3 Show . 15
4.4 Begin . 15
4.5 Help . 15
4.6 Off . 15
4.7 Shell Commands as Queries . 15
4.8 Shell Escape . 15

5 Other Tools . 17
5.1 Gnuemacs Interface . 17
5.2 Fid . 17
5.3 Idx . 17

Command Index . 19

	1 Overview
	History

	2 Mkid
	Mkid Command Line Options
	Scanner Arguments

	Builtin Scanners
	C
	Plain Text
	Assembler

	Adding Your Own Scanner
	Mkid Examples

	3 Database Query Tools
	Common Options
	Patterns
	Lid
	Aid
	Gid
	Eid
	Pid

	4 Iid
	Ss and Files commands
	Sets
	Show
	Begin
	Help
	Off
	Shell Commands as Queries
	Shell Escape

	5 Other Tools
	Gnuemacs Interface
	Fid
	Idx

	Command Index

