
The Crystal Custom Control

Overview

· Visual Basic is an extensible programming language: it has been designed so that
developers can readily add new capabilities as they see the need. One of the ways
the program can be extended is through custom controls. Custom controls are
programs that add tools to the Visual Basic toolbox. Once in the toolbox, these tools
can be used on any form just as if they were part of the original Visual Basic
language.

· There are two types of Custom Controls:

1) Custom controls that can produce objects that are visible at design time and at
runtime.

2) Custom controls that can also produce objects that are visible at design time but
invisible at runtime. These kinds of objects were designed to make it easier for your
applications to access the capabilities available in Dynamic Link Libraries (DLL's). By
setting the properties for these objects in the Properties dialog box, you eliminate the
need for a lot of manual coding.

Crystal Reports Professional Edition comes with a custom control in the second
category:

· You receive a free runtime license for this DLL so you can include it without charge
with each copy of your application.

· The Crystal Custom Control is a set of tools that makes it easy for you to build the
connection between your application and the print engine.

· You can't use the Crystal Custom Control and make direct calls to print engine
functions at the same time.

Adding the Crystal Custom Control to your project

You add the Crystal Custom Control to your project using the File|Add File command
on the Visual Basic menu bar.

NOTE: CRYSTAL.VBX can be added to AUTOLOAD.MAK to automatically load the
Custom Control to your project.

Getting Help

You can find information related to the Crystal Custom Control in the Help File under
Developer’s Reference, in the Developer’s Reference Manual starting on P 5-1 and in a
sample VB application that ships with CRW 4.0 in a subdirectory called
VBXDemo(VBXDemo.MAK).

When actually using the Crystal Custom Control you can highlight a property and select
F1 to automatically open the help file which will take you directly to the definition of the
respective VBX property.

Error Messages

A list of Error messages for the Crystal Custom Control can be found in the CRW 4.0
Help file by searching on ERROR MESSAGES, CRYSTAL CUSTOM CONTROL.

Using the Crystal Custom Control

Once you have the Crystal Custom Control object on your form, you build the
connection between your application and Crystal Reports by setting the object's
properties via the control's Properties list.

Design Time Properties :

About AutoDesign BoundReportFooter
BoundReportHeading Connect CopiesToPrinter
DataSource Destination DetailCopies
DiscardSavedData EMailCCList EMailMessage
EMailSubject EMailToList EMailVIMBCCList
GroupSelectionFormula Index Left
MarginBottom MarginLeft MarginRight
MarginTop Name PrinterCollation
PrintCopies PrinterDriver PrinterName
PrinterPort PrinterStartPage PrinterStopPage
PrintFileCharSepQuote PrintFileCharSepSeparator PrintFileName
PrintFileType PrintFileUseRptDateFmt PrintFileUseRptNumberFmt
ReportFileName ReportSource ReportTitle
SelectionFormula SQLQuery Tag
Top WindowBorderStyle WindowControlBox
WindowControls WindowHeight WindowLeft
WindowMaxButton WindowMinButton WindowState
WindowTitle WindowTop WindowWidth

Runtime Properties:

Action Connect CopiesToPrinter
DataFiles Destination DetailCopies
DiscardSavedData EMailCCList EMailMessage
EMailSubject EMailToList EMailVIMBCCList
Formulas GraphData GraphOptions
GraphText GraphType GroupCondition
GroupSelectionFormula GroupSortFields LastErrorNumber
LastErrorString Left MarginBottom
MarginLeft MarginRight MarginTop
Name Password PrintDay

PrinterCollation PrinterCopies PrinterDriver
PrinterName PrinterPort PrinterStartPage
PrinterStopPage PrintFileCharSepQuote PrintFileCharSepSeparator
PrintFileName PrintFileType PrintFileUseRptDateFmt

PrintMonth PrintReport
PrintYear RecordsPrinted RecordsRead
RecordsSelected ReportDisplayPage ReportFileName
ReportLatestPage ReportStartPage ReportTitle
SectionFont SectionFormat SectionLineHeight
SectionMinHeight SelectionFormula SessionHandle
SortFields SQLQuery Status
StoredProcParam Top UserName
WindowBorderStyle WindowControlBox WindowControls
WindowHeight WindowLeft WindowMaxButton
WindowMinButton WindowParentHandle WindowState
WindowTitle WindowTop WindowWidth

ReportFileName

If Main.Report1.PrintReport <> 0 Then
 Unload C
 Screen.MousePointer = 0
 MsgBox "Printing the Report to Window has caused Error#: " &
Main.Report1.LastErrorNumber & " - " & Main.Report1.LastErrorString
Exit Sub
Else
 Main!StatusBar.Caption = "Preview to window Successful."
End if

Destination

Main.Report1.Destination = 0

‘ 0 Print to Window
‘ 1 Print to Printer
‘ 2 Print to File

SelectionFormulas

Setting Record Selections at Runtime

 If are using a string in your record selection criteria, it might look like:

Sub Command1_Click ()
 'if we hard-code the name
 Report1.SelectionFormula = "{file.field} = 'Bob Brown'"
 'If we use the value of the Textbox
 Text1.Text = "Bob Brown"

 Recselect$ = "{file.field} ='" & Text1.Text & "'"
 MsgBox Recselect$
 ‘Should display {file.field} = ‘Bob Brown’
 ‘The result of a message box should look exactly like the record selection if it
 ‘were built in Crystal Reports itself.
 Report1.SelectionFormula = "{file.field} ='" & Text1.Text & "'"
 Report1.action = 1
End Sub

If you are using a string with an apostrophe within it, it might look like:

 Sub Command1_Click ()
 'if we hard-code the name
 RecSelect$ = "{file.field} = ""My mother's name"""
 MsgBox RecSelect$
 'If we use the value of the Textbox
 Text1.Text = "Bob Brown’s House"
 Recselect$ ="{table1.text} = """ & Text1.Text & """"
 MsgBox Recselect$
 ‘Should display {file.field} = “Bob Brown’s House”’
 ‘The result of a message box should look exactly like the record selection if it
 ‘were built in Crystal Reports itself.
 Report1.SelectionFormula = RecSelect$
 Report1.action = 1
End Sub

If you are using a date in your record selection criteria, it might look like:

Sub Command1_Click ()
 'if we hard-code the date
 '(E.g. We are interested in reporting only records of March 04, 1993)
 RecSelect$ = "{file.field} = Date(1993,03,04)"
 MsgBox RecSelect$
 ‘The result of a message box should look exactly like the record selection if it
 ‘were built in Crystal Reports itself
 Report1.SelectionFormula = RecSelect$

 'if we use the value of a date/time variable of type Variant
 '(E.g. We are interested in reporting only today’s records)
 TodayDate = Now
 RecSelect$ = "{file.field} = Date(" + Str$(Year (TodayDate)) + ","
 RecSelect$ = RecSelect$ + Str$(Month (TodayDate)) + ","
 RecSelect$ = RecSelect$ + Str$(Day (TodayDate)) + ")"
 MsgBox RecSelect$
 ‘The result of a message box should look exactly like the record selection if it
 ‘were built in Crystal Reports itself

 Report1.SelectionFormula = RecSelect$
 Report1.action = 1
End Sub

Note: you must manipulate the user inputted date within your VB code to fit the exact
format of DATE(yyyy,mm,dd). If you try to pass any other format you will receive an
“Error in Formula”

Formulas

Setting Formulas at Runtime

If you want to change a formula or a string (page title, author, etc...) at runtime from
Visual Basic, you would take similar steps.

First, in Crystal Reports, create your formula. If you are giving it a string value, you
must place a string value in it. This will force Crystal to treat the formula as a string. A
single space inside double quotes is a good idea, as this will not print if left
unchanged--yet it holds the string type for when you change the actual value later from
VB. Place the new formula on your report where you would like the passed value
displayed.

If you will be sending a numeric value or date, again place an appropriate value in the
formula in order to establish the data type of the formula. To pass a numeric value to a
formula, place 0 in the formula when you create the formula in Crystal Reports. To
pass a date value to a formula, place the Today function in the formula.

Consider that you would like to send a title to your report from your VB application. The
following is the suggested syntax to change the title at runtime. As instructed above, a
formula is inserted at the top of the report, and is named Title. It presently contains a
space inside quotes, as in “ “.

Sub Command1_Click ()
 'if we hard-code the title
 Report1.Formulas(0) = "Title = 'Report on Telephone Usage'"
 'If we use the value of the Textbox
 Text1.Text = "Report on Telephone Usage"
 Report1.Formulas(0) = "Title = '" & Text1.Text & "'"
 Report1.action = 1
End Sub

Now you would like to send a numeric value to your report. The following code
changes the value of a numeric formula at runtime.

Sub Command1_Click ()
 'if we hard-code the numeric value
 Report1.Formulas(1) = "Temperature = 65"

 'If we use the value of a variable
 new_temperature% = 65
 Report1.Formulas(1) = "Temperature = " & str$(new_temperature)
 Report1.action = 1
End Sub

Connect

Sub Command1_Click ()
‘If you were to hard code the parameters at runtime
 Report1.Connect = “DSN=xxx;UID=yyy;PWD=****;DSQ=tttt”
‘If you were to use variable name to store the user input for each parameter
 ConnectString$ = "DSN=" & Text1.Text & ";UID=" & Text3.Text & ";PWD=" &
Text4.Text & ";DSQ=" & Text2.Text
 Report1.Connect = ConnectString$

End Sub

Datafiles

Sub Command1_Click ()
'Set the Datafile location for each datafile in the report
 'under the Set Location in Crystal Reports dialogue a list
 'of files Is displayed and this list corresponds to the datafile number
 'Therefore, the first file listed would be 0, the second 1 etc.

 If LocationText.Text = "" Then
 MsgBox "You must enter a path to the datafile!"
 Exit Sub
 Else
 Main.Report1.DataFiles(DataFileNum.Text) = LocationText.Text
 Main!StatusBar.Caption = "Table Location " & DataFileNum.Text & " has been
set"
 End If

End Sub

UserName and Password

Sub Command1_Click ()
 Main.Report1.UserName = Text1.Text
 Main.Report1.Password = Text2.Text
End Sub

Sample Code:
Sub Command1_Click ()

'Set the Report file name

 Report1.ReportFileName = "C:\CRW4\SQL.RPT"

'Set Logon Parameters for SQL Rpt.

Report1.Connect = "DSN=CRSS;UID=sa;PWD=brahma;DSQ=pubs"

'Set the datafile locations which will override the
'existing file locations in the RPT file itself.
'once you set the datafiles once the next time you print
'the report the RPT will use the datafiles in the RPT again.
'Therefore, you must be sure to set the datafiles each time
'you want to print a report

 Report1.DataFiles(0) = "pubs.dbo.authors"

'Set a formula

Report1.Formulas(0) = "Parse = {authors.au_lname}[1 to 3]"

'Set selection formula based on formula

Report1.SelectionFormula = "{@Parse} = 'Whi'"

'Start the print job

Report1.Action = 1

End Sub

