
Table of Contents

Using 4NT
Using the Command Line
File Selection
Directory Navigation
Other Features

Commands
Commands by Category
Commands by Name

Aliases and Batch Files
Aliases
Batch Files

The Environment
Environment Variables and Functions
Internal Variables
Variable Functions

Configuring 4NT
Configuration Dialogs
4NT.INI

Setup and Troubleshooting
Starting 4NT
What's New?
The 4NT Help System
Error Messages
Troubleshooting, Service, and Support

Reference Information
File Systems and File Name Conventions
Miscellaneous Reference Information
ASCII and Key Codes
Glossary
Copyright and Version

COPYRIGHT and VERSION

4NT

Version 3.01 Help System

Text by Hardin Brothers, Tom Rawson, and Rex Conn

Help text Copyright © 1993 - 1998, JP Software Inc., All Rights Reserved.

Software Copyright © 1988 - 1998, Rex Conn and JP Software Inc., All Rights Reserved.

4DOS®, 4OS2, and 4NT are JP Software Inc.'s trademarks for its family of character-mode command
processors.    Take Command® is a registered trademark of JP Software Inc.    JP Software, jpsoft.com,
and all JP Software designs and logos are also trademarks of JP Software Inc.    Other product and
company names are trademarks of their respective owners.

[2/98 - 3.01A]

The Command Line

4NT displays a [c:\] prompt when it is waiting for you to enter a command.    (The actual text depends on
the current drive and directory as well as your PROMPT settings.)    This is called the command line and
the prompt is asking you to enter a command, an alias or batch file name, or the instructions necessary to
begin an application program.

This section explains the features that will help you while you are typing in commands, and how
keystrokes are interpreted when you enter them at the command line.    The keystrokes discussed here
are the ones normally used by 4NT.    If you prefer using different keystrokes to perform these functions,
you can assign new ones with key mapping directives in the .INI file.

The command line features documented in this section are:

Command-Line Editing

Command History and Recall

Command History Window

Filename Completion

Automatic Directory Changes

Directory History Window

Multiple Commands

Expanding and Disabling Aliases

Command-Line Length Limits

Additional command-line features are documented under File Selection and under Directory Navigation.

Command-Line Editing

The command line works like a single-line word processor, allowing you to edit any part of the command
at any time before you press Enter to execute it, or Esc to erase it.    The command line you enter can be
up to 1023 characters long.

You can use the following editing keys when you are typing a command (the words Ctrl and Shift mean
to press the Ctrl or Shift key together with the other key named):

Cursor Movement Keys:
¬ Move the cursor left one character.

® Move the cursor right one character.

Ctrl ¬ Move the cursor left one word.

Ctrl ® Move the cursor right one word.

Home Move the cursor to the beginning of the line.

End Move the cursor to the end of the line.

Insert and Delete:
Ins Toggle between insert and overstrike mode.

Del Delete the character at the cursor.

Bksp Delete the character to the left of the cursor.

Ctrl-L Delete the word or partial word to the left of the cursor.

Ctrl-R Delete the word or partial word to the right of the cursor.
 or Ctrl-Bksp
Ctrl-Home Delete from the beginning of the line to the cursor.

Ctrl-End Delete from the cursor to the end of the line.

Esc Delete the entire line.

Execution:
Ctrl-C Cancel the command line.
 or Ctrl-Break
Enter Execute the command line.

Most of the command-line editing capabilities are also available when a 4NT command prompts you for a
line of input.    For example, you can use the command-line editing keys when DESCRIBE prompts for a
file description, when INPUT prompts for input from an alias or batch file, or when LIST prompts you for a
search string.

If you want your input at the command line to be in a different color from 4NT's prompts or output, you can
use the Display page of the OPTION dialogs, or the InputColors directive in your .INI file.

4NT will prompt for additional command-line text when you include the escape character as the very last
character of a typed command line.    The default escape character is the caret [^].    For example:

[c:\] echo The quick brown fox jumped over the lazy ^
More? sleeping dog. > alphabet

Sometimes you may want to enter one of the command line editing keystrokes on the command line,
instead of performing the key's usual action.    For example, suppose you have a program that requires a
Ctrl-R character on its command line.    Normally you couldn't type this keystroke at the prompt, because it
would be interpreted as a "Delete word right" command.

To get around this problem, use the special keystroke Alt-255.    You enter Alt-255 by holding down the Alt
key while you type 255 on the numeric keypad, then releasing the Alt key (you must use the number keys
on the numeric pad; the row of keys at the top of your keyboard won't work).    This forces 4NT to interpret
the next keystroke literally and places it on the command line, ignoring any special meaning it would
normally have as a command- line editing or history keystroke.    You can use Alt-255 to suppress the
normal meaning of command-line editing keystrokes even if they have been reassigned with key mapping
directives in the .INI file, and Alt-255 itself can be reassigned with the CommandEscape directive.

Command History and Recall

Command History Keys:

Recall the previous (or most recent) command, or the most recent command that
matches a partial command line.

¯ Recall the next (or oldest) command, or the oldest command that matches a partial
command line.

F3 Fill in the rest of the command line from the previous command, beginning at the
current cursor position.

Ctrl-D Delete the currently displayed history list entry, erase the command line, and display
the previous (matching) history list entry.

Ctrl-E Display the last entry in the history list.

Ctrl-K Save the current command line in the history list without executing it, and then clear
the command line.

Ctrl-Enter Copy the current command line to the end of the history list even it has not been
altered, then execute it.

@ As the first character in a line:    Do not store the current line in the CMDLINE
environment variable.

Use the key repeatedly to scan back through the history list.    When the desired command appears,
press Enter to execute it again.    After you have found a command, you can edit it before pressing Enter.

The history list is normally "circular".    If you move to the last command in the list and then press the down
arrow one more time, you'll see the first command in the list.    Similarly, if you move to the first command
in the list and then press the up arrow one more time, you'll see the last command in the list.    You can
disable this feature and make command history recall stop at the beginning or end of the list by turning off
the History Wrap selection on the Command Line 1 page of the OPTION dialogs, or setting HistWrap to
No in the .INI file.

You can search the command history list to find a previous command quickly using command
completion.

Just enter the first few characters of the command you want to find and press . You only need to enter
enough characters to identify the command that you want to find.    If you press the key a second time,
you will see the previous command that matches.    The system will beep if there are no matching
commands.    The search process stops as soon as you type one of the editing keys, whether or not the
line is changed.    At that point, the line you're viewing becomes the new line to match if you press again.

You can specify the size of the command history list on the Command Line 1 page of the OPTION
dialogs, or with the History directive in the .INI file.    When the list is full, the oldest commands are
discarded to make room for new ones.    You can also use the HistMin directive in the .INI file to enable or
disable history saves and to specify the shortest command line that will be saved.

You can prevent any command line from being saved in the history by beginning it with an at sign [@].

When you execute a command from the history, that command remains in the history list in its original
position.    The command is not copied to the end of the list (unless you modify it).    If you want each
command to be copied or moved to the end of the list when it is re-executed, set HistCopy or HistMove to
Yes in your .INI file.    If you select either of these options, the list entry identified as "current" (the entry
from which commands are retrieved when you press) is also adjusted to refer to the end of the history list

after each recalled command is executed.

Local and Global Command History

The command history can be stored in either a "local" or "global" list.

With a local command history list, any changes made to the history will only affect the current copy of
4NT.    They will not be visible in other shells, or other sessions.

With a global command history list, all copies of 4NT will share the same command history, and any
changes made to the history in one copy will affect all other copies.    Global lists are the default for 4NT.

You can control the type of command history list on the Startup page of the OPTION command, with the
LocalHistory directive in the .INI file, and the /L and /LH options of the START command.

If you select a global command history list for 4NT you can share the history among all copies of 4NT
running in any session.    When you close all 4NT sessions, the memory for the global history list is
released, and a new, empty history list is created the next time you start 4NT.   

If you want the command history list to be retained in memory even when no command processor session
is running, execute the SHRALIAS command, which loads a program to perform this service for global
command history, directory history, and alias lists.

SHRALIAS retains the alias list in memory, but cannot preserve it when Windows NT itself is shut down.   
To save your aliases when restarting NT, you must store them in a file and reload them after the system
restarts.    For details on how to do so, see the HISTORY command.

Whenever you start a secondary shell which uses a local history list, it inherits a copy of the command
history from the previous shell.    However, any changes to the history made in the secondary shell will
affect only that shell.    If you want changes made in a secondary shell to affect the previous shell, use a
global history list in both shells.

Command History Window

Command History Window Keys:
PgUp (from the command line) Open the command history window.
    or PgDn

Scroll the display up one line.

¯ Scroll the display down one line.

¬ Scroll the display left 4 columns.

® Scroll the display right 4 columns.

PgUp (inside the window) Scroll the display up one page.

PgDn (inside the window) Scroll the display down one page.

Ctrl-PgUp Go to the beginning of the history list.
    or Home
Ctrl-PgDn Go to the end of the history list.
    or End
Ctrl-D Delete the selected line from the history list.

Enter Execute the selected line.

Ctrl-Enter Move the selected line to the command line for editing.

You can view the command history in a scrollable command history window, and select the command
to modify or re-execute from those displayed in the window.    To activate the command history window
press PgUp or PgDn at the command line.    A window will appear in the upper right corner of the screen,
with the command you most recently executed marked with a highlight. (If you just finished re-executing a
command from the history, then the next command in sequence will be highlighted.)

Once you have selected a command in the history window, press Enter to execute it immediately, or Ctrl-
Enter to move the line to the prompt for editing (you cannot edit the line directly in the history window).

You can bring up a "filtered" history window by typing some characters on the command line, then
pressing PgUp or PgDn. Only those commands matching the typed characters will be displayed in the
window.

See Popup Windows for information on customizing window position, size, and color.

Filename Completion

Filename Completion Keys:

F8 Get the previous matching filename.
    or Shift-Tab
F9 Get the next matching filename.
    or Tab
F10 Keep the current matching filename and display the next matching name immediately

after the current one.

Ctrl-A On LFN drives, toggle between long filename and short filename format.

Filename completion can help you by filling in a complete file name on the command line when you only
remember or want to type part of the name.    For example, if you know the name of a file begins AU but
you can't remember the rest of the name, type:

[c:\] copy au

and then press the Tab key or F9 key.    4NT will search the current directory for filenames that begin AU
and insert the first one onto the command line in place of the AU that you typed.

If this is the file that you want, simply complete the command.    If 4NT didn't find the file that you were
looking for, press Tab or F9 again to substitute the next filename that begins with AU.    When there are no
more filenames that match your pattern, the system will beep each time you press Tab or F9.

If you go past the filename that you want, press Shift-Tab or F8 to back up and return to the previous
matching filename. After you back up to the first filename, the system will beep each time you press Shift-
Tab or F8.

If you want to enter more than one matching filename on the same command line, press F10 when each
desired name appears.    This will keep that name and place the next matching filename after it on the
command line.    You can then use Tab (or F9), Shift-Tab (or F8), and F10 to move through the remaining
matching files.

Typing Ctrl-A on the command line during filename expansion on a FAT drive will toggle the returned
filename between long filename (LFN) and the traditional short name (SFN) formats.    The default is LFN
format; if you switch to SFN format, the change will only remain in effect for the current filename
expansion.    Any new expansion sequence later on the command line will start in LFN format and can be
toggled to SFN format with another Ctrl-A.

The pattern you use for matching may contain any valid filename characters, as well as wildcard
characters and extended wildcards.    For example, you can copy the first matching .TXT file by typing

[c:\] copy *.txt

and then pressing Tab.

If you don't specify part of a filename before pressing Tab, the command processor will match all files.   
For example, if you enter the above command as "COPY ", without the "*.TXT", and then press Tab, the
first filename in the current directory is displayed.    Each time you press Tab or F9 after that, another
name from the current directory is displayed, until all filenames have been displayed.

If you type a filename without an extension, 4NT will add *.* to the name (* on LFN, HPFS, and NTFS

drives).    It will also place a "*" after a partial extension.    If you are typing a group of file names in an
include list, the part of the include list at the cursor will be used as the pattern to match.

When filename completion is used at the start of the command line, it will only match directories,
executable files, and files with executable extensions, since these are the only file names that it makes
sense to use at the start of a command.    If a directory is found, a "\" will be appended to it to enable an
automatic directory change.

Converting Between Long and Short Filenames

On LFN drives, 4NT will search for and display long filenames during filename completion.    If you want to
search for traditional 8.3 short filenames, press Ctrl-A before you start using filename completion.    This
allows you to use filename completion on LFN drives with applications that do not support long filenames.

You can press Ctrl-A at any time prior to beginning filename completion.    The switch to the short
filename format remains in effect for the remainder of the current command line.    When the command
processor begins a new command line it will return to long filename format unless you press Ctrl-A again.

You can also press Ctrl-A just after a filename is displayed, and the name will be converted to short
filename format.    However, this feature only affects the most recently entered file or directory name (the
part between the cursor and the last backslash [\] on the command line), and any subsequent entries.    It
will not automatically convert all the parts of a previously entered path.

Ctrl-A "toggles" the filename completion mode, so you can switch back and forth between long and short
filename displays by pressing Ctrl-A each time you want to change modes.

Several topics are related to filename completion:

Appending Backslashes to Directory Names

Customizing Filename Completion

Filename Completion Window

Appending Backslashes to Directory Names

If you set the AppendToDir .INI directive, or the "Add \ ..." option on Command Line 1 page of the
OPTION dialogs, 4NT will add a trailing backslash [\] to all directory names.    This feature can be
especially handy if you use filename completion to specify files that are not in the current directory -- a
succession of Tab (or F9) and F10 keystrokes can build a complete path to the file you want to work with.

The following example shows the use of this technique to edit the file C:\DATA\FINANCE\MAPS.DAT.   
The lines which include <F9> show where F9 (or Tab) is pressed; the other lines show how the command
line appears after the previous F9 or Tab (the example is displayed on several lines here, but all appears
at a single command prompt when you actually perform the steps):

1 [c:\] edit \da <F9>
2 [c:\] edit \data\
3 [c:\] edit \data\f <F9>
4 [c:\] edit \data\frank.doc <F9>
5 [c:\] edit \data\finance\
6 [c:\] edit \data\finance\map <F9>
7 [c:\] edit \data\finance\maps.dat

Note that F9 was pressed twice in succession on lines 3 and 4, because the file name displayed on line 3
was not what was needed — we were looking for the FINANCE directory, which came up the second time
F9 was pressed.    In this example, filename completion saves about half the keystrokes that would be
required to type the name in full.    If you are using long file or directory names, the savings can be much
greater.

Customizing Filename Completion

You can customize filename completion for any internal or external command or alias.    This allows the
command processor to display filenames intelligently based on the command you are entering.    For
example, you might want to see only .TXT files when you use filename completion in the EDIT command.

To customize filename completion you can use the Command Line 1page of the OPTION dialogs, or set
the FileCompletion directive manually in your .INI file.    You can also use the FILECOMPLETION
environment variable.    If you use both, the environment variable will override the settings in your .INI file. 
You may find it useful to use the environment variable for experimenting, then create permanent settings
with the OPTION command or the FileCompletion directive.

The format for both the environment variable and the .INI file is:

cmd1:ext1 ext2 ...; cmd2: ...

where "cmd" is a command name and "ext" is a file extension (which may include wildcards) or one of the
following file types:

DIRS Directories
RDONLYRead-only files
HIDDENHidden files
SYSTEMSystem files
ARCHIVE Files modified since the last backup

The command name is the internal command, alias command, or executable file name (without a path).   
For example, to have file completion return only directories for the CD command and only .C and .ASM
files for B (the Boxer editor), you would use this setting for filename completion in the OPTION dialogs:

FileCompletion=cd:dirs; b:c asm

To set the same values using the environment variable, you would use this line:

[c:\] set filecompletion=cd:dirs; b:c asm

With this setting in effect, if you type "CD " and then pressed Tab, the command processor will return only
directories, not files.    If you type "B " and press Tab, you will see only names of .C and .ASM files.

4NT does not check your command line for aliases before matching the commands for customized file
completion.    Instead, they ignore any path or file extension information in the first word of the command,
and then search the FILECOMPLETION environment variable and the FileCompletion .INI directive to find
a match that will limit the files selected for filename completion.

Filename Completion Window

You can also view filenames in a filename completion window and select the file you want to work with. 
To activate the window, press F7 or Ctrl-Tab at the command line.    You will see a window in the upper-
right corner of the screen, with a sorted list of files that match any partial filename you have entered on
the command line.    If you haven't yet entered a file name, the window will contain the name of all files in
the current directory. You can search for a name by typing the first few characters.    (Ctrl-Tab will work
only if your keyboard and keyboard driver support it.    If it does not work on your system, use F7 instead.)

Filename Completion Window Keys:

F7 (from the command line)    Open the filename completion window.
    or Ctrl-Tab

Scroll the display up one line.

¯ Scroll the display down one line.

¬ Scroll the display left 4 columns.

® Scroll the display right 4 columns.

PgUp Scroll the display up one page.

PgDn Scroll the display down one page.

Ctrl-PgUp Go to the beginning of the filename list.
    or Home
Ctrl-PgDn Go to the end of the filename list.
    or End
Enter Insert the selected filename into the command line.

See Popup Windows for information on customizing window position, size, and color.

Automatic Directory Changes

The automatic directory change feature lets you change directories quickly from the command prompt,
without entering an explicit CD or CDD command.    To do so, simply type the name of the directory you
want to change to at the prompt, with a backslash [\] at the end.    For example:

[c:\] 4NT\
[c:\4NT]

This can make directory changes very simple when it is combined with Extended Directory Searches or
CDPATH.    If you have enabled either of those features, the command processor will use them in
searching for any directory you change to with an automatic directory change.

For example, suppose Extended Directory Searches are enabled, and the directory WIN exists on drive
E:.    You can change to this directory with a single word on the command line:

[c:\4NT] win\
[e:\WIN]

(Depending on the way Extended Directory Searches are configured, and the number of subdirectories on
your disk whose names contain the string WIN, when you execute such a command you may see an
immediate change as shown above, or a popup window which contains a list of subdirectories named
WIN to choose from.)

The text before the backslash can include a drive letter, a full path, a partial path, or a UNC name.   
Commands like "....\" can be used to move up the directory tree quickly (see Extended Parent Directory
Names).    Automatic directory changes save the current directory, so it can be recalled with a "CDD -" or
"CD -" command.    For example, any of the following are valid automatic directory change entries:

[c:\] d:\data\finance\
[c:\] archives\
[c:\] ...\util\windows\
[c:\] \\server\vol1\george\

The first and last examples change to the named directory.    The second changes to the ARCHIVES
subdirectory of the current directory, and the third changes to the UTIL\WINDOWS subdirectory of the
directory which is two levels "up" from the current directory in the tree.

Directory History Window

Directory History Window Keys:

Ctrl-PgUp (from the command line) Open the directory history window.
    or Ctrl-PgDn

Scroll the display up one line.

¯ Scroll the display down one line.

¬ Scroll the display left 4 columns.

® Scroll the display right 4 columns.

PgUp Scroll the display up one page.

PgDn Scroll the display down one page.

Ctrl-PgUp Go to the beginning of the directory list.
    or Home
Ctrl-PgDn Go to the end of the directory list.
    or End
Ctrl-D Delete the selected line from the directory list.

Enter Change to the selected drive and directory.

Ctrl-Enter Move the selected line to the command line for editing.

The current directory is recorded automatically in the directory history list just before each change to a
new directory or drive.

You can view the directory history from the directory history window and change to any drive and
directory on the list. To activate the directory history window, press Ctrl-PgUp or Ctrl-PgDn at the
command line.    You can then select a new directory with the Enter key.

If the directory history list becomes full, old entries are deleted to make room for new ones.    You can set
the size of the list with the DirHistory directive in the .INI file.    In order to conserve space, each directory
name is recorded just once in the directory history, even if you move into and out of that directory several
times.    The directory history can be stored in either a "local" or "global" list.

When you switch directories the original directory is saved in the directory history list, regardless of
whether you change directories at the command line, from within a batch file, or from within an alias.   
However, directory changes made by external directory navigation utilities or other external programs are
not recorded by 4NT.

See Popup Windows for information on customizing window position, size, and color.

Local and Global Directory History   

The directory history can be stored in either a "local" or "global" list.

With a local directory history list, any changes made to the list will only affect the current copy of the
command processor.    They will not be visible in other shells, or other sessions.

With a global list, all copies of the command processor will share the same directory history, and any
changes made to the list in one copy will affect all other copies.    Global lists are the default for 4NT.

You can control the type of directory history list on the Startup page of the OPTION dialogs, with the
LocalDirHistory directive in the .INI file, with the /L and /LD startup options, and with the /L and /LD
options of the START command

There is no fixed rule for deciding whether to use a local or global directory history list.    Depending on
your work style, you may find it most convenient to use one type, or a mixture of types in different
sessions or shells.    We recommend that you start with the default setting (global), then modify it if you
find a situation where the default is not convenient.

If you select a global directory list, you can share the list among all copies of 4NT running in any session. 
When you close all 4NT sessions, the memory for the global directory history list is released, and a new,
empty list is created the next time you start 4NT.   

If you want the list to be retained in memory even when no command processor session is running,
execute the SHRALIAS command, which loads a program to perform this service for the global command
history, directory history, and alias lists.    SHRALIAS retains the directory history list in memory, but
cannot preserve it when Windows NT itself is shut down.    4NT always starts with an empty directory
history after the system is restarted.

Whenever you start a secondary shell which uses a local directory history list, it inherits a copy of the
directory history from the previous shell.    However, any changes to the list made in the secondary shell
will affect only that shell.    If you want changes made in a secondary shell to affect the previous shell, use
a global directory history list in both shells.

Multiple Commands

You can type several commands on the same command line, separated by an ampersand [&].    For
example, if you know you want to copy all of your .TXT files to drive A: and then run CHKDSK to be sure
that drive A's file structure is in good shape, you could enter the following command:

[c:\] copy *.txt a: & chkdsk a:

You may put as many commands on the command line as you wish, as long as the total length of the
command line does not exceed 1023 characters.

You can use multiple commands in alias definitions and batch files as well as from the command line.

If you don't like using the default command separator, you can pick another character using the
SETDOS /C command or the CommandSep directive in the .INI file.    If you plan to share aliases or batch
files between 4NT and 4DOS, 4OS2, or Take Command, see Special Character Compatibility for details
about choosing compatible command separators for two or more products.

Expanding and Disabling Aliases

A few command line options are specifically related to aliases, and are documented briefly here for
completeness.

You can expand an alias on the command line and view or edit the results by pressing Ctrl-F before the
command is executed.    Doing so is especially useful when you are developing and debugging a complex
alias or if you want to make sure that an alias that you may have forgotten won't change the intent of your
command.

At times, you may want to temporarily disable an alias that you have defined. To do so, precede the
command with an asterisk [*].    For example, if you have an alias for DIR which changes the display
format, you can use the following command to bypass the alias and display the directory in the standard
format:

[c:\] *dir

Command-Line Length Limits

When you first enter a command at the prompt or in an alias or batch file, it can be up to 1,023 characters
long.

As 4NT scans the command line and substitutes the contents of aliases and environment variables for
their names, the line usually gets longer.    This expanded line is stored in an internal buffer which allows
each individual command to grow to 1,023 characters during the expansion process.    In addition, if you
have multiple commands on a single line, during expansion the entire line can grow to as much as 2,047
characters.    If your use of aliases or environment variables causes the command line to exceed either of
these limits as it is expanded, you will see a "Command line too long" error and the remainder of the line
will not be executed.

File Selection

Most internal commands (like COPY, DIR, etc.) work on a file or a group of files.    Besides typing the
exact name of the file you want to work with, you can use several shorthand forms for naming or selecting
files and the applications associated with them.

Most of the features explained in this section apply to 4NT commands only, and generally can not be
used to pass file names to external programs unless those programs were specifically written to support
these features.

The file selection features are:

Extended Parent Directory Names

Wildcards

Date, Time, and Size Ranges

File Exclusion Ranges

Multiple Filenames

Include Lists

LFN File Searches

Executable Extensions

Using Windows File Associations

Using Internet URLs

Waiting for Applications to Finish

Extended Parent Directory Names

4NT allows you to extend the traditional syntax for naming the parent directory, by adding additional [.]
characters.    Each additional [.] represents an additional directory level above the current directory.    For
example, .\FILE.DAT refers to a file in the current directory, ..\FILE.DAT refers to a file one level up (in the
parent directory), and ...\FILE.DAT refers to a file two levels up (in the parent of the parent directory).    If
you are in the C:\DATA\FINANCE\JANUARY directory and want to copy the file LETTERS.DAT from the
directory C:\DATA to drive A:

[C:\DATA\FINANCE\JANUARY] copy ...\LETTERS.DAT A:

Wildcards

Wildcards let you specify a file or group of files by typing a partial filename.    The appropriate directory is
scanned to find all of the files that match the partial name you have specified.

Wildcards are usually used to specify which files should be processed by a command.    If you need to
specify which files should not be processed see File Exclusion Ranges (for internal commands), or
EXCEPT (for external commands).

Most internal commands accept filenames with wildcards anywhere that a full filename can be used.   
There are two wildcard characters, the asterisk [*] and the question mark [?], plus a special method of
specifying a range of permissible characters.

An asterisk [*] in a filename means "any zero or more characters in this position."    For example, this
command will display a list of all files in the current directory:

[c:\] dir *.*

If you want to see all of the files with a .TXT extension, you could type this:

[c:\] dir *.txt

If you know that the file you are looking for has a base name that begins with ST and an extension that
begins with .D, you can find it this way.    Filenames such as STATE.DAT, STEVEN.DOC, and ST.D will all
be displayed:

[c:\] dir st*.d*

With 4NT, you can also use the asterisk to match filenames with specific letters somewhere inside the
name.    The following example will display any file with a .TXT extension that has the letters AM together
anywhere inside its base name.    It will, for example, display AMPLE.TXT, STAMP.TXT, CLAM.TXT, and
AM.TXT:

[c:\] dir *am*.txt

A question mark [?] matches any single filename character.    You can put the question mark anywhere in
a filename and use as many question marks as you need.    The following example will display files with
names like LETTER.DOC and LATTER.DAT, and LITTER.DU:

[c:\] dir l?tter.d??

The use of an asterisk wildcard before other characters, and of the character ranges discussed below, are
enhancements to the standard wildcard syntax, and may not work properly with software other than
4DOS, 4OS2, 4NT, and Take Command.

"Extra" question marks in your wildcard specification are ignored if the file name is shorter than the
wildcard specification.    For example, if you have files called LETTER.DOC, LETTER1.DOC, and
LETTERA.DOC, this command will display all three names:

[c:\] dir letter?.doc

The file LETTER.DOC is included in the display because the "extra" question mark at the end of
"LETTER? " is ignored when matching the shorter name LETTER.

In some cases, the question mark wildcard may be too general.    You can also specify what characters

you want to accept (or exclude) in a particular position in the filename by using square brackets. Inside
the brackets, you can put the individual acceptable characters or ranges of characters.    For example, if
you wanted to match LETTER0.DOC through LETTER9.DOC, you could use this command:

[c:\] dir letter[0-9].doc

You could find all files that have a vowel as the second letter in their name this way.    This example also
demonstrates how to mix the wildcard characters:

[c:\] dir ?[aeiouy]*.*

You can exclude a group of characters or a range of characters by using an exclamation mark [!] as the
first character inside the brackets.    This example displays all filenames that are at least 2 characters long
except those which have a vowel as the second letter in their names:

[c:\] dir ?[!aeiouy]*.*

The next example, which selects files such as AIP, BIP, and TIP but not NIP, demonstrates how you can
use multiple ranges inside the brackets.    It will accept a file that begins with an A, B, C, D, T, U, or V:

[c:\] dir [a-dt-v]ip

You may use a question mark character inside the brackets, but its meaning is slightly different than a
normal (unbracketed) question mark wildcard.    A normal question mark wildcard matches any character,
but will be ignored when matching a name shorter than the wildcard specification, as described above.    A
question mark inside brackets will match any character, but will not be discarded when matching shorter
filenames.    For example:

[c:\] dir letter[?].doc

will display LETTER1.DOC and LETTERA.DOC, but not LETTER.DOC.

A pair of brackets with no characters between them [], or an exclamation point and question mark
together [!?],will match only if there is no character in that position.    For example,

[c:\] dir letter[].doc

will not display LETTER1.DOC or LETTERA.DOC, but will display LETTER.DOC.    This is most useful for
commands like

[c:\] dir /I"[]" *.btm

which will display a list of all .BTM files which don't have a description, because the empty brackets
match only an empty description string (DIR /I selects files to display based on their descriptions).

You can repeat any of the wildcard characters in any combination you desire within a single file name.   
For example, the following command lists all files which have an A, B, or C as the third character,
followed by zero or more additional characters, followed by a D, E, or F, followed optionally by some
additional characters, and with an extension beginning with P or Q.    You probably won't need to do
anything this complex, but we've included it to show you the flexibility of extended wildcards:

[c:\] dir ??[abc]*[def]*.[pq]*

You can also use the square bracket wildcard syntax to work around a conflict between long filenames
containing semicolons [;], and the use of a semicolon to indicate an include list. For example, if you have
a file named C:\DATA\LETTER1;V2 and you enter this command:

[c:\] del \data\letter1;v2

you will not get the results you expect.    Instead of deleting the named file, 4NT will attempt to delete
LETTER1 and then V2, because the semicolon indicates an include list.    However if you use square
brackets around the semicolon it will be interpreted as a filename character, and not as an include list
separator.    For example, this command would delete the file named above:

[c:\] del \data\letter1[;]v2

Extra caution should be taken using wildcards on long file names because operations using wildcards will
be performed on both long and short filenames.    See LFN File Searches for additional details.

Date, Time, and Size Ranges

Most internal commands which accept wildcards also allow date, time, and size ranges to further define
the files that you wish to work with.    4NT will examine each file's size and timestamp (a record of when
the file was created, last modified, or last accessed) to determine if the file meets the range criteria you
have specified.

(4NT also supports File Exclusion Ranges to exclude files from a command.    These are similar to date,
time, and size ranges, but have a slightly different purpose and therefore are documented separately.)

A range begins with the switch character (/), followed by a left square bracket ("[") and a character that
specifies the range type:    "s" for a size range, "d" for a date range, or "t" for a time range.    The "s", "d",
or "t" is followed by a start value, and an optional comma and end value.    The range ends with a right
square bracket ("]").    For example, to select files between 100 and 200 bytes long you could use the
range /[s100,200].

All ranges are inclusive. For example, a size range which selects files from 10,000 to 20,000 bytes long
will match files that are exactly 10,000 bytes and 20,000 bytes long, as well as all sizes in between; a
date range that selects files last modified between 10-27-97 and 10-30-97 will include files modified on
each of those dates, and on the two days in between.

If you reverse range start and end values the command processor will recognize the reversal, and will use
the second (lower) value as the start point of the range and the first (higher) value as its end point.        For
example, the range above for files between 100 and 200 bytes long could also be entered as /[s200,100].

See the individual range types for details on specifying ranges:

Date Ranges

Time Ranges

Size Ranges

Using Ranges

If you combine two types of ranges, a file must satisfy both ranges to be included.    For example, /[d2-8-
97,2-9-97] /[s1024,2048] means files last modified on February 8 or February 9, 1997, which are also
between 1,024 and 2,048 bytes long.

When you use a date, time, or size range in a command, it should immediately follow the command
name.    Unlike some command switches which apply to only part of the command line, the range usually
applies to all file names specified for the command.    Any exceptions are noted in the descriptions of
individual commands.

For example, to get a directory of all the *.C files dated October 1, 1997, you could use this command:

[c:\] dir /[d10-1-97,+0] *.c

To delete all of the 0-byte files on your hard disk, you could use this command:

[c:\] del /[s0,0] *.* /s

And to copy all of the non-zero byte files that you changed yesterday or today to your floppy disk, you can
use this command:

[c:\] copy /[d-1] /[s1] *.* a:

It can be complex to type all of the elements of a range, especially when it involves multiple dates and
times.    In this case you may find it easier to use aliases for common operations.    For example, if you
often wish to select from .DAT files modified over the last three days and copy the selected files to the
floppy disk, you might define an alias like this:

alias workback `select /[d-2] copy (*.dat) a:`

For more complex requirements, you may want to use internal variables (e.g. _DATE or _TIME and
variable functions (e.g. @DATE, @TIME, @MAKEDATE, @MAKETIME, @FILEDATE, @FILETIME, or
@EVAL).    These variables and functions allow you to perform arithmetic and date / time calculations.

File systems which support long filenames maintain 3 sets of dates and times for each file: creation, last
access, and last write.    By default, date and time ranges work with the last write time stamp.    You can
use the "last access" (a) or "created" (c) time stamp in a date or time range with the syntax:

/[da...] or /[dc...] or .. /[ta...] or /[tc...]

For example, to select files that were last accessed yesterday or today:

/[da-1]

The LFN file system used by Windows NT on FAT volumes, stores an incomplete time stamp for last
access.    You can select files by the date of last access, but not by the time of last access, since the time
of last access is not retained by the operating system.

Date, time, and size ranges can be used with the ATTRIB, COPY, DEL, DESCRIBE, DIR, EXCEPT,
FFIND, FOR, LIST, MOVE, RD, REN, SELECT, and TYPE commands. They cannot be used with
filename completion or in filename arguments for variable functions.

Date Ranges

Date ranges select files that were created or last modified at any time between the two dates.    For
example, /[d12-1-97,12-5-97] selects files that were last modified between December 1, 1997, and
December 5, 1997.

The time for the starting date defaults to 00:00:00 and the time for the ending date defaults to 23:59:59.   
You can alter these defaults, if you wish, by including a start and stop time inside the date range.    The
time is separated from the date with an at sign [@].    For example, the range /[d7-1-97@8:00a,7-3-
97@6:00p] selects files that were modified at any time between 8:00 am on July 1, 1997 and 6:00 PM on
July 3, 1997.    If you prefer, you can specify the times in 24-hour format (e.g., @18:00 for the end time in
the previous example).

If you omit the second argument in a date range, 4NT substitutes the current date and time.    For
example, /[d10-1-97] selects files dated between October 1, 1997 and today.

You can use an offset value for either the beginning or ending date, or both.    An offset begins with a plus
sign [+] or a minus sign [-] followed by an integer.    If you use an offset for the second value, it is
calculated relative to the first.    If you use an offset for the first (or only) value, the current date is used as
the basis for calculation.    For example:

Specification Selects Files

/[d10-27-97,+3] modified between 10-27-97 and 10-30-97
/[d10-27-97,-3] modified between 10-24-97 and 10-27-97
/[d-0] modified today (from today minus zero days, to today)
/[d-1] modified yesterday or today (from today minus one day,

to today)
/[d-1,+0] modified yesterday (from today minus one day, to zero

days after that)

As a shorthand way of specifying files modified today, you can also use /[d]; this has the same effect as
the /[d-0] example shown above.

To select files last modified n days ago or earlier, use /[d-n,1/1/80].    For example, to get a directory of all
files last modified 3 days or more before today (i.e., those files not modified within the last 3 days), you
could use this command:

c:\> dir /[d-3,1/1/80]

This reversed date range (with the later date given first) will be handled correctly by 4NT.    It takes
advantage of the facts that an offset in the start date is relative to today, and that the base or "zero" point
for PC file dates is January 1, 1980.

You cannot use offsets in the time portion of a date range (the part after an at sign), but you can combine
a time with a date offset.    For example, /[d12-8-97@12:00,+2@12:00] selects files that were last
modified between noon on December 8 and noon on December 10, 1997.    Similarly, /[d-2@15:00,+1]
selects files last modified between 3:00 PM the day before yesterday and the end of the day one day after
that, i.e., yesterday.    The second time defaults to the end of the day because no time is given.

File systems which support long filenames maintain 3 sets of dates and times for each file: creation, last
access, and last write.    By default, date ranges work with the last write date/time stamp.    You can use
the "last access" (a) or "created" (c) date/time stamp in a date range with the syntax:

/[da...] or /[dc...]

For example, to select files that were last accessed yesterday or today:

/[da-1]

Time Ranges

A time range specifies a file modification time without reference to the date.    For example, to select files
modified between noon and 2:00 PM on any date, use /[t12:00p,2:00p].    The times in a time range can
either be in 12-hour format, with a trailing "a" for AM or "p" for PM, or in 24-hour format.

If you omit the second argument in a time range, you will select files that were modified between the first
time and the current time, on any date.    You can also use offsets, beginning with a plus sign [+] or a
minus sign [-] for either or both of the arguments in a time range.    The offset values are interpreted as
minutes.    Some examples:

Specification Selects Files

/[t12:00p,+120] modified between noon and 2:00 PM on any date
/[t-120,+120] modified between two hours ago and the current time on

any date
/[t0:00,11:59] modified in the morning on any date

File systems which support long filenames maintain 3 sets of dates and times for each file: creation, last
access, and last write.    By default, time ranges work with the last write time stamp.    You can use the
"last access" (a) or "created" (c) time stamp in a time range with the syntax:

/[ta...] or /[tc...]

The LFN file system used by Windows NT on FAT volumes, stores an incomplete time stamp for last
access.    You can select files by the date of last access, but not by the time of last access, since the time
of last access is not retained by the operating system.

Size Ranges

Size ranges simply select files whose size is between the limits given.    For example, /[s10000,20000]
selects files between 10,000 and 20,000 bytes long.

Either or both values in a size range can end with "k" to indicate thousands of bytes, "K" to indicate
kilobytes (1,024 bytes), "m" to indicate millions of bytes, or "M" to indicate megabytes (1,048,576 bytes).   
For example, the range above could be rewritten as /[s10k,20k].

All ranges are inclusive.    Both examples above will match files that are exactly 10,000 bytes and 20,000
bytes long, as well as all sizes in between.

The second argument of a size range is optional.    If you use a single argument, like /[s10k], you will
select files of that size or larger.    You can also precede the second argument with a plus sign [+]; when
you do, it is added to the first value to determine the largest file size to include in the search.    For
example,    /[s10k,+1k] select files from 10,000 through 11,000 bytes in size.

Some further examples of size ranges:

Specification Selects Files

/[s0,0] of length zero(empty)
/[s1M] 1 megabyte or more in length
/[s10k,+200] between 10,000 and 10,200 bytes

File Exclusion Ranges

Most internal commands which accept wildcards also accept file exclusion ranges to further define the
files that you wish to work with.    4NT examines each file name and excludes files that match the names
you have specified in a file exclusion range.

A file exclusion range begins with the switch character (usually a slash), followed by a left square bracket
and an exclamation mark ("[!")    The range ends with a right square bracket ("]").

Inside the brackets, you can list one or more filenames to be excluded from the command.    The
filenames can include wildcards and extended wildcards, but cannot include path names or drive letters.

The following example will display all files in the current directory except backup files (files with the
extension .BAK or .BKP):

[c:\] dir /[!*.bak *.bkp] *.*

You can combine file exclusion ranges with date, time, and size ranges.    This example displays all files
that are 10K bytes or larger in size and that were created in the last 7 days, except .C and .H files:

[c:\] dir /[s10k] /[d-7] /[!*.c *.h] *.*

File exclusion ranges will only work for 4NT internal commands.    The EXCEPT command can be used to
exclude files from processing by many external commands.

Multiple Filenames

Most file processing commands can work with multiple files at one time.    To use multiple file names, you
simply list the files one after another on the command line, separated by spaces.    You can use wildcards
in any or all of the filenames.    For example, to copy all .TXT and .DOC files from the current directory to
drive A, you could use this command:

[c:\] copy *.txt *.doc a:

If the files you want to work with are not in the default directory, you must include the full path with each
filename:

[c:\] copy a:\details\file1.txt a:\details\file1.doc c:

Multiple filenames are handy when you want to work with a group of files which cannot be defined with a
single filename and wildcards.    They let you be very specific about which files you want to work with in a
command.

When you use multiple filenames with a command that expects both a source and a destination, like
COPY or MOVE, be sure that you always include a specific destination on the command line.    If you
don't, the command will assume that the last filename is the destination and may overwrite important files.

Like extended wildcards and include lists, the multiple filenames will work with internal commands but not
with external programs, unless those programs have been written to handle multiple file names on the
command line.

If you have a list of files to process that's too long to put on the command line or too time-consuming to
type, see FOR or SELECT for other ways of passing multiple file names to a command.

Include Lists

Any internal command that accepts multiple filenames will also accept one or more include lists.    An
include list is simply a group of filenames, with or without wildcards, separated by semicolons [;].    All files
in the include list must be in the same directory.    You may not add a space on either side of the
semicolon.

For example, you can shorten this command which uses multiple file names:

[c:\] copy a:\details\file1.txt a:\details\file1.doc c:

to this using an include list:

[c:\] copy a:\details\file1.txt;file1.doc c:

Include lists are similar to multiple filenames, but have three important differences.    First, you don't have
to repeat the path to your files if you use an include list, because all of the included files must be in the
same directory.    Second, if you use include lists, you aren't as likely to accidentally overwrite files if you
forget a destination path for commands like COPY, because the last name in the list will be part of the
include list, and won't be seen as the destination file name.    (Include lists can only be used as the source
parameter – the location files are coming from – for COPY and other similar commands.    They cannot be
used to specify a destination for files.)

Third, multiple filenames and include lists are processed differently by the DIR and SELECT commands.
If you use multiple filenames, all of the files matching the first filename are processed, then all of the files
matching the second name, and so on.    When you use an include list, all files that match any entry in the
include list are processed together, and will appear together in the directory display or SELECT list.    You
can see this difference clearly if you experiment with both techniques and the DIR command.    For
example:

[c:\] dir *.txt *.doc

will list all the .TXT files with a directory header, the file list, and a summary of the total number of files
and bytes used.    Then it will do the same for the .DOC files.    However,

[c:\] dir *.txt;*.doc

will display all the files in one list.

Like extended wildcards and multiple filenames, the include list feature will work with internal commands,
but not with external programs (unless they have been programmed especially to support them).    The
maximum length of an include list is 260 characters.

LFN File Searches

Under Windows NT (version 3.5 and later), files on VFAT volumes can have both a long file name (LFN)
and a short FAT-compatible file name.    4NT normally examines both forms of each file name when
searching for files.    It does so in order to remain compatible with the default command processor,
CMD.EXE.

The long filename is checked first, and if it does not match then the short name is checked.    Matching
files which have only a short filename will be found during the first search, because in that case Windows
NT treats the short name as if it were a long name.

For example, suppose you have two files in a directory with these names:

Long Name                      Short Name

Letter Home.DOC LETTER~1.DOC
Letter02.DOC LETTER02.DOC

A search for LETTER??.DOC will find both files.    The second file (LETTER02.DOC) will be found during
the search of long filenames.    The first file (Letter Home.DOC) will be found during the search of short
filenames.

Take extra care when you use wildcards to perform operations on LFN volumes because you may select
more files than you intended.    For example, Windows NT often creates short filenames that end "~1.",
"~2.", etc.    If you use a command like:

del *1.*

you will delete all such files, including most files with long filenames, which is probably not the result you
intended!

Executable Extensions

 The syntax for creating an executable extension is:

set .ext=command [options]

This tells 4NT to run the specified command whenever you name a file with the extension .ext at the
prompt.

.EXT is the executable file extension; command is the name of the internal command, external program,
alias, or batch file to run; and [options] are any command-line startup options you want to specify for the
program, batch file, or alias.

Normally, when you type a filename (as opposed to an alias or internal command name) as the first word
on the command line, 4NT looks for a file with that name to execute.    The file's extension may be .EXE or
.COM to indicate that it contains a program, it may have a batch file extension like .BTM, or the file's
contents may indicate that it is executable.

You can add to the default list of extensions, and have 4NT take the action you want with files that are not
executable programs or batch files.    The action taken is always based on the file's extension.    For
example, you could start your text editor whenever you type the name of a .DOC file, or start your
database manager whenever you type the name of a .DAT file.

Windows also includes the ability to associate file extensions with specific applications.    See Using
Windows File Associations for details on file associations and their relationship to 4NT executable
extensions.

You can use environment variables to define the internal command, external program, batch file, or alias
to run for each defined file extension.    To create an executable extension, use the SET command to
create a new environment variable.    An environment variable is recognized as an executable extension if
its name begins with a period.

For example, if you want to run a word processor called EDITOR whenever you type the name of a file
that has an extension of .EDT, you could use this command:

[c:\] set .edt=c:\edit\editor.exe

If the command specified in an executable extension is a batch file or external program, 4NT will search
the PATH for it if necessary.    However, you can make sure that the correct program or batch file is used,
and speed up the executable extension, by specifying the full name including drive, path, filename, and
extension.

Once an executable extension is defined, any time you name a file with that extension the corresponding
program, batch file, or alias is started, with the name of your file passed to it as a parameter.

The following example defines B.EXE (the Boxer text editor) as the processor for .MAK files:

[c:\] set .mak=c:\boxer\b.exe -s

With this definition, if you have a file named INIT.MAK in the current directory and enter the command:

[c:\source] init

4NT will execute the command:

c:\boxer\b.exe -s c:\source\init.mak

Notice that the full pathname of INIT.MAK is automatically included.    If you enter parameters on the
command line, they are appended to the end of the command.    For example, if you changed the above
entry to:

[c:\source] init -w

the command processor would execute the command:

c:\boxer\b.exe -s c:\source\init.mak -w

In order for executable extensions to work, the command, program, batch file, or alias must be able to
interpret the command line properly.    For example, if a program you want to run doesn't accept a file
name on its command line as shown in these examples, then executable extensions won't work with that
program.

Executable extensions may include wildcards, so you could, for example, run your text editor for any file
with an extension beginning with T by defining an executable extension called .T*.    Extended wildcards
(e.g., DO[CT] for .DOC and .DOT files) may also be used.

The search for executable files starts in the current directory, then proceeds to each subdirectory
specified by the PATH environment variable (if a "." is used in the PATH the current directory is not
searched first; see the PATH command for details).

You may need to take this search order into account when using executable extensions.    Using the MAK
example above, if you had a file named SORT.MAK in the current directory and entered the command
SORT TESTFILE.TXT, your command would run the Boxer editor specified by the executable extension,
instead of finding the standard SORT command as you perhaps intended.    You can get around this by
remembering that the SORT command is in the file SORT.EXE.    If you entered the command SORT.EXE
TESTFILE.TXT then the .MAK executable extension would not be checked, and the search would
continue until it found the SORT.EXE file.

To remove an executable extension, use the UNSET command to remove the corresponding variable.

Using Windows File Associations

Windows NT includes the ability to associate file extensions with specific applications; this feature is
sometimes called "file associations".    For example, within Windows NT a graphics program might be
associated with files with a .BMP extension, while Notepad could be associated with files with a .TXT
extension.    Windows NT supports two different kinds of file associations ("direct" and "indirect"); for a
complete description see Windows File

When you attempt to start an application from the command line or a batch file, 4NT first searches for an
external program file with a standard extension (.COM, .EXE, etc.).    It then checks 4NT executable
extensions, followed by direct file associations inherited from Windows NT.    If    all of these tests fail, 4NT
passes the command name to Windows NT to see if it can find an indirect association.

4NT offers two commands which provide limited control over indirect file associations.    Both should be
used with caution to avoid creating errors in the registry or damaging existing file types.    The ASSOC
command modifies or displays the associations between extensions and file types in the Windows
registry.    The FTYPE command modifies or displays the command used to open a file of a specified type.

Executable extensions defined in 4NT always take precedence over the direct and indirect file
associations defined in Windows NT.    For example, if you associate the .TXT extension with your own
editor using a 4NT executable extension, and Windows NT has associated .TXT with Notepad, your
setting will have priority, and the association with Notepad will be ignored when you invoke a .TXT file
from within 4NT.

Unfortunately, it is not unusual to find both a direct association and an indirect association in the Windows
registry for the same extension.    This can happen when an ill-behaved install or uninstall program
modifies the wrong registry entry, or when a 16-bit application registers one type of association and a 32-
bit application registers the other type for the same extension.    For example, under Windows 95 you
might have a direct association between .GIF files and a 16-bit graphics program, and an indirect
association between .GIF files and a newer 32-bit application.    When this happens 4NT will find the direct
association first, which may not be the result you want.

To address such problems, you can correct the registry entries (use extreme caution when modifying the
registry manually as errors in the registry can prevent your system from booting); create a 4NT
executable extension which explicitly specifies the application to run; disable the loading of direct
associations from the Startup page of the OPTION dialogs, or with a LoadAssociations = No directive in
the 4NT.INI file; or disable an individual association with the UNSET command.

To disable individual direct file associations while you are working in 4NT, use the UNSET command plus
the appropriate file extension for each association that you want 4NT to ignore.    UNSET will disable that
file association within 4NT, but will not affect the use of the association by other Windows applications.   
For example, to disable a direct association between .WAV files and a sound player while you are working
in 4NT, you could use this command:

[c:\] unset .wav

This approach can only be used to disable direct associations.    Indirect associations cannot be disabled
(although they can be overridden with a 4NT executable extension).

Using Internet URLs

If you type an Internet URL (Uniform Resource Locator) which begins with http: at the prompt, 4NT will
pass the URL to Windows NT.    Normally Windows NT will start your web browser, and request that the
browser retrieve the page pointed to by the URL.    This feature will only work if Windows NT can find the
proper association between the http: prefix and the browser software.    While this association is standard
for most browser installations, it may not be present on all systems.

The ability to "start" URLs in this way is restricted to those beginning with http:.    Other standard prefixes
such as ftp:, mail:, and news: cannot be started directly from the prompt; you must enter these URLs
directly into the browser software.

See Waiting for Applications to Finish for information on problems with waiting for the browser to finish
after starting a URL.

Waiting for Applications to Finish

When you start a Windows application from the prompt, 4NT does not normally wait for the application to
finish before returning to the prompt.    This default behavior allows you to continue your work at the
prompt while the application is running.    You can force 4NT to wait for applications to finish before
continuing by selecting the "Wait for Completion" option on the Options 2 page of the OPTION dialogs,
with the ExecWait directive in the .INI file, or with the START command's /WAIT switch (you can also use
START to control many other aspects of how your applications are started).

Regardless of the ExecWait setting, 4NT always waits for applications which are run from batch files
before continuing with subsequent commands in the batch file.    To start an application from a batch file
and continue with the batch file immediately, without waiting for the application to finish, use the START
command (without the /WAIT switch).

Due to the way Windows NT handles URLs, you cannot wait for the browser software to finish when you
enter an http: URL at the prompt; in this situation, 4NT always displays the next prompt immediately.   
See Using Internet URLs for information about starting your browser from the prompt.

Directory Navigation

The operating system and command processor remember both a current or default drive for your
system as a whole, and a current or default directory for every drive in your system.    The current
directory on the current drive is sometimes called the current working directory.

With traditional command processors, you change the current drive by typing the new drive letter plus a
colon at the prompt, and you change the current working directory with the CD command. 4NT supports
those standard features, and offer a number of enhancements to make directory navigation much simpler
and faster.

The 4NT directory navigation features are in three groups: features which help the command processor
find the directory you want, methods for initiating a directory change with a minimal amount of typing, and
methods for returning easily to directories you've recently used.    Each group is summarized below.

Finding Directories

Traditional command processors require you to explicitly type the name of the directory you want to
change to. 4NT supports this method, and also offers two significant enhancements:

» Extended Directory Searches allow the command processor to search a "database" of all
the directories on your system to find the one you want.

» The CDPATH allows you to enter a specific list of directories to be searched, rather than
searching a database.    Use CDPATH instead of Extended Directory Searches if you find the
extended searches too broad, or your hard drive has too many directories for an efficient
search.

Initiating a Directory Change

4NT supports the traditional methods of changing directories, and also offers several more flexible
approaches:

» Automatic directory changes allow you to type a directory name at the prompt and switch
to it automatically, without typing an explicit CD or similar command.

» The CD command can change directories on a single drive, and can return to the most
recently used directory.

» The CDD command changes drive and directory at the same time, and can return to the
most recently used drive and directory.

» The PUSHD command changes the drive and directory like CDD, and records the previous
directory in a directory "stack."    You can view the stack with DIRS and return to the directory
on the top of the stack with POPD.

CDD, PUSHD, and automatic directory changes can also change to a network drive and directory
mapped to a drive letter or specified with a UNC name.

Returning to a Previous Directory

Traditional command processors do not remember previously-used directories, and can only "return" to a
directory by changing back to it with a standard drive change or CD command. 4NT supports three
additional methods for returning to a previous directory:

» The CD - and CDD - commands can be used to return to the previous working directory (the

one you used immediately before the current directory).    Use these commands if you are
working in two directories and alternating between them.

» The directory history window allows you to select one of several recently-used directories
from a popup list and return to it immediately.    The window displays the contents of the
directory history list.

» The POPD command will return to the last directory saved by PUSHD.    The directory stack
holds 511 characters, enough for 20 to 40 typical drive and directory entries.

Extended Directory Searches

When you change directories with an automatic directory change, CD, CDD, or PUSHD command, 4NT
must find the directory you want to change to.    To do so, the command processor first uses the traditional
method to find a new directory:    it checks to see whether you have specified either the name of an
existing subdirectory below the current directory, or the name of an existing directory with a full path or a
drive letter.    If you have, the command processor changes to that directory, and does no further
searching.

This traditional search method requires that you navigate manually through the directory tree, and type
the entire name of each directory you want to change to.    Extended Directory Searches speed up the
navigation process dramatically by allowing the command processor to find the directory you want, even if
you only enter a small part of its name.

When the traditional search method fails, 4NT tries to find the directory you requested via the CDPATH,
then via an Extended Directory Search.    This section covers only Extended Directory Searches, which
are more flexible and more commonly used than CDPATH.

Extended Directory Searches use a database of directory names to facilitate changing to the correct
directory.    The database is used only if Extended Directory Searches are enabled, and if the explicit
directory search and CDPATH search fail to find the directory you requested.

An extended directory search automatically finds the correct path to the requested directory and changes
to it if that directory exists in your directory database.    If more than one directory in the database matches
the name you have typed, a popup window appears and you can choose the directory you want.

You can control the color, position and size of the popup directory search window from the Command line
2 page of the OPTION dialogs, or with directives in the .INI file, including CDDWinLeft, CDDWinTop,
CDDWinWidth, and CDDWinHeight, and CDDWinColors). You can also change the keys used in the
popup window with key mapping directives in the .INI file.

To use extended directory searches, you must explicitly enable them (see below) and also create the
directory database.

The Extended Search Database

To create or update the database of directory names, use the CDD /S command.    When you create the
database with CDD /S, you can specify which drives should be included.    If you enable Extended
Directory Searches and do not create the database, it will be created automatically the first time it is
required, and will include all local hard drives.

The database is stored in the file JPSTREE.IDX, which is placed in the root directory of drive C: by
default.    The same tree file is used by all JP Software command processors.    You can specify a different
location for this file on the Command Line 2 page of the OPTION dialogs, or with the TreePath .INI
directive.    If you are using 2 or more of our products on your computer and want to have different drives
stored in the database for each, use the dialogs or the TreePath directive to place their database
directories in different locations.

If you use an internal 4NT command to create or delete a directory, the directory database is
automatically updated to reflect the change to your directory structure.    The updates occur if the
command processor can find the JPSTREE.IDX file in the root directory of drive C: or in the location
specified by the TreePath .INI directive.

The internal commands which can modify the directory structure and cause automatic updates of the file
are MD, RD, COPY /S, DEL /X, MOVE /S, and REN.    The MD /N command can be used to create a

directory without updating the directory database.    This is useful when creating a temporary directory
which you do not want to appear in the database.

Enabling Extended Searches

To enable extended directory searches and control their operation, you must set the FuzzyCD directive in
the .INI file.    You can set FuzzyCD with the Search Level option on the Command Line 2 page of the
OPTION dialogs or by editing the .INI file manually.

If FuzzyCD = 0, extended searches are disabled, the JPSTREE database is ignored, and CD,
CDD, PUSHD, and automatic directory changes search for directories using only explicit names
and CDPATH.    This is the default.

If FuzzyCD = 1 and an extended search is required, then the command processor will search the
JPSTREE database for directory names which exactly match the name you specified.

If FuzzyCD = 2 and an extended search is required, the command processor will search the
database for exact matches first, just as when FuzzyCD = 1.    If the requested directory is not
found, it will search the database a second time looking for directory names that begin with the
name you specified.

If FuzzyCD = 3 and an extended search is required, the command processor will search the
database for exact matches first, just as when FuzzyCD = 1.    If the requested directory is not
found, it will search the database a second time looking for directory names that contain the
name you specified anywhere within them.

For example, suppose that you have a directory called C:\DATA\MYDIR, CDPATH is not set, and C:\DATA
is not the current directory on drive C:.    The following chart shows what CDD command you might use to
change to this directory.

Fuzzy CD CDD Command

0 cdd c:\data\mydir
1 cdd mydir
2 cdd myd
3 cdd yd

An extended directory search is not used if you specify a full directory path (one beginning with a
backslash [\], or a drive letter and a backslash).    If you use a name which begins with a drive letter (e.g.
C:MYDIR), the extended search will examine only directories on that drive.

Forcing an Extended Search with Wildcards

Normally you type a specific directory name for the command processor to locate, and the search
proceeds as described in the preceding sections.    However, you can also force the command processor
to perform an extended directory search by using wildcard characters in the directory name.    If you use a
wildcard, an extended search will occur whether or not extended searches have been enabled.

When 4NT is changing directories and it finds wildcards in the directory name, it skips the explicit search
and CDPATH steps and goes directly to the extended search.

If a single match is found, the change is made immediately.    If more than one match is found, a popup
window is displayed with all matching directories.

Wildcards can only be used in the final directory name in the path (after the last backslash in the path
name).    For example you can find COMM*A*.* (all directories whose parent directory is COMM and

which have an A somewhere in their names), but you cannot find CO?M*A*.* because it uses a wildcard
before the last backslash.

If you use wildcards in the directory name as described here, and the extended directory search database
does not exist, it will be built automatically the first time a wildcard is used.    You can update the database
at any time with CDD /S.

Internally, extended directory searches use wildcards to scan the directory database.    If FuzzyCD is set
to 2, an extended search looks for the name you typed followed by an asterisk (i.e. DIRNAME*).    If
FuzzyCD is set to 3, it looks for the name preceded and followed by an asterisk (i.e. *DIRNAME*).

These internal wildcards will be used in addition to any wildcards you use in the name.    For example if
you search for ABC?DEF (ABC followed by any character followed by DEF) and FuzzyCD is set to 3, the
command processor will actually search the directory database for *ABC?DEF*.

CDPATH

When you change directories with an automatic directory change, CD, CDD, or PUSHD command, 4NT
must find the directory you want to change to.    To do so, the command processor first uses the traditional
method to find a new directory.

When the traditional search method fails, 4NT tries to find the directory you requested via the CDPATH,
then via an Extended Directory Search.    This section covers only CDPATH.

Enabling both CDPATH and Extended Directory Searches can yield confusing results, so we recommend
that you do not use both features at the same time.    If you prefer to explicitly list where the command
processor should look for directories, use CDPATH.    If you prefer to have the command processor look at
all of the directory names on your disk, use Extended Directory Searches.

CDPATH is an environment variable, and is similar to the PATH variable used to search for executable
files:    it contains an explicit list of directories to search when attempting to find a new directory.    The
command processor appends the specified directory name to each directory in CDPATH and attempts to
change to that drive and directory.    It stops when it finds a match or when it reaches the end of the
CDPATH list.

CDPATH is ignored if a complete directory name (one beginning with a backslash [\]) is specified, or if a
drive letter is included in the name.    It is only used when a name is given with no drive letter or leading
backslash.

CDPATH provides a quick way to find commonly used subdirectories in an explicit list of locations.    You
can create CDPATH with the SET command.    The format of CDPATH is similar to that of PATH:    a list of
directories separated by semicolons [;].    For example, if you want the directory change commands to
search the C:\DATA directory, the D:\SOFTWARE directory, and the root directory of drive E:\ for the
subdirectories that you name, you should create CDPATH with this command:

[c:\] set cdpath=c:\data;d:\software;e:\

Suppose you are currently in the directory C:\WP\LETTERS\JANUARY, and you'd like to change to D:\
SOFTWARE\UTIL.    You could change directories explicitly with the command:

[c:\wp\letters\january] cdd d:\software\util

However, because the D:\SOFTWARE directory is listed in your CDPATH variable as shown in the
previous example (we'll assume it is the first directory in the list with a UTIL subdirectory), you can simply
enter the command:

[c:\wp\letters\january] cdd util

or, using an automatic directory change:

[c:\wp\letters\january] util\

to change to D:\SOFTWARE\UTIL.

As it handles this request, the command processor looks first in the current directory, and attempts to find
the C:\WP\LETTERS\JANUARY\UTIL subdirectory.    Then it looks at CDPATH, and appends the name
you entered, UTIL, to each entry in the CDPATH variable — in other words, it tries to change to C:\DATA\
UTIL, then to D:\SOFTWARE\UTIL.    Because this change succeeds, the search stops and the directory
change is complete.

Note:    _CDPATH can be used as an alternative to CDPATH if you are using Microsoft Bookshelf, which
uses a CDPATH variable for its own purposes.

Other Features

Page and File Prompts

Redirection and Piping

Critical Errors

Conditional Commands

Command Grouping

Escape Character

Page and File Prompts

Several 4NT commands can generate prompts, which wait for you to press a key to view a new page or
to perform a file activity.

When 4NT is displaying information in page mode, for example with a DIR /P or SET /P command, it
displays the message

Press Esc to Quit or any other key to continue...

At this prompt, you can press Esc, Ctrl-C, or Ctrl- Break if you want to quit the command.    You can
press almost any other key to continue with the command and see the next page of information.

During file processing, if you have activated prompting with a command like DEL /P, you will see this
prompt before processing every file:

Y/N/R ?

You can answer this prompt by pressing Y for "Yes, process this file;"    N for "No, do not process this file;"
R for "process the Remainder of the files without further prompting."    You can also press Ctrl-C, Ctrl-
Break, or Esc at this prompt to cancel the remainder of the command.

Redirection and Piping

This section covers redirection and piping.    You can use these features to change how 4NT and some
application programs handle input and output.

Internal commands and many external programs get their input from the computer's standard input
device and send their output to the standard output device.    Some programs also send special
messages to the standard error device.    Normally, the keyboard is used for standard input and the video
screen for both standard output and standard error.   

Redirection and piping allow you to change these assignments temporarily.

Redirection changes the standard input, standard output, or standard error device for a program or
command from the default device (the keyboard or screen), to another device or to a file.

Piping changes the standard output and / or standard error device so that the output of one command
becomes the standard input for another program or command.

Redirection

Redirection can be used to reassign the standard input, standard output, and standard error devices
from their default settings (the keyboard and scree) to another device like the printer or serial port, to a
file, or to the clipboard.    You must use some discretion when you use redirection with a device; there is
no way to get input from the printer, for example.

Redirection always applies to a specific command, and lasts only for the duration of that command.   
When the command is finished, the assignments for standard input, standard output, and standard error
revert to whatever they were before the command.

In the descriptions below, filename means either the name of a file or of an appropriate device (PRN,
LPT1, LPT2, or LPT3 for printers; COM1 to COM4 for serial ports; CON for the keyboard and screen;
CLIP: for the clipboard; NUL for the "null" device, etc.).

Here are the standard redirection options supported by 4NT (see below for additional redirection options
using numeric file handles):

< filename To get input from a file or device instead of from the keyboard

> filename Redirect standard output to a file or device

>& filename Redirect standard output and standard error to a file or device

>&> filename Redirect standard error only to a file or device

If you want to append output to the end of an existing file, rather than creating a new file, replace the first
">" in the last three commands above with ">>" (i.e., use >>, >>&, and >>&>).

To use redirection, place the redirection symbol and filename at the end of the command line, after the
command name and any parameters.    For example, to redirect the output of the DIR command to a file
called DIRLIST, you could use a command line like this:

[c:\] dir /b *.dat > dirlist

You can use both input and output redirection for the same command, if both are appropriate.    For
example, this command sends input to SORT from the file DIRLIST, and sends output from SORT to the
file DIRLIST.SRT:

[c:\] sort < dirlist > dirlist.srt

You can redirect text to or from the Windows clipboard by using the pseudo-device name CLIP: (the colon
is required).

If you redirect the output of a single internal command like DIR, the redirection ends automatically when
that command is done.    If you start a batch file with redirection, all of the batch file's output is redirected,
and redirection ends when the batch file is done.    Similarly, if you use redirection at the end of a
command group, all of the output from the command group is redirected, and redirection ends when the
command group is done.

When output is directed to a file with >, >&, or >&>, if the file already exists, it will be overwritten.    You
can protect existing files by using the SETDOS /N1 command, the "Protect redirected output files" setting
on the Options 1 page of the OPTION dialogs, or the NoClobber directive in the .INI file.

When output is appended to a file with >>, >>&, or >>&>, the file will be created if it doesn't already exist. 
However, if NoClobber is set as described above, append redirection will not create a new file; instead, if

the output file does not exist a "File not found" or similar error will be displayed.

You can temporarily override the current setting of NoClobber by using an exclamation mark [!] after the
redirection symbol.    For example, to redirect the output of DIR to the file DIROUT, and allow overwriting
of any existing file despite the NoClobber setting:

[c:\] dir >! dirout

Redirection is fully nestable.    For example, you can invoke a batch file and redirect all of its output to a
file or device.    Output redirection on a command within the batch file will take effect for that command
only; when the command is completed, output will revert to the redirected output file or device in use for
the batch file as a whole.

You can use redirection if you need to create a zero-byte file.    To do so, enter    >filename as a
command, with no actual command before the > character.

In addition to the standard redirection options, 4NT also supports the Windows NT CMD.EXE syntax:

n>file Redirect handle n to the named file

n>&m Redirect handle n to the same place as handle m

[n] and [m] are one-digit file handles between 0 and 9.    You may not put any spaces between the n and
the >, or between the >, &, and m in the second form. Windows NT interprets "0" as standard input, "1" as
standard output, and "2" as standard error.    Handles 3 to 9 will probably not be useful unless you have
an application which uses those handles for a specific, documented purpose, or you have opened a file
with the %@FILEOPEN variable function and the file handle is between 3 and 9.

The n>file syntax redirects output from handle n to a file.    You can use this form to redirect two handles
to different places.    For example:

[c:\] dir > outfile 2> errfile

sends normal output to a file called OUTFILE and any error messages to a file called ERRFILE.

The n>&m syntax redirects handle n to the same location as the previously assigned handle m.    For
example, to send standard error to the same file as standard output, you could use this command:

[c:\] dir > outfile 2>&1

Notice that you can perform the same operations by using standard 4NT redirection features.    The two
examples above could be written as

[c:\] dir > outfile >&> errfile

and

[c:\] dir >&outfile

Piping

You can create a "pipe" to send the standard output of one command to the standard input of another
command:

command1 | command2 Send the standard output of command1 to the standard input
of command2

command1 |& command2 Send the standard output and standard error of command1 to
the standard input of command2

For example, to take the output of the SET command (which displays a list of your environment variables
and their values) and pipe it to the SORT utility to generate a sorted list, you would use the command:

[c:\] set | sort

To do the same thing and then pipe the sorted list to the internal LIST command for full-screen viewing:

[c:\] set | sort | list

The TEE and Y commands are "pipe fittings" which add more flexibility to pipes.

Like redirection, pipes are fully nestable.    For example, you can invoke a batch file and send all of its
output to another command with a pipe.    A pipe on a command within the batch file will take effect for that
command only; when the command is completed, output will revert to the pipe in use for the batch file as
a whole.

4NT implements pipes by starting a new process for the receiving program instead of using temporary
files.    The sending and receiving programs run simultaneously; the sending program writes to the pipe
and the receiving program reads from the pipe.    When the receiving program finishes reading and
processing the piped data, it ends automatically.

When you use pipes with 4NT make sure you think about any possible consequences that can occur from
using a separate process to run the receiving program.

Critical Errors

Windows NT watches for physical errors during input and output operations.    Physical errors are those
due to hardware problems, such as trying to read a floppy disk while the drive door is open.

These errors are called critical errors because Windows NT, 4NT, or your application program cannot
proceed until the error is resolved.

When a critical error occurs, you will see a message asking you to choose one of four error handling
options.    The message comes from the Windows NT or 4NT, and will vary slightly depending on whether
you are in full-screen or windowed mode.    You can respond with a mouse click or menu selection.   
However, the options and their meanings are similar in all cases:

Retry Retry the operation.    Choose this option if you have corrected the problem.

Ignore Ignore the error and continue. Use caution when choosing this option.    Ignoring
critical errors, especially on the hard disk, can cause errors in your applications or
damage data on the disk.

Fail Tell the program that the operation failed.    This option returns an error code to the
command processor or to the application program that was running when the error
occurred. 4NT generally stops the current command when an operation fails.    This
option is not available for all errors; if you don't see it, use Abort instead.

Abort Abort the program.    Choose this option to stop the program that was running when
the error occurred.    Choosing Abort after an error in 4NT will abort the command, but
not the command processor itself.

Conditional Commands

When an internal command or external program finishes, it returns a result called the exit code.   
Conditional commands allow you to perform tasks based upon the previous command's exit code.    Many
programs return a 0 if they are successful and a non-zero value if they encounter an error.

If you separate two commands by && (AND), the second command will be executed only if the first
returns an exit code of 0.    For example, the following command will only erase files if the BACKUP
operation succeeds:

[c:\] backup c:\ a: && del c:*.bak;*.lst

If you separate two commands by || (OR), the second command will be executed only if the first returns a
non-zero exit code. For example, if the following BACKUP operation fails, then ECHO will display a
message:

[c:\] backup c:\ a: || echo Error in the backup!

All internal commands return an exit code, but not all external programs do.    Conditional commands will
behave unpredictably if you use them with external programs which do not return an explicit exit code.   
To determine whether a particular external program returns a meaningful exit code use an ECHO %?
command immediately after the program is finished.    If the program's documentation does not discuss
exit codes you may need to experiment with a variety of conditions to see how the exit code changes.

Command Grouping

Command grouping allows you to logically group a set of commands together by enclosing them in
parentheses.    The parentheses are similar in function to the BEGIN and END block statements in some
programming languages.

There are two primary uses for command grouping.    One is to execute multiple commands in a place
where normally only a single command is allowed.    For example, suppose you want to execute two
different REN commands in all subdirectories of your hard disk.    You could do it like this:

[c:\] global ren *.wx1 *.wxo
[c:\] global ren *.tx1 *.txo

But with command grouping you can do the same thing in one command:

[c:\] global (ren *.wx1 *.wxo & ren *.tx1 *.txo)

The two REN commands enclosed in the parentheses appear to GLOBAL as if they were a single
command, so both commands are executed for every directory, but the directories are only scanned once,
not twice.

This kind of command grouping is most useful with the EXCEPT, FOR, GLOBAL, and IF commands.   
When you use this approach in a batch file you must either place all of the commands in the group on one
line, or place the opening parenthesis at the end of a line and place the commands on subsequent lines.   
For example, the first two of these sequences will work properly, but the third will not:

for %f in (1 2 3) (echo hello %f & echo goodbye %f)
for %f in (1 2 3) (
echo hello %f
echo goodbye %f
)
for %f in (1 2 3) (echo hello %f
echo goodbye %f)

The second common use of command grouping is to redirect input or output for several commands
without repeatedly using the redirection symbols.    For example, consider the following batch file fragment
which places some header lines (including today's date) and directory displays in an output file using
redirection.    The first ECHO command creates the file using >, and the other commands append to the
file using >>:

echo Data files %_date > filelist
dir *.dat >> filelist
echo. >> filelist
echo Text files %_date >> filelist
dir *.txt >> filelist

Using command grouping, these commands can be written much more simply.    Enter this example on
one line:

(echo Data files %_date & dir *.dat & echo. & echo Text files %_date &
dir *.txt) > filelist

The redirection, which appears outside the parentheses, applies to all the commands within the
parentheses.    Because the redirection is performed only once, the commands will run slightly faster than
if each command was entered separately.    The same approach can be used for input redirection and for

piping (see Redirection and Piping).

You can also use command grouping in a batch file or at the prompt to split commands over several lines. 
This last example is like the redirection example above, but is entered at the prompt. Note the "More?"
prompt after each incomplete line.    None of the commands are executed until the command group is
completed with the closing parenthesis.    This example does not have to be entered on one line:

[c:\] (echo Data files %_date
More? dir *.dat
More? echo.
More? echo Text files %_date
More? dir *.txt) > filelist
[c:\]

A group of commands in parentheses is like a long command line.    The total length of the group may not
exceed 2,047 characters, whether the commands are entered from the prompt, an alias, or a batch file.   
The limit includes the space required to expand aliases and environment variables used within the group.
In addition, each line you type at the normal prompt or the More? prompt, and each individual command
within the line, must meet the usual length limit of 1,023 characters.

Escape Character

4NT recognizes a user-definable escape character.    This character gives the following character a
special meaning; it is not the same as the ASCII ESC that is often used in ANSI and printer control
sequences.

The default escape character is a caret [^].

If you don't like using the default escape character, you can pick another character using the SETDOS /E
command, the Options 1 page of the OPTION dialogs, or the EscapeChar directive in your .INI file.    If
you plan to share aliases or batch files between 4NT and 4DOS, 4OS2, or Take Command, see Special
Character Compatibility for details about choosing compatible escape characters for two or more
products.

Ten special characters are recognized when they are preceded by the escape character.    The
combination of the escape character and one of these characters is translated to a single character, as
shown below.    These are primarily useful for redirecting codes to the printer; ^e is also useful to generate
ANSI "escape sequences" in your PROMPT, ECHO, or other output commands.    The special characters
which can follow the escape character are:

b backspace

c comma

e the ASCII ESC character (ASCII 27)

f form feed

k back quote

n line feed

q double quote

r carriage return

s space

t tab character

If you follow the escape character with any other character, the escape character is removed and the
second character is copied directly to the command line.    This allows you to suppress the normal
meaning of special characters (such as ? * / \ | " ` > < and &).    For example, to display a message
containing a > symbol, which normally indicates redirection:

[c:\] echo 2 is ^> 4

To send a form feed followed by the sequence ESC Y to the printer, you can use this command:

[c:\] echos ^f^eY > prn

The escape character has an additional use when it is the last character on any line of a .BAT or .BTM
batch file.    4NT recognizes this use of the escape character to signal line continuation:    the command
processor removes the escape character and appends the next line to the current line before executing it.

Aliases

Much of the power of 4NT comes together in aliases, which give you the ability to create your own
commands.    An alias is a name that you select for a command or group of commands.    Simple aliases
substitute a new name for an existing command.    More complex aliases can redefine the default settings
of internal or external commands, operate as very fast in-memory batch files, and perform commands
based on the results of other commands.

This section will show you some examples of the power of aliases.    See the ALIAS command for
complete details about writing your own aliases.

The simplest type of alias gives a new name to an existing command.    For example, you could create a
command called ROOT which uses CD to switch to the root directory this way:

[c:\] alias root = cd \

After the alias has been defined this way, every time you type the command ROOT, you will actually
execute the command CD \.

Aliases can also create customized versions of commands.    For example, the DIR command can sort a
directory in various ways.    You can create an alias called DE that means "sort the directory by filename
extension, and pause after each page while displaying it" like this:

[c:\] alias de = dir /oe /p

Aliases can be used to execute sequences of commands as well.    The following command creates an
alias called W which saves the current drive and directory, changes to the WP directory on drive C, runs
the program E:\WP60\WP.EXE, and, when the program terminates, returns to the original drive and
directory:

[c:\] alias w = `pushd c:\wp & e:\wp60\wp.exe & popd`

This alias is enclosed in back-quotes because it contains multiple commands.    You must use the back-
quotes whenever an alias contains multiple commands, environment variables, parameters (see below),
redirection, or piping.    See the ALIAS command for full details.

Aliases can be nested, that is, one alias can invoke another.    For example, the alias above could also be
written as:

[c:\] alias wp = e:\wp60\wp.exe
[c:\] alias w = `pushd c:\wp & wp & popd`

If you enter W as a command, the command processor will execute the PUSHD command, detect that the
next command (WP) is another alias, and execute the program E:\WP60\WP.EXE, and – when the
program exits – return to the first alias, execute the POPD command, and return to the prompt.

You can use aliases to change the default options for both internal commands and external commands.   
Suppose that you always want the DEL command to prompt before it erases a file:

[c:\] alias del = *del /p

An asterisk [*] is used in front of the second "del" to show that it is the name of an internal command, not
an alias.    See the ALIAS command for more information about this use of the asterisk.

You may have a program on your system that has the same name as an internal command.    Normally, if

you type the command name, you will start the internal command rather than the program you desire,
unless you explicitly add its full path on the command line.    For example, if you have a program named
LIST.COM in the C:\UTIL directory, you could run it with the command C:\UTIL\LIST.COM.    However, if
you simply type LIST, the internal LIST command will be invoked instead.    Aliases give you two ways to
get around this problem.

First, you could define an alias that runs the program in question, but with a different name:

[c:\] alias l = c:\util\list.com

Another approach is to rename the internal command and use the original name for the external program. 
The following example renames the LIST command as DISPLAY and then uses a second alias to run
LIST.COM whenever you type LIST:

[c:\] alias display = *list
[c:\] alias list = c:\util\list.com

You can also assign an alias to a key, so that every time you press the key, the command will be invoked. 
You do so by naming the alias with an at sign [@] followed by a key name.    After you enter this next
example, you will see a 2-column directory with paging whenever you press Shift-F5, then Enter:

[c:\] alias @Shift-F5 = *dir /2/p

This alias will put the DIR command on the command line when you press Shift-F5, then wait for you to
enter file names or additional switches.    You must press Enter when you are ready to execute the
command. To execute the command immediately, without displaying it on the command line or waiting for
you to press Enter, use two at signs at the start of the alias name:

[c:\] alias @@Shift-F5 = *dir /2/p

The next example clears the screen whenever you press Alt-F1:

[c:\] alias @@Alt-F1 = cls

Aliases have many other capabilities as well.    This example creates a simple command-line calculator
using the @EVAL function.    Once you have entered the example, you can type CALC 4*19, for example,
and you will see the answer:

[c:\] alias calc = `echo The answer is: %@eval[%&]`

Our last example in this section creates an alias called IN.    It will temporarily change directories, run an
internal or external command, and then return to the current directory when the command is finished:

[c:\] alias in = `pushd %1 & %2$ & popd`

Now if you type:

[c:\] in c:\letters wp letter.txt

you will change to the C:\LETTERS subdirectory, execute the command WP LETTER.TXT and then
return to the current directory.

The above example uses two parameters:    %1 means the first argument on the command line, and %2$
means the second and all subsequent arguments.    Parameters are explained in detail under the ALIAS
command.

Your copy of 4NT includes a sample alias file called ALIASES which contains several useful aliases and
demonstrates many alias techniques.    See the ALIAS and UNALIAS commands for more information and
examples.    Also see Using Aliases in Batch Files.

Batch Files

A batch file is a file that contains a list of commands to execute.    4NT reads and interprets each line as if
it had been typed at the keyboard.    Like aliases, batch files are handy for automating computing tasks.   
Unlike aliases, batch files can be as long as you wish.    Batch files take up separate disk space for each
file, and can't usually execute quite as quickly as aliases, since they must be read from the disk.

The topics included in this section are:

.BAT , .CMD , and .BTM Files

Echoing in Batch Files

Batch File Parameters

Using Environment Variables

Batch File Commands

Interrupting a Batch File

Automatic Batch Files (4START and 4EXIT)

Detecting 4NT

Using Aliases In Batch Files

Debugging Batch Files

Batch File String Processing

Batch File Line Continuation

Batch File Compression

Special Character Compatibility

Command Parsing

Argument Quoting

REXX Support

EXTPROC Support

.BAT, .CMD, and .BTM Files

A batch file can run in two different modes.    In the first, traditional mode, each line of the batch file is read
and executed individually.    In the second mode, the entire batch file is read into memory at once.    The
second mode can be 5 to 10 times faster, especially if most of the commands in the batch file are internal
commands.    However, only the first mode can be used for self-modifying batch files (which are rare).

The batch file's extension determines its mode.    Files with a .CMD extension are run in the slower,
traditional mode.    Files with a .BTM extension are run in the faster, more efficient mode.    You can
change the execution mode inside a batch file with the LOADBTM command.

Using .BAT Files

In most cases your batch files will be stored as .CMD or .BTM files.    However, you may also choose to
use some .BAT files, especially if you are moving from DOS to Windows NT.    If you do, you you need to
be aware of the way 4NT executes .BAT files, which is slightly different from the method used by
CMD.EXE.

CMD.EXE passes all .BAT files to Windows NT's DOS command processor, typically COMMAND.COM,
for execution (yes, there is a DOS command processor in Windows NT!).    COMMAND.COM handles a
few DOS-related commands, but passes most internal commands to a second copy of CMD.EXE so that
they are executed in the Windows NT environment.    This convoluted system allows you to load memory-
resident DOS programs (TSRs), and run other programs which use them, all from the same .BAT file.   
However, it reduces performance for all .BAT files in order to support those rare files which load DOS
TSRs under Windows NT.

4NT does not use this system; it executes .BAT files in the normal way, just like .CMD and .BTM files.   
This works better for most files, but may render DOS TSRs loaded from a .BAT file ineffective because
other commands in the file are not executed in DOS-based environment.

In most cases this difference will not affect your .BAT files, because you will not be loading DOS TSRs in
Windows NT.    If you do need to load TSRs from .BAT files, we recommend that you obtain a copy of our
DOS command processor, 4DOS, start it from your Windows NT desktop, and run the .BAT files from a
4DOS session (you could also use a CMD.EXE session, but of course the .BAT files then cannot use
4DOS or 4NT features).    While we do not generally recommend using 4DOS under Windows NT, it can
work well in this specific situation.

Echoing in Batch Files

By default, each line in a batch file is displayed or "echoed" as it is executed.    You can change this
behavior, if you want, in several different ways:

Any batch file line that begins with an [@] symbol will not be displayed.

The display can be turned off and on within a batch file with the ECHO OFF and ECHO ON
commands.

The default setting can be changed with the SETDOS /V command, on the Options 1 page of the
OPTION dialogs, or the BatchEcho directive in the .INI file.

For example, the following line turns off echoing inside a batch file.    The [@] symbol keeps the batch file
from displaying the ECHO OFF command:

@echo off

4NT also has a command line echo that is unrelated to the batch file echo setting.    See ECHO for details
about both settings.

Batch File Parameters

Like aliases and application programs, batch files can examine the command line that is used to invoke
them.    The command tail (everything on the command line after the batch file name) is separated into
individual parameters (also called arguments or batch variables) by scanning for the spaces, tabs, and
commas that separate the parameters.    A batch file can work with the individual parameters or with the
command tail as a whole.

These parameters are numbered from %1 to %127.    %1 refers to the first parameter on the command
line, %2 to the second, and so on.    It is up to the batch file to determine the meaning of each parameter.   
You can use quotation marks to pass spaces, tabs, commas, and other special characters in a batch file
parameter; see Argument Quoting for details.

Parameters that are referred to in a batch file, but which are missing on the command line, appear as
empty strings inside the batch file.    For example, if you start a batch file and put two parameters on the
command line, any reference in the batch file to %3, or any higher-numbered parameter, will be
interpreted as an empty string.

A batch file can also work with three special parameters:    %0 contains the name of the batch file as it
was entered on the command line, %# contains the number of command line arguments, and %n$
contains the complete command-line tail starting with argument number "n" (for example, %3$ means the
third parameter and all those after it).    The default value of "n" is 1, so %$ contains the entire command
tail.    The values of these special parameters will change if you use the SHIFT command.

By default, 4DOS uses an ampersand [&] instead of a dollar sign [$] to indicate the remainder of the
command tail.    For example, %& means all the parameters, and %2& means the second parameter and
all those after it.    If you want to share batch files or aliases between multiple products, see Special
Character Compatiblility for information on selecting compatible parameter characters for all products.

For example, if your batch file interprets the first argument as a subdirectory name then the following line
would move to the specified directory:

cd %1

A friendlier batch file would check to make sure the directory exists and take some special action if it
doesn't:

iff isdir %1 then & cd %1
else & echo Subdirectory %1 does not exist! & quit
endiff

(see the IF and IFF commands).

Batch files can also use environment variables, internal variables, and variable functions.

Using Environment Variables

Batch files can also use environment variables, internal variables, and variable functions.    You can use
these variables and functions to determine system status (e.g., the type of CPU in the system), resource
levels (e.g., the amount of free disk space), file information (e.g., the date and time a file was last
modified), and other information (e.g., the current date and time).    You can also perform arithmetic
operations (including date and time arithmetic), manipulate strings and substrings, extract parts of a
filename, and read and write files.

To create temporary variables for use inside a batch file, just use the SET command to store the
information you want in an environment variable.    Pick a variable name that isn't likely to be in use by
some other program (for example, PATH would be a bad choice), and use the UNSET command    to
remove these variables from the environment at the end of your batch file.    You can use SETLOCAL and
ENDLOCAL to create a "local" environment so that the original environment will be restored when your
batch file is finished.

Environment variables used in a batch file may contain either numbers or text.    It is up to you to keep
track of what's in each variable and use it appropriately; if you don't (for example, if you use %@EVAL to
add a number to a text string), you'll get an error message.

Batch File Commands

Several 4NT commands are particularly suited to batch file processing.    Here is a list of some of the
commands you might find most useful:

BEEP produces a sound of any pitch and duration through the computer's speaker.

CALL executes one batch file from within another.

CANCEL terminates all batch file processing.

CLS and COLOR set the screen display colors.

DO starts a loop.    The loop can be based on a counter, or on a conditional test like those used in
IF and IFF.

DRAWBOX draws a box on the screen.

DRAWHLINE and DRAWVLINE draw horizontal and vertical lines on the screen.

ECHO and ECHOS print text on the screen (the text can also be redirected to a file or device).   
ECHOERR and ECHOSERR print text to the standard error device.

GOSUB executes a subroutine inside a batch file.    The RETURN command terminates the
subroutine.

GOTO branches to a different location in the batch file.

FOR executes commands for each file that matches a set of wildcards, or each entry in a list.

IF and IFF execute commands based on a test of string or numeric values, program exit codes, or
other conditions.

INKEY and INPUT collect keyboard input from the user and store it in environment variables.

LOADBTM changes the batch file operating mode.

ON initializes error handling for Ctrl-C / Ctrl-Break, or for program and command errors.

PAUSE displays a message and waits for the user to press a key.

QUIT ends the current batch file and optionally returns an exit code.

REM places a remark in a batch file.

SCREEN positions the cursor on the screen and optionally prints a message at the new location.

SCRPUT displays a message in color.

SETLOCAL saves the current disk drive, default directory, environment, alias list, and special
character settings.    ENDLOCAL restores the settings that were saved.

SHIFT changes the numbering of the batch file parameters.

START starts another session or window in certain multitasking environments.

SWITCH selects a group of statements to execute based on the value of a variable.

TEXT displays a block of text.    ENDTEXT ends the block.

TIMER starts or reads a stopwatch.

VSCRPUT displays a vertical message in color.

These commands, along with the internal variables and variable functions, make the enhanced batch file
language extremely powerful.    Your copy of 4NT includes a sample batch file, in the file
EXAMPLES.BTM, that demonstrates some of the things you can do with batch files.

Interrupting a Batch File

You can usually interrupt a batch file by pressing Ctrl-C or Ctrl-Break.    Whether and when these
keystrokes are recognized will depend on whether the command processor or an application program is
running, how the application (if any) was written, and whether the ON BREAK command is in use.

If 4NT detects a Ctrl-C or Ctrl-Break (and ON BREAK is not in use), it will display a prompt, for example:

Cancel batch job C:\CHARGE.BTM ? (Y/N/A) :

Enter N to continue, Y to terminate the current batch file and continue with any batch file which called it,
or A to end all batch file processing regardless of the batch file nesting level.    Answering Y is similar to
the QUIT command; answering A is similar to the CANCEL command.

Automatic Batch Files

4NT supports "automatic" batch files, files that run without your intervention, as long as the command
processor can find them.

Each time 4NT starts as either a primary or a secondary shell, it looks for an automatic batch file called
4START.BTM or 4START.CMD.    If the 4START batch file is not in the same directory as 4NT itself, you
should use the Startup page of the OPTION dialogs or the 4StartPath directive in your .INI file to specify
its location.    4START is optional, so 4NT will not display an error message if it cannot find the file.

4START is a convenient place to change the color or content of the prompt for each shell, LOG the start
of a shell, or put other special startup or configuration commands.    4START is also a good place to set
aliases and environment variables.

The entire startup command line passed to the command processor is available to 4START via batch file
parameters (%1, %2, etc.).    This can be useful if you want to see the command line passed to a
secondary shell by an application.    For example, to pause if any parameters are passed to a secondary
shell you could include this command in 4START (enter this on one line):

if "%1" != "" .and. "%_shell" gt 0 pause Starting shell %_shell with
parameters [%$]

Whenever a 4NT shell ends, it runs an automatic batch file called 4EXIT.BTM or 4EXIT.CMD.    This file, if
you use it, should be in the same directory as your 4START batch file.    Like 4START, 4EXIT is optional.   
It is not necessary in most circumstances, but it is a convenient place to put commands to save
information such as a history list before a shell ends, or LOG the end of the shell.

Pipes, Transient Sessions, and 4START

When you set up the 4START file, remember that it is executed every time 4NT starts, including when
running a pipe, or a transient copy of the command processor started with the /C startup option (see
Starting 4NT for details on /C).

For example, suppose you enter a command line like this, which uses a pipe:

c:\data> myprog | sort > out.txt

Normally this command would create the output file C:\DATA\OUT.TXT.    However, if you have a 4START
file which changes to a different directory, the output file will be written there — not in C:\DATA.

This is because the command processor starts a second copy of itself to run the commands on the right
hand side of the pipe, and that new copy runs 4START before processing the commands from the pipe.   
If 4START changes directories, the command from the pipe will be executed in the new directory.

The same problem can occur if you use a transient session started with /C to run an individual command,
then exit — the session will execute in the directory set by 4START, not the directory in which it was
originally started.    For example, suppose you set up a Windows desktop object with a command line like
this, which starts a transient session:

Command: d:\4nt\4nt.exe /c list myfile.txt
Working Directory:c:\data

Normally this command would LIST the file C:\DATA\MYFILE.TXT.    However, if 4START changes to a
different directory, The command processor will look for MYFILE.TXT there — not in C:\DATA.

Similarly, any changes to environment variables or other settings in 4START will affect all copies of the
command processor, including those used for pipes and transient sessions.

You can work around these potential problems with the IF or IFF command and the internal variables
_PIPE and _TRANSIENT.    For example, to skip all 4START processing when running in a pipe or
transient session, you could use a command like this at the beginning of 4START:

if %_pipe != 0 .or. %_transient != 0 quit

Detecting 4NT

From a batch file, you can determine if 4NT (or another JP Software command processor) is loaded by
testing for the variable function @EVAL, with a test like this:

if "%@eval[2 + 2]%" == "4" echo 4NT is loaded!

This test can never succeed in CMD.EXE. Other variable functions could be used for the same purpose.

Using Aliases in Batch Files

One way to simplify batch file programming is to use aliases to hide unnecessary detail inside a batch file.
For example, suppose you want a batch file to check for certain errors, and display a message and exit if
one is encountered.    This example shows one way to do so:

setlocal
unalias *
alias error `echo. & echo ERROR: %$ & goto dispmenu`
alias fatalerror `echo. & echo FATAL ERROR: %$ & quit`
alias in `pushd %1 & %2$ & popd`
if not exist setup.btm fatalerror Missing setup file!
call setup.btm
cls
:dispmenu
text
 1. Word Processing
 2. Spreadsheet
 3. Communications
 4. Exit
endtext
echo.
inkey Enter your choice: %%userchoice
switch %userchoice
case 1
 input Enter the file name: %%fname
 if not exist fname error File does not exist
 in d:\letters c:\wp60\wp.exe
case 2
 in d:\finance c:\quattro\q.exe
case 3
 in d:\comm c:\comsw\pcplus.exe
case 4
 goto done
default
 error Invalid choice, try again
endswitch
goto dispmenu
:done
endlocal

The first alias, ERROR, simply displays an error message and jumps to the label DISPMENU to redisplay
the menu.    The "%$" in the second ECHO command displays all the text passed to ERROR as the
content of the message.    The similar FATALERROR alias displays the message, then exits the batch file.

The last alias, IN, expects 2 or more command-line arguments.    It uses the first as a new working
directory and changes to that directory with a PUSHD command.    The rest of the command line is
interpreted as another command plus possible command line parameters, which the alias executes.    This
alias is used here to switch to a directory, run an application, and switch back.    It could also be used from
the command line.

The following lines print a menu on the screen and then get a keystroke from the user and store the
keystroke in an environment variable called userchoice.    Then the SWITCH command is used to test the
user's keystroke and decide what action to take.

There's another side to aliases in batch files.    If you're going to distribute your batch files to others, you
need to remember that they may have aliases defined for the commands you're going to use.    For
example if the user has aliased CD to CDD and you aren't expecting this, your file may not work as you
intended.    There are two ways to address this problem.

First, you can use SETLOCAL, ENDLOCAL, and UNALIAS to clear out aliases before your batch file
starts and restore them at theend, as we did in the previous example.    Remember that SETLOCAL and
ENDLOCAL will save and restore not only the aliases but also the environment, the current drive and
directory, and various special characters.

If this method isn't appropriate or necessary for the batch file you're working on, you can also use an
asterisk [*] before the name of any command.    The asterisk means the command that follows it should
not be interpreted as an alias.    For example the following command redirects a list of file names to the
file FILELIST:

dir /b > filelist

However, if the user has redefined DIR with an alias this command may not do what you want.    To get
around this just use:

*dir /b > filelist

The same can be done for any command in your batch file.    If you use the asterisk, it will disable alias
processing, and the rest of the command will be processed normally as an internal command, external
command, or batch file.    Using an asterisk before a command will work whether or not there is actually
an alias defined with the same name as the command.    If there is no alias with that name, the asterisk
will be ignored and the command will be processed as if the asterisk wasn't there.

Debugging Batch Files

4NT includes a built-in batch file debugger, invoked with the SETDOS /Y1 command.    The debugger
allows you to "single-step" through a batch file line by line, with the file displayed in a popup window as it
executes.    You can execute or skip the current line, continue execution with the debugger turned off, view
the fully-expanded version of the command line, or exit the batch file.    The batch debugger can also pop
up a separate window to view current environment variables or aliases so you can check their values
during execution, and can pop up the LIST command to display the contents of any file.

To start the debugger, insert a SETDOS /Y1 command at the beginning of the portion of the batch file you
want to debug, and a SETDOS /Y0 command at the end.    You can also invoke SETDOS /Y1 from the
prompt, but because the debugger is automatically turned off whenever the command processor returns
to the prompt, you must enter the SETDOS command and the batch file name on the same line, for
example:

[c:\] setdos /y1 & mybatch.btm

If you use the debugger regularly you may want to define a simple alias to invoke it, for example:

[c:\] alias trace `setdos /y1 & %$`

This alias simply enables the debugger, then runs whatever command is passed to it.    You can use the
alias to debug a batch file with a command like this:

[c:\] trace mybatch.btm

When the debugger is running you can control its behavior with keystrokes.    Debugging continues after
each keystroke unless otherwise noted:

T(race), Enter, or F8 Execute the current command.    If it calls a subroutine with GOSUB, or
another batch file with CALL, single-step into the called subroutine or
batch file.

S(tep) or F10 Execute the current command, but execute any subroutine or CALLed
batch file without single-stepping.

J(ump) Skip the current command and proceed to the next command.

X (Expand) Display the next command to be executed, after expansion of aliases
and environment variables.

L(ist) Prompt for a file name and then view the file with the LIST command.

V(ariables) Open a popup window to display the current environment, in alphabetical
order.

A(liases) Open a popup window to display the current aliases, in alphabetical
order.

O(ff) or Esc Turn off the debugger and continue with the remainder of the batch file.

Q(uit) Quit the debugger and the current batch file, without executing the
remainder of the file.

The debugger highlights each line of the batch file as it is executed.    It executes the commands on the

line one at a time, so when a line contains more than one command, the highlight will not move as each
command is executed.    To see the individual commands, use the X key to expand each command before
it is executed.

If you use a "prefix" command like EXCEPT, FOR, GLOBAL, or SELECT, the prefix command is
considered one command, and each command it invokes is another.    For example, this command line
executes four commands — the FOR and three ECHO commands:

for %x in (a b c) do echo %x

You cannot use the batch debugger with REXX files or EXTPROC files.    It can only be used with normal
4NT batch files.

The debugger gives you a detailed, step-by-step view of batch file execution, and will help solve
particularly difficult batch file problems.    However, in some cases you will find it easier to diagnose these
problems with techniques that allow you to review what is happening at specific points in the batch file
without stepping through each line individually.

There are several tricks you can use for this purpose.    Probably the simplest is to turn ECHO on at the
beginning of the file while you're testing it, or use SETDOS /V2 to force ECHO on even if an ECHO OFF
command is used in the batch file.    This will give you a picture of what is happening as the file is
executed, without stopping at each line.    It will make your output look messy of course, so just turn it off
once things are working.    You can also turn ECHO on at the beginning of a group of commands you want
to "watch", and off at the end, just by adding ECHO commands at the appropriate spots in your file.

If an error occurs in a batch file, the error message will display the name of the file, the number of the line
that contained the error, and the error itself.    For example:

e:\test.bat [3] Invalid parameter "/d"

tells you that the file E:\TEST.BAT contains an error on line 3.    The first line of the batch file is numbered
1.

Another trick, especially useful in a fast-moving batch file or one where the screen is cleared before you
can read messages, is to insert PAUSE commands wherever you need them in order to be able to watch
what's happening.    You can also use an ON ERRORMSG command to pause if an error occurs, then
continue with the rest of the file (the first command below), or to quit if an error occurs (the second
command):

on errormsg pause
on errormsg quit

If you can't figure out how your aliases and variables are expanded, try turning LOG on at the start of the
batch file.    LOG keeps track of all commands after alias and variable expansion are completed, and
gives you a record in a file that you can examine after the batch file is done.    You must use a standard
LOG command; LOG /H (the history log) does not work in batch files.

You may also want to consider using redirection to capture your batch file output.    Simply type the batch
file name followed by the redirection symbols, for example:

[c:\] mybatch >& testout

This records all batch file output, including error messages, in the file TESTOUT, so you can go back and
examine it.    If you have ECHO ON in the batch file you'll get the batch commands intermingled with the
output, which can provide a very useful trace of what's happening.    Of course, output from full-screen
commands and programs that don't write to the standard output devices can't be recorded, but you can

still gain a lot of useful information if your batch file produces any output.

If you're using redirection to see the output, remember that any prompts for input will probably go to the
output file and not to the screen, so you need to know in advance the sequence of keystrokes required to
get through the entire batch file, and enter them by hand.    You can also use the TEE command to both
view the output while the batch file is running and save it in a file for later examination.

String Processing

As you gain experience with batch files, you're likely to find that you need to manipulate text strings.    You
may need to prompt a user for a name or password, process a list of files, or find a name in a phone list.   
All of these are examples of string processing – the manipulation of lines of readable text.

4NT include several features that make string processing easier.    For example, you can use the INKEY
and INPUT commands for user input; the ECHO, SCREEN, SCRPUT, and VSCRPUT commands for
output; and the FOR command or the @FILEREAD function to scan through the lines of a file.    In
addition, variable functions offer a wide range of string handling capabilities.

For example, suppose you need a batch file that will prompt a user for a name, break the name into a first
name and a last name, and then run a hypothetical LOGIN program.    LOGIN expects the syntax
/F:first /L:last with both the first and last names in upper case and neither name longer than 8
characters.    Here is one way to write such a program:

@echo off
setlocal
unalias *
input Enter your name (no initials): %%name

set first=%@word[0,%name]
set flen=%@len[%first]
set last=%@word[1,%name]
set llen=%@len[%last]

iff %flen gt 8 .or. %llen gt 8 then
 echo First or last name too long
 quit
endiff

login /F:%@upper[%first] /L:%@upper[%last]
endlocal

The SETLOCAL command at the beginning of this batch file saves the environment and aliases.    Then
the UNALIAS * command removes any existing aliases so they won't interfere with the behavior of the
commands in the remainder of the batch file.    The first block of lines ends with an INPUT command
which asks the user to enter a name.    The user's input is stored in the environment variable NAME.

The second block of lines extracts the user's first and last names from the NAME variable and calculates
the length of each.    It stores the first and last name, along with the length of each, in additional
environment variables.    Note that the @WORD function numbers the first word as 0, not as 1.

The IFF command in the third block of lines tests the length of both the first and last names.    If either is
longer than 8 characters, the batch file displays an error message and ends.    Finally, in the last block, the
batch file executes the LOGIN program with the appropriate parameters, then uses the ENDLOCAL
command to restore the original environment and alias list.    At the same time, ENDLOCAL discards the
temporary variables that the batch file used (NAME, FIRST, FLEN, etc.).

When you're processing strings, you also need to avoid some common traps.    The biggest one is
handling special characters.    Suppose you have a batch file with these two commands, which simply
accept a string and display it:

input Enter a string: %%str
echo %str

Those lines look safe, but what happens if the user enters the string "some > none" (without the quotes).   
After the string is placed in the variable STR, the second line becomes:

echo some > none

The ">" is a redirection symbol, so the line echoes the string "some" and redirects it to a file called NONE
– probably not what you expected.    You could try using quotation marks to avoid this kind of problem (see
Argument Quoting), but that won't quite work.    If you use back-quotes (ECHO `%STR`), the command
will echo the four-character string %STR.    Environment variable names are not expanded (replaced by
their contents) when they are inside back-quotes.

If you use double quotes (ECHO "%STR"), the string entered by the user will be displayed properly, and
so will the quotation marks.    With double quotes, the output would look like this:

"some > none"

As you can imagine, this kind of problem becomes much more difficult if you try to process text from a file.
Special characters in the text can cause all kinds of confusion in your batch files.    Text containing back-
quotes, double quotes, or redirection symbols can be virtually impossible to handle correctly.

One way to overcome these potential problems is to use the SETDOS /X command    to temporarily
disable redirection symbols and other special characters.    The two-line batch file above would be a lot
more likely to produce the expected results if it were rewritten this way:

setdos /x-15678
input Enter a string: %%str
echo %str
setdos /x0

The first line turns off alias processing and disables several special symbols, including the command
separator (see Multiple Commands) and all redirection symbols.    Once the string has been processed,
the last line re-enables the features that were turned off in the first line.

If you need advanced string processing capabilities beyond those provided by 4NT, you may want to
consider using the REXX language.    Our products support external REXX programs for this purpose.

Batch File Line Continuation

4NT will combine multiple lines in the batch file into a single line for processing when you include the
escape character as the very last character of each line to be combined (except the last).    The default
escape character is a caret [^].    For example:

[c:\] echo The quick brown fox jumped over the lazy^
sleeping^
dog. > alphabet

You cannot use this technique to extend a batch file line beyond the normal line length limit of 1,023
characters.

Batch File Compression

You can compress your batch files with a program called BATCOMP.EXE, which is distributed with 4NT.   
This program condenses batch files by about a third and makes them unreadable with the LIST command
and similar utilities.    Compressed batch files run at approximately the same speed as regular .BTM files.

You may want to consider compressing batch files if you need to distribute them to others and keep your
original code secret or prevent your users from altering them.    You may also want to consider
compressing batch files to save some disk space on the systems where the compressed files are used.   
(However, you will not save space if you keep your compressed batch files on a disk compressed with a
program like DBLSPACE, Stacker, or SuperStor.)

The full syntax for the batch compression program is

BATCOMP [/O] input file [output file]

You must specify the full name of the input file, including its extension, on the BATCOMP command line.   
If you do not specify the output file, BATCOMP will use the same base name as the input file and add a
.BTM extension.    BATCOMP will also add a .BTM extension if you specify a base name for the output file
without an extension.    For example, to compress MYBATCH.CMD and save the result as
MYBATCH.BTM, you can use any of these three commands:

[c:\] batcomp mybatch.cmd
[c:\] batcomp mybatch.cmd mybatch
[c:\] batcomp mybatch.cmd mybatch.btm

If the output file (MYBATCH.BTM in the examples above) already exists, BATCOMP will prompt you
before overwriting the file.    You can disable the prompt by including /O on the BATCOMP command line
immediately before the input file name.    Even if you use the /O option, BATCOMP will not compress a file
into itself.

JP Software does not provide a decompression utility to uncompress batch files.    If you use
BATCOMP.EXE, make sure that you also keep a copy of the original batch file for future inspection or
modification.

You can adopt one of two strategies for keeping track of your original source files and compressed batch
files.    First, you may want to create the source files with a traditional .BAT or .CMD extension and
reserve the .BTM extension for compressed batch files.    The advantage of this approach is that you can
modify and test the uncompressed versions at any time, although they will run in the slower, traditional
mode unless they begin with a LOADBTM command.

If you prefer, you can use a .BTM extension for both the source and compressed files.    In this case you
will have to use a different directory or a different base name for each file.    For example, you might use
SOURCE\MYBATCH.BTM for the source file and COMP\MYBATCH.BTM for the compressed version, or
use MYBATCHS.BTM for the source file and MYBATCH.BTM for the compressed file (however, the latter
approach may make it more difficult to keep track of the correspondence between the source file and the
compressed file).

BATCOMP is a DOS and OS/2 character-mode application designed to run in any environment where our
command processors run.    Each of our command processors includes the same version of
BATCOMP.EXE, and a batch file compressed with any copy of BATCOMP can be used with any current
JP Software command processor.

If you plan to distribute batch files to users of different platforms, see Special Character Compatibility.

Special Character Compatibility

If you use two or more of our products, or if you want to share aliases and batch files with users of
different products, you need to be aware of the differences in three important characters:    the Command
Separator (see Multiple Commands), the Escape Character (see Escape Character), and the Parameter
Character (see Batch File Parameters).

The default values of each of these characters in each product is shown in the following chart:

Product Separator Escape Parameter

4DOS, Take Command/16 ^ &
4NT, 4OS2, & ^ $
Take Command/32,
Take Command for OS/2

(The up-arrow [] represents the ASCII Ctrl-X character, numeric value 24.)

In your batch files and aliases, and even at the command line, you can smooth over these differences in
three ways:

» Select a consistent set of characters from the Options 1 page of the OPTION dialogs, or with
.INI file configuration directives.    For example, to set the 4NT characters to match 4DOS, use
these lines in 4NT.INI:

CommandSep = ^
EscapeChar =
ParameterChar = &

» Use internal variables that contain the current special character, rather than using the
character itself (see + and =).    For example, this command:

if "%1" == "" (echo Argument missing! ^ quit)

will only work if the command separator is a caret. However, this version works regardless of
the current command separator:

if "%1" == "" (echo Argument missing! %+ quit)

» In a batch file, use the SETLOCAL command to save the command separator, escape
character, and parameter character when the batch file starts.    Then use SETDOS as
described below to select the characters you want to use within the batch file.    Use an
ENDLOCAL command at the end of the batch file to restore the previous settings.

You can also use the SETDOS command to change special characters on the command line.    However,
when setting new special character values on the command line you must take into account the possibility
that one of your new values will have a current meaning that causes problems with the setting.    For
example, this command:

[c:\] setdos /p&

would not set the parameter character to an ampersand [&] in 4NT if the standard 4NT special characters
were currently in effect.    The & would be seen as a command separator, and would terminate the
SETDOS command before the parameter character was set.    To work around this, use the escape

character variable %= before each setting to ensure that the following character is not treated with any
special meaning.

For example, the following sequence of commands in a batch file will always set the special characters
correctly to their standard 4DOS values, no matter what their current setting, and will restore them when
the batch file is done:

setlocal
setdos /c%=^ /e%= /p%=&
.....
endlocal

A similar sequence can be used to select the standard 4OS2 and 4NT characters, regardless of the
current settings:

setlocal
setdos /c%=& /e%=^ /p%=$
.....
endlocal

Command Parsing

Whenever you type something at the command line and press the Enter key, or include a command in a
batch file, you have given a command to 4NT, which must figure out how to execute your command.    If
you understand the general process that is used, you will be able to make the best use of the commands. 
Understanding these steps can be especially helpful when working with complex aliases or batch file
commands.

To decide what activity to perform, the command processor goes through several steps.    Before it starts,
it writes the entire command line (which may contain multiple commands) to the history log file if history
logging has been enabled with the LOG /H command, and the command did not come from a batch file.   
Then, if the line contains multiple commands, the first command is isolated for processing.

4NT begins by dividing the command into a command name and a command tail.    The command
name is the first word in the command; the tail is everything that follows the command name.    For
example, in the command line

dir *.txt /2/p/v

the command name is "dir", and the command tail is " *.txt /2/p/v".

Next 4NT tries to match the command name against its list of aliases.    If it finds a match between the
command name and one of the aliases you've defined, it replaces the command name with the contents
of the alias.    This substitution is done internally and is not normally visible to you; however, you can view
a command line with aliases expanded by pressing Ctrl-F after entering    the command at the prompt.

If the alias included parameters (%1, %2, etc.), the parameter values are filled in from the text on the
command line, and any parameters used in this process are removed from the command line.    The
process of replacing a command name that refers to an alias with the contents of the alias, and filling in
the alias parameters, is called alias expansion.

This expansion of an alias creates a new command name:    the first word of the alias.    This new
command name is again tested against the list of aliases, and if a match is found the contents of the new
alias is expanded just like the first alias.    This process, called nested alias expansion, continues until
the command name no longer refers to an alias.

If the command name is not an alias or an Internet URL beginning with http:, 4NT tries to match the
command name with its list of internal commands.    If it is unsuccessful, the command processor knows
that it will have to search for a batch file or external program to execute your command.

The next step is to locate any batch file or alias parameters, environment variables, internal variables, or
variable functions in the command, and replace each one with its value.    This process is called variable
expansion.

The variable expansion process is modified for certain internal commands, like EXCEPT, IF, and
GLOBAL.    These commands are always followed by another command, so variable expansion takes
place separately for the original command and the command that follows it.

Once all of the aliases and environment variables have been expanded, 4NT will echo the complete
command to the screen (if command-line echo has been enabled) and write it to the log file (if command
logging has been turned on).

Before it can actually execute your command, the command processor must scan the command tail to
see if it includes redirection or piping.    If so, the proper internal switches are set to send output to an
alternate device or to a file, instead of to the screen.    A second process is started at this point, if

necessary, to receive any piped output.

Finally, it is time to execute the command.    If the command name matches an internal command, 4NT
will perform the activities you have requested.    Otherwise, the command processor searches for an
executable (.COM or .EXE) file, a batch file, or a file with an executable extension that matches the
command name.

Once the internal command or external program has terminated, the command processor saves the result
or exit code that the command generated, cleans up any redirection that you specified, and then returns
to the original command line to retrieve the next command.    When all of the commands in a command
line are finished, the next line is read from the current batch file, or if no batch file is active, the prompt is
displayed.

You can disable and re-enable several parts of command parsing (for example alias expansion, variable
expansion, and redirection) with the SETDOS /X command.

Argument Quoting

As it parses the command line, 4NT looks for the ampersand [&] command separator, conditional
commands (|| or &&), white space (spaces, tabs, and commas), percent signs [%] which indicate
variables to be expanded, and redirection and piping characters (>, <, or |).

Normally, these special characters cannot be passed to a command as part of an argument.    However,
you can include any of the special characters in an argument by enclosing the entire argument in single
back quotes [`] or double quotes ["].    Although both back quotes and double quotes will let you build
arguments that include special characters, they do not work the same way.

No alias or variable expansion is performed on an argument enclosed in back quotes.    Redirection
symbols inside the back quotes are ignored.    The back quotes are removed from the command line
before the command is executed.

No alias expansion is performed on expressions enclosed in double quotes.    Redirection symbols inside
double quotes are ignored. However, variable expansion is performed on expressions inside double
quotes.    The double quotes themselves will be passed to the command as part of the argument.

For example, suppose you have a batch file CHKNAME.BTM which expects a name as its first parameter
(%1).    Normally the name is a single word.    If you need to pass a two-word name with a space in it to
this batch file you could use the command:

[c:\] chkname `MY NAME`

Inside the batch file, %1 will have the value MY NAME, including the space.    The back quotes caused
4NT to pass the string to the batch file as a single argument.    The quotes keep characters together and
reduce the number of arguments in the line.

For a more complex example, suppose the batch file QUOTES.BAT contains the following commands:

@echo off
echo Arg1 = %1
echo Arg2 = %2
echo Arg3 = %3

and that the environment variable FORVAR has been defined with this command:

[c:\] set FORVAR=for

Now, if you enter the command

[c:\] quotes `Now is the time %%forvar` all good

the output from QUOTES.BAT will look like this:

Arg1 = Now is the time %forvar
Arg2 = all
Arg3 = good

But if you enter the command

[c:\] quotes "Now is the time %%forvar" all good

the output from QUOTES.BAT will look like this:

Arg1 = "Now is the time for"
Arg2 = all
Arg3 = good

Notice that in both cases, the quotes keep characters together and reduce the number of arguments in
the line.

The following example has 7 command-line arguments, while the examples above only have 3:

[c:\] quotes Now is the time %%forvar all good

(The double percent signs are needed in each case because the argument is parsed twice, once when
passed to the batch file and again in the ECHO command.)

When an alias is defined in a batch file or from the command line, its argument can be enclosed in back-
quotes to prevent the expansion of replaceable parameters, variables, and multiple commands until the
alias is invoked.    See ALIAS for details.

You can disable and re-enable back quotes and double quotes with the SETDOS /X command.

REXX Support

REXX is a a powerful file and text processing language developed by IBM, and available on many PC and
other platforms.    REXX is an ideal extension to the 4NT batch language, especially if you need advanced
string processing capabilities.

The REXX language is not built into 4NT, and requires a separate REXX processor.    You can purchase
add-on REXX software such as Enterprise Alternatives’ Enterprise REXX, Quercus’s Personal REXX,
and IBM's Object REXX.    (If you want to learn about or purchase one of these REXX packages, contact
JP Software’s sales department for more information.)

REXX programs are stored in .CMD or .REX files.    When 4NT loads, it asks Windows NT to locate the
REXX libraries.    If they are available, 4NT checks each .CMD or .REX file you execute to see if the first
two characters on the first line are [/*].    If so, it passes the file to the REXX interpreter for processing.

The REXX packages described above extend the interface between REXX and the command processor
by allowing you to invoke 4NT commands from within a REXX program.

When you send a command from a REXX program back to the command processor to be executed (for
example, if you execute a DIR command within a REXX script), the REXX software must use the correct
"address" for the command processor.    In most cases it is best to use the default address of CMD, which
is set up automatically by 4NT.    If you choose to use an explicit address via the REXX ADDRESS
command, you must use CMD.

For details on communication between REXX and the command processor, or for more information on
any aspect of REXX, see your REXX documentation.

EXTPROC Support

For compatibility with CMD.EXE, 4NT offers an external processor (EXTPROC) option for batch files that
lets you define an external program to process a particular .CMD file.    To identify a .CMD file to be used
with an external processor, place the string "EXTPROC" as the first word on the first line of the file,
followed by the name of the external program that should be called.    4NT will start the program and pass
it the name of the .CMD file and any command-line arguments that were entered.

For example, suppose GETDATA.CMD contains the following lines:

EXTPROC D:\DATAACQ\DATALOAD.EXE
OPEN PORT1
READ 4000
DISKWRITE D:\DATAACQ\PORT1\RAW

Then if you entered the command:

[d:\dataacq] getdata /p17

4NT would read the GETDATA.CMD file, determine that it began with an EXTPROC command, read the
name of the processor program, and then execute the command:

D:\DATAACQ\DATALOAD.EXE D:\DATAACQ\GETDATA.CMD /p17

The hypothetical DATALOAD.EXE program would then be responsible for reopening the GETDATA.CMD
file, ignoring the EXTPROC line at the start, and interpreting the other instructions in the file. It would also
have to respond appropriately to the command-line parameter entered (/p17).

Do not try to use 4NT as the external processor named on the EXTPROC line in the .CMD file.    It will
interpret the EXTPROC line as a command to re-open themselves.    The result will be an infinite loop that
will continue until the computer runs out of resources and locks up.

Environment Variables and Functions

The environment is a collection of information about your computer that every program receives.    Each
entry in the environment consists of a variable name, followed by an equal sign and a string of text.    You
can automatically substitute the text for the variable name in any command.    To create the substitution,
include a percent sign [%] and a variable name on the command line or in an alias or batch file.

The following environment variables have special meanings in 4NT:

CDPATH

CMDLINE

COLORDIR

COMSPEC

FILECOMPLETION

PATH

PROMPT

4NT also supports two special types of variables.    Internal variables are similar to environment variables,
but are stored internally within 4NT, and are not visible in the environment.    They provide information
about your system for use in batch files and aliases.    Variable functions are referenced like environment
variables, but perform additional functions like file handling, string manipulation and arithmetic
calculations.

The SET command is used to create environment variables.    For example, you can create a variable
named BACKUP like this:

[c:\] set BACKUP=*.bak;*.bk!;*.bk

If you then type

[c:\] del %BACKUP

it is equivalent to the following command:

del *.bak;*.bk!;*.bk

Environment variable names may contain any alphabetic or numeric characters, the underscore character
[_], and the dollar sign [$].    You can force acceptance of other characters by including the full variable
name in square brackets, like this: %[AB##2].    You can also "nest" environment variables using square
brackets.    For example %[%var1] means "the contents of the variable whose name is stored in VAR1".   
A variable referenced with this technique cannot contain more than 255 characters of information.   
Nested variable expansion can be disabled with the SETDOS /X command.

In addition, 4NT uses the environment to keep track of the default directory on each drive.    Other
operating systems keep track of the default directory for each drive letter internally; Windows NT does
not.    4NT overcomes this incompatibility by saving the default directory for each drive in the environment,
using variable names that cannot be accessed by the user.    Each variable begins with an equal sign
followed by the drive letter and a colon (for example, =C:).    You cannot view or change these variables
with the SET command; they are only available for internal use by 4NT.

In 4NT the size of the environment is set automatically, and increased as needed when you add variables.

Environment variables may contain alias names.    The command processor will substitute the variable
value for the name, then check for any alias name which may have been included within the variable's
value.    For example, the following commands would generate a 2-column directory of the .TXT files:

[c:\] alias d2 dir /2
[c:\] set cmd=d2
[c:\] %cmd *.txt

The trailing percent sign that was traditionally required for environment variable names is not usually
required in 4NT, which accept any character that cannot be part of a variable name (including a space) as
the terminator.    However, the trailing percent can be used to maintain compatibility.

The trailing percent sign is needed if you want to join two variable values.    The following examples show
the possible interactions between variables and literal strings.    First, create two environment variables
called ONE and TWO this way:

[c:\] set ONE=abcd
[c:\] set TWO=efgh

Now the following combinations produce the output text shown:

%ONE%TWO abcdTWO ("%ONE%" + "TWO")
%ONE%TWO% abcdTWO ("%ONE%" + "TWO%")
%ONE%%TWO abcdefgh ("%ONE%" + "%TWO")
%ONE%%TWO% abcdefgh ("%ONE%" + "%TWO%")
%ONE%[TWO] abcd[TWO] ("%ONE%" + "[TWO]")
%ONE%[TWO]% abcd[TWO] ("%ONE%" + "[TWO]%")
%[ONE]%TWO abcdefgh ("%[ONE]" + "%TWO")
%[ONE]%TWO% abcdefgh ("%[ONE]" + "%TWO%")

If you want to pass a percent sign to a command, or a string which includes a percent sign, you must use
two percent signs in a row. Otherwise, the single percent sign will be seen as the beginning of a variable
name and will not be passed on to the command.    For example, to display the string "We're with you
100%" you would use the command:

echo We're with you 100%%

You can also use back quotes around the text, rather than a double percent sign.    See Argument Quoting
for details.

CMDLINE

CMDLINE is the fully expanded text of the currently executing command line.    CMDLINE is set just
before invoking any .COM, .EXE, .BTM, .BAT, or .CMD file.    If a command line is prefaced with an "@" to
prevent echoing, it will not be put in CMDLINE, and any previous CMDLINE variable will be removed from
the environment.

COLORDIR

COLORDIR controls directory display colors used by DIR and SELECT.    See Color-Coded Directories
for a complete description of the format of this variable.

COMSPEC

COMSPEC contains the full path and name of 4NT.    For example, if 4NT is stored in the directory C:\
4NT, the COMSPEC variable should be set to C:\4NT\4NT.EXE.    COMSPEC is used by applications
which need to find 4NT to implement a "shell to the command prompt" feature.

You can set the COMSPEC variable by specifying the COMSPEC path on the 4NT startup command line.

FILECOMPLETION

FILECOMPLETION sets the files made available during filename completion for selected commands.   
See Customizing Filename Completion for a complete description of the format of this variable.

PATH

PATH is a list of directories that 4NT will search for executable files that aren't in the current directory.   
PATH may also be used by some application programs to find their own files. See the PATH command for
a full description of this variable.

PROMPT

PROMPT defines the command-line prompt.    It can be set or changed with the PROMPT command.

Internal Variables

Internal variables are special variables built into 4NT to provide information about your system.    They
are not actually stored in the environment, but can be used in commands, aliases, and batch files just like
any environment variable. The values of these variables are stored internally in 4NT, and cannot be
changed with the SET, UNSET, or ESET command.    However, you can override any of these variables
by defining a new variable with the same name.

The list below gives a one-line description of each variable, and a cross-reference which selects a full
screen help topic on that variable.    Most of the variables are simple enough that the one-line description
is sufficient.    However, for those variables marked with an asterisk [*], the cross-reference topic contains
some additional information you may wish to review.    You can also obtain help on any variable with a
HELP variable name command at the prompt (this is why each variable has its own topic, in addition to
its appearance in the list below).

See the discussion after the variable list for some additional information, and examples of how these
variables can be used.    For additional examples see the EXAMPLES.BTM file which came with 4NT.

The variables are:

Hardware status
_CPU CPU type (386, 486, 586)

_KBHIT Keystroke waiting in buffer (1 or 0)

_NDP Coprocessor type (0, 387)

Operating system and software status
_ANSI ANSI status (always 0 in 4NT)

_BOOT Boot drive letter, without a colon

_CODEPAGE Current code page number

_COUNTRY Current country code

_DOS * Operating system (DOS, OS2, etc.)

_DOSVER * Operating system version (3.5, etc.)

_MOUSE Mouse driver flag (always 1 in 4NT)

_WINDIR Windows NT directory pathname

_WINSYSDIR Windows NT system directory pathname

_WINTITLE Current window title

_WINVER Windows NT version number

Command processor status
_4VER 4NT version (2.5, 2.51, etc.)

_BATCH Batch nesting level

_BATCHLINE Batch file line number

_BATCHNAME Batch file name

_CMDPROC Command processor name

_DNAME Description file name

_HLOGFILE Current history log file name

_LOGFILE Current log file name

_PID 4NT process ID (numeric)

_PIPE Running in a pipe (0 or 1)

_SHELL Shell level (0, 1, 2, ...)

_TRANSIENT * Transient shell flag (0 or 1)

Screen, color, and cursor
_BG Background color at cursor position

_CI Current text cursor shape in insert mode

_CO Current text cursor shape in overstrike mode

_COLUMN Current cursor column

_COLUMNS Screen width

_FG Foreground color at cursor position

_ROW Current cursor row

_ROWS Screen height

Drives and directories
_CWD Current drive and directory (d:\path)

_CWDS Current drive and directory with trailing \ (d:\path\)

_CWP Current directory (\path)

_CWPS Current directory with trailing \ (\path\)

_DISK Current drive (C, D, etc.)

_LASTDISK Last possible drive (E, F, etc.)

Dates and times
_DATE * Current date (mm-dd-yy)

_DAY Day of the month (1 - 31)

_DOW Day of the week (Mon, Tue, Wed, etc.)

_DOWI Integer day of the week (1 = Sunday, 2 = Monday, etc.)

_DOY Day of the year (1 - 366)

_HOUR Hour (0 - 23)

_MINUTE Minute (0 - 59)

_MONTH Month of the year (1 - 12)

_SECOND Second (0 - 59)

_TIME * Current time (hh:mm:ss)

_YEAR Year (1980 - 2099)

Error codes
? * Exit code, last external program

_? * Exit code, last internal command

ERRORLEVEL * Exit code, last external program

_SYSERR * Last Windows NT error code

Compatibility
= * Substitutes escape character

+ * Substitutes command separator

Additional Notes

These internal variables are often used in batch files and aliases to examine system resources and adjust
to the current computer settings.    You can examine the contents of any internal variable (except %= and
%+) from the command line with a command like this:

[c:\] echo %variablename

Some variables return values based on information provided by your operating system.    These variables
will only return correct information if the operating system provides it.

On disk volumes which do not support long filenames, variables which return a path or file name will
return their result in upper or lower case depending on the value of the SETDOS /U switch or the
UpperCase directive in the .INI file.    On volumes which do support long filenames, these variables will
return names as they are stored on the disk and no case shifting will be performed.    Returned filename
values which include long filenames are not quoted automatically; you must add quotes yourself if they
are required for your use of the variable value (see Argument Quoting).

Examples

You can use these variables in a wide variety of ways depending on your needs.    Here are just a few
examples.

Store the current date and time in a file, then save the output of a DIR command in the same file:

echo Directory as of %_date %_time > dirsave
dir >> dirsave

Set up a prompt for the primary shell which displays the time and current directory, and a different one for
secondary shells which includes the shell level rather than the time (see PROMPT for details about
setting the prompt).    Also set different background colors for the two shells, without changing the
foreground color.    You might use a sequence like this in your 4START file (see Automatic Batch Files):

iff %_shell==0 then
prompt $t pg
color %_fg on blue
else
prompt [$z] pg
color %_fg on cyan
endiff

? contains the exit code of the last external command.    Many programs return a "0" to indicate success
and a non-zero value to signal an error.    However, not all programs return an exit code.    If no explicit exit
code is returned, the value of %? is undefined.

_? contains the exit code of the last internal command.    It is set to "0" if the command was successful,
"1" if a usage error occurred, "2" if another command processor error or an operating system error
occurred, or "3" if the command was interrupted by Ctrl-C or Ctrl-Break.    You must use or save this
value immediately, because it is set by every internal command.

= returns the current escape character.    Use this variable, instead of the actual escape character, if you
want your batch files and aliases to work regardless of how the escape character is defined.    For
example, if the escape character is a caret [^] (the default in 4NT) both of the commands below will send
a form feed to the printer.    However, if the escape character has been changed,    the first command will
send the string "^f" to the printer, while the second command will continue to work as intended.

echos ^f > prn
echos %=f > prn

+ returns the current command separator.    Use this variable, instead of the actual command separator, if
you want your batch files and aliases to work regardless of how the command separator is defined.    For
example, if the command separator is an ampersand [&] (the default in 4NT) both of the commands below
will display "Hello" on one line and "world" on the next. However, if the command separator has been
changed the first command will display "Hello & echo world", while the second command will continue to
work as intended.

echo Hello & echo world
echo Hello %+ echo world

_4VER is the current 4NT version (for example, "3.01").    The current decimal character is used to
separate the major and minor version numbers (see DecimalChar for details).

_ANSI is always "0" in 4NT.    (Windows NT doesn't support ANSI sequences except in DOS sessions.)

_BATCH is the current batch nesting level.    It is "0" if no batch file is currently being processed.

_BATCHLINE is the current line number in the current batch file.    It is "-1" if no batch file is currently
being processed.

_BATCHNAME is the full path and file name of the current batch file.    It is an empty string if no batch file
is currently being processed.

_BG is a string containing the first three characters of the screen background color at the current cursor
location (for example, "Bla").

_BOOT is the boot drive letter, without a colon.

_CI is the current cursor shape in insert mode, as a percentage (see SETDOS /S and the CursorIns
directive).

_CMDPROC is the name of the current command processor.    Each JP Software command processor
returns a different value, as follows:

Product Returns
4DOS "4DOS"
4OS2 "4OS2"
4NT "4NT"
Take Command/16 "TCMD"
Take Command/32 "TCMD32"
Take Command for OS/2 "TCMDOS2"

This variable is useful if you have batch files running in more than one environment, and need to take
different actions depending on the underlying command processor.    If you also need to determine the
operating system, see _DOS.

_CO is the current cursor shape in overstrike mode, as a percentage (see SETDOS /S and the
CursorOver directive).

_CODEPAGE is the current code page number.

_COLUMN is the current cursor column (for example, "0" for the left side of the screen).

_COLUMNS is the current number of screen columns (for example, "80").

_COUNTRY is the current country code.

_CPU is the CPU type:

386 i386
486 i486
586 Pentium
686 Pentium Pro

_CWD is the current working directory in the format d:\pathname.

_CWDS has the same value as CWD, except it ends the pathname with a backslash [\].

_CWP is the current working directory in the format \pathname.

_CWPS has the same value as CWP, except it ends the pathname with a backslash [\].

_DATE contains the current system date, in the format mm-dd-yy (U.S.), dd-mm-yy (Europe), or yy-mm-
dd (Japan).

_DAY is the current day of the month (1 to 31).

_DISK is the current disk drive, without a colon (for example, "C").

_DNAME returns the name of the description file.    By default, the description file is called
DESCRIPT.ION.    The name can be changed with the DescriptionName directive in 4NT.INI, or the
SETDOS /D command.

_DOS is the operating system and command processor type.    Each JP Software command processor
returns a different value depending on the operating system, as follows:

DOS OS/2 Windows
3.x

Windows
95

Windows
98

Windows
 NT

4DOS DOS DOS DOS DOS DOS
4OS2 OS2
4NT WIN95C WIN98C NT
Take
Command/16

WIN WIN

Take
Command/32

WIN95 WIN98 WIN32

Take Command
for OS/2

PM

This variable is useful if you have batch files running in more than one environment, and need to take
different actions depending on the underlying operating environment or command processor.    If you want
the current command processor name, use _CMDPROC.

_DOSVER is the current operating system version (for example, "4.0").    The current decimal separator is
used to separate the major and minor revision numbers (see DecimalChar for details).

_DOW is the first three characters of the current day of the week ("Mon", "Tue", "Wed", etc.).

_DOWI is the current day of the week as an integer (1 = Sunday, 2 = Monday, etc.).

_DOY is the day of the year (1 to 366).

ERRORLEVEL contains the exit code of the last external command.    This variable is equivalent to the ?
variable.    It is included only for compatibility with CMD.EXE.

_FG is a string containing the first three letters of the screen foreground color at the current cursor
position (for example, "Whi").

_HLOGFILE    returns the name of the current history log file (or an empty string if LOG /H is OFF).    See
LOG for information on logging.

_HOUR is the current hour (0 - 23).

_KBHIT returns 1 if one or more keystrokes are waiting in the keyboard buffer, or 0 if the keyboard buffer
is empty.

_LASTDISK is the last valid drive letter, without a colon.

_LOGFILE    returns the name of the current log file (or an empty string if LOG is OFF).    See LOG for
information on logging.

_MINUTE is the current minute (0 - 59).

_MONTH is the current month of the year (1 to 12).

_MOUSE always returns "1" in 4NT.

_NDP is the coprocessor type:

0 no coprocessor is installed
387 80387, 80486DX, 80487, Pentium, or Pentium Pro

_PID is the current process ID number.

_PIPE returns "1" if the current process is running inside a pipe or "0" otherwise.

_ROW is the current cursor row (for example, "0" for the top of the screen).

_ROWS is the current number of screen rows (for example, "25").

_SECOND is the current second (0 - 59).

_SHELL is the current shell nesting level.    The primary shell is level "0", and each subsequent secondary
shell increments the level by 1.

_SYSERR is the error code of the last operating system error.    You will need a technical or programmer's
manual to understand these error values.

_TIME contains the current system time in the format hh:mm:ss. The separator character may vary
depending upon your country information.

_TRANSIENT is "1" if the current shell is transient (started with a /C, see Starting 4NT for details), or "0"
otherwise.

_WINDIR returns the pathname of the Windows NT directory.

_WINSYSDIR returns the pathname of the Windows NT system directory.

_WINTITLE returns the title of the current window.

_WINVER returns the current Windows NT version number.    The current decimal character is used to
separate the major and minor version numbers    (see DecimalChar for details).

_YEAR is the current year (1980 to 2099).

Variable Functions

Variable functions are like internal variables, but they take one or more arguments (which can be
environment variables or even other variable functions) and they return a value.

The list below gives a one-line description of each function, and a cross-reference which selects a
separate help topic on that function.    A few of the variables are simple enough that the one-line
description is sufficient, but in most cases you should check for any additional information in the cross-
referenced explanation if you are not already familiar with a function.    You can also obtain help on any
function with a HELP @functionname command at the prompt.

See the discussion after the function list for additional information and examples.

The variable functions are:

System status
@DOSMEM[b|k|m] Size of largest free memory block

@READSCR[row,col,len] Read characters from the screen

Drives and devices
@CDROM[d:] CD-ROM drive detection (0 or 1)

@DEVICE[name] Character device detection

@DISKFREE[d:,b|k|m] Free disk space

@DISKTOTAL[d:,b|k|m] Total disk space

@DISKUSED[d:,b|k|m] Used disk space

@FSTYPE[d:] File system type (FAT, NTFS, HPFS, CDFS, etc.)

@LABEL[d:] Volume label

@READY[d:] Drive ready status (0 or 1)

@REMOTE[d:] Remote (network) drive detection (0 or 1)

@REMOVABLE[d:] Removable drive detection (0 or 1)

Files
@ALTNAME[filename] FAT-compatible file name

@ATTRIB[filename,rhsda] File attribute test (0 or 1)

@DESCRIPT[filename] File description

@FILEAGE[filename[,acw]] File age (date and time)

@FILECLOSE[n] Close a file

@FILEDATE[filename[,acw]] File date

@FILEOPEN[filename,mode] Open a file

@FILEREAD[n [,length]] Read data from a file

@FILES[filename] Count files matching a wildcard

@FILESEEK[n,offset,start] Move a file pointer

@FILESEEKL[n,line] Move file pointer to a line number

@FILESIZE[filename,b|k|m] Size of files matching a wildcard

@FILETIME[filename[,acw]] File time

@FILEWRITE[n,text] Write next line to a file

@FILEWRITEB[n,length,string] Write bytes to a file

@FINDCLOSE[filename] Close the search handle opened by @FINDFIRST

@FINDFIRST[filename [,-nrhsda]] Find first matching file

@FINDNEXT[[filename [,-nrhsda]]] Find next matching file

@LINE[filename,n] Read a random line from a file

@LINES[filename] Count lines in a file

@SEARCH[filename] Path search

@UNIQUE[d:\path] Create file with unique name

File names
@EXPAND[filename [,-nrhsda]] Names of all matching files and directories

@EXT[filename] File extension

@FILENAME[filename] File name and extension

@FULL[filename] Full file name with path

@LFN[filename] Long path and filename

@NAME[filename] File name without path or extension

@PATH[filename] File path without name

@SFN[filename] Short path and filename

@TRUENAME[filename] True, fully-expanded filename

Strings and characters
@ASCII[c] Numeric ASCII value for a character

@CHAR[n] Character value for numeric ASCII

@FORMAT[[-][x][.y],string] Formats (justifies) a string

@INDEX[string1,string2] Position of one string in another

@INSERT[n,string1,string2] Insert one string into another

@INSTR[start,length,string] Extract a substring

@LEFT[n,string] Leftmost characters of a string

@LEN[string] Length of a string

@LOWER[string] Convert string to lower case

@REPEAT[c,n] Repeat a character

@REPLACE[string1,string2,text] Replace all occurrences of one string with another

@RIGHT[n,string] Rightmost characters of a string

@STRIP[chars,string] Remove characters from string

@SUBSTR[string,start,length] Extract a substring

@TRIM[string] Remove blanks from a string

@UPPER[string] Convert string to upper case

@WILD[string1,string2] Wildcard comparison

@WORD[["sep",]n,string] Extract a word from a string

@WORDS[["sep",]string] Counts number of words in a string

Numbers and arithmetic
@COMMA[n] Inserts commas in a number

@CONVERT[input,output,value] Base Conversion

@DEC[%var] Decremented value of a variable

@EVAL[expression] Arithmetic calculations

@INC[%var] Incremented value of a variable

@INT[n] Integer part of a number

@NUMERIC[string] Test if a string is numeric

@RANDOM[min,max] Generate a random integer

Dates and times
@DATE[mm-dd-yy] Convert date to number of days

@DAY[mm-dd-yy] Day of the month

@DOW[mm-dd-yy] Day of the week

@DOWI[mm-dd-yy] Numeric day of the week

@DOY[mm-dd-yy] Numeric day of the year

@MAKEAGE[date[,time]] Convert date/time to file date/time

@MAKEDATE[n] Convert number of days to date

@MAKETIME[n] Convert number of seconds to time

@MONTH[mm-dd-yy] Month of the year

@TIME[hh:mm:ss] Convert time to number of seconds

@YEAR[mm-dd-yy] Year number (2 digits)

Utility
@ALIAS[name] Value of an alias

@CLIP[n] Line from the clipboard

@EXEC[command] Execute a command

@EXECSTR[command] Execute, return string

@IF[condition,true,false] Evaluates a test condition

@INIREAD[filename,section,entry] Entry from .INI file

@INIWRITE[filename,section,entry,string] Create or update entry in .INI file

@REXX[expr] Execute a REXX expression

@SELECT[file,t,l,b,r,title] Menu selection

@TIMER[n] Elapsed time of specified timer

Additional Notes

Like all environment variables, these variable functions must be preceded by a percent sign in normal use
(%@EVAL, %@LEN, etc.).    All variable functions must have square brackets enclosing their
argument(s).    The argument(s) to a variable function cannot exceed 255 characters in length for all
arguments taken as a group.

Specific Functions and Arguments

Some variable functions, like @DISKFREE, are shown with "b|k|m" as one of their arguments.    Those
functions return a number of bytes, kilobytes, or megabytes based on the "b|k|m" argument:

b return the number of bytes

K return the number of kilobytes (bytes / 1,024)

k return the number of thousands of bytes (bytes / 1,000)

M return the number of megabytes (bytes / 1,048,576)

m return the number of millions of bytes (bytes / 1,000,000)

You can include commas (or the "thousands separator" character for your system) in the results from a
"b|k|m" function by appending a "c" to the argument.    For example, to add commas to a "b" or number of
bytes result, enter "bc" as the argument. To set the thousands separator see the ThousandsChar
directive.

Functions which accept a date as an argument use the date format and separators mandated by your
country code (for example dd.mm.yy in Germany, or    yy-mm-dd in Japan).    The year can be entered as
a 4-digit or 2-digit value.    Two-digit years between 80 and 99 are interpreted as 1980 - 1999; values
between 00 and 79 are interpreted as 2000 - 2079.

Several functions return filenames or parts of filenames.    On an HPFS, NTFS, or LFN drive the strings
returned by these functions may contain whitespace or other special characters.    To avoid problems
which could be caused by these characters, quote the returned name before you pass it to other
commands, for example (either of these methods would work):

set fname="%@findfirst[pro*.*]"
echo First PRO file contains:
type %fname
.....

set fname=%@findfirst[pro*.*]
echo First PRO file contains:
type "%fname"
.....

If you don't use the quotes in the SET or TYPE command in this example, TYPE will not interpret any
whitespace or special characters in the name properly.

In variable functions which take a drive letter as an argument, like @DISKFREE or @READY, the drive
letter must be followed by a colon.    The function will not work properly if you use the drive letter without
the colon.

The @FILEREAD, @FILEWRITE, @FILEWRITEB, FILESEEK, FILESEEKL, and @FILECLOSE
functions allow you to access files based on their file handle.    These functions should only be used with

file handles returned by @FILEOPEN!    If you use them with any other file handle you may damage other
files opened by 4NT (or, in a secondary shell, the program which started 4NT), or hang your system.

Many functions return values based on information provided by your operating system.    Such functions
will only return correct information if the operating system provides it.    For example, @READY will not
return accurate results if your operating system does not provide correct disk drive status information to
the command processor.

Examples

You can use variable functions in a wide variety of ways depending on your needs.    We've included a few
examples below to give you an idea of what's possible.    For a more comprehensive set of examples, see
the EXAMPLES.BTM file which came with 4NT.

To set the prompt to show the amount of free memory (see PROMPT for details on including variable
functions in your prompt):

[c:\] prompt (%%@dosmem[K]K) pg

Set up a simple command-line calculator.    The calculator is used with a command like CALC 3 * (4 + 5):

[c:\] alias calc `echo The answer is: %@eval[%&]`

The following batch file uses variable functions to implement "once a day" execution of a group of
commands.    It works by constructing a 6-digit number "yymmdd" from today's date, and comparing that
to a number of the same type stored in the file C:\ONCEADAY.DAT.    If today's date is numerically larger
than the saved date, and the time is after 6:00 AM, then the "once a day" commands are run, and today's
date is saved in the file as the new date for comparison.    Otherwise, no action is taken.    You can make
this file simpler using the %@DATE and %@TIME functions instead of using %@INSTR to extract
substrings of the %_DATE and %_TIME variables; we used the approach shown to demonstrate the use
of %@INSTR.

rem Temporary variables used to shorten example lines:
rem DD is _date, DY is yymmdd date, TM is _time
set dd=%_date
set dy=%@instr[6,2,%dd]%@instr[0,2,%dd]%@instr[3,2,%dd]
set lastdate=0
iff exist c:\onceaday.dat then
 set lastdate=%@line[onceaday.dat,0]
endiff
iff %dy gt %lastdate then
 set tm=%_time
 iff "%@instr[0,2,%tm]%@instr[3,2,%tm]" gt "0600" then
 rem Commands to be executed once a day go here
 echo %dy > c:\onceaday.dat
 endiff
endiff

@ALIAS[name]:    Returns the contents of the specified alias as a string, or a null string if the alias
doesn't exist.    When manipulating strings returned by @ALIAS you may need to disable certain special
characters with the SETDOS /X command.    Otherwise, command separators, redirection characters, and
other similar "punctuation" in the alias may be interpreted as part of the current command, rather than
part of a simple text string.

@ALTNAME[filename]:    Returns the FAT-style ("8.3" format) filename for the specified file. If the
filename is already in 8.3 format, returns the filename if the file exists or an empty string if it does not.   
@ALTNAME will also return the shortened pathname if you provide a path in place of the filename.

@ASCII[c]:    Returns the numeric value of the specified ASCII character as a string.    For example
%@ASCII[A] returns 65.    You can put an escape character [^] before the actual character to process.   
This allows quotes and other special characters as the argument (e.g., %@ASCII[^`]).

@ATTRIB[filename,[nrhsda[,p]]]:    Returns a "1" if the specified file has the matching attribute(s);
otherwise returns a "0".    The attributes are:

N Normal (no attributes set)
R Read-only
H Hidden
S System
D Subdirectory
A Archive

The attributes (other than N) can be combined (for example %@ATTRIB[MYFILE,HS]).    You can prefix
an attribute with "-" to mean "everything except files with this attribute."

Without the optional p as a third argument, ATTRIB will only return a 1 if all of the attributes match.    With
the p, ATTRIB will return a 1 if there is a partial match.    For example, if MYFILE.DAT has R, H, and A
attributes set:

%@attrib[myfile.dat,r] returns 0 because there is
not an exact match

%@attrib[myfile.dat,r,p]returns 1 because there is
a partial match

If you do not specify any attributes, @ATTRIB will return the attributes of the specified file in the format
RHSAD, rather than a "0" or "1".    Attributes which are not set will be replaced with an underscore.    For
example, if SECURE.DAT has the read-only, hidden, and archive attributes set,
%@ATTRIB[SECURE.DAT] would return RH_A_.

@CDROM[d:]:    Returns "1" if the drive is a CD-ROM or "0" otherwise.

@CHAR[n]:    Returns the character corresponding to an ASCII numeric value.    For example
%@CHAR[65] returns A.

@CLIP[n]: Returns line n from the clipboard.    The first line is numbered 0.    "**EOC**" is returned for all
line numbers beyond the end of the clipboard.

@COMMA[n]:    Inserts commas, or the "thousands separator" character for your system, into a numeric
string.    To set the thousands separator, see the ThousandsChar directive.

@CONVERT[input, output, value]:    Converts a numeric string (value) from one number base (input) to
another (output).    Valid bases range from 2 to 36.    The value must be a positive number between 0 and
2**32-1 (2,147,483,647).    No error is returned if value is outside that range.    For example, to convert
"1010101" from binary to decimal, use this syntax:

%@convert[2,10,1010101]

@DATE[mm-dd-yy]:    Returns the number of days since January 1, 1980 for the specified date.    See
Variable Functions for details on the date format.

@DAY[mm-dd-yy]:    Returns the numeric day of the month for the specified date.    See Variable
Functions for details on the date format.

@DEC[%var]:    Returns the same value as @EVAL[%var - 1].    That is, it retrieves and decrements the
value of a variable.    The variable itself is not changed; to do so, use a command like this:

set var=%@dec[%var]

@DESCRIPT[filename]:    Returns the file description for the specified filename (see DESCRIBE).

@DEVICE[name]:    Returns "1" if the specified name is a character device (such as a printer or serial
port), or "0" if not.

@DISKFREE[d:,b|k|m]: Returns the amount of free disk space on the specified drive.

@DISKTOTAL[d:,b|k|m]:    Returns the total disk space on the specified drive.

@DISKUSED[d:,b|k|m]:    Returns the amount of disk space in use by files and directories on the
specified drive.

@DOSMEM[b|k|m]:    Returns the amount of free physical memory.

@DOW[mm-dd-yy]:    Returns the first three characters of the day of the week for the specified date
("Mon", "Tue", "Wed", etc.).

@DOWI[mm-dd-yy]:    Returns the day of the week for the specified date as an integer (1 = Sunday, 2 =
Monday, etc.).

@DOY[mm-dd-yy]:    Returns the day of year for the specified date (1-366).

@EVAL[expression]:    Evaluates an arithmetic expression.    @EVAL supports addition (+), subtraction
(-), multiplication (*), division (/), integer division (\, returns the integer part of the quotient), modulo (%%),
and integer exponentiation (**).    The expression can contain environment variables and other variable
functions.    @EVAL also supports parentheses, commas, and decimals.    Parentheses can be nested.   
@EVAL will strip leading and trailing zeros from the result.    When evaluating expressions, **, *, /, \, and
%% take precedence over + and -.    For example, 3 + 4 * 2 will be interpreted as 3 + 8, not as 7 * 2.    To
change this order of evaluation, use parentheses to specify the order you want.    Also see @DEC and
@INC.

To ensure that your @EVAL expressions are interpreted correctly, spaces should be placed on both sides
of each operator, for example:

%@eval[(20 %% 3) + 4]

The maximum precision is 16 digits to the left of the decimal point and 8 digits to the right of the decimal
point.    You can alter the default precision to the right of the decimal point on the Options 2 page of the
OPTION dialogs, or with the EvalMax and EvalMin 4NT.INI directives, and with the SETDOS /F
command.    You can alter the decimal character from the Options 1 page of the OPTION dialogs, with the
DecimalChar directive, or the SETDOS /G command.

You can alter the precision for a single evaluation with the construct @EVAL[expression=x.y].    The x
value specifies the minimum decimal precision (i.e., the minimum number of decimal places displayed);
the y value sets the maximum decimal precision.    You can use =x,y instead of =x.y if the comma is your
decimal separator.    If x is greater than y, it is ignored.    You can specify either or both arguments, for
example:

@eval[3 / 7=.4] returns 0.4286
@eval[3 / 7=2] returns 0.42857143
@eval[3 / 6=2.4] returns 0.50

@EXEC[[@]command]:    Execute the command and return the numeric exit code.    The command can
be an alias, internal command, external command, or .BTM, .BAT, or .CMD file.    @EXEC is primarily
intended for running a program from within the PROMPT.    It is a "back door" entry into command
processing and should be used with extreme caution.    Incorrect or recursive use of @EXEC may hang
your system.    By default, @EXEC returns the result code from the command; if you preface the
command name with an '@' then @EXEC will return an empty string.

@EXECSTR[command]:    Runs the specified command and returns the first line written to STDOUT by
that command.    @EXECSTR is primarily intended for running a program from within the PROMPT.    It is
a "back door" entry into command processing and should be used with extreme caution.    Incorrect or
recursive use of @EXECSTR may hang your system.

@EXECSTR is useful for retrieving a result from an external utility — for example, if you have an external
utility called NETTIME.EXE which retrieves the time of day from your network server and writes it to
standard output, you could save it in an environment variable using a command like this:

[c:\] set server_time=%@execstr[d:\path\nettime.exe]

If the same utility returned a result properly formatted for the TIME command you could also use it to set
the time on your system:

[c:\] time %@execstr[d:\path\nettime.exe]

@EXPAND[filename[,-nrhsda]]:    Returns, on a single line, the names of all files and directories that
match the filename specification, which may contain wildcards and include lists.    Returns an empty
string if no files match.    If the file list is longer than the allowed command line length, it will be truncated
without an error message.

The second argument, if included, defines the attributes of the files that will be included in the search. The
attributes are:

N Normal (no attributes set)
R Read-only
H Hidden
S System
D Subdirectory
A Archive

The attributes (other than N) can be combined (for example %@EXPAND[MYFILE,HS]).    You can prefix
an attribute with "-" to mean "everything except files with this attribute."

If the attribute argument is not used, hidden files, system files, and directories will be excluded from the
returned list; all other files which match the filename will be included.

@EXT[filename]:    Returns the extension (up to 64 characters) from a filename, without a leading
period.    On HPFS, NTFS, and LFN drives, the extension can be up to 64 characters long.    On traditional
FAT drives it can be up to 3 characters long.

@FILEAGE[filename[,acw]]:    Returns the date and time of the file as a single numeric value.    The
number can be used to compare the relative ages of two or more files, but can not be used for date and
time calculations as it is not returned in identifiable units.    The optional second argument selects which
date field is returned for files on an LFN, HPFS, or NTFS drive:    a means the last access date, c means
the creation date, and w means the last modification (write) date, which is the default.

Also see @MAKEAGE.

@FILECLOSE[n]:    Closes the file whose handle is n.    You cannot close handles 0, 1 or 2.    Returns "0"
if the file closed OK or "-1" if an error occurred.    Be sure to read the cautionary note about file functions
under Variable Functions.

@FILEDATE[filename[,acw]]:    Returns the date a file was last modified, in the default country format
(mm-dd-yy for the US). The optional second argument selects which date field is returned for files on an
LFN, HPFS, or NTFS drive:    a means the last access date, c means the creation date, and w means the
last modification (write) date, which is the default.

@FILENAME[filename]:    Returns the name and extension of a file, without a path.

@FILEOPEN[filename, read | write | append, [b | t]]:    Opens the file in the specified mode and returns
the file handle as an integer.    Returns "-1" if the file cannot be opened.

The optional third parameter controls whether the file is opened in binary mode (b) or text mode (t).    Text
mode (the default) should be used to read text using @FILEREAD without a "length" parameter, and to
write text using @FILEWRITE.    Binary mode should be used to read binary data with @FILEREAD with
a "length" parameter, and to write binary data with @FILEWRITEB.

Be sure to read the cautionary note about file functions under Variable Functions.

@FILEOPEN can also open named pipes.    The pipe name must begin with \\.\pipe\.    @FILEOPEN first
tries to open an existing pipe; if that fails it tries to create a new pipe.    Pipes are opened in blocking
mode, duplex access, byte-read mode, and inheritable.    For more information on named pipes see your
Windows NT documentation.

@FILEREAD[n,[length]]:    Reads data from the file whose handle is n.    Returns "**EOF**" if you
attempt to read past the end of the file.    If length is not specified @FILEREAD will read until the next CR
or LF (end of line) character.    If length is specified, @FILEREAD will read length bytes regardless of any
end of line characters.

If you plan to read text a line at a time, without using length, you should open the file in text mode.    If you
plan to read binary data using length, you should open the file in binary mode.    See @FILEOPEN for
details on opening the file in the proper mode.

Be sure to read the cautionary note about file functions under Variable Functions.

@FILES[filename [,-nrhsda]]:    Returns the number of files that match the filename specification, which
may contain wildcards and include lists.    Returns an empty string if no files match.    The filename must
refer to a single directory; to check several directories, use @FILES once for each directory, and add the
results together with @EVAL. The second argument, if included, defines the attributes of the files that will
be included in the search. The attributes are:

N Normal (no attributes set)
R Read-only
H Hidden
S System
D Subirectory
A Archive

The attributes (other than N) can be combined (for example %@FILES[MYFILE,HS]).    You can prefix an
attribute with "-" to mean "everything except files with this attribute."

@FILESEEK[n,offset,start]:    Moves the file pointer offset bytes in the file whose handle is n.    Returns
the new position of the pointer, in bytes from the start of the file.    Set start to 0 to seek relative to the
beginning of the file, 1 to seek relative to the current file pointer, or 2 to seek relative to the end of the file. 
The offset value may be negative (seek backward), positive (seek forward), or zero (return current
position, but do not change it).    Be sure to read the cautionary note about file functions under Variable
Functions.

@FILESEEKL[n,line]:    Moves the file pointer to the specified line in the file whose handle is n.    The first
line in the file is numbered 0.    Returns the new position of the pointer, in bytes from the start of the file.   
Be sure to read the cautionary note about file functions under Variable Functions.

@FILESEEKL must read each line of the file up to the target line in order to position the pointer, and will
therefore cause significant delays if used in a long loop or on a large file.

@FILESIZE[filename,b|k|m[,a]]:    Returns the size of a file, or "-1" if the file does not exist.    If the
filename includes wildcards or an include list, returns the combined size of all matching files.

The optional third argument a (allocated), if used, instructs @FILESIZE to return the amount of space
allocated for the file(s) on the disk, rather than the amount of data in the file.    Network drives and
compressed drives may not always report allocated sizes accurately, depending on the way the network
or disk compression software is implemented.

@FILETIME[filename[,acw]]:    Returns the time a file was last modified, in hh:mm format.    The optional
second argument selects which time field is returned for files on an LFN, HPFS, or NTFS drive:    a means
the last access time, c means the creation time, and w means the last modification (write) time, which is
the default.    The last access time is always returned as 00:00 on LFN drives

@FILEWRITE[n,text]:    Writes a line to the file whose handle is n.    Returns the number of bytes written,
or "-1" if an error occurred.    n must be a handle returned by @FILEOPEN; or 1 (for standard output) or 2
(for standard error).   

If you plan to write text a line at a time with @FILEWRITE, you should open the file in text mode (see
@FILEOPEN).    If you want to write binary data you should use @FILEWRITEB instead, and open the file
in binary mode.

Be sure to read the cautionary note about file functions under Variable Functions.

@FILEWRITEB[n,length,string]:    Writes the specified number of bytes from the string to the file whose
handle is n.    Returns the number of bytes written, or "-1" if an error occurred.

If you plan to write binary data with @FILEWRITEB you should open the file in binary mode (see
@FILEOPEN).    If you want to write text a line at a time you may want to use the @FILEWRITE function
instead, and open the file in text mode.

Be sure to read the cautionary note about file functions under Variable Functions.

@FINDCLOSE[filename]:    Signals the end of a @FINDFIRST / @FINDNEXT sequence.    You must use
this function to release the directory search handle used for @FINDFIRST / @FINDNEXT.

@FINDFIRST[filename [,-nrhsda]]:    Returns the name of the first file that matches the filename, which
may include wildcards.    The second argument, if included, defines the attributes of the files that will be
included in the search.    Returns an empty string if no files match.    The attributes are:

N Normal (no attributes set)
R Read-only
H Hidden
S System
D Subdirectory
A Archive

The attributes (other than N) can be combined (for example %@FINDFIRST[MYFILE,HS]).   
@FINDFIRST will only find a file if all of the attributes match.    You can prefix an attribute with "-" to mean
"everything except files with this attribute."

@FINDFIRST always skips the "." and ".." entries when processing directory names.

After @FINDFIRST or the last @FINDNEXT, you must use @FINDCLOSE to avoid running out of
directory search handles.

@FINDNEXT[[filename [,-nrhsda]]]:    Returns the name of the next file that matches the filename
passed to @FINDFIRST.    Returns an empty string when no more files match.    @FINDNEXT should only
be used after a successful call to @FINDFIRST.    The first argument is included for compatibility with
previous versions, but is ignored; it can be omitted if the second argument is not used (e.g.
%@FINDNEXT[]).    The second argument, if included, defines the attributes of the files that will be
included in the search.    The attributes are:

N Normal (no attributes set)
R Read-only
H Hidden
S System
D Subdirectory
A Archive

The attributes (other than N) can be combined (for example %@FINDNEXT[MYFILE,HS]).   
@FINDNEXT will only find a file if all of the attributes match.    You can prefix an attribute with "-" to mean
"everything except files with this attribute."

@FINDNEXT always skips the "." and ".." entries when processing directory names.

After @FINDFIRST or the last @FINDNEXT, you must use @FINDCLOSE to avoid running out of
directory search handles.

See the notes under Variable Functions about quoting returned long filenames.

@FORMAT[[-][x][.y],string]: Reformats a string, truncating it or padding it with spaces as necessary.    If
you use the minus [-], the string is left-justified; otherwise, it is right-justified.    The x value is the minimum
number of characters in the result.    The y value is the maximum number of characters in the result.    You
can combine the options as necessary.    For example:

%@format[12,JPSoftware] returns " JPSoftware"
%@format[.3,JPSoftware] returns "JPS"

@FSTYPE[d:]:    Returns the file system type for the specified drive.    @FSTYPE will return "FAT" for a
DOS-compatible drive with a file allocation table, "HPFS" for a drive that uses OS/2's high performance
file system, "NTFS" for a drive that uses Windows NT's file system, or "CDFS" for a CD-ROM drive.    It
may return other values if additional file systems have been installed.

@FULL[filename]:    Returns the fully qualified path and filename of a file.    See the notes under Variable
Functions about quoting returned long filenames.

@IF[condition,true,false]:    Evaluates the condition and returns a string based on the result.    The
condition can include any of the tests allowed in the IF command.    If the condition is true, @IF returns the
first result string; if it is false, @IF returns the second string.    For example, echo %@IF[2 ==
2,Correct!,Oops!] displays "Correct!"

@INC[%var]:    Returns the same value as %@EVAL[%var + 1].    That is, it retrieves and increments the
value of a variable.    The variable itself is not changed; to do so, use a command like this:

set var=%@inc[%var]

@INDEX[string1,string2]:    Returns the position of string2 within string1, or "-1" if string2 is not found. 
The first position in string1 is numbered 0.

@INIREAD[filename,section,entry]:    Returns an entry from the specified .INI file or an empty string if
the entry does not exist.    For example:

%@iniread[c:\4nt\4nt.ini,4nt,history]

returns the size of the command history if it is specified in the [4NT] section of 4NT.INI.    If you don't
specify a path for the .INI file, @INIREAD will look in the \WINNT and \WINNT\SYSTEM directories.

@INIWRITE[filename,section,entry,string]:    Creates or updates an entry in the specified .INI file.    For
example:

%@iniwrite[c:\4nt\4nt.ini,4nt,history,2048]

sets the size of the command history to 2,048 bytes the next time 4NT is started.    @INIWRITE returns
"0" for success or "-1" for failure.    If you don't specify a path for the .INI file, @INIWRITE will look in the \
WINNT and \WINNT\SYSTEM directories.

@INSERT[n, string1, string2]:    Inserts string1 into string2 starting at position n.    The first position in
the string is postion 0.    For example, %@insert[1,arm,wing] returns the string "warming".

@INSTR[start, length, string]: Returns a substring, starting at the position start and continuing for
length characters.    If the length is omitted, it will default to the remainder of the string.    If the length is
negative, the start is relative to the right side of the string.    The first character in the string is numbered
0; if the length is negative, the last character is numbered 0.   

For example, %@INSTR[0,2,%_TIME] gets the current time and extracts the hour; %@INSTR[1,-
2,%_TIME] extracts the seconds.    If the string includes commas, it must be quoted with double quotes
["] or back-quotes [`].    The quotes do count in calculating the position of the substring.    @SUBSTR is an
older version of the same function.

@INT[n]:    Returns the integer part of the number n.

@LABEL[d:]:    Returns the volume label of the specified disk drive.

@LEFT[n,string]:    Returns the leftmost n characters from the string.    If n is greater than the length of
the string, returns the entire string.    For example, %@left[2,jpsoft] returns the string "jp".

@LEN[string]:    Returns the length of a string.

@LFN[filename]:    Returns the long filename for a short ("8.3") filename.    The filename may contain
any valid filename element including drive letter, path, filename and extension; the entire name including
all intermediate paths will be returned in long name format.

See the notes under Variable Functions about quoting returned long filenames.

@LINE[filename,n]:    Returns line n from the specified file. The first line in the file is numbered 0.   
"**EOF**" is returned for all line numbers beyond the end of the file.

@LINE works with files having lines of no more than 1023 characters; longer lines will not be counted
accurately.

The @LINE function must read each line of the file to find the line you request, and will therefore cause
significant delays if used in a long loop or on a large file.    For a more effective method of processing
each line of a file in sequence use the FOR command, or @FILEOPEN and a sequence of
@FILEREADs.

You can retrieve input from standard input if you specify CON as the filename.    If you are redirecting
input to @LINE using this feature, you must use command grouping or the redirection will not work
properly (you can pipe to @LINE without a command group; this restriction applies only to input
redirection).    For example:

(echo %@line[con,0]) < myfile.dat

@LINES[filename]:    Returns the line number of the last line in the file, or "-1" if the file is empty.    The
first line in the file is numbered 0, so (for example) @LINES will return 0 for a file containing one line.    To
get the actual number of lines, use %@INC[%@LINES[filename]].

@LINES works with files having lines of no more than 1023 characters; longer lines will not be counted
accurately.

@LINES must read each line of the file in order to count it, and will therefore cause significant delays if
used in a long loop or on a large file.

@LOWER[string]:    Returns the string converted to lower case.

@MAKEAGE[date[,time]]:    Returns the date and time (if included) as a single value in the same format
as @FILEAGE.    @MAKEAGE can be used to compare the time stamp of a file with a specific date and
time, for example:

if %@fileage[myfile] lt %@makeage[1/1/85] echo OLD!

The value returned by @MAKEAGE can be used for comparisons, but can not be used for date and time
calculations because it is not in identifiable units.

@MAKEDATE[n]:    Returns a date (formatted according to the current country settings).    n is the
number of days since 1/1/80. This is the inverse of @DATE.

@MAKETIME[n]:    Returns a time (formatted according to the current country settings).    n is the number
of seconds since midnight.    This is the inverse of @TIME.

@MONTH[mm-dd-yy]:    Returns the month number for the specified date (1-12).    See Variable
Functions for details on the date format.

@NAME[filename]:    Returns the base name of a file, without the path or extension.    See the notes
under Variable Functions about quoting returned long filenames.

@NUMERIC[string]:    Returns "1" if the argument is composed entirely of digits (0 to 9), signs (+ or -),
and the thousands and decimal separators.    Otherwise, returns "0".    If the string begins with a decimal
separator it is not considered numeric unless the next character is a digit, and there are no more decimal
separators within the string.    For example, ".07" is numeric, but ".a" and ".07.01" are not.

@PATH[filename]:    Returns the path from a filename, including the drive letter and a trailing backslash,
but not including the base name or extension.    See the notes under Variable Functions about quoting
returned long filenames.

@RANDOM[min, max]:    Returns a "pseudo-random" value between min and max, inclusive.    min,
max, and the returned value are all integers.    The random number generator is initialized from the
system clock the first time it is used after the command processor starts, so it will produce a different
sequence of random numbers each time you use it.

@READSCR[row,col,length]:    Returns the text displayed on the screen at the specified location.    The
upper left corner of the screen is location 0,0.

The row and column can be specified as an offset from the current cursor location by preceding either
value with a [+] or [-].    For example,

%@readscr[-2,+2,10]

returns 10 characters from the screen, starting 2 rows above and 2 columns to the right of the current
cursor position.

You can also specify the row and column as offsets from the current cursor position.    Begin the value
with a plus sign [+] to read the screen the specified number of rows below (or columns to the right of) the
current position, or with a minus sign [-] to read the screen above (or to the left of) the current position.

@READY[d:]:    Returns "1" if the specified drive is ready; otherwise returns "0".

@REMOTE[d:]:    Returns "1" if the specified drive is a remote (network) drive; otherwise returns "0".

@REMOVABLE[d:]:    Returns "1" if the specified drive is removable (e.g., a floppy disk or removable
hard disk); otherwise returns "0".

@REPEAT[c,n]:    Returns the character c repeated n times.

@REPLACE[string1, string2, text]:    Replaces all occurrences of string1 in the text string with string2. 
For example, %@replace[w,ch,warming] returns the string "charming".    The search is case-sensitive.

@REXX[expr]:    Calls the REXX interpreter to execute the expression. Returns the result string from
REXX; if the REXX expression does not return a string, @REXX returns the REXX numeric result code.   
See REXX Support for more information.

@RIGHT[n,string]:    Returns the rightmost n characters from the string.    If n is greater than the length
of the string, returns the entire string.    For example, %@right[4,jpsoft] returns the string "soft."

@SEARCH[filename[,path]]:    Searches for the filename using the PATH environment variable or the
specified path, appending an extension if one isn't specified.    Returns the fully-expanded name of the file
including drive, path, base name, and extension, or an empty string if a matching file is not found.    If
wildcards are used in the filename, @SEARCH will search for the first file that matches the wildcard
specification, and return the drive and path for that file plus the wildcard filename (e.g., E:\UTIL*.COM).

@SELECT[filename,top,left,bottom,right,title[,1]]:    Pops up a selection window with the lines from the
specified file, allowing you to display menus or other selection lists from within a batch file.    You can
move through the selection window with standard popup window navigation keystrokes, including
character matching (to change the navigation keys see Key Mapping Directives).    @SELECT returns the
text of the line the scrollbar is on if you press Enter, or an empty string if you press Esc.

The filename must be in quotes if it contains whitespace or special characters.    The file size is limited
only by available memory.    To select from lines passed through input redirection or a pipe, use CON as
the filename.

If you use the optional 1 argument after the window title, the list will be sorted alphabetically.

@SFN[filename]:    Returns the fully expanded short ("8.3") filename for a long filename.    The filename
may contain any valid filename element including drive letter, path, filename and extension; the entire
name including all intermediate paths will be returned in short name format.    The filename should not be
quoted.

@STRIP[chars,string]:    Removes the characters in chars from the string and returns the result.    For
example, %@STRIP[AaEe,All Good Men] returns "ll Good Mn".    The test is case sensitive.    To include a
comma in the chars string, enclose the entire first argument in double quotes.    @STRIP will remove the
quotes before processing the string.

@SUBSTR[string,start,length]: This is an older version of @INSTR.    The string parameter is at the
start of the @SUBSTR argument list, and therefore cannot contain commas (because any commas in the
string would be taken as argument separators).    @INSTR, which has the string argument last, does not
have this restriction.

@TIME[hh:mm:ss]:    Returns the number of seconds since midnight for the specified time.    The time
must be in 24-hour format; "am" and "pm" cannot be used.

@TIMER[n]:    Returns the current split time for a stopwatch started with the TIMER command.    The
value of n specifies the timer to read and can be 1, 2, or 3.

@TRIM[string]:    Returns the string with the leading and trailing white space (space and tab characters)
removed.

@TRUENAME [filename]:    Returns the true, fully-expanded name for a file.    TRUENAME will "see
through" a JOIN or SUBST.    Wildcards may not be used in the filename.    @TRUENAME can handle
simple drive substitutions such as those created by JOIN, SUBST, or most network drive mappings.   
However, it may not be able to correctly determine the true name if you use "nested" JOIN or SUBST
commands, or a network which does not report true names properly.

@UNIQUE[d:\path]:    Creates a zero-length file with a unique name in the specified directory, and returns
the full name and path.    If no path is specified, the file will be created in the current directory.    The file
name will be FAT-compatible (8 character name and 3-character extension) regardless of the type of drive
on which the file is created.    This function allows you to create a    temporary file without overwriting an
existing file.

@UPPER[string]:    Returns the string converted to upper case.

@WILD[string1,string2]:    Performs a comparison of the two strings, and returns "1" if they match or "0"
if they don't match.    The second argument, string2, may contain wildcards or extended wildcards; the
first argument, string1, may not.    The test is not case sensitive.    The following example tests whether
the \UTIL directory (or any directory that begins with the characters UTIL) is included in the PATH:

if %@wild[%path,*\UTIL*] == 1 command

@WORD[["xxx",]n,string]:    Returns the nth word in a string.    The first word is numbered 0.    If n is
negative, words are returned from the end of the string.

You can use the first argument, "xxx" to specify the delimiters that you wish to use.    If you want to use a
double quote as a delimiter, prefix it with an escape character.    If you don't specify a list of delimiters,
@WORD will consider only spaces, tabs, and commas as word separators.    If the string argument is
enclosed in quotation marks, you must enter a list of delimiters.    For example:

%@WORD[2,NOW IS THE TIME] returns "THE"
%@WORD[-0,NOW IS THE TIME] returns "TIME"
%@WORD[-2,NOW IS THE TIME] returns "IS"
%@WORD["=",1,2 + 2=4] returns "4"

@WORDS[["xxx"],string]:    Returns the number of words in the string.    You can use the first argument,
"xxx" to specify the delimiters that you wish to use.    If you want to use a double quote as a delimiter,
prefix it with an escape character.    If you don't specify a list of delimiters, @WORDS will consider only
spaces, tabs, and commas as word separators.    If the string argument is enclosed in quotation marks,
you must enter a list of delimiters.

@YEAR[mm-dd-yy]:    Returns the year for the specified date.    See Variable Functions for details on the
date format.    The year can be specified as two digits or four digits; @YEAR returns the same number of
digits included in its argument.

4NT.INI

Part of the power of 4NT is its flexibility.    You can alter its configuration to match your style of computing. 
Most of the configuration of 4NT is controlled through a file of initialization information called 4NT.INI,
which is discussed in the following sections:

Modifying the .INI File

Using the .INI File

.INI File Sections

.INI File Directives

.INI File Examples

We also discuss many ways of configuring 4NT in other sections of the help, for example:

» With aliases you can set default options for internal commands and create new commands.

» With executable extensions you can associate data files with the applications you use to open
them.

» With the FILECOMPLETION environment variable and the FileCompletion .INI directive you
can customize filename completion to match the command you are working with.

» With the COLORDIR environment variable and the ColorDir .INI directive you can set the
colors used by the DIR and SELECT commands.

» With the SETDOS command, you can change some aspects of the command processor's
operation "on the fly."

Modifying the .INI File

You can create, add to, and modify the .INI file in 2 ways: with the OPTION command and by editing the
file with any ASCII editor.    OPTION displays a set of dialogs which allow you to modify the settings that
are used most often.    When you exit from the dialogs, you can select the Save button to save your
changes in the .INI file for use in the current session and all future sessions, select the Use or OK button
to use your changes in the current session only, or discard the changes you have made by selecting the
Cancel button.    See Configuration Dialogs for additional details.

Changes you make in the Startup section of the OPTION dialogs will only take effect when you restart
the session or window in which 4NT is running.

OPTION handles most standard .INI file settings.    A few more advanced settings, as well as all settings
that affect the interpretation of keystrokes, cannot be modified with OPTION and must be inserted or
modified manually.    For more details see the OPTION command.

You can also create, add to, and edit the 4NT.INI file "manually" with any ASCII text editor.    4NT reads
the .INI file when it starts, and configures itself accordingly.    The .INI file is not re-read when you change
it manually.    For manual changes to take effect, you must restart the session or window in which 4NT is
running.    If you edit the .INI file manually, make sure you save the file in ASCII format.

Each item that you can include in the .INI file has a default value.    You only need to include entries in the
file for settings that you want to change from their default values.

Format

Most lines in the .INI file consist of a one-word directive, an equal sign [=], and a value.    For example, in
the following line, the word "Environment" is the directive and "2048" is the value:

Environment = 2048

Any spaces before or after the equal sign are ignored.

If you have a long string to enter in the .INI file (for example, for the ColorDir directive), you must enter it
all on one line.    Strings cannot be "continued" to a second line.    Each line may be up to 1023 characters
long.

The format of the value part of a directive line depends on the individual directive.    It may be a numeric
value, a single character, a choice (like "Yes" or "No"), a color setting, a key name, a path, a filename, or
a text string.    The value begins with the first non-blank character after the equal sign and ends at the end
of the line or the beginning of a comment.

Blank lines are ignored in the .INI file and can be used to separate groups of directives.    You can place
comments in the file by beginning a line with a semicolon [;].    You can also place comments at the end of
any line except one containing a text string value.    To do so, enter at least one space or tab after the
value, a semicolon, and your comment, like this:

Environment = 2048 ;set standard environment size

If you try to place a comment at the end of a string value, the comment will become part of the string and
will probably cause an error.

If you use the OPTION dialogs to modify the .INI file, comments on lines modified from within the dialogs
will not be preserved when the new lines are saved.    To be sure .INI file comments are preserved, put
them on separate lines in the file.

If you want to include the text of one .INI file within another (for example, if you have a set of common
directives used by several JP Software products), see the Include directive.

Configuration Dialogs

These dialogs control the configuration of 4NT and can be started with the OPTIONcommand.    Each
option in one of the configuration dialogs sets a corresponding directive in the 4NT.INI file .

Unless you select the Cancel button, any changes you make will take effect immediately.    If you return to
4NT by selecting the OK button, new settings will only stay in effect until you end the current 4NT session.
If you return to 4NT by selecting Save, the changes will be recorded in the [4NT] section of the 4NT.INI
file and will be in effect each time you start 4NT.

For details about the 4NT.INI file and .INI file directives, the allowable ranges for each, and the effect of
each, see 4NT.INI.

While you are using the dialogs, you can move between sets of configuration options with the list box in
the left-hand pane.    The sets of options available in this dialog are:

Startup Options 1

Display Options 2

Command Line1 Commands

Command Line 2

Startup Options Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

You can set the path to your 4START and 4EXIT files if they aren't in the same directory as 4NT.    This
field sets the 4StartPath directive.

In the Buffer Sizes section:

» Command History sets the size of the command history list, and the value of the History directive.

» Directory History sets the size of the directory history list, and the value of the DirHistory directive.

The Display section sets the size and location of 4NT's window when it starts up:

» Standard, Max, Min, and Custom set the WindowState directive.

» The window position and size fields set the WindowX, WindowY, WindowHeight, and
WindowWidth directives.    Use these if you want 4NT to start up at a specific location on your
desktop.    These fields are ignored unless the item above is set to Custom.

The Options section controls the setup of shared lists and Windows file asociations:

» Local History, Local Aliases, and Local Directory History determine whether the corresponding
lists are local to a single session or shared among all sessions, and set the LocalHistory,
LocalAliases, and LocalDirHistory directives.

» Load Associations determines whether direct Windows file associations are loaded when 4NT
starts, and sets the LoadAssociations directive.

Display Options Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

The Text Dimensions section configures the way that text appears in 4NT's main window:

» Tabs selects the location of tab stops for 4NT's output (including the output from the LIST and
TYPE commands), and sets the TabStops directive.

The Colors section sets screen colors used by 4NT.    When both boxes are set to "(Default)" the default
colors are used:

» Output establishes the colors 4NT uses for the text it displays, and sets the StdColors directive.

» Input establishes the colors for echoing the commands you type, and sets the InputColors
directive.

The List Box Colors section sets the colors used for list boxes:

» Bar establishes the colors 4NT uses for the light bar in list boxes, and sets the ListboxBarColors
directive.

Command Line 1 Options Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

The Editing section controls command-line editing:

» Default Mode selects whether you begin editing in Overstrike or Insert mode, and sets the
EditMode directive.

» Cursor sets the width of the cursor for both Overstrike and Insert modes, and sets the CursorIns
and CursorOver directives.    The width is expressed as a percentage of the width of a character
cell.

The Filename Completion section controls filename completion at the command prompt:

» The Add \ to Directories setting determines whether a backslash is added automatically at the end
of a directory name during filename completion.    (A trailing backslash is always appended to a
directory name at the beginning of the command line to enable automatic directory changes,
regardless of this setting.)    This option sets the AppendToDir directive.

» The Options setting allows you to customize filename completion for specific commands, and
sets the FileCompletion directive.    See Customizing Filename Completion for details on the use
of this setting.

In the Command History section:

» Minimum saved characters sets the size of the shortest line that will be saved in the command
history, and sets the value of the HistMin directive.

» Copy to end and Move to end, if checked, copy or move a recalled command to the end of the
history list each time it is executed, and set the HistCopy and HistMove directives.    Copy to end
takes precedence over Move to end, so the Move to end setting will be ignored if Copy to end is
also checked.

» Wrap, if checked, enables the command history recall to "wrap" when you reach the top or bottom
of the list.    This control sets the HistWrap directive.

Command Line 2 Options Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

The Popup Windows section controls the position and size of the two different kinds of popup windows
available from the command line:

» The History entries set the initial position and size of the command history window, directory
history window, and filename completion window, and set the PopupWinLeft, PopupWinTop,
PopupWinWidth, and PopupWinHeight directives.

» The Extended Directory Search entries set the initial position and size of the popup window used
for extended directory searches, and set the CDDWinLeft, CDDWinTop, CDDWinWidth, and
CDDWinHeight directives.

The Extended Directory Search section controls Extended Directory Searches:

» Search Level sets the type of search to use (the default of 0 disables extended searches).    See
Extended Directory Searches for details on the meaning of the different search levels.    This
option sets the FuzzyCD directive.

» Tree Path sets the location of the extended directory search database, and the TreePath
directive.

Options 1 Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

The Descriptions section sets the way that 4NT handles file descriptions entered with the DESCRIBE
command.

» The Enable checkbox enables or disables the display and processing of descriptions, and sets
the Descriptions directive.

» The Maximum Length field determines the maximum size of file descriptions and sets the
DescriptionMax directive.

The Special Characters section sets the characters that have special meaning for 4NT.    See Special
Character Compatibility for details on using compatible characters for different JP Software products.

» Separator is the character that separates multiple commands.    It can also be set with the
CommandSep directive or SETDOS /C.

» Escape is the escape character which suppress the normal meaning of the following character.   
It can also be set with the EscapeChar directive or SETDOS /E.

» Parameter sets the character used after a percent sign to specify all or all remaining command-
line arguments in a batch file or alias.    It can also be set with the ParameterChar directive or with
SETDOS /P.

» Decimal and Thousands set the characters used as the decimal and thousands separators for
displayed output, numeric IF and IFF tests, version numbers, numeric functions (e.g., @COMMA
or @EVAL), and other similar uses.    The default of Auto tells 4NT to use the characters
associated with your current country code.    If you change one character you must also adjust the
other so that the two characters are different.    These settings can also be changed with the
DecimalChar and ThousandsChar directives, or with SETDOS /G.

Default Beep sets defaults for the BEEP command and for "error" beeps.    To disable error beeps, set
the beep length to 0, and be sure to specify an explicit length each time you use the BEEP command.

» Length sets the length of the beep in timer ticks that are approximately 1/18 of a second each.    It
also sets the BeepLength directive.

» Frequency sets the frequency of the beep in Hz.    It also sets the BeepFreq directive.

The Options section sets miscellaneous options.

» Force upper case, when selected, forces 4NT to display file names in upper case in internal
commands like DIR and COPY.    You can use the UpperCase directive or the SETDOS /U
command achieve the same result.    Force upper case has no effect on filenames from volumes
which support long filenames (see File Names for additional details).

» Default batch echo, if selected, turns on echoing in batch files by default.    You can use the
BatchEcho directive or the SETDOS /V command to achieve the same result.

» Protect redirected output files, if selected, keeps 4NT from overwriting an existing file with
redirected (>) output, and from creating a new file with output redirected in append (>>) mode.   
You can achieve the same result with the NoClobber directive or the SETDOS /N command.

» The Time options determine how 4NT displays times.    If you select Country, the time display is
based on your country settings in Windows.    The am/pm setting forces a 12-hour display with a
trailing "a" or "p."    The 24-hour setting forces a standard 24-hour display.    You can also set the
time display with the AmPm directive.

Options 2 Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

The Logging section enables or disables Command and History logging (see the LOG command) and
sets the file name to use for each.    It also sets the LogName and HistLogName directives.

The EVAL section sets the minimum and maximum number of digits after the decimal point that @EVAL
will display.    You can achieve the same results with the EvalMin and EvalMax directives or with the
SETDOS /F command.

The External Programs setting controls whether 4NT waits for applications to complete before displaying
the prompt.    See Waiting for Applications to Finish for details on the effects of this setting.

Command Options Dialog

[If you are not familiar with the purpose or use of the configuration dialogs, or the effects of exiting with
OK, Save, or Cancel, review the main configuration dialogs topic before continuing.]

The DIR Colors field sets the colors used by DIR and SELECT.    You can achieve the same effect with
the ColorDir directive or by setting the COLORDIR environment variable.    See Color Coded Directories
under the DIR command for details.

The LIST section sets defaults for the LIST command.

» Text sets the foreground and background colors, and the ListColors directive.

» Status establishes the colors used for the information area, and sets the ListStatBarColors
directive.

» Print sets the output device that the LIST command will print to, setting the Printer directive.

The SELECT section sets defaults for the SELECT command.

» Text sets the foreground and background colors, and the SelectColors directive.

» Status establishes the colors used for the information area, and sets the SelectStatBarColors
directive.

Using the .INI File

Some settings in the .INI file are initialized when you install 4NT, so you will probably have a 4NT.INI file
even if you didn't create one yourself.   

4NT primary shells search for the .INI file in three places:

» If there is an "@d:\path\inifile" option on the startup command line, the command processor
will use the path and file name specified there, and will not look elsewhere.    See Starting
4NT for more details.

» If there is no .INI file name on the startup command line, the search proceeds to the same
directory where the command processor program file (4NT.EXE) is stored.    This is the
"normal" location for the .INI file.    4NT determines this directory automatically.   

» If the .INI file is not found in the directory where the program file is stored, a final check is
made in the root directory of the boot drive.

When 4NT is loaded as a secondary shell, it does not search for the .INI file.    Instead, it retrieves the
primary shell's .INI file data, processes the [Secondary] section of the original .INI file if necessary (see
.INI File Sections), and then processes any "@d:\path\inifile" option on the secondary shell command line
(see Starting 4NT).    You can override this behavior with the NextINIFile directive.

Secondary shells automatically inherit the configuration settings currently in effect in the previous shell.   
If values have been changed by SETDOS since the primary shell started, the current values will be
passed to the secondary shell.    If the previous shell's .INI file had a [Secondary] section, it will then be
read and processed (see .INI File Sections).    If not, the previous shell's settings will remain in effect.

For example, you might set BatchEcho to Yes in the .INI file, to enable batch file echo.    If you then use
SETDOS /V0 to turn off batch file echoing in the primary shell, then any secondary shells will inherit the
SETDOS setting, rather than the original value from the .INI file; i.e., batch files in the secondary shell will
default to no echo.

If you want to force secondary shells to start with a specific value for a particular directive, regardless of
any changes made with SETDOS in a previous shell, repeat the directive in the [Secondary] section of
the .INI file.

The SETDOS command can override several of the .INI file directives.    For example, the cursor shape
used by 4NT can be adjusted either with the CursorIns and CursorOver directives or the SETDOS /S
command.    The correspondence between SETDOS options and .INI directives is noted with each
directive, and under each option of the SETDOS command.

When the command processor detects an error while processing the .INI file, it displays an error message
and prompts you to press a key to continue processing the file.    This allows you to note any errors before
the startup process continues.    The directive in error will retain its previous or default value.    Only the
most catastrophic errors (like a disk read failure) will terminate processing of the remainder of the .INI file. 
If you don't want a pause after each error, use a "PauseOnError = No" directive at the beginning of the
.INI file.

If you need to test different values for an .INI directive without repeatedly editing the .INI file, use the
OPTION command or see the INIQuery directive.

.INI File Sections

The .INI file has three possible sections:    the first or global section, named [4NT]; the [Primary] section;
and the [Secondary] section.    Each section is identified by the section name in square brackets on a line
by itself.

Directives in the global section are effective in all shells.    In most cases, this is the only section you will
need.    Any changes you make to the .INI file with the OPTION command are stored in the global section.

The [Primary] and [Secondary] sections include directives that are used only in primary and secondary
shells, respectively.    You don't need to set up these sections unless you want different directives for
primary and secondary shells.

Directives in the [Primary] section are used for the first or primary shell.    The values are passed
automatically to all secondary shells, unless overridden by a directive with the same name in the
[Secondary] section.

Directives in the [Secondary] section are used in secondary shells only, and override any corresponding
primary shell settings.    For example, these lines in the .INI file:

[Primary]
ScreenRows = 25
[Secondary]
ScreenRows = 50

mean to assume that you have 25 rows on the screen in the primary shell and 50 lines in all secondary
shells.

Sections that begin with any name other than [4NT], [Primary], or [Secondary] are ignored.

.INI File Directives

For information on specific directives see the separate topic for each type of directive:

Initialization Directives

Configuration Directives

Color Directives

Key Mapping Directives

Advanced Directives

These topics list the directives, with a one-line description of each, and a cross-reference which selects a
full screen help topic on that directive.    A few of the directives are simple enough that the one-line
description is sufficient, but in most cases you should check for any additional information in the cross-
reference topic if you are not already familiar with the directive.

You can also obtain help on most directives with a HELP directive command at the prompt.

There are 8 types of directives in the .INI file.    The different types of directives are shown in the
descriptions as follows:

» Name = nnnn (1234):    This directive takes a numeric value which replaces the "nnnn."    The
default value is shown in parentheses.

» Name = c (X):    This directive accepts a single character as its value.    The default character
is shown in parentheses.    You must type in the actual character; you cannot use a key name.

» Name = CHOICE1 | Choice2 | ... :    This directive takes a choice value.    The possible
choices are listed, separated by vertical bars.    The default value is shown in all upper case
letters in the directive description, but in your file any of the choices can be entered in upper
case or lower case.    For example, if the choices were shown as "YES | No" then "YES" is the
default.

» Name = Color:    This directive takes a color specification.    See Colors and Color Names.

» Name = Key (Default):    This directive takes a key specification.    See Key Names for the
format of key names.

» Name = Path:    This directive takes a path specification, but not a filename.    The value
should include both a drive and path (e.g., C:\4NT) to avoid any possible ambiguities.    A
trailing backslash [\] at the end of the path name is acceptable but not required.    Any default
path is described in the text.

» Name = File:    This directive takes a filename.    We recommend that you use a full filename
including the drive letter and path to avoid any possible ambiguities.    Any default filename is
described in the text.

» Name = String:    This directive takes a string in the format shown.    The text describes the
default value and any additional requirements for formatting the string correctly.    No
comments are allowed.

4NT contains a fixed-length area for storing strings entered in the .INI file, including file names, paths, and
other strings.    This area is large and is unlikely to overflow; if it does, you will receive an error message.   
If this occurs, reduce the complexity of your .INI file or contact our technical support department for
assistance.

.INI File Examples

This example for 4NT configures certain special characters to match 4DOS, and changes other default
settings to suit the user's preferences.

[4NT]
InstallPath = c:\4nt301 ;installation directory
PauseOnError = No ;don't stop on INI errors
CommandSep = ^ ;4DOS command separator
EscapeChar = ;4DOS escape character
ParameterChar = & ;4DOS parameter character
BatchEcho = No ;default to ECHO OFF
History = 2048 ;expand history to 2K bytes
BeepFreq = 880 ;make beep higher pitch
EditMode = Insert ;insert mode for cmd edit
CursorOver = 100 ;overstrike cursor 100%
CursorIns = 10 ;insert cursor 10%
ListFind = F5 ;F5 does a find in LIST
ListNext = F6 ;and F6 does a find next
StdColors = bri cya on blu ;default colors
ListColors = bri whi on blu ;colors for LIST
SelectColors = bri whi on blu ;same colors for SELECT
colordir = DIRS:bri yel;com exe bat btm cmd:bri whi

Initialization Directives

The directives in this section control how 4NT starts and where it looks for its files.    The initialization
directives are:

4StartPath Path for 4START and 4EXIT

DirHistory Size of directory history list

DuplicateBugs Duplicate bugs in CMD.EXE

History Size of history list

INIQuery Query for each line in 4NT.INI

LoadAssociations Controls loading of Windows' file associations

LocalAliases Local vs. global aliases

LocalDirHistory Local vs. global directory history

LocalHistory Local vs. global history

PauseOnError Pause on errors in 4NT.INI

TreePath Path for directory database

WindowState Initial state for the 4NT window

WindowX, WindowY, WindowWidth, WindowHeight
Initial size and position of the 4NT window

4StartPath = Path:    Sets the drive and directory where the 4START and 4EXIT batch files (if any) are
located.

DirHistory = nnnn (256): Sets the amount of memory allocated to the directory history in bytes.    The
allowable range of values is 256 to 32767 bytes.    If you use a global directory history list, the DirHistory
value is ignored in all shells except the shell which first establishes the global list.

DuplicateBugs = YES | No:    Tells the 4NT parser to duplicate certain well-known bugs in CMD.EXE.   
The only bug currently replicated is in the IF command.

History = nnnn (1024):    Sets the amount of memory allocated to the command history list in bytes.    The
allowable range of values is 256 to 32767 bytes.    If you use a global history list (see Command History
and Recall), the History value is ignored in all shells except the shell which first establishes the global list.

INIQuery = Yes | NO:    If set to Yes, a prompt will be displayed before execution of each subsequent line
in the current .INI file.    This allows you to modify certain directives when you start 4NT in order to test
different configurations.    INIQuery can be reset to No at any point in the file.    Normally INIQuery = Yes is
only used during testing of other .INI file directives.

The prompt generated by INIQuery = Yes is:

[contents of the line] (Y/N/Q/R/E) ?

At this prompt, you may enter:

Y = Yes: Process this line and go on to the next.
N = No: Skip this line and go on to the next.
Q = Quit: Skip this line and all subsequent lines.
R = Rest: Execute this and all subsequent lines.
E = Edit: Edit the value for this entry.

If you choose E for Edit, you can enter a new value for the directive, but not a new directive name.

LoadAssociations = YES | No:    No prevents 4NT from loading Windows' direct file associations from
the Windows Registry for use when searching for executable files.    The default of Yes allows loading of
the file associations.    See Windows File Associations for additional details.

LocalAliases = Yes | NO:    No forces all copies of 4NT to share the same alias list.    Yes keeps the lists
for each shell separate.    See ALIAS for more details on local and global alias lists.

LocalDirHistory = Yes | NO:    No forces all copies of the command processor to share the same
directory history.    Yes keeps the directory histories for each shell separate.    See Directory History
Window for more details on local and global directory histories.

LocalHistory = Yes | NO:    No forces all copies of 4NT to share the same history list.    Yes keeps the
lists for each shell separate.    See Command History and Recall for more details on local and global
history lists.

PauseOnError = YES | No:    Yes forces a pause with the message "Error in filename, press any key to
continue processing" after displaying any error message related to a specific line in the .INI file.    No
continues processing with no pause after an error message is displayed.

TreePath = Path: Sets the location of JPSTREE.IDX, the file used for extended directory searches.    By
default, the file is placed in the root directory of drive C:\.

WindowState = STANDARD | Maximize | Minimize | Custom:    Sets the initial state of the 4NT window.   
Standard puts the window in the default position on the Windows NT desktop, and is the default setting.   
Maximize maximizes the window; Minimize minimizes it.    Custom uses the position and size specified
by WindowX, etc.    If you use Maximize, Minimize, or Custom, you may see the 4NT window appear
briefly in the Standard position as it is created by Windows NT, then switch to the new state.

WindowX = nnnn, WindowY = nnnn, WindowWidth = nnnn, WindowHeight = nnnn:    These 4
directives set the initial size and position of the 4NT window.    They are ignored unless WindowState is
set to Custom.    The measurements are in pixels or pels.    WindowX and WindowY refer to the position
of the top left corner of the window relative to the top left corner of the screen.

Configuration Directives

These directives control the way that 4NT operate.    Some can be changed with the SETDOS command
while 4NT is running. Any corresponding SETDOS command is listed in the description of each directive. 
The configuration directives are:

AmPm Time display format

AppendToDir "\" on directory names in filename completion

BatchEcho Default batch file echo state

BeepFreq Default beep frequency

BeepLength Default beep length

CDDWinLeft, CDDWinTop, CDDWinWidth, CDDWinHeight
Initial position and size of the directory change window

CommandSep Multiple command separator character

CursorIns Cursor shape in insert mode

CursorOver Cursor shape in overstrike mode

DecimalChar Decimal separator

DescriptionMax Maximum length of file descriptions

DescriptionName Name of file to hold file descriptions

Descriptions Enable / disable description processing

EditMode Editing mode (insert / overstrike)

EscapeChar 4NT escape character

EvalMax Max digits after decimal point in @EVAL

EvalMin Min digits after decimal point in @EVAL

ExecWait Forces 4NT to wait for external programs to complete

FileCompletion Filename completion by extension

FuzzyCD Selects Extended Directory Search mode

HistCopy History copy mode

HistLogName History log file name

HistMin Minimum command length to save

HistMove History move mode

HistWrap History wrap mode

LogName Log file name

NoClobber Overwrite protection for output redirection

ParameterChar Alias / batch file parameter character

PopupWinLeft, PopupWinTop, PopupWinWidth, PopupWinHeight
Initial position and size of popup windows

Printer LIST print device

ScreenRows Screen height

TabStops Tab width in LIST

ThousandsChar Thousands separator

UpperCase Force file names to upper case

AmPm = Yes | NO | Auto:    Yes displays times in 12-hour format with a trailing "a" for AM or "p" for PM.   
The default of No forces a display in 24-hour time format.    Auto formats the time according to the
country code set for your system.    AmPm controls the time displays used by DIR and SELECT, in LOG
files, and the output of the TIMER, DATE, and TIME commands.    It has no effect on %_TIME,
%@MAKETIME, the $t and $T options of PROMPT, or date and time ranges.

AppendToDir = Yes | NO:    Yes appends a trailing "\" to directory names when doing filename
completion.    The default is No.    (Regardless of the setting of this directive, a trailing backslash is always
appended to a directory name at the beginning of the command line to enable automatic directory
changes.)

BatchEcho = YES | No:    Sets the default batch echo mode. Yes enables echoing of all batch file
commands unless ECHO is explicitly set off in the batch file.    No disables batch file echoing unless
ECHO is explicitly set on.    Also see SETDOS /V.

BeepFreq = nnnn (440):    Sets the default BEEP command frequency in Hz.    This is also the frequency
for "error" beeps (for example, if you press an illegal key).    To disable all error beeps set this or
BeepLength to 0.    If you do, the BEEP command will still be operable, but will not produce sound unless
you explicitly specify the frequency and duration.

BeepLength = nnnn (2):    Sets the default BEEP length in system clock ticks (approximately 1/18 of a
second per tick). BeepLength is also the default length for "error" beeps (for example, if you press an
illegal key).

CDDWinLeft = nnnn, CDDWinTop = nnnn, CDDWinWidth = nnnn, CDDWinHeight = nnnn:    These
values set the position and size of the popup window used by extended directory searches, in characters,
including the border.    The defaults are 3, 3, 72, and 16, respectively (i.e., a window beginning in column
3, row 3, 72 columns wide and 16 rows high).    The position is relative to the top left corner of the screen. 
The width and height values include the space required for the window border.    The window cannot be
smaller than than 10 columns wide by 5 rows high (including the border).    The values you enter will be
adjusted if necessary to keep a minimum-size window visible on the screen.

The window is normally displayed with a shadow, but if you specify a window starting at column 0 and
extending to the right margin, the shadow is eliminated; this may be useful to prevent speech software
from reading text in the shadow area while viewing the window.

CommandSep = c:    This is the character used to separate multiple commands on the same line.    The
default is the ampersand [&]. You cannot use any of the redirection characters (| > <) or any of the
whitespace characters (space, tab, comma, or equal sign).    The command separator is saved by
SETLOCAL and restored by ENDLOCAL.

Also see SETDOS /C, the %+ internal variable, and Special Character Compatibility for information on
using compatible command separators for two or more products.

CursorIns = nnnn (100):    This is the shape of the cursor for insert mode during command-line editing
and all commands which accept line input (DESCRIBE, ESET, etc.).    The size is a percentage of the total
character cell size, between 0% and 100%.    If CursorIns or CursorOver is set to -1, the command
processor will not attempt to modify the cursor shape at all; you can use this feature to give another
program full control of the cursor shape.    Because of the way video drivers map the cursor shape, you
may not get a smooth progression in cursor shapes as CursorIns and CursorOver change.

Also see SETDOS /S.

CursorOver = nnnn (15):    This is the shape of the cursor for overstrike mode during command-line
editing and all commands which accept line input.    The size is a percentage of the total character cell
size, between 0% and 100%.    If CursorOver or CursorIns is set to -1, the command processor will not
attempt to modify the cursor shape at all; you can use this feature to give another program full control of
the cursor shape.

Also see SETDOS /S.

DecimalChar = . | , | AUTO:    Sets the character used as the decimal separator for @EVAL, numeric IF
and IFF tests, version numbers, and other similar uses.    The only valid settings are period [.], comma [,],
and Auto (the default).    A setting of Auto tells the command processor to use the decimal separator
associated with your current country code.    If you change the decimal character you must also adjust the
thousands character (with ThousandsChar) so that the two characters are different.    Also see
SETDOS /G.

DescriptionMax = nnnn (40):    Controls the description length limit for DESCRIBE.    The allowable range
is 20 to 511 characters.

DescriptionName = File: Sets the name of the hidden file in each directory that will hold file descriptions. 
If you don't use this directive, the description files will be named DESCRIPT.ION.        Use this directive
with caution, because changing the name from the default will make it difficult to transfer file descriptions
to another system.    Also see SETDOS /D.

Descriptions = YES | No:    Turns description handling on or off during the file processing commands
COPY, DEL, MOVE, and REN.    If set to No, 4NT will not update the description file when files are
moved, copied, deleted or renamed.    Also see SETDOS /D.

EditMode = Insert | OVERSTRIKE:    This directive lets you start the command-line editor in either insert
or overstrike mode.    Also see SETDOS /M.

EscapeChar = c:    Sets the character used to suppress the normal meaning of the following character.   
The default is a caret [^]. See Escape Character for a description of special escape sequences.    You
cannot use any of the redirection characters (|, >, or <) or the whitespace characters (space, tab, comma,
or equal sign) as the escape character.    The escape character is saved by SETLOCAL and restored by
ENDLOCAL.

Also see SETDOS /E, the %= internal variable, and Special Character Compatibility for information on
using compatible escape characters for two or more products.

EvalMax = nnnn (0):    Controls the maximum number of digits after the decimal point in values returned
by @EVAL.    The allowable range is 0 to 8. This directive will be ignored if EvalMin is larger than
EvalMax.    This setting can be overridden with the construct @EVAL[expression=n.n].

Also see SETDOS /F.

EvalMin = nnnn (0):    Controls the minimum number of digits after the decimal point in values returned by
@EVAL.    The allowable range is 0 to 8. This directive will be ignored if EvalMin is larger than EvalMax.   
This setting can be overridden with the construct @EVAL[expression=n.n].

Also see SETDOS /F.

ExecWait = Yes | NO:    Controls whether 4NT waits for an external program to complete before
redisplaying the prompt.    See Waiting for Applications to Finish for details on the effects of this directive.

FileCompletion = cmd1: ext1 ext2 ...; cmd2: ext3 ext4 ...    Sets the files made available during filename
completion for selected commands.    The format is the same as that used for the FILECOMPLETION
environment variable.    See Filename Completion for a detailed explanation of selective filename
completion.

FuzzyCD = 0 | 1 | 2 | 3:    Enables or disables extended directory searches, and controls their behavior.    A
setting of 0 (the default) disables extended searches.    For complete details on the meaning of the other
settings see Extended Directory Searches.

HistCopy = Yes | NO:    Controls what happens when you re-execute a line from the command history.    If
this option is set to Yes, the line is appended to the end of the history list.    By default, or if this option is
set to No, the command is not copied.    The original copy of the command is retained at its original
position in the list regardless of the setting of HistCopy.

 Set this option to No if you want to use HistMove = Yes; otherwise, the HistCopy setting will override
HistMove.

HistLogName = File:    Sets the history log file name and path.    Using HistLogName does not turn history
logging on; you must use a LOG /H ON command to do so.

HistMin = nnnn (0):    Sets the minimum command-line size to save in the command history list.    Any
command line whose length is less than this value will not be saved.    Legal values range from 0, which
saves everything, to 1024, which disables all command history saves.

HistMove    = Yes | NO:    If set to Yes, a recalled line is moved to the end of the command history.    The
difference between this directive and HistCopy is that HistCopy = Yes copies each recalled line to the end
of the history but leaves the original in place.    HistMove = Yes places the line at the end of history and
removes the original line.    This directive has no effect if HistCopy = Yes.

HistWrap = YES | No:    Controls whether the command history recall "wraps" when you reach the top or
bottom of the list.    The default setting enables wrapping, so the list appears "circular".    If HistWrap is set
to No, history recall will stop at the beginning and end of the list rather than wrapping.    This setting
affects history recall at the prompt only; the command history window never wraps.

LogName = File:    Sets the log file name and path. If only a path is given, the default log file name
(4NTLOG) will be used.    Using LogName does not turn logging on; you must use a LOG ON command to
do so.

NoClobber = Yes | NO:    If set to Yes, will prevent standard output redirection from overwriting an
existing file, and will require that the output file already exist for append redirection.    Also see
SETDOS /N.

ParameterChar = c:    Sets the character used after a percent sign to specify all or all remaining
command-line arguments in a batch file or alias (e.g., %& or %n&; see Batch Files and ALIAS).    The
default is the dollar sign [$].    The parameter character is saved by SETLOCAL and restored by
ENDLOCAL.

Also see SETDOS /P.    See Special Character Compatibility for information on using compatible
parameter characters for two or more products..

PopupWinLeft = nnnn, PopupWinTop = nnnn, PopupWinWidth = nnnn, PopupWinHeight = nnnn:   
These values set the position and size of the command-line, directory history, and filename completion
windows, and most other popup windows (see CDDWinLeft etc. for the extended directory search
window).    The values are in characters, and include the border.    The defaults are 40, 1, 36, and 12,
respectively (i.e., a window beginning in column 40, row 1, 36 columns wide and 12 rows high).    The
position is relative to the top left corner of the screen.    The width and height values include the space
required for the window border.    The window cannot be smaller than than 10 columns wide by 5 rows
high (including the border).    The values you enter will be adjusted if necessary to keep a minimum-size
window visible on the screen.

The window is normally displayed with a shadow, but if you specify a window starting at column 0 and
extending to the right margin, the shadow is eliminated; this may be useful to prevent speech software
from reading text in the shadow area while viewing the window.

Printer = devicename:    Sets the output device that the LIST command will print to.    By default, LPT1 is
used. The device can be PRN, LPT1 to 3, COM1 to 4, NUL (which will disable printed output) or any other
installed character device.

ScreenRows = nnnn:    Sets the number of screen rows used by the video display.    Normally the screen
size is determined automatically, but if you have a non-standard display you may need to set it explicitly.   
This value does not affect screen scrolling, which is controlled by Windows NT and your video driver.   
ScreenRows is used only by the LIST and SELECT commands, the paged output options of other
commands (e.g., TYPE /P), and error checking in the screen output commands.    Also see SETDOS /R.

TabStops = nnnn (8):    Sets the tab stops for files displayed with the LIST command.    Setting
TabStops=3, for example, will place a tab stop in every third column.    The allowable range is 1 to 32.

ThousandsChar = . | , | AUTO:    Sets the character used as the thousands separator for numeric output. 
The only valid settings are period [.], comma [,], and Auto (the default).    A setting of Auto tells the
command processor to use the thousands separator associated with your current country code.    If you
change the thousands character you must also adjust the decimal character (with DecimalChar) so that
the two characters are different.    Also see SETDOS /G.

UpperCase = Yes | NO:    Yes specifies that file and directory names should be displayed in the traditional
upper-case by internal commands like COPY and DIR.    No allows the normal 4NT lower-case style. This
directive does not affect the display of filenames on drives which support long filenames (see File Names
for additional details).    Also see SETDOS /U.

Color Directives

These directives control the colors that 4NT use for its displays.    For complete details on color names
see Colors and Color Names.    The color directives are:

CDDWinColors Directory change window colors

ColorDir Directory colors

InputColors Input colors

ListboxBarColors Light bar color in list boxes

ListColors LIST display colors

ListStatBarColors LIST status bar colors

PopupWinColors Popup window colors

SelectColors SELECT display colors

SelectStatBarColors SELECT status bar colors

StdColors Standard display colors

CDDWinColors = Color:    Sets the default colors for the popup window used by extended directory
searches.    If this directive is not used, the colors will be reversed from the current colors on the screen.

ColorDir = ext1 ext2 ...:colora;ext3 ext4 ... :colorb; ...: Sets the directory colors used by DIR and SELECT.
The format is the same as that used for the COLORDIR environment variable.    See Color-Coded
Directories for a detailed explanation.

InputColors = Color:    Sets the colors used for command-line input.    This setting is useful for making
your input stand out from the normal output.

ListboxBarColors = Color:    Sets the color for the highlight bar in the popup list boxes (i.e., command
history window, filename completion window, @SELECT window, etc.).

ListColors = Color:    Sets the colors used by the LIST command.    If this directive is not used, LIST will
use the current default colors set by the CLS or COLOR command or by the StdColors directive.

ListStatBarColors = Color:    Sets the colors used on the LIST status bar.    If this directive is not used,
LIST will set the status bar to the reverse of the screen color (the screen color is controlled by ListColors).

PopupWinColors = Color:    Sets the default colors for the command-line, directory history, and filename
completion windows, and most other popup windows (see CDDWinColors for the extended directory
search window).    If this directive is not used, the colors will be reversed from the current colors on the
screen.

SelectColors = Color:    Sets the color used by the SELECT command.    If this directive is not used,
SELECT will use the current default colors set by the CLS or COLOR command or by the StdColors
directive.

SelectStatBarColors = Color:    Sets the color used on the SELECT status bar.    If this directive is not
used, SELECT will set the status bar to the reverse of the screen color (the screen color is controlled by
SelectColors).

StdColors = Color:    Sets the standard colors to be used when CLS is used without a color specification,
and for LIST and SELECT if ListColors and SelectColors are not used.    Using this directive is similar to
placing a COLOR command in 4START.BAT.    StdColors takes effect the first time CLS, LIST, or SELECT
is used after 4NT starts, but will not affect the color of error or other messages displayed during the
loading and initialization process.

Key Mapping Directives

These directives allow you to change the keys used for command-line editing and other internal functions.
They are divided into four types, depending on the context in which the keys are used.    For a discussion
and list of directives for each type see:

General Input Keys

Command-Line Editing Keys

Popup Window Keys

LIST Keys

Using a key mapping directive allows you to assign a different or additional key to perform the function
described.    For example, to use function key F3 to invoke the HELP facility (normally invoked with F1):

Help = F3

Any directive can be used multiple times to assign multiple keys to the same function.    For example:

ListFind = F ;F does a find in LIST
ListFind = F5 ;F5 also does a find in LIST

Use some care when you reassign keystrokes.    If you assign a default key to a different function, it will
no longer be available for its original use.    For example, if you assign F1 to the AddFile directive (a part
of filename completion), the F1 key will no longer invoke the help system, so you will probably want to
assign a different key to Help.

See Keys and Key Names before using the key mapping directives.

Key assignments are processed before looking for keystroke aliases.    For example, if you assign Shift-
F1 to HELP and also assign Shift-F1 to a key alias, the key alias will be ignored.

Assigning a new keystroke for a function does not deassign the default keystroke for the same function.   
If you want to deassign one of the default keys, use the NormalKey directive described below or the
corresponding directive for keys in the other key groups (NormalEditKey, NormalHWinKey, or
NormalListKey).

General Input Keys

These directives apply to all input.    They are in effect whenever 4NT requests input from the keyboard,
including during command-line editing and the DESCRIBE, ESET, INPUT, LIST, and SELECT
commands.    The general input keys are:

Backspace Deletes the character to the left of the cursor

BeginLine Moves the cursor to the start of the line

Del Deletes the character at the cursor

DelToBeginning Deletes from the cursor to the start of the line

DelToEnd Deletes from the cursor to the end of the line

DelWordLeft Deletes the word to the left of the cursor

DelWordRight Deletes the word to the right of the cursor

Down Moves the cursor or scrolls the display down

EndLine Moves the cursor to the end of the line

EraseLine Deletes the entire line

ExecLine Executes or accepts a line

Ins Toggles insert / overstrike mode

Left Moves the cursor or scrolls the display left

NormalKey Deassigns a key

Right Moves the cursor or scrolls the display right

Up Moves the cursor or scrolls the display up

WordLeft Moves the cursor left one word

WordRight Moves the cursor right one word

Backspace = Key (Bksp):    Deletes the character to the left of the cursor.

BeginLine = Key (Home):    Moves the cursor to the beginning of the line.

Del = Key (Del):    Deletes the character at the cursor.

DelToBeginning = Key (Ctrl-Home):    Deletes from the cursor to the start of the line.

DelToEnd = Key (Ctrl-End):    Deletes from the cursor to the end of the line.

DelWordLeft = Key (Ctrl-L):    Deletes the word to the left of the cursor.

DelWordRight = Key (Ctrl-R, Ctrl-Bksp):    Deletes the word to the right of the cursor.    See ClearKeyMap
if you need to remove the default mapping of Ctrl-Bksp to this function.

Down = Key (Down):    Scrolls the display down one line in LIST; moves the cursor down one line in
SELECT and in the command-line history, directory history, or %@SELECT window.    (Scrolling down
through the command history at the prompt is controlled by NextHistory, not by this directive.)

EndLine = Key (End):    Moves the cursor to the end of the line.

EraseLine = Key (Esc):    Deletes the entire line.

ExecLine = Key (Enter):    Executes or accepts a line.

Ins = Key (Ins):    Toggles insert / overstrike mode during line editing.

Left = Key (Left):    Moves the cursor left one character on the input line; scrolls the display left 8 columns
in LIST;    scrolls the display left 4 columns in the command-line, directory history, or %@SELECT
window.

NormalKey = Key:    Deassigns a general input key in order to disable the usual meaning of the key
within 4NT and/or make it available for keystroke aliases.    This will make the keystroke operate as a
"normal" key with no special function.    For example:

NormalKey = Ctrl-End

will disable Ctrl-End, which is the standard "delete to end of line" key.    Ctrl-End could then be assigned to
a keystroke alias. Another key could be assigned the "delete to end of line" function with the DelToEnd
directive.

Right = Key (Right):    Moves the cursor right one character on the input line; scrolls the display right 8
columns in LIST; scrolls the display right 4 columns in the command-line history, directory history, or
%@SELECT window.

Up = Key (Up):    Scrolls the display up one line in LIST; moves the cursor up one line in SELECT and in
the command-line history, directory history, or %@SELECT window.    (Scrolling up through the command
history at the prompt is controlled by PrevHistory, not by this directive.)

WordLeft = Key (Ctrl-Left):    Moves the cursor left one word; scrolls the display left 40 columns in LIST.

WordRight = Key (Ctrl-Right):    Moves the cursor right one word; scrolls the display right 40 columns in
LIST.

Command-Line Editing Keys

These directives apply only to command-line editing.    They are only effective at the 4NT prompt.    The
command-line editing keys are:

AddFile Keeps filename completion entry and adds another

AliasExpand Expands aliases without executing them

CommandEscape Allows direct entry of a keystroke

DelHistory Deletes a history list entry

EndHistory Displays the last entry in the history list

Help Invokes this help system

LFNToggle Switches filename completion between LFN and SFN modes

LineToEnd Copies command line to end of history, and executes it

NextFile Gets the next matching filename

NextHistory Recalls the next command from the history

NormalEditKey Deassigns a command-line editing key

PopFile Opens the filename completion window

PrevFile Gets the previous matching filename

PrevHistory Recalls the previous command from the history

SaveHistory Saves the command line without executing it

AddFile = Key (F10):    Keeps the current filename completion entry and inserts the next matching name.

AliasExpand = Key (Ctrl-F):    Expands all aliases in the current command line without executing them.

CommandEscape = Key (Alt-255):    Allows direct entry of a keystroke that would normally be handled by
the command line editor (e.g. Tab or Ctrl-D).

DelHistory = Key (Ctrl-D):    Deletes the displayed history list entry and displays the previous entry.

EndHistory = Key (Ctrl-E):    Displays the last entry in the history list.

Help = Key (F1):    Invokes the HELP facility.

LFNToggle = Key (Ctrl-A):    Toggles filename completion between long filename and short filename
modes on LFN drives.

LineToEnd = Key (Ctrl-Enter):    Copies the current command line to the end of the history list, then
executes it.

NextFile = Key (F9, Tab):    Gets the next matching filename. See ClearKeyMap if you need to remove the
default mapping of Tab to this function.

NextHistory = Key (Down):    Recalls the next command from the command history.

NormalEditKey = Key:    Deassigns a command-line editing key in order to disable the usual meaning of
the key while editing a command line, and/or make it available for keystroke aliases.    For additional
details see NormalKey.

PopFile = Key (F7, Ctrl-Tab):    Opens the filename completion window.    You may not be able to use Ctrl-
Tab, because not all systems recognize it as a keystroke.    See ClearKeyMap if you need to remove the
default mapping of Ctrl-Tab to this function.

PrevFile = Key (F8, Shift-Tab):    Gets the previous matching filename.    See ClearKeyMap if you need to
remove the default mapping of Shift-Tab to this function.

PrevHistory = Key (Up):    Recalls the previous command from the command history.

SaveHistory = Key (Ctrl-K):    Saves the command line in the command history list without executing it.

Popup Window Keys

These directives apply to popup windows, including the command history window, the directory history
window, the filename completion window, the extended directory search window, and the @SELECT
window.    The popup window keys are:

DirWinOpen Opens the directory history window

HistWinOpen Opens the command history window

NormalPopupKey Deassigns a popup window key

PopupWinBegin Moves to the first line of the popup window

PopupWinDel Deletes a line from within the popup window

PopupWinEdit Moves a line from the popup window to the prompt

PopupWinEnd Moves to the last line of the popup window

PopupWinExec Executes the selected line in the popup window

DirWinOpen = Key (Ctrl-PgUp):    Opens the directory history window while at the command line.

HistWinOpen = Key (PgUp):    Brings up the history window while at the command line.

NormalPopupKey = Key:    Deassigns a popup window key in order to disable the usual meaning of the
key within the popup window. For additional details see the NormalKey directive.

PopupWinBegin = Key (Ctrl-PgUp):    Moves to the first item in the list when in the popup window.

PopupWinDel = Key (Ctrl-D):    Deletes a line from within the command history or directory history
window.

PopupWinEdit = Key (Ctrl-Enter):    Moves a line from the command history or directory history window to
the prompt for editing.

PopupWinEnd = Key (Ctrl-PgDn):    Moves to the last item in the list when in the popup window.

PopupWinExec = Key (Enter):    Selects the current item and closes the window.

LIST Keys

These directives are effective only inside the LIST command.    The LIST keys are:

ListExit Exits the current file

ListFind Prompts and searches for a string

ListFindReverse Prompts and searches backward for a string

ListHex Toggles hexadecimal display mode

ListHighBit Toggles LIST's "strip high bit" option

ListInfo Displays information about the current file

ListNext Finds the next matching string

ListPrevious Finds the previous matching string

ListPrint Prints the file on LPT1

ListWrap Toggles LIST's wrap option

NormalListKey Deassigns a LIST key

ListExit = Key (Esc):    Exits from the LIST command.

ListFind = Key (F):    Prompts and searches for a string.

ListFindReverse = Key (Ctrl-F):    Prompts and searches backward for a string.

ListHex = Key (X):    Toggles hexadecimal display mode.

ListHighBit = Key (H):    Toggles LIST's "strip high bit" option, which can aid in displaying files from
certain word processors.

ListInfo = Key (I):    Displays information about the current file.

ListNext = Key (N):    Finds the next matching string.

ListPrevious = Key (Ctrl-N):    Finds the previous matching string.

ListPrint = Key (P):    Prints the file on LPT1.

ListWrap = Key (W):    Toggles LIST's wrap option on and off. The wrap option wraps text at the right
margin.

NormalListKey = Key:    Deassigns a LIST key in order to disable the usual meaning of the key within
LIST.    For additional details see NormalKey.

Advanced Directives

These directives are generally used for unusual circumstances, or for diagnosing problems.    Most often
they are not needed in normal use.    The advanced directives are:

ClearKeyMap Clear default key mappings

Debug Set debugging options

Include Include a file containing .INI directives

NextINIFile Set secondary shell .INI file name

ClearKeyMap:    Clears all current key mappings.    ClearKeyMap is a special directive which has no value
or "=" after it.    Use ClearKeyMap to make one of the keys in the default map (Tab, Shift-Tab, Ctrl-Tab, or
Ctrl-Bksp) available for a keystroke alias, or in the [Secondary] section of the .INI file to clear key
mappings inherited from the primary shell.    ClearKeyMap should appear before any key mapping
directives.    If you want to clear some but not all of the default mappings, use ClearKeyMap, then recreate
the mappings you want to retain (e.g., with "NextFile=Tab", etc.).

Debug = nnnn (0):    Controls certain debugging options which can assist you in tracking down unusual
problems.    Use the following values for Debug; to select more than one option, add the values together:

1 During the startup process, display the complete command tail passed to 4NT, then wait
for a keystroke.

2 Include the product name with each error message displayed by 4NT.    This may be
useful if you are unsure of the origin of a particular error message.

Also see the batch file debugger, a separate and unrelated facility for stepping through batch files.

Include = File:    Include the text from the named file at this point in the processing of the current .INI file.   
Use this option to share a file of directives between several products.    The text in the named file is
processed just as if it were part of the original .INI file.    When the include file is finished, processing
resumes at the point where it left off in the original file.    The included file may contain any valid directive
for the current section, but may not contain a section name.    Includes may be nested up to three levels
deep (counting the original file as level 1).   

You must maintain include files manually — the OPTION command modifies the original .INI file only, and
does not update included files.

NextINIFile = File:    The full path and name of the file must be specified.    All subsequent shells will read
the specified .INI file, and ignore any [Secondary] section in the original .INI file.

4NT Commands by Name

? DRAWVLINE LIST SETDOS
ACTIVATE ECHO LOADBTM SETLOCAL
ALIAS ECHOERR LOG SHIFT
ATTRIB ECHOS MD / MKDIR SHRALIAS
ASSOC ECHOSERR MEMORY START
BEEP ENDLOCAL MOVE SWITCH
CALL ESET MSGBOX TEE
CANCEL EXCEPT ON TEXT
CD / CHDIR EXIT OPTION TIME
CDD FFIND PATH TIMER
CLS FOR PAUSE TITLE
COLOR FREE POPD TOUCH
COPY FTYPE PROMPT TREE
DATE GLOBAL PUSHD TRUENAME
DEL / ERASE GOSUB QUIT TYPE
DELAY GOTO RD / RMDIR UNALIAS
DESCRIBE HELP REBOOT UNSET
DETACH HISTORY REM VER
DIR IF REN / RENAME VERIFY
DIRHISTORY IFF RETURN VOL
DIRS INKEY SCREEN VSCRPUT
DO INPUT SCRPUT WINDOW
DRAWBOX KEYBD SELECT Y
DRAWHLINE KEYS SET

4NT Commands

The best way to learn the 4NT commands is to experiment with them.    The lists below categorize the
available commands by topic and will help you find the ones that you need.

System configuration

CLS HISTORY OPTION VER
COLOR KEYBD PROMPT VERIFY
DATE KEYS REBOOT VOL
DIRHISTORY LOG SETDOS
FREE MEMORY TIME

File and directory management
ATTRIB FFIND SELECT TYPE
COPY LIST TOUCH
DEL / ERASE MOVE TREE
DESCRIBE REN / RENAME TRUENAME

Subdirectory management
CD / CHDIR MD / MKDIR
CDD POPD
DIR PUSHD
DIRS RD / RMDIR

Input and output

DRAWBOX ECHOERR INPUT VSCRPUT
DRAWHLINE ECHOS MSGBOX
DRAWVLINE ECHOSERR SCREEN
ECHO INKEY SCRPUT

Commands primarily for use in or with batch files and aliases (some work only in batch files; see the
individual commands for details)

ALIAS ENDLOCAL IFF RETURN
BEEP FOR LOADBTM SETLOCAL
CALL GLOBAL ON SHIFT
CANCEL GOSUB PAUSE SWITCH
DELAY GOTO QUIT TEXT
DO IF REM UNALIAS

Environment and path commands

ESET
PATH
SET
UNSET

Other commands

? EXCEPT SHRALIAS TITLE
ACTIVATE EXIT START WINDOW
ASSOC FTYPE TEE Y
DETACH HELP TIMER

?

Purpose: Display a list of internal commands, or prompt for a command.

Format: ? ["prompt" command]

prompt:    Prompt text about whether to execute the command.
command:    Command to be executed if user answers Y.

Usage

? has two functions.    When you use the ? by itself, it displays a list of internal commands.    If you have
disabled a command with SETDOS /I, it will not appear in the list.

The second function of ? is to prompt the user before executing a specific line in a batch file.    If you add
a prompt and a command, ? will display the prompt followed by "(Y/N)?" and wait for the user's
response.    If the user presses "Y" or "y", the line will be executed.    If the user presses "N" or "n", the line
will be ignored.

For example, the following command might be used in a batch file:

? Load the network call netstart.btm

When this command is executed, you will see the following prompt; if you answer "Y", the CALL
command will be executed:

Load the network (Y/N)?

ACTIVATE

Purpose: Activate a window, set its state, or change its title.

Format: ACTIVATE "window" [MAX | MIN | RESTORE | CLOSE | "title"]

window:    Current title of window to work with.
title:    New title for window.

See also:    START, TITLE, and WINDOW.   

Usage

Both the current name of the window and the new name, if any, must be enclosed in double quotes.    The
quotes will not appear as part of the title bar text.

If no options are used, the window named in the command will become the active window and be able to
receive keystrokes and mouse commands.

The MAX option expands the window to its maximum size, the MIN option reduces the window to an icon,
and the RESTORE option returns the window to its default size and location on the desktop.    The
CLOSE option closes the window and ends the session running in the window.

This example maximizes and then renames the window called "4NT":

[c:\] activate "4NT" max
[c:\] activate "4NT" "Command Prompt"

You can use wildcards in the window name if you only know the first part of the title.    This is useful with
applications that change their window title to reflect the file currently in use.

ALIAS

Purpose: Create new command names that execute one or more commands or redefine default
options for existing commands; assign commands to keystrokes; load or display the list of
defined alias names.

Format: ALIAS [/P /R file...] [name [=][value]]

file:    One or more files to read for alias definitions.
name:    Name for an alias, or for the key to execute the alias.
value:    Text to be substituted for the alias name.

/P(ause) /R(ead file)

See also:    UNALIAS and Aliases.

Usage

The ALIAS command lets you create new command names or redefine internal commands.    It also lets
you assign one or more commands to a single keystroke.    An alias is often used to execute a complex
series of commands with a few keystrokes or to create "in memory batch files" that run much faster than
disk-based batch files.

For example, to create a single-letter command D to display a wide directory, instead of using the longer
DIR /W, you could use the command:

[c:\] alias d = dir /w

Now when you type a single d as a command, it will be translated into a DIR /W command.

If you define aliases for commonly used application programs, you can often remove the directories
they're stored in from the PATH. For example, if you use Quattro Pro and had the C:\QPRO directory in
your path, you could define the following alias:

[c:\] alias qpro = c:\qpro\q.exe

With this alias defined, you can probably remove C:\QPRO from your PATH.    Quattro Pro will now load
more quickly than it would if 4NT had to search the PATH for it.    In addition, the PATH can be shorter,
which will speed up searches for other programs.

If you apply this technique for each application program, you can often reduce your PATH to just two or
three directories containing utility programs, and significantly reduce the time it takes to load most
software on your system.    Before removing a directory from the PATH, you will need to define aliases for
all the executable programs you commonly use which are stored in that directory.

Aliases are stored in memory, and are not saved automatically when you turn off your computer or end
your current session.    See below for information on saving and reloading your aliases.

Multiple Commands and Special Characters in Aliases

An alias can represent more than one command.    For example:

[c:\] alias letters = `cd \letters & text`

creates a new command called LETTERS.    The command first uses CD to change to a subdirectory

called \LETTERS and then runs a program called TEXT.    The ampersand [&] is the command separator
and indicates that the two commands are distinct and should be executed sequentially.

Aliases make extensive use of the command separator, and the parameter character, and may also use
the escape character.    These characters differ between 4DOS and 4OS2 or 4NT.    In the text and
examples below, we use the 4NT characters.    If you want to use the same aliases under different
command processors, see Special Character Compatibility.

When you type alias commands at the command line or in a batch file, you must use back quotes [`]
around the definition if it contains multiple commands, parameters (discussed below), environment
variables, redirection, or piping.    The back quotes prevent premature expansion of these arguments.   
You may use back quotes around other definitions, but they are not required. (You do not need back
quotes when your aliases are loaded from an ALIAS /R file; see below for details.)    The examples above
and below include back quotes only when they are required.

Nested Aliases

Aliases may invoke internal commands, external commands, or other aliases.    (However, an alias may
not invoke itself, except in special cases where an IF or IFF command is used to prevent an infinite loop.) 
The two aliases below demonstrate alias nesting (one alias invoking another).    The first line defines an
alias which runs a program called WP.EXE that is in the E:\WP60\ subdirectory.    The second alias
changes directories with the PUSHD command, runs the WP alias, and then returns to the original
directory with the POPD command:

[c:\] alias wp = e:\wp60\wp.exe
[c:\] alias w = `pushd c:\wp & wp & popd`

The second alias above could have included the full path and name of the WP.EXE program instead of
calling the WP alias. However, writing two aliases makes the second one easier to read and understand,
and makes the first alias available for independent use.    If you rename the WP.EXE program or move it
to a new directory, only the first alias needs to be changed.

Temporarily Disabling Aliases

If you put an asterisk [*] immediately before a command in the value of an alias definition (the part after
the equal sign), it tells 4NT not to attempt to interpret that command as another (nested) alias.    An
asterisk used this way must be preceded by a space or the command separator and followed immediately
by an internal or external command name.

By using an asterisk, you can redefine the default options for any internal or external command.    For
example, suppose that you always want to use the DIR command with the /2 (two column) and /P (pause
at the end of each page) options.    The following line will do just that:

[c:\] alias dir = *dir /2/p

If you didn't include the asterisk, the second DIR on the line would be the name of the alias itself, and 4NT
would repeatedly re- invoke the DIR alias, rather than running the DIR command.    This would cause an
"Alias loop" or "Command line too long" error.

An asterisk also helps you keep the names of internal commands from conflicting with the names of
external programs.    For example, suppose you have a program called LIST.COM.    Normally, the internal
LIST command will run anytime you type LIST.    But two simple aliases will give you access to both the
LIST.COM program and the LIST command:

[c:\] alias list = c:\util\list.com
[c:\] alias display = *list

The first line above defines LIST as an alias for the LIST.COM program.    If you stopped there, the
external program would run every time you typed LIST and you would not have easy access to the
internal LIST command.    The second line renames the internal LIST command as DISPLAY.    The
asterisk is needed in the second command to indicate that the following word means the internal
command LIST, not the LIST alias which runs your external program.

Another way to understand the asterisk is to remember that a command is always checked for an alias
first, then for an internal or external command, or a batch file.    The asterisk at the beginning of a
command name simply skips over the usual check for aliases when processing that command, and allows
the command processor to go straight to checking for an internal command, external command, or batch
file.

You can also use an asterisk before a command that you enter at the command line or in a batch file.    If
you do, that command won't be interpreted as an alias.    This can be useful when you want to be sure you
are running the true, original command and not an alias with the same name, or temporarily defeat the
purpose of an alias which changes the meaning or behavior of a command.

You can also disable aliases temporarily with the SETDOS /X command.

Partial Alias Names

You can also use an asterisk in the name of an alias.    When you do, the characters following the asterisk
are optional when you invoke the alias command.    (Use of an asterisk in the alias name is unrelated to
the use of an asterisk in the alias value discussed above.)    For example, with this alias:

[c:\] alias wher*eis = dir /sp

the new command, WHEREIS, can be invoked as WHER, WHERE, WHEREI, or WHEREIS.    Now if you
type:

[c:\] where myfile.txt

The WHEREIS alias will be expanded to the command:

dir /sp myfile.txt

Keystroke Aliases

If you want to assign an alias to a keystroke, use the keyname on the left side of the equal sign, preceded
by an at sign [@]. For example, to assign the command DIR /W to the F5 key, type

[c:\] alias @F5 = dir /w

See Keys and Key Names for a complete listing of key names and a description of the key name format.

When you define keystroke aliases, the assignments will only be in effect at the command line, not inside
application programs.    Be careful not to assign aliases to keys that are already used at the command line
(like F1 for Help).    The command-line meanings take precedence and the keystroke alias will never be
invoked.    If you want to use one of the command-line keys for an alias instead of its normal meaning, you
must first disable its regular use with the NormalKey or NormalEditKey directives in your .INI file.

If you define a keystroke alias with a single at sign as shown above, then, when you press the F5 key, the
value of the alias (DIR /W above) will be placed on the command line for you.    You can type additional
parameters if you wish and then press Enter to execute the command.    With this particular alias, you can
define the files that you want to display after pressing F5 and before pressing Enter to execute the
command.

If you want the keystroke alias to take action automatically without waiting for you to edit the command
line or press Enter, you can begin the definition with two at signs [@@]. 4NT will execute the alias
"silently," without displaying its text on the command line.    For example, this command will assign an
alias to the F6 key that uses the CDD command to take you back to the previous default directory:

[c:\] alias @@f6 = cdd -

You can also define a keystroke alias by using "@" or "@@" plus a scan code for one of the permissible
keys (see the Key Code Tables for a list of scan codes).    In most cases it will be easier to use key
names.    Scan codes should only be used with unusual keyboards where a key name is not available for
the key you are using.

Displaying Aliases

If you want to see a list of all current ALIAS commands, type:

[c:\] alias

You can also view the definition of a single alias.    If you want to see the definition of the alias LIST, you
can type:

[c:\] alias list

Saving and Reloading Your Aliases

You can save your aliases to a file called ALIAS.LST this way:

[c:\] alias > alias.lst

You can then reload all the alias definitions in the file the next time you boot up with the command:

[c:\] alias /r alias.lst

This is much faster than defining each alias individually in a batch file.    If you keep your alias definitions
in a separate file which you load when your system starts, you can edit them with a text editor, reload the
edited file with ALIAS /R, and know that the same alias list will be loaded the next time you boot your
computer.

When you define aliases in a file that will be read with the ALIAS /R command, you do not need back
quotes around the value, even if back quotes would normally be required when defining the same alias at
the command line or in a batch file.

To remove an alias, use the UNALIAS command.

Alias Parameters

Aliases can use command-line arguments or parameters like those in batch files.    The command-line
arguments are numbered from %0 to %127.    %0 contains the alias name.    It is up to the alias to
determine the meaning of the other parameters.    You can use quotation marks to pass spaces, tabs,
commas, and other special characters in an alias parameter; see Argument Quoting for details.

Parameters that are referred to in an alias, but which are missing on the command line, appear as empty
strings inside the alias.    For example, if you put two parameters on the command line, any reference in
the alias to %3 or any higher-numbered parameter will be interpreted as an empty string.

The parameter %n$ has a special meaning.    4NT interprets it to mean "the entire command line, from

argument n to the end."    If n is not specified, it has a default value of 1, so %$ means "the entire
command line after the alias name."    The special parameter %# contains the number of command-line
arguments.

For example, the following alias will change directories, perform a command, and return to the original
directory:

[c:\] alias in `pushd %1 & %2$ & popd`

When this alias is invoked as:

[c:\] in c:\comm mycomm /zmodem /56K

the first parameter, %1, has the value c:\comm.    %2 is mycomm, 3

 is /zmodem, and %4 is /56K.    The command line expands into these three separate commands:

pushd c:\comm
ycomm /zmodem /56K
popd

This next example uses the IFF command to redefine the defaults for SET.    It should be entered on one
line:

[c:\] alias set = `iff %# == 0 then & *set /p & else & *set %& & endiff`

This modifies the SET command so that if SET is entered with no arguments, it is replaced by SET /P
(pause after displaying each page), but if SET is followed by an argument, it behaves normally.    Note the
use of asterisks (*set) to prevent alias loops.

If an alias uses parameters, command-line arguments will be deleted up to and including the highest
referenced argument.    For example, if an alias refers only to %1 and %4, then the first and fourth
arguments will be used, the second and third arguments will be discarded, and any additional arguments
beyond the fourth will be appended to the expanded command (after the value portion of the alias).    If an
alias uses no parameters, all of the command- line arguments will be appended to the expanded
command.

Aliases also have full access to all variables in the environment, internal variables, and variable functions. 
For example, you can create a simple command-line calculator this way (enter this on one line):

[c:\] alias calc = `echo The answer is: %@eval[%&]`

Now, if you enter:

[c:\] calc 5 * 6

the alias will display:

The answer is: 30

Expanding Aliases

You can expand an alias on the command line and view or edit the results by pressing Ctrl-F after typing
the alias name, but before the command is executed.    This replaces the alias with its contents, and
substitutes values for each alias paramter, just as if you had pressed the Enter key.    However, the
command is not executed; it is simply redisplayed on the command line for additional editing.

Ctrl-F is especially useful when you are developing and debugging a complex alias, or if you want to
make sure that an alias that you may have forgotten won't change the effect of your command.

Local and Global Aliases

The aliases can be stored in either a "local" or "global" list.

With a local alias list, any changes made to the aliases will only affect the current copy of 4NT.    They will
not be visible in other shells or other sessions.

With a global alias list, all copies of 4NT will share the same alias list, and any changes made to the
aliases in one copy will affect all other copies.    This is the default.

You can control the type of alias list with the LocalAliases directive in the .INI file, and with the /L and /LA
options of the START command.

Whenever you start a secondary shell which uses a local alias list, it inherits a copy of the aliases from
the previous shell. However, any changes to the aliases made in the secondary shell will affect only that
shell.    If you want changes made in a secondary shell to affect the previous shell, use a global alias list in
both shells.

Retaining Global Aliases with SHRALIAS

If you select a global alias list for 4NT you can share the aliases among all copies of 4NT running in any
session.    When you close all 4NT sessions, the memory for the global alias list is released, and a new,
empty alias list is created the next time you start 4NT.

If you want the alias list to be retained in memory even when no command processor session is running,
execute the SHRALIAS command, which loads a program to perform this service for the global alias list,
the global command history list, and the global directory history.

SHRALIAS retains the alias list in memory, but cannot preserve it when Windows NT itself is shut down.   
To save your aliases when restarting NT, you must store them in a file and reload them after the system
restarts.    For details on how to do so, see Saving and Reloading Your Aliases (above).

The UNKNOWN_CMD Alias

If you create an alias with the name UNKNOWN_CMD, it will be executed any time 4NT would normally
issue an "Unknown command" error message.    This allows you to define your own handler for unknown
commands.    When the UNKNOWN_CMD alias is executed, the command line which generated the error
is passed to the alias for possible processing.    For example, to display the command that caused the
error:

alias unknown_cmd `echo Error in command "%&"`

If the UNKNOWN_CMD alias contains an unknown command, it will call itself repeatedly.    If this occurs,
the command processor will loop up to 10 times, then display an "UNKNOWN_CMD loop" error.

Options

/P (Pause)    This option is only effective when ALIAS is used to display existing definitions.    It
pauses the display after each page and waits for a keystroke before continuing (see Page
and File Prompts).

/R (Read file)    This option loads an alias list from a file. The format of the file is the same as that

of the ALIAS display:

name=value

where name is the name of the alias and value is its value.    You can use an equal sign [=] or
space to separate the name and value.    Back quotes are not required around the value.   
You can add comments to the file by starting each comment line with a colon [:].    You can
load multiple files with one ALIAS /R command by placing the names on the command line,
separated by spaces:

[c:\] alias /r alias1.lst alias2.lst

Each definition in an ALIAS /R file can be up to 2047 characters long. The definitions can
span multiple lines in the file if each line, except the last, is terminated with an escape
character.

ASSOC

Purpose: Modify or display relationships between file extensions and file types stored in the
Windows NT registry.

Format: ASSOC [/P] [.ext[=[filetype]]]

.ext:    The file extension whose file type you want to display or set.
filetype:    A file type stored in the Windows NT registry.

/P(ause)

See also:    FTYPE and Executable Extensions.

Usage

ASSOC allows you to create, modify, or display associations between file extensions and file types stored
in the Windows NT registry.

ASSOC manages "indirect" Windows NT file associations stored under the registry handle
HKEY_CLASSES_ROOT, and discussed in more detail under Windows File Associations and Using
Windows File Associations.    If you are not familiar with file associations be sure to read about them
before using ASSOC.

If you invoke ASSOC with no parameters, it will display the current associations.    If you include a .ext,
with no equal sign or filetype, ASSOC will display the current association for that extension.

If you include the equal sign and filetype, ASSOC will create or update the association for extension .ext
to refer to the specified file type.    The valid filetypes depend on the contents of your Windows NT registry.
See the FTYPE command or your Windows NT documentation for additional details.

ASSOC cannot delete an extension from the registry.    However, you can create a similar effect by
associating the extension with an empty file type using ASSOC .ext=, without the filetype parameter.

ASSOC should be used with caution, and only after backing up the registry.    Improper changes to file
associations can prevent applications and / or the operating system from working properly.

Options

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

ATTRIB

Purpose: Change or view file and subdirectory attributes.

Format: ATTRIB [/A:[[-]rhsda] /D /E /P /Q /S] [+|-[AHRS]] file ...

file:    A file, directory, or list of files or directories on which to operate.

/A: (Attribute select) /P(ause)
/D(irectories) /Q(uiet)
/E (No error messages) /S(ubdirectories)

Attribute flags:

+A Set the archive attribute
-A Clear the archive attribute
+H Set the hidden attribute
-H Clear the hidden attribute
+R Set the read-only attribute
-R Clear the read-only attribute
+S Set the system attribute
-S Clear the system attribute

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.   

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

Every file and subdirectory has 4 attributes that can be turned on (set) or turned off (cleared):    Archive,
Hidden, Read-only, and System.

The ATTRIB command lets you view, set, or clear attributes for any file, group of files, or subdirectory.   
You can view file attributes by entering ATTRIB without specifying new attributes (i.e., without the [+|-
[AHRS]] part of the format).    (You can also view file attributes with the DIR /T command).

The primary use of ATTRIB is to set attributes.    For example, you can set the read-only and hidden
attributes for the file MEMO:

[c:\] attrib +rh memo

Attribute options apply to the file(s) that follow the options on the ATTRIB command line.    The example
below shows how to set different attributes on different files with a single command.    It sets the archive
attribute for all .TXT files, then sets the system attribute and clears the archive attribute for TEST.COM:

[c:\] attrib +a *.txt +s -a test.com

When you use ATTRIB on an HPFS, NTFS, or LFN drive, you must quote any file names which contain
whitespace or special characters.    See File Names.

To change directory attributes, use the /D switch.    If you give ATTRIB a directory name instead of a file
name, and omit /D, it will append "*.*" to the end of the name and act on all files in that directory, rather
than acting on the directory itself.

Your operating system also supports "D" (subdirectory) and "V" (volume label) attributes.    These
attributes cannot be altered with ATTRIB; they are designed to be controlled only by the operating system
itself.

ATTRIB will ignore underlines in the new attribute (the [+|-[AHRS]] part of the command).    For example,
ATTRIB sees these 2 commands as identical:

[c:\] attrib +a filename
[c:\] attrib +__A_ filename

This allows you to use a string of attributes from either the @ATTRIB variable function or from ATTRIB
itself (both of which use underscores to represent attributes that are not set) and send that string back to
ATTRIB to set attributes for other files.    For example, to clear the attributes of FILE2 and then set its
attributes to match those of FILE1 (enter this on one line):

[c:\] attrib -arhs file2 & attrib +%@attrib[file1] file2

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., ATTRIB /A: ...), ATTRIB will select all files and
subdirectories including hidden and system files.    If attributes are combined, all the specified
attributes must match for a file to be selected.    For example, /A:RHS will select only those
files with all three attributes set.

The /A: switch specifies which files to select, not which attributes to set.    For example, to
remove the archive attribute from all hidden files, you could use this command:

[c:\] attrib /a:h -a *.*

/D: (Directories)    If you use the /D option, ATTRIB will modify the attributes of subdirectories in
addition to files (yes, you can have a hidden subdirectory):

[c:\] attrib /d +h c:\mydir

If you use a directory name instead of a file name, and omit /D, ATTRIB will append "*.*" to
the end of the name and act on all files in that directory, rather than acting on the directory
itself.

/E    (No error messages)    Suppress all non-fatal error messages, such as "File Not Found."   
Fatal error messages, such as "Drive not ready," will still be displayed.    This option is most
useful in batch files and aliases.

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

/Q (Quiet)    This option turns off ATTRIB's normal screen output. It is most useful in batch files.

/S (Subdirectories)    If you use the /S option, the ATTRIB command will be applied to all
matching files in the current or named directory and all of its subdirectories.

BEEP

Purpose: Beep the speaker or play simple music.

Format: BEEP [frequency duration ...]

frequency:    The beep frequency in Hertz (cycles per second).
duration:    The beep length in 1/18th second intervals.

Usage

BEEP generates a sound through your computer's speaker.    It is normally used in batch files to signal
that an operation has been completed, or that the computer needs attention.

Because BEEP allows you to specify the frequency and duration of the sound, you can also use it to play
simple music or to create different kinds of signals for the user.

You can include as many frequency and duration pairs as you wish. No sound will be generated for
frequencies less than 20 Hz, allowing you to use BEEP as a way to create short delays.    The default
value for frequency is 440 Hz; the default value for duration is 2.

This batch file fragment runs a program called DEMO, then plays a few notes and waits for you to press a
key:

demo & beep 440 4 600 2 1040 6
pause Finished with the demo - hit a key...

The following table gives the frequency values for a five octave range (middle C is 262 Hz):   

C 131 262 523 1046 2093
C# / Db 139 277 554 1108 2217
D 147 294 587 1175 2349
D# / Eb 156 311 622 1244 2489
E 165 330 659 1318 2637
F 175 349 698 1397 2794
F# / Gb 185 370 740 1480 2960
G 196 392 784 1568 3136
G# / Ab 208 415 831 1662 3322
A 220 440 880 1760 3520
A# / Bb 233 466 932 1866 3729
B 248 494 988 1973 3951

CALL

Purpose: Execute one batch file from within another.

Format: CALL file

file:    The batch file to execute.

See also:    CANCEL and QUIT.

Usage

CALL allows batch files to call other batch files (batch file nesting).    The calling batch file is suspended
while the called (second) batch file runs.    When the second batch file finishes, the original batch file
resumes execution at the next command.    If you execute a batch file from inside another batch file
without using CALL, the first batch file is terminated before the second one starts.

4NT supports batch file nesting up to ten levels deep.

The current ECHO state is inherited by a called batch file.

The called batch file should always either return (by executing its last line, or using the QUIT command),
or terminate batch file processing with CANCEL.    Do not restart or CALL the original batch file from
within the called file as this may cause an infinite loop or a stack overflow.

CALL returns an exit code which matches the batch file return code. You can test this exit code with the
%_? or %? environment variable, and use it with conditional commands.

CANCEL

Purpose: Terminate batch file processing.

Format: CANCEL [value]

value:    The numeric exit code to return to 4NT.

See also:    CALL and QUIT.

Usage

The CANCEL command ends all batch file processing, regardless of the batch file nesting level.    Use
QUIT to end a nested batch file and return to the previous batch file.

You can CANCEL at any point in a batch file.    If CANCEL is used from within an alias it will end execution
of both the alias and any batch files which are running at the time.

The following batch file fragment compares an input line to "end" and terminates all batch file processing
if it matches:

input Enter your choice: %%option
if "%option" == "end" cancel

If you specify a value, CANCEL will set the ERRORLEVEL or exit code to that value (see the IF
command, and the %? variable).

CD / CHDIR

Purpose: Display or change the current directory.

Format: CD [/D] [path | -]
          or

CHDIR [/D] [path | -]

path:    The directory to change to, including an optional drive name.

/D(rive)

See also:    CDD, MD, PUSHD, RD, CDPATH, and Directory Navigation.

Usage

CD and CHDIR are synonyms.    You can use either one.

CD lets you navigate a drive's subdirectory structure by changing the current working directory.    If you
enter CD and a directory name, the named directory becomes the new current directory.    For example, to
change to the subdirectory C:\FINANCE\MYFILES:

[c:\] cd \finance\myfiles
[c:\finance\myfiles]

Every disk drive on the system has its own current directory.    Specifying both a drive and a directory in
the CD command will change the current directory on the specified drive, but will not change the default
drive.    For example, to change the default directory on drive A:

[c:\] cd a:\utility
[c:\]

Notice that this command does not change to drive A:.    Use the CDD command to change the current
drive and directory at the same time.

When you use CD to change to a directory on an HPFS, NTFS, or LFN drive, you must quote the path
name if it contains whitespace or special characters.    See File Names for additional details.

You can change to the parent directory with CD ..; you can also go up one additional directory level with
each additional [.]. For example, CD will go up three levels in the directory tree (see Extended Parent
Directory Names).    You can move to a sibling directory -- one that branches from the same parent
directory as the current subdirectory -- with a command like CD .\newdir .

If you enter CD with no argument or with only a disk drive name, it will display the current directory on the
default or named drive.

If CD cannot change to the directory you have specified it will attempt to search the CDPATH and the
extended directory search database in order to find a matching directory and switch to it.    You can also
use wildcards in the path to force an extended directory search.    See Directory Navigation for complete
details on these and other directory navigation features.

CD saves the current directory before changing to a new directory. You can switch back to the previous
directory by entering CD - (there must be a space between the CD command and the hyphen).    You can
switch back and forth between two directories by repeatedly entering CD -.    The saved directory is the

same for both the CD and CDD commands.    Drive changes and automatic directory changes also modify
the saved directory, so you can use CD - to return to a directory that you exited with an automatic
directory change.

Directory changes made with CD are recorded in the directory history list and can be displayed in the
directory history window, which allows you to return quickly to a recently-used directory.

CD never changes the default drive.    If you change directories on one drive, switch to another drive, and
then enter CD -, the directory will be restored on the first drive but the current drive will not be changed.

Options

/D (Drive)    Changes the current drive as well as directory (like CDD).    This option is included
for compatibility with the undocumented CD /D command available in Windows NT 4.0's
CMD.EXE.

CDD

Purpose: Change the current disk drive and directory.

Format: CDD [/A /S[drive ...]] [path | -]

path:    The name of the directory (or drive and directory) to change to.
drive:    A drive or list of drives to include in the extended directory search database.

/A(ll drives) /S(earch tree)

See also:    CD, MD, PUSHD, RD, CDPATH, and Directory Navigation.

Usage

CDD is similar to the CD command, except that it also changes the default disk drive if one is specified.   
CDD will change to the directory and drive you name.    To change from the root directory on drive A to the
subdirectory C:\WP:

[a:\] cdd c:\wp
[c:\wp]

You can change to the parent directory with CDD ..; you can also go up one additional directory level with
each additional [.].    For example, CDD will go up three levels in the directory tree (see Extended
Parent Directory Names).

CDD can also change to a network drive and directory specified with a UNC name.

When you use CDD to change to a directory on an HPFS, NTFS, or LFN drive, you must quote the path
name if it contains whitespace or special characters.    See File Names for additional details.

If CDD cannot change to the directory you have specified it will attempt to search the CDPATH and the
extended directory search database in order to find a matching directory and switch to it.    You can also
use wildcards in the path to force an extended directory search.    See Directory Navigation for complete
details on these and other directory navigation features.

CDD saves the current drive and directory before changing to a new directory.    You can switch back to
the previous drive and directory by entering CDD - (there must be a space between the CDD command
and the hyphen).    You can switch back and forth between two drives and directories by repeatedly
entering CDD -.    The saved directory is the same for both the CD and CDD commands.    Drive changes
and automatic directory changes also modify the saved directory, so you can use CDD - to return to a
directory that you exited with a drive change or an automatic directory change.

Directory changes made with CDD are also recorded in the directory history list and can be displayed in
the directory history window, which allows you to return quickly to a recently-used directory.

Options

/A (All drives)    When CDD is used with this option, it displays the current directory on all drives
from C: to the last drive in the system.    You cannot move to a new drive and directory and
use /A in the same command.

/S (Search tree)    Builds or rebuilds the Extended Directory Search database, JPSTREE.IDX.   
You cannot move to a new drive and directory and use /S in the same command.

To include all local hard drives in the database use the command:

cdd /s

To limit or add to the list of drives included in the database, list the drives and network volume
names after the /S switch.    For example, to include drives C, D, E, and the network volume \\
server\dir1 in the database, use this command:

cdd /s cde \\server\dir1

All non-hidden directories on the listed drives will be indexed; you cannot restrict the
database to certain directories within a drive.    Each time you use /S, everything in the
previous directory database is replaced by the new database that is created.

CLS

Purpose: Clear the video display and move the cursor to the upper left corner; optionally change
the default display colors.

Format: CLS [/C /S] [[BRIght] fg ON [BRIght] bg

fg:    The new foreground color.
bg:    The new background color.

/C(lear buffer) /S(croll buffer)

Usage

CLS can be used to clear the screen without changing colors, or to clear the screen and change the
screen colors simultaneously. These two examples show how to clear the screen to the default colors,
and to bright white letters on a blue background:

[c:\] cls
[c:\] cls bright white on blue

CLS is often used in batch files to clear the screen before displaying text.

See Colors and Color Names for details about colors.

Options

/C (Clear buffer)    Clear the entire scrollback buffer.    If /C is not used, only the visible portion of
the 4NT screen is cleared.

/S (Scroll buffer)    Clear the screen by scrolling the buffer, rather than filling the screen with
blanks (the default method).    This preserves the text on the screen in the scrollback buffer if
it is larger than the visible window.    This switch may not give correct results when the buffer
size is less than twice the window size.

COLOR

Purpose: Change the default display colors.

Format: COLOR [BRIght] fg ON [BRIght] bg

fg:    The new foreground color.
bg:    The new background color.

See also:    CLS, and Colors and Color Names for details about using colors.

Usage

COLOR is normally used in batch files before displaying text. For example, to set screen colors to bright
white on blue, you can use this command:

[c:\] color bright white on blue

4NT also supports the same syntax as the version of CMD.EXE that is included with Windows NT 4.0 and
later:

COLOR bf

In this syntax, b is a hexadecimal digit that specifies the background color and f is a hexadecimal digit
that specifies the foreground color.    See your Windows NT documentation for more information.

COPY

Purpose: Copy data between disks, directories, files, or physical hardware devices (such as your
printer or serial port).

Format: COPY [/A:[[-]rhsda] /C /E /H /K /M /N /P /Q /R /S /T /U /V /X /Z] source [+] ... [/A /B]
destination [/A/B]

source:    A file or list of files or a device to copy from.
destination:    A file, directory, or device to copy to.

/A(SCII) /P(rompt)
/A: (Attribute select) /Q(uiet)
/B(inary) /R(eplace)
/C(hanged) /S(ubdirectories)
/E (no error messages) /T(otals)
/H(idden) /U(pdate)
/K(eep attributes) /V(erify)
/M(odified) /X (clear archive)
/N(othing) /Z (overwrite)

See also:    ATTRIB, MOVE, and REN.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.    Date, time, size, or exclude
ranges anywhere on the line apply to all source files.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

The COPY command accepts all traditional syntax and options and adds many new features.

The simplest use of COPY is to make a copy of a file, like this example which makes a copy of a file
called FILE1.ABC:

[c:\] copy file1.abc file2.def

You can also copy a file to another drive and/or directory.    The following command copies FILE1 to the \
MYDIR directory on drive E:

[c:\] copy file1 e:\mydir

When you COPY files to or from an HPFS, NTFS, or LFN drive, you must quote any file names which
contain whitespace or special characters.    See File Names for additional details.

Copying Files

You can copy several files at once by using wildcards:

[c:\] copy *.txt e:\mydir

You can also list several source files in one command.    The following command copies 3 files from the
current directory to the \MYDIR directory on drive E:

[c:\] copy file1 file2 file3 e:\mydir

COPY also understands include lists, so you can specify several different kinds of files in the same
command.    This command copies the .TXT, .DOC, and .BAT files from the E:\MYDIR directory to the root
directory of drive A:

[c:\] copy e:\mydir*.txt;*.doc;*.bat a:\

If there is only one argument on the line, COPY assumes it is the source, and uses the current drive and
directory as the destination.    For example, the following command copies all the .DAT files on drive A to
the current directory on drive C:

[c:\data] copy a:*.dat

If there are two or more arguments on the line, separated by spaces, then COPY assumes that the last
argument is the destination and copies all source files to this new location.    If the destination is a drive,
directory, or device name then the source files are copied individually to the new location.    If the
destination is a file name, the first source file is copied to the destination, and any additional source files
are then appended to the new destination file.

For example, the first of these commands copies the .DAT files from the current directory on drive A
individually to C:\MYDIR (which must already exist as a directory); the second appends all the .DAT files
together into one large file called C:\DATA (assuming C:\DATA is not a directory):

[c:\] copy a:*.dat c:\mydir\
[c:\] copy a:*.dat c:\data

When you copy to a directory, if you add a backslash [\] to the end of the name as shown in the first
example above, COPY will display an error message if the name does not refer to an existing directory.   
You can use this feature to keep COPY from treating a mistyped destination directory name as a file
name and attempting to append all your source files to a destination file, when you really meant to copy
them individually to a destination directory.

To copy a file to a device such as the printer, use the device name as the destination, for example:

[c:\] copy schedule.txt prn

To copy text to or from the clipboard use CLIP: as the device name.    Using CLIP: with non-text data will
produce unpredictable results.    See Redirection and Piping for additional details.

Appending Files

A plus [+] tells COPY to append two or more files to a single destination file.    If you list several source
files separated with [+] and don't specify a destination, COPY will use the name of the first source file as
the destination, and append each subsequent file to the first file.

For example, the following command will append the contents of C:\MEMO2 and C:\MEMO3 to C:\
MEMO1 and leave the combined contents in the file named C:\MEMO1:

[c:\] copy memo1+memo2+memo3

To append the same three files but store the result in BIGMEMO:

[c:\] copy memo1+memo2+memo3 bigmemo

If no destination is specified, the destination file will always be created in the current directory even if the

first source file is in another directory or on another drive.    For example, this command willappend C:\
MEM\MEMO2 and C:\MEM\MEMO3 to D:\DATA\MEMO1, and leave the result in C:\MEM\MEMO1:

[c:\mem] copy d:\data\memo1+memo2+memo3

You cannot append files to a device (such as a printer); if you try to do so, COPY will ignore the [+] signs
and copy the files individually.    If you attempt to append several source files to a destination directory or
disk, COPY will append the files and place the copy in the new location with the same name as the first
source file.

Advanced Features

If your destination has wildcards in it, COPY will attempt to match them with the source names.    For
example, this command copies the .DAT files from drive A to C:\MYDIR and gives the new copies the
extension .DX:

[c:\] copy a:*.dat c:\mydir*.dx

This feature can give you unexpected results if you use it with multiple source file names.    For example,
suppose that drive A contains XYZ.DAT and XYZ.TXT.    The command

[c:\] copy a:*.dat a:*.txt c:\mydir*.dx

will copy A:XYZ.DAT to C:\MYDIR\XYZ.DX.    Then it will copy A:XYZ.TXT to C:\MYDIR\XYZ.DX,
overwriting the first file it copied.

COPY also understands include lists, so you can specify several different kinds of files in the same
command.    This command copies the .TXT, .DOC, and .BAT files from the E:\MYDIR directory to the root
directory of drive A:

[c:\] copy e:\mydir*.txt;*.doc;*.bat a:\

You can use date, time, and size ranges to further define the files that you want to copy.    This example
copies every file in the E:\MYDIR directory, which was created or modified yesterday, and which is also
10,000 bytes or smaller in size, to the root directory of drive A:

[c:\] copy /[d-1] /[s0,10000] e:\mydir*.* a:\

You can also use file exclusion ranges to restrict the list of files that would normally be selected with
wildcards.    This example copies every file in the E:\MYDIR directory except backup (.BAK or .BK!) files:

[c:\] copy /[!*.bak;*.bk!] e:\mydir*.* a:\

COPY will normally process source files which do not have the hidden or system attribute, and will ignore
the read-only and archive attributes.    It will always set the archive attribute and clear the read-only
attribute of destination files.    In addition, if the destination is an existing file with the read-only attribute,
COPY will generate an "Access Denied" error and refuse to overwrite the file.    You can alter some of
these behaviors with switches:

/A: Forces COPY to process source files with the attributes you specify after the ":", or to process
all source files regardless of attributes (if /A: is used by itself).

/H Forces COPY to process hidden and system source files, as well as normal files.    The
hidden and system attributes from each source file will be preserved when creating the
destination files.

/K Retains the read-only attribute from each source file when creating the destination file.    See
/K below for a special note if you are running under Novell Netware.

/Z Forces COPY to overwrite an existing read-only destination file.   

Use caution with /A:, /H, or /K when both the source and destination directories contain file descriptions.   
If the source file specification matches the description file name (normally DESCRIPT.ION), and you use
a switch which tells COPY to process hidden files, the DESCRIPT.ION file itself will be copied, overwriting
any existing file descriptions in the destination directory.    For example, if the \DATA directory contains file
descriptions this command would overwrite any existing descriptions in the \SAVE directory:

[c:\data] copy /h d*.* \save\

(If you remove the hidden attribute from the DESCRIPT.ION file the same caution applies even if you do
not use /A:, /H, or /K, as DESCRIPT.ION is then treated like any other file.)

Options

The /A(SCII) and /B(inary) options apply to the preceding filename and to all subsequent filenames on the
command line until the file name preceding the next /A or /B, if any.    The other options (/A:, /C, /E, /H, /K,
/M, /N, /P, /Q, /R, /S, /T, /U, /V, /X, /Z) apply to all filenames on the command line, no matter where you
put them.    For example, either of the following commands could be used to copy a font file to the printer
in binary mode:

[c:\] copy /b myfont.dat prn
[c:\] copy myfont.dat /b prn

Some options do not make sense in certain contexts, in which case COPY will ignore them.    For
example, you cannot prompt before replacing an existing file when the destination is a device such as the
printer -- there's no such thing as an "existing file" on the printer.    If you use conflicting output options,
like /Q and /P, COPY will generally take a "conservative" approach and give priority to the option which
generates more prompts or more information.

/A (ASCII)    If you use /A with a source filename, the file will be copied up to, but not including,
the first Ctrl-Z (Control-Z or ASCII 26) character in the file (some application programs use
the Ctrl-Z to mark the end of a file).    If you use /A with a destination filename, a Ctrl-Z will be
added to the end of the file.    /A is the default when appending files, or when the destination
is a device like NUL or PRN, rather than a disk file.    Also see /B.

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
You must include the colon [:] with this option to distinguish it from the /A(SCII) switch,
above.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., COPY /A: ...), COPY will select all files and
subdirectories including hidden and system files.    If attributes are combined, all the specified
attributes must match for a file to be selected.    For example, /A:RHS will select only those
files with all three attributes set.

See the cautionary note under Advanced Features above before using /A: when both

source and destination directories contain file descriptions.

/B (Binary)    If you use /B with a source filename, the entire file is copied; Ctrl-Z characters in
the file do not affect the copy operation.    Using /B with a destination filename prevents
addition of a Ctrl-Z to the end of the destination file. /B is the default for normal file copies.   
Also see /A.

/C (Changed files)    Copy files only if the destination file exists and is older than the source (see
also /U).    This option is useful for updating the files in one directory from those in another
without copying any newly created files.

/E    (no Error messages)    Suppress all non-fatal error messages, such as "File not found."    Fatal
error messages, such as "Drive not ready," will still be displayed.    This option is most useful
in batch files and aliases.

/H (Hidden)    Copy all matching files including those with the hidden and/or system attribute set. 
See the cautionary note under Advanced Features above before using /H when both source
and destination directories contain file descriptions.

/K (Keep attributes)    To maintain compatibility with CMD.EXE, and Netware, COPY normally
maintains the hidden and system attributes, sets the archive attribute, and removes the read-
only attribute on the target file.    /K tells COPY to also maintain the read-only attribute on the
destination file.    However, if the destination is on a Novell Netware volume, this option will fail
to maintain the read-only attribute.    This is due to the way Netware handles file attributes,
and is not a problem in COPY.

/M (Modified)    Copy only those files with the archive attribute set, i.e., those which have been
modified since the last backup.    The archive attribute of the source file will not be cleared
after copying; to clear it, use the /X switch, or use the ATTRIB command.

/N (Nothing)    Do everything except actually perform the copy.    This option is useful for testing
what the result of a complex COPY command will be.    /N does not prevent creation of
destination subdirectories when it is used with /S.

/P (Prompt)    Ask the user to confirm each source file.    Your options at the prompt are explained
in detail under Page and File Prompts.

/Q (Quiet)    Don't display filenames or the total number of files copied.    This option is most often
used in batch files.    See also /T.

/R (Replace)    Prompt the user before overwriting an existing file.    Your options at the prompt
are explained in detail under Page and File Prompts.

/S (Subdirectories)    Copy the subdirectory tree starting with the files in the source directory plus
each subdirectory below that.    The destination must be a directory; if it doesn't exist, COPY
will attempt to create it.    COPY will also attempt to create needed subdirectories on the tree
below the destination, including empty source directories.    COPY /S creates one or more
destination directories, they will be added automatically to the extended directory search
database.

If you attempt to use COPY /S to copy a subdirectory tree into part of itself, COPY will detect
the resulting infinite loop, display an error message, and exit.

/T (Totals)    Turns off    the display of filenames, like /Q, but does display the total number of files
copied.

/U (Update)    Copy each source file only if it is newer than a matching destination file or if a
matching destination file does not exist (see also /C).    This option is useful for keeping one
directory matched with another with a minimum of copying.

/V (Verify)    Verify each disk write.    This is the same as executing the VERIFY ON command,
but is only active during the COPY.    /V does not read back the file and compare its contents
with what was written; it only verifies that the data written to disk is physically readable.

/X Clears the archive attribute from the source file after a successful copy.    This option is most
useful if you are using COPY to maintain a set of backup files.

/Z Overwrites read-only destination files.    Without this option, COPY will fail with an "Access
denied" error if the destination file has its read-only attribute set.    This option allows COPY to
overwrite read-only files without generating any errors.

DATE

Purpose: Display and optionally change the system date.

Format: DATE [/T] [mm -dd -yy]

mm:    The month (1 - 12).
dd:    The day (1 - 31).
yy:    The year (00 - 99, or a 4- digit year).

/T (Display only)

See also:    TIME.

Usage

If you simply type DATE without any parameters, you will see the current system date and time, and be
prompted for a new date. Press ENTER if you don't wish to change the date.    If you type a new date, it
will become the current system date, which is included in the directory entry for each file as it is created or
altered:

[c:\] date
Mon Dec 22, 1997 9:30:06
Enter new date (mm-dd-yy):

You can also enter a new system date by typing the DATE command plus the new date on the command
line:

[c:\] date 10-16-97

You can use hyphens, slashes, or periods to separate the month, day, and year entries.    The year can be
entered as a 2-digit or 4-digit value.    Two-digit years between 80 and 99 are interpreted as 1980 - 1999;
values between 00 and 79 are interpreted as 2000 - 2079.

DATE adjusts the format it expects depending on your country settings.    When entering the date, use the
correct format for the country setting currently in effect on your system.

Options

/T: (Display only)    Displays the current date but does not prompt you for a new date.    If a new
date is specified in the same command as /T, the new date will be ignored.

DEL / ERASE

Purpose: Erase one file, a group of files, or entire subdirectories.

Format: DEL [/A:[[-]rhsda] /E /N /P /Q /S /T /W /X /Y /Z] file...
        or

ERASE [/A:[[-]rhsda] /E /N /P /Q /S /T /W /X /Y /Z] file...

file:    The file, subdirectory, or list of files or subdirectories to erase.

/A: (Attribute select) /T(otal)
/E (No error messages) /W(ipe)
/N(othing) /X (remove empty subdirectories)
/P(rompt) /Y(es to all prompts)
/Q(uiet) /Z(ap hidden and read-only files)
/S(ubdirectories)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

DEL and ERASE are synonyms, you can use either one.

Use the DEL and ERASE commands with caution; the files and subdirectories that you erase may be
impossible to recover without specialized utilities and a lot of work.

To erase a single file, simply enter the file name:

[c:\] del letters.txt

You can also erase multiple files in a single command.    For example, to erase all the files in the current
directory with a .BAK or .PRN extension:

[c:\] del *.bak *.prn

When you use DEL on an HPFS, NTFS, or LFN drive, you must quote any file names which contain
whitespace or special characters.    See File Names for additional details.

To exclude files from a DEL command, use a file exclusion range.    For example, to delete all files in the
current directory except those whose extension is .TXT, use a command like this:

[c:\] del /[!*.TXT] *.*

When using exclusion ranges or other more complex options you may want to use the /N switch first, to
preview the effects of the DEL without actually deleting any files.

If you enter a subdirectory name, or a filename composed only of wildcards (* and / or ?), DEL asks for
confirmation (Y or N) unless you specified the /Y option.    If you respond with a Y, DEL will delete all the
files in that subdirectory (hidden, system, and read-only files are only deleted if you use the /Z option).

Use caution when using wildcards with DEL.    For compatibility with CMD.EXE, 4NT's wildcard matching
will match both short and long filenames.    This can delete files you did not expect; see LFN File

Searches for additional details.

DEL displays the amount of disk space recovered, unless the /Q option is used (see below).    It does so
by comparing the amount of free disk space before and after the DEL command is executed.    This
amount may be incorrect if you are using a deletion tracking system which stores deleted files in a hidden
directory, or if, under a multitasking system, another program performs a file operation while the DEL
command is executing.

Remember that DEL removes file descriptions along with files.    Most deletion tracking systems will not be
able to save or recover a file's description, even if they can save or recover the data in a file.

When a file is deleted, its disk space is returned to the operating system for use by other files.    However,
the contents of the file remain on the disk until they are overwritten by another file.    If you wish to
obliterate a file or wipe its contents clean, use DEL /W, which overwrites the file with zeros before deleting
it.    Use this option with caution — once a file is obliterated, it is impossible to recover.

DEL returns a non-zero exit code if no files are deleted, or if another error occurs.    You can test this exit
code with the %_? environment variable, and use it with conditional commands (&& and ||).

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., DEL /A: ...), DEL will select all files and subdirectories
including hidden and system files.    If attributes are combined, all the specified attributes must
match for a file to be selected.    For example, /A:RHS will select only those files with all three
attributes set.

/E    (No error messages)    Suppress all non-fatal error messages, such as "File Not Found."   
Fatal error messages, such as "Drive not ready," will still be displayed.    This option is most
useful in batch files and aliases.

/N (Nothing)    Do everything except actually delete the file(s).    This is useful for testing what the
result of a DEL would be.

/P (Prompt)    Prompt the user to confirm each erasure.    Your options at the prompt are
explained in detail under Page and File Prompts.

/Q (Quiet)    Don't display filenames as they are deleted, or the number of files deleted or bytes
freed.    See also /T.

/S (Subdirectories)    Delete the specified files in this directory and all of its subdirectories.    This
can be used to delete all the files in a subdirectory tree or even a whole disk.    It should be
used with caution!

/T (Total)    Don't display filenames as they are deleted, but display the total number of files
deleted plus the amount of free disk space recovered.

/W (Wipe)    Clear the file to zeros before deleting it.    Use this option to completely obliterate a
file's contents from your disk.    Once you have used this option it is impossible to recover the
file even if you are using an undelete utility, because the contents of the file are destroyed
before it is deleted.    /W overwrites the file only once; it does not adhere to security standards
which require multiple overwrites with varying data when destroying sensitive information.

/X (Remove empty subdirectories)    Remove empty subdirectories after deleting (only useful
when used with /S).    If DEL deletes one or more directories, they will be removed
automatically from the extended directory search database.

/Y (Yes)    The reverse of /P -- it assumes a Y response to everything, including deleting an
entire subdirectory tree.    4NT normally prompts before deleting files when the name consists
only of wildcards or a subdirectory name (see above); /Y overrides this protection, and should
be used with extreme caution!

/Z (Zap)    Delete read-only, hidden, and system files as well as normal files.    Files with the
read-only, hidden, or system attribute set are normally protected from deletion; /Z overrides
this protection, and should be used with caution.    Because EXCEPT works by hiding files, /Z
will override an EXCEPT command.    However, files specified in a file exclusion range will not
be deleted by DEL /Z.

For example, to delete the entire subdirectory tree starting with C:\UTIL, including hidden and
read-only files, without prompting (use this command with CAUTION!):

[c:\] del /sxyz c:\util\

DELAY

Purpose: Pause for a specified length of time.

Format: DELAY [seconds]

seconds:    The number of seconds to delay.

Usage

DELAY is useful in batch file loops while waiting for something to occur.    To wait for 10 seconds:

delay 10

DELAY is most useful when you need to wait a specific amount of time for an external event, or check a
system condition periodically.    For example, this batch file checks the battery status (as reported by your
Advanced Power Management drivers) every 15 seconds, and gives a warning when battery life falls
below 30%:

do forever
 iff %_apmlife lt 30 then
 beep 440 4 880 4 440 4 880 4
 echo Low Battery!!
 endiff
 delay 15
enddo

The seconds value can be as large as 1 billion seconds (34 years!).

For delays shorter than one second, use the BEEP command with an inaudible frequency (below 20 Hz).

4NT uses the minimum possible processor time during a DELAY, in order to allow other applications full
use of system resources.

You can cancel a delay by pressing Ctrl-C or Ctrl-Break.

DESCRIBE

Purpose: Create, modify, or delete file and subdirectory descriptions.

Format: DESCRIBE [/A:[[-]rhsda]] file [[/D]"description"] ...

file:    The file, directory, or list of files and directories to operate on.
"description":    The description to attach to the file.

/A: (Attribute select) /D(escription follows)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

DESCRIBE adds descriptions to files and subdirectories.    The descriptions can be displayed by DIR in
single-column mode, and by SELECT.    Descriptions let you identify your files in much more meaningful
ways than you can in an eight-character filename.

You enter a description on the command line by typing the DESCRIBE command, the filename, and the
description in quotation marks, like this:

[c:\] describe memo.txt "Memo to Bob about party"

If you don't put a description on the command line, DESCRIBE will prompt you for it:

[c:\] describe memo.txt
Describe "memo.txt" : Memo to Bob about party

If you use wildcards or multiple filenames with the DESCRIBE command and don't include the description
text, you will be prompted to enter a description for each file.    If you do include the description on the
command line, all matching files will be given the same description.

If you use DESCRIBE on an HPFS, NTFS, or LFN drive, you must quote the file name if it contains
whitespace or special characters.    See File Names for additional details.

If you enter a quoted description on the command line, and the text matches the name of a file in the
current directory, the command processor will treat the string as a quoted file name, not as description
text as you intended.    To resolve this problem use the /D switch immediately prior to the quoted
description (with no intervening spaces).    For example, if the current directory contains the files
DATA.TST and "Test File", the first of these commands will work as intended, but the second will not (in
the second example the string "test file" will be treated as a second file name, when it is intended to be
description text):

[c:\] describe data.tst /D"test file"
[c:\] describe data.tst "test file"

On drives which support long file names you will not see file descriptions in a normal DIR display,
because DIR must leave space for the long filenames.    To view the descriptions, use DIR /Z to display
the directory in FAT format.

Each description can be up to 511 characters long.    You can change this limit with the DescriptionMax
directive in 4NT.INI.    In order to fit your descriptions on a single line in a standard DIR display, keep them
to 40 characters or less (longer descriptions are wrapped in the DIR output).    DESCRIBE can edit
descriptions longer than DescriptionMax (up to a limit of 511 characters), but will not allow you to lengthen
the existing text.

The descriptions are stored in each directory in a hidden file called DESCRIPT.ION.    Use the ATTRIB
command to remove the hidden attribute from this file if you need to copy or delete it.    (DESCRIPT.ION is
always created as a hidden file, but will not be re-hidden by 4NT if you remove the hidden attribute.)

You can change the description file name with the SETDOS /D command, or the DescriptionName
directive in the 4NT.INI file, and retrieve it with the %_DNAME internal variable.    Use caution when
changing the description file name, as changing the name from the default will make it difficult to transfer
file descriptions to another system.

The description file is modified appropriately whenever you perform an internal command which affects it
(such as COPY, MOVE, DEL, or RENAME), but not if you use an external program (such as XCOPY or a
visual shell).    You can disable description processing on the Options 1 page of the OPTION command,
with the Descriptions directive in the .INI file, or with SETDOS /D.

When you COPY or MOVE files between two directories, both of which have descriptions, and you use
switches which enable processing of hidden files (or you have removed the hidden attribute from
DESCRIPT.ION), you must use caution to avoid overwriting existing file descriptions in the destination
directory with the DESCRIPT.ION file from the source directory.    See the notes under the Advanced
Features sections of COPY and MOVE for additional details.

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., DESCRIBE /A: ...), DESCRIBE will select all files and
subdirectories including hidden and system files.    If attributes are combined, all the specified
attributes must match for a file to be selected.    For example, /A:RHS will select only those
files with all three attributes set.

/D (Description follows):    The quoted string immediately following this switch is a description,
not a file name.    Use /D to avoid any ambiguity in the meaning of quoted strings.    See the
Usage section above for details.

DETACH

Purpose: Start a Windows NT program in detached mode.

Format: DETACH command

command:    The name of a command to execute, including an optional drive and path
specification.

See also:    START.

Usage

When you start a program with DETACH, that program cannot use the keyboard, mouse, or video display.
It is "detached" from the normal means of user input and output.    However, you can redirect the
program's standard I/O to other devices if necessary, using redirection symbols.

The command can be an internal command, external command, alias, or batch file.    If it is not an
external command, 4NT will detach a copy of itself to execute the command.

For example, the following command will detach a copy of 4NT to run the batch file XYZ.BTM:

[c:\] detach xyz.btm

Once the program has started, 4NT returns to the prompt immediately.    It does not wait for a detached
program to finish.

There is no standard way to stop a detached program.    If the program does not terminate on its own you
must reboot the system or use an appropriate task manager or external utility to stop it.

DIR

Purpose: Display information about files and subdirectories.

Format: DIR [/1 /2 /4 /A[[:][-]rhsda] /B /C /D /E /F /G /H /I"text" /J /K /L /M /N /O[[:][-]adeginrsu]
/P /R /S /T[:acw]/U /V /W /Z] [file...]

file:    The file, directory, or list of files or directories to display.

/1 (one column) /L(ower case)
/2 (two columns) /M (suppress footer)
/4 (four columns) /N(ew format)
/A(ttribute select) /O(rder)
/B(are) /P(ause)
/C(ompression) /R (disable wRap)
/D(isable color coding) /S(ubdirectories)
/E (upper case) /T (aTtribute) or (Time)
/F(ull path) /U (sUmmary information)
/G (allocated size) /V(ertical sort)
/H(ide dots) /W(ide)
/I (match descriptions) /X (display short names)
/J(ustify names) /Z (use FAT format)
/K (suppress header)

See also:    ATTRIB, DESCRIBE, SELECT, and SETDOS.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

DIR can be used to display information about files from one or more of your disk directories, in a wide
range of formats.    Depending on the options chosen, you can display the file name, attributes, and size;
the time and date of the last change to the file; the file description; and the file's compression ratio.    You
can also display information in 1, 2, 4, 5, or more, sort the files several different ways, use color to
distinguish file types, and pause after each full screen.

The various DIR displays are controlled through options or switches.    The best way to learn how to use
the many options available with the DIR command is to experiment.    You will soon know which options
you want to use regularly.    You can select those options permanently by using the ALIAS command.

For example, to display all the files in the current directory, in 2 columns, sorted vertically (down one
column then down the next), and with a pause at the end of each page:

[c:\] dir /2/p/v

To set up this format as the default, using an alias:

[c:\] alias dir=*dir /2/p/v

When you use DIR on an HPFS, NTFS, or LFN drive, you must quote any file names which contain
whitespace or special characters.    See File Names for additional details.

The following sections group DIR's features together in several categories.    Many of the sections move

from a general discussion to more technical material.    If you find some of the information in a category
too detailed for your needs, feel free to skip to the next section.    The sections are:

Selecting Files

Default DIR Output Format

Switching Formats

Multiple Column Displays

Color-Coded Directories

Redirected Output

Other Notes

Options

Selecting Files

DIR can display information about a single file or about several, dozens, hundreds, or thousands of files
at once.    To display information about a single file, just add the name of the file to the DIR command line:

[c:\] dir january.wks

The simplest way to view information about several files at once is to use wildcards.    DIR can work with
traditional wildcard characters (* and ?) and extended wildcards.    For example to display all of the .WKS
files in the current directory:

[c:\] dir *.wks

To display all .TXT files whose names begin with A, B, or C:

[c:\] dir [abc]*.txt

If you don't specify a filename, DIR defaults to *.* on traditional FAT drives, and * on HPFS, NTFS, and
LFN drives.    This default displays all non-hidden files and subdirectories in the current directory.

If you link two or more filenames together with spaces, DIR will display all of the files that match the first
name and then all of the files that match the second name.    You may use a different drive and path for
each filename.    This example lists all of the .WKS and then all of the .WK1 files in the current directory:

[c:\] dir *.wks *.wk1

If you use an include list to link multiple filenames, DIR will display the matching filenames in a single
listing.    Only the first filename in an include list can have a path; the other files must be in the same path. 
This example displays the same files as the previous example, but the .WKS and .WK1 files are
intermixed:

[c:\] dir *.wks;*.wk1

You can include files in the current or named directory plus all of its subdirectories by using the /S option. 
This example displays all of the .WKS and .WK1 files in the D:\DATA directory and each of its
subdirectories:

[c:\] dir /s d:\data*.wks;*.wk1

You can also select files by their attributes by using the /A option.    For example, this command displays

the names of all of the subdirectories of the current directory:

[c:\] dir /a:d

Finally, with the /I option, DIR can select files to display based on their descriptions (see the DESCRIBE
command for more information on file descriptions).    DIR will display a file if its description matches the
text after the /I switch.    The search is not case sensitive.    You can use wildcards and extended wildcards
as part of the text.    For example, to display any file described as a "Test File" you can use this command:

[c:\] dir /i"test file"

If you want to display files that include the words "test file" anywhere in their descriptions, use extended
wildcards like this:

[c:\] dir /i"*test file*"

To display only those files which do not have descriptions, use:

[c:\] dir /I"[]"

In addition, you can use ranges to select or exclude specific sets of files.    For example, to display all files
modified in the last week, all files except those with a .BAK extension, and all files over 500 KB in size:

[c:\] dir /[d-7]
[c:\] dir /[!*.bak]
[c:\] dir /[s500K]

You can, of course, mix any of these file selection techniques in whatever ways suit your needs.

Default DIR Output Format

DIR's output varies based on the type of volume or drive on which the files are stored.    If the volume
supports long file names (HPFS volumes, NTFS volumes, and VFAT volumes under Windows NT), the
default DIR format contains 4 columns: the date of the last file modification or write, the time of last write,
the file size in bytes, and the file name.    The name is displayed as it is stored on the disk, in upper, lower,
or mixed case.    DIR will wrap filenames from one line to the next if they are too long to fit the width of the
display.    The standard output format is:

 Volume in drive C is C - BOOTUP Serial ...
 Directory of C:\4DOS60*.*

10-24-96 12:17 <DIR> .
10-24-96 12:17 <DIR> ..
10-28-96 7:57 967 4dos 6.pif
10-21-96 18:08 212,854 4DOS.COM
11-02-96 10:08 45 4DOS.INI

(See Switching Formats below for information on changing the standard long filename format to allow
room for file descriptions.)

On FAT volumes which do not support long file names, the default DIR format contains 5 columns: the file
name, the file size in bytes, the date of the last write, the time of the last write, and the file's description.   
File names are listed in lower-case; directory names in upper case:

 Volume in drive C is C - BOOTUP Serial ...
 Directory of C:\4DOS60*.*

. <DIR> 10-24-96 12:17

.. <DIR> 10-24-96 12:17
TEST <DIR> 11-01-96 16:21
4dos6.pif 967 10-28-96 7:57 4DOS PIF file
4dos.com 212854 10-21-96 18:08 4DOS exe ...
4dos.ini 45 11-02-96 10:08 4DOS conf ...

DIR's output is normally sorted by name, with directories listed first.    You can change the sort order with
the /O option.    For example, these two commands sort the output by date — the first command lists the
oldest file first; the second command lists the oldest file last:

[c:\] dir /o:d
[c:\] dir /o:-d

When displaying file descriptions, DIR wraps long lines to fit on the screen.    DIR displays a maximum of
40 characters of text in each line of a description, unless your screen width allows a wider display.    If you
disable description wrapping with the /R option, the description is truncated at the right edge of the
screen, and a right arrow is added at the end of the line to alert you to the existence of additional
description text.

Regardless of the volume type, DIR's default output is sorted.    It displays directory names first, with
"<DIR>" inserted instead of a file size, and then filenames.    DIR assumes that sequences of digits should
be sorted numerically (for example, the file DRAW2 is listed before DRAW03 because 2 is numerically
smaller than 03), rather than strictly alphabetically (where DRAW2 would come second because "2" is
after "0" in alphanumeric order).    You can change the sort order with the /O option.    When DIR displays
file names in a multi-column format, it sorts file names horizontally unless you use the /V option to display
vertically sorted output.

DIR's display can be modified in many ways to meet different needs.    Most of the following sections
describes the various ways you can change DIR's output format.

Switching Formats

On volumes which support long file names, you can force DIR to use a FAT-like format (file name first,
followed by file information) with the /Z option.    If necessary, DIR /Z truncates long file names on LFN,
HPFS, and NTFS drives, and adds a right arrow to show that the name contains additional characters.

The standard LFN output format does not provide enough space to show descriptions along with file
names.    Therefore, if you wish to view file descriptions as part of the DIR listing on a volume which
supports long file names, you must use the /Z option.

4NT will display the alternate, short file names for files with long file names if you use the /X option.   
Used alone, /X causes DIR to display names in 2 columns after the size, time, and date:    one column for
alternate or short file names and the other for long file names.    If a file does not have a short or alternate
name which is different from the long filename, the first filename column is empty.

If you use /X and /Z together, DIR will display the short or alternate file names in the FAT-style display
format.

If you use the /B option, DIR displays just file names and omits the file size, time stamp, and description
for each file, for example:

[c:\] dir w* /b

WINDOWS

WINNT
win311
WINALIAS
WINENV.BTM
.....

There are several ways to modify the display produced by /B.    The /F option is similar to /B, but displays
the full path and name of each file, instead of just its name.    To view the same information for a directory
and its subdirectories use /B /S or /F /S.    You can use /B /X to display the short name of each file, with no
additional information.    To display the short version of both the path and file name for each file, use /F /X. 
For example:

[c:\] dir /x/f/s *.pif

C:\MACH64\INSTALL.PIF
C:\PROGRA~1\WINZIP\WZ.PIF
C:\WINDOWS\DOSPRMPT.PIF
C:\WINDOWS\STARTM~1\APPS&U~1\INFOSE~1.PIF
C:\WINDOWS\STARTM~1\PROMPTS\4DOS.PIF
C:\WINDOWS\STARTM~1\PROMPTS\TOCP.PIF
C:\WINDOWS\STARTM~1\PROMPTS\SPECIAL\4DOS(R~1.PIF
.....

Multiple Column Displays

DIR has three options, /2, /4, and /W, that create multi-column displays.

The /2 option creates a 2-column display.    On drives which support long filenames, only the name of
each file is displayed, with directory names placed in square brackets to distinguish them from file names. 
On drives which do not support long filenames, or when /Z or /X is used (see below), the display includes
the name, file size, and time stamp for each file.

The /4 option is similar to /2, but displays directory information in 4 columns.    On drives which do not
support long filenames, or when /Z or /X is used (see below), the display shows the file name and the file
size in kilobytes (KB) or megabytes (MB), with "<D>" in the size column for directories.

The /W option displays directory information in 5 or more columns, depending on your screen width.   
Each entry in a DIR /W display contains either the name of a file or the name of a directory.    Directory
names are placed in square brackets to distinguish them from file names.

If you use one of these options on a drive that supports long file names, and do not select an alternate
display format with /Z or /X, the actual number of columns will be based on the longest name to be
displayed and your screen width, and may be less than the number you requested (for example, you
might see only three columns even though you used /4).    If the longest name is too long to fit in on a
single line the display will be reduced to one column, and each name will be wrapped, with "extra" blank
lines added so that each name takes the same number of lines.

On LFN drives you can use /Z with any of the multi-column options to create a traditional FAT-format
display, with long names truncated to fit in the available space.    If you use /X, the traditional FAT-format
display is also used, but short names are displayed (rather than truncated long names).    The following
table summarizes the effects of different options on LFN drives:

Display Columns
Format Normal /2 or /4 /W

Normal 1 column, long names
plus size, date, time

2 - 4 columns, long
names only

No. of columns based
on longest name, long
names only

/Z 1 column, truncated
long names plus size,
date, time

2 - 4 columns,
truncated long names
plus other info

5+ columns,
truncated long names
only

/X 1 column, both
names plus size,
date, time

2 - 4 columns, short
names plus other info

5+ columns, short
names only

/Z /X 1 column, short
names plus size,
date, time

(Same as /X alone) (Same as /X alone)

Color-Coded Directories

The DIR command can display each file name and the associated file information in a different color,
depending on the file's extension.

To choose the display colors, you must either use the SET command to create an environment variable
called COLORDIR, or use the Commands page of the    OPTION dialogs or a text editor to set the
ColorDir directive in your .INI file.    If you do not use the COLORDIR variable or the ColorDir directive,
DIR will use the default screen colors for all files.

If you use both the COLORDIR variable and the ColorDir directive, the environment variable will override
the settings in your .INI file.    You may find it useful to use the COLORDIR variable for experimenting,
then to set permanent directory colors with the ColorDir directive.

The format for both the COLORDIR environment variable and the ColorDir directive in the .INI file is:

ext ... :ColorName; ...

where "ext" is a file extension (which may include wildcards) or one of the following file types:

DIRS Directories
RDONLYRead-only files
HIDDENHidden files
SYSTEMSystem files
ARCHIVE Files modified since the last backup

and "ColorName" is any valid color name (see Colors and Color Names).

Unlike most color specifications, the background portion of the color name may be omitted for directory
colors.    If you don't specify a background color, DIR will use the current screen background color.

For example, to display the .COM and .EXE files in red on the current background, the .C and .ASM files
in bright cyan on the current background, and the read-only files in blinking green on white (this should be
entered on one line):

[c:\] set colordir=com exe:red; c asm:bright cyan; rdonly:blink green on
white

Extended wildcards can be used in directory color specifications.    For example, to display .BAK, .BAX,
and .BAC files in red:

[c:\] set colordir=BA[KXC]:red

Redirected Output

The output of the DIR command, like that of most other internal commands, can be redirected to a file,
printer, serial port, or other device.    However, you may need to take certain DIR command options into
account when you redirect DIR's output.

DIR wraps both long file names and file descriptions at the width of your display.    Its redirected output will
also wrap at the screen width.    Use the /R option if you wish to disable wrapping of long descriptions.

If you redirect a color-coded directory to a file, DIR will remove the color data as it sends the directory
information to a file.    It will usually do the same if you redirect output to a character device such as a
printer or serial port.    However, it is not always possible for DIR to tell whether or not a device is a
character device.    If you notice that non-colored lines are being sent to the output device and colored
lines are appearing on your screen, you can use the /D option to temporarily disable color-coding when
you redirect DIR's output.

To redirect DIR output to the clipboard, use CLIP: as the output device name, for example:

[c:\] dir *.exe > clip:

Other Notes

If you have selected a specific country code for your system, DIR will display the date in the format for
that country.    The default date format is U.S. (mm-dd-yy).    The separator character in the file time will
also be affected by the country code.    Thousands and decimal separators in numeric displays are
affected by the country code, and by the ThousandsChar and DecimalChar settings selected on the
Options 1 page of the OPTION dialogs, or in the .INI file.

If you are using a disk compression program, you can use the /C switch to view the amount of
compression achieved for each file.    When you do, the compression ratio is displayed instead of the file's
description.    You can also sort the display by compression ratios with the /O:c switch.    Details for both
switches are in the Options section, below.

Options

Options on the command line apply only to the filenames which follow the option, and options at the end
of the line apply to the preceding filename only.    This allows you to specify different options for different
groups of files, yet retains compatibility with the traditional DIR command when a single filename is
specified.

/1 Single column display – display the filename, size, date, and time; also displays the
description on drives which do not support long filenames.    This is the default.    If /T is used
the attributes are displayed instead of the description; if /C or /O:c is used the compression
ratio is displayed instead of the description.    This option is most useful if you wish to override
a default /2, /4, or /W setting stored in an alias.

/2 Two column display – display just the name (on LFN, HPFS, and NTFS drives), or display the
filename, size, date, and time on other drives.    See Multiple Column Displays for more
details.

/4 Four column display – display just the name (on LFN, HPFS, and NTFS drives); or display the
filename and size, in K (kilobytes) or M (megabytes) on other drives, with files between 1 and
9.9 megabytes in size displayed in tenths (i.e., "2.4M").    See Multiple Column Displays for
more details.

/A (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is optional.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., DIR /A ...), DIR will display all files and subdirectories
including hidden and system files.    If attributes are combined, all the specified attributes must
match for a file to be included in the listing.    For example, /A:RHS will display only those files
with all three attributes set.

/B (Bare)    Suppress the header and summary lines, and display file or subdirectory names only,
in a single column. This option is most useful when you want to redirect a list of names to a
file or another program.    If you use /B with /S, DIR will show the full path of each file (the
same display as /F) instead of simply its name and extension.    If you use /B with /X on an
LFN or NTFS drive, DIR will display the short name of each file instead of the long name.

/C (Compression)    Display per-file and total compression ratio on compressed drives.    The
compression ratio is displayed instead of the file description or attributes.    The ratio is left
blank for directories and files with a length of 0 bytes, and for files on non-compressed drives.
/C only works in single-column mode; it is ignored if /2, /4, or /W is used.    Only compressed
NTFS drives are supported.

The numerator of the displayed compression ratio is the amount of space which would be
allocated to the file if the compression utility were not in use, based on the compressed
drive's cluster size (usually 8K bytes).    The denominator is the space actually allocated for
the compressed file.    For example, if a file is allocated 6,144 bytes when compressed, and
would require 8,192 bytes if uncompressed, the displayed compression ratio would be
8,192 / 6,144, or 1.3 to 1.

/D (Disable color coding)    Temporarily disable directory color coding.    May be required when
color-coded directories are used and DIR output is redirected to a character device like the
printer (e.g., PRN or LPT1) or serial port (e.g., COM1 or COM2).    /D is not required when
DIR output is redirected to a file.

/E Display filenames in the traditional upper case; also see SETDOS /U and the UpperCase
directive in 4NT.INI.

/F (Full path)    Display each filename with its drive letter and path in a single column, without
other information.    If you use /F with /X on a volume which supports long filenames, the
"short" version of the entire path is displayed.

/G Display the allocated disk space instead of the actual size of each file.

/H (Hide dots)    Suppress the display of the "." and ".." directories.

/I Display filenames by matching text in their descriptions.    The text can include wildcards and
extended wildcards.    The search text must be enclosed in quotation marks.    You can select
all filenames that have a description with /I"[?]*", or all filenames that do not have a
description with /I"[]".

The /I option may be used to select files even if descriptions are not displayed (for example, if

/2 is used).    However, /I will be ignored if /C or /O:c is used.

/J (Justify names)    Justify (align) filename extensions and display them in the traditional format.

/K Suppress the header (disk and directory name) display.

/L (Lower case)    Display file and directory names in lower case; also see SETDOS /U and the
UpperCase directive in 4NT.INI.

/M Suppress the footer (file and byte count totals) display.

/N (New format)    Use the long filename display format, even if the files are stored on a volume
which does not support long filenames.    See also /Z.

/O (Order)    Set the sorting order.    You may use any combination of the following sorting
options; if multiple options are used, the listing will be sorted with the first sort option as the
primary key, the next as the secondary key, and so on:

- Reverse the sort order for the next option.
a Sort in ASCII order, not numerically, when there are digits in the name.
c Sort by compression ratio (the least compressed file in the list will be displayed first). 

For single-column directory displays in the traditional short filename format, the
compression ratios will be used as the basis of the sort and will also be displayed.   
For wider displays (/2, /4, and /W) and displays in LFN format, the compression ratios
will be used to determine the order but will not be displayed.    For information on
supported compression systems see /C above.

d Sort by date and time (oldest first); for drives which support long filenames also see
/T:acw.

e Sort by extension.
g Group subdirectories first, then files.
i Sort by file description.
n Sort by filename (this is the default).
r Reverse the sort order for all options.
s Sort by size.
u Unsorted.

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

/R (disable wRap)    Forces long descriptions to be displayed on a single line, rather than
wrapped onto two or more lines.    Use /R when output is redirected to a character device,
such as a serial port or the printer; or when you want descriptions truncated, rather than
wrapped, in the on-screen display.

/S (Subdirectories)    Display file information from the current directory and all of its
subdirectories.    DIR will only display headers and summaries for those directories which
contain files that match the filename(s), ranges, and attributes that you specify.

/T (aTtribute display)    Display the filenames, attributes, and descriptions.    The descriptions will
be wrapped onto the next line, if necessary, unless you also use the /R (truncate) option.    If
you use both /T and /R, descriptions are truncated after 34 characters on an 80-column
display.    The attributes are displayed in the format RHDSA, with the following meanings:

R Read-only
H Hidden
D Subdirectory

S System
A Archive

On drives which support long file names, if you wish to add another option after /T, you must
start the next option with a forward slash.    If you don't, the command processor will interpret
the /T as the /T:acw time display switch (see below) and the following character as a valid or
invalid time selector.    For example:

[c:\] dir /tz incorrect, will display error
[c:\] dir /t/z correct

/T:acw (Time display)    Specify which of the date and time fields on a drive which supports long
filenames should be displayed and used for sorting:

a Last access date and time (access time is not saved on LFN volumes).
c Creation date and time.
w Last write time (default).

/U (sUmmary information)    Only display the number of files, the total file size, and the total
amount of disk space used.    Information on individual files is not displayed.

/V (Vertical sort)    Display the filenames sorted vertically rather than horizontally (use with the /2,
/4 or /W options).

/W (Wide)    Display filenames only, horizontally across the screen.    On drives which do not
support long filenames, or when used with /Z or /X, /W displays as many columns as it can fit
into the command processor window, using 16 characters in each column.    Otherwise (i.e.,
when long filenames are displayed) the number of columns depends on the width of the
longest name in the listing.    See Multiple Column Displays for more details.

/X Display both the short name (8-character name plus 3-character extension) and the long
name of each file on an LFN or NTFS drive.    In normal single-column output the short name
is displayed first, followed by the long name.    The short name column is left blank if the short
name and long name are the same.    /X also selects short filenames in the /2, /4, /B, /W, and
/Z displays, and short file and path names in the /F display.

/Z Display a directory on an HPFS, NTFS, or LFN drive in the traditional FAT format, with the
filename at the left and the description at the right.    Long names will be truncated to 12
characters unless /X is also used; if the name is longer than 12 characters, it will be followed
by a right arrow to show that one or more characters have been truncated.

DIRHISTORY

Purpose: Display, add to, clear, or read the directory history list.

Format: DIRHISTORY [/A directory /F /P /R filename]

directory:    The name of a directory to be added to the directory history.
filename:    The name of a file containing entries to be added to the directory history.

/A(dd) /P(ause)
/F(ree) /R(ead)

See also:    HISTORY.

Usage

Every time you change to a new directory or drive, 4NT records the current directory in an internal
directory history list.    See Directory History for information on the directory history window, which allows
you to use the list to return to a previous directory.    Also see Directory Navigation.

The DIRHISTORY command lets you view and manipulate the directory history list directly.    If no
parameters are entered, DIRHISTORY will display the current directory history list:

[c:\] dirhistory

With the options explained below, you can clear the list, add new directories to the list without changing to
them, save the list in a file, or read a new list from a file.

The number of directories saved in the directory history list depends on the length of each directory name.
The list size can be specified at startup from 256 to 32767 characters by using the DirHistory directive in
4NT.INI.   

Your directory history list can be stored either locally (a separate history list for each copy of the
command processor) or globally (all copies of the command processor share the same list).    See
Directory History for a discussion of local and global directory history lists.

You can save the directory history list by redirecting the output of DIRHISTORY to a file.    This example
saves the history to a file called DIRHIST and reads it back again:

[c:\] dirhistory > dirhist

[c:\] dirhistory /r dirhist

Because the directory history stores each name only once, you don't have to delete its contents before
reading back the file unless you want to delete the directories that were visited by the intervening
commands.

If you need to save your directory history at the end of each day's work, you might use commands like
this in your 4START.BTM file:

if exist c:\dirhist dirhistory /r c:\dirhist
alias shut*down `dirhistory > c:\dirhist`

This restores the previous history list if it exists, then defines an alias which will allow you to save the
history before shutting off the system.

Options

/A (Add)    Add a directory to the directory history list.

/F (Free)    Erase all entries in the directory history list.

/P (Prompt)    Wait for a key after displaying each page of the list.    Your options at the prompt
are explained in Page and File Prompts.

/R (Read)    Read the directory history from the specified file and append it to the list currently
held in memory.

DIRS

Purpose: Display the current directory stack.

Format: DIRS

See also:    PUSHD and POPD, and Directory Navigation.

Usage

The PUSHD command adds the current default drive and directory to the directory stack, a list that 4NT
maintains in memory.    The POPD command removes the top entry of the directory stack and makes that
drive and directory the new default.    The DIRS command displays the contents of the directory stack,
with the most recent entries on top (i.e., the next POPD will retrieve the first entry that DIRS displays).

The directory stack holds 511 characters, enough for 20 to 40 typical drive and directory entries.

DO

Purpose: Create loops in batch files.

Format: DO [n | FOREVER]
        or

DO varname = start TO end [BY n]
        or

DO [WHILE | UNTIL] condition

         or

DO varname IN [@]set
      commands
[ITERATE]
[LEAVE]
      commands
ENDDO

varname:    The environment variable that will hold the loop counter, filename, or line from
a file.
n, start, end:    Integers between 0 and 2,147,483,647 inclusive, or internal variables or
variable functions that evaluate to such a value.
condition:    A test to determine if the loop should be executed.
set:    A set of values for the variable.
commands:    One or more commands to execute each time through the loop.    If you
use multiple commands, they must be separated by command separators or be placed
on separate lines.

File Selection

Supports extended wildcards, ranges, and include lists for the set.   

Usage

DO can only be used in batch files; it cannot be used in aliases.

DO can be used to create 4 different kinds of loops.    The first, introduced by DO n, is a counted loop.   
The batch file lines between DO and ENDDO are repeated n times.    For example:

do 5
 beep
enddo

You can also specify "forever" for n if you wish to create an endless loop (you can use LEAVE or GOTO
to exit such a loop; see below for details).

The second type of loop is similar to a "for loop" in programming languages like BASIC.    DO creates an
environment variable, varname, and sets it equal to the value start (if varname already exists in the
environment, it will be overwritten).    DO then begins the loop process by comparing the value of varname
with the value of end. If varname is less than or equal to end, DO executes the batch file lines up to the

ENDDO.    Next, DO adds 1 to the value of varname, or adds the value n if BY n is specified, and repeats
the compare and execute process until varname is greater than end. This example displays the even
numbers from 2 through 20:

do i = 2 to 20 by 2
 echo %i
enddo

DO can also count down, rather than up.    If n is negative, varname will decrease by n with each loop,
and the loop will stop when varname is less than end.    For example, to display the even numbers from 2
through 20 in reverse order, replace the first line of the example above with:

do i = 20 to 2 by -2

The third type of loop is called a "while loop" or "until loop." DO evaluates the condition, which can be any
of the tests supported by the IF command, and executes the lines between DO and ENDDO as long as
the condition is true.    The loop ends when the condition becomes false.

WHILE tests the condition at the start of the loop.    Therefore, if the condition is false when the loop
starts, the statements within the loop will never be executed, and the batch file will continue with the
statement after the ENDDO.

UNTIL tests the condition at the end of the loop.    Therefore, if the condition is false when the loop starts,
the statements within the loop will still be executed at least once.

The fourth type of loop executes the lines between DO and ENDDO once for every member of a set (this
is similar to the set used in the FOR command).    Normally, the set is a list of files specified with
wildcards.    For example:

do x in *.txt

will execute the loop once for every .TXT file in the current directory; each time through the loop the
variable x will be set to the name of the next file that matches the file specification.

If, between DO and ENDDO, you create a new file that could be included in the list of files, it may or may
not appear in an iteration of the DO loop.    Whether the new file appears depends on its physical location
in the directory structure, a condition over which 4NT has no control.

You can also execute the loop once for each line of text in a file by placing an [@] in front of the file name. 
If you have a file called DRIVES.TXT that contains a list of drives on your computer, one drive name per
line, you can execute the loop once for each drive this way:

do x in @drives.txt

To execute the loop once for each line of text in the clipboard, use CLIP: as the file name (e.g. DO X IN
@CLIP:).    CLIP: will not return any data unless the clipboard contains text.    See Redirection for
additional information on CLIP:.

Two special commands, ITERATE and LEAVE, can be used inside a DO / ENDDO loop.    ITERATE
ignores the remaining lines inside the loop and returns to the beginning of loop for another iteration
(unless DO determines that the loop is finished).    LEAVE exits from the current DO loop and continues
with the line following ENDDO.    Both ITERATE and LEAVE are most often used in an IF or IFF
command:

do while "%var" != "%var1"
 ...

 if "%var" == "%val2" leave
enddo

You can nest DO loops up to 15 levels deep.

The DO and ENDDO commands must be on separate lines, and cannot be placed within a command
group, or on the same line as other commands (this is the reason DO cannot be used in aliases).   
However, commands within the DO loop can use command groups or the command separator in the
normal way.

You can exit from all DO / ENDDO loops by using GOTO to a line past the last ENDDO.    However, be
sure to read the cautionary notes about GOTO and DO under the GOTO command before using a GOTO
in any other way inside any DO loop.

DRAWBOX

Purpose: Draw a box on the screen.

Format: DRAWBOX ulrow ulcol lrrow lrcol style [BRIght] fg ON [BRIght] bg [FILl [BRIght]
bgfill] [ZOOm] [SHAdow]

ulrow:    Row for upper left corner
ulcol:    Column for upper left corner
lrrow:    Row for lower right corner
lrcol:    Column for lower right corner
style:    Box drawing style:

0 No lines (box is drawn with blanks)
1 Single line
2 Double line
3 Single line on top and bottom, double on sides
4 Double line on top and bottom, single on sides

fg:    Foreground character color
bg:    Background character color
bgfill:    Background fill color (for the inside of the box)

See also:    DRAWHLINE and DRAWVLINE.

Usage

DRAWBOX is useful for creating attractive screen displays in batch files.

For example, to draw a box around the edge of an 80x25 screen with bright white lines on a blue
background:

drawbox 0 0 24 79 1 bri whi on blu fill blu

See Colors and Color Names for details about colors.

If you use ZOOM, the box appears to grow in steps to its final size.    The speed of the zoom operation
depends on the speed of your computer and video system.

If you use SHADOW, a drop shadow is created by changing the characters in the row under the box and
the 2 columns to the right of the box to normal intensity text with a black background (this will make
characters displayed in black disappear entirely).

The row and column values are zero-based, so on a standard 25 line by 80 column display, valid rows are
0 - 24 and valid columns are 0 - 79.

DRAWBOX checks for valid row and column values, and displays a "Usage" error message if any values
are out of range.

Unlike DRAWHLINE and DRAWVLINE, DRAWBOX does not automatically connect boxes to existing
lines on the screen with the proper connector characters.    If you want to draw lines inside a box and have
the proper connectors drawn automatically, draw the box first, then use DRAWHLINE and DRAWVLINE
to draw the lines.

DRAWBOX uses the standard line and box drawing characters in the U.S. English extended ASCII
character set.    If your system is configured for a different country or language, or a font which does not
include these characters, the box may not appear on your screen as you expect.

DRAWHLINE

Purpose: Draw a horizontal line on the screen.

Format: DRAWHLINE row column len style [BRIght] fg ON [BRIght] bg

row:    Starting row
column:    Starting column
len:    Length of line
style:    Line drawing style:

1          Single line
2          Double line

fg:    Foreground character color
bg:    Background character color

See also:    DRAWBOX and DRAWVLINE.

Usage

DRAWHLINE is useful for creating attractive screen displays in batch files.    It detects other lines and
boxes on the display, and creates the appropriate connector characters when possible (not all types of
lines can be connected with the available characters).

For example, the following command draws a double line along the top row of the display with green
characters on a blue background:

drawhline 0 0 80 2 green on blue

The row and column values are zero-based, so on a standard 25 line by 80 column display, valid rows are
0 - 24 and valid columns are 0 - 79.    DRAWHLINE checks for a valid row and column, and displays a
"Usage" error message if either value is out of range.

See Colors and Color Names for details about colors.

DRAWHLINE uses the standard line and box drawing characters in the U.S. English extended ASCII
character set.    If your system is configured for a different country or language, or a font which does not
include these characters, the line may not appear on your screen as you expect.

DRAWVLINE

Purpose: Draw a vertical line on the screen.

Format: DRAWVLINE row column len style [BRIght] fg ON [BRIght] bg

row:    Starting row
column:    Starting column
len:    Length of line
style:    Line drawing style:

1          Single line
2          Double line

fg:    Foreground character color
bg:    Background character color

See also:    DRAWBOX and DRAWHLINE.

Usage

DRAWVLINE is useful for creating attractive screen displays in batch files.    It detects other lines and
boxes on the display, and creates the appropriate connector characters when possible (not all types of
lines can be connected with the available characters).

For example, to draw a double width line along the left margin of the display with bright red characters on
a black background:

drawvline 0 0 25 2 bright red on black

The row and column values are zero-based, so on a standard 25 line by 80 column display, valid rows are
0 - 24 and valid columns are 0 - 79.    DRAWVLINE checks for a valid row and column, and displays a
"Usage" error message if either value is out of range.

See Colors and Color Names for details about colors.

DRAWVLINE uses the standard line and box drawing characters in the U.S. English extended ASCII
character set.    If your system is configured for a different country or language, or a font which does not
include these characters, the line may not appear on your screen as you expect.

ECHO and ECHOERR

Purpose: Display a message, enable or disable batch file or command-line echoing, or display the
echo status.

Format: ECHO [ON | OFF | message]

ECHOERR message

message:    Text to display.

See also:    ECHOS, SCREEN, SCRPUT, SETDOS and TEXT.

Usage

4NT has a separate echo capability for batch files and for the command line.    The command-line ECHO
state is independent of the batch file ECHO state; changing ECHO in a batch file has no effect on the
display at the command prompt, and vice versa.

To see the current echo state, use the ECHO command with no arguments.    This displays either the
batch file or command-line echo state, depending on where the ECHO command is performed.

In a batch file, if you turn ECHO on, each line of the file is displayed before it is executed.    If you turn
ECHO off, each line is executed without being displayed.    ECHO can also be used in a batch file to
display a message on the screen.    Regardless of the ECHO state, a batch file line that begins with the
[@] character will not be displayed.    To turn off batch file echoing, without displaying the ECHO
command, use this line:

@echo off

ECHO commands in a batch file will send messages to the screen while the batch file executes, even if
ECHO is set OFF.    For example, this line will display a message in a batch file:

echo Processing your print files...

If you want to echo a blank line from within a batch file, enter:

echo.

You cannot use the command separator character [&], or the redirection symbols [| > <] in an ECHO
message, unless you enclose them in quotes (see Argument Quoting) or precede them with the escape
character.

ECHO defaults to ON in batch files.    The current ECHO state is inherited by called batch files.    You can
change the default setting to ECHO OFF with the SETDOS /V0 command, the Options 1 page of the
OPTION dialogs, or the BatchEcho directive in the .INI file.

If you turn the command-line ECHO on, each command will be displayed before it is executed.    This will
let you see the command line after expansion of all aliases and variables.    The command- line ECHO is
most useful when you are learning how to use advanced features.    This example will turn command-line
echoing on:

[c:\] echo on

ECHO defaults to OFF at the command line.

ECHOERR acts like ECHO but sends its output to the standard error device (usually the screen) instead
of the standard output device.    If the standard output of a batch file is redirected to a file or another
device with >, ECHOERR will still generate a screen message.    See Redirection and Piping for more
information about the standard output and standard error devices and redirection.

ECHOS and ECHOSERR

Purpose: Display a message without a trailing carriage return and line feed.

Format: ECHOS message

ECHOSERR message

message:    Text to display.

See also:    ECHO, SCREEN, SCRPUT, TEXT, and VSCRPUT.

Usage

ECHOS is useful for text output when you don't want to add a carriage return / linefeed pair at the end of
the line.    For example, you can use ECHOS when you need to redirect control sequences to your printer;
this example sends the sequence Esc P to the printer on LPT1:

[c:\] echos ^eP > lpt1:

You cannot use the command separator character [&] or the redirection symbols [| > <] in an ECHOS
message, unless you enclose them in quotes (see Argument Quoting) or precede them with the escape
character.

ECHOS does not translate or modify the message text.    For example, carriage return characters are not
translated to CR/LF pairs.    ECHOS sends only the characters you enter (after escape character and
back quote processing).    The only character you cannot put into an ECHOS message is the NUL
character (ASCII 0).

ECHOSERR acts like ECHOS but sends its output to the standard error device (usually the screen)
instead of the standard output device.    If the standard output of a batch file is redirected to a file or
another device with >, ECHOSERR will still generate a screen message.    See Redirection and Piping for
more information about the standard output and standard error devices and redirection.

ENDLOCAL

Purpose: Restore the saved disk drive, directory, environment, alias list, and special characters.

Format: ENDLOCAL

See also:    SETLOCAL.

Usage

The SETLOCAL command in a batch file saves the current disk drive, default directory, all environment
variables, the alias list, and the command separator, escape character, parameter character, decimal
separator, and thousands separator.    ENDLOCAL restores everything that was saved by the previous
SETLOCAL command.

For example, this batch file fragment saves everything, removes all aliases so that user aliases will not
affect batch file commands, changes the disk and directory, changes the command separator, runs a
program, and then restores the original values:

setlocal
unalias *
cdd d:\test
setdos /c~
program ~ echo Done!
endlocal

SETLOCAL and ENDLOCAL can only be used in batch files, not in aliases or from the command line.

ESET

Purpose: Edit environment variables and aliases.

Format: ESET [/A] variable name...

variable name:    The name of an environment variable or alias to edit.

/A(lias)

See also:    ALIAS, UNALIAS, SET, and UNSET.

Usage

ESET allows you to edit environment variables and aliases using line editing commands (see Command-
Line Editing).

For example, to edit the executable file search path:

[c:\] eset path
path=c:\;c:\dos;c:\util

To create and then edit an alias:

[c:\] alias d = dir /d/j/p
[c:\] eset d
d=dir /d/j/p

ESET will search for environment variables first and then aliases. If you have an environment variable
and an alias with the same name, ESET will edit the environment variable and ignore the alias unless you
use the /A option.

Environment variable and alias names are normally limited to 80 characters.    Their values are normally
limited to 1,023 characters.    However, if you use special techniques to create a longer environment
variable, ESET will edit it provided the variable contains no more than 2,047 characters of text.

If you have enabled global aliases (see ALIAS), any changes made to an alias with ESET will immediately
affect all other copies of 4NT which are using the same alias list.

Options

/A: (Alias)    Edit the named alias even if an environment variable of the same name exists.    If
you have an alias and an environment variable with the same name, you must use this switch
to be able to edit the alias.

EXCEPT

Purpose: Perform a command on all available files except those specified.

Format: EXCEPT (file) command

file:    The file or files to exclude from the command.
command:    The command to execute, including all appropriate arguments and switches.

See also:    ATTRIB and File Exclusion Ranges.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.    Ranges must appear
immediately after the EXCEPT keyword.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

EXCEPT provides a means of executing a command on a group of files and/or subdirectories, and
excluding a subgroup from the operation. The command can be an internal command or alias, an external
command, or a batch file.

You may use wildcards to specify the files to exclude from the command.    The first example erases all
the files in the current directory except those beginning with MEMO, and those whose extension is .WKS. 
The second example copies all the files and subdirectories on drive C to drive D except those in C:\MSC
and C:\DOS, using the COPY command:

[c:\] except (memo*.* *.wks) erase *.*
[c:\] except (c:\msc c:\dos) copy c:*.* d:\ /s

When you use EXCEPT on an HPFS, NTFS, or LFN drive, you must quote any file names inside the
parentheses which contain whitespace or special characters.    See File Names for additional details.    For
example, to copy all files except those in the "Program Files" directory to drive E:\:

[c:\] except ("Program Files") copy /s *.* e:\

EXCEPT prevents operations on the specified file(s) by setting the hidden attribute, performing the
command, and then clearing the hidden attribute.    If the command is aborted in an unusual way, you may
need to use the ATTRIB command to remove the hidden attribute from the file(s).

Caution:    EXCEPT will not work with programs or commands that ignore the hidden attribute or which
work explicitly with hidden files, including DEL /Z, and the /H (process hidden files) switch available in
some 4NT file processing commands.

File exclusion ranges provide a faster and more flexible method of excluding files from internal
commands, and do not manipulate file attributes, as EXCEPT does.    However, exclusion ranges can only
be used with 4NT internal commands; you must use EXCEPT for external commands.

Date, time, and size ranges can be used immediately after the word EXCEPT to further qualify which files
should be excluded from the command.    If the command is an internal command that supports ranges,
an independent range can also be used in the command itself.    You can also use a file exclusion range
within the EXCEPT command; however, this will select files to be excluded from EXCEPT, and therefore
included in execution of the command.

You can use command grouping to execute multiple commands with a single EXCEPT.    For example, the
following command copies all files in the current directory whose extensions begin with .DA, except the
.DAT files, to the D:\SAVE directory, then changes the first two characters of the extension of the copied
files to .SA:

[c:\data] except (*.dat) (copy *.da* d:\save & ren *.da* *.sa*)

If you use filename completion to enter the filenames inside the parentheses, type a space after the open
parenthesis before entering a partial filename or pressing Tab.    Otherwise, the command-line editor will
treat the open parenthesis as the first character of the filename to be completed.

EXIT

Purpose: Return from 4NT.

Format: EXIT [value]

value:    The numeric exit code to return.

Usage

EXIT terminates the current copy of 4NT.    Use it to return to an application when you have "shelled out"
to work at the prompt, or to end an Windows NT command-line session.

To close the session, or to return to the application that started 4NT, type:

[c:\] exit

If you specify a value, EXIT will return that value to the program that started 4NT.    For example:

[c:\] exit 255

The value is a number you can use to inform the program of some result, such as the success or failure of
a batch file.    It can range from 0 - 4,294,967,295.    This feature is most useful for systems which use
batch files to automate their operation, such as bulletin boards, or custom application programs like
databases that shell to 4NT to perform certain tasks.

FFIND

Purpose: Search for files by name or contents.

Format: FFIND [/A[[:][-]rhsda] /B /C /D[list] /E /I /K /L /M /O[[:][-]acdeginrsu] /P /R /S
/T"xx" /V /X["xx xx ..."]] file...

list:    A list of disk drive letters (without colons).
file:    The file, directory, or list of files or directories to display.

/A(ttribute select) /M (no footers)
/B(are) /O(rder)
/C(ase sensitive) /P(ause)
/D(rive) /R(everse)
/E (upper case display) /S(ubdirectories)
/I(gnore wildcards) /T"xx" (Text search string)
/K (no headers) /V(erbose)
/L(ine numbers) /X (hex display / search string)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

FFIND is a flexible search command that looks for files based on their names and their contents.
Depending on the options you choose, FFIND can display filenames, matching text, or a combination of
both in a variety of formats.

If you want to search for files by name, FFIND works much like the DIR command.    For example, to
generate a list of all the .BTM files in the current directory, you could use the command

[c:\] ffind *.btm

The output from this command is a list of full pathnames, followed by the number of files found.

If you want to limit the output to a list of    .BTM files which contain the string color, you could use this
command instead:

[c:\] ffind /t"color" *.btm

The output from this command is a list of files that contain the string color along with the first line in each
file that contains that string.    By default, FFIND uses a case-insensitve search, so the command above
will include files that contain COLOR, Color, color, or any other combination of upper-case and lower-
case letters.

If you would rather see the last line of each file that contains the search string, use the /R option, which
forces FFIND to search from the end of each file to the beginning.    This option will also speed up
searches somewhat if you are looking for text that will normally be at the end of a file, such as a signature
line:

[c:\] ffind /r /t"Sincerely," *.txt

You can use extended wildcards in the search string to increase the flexibility of FFIND's search.    For
example, the following command will find .TXT files which contain either the string June or July (it will also

find Juny and Jule).    The /C option makes the search case-sensitive:

[c:\] ffind /c /t"Ju[nl][ey]" *.txt

If you want to search for text that contains wildcard characters (*, ?, [, or]), you can use the /I option to
force FFIND to interpret these as normal characters instead of wildcards.    The following command, for
example, finds all .TXT files that contain a question mark:

[c:\] ffind /i /t"?" *.txt

At times, you may need to search for data that cannot be represented by ASCII characters.    You can use
FFIND's /X option to represent the search string in hexadecimal format (this option also changes the
output to show hexadecimal offsets rather than text lines).    With /X, the search must be represented by
pairs of hexadecimal digits separated by spaces; a search of this type is always case-sensitive (in the
example below, 41 63 65 is the hex code for "Ace"):

[c:\] ffind /x"41 63 65" *.txt

You can use FFIND's other options to further specify the files for which you are searching and to modify
the way in which the output is displayed.

When you use FFIND on an HPFS, NTFS, or LFN drive, you must quote any file names which contain
whitespace or special characters.    See File Names for additional details.

Options

/A (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is optional.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., FFIND /A ...), FFIND will search all files and
subdirectories including hidden and system files.    If attributes are combined, all the specified
attributes must match for a file to be included in the listing.    For example, /A:RHS will search
only those files with all three attributes set.

/B (Bare)    Display file names only and omit the text that matches the search.    This option is
only useful in combination with /T or /X, which normally force FFIND to display file names and
matching text.

/C (Case sensitive)    Perform a case-sensitive search.    This option is only valid with /T, which
defaults to a case-insensitive search.    It is not needed with a /X hexadecimal search, which
is always case-sensitive.

/D (Drive)    Search all files on one or more drives.    If you use /D without a list of drives, FFIND
will search the drives specified in the list of files.    If no drive letters are listed, FFIND will
search all of the current drive.    You can include a list of drives or a range of drives to search
as part of the /D option.    For example, to search drives C:, D:, E:, and G:, you can use either
of these commands:

[c:\] ffind /dcdeg ...

[c:\] ffind /dc-eg ...

Drive letters listed after /D will be ignored when processing file names which also include a
drive letter.    For example, this command displays all the .BTM files on C: and E:, but only the
.BAT files on D:

[c:\] ffind /s /dce *.btm d:*.bat

/E Display filenames in the traditional upper case; also see SETDOS /U and the UpperCase
directive in 4NT.INI.

/I (Ignore wildcards)    Only meaningful when used in conjunction with the /T "text" option.   
Suppresses the recognition of wildcard characters in the search text.    This option is useful if
you need to search for characters that would normally be interpreted as wildcards: *, ?, [, and
].

/K (No headers)    Suppress the display of the header or filename for each matching text line.

/L (Line numbers)    Include the line number for each text line displayed.

/M (No footers)    Suppress the footer (the number of files and number of matches) at the end of
FFIND's display.

/O (Sort order)    Set the sort order for the files that FFIND displays.    You may use any
combination of the following sorting options; if multiple options are used, the listing will be
sorted with the first sort option as the primary key, the next as the secondary key, and so on:

- Reverse the sort order for the next option
a Sort in ASCII order, not numerically, when there are digits in the name
d Sort by date and time (oldest first); for drives which support long file names.
e Sort by extension
g Group subdirectories first, then files
i Sort by file description
n Sort by filename (this is the default)
r Reverse the sort order for all options
s Sort by size
u Unsorted

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

/R (Reverse)    Only meaningful when used in conjuction with the /T "text" or /X options.   
Searches each file from the end backwards to the beginning.    This option is useful if you
want to display the last occurrence of the search string in each file instead of the first (the
default).    It can also speed up searches for information that is normally at the end of a file,
such as a signature.

/S (Subdirectories)    Display matches from the current directory and all of its subdirectories.

/T"xx" (Text search)    Specify the text search string.    /T must be followed by a text string in double
quotes (e.g., /t"color").    FFIND will perform a case-insensitive search unless you also use
the /C option.    For a hexadecimal search and/or hexadecimal display of the location where
the search string is found, see /X.    You can specify a search string with either /T or /X, but
not both.

/V (Verbose)    Show every matching line.    FFIND's default behavior is to show only the first

matching line then and then go on to the next file.    This option is only valid with /T or /X.

/X["xx xx ..."]    (Hexadecimal display / search)    Specify hexadecimal display and an optional
hexadecimal search string.

If /X is followed by one or more pairs of hexadecimal digits in quotes (e.g., /x"44 63 65"),
FFIND will search for that exact sequence of characters or data bytes without regard to the
meaning of those bytes as text.    If those bytes are found, the offset is displayed (in both
decimal and hexadecimal).    A search of this type will always be case-sensitive.

If /X is not followed by a hexadecimal search string it must be used in conjunction with /T,
and will change the output format to display offsets (in both decimal and hexadecimal) rather
than actual text lines when the search string is found.    For example, this command uses /T to
display the first line in each .BTM file containing the word "hello":

[c:\] ffind /t"hello" *.btm
---- c:\test.btm
echo hello

1 line in 1 file

If you use the same command with /X, the offset is displayed instead of the text:

[c:\] ffind /t"hello" /x *.btm
---- c:\test.btm
Offset: 26 (1Ah)

1 line in 1 file

You can specify a search string with either /T or /X, but not both.

FOR

Purpose: Repeat a command for several values of a variable.

Format: FOR [/A:[[-]rhsda] /F ["options"] /H /L /R [path]] %var IN
([@]set | start, step, end) [DO] command ...

options:    Parsing options for a "file parsing" FOR.
path:    The starting directory for a "recursive" FOR.
%var:    The variable to be used in the command ("FOR variable").
set:    A set of values for the variable.
start:    The starting value for a "counted" FOR.
step:    The increment value for a "counted" FOR.
end:    The limit value for a "counted" FOR.
command:    A command or group of commands to be executed for each value of the
variable.

/A: (Attribute select) /L (counted loop)
/F(ile parsing) /R(ecursive)
/H(ide dots)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.    Ranges must appear
immediately after the FOR keyword.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

FOR begins by creating a set.    It then executes a command for every member of the set.    The command
can be an internal command, an alias, an external command, or a batch file.    The members of the set
can be a list of file names, text strings, a group of numeric values, or text read from a list of files.

When the set is made up of text or several separate file names (not an include list), the elements must be
separated by spaces, tabs, commas, or the switch character (normally a slash [/]).

FOR includes a large number of options, some of which duplicate functions available in other 4NT
commands, and / or do not follow conventions you may find in our other commands.    Most of these extra
options are included for compatibility with Windows NT 4.0's CMD.EXE.

The first three sections below (Working with Files, Working with Text, and Retrieving Text from Files)
describe the traditional FOR command and the enhancements to it which are part of 4NT.    The sections
on Parsing Text from Files and Counted FOR Loops describe features added for compatibility with
Windows NT 4.0.    The section entitled Other Notes contains information you may need if you use any
aspect of the FOR command extensively.

Working with Files

Normally, the set is a list of files specified with wildcards.    For example, if you use this line in a batch file:

for %x in (*.txt) do list %x

then LIST will be executed once for each file in the current directory with the extension .TXT.    The FOR
variable %x is set equal to each of the file names in turn, then the LIST command is executed for each

file.    (You could do the same thing more easily with a simple LIST *.TXT.    We used FOR here so you
could get a feel for how it operates, using a simple example.    Many of the examples in this section are
constructed in the same way.)

The set can include multiple files or an include list, like this:

for %x in (d:*.txt;*.doc;*.asc) do type %x

FOR supports wildcards and extended wildcards, as well as extended parent directory names (e.g., ...\
*.txt to process all of the .TXT files that are contained in the directory 2 levels above the current
directory).

When you use FOR on an HPFS, NTFS, or LFN drive, you must quote any file names within the set which
contain whitespace or special characters.    The same restriction applies to names returned in the FOR
variable, if you pass them to 4NT internal commands, or other commands which require quoting
filenames with whitespace.    FOR does not quote returned names automatically, even if you included
quotes in the set.    See File Names for additional details on file name quoting.

If the set includes filenames, the file list can be further refined by using date, time, size, and file exclusion
ranges.    The range or ranges must be placed immediately after the word FOR.    Ranges will be ignored if
no wildcards are used inside the parentheses.    For example, this set is made up of all of the .TXT files
that were created or updated on October 4, 1997:

for /[d10-4-97,+0] %x in (*.txt) do ...

If the command is an internal command that supports ranges, an independent range can also be used in
the command itself.

You can also refine the list by limiting it with the /A option to select only files that have specific attributes.

By default, FOR works only with files in the current directory or a specified directory.    With the /R option,
FOR will also search for files in subdirectories.    For example, to work with all of the .TXT files in the
current directory and its subdirectories:

for /r %x in (*.txt) do ...

If you specify a directory name immediately after /R, FOR will start in that directory and then search each
of its subdirectories.    This example works with all of the .BAK files on drive D:

for /r d:\ %x in (*.bak) do ...

When you use wildcards to specify the set, FOR scans the directory and finds each file which matches
the wildcard name(s) you specified.    If, during the processing of the FOR command, you create a file that
could be included in the set, it may or may not appear in a future iteration of the same FOR command.   
Whether the new file appears depends on its physical location in the directory structure.    For example, if
you use FOR to execute a command for all .TXT files, and the command also creates one or more new
.TXT files, those new files may or may not be processed during the current FOR command, depending on
where they are placed in the physical structure of the directory.    This is an operating system constraint
over which 4NT has no control.    Therefore, in order to achieve consistent results you should construct
FOR commands which do not create files that could become part of the set for the current command.

Working with Text

The set can also be made up of text instead of file names.    For example, to create three files named
file1, file2, and file3, each containing a blank line:

for %suffix in (1 2 3) do echo. > file%suffix

You could also use the names of environment variables as the text.    This example displays the name and
content of several variables from the environment (see Environment Variables and Functions for details
on the use of square brackets when expanding environment variables).    Enter this on one line:

for %var in (path prompt comspec) do echo %var=%[%var]

Retrieving Text from Files

FOR can extract text from files in two different ways.    The first method extracts each line from each file in
the set and places it in the variable.    To use this method, place an [@] at the beginning of the set, in front
of the file name or names.

For example, if you have a file called DRIVES.TXT that contains a list of drives on your computer, one
drive name per line (with a ":" after each drive letter), you can print the free space on each drive this way:

for %d in (@drives.txt) do free %d > prn

Because the [@] is also a valid filename character, FOR first checks to see if the file exists with the [@] in
its name (i.e., a file named @DRIVES.TXT).    If so, the filename is treated as a normal argument.    If it
doesn't exist, FOR uses the filename (without the [@]) as the file from which to retrieve text.

If you use @CON as the filename, FOR will read from standard input (a redirected input file) or a pipe
(see Redirection and Piping).    If you use @CLIP: as the filename, FOR will read any text available from
the Windows clipboard.

Parsing Text from Files

The second method of working with text from files is to have FOR parse each line of each file for you.    To
begin a "file-parsing" FOR, you must use the /F option and then include one or more file names in the set. 
When you use this form of FOR, the variable must be a single letter, for example, %a.

This method of parsing, included for compatibility with Windows NT 4.0's CMD.EXE, can be cumbersome
and inflexible.    For a more powerful method, use FOR with @filename as the set to retrieve each line
from the file, as described in the previous section.    Then use variable functions like @INSTR, @LEFT,
@RIGHT, and @WORD to parse the line.

By default, FOR will extract the first word or token from each line and return it in the variable.    For
example, to display the first word on each line in the file FLIST.TXT:

for /f %a in (flist.txt) do echo %a

You can control the way FOR /F parses each line by specifying one or more parsing options in a quoted
string immediately after the /F.    The available options are:

skip=n:    FOR /F will skip "n" lines at the beginning of each file before parsing the remainder of
the file.

tokens=n, m, ... :    By default, FOR /F returns just the first word or "token" from each parsed line
in the variable you named.    You can have it return more than one token in the variable, or return
tokens in several variables, with this option.

This option is followed by a list of numbers separated by commas.    The first number tells FOR /F
which token to return in the first variable, the second number tells it which to return in the second
variable, etc.    The variables follow each other alphabetically starting with the variable you name

on the FOR command line.    This example returns the first word of each line in each text file in
%d, the second in %e, and the third in %f:

for /f "tokens=1,2,3" %d in (*.txt) do ...

You can also indicate a range of tokens by separating the numbers with a hyphen [-].    This
example returns the first word of each line in %p, the second through fifth words in %q, and the
eighth word in %r:

for /f "tokens=1,2-5,8" %p in (*.txt) do ...

To return the rest of the line in a variable, use a range that ends with a number higher than the
last token in any line, such as 999.    This final example returns the first word of each line in %a
and the remainder of each line (assuming that no line has more than 999 words!) in %b:

for /f "tokens=1,2-999" %a in (*.txt) do ...

eol=c:    If FOR /F finds the character "c" in the line, it will assume that the character and any text
following it are part of a comment and ignore the rest of the line.

delims=xxx...:    By default, FOR /F sees spaces and tabs as word or token delimiters.    This
option replaces those delimiters with all of the characters following the equal sign to the end of
the string.    This option must therefore be the last one used in the quoted options string.

You can also use FOR /F to parse a single string instead of each line of a file by using the string, in
quotes, as the set.    For example, this command will assign variable A to the string "this", B to "is", etc.,
then display "this" (enter the command on one line):

for /f "tokens=1,2,3,4" %a in ("this is a test") do echo %a

"Counted" FOR Loop

The "counted FOR" loop is included only for compatibility with Windows NT 4.0's CMD.EXE.    In most
cases, you will find the DO command more useful for performing counted loops.

In a counted FOR command, the set is made up of numeric values instead of text or file names.    To
begin a counted FOR command, you must use the /L option and then include three values, separated by
commas, in the set.    These are the start, step, and end values.    During the first iteration of the FOR
loop, the variable is set equal to the start value.    Before each iteration, the variable is increased by the
step value.    The loop ends when the variable exceeds the end value.    This example will print the
numbers from 1 to 10:

for /l %val in (1,1,10) do echo %val

This example will print the odd numbers from 1 to 10 (1, 3, 5, 7, and 9):

for /l %val in (1,2,10) do echo %val

The step value can be negative.    If it is, the loop will end when the variable is less than the end value.

Other Notes

You can use either % or %% in front of the variable name. Either form will work, whether the FOR
command is typed from the command line or is part of an alias or batch file (some of the traditional
command processors require a single % if FOR is used at the command line, but require %% if FOR is
used in a batch file).    The variable name can be up to 80 characters long.    The word DO is optional.

If you use a single-character FOR variable name, that name is given priority over any environment
variable which starts with the same letter, in order to maintain compatibility with the traditional FOR
command.    For example, the following command tries to add a: and b: to the end of the PATH, but will
not work as intended:

[c:\] for %p in (a: b:) do path %path;%p

The "%p" in "%path" will be interpreted as the FOR variable %p followed by the text "ath", which is not
what was intended.    To get around this, use a different letter or a longer name for the FOR variable, or
use square brackets around the variable name (see Environment).

The following example uses FOR with variable functions to delete the .BAK files for which a
corresponding .TXT file exists in the current directory:

[c:\docs] for %file in (*.txt) do del %@name[%file].bak

The above command would not work properly on an HPFS, NTFS, or LFN drive, because the returned
FILE variable might contain whitespace.    To correct this problem, you would need two sets of quotes, one
for DEL and one for %@NAME:

[c:\docs] for %file in (*.txt) do del "%@name["%file"].bak"

You can use command grouping to execute multiple commands for each element in the set.    For
example, the following command copies each .WKQ file in the current directory to the D:\WKSAVE
directory, then changes the extension of each file in the current directory to .SAV.    This should be
entered on one line:

[c:\text] for %file in (*.wkq) do (copy "%file" d:\wksave\ & ren "%file"
*.sav)

In a batch file you can use GOSUB to execute a subroutine for every element in the set.    Within the
subroutine, the FOR variable can be used just like any environment variable.    This is a convenient way to
execute a complex sequence of commands for every element in the set without CALLing another batch
file.

One unusual use of FOR is to execute a collection of batch files or other commands with the same
parameter.    For example, you might want to have three batch files all operate on the same data file.    The
FOR command could look like this (enter on one line):

[c:\] for %cmd in (filetest fileform fileprnt) do %cmd datafile

This line will expand to three separate commands:

filetest datafile
fileform datafile
fileprnt datafile

The variable that FOR uses (the %CMD in the example above) is created in the environment and then
erased when the FOR command is done.    (For compatibility with CMD.EXE, a single-character FOR
variable is created in a special way that does not overwrite an existing environment variable with the
same name.)    When using a multi-character variable name you must be careful not to use the name of
one of your environment variables as a FOR variable.    For example, a command that begins

[c:\] for %path in ...

will write over your current path setting and then erase the path variable completely when FOR is done.

FOR statements can be nested.

Options

/A: (Attribute select)    Process only those files that have the specified attribute(s).    /A will be
used only when processing wildcard file names in the set.    It will be ignored for filenames
without wildcards or other items in the set.    Preceding the attribute character with a hyphen
[-] will process files that do not have that attribute set.    The colon [:] after /A is required.   
The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed (e.g., FOR /A: ...), FOR will process all files including hidden and
system files.    If attributes are combined, all the specified attributes must match for a file to be
included.    For example, /A:RHS will include only those files with all three attributes set.

For example, to process only those files with the archive attribute set:

for /a:a %f in (*.*) echo %f needs a backup!

/F (File parsing)    Return one or more words or tokens from each line of each file in the set.   
The /F option can be followed by one or more options in a quoted string which control how
the parsing is performed.    See the details under Parsing Text From Files, above.

/H (Hide dots)    Suppress the assignment of the "." and ".." directories to the FOR variable.

/L    (counted loop)    Interpret the three values in the set as the start, step, and end values of a
counted loop.    See the details under "Counted" FOR Loop, above.

/R (Recursive)    Look in the current directory and all of its subdirectories for files in the set.    If
the /R is followed by a directory name, look for files in that directory and all of its
subdirectories.

FREE

Purpose: Display the total disk space, total bytes used, and total bytes free on the specified (or
default) drive(s).

Format: FREE [drive: ...]

drive:    One or more drives to include in the report.

See also:    MEMORY.

Usage

FREE provides the same disk information as the external command CHKDSK, but without the wait, since
it does not check the integrity of the file and directory structure of the disk.

A colon [:] is required after each drive letter.    This example displays the status of drives A and C:

[c:\] free a: c:
 Volume in drive A: is unlabeled
 1,213,952 bytes total disk space
 1,115,136 bytes used
 98,816 bytes free
 Volume in drive C: is DEVELOPMENT
 242,496,000 bytes total disk space
 236,851,712 bytes used
 5,644,288 bytes free

FTYPE

Purpose: Modify or display the command used to open a file of a type specified in the Windows NT
registry.

Format: FTYPE [/P] [filetype[=[command]]]

filetype:    A file type stored in the Windows NT registry.
command:    The command to be executed when a file of the specified type is opened.

/P(ause)

See also:    ASSOC and Executable Extensions.

Usage

FTYPE allows you to display or update the command used to open a file of a specified type listed in the
Windows NT registry.

FTYPE modifies the behavior of "indirect" Windows file associations stored under the registry handle
HKEY_CLASSES_ROOT, and discussed in more detail Windows File Associations and Using Windows
File Associations.    If you are not familiar with file associations be sure to read about them before using
FTYPE.

The entry modified by FTYPE is the Shell\Open\Command entry for the specified file type, which defines
the application to execute when a file of that type is opened.    The open action is generally invoked by
selecting Open on the popup menu for a file from the Windows NT Explorer.    Note that opening a file and
double-clicking its icon (or selecting the icon and pressing Enter) may not be the same thing — double-
clicking or pressing Enter invokes the default action for the file type, which may or may not be "Open".

If you invoke FTYPE with no parameters, it will display the current file types and associated shell open
commands.    Use the /P switch to pause the display at the end of each page.    If you include a filetype,
with no equal sign or command, FTYPE will display the current command for that file type.

If you include the equal sign and command, FTYPE will create or update the shell open command for the
specified file type.    The command generally includes an application name, including full path, plus
parameters.    The specific syntax required depends on the internal operation of both Windows and the
application involved, and is beyond the scope of this manual.    You can learn about typical syntax by
reviewing appropriate Windows and application documentation, and / or by checking through the current
contents of your registry.

To remove the shell open command for a file type, use a command like FTYPE filetype=, with no
command parameter.    This will not delete the shell open command entry from the registry; it simply sets
the command to an empty string.

FTYPE should be used with caution, and only after backing up the registry.    Improper changes to file
associations can prevent applications and / or the operating system from working properly.

Options

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

GLOBAL

Purpose: Execute a command in the current directory and its subdirectories.

Format: GLOBAL [/H /I /P /Q] command

command:    The command to execute, including arguments and switches.

/H(idden directories) /P(rompt)
/I(gnore exit codes) /Q(uiet)

Usage

GLOBAL performs the command first in the current directory and then in every subdirectory under the
current directory.    The command can be an internal command, an alias, an external command, or a batch
file.

This example copies the files in every directory on drive A to the directory C:\TEMP:

[a:\] global copy *.* c:\temp

If you use the /P option, GLOBAL will prompt for each subdirectory before performing the command.    You
can use this option if you want to perform the command in most, but not all subdirectories of the current
directory.

You can use command grouping to execute multiple commands in each subdirectory.    For example, the
following command copies each .TXT file in the current directory and all of its subdirectories to drive A.    It
then changes the extension of each of the copied files to .SAV:

[c:\] global (copy *.txt a: & ren *.txt *.sav)

Options

/H (Hidden directories)    Forces GLOBAL to look for hidden directories.    If you don't use this
switch, hidden directories are ignored.

/I (Ignore exit codes)    If this option is not specified, GLOBAL will terminate if the command
returns a non- zero exit code.    Use /I if you want the command to continue in additional
subdirectories even if it returns an error in one subdirectory.    Even if you use /I, GLOBAL will
normally halt execution if the command processor receives a Ctrl-C or Ctrl-Break.

/P (Prompt)    Forces GLOBAL to prompt with each directory name before it performs the
command.    Your options at the prompt are explained in detail under Page and File Prompts.

/Q (Quiet)    Do not display the directory names as each directory is processed.

GOSUB

Purpose: Execute a subroutine in the current batch file.

Format: GOSUB label

label:    The batch file label at the beginning of the subroutine.

See also:    CALL, GOTO and RETURN.

Usage

GOSUB can only be used in batch files.

4NT allows subroutines in batch files.    A subroutine must start with a label (a colon [:] followed by a one-
word label name) which appears on a line by itself.    Case differences are ignored when matching labels. 
Labels may be one or more words long.    The subroutine must end with a RETURN statement.

The subroutine is invoked with a GOSUB command from another part of the batch file.    After the
RETURN, processing will continue with the command following the GOSUB command.    For example, the
following batch file fragment calls a subroutine which displays the directory and returns:

echo Calling a subroutine
gosub subr1
echo Returned from the subroutine
quit

:subr1
dir /a/w
return

4NT begins its search on the line of the batch file following the GOSUB command.    If the label is not
found between the current position and the end of the file, GOSUB will restart the search at the beginning
of the file.    If the label does not exist, the batch file is terminated with the error message "Label not
found."

GOSUB saves the IFF and DO states, so IFF and DO statements inside a subroutine won't interfere with
IFF statements in the part of the batch file from which the subroutine was called.

Subroutines can be nested.

GOTO

Purpose: Branch to a specified line inside the current batch file.

Format: GOTO [/I] label

label:    The batch file label to branch to.

/I(FF and DO continue)

See also:    GOSUB.

Usage

GOTO can only be used in batch files.

After a GOTO command in a batch file, the next line to be executed will be the one immediately after the
label.    The label must begin with a colon [:] and appear on a line by itself. The colon is required on the
line where the label is defined, but is not required in the GOTO command itself.    Case differences are
ignored when matching labels.    Labels may be one or more words long.

This batch file fragment checks for the existence of the file CONFIG.NT.    If the file exists, the batch file
jumps to C_EXISTS and copies all the files from the current directory to the root directory on A:.   
Otherwise, it prints an error message and exits.

if exist config.nt goto C_EXISTS
echo CONFIG.NT doesn't exist - exiting.
quit
:C_EXISTS
copy *.* a:\

4NT begins its search on the line of the batch file following the GOTO command.    If the label is not found
between the current position and the end of the file, GOTO will restart the search at the beginning of the
file.    If the label does not exist, the batch file is terminated with the error message "Label not found."

To avoid errors in the processing of nested statements and loops, GOTO cancels all active IFF
statements and DO / ENDDO loops unless you use /I.    This means that a normal GOTO (without /I) may
not branch to any label that is between an IFF and the corresponding ENDIFF or between a DO and the
corresponding ENDDO.

For compatibility with Windows NT's CMD.EXE, the command

GOTO :EOF

will end processing of the current batch file if the label :EOF does not exist.    However, this is less efficient
than using the QUIT or CANCEL command to end a batch file.

Options

/I (IFF and DO continue)    Prevents GOTO from canceling IFF statements and DO loops.    Use
this option only if you are absolutely certain that your GOTO command is branching entirely
within any current IFF statement and any active DO / ENDDO block.    Using /I under any
other conditions will cause an error later in your batch file.

You cannot branch into another IFF statement, another DO loop, or a different IFF or DO

nesting level, whether you use the /I option or not.    If you do, you will eventually receive an
"unknown command" error (or execution of the UNKNOWN_CMD alias) on a subsequent
ENDDO, ELSE, ELSEIFF, or ENDIFF statement.

HELP

Purpose: Display help for internal commands, and optionally for external commands.

Format: HELP [topic]

topic:    A help topic, internal command, or external command.

Usage

Online help is available for 4NT.    The 4NT help system uses the Windows NT help facility.

If you type the command HELP by itself (or press F1 when the command line is empty), the table of
contents is displayed.    If you type HELP plus a topic name, that topic is displayed.    For example:

help copy

displays information about the COPY command and its options.

HISTORY

Purpose: Display, add to, clear, or read the history list.

Format: HISTORY [/A command /F /P /R filename

command:    A command to be added to the history list.
filename:    The name of a file containing entries to be added to the history list.

/A(dd) /P(ause)
/F(ree) /R(ead)

See also:    DIRHISTORY and LOG.

Usage

4NT keeps a list of the commands you have entered on the command line.    See Command History and
Recall for additional details.

The HISTORY command lets you view and manipulate the command history list directly.    If no
parameters are entered, HISTORY will display the current command history list:

[c:\] history

With the options explained below, you can clear the list, add new commands to the list without executing
them, save the list in a file, or read a new list from a file.

The number of commands saved in the history list depends on the length of each command line.    The
history list size can be specified at startup from 256 to 32767 characters (see the History directive).    The
default size is 1024 characters.

Your history list can be stored either locally (a separate history list for each copy of 4NT) or globally (all
copies of 4NT share the same list).    For full details see the discussion of local and global history lists
under Command History and Recall.

You can use the HISTORY command as an aid in writing batch files by redirecting the HISTORY output to
a file and then editing the file appropriately.    However, it may be easier to use the LOG /H command for
this purpose.

You can disable the history list or specify a minimum command-line length to save on the Command Line
1 page of the OPTION dialogs, or with the HistMin directive in the .INI file.

You can save the history list by redirecting the output of HISTORY to a file.    This example saves the
command history to a file called HISTFILE and reads it back again immediately.    If you leave out the
HISTORY /F command on the second line, the contents of the file will be appended to the current history
list instead of replacing it:

[c:\] history > histfile
[c:\] history /f
[c:\] history /r histfile

If you need to save your history at the end of each day's work, you might use commands like this in your
4START.BTM file:

if exist c:\histfile history /r c:\histfile

alias shut*down `history > c:\histfile`

This restores the previous history list if it exists, then defines an alias which will allow you to save the
history before shutting off the system.

Options

/A (Add)    Add a command to the history list.    This performs the same function as the Ctrl-K key
at the command line (see Command History and Recall).

/F (Free)    Erase all entries in the command history list.

/P (Prompt)    Wait for a key after displaying each page of the list.    Your options at the prompt
are explained in detail under Page and File Prompts.

/R (Read)    Read the command history from the specified file and append it to the history list
currently held in memory.    Each line in the file must fit within the command-line length limit).

If you are creating a HISTORY /R file by hand, and need to create an entry that spans
multiple lines in the file, you can do so by terminating each line, except the last, with an
escape character.    However, you cannot use this method to exceed the command-line length
limit.

IF

Purpose: Execute a command if a condition or set of conditions is true.

Format: IF [/I] [NOT] condition [.AND. | .OR. | .XOR. [NOT] condition ...] command

condition:    A test or set of tests to determine if the command should be executed.
command:    The command to execute if the condition is true.

/I(gnore case)

See also:    IFF, @IF

Usage

IF is normally used only in aliases and batch files.    It is always followed by one or more conditions and
then a command. First, the conditions are evaluated.    If they are true, the command is executed.   
Otherwise, the command is ignored. If you add a NOT before a condition, the command is executed only
when the condition is false.

You can link conditions with .AND., .OR., or .XOR., and you can group conditions with parentheses (see
Combining Tests below).    You can also nest IF statements.

The conditions can test strings, numbers, the existence of a file or subdirectory, the exit code returned by
the preceding external command, and the existence of aliases and internal commands.

The command can be an alias, an internal command, an external command, or a batch file.    The entire
IF statement, including all conditions and the command, must fit on one line.

Some examples of IF conditions and commands are included below; additional examples can be found in
the EXAMPLES.BTM file which came with 4NT.

You can use command grouping to execute multiple commands if the condition is true.    For example, the
following command tests if any .TXT files exist.    If they do, they are copied to drive A: and their
extensions are changed to .TXO:

if exist *.txt (copy *.txt a: & ren *.txt *.txo)

(Note that the IFF command provides a more structured method of executing multiple commands if a
condition or set of conditions is true.)

When an IF test fails, the remainder of the command is discarded, and 4NT normally continues with the
next command on the line, or the next line.    This behavior is not compatible with CMD.EXE, which
discards all remaining commands on the line when an IF test fails, including those after a command
separator or pipe character.    To change the behavior so that IF affects all commands on the line, as in
CMD.EXE, set DuplicateBugs to Yes in the .INI file.

For example, if DuplicateBugs is set to Yes (the default), the following command will display nothing,
because the second ECHO command is discarded along with the first when the condition fails.    If
DuplicateBugs is set to No, it will display "hello":

[c:\] if 1 == 2 echo Wrong! & echo hello

Conditions

The conditional tests listed in the following sections are available in both the IF and IFF commands.   
They fit into two categories:    string and numeric tests, and status tests.    The tests can use environment
variables, internal variables and variable functions, file names, literal text, and numeric values as their
arguments.

String and Numeric Tests

Six test conditions can be used to test character strings.    The same conditions are available for both
numeric and normal text strings (see below for details).    In each case you enter the test as:

string1 operator string2

The operator defines the type of test (equal, greater than or equal, and so on).    You should always use
spaces on both sides of the operator.    The operators are:

EQ or == string1 equal to string2

NE or != string1 not equal to string2

LT string1 less than string2

LE string1 less than or equal to string2

GE string1 greater than or equal to string2

GT string1 greater than string2

When IF compares two character strings, it will use either a numeric comparison or a string comparison. 
A numeric comparison treats the strings as numeric values and tests them arithmetically.    A string
comparison treats the strings as text.

The difference between numeric and string comparisons is best explained by looking at the way two
values are tested.    For example, consider comparing the values 2 and 19.    Numerically, 2 is smaller, but
as a string it is "larger" because its first digit is larger than the first digit of 19.    So the first of these
condition s will be true, and the second will be false:

if 2 lt 19 ...
if "2" lt "19" ...

IF determines which kind of test to do by examining the first character of each string.    If both strings
begin with a numeric character (a digit, sign, or decimal separator), a numeric comparison is used.    (If a
string begins with a decimal separator it is not considered numeric unless the next character is a digit,
and there are no more decimal separators within the string.    For example, ".07" is numeric, but ".a" and
".07.01" are not.)    If either value is non-numeric, a string comparison is used.    To force a string
comparison when both values are or may be numeric, use double quotes around the values you are
testing, as shown above.    Because the double quote is not a numeric character, IF performs a string
comparison.

Case differences are ignored in string comparisons.    If two strings begin with the same text but one is
shorter, the shorter string is considered to be "less than" the longer one.    For example, "a" is less than
"abc", and "hello_there" is greater than "hello".

When you compare text strings, you should always enclose the arguments in double quotes in order to
avoid syntax errors which may occur if one of the argument values is empty.

Numeric comparisons work with both integer and decimal values.    The values to be compared must
contain only numeric digits, decimal points, and an optional sign (+ or -).    The number may contain up to
16 digits to the left of the decimal point, and 8 digits to the right.

In order to maintain compatibility with CMD.EXE in Windows NT 4.0 and later, 4NT recognizes the
following additional names for conditions:

EQL is the same as EQ and ==
NEQ is the same as NE and !=
LSS is the same as LT
LEQ is the same as LE
GTR is the same as GT
GEQ is the same as GE

Internal variables and variable functions are very powerful when combined with string and numeric
comparisons.    They allow you to test the state of your system, the characteristics of a file, date and time
information, or the result of a calculation.    You may want to review the variables and variable functions
when determining the best way to set up an IF test.

This batch file fragment tests for a string value:

input "Enter your selection : " %%cmd
if "%cmd" == "WP" goto wordproc
if "%cmd" NE "GRAPHICS" goto badentry

This example calls GO.BTM if the first two characters in the file MYFILE are "GO" (enter this example on
one line):

if "%@left[2,%@line[myfile,0]]" == "GO" call go.btm

Status Tests

These conditions test the system or command processor status.    You can use internal variables and
variable functions to test many other parts of the system status.

DEFINED variable If the variable exists in the environment, the condition is true.   
This is equivalent to testing whether the variable is not empty,
for example the following two commands are equivalent:

if defined abc echo Hello
if "%abc" != "" echo Hello

ERRORLEVEL [operator] n This test retrieves the exit code of the preceding external
program.    By convention, programs return an exit code of 0
when they are successful and a number between 1 and 255 to
indicate an error (depending on the program you are running,
the maximum return value may be larger).    The condition can
be any of the operators listed above (EQ, !=, GT, etc.).    If no
operator is specified, the default is GE.    The comparison is
done numerically.

Not all programs return an explicit exit code.    For programs
which do not, the behavior of ERRORLEVEL is undefined.

EXIST filename If the file exists, the condition is true.    You can use wildcards
in the filename, in which case the condition is true if any file
matching the wildcard name exists.

Do not use IF EXIST to test for existence of a directory (use IF
ISDIR instead).    Due to variations in operating system

internals, IF EXIST will not return consistent results when used
to test for the existence of a directory.

ISALIAS aliasname If the name is defined as an alias, the condition is true.

ISDIR path If the subdirectory exists, the condition is true.

ISINTERNAL command If the specified command is an active internal command, the
condition is true.    Commands can be activated and
deactivated with the SETDOS /I command.

ISLABEL label If the specified batch file label exists, the condition is true.   
Labels may be one or more words long.

ISWINDOW "title" If the window which matches the title exists, the condition is
true.    Double quotes must be used around the title, which may
contain wildcards and extended wildcards.

The first batch file fragment below tests for the existence of A:\JAN.DOC before copying it to drive C (this
avoids an error message if the file does not exist):

if exist a:\jan.doc copy a:\jan.doc c:\

This example tests the exit code of the previous program and stops all batch file processing if an error
occurred:

if errorlevel == 0 goto success
echo "External Error -- Batch File Ends!"
cancel

Combining Tests

You can negate the result of any test with NOT, and combine tests of any type with .AND., .OR., and
.XOR..

When two tests are combined with .AND., the result is true if both individual tests are true.    When two
tests are combined with .OR., the result is true if either (or both) individual tests are true.    When two tests
are combined with .XOR., the result is true only if one of the tests is true and the other is false.

Test conditions are always scanned from left to right – there is no implied order of precedence, as there is
in some programming languages.    You can, however, force a specific order of testing by grouping
conditions with parentheses, which can be nested.    For example (enter this on one line):

if (%a == 1 .or. (%b == 2 .and. %c == 3)) echo something

Parentheses can only be used when the portion of the condition inside the parentheses contains at least
one ".and.", ".or.", or ".xor.".    Parentheses on a simple condition which does not combine two or more
tests will be taken as part of the string to be tested, and will probably make the test fail.    For example, the
first of these IF tests would fail; the second would succeed:

if (a == a) ...
if (a == a .and. b == b) ...

Options

/I (Ignore case)    This option is included only for compatibility with CMD.EXE.    It has no effect,
since all string comparisons under 4NT are case-insensitive.

IFF

Purpose: Perform IF / THEN / ELSE conditional execution of commands.

Format: IFF [NOT] condition [.AND. | .OR. | .XOR. [NOT] condition ...] THEN & commands

[ELSEIFF condition    THEN & commands] ...
[ELSE & commands]
& ENDIFF

condition:    A test to determine if the command(s) should be executed.
commands:    One or more commands to execute if the condition(s) is true.    If you use
multiple commands, they must be separated by command separators or be placed on
separate lines of a batch file.

See also:    IF and @IF.

Usage

IFF is similar to the IF command, except that it can perform one set of commands when a condition or set
of conditions is true and different commands when the conditions are false.

IFF can also execute multiple commands when the conditions are true or false; IF normally executes only
one command.    IFF imposes no limit on the number of commands and is generally a "cleaner" and more
structured command than IF.

IFF is always followed by one or more conditions.    If they are true, the commands that follow the word
THEN are executed. Additional conditions can be tested with ELSEIFF.    If none of these conditions are
true, the commands that follow the word ELSE are executed.    After the selected commands (if any) are
executed, processing continues after the word ENDIFF.

If you add a NOT before the condition, the THEN commands are executed only when the condition is
false and the ELSE commands are executed only when the condition is true.

The commands may be separated by command separators, or may be on separate lines of a batch file.   
You should include a command separator or a line break after a THEN, before an ELSEIFF, and before
and after an ELSE.

You can link conditions with .AND., .OR., or .XOR., and you can group conditions with parentheses.    You
can nest IFF statements up to 15 levels deep.    The conditions can test strings or numbers, the existence
of a file or subdirectory, the errorlevel returned from the preceding external command, and the existence
of alias names and internal commands.

See the IF command for a list of the possible conditions, and details on using .AND., .OR., .XOR., and
parentheses.

The commands can include any internal command, alias, external command, or batch file.

The alias in this example checks to see if the argument is a subdirectory.    If so, the alias deletes the
subdirectory's files and removes it (enter this on one line):

[c:\] alias prune `iff isdir %1 then & del /sxz %1 & else & echo Not a
directory! & endiff`

Be sure to read the cautionary notes about GOTO and IFF under the GOTO command before using a
GOTO inside an IFF statement.

If you pipe data to an IFF, the data will be passed to the command(s) following the IFF, not to IFF itself.

INKEY

Purpose: Get a single keystroke from the user and store it in an environment variable.

Format: INKEY [/C /D /K"keys" /P /Wn /X] [prompt] %%varname

prompt:    Optional text that is displayed as a prompt.
varname:    The variable that will hold the user's keystroke.

/C(lear buffer) /P(assword)
/D(igits only) /W(ait)
/K (valid keystrokes) /X (no carriage return)

See also:    INPUT.

Usage

INKEY optionally displays a prompt.    Then it waits for a specified time or indefinitely for a keystroke, and
places the keystroke into an environment variable.    It is normally used in batch files and aliases to get a
menu choice or other single-key input.    Along with the INPUT command, INKEY allows great flexibility in
reading input from within a batch file or alias.

If prompt text is included in an INKEY command, it is displayed while INKEY waits for input.

The following batch file fragment prompts for a character and stores it in the variable NUM:

inkey Enter a number from 1 to 9: %%num

INKEY reads standard input for the keystroke, so it will accept keystrokes from a redirected file.    You can
supply a list of valid keystrokes with the /K option.

Standard keystrokes with ASCII values between 1 and 255 are stored directly in the environment variable.
Extended keystrokes (for example, function keys and cursor keys) are stored as a string in decimal
format, with a leading @ (for example, the F1 key is @59).    The Enter key is stored as an extended
keystroke, with the code @28.    See ASCII and Key Codes for a list of the ASCII and extended key
codes.

To test for a non-printing ASCII keystroke returned by INKEY use the @ASCII function to get the numeric
value of the key.    For example, to test for Esc, which has an ASCII value of 27:

inkey Enter a key: %%key
if "%@ascii[%key]" == "27" echo Esc pressed

If you press Ctrl-C or Ctrl-Break while INKEY is waiting for a key, execution of an alias will be terminated,
and execution of a batch file will be suspended while you are asked whether to cancel the batch job.    A
batch file can handle Ctrl-C and Ctrl-Break itself with the ON BREAK command.

INKEY works within the command line window.    If you prefer to use a dialog for user input, see the
MSGBOX command.

Options

/C (Clear buffer)    Clears the keyboard buffer before INKEY accepts keystrokes.    If you use this
option, INKEY will ignore any keystrokes which you type, either accidentally or intentionally,

before it is ready to accept input.

/D (Digits only)    Prevents INKEY from accepting any keystroke except a digit from 0 to 9.

/K"keys"    Specify the permissible keystrokes.    The list of valid keystrokes should be enclosed in
double quotes.    For alphabetic keys the validity test is not case sensitive.    You can specify
extended keys by enclosing their names in square brackets (within the quotes), for example:

inkey /k"ab[Alt-F10]" Enter A, B, Alt-F10 %%var

See Keys and Key Names for a complete listing of the key names you can use within the
square brackets, and a description of the key name format.

If an invalid keystroke is entered, 4NT will echo the keystroke if possible, beep, move the
cursor back one character, and wait for another keystroke.

/P (Password)    Prevents INKEY from echoing the character.

/W (Wait)    Time-out period, in seconds, to wait for a response. If no keystroke is entered by the
end of the time-out period, INKEY returns with the variable unchanged.    This allows you to
continue the batch file if the user does not respond in a given period of time.    You can specify
/W0 to return immediately if there are no keys waiting in the keyboard buffer.

For example, the following batch file fragment waits up to 10 seconds for a character, then
tests to see if a "Y" was entered:

set net=N
inkey /K"YN" /w10 Load network (Y/N)? %%net
iff "%net" == "Y" then

rem Commands to load the network go here
endiff

/X (No carriage return)    Prevents INKEY from displaying a carriage return and line feed after the
user's entry.

INPUT

Purpose: Get a string from the keyboard and save it in an environment variable.

Format: INPUT [/C /D /E /Ln /N /P /Wn /X] [prompt] %%varname

prompt:    Optional text that is displayed as a prompt.
varname:    The variable that will hold the user's input.

/C(lear buffer) /N(o colors)
/D(igits only) /P(assword)
/E(dit) /W(ait)
/L(ength) /X (no carriage return)

See also:    INKEY.

Usage

INPUT optionally displays a prompt.    Then it waits for a specified time or indefinitely for your entry.    It
places any characters you type into an environment variable.    INPUT is normally used in batch files and
aliases to get multi-key input.    Along with the INKEY command, INPUT allows great flexibility in reading
user input from within a batch file or alias.

If prompt text is included in an INPUT command, it is displayed while INPUT waits for input.    Standard
command-line editing keys may be used to edit the input string as it is entered.    If you use the /P
password option, INPUT will echo asterisks instead of the keys you type.

All characters entered up to, but not including, the carriage return are stored in the variable.

The following batch file fragment prompts for a string and stores it in the variable FNAME:

input Enter the file name: %%fname

INPUT reads standard input, so it will accept text from a re- directed file.

If you press Ctrl-C or Ctrl-Break while INPUT is waiting for input, execution of an alias will be terminated,
and execution of a batch file will be suspended while you are asked whether to cancel the batch job.    A
batch file can handle Ctrl-C and Ctrl-Break itself with the ON BREAK command.

You can pipe text to INPUT; if you do, it will set the variable to the first line it receives.    However, this
variable will be set in the "child" process used to handle the right hand side of the pipe, and it will not be
available in the original copy of 4NT used to start the pipe.

INPUT works within the command line window.    If you prefer to use a dialog for user input, see the
MSGBOX command.

Options

/C (Clear buffer)    Clears the keyboard buffer before INPUT accepts keystrokes.    If you use this
option, INPUT will ignore any keystrokes which you type, either accidentally or intentionally,
before INPUT is ready.

/D (Digits only)    Prevents INKEY from accepting any keystroke except a digit from 0 to 9.

/E (Edit)    Allows you to edit an existing value.    If there is no existing value for varname, INPUT

proceeds as if /E had not been used, and allows you to enter a new value.

/Ln (Length)    Sets the maximum number of characters which INPUT will accept to "n".    If you
attempt to enter more than this number of characters, INPUT will beep and prevent further
input (you will still be able to edit the characters typed before the limit was reached).

/N (No colors)    Disables the use of input colors defined in the InputColor directive in the 4NT.INI
file, and forces INPUT to use the default display colors.

/P (Password)    Tells INPUT to echo asterisks, instead of the characters you type.

/W (Wait)    Time-out period, in seconds, to wait for a response. If no keystroke is entered by the
end of the time-out period, INPUT returns with the variable unchanged.    This allows you to
continue the batch file if the user does not respond in a given period of time.    If you enter a
key before the time-out period, INPUT will wait indefinitely for the remainder of the line.    You
can specify /W0 to return immediately if there are no keys waiting in the keyboard buffer.

/X (No carriage return)    Prevents INKEY from displaying a carriage return and line feed after the
user's entry.

KEYBD

Purpose: Set the state of the keyboard toggles:    Caps Lock, Num Lock, and Scroll Lock.

Format: KEYBD [/Cn /Nn /Sn]

n:    0 to turn off the toggle, or 1 to turn on the toggle.

/C(aps lock) /S(croll lock)
/N(um lock)

Usage

Most keyboards have 3 toggle keys, the Caps Lock, Num Lock, and Scroll Lock.    The toggle key status is
usually displayed by three lights at the top right corner of the keyboard.

This command lets you turn any toggle key on or off.    It is most useful in batch files and aliases if you
want the keys set a particular way before collecting input from the user.

For example, to turn off the Num Lock and Caps Lock keys, you can use this command:

[c:\] keybd /c0 /n0

If you use the KEYBD command with no switches, it will display the present state of the toggle keys.

In Windows NT, the toggle key state is the same for each session. Changes made with KEYBD will
therefore affect all other sessions.

Options

/C (Caps lock)    Turn the Caps Lock key on or off.

/N (Num lock)    Turn the Num Lock key on or off.

/S (Scroll lock)    Turn the Scroll Lock key on or off.

KEYS

Purpose: Enable, disable, or display the history list.

Format: KEYS [ON | OFF | LIST]

See also:    HISTORY.

Usage

This command is provided for compatibility with the KEYS command in CMD.EXE, which controls the
history list in Windows NT. The same functions are available by setting the HistMin directive in the .INI file,
and by using the HISTORY command.

The history list collects the commands you type for later recall, editing, and viewing.    You can view the
contents of the list through the history list window or by typing any of the following commands:

[c:\] history
[c:\] history /p
[c:\] keys list

The first command displays the entire history list.    The second displays the entire list and pauses at the
end of each full screen. The third command produces the same output as the first, except that each line is
numbered.

You can disable the collection and storage of commands in the history list by typing:

[c:\] keys off

You can turn the history back on with the command:

[c:\] keys on

If you issue the KEYS command without any parameters, 4NT will show you the current status of the
history list.

LIST

Purpose: Display a file, with forward and backward paging and scrolling.

Format: LIST [/A:[[-]rhsda] /H /I /R /S /T /W /X] file...

file:    A file or list of files to display.

/A: (Attribute select) /S(tandard input)
/H(igh bit off) /T (search for Text)
/I(gnore wildcards) /W(rap)
/R(everse) /X (heX display mode)

See also:    TYPE.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

LIST provides a fast and flexible way to view a file, without the overhead of loading and using a text
editor.

For example, to display a file called MEMO.DOC:

[c:\] list memo.doc

LIST is most often used for displaying ASCII text files.    It can be used for other files which contain non-
alphabetic characters, but you may need to use hex mode (see below) to read these files.

LIST uses the cursor pad to scroll through the file.    The following keys have special meanings:

Home Display the first page of the file.

End Display the last page of the file.

Esc Exit the current file.

Ctrl-PgUp Display previous file.

Ctrl-PgDn Display next file.

Ctrl-C Quit LIST.

Scroll up one line.

¯ Scroll down one line.

PgUp Scroll up one page.

PgDn or

 Space Scroll up one page.

¬ Scroll left 8 columns.

® Scroll right 8 columns.

Ctrl ¬ Scroll left 40 columns.

Ctrl ® Scroll right 40 columns.

F1 Display online help

B Go back one file to the previous file in the current group of files.

F Prompt and search for a string.

Ctrl-F Prompt and search for a string, searching backward from the end of the file.

G Go to a specific line or, in hex mode, to a specific hexadecimal offset.

H Toggle the "strip high bit" (/H) option.

I Display information on the current file (the full name, size, date, and time).

N Find next matching string.

Ctrl-N Find previous match in the file.

P Print the current page or the entire file.

W Toggle the "line wrap" (/W) option.

X Toggle the hex-mode display (/X) option.

Text searches performed with F, N, Ctrl-F, and Ctrl-N are not case sensitive.    However, if the display is
currently in hexadecimal mode and you press F or Ctrl-F, you will be prompted for whether you want to
search in hexadecimal mode.    If you answer Y, you should then enter the search string as a sequence of
2-digit hexadecimal numbers separated by spaces, for example 41 63 65 (these are the ASCII values for
the string "Ace").    Hexadecimal searches are case sensitive, and search for exactly the string you enter.

When the search string is found LIST displays the line containing the string at the top of the screen, and
highlights the string it found.    Any additional occurrences of the string on the same display page are also
highlighted.    Highlighting is intended for use with text files; in binary files the search string will be found,
but may not be highlighted properly.

You can use wildcards in the search string.    For example, you can search for the string "to*day" to find
the next line which contains the word "to" followed by the word "day" later on the same line, or search for
the numbers "101" or "401" with the search string "[14]01".    If you begin the search string with a back-
quote [`], or enclose it in back-quotes, wildcard characters in the string will be treated as normal text with
no special wildcard meaning.

LIST saves the search string used by F, N, Ctrl-F, and Ctrl-N, so you can LIST multiple files and search
for the same string simply by pressing N in each file, or repeat your search the next time you use LIST.

You can use the /T switch to specify search text for the first file.    When you do so, LIST begins a search
as soon as the file is loaded.    Use /I to ignore wildcards in the initial search string, and /R to make the
initial search go backwards from the end of the file.    When you LIST multiple files with a single LIST
command, these switches affect only the first file; they are ignored for the second and subsequent files.

LIST normally allows long lines in the file to extend past the right edge of the screen.    You can use the
horizontal scrolling keys (see above) to view text that extends beyond the screen width.    If you use the W
command or /W switch to wrap the display, each line is wrapped when it reaches the right edge of the
screen, and the horizontal scrolling keys are disabled.

To view text from the clipboard, use CLIP: as the file to be listed.    CLIP: will not return any data unless
the clipboard contains text.    See Redirection for additional information on CLIP:.

You can use G to go to a specific line or hexadecimal offset.    When prompted for a line number you can
enter a negative number to go backward a specified number of lines from the current position (there is no
corresponding option to go forward a certain number of lines).    When you use this option the number of

lines moved will only correspond to the line count in the status bar if the display is not wrapped.

If you print the file which LIST is displaying, you will be asked whether you wish to print the entire file or
the current display page.    The print format will match the display format.    If you have switched to
hexadecimal or wrapped mode, that mode will be used for the printed output as well.    If you print in
wrapped mode, long lines will be wrapped at the width of the display.    If you print in normal display mode
without line wrap, long lines will be wrapped or truncated by the printer, not by LIST.

Printed output normally goes to device LPT1.    If you wish to send the printed output to another device,
use the Commands page of the OPTION dialogs, or the Printer directive in the .INI file.

If you specify a directory name instead of a filename as an argument, LIST will display each of the files in
that directory.

Most of the LIST keystrokes can be reassigned with .INI file key mapping directives.

You can set the colors used by LIST with on the Commands page of the OPTION dialogs, or ListColors
and ListStatBarColors directives in the .INI file.    If ListColors is not used, the LIST display will use the
current default colors.    If ListStatBarColors is not used, the status bar will use the reverse of the LIST
display colors.

By default, LIST sets tab stops every 8 columns.    You can change this behavior on the Display page of
the OPTION dialogs, or with the TabStops .INI file directive

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., LIST /A: ...), LIST will select all files and subdirectories
including hidden and system files.    If attributes are combined, all the specified attributes must
match for a file to be selected.    For example, /A:RHS will select only those files with all three
attributes set.

/H (High bit off)    Strip the high bit from each character before displaying.    This is useful when
displaying files created by some word processors that turn on the high bit for formatting
purposes.    You can toggle this option on and off from within LIST with the H key.

/I (Ignore wildcards)    Only meaningful when used in conjunction with the /T "text" option.   
Directs LIST to interpret characters such as *, ?, [, and] as literal characters instead of
wildcard characters.    /I affects only the initial search started by /T, not subsequent searches
started from within LIST.

/R (Reverse)    Only meaningful when used in conjuction with the /T "text" option.    Directs LIST
to search for text from the end of the file instead of from the beginning of the file.    Using this
switch can speed up searches for text that is normally near the end of the file, such as a
signature.    /R affects only the initial search started by /T, not subsequent searches started
from within LIST.

/S (Standard input)    Read from standard input rather than a file.    This allows you to redirect
command output and view it with LIST.    Normally, LIST will detect input from a redirected
command and adjust automatically.    However, you may find circumstances when /S is
required.    For example, to use LIST to display the output of DIR you could use either of
these commands:

[c:\] dir | list
[c:\] dir | list /s

/T (Text)    Search for text in the first file.    This option is the same as pressing F, but it allows
you to specify the search text on the command line.    The text must be contained in quotation
marks if it contains spaces, punctuation, or wildcard characters.    For example, to search for
the string 4NT in the file README.DOC, you can use this command:

[c:\] list /t4nt readme.doc

The search text may include wildcards and extended wildcards.    For example, to search for
the words Hello and John on the same line in the file LETTER.DAT:

[c:\] list /t"Hello*John" letter.dat

When you LIST multiple files with a single LIST command, /T only initiates a search in the first
file.    It is ignored for the second and subsequent files.    Also see /I and /R.

/W (Wrap)    Wrap the text at the right edge of the screen.    This option is useful when displaying
files that don't have a carriage return at the end of each line.    The horizontal scrolling keys
do not work when the display is wrapped.    You can toggle this option on and off from within
LIST with the W key.

/X (hex mode)    Display the file in hexadecimal (hex)    mode. This option is useful when
displaying executable files and other files that contain non-text characters.    Each byte of the
file is shown as a pair of hex characters.    The corresponding text is displayed to the right of
each line of hexadecimal data.    You can toggle this mode on and off from within LIST with
the X key.

LOADBTM

Purpose: Switch a batch file to or from BTM mode.

Format: LOADBTM [ON | OFF]

Usage

4NT recognizes two kinds of batch files: .BAT or .CMD, and .BTM.    Batch files executing in BTM mode
run two to ten times faster than in CMD or BAT mode.    Batch files automatically start in the mode
indicated by their extension.

The LOADBTM command turns BTM mode on and off.    It can be used to switch modes in either a .BAT,
.CMD or .BTM file.    If you use LOADBTM with no argument, it will display the current batch mode:   
LOADBTM ON or LOADBTM OFF.

Using LOADBTM to repeatedly switch modes within a batch file is not efficient.    In most cases the speed
gained by running some parts of the file in BTM mode will be more than offset by the speed lost through
repeated loading of the file each time BTM mode is invoked.

LOADBTM can only be used within a batch file.    It is most often used to convert a .CMD or .BAT file to
BTM mode without changing its extension.

Using LOADBTM to repeatedly switch modes within a batch file is not efficient.    In most cases the speed
gained by running some parts of the file in BTM mode will be more than offset by the speed lost through
repeated loading of the file each time BTM mode is invoked.

LOG

Purpose: Save a log of commands to a disk file.

Format: LOG [/H /W file] [ON | OFF | text]

file:    The name of the file to hold the log.
text:    An optional message that will be added to the log.

/H(istory log) /W(rite to)

See also:    HISTORY.

Usage

LOG keeps a record of all internal and external commands you use, whether they are executed from the
prompt or from a batch file.    Each entry includes the current system date and time, along with the actual
command after any alias or variable expansion.    You can use the log file as a record of your daily
activities.

LOG with the /H option keeps a similar record called a "history log".    The history log records only
commands entered at the prompt; it does not record batch file commands.    In addition, the history log
does not record the date and time for each command, and it records commands before aliases and
variables are expanded.

The two logging options are independent.    You can have both a regular log and a history log enabled
simultaneously.

By default, LOG writes to the file 4NTLOG in the root directory of the boot drive.    The default file name
for the history log is 4NTHLOG.    You can set the default log file names on the Options 2 page of the
OPTION dialogs, or with the LogName and HistLogName directives in the .INI file.

Entering LOG or LOG /H with no parameters displays the name of the log file and the log status (ON or
OFF):

[c:\] log
LOG (C:\4NTLOG) is OFF

To enable or disable logging, add the word "ON" or "OFF" after the LOG command:

[c:\] log on

or

[c:\] log /h on

Entering LOG or LOG /H with text writes a message to the log file, even if logging    is set OFF.    This
allows you to enter headers in the log file:

[c:\] log "Started work on the database system"

The LOG file format looks like this:

[date time] command

where the date and time are formatted according to the country code set for your system.

The LOG /H output can be used as the basis for writing batch files.    Start LOG /H, then execute the
commands that you want the batch file to execute.    When you are finished, turn LOG /H off.    The
resulting file can be turned into a batch file that performs the same commands with little or no editing.

You can have both a regular log (with time and date stamping) and a history log (without the time stamps)
enabled simultaneously.

Options

/H (History log)    This option makes the other options on the command line (after the /H) apply to
the history log.    For example, to turn on history logging and write to the file C:\LOG\HLOG:

[c:\] log /h /w c:\log\hlog

/W (Write)    This switch specifies a different filename for the LOG or LOG /H output.    It also
automatically performs a LOG ON command.    For example, to turn logging on and write the
log to C:\LOG\LOGFILE:

[c:\] log /w c:\log\logfile

Once you select a new file name with the LOG /W or LOG /H/W command, LOG will use that
file until you issue another LOG /W or LOG /H/W command, or until you reboot your
computer.    Turning LOG or LOG /H off or on does not change the file name.

MD / MKDIR

Purpose: Create a subdirectory.

Format: MD [/N /S] path...
        or

MKDIR [/N /S] path...

path:    The name of one or more directories to create.

/N(o update) /S(ubdirectories)

See also:    RD.

Usage

MD and MKDIR are synonyms.    You can use either one.

MD creates a subdirectory anywhere in the directory tree.    To create a subdirectory from the root, start
the path with a backslash [\].    For example, this command creates a subdirectory called MYDIR in the
root directory:

[c:\] md \mydir

If no path is given, the new subdirectory is created in the current directory.    This example creates a
subdirectory called DIRTWO in the current directory:

[c:\mydir] md dirtwo

To create a directory from the parent of the current directory (that is, to create a sibling of the current
directory), start the pathname with two periods and a backslash [..\].

When creating a directory on an HPFS, NTFS, or LFN drive, you must quote any path which contains
whitespace or special characters.    See File Names for additional details.

If MD creates one or more directories, they will be added automatically to the extended directory search
database unless the /N option is specified.

Options

/N (No update)    Do not update the extended directory search database, JPSTREE.IDX.    This is
useful when creating a temporary directory which you do not want to appear in the extended
search database.

/S (Subdirectories)    MD creates one directory at a time unless you use the /S option.    If you
need to create the directory C:\ONE\TWO\THREE and none of the named directories exist,
you can use /S to have MD create all of the necessary subdirectories for you in a single
command:

[c:\] md /s \one\two\three

For compatibility with Windows NT's CMD.EXE, /S becomes the default if you enable
command processor extensions with the /X switch on the 4NT startup command line.

MEMORY

Purpose: Display the amount and status of system memory.

Format: MEMORY

Usage

MEMORY lists the percentage "memory load" as reported by Windows NT, the total and available
physical RAM, the total and available page file size, the total and free environment and alias space, and
the total history space.

The memory load is a figure returned by the operating system which gives an overall sense of memory
utilization.    It is not a precise indicator of system load or memory usage.    The total page file figure shows
the total number of bytes that can be stored in the file, but may not reflect the actual size of the current file
on disk.

MOVE

Purpose: Move files to a new directory and drive.

Format: MOVE    [/A:[[-]rhsda] /C /D /E /H /M /N /P /Q /R /S /T /U /V] source...    destination

source:    A file or list of files to move.
destination:    The new location for the files.

/A: (Attribute select) /P(rompt)
/C(hanged) /Q(uiet)
/D(irectory) /R(eplace)
/E (no error messages) /S(ubdirectory tree)
/H(idden and system) /T(otal)
/M(odified files) /U(pdate)
/N(othing) /V(erify)

See also:    COPY and RENAME.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.    Date, time, or size ranges
anywhere on the line apply to all source files.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

The MOVE command moves one or more files from one directory to another, whether the directories are
on the same drive or not.    It has the same effect as copying the files to a new location and then deleting
the originals.    Like COPY and RENAME, MOVE works with single files, multiple files, and sets of files
specified with an include list.

The simplest MOVE command moves a single source file to a new location and, optionally, gives it a new
name.    These two examples both move one file from drive C: to the root directory on drive A:

[c:\] move myfile.dat a:\
[c:\] move myfile.dat a:\savefile.dat

In both cases, MYFILE.DAT is removed from drive C: after it has been copied to drive A:.    If a file called
MYFILE.DAT in the first example, or SAVEFILE.DAT in the second example, already existed on drive A:, it
would be overwritten.    (This demonstrates the difference between MOVE and RENAME.    MOVE will
move files between drives and will overwrite the destination file if it exists; RENAME will not.)

When you move a single file, the destination can be a directory name or a file name.    If it is a directory
name, and you add a backslash [\] to the end of the name, MOVE will display an error message if the
name does not refer to an existing directory.    You can use this feature to keep MOVE from treating a
mistyped destination directory name as a file name, and attempting to move the source file to that name.

If you move multiple files, the destination must be a directory name.    MOVE will move each file into the
destination directory with its original name.    If the destination is not a directory, MOVE will display an
error message and exit.    For example, if C:\FINANCE\MYFILES is not a directory, this command will
display an error; otherwise, the files will be moved to that directory:

[c:\] move *.wks *.txt c:\finance\myfiles

The /D option can be used for single or multiple file moves; it checks to see whether the destination is a
directory, and will prompt to see if you want to create the destination directory if it doesn't exist.

If MOVE creates one or more destination directories, they will be added automatically to the extended
directory search database.

You cannot move a file to a character device like the printer, or to itself.

Be careful when you use MOVE with the SELECT command.    If you SELECT multiple files and the
destination is not a directory (for example, because of a misspelling), MOVE will assume it is a file name. 
In this case each file will be moved in turn to the destination file, overwriting the previous file, and then the
original will be erased before the next file is moved.    At the end of the command, all of the original files
will have been erased and only the last file will exist as the destination file.   

You can avoid this problem by using square brackets with SELECT instead of parentheses (be sure that
you don't allow the command line to get too long -- watch the character count in the upper left corner
while you're selecting files).    MOVE will then receive one list of files to move instead of a series of
individual filenames, and it will detect the error and halt.    You can also add a backslash [\] to the end of
the destination name to ensure that it is the name of a subdirectory (see above).

Advanced Features and Options

MOVE first attempts to rename the file(s), which is the fastest way to move files between subdirectories
on the same drive.    If that fails (e.g., because the destination is on a different drive or already exists),
MOVE will copy the file(s) and then delete the originals.

If MOVE must physically copy the files and delete the originals, rather than renaming them (see above),
then some disk space may be freed on the source drive.    The free space may be the result of moving the
files to another drive, or of overwriting a larger destination file with a smaller source file.    MOVE displays
the amount of disk space recovered unless the /Q option is used (see below).    It does so by comparing
the amount of free disk space before and after the MOVE command is executed.    However, this amount
may be incorrect if you are using a deletion tracking system which retains deleted files for later recovery,
or if another program performs a file operation while the MOVE command is executed.

When physically copying files, MOVE preserves the hidden, system, and read-only attributes of the
source files, and sets the archive attribute of the destination files.    However, if the files can be renamed,
and no copying is required, then the file attributes are not changed.    See File Attributes and Time
Stamps.

Use caution with the /A: and /H switches (both of which can allow MOVE to process hidden files) when
you are physically moving files, and both the source and destination directories contain file descriptions.   
If the source file specification matches the description file name (normally DESCRIPT.ION), and you tell
MOVE to process hidden files, the DESCRIPT.ION file itself will be moved, overwriting any existing file
descriptions in the destination directory.    For example, if the C:\DATA directory contains file descriptions
this command would overwrite any existing descriptions in the D:\SAVE directory:

[c:\data] move /h d*.* d:\save\

(If you remove the hidden attribute from the DESCRIPT.ION file the same caution applies even if you do
not use /A: or /H, as DESCRIPT.ION is then treated like any other file.)

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., MOVE /A: ...), MOVE will select all files and
subdirectories including hidden and system files.    If attributes are combined, all the specified
attributes must match for a file to be selected.    For example, /A:RHS will select only those
files with all three attributes set.

See the cautionary note under Advanced Features and Options above before using /A:
when both source and destination directories contain file descriptions.

/C (Changed files)    Move files only if the destination file exists and is older than the source (see
also /U).    This option is useful for updating the files in one directory from those in another
without moving any newly-created files.

/D (Directory)    Requires that the destination be a directory.    If the destination does not exist,
MOVE will prompt to see if you want to create it. If the destination exists as a file, MOVE will
fail with an "Access denied" error.    Use this option to avoid having MOVE accidentally
interpret your destination name as a file name when it's really a mistyped directory name.

/E    (No error messages)    Suppress all non-fatal error messages, such as "File Not Found."   
Fatal error messages, such as "Drive not ready," will still be displayed.    This option is most
useful in batch files and aliases.

/H (Hidden)    Move all files, including hidden and system files.    See the cautionary note under
Advanced Features and Options above before using /H when both source and destination
directories contain file descriptions.

/M (Modified files)    Move only files that have the archive bit set.    The archive bit will remain set
after the MOVE; to clear it use ATTRIB.

/N (Nothing)    Do everything except actually move the file(s). This option is most useful for
testing what a complex MOVE command will do.

/P (Prompt)    Prompt the user to confirm each move.    Your options at the prompt are explained
in detail under Page and File Prompts.

/Q (Quiet)    Don't display filenames, the total number of files moved, or the amount of disk space
recovered, if any.    This option is most often used in batch files. See also /T.

/R (Replace)    Prompt for a Y or N response before overwriting an existing destination file.

/S (Subdirectories)    Move an entire subdirectory tree to another location.    MOVE will attempt to
create the destination directories if they don't exist, and will remove empty subdirectories after
the move. When /D is used with /S, you will be prompted if the first destination directory does
not exist, but subdirectories below that will be created automatically by MOVE.    If MOVE /S
creates one or more destination directories, they will be added automatically to the extended
directory search database.

If you attempt to use /S to move a subdirectory tree into part of itself, MOVE will detect the
resulting infinite loop, display an error message, and exit.

/T (Total)    Don't display filenames as they are moved, but display the total number of files
moved and the amount of free disk space recovered, if any.

/U (Update)    Move each source file only if it is newer than a matching destination file or if a
matching destination file does not exist (also see /C).    This option is useful for moving new or
changed files from one directory to another.

/V (Verify)    Verify each disk write.    This is the same as executing the VERIFY ON command,
but is only active during the MOVE.    /V does not read back the file and compare its contents
with what was written; it only verifies that the data written to disk is physically readable.

MSGBOX

Purpose: Display a message box and return the user's response.

Format: MSGBOX OK | OKCANCEL | YESNO | YESNOCANCEL ["title"] prompt

title: Text for the title bar of the message box.
prompt: Text that will appear inside the message box.

See also:    INKEY and INPUT.

Usage

MSGBOX can display one of 4 kinds of message boxes and wait for the user's response.    You can use
title and prompt to display any text you wish.    4NT automatically sizes and locates the box on the
screen.

The message box may have 1, 2, or 3 response buttons.    The command MSGBOX OK creates a single-
button box; the user must simply acknowledge the prompt text.

The OKCANCEL and YESNO forms have 2 buttons each.    The YESNOCANCEL form has 3 buttons.   
The button the user chooses is returned in the 4NT variable %_?.    Be sure to save the return value in
another variable or test it immediately, because the value of %_? changes with every internal command.

The following list shows the value returned for each possible selection:

Yes 10 No 11
OK 10 Cancel 12

If you exit the message box without selecting one of these options (for example, some message boxes
allow you to exit by pressing Esc or double-clicking the close button), MSGBOX will set %_? to 0.    If
there is an error in the MSGBOX command itself, %_? will be set to 1 for a syntax error or 2 for any other
error.

For example, to display a Yes or No message box and take action depending on the result, you could use
commands like this:

msgbox yesno "Copy" Copy all files to A:?
iff %_? == 10 then
 copy *.* a:
endiff

MSGBOX creates a popup dialog box.    If you prefer to retrieve input from inside the command line
window, see the INKEY and INPUT commands.

ON

Purpose: Execute a command in a batch file when a specific condition occurs.

Format: ON BREAK [command]
        or

ON ERROR [command]
        or

ON ERRORMSG [command]

Usage

ON can only by used in batch files.

ON sets a "watchdog" that remains in effect for the duration of the current batch file.    Whenever a
BREAK or ERROR condition occurs after ON has been executed, the corresponding command is
automatically executed.

ON BREAK will execute the command if the user presses Ctrl- C or Ctrl-Break.

ON ERROR and ON ERRORMSG will execute the command after any command processor or operating
system error (including critical errors). That is, they will detect errors such as a disk write error, and 4NT
errors such as a COPY command that fails to copy any files, or the use of an unacceptable command
option.   

ON ERROR executes the command immediately after the error occurs, without displaying any command
processor error message (operating system errors may still be displayed in some cases).    ON
ERRORMSG displays the appropriate error message, then executes the command.    If both are specified,
ON ERROR will take precedence, and the ON ERRORMSG setting will be ignored.    The remainder of
this section discusses both settings together, using the term "ON ERROR[MSG]".

ON BREAK and ON ERROR[MSG] are independent of each other.    You can use either one, or both, in
any batch file.

Each time ON BREAK or ON ERROR[MSG] is used, it defines a new command to be executed for a
break or error, and any old command is discarded.    If you use ON BREAK or ON ERROR[MSG] with no
following command, that type of error handling is disabled.    Error handling is also automatically disabled
when the batch file exits.

ON BREAK and ON ERROR[MSG] only affect the current batch file.    If you CALL another batch file, the
first batch file's error handling is suspended, and the CALLed file must define its own error handling.
When control returns to the first batch file, its error handling is reactivated.

The command can be any command that can be used on a batch file line by itself.    Frequently, it is a
GOTO or GOSUB command.    For example, the following fragment traps any user attempt to end the
batch file by pressing Ctrl-C or Ctrl-Break.    It scolds the user for trying to end the batch file and then
continues displaying the numbers from 1 to 1000:

on break gosub gotabreak
do i = 1 to 1000
 echo %i
enddo
quit

:gotabreak
echo Hey! Stop that!!
return

You can use a command group as the command if you want to execute multiple commands, for example:

on break (echo Oops, got a break! & quit)

ON BREAK and ON ERROR[MSG] always assume that you want to continue executing the batch file.   
After the command is executed, control automatically returns to the next command in the batch file (the
command after the one that was interrupted by the break or error).    The only way to avoid continuing the
batch file after a break or error is for the command to transfer control to another point with GOTO, end the
batch file with QUIT or CANCEL, or start another batch file (without CALLing it).

When handling an error condition with ON ERROR[MSG], you may find it useful to use internal variables,
particularly %_? and %_SYSERR, to help determine the cause of the error.

The ON ERROR[MSG] command will not be invoked if an error occurs while reading or writing a
redirected input file, output file, or pipe.

Caution:    If a break or error occurs while the command specified in ON BREAK or ON ERROR[MSG] is
executing, the command will be restarted. This means you must use caution to avoid or handle any
possible errors in the commands invoked by ON ERROR[MSG], since such errors can cause an infinite
loop.

OPTION

Purpose: Modify the command processor configuration.

Format: OPTION [//optname=value ...]

optname:    An INI file directive to set or modify.
value:    A new value for that directive.

See also:    The 4NT.INI file .

Usage

OPTION displays a set of dialogs which allows you to modify many of the configuration options stored in
the .INI file.

When you exit from the dialogs, you can select Save to save your changes in the .INI file for use in the
current session and all future sessions, select Use to use your changes in the current session only, or
select Cancel to discard the changes.    See Configuration Dialogs for more information.

OPTION does not preserve comments when saving modified settings in the .INI file.    To be sure .INI file
comments are preserved, put them on separate lines in the file (see 4NT.INI for details).

Save saves all changes since the last Save, or since the last time you started the command processor. If
you run OPTION and exit with Use or OK, any changes will not be saved in the .INI file at that time.   
However, if you run OPTION again and exit with Save, any earlier changes will automatically be saved in
the .INI file along with any new changes.

In most cases, changes you make in the Startup section of the OPTION dialogs or notebook will only
take effect when you restart 4NT.

Other changes take effect as soon as you exit the dialogs or notebook with Save or Use.    However, not
all option changes will appear immediately, even if they have taken effect.    For example, some color
changes will only appear after a CLS command.

OPTION handles most standard .INI file settings.    More advanced settings, including all those listed
under Key Mapping Directives and Advanced Directives cannot be modified with the OPTION dialogs or
notebook.    These settings must be inserted or modified in the .INI file manually.    For more details see
Modifying the .INI File .

Setting Individual Options

If you follow the OPTION command with one or more sequences of a double slash mark [//] followed by
an option=value setting, the OPTION dialogs or notebook will not appear.    Instead, the new settings will
take effect immediately, and will be in effect for the current session only.    This example turns off batch file
echo and changes the input colors to bright cyan on black (enter this all on one line):

[c:\] option //BatchEcho = No //InputColors = bri cya on bla

Option values may contain whitespace.    However, you cannot enter an option value which contains the
"//" string.

This feature is most useful for testing settings quickly, and in aliases or batch files which depend on
certain options being in effect.

Changes made with // are temporary.    They will not be saved in the .INI file, even if you subsequently
load the option dialogs and select Save.

PATH

Purpose: Display or alter the list of directories that 4NT will search for executable files, batch files,
and files with executable extensions that are not in the current directory.

Format: PATH [directory [;directory...]]

directory:    The full name of a directory to include in the path setting.

See also:    ESET and SET.

Usage

When 4NT is asked to execute an external command (a .COM, .EXE, .BTM, .BAT, or .CMD file or
executable extension), it first looks for the file in the current directory. If it fails to find an executable file
there, it then searches each of the directories specified in the PATH setting.

For example, after the following PATH command, 4NT will search for an executable file in four directories: 
the current directory, then the root directory on drive C, then the DOS subdirectory on C, and then the
UTIL subdirectory on C:

[c:\] path c:\;c:\dos;c:\util

The list of directories to search is stored as an environment string, and can also be set or viewed with
SET, and edited with ESET.

Directory names in the path must be separated by semicolons [;].    Each directory name is shifted to
upper case to maintain compatibility with programs which can only recognize upper case directory names
in the path.    If you modify your path with the SET or ESET command, you may include directory names
in lower case.    These may cause trouble with some programs, which assume that all path entries have
been shifted to upper case.

On drives which support long filenames, some directory names may include spaces or other special
characters.    Unlike other commands where quotes are required, such names should not be quoted in the
PATH.

If you enter PATH with no parameters, the current path is displayed:

[c:\] path
PATH=C:\;C:\DOS;C:\UTIL

Entering PATH and a semicolon clears the search path so that only the current directory is searched for
executable files (this is the default at system startup).

Some applications also use the PATH to search for their data files.

If you include an explicit file extension on a command name (for example, WP.EXE), the search will find
files with that name and extension in the current directory and every directory in the path. It will not locate
other executable files with the same base name (e.g., WP.COM).

If you have an entry in the path which consists of a single period [.], the current directory will not be
searched first, but instead will be searched when 4NT reaches the "." in the path. This allows you to delay
the search of the current directory for executable files and files with executable extensions.    In rare
cases, this feature may not be compatible with applications which use the path to find their files; if you
experience a problem, you will have to remove the "." from the path while using any such application.

To create a path longer than the command-line length limit, use PATH repeatedly to append additional
directories to the path:

path [first list of directories]
path %path;[second list of directories] ...

You cannot use this method to extend the path beyond 2042 characters (the internal buffer limit, with
room for "PATH ").    It is usually more efficient to use aliases to load application programs than to create a
long PATH.    See ALIAS for details.

If you specify an invalid directory in the path, it will be skipped and the search will continue with the next
directory in the path.

PAUSE

Purpose: Suspend batch file or alias execution.

Format: PAUSE [text]

text:    The message to be displayed as a user prompt.

Usage

A PAUSE command will suspend execution of a batch file or alias, giving you the opportunity to change
disks, turn on the printer, etc.

PAUSE waits for any key to be pressed and then continues execution. You can specify the text that
PAUSE displays while it waits for a keystroke, or let it use the default message:

Press any key when ready...

For example, the following batch file fragment prompts the user before erasing files:

pause Press Ctrl-C to abort, any other key to erase all .LST files
erase *.lst

If you press Ctrl-C or Ctrl-Break while PAUSE is waiting for a key, execution of an alias will be
terminated, and execution of a batch file will be suspended while you are asked whether to cancel the
batch job.    In a batch file you can handle Ctrl-C and Ctrl-Break yourself with the ON BREAK command.

POPD

Purpose: Return to the disk drive and directory at the top of the directory stack..

Format: POPD [*]

See also:    DIRS, PUSHD, and Directory Navigation.

Usage

Each time you use the PUSHD command, it saves the current disk drive and directory on the internal
directory stack.    POPD restores the last drive and directory that was saved with PUSHD and removes
that entry from the stack.    You can use these commands together to change directories, perform some
work, and return to the starting drive and directory.

Directory changes made with POPD are recorded in the directory history list and can be displayed in the
directory history window

This example saves and changes the current disk drive and directory with PUSHD, and then restores it.   
The current directory is shown in the prompt:

[c:\] pushd d:\database\test
[d:\database\test] popd
[c:\]

You can use the DIRS command to see the complete list of saved drives and directories (the directory
stack).

The POPD command followed by an asterisk [*] clears the directory stack without changing the current
drive and directory.

If the directory on the top of the stack is not on the current drive, POPD will switch to the drive and
directory on the top of the stack without changing the default directory on the current drive.

PROMPT

Purpose: Change the command-line prompt.

Format: PROMPT [text]

text:    Text to be used as the new command-line prompt.

Usage

You can change and customize the command-line prompt at any time. The prompt can include normal
text, and system information such as the current drive and directory, the time and date, and the amount of
memory available.    You can create an informal "Hello, Bob!" prompt or an official-looking prompt full of
impressive information. The prompt text can contain special commands in the form $?, where ? is one of
the characters listed below:

b The vertical bar character [|].
c The open parenthesis [(].
d Current date, in the format:    Fri    12-12-97(the month, day, and year are formatted

according to your current country settings).

D Current date, in the format:    Fri    Dec 12, 1997.

e The ASCII ESC character (decimal 27).

f The close parenthesis [)].
g The > character.

h Backspace over the previous character.

i Display the Windows NT prompt header line, which reminds you of how to return to the
Windows NT desktop, or get help.

l The < character.

m Time in hours and minutes using 24-hour format.

M Time in hours and minutes using the default country format and retaining "a" or "p", e.g.
4:07p.

n Current drive letter.

p Current drive and directory (lower case).

P Current drive and directory (upper case on drives which do not support long filenames;
directory names shown in mixed case as stored on the disk on HPFS, NTFS, and LFN
drives).

q The = character.

r The numeric exit code of the last external command.

s The space character.

t Current 24-hour time, in the format hh:mm:ss.

T Current 12-hour time, in the format hh:mm:ss[a|p].

v Operating system version number, in the format 3.50.

xd: Current directory on drive d:, in lower case, including the drive letter.    (Uses the actual
case of the directory name as stored on the disk for HPFS, NTFS, and LFN drives.)

Xd: Current directory on drive d:, in upper case, including the drive letter.

z Current shell nesting level; the primary command processor is shell 0.

+ Display one + character for each directory on the PUSHD directory stack.

$ The $ character.

_ CR/LF (go to beginning of a new line).

For example, to set the prompt to the current date and time, with a ">" at the end:

[c:\] prompt $D $t $g
Fri Jun 6, 1997 10:29:19 >

To set the prompt to the current date and time, followed by the current drive and directory in upper case
on the next line, with a ">" at the end:

[c:\] prompt $d t_Pg
Fri 6-06-97 10:29:19
C:\>

The 4NT prompt can be set in 4START, or in any batch file that runs when 4NT starts.    The 4NT default
prompt is [$n] (drive name in square brackets) on floppy drives, and [$p] (current drive and directory in
square brackets) on all other drives.

If you enter PROMPT with no arguments, the prompt will be reset to its default value.    The PROMPT
command sets the environment variable PROMPT, so to view the current prompt setting use the
command:

[c:\] set prompt

(If the prompt is not set at all, the PROMPT environment variable will not be used, in which case the SET
command above will give a "Not in environment" error.)

Along with literal text and special characters you can include the text of any environment variable, internal
variable, or variable function in a prompt.    For example, if you want to include the size of the largest free
memory block in the command prompt, plus the current drive and directory, you could use this command:

[c:\] prompt (%%@dosmem[K]K) pg
(601K) [c:\data]

Notice that the @DOSMEM function is shown with two leading percent signs [%].    If you used only one
percent sign, the @DOSMEM function would be expanded once when the PROMPT command was
executed, instead of every time the prompt is displayed.    As a result, the amount of memory would never
change from the value it had when you entered the PROMPT command.    You can also use back quotes
to delay expanding the variable function until the prompt is displayed:

[c:\] prompt `(%@dosmem[K]K) pg`

You can use this feature along with the @EXEC variable function to create a complex prompt which not
only displays information but executes commands.    For example, to execute an alias which checks
battery status each time the prompt is displayed (enter the alias on one line):

[c:\] alias cbatt `if %_apmlife lt 30 beep 440 4 880 4 440 4 880 4`
[c:\] prompt `%@exec[@cbatt]pg`

You may find it helpful to define a different prompt in secondary shells, perhaps including $z in the prompt
to display the shell level.    To do so, place a PROMPT command in your 4START file and use IF or IFF
statements to set the appropriate prompt for different shells.

PUSHD

Purpose: Save the current disk drive and directory, optionally changing to a new drive and
directory.

Format: PUSHD [path]

path:    The name of the new default drive and directory.

See also:    DIRS, POPD, and Directory Navigation.

Usage

PUSHD saves the current drive and directory on a "last in, first out" directory stack.    The POPD
command returns to the last drive and directory that was saved by PUSHD.    You can use these
commands together to change directories, perform some work, and return to the starting drive and
directory.    The DIRS command displays the contents of the directory stack.

To save the current drive and directory, without changing directories, use the PUSHD command by itself,
with no path.

If a path is specified as part of the PUSHD command, the current drive and directory are saved and
PUSHD changes to the specified drive and directory.    If the path includes a drive letter, PUSHD changes
to the specified directory on the new drive without changing the current directory on the original drive.

This example saves the current directory and changes to C:\WORDP\MEMOS, then returns to the original
directory:

[c:\] pushd \wordp\memos
[c:\wordp\memos] popd
[c:\]

When you use PUSHD to change to a directory on an HPFS, NTFS, or LFN drive, you must quote the
path name if it contains whitespace or special characters.

PUSHD can also change to a network drive and directory specified with a UNC name.

If PUSHD cannot change to the directory you have specified it will attempt to search the CDPATH and the
extended directory search database.    You can also use wildcards in the path to force an extended
directory search.    Read the section on Directory Navigation for complete details.

Directory changes made with PUSHD are also recorded in the directory history list and can be displayed
in the directory history window.

The directory stack can hold up to 511 characters, or between 20 to 40 typical entries (depending on the
length of the names).    If you exceed this limit, the oldest entry is removed before adding a new entry.

QUIT

Purpose: Terminate the current batch file.

Format: QUIT [value]

value:    The numeric exit code to return to 4NT or to the previous batch file.

See also:    CANCEL.

Usage

QUIT provides a simple way to exit a batch file before reaching the end of the file.    If you QUIT a batch
file called from another batch file, you will be returned to the previous file at the line following the original
CALL.

QUIT only ends the current batch file.    To end all batch file processing, use the CANCEL command.

If you specify a value, QUIT will set the ERRORLEVEL or exit code to that value.    For information on exit
codes, see the IF command and the %? variable.

You can also use QUIT to terminate an alias.    If you QUIT an alias while inside a batch file, QUIT will end
both the alias and the batch file and return you to the command prompt or to the calling batch file.

RD / RMDIR

Purpose: Remove one or more subdirectories.

Format: RD [/S] path ...
        or

RMDIR [/S] path ...

path:    The name of one or more subdirectories to remove.

/S(ubdirectories)

See also:    MD.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

RD and RMDIR are synonyms.    You can use either one.

RD removes directories from the directory tree.    For example, to remove the subdirectory MEMOS from
the subdirectory WP, you can use this command:

[c:\] rd \wp\memos

Before using RD, you must delete all files and subdirectories (and their files) in the path you want to
remove.    Remember to remove hidden and read-only files as well as normal files (you can use DEL /Z to
delete hidden and read-only files).

You can use wildcards in the path.

When removing a directory on an HPFS, NTFS, or LFN drive, you must quote any path which contains
whitespace or special characters.

If RD removes one or more directories, they will be deleted automatically from the extended directory
search database.

You cannot remove the root directory, the current directory (.), any directory above the current directory in
the directory tree, or any directory in use by another process in a multitasking system.

Options

/S (Subdirectories)    This option should be used with extreme caution!    It deletes all files
(including hidden and system files) in the named directory and all of its subdirectories, then
removes all empty subdirectories.    This option can potentially erase all files on a drive with a
single command.

REBOOT

Purpose: Do a system reboot.

Format: REBOOT [/S /V]

/L(ogoff) /V(erify)
/S(hutdown)

Usage

REBOOT will log off or shut down the operating system, or completely restart your computer.    It normally
performs a warm reboot, which is comparable to a shutdown and restart.    The following example prompts
you to verify the reboot, then does a warm boot:

[c:\] reboot /v

REBOOT defaults to performing a warm boot, with no prompting.

REBOOT flushes the disk buffers, resets the drives, and waits one second before rebooting, to allow disk
caching programs to finish writing any cached data.    4NT issues the proper commands to shut down
Windows NT before rebooting.

Options

/L (Logoff)    Log off Windows NT, but do not reboot.    This option is equivalent to the selecting
Shutdown from the Start menu, then selecting "Close all programs and log on as a different
user" in the shutdown dialog.

/S (Shutdown)    Shut down the system, but do not reboot.    This option is equivalent to selecting
Shutdown from the Start menu, then selecting "Shut down the computer" in the shutdown
dialog.

/V (Verify)    Prompt for confirmation (Y or N) before rebooting or taking the action specified by
other REBOOT options.

REM

Purpose: Put a comment in a batch file.

Format: REM [comment]

comment:    The text to include in the batch file.

Usage

The REM command lets you place a remark or comment in a batch file. Batch file comments are useful
for documenting the purpose of a batch file and the procedures you have used.

REM must be followed by a space or tab character and then your comment.    Comments can be up to
1023 characters long.    4NT will normally ignore everything on the line after the REM command, including
quote characters, redirection symbols, and other commands (see below for the exception to this rule).

If ECHO is ON, the comment is displayed.    Otherwise, it is ignored. If ECHO is ON and you don't want to
display the line, preface the REM command with an at sign [@].

You can also place a comment in a batch file by starting the comment line with two colons [::].    In
essence this creates a batch file "label" without a valid label name.    Such comments are processed
slightly faster than those entered with REM, because they do not require the command processor to
handle a command.

You can use REM to create a zero-byte file if you use a redirection symbol after the REM command.    No
text is permitted between the REM command and the redirection symbol.    For example, to create the
zero-byte file C:\FOO:

[c:\] rem > foo

(This capability is included for compatibility with CMD.EXE.    A simpler method for creating a zero-byte file
with 4NT is to use    >filename as a command, with no actual command before the [>] redirection
character.)

REN / RENAME

Purpose: Rename files or subdirectories.

Format: REN [/A:[[-]rhsda] /E /N /P /Q /S /T] old_name... new_name

        or

RENAME [/A:[[-]rhsda] /E /N /P /Q /S /T] old_name... new_name

old_name:    Original name of the file(s) or subdirectory.
new_name:    New name to use, or new path on the same drive.

/A: (Attribute select) /Q(uiet)
/E (no error messages) /S(ubdirectory)
/N(othing) /T(otal)
/P(rompt)

See also:    COPY and MOVE.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

REN and RENAME are synonyms.    You may use either one.

REN lets you change the name of a file or a subdirectory, or move one or more files to a new subdirectory
on the same drive.    (If you want to move files to a different drive, use MOVE.)

In its simplest form, you give REN the old_name of an existing file or subdirectory and then a new_name. 
The new_name must not already exist -- you can't give two files the same name (unless they are in
different directories).    The first example renames the file MEMO.TXT to MEM.TXT.    The second
example changes the name of the \WORD directory to \WP:

[c:\] rename memo.txt mem.txt
[c:\] rename \word \wp

If you use REN to rename a directory, the extended directory search database will be automatically
updated to reflect the change.

When you rename files on an HPFS, NTFS, or LFN drive, you must quote any file names which contain
whitespace or special characters.    See File Names for additional details.

You can also use REN to rename a group of files that you specify with wildcards, as multiple files, or in an
include list.    When you do, the new_name must use one or more wildcards to show what part of each
filename to change.    Both of the next two examples change the extensions of multiple files to .SAV:

[c:\] ren config.nt autoexec.nt 4start.btm *.sav
[c:\] ren *.txt *.sav

REN can move files to a different subdirectory on the same drive. When it is used for this purpose, REN
requires one or more filenames for the old_name and a directory name for the new_name:

[c:\] ren memo.txt \wp\memos\
[c:\] ren oct.dat nov.dat \data\save\

The final backslash in the last two examples is optional.    If you use it, you force REN to recognize the
last argument as the name of a directory, not a file.    The advantage of this approach is that if you
accidentally mistype the directory name, REN will report an error instead of renaming your files in a way
that you didn't intend.

Finally, REN can move files to a new directory and change their name at the same time if you specify both
a path and file name for new_name.    In this example, the files are renamed with an extension of .SAV as
they are moved to a new directory:

[c:\] ren *.dat \data\save*.sav

You cannot rename a subdirectory to a new location on the directory tree.

REN does not change a file's attributes.    The new_name file(s) will have the same attributes as
old_name.

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., REN /A: ...), REN will select all files and subdirectories
including hidden and system files.    If attributes are combined, all the specified attributes must
match for a file to be selected.    For example, /A:RHS will select only those files with all three
attributes set.

/E    (No error messages)    Suppress all non-fatal error messages, such as "File Not Found."   
Fatal error messages, such as "Drive not ready," will still be displayed.    This option is most
useful in batch files.

/N (Nothing)    Do everything except actually rename the file(s). This option is useful for testing
what a REN command will actually do.

/P (Prompt)    Prompt the user to confirm each rename operation. Your options at the prompt are
explained in detail under Page and File Prompts.

/Q (Quiet)    Don't display filenames    or the number of files renamed.    This option is most often
used in batch files.    See also /T.

/S (Subdirectory)    Normally, you can rename a subdirectory only if you do not use any wildcards
in the new_name.    This prevents subdirectories from being renamed inadvertently when a
group of files is being renamed with wildcards.    /S will let you rename a subdirectory even
when you use wildcards.    /S does not cause REN to process files in the current directory
and all subdirectories as it does in some other file processing commands.    To rename files
throughout a directory tree, use a GLOBAL REN.

/T (Total)    Don't display filenames as they are renamed, but report the number of files renamed. 
See also /Q.

RETURN

Purpose: Return from a GOSUB (subroutine) in a batch file.

Format: RETURN [value]

value:    The exit code from 0 to 255 to return to the command processor or to the
previous batch file.

See also:    GOSUB.

Usage

4NT allows subroutines in batch files.

A subroutine begins with a label (a colon followed by a word) and ends with a RETURN command.

The subroutine is invoked with a GOSUB command from another part of the batch file.    When a
RETURN command is encountered the subroutine terminates, and execution of the batch file continues
on the line following the original GOSUB.    If RETURN is encountered without a GOSUB, the command
processor will display a "Missing GOSUB" error.

The following batch file fragment calls a subroutine which displays the files in the current directory:

echo Calling a subroutine
gosub subr1
echo Returned from the subroutine
quit
:subr1
dir /a/w
return

If you specify a value, RETURN will set the ERRORLEVEL or exit code to that value.    For information on
exit codes see the IF command, and the %? variable.

SCREEN

Purpose: Position the cursor on the screen and optionally display a message.

Format: SCREEN row column [text]

row:    The new row location for the cursor.
column:    The new column location for the cursor.
text:    Optional text to display at the new cursor location.

See also:    ECHO, SCRPUT, TEXT, and VSCRPUT.

Usage

SCREEN allows you to create attractive screen displays in batch files.    You use it to specify where a
message will appear on the screen.    You can use SCREEN to create menus, and other similar displays.
The following batch file fragment displays a menu:

@echo off
cls
screen 3 10 Select a number from 1 to 4:
screen 6 20 1 - Word Processing ...

SCREEN does not change the screen colors.    To display text in specific colors, use SCRPUT or
VSCRPUT.    SCREEN always leaves the cursor at the end of the displayed text.

The row and column values are zero-based, so on a standard 25 line by 80 column display, valid rows are
0 - 24 and valid columns are 0 - 79.    You can also specify the row and column as offsets from the current
cursor position.    Begin the value with a plus sign [+] to move the cursor down the specified number of
rows or to the right the specified number of columns, or with a minus sign [-] to move the cursor up or to
the left.    This example prints a string 3 lines above the current position, in absolute column 10:

screen -3 10 Hello, World!

If you specify 999 for the row, SCREEN will center the text vertically on the display.    If you specify 999 for
the column, SCREEN will center the text horizontally.    This example prints a message at the center of the
display:

screen 999 999 Hello, World

SCREEN checks for a valid row and column, and displays a "Usage" error message if either value is out
of range.

SCRPUT

Purpose: Position text on the screen and display it in color.

Format: SCRPUT row col [BRIght] fg ON BRIght] bg text

row:    Starting row
col:    Starting column
fg:    Foreground character color
bg:    Background character color
text:    The text to display

See also:    ECHO, SCREEN, TEXT, and VSCRPUT.

Usage

SCRPUT allows you to create attractive screen displays in batch files.    You use it to specify where a
message will appear on the screen and what colors will be used to display the message text. You can use
SCRPUT to create menu displays, logos, etc.

SCRPUT works like SCREEN, but requires you to specify the display colors.    See Colors and Color
Names.

The row and column are zero-based, so on a standard 25 line by 80 column display, valid rows are 0 - 24
and valid columns are 0 - 79.    SCRPUT checks for a valid row and column, and displays a "Usage" error
message if either value is out of range.

You can also specify the row and column as offsets from the current cursor position.    Begin the value
with a plus sign [+] to move down the specified number of rows or to the right the specified number of
columns, or with a minus sign [-] to move up or to the left.

If you specify 999 for the row, SCRPUT will center the text vertically on the display.    If you specify 999 for
the column, SCRPUT will center the text horizontally.

SCRPUT normally does not move the cursor when it displays the text.

The following batch file fragment displays part of a menu, in color:

cls white on blue
scrput 3 10 bri whi on blu Select an option:
scrput 6 20 bri red on blu 1 - Word Processing
scrput 7 20 bri yel on blu 2 - Spreadsheet
scrput 8 20 bri gre on blu 3 - Communications
scrput 9 20 bri mag on blu 4 - Quit

SELECT

Purpose: Interactively select files for a command.

Format: SELECT [/A[[:][-]rhsda] /C /D /E /H /I"text" /J /L /O[[:][-]adeginrsu] /T:acw /Z]
[command] ... (files...) ...

command:    The command to execute with the selected files.
files:    The files from which to select.    File names may be enclosed in either parentheses
or square brackets.    The difference is explained below.

/A(ttribute select) /J(ustify names)
/C (Compression) /L(ower case)
/D(isable color coding) /O(rder)
/E (upper case) /T(ime)
/H(ide dots) /X (display short names)
/I (match descriptions) /Z (use FAT format)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists. Date, time, or size ranges
must appear immediately after the SELECT keyword.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

SELECT allows you to select files for internal and external commands by using a full-screen "point and
shoot" display.    You can have SELECT execute a command once for each file you select, or have it
create a list of files for a command to work with.    The command can be an internal command, an alias,
an external command, or a batch file.

If you use parentheses around the files, SELECT executes the command once for each file you have
selected.    During each execution, one of the selected files is passed to the command as an argument.    If
you use square brackets around files, the SELECTed files are combined into a single list, separated by
spaces.    The command is then executed once with the entire list presented as part of its command-line
arguments.

Using the SELECT File List

When you execute the SELECT command, the file list is displayed in a full-screen format which includes a
top-line status bar and shows the command to be executed, the number of files marked, and the number
of Kbytes in those files.

SELECT uses the cursor up, cursor down, PgUp, and PgDn keys to scroll through the file list.      You can
also use character matching to find specific files, just as you can in any popup window.    While the file list
is displayed you can enter any of the following keys to select or unselect files, display files, execute the
command, or exit:

+ or space Select a file, or unselect a marked file.

- Unselect a marked file.

* Reverse all of the current marks (except those on subdirectories).    If no
files have been marked you can use * to mark all of the files.

/ Unselect all files.

Enter Execute the command with the marked files, or with the currently
highlighted file if no files have been marked.

Esc Skip the files in the current display and go on to the next file specification
inside the parentheses or brackets (if any)

Ctrl-C or Ctrl-Break Cancel the current SELECT command entirely.

On FAT drives the file list is shown in standard FAT directory format, with names at the left an descriptions
at the right.    On HPFS, NTFS, and LFN drives the format is similar but more space is allowed for the
name, and the description is not shown.    In this format long names are truncated if they do not fit in the
allowable space.    For a short-name format (including descriptions) on long filename drives, use the /X
and / or /Z switches.

When displaying descriptions in the short filename format, SELECT adds a right arrow at the end of the
line if the description is too long to fit on the screen.    This symbol will alert you to the existence of
additional description text.    You can use the left and right arrow keys to scroll the description area of the
screen horizontally and view the additional text.

You can display the filenames in color by using the SET command to create an environment variable
called COLORDIR, or using the Commands page of the OPTION dialogs or a text editor to set the
ColorDir directive in your .INI file.    If you do not use the COLORDIR variable or the ColorDir directive,
SELECT will use the default screen colors for all files.    See the discussion of Color-Coded Directories
under DIR for more details.    To disable directory color coding within SELECT, use the /D option.

You can set the default colors used by SELECT on the Commands page of the OPTION dialogs or with
the SelectColors and SelectStatBarColors directives in the .INI file.    If SelectColors is not used, the
SELECT display will use the current default colors.    If SelectStatBarColors is not used, the status bar will
use the reverse of the SELECT colors.

Creating SELECT Commands

In the simplest form of SELECT, you merely specify the command and then the list of files from which you
will make your selection(s). For example:

[c:\] select copy (*.com *.exe) a:\

will let you select from among the .COM files on the current drive, and will then invoke the COPY
command to copy each file you select to drive A:.    After the .COM files are done, the operations will be
repeated for the .EXE files.

If you want to select from a list of all the .COM and .EXE files mixed together, create an include list inside
the parentheses by inserting a semicolon:

[c:\] select copy (*.com;*.exe) a:\

Finally, if you want the SELECT command to send a single list of files to COPY, instead of invoking COPY
once for each file you select, put the file names in square brackets instead of parentheses:

[c:\] select copy [*.com;*.exe] a:\

If you use brackets, you have to be sure that the resulting command (the word COPY, the list of files, and
the destination drive in this example) does not exceed the command line length limit of 1,023 characters.   
The current line length is displayed by SELECT while you are marking files to help you to conform to this
limit.

The parentheses or brackets enclosing the file name(s) can appear anywhere within the command;
SELECT assumes that the first set of parentheses or brackets it finds is the one containing the list of files
from which you wish to make your selection.

When you use SELECT, you must quote any file names inside the parentheses which contain whitespace
or special characters.    For example, to copy selected files from the "Program Files" directory to the E:\
SAVE directory:

[c:\] select copy ("Program Files*.*") e:\save\

File names passed to the command will be quoted automatically if they contain whitespace or special
characters.

The list of files from which you wish to select can be further refined by using date, time, size, and file
exclusion ranges.    The range(s) must be placed immediately after the word SELECT.    If the command is
an internal command that supports ranges, an independent range can also be used in the command
itself.

You cannot use command grouping to make SELECT execute several commands, because SELECT will
assume that the parentheses are marking the list of files from which to select, and will display an error
message or give incorrect results if you try to use parentheses for command grouping instead.    (You can
use a SELECT command inside command grouping parentheses, you just can't use command grouping
to specify a group of commands for SELECT to execute.)

Advanced Topics

If you don't specify a command, the selected filename(s) will become the command.    For example, this
command defines an alias called UTILS that selects from the executable files in the directory C:\UTIL,
and then executes them in the order marked:

[c:\] alias utils select (c:\util*.com;*.exe;*.btm;*.bat)

If you want to use filename completion to enter the filenames inside the parentheses, type a space after
the opening parenthesis.    Otherwise, the command-line editor will treat the open parenthesis as the first
character of the filename.

With the /I option, you can select files based on their descriptions.    SELECT will display files if their
description matches the text after the /I switch.    The search is not case sensitive.    You can use wildcards
and extended wildcards as part of the text.

When sorting file names and extensions for the SELECT display, 4NT normally assumes that sequences
of digits should be sorted numerically (for example, the file DRAW2 would come before DRAW03
because 2 is numerically smaller than 03), rather than strictly alphabetically (where DRAW2 would come
second because "2" comes after "0").    You can defeat this behavior and force a strict alphabetic sort with
the /O:a option.

Options

/A (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is optional.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory

A Archive

If no attributes are listed at all (e.g., SELECT /A ...), SELECT will display all files and
subdirectories including hidden and system files. If attributes are combined, all the specified
attributes must match for a file to be included in the listing.    For example, /A:RHS will display
only those files with all three attributes set.

/C (Compression) Display compression ratios on compressed NTFS drives.    The compression
ratio is displayed instead of the file description.    The ratio is left blank for directories, for files
with a length of 0 bytes, and for files on non-compressed drives.    The compression ratios will
not be visible on LFN or NTFS drives unless you use /Z to switch to the traditional short
filename format.

See DIR /C    for more details on how compression ratios are calculated.

/D (Disable color coding)    Temporarily turn off directory color coding within SELECT.

/E (use upper case)    Display filenames in upper case; also see SETDOS /U and the UpperCase
directive in the 4NT.INI file.

/H (Hide dots)    Suppress the display of the "." and ".." directories.

/I (match descriptions)    Display filenames by matching text in their descriptions.    The text can
include wildcards and extended wildcards.    The search text must be enclosed in quotation
marks.    You can select all filenames that have a description with /I"[?]*", or all filenames that
do not have a description with /I"[]".    /I will be ignored if /C or /O:c is also used.

/L (Lower case)    Display file and directory names in lower case; also see SETDOS /U    and the
UpperCase directive in 4NT.INI.

/J (Justify names)    Justify (align) filename extensions and display them in the traditional format.

/O (Order)    Set the sort order for the files.    The order can be any combination of the following
options:

- Reverse the sort order for the next option.
a Sort in ASCII order, not numerically, when there are digits in the name
c Sort by compression ratio (the least compressed file in the list will be displayed first). 

For information on supported compression systems see /C above.
d Sort by date and time (oldest first).
e Sort by extension.
g Group subdirectories first, then files.
i Sort by file description.
n Sort by filename (this is the default).
r Reverse the sort order for all options.
s Sort by size.
u Unsorted.

/T:acw (Time display) Specify which of the date and time fields on an LFN, NTFS, or HPFS drive
should be displayed and used for sorting:

a last access date and time (access time is not saved on LFN volumes).
c creation date and time.
w last write date and time (default).

/X Display short filenames, in the traditional FAT format (like /Z), on NTFS and LFN drives.

/Z    Display files on an HPFS, NTFS, or LFN drive in the traditional FAT format, with the filename
at the left and the description at the right.    On LFN and NTFS drives, short filenames will be
displayed.    On HPFS drives, long names will be truncated to 12 characters; if the name is
longer than 12 characters, it will be followed by a right arrow to show that one or more
characters have been truncated.

SET

Purpose: Display, create, modify, or delete environment variables.

Format: SET [/A /P /R file...] [name[=][value]]

file:    One or more files containing variable definitions.
name:    The name of the environment variable to define or modify.
value:    The new value for the variable.

/A(rithmetic) /R(ead from file)
/P(ause)

See also:    ESET and UNSET.

Usage

Every program and command inherits an environment, which is a list of variable names, each of which is
followed by an equal sign and some text.    Many programs use entries in the environment to modify their
own actions.

If you simply type the SET command with no options or arguments, it will display all the names and
values currently stored in the environment.    Typically, you will see an entry called COMSPEC, an entry
called PATH, an entry called CMDLINE, and whatever other environment variables you and your
programs have established:

[c:\] set
COMSPEC=C:\4NT\$OS2.EXE
PATH=C:\;C:\WINDOWS;C:\WINDOWS\SYSTEM;C:\UTIL
CMDLINE=C:\4NT\4START.CMD

To add a variable to the environment, type SET, a space, the variable name, an equal sign, and the text:

[c:\] set mine=c:\finance\myfiles

The variable name is converted to upper case by 4NT.    The text after the equal sign will be left just as
you entered it.    If the variable already exists, its value will be replaced with the new text that you entered.

Normally you should not put a space on either side of the equal sign.    A space before the equal sign will
become part of the name ; a space after the equal sign will become part of the value.

If you use SET to create a variable with the same name as one of the 4NT internal variables, you will
disable the internal variable.    If you later execute a batch file or alias that depends on that internal
variable, it may not operate correctly.

To display the contents of a single variable, type SET plus the variable name:

[c:\] set mine

You can edit environment variables with the ESET command.    To remove variables from the
environment, use UNSET, or type SET plus a variable name and an equal sign:

[c:\] set mine=

The variable name is limited to a maximum of 80 characters. The name and value together cannot be

longer than 1,023 characters.

In 4NT the size of the environment is set automatically, and increased as necessary as you add variables.

Options

/A (Arithmetic)    Evalute the argument to the right of the equal sign, place the result in the
environment, and display it.    You can use @EVAL to perform the same task; SET /A is
included only for compatibility with Windows NT's CMD.EXE.    The following example adds 2
and 2, and places 4 in the environment variable VAR:

[c:\] set /a var=2+2

In addition, /A interprets alphabetic strings to the right of the equal sign as environment
variable names even if they are not preceded by a percent sign.    For example, this sequence
will set Y to 4:

[c:\] set x=2
[c:\] set /a y=x+2

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

/R (Read)    Read environment variables from a file.    This is much faster than loading variables
from a batch file with multiple SET commands.    Each entry in the file must fit within the
1,023-byte command-line length limit for 4NT:    The file is in the same format as the SET
display (i.e., name=value), so SET /R can accept as input a file generated by redirecting SET
output.    For example, the following commands will save the environment variables to a file,
and then reload them from that file:

set > varlist
set /r varlist

You can load variables from multiple files by listing the filenames individually after the /R. You
can add comments to a variable file by starting the comment line with a colon [:].

If you are creating a SET /R file by hand, and need to create an entry that spans multiple
lines in the file, you can do so by terminating each line, except the last, with an escape
character. However, you cannot use this method to exceed the command-line length limit.

SETDOS

Purpose: Display or set the 4NT configuration.

Format: SETDOS [/C? /D? /E? /Fn.n /G?? /I+|- command /M? /N? /P? /S?:? /U? /V? /X[+|-]n
/Y?]

/C(ompound) /N(o clobber)
/D(escriptions) /P(arameter character)
/E(scape character) /S(hape of cursor)
/F(ormat for @EVAL) /U(pper case)
/G (numeric separators) /V(erbose)
/I(nternal commands) /X (expansion, special characters)
/M(ode for editing) /Y (debug batch file)

Usage

SETDOS allows you to customize certain aspects of 4NT to suit your personal tastes or the configuration
of your system.    Each of these options is described below.

You can display the value of all SETDOS options by entering the SETDOS command with no parameters.

Most of the SETDOS options can be initialized when 4NT executes the configuration directives in the .INI
file, and can also be set on the Command Line 1, Command Line 2, Options 1, or Options 2 page of the
OPTION dialogs. The name of the corresponding directive is listed with each option below; if none is
listed, that option cannot be set with OPTION or from the .INI file.    You can also define the SETDOS
options in your 4START or other startup file (see Automatic Batch Files), in aliases, or at the command
line.

Secondary shells automatically inherit most configuration settings currently in effect in the previous shell.   
If values have been changed by SETDOS since 4NT started, the new values will be passed to the
secondary shell.

SETDOS /I settings are not inherited by secondary shells.    If you want to use SETDOS /I- to disable
commands in all shells, place the SETDOS command(s) in your 4START file, which is executed when any
shell starts.

Options

/C (Compound character)    This option sets the character used for separating multiple
commands on the same line.    The default is the ampersand [&]. You cannot use any of the
redirection characters (| > <), or the blank, tab, comma, or equal sign as the command
separator.    The command separator is saved by SETLOCAL and restored by ENDLOCAL.   
This example changes the separator to a tilde [~]:

[c:\] setdos /c~

If you want to share batch files or aliases between 4NT and 4DOS, 4OS2, or Take Command,
see the %+ variable, which retrieves the current command separator, and Special Character
Compatibility for details on using compatible command separators for all the products you
use.   

Also see the CommandSep directive.

/D (Descriptions)    This option controls whether file processing commands like COPY, DEL,

MOVE, and REN process file descriptions along with the files they belong to.    /D1 turns
description processing on, which is the default.    /D0 turns description processing off.    Also
see the Descriptions directive.

You can also use /D to set the name of the hidden file in each directory that contains file
descriptions.    To do so, follow /D with the filename in quotes:

[c:\] setdos /d"files.bbs"

 Use this option with caution, because changing the name from the default will make it difficult
to transfer file descriptions to another system.    This option is provided for bulletin board
system operators and others who have special needs.      Also see the DescriptionName
directive.

/E (Escape character)    This option sets the character used to suppress the normal meaning of
the following character.    Any character following the escape character will be passed
unmodified to the command.    The default escape character is a caret [^].    You cannot use
any of the redirection characters (| > <) or the blank, tab, comma, or equal sign as the escape
character.    The escape character is saved by SETLOCAL and restored by ENDLOCAL.   
Certain characters (b, c, e, f, k, n, q, r, s, and t) have special meanings when immediately
preceded by the escape character.

If you want to share batch files or aliases between 4NT and 4DOS, 4OS2, or Take Command,
see the %= variable, which retrieves the current escape character, and Special Character
Compatibility for details on using compatible escape characters for all the products you use.   

Also see the EscapeChar directive.

/F (Format for @EVAL)    This option lets you set default decimal precision for the @EVAL
variable function. The maximum precision is 16 digits to the left of the decimal point and up to
8 digits to the right of the decimal point.

The general form of this option is /Fx.y, where the x value sets the minimum number of digits
to the right of the decimal place and the y value sets the maximum number of digits.    You
can use =x,y instead of =x.y if the comma is your decimal separator.    Both values can range
from 0 to 8; if x is greater than y, it is ignored.    You can specify either or both values:   
/F2.5, /F2, and /F.5 are all valid entries.    See the @EVAL function if you want to set the
precision for a single computation.

Also see the EvalMax and EvalMin directives.

/G (Numeric separators)    This option sets the decimal and thousands separator characters.   
The format is /Gxy where "x" is the new decimal separator and "y" is the new thousands
separator.    Both characters must be included.    The only valid settings are /G., (period is the
decimal separator, comma is the thousands separator); /G,. (the reverse); or /G0 to remove
any custom setting and use the default separators associated with your current country code
(this is the default).

The decimal separator is used for @EVAL, numeric IF and IFF tests, version numbers, and
other similar uses.    The thousands separator is used for numeric output, and is skipped
when performing calculations in @EVAL.

Also see the DecimalChar and ThousandsChar directives.

/I (Internal)    This option allows you to disable or enable internal commands.    To disable a
command, precede the command name with a minus [-].    To re-enable a command, precede

it with a plus [+]. For example, to disable the internal LIST command to force 4NT to use an
external command:

[c:\] setdos /i-list

/M (Mode)    This option controls the initial line editing mode.    To start in overstrike mode at the
beginning of each command line, use /M0 (the default).    To start in insert mode, use /M1.   
Also see the EditMode directive.

/N (No clobber)    This option controls output redirection).    /N0 means existing files will be
overwritten by output redirection (with >) and that appending (with >>) does not require the
file to exist already.    This is the default.    /N1 means existing files may not be overwritten by
output redirection, and that when appending the output file must exist.    A /N1 setting can be
overridden with the [!] character.    If you use /N1, you may have problems with a few unusual
programs that shell out to run a command with redirection, and expect to be able to overwrite
an existing file.

Also see the NoClobber directive.

/P (Parameter character)    This option sets the character used after a percent sign to specify all
or all remaining command-line arguments in a batch file or alias (e.g., %& or %n&).    The
default is the dollar sign [$].    The parameter character is saved by SETLOCAL and restored
by ENDLOCAL.

If you want to share batch files or aliases between 4NT and 4DOS, 4OS2, or Take Command,
see Special Character Compatibility for details on selecting compatible parameter characters
for all the products you use.

Also see the ParameterChar directive.

/S (Shape)    This option sets the cursor shape.    The format is /So:i where o is the cursor size
for overstrike mode, i the cursor size for insert mode.    The size is entered as a percentage of
the total character height.    The default values are 10:100 (a 10% underscore cursor for
overstrike mode, and a 100% block cursor for insert mode).    Because of the way video
drivers remap the cursor shape, you may not get a smooth progression in the cursor size
from 0% - 100%.    To disable the cursor, enter /S0:0.   

If either value is -1, the command processor will not attempt to modify the cursor shape at all. 
You can use this feature to give another program full control of the cursor shape.    You can
retrieve the current cursor shape values with the %_CI and %_CO internal variables     

Also see the CursorOver and CursorIns directives.

/U (Upper)    This option controls the default case (upper or lower) for file and directory names
displayed by internal commands like COPY and DIR.    /U0 displays file names in lower case
(the default).    /U1 displays file names in the traditional upper case.    Also see the UpperCase
directive.

The /U setting is ignored for filenames on LFN, HPFS, and NTFS drives.    Names on such
drives are always displayed in the case in which they are stored.

/V (Verbose)    This option controls the default for command echoing in batch files.    /V0 disables
echoing of batch file commands unless ECHO is explicitly set ON.    /V1, the default setting,
enables echoing of batch file commands unless ECHO is explicitly set OFF.    Also see the
BatchEcho directive.

/V2 forces echoing of all batch file commands, even if ECHO is set OFF or the line begins
with an "@".    This allows you to turn echoing on for a batch file without editing the batch file
and removing the ECHO OFF command(s) within it.    /V2 is intended for debugging, and can
be set with SETDOS, but not with the OPTION command or the BatchEcho directive in
4NT.INI.

/X[+|-]n    (expansion and special characters)    This option enables and disables alias and
environment variable expansion, and controls whether special characters have their usual
meaning or are treated as text.    It is most often used in batch files to process text strings
which may contain special characters.

The features enabled or disabled by /X are numbered.    All features are enabled when 4NT
starts, and you can re-enable all features at any time by using /X0.    To disable a particular
feature, use /X-n, where n is the feature number from the list below.    To re-enable the
feature, use /X+n.    To enable or disable multiple individual features, list their numbers in
sequence after the + or - (e.g. /X- 345 to disable features 3, 4, and 5).

The features are:

1 All alias expansion
2 Nested alias expansion only
3 All variable expansion (environment variables and batch and alias parameters)
4 Nested variable expansion only
5 Multiple commands, conditional commands, and piping
6 Redirection
7 Quoting (double quotes and back quotes) and square brackets
8 Escape character

If nested alias expansion is disabled, the first alias of a command is expanded but any aliases
it invokes are not expanded.    If nested variable expansion is disabled, each variable is
expanded once, but variables containing the names of other variables are not expanded
further.

For example, to disable all features except alias expansion while you are processing a text
file containing special characters:

setdos /x-35678
... [perform text processing here]
setdos /x0

/Y (Debug batch file)    /Y1 enables the built-in batch file debugger.    The debuggger allows you
to "single-step" through a batch file line by line, with the file displayed in a popup window as it
executes.    For complete details on using the debugger see Debugging Batch Files (this topic
also covers additional debugging techniques which do not require stepping through each line
individually).

To start the debugger, insert a SETDOS /Y1 command at the beginning of the portion of the
batch file you want to debug, and a SETDOS /Y0 command at the end.

You cannot use the batch debugger with REXX files or EXTPROC files.    It can only be used
with normal 4NT batch files.

You can also invoke SETDOS /Y1 from the prompt, but because the debugger is
automatically turned off whenever the command processor returns to the prompt, you must
enter the SETDOS command and the batch file name on the same line, for example:

[c:\] setdos /y1 & mybatch.btm

SETLOCAL

Purpose: Save a copy of the current disk drive, directory, environment, alias list, and special
characters.

Format: SETLOCAL

See also:    ENDLOCAL.

Usage

SETLOCAL is used in batch files to save the default disk drive and directory, the environment, the alias
list, and the command separator, escape character, parameter character, decimal separator, and
thousands separator.    You can then change their values and later restore the original values with
ENDLOCAL.

For example, this batch file fragment saves everything, removes all aliases so that user aliases will not
affect batch file commands, changes the disk and directory, changes the command separator, runs a
program, and then restores the original values:

setlocal
unalias *
cdd d:\test
setdos /c~
program ~ echo Done!
endlocal

SETLOCAL and ENDLOCAL are not nestable within a batch file.    However, you can have multiple,
separate SETLOCAL / ENDLOCAL pairs within a batch file, and nested batch files can each have their
own SETLOCAL / ENDLOCAL.    You cannot use SETLOCAL in an alias or at the command line.

An ENDLOCAL is performed automatically at the end of a batch file if you forget to do so.    If you invoke
one batch file from another without using CALL, the first batch file is terminated, and an automatic
ENDLOCAL is performed; the second batch file inherits the settings as they were prior to any
SETLOCAL.

SHIFT

Purpose: Allows the use of more than 127 parameters in a batch file.

Format: SHIFT [n | /n]

n:    Number of positions to shift.

Usage

SHIFT is provided for compatibility with older batch files, where it was used to access more than 10
parameters.    4NT supports 128 parameters (%0 to %127), so you may not need to use SHIFT for batch
files running exclusively under JP Software command processors.

SHIFT moves each of the batch file parameters n positions to the left.    The default value for n is 1.   
SHIFT 1 moves the parameter in %1 to position %0, the parameter in %2 becomes %1, etc.    You can
reverse a SHIFT by giving a negative value for n (i.e., after SHIFT -1, the former %0 is restored, %0
becomes %1, %1 becomes %2, etc.).

SHIFT also affects the parameters %n$ (command-line tail) and %# (number of command arguments).

If you add a slash before the value n, the value determines the postion at which to begin the shift.    For
example:

shift /2

leaves parameters %0 and %1 unchanged, and moves the value of %3 to postion %2, %4 to %3, etc.   
The value after the slash cannot be negative, and shifts performed with the slash cannot be undone later
in the batch file.

SHRALIAS

Purpose: Retains global command history, directory history, and alias lists in memory when the
command processor is not running.

Format: SHRALIAS [/U]

/U(nload)

See also:    ALIAS, command history and recall, and directory history window.

Usage

When you close all 4NT sessions, the memory for the global command history, global directory history,
and global alias list is released.    If you want the lists to be retained in memory even when no command
processor session is running, you need to execute SHRALIAS.

The SHRALIAS command starts and initializes SHRALIAS.EXE, a small program which remains active
and retains global lists when 4NT is not running.    In order to start the program, SHRALIAS must be able
to find SHRALIAS.EXE either in the same directory as 4NT, or in a directory in your PATH.    You cannot
run SHRALIAS.EXE directly, it must be run by the SHRALIAS command.

Once SHRALIAS has been executed, the global lists will be retained in memory until you use
SHRALIAS /U to unload the lists, or until you shut down your operating system.

SHRALIAS will not work unless you have at least one copy of    4NT running with global alias, command
history, and directory history lists enabled.    If the required global lists are not found, SHRALIAS will
display an error.

If you start SHRALIAS from a temporary 4NT session which exits after starting SHRALIAS (for example,
by executing SHRALIAS in your STARTUP.CMD file), the command processor session may terminate and
discard the shared lists before SHRALIAS can attach to them.    In this case SHRALIAS.EXE will not be
loaded.    If you experience this problem, add a short delay with the DELAY command after SHRALIAS is
loaded and before your session exits.

SHRALIAS does not work properly in detached sessions (e.g. those started with DETACH, or with
Windows NT's AT utility), due to security issues within Windows NT.    The SHRALIAS command will be
ignored in detached sessions.

For more information about global history and alias lists, see Local and Global Command History, Local
and Global Directory History, and local and global alias lists.

Options

/U (Unload)    Shuts down SHRALIAS.EXE.    If SHRALIAS is not loaded again, the memory used
by global command history, directory history, and alias lists will be released when the last
copy of 4NT exits.

START

Purpose: Start a program in another session or window.

Format: START ["program title "] [/B /C /Dpath] /HIGH /I /INV /K /L /LA /LD /LH /LOW
/MAX /MIN /N /NORMAL /PGM progname /POS=x, y, width, height /REALTIME
/SEPARATE /SHARED /SIZE=rows, cols /WAIT] [command]

program title:    Title to appear on title bar.
progname:    Program name (not the session name).
path:    Startup directory.
command:    Command to be executed.

/B (no new console) /MAX(imized)
/C(lose when done) /MIN(imized)
/D(irectory) /N(o command processor)
/HIGH (priority) /NORMAL (priority)
/I(nherit environment) /PGM (program name)
/INV(isible) /POS(ition of window)
/K(eep when done) /REALTIME (priority)
/L(ocal lists) /SEPARATE (virtual machine)
/LA (local aliases) /SHARED (WoW VDM)
/LD (local directory history) /SIZE (of screen buffer)
/LH (local history list) /WAIT (for session to finish)

See also:    DETACH.

Usage

START is used to begin a new Windows NT session, and optionally run a program in that session.    If you
use START with no parameters, it will begin a new command-line session.    If you add a command,
START will begin a new session or window and execute that command.    START will determine the
application type automatically and start the session in the appropriate mode.

The program title, if it is included, will appear on the task list and Alt-Tab displays.    The program title must
be enclosed in quotation marks and cannot exceed 127 characters.    If the program title is omitted, the
program name will be used as the title.

START always assumes that the first quoted string on the command line is the program title; if there is a
second quoted string it is assumed to be the command.    As a result, if the name of the program you are
starting is a long filename containing whitespace (and must therefore be quoted), you cannot simply place
it on the command line.    If you do, as the first quoted string it will be interpreted as the program title, not
the command.    To address this, use the /PGM switch to indicate explicitly that the quoted string is the
program name, or include a title before the program name.    For example, to start the program "C:\
Program Files\Proc.Exe" you could use either of the first two commands below, but the third command
would not work:

[c:\] start /PGM "C:\Program Files\Proc.Exe"
[c:\] start "test" "C:\Program Files\Proc.Exe"
[c:\] start "C:\Program Files\Proc.Exe"

If the progname is the name of a directory instead of an executable program, 4NT will start Windows
Explorer in the specified directory if you are using Windows NT 4.0 or later.    (Explorer must be in the
PATH, the \WINDOWS directory, or the \WINDOWS\SYSTEM directory for this feature to work correctly.)

START offers a large number of switches to control the session you start.    In most cases you need only a
few switches to accomplish what you want.    The list below summarizes the most commonly used START
options, and how you can use them to control the way a session is started:

/MAX, /MIN, and /POS allow you to start a character-mode windowed session in a maximized
window, a minimized window, or a window with a specified position and size.    The default is to let the
operating environment choose the position and size of the window.

/C allows you to close the session when the command is finished (the default for Windows NT
Presentation graphical sessions); /K allows you to keep the session open and go to a prompt (the
default for Windows NT character mode sessions).

Options

/B (No new console)    The program is started without creating a new window or console, i.e. in
the 4NT window.    Normally, the application is started in its own window.    For compatibility
with CMD.EXE, /B also disables Ctrl-C processing for the program.

/C (Close)    The session or window is closed when the application ends.

/D (Directory)    Specifies the startup directory.    Include the directory name immediately after
the /D, with no intervening spaces or punctuation.

/HIGH Start the window at high priority.

/I (Inherit environment)    Inherit the default environment, if any, rather than the current
environment.

/INV (Invisible)    Start the session or window as invisible.    No icon will appear and the session
will only be accessible through the Task Manager or Window List.

/K (Keep session or window at end)    The session or window continues after the application
program ends.    Use the EXIT command to end the session.

/L (Local lists)    Start 4NT with local alias, history, and directory history lists. This option
combines the effects of /LA, /LD, and /LH (below).

/LA (Local Alias list)    Start 4NT with a local alias list.    See ALIAS for information on local and
global aliases.

/LD (Local Directory history list)    Start 4NT with a local directory history list.    See Directory
History Window for information on local and global directory history.

/LH (Local History list)    Start 4NT with a local history list. See Command History and Recall for
information on local and global history lists.

/LOW Start the window at low priority.

/MAX (Maximized)    Start the session or window maximized.

/MIN (Minimized)    Start the session or window minimized.

/N Don't invoke 4NT.EXE to run the command.

/NORMAL    Start the window at normal priority.

/PGM (Program name)    The string following this option is the program name.    If you do not use
/PGM, the first quoted string on the line will be used as the session and task list title, and
not as the program name.

/POS (Position)    Start the window at the specified screen position.    The syntax is /POS=x, y,
width, height where the values are specified in pixels or pels.    x and y refer to the position
of the bottom left corner of the window relative to the bottom left corner of the screen.

/REALTIME    Start the window at realtime priority.

/SEPARATE    Start a 16-bit Windows application in a separate virtual machine.    Normally, all 16-bit
Windows applications are started in the same virtual machine.

/SHARED    Start a 16-bit Windows application in the shared virtual machine (the opposite of
/SEPARATE).    This is the default; the switch is included only for compatibility with
CMD.EXE.

/SIZE Start the window with the specified screen buffer size.    The full syntax is /SIZE=rows,
columns, where rows is the number of text rows and columns is the number of text
columns.

/WAIT Wait for the new session or window to finish before continuing.

SWITCH

Purpose: Select commands to execute based on a value.

Format: SWITCH expression

CASE value1 [.OR. value2] ...

commands

CASE value3

commands

[DEFAULT

commands]

ENDSWITCH

expression:    An environment variable, internal variable, variable function, text string, or
a combination of these elements, that is used to select a group of commands.
value1, value2, etc.:    A value to test, or multiple values connected with .OR.
commands:    One or more commands to execute if the expression matches the value.   
If you use multiple commands, they must be separated by command separators or placed
on separate lines.

See also:    IF and IFF.

Usage

SWITCH can only be used in batch files.    It allows you to select a command or group of commands to
execute based on the possible values of a variable or a combination of variables and text.

The SWITCH command is always followed by an expression created from environment variables, internal
variables, variable functions, and text strings, and then by a sequence of CASE statements matching the
possible values of the expression.    If one of the values in a CASE statement matches the expression, the
commands following that CASE statement are executed, and all subsequent CASE statements and the
commands which follow them are ignored.    If no matches are found, the commands following the optional
DEFAULT statement are executed.    If there are no matches and there is no DEFAULT statement, no
commands are executed by SWITCH.

After all of the commands following the CASE or DEFAULT statement are executed, the batch file
continues with the commands that follow ENDSWITCH.

You must include a command separator or new line after the expression, before each CASE or DEFAULT
statement, before each command, and before ENDSWITCH.    You can link values in a CASE statement
with .OR. (but not with .AND. or .XOR.).

For example, the following batch file fragment displays one message if the user presses A, another if user
presses B or C, and a third if the user presses any other key:

inkey Enter a keystroke: %%key
switch %key
case A

 echo It's an A
case B .or. C
 echo It's either B or C
default
 echo It's not A, B, or C
endswitch

In the example above, the value of a single environment variable was used for the expression.    You will
probably find that this is the best method to use in most situations.    However, you can use other kinds of
expressions if necessary.    The first example below selects a command to execute based on the length of
a variable, and the second bases the action on a quoted text string stored in an environment variable:

switch %@len[%var1]
case 0
 echo Missing var1
case 1
 echo Single character
...
endswitch
switch "%string1"
case "This is a test"
 echo Test string
case "The quick brown fox"
 echo It's the fox
...
endswitch

The SWITCH and ENDSWITCH commands must be on separate lines, and cannot be placed within a
command groupor on the same line as other commands (this is the reason SWITCH cannot be used in
aliases).    However, commands within the SWITCH block can use command groups or the command
separator in the normal way.

SWITCH commands can be nested.

You can exit from all SWITCH / ENDSWITCH processing by using GOTO to a line past the last
ENDSWITCH.

TEE

Purpose: Copy standard input to both standard output and a file.

Format: TEE [/A] file...

file:    One or more files that will receive the "tee-d" output.

/A(ppend)

See also:    Y and the redirection options.

Usage

TEE is normally used to "split" the output of a program so that you can see it on the display and also save
it in a file.    It can also be used to capture intermediate output before the data is altered by another
program or command.

TEE gets its input from standard input (usually the piped output of another command or program), and
sends out two copies:    one goes to standard output, the other to the file or files that you specify.    TEE is
not likely to be useful with programs which do not use standard output, because these programs cannot
send output through a pipe.

For example, to search the file DOC for any lines containing the string "4NT", make a copy of the
matching lines in 4.DAT, sort the lines, and write them to the output file 4N.DAT:

[c:\] find "4NT" doc | tee 4.dat | sort > 4n.dat

If you are typing at the keyboard to produce the input for TEE, you must enter a Ctrl-Z to terminate the
input.

When using TEE with a pipe under 4NT, the programs on the two ends of the pipe run simultaneously, not
sequentially as in 4DOS.

See Piping for more information on pipes.

Options

/A (Append)    Append the output to the file(s) rather than overwriting them.

TEXT

Purpose: Display a block of text in a batch file.

Format: TEXT
          .
          .
          .
ENDTEXT

See also:    ECHO, SCREEN, SCRPUT, and VSCRPUT.

Usage

TEXT can only be used in batch files.

The TEXT command is useful for displaying menus or multi-line messages.    TEXT will display all
subsequent lines in the batch file until terminated by ENDTEXT.    Both TEXT and ENDTEXT must be
entered as the only command on the line.

To redirect the entire block of text, use redirection on the TEXT command itself, but not on the actual text
lines or the ENDTEXT line.    No environment variable expansion or other processing is performed on the
lines between TEXT and ENDTEXT; they are displayed exactly as they are stored in the batch file.

You can use a CLS or COLOR command to set the screen color before executing the TEXT command.

The following batch file fragment displays a simple menu:

@echo off & cls
screen 2 0
text
Enter one of the following:
1 - Spreadsheet
2 - Word Processing
3 - Utilities
4 - Exit
endtext
inkey /k"1234" Enter your selection: %%key

TIME

Purpose: Display or set the current system time.

Format: TIME [/T] [hh[:mm[:ss]]] [AM | PM]

hh:    The hour (0 - 23).
mm:    The minute (0 - 59).
ss:    The second (0 - 59).

/T (display only)

See also:      DATE.

Usage

If you don't enter any parameters, TIME will display the current system time and prompt you for a new
time.    Press Enter if you don't wish to change the time; otherwise, enter the new time:.

[c:\] time
Mon Dec 22, 1997 9:30:06
New time (hh:mm:ss):

TIME defaults to 24-hour format, but you can optionally enter the time in 12-hour format by appending "a",
"am", "p", or "pm" to the time you enter.

For example, to enter the time as 9:30 am:

[c:\] time 9:30 am

Windows NT adds the system time and date to the directory entry for every file you create or modify.    If
you keep both the time and date accurate, you will have a record of when you last updated each file.

Options

/T    Displays the current time but does not prompt you for a new time.    You cannot specify a new
time on the command line with /T.    If you do, the new time will be ignored.

TIMER

Purpose: TIMER is a system stopwatch.

Format: TIMER [ON] [/1 /2 /3 /S]

ON: Force the stopwatch to restart

/1 (stopwatch #1) /3 (stopwatch #3)
/2 (stopwatch #2) /S(plit)

Usage

The TIMER command turns a system stopwatch on and off.    When you first run TIMER, the stopwatch
starts:

[c:\] timer
Timer 1 on: 12:21:46

When you run TIMER again, the stopwatch stops and the elapsed time is displayed:

[c:\] timer
Timer 1 off: 12:21:58
Elapsed time: 0:00:12.06

There are three stopwatches available (1, 2, and 3) so you can time multiple overlapping events.    By
default, TIMER uses stopwatch #1.

TIMER is particularly useful for timing events in batch files.    For example, to time both an entire batch
file, and an intermediate section of the same file, you could use commands like this:

rem Turn on timer 1
timer
rem Do some work here
rem Turn timer 2 on to time the next section
timer /2
rem Do some more work
echo Intermediate section completed
rem Display time taken in intermediate section
timer /2
rem Do some more work
rem Now display the total time
timer

The smallest interval TIMER can measure depends on the operating system you are using, your
hardware, and the interaction between the two.    However, it should never be greater than .06 second.   
The largest interval is 23 hours, 59 minutes, 59.99 seconds.

Options

/1 Use timer #1 (the default).

/2 Use timer #2.

/3 Use timer #3.

/S (Split)    Display a split time without stopping the timer.    To display the current elapsed time
but leave the timer running:

[c:\] timer /s
Timer 1 elapsed: 0:06:40.63

ON Start the timer regardless of its previous state (on or off).    Otherwise the TIMER command
toggles the timer state (unless /S is used).

TITLE

Purpose: Change the window title.

Format: TITLE "title"

title: The new window title.

See also:    ACTIVATE and WINDOW.

Usage

TITLE changes the text that appears in the caption bar at the top of the 4NT window.    You can also
change the window title with the WINDOW command or the ACTIVATE command.

The title text should not be enclosed in quotes unless you want the quotes to appear as part of the actual
title.

To change the title of the current window to "JP Software / 4NT":

[c:\] title JP Software / 4NT

TOUCH

Purpose: Change a file's date and time stamps.

Format: TOUCH [/C /D[acw][mm-dd-yy] /E /F /Q /T[acw][hh:mm]] file...

file:    One or more files whose date and/or time stamps are to be changed.

/C(reate file) /F(orce read-only files)
/D(ate) /Q(uiet)
/E (No error messages) /T(ime)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Use extended wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

TOUCH is used to change the date and / or time of a file.    You can use it to be sure that particular files
are included or excluded from an internal command, backup program, compiler MAKE utility, or other
program that selects files based on their time and date stamps, or to set a group of files to the same date
and time for consistency.

TOUCH should be used with caution, and in most cases should only be used on files you create.    Many
programs depend on file dates and times to perform their work properly.    In addition, many software
manufacturers use file dates and times to signify version numbers.    Indiscriminate changes to date and
time stamps can lead to confusion or incorrect behavior of other software.

TOUCH normally works with existing files, and will display an error if the file you specify does not exist, or
has the read-only attribute set.    To create the file if it does not already exist, use the /C switch.    To force
a date and time change for read-only files, use the /F switch.

TOUCH displays the date, time, and full name of each file whose timestamp is modified.    To disable this
output, use /Q.

If you don't specify a date or a time, TOUCH will default to the current date and time from your system
clock.    For example, to set the time stamp of all .C files in the current directory to the current date and
time:

[d:\source] touch *.c
 6-12-97 11:13:58 D:\SOURCE\MAIN.C
 6-12-97 11:13:58 D:\SOURCE\INIT.C
 ...

If you specify a date but not a time, the time will default to the current time from your system clock.   
Similarly, if you specify a time but not a date, the date will be obtained from the system clock.

On LFN, HPFS, and NTFS files, TOUCH sets the "modified" or "last write" date and time by default.    By
adding the appropriate character to the /D or /T switch, you can set the other date and time stamps that
are maintained for each file:

a last access date and time (access time can not be set on LFN volumes).

c creation date and time.

w last write date and time (default).

Options

/C (Create file)    Create the file (as a zero-byte file) if it does not already exist.    You cannot use
wildcards with /C, but you can create multiple files by listing them individually on the
command line.

/D (Date)    Specify the date that will be set for the selected files.    If the date is not specified,
TOUCH will use the current date.    For LFN, HPFS, and NTFS files you can use /Da, /Dc, or
/Dw, followed by the date, to explicitly specify the last access, creation, or last write date
stamp.    The date must be entered using the proper format for your current country settings.

/E (No error messages)    Suppress all non-fatal error messages, such as "File not found."    Fatal
error messages, such as "Drive not ready," will still be displayed.    This option is most useful
in batch files.

/F (Force read-only files)    Remove the read-only attribute from each file before changing the
date and time, and restore it afterwards.    Without /F, attempting to change the date and time
on a read-only file will usually cause an error.

/Q (Quiet)    Do not display the new date and time and the full name for each file.

/T (Time)    Specify the time that will be set for the selected files, in hh:mm format.    If the time is
not specified, TOUCH will use the current time.    For LFN, HPFS, and NTFS files you can use
/Ta, /Tc, or /Tw, followed by the time, to explicitly specify the last access, creation, or last
write time stamp.    However, files on LFN volumes do not have a last access time, so TOUCH
/Ta will have no effect on such files.

TREE

Purpose: Display a graphical directory tree.

Format: TREE [/A /B /F /H /P /S /T[:acw]] dir...

dir:    The directory to use as the start of the tree.    If more than one directory is specified,
TREE will display a directory tree for each.

/A(SCII) /P(ause)
/B(are) /S    (file size)
/F(iles) /T(ime and date)
/H(idden directories)

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

The TREE command displays a graphical representation of the directory tree using standard or extended
ASCII characters.    For example, to display the directory structure on drive C:

[c:\] tree c:\

You can print the display, save it in a file, or view it with LIST by using standard redirection symbols.    Be
sure to review the /A option before attempting to print the TREE output.    The options, discussed below,
specify the amount of information included in the display.

Options

/A (ASCII)    Display the tree using standard ASCII characters.    You can use this option if you
want to save the directory tree in a file for further processing or print the tree on a printer
which does not support the graphical symbols that TREE normally uses.

/B (Bare)    Display the full pathname of each directory, without any of the line-drawing
characters.

/F (Files)    Display files as well as directories.    If you use this option, the name of each file is
displayed beneath the name of the directory in which it resides.

/H (Hidden)    Display hidden as well as normal directories.    If you combine /H and /F, hidden
files are also displayed.

/P (Pause)    Wait for a key to be pressed after each screen page before continuing the display.   
Your options at the prompt are explained in detail under Page and File Prompts.

/S (Size)    Display the size of each file.    This option is only useful when combined with /F.

/T (Time and date)    Display the time and date for each directory.    If you combine /T and /F, the
time and date for each file will also be displayed.    For LFN, HPFS, and NTFS files, the time
and date of the last write will be shown by default.    You can select a specific time and date
stamp by using the following variations of /T:

/T:a last access date and time (access time is not saved on LFN volumes).

/T:c creation date and time.

/T:w last write date and time (default).

TRUENAME

Purpose: Find the full, true path and file name for a file.

Format: TRUENAME file

file:    The file whose name TRUENAME will report.

See also:    @TRUENAME.

Usage

Default directories, as well as the JOIN and SUBST external commands, can obscure the true name of a
file.    TRUENAME "sees through" these obstacles and reports the fully qualified name of a file.

The following example uses TRUENAME to get the true pathname for a file:

[c:\] subst d: c:\util\test
[c:\] truename d:\test.exe
c:\util\test\test.exe

On LFN drives TRUENAME returns the short name for the file, for example:

[c:\] truename "Program Files"
C:\PROGRA~1

TRUENAME can handle simple drive substitutions such as those created by JOIN, SUBST, or most
network drive mappings.    However, it may not be able to correctly determine the true name if you use
"nested" JOIN or SUBST commands, or a network which does not report true names properly.

TYPE

Purpose: Display the contents of the specified file(s).

Format: TYPE [/A:[[-]rhsda] /L /P] file...

file:    The file or list of files that you want to display.

/A: (Attribute select) /P(ause)
/L(ine numbers)

See also:    LIST.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Usage

The TYPE command displays a file.    It is normally only useful for displaying ASCII text files.    Executable
files (.COM and .EXE) and many data files may be unreadable when displayed with TYPE because they
include non-alphanumeric characters.

To display the files MEMO1 and MEMO2:

[c:\] type /p memo1 memo2

You can press Ctrl-S to pause TYPE's display and then any key to continue.

To display text from the clipboard use CLIP: as the file name.    CLIP: will not return any data if the
clipboard does not contain text.    See Redirection for additional information on CLIP:.

You will probably find LIST to be more useful for displaying files. However, the TYPE /L command used
with redirection is useful if you want to add line numbers to a file, for example:

[c:\] type /l myfile > myfile.num

Options

/A: (Attribute select)    Select only those files that have the specified attribute(s) set.    Preceding
the attribute character with a hyphen [-] will select files that do not have that attribute set.   
The colon [:] after /A is required.    The attributes are:

R Read-only
H Hidden
S System
D Subdirectory
A Archive

If no attributes are listed at all (e.g., TYPE /A: ...), TYPE will select all files and subdirectories
including hidden and system files.    If attributes are combined, all the specified attributes must
match for a file to be selected.    For example, /A:RHS will select only those files with all three
attributes set.

/L (Line numbers)    Display a line number preceding each line of text.

/P (Pause)    Prompt after displaying each page.    Your options at the prompt are explained in
detail under Page and File Prompts.

UNALIAS

Purpose: Remove aliases from the alias list.

Format: UNALIAS [/Q /R file...] [alias...]
        or

UNALIAS *

alias:    One or more aliases to remove from memory.
file:    One or more files to read for alias definitions.

/Q(uiet) /R(ead file)

See also:    ALIAS and ESET.

Usage

4NT maintains a list of the aliases that you have defined.    The UNALIAS command will remove aliases
from that list.    You can remove one or more aliases by name, or you can delete the entire alias list by
using the command UNALIAS *.

For example, to remove the alias DDIR:

[c:\] unalias ddir

To remove all the aliases:

[c:\] unalias *

If you keep aliases in a file that can be loaded with the ALIAS /R command, you can remove the aliases
by using the UNALIAS /R command with the same file name:

[c:\] unalias /r alias.lst

This is much faster than removing each alias individually in a batch file, and can be more selective than
using UNALIAS *.

Options

/Q (Quiet)    Prevents UNALIAS from displaying an error message if one or more of the aliases
does not exist.    This option is most useful in batch files, for removing a group of aliases when
some of the aliases may not have been defined.

/R (Read)    Read the list of aliases to remove from a file.    The file format should be the same
format as that used by the ALIAS /R command.    You can use multiple files with one
UNALIAS /R command by placing the names on the command line, separated by spaces:

[c:\] unalias /r alias1.lst alias2.lst

UNSET

Purpose: Remove variables from the environment or disable file associations inherited from
Windows NT.

Format: UNSET    [/Q /R file...] name...
          or

UNSET *

name:    One or more variables to remove from the environment or file types to disable.
file:    One or more files containing variable definitions.

/Q(uiet) /R(ead from file)

See also:    ESET and SET.

Usage

UNSET removes one or more variables from the environment, or disables file associations "inherited"
from Windows NT.

For example, to remove the variable CMDLINE:

[c:\] unset cmdline

If you use the command UNSET *, all of the environment variables will be deleted:

[c:\] unset *

UNSET can be used in a batch file, in conjunction with the SETLOCAL and ENDLOCAL commands, to
clear the environment of variables that may cause problems for applications run from that batch file.

For more information on environment variables, see the SET command and the general discussion of the
environment.

You can also use UNSET to disable direct file associations that 4NT has inherited from Windows NT (see
Windows File Associations and Using Windows File Associations for more details on inherited file
associations).    If the first character of the variable name is a period [.], UNSET will look first for a
matching environment variable to remove.    If it doesn't find one, it will next look in the list of direct file
associations it has loaded from Windows NT.    UNSET will not modify Windows NT's file associations, just
4NT's copy of the associations.

Use caution when removing environment variables, and especially when using UNSET *.    Many
programs will not work properly without certain environment variables; for example, 4NT uses PATH and
DPATH.

Options

/Q (Quiet)    Prevents UNSET from displaying an error message if one or more of the variables or
associations does not exist.    This option is most useful in batch files, for removing a group of
variables when some of the variables may not have been defined.

/R (Read)    Read environment variables to UNSET from a file.    This much faster than using
multiple UNSET commands in a batch file, and can be more selective than UNSET *.    The

file format should be the same format as that used by the SET /R command.

VER

Purpose: Display the current command processor and operating system versions.

Format: VER [/R]

/R(evision level)

Usage

Version numbers consist of a one-digit major version number, a separator, and a one- or two-digit minor
version number.    VER uses the default decimal separator defined by the current country information.   
The VER command displays both version numbers:

[c:\] ver
4NT 3.01A Windows NT Version is 4.0

Options

/R (Revision level)    Display the 4NT and Windows NT internal revision levels, plus your 4NT
serial number and registered name.

VERIFY

Purpose: Enable or disable disk write verification or display the verification state.

Format: VERIFY [ON | OFF]

Usage

Disk write verification cannot actually be enabled or disabled under Windows NT.    4NT supports VERIFY
as a "do-nothing" command, for compatibility with CMD.EXE.    This avoids "unknown command" errors in
batch files which use the VERIFY command.

VOL

Purpose: Display disk volume label(s).

Format: VOL [d:] ...

d:    The drive or drives to search for labels.

Usage

Each disk may have a volume label, created when the disk is formatted or with the external LABEL
command.    Also, every floppy disk formatted with DOS version 4.0 or above, Windows NT, or Windows
NT has a volume serial number.

The VOL command will display the volume label and, if available, the volume serial number of a disk
volume.    If the disk doesn't have a volume label, VOL will report that it is "unlabeled."    If you don't
specify a drive, VOL displays information about the current drive:

[c:\] vol
Volume in drive C: is MYHARDDISK

If available, the volume serial number will appear after the drive label or name.

To display the disk labels for drives A and B:

[c:\] vol a: b:
Volume in drive A: is unlabeled
Volume in drive B: is BACKUP_2

VSCRPUT

Purpose: Display text vertically in the specified color.

Format: VSCRPUT    row col [BRIght] fg ON [BRIght] bg text

row:    Starting row number.
col:    Starting column number.
fg:    Foreground text color.
bg:    Background text color.
text:    The text to display.

See also:    SCRPUT.

Usage

VSCRPUT writes text vertically on the screen rather than horizontally.    Like the SCRPUT command, it
uses the colors you specify to write the text.    VSCRPUT can be used for simple graphs and charts
generated by batch files.

The row and column are zero-based, so on a standard 25 line by 80 column display, valid rows are 0 - 24
and valid columns are 0 - 79.    VSCRPUT checks for a valid row and column, and displays a "Usage"
error message if either value is out of range.

You can also specify the row and column as offsets from the current cursor position.    Begin the value
with a plus sign [+] to move down the specified number of rows or to the right the specified number of
columns before displaying text, or with a minus sign [-] to move up or to the left.

If you specify 999 for the row, VSCRPUT will center the text vertically on the display.    If you specify 999
for the column, VSCRPUT will center the text horizontally.

VSCRPUT normally does not move the cursor when it displays the text.

The following batch file fragment displays an X and Y axis and labels them:

cls bright white on blue
drawhline 20 10 40 1 bright white on blue
drawvline 2 10 19 1 bright white on blue
scrput 21 20 bright red on blue X axis
vscrput 8 9 bright red on blue Y axis

WINDOW

Purpose: Minimize or maximize the current window, restore the default window size, set the
window size or position, or change the window title.

Format: WINDOW [MIN | MAX | RESTORE | /POS=x, y, width, height | /SIZE=rows, columns |
"title "]

title:    A new title for the window.

/POS(ition) /SIZE (of screen buffer)

See also:    ACTIVATE and TITLE.

Usage

The WINDOW command is used to control the appearance and title of the current window.    WINDOW
can only be used to specify one change to the current window at a time; to perform more than one
operation, you must use multiple WINDOW commands (see examples below).

WINDOW MIN reduces the window to an icon, WINDOW MAX enlarges it to its maximum size, and
WINDOW RESTORE returns the window to its default size and location on the desktop.

You can use the /POS option to set the location and size of the window on the desktop.    The x and y
values of the /POS option select the window's origin (from the bottom left of the screen) while the width
and height values determine its size.

If you specify a new title, the title text must be enclosed in double quotes.    The quotes will not appear as
part of the actual title.

For example, to maximize the current window and change it's title, you must perform two WINDOW
commands:

[c:\] window max
[c:\] window "JP Software / 4NT"

Options

/POS Set the window screen position and size.    The syntax is /POS=x, y, width, height, where the
values are specified in pixels or pels.    x and y refer to the position of the bottom left corner of
the window relative to the bottom left corner of the screen.

/SIZE Specify the screen buffer size.    The full syntax is /SIZE=rows, columns, where rows is the
number of text rows and columns is the number of text columns.    Due to the design of
Windows NT console sessions, you cannot use /SIZE to reduce the size of the screen buffer;
it can only be increased.

Y

Purpose: Copy standard input to standard output, and then copy the specified file(s) to standard
output.

Format: Y file ...

file:    The file or list of files to send to standard output.

See also:    TEE.

Usage

The Y command copies input from standard input (usually the keyboard) to standard output (usually the
screen).    Once the input ends, the named files are appended to standard output.

For example, to get text from standard input, append the files MEMO1 and MEMO2 to it, and send the
output to MEMOS:

[c:\] y memo1 memo2 > memos

The Y command is most useful if you want to add redirected data to the beginning of a file instead of
appending it to the end.    For example, this command copies the output of DIR, followed by the contents
of    the file DIREND, to the file DIRALL:

[c:\] dir | y dirend > dirall

If you are typing at the keyboard to produce input text for Y, you must enter a Ctrl-Z to terminate the input.

When using Y with a pipe you must take into account that the programs on the two ends of the pipe run
simultaneously, not sequentially.

See Piping for more information on pipes.

Starting 4NT

You will typically start 4NT from an object on your Windows NT desktop.    You can create as many 4NT
objects as you wish on the desktop.    Different objects can be used to start 4NT in different modes, with
different startup commands or options, or to run different batch files or other commands.    You can use
these objects to run commonly-used commands and batch files directly from the Windows NT desktop.

Each object represents a different 4NT window.    You can set any necessary command line parameters
for 4NT such as a command to be executed, any desired switches, and the name and path for 4NT.INI.   
More information on command line switches and options for 4NT is included later in this section.

For general information on creating and configuring desktop objects, see your Windows NT
documentation.   

When you configure a 4NT object, place the full path and name for the 4NT.EXE file in the Command Line
field, and put any startup options that you want passed to 4NT (e.g., @inifile) after the 4NT.EXE file
name.    For example:

Command Line: D:\4NT301\4NT.EXE @D:\4NT.INI
Working directory: C:\

To run a startup batch file for a particular 4NT window, include its name (with a path, if the batch file is not
in the startup directory) as the last item in the Command Line field.    That batch file will be executed after
any 4START file but before the first prompt is displayed.    You can use the batch file to set environment
variables and execute any other 4NT commands.    You can also execute any internal 4NT command,
external command, or alias by placing its name in the Command Line field.    When you set up a batch file
or other command to run in this way you are using the command option (see below).    For example:

Command Line: D:\4NT301\4NT.EXE STARTNT.CMD
Working directory: C:\

To execute an internal or external command, an alias, or a batch file and then exit (return to the desktop)
when it is done, place /C command (rather than just command) as the last item in the Command Line
field.    For example:

Command Line: D:\4NT301\4NT.EXE /C COMFILES.BTM
Working directory: C:\

The 4NT command line does not need to contain any information.    When invoked with an empty
command line, 4NT will configure itself from the 4NT.INI file, run 4START, and then display a prompt and
wait for you to type a command.    However, you may add information to the 4NT command line that will
affect the way it operates.

Command line options for primary shells are set in the Command Line field of the 4NT object.    Command
line options for secondary shells can be set on the secondary shell command line.

4NT recognizes several optional fields on the command line.    All of the options go on one line.    If you
use more than one of these fields, their order is important.    The syntax for the command line is:

[d:\path] [@d:\path\inifile] [//iniline]... [/L] [/LA] [/LD] [/LH] [/Q] [/S] [/T:bf] [X]
[/C | /K] [command]

The options are:

d:\path:    This option sets the drive and directory where the program is stored, called the

COMSPEC path.    4NT uses this path to find its files and to set the COMSPEC environment
variable.    4NT normally knows what drive and directory it is started from, so this option is not
usually necessary.

@d:\path\inifile:    This option sets the path and name of the 4NT.INI file.    You do not need this
option if you aren't using a 4NT.INI file, or if the file is named 4NT.INI and it is either in the same
directory as 4NT.EXE or in the root directory of the boot drive.    This option is most useful if you
want to start the program with a specific and unique .INI file.

//iniline:    This option tells 4NT to treat the text appearing between the // and the next space or
tab as an .INI directive.    The directive should be in the same format as a line in 4NT.INI, but it
may not contain spaces, tabs, or comments.    Directives on the command line override any
corresponding directive in the .INI file.    This is a convenient way to place one or two simple
directives on the startup line without having to modify or create a new .INI file.

/L, /LA, /LD, and /LH:    These options force 4NT to to use a local alias, directory history, and / or
command history list.    They can be used to override any LocalAliases=No, LocalDirHistory=No,
or LocalHistory=No settings in 4NT.INI.    This allows you to use global lists as the default, but
start a specific 4NT session with local aliases or histories.

See Command History for details on local and global history, Directory History Window for details
on local and global directory history, and ALIAS for details on local and global aliases.    /LA
forces local aliases, /LD forces local directory history, /LH forces local command history, and /L
forces all three: local aliases, command history, and directory history.

/Q:    This option has no effect.    It is included only for compatibility with CMD.EXE.

/S:    This option tells 4NT that you do not want it to set up a Ctrl-C / Ctrl-Break handler.    It is
included for compatibility with CMD.EXE, but it may cause the system to operate incorrectly if you
use this option without other software to handle Ctrl-C and Ctrl-Break.    This option should be
avoided by most users.

/T:bf:    This option sets the foreground and background colors in the 4NT window.    Both b and f
are hexadecimal digits; b specifies the background color and f specifies the foreground color.   
This option is included only for compatibility with CMD.EXE; in most cases you should set default
colors with the StdColors directive in 4NT.INI, or the corresponding Output Colors option on the
Display page of the OPTION dialogs.    If you use both, the /T switch overrides any StdColors
setting.

/X:    This option forces 4NT to alter the operation of the MD and MKDIR command to
automatically create all necessary intermediate directories when it creates a new subdirectory.   
Its effect is the same as adding a /S option to all MD and MKDIR commands.    (This option is
included for compatibility with CMD.EXE.    In CMD.EXE it enables other options as well, but in
4NT the only option not enabled by default is the implicit MD /S.)

[/C | /K] command:    This option tells 4NT to run a specific command after starting.    The
command will be run after 4START has been executed and before any command prompt is
displayed.    It can be any valid alias, internal or external command, or batch file.    All other startup
options must be placed before the command, because 4NT will treat characters after the
command as part of the command and not as additional startup options.

When the command is preceded by a /C, 4NT will execute the command and then exit and return
to the parent program or the Windows NT desktop without displaying a prompt.    This is
sometimes called a "transient" command interpreter session.

The /K switch has no effect; using it is the same as placing the command (without a /C or /K) at

the end of the startup command line.    It is included only for compatibility with CMD.EXE.

What's New?

This section provides a comprehensive list of what's changed since our previous release, version 2.52.   
Maintenance changes made between versions 3.00 and 3.01 are indicated by 3.01 in the left margin.

This topic does not explain how to use each new feature.    Instead, where appropriate we have provided
links below to the detailed help topics containing additional usage information or other documentation.

Some of the descriptions here may be more detailed than you need; if you aren't using a feature, feel free
to skip to the next item.    If you are new to 4NT with version 3.01, you can skip this topic entirely.

This topic is divided into the following subtopics:

» General Features and Enhancements

» Command Line Editing

» Command Changes

» Variables and Variable Functions

» Startup and Configuration

» Technical and Compatibility Enhancements

» Bugs Fixed

The major new features in this release include:

» Extended Directory Searches allow you to change to a directory anywhere on your system
by entering only part of its name.    They must be explicitly enabled before you can use them. 
See Directory Navigation for complete details.

» You can directly execute URLs, and files with Windows file associations, from the 4NT
prompt.

» New commands include:

ECHOERR and ECHOSERR:    Display output on the "standard error" device (rather than
the usual "standard output" device).

OPTION:    Offers complete configuration adjustment, either through interactive dialogs or
on the command line.

SWITCH:    Provides for "case" statements in batch files.

TOUCH:    Adjusts file dates and times.

TREE:    Displays the directory tree, with or without file names, in a variety of formats.

» New file exclusion ranges provide a convenient way to exclude files from any internal
command -- faster and more flexible than using EXCEPT.

» The new batch file debugger can execute each line step by step, process or trace into
additional batch files, and display variables, aliases, and expanded commands at each step.

There over 100 additional new features beyond those mentioned here.    See the individual subtopics
listed above for details.

What's New:    General Features and Enhancements

» Added a complete batch file debugger.    The debugger displays the batch file in a window
and allows you to execute each line step by step, process or trace into additional batch files
and subroutines, and display variables and aliases at each step.    See Batch File Debugging
for complete details.

» You can now use Windows NT file associations to execute files directly from the prompt.    In
other words, you can directly execute something like "myfile.doc" without having to define an
executable extension, as long as the file has an associated application.    You can also directly
execute .LNK files and URLs at the prompt.

» Added a new type of range called a "file exclusion range".    The syntax is "/[!filename ...]"
which excludes filenames that match those inside the brackets.    For example, to display
everything but .TXT and .BAK files:

dir /[!*.txt *.bak] *.*

Exclusion ranges are faster, more flexible, and more reliable than the similar EXCEPT
command when excluding files from processing by internal commands.    However they do not
work with external commands.

» Popup windows (for filename completion, command history recall, etc.) now allow you to
search for a line within the window contents by typing the first few characters of the line.    The
search string is displayed in the lower right corner of the window.

» You can now redirect to and from the clipboard by using the pseudo-device name CLIP:.    For
example, to redirect DIR to the clipboard:

dir *.doc > clip:

» The online help now includes a standard Windows NT Table of Contents.    Also the help has
been reorganized to make it easier to navigate through the main topics, and includes
additional reference information, reference tables, and a glossary.

» The default maximum file description length is now 511 bytes in all products.

» Two new characters can now follow the escape character:    An escape followed by a 'q' will
substitute a double quote; an escape followed by a 'k' will substitute a back quote.

» The decimal and thousands characters used in @EVAL and in displayed version numbers
and other similar locations are now controllable with the DecimalChar and ThousandsChar
directives in the .INI file, the corresponding options in the configuration or OPTION dialogs,
and the SETDOS /G command.    These characters are saed by SETLOCAL and restored by
ENDLOCAL.    This is intended as an aid to those writing batch files which perform arithmetic
operations and which may be used in countries with differing separator characters.

» The directory stack size used by PUSHD and POPD has been increased from 255 to 511
bytes to leave adequate room for long directory names.

» .BTM files can now be longer than 64K bytes, though compressed .BTMs still have to be less
than 64K.

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

What's New:    Command Line Editing

» Extended directory searches can be used directly from the command line for quick directory
navigation; see Automatic Directory Changes or Directory    Navigation for details.

» Made several enhancements to Filename completion. including:

º The Ctrl-A key, which toggles between long and short filenames for filename
completion, can now be hit at any point during command line entry -- not just during
filename completion.    For example, if you hit Ctrl-A at the beginning of the command
line, all filenames subsequently returned for that line will be short names (until you hit
Ctrl-A again).

º Filename completion can now be customized for individual commands via the new
FileCompletion .INI directive (or environment variable).    For example, you can
configure 4NT to complete only the names of .TXT files when the command line
starts with the name of your text editor, or to display only directory names when you
are entering a CD command.

º The F7 filename completion popup window now sorts the filename list alphabetically.

» You can now expand aliases immediately while still on the command line with the Ctrl-F key.

» Command line history recall will now stop at the beginning and end of the history list rather
than wrapping around, if you set HistWrap to No in the .INI file or through the configuration
dialogs.

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

What's New:    Command Changes

» ASSOC:    This new command is included for compatibility with CMD.EXE.    It assists you in
managing the relationships between file extensions and file types stored in the Windows
registry.   

» ATTRIB:    Added the /E switch to disable display of non-fatal errors.    Also, ATTRIB now
allows underscores in the attribute string, so that you can get a result from the @ATTRIB
variable function and feed it directly to the ATTRIB command.

» CD and CDD:    Now support extended directory searches, which allow you to change to a
directory anywhere on your system by entering only part of its name.    The CDD /S switch
builds the extended directory search database.    Extended directory searches mmust be
explicitly enabled before you can use them.    See Directory Navigation for complete details.

» CD:    Added support for Windows NT 4.0's undocumented CD /D switch to change drive and
directory (like the 4NT CDD command).

» CDD:    Added the /A switch to display the current directory for all existing and ready drives
from C: to Z:.

» CLS:    Changed the basic CLS command to clear the screen, not the entire screen buffer;
added a /C switch to clear the entire buffer.

3.01 Fixed a problem with CLS /S occasionally reducing the window size 1 line.    Also fixed a
problem with a CLS /S losing the screen contents if at the end of the console buffer.

» COLOR:    Added support for CMD.EXE's syntax ("COLOR xy", where x is the background
color in hex, and y is the foreground color in hex).

3.01 Worked around a Win32 API problem which caused nested redirection (e.g., redirecting the
output of a pipe) to disable color changes.

» COPY:    Added several switches:

/E Disable display of non-fatal errors.

/K Preserve read-only attributes during a COPY.

/X Clear the archive bit from the source file after a successful copy.

/Z Overwrite read-only target files.

» DATE:    Added support for CMD.EXE's /T switch, which displays the date without prompting
for input.

» DEL:    Added two switches:

/E Disable display of non-fatal errors.

/W Clear the file to 0's before deleting it.

3.01 Fixed a problem with /W and 0-byte files.

3.01 » DESCRIBE:    Worked around a Novell Netware bug which caused trouble with descriptions
with trailing drive specs (i.e., "file from drive D:").

3.01 » DETACH:    Fixed a problem with not expanding variables before running an external
program.

» DIR:    Added or modified several of the DIR switches:

/2 Now forces use of the short name on LFN drives.

/4 Now forces use of the short name on LFN drives, and displays files between 1 and
9.9 Mb in tenths (i.e., "2.4M").

/C (New) Shows compression percentage on compressed NTFS drives.

/G (New) Displays the allocated size instead of the file size.

/W Now forces use of the short name on LFN drives.

/X Now shows the full short pathname when used with /F.

3.01 » DIR:    Fixed several problems, including:

º /4/Z did not display file sizes ending in ".9M" (1.9M, 2.9M, etc.) correctly.

º /J did not display the descriptions.

º /OGU was ignoring the 'U'; it will now display the files unsorted after the directory
names.

º "*.*" was incorrectly being appended to file specifications that ended in a question
mark.

º /G was not displaying the right allocated size in the total line.

3.01 A Win32 API bug was causing a crash on very large directories.

3.01 A Win95 bug was causing filenames like "*." to return all files, not just those without an
extension.

3.01 Will now match on either long filenames or short filenames in DESCRIPT.ION.

3.01 The /X switch (by itself, 1-column display) will now only display short filenames if they actually
exist.    This is to match a change in CMD.EXE's behavior.

» DIRHISTORY:    This new command has the same syntax as HISTORY, but it modifies the
directory history.

» DO:    Added two new DO loop types:

º "DO x IN filename" retrieves each matching filename from a wildcard spec and
inserts the value into the variable.

º "DO x IN @filename" retrieves each line in the file and inserts it into the variable.

3.01 Fixed a problem with "LEAVE" not closing the file handle on a "do var in @filename", and a
similar problem with exiting the batch file with QUIT or CANCEL from inside a DO loop which
had a file open.

3.01 » DRAWVLINE:    Fixed a problem with connecting to a horizontal line on the right side.

» ECHOERR and ECHOSERR:    These new commands are like ECHO and ECHOS, but

output goes to the standard error device instead of standard output.

3.01 » ECHOS:    Fixed a problem with aborting an ECHOS with a ^C while in a DO or FOR loop.

» ENDLOCAL:    To aid in making batch files portable, SETLOCAL and ENDLOCAL now save
and restore the command separator, escape character, parameter character, and decimal and
thousands separators.

» FFIND:    Added two new switches:

/I Do a literal match even if the text search string contains wildcard characters.

/R Start searching for text from the end backwards.

Also, the /X switch will now display the offset in both hex and decimal.

3.01 Added support for piping into FFIND.    You can either specify CON for the filename, or if no
filename is specified FFIND will detect whether STDIN is a pipe and use that.

» FOR:    Added several new switches for compatibility with Windows NT 4.0's CMD.EXE; see
the command reference information for complete details.

3.01 Fixed a problem with combining /A:xx and /R.

3.01 Fixed a problem with combining /H and /R.

» FTYPE:    This new command is included for compatibility with CMD.EXE.    It assists you in
managing the relationships between file extensions and file types stored in the Windows
registry.   

3.01 Worked around a Win32 API bug which caused FTYPE with no arguments to return too many
types.

» GOTO:    Added support for Windows NT 4.0's "GOTO :EOF" -- If there is no ":EOF" label,
GOTO ends the current batch file (equivalent to a QUIT).

» IF / IFF:    These commands have several changes, including:

º Support for nested conditional tests, with parentheses, e.g.:

if (%a == 1 .or. %b == 2) .and. %c == 3 echo something
See the command reference information for complete syntax rules.

º A new "IF DEFINED varname" test, which succeeds if the specified variable exists in
the environment.    This is included for compatibility with Windows NT 4.0's
CMD.EXE, and is the same as a test like:

if "%varname" ne "" ...
º The comparison tests now accept a leading decimal separator as a numeric

character, provided the remainder of the string is numeric and does not contain
additional decimal characters.

º New options for compatibility with Windows NT 4.0's CMD.EXE:

- Conditional tests "eql", "neq", "lss", "leq", "gtr", and "geq" (equivalent to "eq",

"ne", etc.)

- The /I(gnore) case switch; this switch does nothing in 4NT, which is already
case-insensitive

º A new ISWINDOW test to check for existence of a window.

3.01 » IF:    Fixed a problem with the /I switch (which doesn't do anything and is there only for
CMD.EXE compatibility).

» LIST:    Add a range of enhancements, including:

º Added three new switches:

/I Ignore case in a /T search.

/R The search initiated by /T goes backwards from the end of the file.

/T Search for text when LIST starts.

º Ctrl-PgUp and Ctrl-PgDn will go to the previous and next file in the current group,
respectively.

º Ctrl-F searches backwards for a text string; Ctrl-N repeats the last search, searching
backwards.

º Matching strings on the first page are now highlighted after a search.

º When piping output to LIST in most cases you no longer need the /S switch; for
example, to view DIR's output in LIST you can now use:

dir | list

» MD:    Added the /N switch to create a directory without updating the extended directory
search database (useful for temporary directories).

3.01 » MD:    Fixed a problem with the /S switch when creating multiple long filename directories.

» MOVE:    Added the /E switch to disable display of non-fatal errors.

» OPTION:    This new command can be used for two purposes.    When invoked without
parameters, it loads configuration dialogs which adjust most commonly-used settings in the
.INI file.    The dialogs provide a convenient method of adjusting configuration without
manually editing the .INI file.    OPTION can also be used to change specific settings on an
individual basis with the OPTION Name=value ... syntax; see the command for complete
details.

» PROMPT:    Added the $+ metacharacter, which displays one + for each PUSHD level.

» RD:    The /S switch included for compatibility with CMD.EXE no longer deletes files and
directories without prompting.    It is just as destructive as before, but -- like CMD.EXE in
Windows NT 4.0 -- it prompts first.

» REN / RENAME:    Added the /E switch to disable display of non-fatal errors.

» RETURN:    Now accepts an optional argument for the errorlevel to return.    The errorlevel
can be tested with %? or IF ERRORLEVEL.

» SCREEN, SCRPUT, and VSCRPUT:    If you specify 999 for the row, the text will be centered
vertically; if you specify 999 for the column, the text will be centered horizontally.

» SELECT:    You can now type characters from the start of a filename and the selection bar will
jump to the first matching name.    Due to this change, the key to popup LIST on the currently
selected file has been changed from L to ^L.    Also, added the /T:acw switch to select the date
and time to use for display and sorting on LFN, HPFS,and NTFS drives.

» Changed the /Z switch to display short filenames (as DIR does) rather than just truncating the
name.

3.01 Fixed a problem with incorrectly adding quotes to short filenames on long filename drives if
they contained a drive spec.

» SET:    Added the /A switch for compatibility with CMD.EXE.    /A evaluates the argument to
the right of the equal sign as an arithmetic expression, using the same rules as @EVAL, and
displays the result as well as storing it in an environment variable..

» SETLOCAL:    To aid in making batch files portable, SETLOCAL now saves the command
separator, escape character, parameter character, and decimal and thousands separators;
ENDLOCAL restores them.

» SHIFT:    The new "/n" argument will start the shift at the specified argument -- i.e., "shift /2"
moves %3 to %2, %4 to %3, etc.

» START:    Added /LD for a local directory history list, and the /SHARED option.

» START:    If the program name to execute is actually a directory name instead of an
executable, START runs Windows Explorer in the specified directory.

3.01 Duplicated NT's undocumented CMD.EXE behavior of looking in the registry for executables
if they're not found on the PATH.

» SWITCH:    This new command provides a C-like switch construct for batch files.    SWITCH
scans each CASE statement looking for a matching value; if it finds one it executes the block
of code inside that CASE statement, and then jumps to the end of the switch block
(ENDSWITCH).    If no CASE statement matches, SWITCH will execute the code in the
(optional) DEFAULT block.

3.01 Fixed occasional problems with nested SWITCHes.

» TIME:    Added support for CMD.EXE's /T switch, which displays the time without prompting
for input.

3.01 » TITLE:    Changed the behavior in batch files to match that of CMD.EXE in NT.

» TOUCH:    This new command changes the date and/or time for a file or files.    You can set a
specified date and time or use the current system clock, and you can optionally change the
last access / creation date and time fields on LFN, HPFS, and NTFS drives.

3.01 /T[acw] and /D[acw] now default to the current date and time.    Previously when the "a", "c",
or "w" was specified the date or time had to be specified also.

» TREE:    This new command displays a graphical directory tree using either line-drawing or
ASCII characters.    It can also optionally display file names, dates, times, and sizes.

» UNALIAS:    Added the /R switch to read a file of aliases to remove.

» UNSET:    Added the /R switch to read a file of variables to remove.

3.01 » VER:    Added support for recognizing Win98.

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

What's New:    Variables and Functions

Added or updated the following internal variables (all variables listed are new unless otherwise noted):

3.01 » _CMDPROC:    Returns the name of the current command processor.

» _CPU:    Now returns "686" for Pentium Pro.

3.01 » _DOS:    Now reports if 4NT is running under Windows 95 or 98.

» _DOWI:    Returns the current day of week as an integer (Sun = 1, Mon = 2, etc.).

3.01 » _PIPE:    Fixed a problem with this variable not always returning 1 when inside a pipe.

» ERRORLEVEL:    Returns the exit code from the last external program (same value as the "?"
variable).

Added or updated the following variable functions (all functions listed are new unless otherwise noted):

» @CLIP[n]:    Returns line n from the clipboard (base 0).

» @CONVERT[input,output,value]:    Converts a number from one base to another.

» @DAY[date]:    Returns the day for the specified date.

» @DOW[date]:    Returns the day of week for the specified date, as a string (Sun, Mon, etc.)

» @DOWI[date]:    Returns the day of week for the specified date, as an integer (Sun = 1, Mon
= 2, etc.).

» @DOY[date]:    Returns the day of year for the specified date (1-366).

» @EVAL[expression]:    Now supports user-definable decimal and thousands characters; see
DecimalChar and ThousandsChar, or SETDOS /G for details.

3.01 Fixed a bug with maximum-length argument strings.

» @EXEC[command]:    This function has been modified; if you preface the command with an
'@', @EXEC will return an empty string rather than the result code of the command.

» @EXECSTR[command]:    Returns the first line written to STDOUT by the specified
command.    (This is intended to provide functionality similar to UNIX back-quoting.)

» @EXPAND[filename[,attributes]]:    Expands a wildcard filename and returns all of the
matching filenames / directory names on a single line.

3.01 Fixed a problem with not adding quotes to long filenames with embedded whitespace.

» @FILEDATE[filename[,acw]] / @FILETIME[filename[,acw]]:    Added the optional second
argument to determine which date / time field to return on LFN, HPFS, and NTFS drives.   

» @FILESIZE[filename[,bkm[,a]]:    Added the optional third argument a(llocated); if specified,
the function returns the size actually used on disk, not the amount of data in the file.

3.01 » @FILEWRITEB[n,length,string]:    No longer truncates on a write if the file was opened in

binary mode.

» @INIREAD[filename,section,entry]:    Reads a setting from a .INI file.

3.01 Fixed a problem with quoted long filenames.

» @INIWRITE[filename,section,entry,string]:    Writes a setting to a .INI file.

3.01 Fixed a problem with quoted long filenames.

» @INSERT[n,string1,string2]:    Inserts string1 into string2 starting at offset n.

» @LEFT[n,string]:    Returns the leftmost n characters of string.

» @LFN[filename]:    Returns the long version of a short ("8.3") filename.    The return value
includes the full path.

» @MONTH[date]:    Return the month for the specified date.

» @NUMERIC[string]:    Now considers a leading decimal separator as a numeric character,
provided the remainder of the string is numeric and does not contain additional decimal
characters.

» @REPLACE[string1,string2,text]:    Replaces all occurrences of string1 in text with string2.

» @RIGHT[n,string]:    Returns the rightmost n characters of string.

» @SEARCH[filename[,path]]:    Now accepts an optional second argument for the path to
search.

» @SELECT[filename,top,left,bottom,right,title[,1]]:    Has a new optional argument following the
title.    If it's set to 1, @SELECT will sort the list alphabetically.

» @SFN[filename]:    Returns the short ("8.3") version of a long filename.    The return value
includes the full path.

» @STRIP[chars,string]:    Return string with the characters in chars removed.

» @WILD[string1,string2]:    Does a wildcard comparison on the two strings and returns 1 if they
match; 0 if they don't.

3.01 » @WORDS[["xxx"],string]:    Fixed a problem if the line began with a -.

» @YEAR[date]:    Return the year for the specified date.

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

What's New:    Startup and Configuration

» In previous versions the "global" portion of the .INI file (the part prior to any [Primary] or
[Secondary] section) did not have a section name.    This has been changed; a section name
matching the product name is now required, for example:

[4NT]
EditMode = Insert
.....

[Primary] and [Secondary] section names are still supported as well.

Added or modified the following .INI directives (all are new unless otherwise noted):

» CDDWinLeft, CDDWinTop, CDDWinWidth, CDDWinHeight, CDDWinColors:    These
directives set the position, size, and color of the popup window used for extended directory
searches.

» DuplicateBugs = Yes | NO:    Tells the parser to duplicate certain CMD.EXE errors which may
be important in solving rare compatibility problems.    The only bug currently replicated by this
command is the IF command.

» FileCompletion = cmd1:ext1 ext2;cmd2 ...:    Sets up command-specific filename completion.

» FuzzyCD =    0 | 1 | 2 | 3:    Enables or disables extended directory searches, and controls
their behavior.

» HistMove = Yes | NO:    If set to Yes, a recalled line from the command history is moved to the
end of the history list, and removed from its original location.

» Include = filename:    Includes the contents of the named file as if they had appeared at the
location of the Include= directive in the current .INI file.

» ListboxBarColors = Color:    Sets the color for the highlight bar in the popup listboxes
(command history, filename completion, @SELECT, etc.).

» LoadAssociations = YES | No:    Determines whether the command processor will load
Windows file associations at startup.

» TabStops = nnnn (8):    This new .INI directive specifies the tab expansion size when
displaying a file in LIST.

» TreePath = Path:    Specifies the location of JPSTREE.IDX (the extended directory search
database; defaults to C:\).

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

What's New:    Technical and Compatibility Enhancements

» Added support for Enterprise REXX (in addition to the existing Quercus REXX support).

» Added support for the CMD.EXE /T switch to set colors on the startup command line.

» Changed the executable file search order.    4NT will first look for .COM, .EXE, .BAT, .CMD,
and user-defined executable extensions in the current directory and the PATH.    If not found,
it will search the path again for system-defined extensions (file associations).    This is for
compatibility with CMD.EXE.

» Improved support for drive and file sizes over 4GB.

» The title bar is now updated for internal commands as well as externals, for compatibility with
CMD.EXE in Windows NT 4.0.

» TYPE NUL now "works" (i.e. it generates no output), for compatibility with batch files which
use TYPE NUL > file to generate a 0-byte file.

» Worked around a Windows NT bug that caused 4NT to discard the first token on the passed
command line under certain circumstances when it was started by another application.

» Added debugging options which allow you to view the command "tail" passed to 4NT, and to
"tag" error messages with the product name.    See the Debug directive in 4NT.INI for
additional details.

3.01 » Worked around a Win95 bug when growing the environment above 4K.

3.01 » Worked around a Win95 bug while piping to a child process.    This caused pipes to erratically
fail, and occasionally crash the process.

3.01 » Worked around an NT bug which caused problems when starting multiple copies of 4NT
under different accounts (e.g. when the AT command started a 4NT session under one
account and the current user tried to start one under another).    The bug made shared
aliases/history/directory history fail at initialization, which then caused 4NT to exit
immediately.

3.01 » Worked around several Win32 and MS Office bugs that were causing problems when
executing (or STARTing) non-executable files (i.e. via file associations).

3.01 » Worked around some NT bugs when piping from a 16-bit app to another 16-bit app.

3.01 » 4NT now supports IBM's Object REXX for Win95 & NT, including executing REXX .CMD's.

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

What's New:    Bugs Fixed

» Piping the output of a batch file which also contains a pipe will no longer cause problems.

» Fixed a problem with piping which occurred only when the process on the right hand side of
the pipe completed very quickly.

» DESCRIBE:    Fixed a problem with quoted long filenames with paths.

» RENAME:    Now works properly when renaming quoted long filenames with embedded
wildcards.

» START:    Now supports a quoted long directory name after the /D switch.    Also, changed the
order of parameters for the /POS option to match the documentation (left, top, width, height).

» ExecWait now works properly.

» Fixed a problem with executable extensions when the application name or path included
embedded whitespace.

» Fixed a problem which could cause trouble in a transient session if the COMSPEC directory
name was present on the command line after a /C (e.g. 4NT /C echo COMSPEC is
%COMSPEC).

» Quoted long filenames can now be used in the .INI file.

» @FILESEEKL now always returns to the start of the file before seeking.

» Added some protection to description handling to avoid destroying descriptions for files with
long names when updating the description file in a non-LFN environment.

3.01 » 4NT now opens the clipboard in OEM text mode (rather than text mode).

3.01 » Added support for the "Apps Path" registry entries when searching for an executable
filename.

3.01 » Enabled the NormalPopupKey directive in the .INI file.    Previously this directive was
documented but was only available under its old name (NormalHWinKey).

3.01 » Fixed a compatibility problem with international characters being passed to external apps.

3.01 » Fixed a minor compatibility problem related to directory names with "international" (non-US)
characters.

3.01 » Fixed a problem which caused a trap with more than 4K of local aliases (this did not affect
global aliases).

3.01 » Fixed a problem which caused spurious "nesting level" errors when the Include directive was
used more than three times in the .INI file.

3.01 » Fixed a problem with executing Posix apps.

3.01 » Fixed a problem with expanding duplicate variables (i.e., "echo %foo% %foo%").

3.01 » Fixed a problem with starting an instance of 4NT when the AT utility was executing another

4NT in the background.

3.01 » Modified popup windows to avoid the situation where the bottom half of the window is empty
when the initially selected line is at the end of the list.

3.01 » Fixed a problem with attempting to executing REXX files with no REXX interpreter available.

3.01 » Fixed some problems and worked around API bugs associated with piping between multiple
16-bit DOS apps (e.g. app1 | ap2 | app3).

[This subtopic covers some of the new features in this version of 4NT.    For additional new features use
the << and >> "browse buttons" at the top of the window, or see the main What's New topic.]

Command-Line Help

This online help system for 4NT covers all 4NT features and internal commands.    It includes reference
information to assist you in using 4NT and developing batch files, and it includes most — but not all — of
the details which are included in the printed 4NT manuals.

You can start the online help system at the command line by entering HELP or HELP plus a topic, or by
pressing the F1 key at any time.

If you have already typed part or all of a command on the line, the help system will provide "context-
sensitive" help by using the first word on the line as a help topic.    If it's a valid topic, you will see help for
that topic automatically; if not, you will see a table of contents and you can then pick the topic you want.   
For example, if you press F1 after entering each of the command lines shown below you will get the
display indicated:

[c:\] Topic list / table of contents
[c:\] copy *.* a: Help on COPY
[c:\] c:\util\map Topic list / table of contents

For help you can also type the name of any internal command at the prompt, followed by a slash and a
question mark [/?] like this:

[c:\] copy /?

The /? option may not work correctly if you have redefined how the command operates with an alias.    In
this case you may need to add an asterisk to the beginning of the command to disable alias processing:

[c:\] alias copy copy /r
[c:\] *copy /?

/? will only access the help system when you use it with an internal command.    If you use it with an
external command name, the external command will be executed and will interpret the /? parameter
according to its own rules.    Some external commands do display help when run with a /? parameter, but
this a characteristic of these commands and does not depend on the command processor.    Many other
external commands do not have this feature.

4NT uses the Windows NT help system to display this help text. Once you've started the help system with
HELP or F1, you can use standard Windows NT keystrokes to navigate.    For more information, click on
the Help menu at the top of this window.

Error Messages

A    B    C    D    E    F    G    I    K    L    M    N    O    R    S    T    U    V    W

This section lists error messages generated by 4NT, and includes a recommended course of action for
most errors.    If you are unable to resolve the problem, look through your Introduction and Installation
Guide for any additional troubleshooting recommendations, then contact JP Software for technical
support.

Error messages relating to files are generally reports of errors returned by Windows NT.    You may find
some of these messages (for example, "Access denied") vague enough that they are not always helpful.   
4NT includes the file name in file error messages, but is often unable to determine a more accurate
explanation of these errors.    The message shown is the best information available based on the error
codes returned by Windows NT.

For some errors you are instructed to "restart the session or reboot the system."    This means that you
should attempt to correct the error by closing and restarting the current session under Windows NT.

The following list includes all error messages, in alphabetical order:

Access denied:    You tried to write to or erase a read-only file, rename a file or directory to an existing
name, create a directory that already exists, remove a read-only directory or a directory with files or
subdirectories still in it, or access a file in use by another program in a multitasking system.

Alias loop:    An alias refers back to itself either directly or indirectly (i.e., a = b = a), or aliases are nested
more than 16 levels deep.    Correct your alias list.

Already excluded files:    You used more than one exclude range in a command.    Combine the
exclusions into a single range.

Bad disk unit:    Generally caused by a disk drive hardware failure.

Batch file missing:    4NT can't find the batch (.BTM or .CMD) file it was running.    It was either deleted,
renamed, moved, or the disk was changed.    Correct the problem and rerun the file.

Can't copy file to itself:    You cannot COPY or MOVE a file to itself.    4NT attempts to perform full path
and filename expansion before copying to help ensure that files aren't inadvertently destroyed.

Can't create:    4NT can't create the specified file.    The disk may be full or write protected, or the file
already exists and is read-only, or the root directory is full.

Can't delete:    4NT can't delete the specified file or directory.    The disk is probably write protected.

Can't get directory:    4NT can't read the directory.    The disk drive is probably not ready.

Can't make directory entry:    4NT can't create the filename in the directory.    This is usually caused by a
full root directory. Create a subdirectory and move some of the files to it.

Can't open:    4NT can't open the specified file.    Either the file doesn't exist or the disk directory or File
Allocation Table is damaged.

Can't remove current directory:    You attempted to remove the current directory, which Windows NT
does not allow.    Change to the parent directory and try again.

CD-ROM door open or CD-ROM not ready:    The CD-ROM drive door is open, the power is off, or the

drive is disconnected.    Correct the problem and try again.

CD-ROM not High Sierra or ISO-9660:    The CD-ROM is not recognized as a data CD (it may be a
music CD).    Put the correct CD in the drive and try again.

Clipboard is empty or not text format:    You tried to retrieve some text from the Windows NT clipboard,
but there is no text available.    Correct the contents of the clipboard and try again.

Clipboard is in use by another program:    4NT could not access the Windows NT clipboard because
another program was using it.    Wait until the clipboard is available, or complete any pending action in the
other program, then try again.

Command line too long:    A single command exceeded 1023 characters, or the entire command line
exceeded 2047 characters, during alias and variable expansion.    Reduce the complexity of the command
or use a batch file.    Also check for an alias which refers back to itself either directly or indirectly.

Command only valid in batch file:    You have tried to use a batch file command, like DO or GOSUB,
from the command line or in an alias.    A few commands can only be used in batch files (see the
individual commands for details).

Contents lost before copy:    COPY was appending files, and found one of the source files is the same
as the destination.    That source file is skipped, and appending continues with the next file.

Data error:    Windows NT can't read or write properly to the device. On a floppy drive, this error is usually
caused by a defective floppy disk, dirty disk drive heads, or a misalignment between the heads on your
drive and the drive on which the disk was created. On a hard drive, this error may indicate a drive that is
too hot or too cold, or a hardware problem.    Retry the operation; if it fails again, correct the hardware or
diskette problem.

Directory stack empty:    POPD or DIRS can't find any entries in the directory stack.

Disk is write protected:    The disk cannot be written to.    Check the disk and remove the write-protect
tab or close the write- protect window if necessary.

Drive not ready -- close door:    The removable disk drive door is open.    Close the door and try again.

Duplicate redirection:    You tried to redirect standard input, standard output, or stand error more than
once in the same command.    Correct the command and try again.

Environment already saved:    You have already saved the environment with a previous SETLOCAL
command.    You cannot nest SETLOCAL / ENDLOCAL pairs.

Error in command-line directive:    You used the //iniline option to place an .INI directive on the startup
command line, but the directive is in error.    Usually a more specific error message follows, and can be
looked up in this list.

Error on line [nnnn] of [filename]:    There is an error in your 4NT.INI file.    The following message
explains the error in more detail.    Correct the line in error and restart 4NT for your change to take effect.

Error reading:    Windows NT experienced an I/O error when reading from a device.    This is usually
caused by a bad disk, a device not ready, or a hardware error.

Error writing:    Windows NT experienced an I/O error when writing to a device.    This is usually caused
by a full disk, a bad disk, a device not ready, or a hardware error.

Exceeded batch nesting limit:    You have attempted to nest batch files more than 10 levels deep.

File Allocation Table bad:    Windows NT    can't access the FAT on the specified disk.    This can be
caused by a bad disk, a hardware error, or an unusual software interaction.

File association not found:    The ASSOC command could not find a file association for the specified
extension in the Windows NT registry.

File exists:    The requested output file already exists, and 4NT won't overwrite it.

File is empty:    You attempted to use an empty file in @SELECT.    Correct the file name or contents and
try again.

File not found:    4NT couldn't find the specified file.    Check the spelling and path name.

File type not found:    The FTYPE command could not find the specified file type in the Windows NT
registry.

General failure:    This is usually a hardware problem, particularly a disk drive failure or a device not
properly connected to a serial or parallel port.    Try to correct the problem, or reboot and try again.    Also
see Data error above.

Include file not found:    You used the Include directive in the 4NT.INI file, but the file you specified was
not found or could not be opened.

Include files nested too deep:    You used the Include directive in the 4NT.INI file, and attempted to nest
include files more than three levels deep.

Infinite COPY or MOVE loop:    You tried to COPY or MOVE a directory to one of its own subdirectories
and used the /S switch, so the command would run forever.    Correct the command and try again.

Insufficient disk space:    COPY or MOVE ran out of room on the destination drive.    Remove some files
and retry the operation.

Invalid character value:    You gave an invalid value for a character directive in the 4NT.INI file.

Invalid choice value:    You gave an invalid value for a "choice" directive (one that accepts a choice from
a list, like "Yes" or "No") in the 4NT.INI file.

Invalid color:    You gave an invalid value for a color directive in the 4NT.INI file.

Invalid count:    The character repeat count for KEYSTACK is incorrect.

Invalid date:    An invalid date was entered.    Check the syntax and reenter.

Invalid directive name:    4NT can't recognize the name of a directive in your 4NT.INI file.

Invalid drive:    A bad or non-existent disk drive was specified.

Invalid key name:    You tried to make an invalid key substitution in the 4NT.INI file, or you used an invalid
key name in a keystroke alias or command.    Correct the error and retry the operation.

Invalid numeric value:    You gave an invalid value for a numeric directive in the 4NT.INI file.

Invalid parameter:    4NT didn't recognize a parameter.    Check the syntax and spelling of the command

you entered.

Invalid path:    The specified path does not exist.    Check the disk specification and/or spelling.

Invalid path or file name:    You used an invalid path or filename in a directive in the 4NT.INI file.

Invalid time:    An invalid time was entered.    Check the syntax and reenter.

Keystroke substitution table full:    4NT ran out of room to store keystroke substitutions entered in the
4NT.INI file.    Reduce the number of key substitutions or contact JP Software or your dealer for
assistance.

Label not found:    A GOTO or GOSUB referred to a non-existent label. Check your batch file.

Missing ENDTEXT:    A TEXT command is missing a matching ENDTEXT.    Check the batch file.

Missing GOSUB:    4NT cannot perform the RETURN command in a batch file.    You tried to do a
RETURN without a GOSUB, or your batch file has been corrupted.

Missing SETLOCAL:    An ENDLOCAL was used without a matching SETLOCAL.

No aliases defined:    You tried to display aliases but no aliases have been defined.

No closing quote:    4NT couldn't find a second matching back quote [`] or double-quote ["] on the
command line.

No expression:    The expression passed to the @EVAL variable function is empty.    Correct the
expression and retry the operation.

No shared memory found:    The SHRALIAS command could not find any global alias list, history list, or
directory history list to retain, because you executed the command from a session with local lists.    Start
4NT with at least one global list, then invoke SHRALIAS.

No room for INI file name:    4NT does not have enough space to pass the name of your 4NT.INI file to
secondary shells; see String area overflow for more details.    Any [Secondary] section in 4NT.INI will be
ignored in secondary shells until the problem is corrected and the system or session is restarted.

Not a directory:    You tried to use the RD /S command with a parameter that is not a directory.

Not an alias:    The specified alias is not in the alias list.

Not in environment:    The specified variable is not in the environment.

Not ready:    The specified device can't be accessed.

Not same device:    This error usually appears in RENAME.    You cannot rename a file to a different disk
drive.

Out of memory:    4NT or Windows NT had insufficient memory to execute the last command.    Try to free
some memory by closing other sessions.    If the error persists, contact JP Software for assistance.

Out of paper:    Windows NT detected an out-of-paper condition on one of the printers.    Check your
printer and add paper if necessary.

Overflow:    An arithmetic overflow occurred in the @EVAL variable function.    Check the values being

passed to @EVAL.    @EVAL can handle 16 digits to the left of the decimal point and 8 to the right.

Read error:    Windows NT encountered a disk read error; usually caused by a bad or unformatted disk.   
Also see Data error above.

Sector not found:    Disk error, usually caused by a bad or unformatted disk.    Also see Data error
above.

Seek error:    Windows NT can't seek to the proper location on the disk.    This is generally caused by a
bad disk or drive.    Also see Data error above.

Sharing violation:    You tried to access a file in use by another program in a multitasking system or on a
network.    Wait for the file to become available, or change your method of operation so that another
program does not have the file open while you are trying to use it.

SHRALIAS already loaded:    You used the SHRALIAS command to load SHRALIAS.EXE, but it was
already loaded.    This message is informational and generally does not indicate an error condition.

SHRALIAS not loaded:    You used the SHRALIAS /U command to unload SHRALIAS.EXE, but it was
never loaded.    This message is informational and may not indicate an error condition.

String area overflow:    4NT ran out of room to store the text from string directives in the 4NT.INI file.   
Reduce the complexity of the 4NT.INI file or contact JP Software for assistance.

Syntax error:    A command or variable function was entered in an improper format.    Check the syntax
and correct the error.

Too many open files:    Windows NT has run out of file handles.

Unbalanced parentheses:    The number of left and right parentheses did not match in an expression
passed to the @EVAL variable function.    Correct the expression and retry the operation.

Unknown command:    A command was entered that 4NT didn't recognize and couldn't find in the current
search path.    Check the spelling or PATH specification.    You can handle unknown commands with the
UNKNOWN_CMD alias (see ALIAS).

UNKNOWN_CMD loop:    The UNKNOWN_CMD alias called itself more than ten times.    The alias
probably contains an unknown command itself, and is stuck in an infinite loop.    Correct the alias.

Variable loop:    A nested environment variable refers to itself, or variables are nested more than 16 deep.
Correct the error and retry the command.

Window title not found:    The specified window does not exist.

Write error:    Windows NT encountered a disk write error; usually caused by a bad or unformatted disk.   
Also see Data error above.

Troubleshooting, Service, and Support

If you need help with 4NT, we encourage you to review our documentation and then contact us for
assistance if required.

If you need help with sales, ordering, or shipments (including defective disks or other materials which
were shipped to you), or with brand codes, please contact our Sales and Customer Service
department.    See Contacting JP Software for our email address, mail address, and telephone numbers.   
(The sales and customer service staff cannot assist you with technical problems.    However, if you have
multiple questions or are unsure of the nature of the problem, feel free to contact us for customer service;
the staff will have a support technician contact you if your question turns out to require technical
expertise.)

If you need technical support for 4NT, review the Technical Support information section, which tells you
what we need to know to provide you with accurate and timely support.    Then contact us via one of the
methods described there.    (The technical support staff cannot assist you with sales, ordering,
replacement brand cards, or other administrative matters.)

Technical Support

Before You Contact Us

Before contacting us for support, please check this help file, the Reference Manual and other
documentation for answers to your question.    If you can't find what you need, try the Index.    If you're
having trouble getting 4NT to run properly, review the information on Error Messages, and look through
the README.DOC file for any last-minute information.

If you do need to contact us for support, we can do a much better job of assisting you if you can give us
some basic information, separate from your interpretations of or conclusions about the problem.    The first
four items listed below are essential for us to be able to understand and assist you with your problem:

» What environment are you working in?    This includes the operating system version are
you using, the version of the JP Software product involved, and related information such as
network connections and the name and version number of any other software which appears
to be involved in the problem.    Use the VER /R command to determine the 4NT version and
operating system version.

» What exactly did you do?    A concise description of what steps you must take to make the
problem appear is much more useful than a long analysis of what might be happening.

» What did you expect to happen?    Tell us the result you expected from the command or
operation in question, so that we understand what you are trying to do.

» What actually happened?    At what point did the failure occur?    If you saw an error
message or other important or unusual information on the screen, what exactly did it say?

» Briefly, what techniques did you use to try to resolve the problem?    What results did
you get?

» If the problem seems related to startup and configuration issues, what are the contents
of any startup files you use (such as 4START, 4EXIT, and the 4NT.INI file), any batch files
they call, and any alias or environment variable files they load?

» Can you repeat the problem or does it occur randomly?    If it's random, does it seem
related to the programs you're using when the problem occurs?

Electronic Support

Usually the best way to contact us for support is via CompuServe or the Internet.    The most efficient
method is to use our CompuServe support conference; if you do not have CompuServe access, contact
us via Internet email.    See Contacting JP Software for our addresses.

Whenever possible, we also read messages posted on the Usenet comp.os.msdos.4dos newsgroup, and
in 4DOS conferences on the RIME, Ilink, and FidoNet BBS networks (these conferences are named for
4DOS, but carry messages related to all JP Software products).    These areas offer valuable information
and discussions with other users, but are not managed by JP Software, and are not official support
channels.    To be certain of a direct answer from our support staff use our CompuServe forum or Internet
email, or contact us by telephone, fax, or mail.

A number of support resources are available from our web site listed above, including error message
listings, documentation files, product histories, technical tips and discussions, other technical information,
and links to other companies' sites.    We update this information regularly, and we encourage you to
check the Technical Support area of the web site to see if the information there will address any questions
you have.

Technical support messages should be sent as standard ASCII text.    Please do not transmit attached
files, binary files, screen images, or any file over 10K bytes in size to any of our electronic technical
support addresses unless asked to do so by our support staff.

Telephone Support

Technical support by telephone within the US and Canada is handled on a callback basis.    To contact our
support staff, call the US / Canada Support Line at any time and leave a short voice mail message
describing your technical problem (this line can not be used for sales / customer service issues such as
pricing, ordering, upgrades, or shipping problems).    We check these messages regularly throughout the
day and will return your call as quickly as possible.    See Contacting JP Software for our phone numbers.

We generally return all technical support calls within 24 hours (weekends and holidays excluded), and
most are returned much more quickly, usually on the same business day.    If your problem is urgent and
requires a faster response, please let us know and we will try to accommodate you.    If you contact us by
telephone and don't receive a reply within 24 hours, please try again.    We probably tried to return your
call and were unable to reach you.

If you are calling from outside the US and Canada, are not sure if your question requires technical
support, need other assistance in addition to your technical questions, or find yourself playing "telephone
tag" with our support staff, please call our main number listed above.    Our office staff will assist you with
all of your concerns, and have a technical support representative call you back if necessary.

If you have a problem with a batch file or complex alias, please contact us electronically if possible.   
Include a copy of the batch file or alias in question, preferably as part of the text of your message (not as
an attachment).    If you do not have electronic access, contact us by fax if possible.    Problems of this
type are usually very difficult to diagnose over the telephone because we cannot see the material you are
working with.    For longer batch files (over about 25 lines), do your best to reproduce the problem in a
smaller test file.

If you need more in-depth assistance with the development of complex batch files or other procedures,
please contact us for information on consulting services.

Contacting JP Software

You can contact JP Software at the following addresses and numbers.    Our normal business hours are
8:30 AM to 5:00 PM weekdays, eastern US time (except holidays).

Address: JP Software Inc.
P.O. Box 1470
East Arlington, MA 02174
USA

Main number: (781) 646-3975

Fax: (781) 646-0904

Order Line: (800) 368-8777 (US / Canada, orders only)

Support Line: (781) 646-0798 (US / Canada only; see Telephone Support
before using this number)

Internet: Sales / Customer Service:    sales@jpsoft.com
Technical Support:    support@jpsoft.com
World Wide Web:    http://www.jpsoft.com/
File downloads via FTP:    For the simplest access to JP Software files use our
web site.    For direct FTP access connect to ftp.std.com and look in the
/vendors/jpsoft directory.

CompuServe: Sales / Customer Service:    75020,244
Technical Support and File Downloads:    GO JPSOFT or GO PCVENB,
section / library 10, User ID 75300,1215.

BBS Downloads: Channel 1 BBS, Boston, 617-349-1300 at 2,400 - 28,800 baud, no parity, 8
data bits, 1 stop bit.

File Systems and File Name Conventions

You may have dozens, hundreds, or thousands of files stored on your computer's disks.    Your operating
system is responsible for managing all of these files.    In order to do so, it uses a unique name to locate
each file in much the same way that the post office assigns a unique address to every residence.

The unique name of any file is composed of a drive letter, a directory path, and a filename.    Each of
these parts of the file's name is case insensitive; you can mix upper and lower case letters in any way you
wish.

The topics below are roughly divided according to the different parts of a file name, and cover the file
system structure and naming conventions:

Drives and Volumes

File Systems

Directories and Subdirectories

File Names

File Attributes and Time Stamps

Drives and Volumes

A drive letter designates which drive contains the file.    In a file's full name, the drive letter is followed by
a colon.    Drive letters A: and B: are normally reserved for the floppy disk drives.

Normally, drive C: is the first (or only) hard disk drive.    Most current operating systems can divide a large
hard disk into multiple logical drives or volumes that are usually called C:, D:, E:, etc.    Network systems
(LANs) give additional drive letters to sections of the network file server drives.

Most recent systems also include a CD-ROM drive.    The CD-ROM is also assigned a drive letter (or
several letters, for CD-ROM changers), typically using letters beyond that used by the last hard disk in the
system, but before any network drives.    Some systems may have "RAM disks" (sometimes called "virtual
disks"), which are areas of memory set aside by software (a "RAM disk driver") for use as fast but
temporary storage.    Like CD-ROM drives, RAM disks are usually assigned drive letters beyond the last
hard disk in the system, but before network drives.

For example, on a system with a large hard disk you might have A: and B: as floppy drives, C:, D:, and
E: as parts of the hard disk, F: as a CD-ROM drive, G: as a RAM disk, and H: and I: as network drives.

Each volume is formatted under a particular file system; see File Systems for details.    Additional
information about disk files and directories is available under Directories and Subdirectories, File Names,
and File Attributes and Time Stamps.

File Systems

Each disk volume is organized according to a file system.    The file system determines how files are
named and how they are organized on the disk.

As hard disk technology and operating systems have evolved, new file systems have been invented to
support longer file names, larger drives, and higher disk performance.    Several different and incompatible
schemes have evolved.    Which file systems you can use depends on which operating system you are
using, and how the operating system and your hard disk are configured.

The operating systems under which 4NT runs can support four standard file systems:    FAT, VFAT, HPFS,
and NTFS.    See File Names for details on the rules for naming files under each file system.

» The FAT File System is the traditional file system used by all versions of DOS.    Its name
comes from the File Allocation Table DOS uses to keep track of the space allocated to each
file.    Windows 95, Windows NT, and OS/2 also support the FAT file system.

» The VFAT File System is an extension of the FAT file system available in Windows NT and
Windows 95, including DOS and 4DOS sessions run from the Windows 95 desktop.    This
system maintains additional information about files on FAT drives, including long filenames.

Other operating systems (OS/2 and earlier versions of DOS) can access files on VFAT drives,
but will not be able to access long filenames or other information which is added by the VFAT
file system.

Throughout this manual, the term "LFN file system" is used to describe the VFAT system
(LFN stands for Long File Name).

» The High Performance File System or HPFS is a file system provided with all versions of
OS/2, and is also supported in Windows NT version 3.51 and below.    It supports long file
names, and offers higher performance and better support for large drives than the FAT or
VFAT system.    It also supports "extended attributes" to retain additional information about
your files.

DOS sessions running under OS/2 can access files on HPFS drives if the files have short,
FAT-compatible names.    Other operating systems (DOS, Windows 95, and Windows NT 4.0
and above) can not access files on HPFS drives.

» The Windows NT File System or NTFS is a file system provided with all versions of
Windows NT.    It supports long file names, and offers higher performance and better support
for large drives than the FAT or VFAT system.

DOS programs running under Windows NT can access files on NTFS drives if the files have
short, FAT-compatible names.    Other operating systems (DOS, Windows 95, and OS/2) can
not access files on NTFS drives.

Additional file systems may be installed under some operating systems to support CD-ROM or network
drives.    The file system type (FAT / VFAT, HPFS, or NTFS) is determined when a hard disk volume is
formatted and applies to the entire volume.    For example, under Windows NT you might have a 2 GB
hard disk divided into four 500 MB volumes, with the first three volumes (C:, D:, and E:) formatted for the
FAT or VFAT file system, and the fourth formatted for NTFS.

4NT supports any standard file system installed under your operating system.    If your operating system
can access files on a particular drive, then 4NT will be able to access those files as well.

Additional information about disk files and directories is available under Drives and Volumes, Directories
and Subdirectories, File Names, and File Attributes and Time Stamps.

Network File Systems

A network file system allows you to access files stored on another computer on a network, rather than on
your own system.    4NT supports all network file systems which are compatible with the underlying
operating system.

File and directory names for network file systems depend on both the "server" software running on the
system that has the files on it, and the "client" software running on your computer to connect it to the
network.    However, they usually follow the rules described under File Names.

Most network software "maps" unused drive letters on your system to specific locations on the network,
and you can then treat the drive as if it were physically part of your local computer.

Some networks also support the Universal Naming Convention, which provides a common method for
accessing files on a network drive without using a "mapped" drive letter.    Names specified this way are
called UNC names.    They typically appear as \\server\volume\path\filename, where server is the name
of the network server where the files reside, volume is the name of a disk volume on that server, and the
path\filename portion is a directory name and file name which follow the conventions described in
Directories and Subdirectories.    4NT supports UNC filenames, and also allows you to use UNC directory
names when changing directories (see Directory Navigation for more details).

When you use a network file system, remember that the naming conventions for files on the network may
not match those on your local system.    For example, your local system may support long filenames while
the network server or client software does not, or vice versa.    4NT will usually handle whatever naming
conventions are supported by your network software, as long as the network software accurately reports
the types of names it can handle.

In rare cases, 4NT may not be able to report correct statistics on network drives (such as the number of
bytes free on a drive).    This is usually because the network file system does not provide complete or
accurate information.

Directories and Subdirectories

A file system is a method of organizing all of the files on an entire disk or hard disk volume.    Directories
are used to divide the files on a disk into logical groups that are easy to work with.    Their purpose is
similar to the use of file drawers to contain groups of hanging folders, hanging folders to contain smaller
manila folders, and so on.    Directories are also sometimes referred to as folders.

Every drive has a root or base directory, and many have one or more subdirectories.    Subdirectories
can also have subdirectories, extending in a branching tree structure from the root directory.    The
collection of all directories on a drive is often called the directory tree, and a portion of the tree is
sometimes called a subtree.    The terms directory and subdirectory are typically used interchangeably
to mean a single subdirectory within this tree structure.

Subdirectory names follow the same rules as file names (see File Names).   

The drive and subdirectory portion of a file's name are collectively called the file's path.    For example,
the file name C:\DIR1\DIR2\MYFILE.DAT says to look for the file MYFILE.DAT in the subdirectory DIR2
which is part of the subdirectory DIR1 which is on drive C.    The path for MYFILE.DAT is C:\DIR1\DIR2.   
The backslashes between subdirectory names are required.    On NTFS, and LFN volumes the path and
file name must each be 255 characters or less in length, and in addition the total length of the path and
file name together cannot exceed 260 characters.

The operating system and command processor remember both a current or default drive for your
system as a whole, and a current or default directory for every drive in your system.    Whenever a
program tries to create or access a file without specifying the file's path, the operating system uses the
current drive (if no other drive is specified) and the current directory (if no other directory path is
specified).

The root directory is named using the drive letter and a single backslash.    For example, D:\ refers to the
root directory of drive D:.    Using a drive letter with no directory name at all refers to the current directory
on the specified drive.    For example, E:README.DOC refers to the file README.DOC in the current
directory on drive E:, whereas E:\README.DOC refers to the file README.DOC in the root directory on
drive E:.

There are also two special subdirectory names that are useful in many situations:    a single period by
itself [.] means "the current default directory."    Two periods together [..] means "the directory which
contains the current default directory" (often referred to as the parent directory).    These special names
can be used wherever a full directory name can be used.    4NT allows you to use additional periods to
specify directories further "up" the tree (see Extended Parent Directory Names).

Additional information about disk files and file systems is available under Drives and Volumes, File
Systems, File Names, and File Attributes and Time Stamps.

File Names

Under the FAT file system, the filename consists of a base name of 1 to 8 characters plus an optional
extension composed of a period plus 1 to 3 more characters.    Traditional FAT filenames with an 8-
character name and a 3-character extension are sometimes referred to as short filenames (SFNs) to
distinguish them from long filenames (LFNs).

You can use alphabetic and numeric characters plus the punctuation marks ! # $ % & ' () - @ ^ _ ` { }
and ~ in both the base name and the extension of a FAT filename.    Because the exclamation point [!],
percent sign [%], caret [^], at sign [@], parentheses [()], and back-quote [`] also have other meanings to
4NT, it is best to avoid using them in filenames.

The LFN, HPFS, and NTFS file systems allow file names with a maximum of 255 characters, including
spaces and other characters that are not allowed in a FAT system file name, but excluding some
punctuation characters which are allowed in FAT file names.    See your operating system documentation
for details on the characters allowed.    If you use file names which contain semicolons [;], see Wildcards
for details on avoiding problems with interpretation of those file names under 4NT.

NTFS, HPFS, and LFN file names are stored and displayed exactly as you entered them, and are not
automatically shifted to upper or lower case.    For example, you could create a file called MYFILE, myfile,
or MyFile, and each name would be stored in the directory just as you entered it.    However, case is
ignored when looking for filenames, so you cannot have two files whose names differ only in case (i.e.,
the three names given above would all refer to the same file).    This behavior is sometimes described as
"case-retentive but not case-sensitive" because the case information is retained, but does not affect
access to the files.

Files stored on NTFS, HPFS, and LFN volumes often have "FAT-compatible" names:    names which
contain only those characters legal on a FAT volume, and which meet the 8-character name / 3-character
extension limits.    Programs which cannot handle long names (for example, Windows 3 programs
accessing an NTFS drive under Windows NT) generally can access files by using FAT-compatible names.

If an NTFS, HPFS, or LFN-compatible file name includes spaces or other characters that would not be
allowed in a FAT name, you must place double quotes around the name.    For example, suppose you
have a file named LET3 on a FAT volume, and you want to copy it to the LETTERS directory on drive F:,
an HPFS partition, and give it the name Letter To Sara.    To do so, use either of these commands:

[c:\wp] copy let3 f:\LETTERS\"Letter To Sara"
[c:\wp] copy let3 "f:\LETTERS\Letter To Sara"

The NTFS, HPFS, and LFN file systems do not explicitly define an "extension" for file names which are
not FAT-compatible.    However, by convention, all characters after the last period in the file name are
treated as the extension.    For example, the file name "Letter to Sara" has no extension, whereas the
name "Letter.to.Sara" has the extension Sara.

Additional information about disk files and file systems is available under Drives and Volumes, File
Systems, Directories and Subdirectories, and File Attributes and Time Stamps.

File Attributes and Time Stamps

Each file also has attributes, and one or more time stamps.    Attributes define characteristics of the file
which may be useful to the operating system, to you, or to an application program.    Time stamps can
record when the file was created, last modified, or last accessed.    Most 4NT file processing commands
allow you to select files for processing based on their attributes and/or time stamp(s).

Each file on your system has four standard attributes.    Every time a program modifies a file, the
operating system sets the Archive attribute, which signals that the file has been modified since it was last
backed up.    This attribute can be used by 4NT to determine which files to COPY, and by backup
programs to determine which files to back up.    When the Read-only attribute is set, the file can't be
changed or erased accidentally; this can be used to help protect important files from damage.    The
Hidden and System attributes prevent the file from appearing in normal directory listings.    (Two
additional attributes, Directory and Volume label, are also available.    These attributes are controlled by
the operating system, and are not modified directly by 4NT.)

Attributes can be set and viewed with the ATTRIB command.    The DIR command also has options to
select filenames to view based on their attributes, to view the attributes themselves, and to view
information about normally "invisible" hidden and system files.

When a file is created, and every time it is modified, the operating system records the system time and
date in a time stamp in the file's directory entry.    Several 4NT commands and variable functions, and
many backup and utility programs, use this time stamp to determine the relative ages of files.

On FAT volumes, only the single time stamp described above is available.    Files on NTFS, HPFS, and
LFN volumes have three sets of time and date stamps.    The operating system records when each file
was created, when it was last written or modified, and when it was last accessed.    The "last write" time
stamp matches the single time stamp used on traditional FAT volumes.

Several 4NT commands and variable functions let you specify which set of time and date stamps you
want to view or work with on NTFS, HPFS, and LFN volumes.    These commands and functions use the
letter "c" to refer to the creation time stamp, "w" for the last write time stamp, and "a" for the last access
time stamp.    Note that LFN volumes under Windows NT store a date but no time in the "last access" time
stamp; on these drives the time of last access will always be 00:00.

Additional information about disk files and file systems is available under Drives and Volumes, File
Systems, Directories and Subdirectories, and File Names.

Miscellaneous Reference Information

Colors and Color Names

Keys and Key Names

Popup Windows

Executable Files and File Searches

Colors and Color Names

You can use color names in several of the directives in the .INI file (see Color Directives) and in many
commands.    The general form of a color name is:

[BRIght] fg ON [BRIght] bg

where fg is the foreground or text color, and bg is the background color.

The available colors are:

Black Blue Green Red
Magenta Cyan Yellow White

Color names and the word BRIght may be shortened to the first 3 letters.

You can also specify colors by number instead of by name.    The numbers are most useful in potentially
long .INI file directives like ColorDir, where using color names may take too much space.    The following
numbers are recognized:

0 - Black 8 - Gray (bright black)
1 - Blue 9 - Bright blue
2 - Green 10 - Bright green
3 - Cyan 11 - Bright cyan
4 - Red 12 - Bright red
5 - Magenta 13 - Bright magenta
6 - Yellow 14 - Bright yellow
7 - White 15 - Bright white

Use one number to substitute for the [BRIght] fg portion of the color name, and a second to substitute for
the [BRIght] bg portion.    For example, instead of bright cyan on blue you could use 11 on 1 to save
space in a ColorDir specification.

Color Errors

A standard color specification allows sixteen foreground and sixteen background colors.    However, most
video adapters and monitors do not provide true renditions of certain colors.    For example, most users
see normal "yellow" as brown, and bright yellow as yellow; many also see normal red as red, and "bright
red" as pink.    These problems are inherent in the monitor, video adapter, and driver software.    They
cannot be corrected using 4NT color specifications.

Keys and Key Names

Key names are used to define keystroke aliases, and in several 4NT.INI directives (see Key Mapping
Directives).    The format of a key name is the same in both uses:

[Prefix-]Keyname

The key prefix can be left out, or it can be any one of the following:

Alt followed by A - Z, 0 - 9, F1 - F12, or Bksp
Ctrl followed by A - Z, F1 - F12, Tab, Bksp, Enter, Left, Right, Home,

End, PgUp, PgDn, Ins, or Del
Shift followed by F1 - F12 or Tab.

The possible key names are:

A - Z Enter PgDn
0 - 9 Up Home
F1 - F12 Down End
Esc Left Ins
Bksp Right Del
Tab PgUp

All key names must be spelled as shown.    Alphabetic keys can be specified in upper or lower case.    You
cannot specify a punctuation key.

The prefix and key name must be separated by a dash [-].    For example:

Alt-F10 This is okay
Alt F10 The space will cause an error

If you prefer, you can use a numeric value instead of a key name. Use the ASCII code for an ASCII,
extended ASCII, or control character.    Use the scan code preceded by an at sign [@] for extended key
codes like F1 or the cursor keys.    For example, use 13 for Enter, or @59 for F1.    In general, you will find
it easier to use the names described above rather than key numbers.

Some keys are intercepted by Windows NT and are not passed on to 4NT.    For example, Ctrl-S pauses
screen output temporarily, and Ctrl-Esc pops up the Windows NT window list.    Keys which are
intercepted by Windows NT generally cannot be assigned to aliases or with key mapping directives,
because 4NT never receives these keystrokes and therefore cannot act on them.

You also may not be able to use certain keys if your keyboard is not 100% IBM-compatible or your
keyboard driver does not support them.    For example, on some systems the F11 and F12 keys are not
recognized; others may not support unusual combinations like Ctrl-Tab.    These problems are rare; when
they do occur, they are usually due to Windows NT.

Popup Windows

Several features of 4NT display popup windows.    A popup window may be used to display filenames,
recently-executed commands, recently-used directories, the results of an extended directory search, or a
list created by the SELECT command or the @SELECT internal function.

Popup windows always display a list of choices and a cursor bar.    You can move the cursor bar inside the
window until you find the choice that you wish to make, then press the Enter key to select that item.

Navigation inside any popup window follows the conventions described below.    Additional information on
each specific type of popup window is provided when that window is introduced.

You can control the color, position and size of most popup windows from the Command Line 2 page of the
OPTION dialogs.    You can also control these features with directives in the .INI file, including
PopupWinLeft, PopupWinTop, PopupWinWidth, and PopupWinHeight, and PopupWinColors.    A few
popup windows (e.g., the extended directory search window) have their own specific .INI directives, and
corresponding separate choices in the OPTION dialogs.    You can also change the keys used in most
popup windows with key mapping directives in the .INI file.

Once a window is open, you can use these navigation keys to find the selection you wish to make:

Move the selection bar up one line.

¯ Move the selection bar down one line.

¬ Scroll the display left 4 columns.

® Scroll the display right 4 columns.

PgUp Scroll the display up one page.

PgDn Scroll the display down one page.

Ctrl-PgUp Go to the beginning of the list.
    or Home
Ctrl-PgDn Go to the end of the list.
    or End
Esc Close the window without making a selection.

Enter Select the current item and close the window.

In addition to scrolling through a popup window, you can search the list using character matching.    If you
press a character, the cursor bar will move to the next entry that begins with that character.    If you type
multiple characters, the cursor will move to the entry that begins with the search string entered to that
point (you can enter a search string up to 32 characters long).    If no entry matches the character or string
that you have typed, the command processor beeps and does not move the cursor bar.    To reset the
search string, press Backspace.

You can change the keys used in popup windows with key mapping directives in the .INI file.

Executable Files and File Searches

Once 4NT knows that it is supposed to run an external command, it tries to find an executable file (one
with a .COM or .EXE extension) whose name matches the command name.    It runs the executable file if
it finds one.

If 4NT cannot find an executable program to run, it next looks for a batch file (a file with one or more
commands in it) whose name matches the command name.    4NT looks first for a .BTM file, then for a
.CMD file, then for a .BAT file, and finally for a .REX file.    See .BAT, .CMD , and .BTM Files for more
information on these different types of batch files.    If 4NT finds such a file, it then reads each line in the
file as a new command.

If the search for a batch file fails, 4NT checks to see if the command name matches the name of a file
with an extension that is associated with a specific application (for example, if you have associated .DOC
with your editor or word processor, and you type the name of a .DOC file).    If a match is found, 4NT runs
the program you specified when the association was defined.

In searching for the application associated with a file, 4NT will first examine any executable extensions
you have defined to associate a file extension with a specific program to process that type of file.    It then
checks file associations defined in the Windows registry; see Windows File Associations for complete
details.

4NT first searches for an executable program, a batch file, and a file with an executable extension (or
Windows NT file association) in the current directory.    If the command name doesn't match a .COM,
.EXE, .BTM, .BAT or .CMD file or an executable extension in the current directory, 4NT repeats its search
in every directory in your search path.

The search path is a list of directories that 4NT (and some applications) search for executable files.    For
example, if you wanted 4NT to search the root directory of the C: drive, the \NT subdirectory on the C:
drive, and the \UTIL directory on the D: drive for executable files, your search path would look like this:

PATH=C:\;C:\NT;C:\UTIL

Notice that the directory names in the search path are separated by semicolons.

You can create or view the search path with the PATH command.    You can use the ESET command to
edit the path.    Many programs also use the search path to find their own files.    The search path is stored
in the environment with the name PATH.

Remember, 4NT always looks for an executable file or a file with an executable extension or Windows file
association in the current subdirectory, then in each directory in the search path.    (You can change the
search order so the current directory is not searched first; see the PATH command for details.)

If you include an extension as part of the command name, 4NT only searches for a file with that
extension.    Similarly, if you include a path as part of the command name, the command processor will
look only in the directory you specified, and ignore the usual search of the current directory and the PATH.

The following table sums up the possible search options (the term "standard search" refers to the search
of the current directory and each directory in the search path):

Command 4NT Search Sequence

WP Standard search for any executable file whose base name is WP.

WP.EXE Standard search for WP.EXE; will not find files with other extensions.

C:\WP7\WP Looks in the C:\WP7 directory for any executable file whose base name is
WP.    Does not check the standard search directories.

C:\WP7\WP.EXE Looks only for the file C:\WP7\WP.EXE.

LAB.DOC Standard search for LAB.DOC, if .DOC is defined as an executable extension
(or Windows NT file association).    Runs the associated application if the file
is found.

C:\LI\LAB.DOC Looks only for the file C:\LI\LAB.DOC, and only if .DOC is defined as an
executable extension (or Windows NT file association).    Runs the associated
application if the file is found.

If 4NT cannot find an executable file, batch program, or a file with an executable extension (or Windows
NT file association) in the current directory or any directory in the search path, it looks for an alias called
UNKNOWN_CMD (see the ALIAS command for details).    If you have defined an alias with that name, it
is executed (this allows you to control error handling for unknown commands).    Otherwise, 4NT displays
an "Unknown command" error message and waits for your next instruction.

Windows File Associations

Windows NT includes the ability to associate file extensions with specific applications; this feature is
sometimes called "file associations".    For example, when you install Microsoft Word, it creates an
association between files with a .DOC or .DOT extension and the Word program file, WINWORD.EXE.

4NT includes a similar feature, called executable extensions, which allows you to set environment
variables which associate a file extension with a particular application.

There are two sets of file associations; both are stored in the Windows NT registry.    Those in the first
group (designed to replace the Windows 3.x WIN.INI file) are "direct" — they simply list the extension and
the application name, associating the extension directly with the application.    Those in the second group
are "indirect" — they associate an extension with a "file type," and separately specify attributes of files of
that type, including the command to execute in order to open such a file.

When 4NT starts, it retrieves the direct file associations from Windows, and treats them like 4NT
executable extensions.    To disable loading of these direct associations see the Startup page of the
OPTION and the LoadAssociations directive in 4NT.INI.    The indirect associations are accessed through
built-in Windows features (see below), and can not be disabled.

When you attempt to execute a program from the command line or a batch file, 4NT first searches its list
of executable extensions, including the standard extensions (.COM, .EXE, .BTM, etc.).    It then checks
4NT executable extensions, followed by direct file associations inherited from Windows.    If    all of these
tests fail, 4NT passes the command name to Windows to see if Windows can find an indirect association
for it.    Each of these tests is done in all of the standard search directories described under Executable
Files and File Searches.

See Using Windows File Associations for additional details on how to control Windows file associations in
4NT, including dealing with conflicts between direct and indirect associations.

ASCII and Key Codes

For ASCII and key code reference tables, see:

ASCII Tables

Key Codes and Scan Codes Tables

The remainder of this section gives a detailed explanation of character sets, ASCII, and key codes.    If
you are troubleshooting a keyboard or character display problem be sure to read all of the explanation
below before referring to the tables.

The translation of a key you type on the keyboard to a displayed character on the screen depends on
several related aspects of character handling.    A complete discussion of these topics is well beyond the
scope of this document.    However, a basic picture of the steps in the keystroke and character translation
process will help you understand how characters are processed in your system, and why they
occasionally may not come out the way you expect.

Internally, computers use numbers to represent the keys you press and the characters displayed on the
screen.    To display the text that you type, your computer and operating system require five pieces of
information:

» The numeric key code for the physical key you pressed.

» The specific character that key code represents based on your current keyboard layout or
country setting.

» The character set currently in use on your system (see below).

» The international code page in use for that character set.

» The display font used to display the character.

The numeric key code is determined by your physical hardware including the language that your
keyboard is produced for.    The character set is usually determined by the operating system.    These
items typically are not under your control.    However, most systems do allow you to control the keyboard
country setting, the code page, and the display font.

For an explanation of how key codes work, see the Key Codes and Scan Codes Explanation.    For a list
of key codes and scan codes for keys on the standard U.S. keyboard see the Key Codes and Scan
Codes Tables.

If the key codes produced by your keyboard, the code page, and the font you choose are not fully
compatible with each other, the characters displayed on the screen will not match what you type.    The
differences are likely to appear in line-drawing characters, "international" (non-English) characters, and
special symbols, not in commonly-used U.S. English alphabetic, numeric, or punctuation characters.

Most systems use a "single-byte" character set for keyboard and screen display.    These sets define 256
characters or symbols, with a numeric representation for each.    ("Double-byte" character sets, with up to
65,536 characters each, are used for languages with more than 256 symbols, and for some multi-lingual
systems.)    Most PC single-byte character sets are based on a code called ASCII, the American Standard
Code for Information Interchange.    For a complete list of ASCII codes see the ASCII Tables.

The original ASCII code was defined over 30 years ago for use in mainframe and minicomputer systems,
and has 128 character values.    These include the upper and lower case letters, numerals, and
punctuation marks used in U.S. English, plus non-printing control codes (which can be entered on most
keyboards by pressing the Ctrl key plus another character, or by pressing certain special keys like Tab,

Enter, Backspace, and Esc).    However, ASCII is not a complete character set, because it defines only
128 of the required 256 symbols.

IBM, in its original PC, created a complete 256-character set (called the Original Equipment Manufacturer
or "OEM" character set) by defining an additional 128 extended ASCII codes for math symbols,
"international" characters, the characters used to draw boxes and lines, and some miscellaneous
symbols.

Some operating systems support other character sets; in particular, Windows uses the ANSI character set
internally to store and display text, even though other parts of the system (e.g. the file system which
stores file names on disk) use IBM's OEM character set.    The ANSI character set is identical to the OEM
character set for U.S. English printed characters, but may vary for "international" characters not used in
U.S. English.    In most cases, Windows automatically translates characters from one set to another as
needed, but problems can sometimes result in errors in displayed text (e.g., differences between the
appearance of accented characters in filenames in Windows and DOS applications).

See your operating system documentation for more information about character sets, code pages, and
country and language support.    Refer to your operating system and/or font documentation for details on
the full character set available in any particular font.

The tables in this help file are based on U.S. English conventions.    Your system may differ if it is
configured for a different country or language.    See your operating system documentation for more
information about country and language support.

ASCII Tables

These tables shows the 256-character ASCII character set for U.S. English systems.    Most of the first
128 characters will be the same on non-U.S. systems.    Characters 1 through 31 and 128 through 255 are
likely to vary in appearance between fonts, and may look different if your system is not configured for U.S.
English.

For more details on ASCII, character sets, and key codes, see the general information topic on ASCII and
Key Codes.

The tables below are primarily in the MS Line Draw font, as this font gives the best representation of
standard ASCII characters.    The Control Characters portion of the table also uses the Symbol and
WingDings fonts to display the best possible approximation of the standard screen characters shown in
common ASCII charts.    If you do not have all of these fonts on your system the characters may not
appear correctly.

Certain characters are shown as blank in the tables below:    Characters 000 and 255 are blank because
they are normally shown that way in ASCII charts; characters 002, 008, 010 - 014, and 023 are blank
because the standard symbols for these characters have no representation in typical Windows fonts, so
they cannot be shown here.

Control Characters (0 - 31)

Dec Hex Char Nam
e

Ctrl Dec Hex Char Nam
e

Ctrl

000 00 NUL ^@ 016 10 Ø DLE ^P
001 01 J SOH ^A 017 11 × DC1 ^Q
002 02 STX ^B 018 12 ô DC2 ^R
003 03 ETX ^C 019 13 ! DC3 ^S
004 04 ¨ EOT ^D 020 14 ¶ DC4 ^T
005 05 § ENQ ^E 021 15 § NAK ^U
006 06 ª ACK ^F 022 16 n SYN ^V
007 07 • BEL ^G 023 17 ETB ^W
008 08 BS ^H 024 18 CAN ^X
009 09 m HT ^I 025 19 ¯ EM ^Y
010 0A LF ^J 026 1A ® SUB ^Z
011 0B VT ^K 027 1B ¬ ESC ^[
012 0C FF ^L 028 1C _ FS ^\
013 0D CR ^M 029 1D « GS ^]
014 0E SO ^N 030 1E Ù RS ^^
015 0F R SI ^O 031 1F Ú US ^_

Standard ASCII Printing Characters (32 - 127)

Dec Hex Char Dec Hex Char Dec Hex Char
032 20 Space 064 40 @ 096 60 `
033 21 ! 065 41 A 097 61 a
034 22 " 066 42 B 098 62 b
035 23 # 067 43 C 099 63 c
036 24 $ 068 44 D 100 64 d
037 25 % 069 45 E 101 65 e
038 26 & 070 46 F 102 66 f

039 27 ' 071 47 G 103 67 g
040 28 (072 48 H 104 68 h
041 29) 073 49 I 105 69 i
042 2A * 074 4A J 106 6A j
043 2B + 075 4B K 107 6B k
044 2C , 076 4C L 108 6C l
045 2D - 077 4D M 109 6D m
046 2E . 078 4E N 110 6E n
047 2F / 079 4F O 111 6F o
048 30 0 080 50 P 112 70 p
049 31 1 081 51 Q 113 71 q
050 32 2 082 52 R 114 72 r
051 33 3 083 53 S 115 73 s
052 34 4 084 54 T 116 74 t
053 35 5 085 55 U 117 75 u
054 36 6 086 56 V 118 76 v
055 37 7 087 57 W 119 77 w
056 38 8 088 58 X 120 78 x
057 39 9 089 59 Y 121 79 y
058 3A : 090 5A Z 122 7A z
059 3B ; 091 5B [123 7B {
060 3C < 092 5C \ 124 7C |
061 3D = 093 5D] 125 7D }
062 3E > 094 5E ^ 126 7E ~
063 3F ? 095 5F _ 127 7F

Extended ASCII Characters (128 - 255)

Dec Hex Char Dec Hex Char Dec Hex Char
128 80 € 171 AB « 214 D6 Ö
129 81  172 AC ¬ 215 D7 ×
130 82 ‚ 173 AD 216 D8 Ø
131 83 ƒ 174 AE ® 217 D9 Ù
132 84 „ 175 AF ¯ 218 DA Ú
133 85 … 176 B0 ° 219 DB Û
134 86 † 177 B1 ± 220 DC Ü
135 87 ‡ 178 B2 ² 221 DD Ý
136 88 ˆ 179 B3 ³ 222 DE Þ
137 89 ‰ 180 B4 ´ 223 DF ß
138 8A Š 181 B5 µ 224 E0 à
139 8B ‹ 182 B6 ¶ 225 E1 á
140 8C Œ 183 B7 · 226 E2 â
141 8D  184 B8 ¸ 227 E3 ã
142 8E Ž 185 B9 ¹ 228 E4 ä
143 8F  186 BA º 229 E5 å
144 90  187 BB » 230 E6 æ
145 91 ' 188 BC ¼ 231 E7 ç
146 92 ' 189 BD ½ 232 E8 è
147 93 " 190 BE ¾ 233 E9 é
148 94 " 191 BF ¿ 234 EA ê
149 95 • 192 C0 À 235 EB ë
150 96 – 193 C1 Á 236 EC ì
151 97 — 194 C2 Â 237 ED í
152 98 ˜ 195 C3 Ã 238 EE î

153 99 ™ 196 C4 Ä 239 EF ï
154 9A š 197 C5 Å 240 F0 ð
155 9B › 198 C6 Æ 241 F1 ñ
156 9C œ 199 C7 Ç 242 F2 ò
157 9D  200 C8 È 243 F3 ó
158 9E ž 201 C9 É 244 F4 ô
159 9F Ÿ 202 CA Ê 245 F5 õ
160 A0 203 CB Ë 246 F6 ö
161 A1 ¡ 204 CC Ì 247 F7 ÷
162 A2 ¢ 205 CD Í 248 F8 ø
163 A3 £ 206 CE Î 249 F9 ù
164 A4 ¤ 207 CF Ï 250 FA ú
165 A5 ¥ 208 D0 Ð 251 FB û
166 A6 ¦ 209 D1 Ñ 252 FC ü
167 A7 § 210 D2 Ò 253 FD ý
168 A8 ¨ 211 D3 Ó 254 FE þ
169 A9 © 212 D4 Ô 255 FF
170 AA ª 213 D5 Õ

Key Codes and Scan Codes Tables

(For more details on key codes, scan codes, and ASCII see the general information on ASCII and Key
Codes, and the Key Codes and Scan Codes Explanation.)

The following table lists all of the keys on the 101-key "enhanced" U.S. keyboard.    Many non-U.S.
keyboards are similar, but will not be exactly the same.    The keys are arranged roughly in scan code
order, which is generally left to right, moving from the top of the keyboard to the bottom.

Column 1 shows the key's keycap symbol or name.    Columns 2 and 3 show the scan code, and the
ASCII code if the key is unshifted.    Columns 4 and 5 contain the codes for the shifted key.    Columns 6
and 7 show the codes for Ctrl plus the key.    The last column contains the scan code for Alt plus the key
(Alt keystrokes have no ASCII code and always generate an ASCII code of 0, which is not shown).

Key names prefaced by np are on the numeric keypad.    Those prefaced by cp are on the cursor keypad
between the main typing keys and the number keypad.    The numeric keypad values are valid if Num
Lock is turned off.    If you need to specify a number key from the numeric keypad when Num Lock is on,
use the scan code shown for the keypad and the ASCII code shown for the corresponding typewriter key. 
For example, the keypad "7" has a scan code of 71 (the np Home scan code) and an ASCII code of 54
(the ASCII code for "7").

The chart is blank for key combinations that do not have scan codes or ASCII codes, like Ctrl-1 or Alt-
PgUp.

Top Keyboard Row

Key Cap
Symbol

Scan
Code

ASCII
Code

Shift
Scan
Code

Shift
ASCII
Code

Ctrl
Scan
Code

Ctrl
ASCII
Code

Alt
Scan
Code

Esc 1 27 1 27 1 27 1
1    ! 2 49 2 33 120
2    @ 3 50 3 64 3 0 121
3    # 4 51 4 35 122
4    $ 5 52 5 36 123
5    % 6 53 6 37 124

6    ^ 7 54 7 94 7 30 125
7    & 8 55 8 38 126
8    * 9 56 9 42 127
9    (10 57 10 40 128
0   ) 11 48 11 41 129
-    _ 12 45 12 95 12 31 130
=    + 13 61 13 43 131
Backspace 14 8 14 8 14 127 14

Second Keyboard Row

Key Cap
Symbol

Scan
Code

ASCII
Code

Shift
Scan
Code

Shift
ASCII
Code

Ctrl
Scan
Code

Ctrl
ASCII
Code

Alt
Scan
Code

Tab 15 9 15 0 148 0 165
Q 16 113 16 81 16 17 16
W 17 119 17 87 17 23 17
E 18 101 18 69 18 5 18
R 19 114 19 82 19 18 19
T 20 116 20 84 20 20 20
Y 21 121 21 89 21 25 21
U 22 117 22 85 22 21 22
I 23 105 23 73 23 9 23
O 24 111 24 79 24 15 24
P 25 112 25 80 25 16 25
[    { 26 91 26 123 26 27 26
]    } 27 93 27 125 27 29 27
Enter 28 13 28 13 28 10 28

Third Keyboard Row

Key Cap
Symbol

Scan
Code

ASCII
Code

Shift
Scan
Code

Shift
ASCII
Code

Ctrl
Scan
Code

Ctrl
ASCII
Code

Alt
Scan
Code

A 30 97 30 65 30 1 30
S 31 115 31 83 31 19 31
D 32 100 32 68 32 4 32
F 33 102 33 70 33 6 33
G 34 103 34 71 34 7 34
H 35 104 35 72 35 8 35
J 36 106 36 74 36 10 36
K 37 107 37 75 37 11 37
L 38 108 38 76 38 12 38
; : 39 59 39 58 39
'    " 40 39 40 34 40
`    ~ 41 96 41 126 41
\    | 43 92 43 124 43 28 43

Bottom Keyboard Row

Shift Shift Ctrl Ctrl Alt

Key Cap
Symbol

Scan
Code

ASCII
Code

Scan
Code

ASCII
Code

Scan
Code

ASCII
Code

Scan
Code

Z 44 122 44 90 44 26 44
X 45 120 45 88 45 24 45
C 46 99 46 67 46 3 46
V 47 118 47 86 47 22 47
B 48 98 48 66 48 2 48
N 49 110 49 78 49 14 49
M 50 109 50 77 50 13 50
,    < 51 44 51 60 51
.    > 52 46 52 62 52
/    ? 53 47 53 63 53
Space 57 32 57 32 57 32 57

Function Keys

Key Cap
Symbol

Scan
Code

ASCII
Code

Shift
Scan
Code

Shift
ASCII
Code

Ctrl
Scan
Code

Ctrl
ASCII
Code

Alt
Scan
Code

F1 59 0 84 0 94 0 104
F2 60 0 85 0 95 0 105
F3 61 0 86 0 96 0 106
F4 62 0 87 0 97 0 107
F5 63 0 88 0 98 0 108
F6 64 0 89 0 99 0 109
F7 65 0 90 0 100 0 110
F8 66 0 91 0 101 0 111
F9 67 0 92 0 102 0 112
F10 68 0 93 0 103 0 113
F11 133 0 135 0 137 0 139
F12 134 0 136 0 138 0 140

Numeric Key Pad

Key Cap
Symbol

Scan
Code

ASCII
Code

Shift
Scan
Code

Shift
ASCII
Code

Ctrl
Scan
Code

Ctrl
ASCII
Code

Alt
Scan
Code

np * 55 42 55 42 150 0 55
np Home 71 0 71 55 119 0
np Up 72 0 72 56 141 0
np PgUp 73 0 73 57 132 0
np Minus 74 45 74 45 142 0 74
np Left 75 0 75 52 115 0
np 5 76 0 76 53 143 0
np Right 77 0 77 54 116 0
np Plus 78 43 78 43 144 0 78
np End 79 0 79 49 117 0
np Down 80 0 80 50 145 0
np PgDn 81 0 81 51 118 0
np Ins 82 0 82 48 146 0
np Del 83 0 83 46 147 0

np / 224 47 224 47 149 0 164
np Enter 224 13 224 13 224 10 166

Cursor Key Pad

Key Cap
Symbol

Scan
Code

ASCII
Code

Shift
Scan
Code

Shift
ASCII
Code

Ctrl
Scan
Code

Ctrl
ASCII
Code

Alt
Scan
Code

cp Home 71 224 71 224 119 224 151
cp Up 72 224 72 224 141 224 152
cp PgUp 73 224 73 224 132 224 153
cp Left 75 224 75 224 115 224 155
cp Right 77 224 77 224 116 224 157
cp End 79 224 79 224 117 224 159
cp Down 80 224 80 224 145 224 160
cp PgDn 81 224 81 224 118 224 161
cp Ins 82 224 82 224 146 224 162
cp Del 83 224 83 224 147 224 163

Key Codes and Scan Codes Explanation

(This section explains how key codes and scan codes work.    For a reference chart, see the Key Codes
and Scan Codes Table.)

When you press a single key or a key combination, Windows NT translates your keystroke into two
numbers: a scan code, representing the actual key that was pressed, and an ASCII code, representing
the ASCII value for that key.    Windows NT returns these numbers the next time a program requests
keyboard input.    This section explains how key codes work; for information on using them with 4NT see
the 4NT.INI file key mapping directives, keystroke aliases, and INKEY.

Most 4NT commands that use the numeric key codes listed here also use key names, which are usually
more convenient to use than the numeric codes.    See Keys and Key Names for more information on key
names.

As PCs have evolved, the structure of keyboard codes has evolved somewhat haphazardly with them,
resulting in a bewildering array of possible key codes.    We'll give you a basic explanation of how key
codes work.    For a more in-depth discussion, refer to a BIOS or PC hardware reference manual.

The nuances of how your keyboard behaves depends on the keyboard manufacturer, the computer
manufacturer who provides the built-in BIOS, and your operating system.    As a result, we can't guarantee
the accuracy of the information in the tables for every system, but the discussion and reference table
should be accurate for most systems.    Our discussion is based on the 101-key "enhanced" keyboard
commonly used on 286, 386, 486, and Pentium computers, but virtually all of it is applicable to the 84-key
keyboards on older systems.    The primary difference is that older keyboards lack a separate cursor pad
and only have 10 function keys.

All keys have a scan code, but not all have an ASCII code.    For example, function keys and cursor keys
are not part of the ASCII character set and have no ASCII value, but they do have a scan code.    Some
keys have more than one ASCII code.    The A, for example, has ASCII code 97 (lower case "a") if you
press it by itself.    If you press it along with Shift, the ASCII code changes to 65 (upper case "A").    If you
press Ctrl and A the ASCII code changes to 1.    In all these cases, the scan code (30) is unchanged
because you are pressing the same physical key.

Things are different if you press Alt-A.    Alt keystrokes have no ASCII code, so Windows NT returns an
ASCII code of 0, along with the A key's scan code of 30.    This allows a program to detect all the possible
variations of A, based on the combination of ASCII code and scan code.

Some keys generate more than one scan code depending on whether Shift, Ctrl, or Alt is pressed.    This
allows a program to differentiate between two different keystrokes on the same key, neither of which has
a corresponding ASCII value.    For example, F1 has no ASCII value so it returns an ASCII code of 0, and
the F1 scan code of 59.    Shift-F1 also returns an ASCII code 0; if it also returned a scan code of 59, a
program couldn't distinguish it from F1.    The operating system translates scan codes for keys like Shift-
F1 (and Ctrl-F1 and Alt-F1) so that each variation returns a different scan code along with an ASCII code
of 0.

On the 101-key keyboard there's one more variation:    non-ASCII keys on the cursor keypad (such as up-
arrow) return the same scan code as the corresponding key on the numeric keypad, for compatibility
reasons.    If they also returned an ASCII code of 0, a program couldn't tell which key was pressed.   
Therefore, these cursor pad keys return an ASCII code of 224 rather than 0.    This means that older
programs, which only look for an ASCII 0 to indicate a non-ASCII keystroke like up-arrow, may not detect
these cursor pad keys properly.

The number of different codes returned by any given key varies from one (for the spacebar) to four,
depending on the key, the design of your keyboard, and the operating system.    Some keys, like Alt, Ctrl,

and Shift by themselves or in combination with each other, plus Print Screen, SysReq, Scroll Lock,
Pause, Break, Num Lock, and Caps Lock keys, do not have any code representations at all.    The
same is true of keystrokes with more than one modifying key, like Ctrl-Shift-A. The operating system may
perform special actions automatically when you press these keys (for example, it switches into Caps Lock
mode when you press Caps Lock), but it does not report the keystrokes to whatever program is running. 
Programs which detect such keystrokes access the keyboard hardware directly, a subject which is
beyond the scope of this help file.

Glossary
The glossary contains over 200 terms, and is divided into sections by the first letter of each term.    Select
the section you want to review:

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Glossary - 4

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

4EXIT:    A batch file which is executed whenever 4NT exits.

4START:    A batch file which is executed whenever 4NT starts.

Glossary - A

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Alias Parameter:    A numbered variable (e.g. %2) included in an alias definition, allowing a different value
to be used in the alias each time it is executed.

Alias:    A shorthand name for a command or series of commands.

Alternate File Name:    See LFN File System, and also SFN.

AND:    A logical combination of two true or false conditions.    If both conditions are true, the result is true;
if either condition is false, the result is false.

ANSI:    Usually a reference to ANSI control sequences, standardized sequences of text characters which
control colors on the screen, manipulate the cursor, and redefine keys.    4NT includes support for ANSI
screen and cusrsor control sequences.    The abbreviation ANSI is for American National Standards
Institute, an organization whch sets standards for computer-related systems, including "ANSI" screen
control sequences.

Append:    Concatenation of one file or string onto the end of another (this use is not related to the DOS,
Windows 95 / Windows NT, and OS/2 external command named APPEND).

Application:    A program run from the command prompt or a batch file.    Used broadly to mean any
program other than the command processor; and more narrowly to mean a program with a specific
purpose such as a spreadsheet or word processing program, as opposed to a utility.

Archive:    A file attribute indicating that the file has been modified since the last backup (most backup
programs clear this attribute).    Also sometimes refers to a single file (such as a .ZIP file) which contains a
number of other files in compressed form.

Argument:    See Parameter.

ASCII File:    A file containing ASCII text, as opposed to a binary file which may contain numbers, or other
information that cannot be sensibly interpreted as text.

ASCII:    The American Standard Code for Information Interchange, which defines numeric values for 128
different characters comprising the English alphabet, numbers, punctuation, and some control characters.

Attribute:    A characteristic of a file which can be set or cleared.    The standard attributes are Read-Only,
Hidden, System, and Archive; other attributes include Directory and Volume Label.

Automatic Batch Files:    See 4START and 4EXIT.

Automatic Directory Change:    A 4NT feature which allows you to change directories by typing the
directory name and a backslash [\] at the prompt.

Glossary - B

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Base Name:    The file name without a drive, path, or extension.    For example, in the file name C:\DIR1\
LETTER.DAT the base name is LETTER.

BAT File:    See Batch File.

Batch File:    A text file containing a sequence of commands for the command processor to execute.   
Batch files are used to save command sequences so that they can be re-executed at any time,
transferred to another system, etc.    The extension of a batch file may be .BAT, .CMD, or .BTM,
depending on the operating system and command processor you are using.

Batch File Parameter:    A numbered variable (e.g. %2) used within a batch file, allowing a different value
to be used at that spot in the file each time it is executed.

Binary File:    A file containing information which does not represent or cannot sensibly be interpreted as
text.    See also ASCII File.

BIOS or Basic Input Output System:    The software (or "firmware") stored on chips inside PC systems.   
The BIOS provides basic low-level control of devices required to operate the system, such as the
keyboard, floppy disk, and screen; it also handles system self-tests at startup, and intiates loading of the
operating system.

Block Device:    A physical device for input or output which can transmit or receive large blocks of data
while the computer is engaged in other activities.    Examples include disk, tape, and CD-ROM drives.   
See also Character Device.

Boot Directory:    The current directory at the time the system is booted, usually the root directory of the
boot drive.

Boot Drive:    The disk drive that the system is booted from, usually A: (the floppy disk) or C: (the hard
disk).

Boot:    The process of starting the computer and loading the operating system into memory.    See also
Reboot, Cold Reboot, and Warm Reboot.

Break:    A signal sent to a program to tell it to halt what it is doing.    The Ctrl-C key    or Ctrl-Break key is
used to send this signal.    Some external commands abort when they receive a break signal; others
return to a previous screen or menu, or abort the current operation.

BTM File:    A special type of 4NT batch file which is loaded into memory to speed up execution.

Buffer:    An area of memory set aside for storage.    For example, disk buffers are used to save
information as it is transferred between your program and the disk, and the keyboard buffer holds
keystrokes until a program can use them.

Glossary - C

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

CDFS or CD-ROM File System:    The file system which supports CD-ROM drives.    This is typically
implemented as a distinct file system in 32-bit operating systems like OS/2 and Windows NT.    On other
platforms it is implemented as a component of or addition to the underlying general file system for disk
drives.

Character Device:    A physical device for input or output which must communicate with your computer
one character at a time.    Examples include the console, communications ports, and printers.    See also
Block Device.

Character Mode:    A display mode in which output is displayed in a fixed font, typically with 80 columns in
a line and 25 lines on the screen (some systems allow you to increase the number of rows and columns
to other fixed sizes), and which cannot display graphics or pictures.    See also Graphics Mode.

CMD File:    See Batch File.

CMDLINE:    An environment variable used to extend the command line passed to another program
beyond its normal length limits.

Cold Reboot:    The process of restarting the computer in a way that physically resets most hardware
devices, typically by pressing a reset button, or by turning the power off and back on.    See also Warm
Reboot.

Command Completion:    A 4NT feature which allows you to recall a previous command by typing the
first few letters of the command, then an up-arrow or down-arrow.

Command Echoing:    A feature which displays commands as they are executed.    Echoing can be
turned on and off.

Command Grouping:    A 4NT feature which allows you to group several commands with parentheses,
and have them treated as a single command for most purposes.

Command History Window:    A pop-up window used by 4NT to display the command history, allowing
you to choose a previous command to modify and/or execute.

Command History:    A 4NT feature which retains commands you have executed, so that they can be
modified and re-executed later.

Command Processor:    A program which interprets commands and executes other programs.   
Sometimes also called a Command Interpreter.

Command Recall:    See Command History.

Command Separator:    A character used to separate multiple commands on the same command line.

Command Tail:    The portion of a command consisting of all the arguments, i.e., everything but the
command name itself.

Compound Command:    See Multiple Commands.

Compression:    An operating system feature which compresses data as it is stored in a disk file, and

decompresses it as it is read back, resulting in more efficient use of disk space (at a slight cost in
processor time to perform the compression and decompression).    More generally, an approach to data
storage which reduces repeated or redundant information to a smaller number of bytes in the compressed
version than in the original, in order to minimize the space required to store the information.

COMSPEC:    An environment variable which defines where to find the character-mode command
processor to start a secondary shell.

Conditional Commands:    A 4NT feature allowing commands to be executed or skipped depending on
the results of a previous command.      See also Exit Code.

Console:    The PC keyboard and display.

Console Mode:    See Character Mode.

Control Character:    A character which is part of the ASCII code, but does not have a normal text
representation, and which can usually be generated by pressing the Ctrl key along with another key.

Coprocessor:    See Numeric Coprocessor.

Country Settings:    The internal settings which tell the operating system how to interpret keyboard
characters which vary from country to country, which character set to use, and how to retrieve and display
date, time, and other information in the format appropriate to a particular country.    See also Code Page.

CPU:    The Central Processing Unit which performs all logic and most calculations in a computer.    In PC-
compatible systems, the CPU is on a single microprocessor chip.

CR or Carriage Return:    The ASCII character "carriage return" (decimal value 13), generated by
pressing the Enter key on the keyboard, and stored in most ASCII files at the end of each line.

Critical Error:    An error, usually related to a physical or hardware problem with input, output, or network
access, which prevents a program from continuing.

Current Directory:    The directory in which all file operations will take place unless otherwise specified.   
The current directory is typically displayed as part of the command prompt.    Also called the Current
Working Directory.

Current Drive:    The disk drive on which all file operations will take place unless otherwise specified.   
The current drive is typically displayed as part of the command prompt.

Cursor:    A movable marker on the screen to show where text will be entered when you type at the
keyboard, or which object on the screen will be affected when a mouse button is clicked.    In character
mode only the text cursor is available; graphical systems typically show both a mouse cursor and, when
text can be entered, a separate text cursor.

Glossary - D

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Date Range:    A 4NT feature which allows you to select files based on the date and time they were last
modified.

Date Stamp:    Information stored in a file's directory entry to show the dates on which the file was
created, last modified, and last accessed.    Creation and last access dates are not available in the FAT
file system.    See also Time Stamp.

Default Directory:    See Current Directory

Default Drive:    See Current Drive.

Delete Tracking:    An operating system or utility software feature which is designed to allow you to
"undelete" or recover files which have recently been deleted.    Delete tracking typically works by
temporarily retaining the deleted files and / or information about the deleted files in a special area of the
disk.

Description:    A string of characters assigned to describe a file with the 4NT DESCRIBE command.

Destination:    In file processing commands (e.g. COPY or MOVE), the name or directory files should
have after any copying or modification has taken place, generally the last specification on the command
line.    See also Source.

Detached Process:    A program which is "detached" from the normal means of user input and output,
and cannot use the keyboard, mouse, or video display.

Device Driver:    A program which allows the operating system to communicate with a device, and which
is loaded into memory when the system boots.    Device drivers are also used to manage memory or for
other similar internal functions.

Device:    A physical device for input or output such as the console, a communications port, or a printer.   
Sometimes "device" is used to refer to character devices, and excludes block devices.

Directive:    An individual item in the 4NT.INI file, used to control the configuration of 4NT.

Directory:    A portion of any disk, identified by a name and a relationship to other directories in a "tree"
structure, with the tree starting at the root directory.    A directory separates files on the disk into logical
groups, but does not represent a physical division of the data on the disk.

Directory History:    A 4NT feature which allows you to recall recently-used directory names in a popup
window, and choose one to switch to.

Directory History Window:    See Directory History.

Directory Stack:    A 4NT feature, implemented through the PUSHD and POPD commands, which allows
you to save the current directory and return to it later.    See also Stack.

Directory Tree:    The branching structure of directories on a hard disk, starting at the root directory.    The
root of the tree is usually considered as the "top" of the structure, so the actual structure can be visualized
as an upside-down tree with the root at the top and branches going "down".    A portion or branch of the
directory tree is sometimes called a "subtree".

DOS Memory:    See Base Memory.

DOS Session:    See Session.

DPMI or DOS Protected Mode Interface:    A specification which allows DOS programs to access
memory beyond 1 MB in order to manage larger programs or larger amounts of information than will fit in
base memory.    DPMI support for DOS programs is provided by some DOS memory managers, and by
OS/2, Windows 3.1 and above, Windows 95, and Windows NT.

Drive Letter:    A letter used to designate a specific local disk volume, or part or all of a network server
drive.    In most cases drive letters range from A - Z, but some network operating systems allow the use of
certain punctuation characters as drive letters in order to support more than 26 volumes.

Glossary - E

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Echo:    See Command Echoing.

Environment:    An area of memory which contains multiple entries in the form "NAME=value".    See also
Master Environment and Passed Environment.

Environment Variable:    The name of a single entry in the environment.

Error Level:    A numeric value between 0 and 255 returned from an external command to indicate its
result (e.g., success, failure, response to a question).    See also Exit Code.

Escape Character:    In some contexts, the 4NT escape character, which is used to suppress the normal
meaning of or give special meaning to the following character.    In other cases, the specific ASCII
character ESC.    The meaning must be determined from the context.

Escape Sequence:    A sequence of text characters which has a special meaning and is not treated as
normal text.    For example, the character sequence <ESC>]K (where <ESC> is the ASCII "escape"
character, decimal value 27) will cause an ANSI driver to clear the screen from the cursor to the end of
the current line, rather than simply displaying the string "ESC]K" on the screen.    Similarly, in 4NT, the
escape sequence ^f on the command line is translated to a form feed, and is not treated as the literal
characters "^f".

Executable Extensions:    A 4NT feature which allows you to specify the application to be executed when
a file with a particular extension is named at the command prompt.

Executable File:    A file, usually with the extension .COM or .EXE, which can be loaded into memory and
run as a program.

Exit Code:    The result code returned by an external command or an internal command.    4NT internal
commands return an exit code of 0 if successful, or non-zero if unsuccessful.    See also Errorlevel.

Expansion:    The process 4NT goes through when it scans a command line and substitutes the
appropriate actual values for aliases, alias parameters, batch file parameters, and environment variables. 
See also Parsing.

Extended ASCII Character:    A character which is not part of the standard set of 128 ASCII characters,
but is used on the PC as part of an extended set of 256 characters.    These characters include
international language symbols, and box and line drawing characters.

Extended Attributes:    An OS/2 High Performance File System (HPFS) feature which allows storage of
additional information about a file, separate from the file itself.    Extended attributes are typically used to
store icons for executable files, property or settings information, and other information added by the user.

Extended Directory Search:    A 4NT feature which maintains a directory search "database" or list,
typically including all directories in your system, and allows you to change quickly to any directory in the
list.

Extended Key Code:    The code for a key on the PC keyboard which has no representation in the
standard ASCII character set, such as a function key, cursor key, or Alt plus another key.    The extended
key code for a key is often the same as the scan code for that key.

Extended Memory:    Any memory on a computer system with a 286, 386, 486, or Pentium processor
which is above the first 1 MB (one megabyte, or 1024*1024 bytes) of memory.    See also XMS.

Extended Parent Directory Names:    A 4NT feature which allows you to use additional periods in a
directory name to represent directories which are successively higher in the directory tree.

Extended Wildcard:    A 4NT feature which extends the traditional wildcard syntax and allows you to use
multiple wildcard characters, and character ranges (e.g. [a-f] for the letters A through F).    See also
Wildcard.

Extension:    The final portion of a file name, preceded by a period.    For example, in the file name C:\
DIR1\LETTER.DAT the extension is .DAT.    In a long filename which contains multiple periods, the
extension is usually considered to be the portion of the name after the final period.

External Command:    A program which resides in an executable file, as opposed to an internal command
which is part of the command processor.

EXTPROC:    A command processor feature which allows you to designate a specific external program to
run a particular batch file.

Glossary - F

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

FAT File System:    The traditional file system used by DOS to store files on diskettes and hard disks;
also supported by OS/2 and Windows NT.    Uses a File Allocation Table to keep track of allocated and
unallocated space on the disk.

FAT-Compatible File Name:    See SFN.

FF or Form Feed:    The ASCII character "form feed" (decimal value 12), which typically causes a printer
to skip to a new page.    The FF character is not normally entered from the keyboard, but in many cases it
can be generated, if necessary, by holding the Alt key, pressing 0-1-2, and releasing the Alt key.

File Attribute:    See Attribute.

File Description:    See Description.

File Exclusion Range:    A 4NT feature which allows you to exclude files from processing by internal
commands based on their names.

Filename Completion:    A 4NT feature which allows you to type part of a filename on the command line,
and have the command processor fill in the rest for you.

Free Memory:    Usually, the amount of total memory which is unoccupied and available for applications.

Glossary - G

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Global Aliases:    A 4NT option which allows you to store aliases in a global area accessible to all copies
of 4NT, so that any change made by one copy is immediately available to all other copies.    See also
Local Aliases.

Global Directory History:    An option which allows you to store the directory history in a global area
accessible to all copies of 4NT, so that any change made by one copy is immediately available to all other
copies.    See also Local Directory History.

Global History:    A 4NT option which allows you to store the command history in a global area accessible
to all copies of 4NT, so that any change made by one copy is immediately available to all other copies.   
See also Local History.

Graphics Mode:    A display mode in which output is displayed in any one of a range of fonts, typically in
resizable windows with a variable number of text rows and columns, and which supports the display of
graphics and pictures along with text.    See also Character Mode.

Glossary - H

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Hidden:    A file attribute indicating that the file should not be displayed with a normal DIR command, and
should not be made available to programs unless they specifically request access to hidden files.

History Window:    See Command History Window and Directory History.

History:    See Command History.

HMA or High Memory Area:    The area of PC memory located in the first 64K bytes above the 1
megabyte that DOS can address directly.    The HMA can be made addressable from DOS programs
using special hardware facilities, or an XMS driver.

HPFS or High Performance File System:    A file system distributed with OS/2 and Windows NT 3.51
and below which allows longer file names, supports larger drives, and provides better performance than
the traditional FAT file system.

Glossary - I

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

IFS or Installable File System:    A file system which can be loaded when required to support devices
such as CD-ROM or network drives, or non-default disk formats like HPFS (in OS/2) or NTFS (in
Windows NT).    Installable file systems are primarily supported 32-bit operating systems like OS/2 and
Windows NT.    Depending on operating system design they may be loaded at boot time, or loaded and
unloaded dynamically while the system is running.

Include List:    A concise method of specifying several files or groups of files in the same directory, for use
with all 4NT commands which take file names as arguments.

Inheritance:    A feature which allows one copy of 4NT to "inherit" the .INI file data, aliases, command
history, and directory history from a previous copy.    More generally, a system which allows one program
to pass information or settings on to another, often to a second copy of the same program.

.INI File:    The 4NT initialization file containing directives which set the initial configuration of the
command processor.

Insert Mode:    When editing text, a mode in which newly typed characters are inserted into the line at the
cursor position, rather than overwriting existing characters on the line.    See also Overstrike Mode.

Internal Command:    A command which is part of the command processor, as opposed to an external
command.

Internal Variables:    Environment variables created by 4NT to provide information about your system.   
Internal variables are evaluated each time they are used, and are not actually stored in the environment.

Glossary - K

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Key Code:    The code passed to a program when a key is pressed on the keyboard.    Depending on the
key that is pressed, and the software handling the keyboard, the code can be an ASCII code, a scan
code, or an extended key code.

Key Mapping:    A 4NT feature which allows you to assign new keystrokes for command line functions
such as manipulating the command history or completing file names.

Keyboard Buffer:    A buffer which holds keystrokes you have typed that have not yet been used by the
currently executing program.

Keystroke Alias:    An alias assigned to a key, so that it can be invoked or recalled with a single
keystroke.

Glossary - L

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Label:    A marker in a batch file, with the format :name, allowing GOTO and GOSUB commands to
"jump" to that point in the file.    See also Volume Label.

LF or Line Feed:    The ASCII character "line feed" (decimal value 10), stored in most ASCII files at the
end of each line, after the CR character.    The LF character is not normally entered from the keyboard,
but in many cases it can be generated, if necessary, by pressing Ctrl-Enter.

LFN or Long File Name:    A file name which does not conform to FAT file system restrictions, either
because it is longer than the traditional 8 character name plus 3 character extension, or because it
contains periods, spaces, or other characters not allowed in a traditional FAT file name.    See also SFN.

LFN File System:    A file system which extends the traditional FAT system to support long filenames and
possibly larger hard drives.    An LFN file system stores both a long and short name for a file, not just a
long name.    The short name is sometimes called the "alternate" name.    See also LFN, SFN, VFAT File
System, and FAT32 File System.

Local Aliases:    A 4NT option which allows you to store aliases in a local area only accessible to the
current copy of 4NT, so that a change made in the current copy of 4NT does not affect other copies, and
vice versa.    See also Global Aliases.

Local Directory History:    A 4NT option which allows you to store the directory history in a local area
only accessible to the current copy of 4NT, so that a change made in the current copy of 4NT does not
affect other copies, and vice versa.    See also Global Directory History.

Local History:    A 4NT option which allows you to store the command history in a local area only
accessible to the current copy of 4NT, so that a change made in the current copy of 4NT does not affect
other copies, and vice versa.    See also Global History.

Logging:    A 4NT feature, implemented via the LOG command, which allows you to save a record of the
commands you execute.

Glossary - M

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Master Environment:    The master copy of the environment maintained by the command processor.

Modulo:    The remainder after an integer division.    For example 11 modulo 3 is 2, because when 11 is
divided by 3 the remainder is 2.

Multiple Commands:    A 4NT feature which allows multiple commands to be placed on a line, separated
by a an ampersand [&], or another, user-defined character.

Multitasking:    A capability of some software (and the related hardware) which allows two or more
programs to run apparently simultaneously on the same computer.    Multitasking software for PC
compatible systems includes operating environments like Windows 3, and complete operating systems
like OS/2, Windows 95, and Windows NT.

Glossary - N

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Network:    A system which allows several computers to be connected together to share files, printers,
modems, or other resources, and to pass electronic mail or other information between the systems on the
network.

Network File System:    Software which runs over a network to allow access to files on the server.    A
network file system may support the same options as the file system used on local drives, or it may be
more or less restrictive than the local file system about file names, disk volume capacity, and other similar
features.

NTFS or New Technology File System:    A file system distributed with Windows NT which allows longer
file names, supports larger drives, and provides better performance than the traditional FAT file system.

Numeric Coprocessor:    A chip which works in conjunction with an Intel 8086, 80286, 80386, 80486, or
Pentium CPU to perform decimal arithmetic ("floating point") calculations.    Some 80486s and the
Pentium CPU have the numeric coprocessor built in to the CPU chip; in all other cases it is on a
physically separate chip, and is optional (when the coprocessor is not avilable, the CPU performs decimal
arithmetic through other, much slower methods).

Glossary - O

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Operating System:    A collection of software which loads when the computer is started, provides services
to other software, and ensures that programs don't interfere with each other while they are running.

Option:    See Switch.

OR:    A logical combination of two true or false conditions.    If both conditions are false the result is false;
if either condition is true the result is true.

Overstrike Mode:    When editing text, a mode in which newly typed characters overwrite existing
characters on the line, rather than being inserted into the line at the cursor position.    See also Insert
Mode.

Glossary - P

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Parameter:    A piece of additional information placed after a command or function name.    For example,
in the command DIR XYZ, XYZ is a parameter.    Also used to refer to an alias parameter or batch file
parameter.

Parent Directory:    The directory in which a particular subdirectory resides, often seen as the directory
"above" a subdirectory.

Parsing:    The process 4NT performs to analyze the command line, perform alias and environment
variable expansion, and find the appropriate internal command or external command to execute.    More
generally, the process of breaking down a string or message into its individual components in order to
process them properly.

Passed Environment:    A copy of the master environment created before running an application, so that
any changes made by the application will not affect the master environment.

Path:    A specification of all the directories a file resides in.    For example, the path for C:\WPFILES\
MYDIR\MEMO.TXT is C:\WPFILES\MYDIR\.    Also used to refer to the environment variable PATH, which
contains a series of path specifications used when searching for external commands and batch files.

Pipe:    A method for collecting the standard output of one program and passing it on as the standard input
of the next program to be executed, signified by a vertical bar "|" on the command line.    See also
Redirection.

Previous Working Directory:    The working directory used most recently, just prior to the current working
directory.    For example, if C:\DATA is the current working directory and you switch to D:\UTIL, C:\DATA
then becomes the previous working directory.

Primary Shell:    The copy of the character-mode command processor which is loaded by the operating
system when the system boots or a session opens.

Glossary - R

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

RAM or Random Access Memory:    The physical memory used to store data while a computer is
operating.    The information in most types of RAM is lost when power is turned off.

RAM Disk:    A pseudo "disk drive", created by software, which appears like a normal physical disk drive
to programs.    Sometimes also called a Virtual Disk.

Range:    See Date Range, Size Range, Time Range, and File Exclusion Range.

Read-Only:    A file attribute indicating that the file can be read, but not written or deleted by the operating
system or the command processor unless special commands are used.

Reboot:    The process of restarting the computer with software, with the keyboard (e.g. by pressing Ctrl-
Alt-Del), by pressing a reset button, or by turning the power off and back on.    See also Cold Reboot and
Warm Reboot.

Redirection:    A method for collecting output from a program in a file, and/or of providing the input for a
program from a file.    See also Pipe.

Registry:    A hierarchically organized data file maintained by Windows 3.x, Windows 95, and Windows
NT to hold system parameters, hardware and software settings, and other similar information used by the
operating system or by other software packages.

REXX:    A file and text processing language developed by IBM, and available on many PC and other
platforms.

ROM or Read Only Memory:    A physical memory device used to store information which cannot be
readily modified, such as the BIOS built into each PC system.        The information in ROM is typically
retained when power is turned off.

Root Directory:    The first directory on any disk, from which all other directories are "descended."    The
root directory is referenced with a single backslash [\].

Glossary - S

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Scan Code:    The physical code for a key on the PC keyboard.    For the original U.S. English keyboard
layout the scan code represents the physical position of the key, starting with 1 for the key in the upper
left corner (Esc), and increasing from left to right and top to bottom.    This order will vary for more recent
keyboards or those designed for other countries or languages.

Search Path:    See PATH.

Secondary Shell:    A copy of the command processor which is started by another program, rather than
by the operating system.

Session:    A general term for the individual windows or tasks started by a multitasking system.    For
example, under Windows NT you might run a Windows NT application in one session, and 4NT in
another.

SFN or Short File Name:    A file name which follows the rules of the traditional FAT file system:    a name
of 1 - 8 characters and an extension of 0 - 3 characters, each consisting of only alphabetic and numeric
characters plus the punctuation marks ! # $ % & ' () - @ ^ _ ` { } and ~.    See also LFN.

Shell:    See Command Processor.    Also used to refer to a program which gives access to operating
system functions and commands through a menu- or mouse-driven system, or which replaces the primary
user interface of the operating system.

Size Range:    A 4NT feature which allows you to select files based on their size.

Source:    In file processing commands (e.g. COPY or MOVE), the original files before any copying or
modification has taken place, i.e., those specified earlier on the command line.    See also Destination.

Stack:    An area of memory used by any program to store temporary data while the program is running;
more generally, any such storage area where the last item stored is normally the first one removed.

Standard Error, Standard Input, and Standard Output:    The file(s) or character device(s) where a
program respectively displays error messages, obtains its normal input, and displays its normal output.   
Standard error, standard input, and standard output normally refer to the console, unless redirection is
used.

Subdirectory:    Any directory other than the root directory.

Subtree:    See Directory Tree.

Swap File:    A disk file created by an operating system or a program to store unused information on disk,
and thereby free up memory for other purposes.

Switch:    A parameter for an internal command or application which specifies a particular behavior or
setting.    For example, the command "DIR /P" might be referred to as "having the /P switch set".

System:    A file attribute indicating that the file belongs to the operating system or command processor,
and should not be accessed by other programs.

Glossary - T

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Target:    See Destination.

Time Range:    A 4NT feature which allows you to select files based on the time they were last modified.

Time Stamp:    Information stored in a file's directory entry to show the times at which the file was created,
last modified, and last accessed.    Creation time is not available in the FAT file system; last access time is
only available in the HPFS and NTFS file systems.    See also Date Stamp.

Tree:    See Directory Tree.

Glossary - U

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

UMB or Upper Memory Block:    An XMS Upper Memory Block, whose address is above the end of base
memory (normally, above 640K), but within the 1 megabyte of memory that DOS can address directly.

UNC or Universal Naming Convention:    A common method for accessing files on a network drive
without using a "mapped" drive letter.    Names specified this way are called UNC names, and typically
appear as \\server\volume\path\filename, where server is the name of the network server where the
files reside, volume is the name of a disk volume on that server, and the path\filename portion is a
directory name and file name.

Glossary - V

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Variable Expansion:    The process of scanning a command line and replacing each environment
variable name, alias parameter, or batch file parameter with its value.

Variable Functions:    Functions provided by 4NT to manipulate strings, dates, and filenames; perform
arithmetic; read and write files; and perform other similar functions.    Variable functions are similar to
static environment variables or internal variables, but have parameters and can perform actions rather
than just returning static information.

Variable:    See Alias Parameter, Batch File Parameter, and Environment Variable.

VFAT File System:    An extension of the FAT file system, available in Windows 95 and Windows NT,
which supports long filenames.    Also see LFN and FAT32 File System.

Virtual Disk:    See RAM Disk.

Volume Label:    A special, hidden file placed on any disk, whose name constitutes a "label" for the entire
disk.

Volume:    See Disk Drive.

Glossary - W

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

Warm Reboot:    The process of restarting the computer with software, or with the keyboard (e.g. by
pressing Ctrl-Alt-Del), typically without physically resetting any hardware devices.    See also Cold
Reboot.

White Space Character:    A character used to separate arguments on the command line.    The white
space characters recognized by 4NT are the space, tab, and comma.

Wildcard:    A character ("*" or "?") used in a filename to specify the possibility that any single character
("?") or sequence of characters ("*") can occur at that point in the actual name.    See also Extended
Wildcard.

Windows NT File System:    See NTFS.

Glossary - X

4    A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    R    S    T    U    V    W    X

XOR (exclusive OR):    A logical combination of two true or false conditions.    If both conditions are false or
both conditions are true the result is false; if either condition is true and the other is false the result is true.

