
 Technical Support

Before You Call For Technical Support...
Xiris prides itself on its technical support. Our technical support people are programmers, not
temporary employees. They will do their utmost to help you resolve your programming problems. In
the event that you discover a bug or anomaly, Xiris will fix the problem as soon as possible, and deliver
a fix in a timely fashion. In the event that you are doing something incorrectly in your code, the
technical support team will help you to determine what you are doing wrong.

However, in order to maximize the effectiveness of your contact with Xiris technical support, we ask that
you have as much information as possible about you problem ready when you call, so that less valuable
time will be wasted.

So, before calling for technical support, FIRST, read the following points thoroughly:

1) GPF? If you are getting a GPF (General Protection Fault), write down the information that is
displayed when the error occurs. This is invaluable information. Also, make a note of what your
code was doing (in general terms).

2) ISOLATE IT. Try to isolate the cause of the error. If at all possible, step through your code with
F8 and F9. Try to find the one line of code that is causing the error.

3) SCALE IT DOWN. If at all possible, try to reproduce the problem in a small test program. Use
very little code, so that the technical support team can duplicate the problem without hoarding
through piles of irrelevant code.

4) Call Xiris. At this point, you should have a small test program that you can send in. Call the
technical support line at (905) 681-8107 to discuss the problem, and possibly arrange the method
by which you can send in your test code.

5) IF YOU CANNOT REACH A TECHNICAL SUPPORT PERSON, you can send in you test program
via:

Xiris FAX: (905) 681-9844 (Faxes must be 2 pages maximum!)

Xiris BBS: (905) 681-6327

Xiris Email: xiris@hookup.net

XCaliper Help

 Whats New In Version 1.6

 XCaliper Overview

 Recommended Software Development Cycle

XCaliper Tools: Theory Of Operation

Image Tools
Edge Tools
BlobAnalyzer Tool
LightMeter Tool

Visual Basic Custom Controls

 ImageDevice Tool        ArcEdgeLocator Tool   

 MemoryBuffer Tool        ArcCaliper Tool   

 ImageHook Tool BlobAnalyzer Tool

 LineEdgeLocator Tool LightMeter Tool

LineCaliper Tool

Setup Dialog Boxes

Caliper Setup Dialog Box
EdgeLocator Setup Dialog Box
Edges Dialog Box
Weights Dialog Box
Edge Pair Information Report Box
Edge Information Report Box
Features and Filters Dialog Box

References

Properties
Commands
Events
Methods
Error Messages
Frame Grabber Notes
Factors Affecting Performance

 Technical Support

 XCaliper Overview

XCaliper is a general purpose, non-contact measurement package designed for industrial applications
where highly accurate, repetitive measurements are required. It can function as a precision
measurement tool, a locating system, or as a feature presence/absence inspection system. When
integrated with the appropriate hardware, it can perform measurements on the production line, providing
100% inspection of production volumes.

A typical application for XCaliper would be gauging of parts on a production line. In such an
application, XCaliper would be integrated into a simple Visual Basic program as part of an automatic
inspection system that would use the measurement results from XCaliper to decide whether to pass or
fail the parts as they pass by on the production line.

The package is configured as VBX tools, allowing the user to build an application using Microsoft Visual
Basic for Windows, a powerful programming language that allows the integration of numerous standard
software packages. Because the language is so easy to use, a professional user interface can be
developed for an XCaliper inspection application with very little effort, allowing the entire application to
be up and running after only a few hours of development effort. Output of the applications generated
data can be sent to other VBXes or to external programs for statistical analysis, chart generation, or
data storage.

XCaliper includes six processing tools: four edge locators, a blob extraction and analysis engine, and
a LightMeter. All six tools operate on a Viewport or region of interest within the frame buffer, rather
than the full frame buffer, thus increasing both the speed and accuracy of the tool. The Viewport can
be positioned either interactively using pick points or through direct program action. The pick points
can be suppressed by the designer to provide control over end-user action. XCaliper includes three
additional Image Tools to manage the interaction with the frame buffer and the display.

The typical automatic inspection application will require at least two controls: a frame buffer control,
probably the ImageDevice in which to store images (or a MemoryBuffer if no image acquisition is
required), and at least one processing tool to perform the actual image analysis. Normally there will be
at least three or four processing tools, while many applications may use a dozen or more. There is no
restriction on the number of processing tools used in an application, beyond Windows memory and
resource limitations.

 Recommended Software Development Cycle

Creating application for Windows in Visual Basic is a significantly different process than the standard
development cycle one might be familiar with using packages such as Microsofts Visual C++ or
Borlands Turbo C++. The two primary reasons for this difference are the following:

1) Visual Basic provides powerful, graphically oriented, interface building capabilities. By using the
controls provided on the Toolbox, and setting their properties appropriately one can layout a
comprehensive, professional looking application in a matter of minutes.

2) Visual Basic, like all Windows environments, enforces an event-driven programming paradigm.
That is, code is executed when an event occurs for a particular control (such as clicking a button, or
text being modified in a Text box, or a Form being loaded). As controls are added to a project,
Visual Basic automatically sets up the event procedures for these controls. It is simply a matter of
filling in the code for these routines to define the functionality of the particular control.

For further information on the above two elements, see Chapters 2-6 of the Visual Basic Programmers
Guide. The Programmers Guide defines three main steps for creating an application in Visual Basic:

1) Create the user interface.

2) Set the property values for the controls desired.

3) Write the code for the event procedures and any necessary support procedures.

The following description expands on the information presented in the Programmers Guide and attempts
to tailor the steps for programmers using the XCaliper controls.

The first step in building an XCaliper application is to add the XCaliper custom controls to Visual Basics
Toolbox. While this can be done manually, it can be automated by placing the custom control names
into the AUTOLOAD.MAK file. To add custom controls to the Toolbox manually, perform the following:

1) From the File menu, choose Add File. The Add File dialog box appears.

2) Open the directory which contains the XCaliper .VBX files. Select a .VBX file (XVBXIMG.VBX for
example) containing the custom controls desired and click the Ok button. The icons representing
the custom controls contained in that file should appear on the Toolbox.

3) Repeat step number two until all the controls required have been added to the Toolbox. The order
the files are added doesnt matter. There is no harm in adding controls to the Toolbox that may not
be used (provided there is sufficient RAM), as only the controls placed on a Form will be kept with
the application.

Before placing the XCaliper controls on a Form you will first have to decide which container to use for
the chosen image. The container is the control in which the image will appear. It is recommended that
you use a PictureBox that is placed within a Form. Using a Form directly, will cause the entire Form
to be used for image display. By employing a PictureBox, the image display area can be easily sized
and positioned according to the requirements of the application, as well as the constraints created by
other controls on the Form such as buttons, scroll bars, and text boxes.

Once you have decided on a container and have positioned it on the Form, begin placing XCaliper
controls on it. Either an ImageDevice control, or a MemoryBuffer control must be included in any
application in which you intend to make use of the XCaliper tools.

Assuming a frame grabber has been installed, (using a MemoryBuffer control is a very similar
process), select the ImageDevice icon on the Toolbox. Then, in the PictureBox (or whatever control
you are using as a container) drag out a small rectangle where you want to place a control. The actual

size and location of the rectangle is irrelevant as the control simply appears as an icon where youve
placed it and is not visible during run-time. Check to see if the XCALIPER.INI file has the correct name
of the driver for your frame grabber type. If XCaliper has not been configured to operate with your
frame grabber, change the DeviceFile property of the ImageDevice to the device driver file appropriate
for it. Certain drivers may also require special settings to be provided through the XCALIPER.INI file.

Once the correct driver has been loaded through the DeviceFile property, the remainder of the
ImageDevices properties should be set appropriately. For example, now would be a good time to set
the Name and Tag properties to something more descriptive. Verify that the ImageDevices
GrabMode, InputChannel, InputGain, InputOffset, and SyncMode properties are set appropriately and
that the Transparent property setting agrees with your card type. Improper values for any of these
properties could result in a poor or nonexistent image display.)

Once the image display is operating correctly, begin placing XCaliper processing tools on the image
container as desired. Once the Viewports are positioned and sized, the next step is to set their
properties according to your processing requirements. This will likely be an iterative process: your
processing requirements will change and become more detailed once you begin using and
experimenting with the tools.

When the tools have been configured in an appropriate fashion for the application, begin adding the
required code that will control how the tools process, and analyze their results. Typically, a skeletal
version of the code is implemented that allows the programmer to control and possibly configure the
tools during run-time (using buttons and scroll bars for example), as well as displaying specific results
(using label controls for example). This allows the programmer to experiment with various
configurations and settings early in the development cycle and use the insights gained to focus and
steer the application development process. This is one of the primary advantages of working in the
Visual Basic environment the ability to prototype and reconfigure an application quickly in order to
experiment and test various design options with a minimum of programming and debugging time.

The development cycle is completed by creating an executable (.EXE) version of the application when
you feel comfortable that it is complete and functioning correctly. This file can be run like any
other .EXE file. If you plan to distribute the application you will likely want to use one of the utilities by
Visual Basic for creating distribution disks. For more information on creating distribution disks, see
Chapter 25 of the Programmers Guide.

Accuracy
The degree of conformance between a measurement of an observable quantity and a recognized
standard or specification which indicates the true value of the quantity. Accuracy normally denotes
absolute quality or conformance; PRECISION refers to the level of detail used in reporting the results.

AnyAngle
A type of linear Viewport whose path can be along any angle of inclination. This differs from Horizontal
and Vertical Viewports since the angle of inclination of these Viewports are fixed at 0º and 270º
respectively.

Apply
The execution of the XCaliper tool on the region of the image inside the Viewport.

Arc
An open or closed circular or elliptical path. An arc is used to define a path over which edges or edge
pairs are searched. The size and curvature of an arc are defined by three points so that the arc passes
through each of the points.

ArcCaliper
An XCaliper Edge Locator tool used to find pairs of edges along a circular or elliptical Path.

ArcEdgeLocator
An XCaliper Edge Locator tool used to find single edges along a circular or elliptical Path.

AspectRatio
The ratio of the horizontal diameter to the vertical diameter of a closed curve ellipse.

Blob
An arbitrary group of connected pixels in an image. The group of pixels that make up a blob must
share a common or similar light intensity. A blob often represents a specific real world object for which
measurements need to be obtained for inspection.

Blob Analysis
The process of extracting blobs from an image is performed to obtain statistics and other information.
This information can then be used to determine presence or absence, location and many other
characteristics of the real-world objects which these blobs represent.

BlobAnalyzer
A blob extraction tool used to identify and analyze blobs in an image. Statistics for each blob are
produced for inspection and comparison against an ideal object for which the blob represents.

Caliper
The type of measurement tool supplied by XCaliper as a VBX control used to measure the distance
between a pair of edges. Candidate edges are found in a Viewport, then scored based on the active
Constraints for the application. Edges are then paired together by finding pairs of edges that match the
active Constrains.

Click
To position the cursor on top of a designated item using the mouse and press and release the primary
mouse button.

ClosedCurve
A Path which begins at the StartPoint, continues through the MidPoint and EndPoint, and completes an
arc back to the StartPoint.

Constraint
One of the criteria that XCaliper uses to evaluate an Edge or an Edge Pair. Each Constraint has an
Edge Evaluation Function and a Weight associated with it. The constraints are used to remove
unwanted edges from the candidate edge list.

Constraint Score
A numeric value within the range [0-1] that indicates how close the actual value of a constraint is to the
ideal value. A value of 1 would indicate a perfect match as determined by the Edge Evaluation
Function that has been defined for the constraint.

Container
A Visual Basic object in which you can place other controls. When the container is moved, the controls
inside it move with it. Thus, it is possible to group a series of controls together. Standard Visual Basic
comes with two containers: the Form and the Picture Box.

Convolution
A process whereby an image is transformed mathematically by applying a kernel which is a set of
multipliers applied to the neighborhood of each pixel. Applications of convolution include sharpening
and smoothing.

Cumulative Histogram
Similar to a standard histogram, except the function plotted is the frequency of occurrence of all intensity
values less than or equal to the current intensity value. As such, a cumulative histogram is always a
monotonically increasing function whose maximum value will be the total number of pixels contained
within the region of interest.

Difference Filter
A one dimensional array that is convolved with the projection to produce an Edge Intensity Graph. All
elements to the left of the center have the value -1, and all elements to the right of the center have the
value +1. The default filter size, the distance from the center point to the edge of the filter, is 2.

Discriminator
The first criteria that XCaliper uses to evaluate an Edge or an Edge Pair. Discriminators act as a very
fast evaluation criteria to remove any candidate edges that do not meet basic criteria. The
Discriminators available are Minimum Strength and Polarity, as well as Straddle which is only for Edge
Pairs.

Drag
The action involved in moving an object on the screen using the mouse. To drag an object is to position
the cursor over the object, depress the primary mouse button and hold the button down while moving
the mouse. When the desired action is completed, the mouse button is released.

E1 Position
An attribute that defines the location of the first edge of an Edge Pair. For a Viewport with inclination of
0, E1 is the leftmost edge of the Edge Pair.

E1 Strength
An attribute that defines the difference in light intensity across the first edge of an Edge Pair. For a
Viewport with inclination of 0, E1 is the leftmost edge of the Edge Pair.

E2 Position
An attribute that defines the location of the second edge of an Edge Pair. For a Viewport with
inclination of 0, E2 is the rightmost edge of the Edge Pair.

E2 Strength
An attribute that defines the difference in light intensity across the second edge of an Edge Pair. For a
Viewport with inclination of 0, E2 is the rightmost edge of the Edge Pair.

Edge
A rapid change in light intensity that spans several pixels between two adjacent regions of relatively
uniform values. Edges correspond to changes in brightness resulting from a discontinuity in surface
orientation, reflectance, or illumination.

Edge 1 (or E1)
The first edge of an Edge Pair. For a Viewport with inclination of 0, E1 is the leftmost edge of the Edge
Pair.

Edge 2 (or E2)
The second edge of an Edge Pair. For a Viewport with inclination of 0, E2 is the rightmost edge of the
Edge Pair.

Edge Evaluation Function (or EEF)
The Function that defines what Constraint Score is assigned by XCaliper to an active Constraint based
upon the deviation between the actual and ideal value of that Constraint.

Edge Strength
The array of gray scale values derived from the projection, with a width equal to the width of the
Viewport. The value for each element in the array corresponds to the change in light intensity between
two adjacent columns in the Viewport.

Edge Intensity Graph
The graph shows the strength of the edges found in the Viewport by plotting the strength across the
edges. It is the graph resulting from a filter convolution of the Projection.

EdgeLocator
The type of measurement tool supplied by XCaliper as a VBX control to measure the location of an
edge. Candidate edges are found in a Viewport, then scored based on the active Constraints for the
application.

Edge Pair
Two Edges in an image that are separated by a specific distance.

Edge Score
A numeric value within the range [0-1] that ranks each edge based on the sum of all the weighted scores
of active constraints. A value of 1 would indicate a perfect edge. When no constraints are active,
edges that pass the Discriminators are defined as having a value of 1.00.

EEF Point
One of the six points that define an Edge Evaluation Function. Three points are located on each side of
the Expected Position: one point to represent the cut off for acceptable positions, another to represent
the perfect Score area, and the third point to represent the rate of Score decay as the actual position
varies from the Expected Position.

EndPoint
The point on an open Path at which measurements terminate. For a closed Path, measurements
continue past this point to the StartPoint.

Expected Position
The ideal value for the Position constraint of an edge or edge pair, relative to the left side of the
Viewport.

Expected Size
The ideal value for the Size constraint of an edge or of each edge in an edge pair, relative to the left side
of the Viewport.

Feature
A type of statistic relating to a specific attribute of a blob. Examples of features include Area,
FormFactor, Orientation, etc. A complete list of features can be found in the BlobAnalyzer User's
Guide.

Fiducial
A mark or target defining a datum point or standard of positional reference used as a basis for
calculation or measurement.

Filtration
Filtration is the process of eliminating uninteresting blobs from an image. A filter describes a suitable
range of acceptable values of a feature for a blob to be accepted. Blobs whose features do not meet
the filter requirements are rejected.

Filter Size
The size of the filter that is applied to the projection of the Viewport. It is defined as the number of
elements in the filter to one side of the center element.

Frame Buffer
The memory designed to store a digitized image. Typically, it resides on a Frame Grabber card that
plugs into an expansion slot of a computer that is capable of capturing an image and storing it. A
window to the Frame Buffer can be identified on a VGA screen by the picture that can be seen in it.

Frame Grabber
A hardware device typically configured as a circuit board that plugs into a slot inside a personal
computer with on board circuitry to perform image acquisition, storage and display.

Frame Store
A block of memory in which an image is stored. The memory can be part of a frame grabber or the
computers system memory.

Histogram
A function plotting the frequency of occurrence of an intensity value as a function of those intensity
values. As such, a histogram illustrates the distribution of intensity values in a given region of interest
in an image.

HoleFill
Hole-filling fills holes in blobs so that background areas (and other blobs) which are inside a blob are
considered as part of that blob for the purpose of later analysis.

Ideal Value
The value of a constraint that would generate a perfect (1.00) Constraint Score.

Inclination
Describes the angle of inclination of a Viewport. Horizontal Viewports have a fixed inclination of 0º,
Vertical Viewports have a fixed inclination of 270º, and the inclination of AnyAngle Viewports can be
varied.

Labelization
The process of assigning unique identifiers or names to blobs. Labelization ensures that each blob in
an image can be referenced by a blob number.

Left Tail
The left tail is the intensity value below which a pre-defined percentage of intensity values fall. It is
sometimes desirable to treat intensity values below the left tail value as unreliable and to be discarded in
subsequent processing.

LightMeter
The LightMeter generates statistics of the intensity values inside a Viewport. The tool provides the
capability to obtain and manipulate a histogram of the intensity values. It also supports a Stats property
that allows the program designer and/or user to obtain a variety of statistical quantities derived from
these values.

Line
A straight line segment that is defined by two points. A line is used to define a path over which edges or
edge pairs are searched. A line can be positioned between any two points at any angle.

LineCaliper
An XCaliper Edge Locator tool used to find pairs of edges along a straight line Path. The path can be
Horizontal, Vertical or at AnyAngle.

LineEdgeLocator
An XCaliper Edge Locator tool used to find single edges along a straight line Path. The path can be
Horizontal, Vertical or at AnyAngle.

Mask
A method of segmentation that allows a binary bitmap to specify the foreground and background of an
image on a pixel by pixel basis. The bitmap is set using the BlobAnalyzer's Mask property.

MidPoint
The point on a Path between the StartPoint and the EndPoint used to define the radius of curvature.

Minimum Accept Threshold
The minimum acceptable Edge Score for an Edge or Edge Pair to be accepted as valid. An Edge (in
the case of an Edge Locator) or Edge Pair (in the case of a Caliper) with a lower Edge Score than the
Minimum Accept Threshold will be discarded.

Minimum Strength
The minimum acceptable Edge Strength for an edge. An edge that has a strength value less than the
Minimum Strength will be discarded.

Noise
Irrelevant or meaningless image information resulting from random undesirable video signals, or causes
unrelated to the source of data being measured or inspected.

OpenCurve
The Path which begins at the StartPoint, and finishes at the EndPoint.

Origin
The edge of the Viewport from which all measurements are made. The origin of the Viewport for an
edge tool is defined by the StartPoint.

Overlay
A graphics plane that typically exists on top of a frame buffer to display graphics. For example, the
Viewport is an overlay on the Frame Buffer image. Generally, an overlay is the video plane that
appears on top on a video monitor when two or more video signals are mixed.

Pair Position
The midpoint between the two edges that make up the Edge Pair, measured relative to the origin of the
Viewport. For a Viewport with 0 inclination, the origin is the left side of the Viewport.

Pair Size
The distance (in user units) between the two edges that make up the Edge Pair.

Path
The path defines the course which is followed when scanning for edges. A path can be a line that is
Horizontal, Vertical, at AnyAngle, and even circular or elliptical. A path and its thickness define a
Viewport.

Pixel Jitter
An error introduced into a digitized image caused by Analog to Digital Converters attempting to lock
sync with the video camera by picking up the horizontal sync pulse using Phase-Locked-Loop (PLL)
circuitry. It arises when the horizontal sync for each scan line drifts slightly from the expected position,
causing the position of all the horizontal picture elements to be shifted by an equal amount in the scan
line.

Polarity
An attribute of an edge that indicates the type of transition in light intensity across the edge. A light to
dark transition is said to have a Negative Polarity, whereas a dark to light transition is said to have a
Positive Polarity. The polarity of an edge is viewed as occurring from the origin to the opposite side of a
Viewport.

Position
An attribute of an edge that indicates the edges position relative to the origin of the Viewport. For a
Viewport with inclination of 0, the origin is the left side of the Viewport.

Precision (of a Path)
The precision of a path defines the number of iterations that are used when finding the projection of a
Viewport. Each iteration is performed at a slightly different location in the pixel grid so that a better
average of light intensity along a path can be obtained. The precision only applies to AnyAngle linear
paths or Arc (circular or elliptical) paths.

Projection
An array of values with a width equal to the width of the Viewport. The value for each element in the
array corresponds to the average light intensity for each pseudo column. A pseudo column is the
column of pixels which are perpendicular to the path of the Viewport (unless a non-zero Skew is
specified) and whose height is defined by the thickness of the Viewport.

Region of Interest
The area of an image inside defined boundaries that encloses all the features that are to be inspected.

Repeatability
The amount by which repeated measurements of the same quantity and same operating conditions vary
from their mean.

Right Tail
The right tail is the intensity value above which a pre-defined percentage of intensity values fall. It is
sometimes desirable to treat intensity values above the right tail value as unreliable and to be discarded
in subsequent processing.

Segmentation
Segmentation is the job of separating of an image into foreground and background, determining which
pixels belong to blobs and which belong to the background.

Skew
Normally edge tools find edges that are perpendicular to the Path. Specifying a nonzero skew will
cause edges to be detected that are at an angle with respect to the path.

StartPoint
The point on a Path from which all measurements are made. For a Horizontal Line Path, the StartPoint
is its leftmost edge.

Statistics
Statistics describe various dimensional and characteristic information about an object they represent in
a numeric format. A complete list of statistical types that are supported by the tool can be found in the
User Guide.

Straddle
An attribute of an Edge Pair defining the condition where the E1 edge is closer to, and the E2 edge
farther away from the origin of the Viewport than the mid point between the two Expected Positions of
each edge. Used as a Discriminator to eliminate those Edge Pairs that do not meet this condition.

Strength
A attribute of an edge that indicates the magnitude of the change in light intensity across the edge.

Tail Size
The tail size is set by the programmer and is the percentage of intensity values to be included as part of
the left/right tail.

Teach
A Teach must be performed whenever a new path or thickness is defined. A teach is performed so that
XCaliper can generate an address map for a new path so that all subsequent calls to Apply to find new
edges can be performed quickly. A Teach need only be performed for AnyAngle or Arc Viewports.

Thickness
The thickness of a Viewport defines the number of pixels over which the profile or projection of a
Viewport is calculated. For Horizontal and Vertical Viewports the thickness is defined as the height or
the width of the Viewport, respectively. For AnyAngle or Arc Viewports the thickness is defined by the
Thickness property of the Edge Tool.

Threshold
A threshold value is used in the process of Segmentation to separate an image into foreground and
background. Two threshold values, UpperThreshold and LowerThreshold, are used to identify the
foreground and background. Pixels whose light intensities are above the UpperThreshold and below
the LowerThreshold will be assigned to foreground and background based upon the BlobType property
of the BlobAnalyzer. Pixels whose light intensities lie between the UpperThreshold and the
LowerThreshold are considered as transitional pixels.

Underlay
The video plane that appears on a video monitor underneath another plane when two or more video
signals are mixed.

VBX (or Visual Basic Extension)
A form of a Dynamic Linked Library (or DLL) that is callable from Microsoft Visual Basic for Windows.
XCaliper is in the form of a VBX to allow programmers to generate complete applications with powerful
graphical user interfaces that are easy to program.

Value
The raw result obtained for a constraint from the application of the edge tool.

VGA Pass Through
A type of Frame Buffer that allows images to be displayed on a VGA computer monitor. The image
display appears behind the VGA screen, and by writing a specific color to a window on the screen, the
VGA will become transparent in that window, displaying a portion of the Frame Buffer.

Viewport
The region of interest of the Frame Buffer that is defined by the window of the XCaliper Tool. A
Viewport can be described by a Path and Thickness. Viewports can be Horizontal, Vertical, AnyAngle,
or along an Arc.

Weight
A relative value placed upon a Constraint that is used by XCaliper to assign the importance given that
Constraint during the evaluation of edges or edge pairs. The weight is expressed as a percentage,
where a greater percentage gives a constraint greater influence in the final Edge Score. The sum of all
weights is 100%.

Weighted Score
A numeric value within the range [0-1] that is a product of the Constraint Score and the Weighting for
that constraint. This value is used to generate the Edge Score.

WeightTable
An array which specifies the percentage of each pixel in an image to be attributed to foreground and
background based on its intensity.

Glossary

A
Accuracy
AnyAngle
Apply
Arc
ArcCaliper
ArcEdgeLocator
AspectRatio

B
Blob
Blob Analysis
BlobAnalyzer

C
Caliper
Click
ClosedCurve
Constraint
Constraint Score
Container
Convolution
Cumulative Histogram

D
Difference Filter
Discriminator
Drag

E
E1 Position
E1 Strength
E2 Position
E2 Strength
Edge
Edge 1 (or E1)
Edge 2 (or E2)
Edge Evaluation Function (or EEF)
Edge Intensity Graph
Edge Locator
Edge Pair
Edge Score
Edge Strength
EEF Point
EndPoint
Expected Position
Expected Size

F
Feature

Fiducial
FiltrationD
Filter Size
Frame Buffer
Frame Grabber
Frame Store

H
Histogram
HoleFill

I
Ideal Value
Inclination

L
Labelization
Left Tail
LightMeter
Line
LineCaliper
LineEdgeLocator

M
Mask
MidPoint
Minimum Accept Threshold
Minimum Strength

N
Noise

O
OpenCurve
Origin
Overlay

P
Pair Position
Pair Size
Path
Pixel Jitter
Polarity
Position
Precision (of a Path)
Projection

R
Region of Interest
Repeatability
Right Tail

S
Segmentation
Skew
StartPoint
Statistics
Straddle
Strength

T
TailSize
Teach
Thickness
Threshold

U
Underlay

V
VBX (or Visual Basic Extension)
Value
VGA Pass Through
Viewport

W
Weight
WeightTable
Weighted Score

Clear Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Clears the contents of the Frame Store to a specified color in the area covered by this control.

Syntax

[form.]control.Command [= command$]
Command

"Clear color "
Remarks

color should be the value which is to be written to the frame store. This is defined as a Visual Basic
color exactly like the BackColor property. However, for monochrome Frame Buffers, the value should
be in the range (0,255) inclusive.

Example
ImgDevice1.command = "Clear &HFF&"

Set the entire frame buffer to the value &HFF& (255 decimal)

Data Type
String

Close Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Performs a morphological close on contents of the Frame Store in the area covered by this control.

Syntax

[form.]control.Command [= command$]
Command

"Close [SourceImage] Size"
Remarks

A closing of size n is equivalent to an dilation of size n followed by an erosion of size n. As such, it
tends to remove small particles and holes within objects. The Size gives the diameter in pixels of the
area over which the operation takes places. Size 1 implies that the erosion and dilation take place over
a 3 x 3 neighborhood. Size 2 is 5 x 5, and so on.

The optional SourceImage argument corresponds to the Tag property of the desired source. Any
XCaliper tool may be used as the source. If not supplied, the source is taken to be the same as the
destination.

The area of the image saved includes all that is under the tool in question. For an ImageDevice
control, this is the area specified by the InputPan, InputScroll, InputSizeX and InputSizeY properties.
For a MemoryBuffer, it is the entire buffer. For ImageHook tools, it is restricted to the visible portion of
the buffer while for BlobAnalyzer and LightMeter tools, it is the area covered by the tools Viewport.

Example
ImgDevice1.command = "Close 2"

Apply a size 2 closing to the entire frame buffer.

Data Type
String

Convolve Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
The Convolve command performs a convolution on the image area using the kernel specified as an
argument.

Syntax

[form.]control.Command [= command$]
Command

"Convolve [sourceImage] kernelWidth kernelHeight elements... "
Remarks

The Convolve command string defines what kernel should be used for the convolution and what the
source image should be. The following is a description of each of the elements of the string:

Setting Description
sourceImage Corresponds to the contents of the Tag property of

the desired source. Any BlobAnalyzer,
LightMeter, ImageDevice, ImageHook, or
MemoryBuffer may be used as the source. As
always the value of the Tag property must be unique.
This argument is optional; the default is make the
source the same as the destination.

kernelWidth The width of the kernel in pixels. Must be a positive
odd number. Currently, only 3 x 3, 5 x 5, and 7 x 7
kernels are supported.

kernelHeight The height of the kernel in pixels. Must be a
positive odd number. Currently only 3 x 3, 5 x 5,
and 7 x 7 kernels are supported.

elements A list of the kernel multipliers. The list is given in
row-major order from top-left to bottom-right. Of
course the number of elements must be equal to
kernelHeight x kernelWidth.

XCaliper recognizes most common kernels and uses short cuts to speed up the operation. For
example, the vertical edge detector shown in the second example below is among those detected. The
program will recognize that the zero-entries in the kernel have no effect on the result and that the others
can be performed using simple shifts, negations and adds; multiplications are not necessary.

Another consideration regarding speed of the operation is that it is faster to Convolve from one image to
another as opposed to convolving an image back to itself. This is because it is not necessary to buffer
the source when convolving from one image to another.

Since the result of any convolution is greater than 8 bits, XCaliper automatically normalizes the result to
fit into the frame buffer using the following rules based on the characteristics of the kernel elements:

Kernel format Assumed Type Normalization Method
Sum of the kernel is zero Edge detector Take absolute value and clip values

greater than 255.

Sum of the kernel is one Sharpening Clip values less than zero to 0, and
values greater than 255 to 255.

Sum of the kernel is greater
than one with no negative
values

Averaging Divide the result by the sum of the
kernel values.

Sum of the kernel is greater
than one with at least one
negative value

Gaussian smoothing Divide the result by the sum of the
kernel values and clip values less
than zero to 0, and values greater
than 255 to 255.

The file, XCALIPER.TXT, contains definitions for several frequently-used kernels. The designer may
wish to use these or construct custom kernels as desired. The following kernels are pre-defined:

Kernel Name Description Kernel Elements
VerticalSobel Vertical edge detector using the

Sobel kernel
-1 -2 -1
 0 0 0
 1 2 1

HorizontalSobel Horizontal edge detector using
the Sobel kernel

-1 0 1
-2 0 2
-1 0 1

Average 3 x 3 averaging (or smoothing) 1 1 1
 1 1 1
 1 1 1

Average5 5 x 5 averaging (or smoothing) 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1
 1 1 1 1 1

Average7 7 x 7 averaging (or smoothing) 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1
 1 1 1 1 1 1 1

SharpLow 3 x 3 sharpening with a
Gaussian neighborhood

 1 -2 1
-2 5 -2
 1 -2 1

Sharp5Low 5 x 5 sharpening with a
Gaussian neighborhood

-8 -5 -2 -5 -8
-5 3 9 3 -5
-2 9 33 9 -2
-5 3 9 3 -5

-8 -5 -2 -5 -8

Laplacian 3 x 3 omni-directional edge
detector

-1 -1 -1
-1 8 -1
-1 -1 -1

Laplacian5 5 x 5 edge detector with a
Gaussian neighborhood

-8 -5 -2 -5 -8
-5 3 9 3 -5
-2 9 32 9 -2
-5 3 9 3 -5
-8 -5 -2 -5 -8

Sharpening 3 x 3 sharpening with an
averaging neighborhood

-1 -1 -1
-1 9 -1
-1 -1 -1

Sharp5 5 x 5 sharpening with an
averaging neighborhood

-1 -1 -1 - 1 -1
-1 -1 -1 -1 -1
-1 -1 25 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

Sharp7 7 x 7 sharpening with an
averaging neighborhood

-1 -1 -1 - 1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 49 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1

 Examples

ImgDevice1.command = "Convolve " + Membuf1.Tag + Sharpen

Convolve the image contained in Membuf1 using the kernel named in the global constant Sharpen and
place the result into ImgDevice1.

ImgDevice1.command = "Convolve 3 3 -1 -2 -1 0 0 0 1 2 1"

Convolve the image contained in ImgDevice1 using the specified 3 x 3 kernel and place the result back
into ImgDevice1.

Data Type
String

Copy Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Copies the contents of another control into the area of the Frame Store covered by the current control.

Syntax

[form.]control.Command [= command$]
Command

"Copy sourceImage "
Remarks

sourceImage should be the value of the Tag property of the control which is to be copied.

The area of the image copied includes all that is under the tool in question. For an ImageDevice
control, this is the area specified by the InputPan, InputScroll, InputSizeX and InputSizeY properties.
For a MemoryBuffer, it is the entire buffer. For ImageHook tools, it is restricted to the visible portion of
the buffer while for BlobAnalyzer and LightMeter tools, it is the area covered by the tools Viewport. If
copying an arbitrary area within a buffer is desired, it is recommended that a LightMeter be used for the
task as it uses fewer resources than a BlobAnalyzer.

Example
ImgDevice1.command = "Copy " + + Membuf1.Tag

Data Type
String

Dilate Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Performs a morphological dilation on the contents of the Frame Store in the area covered by this control.

Syntax

[form.]control.Command [= command$]
Command

 "Dilate [SourceImage] Size "
Remarks

A dilation replaces each pixel in the Frame Buffer with the maximum value of the pixels in its
neighborhood. The Size gives the diameter of the neighborhood in pixels. Thus, a Size 1 dilation
replaces each pixel by the maximum value over a 3 x 3 neighborhood (itself and the eight pixels which
touch it). Size 2 implies that the maximum value over a 5 x 5 neighborhood (25 nearest pixels) is
taken.

The optional SourceImage argument corresponds to the Tag property of the desired source. Any
XCaliper tool may be used as the source. If not supplied, the source is taken to be the same as the
destination.

Example
ImgDevice1.command = "Dilate 2

Apply a size 2 dilation to the entire frame buffer

Data Type
String

Erode Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Performs a morphological erosion on the contents of the Frame Store in the area covered by this
control.

Syntax

[form.]control.Command [= command$]
Command

 "Erode [SourceImage] Size "
Remarks

A erosion replaces each pixel in the Frame Buffer with the minimum value of the pixels in its
neighborhood. The Size gives the diameter of the neighborhood in pixels. Thus, a Size 1 dilation
replaces each pixel by the maximum value over a 3 x 3 neighborhood (itself and the eight pixels which
touch it). Size 2 implies that the maximum value over a 5 x 5 neighborhood (25 nearest pixels) is
taken.

The optional SourceImage argument corresponds to the Tag property of the desired source. Any
XCaliper tool may be used as the source. If not supplied, the source is taken to be the same as the
destination.

Example
ImgDevice1.command = "Erode 2

Apply a size 2 erosion to the entire frame buffer

Data Type
String

LoadFile Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Loads an image file from a disk or diskette into the image memory. Currently, the only format
supported is Windows .BMP.

Syntax

[form.]control.Command [= command$]
Command

 "LoadFile filename "
Remarks

This command reads an image from storage media (e.g. hard or floppy disks) into the Frame Store of
the specified control. The image will be placed in the frame store starting at the point in the Frame
Buffer underneath the upper left corner of the control. It will be clipped to the limits of that control
(exception: reading an image into a MemoryBuffer with the AutoSize property set to True will cause the
size of the buffer to be changed to that of the image).

In a Future release, XCaliper will support a Viewport tool designed to process an arbitrary window in the
Frame Buffer. In the current version, it is suggested that a LightMeter be used instead.

The area of the image loaded includes all that is under the tool in question. For an ImageDevice
control, this is the area specified by the InputPan, InputScroll, InputSizeX and InputSizeY properties.
For a MemoryBuffer, it is the entire buffer. For ImageHook tools, it is restricted to the visible portion of
the buffer while for BlobAnalyzer and LightMeter tools, it is the area covered by the tools Viewport. If
loading a window within a buffer is desired, it is recommended that a LightMeter be used for the task as
it uses fewer resources than a BlobAnalyzer.

Data Type
String

Median Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Performs a median filter on the contents of the Frame Store in the area covered by this control.

Syntax

[form.]control.Command [= command$]
Command

"Median width height "
Remarks

A median filter replaces each pixel in the frame buffer with the median value of the pixels in its
neighborhood. A median filter has the desirable effect of decreasing noise in the image without blurring
edges.

The width and height specify the neighborhood over which the filter is applied. Both must be odd
numbers greater than 3.

This filter uses a proprietary algorithm which is quite fast. Even large filters can be applied in an
acceptable amount of time.

The area of the image processed includes all that is under the tool in question. For an ImageDevice
control, this is the area specified by the InputPan, InputScroll, InputSizeX and InputSizeY properties.
For a MemoryBuffer, it is the entire buffer. For ImageHook tools, it is restricted to the visible portion of
the buffer while for BlobAnalyzer and LightMeter tools, it is the area covered by the tools Viewport. If
loading a window within a buffer is desired, it is recommended that a LightMeter be used for the task as
it uses fewer resources than a BlobAnalyzer.

Example
ImgDevice1.command = "Median 7 7

Apply a 7 x 7 median to the entire frame buffer

Data Type
String

Open Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Performs a morphological opening on the contents of the Frame Store in the area covered by this
control.

Syntax

[form.]control.Command [= command$]
Command

 "Open [SourceImage] Size "
Remarks

A opening of size n is equivalent to an erosion of size n followed by a dilation of size n. As such, it
tends to disconnect joined objects and to enlarge holes. The Size gives the diameter in pixels of the
area over which the operation takes place. Size 1 implies the erosion and dilation take place over a 3 x
3 neighborhood. Size 2 is 5 x 5, and so on.

The optional SourceImage argument corresponds to the Tag property of the desired source. Any
XCaliper tool may be used as the source. If not supplied, the source is taken to be the same as the
destination.

The area of the image processed includes all that is under the tool in question. For an ImageDevice
control, this is the area specified by the InputPan, InputScroll, InputSizeX and InputSizeY properties.
For a MemoryBuffer, it is the entire buffer. For ImageHook tools, it is restricted to the visible portion of
the buffer while for BlobAnalyzer and LightMeter tools, it is the area covered by the tools Viewport.

If processing an arbitrary area within a buffer is desired, it is recommended that a LightMeter be used
for the task as it uses fewer resources than a BlobAnalyzer.

Example
ImgDevice1.command = "Open 2

Apply a size 2 opening to the entire frame buffer

Data Type
String

SaveFile Command

Applies To
ImageDevice, ImageHook, MemoryBuffer, LightMeter, BlobAnalyzer

Description
Save an image from the image memory on to a disk or diskette.

Syntax

[form.]control.Command [= command$]
Command

"SaveFile FileName "
Remarks

This command saves a copy of the image from the specified control to storage media (e.g. hard or
floppy disks).

The area of the image saved includes all that is under the tool in question. For an ImageDevice
control, this is the area specified by the InputPan, InputScroll, InputSizeX and InputSizeY properties.
For a MemoryBuffer, it is the entire buffer. For ImageHook tools, it is restricted to the visible portion of
the buffer while for BlobAnalyzer and LightMeter tools, it is the area covered by the tools Viewport. If
loading a window within a buffer is desired, it is recommended that a LightMeter be used for the task as
it uses fewer resources than a BlobAnalyzer.

Data Type
String

TuneInput Command

Applies To
ImageDevice, ImageHook, LightMeter, BlobAnalyzer

Description
Automatically adjusts the gain and offset of the underlying ImageDevice in an attempt to obtain an
optimal setting.

Syntax

[form.]control.Command [= command$]
Command

 "TuneInput"
Remarks

This command attempts to optimize the distribution of image intensity values within the tools Viewport
by inspecting its Histogram and then adjusting the gain and offset of the underlying ImageDevice
appropriately.

Several successive images will be acquired and the information re-examined after each one.
Therefore in order to work, the tool must be placed on an ImageDevice (not a MemoryBuffer) over the
grab window.

For the purposes of this command, optimal refers to the histogram range being set as large as possible
while ensuring there is no signal saturation.

Data Type
String

Applied Event
Applies To

LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
Occurs after a control is applied.

Syntax
Sub control_Applied (Index As Integer)

Remarks
The argument Index uniquely identifies a control that belongs to a control array. Typically, the Applied
event is used to detect automatic execution of the tool when moved or sized. However, the event will
occur every time the tool is applied whether through programmer or user action.

Click Event

Applies To
LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
Occurs when the user presses and then releases a mouse button over an object. It may also occur
when the value of a control is changed.

Syntax
Sub ctlname_Click (Index As Integer)
Sub BlobAnalyzer_Click(Index As Integer, BlobNumber As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array. Typically, you attach a Click
procedure to a control to carry out commands and command-like actions.

The argument BlobNumber supplies the number of the blob over which the action took place in the
range 0 to BlobTool.Count - 1. If the action took place on the background of the image, not over a
blob, then the BlobNumber will be -1.

Note: To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

DblClick Event

Applies To
LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
Double-clicking on a tools Viewport will cause a DblClick event to occur. For the edge tools and
BlobAnalyzer, double-clicking on the Viewport will also invoke the appropriate Setup Dialog boxes, if
the UserInterface property is set to SetupOnly or Enable All.

Syntax
Sub control_DblClick (Index As Integer)
Sub BlobAnalyzer_DblClick(Index As Integer, BlobNumber As Integer)

Remarks
The argument Index uniquely identifies a control that belongs to a control array. The BlobNumber
argument is added in the BlobAnalyzer tool. It identifies the number of the blob over which the
DblClick took place. It will be -1 if the click took place on the background instead.

If the UserInterface property is set to cause a dialog box to appear on double-click, then the box will be
displayed before the DblClick event occurs. Refer to the Visual Basic Language Reference for a more
detailed explanation of the DblClick event.

MouseDown, MouseUp Events
Applies To

LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer,

Description
Occur when the user presses (MouseDown) or releases (MouseUp) a mouse button.

Syntax
Sub ctlname_MouseDown ([Index As Integer,]Button As Integer, Shift As Integer, X As Single, Y As
Single)

Sub ctlname_MouseUp ([Index As Integer,]Button As Integer, Shift As Integer, X As Single, Y As
Single)

Sub BlobAnalyzer_MouseDown ([Index As Integer,]Button As Integer, Shift As Integer, X As Single,
Y As Single, BlobNumber As Integer)
Sub BlobAnalyzer_MouseUp ([Index As Integer,]Button As Integer, Shift As Integer, X As Single, Y
As Single, BlobNumber As Integer)

Remarks
These events work the same as the standard mouse events except for the case of the BlobAnalyzer
tool, which has the additional parameter, BlobNumber. The BlobNumber is an integer that specifies the
currently selected blob in the image. If the background is selected, the value of BlobNumber is defined
to be -1. This can be used to create an interactive application with blob data being reported according
to where the user is pointing the mouse.

The MouseDown and MouseUp events use these arguments:

Argument Description
Index Uniquely identifies a control if it is in a control array.

Button The button was pressed (MouseDown) or released (MouseUp) to
cause the event. The Button argument is a bit field with bits
corresponding to the left button (bit 0), right button (bit 1), and middle
button (bit 2)values 1, 2, and 4, respectively. Only one of the bits is set,
indicating which button caused the event.

Shift The state of the Shift, Ctrl and Alt keys when the button specified in the
Button argument was pressed or released. A bit is set if the key is
down. The Shift argument is a bit field, with the least-significant bits
corresponding to the Shift key (bit 0), the Ctrl key (bit 1), and the Alt key
(bit 2). These bits correspond to the values 1, 2, and 4, respectively.
Shift indicates the state of these keys. Some, all, or none of the bits
can be set, indicating that some, all, or none of the keys is pressed.
For example, if both Ctrl and Alt were pressed, the value of Shift would
be 6.

X, Y The current location of the mouse pointer. X and Y are always
expressed in terms of the coordinate system set by the ScaleHeight,
Scale Width, ScaleLeft, and ScaleTop properties of the container.

BlobNumber Specifies the index of the blob that was under the mouse pointer when
the event occured. This only applies to the BlobAnalyzer.

Use a MouseDown or MouseUp procedure to specify actions to occur when a given mouse button is
pressed or released. Unlike the Click and DblClick events, MouseDown and MouseUp events allow

you to distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the Shift, Ctrl, and Alt keyboard modifiers.

The following applies to both Click and DblClick events:

If a mouse button is pressed while the pointer is over a form or control, that object "captures" the mouse
and receives all mouse events up to and including the last MouseUp event. This implies that the X, Y
mouse-pointer coordinates given by a mouse event may not always be in the client area of the object
that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse after the first press
receives all mouse events until all buttons are released.

If you need to test for the Button or Shift arguments, you can declare constants that define the bits within
the argument by loading the CONSTANT.TXT file into a module.

These mouse button constants have the following values:

Constant Value
LEFT_BUTTON 1

RIGHT_BUTTON 2

MIDDLE_BUTTON 4

SHIFT_MASK 1

CTRL_MASK 2

ALT_MASK 4

These constants are in CONSTANT.TXT. The constants then act as bit masks you can use to test for
any combination of buttons without having to figure out the unique bit field value for each combination.

Note: You can use a MouseMove procedure to respond to an event caused by moving the mouse.
The Button argument for MouseDown and MouseUp differs from the Button argument used for
MouseMove. For MouseDown or MouseUp, the Button argument indicates exactly one button per
event; for MouseMove, it indicates the current state of all buttons.

MouseMove Event
Applies To

LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer,

Description
Occurs when the user moves the mouse.

Syntax
Sub ctlname_MouseMove ([Index As Integer,] Button As Integer, Shift As Integer, X As Single, Y As
Single)

Sub BlobAnalyzer_MouseMove ([Index As Integer,] Button As Integer, Shift As Integer, X As
Single, Y As Single, BlobNumber As Integer)

Remarks
The MouseMove event uses these arguments:

Argument Description
Index Uniquely identifies a control if it is in a control array.

Button The state of the mouse buttons, in which a bit is set if the button is down.
The Button argument is a bit field, with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2)values 1, 2, and
4, respectively. It indicates the complete state of the mouse buttons;
some, all, or none of these three bits can be set, indicating that some, all,
or none of the buttons is pressed.

Shift The state of the Shift, Ctrl and Alt keys. Bit is set if the key is down.
The Shift argument is a bit field, with the least-significant bits
corresponding to the Shift key (bit 0), the Ctrl key (bit 1), and the Alt key
(bit 2). These bits correspond to the values 1, 2, and 4, respectively.
Shift indicates the state of these keys. Some, all, or none of the bits can
be set, indicating that some, all, or none of the keys is pressed. For
example, if both Ctrl and Alt were pressed, the value of Shift would be 6.

X ,Y The current location of the mouse pointer. X and Y are always
expressed in terms of the coordinate system set by the ScaleHeight,
Scale Width, ScaleLeft, and ScaleTop properties of the container.

The MouseMove event is generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

If you need to test for the Button or Shift arguments, you can declare constants that define the bits within
the argument by loading the CONSTANT.TXT file into a module. These mouse button constants have
the following values:

Constant Value
LEFT_BUTTON 1

RIGHT_BUTTON 2

MIDDLE_BUTTON 4

SHIFT_MASK 1

CTRL_MASK 2

ALT_MASK 4

These are in CONSTANT.TXT. The constants act as bit masks you can use to test for any combination
of buttons without having to figure out the unique bit field value for each combination.

You test for a condition by first assigning each result to a temporary integer variable and then comparing
the Button or Shift arguments to a bit mask. Use the And operator with each argument to test if the
condition is greater than zero, indicating the key or button is pressed. For example:

LeftDown = (Button And LEFT_BUTTON) > 0
CtrlDown = (Shift And CTRL_MASK) > 0

Then, in a procedure, you can test for any combination of conditionsfor example:
If LeftDown And CtrlDown Then

Note: You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.

The Button argument for MouseMove differs from the Button argument for MouseDown and MouseUp.
For MouseMove, the Button argument indicates the current state of all buttons; a single MouseMove
event can indicate that some, all, or no button is pressed. For MouseDown or MouseUp, the Button
argument indicates exactly one button per event.

Any time you move a window inside a MouseMove event, it can cascade. MouseMove events are
generated when the window moves underneath the pointer. A MouseMove event can be generated
even if the mouse is perfectly stationary.

 XCaliper Version 1.6 Release Notes

PLEASE READ THE CONTENTS OF THIS DOCUMENT PRIOR TO THE
USE OF XCaliper.

INDEX
1. Introduction
2. Contents of XCaliper Package
3. New Features
4. Known Bugs and Unimplemented Features
5. Driver Notes

 Introduction

Welcome to the XCaliper software library. These release notes present information about new
features, enhancements and fixes in this release. It also descibes information which is specific to
individual frame grabbers.

Release 1.6 is a minor release of XCaliper. The main reason for this release is to add support for new
board drivers. In addition it incorporates some bug fixes, APIs and an emulation of continuous
grabbing on the VGA monitor.

 Contents of the XCaliper Package

The complete XCaliper package includes four 3.5" diskettes, a software key, and
a manual. The XCaliper distribution diskettes include the following list of
files:

- XCaliper Visual Basic extensions (VBXs)
- Supported frame grabber drivers
- Visual Basic source files for the tutorial
- Visual Basic source files for a sample application
- Blob and edge tools demonstrations
- Visual Basic source files for the demonstrations
- Xiris Image Processor (XIP) software
- Bit mapped images
- Help files

 New Features

XIP

XIP, Xiris Image Processor, is an application built using the XCaliper image processing library. XIP is
not intended to solve any applications. Instead, it has two purposes:
1) a demonstration tool to illustrate the capabilities of the VBX library and the power of applications built

around a combination of XCaliper and other Visual Basic Extensions;
2) a prototyping tool used to exercise the tool kit, and to see how it reacts to images of actual vision

problems.

XIP can be used to acquire images of actual parts, to analyze them and to see how the XCaliper tools
can be used to extract measurements. Any supported frame grabber can be used. It is also possible
to work without a frame grabber, using system memory and the system display instead.

Continuous Grab Emulation

It is now possible to perform continuous grabbing even when the hook'sTransparent property is set to
NonTransparent. This is done by repeatedly copying from the frame buffer into the VGA memory.

The way that the system reacts to a request for continuous grab in non-transparent mode depends on
the setting of the ImageDevice ContGrabType property. See the manual for further details.

Note that in order to support this new mode, the Bitflow Raptor driver has been updated. This is
because this driver incorporated its own emulation of continuous grabbing. This internal mode has
been discarded. Other drivers are not affected.

New Commands

XCaliper has significantly expanded the list of image processing algorithms supported. As well as
convolutions, it now supports median filters and the morphological operations of opening, closing,
erosion and dilation. The median filter uses a proprietary algorithm which is extremely fast. Do not be
afraid to use it even with very large neighborhoods (say, 20 x 20).

New Properties

Property Description
 ActiveControl Returns the tag value of the currently

selected XCaliper control.
ContGrabType Selects how the system will react to an

attempt to enable continuous grabbing in
non-transparent mode.

New APIs
Four new APIs are included in this version. They are:

API Description
ImgOpGetDib obtain a Device-independent Bitmap

representation of a region of interest in a

frame buffer
ImgOpReleaseDib release access to a DIB obtained through a

call to ImgOpGetDib
ImgOpGetDib obtain a Device-independent Bitmap

representation of a region of interest in a
frame buffer

ImgOpGetDib obtain a Device-independent Bitmap
representation of a region of interest in a
frame buffer

 Known Bugs and Unimplemented Features

Controls Don't Zoom
The controls in a container do not zoom when the underlying device has its Zoom properities change.
This is largely a visual representation problem, hence switching between zoom and non-zoom modes at
different points in the application may be required.

 Driver Notes

XCaliper drivers are kept in DLLs which conform to a special interface specification and which are
loaded by the XCaliper image manager (xlibimg.dll). Xiris is in the process of expanding the list of
supported hardware. As a consequence new drivers may be available at any given time. This section
gives some information about special considerations associated with each of the drivers currently
supported.

The following list is ordered alphabetically by company name and board name.

Bitflow
Coreco
Dipix
Imaging Technologies
Matrox
Sharp

 Bitflow

Bitflow
21-G Olympia Avenue, #80
Woburn, MA
01801
Tel: (617) 932-2900
FAX (617) 933-9965

Raptor -------- xdrvrap.dll

There are no special considerations to using the Raptor with XCaliper. Assuming that the Bitflow demo
programs work and that the installation instructions on pages 13-14 of the Bitflow installation and User
Guide have been followed, the system should be ready to use with XCaliper.

The Bitflow card has seven inputs. The InputChannel property of the ImageDevice maps these as
follows:

0 Analog Input 0
1 Analog Input 1
2 Analog Input 2
3 Analog Input 3
4 8-bit Digital Input
5 16-bit Digital Input
6 32-bit Digital Input

This property must match the value selected in the Bitflow syscon program. For example, if you are
using a digital camera, then a digital input must be selected.

 Coreco

Coreco
6969 Trans Canada Highway, Suite 113
Ville St-Laurent, Quebec
H4T 1V8
Tel: (514) 333-1301
US Toll free: 1-800-361-4997

This company provides a DOS TSR (Terminate and Stay Resident) program which interfaces to the
board. In order to use XCaliper with Coreco hardware, the TSR must be installed.

Use of memory-mapped access to the frame buffer is recommended as it is significantly faster. If this is
done, the memory must be enabled on the bus using the Coreco setup program. XCaliper will
automatically recognize that the memory has been enabled and where. Your system.ini should contain
an EMMExclude statement which prevents Windows from using the associated bus addresses. If you
are using emm386 or an equivalent memory manager, it should suppress usage of these addresses as
well.

Coreco claims that their device drivers provide a consistent interface across their entire family. In
practice they don't quite achieve this although they come close. As a consequence, our driver may work
with any card in the product line. It has been tested with the TCX, MX and F-64. It is not likely to work
with other boards (although this is possible) but a port should be simple and easy.

F-64 ---------- xdrvtcx.dll
Use with a 640 x 480, 800 x 600 or 1024 x 768 Super VGA in either 16-color or 256-color mode.

The F-64 supports an assortment of special cameras. See the Coreco documentation for a complete list.
The correct camera is chosen using the setup program. The driver will simply use the camera chosen by
the setup program. However there may be some incompatibilities and we do not guarantee that the
driver will work with untested cameras although it should. Currently only the Kodak MegaPlus 1.4 and
4.2 have been tested.

MX ------------ xdrvtcx.dll
Use with a 640 x 480, 800 x 600 or 1024 x 768 Super VGA in either 16-color or 256-color mode. Ensure
that the frequencies set up by your Super VGA setup program are compatible with those of the frame
grabber. Compare the values specified by your Oculus setup program with those of the VGA card.

This card does not corectly support output lookup tables in VGA overlay mode. By default, Coreco turns
them off. You should leave the settings this way and not access the output lut in code.

TCX ----------- xdrvtcx.dll
The driver assumes that if you are using a TCX, it is because you want to grab color images. The driver
does not work correctly with monochrome input, Use with a 640 x 480, 800 x 600 or 1024 x 768 Super
VGA in either 16-color or 256-color mode.

This card has no output LUTs. Any attempt to change the LUTs in XCaliper will thus fail.

 Dipix

Dipix
1051 Baxter Road
Ottawa Ontario
K2C 3P1
Tel: (613) 596-4942
FAX: (613) 596-4914
US Toll Free: 1-800-724-5929

P360F Power Grabber ----------- xdrvp360.dll

The P360 is memory-mapped and the memory must be enabled on the bus. Your system.ini should
contain an EMMExclude statement which prevents Windows from using the associated bus addresses.
If you are using emm386 or an equivalent memory manager, it should suppress usage of these addresses
as well.

Dipix has the notion of a p360 directory which is set up using the DIPP360F environment variable as, for
example, : DIPP360F=c:\p360. An assortment of board-specific files are kept in this directory. The
XCaliper driver follows this convention. Board-specific files should be kept in the places that DIPIX
expects them to be.

The P360 comes with an on-board DSP capable of high-speed calculations. XCaliper uses this DSP to
perform histograms and a portion of the edge extraction code.

XCaliper.ini has the following entries for the Dipix card described in the following paragraphs:
MemoryBase
IOBase
CameraType
DpaFile
TagFile
IsTransparent

This card does not have any configuration program so you must supply the base addresses to the
program as well. Two entries in the [DipixP360] section of the file, MemoryBase and IOBase are used to
supply these numbers.

The P360 supports a variety of special cameras. You specify the camera you wish to use by naming
its .cdt file in xcaliper.ini as:

[DipixP360]
CameraType = RS170.CDT

RS170.CDT is the default.

It is also possible to name the tag and display parameters files (.tag and .dpa files) used with entries in
the [DipixP360] section. The defaults are:

TagFile = A.TAG
DpaFile = WIND103.DPA

The .TAG file contains the firmware which is downloaded to the board's DSP. It is unlikely that you will
want to change this but it is possible if you are developing your own DSP code.

The .DPA file is used to describe the characteristics of the VGA card in your system. This file is only
needed if you are using the video mixer daughter board It must be generated using the DIPIX Windows
demo program. To do this perform the following:

1. Modify the file DIPP360F\ DEMOWIND\DEMOWIND. DAT to reflect your system
configuration.

2. Start the demo. When it asks you to wait, push the OK button instead.
3. If the image looks wrong, execute the <GenerateDpa> item in the <Setup> menu.
4. If it is not already on the screen, Execute the <TestImage> entry in the <Setup> to put up the

Dipix test image .
5. Use the scroll bars on the window to align the VGA and the image screens. The image is

correct when you see a single line across the left and top side of the image with tick marks
emanating from it.

6. Whether or not you saved a DPA file at step 3, do it now.
7. Enter the name of the file generated here in XCaliper.ini.

The final entry in the ini file is IsTransparent. If set to False, XCaliper will refuse to allow use the video
mixer card even if one is present. By default, XCaliper will allow use of the daughter board (eg. will
allow the Transparent property to be set to LockedWindow and FloatingWindow) if one is present. It will
not allow the Transparent property to be set this way otherwise.

 Imaging Technologies

Imaging Technology Incorporated
55 Middlesex Turnpike
Bedford MA
01730-1421
Tel: (617) 275-2700
FAX: (617) 275-9590

IC-PCI ---- xdrvicp.dll
IC-VL ---- xdrvicvl.dll

The drivers for these two boards work in the same way. Start by installing the board and its software
according to ITI's instructions. Currently only the AM-VS acquisition module is supported.

The ITI AMVS module has a unique idea of how the input channel mechanisms work which may be useful
in certain applications. It is possible to set different gains, offsets and even cameras on different input
ports. XCaliper supports this notion. When the gain or offset is set, it only takes effect on the current
input channel. Hence if you want the same gain on all channels, you will have to set it four times,
switching channels between settings.

The IC-PCI (or IC-VL) section of xcaliper.ini contains entries used to select the input camera for each of
the ports. These are: AmvsCamera, AmvsCamera0, AmvsCamera1, AmvsCamera2, and AmvsCamera3.
AmvsCamera gives the default camera type used for the board. The numbered entries specify the
camera to use for a specific input port and will override the setting in AmvsCamera. The camera names
used in this section are taken from Table B-1 in the AM-VS software manual Appendix B. At this writing,
the possible values are:

DEF_RS512P RS-170 512 x 482
DEF_RS640P RS-170 640 x 482
DEF_RS752P RS-170 752 x 482
DEF_CC512P CCIR 512 x 572
DEF_CC768P CCIR 768 x 572
DEF_CC736P CCIR 732 x 572

Should ITI decide to add additional camera types, these will automatically be supported by XCaliper as it
does not interpret these names; it simply passes them on to the ITI software.

The default value for a camera is DEF_RS640P as:
AmvsCamera=DEF_RS640P

 Matrox

MATROX
1055 St Regis Blvd
Dorval Quebec
H9T 2T4
Tel: (514) 685-2603
FAX (514) 685-2853
US Toll Free: 1-800-4MATROX

PIP series ---- xdrvpip.dll
This family contains three cards: the PIP-512, PIP-1024, and the PIP-640. The driver has only been
tested with the PIP-640 but should work with all three cards. This is an older card and as a consequence
the functionality is limited. Some of the limitations are:

The board only zooms by 1 or 2. Furthermore all four zooms (InputZoomX, InputZoomY,
OutputZoomX, and OutputZoomY) are locked together. Changing one will change all four. Pan is
limited to the nearest 8 pixels; scroll to the nearest 16. The input and output properties are locked
together. It is not possible to change any of the input or output window sizes or positions.

The PIP series is a dream for compatibility. The card never conflicts with anything.

IP-8 ---------- xdrvip8.dll

The IP-8 is memory-mapped and the memory must be enabled on the bus. Your system.ini should
contain an EMMExclude statement which prevents Windows from using the associated bus addresses.
If you are using emm386 or an equivalent memory manager, it should suppress usage of these addresses
as well.

There is a DOS device driver, ip8drv.sys,. The driver cannot know whether the board is being used in
VGA overlay mode or not. Given that, an entry is required in xcaliper.ini to set the overlay mode. We
assume that it is normal to XCaliper in overlay mode so this is the default. If you are running in non-
transparent mode the following should be
added to your xcaliper.ini:

[IP8]
IsTransparent=False

In order to run the board in non-transparent mode, the MATROX windows display driver, ip8_640.drv,
should be installed. It is unlikely that the CCIR version will work but this has never been tested and
maybe we could get a surprise.

 Sharp

Sharp
16841 Armstrong Ave.
Irving, CA 92714
Tel: (714) 261-6224
FAX: (714) 261-9321

GPB-1---------- xdrvgpb1.dll

The GPB-1 is I/O-mapped with a single entry in the 10-bit I/O space. As a consequence there is almost
no way to have a conflict using this card. The only consideration is the board-select address which is
given by the BaseAddress entry in the [GPB] section of your xcaliper.ini file. The default is 0 and there
should be no reason to change this.

The GPB-1 requires use of the vgapal.drv Windows display driver to order to run in pass-through mode.
This driver can be found on any Microsoft bulletin board. Alternately it can be had through either Sharp
or Xiris. Because of the limitations of this driver, it is not possible to mix pass-through and VGA-only
windows on the same screen. As a consequence, you cannot display the contents of a MemoryBuffer
either, except by copying it on to the GPB-1.

Entries in the [GPB] section of xcaliper.ini include:

IsTransparent Specifies the mode of operation of the frame grabber. Valid entries are
True or False. The Sharp GPB1 must have the single monitor auxiliary
card installed to operate in transparent mode. The ImageHook VBX
can only be used in the transparent mode specified by this setting due
to limitations of the Sharp GPB. Default value is True.

BaseAddress Specifies the canotical base address of the frame grabber. Valid
entries are in the range of 0 to 7. Default value is 0.

Sync Specifies the video multiplexer used for sync input. Valid entries are in
the range of 0 to 3. Default value is 0.

SyncThres Specifies the sync threshold level. Valid entries include: 50, 75, 100
and 125. Default value is 100.

ColorCode Specifies the color code that is used for transparency keying when the
frame grabber is used in transparent mode. A color code of 9 will be
used as the default if this item is not specified.

About Property
Applies To

ImageDevice ImageHook, MemoryBuffer, LineCaliper, LineEdgeLocator, ArcCaliper,
ArcEdgeLocator, BlobAnalyzer, LightMeter tool

Description
Displays information about the tool in a dialog box.

Remarks
The property is available at design time only. It is invoked by double-clicking on the property in the
Properties window. Among the most important information displayed is the version number of the
software and serial number of the protection key.

AcceptColor Property
Applies To

BlobAnalyzer

Description
Specifies the display color for blobs that pass subsequent filtering operations.

Syntax
[form.]blobtool.AcceptColor [= &Hcolorvalue&]

Remarks
This property, along with the AcceptDisplay property, determines how blobs that pass subsequent apply
filtering operation will be displayed on the image display. If AcceptDisplay is set appropriately,
AcceptColor sets the color used to display the acceptable blobs in the image. Setting the property is
identical to setting other standard Visual Basic color properties. Refer to the Visual Basic
Programmer's Guide for more information on color properties and how to set them.

Data Type
Long Integer

AcceptDisplay Property
Applies To

BlobAnalyzer

Description
Specifies how the BlobAnalyzer alters the overlay when displaying blobs that pass subsequent Filtering
operations (invoked through the Apply property).

Syntax
[form.]blobtool.AcceptDisplay [= displaytype%]

Remarks
The following are the possible values for the AcceptDisplay property:

Setting Description
0 (NO_CHANGE) The color of the blobs remains unchanged from what

it was before the application of the tool.

1 (BD_CLEAR) The blobs' overlay display is cleared such that only
the underlying original image is visible.

2 (BD_COLOR) The blobs are set to the color specified in the
AcceptColor property.

Data Type
Integer (Enumerated)

ActiveControl Property
Applies To

ImageDevice, ImageHook, MemoryBuffer

Description
Returns the tag of the currently selected control.

Syntax
[form.]control.ActiveControl

Remarks
The value of the property is not available at design time and is read-only at run time. The result is the
contents of the Tag property of the XCaliper control which has the input focus. This is the control which
is displayed on the screen with picl points highlighted.

Data Type
String

Angle Property
Applies To

ArcEdgeLocator

Description
Specifies the angle of the edge indicated by the ResultIndex property.

Syntax
[form.]control.Angle

Remarks
The Angle property is not available at design time and is read-only at run time. The result is the angle
of the vector, from the center of the closed curve to the point on the curve where the edge was detected,
with repect to the positive x-axis. The value is reported in Engineering degrees (0 is at 3 oclock and
values increase in a counter-clockwise direction).

Data Type
Single

Apply Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer, LightMeter tool

Description
Causes the control to be applied on the image.

Syntax
[form.]control.Apply [=value%]

Remarks
The Apply property is not available at design time but can be read from or written to at run time; either
operation results in the tool processing the image data in its Viewport. After processing is complete, the
ElapsedTime property is changed to reflect the amount of time taken to perform the operation. For a
detailed description of the processing performed by each tool, see the appropriate section below. The
exact meaning of the return value of the property and the value written to the property, depend on the
type of tool being employed.

LightMeter
The LightMeter ignores any values passed to it as a parameter and returns the area of its Viewport in
pixels.

Caliper and EdgeLocator Tools
The edge tools (Calipers and EdgeLocators) ignore any value passed to them. If the TeachMode
property for an arbitrary-angle edge tool is set to TM_DONT_TEACH, and the current state of the tool
does not correspond to that which was last taught, then any explicit access to the Apply property will
result in an error message. In this situation, implicit accesses caused by moving the tool or when
ApplyOnChange is set to True are ignored.

BlobAnalyzer
The value written to the tools Apply property is used to determine the type of operation to perform.
There are 3 major steps in a complete Apply operation that are user selectable: image segmentation;
labelization; and extracting the blob features. (A fourth step, filtering, is not user-selectable as it always
happens). Precisely which steps are actually performed by the tool depends on the value passed to the
Apply property.

The following table lists the possible values for the BlobAnalyzer's Apply property:

Setting Description
0 (AM_SEGMENT_NO_LABEL) Segment the image, do not perform any labeling,

then analyze and filter the resulting blob list. This
technique, also known as whole image analysis,
treats all foreground pixels as belonging to a single
blob.

1 (AM_SEGMENT_LABEL) Segment the image, label the foreground pixels,
analyze and filter the resulting blob list.

2 (AM_FILTER_ORIGINAL) Refilter the blob list obtained from the most recent

labeling operation. In other words, discard all
previous filters results. Do not segment, label or
analyze.

3 (AM_FILTER_CURRENT) Filter the current blob list keeping the results of any
previous filters. Effectively ANDs the result of the
current filter list with that of the previsous filter list.

4 (AM_MASK_LABEL) Use the existing image mask to segment the image,
label foreground pixels, analyze and filter the
resulting blob list.

5 (AM_MASK_NO_LABEL) Use the existing image mask to segment the image,
do not label (treat the entire foreground as a single
blob), then analyze and filter the resulting blob list.

If the property is read, as opposed to written, then the operation last performed will be repeated and the
active Apply mode will be returned. Note that this behavior differs from previous versions of XCaliper
where the number of blobs found was returned. The default mode is AM_SEGMENT_LABEL. It is used
if the property is read without ever having been written.

Data Type
Integer

ApplyOnChange Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer, LightMeter tool

Description
Determines whether the tool automatically applies itself when the tools Viewport is resized or moved or
the underlying frame buffer is changed.

Syntax

[form.]Control.ApplyOnChange [= {True | False}]

Remarks
When ApplyOnChange is set to True, any modification in the position or size of the Viewport, during
design time or run time, will cause the tool to Apply itself to the image. Therefore if processing speed is
of primary importance, or when an apply requires significant amount of processing time, the programmer
may wish to set this to False. As such, the tool will only apply itself when explicitly asked to through the
Apply property.

The default mode for this property depends on the type of tool as follows:

Tool Default Value
ArcCaliper True
LineCaliper True
ArcEdgeLocator True
LineEdgeLocator True
LightMeter True
BlobAnalyzer False

Data Type
Integer (Boolean)

Area Property
Applies To

LightMeter tool

Description
Returns the area, in pixels, of the LightMeter's Viewport.

Syntax

[form.]lightmeter.Area

Remarks
The Area property is not available at design time and is read-only at run time. The property returns the
area of the Viewport in pixels - in effect, Width * Height.

Data Type
Integer

AspectRatio Property
Applies To

ArcCaliper, ArcEdgeLocator

Description
Determines the ratio of the horizontal diameter to the Vertical diameter of the curve.

Syntax
[form.]Control.AspectRatio [= value!]

Remarks
XCaliper Arc edge tools are restricted to those elliptical arcs which have an orthogonal orientation with
respect to the major axes. As such, the shape of the ellipse can be defined simply as a ratio between
the diameter in the x-direction and the diameter in the y-direction. For an AspectRatio of 1.0, a circle is
drawn.

This property specifies the ratio of the diameters of the closed curve ellipse, not of the arc subtended by
the start and end point properties.

By default, the AspectRatio is set to 1 (a circle).

Data Type
Single

AutoSize Property

Applies To
MemoryBuffer

Description
Determines whether the buffer is automatically resized to fit its contents.

Syntax
[form.]Membuf.AutoSize [= {True | False}]

Remarks
When AutoSize is set to True, the buffer size is changed whenever a new image is copied into it. If
AutoSize is False, then the image will be clipped to fit before the copy.

Data Type
Integer (Boolean)

BlobType Property
Applies To

BlobAnalyzer

Description
Describes the kind of objects which are expected to be found in an image. Thi is used in combination
with the UpperThreshold and LowerThreshold properties as a simple method for writing common binary
and edge-oriented weighting schemes into the WeightTable to segment an image.

Syntax
[form.]blobtool.Blobtype [= type%]

Remarks
The following are the possible values for the BlobType property:

Setting Description

0 (BT_DARK) The foreground is darker than the background.
Pixels below or equal to the LowerThreshold are
foreground pixels; those above or equal to the
UpperThreshold are full background. A linear ramp
is used for values in between.

1 (BT_LIGHT) The foreground is lighter than the background.
Pixels below or equal to the LowerThreshold are
foreground pixels; those above or equal to the
UpperThreshold are full background. A linear ramp
is used for values in between.

2 (BT_USERDEFINED) The threshold are ignored and the definitions are
taken directly from the WeightTable.

3 (BT_BINARY_DARK) Like Dark except that the UpperThreshold and
LowerThreshold are locked together such that the
UpperThreshold is always kept equal to the
LowerThreshold plus one. A modification to one
threshold will cause the other to be changed to keep
this relationship true. Since the size of the ramp is
thus 0, this is equivalent to binary analysis.

4 (BT_BINARY_LIGHT) Like BinaryDark except that the foreground is lighter
than the background.

5 (BT_MASK_ONLY) All pixels, no matter what their intensity, are to be
considered full foreground. This mode is only useful
when using a mask instead of segmentation.
Otherwise, the entire image would be considered as
a single blob.

Note that in all of these modes except BT_USERDEFINED, the LowerThreshold must always be kept at
least one less than the UpperThreshold. In effect, the LowerThreshold value gives the highest intensity
which is to be considered fully black while the UpperThreshold gives the lowest intensity which is fully
white.

Directly changing any entry in the WeightTable will cause the BlobType property to be set to
BT_USERDEFINED.

Data Type
Integer (Enumerated)

BufferSizeX, BufferSizeY Properties

Applies To
ImageDevice, MemoryBuffer

Description
BufferSizeX and BufferSizeY specify the width and height of the frame buffer in pixels.

Syntax
[form.]control.BufferSizeX [= width%]
[form.]control.BufferSizeY [= height%]

Remarks
For most image devices, the BufferSizeX and BufferSizeY properties are set by the driver and are read-
only from the application. This restriction does not apply to MemoryBuffers although changing the
height or width of this kind of buffer will destroy its contents.

Data Type
Integer

CenterX and CenterY Properties

Applies To
ArcCaliper, ArcEdgeLocator

Description
The CenterX and CenterY properties specify the x and y-coordinates, respectively, of the center point of
the arc.

Syntax

[form.]Control.CenterX [= point!]

[form.]Control.CenterY [= point!]

Remarks
These properties define the center point of the ellipse from which the arc is derived. This point is not
used to define the shape of the arc it is provided as a convenient positioning method.

Data Type
Single

ClosedCurve Property

Applies To
ArcCaliper, ArcEdgeLocator

Description
Determines whether to treat the arc as a closed curve (a complete ellipse) or an open curve (the arc
between the start and end points).

Syntax

[form.]Control.ClosedCurve [= {True | False}]

Remarks
By default, the ClosedCurve property is set to False (open arc).

Data Type
Integer (Boolean)

Command Property
Commands

Applies To
ImageDevice, ImageHook, MemoryBuffer, BlobAnalyzer, LightMeter tool

Description
Specifies an action to be performed using the control.

Syntax

[form.]control.Command [= command$]

Remarks
This property is used to send command strings to the control which in turn interprets the strings and acts
upon them. After execution, the ElapsedTime property is modified to indicate the amount of time taken
to perform the action. If the Command property is read, it returns the last command executed.

When a command is executed on an ImageDevice or MemoryBuffer, it takes effect over the entire
area of the frame buffer, unless the command has a source for the operation. In this case, the source
supplies a size.

When executed on an ImageHook, BlobAnalyzer, or LightMeter, the command takes effect on the
area of the buffer covered by the tool. In the case of an ImageHook, this means the visible area of the
buffer. It is possible therefore, to set up a command over an arbitrary rectangular area of a buffer by
using a BlobAnalyzer or LightMeter for this purpose. While either could be used, a LightMeter is the
recommended tool in this circumstance because it requires fewer system resources.

Data Type
String

ContGrabType Property

Applies To
ImageDevice

Description

Selects the way that the system will react to a request for continuous grabbing of
images.

Syntax

[form.]control.ContGrabType [= type%]

Remarks
This property selects the way that the system will react when continuous grabbing is enabled when
using non-transparent mode.

The following are the possible values for the ContGrabType property.

Setting Description
0 (GT_SECONDARY) Do not use the VGA. Simply enable continuous

grabbing on the board. This only makes sense if
there is a secondary monitor attached to the card.

1 (GT_CLEAN) Perform continuous grabbing into VGA memory.
Favor clean display of images over rapid display of
images. This is the default.

2 (GT_FAST) Perform continuous grabbing into VGA memory.
Favor rapid display of images over clean display of
images.

When this propery is set to 1 (GT_CLEAN) or 2 (GT_FAST), images will be copied from the digitizer board
to VGA memory as quickly as possible. The exact speed of transfer will depend on the type of digitizer
used, the number of hooks attached to the ImageDevice and the size of the containers.

For this property to take effect, either the value of the Transparent property must be set to
TM_NONTRANSPARENT or there must be at least one hook attached to the ImageDevice whose
Transparent property is set this way. If this is not the case, then an error code will be generated.

Notes:

· Running continuous grab emulation in design mode is significantly faster when the Properties
window is closed. When this window is open, Visual Basic will re-read the values of all properties
listed at every image data transfer.

· If you exit Visual Basic design mode with continuous grab emulation enabled, the system may
appear to hang. This is because Visual Basic has popped up a Dialog Box behind the grabbing window
and is waiting for a response. To see the Dialog Box, touch the <ALT> key and continue normally.

Data Type
Integer (Enumerated)

Count Property

Applies To
BlobAnalyzer

Description
Returns the number of blobs found that passed the most recently applied filtering criteria.

Syntax

[form.]blobtool.Count

Remarks
This property is read-only. After each invocation of the Apply property, Count is set to the number of
blobs found that passed the filter criteria. The maximum number of blobs that can be counted in an
image is approximately 8000.

Data Type
Integer

CurAutoInc Property

Applies To
BlobAnalyzer

Description
Determines if and how the BlobAnalyzer automatically increments through the blob list when the
CurValue property is read. It also determines the order in which the QuickData property returns the
table of result data.

Syntax

[form.]control.CurAutoInc [= AutoIncType%]

Remarks
The following are the possible values for the CurAutoInc property:

Setting Description
0 (AI_BY_NONE) Don't auto-increment. Repeated reads of the

CurValue property will return the same value.

1 (AI_BY_FEATURE) Auto-incrementing is done in "blob-major" order.
That is, the tool increments CurFeature through all
the features of the current blob before incrementing
CurBlob and resetting CurFeature, repeating the
process for the next blob.

2 (AI_BY_BLOB) Auto-incrementing is done in "feature-major" order.
That is, the tool increments CurBlob through all the
passed blobs before incrementing CurFeature and
resetting CurBlob, repeating the process for the next
feature.

If you need to access multiple features and/or multiple blobs then using auto-increment mode is more
efficient than setting the CurFeature and CurBlob properties yourself.

Warning: when Auto_increment is turned on, the value returned by the CurValue, CurFeature, and
CurBlob properties may vary in an apparently random manner in design mode. This is because Visual
Basic frequently reads the values of properties itself. If it decides to read the CurValue property, then
the CurFeature and CurBlob properties will be updated in the above manner. This problem does not
affect Run mode.

Data Type
Integer (Enumerated)

CurBlob Property

Applies To
BlobAnalyzer

Description
The "Current Blob". CurBlob determines which blob's feature values are to be reported through the
CurValue property.

Syntax

[form.]blobtool.CurBlob [= BlobNum%]

Remarks
Along with the CurFeature property, this property determines exactly what the value of CurValue
represents. CurValue reports the value of the feature indicated by CurFeature, for the blob specified by
CurBlob.

Data Type
Integer

CurFeature Property

Applies To
BlobAnalyzer

Description
The "Current Feature". CurFeature determines which feature is to be reported through the CurValue
property.

Syntax

[form.]blobtool.CurFeature [= FeatureNum%]

Remarks
Along with the CurBlob property, this property determines exactly what the value of CurValue
represents. CurValue reports the value of the feature indicated by CurFeature, for the blob specified by
CurBlob.

Data Type
Integer (Enumerated)

CurValue Property

Applies To
BlobAnalyzer

Description
Returns the value of the feature indicated by CurFeature for the blob specified by the value of CurBlob.

Syntax

[form.]blobtool.CurValue

Remarks
This property is read-only. The CurValue property allows the user to access the results of the most
recent invocation of the Apply property. Through it, the user can obtain the value of any feature (as
long as it was previously selected) for any blob in the blob list by setting the CurBlob and CurFeature
properties appropriately.

Data Type
Single

DeviceFile Property

Applies To
ImageDevice

Description
Specifies the type of frame grabber being used. This is the name of a device driver file to be loaded
and used.

Syntax
[form.]control.DeviceFile [= file$]

Remarks
XCaliper supports dynamic loading of device drivers. This makes it simple to create applications which
can be moved easily from one frame grabber to another or to support multiple frame grabbers in a single
application.

XCaliper will attempt to load the driver using the exact name specified. If this fails, it will use the path
variable to attempt to find the file and if that fails an error condition will be generated.

The DeviceFile property defaults to the value found in the LibName entry in your XCALIPER.INI file.
This provides an easy method of specifying the type of frame grabber found in your system. It should
not, therefore, be necessary to change this property in your application unless you need to be able to
select frame grabbers dynamically.

Data Type
String

DeviceName Property

Applies To
ImageHook

Description
Specifies the name of the ImageDevice or MemoryBuffer to be hooked.

Syntax
[form.]ImageHook.DeviceName [= name$]

Remarks
This property allows the buffer which the ImageHook is displaying to be changed. For example, a
MemoryBuffer can be displayed instead of the active ImageDevice.

This property should be set to the Tag property of the MemoryBuffer or ImageDevice which is to be
displayed through the hook. Note that the Tag property is used, not the Name property. While
XCaliper copies the Name property into the Tag property when a control is first created, later
programmer action may cause the two properties to have different values.

The name "StdImageDev" is reserved. If DeviceName is set to StdImageDev, then the active image
device will be hooked. It is also legal to hook to the active ImageDevice by setting the DeviceName to
the Tag property of an appropriate ImageDevice control. Using the Tag property is the only way to set
the ImageHook to display a MemoryBuffer.
As is true for Visual Basic in general, it is the programmers responsibility to ensure that the Tag property
is given a different value in all controls. Note that the Name property is not guaranteed to be unique
(controls in an arrary or in different forms can have the same Name) so relying on the default Tag value
is not necessarily sufficient. XCaliper will work correctly if the Tag is unique across all frame stores but
the general rule should be observed where possible.

The default value of this property is "StdImageDev".

Data Type
String

DisplayMode Property

Applies To
BlobAnalyzer

Description
Specifies how blobs are drawn on the display.

Syntax

[form.]blobtool.DisplayMode [= displayMode%]

Remarks
The settting of this property applies to all blobs. The following are the possible values for the
DisplayMode property:

Setting Description
0 (DM_NONE) Blobs are not displayed.

1 (DM_FILLED) Blobs are filled in according to the color selected
using the AcceptColor, AcceptDisplay, RejectColor,
and RejectDisplay properties. Any pixel in the blob
having a non-zero weight will be set to this color.

2 (DM_OUTLINED) Blobs are outlined with the color chosen according to
the rule described above.

3 (DM_TRANSLUCENT) Blobs are drawn in a see-through fashion. Every
fourth pixel in the interior is colored, thus permitting
display of both the blob found and the image
underneath.

Data Type
Integer (Enumerated)

DrawColor Property

Applies To
LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer, LightMeter tool

Description
Specifies the color of the Viewport bounding box.

Syntax

[form.]Control.DrawColor [= &Hcolor&]

Remarks
This property is used to set the color of the rectangle drawn around the Viewport placed on the image.
Setting the property is identical to setting other standard Visual Basic color properties. Refer to the
Visual Basic Programmers Guide for more information on color properties.

Data Type
Long

Edge1Angle, Edge2Angle Properties

Applies To
ArcCaliper, ArcEdgeLocator

Description
Edge1Angle returns the angle of the first edge in the edge pair indicated by the ResultIndex property.
This will be the edge closest to the start point along the line or curve.

Edge2Angle returns the angle of the second edge in the edge pair specified by the ResultIndex property.
This will be the edge furthest from the start point along the line or curve.

Syntax

[form.]Control.Edge1Angle

[form.]Control.Edge2Angle

Remarks
The values of the properties are not available at design time and are read-only at run time. The results
are the angles of the vectors, from the center of the closed curve to the points on the arc where the
edges were detected, with respect to the positive x-axis. The values are reported in Engineering
degrees (0 is at 3 oclock and values increase in a counter-clockwise direction).

Data Type
Single

Edge1Position, Edge2Position Properties
Applies To

LineCaliper, ArcCaliper

Description
Edge1Position returns the position of the first edge in the edge pair indicated by the ResultIndex
property. This will be the edge closest to the start point along the line or curve.

Edge2Position returns the position of the second edge in the edge pair indicated by the ResultIndex
property. This will be the edge furthest from the start point along the line or curve.

Syntax
[form.]Control.Edge1Position
[form.]Control.Edge2Position

Remarks
The values of the properties are not available at design time and are read-only at run time. If the Mode
property for a LineCaliper is set to MD_ANYANGLE, the results are reported relative to the start point and
scaled according to the ScaleX, ScaleY and ScaleType properties. The RefType property is then
ignored. If the Mode property for a LineCaliper is set to MD_HORIZONTAL or MD_VERTICAL, the
results are reported relative to the origin specified by the RefType property and scaled according to the
ScaleX, ScaleY and ScaleType properties.

For ArcCalipers, the results are always reported in pixels along the curve relative to the start point
because arc tools do not have scaling properties.

Data Type
Single

Edge1X, Edge2X, Edge1Y, Edge2Y Properties
Applies To

LineCaliper, ArcCaliper

Description
Edge1X and Edge1Y specify the coordinates of the first edge of the edge pair indicated by the
ResultIndex property.

Edge2X and Edge2Y specify the coordinates of the second edge of the edge pair indicated by the
ResultIndex property.

Syntax
[form.]Control.Edge1X
[form.]Control.Edge1Y
[form.]Control.Edge2X
[form.]Control.Edge2Y

Remarks
The values of the properties are not available at design time and are read-only at run time. The results
are reported relative to the containers origin and scaled according to the containers scale.

Data Type
Single

EdgeDisplay Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Determines the way in which edges or edge pairsare displayed in the Viewport when they are found.

Syntax
[form.]control.EdgeDisplay [= mode%]

Remarks
The following table lists the possible values for the EdgeDisplay mode.

Setting Description

0 (ED_BEST) Only the edge or edge pair which best matches the constraint
criteria is displayed.

1 (ED_PASSFAIL) The edge or edge pair which best matches the constraint
criteria is displayed in green if it passes and in red if it fails (not
currently implemented equivalent to Best).

2 (ED_ALL) All edges or edge pairs found are displayed.

3 (ED_NONE) No edges or edge pairs are displayed under any
circumstances. Note, however, that the Viewport will continue
to be displayed.

Data Type
Integer (Enumerated)

ElapsedTime Property
Applies To

ImageDevice, MemoryBuffer, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator,
BlobAnalyzer, LightMeter tool

Description
Gives the amount of time, in milliseconds, taken to execute the last operation on the control. The timer is
accurate to the nearest millisecond.

Syntax
[form.]control.ElapsedTime

Remarks
This property is not available at design time, and is read-only at run time. The only action measured for
ImageDevices and MemoryBuffers is the amount of time taken to execute the operation specified in
the Command property. The only action measured for Calipers and EdgeLocators is the amount of
time required to execute the Apply property. For a BlobAnalyzer or a LightMeter, this property is
updated after the execution of the Apply and the Command properties.

Data Type
Integer

EndPointX, EndPointY, StartPointX, StartPointY
Properties
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
The EndPointX and EndPointY properties specify the coordinates of the end point of the line or arc.
The StartPointX and StartPointY properties specify the coordinates of the start point of the line or arc.

Syntax
[form.]control.EndPointX [= value!]

[form.]control.EndPointY [= value!]

[form.]control.StartPointX [= value!]

[form.]control.StartPointY [= value!]

Remarks
The values of these properties are specified relative to the frame buffer origin and are scaled according
to the ScaleX, ScaleY and ScaleType properties.

Data Type
Single

Features Property
Applies To

BlobAnalyzer

Description
This property determines which features are to be calculated and whether or not the current filter for
each feature should be applied.

Syntax
[form.]control.Features(Index) [= value%]

Remarks
The Features property is an array where each feature has been assigned a number that is used as an
index into the array when setting or reading that feature's value. By including the file XCAIPER.TXT,
which contains various Visual Basic declarations, the programmer is able to use the much more intuitive
constant name for the feature as the index, avoiding the need to memorize the actual numerical values.
This property is not directly available at design time but it can be accessed and modified through the
Setup property's dialog box. The following table lists the possible values for the propery:

Setting Description
0 (FE_DONT_EXTRACT) Do not compute the indexed feature on subsequent

applies.

1 (FE_EXTRACT) On subsequent applications of the tool, compute the
indexed feature for each blob found, but ignore any
filter setting for this feature.

2 (FE_EXTRACT_AND_FILTER) On subsequent applications of the tool, compute this
feature for each blob found and use the current filter
setting for this feature to filter out blobs accordingly.

The set of features returned through the QuickData and CurValue properties are also controlled by the
setting of the Features property. Features which have this property set to either FE_EXTRACT or
FE_EXTRACT_AND_FILTER will be returned in the QuickData property and are accessible through the
CurValue property. Features which have this property set to FE_DONT_EXTRACT are not available
through the CurValue property and will not be returned through the QuickData property. An attempt to
set the CurFeature property to such a feature will generate a Visual Basic error.

This behavior may cause problems when a feature is turned on(e.g. when the setting of this property is
changed from FE_DONT_EXTRACT to another value). It would thus be possible to extract features
which were never analyzed. XCaliper resolves this problem by assuming that if a feature is turned on,
it must be because an Apply is about to happen. Therefore it discards the entire previous analysis.
Any attempt to access any feature will fail until the next Apply occurs. The QuickData property will
return an empty string and the CurValue property will return 0. Nothing in this prevents the designer
from turning off features after an Apply has been invoked, and turning them back on later. Enabling a
new feature causes the analysis to be discarded rather than re-enabling an old one.

Data Type
Array of Integer (Enumerated)

Filters Property
Applies To

BlobAnalyzer

Description
An array of strings specifying the filter bounds to use for each feature when filtering the blob list.

Syntax
[form.]control.Filters(Index) [= string$]

Remarks
The Filters property is an array where each feature has been assigned a number that is used as an
index into the array when setting or reading that feature's filter string. By including the file
XCALIPER.TXT, which contains various Visual Basic declarations, the programmer is able to use the
much more intutive constant name for the filter as the index, avoiding the need to memorize the actual
numerical values. This property is not directly available at design time but it can be accessed and
modified through the Setup property's dialog box.

The syntax for the filter strings is as follows:

"[NOT] { (| [} [min], [max] {) |] }"

min and max represent the minimum and maximum filter limits respectively and are both optional. If not
included, the limit is ignored. The filter limits pair may be enclosed in square brackets, rounded
brackets, or a combination of the two. A square bracket indicates the interval includes the limit, while a
round bracket indicates that the interval does not include the limit. The optional NOT reverses the
filtering logic - acceptable values are those outside the interval. Some typical strings and what they
mean are listed below:

String Description
"[20, 30)" Values in the range, are considered

acceptable, all others are rejected.

"[24,] values greater than or equal to 24 are considered
acceptable, while all values less than 24 are
rejected.

NOT (13, 34] Values less than or equal to 13 and values greater
than 34 are considered acceptable.

Data Type
Array of String

GrabMode Property

Applies To
ImageDevice

Description
Determines the type of frame grab being used.

Syntax
[form.]ImageDevice.GrabMode [= mode%]

Remarks
The following table lists the possible values for the GrabMode property of the ImageDevice control.

Setting Description
0 (GT_GRAB_OFF) Frame grabbing is turned off. Also known as freeze

frame mode.

1 (GT_GRAB_ON) Frame grabbing is turned on and left on until reset.
This mode is also known as continuous grab mode.

2 (GT_SINGLE_FRAME) A single frame is acquired from the camera and placed
in the frame buffer. After the acquisition is completed,
the GrabMode property will revert to 0 (Off). This
provides a simple method of determining that the
acquisition is finished.

3 (GT_SINGLE_FIELD) A single field is acquired from the camera and placed in
the frame buffer. After the acquisition is completed, the
GrabMode property will revert to 0 (Off). This provides
a simple method of determining that the acquisition is
finished.

Some device drivers do not support SingleField grabbing. If so, a single frame will be acquired instead.
Continuous grab mode (setting 1) will use the field or frame mode selected by the previous setting of the
GrabMode property, namely either SingleFrame or SingleField. For example, to ensure that continuous
grab takes place in field mode, set the GrabMode property to GT_SINGLE_FIELD, then set it to
GT_GRAB_ON.

Data Type
Integer (Enumerated)

Histogram Property
Applies To

LightMeter tool

Description
Returns the frequency of occurrence of the specified intensity value.

Syntax
[form.]lightmeter.Histogram(Index)

Remarks
This property is not available at design time and is read-only at run time. By reading this property, the
programmer is able to access the raw histogram data. The value of Index specifies the intensity value
to return and must be between 0 and 255.

Data Type
Array of Long Integer

HoleFill Property
Applies To

BlobAnalyzer

Description
Sets or returns a Boolean value that determines whether or not automatic hole filling should occur when
the image is segmented.

Syntax
[form.]blobtool.HoleFill [= {True | False}]

Remarks
Holes are regions within blobs whose pixel values have a weight of less than 1.0. In order to be
considered a hole, the region must be entirely surrounded by pixels with weightings of 1.0. If HoleFill is
set to True, then all regions are automatically filled in that is, their weights are automatically set to 1.0
during image segmentation.

Data Type
Integer (Boolean)

Inclination Property
Applies To

LineCaliper, LineEdgeLocator

Description
Sets the angle at which the LineCaliper or LineEdgeLocator is executed.

Syntax
[form.]control.Inclination [= angle!]

Remarks
This property gives the angle of the vector from the start point of the edge tool to its end point with
respect to the positive x-axis. This value is supplied and reported in Engineering degrees (0 is at 3
o'clock and positive numbers increase in a counter-clockwise direction).

Setting this property to some other value than 0º or 270º while the Mode property is set to
MD_HORIZONTAL or MD_VERTICAL will change the mode to MD_ANYANGLE.

When the Mode property is set to 0 (MD_HORIZONTAL), the Inclination is automatically changed to 0º.
When the Mode property is set to 1 (MD_VERTICAL), the Inclination is automatically changed to 270º
(XCaliper defines vertical as downwards).

Data Type
Single

InputChannel Property

Applies To
ImageDevice

Description
Determines the channel to be used for frame acquisition.

Syntax
[form.]ImageDevice.InputChannel [= channel%]

Remarks
Channel numbers follow the numbering scheme used by the frame grabber.

Data Type
Integer

InputGain Property

Applies To
ImageDevice

Description
Specifies the level of the input gain to the frame grabber card.

Syntax
[form.]ImageDevice.InputGain [= gain%]

Remarks
The gain is represented by a number between 0 and 255. The smaller the number, the smaller the
slope of the gain function. The exact minimum and maximum values as well as the shape of the gain
function depend on the digitizer being used. Furthermore, some digitizers may define this property as a
white-level cut-off instead of as a gain. See the frame grabber documentation for further information.

Data Type
Integer

InputLut Property

Applies To
ImageDevice

Description
This property is an array of 256 integers containing a copy of the input look up table (LUT).

Syntax
[form.]control.InputLut (index%) [= intensity%]

Remarks
This property is not available at design time. The InputLut propety is an array of 256 integers which is
used to read and write the input LUT. Each element is organized as a 16-bit number where the least
significant eight bits represent the gray level written to a frame buffer; the high byte is ignored.

Data Type
Array of Integers

InputOffset Property

Applies To
ImageDevice

Description
Specifies the level of the input offset to the frame grabber card.

Syntax
[form.]ImageDevice.InputOffset [= offset%]

Remarks
The offset is a number between 0 and 255 which specifies the reference input voltage to be digitized as
pure black. Lower numbers indicate a lower black reference level and therefore a brighter image
overall. The exact voltage given by any particular number depends on the frame grabber being used.

Data Type
Integer

InputOriginX, InputOriginY Properties

Applies To
ImageDevice

Description
InputOriginX and InputOriginY determine the X and Y-positions, respectively, in the input video signal at
which grabbing starts.

Syntax
[form.]ImageDevice.InputOriginX [= position%]
[form.]ImageDevice.InputOriginY [= position%]

Remarks
Together, these properties determine the location in the camera signal at which digitization is started.
For example, if the video signal is 640 X 480 and we are acquiring 512 X 480 images, then if the x-origin
is set to 64, the signal will be blanked for 64 pixels; the image will be acquired in the next 512 pixels and
the last 64 pixels will also be blanked. Setting the X-origin to 0 would left-justify the acquisition while
setting it to 128 would right-justify it.

Note that for standard RS-170 cameras, the Y-origin should be left at its default value of zero.
However, certain windowing acquisition systems may support other values.

Different frame grabbers may place various hardware restrictions on the value of these properties such
as locking it to the OutputOriginX, or the OutputOrginY. Due to this, the value read may not be the
same as the value written.

Data Type
Integer

InputPan Property

Applies To
ImageDevice

Description
Determines the x-position in the frame buffer at which grabbing starts.

Syntax
[form.]ImageDevice.InputPan [= position%]

Remarks
Together with the InputScroll property, this property determines the location in the frame buffer at which
pixels are stored.

Different frame grabbers may place various hardware restrictions on the value of this property such as
locking it to the OutputPan property and rounding it to some power of two. As a result, the value read
may not be the same as the value written.

Data Type
Integer

InputScroll Property

Applies To
ImageDevice

Description
Determines the y-position in the frame buffer at which grabbing starts.

Usage
[form.]ImageDevice.InputScroll [= position%]

Remarks
Together with the InputPan property, this property determines the location in the frame buffer at which
pixels are stored.

Different frame grabbers may place various hardware restrictions on the value of this property such as
locking it to the OutputScroll property and rounding it to some power of two. Due to this, the value read
may not be the same as the value written.

Data Type
Integer

InputSizeX, InputSixeY Properties

Applies To
ImageDevice

Description
InputSizeX and InputSizeY determine the X and Y-size resolutions, respectively, of the grabbed image.

Syntax
[form.]ImageDevice.InputSizeX [= size%]
[form.]ImageDevice.InputSizeY [= size%]

Remarks
InputSizeX determines the number of pixels digitized from each line in the incoming video signal. The
InputSizeY determines the number of lines digitized from the incoming video signal.

These fields are set at initialization to reasonable defaults (such as 480 and 640) which depend on the
frame grabber being used. Different frame grabbers may place various hardware restrictions on the
values of these properties such as locking them to other input and output properties and restricting their
possible range of values. As a result, the values read may not be the same as the values written.

It is an error to set these properties to values which would cause more than 100% of the incoming signal
to be digitized. The exact value which is illegal for the InputSizeX depends on the current value of the
InputOriginX property. The sum of the values of the InputOriginX and InputSizeX cannot exceed the
number of pixels in a video line (normally 512 or 640). The restrictions on the InputSizeY work identical
to those of InputSizeX.

Data Type
Integer

InputZoomX, InputZoomY Properties

Applies To
ImageDevice

Description
InputZoomX and InputZoomY determine the zoom factors to be applied at digitization in the X and Y-
directions, respectively.

Syntax
[form.]ImageDevice.InputZoomX [= value!]
[form.]ImageDevice.InputZoomY [= value!]

Remarks
These properties determine the magnification factors applied when an image is digitized.

Different frame grabbers may place various hardware restrictions on the values of these properties such
as restricting them to integral values or powers of two. As a result, the values read may not be the
same as the values written.

Data Type
Single

LeftTailSize Property
Applies To

LightMeter tool

Description
Specifies the percentage area of the histogram to be considered part of the Left tail.

Syntax
[form.]lightmeter.LeftTailSize(Index)

Remarks
This property specifies what proportion of the total number of pixels, at the low end of the histogram,
should be considered outliers and part of the Left tail. The value entered is treated as a percentage
and can be any valid floating point number between 0 and 100.

Data Type
Single

LockAngle Property
Applies To

LineCaliper, LineEdgeLocator

Description
Locks the inclination of the tool to the value set in the Inclination property

Syntax
[form.]control.LockAngle [= {True | False}]

Remarks
When the property is set to True, any interactive changes of the Viewport will maintain the inclination set
in the Inclination property. However, any changes to the Viewport via Visual Basic code or the
properties window is permitted.

Data Type
Integer (Boolean)

LowerLimit and UpperLimit Properties
Applies To

LightMeter tool

Description
The LowerLimit and UpperLimit properties specify the minimum and maximum pixel values, respectively,
used by the LightMeter when generating the various statistical quantities computed from the histogram
of pixel values contained within the LightMeters Viewport.

Syntax
[form.]control.LowerLimit [= value%]

[form.]control.UpperLimit [= value%]

Remarks
These properties can be used to specify to the LightMeter a range of pixel values to use when
computing the various statistical quantities. For example, if you wanted to know the mean of the pixel
values between 145 and 225 you would set the LowerLimit and UpperLimit accordingly and then access
the mean (or any other quantity you might be interested in) through the Stats() property.

Data Type
Integer (Range 0-254)

LowerThreshold, UpperThreshold Properties
Applies To

BlobAnalyzer

Description
LowerThreshold and UpperThreshold specify the lower and the upper thresholds respectively. These
properties are used to determine the WeightTable constructed when BlobType is set to a value other
than BT_USERDEFINED.

Syntax
[form.]control.LowerThreshold = [= value%]

[form.]control.UpperThreshold = [= value%]

Remarks
The LowerThreshold must never be set greater than or equal to the UpperThreshold. In either of the
binary BlobType modes, any attempt to change the LowerThreshold will cause the UpperThreshold to
change as well. In any non-binary BlobType mode, any attempt to set the LowerThreshold greater
than or equal to the UpperThreshold will generate an error.

Data Type
Integer (Range 0-254)

Mask Property
Applies To

BlobAnalyzer

Description
Contains the mask used to determine which pixels in the frame buffer are to be considered foreground
and which are background.

Syntax
[form.]control.Mask [= picture%]

Remarks
This is a standard Visual Basic picture in .bmp format. It may be read and written using picture-related
mechanisms like LoadPicture and SavePicture.

The bitmap is binary. Pixels with index 0 are background and others are foreground. Currently, there
is no method to supply a labelled mask nor to read the labelled blobs. If using PaintBrush or a similar
program, pixels drawn in white will be background and those drawn in black will be foreground. It is not
possible to save the pixel weighting information to the mask as the mask is binary only.

This property exists primarily to allow the programmer to apply the same mask to multiple images as in
the following example:

Blobtool1.Mask = Blobtool2.Mask
Blobtool1.Apply = AM_MASK_LABEL

If HoleFill is enabled when the mask is written, holes will be filled in at this point.

When analysis is performed using a mask, it defines the area of the frame buffer where pixels are to be
analyzed. Inside this area the WeightTable is still applied to features extracted. Thus if the intention is
that only the mask should be taken into account, the BlobType should be set to BT_MASK_ONLY.

Data Type
Integer

MaxResults Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the maximum number of edges or edge pairs which will be returned from an edge tool.

Syntax
[form.]control.MaxResults [= value%]

Remarks
The default value is 25 edges or edge pairs. It is guaranteed that the best matching results will be
returned where the meaning of best depends on the setting of the tools SortOrder property.

Data Type
Integer

MidPointX, MidPointY Properties
Applies To

ArcCaliper, ArcEdgeLocator

Description
MidPointX and MidPointY specify the x and y-coordinates, respectively, of the middle pick point.

Syntax
[form.]control.MidPointX [= value!]

[form.]control.MidPointY [= value!]

Remarks
The values of these properties are specified relative to the frame buffer origin and are scaled according
to the ScaleX, ScaleY and ScaleType properties.

Data Type
Single

Mode Property
Applies To

LineCaliper, LineEdgeLocator

Description
Specifies the mode of operation of the Line Edge tools.

Syntax
[form.]control.Mode = [= value%]

Remarks

The following table lists the possible values for the Mode property.

Setting Description

0 (MD_HORIZONTAL) The Inclination property is fixed at 0. This mode is optimized
for speed. Only vertical edges will be found (perpendicular to
the Viewport).

1 (MD_VERTICAL) The Inclination property is fixed at 270. This mode is optimized
for speed. Only horizontal edges will be found (perpendicular
to the Viewport).

2 (MD_ANYANGLE) The tool may be rotated to assume any inclination. Edges will
be found at the angle which is perpendicular to the angle
specified by the value of the Inclination property minus that of
the Skew property.

When the mode is changed, the tool attempts to keep the same shape, at the expense of the same
position if one of the two must change. For example, if the Mode is modified from MD_HORIZONTAL to
MD_VERTICAL , then the Height and Width properties will change. The PathLength and Thickness
properties will be unchanged.

Data Type
Integer (Enumerated)

NumResults Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
This property returns the number of single edges for the ArcEdgeLocator and LineEdgeLocator tools,
or edge pairs for ArcCaliper and LineCaliper tools found when the edge tool was last applied.

Syntax
[form.]control.NumResults

Remarks
The value of the property is not available at design time and is read-only at run time. The value of hte
property will be zero if the edge tool has never been applied.

Data Type
Integer

OutputLut Property

Applies To
ImageDevice, MemoryBuffer

Description
This property is an array of 256 Integers containing a copy of the output look up table (LUT). This
property is not available at design time.

Syntax

[form.]control.OutputLut (index%) [= position%]

Remarks
This is an array of 256 Long Integers which are used to read and write the output LUT. Each element is
organized as a 24-bit number representing one color with Red in the least significant byte, Green in the
next byte and Blue in the most significant byte. This is the same order used by Visual Basic and
Windows to represent color values.

Note that the LUT is also used when the buffer is displayed through a non-transparent hook. In this
case, though, the quality of the LUT mapping is limited by the Windows graphics display. A graphics
card supporting at least 256 colors should therefore be used. Please see the README.TXT file for
information about how this property works with certain frame grabbers.

Data Type
Array of Long

OutputOriginX, OutputOrginY Properties

Applies To
ImageDevice

Description
OutputOriginX and OutputOriginY determine the X-position and the Y-position, respectively, in the output
video signal at which frame buffer display starts.

Syntax
[form.]control.OutputOriginX [= position%]
[form.]control.OutputOriginY [= position%]

Remarks
Together, these properties determine the location in the video signal at which the image is displayed.
For example, if the video signal is 640 X 480 and we are displaying 512 X 480 images, then if the X
origin is set to 64, the signal will be blanked for first 64 columns; the image will be displayed in the next
512 pixels and the last 64 pixels will also be blanked. Setting the x-origin to 0 would left-justify the
acquisition while setting it to 128 would right-justify it.

Similarly, if the video signal is 640 X 480 and 640 X 400 pixel images are being displayed, then if the Y
origin is set to 40, the signal will be blanked for the first 40 rows of pixels, the image will be displayed in
the next 400 rows and the last 40 rows will also be blanked. Setting the Y origin to 0 would top-justify
the display while setting it to 80 would bottom-justify it.

Different frame grabbers may place various hardware restrictions on the values of these properties such
as locking them to the InputOriginX and InputOriginY. As a result, the values read may not be the
same as the values written.

The values of these properties should not be changed if the Transparent property has been set to 2
(TM_LOCKEDWINDOW). LockedWindow transparency and setting the origin through the OutputOrigin
properties serve the same purpose and therefore do not work together.

Data Type
Integer

OutputPan Property

Applies To
ImageDevice, ImageHook, MemoryBuffer

Description
Determines the X-position in the frame buffer at which display starts.

Syntax
[form.]control.OutputPan[= position%]

Remarks
Together with the OutputScroll property, this property determines the location in the frame buffer which
corresponds to the OutputOriginX.

When applied to an unhooked or transparent ImageDevice or ImageHook, the value of this property
specifies where the display starts on the imaging monitor in dual monitor mode or on the underlay in
single monitor mode. The value may be restricted by a variety of hardware limitations. Some of these
include: locking it to the InputPan property and rounding it to a power of two. When this happens, the
value read may not be the same as the value written.

For non-transparent image tools, this property specifies where the display starts on the VGA screen and
has no effect on the underlay if any.

Data Type
Integer

OutputScroll Property

Applies To
ImageDevice, ImageHook, MemoryBuffer

Description
Determines the Y-position in the frame buffer at which display starts.

Syntax
[form.]control.OutputScroll[= position%]

Remarks
Together with the OutputPan property, this property determines the location in the frame buffer which
corresponds to the OutputOriginY.

When applied to an unhooked or transparent ImageDevice or ImageHook, the value of this property
specifies where the display starts on the imaging monitor in dual monitor display or on the underlay in
single monitor mode. The value may be restricted by a variety of hardware limitations. Some of these
include: locking it to the InputScroll property and rounding it to some power of two. As a result, the
value read may not be the same as the value written.

For non-transparent image tools, this property specifies where the display starts on the VGA screen and
has no effect on the underlay if any.

Data Type
Integer

OutputSizeX OutputSizeY Properties

Applies To
ImageDevice

Description
OutputSizeX and OutputSizeY determine the resolution of the display in the X-direction and the Y-
direction, respectively.

Syntax
[form.]ImageDevice.OutputSizeX [= position%]
[form.]ImageDevice.OutputSizeY [= position%]

Remarks
These properties control the number of pixels displayed on the screen. If the number of pixels
displayed is less than the size of the display, the rest will be blanked.

Different frame grabbers may place various hardware restrictions on the values of these properties such
as locking them to the InputSizeX and InputSizeY properties. As a result, the values read may not be
the same as the values written.

Data Type
Integer

OutputZoomX, OutputZoomY Properties

Applies To
ImageDevice, ImageHook, MemoryBuffer

Description
OutputZoomX and OutputZoomY determine the zoom factors to be applied at display in the X-direction
and Y-direction, respectively.

Syntax
[form.]control.OutputZoomX [= value!]
[form.]control.OutputZoomY [= value!]

Remarks
This property determines the magnification factor applied when an image is displayed.

Different frame grabbers may place various hardware restrictions on the values of these properties such
as restricting them to integral values or powers of two. As a result, the values read may not be the same
as the values written. However, no restrictions are imposed on their values for non-transparent image
devices. Any positive zoom factor is legal, including values less than 1.

Note: Tools placed on the ImageHook or ImageDevice are not zoomed and therefore will be
misplaced on the display. Their location in the frame buffer is still correct, however. It is suggested
that tools sitting on a zoomed image be made invisible.

Data Type
Single

PathLength Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the number of points on the line or arc.

Syntax
[form.]control.PathLength

Remarks
this property returns the length, in pixels, of the edge tools Viewport along its axis. It is a read-only
property except for line tools in Horizontal or Vertical mode. For line tools in these specific modes the
property becomes a convenient way to adjust the size of the Viewport.

Data Type
Single

PathSize Property
Applies To

ArcCaliper, ArcEdgeLocator

Description
Specifies the maximum number of points permitted on an arc.

Syntax
[form.]control.PathSize [= value%]

Remarks
The PathSize property is used to limit the amount of memory that is allocated, and the number of points
to teach on an arc. Any attempts to increase the size of the arc beyond the limit set by the PathSize
property will result in an error and the arc will return to the shape and size it had before the attempt.
The PathSize property must be in the range 0-15000.

Data Type
Integer

Position Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the position of an edge or edge pair. The position of an edge pair is defined as the midpoint
of the position of the two edges in the pair.

Syntax
[form.]control.Position

Remarks
The value of the property is not available at design time and is read-only at run time. For LineCaliper
and LineEdgeLoctor tools only, the result is scaled according to the ScaleX, ScaleY, and ScaleType
properties. If the Mode property for a LineCaliper or a LineEdgeLocator is set to MD_ANYANGLE, the
result is reported relative to the start point and the RefType is ignored. If the Mode property for a
LineCaliper or LineEdgeLocator is set to MD_HORIZONTAL or MD_VERTICAL, the result is reported
relative to the origin specified in the RefType property.

For ArcCaliper and ArcEdgeLocator tools, the result is always reported in pixels along the arc relative
to the start point.

Data Type
Single

QuickData Property
Applies To

BlobAnalyzer, LightMeter tool

Description
Returns all the tools results in a single string.

Syntax
[form.]control.QuickData

Remarks
This property is read-only. It is sometimes desirable to be able to obtain and manipulate all the data
points in a single operation - perhaps to pass the data to another tool such as a database, spreadsheet,
or graphing control. This can be achieved by assigning the return value of QuickData to a programmer
defined string, or similar property such as the Graph control's QuickData property.

The data is in the form of a string with each data point separated by a tab character (Chr$(9)), and each
data set by a CR+LF (Chr$(13) + Chr$(10)). For example, a string consisting of two data sets and only
a few data points may look like the following:

27<TAB>32<TAB>12<TAB>8<TAB>42<CRLF>
9<TAB>7<TAB>76<TAB>65<TAB>73

The first set consists of the first five numers while the remaining six numbers make up the second set.
Note that the number of data points on each line is always the same.

BlobAnalyzer
All of the values of the features extracted are returned in a two-dimensional array. If the CurAutoInc
property is set to AI_BY_FEATURE then the features will be placed along the horizontal axis and blobs
along the vertical axis. If CurAutoInc is set to AI_BY_BLOB this order is reversed. If it is set to None,
the result is undefined. If the QuickLabels property is set to True, then blob number and feature name
labels will automatically be added along both axes. If the amount of information to be returned exceeds
the maximum length of a string (slightly less than 64K bytes), then the result returned by the property is
undefined. It is suggested that a loop over all values be used instead if this is a serious possibility.

LightMeter
Two sets of data are provided - the standard histogram and the cumulative histogram. Through the use
of the QuickDataMode property, the programmer can request one or the other, or both. If both are
requested, the first 256 values represent the standard data, followed by a CR+LF and then another 256
values representing the cumulative data.

Data Type
String

QuickDataMode Property
Applies To

LightMeter

Description
Determines the nature of the data returned in the QuickData property.

Syntax
[form.]lightmeter.QuickDataMode [= mode%]

Remarks
The following are the possible values for the QuickDataMode property:

Setting Description

0 (LM_HISTOGRAMONLY) The QuickData property will return only standard
histogram data.

1 (LM_CUMULATIVEONLY) The QuickData property will return only cumulative
histogram data.

2 (LM_BOTH) The QuickData property will return both standard
and cumulative histogram data, in that order.

Data Type
Integer (Enumerated)

QuickLabels Property
Applies To

BlobAnalyzer

Description
Specifies whether labels are to be added to the string returned through the QuickData property.

Syntax
[form.]control.QuickLabels [= {True | False}]

Remarks
The QuickLabels property, when set to True, adds the blob number and feature name labels along both
axes of the two dimensional string returned from the QuickData property. If the CurAutoInc property is
set to AI_BY_FEATURE then the features will be placed along the horizontal axis and blobs along the
vertical axis. If CurAutoInc is set to AI_BY_BLOB this order is reversed. If the QuickLabels property is
set to False, then no labels are added, regardless of the setting of the CurAutoInc property.

Data Type
Integer (Boolean)

RefType Property
Applies To

LineCaliper, LineEdgeLocator, BlobAnalyzer

Description
Specifies how to calculate the reference point for reporting results.

Syntax
[form.]control.RefType [= value%]

Remarks
Results are reported with respect to a reference point. The RefType property applies to a LineCaliper
or a LineEdgeLocator only if the Mode property is set to MD_HORIZONTAL or MD_VERTICAL. The
following are the possible values for the RefType property:

Setting Description

0 (REF_ABSOLUTE) Values are reported with respect to the upper left hand
corner of the frame store.

1 (REF_RELATIVE) Values are reported with respect to the origin of the tool.
Since an edge tool is a directed vector, this origin will be
located at the start point of the edge tool. This is the
default value of the edge tools. In the BlobAnalyzer the
origin is always at the upper-left corner of the Viewport.

Data Type
Integer (Enumerated)

RejectColor Property
Applies To

BlobAnalyzer

Description
Specifies the display color for blobs that fail subsequent filtering operations.

Syntax
[form.]control.RejectColor [= &Hcolorvalue%]

Remarks
This property, along with the RejectDisplay property, determines how blobs that fail subsequent filtering
operations will be displayed on the image display. If RejectDisplay is set appropriately, RejectColor
sets the color used to display the rejected blobs in the image. Setting the property is identical to setting
other standard Visual Basic color properties. Refer to the Visual Basic Programmer's Guide for more
information on color properties and how to set them.

Data Type
Long Integer

RejectDisplay Property
Applies To

BlobAnalyzer

Description
Specifies how the BlobAnalyzer alters the overlay when displaying blobs that fail subsequent filtering
operations (invoked through the Apply property).

Syntax
[form.]control.RejectDisplay [= displaytype%]

Remarks
The following are the possible values for the RejectDisplay property:

Setting Description
0 (NO_CHANGE) The color of the blobs remains unchanged from

what it was before the application of the tool.

1 (BD_CLEAR) The blobs' overlay display is cleared such that only
the underlying original image is visible.

2 (BD_COLOR) The blobs are set to the color specified in the
RejectColor property.

Data Type
Integer (Enumerated)

ResultIndex Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the edge or edge pair from which information is reported in other properties.

Syntax
[form.]control.ResultIndex [= value%]

Remarks
An edge tool stores information about all edges or edge pairs which pass the minimum accept criteria
specified in the setup box. While only the best edge or edge pair may normally be of interest, it may
be desired to look at others. This property is used to select the edge or edge pair for edge reporting
properties, which include: Position, X, and Y, Edge1Position, Edge2Position, Edge1X , Edge1Y ,
Edge2X , Edge2Y , and Size.

Setting Description

0 First edge/edge pair returned.

1 Second edge/edge pair returned.

... ...

N The (N-1)th edge/edge pair returned.

Example
Dim NumResults As Integer
Dim Positions(20) As Single
Dim I As Integer
NumResults = Caliper1.Apply
If NumResults = 0 Then

MsgBox "No results found!"
ElseIf NumResults >= 20 Then

MsgBox "Too many results to process!"
Else

For I = 0 To NumResults - 1
Caliper1.ResultIndex = I
Positions(I) = Caliper1.Position

Next I

End If
....

Data Type
Integer

RightTailSize Property
Applies To

LightMeterVBX_LIGHTMETER

Description
Specifies the percentage area of the histogram to be considered part of the right tail.

Syntax
[form.]lightmeter.RightTailSize [= tailsize!]

Remarks
This property specifies what proportion of the total number of pixels, at the high end of the histogram,
should be considered outliers and part of the right tail. The value entered is treated as a percentage
and can be any valid floating point number between 0 and 100.

Data Type
Single

ScaleType Property
Applies To

ImageDevice, MemoryBuffer, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator,
BlobAnalyzer

Description
Specifies the type of scaling to be used when reporting back the results of the tool acting on the frame
store.

Syntax
[form.]control.ScaleType [= value%]

Remarks
Setting the ScaleX, or ScaleY property automatically forces the value of the ScaleType property to be
set to 0 (ST_USER). Setting the value of the ScaleType property to 1 (ST_PIXELS) automatically forces
the value of the ScaleX and ScaleY properties to 1. For Edge Tools or BlobAnalyzers only, setting
the value of the ScaleType property to 2 (ST_FROM_DEVICE) causes the ScaleX and ScaleY properties
to reflect the coordinate system of the frame store on which the tool acts; consequently, changing these
properties in the frame strore automatically causes them to change in the tools whose ScaleType
property is set to ST_FROM_DEVICE as well.

The following table lists the possible values for the ScaleType property.

Setting Description

0 (ST_USER) The translation performed is as specified in the ScaleX and
ScaleY properties.

1 (ST_PIXELS) No translation is performed.

2 (ST_FROM_DEVICE) The translation performed is as specified in the ScaleX and
ScaleY properties of the frame store on which the tool acts.
Verical edge tools scale according to the framestore's ScaleY
property; horizontal edge tools follow its ScaleX, any angle
edge tools scale according to a combination of ScaleX and
ScaleY.

MemoryBuffer and ImageDevice controls, naturally enough, do not have the ST_FROM_DEVICE
setting.

Data Type
Integer (Enumerated)

ScaleX, ScaleY Properties
Applies To

ImageDevice, MemoryBuffer, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator,
BlobAnalyzer

Description
Specifies the scaling factor to be used in the x and y-direction to translate from pixels to user units.

Syntax
[form.]control.ScaleX [= value!]

[form.]control.ScaleY [= value!]

Remarks
Setting the ScaleX or ScaleY properties automatically forces the value of the ScaleType property to be
set to 0 (ST_USER). Setting the value of the ScaleType property to 1 (ST_PIXELS) automatically forces
the values of the ScaleX and ScaleY properties to 1. Setting the value of the ScaleType property to 2
(ST_FROM_DEVICE) forces the tool to inherit its ScaleX and ScaleY properties from the frame store.

The ScaleX and ScaleY properties of an ImageDevice or a MemoryBuffer may be inherited by tools
such as a LineCaliper which are acting on that frame store, depending on the setting of the ScaleType
property.

Data Type
Single

Score Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies how well the edge or edge pair indicated by the ResultIndex property matches the edge
evaluation criteria specified by the Setup property.

Syntax
[form.]control.Score

Remarks
The value of this property is not available at design time and is read-only at run time. The score will be
greater than 0 or less than or equal to 1.0. A perfect match is given a score of 1.0. Only those edges
or edge pairs that score higher than the minimum accept level, defined in Edges Dialog Box, will be
returned.

Data Type
Single

Setup Property
Applies To

ImageDevice, ImageHook, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator,
BlobAnalyzer, LightMeter

Description
The Setup property specifies the complete state of the control.

Syntax
[form.]control.Setup [= value$]

Remarks
The setup string is not available at design time and is not intended to be modified directly. It is a binary
string containing values of the properties that define the tools state. The state of a tool includes such
parameters as its Viewport position and size and the value of the properties. At run time, the value may
be copied to or from string variables, allowing it to be passed from one tool to another or to be saved to
a file.

The edge tools and the BlobAnalyzer have the Setup property present in the Properties list at design
time. If the mouse is double-clicked on the property it will open a dialog box which allows the designer
to change some of the attributes of the tool. During run time, setting the Setup property to
PopUpDialog will result in the setup dialog box being displayed.

These strings are in an internal binary format. If reading or writing files in Visual Basic containing these
strings, use Get and Put rather than Print. When using binary file access, the length of the save
string must be declared explicitly. The required size varies from one tool to the next according to the
following table:

Tool Size Required
ImageHook 96 bytes

LightMeter 128 bytes

ArcEdgeLocator, ArcCaliper, LineEdgeLocator,
LineCaliper

512 bytes

BlobAnalyzer 1024 bytes

ImageDevice, MemoryBuffer 4096 bytes

Example
Sub SaveData()

Dim BlobBuffer As String * 1024
Open(setup.dat) For Binary Access Write As 1
BlobBuffer = BlobTool1.Setup
Put #1, , BlobBuffer
Close #1

End Sub

Sub LoadData()
Dim BlobBuffer As String * 1024
Open (setup.dat) For Binary Access Read As 1
Get #1, , BlobBuffer
BlobTool1.Setup = BlobBuffer
Close #1

End Sub

Data Type
String

Size Property
Applies To

LineCaliper, ArcCaliper

Description
Specifies the size of the edge pair indicated by the ResultIndex property in user units.

Syntax
[form.]Control.Size

Remarks
The value of this property is not available at design time and is read-only at run time. For
LineCalipers, this value is scaled according to the current settings of the ScaleX, and ScaleY
properties.

Data Type
Single

Skew Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the angle at which edges should be detected and displayed in a Viewport.

Syntax
[form.]control.Skew [= value!]

Remarks
While the Skew property can be used with most edge tools, it is most useful for LineCalipers and
LineEdgeLocators. However, it only applies to LineCalipers and LineEdgeLocators when their
Mode property is set to 2 (MD_ANYANGLE). Any other value of Mode will cause the tool to dtect only
perpendicular edges. A Skew of 0 (default) means edges will be found perpendicular to the Viewport.
The Skew property must be in the range [-60,60], where 0 is perpendicular to the Viewport and positive
angles slope in a clockwise direction.

Data Type
Single

SortFeature Property
Applies To

BlobAnalyzer

Description
Determines which feature to sort on when sorting the list of blobs resulting from an Apply operation.

Syntax
[form.]control.SortFeature [= feature%]

Remarks
If the SortOrder propety is set accordingly, the tool will, after performing an Apply, automatically sort the
resulting blob list using the values of the feature indicated by the SortFeature property. The Visual
Basic constants included in the file XCALIPER.TXT can be used to describe the feature, avoiding the
need to memorize the actual numerical values.

Data Type
Integer (Enumerated)

SortOrder Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
Specifies the method by which the list of image objects generated by the tool are to be sorted.

Syntax
[form.]control.SortOrder [= value%]

Remarks
The information that is returned by a tool is unique to each class of tools: EdgeLocators and Calipers
generate edge and edge pai positions, respectively, while the BlobAnalyzer generates a list of blobs
with associated feature values. As such, the possible values for the SortOrder property is also unique
for each class of tools.

The following table lists the possible values for the SortOrder property of the Caliper and EdgeLocator
tools:

Setting Description

0 (ERO_BYSCORE) Results are reported in decreasing order of the Score property.
E.g., those edges (or edge pairs) scoring 1.00 will be first,
those edges (or edge pairs) scoring 0.00 will be last.

1 (ERO_BYPOSITION) Results are reported in increasing order of the Position
property. E.g., the edge (or edge pair) appearing closest to
the orgin will be reported first.

2 (ERO_BYINVERTEDPOSITION) Similar to the ERO_BYPOSITION mode except the report order
is reversed.

For the BlobAnalyzer tool, the possible values are as follows:

Setting Description

0 (ST_NONE) The blob list is not sorted. The blobs appear in the list
according to the order in which they were extracted from the
image. This will be in scan order from the upper left to the
lower right corner of the Viewport.

1 (ST_ASCENDING) The blob list is sorted in ascending order of the feature
indicated by the SortFeature property.

2 (ST_DESCENDING) The blob list is sorted in descending order of the feature
indicated by the SortFeature property.

DataType
Integer (Enumerated)

Stats Property
Applies To

BlobAnalyzer, LightMeter

Description
Returns the current value of the specified statistical quantity.

Syntax
[form.]control.Stats(Index)

Remarks
This property is not available at design time and is read-only at run time. The Stats property is an array
containing a number of useful statistical quantities computed from the data obtained from the most
recent invocation of the Apply property. Note that each quantity is computed only when actually
accessed through the Stats property. In the case of the LightMeter the data used are the pixel
intensity values contained within the tools Viewport. In the case of a BlobAnalyzer, the data used are
the values of the feature indicated by the CurFeature property. Note that the BlobAnalyzer does not
support the ST_MODE, ST_LEFTTAIL, and ST_RIGHTTAIL statistics.

The following table lists the statistical measures stored in the array, and their associated index value.
By including the Visual Basic header file XCALIPER.TXT in the project, the programmer can use a
descriptive constant name for each index that provides easy access to the various measures.

Setting Description
0 (ST_MEAN) The arithmetic mean of the values in the data set.

1 (ST_MEDIAN) The value that divides the data set into two equally sized
subsets - those with values below the median and those
with values above the median.

2 (ST_MODE)

(LightMeter only)

The value that occurs most often within the set of values.
If there is more than one value that occurs most often,
the smallest value is returned.

3 (ST_MINVAL) The smallest value in the data set.

4 (ST_MAXVAL) The largest value in the data set.

5 (ST_RANGE) The range of the values in the data set. In the
LightMeter this is calculated as Max - Min + 1; while in
the BlobAnalyzer it is Max - Min. This is because the
LightMeter deals with integer values while the
BlobAnalyzer works in floating point.

6 (ST_SUM) The sum of all the values in the data set.

7 (ST_SUMOFSQUARES) The sum of the square of all the values in the data set.

8 (ST_VARIANCE) The variance, or mean square deviation. Note that the
deviations are assumed to be computed from the true or
population mean and as such the formula for the true
variance is used.

9 (ST_STDDEV) The true standard deviation computed as the square
root of the variance.

10 (ST_LEFTTAIL)

(LightMeter Only)

The smallest intensity value such that one or more (and
possibly all) of its pixels are not part of the Left tail as
determined by the LeftTailSize property.

11 (ST_RIGHTTAIL)

(LightMeter Only)

The largest intensity value such that one or more (and
possibly all) of its pixels are not part of the right tail as
determined by the RightTailSize property.

DataType
Array of Single

SubPixel Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the accuracy supported when an edge tool is translated from the point at which it is taught and
the point at which it is applied.

Syntax
[form.]control.SubPixel [= value%]

Remarks
The property only applies to LineCalipers and LineEdgeLocators when the Mode property is set to 2
(MD_ANYANGLE). Otherwise, values are calculated at a one pixel resolution.

It should rarely be necessary to set this property to a value other than one but it is possible especially in
arc tools. A higher resolution setting will require more teach time and more resources. The actual
execution time of the tool is about the same. Increasing the accuracy of the sub-pixel translation may
improve detection of arcs, especially those with a high eccentricity. However, it will not increase the
accuracy of the result.

The following table lists the possible values for the SubPixel property:

Setting Description

0 (SP_ONE_PIXEL) Translation is made to the nearest pixel. This is the default.

1 (SP_HALP_PIXEL) Translation is made to the nearest half of a pixel.

2 (SP_THIRD_PIXEL) Translation is made to the nearest third of a pixel.

3 (SP_QUARTER_PIXELS) Translation is made to the nearest quarter of a pixel.

4 (SP_FIFTH_PIXELS) Translation is made to the nearest fifth of a pixel.

DataType
Integer (Enumerated)

SyncMode Property
Applies To

ImageDevice

Description
The SyncMode property specifies the source of the input sync signal.

Syntax
[form.]ImageDevice.SyncMode [= mode%]

Remarks
The following table lists the possible values for the SyncMode property of the ImageDevice control.

Setting Description

0 (ST_INTERNAL) Sync is generated internally, normally from a
crystal.

1 (ST_GENLOCK) Sync is overlaid on the input video signal by the
camera and and stripped by a phase-locked loop.
This is the normal method for synchronizing to a
camera, known as composite sync.

2 (ST_DEFAULT) Use the sync type selected by the driver.

Generally, a driver will either support switching between internal or external (genlock) synchronization,
or it will accept the ST_DEFAULT mode only. If a driver uses the ST_DEFAULT type, camera selection
and sync selection will be performed using some other mechanism. The usual possibilities are an
external camera configuration program and an entry in the driver-specific section of XCALIPER.INI.

Data Type
Integer (Enumerated)

Tag Property
Applies To

ImageDevice, MemoryBuffer, ImageHook, LineCaliper, LineEdgeLocator, ArcCaliper,
ArcEdgeLocator, BlobAnalyzer, LightMeter

Description
Stores a string which is intended as a unique identifier for a control.

Syntax
[form.]control.Tag [= string$]

Remarks
The Tag property is used to uniquely identify a control. Standard Visual Basic controls do not use this
property in anyway; it exists simply for the convenience of the programmer.

XCaliper uses the Tag property in two ways: to identify controls which other controls need to access
and as an informational string displayed in the title bar of Setup dialog boxes. In the latter role, it affects
the Setup boxes of all the edge tools and the BlobAnalyzer.
The Tag property of an ImageHook or MemoryBuffer is used by the ImageHook to identify the frame
store to display. The DeviceName property should contain the string stored in the Tag property of the
frame store.

The Tag property is also used to specify the source for a Command property, such as Copy, which
takes a source argument.

Note: When a control is created, the Tag property is set to be the same as the Name property. This
can result in multiple controls having the same Tag. It is the responsibility of the programmer to ensure
that Tag values are unique. XCaliper will supply a warning if a project is loaded with duplicate Tag
values.

DataType
String

TeachMode Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies when to teach or re-teach a tool based on the size and position of the Viewport.

Syntax
[form.]control.TeachMode [= value%]

Remarks
The property is only applicable to LineCalipers and LineEdgeLocators when the Mode property is set
to 2 (MD_ANYANGLE). Arc edge tools and AnyAngle line edge tools work in two distinct modes: first
the tool is taught the characteristics of the region around the tool and later it is applied. Teaching the
tool can take several seconds. This property determines when teaching takes place.

The following table lists the possible values for the TeachMode property:

Setting Description

0 (TM_DONT_TEACH) The tool is never taught except by explicit programmer action.
If the taught state should become invalid, the tool will not Apply
automatically and an error will be generated on an explicit Apply.

1 (TM_TEACH_NOW) The edge tool is taught based on the current Viewport and
property settings. After the operation is complete, the property
is set to 0 (TM_DONT_TEACH).

2 (TM_AUTO_TEACH) The edge tool is automatically re-taught whenever the state
becomes invalid through a change in the size of the Viewport or
modification of a property.

The time required to teach increases as the size of the Viewport increases and can reach many
seconds. Hence, this property is ver useful when setting many properties and/or sizing the Viewport.

DataType
Integer (Enumerated)

TeachState Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies whether the tool has learnt its Viewport and can therefore be applied safely. This property is
read-only and is only available at run-time.

Syntax
state% = [form.]control.TeachState

Remarks
Changes to certain properties of an arc tool, or an AnyAngle line tool can cause its internal map of the
Viewport to become invalid. That is, the Viewport on which it was last taught is sufficiently different
from the current one so as to cause an Apply of the tool to return invalid data. In fact, any attempt to
apply the tool with an invalid map will result in an error being thrown.

The internal map will become invalid if a change is made to a property defining the shape, size or
thickness of the Viewport. Changes to properties affecting position, colors and edge discrimination do
not affect the map.

Setting Description
True The Viewport map matches the current Viewport and the tool may

safely be applied

False The Viewport map does not match the current Viewport. An
attempt to apply the tool will cause an error to be generated.

This property will always be True if the TeachMode is set to TM_AUTOTEACH or if the Mode of a line tool
is Horizontal or Vertical.

DataType
Integer (Boolean)

Thickness Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies the thickness of a Viewport, i.e. the distance across the Viewport perpendicular to the
projection.

Syntax
[form.]control.Thickness [= value!]

Remarks
The property specifies the thickness of the Viewport to use when generating a projection. The value of
the Thickness property is always an odd number.

Data Type
Single

Translate Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator

Description
Specifies whether to resize or translate the edge tool when any of the start, end, or mid point
coordinates are set through the properties.

Syntax
[form.]control.Translate [= {True | False}]

Remarks
The value of this property is ignored in Line Edge tools whose Mode property is set to MD_HORIZONTAL
or MD_VERTICAL.

When this property is set to True, any changes to the start, end, or mid point coordinates through the
properties will cause the Viewport to be translated to the new location in the frame buffer while
maintaining the size and shape. This avoids having to re-teach the tool.

When set to False, the other pick points are kept at their current position. The effect is therefore to
change the shape of an arc tool Viewport, or the angle and/or size of a line tool Viewport. This will
cause the tool to become untaught and will initiate a re-teach if the TeachMode property is set to
TM_AUTO_TEACH.

Data Type
Integer (Boolean)

Transparent Property
Applies To

ImageHook, ImageDevice, MemoryBuffer

Description
Selects the way the image is displayed on the VGA screen.

Syntax
[form.]control.Transparent [= displayMethod%]

Remarks
This property chooses the mechanism used to display an image in a Visual Basic container. The
following are the possible values for the Transparent property:

Setting Description

0 (TM_NONTRANSPARENT) The image is simply drawn into the VGA memory. This makes it
work like the Picture property of the container.

1 (TM_FLOATINGWINDOW) The container is treated as a window which looks through to the
frame buffer underneath. Thus the frame buffer and Windows
must be displayed on a single monitor with the hardware
switching from one to the other on a pixel-by-pixel basis.
Changing the location of the hooked container changes the part
of the frame buffer being displayed.

2 (TM_LOCKEDWINDOW) The container is treated as a window which looks through to the
frame buffer underneath. Thus the frame buffer and Windows
must be displayed on a single monitor with the hardware
switching from one to the other on a pixel-by-pixel basis. The
same portion of the frame buffer continuous to be displayed
even if the location of the hooked container changes.

2 (TM_NOTHOOKED) No image is displayed. This mode exists primarily to allow
multiple tools to co-exist inside the same container.

Locked and Floating windows require hardware overlay. If the associated device does not support this
mode, the tool will refuse to enter the requested mode. While some frame grabber cards may support
overlay, MemoryBuffers will not. Some frame grabbers are limited in their ability to align the image
buffer and VGA overlay, especially in Locked mode. If this is the case, the overlay may be shifted
slightly (typically 1-3 pixels) to their left or the right. The location of edges or the position of blobs may
appear slightly wrong. However, this is only a display effect. They are, in fact detected correctly.

Data Type
Integer (Enumerated)

UpdateMode Property
Applies To

ImageDevice, MemoryBuffer, ImageHook

Description
Controls when an image tool is changed to reflect new states. Not available at design time.

Syntax
[form.]control.UpdateMode [= {True | False}]

Remarks
It is sometimes desirable to update a series of frame grabber properties simultaneously, instead of one
at time. This is particularly true of lookup table values. As long as the UpdateMode property is False,
properties changed in the ImageDevice, MemoryBuffer or ImageHook are stored but no changes
happen. As soon as the value becomes True, all of the deferred operations are written simultaneously
thus giving the user the impression that they all happened at once.

Data Type
Integer (Boolean)

UserInterface Property
Applies To

LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer, LightMeter

Description
Determines to what extent the end user is allowed to modify the characteristics of a tool at run time.

Syntax
[form.]control.UserInterface[= mode%]

Remarks
The property allows the programmer to control whether or not the end user is able to alter, through
mouse control, certain characteristics of the tool at run time. These characteristics include the position
and size of the controls Viewport, as well as any information presented in the tools Setup dialog box
(provided the tool has one).

The following table lists the possible values for the UserInterface property.

Setting Description

0 (UIF_FIXED) The tool will neither display its Setup dialog box nor allow any
modifications to its Viewport.

1 (UIF_SETUPONLY) The user is able to open the tools Setup dialog box, but cannot
modify the tools Viewport. For controls without a Setup dialog
box, this option is identical to the previous value. This setting
is useful in ensuring that a tools Viewport remains stationary
when the user double-clicks on the controls Viewport to open
the Setup dialog box.

2 (UIF_MOVEONLY) The user is allowed to change the position (but not the size) of
the tools Viewport, and is not able to access its Setup dialog
box.

3 (UIF_ENABLEALL) Complete mouse control is enabled. The user is able to alter
the Viewports position and size as well as open the Setup
dialog box.

4 (UIF_MOVEANDSIZEONLY) The user is allowed to change the position and size of the tools
Viewport, but is not able to access its Setup dialog box. If the
tool does not have a Setup box, this is equivalent to
EnableAll.

Data Type
Integer (Enumerated)

WeightTable Property
Applies To

BlobAnalyzer

Description

Specifies the weighting applied to each pixel based on its gray level.

Syntax
 [form.]Control.WeightTable (Index%) [= value!]

Remarks
The WeightTable is an array of 256 floating point values which specify the percentage of foreground and
background for a pixel with a given intensity. The value for an entry into the WeightTable will vary from
0.0 to 1.0, where 0.0 represents pure background and 1.0 represents pure foreground.

For example, if the 120th entry of the WeightTable is 0.6, then a pixel with a gray level intensity of 120
will be allocated 60 percent foreground and 40 percent background. This allows the programmer to
specify transition values as partially foreground and background instead of arbitrarily pick a threshold
point. This leads to a more accurate calculation of blob parameters.

Common WeightTables can be generated using the LowerThreshold, UpperThreshold and BlobType
properties. Any change to an entry to a WeightTable will cause the BlobType to be set to
BT_USERDEFINED.

Data Type
Array of Single

X, Y Properties
Applies To

LineEdgeLocator, ArcEdgeLocator

Description

Specify the coordinates of the edge indicated by the ResultIndex property.

Syntax
[form.]Control.X
[form.]Control.Y

Remarks
The values of the properties are not available at design time and are read-only at run time. The results
are reported relative to the containers origin and scaled according to the containers scale.

Data Type
Single

 Properties Reference

All of the properties are listed below. Properties that are not standard or that require special
consideration when used with this control are marked with an asterisk (*). For information on standard
Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic on-line
Help.

A
About*
AcceptColor*
AcceptDisplay*
ActiveControl
Angle*
Apply*
ApplyOnChange*
Area*
AspectRatio*
AutoSize*

B
BlobType*
BufferSizeX*
BufferSizeY*

C
CenterX*
CenterY*
ClosedCurve*
Command*
Count*
CurAutoInc*
CurBlob*
CurFeature*
CurValue*

D
DeviceFile*
DeviceName*
DisplayMode*
DrawColor*

E
Edge1Angle*
Edge1Position*
Edge1X*
Edge1Y*
Edge2Angle*
Edge2Position*
Edge2X*
Edge2Y*

EdgeDisplay*
ElapsedTime*
EndPointX*
EndPointY*

F
Features*
Filters*

G
Genlock*
GrabMode*

H
Height
Histogram*
HoleFill*

I
Inclination*
Index
InputChannel*
InputGain*
InputLut*
InputOffset*
InputOriginX*
InputOriginY*
InputPan*
InputScroll*
InputSizeX*
InputSizeY*
InputZoomX*
InputZoomY*

L
Left
LeftTailSize*
LockAngle*
LowerLimit*
LowerThreshold*

M
Mask*
MaxResults*
MidPointX*
MidPointY*
Mode*

N
Name
NumResults*

O

OutputLut*
OutputOriginX*
OutputOriginY*
OutputPan*
OutputScroll*
OutputSizeX*
OutputSizeY*
OutputZoomX*
OutputZoomY*

P
PathLength*
PathSize*
Position*

Q
QuickData*
QuickDataMode*
QuickLabels*

R
RefType*
RejectColor*
RejectDisplay*
ResultIndex*
RightTailSize*

S
ScaleType*
ScaleX*
ScaleY*
Score*
Setup*
Size*
Skew*
SortFeature*
SortOrder*
StartPointX*
StartPointY*
Stats*
SubPixel*
SyncMode*

T
Tag*
TeachMode*
TeachState*
Thickness*
Top
Translate*
Transparent*

U

UpdateMode*
UpperLimit*
UpperThreshold*
UserInterface*

V - Z
Visible
WeightTable*
Width
X*
Y*

 Commands Reference

All of the commands are listed in the following table. Commands can be executed either during design
time or run time. To execute a command during design time, enter the command into Command
property of the control.

Clear*

Close

Convolve*

Copy*

Dilate

Erode

LoadFile*

Median

Open

SaveFile*

TuneInput*

 Event Reference

Applied*

Click*

DblClick*

MouseDown*

MouseMove*

MouseUp*

 Methods Reference

All of the methods supported by XCaliper are listed in the following table.

Move*

Refresh*

ZOrder*

 Error Messages Reference

The following tables list the error codes that can be produced by the Xiris VBXes:

Error Number Error Description
32004 Attempt to set value of read-only property.
32005 Attempt to set property to illegal value.
32006 Cannot Genlock to channel; no sync available.
32007 Cannot obtain handle to container.
32008 Attempt to set property to illegal value.
32014 Color bitmaps not supported.
32015 Compressed files not supported.
32016 Too many blobs to process.
32017 No imaging control with specified tag could be found.
32018 Window initialization failure.
32019 Result index out of range.
32020 Either no results found at last apply or no apply ever performed.
32021 Command property used without a properly constructed verb.
32022 Comnmand verb unknown.
32023 Wrong number of arguments supplied to Command.
32031 Value must be greater than zero.
32032 Call not supported for this kind of object.
32033 Device is not a Frame Grabber.
32034 Processing region does not overlay input region.
32035 Call requires UpdateMode to be True.
32036 Too many entries used in color table; cannot add new one.
32037 Internal Logic Error.
32038 Attempt to access a blob feature which has not been calculated.
32039 The bit width of this image is not supported.
32040 The kernel requested was not found in the .INI file or there is no .INI file.
32041 Convolution kernel format is wrong.
32042 The sum of the elements of a convolution kernel may not be negative.
32043 An attempt to open the specified device driver failed; DLL may not exist.
32044 Attempt to initialize the specified driver failed.
32045 Attempt to use color processing on a card which does not support it.
32046 Attempt to use color processing on an image which does not support it.
32047 Attempt to load an ImageDevice with an invalid checksum.
32048 Attempt to load an unexpected version of an ImageDevice.
32049 Attempt to access an image with zero size.
32050 Attempt to load an ImageHook with an invalid checksum.
32051 Attempt to load an ImageHook from a setup from a different version.
32052 Attempt to load an unexpected version of an edge tool.
32053 Attempt to load an edge tool with an invalid checksum.
32054 Attempt to use an XCaliper control in design mode without a protection key.
32055 The software protection key does not authorize use in design mode.
32056 Attempt to load a LightMeter with an invalid checksum.
32057 Attempt to load an unexpected version of the LightMeter.
32058 Image Access generates Viewport into color image; not supported.
32059 Attempt to load an unexpected version of a MemoryBuffer.
32060 Attempt to load a MemoryBuffer with an invalid checksum.
32061 Container already has an enabled hook. Only one is allowed.
32062 Attempt to load an unexpected version of a BlobAnalyzer tool.
32063 Attempt to load a BlobAnalyzer tool with an invalid checksum.
32064 Attempt to load a BlobAnalyzer setup string with the wrong length.

32065 Attempt to load an ImageDevice setup string with the wrong length.
32066 Attempt to load an ImageHook setup string with the wrong length.
32067 Attempt to load an EdgeLocator setup string with the wrong length.
32068 Attempt to load an LightMeter setup string with the wrong length.
32069 Attempt to use continuous grab emulation without a non-transparent hook.
32070 Attempt to use continuous grab on a board without a secondary display.
32076 Property is not allowed to be set to this value in design mode.
32077 Filtering operation kernel is larger than viewport on which it is to be applied.
32078 Cannot apply too when TeachState is False.

Standard Visual Basic Error Codes

Error Number Error Description
7 Out of memory
52 Bad file name or number
53 File not found
54 Bad file mode
58 File already exists
61 Disk Full
64 Bad file name
67 Too many files open
68 Device Unavailable
70 Permission denied
76 Path not found
481 Invalid Picture Type

 Factors Affecting Performance: Overview

There are many factors which can affect the Speed and Accuracy of XCaliper in a measurement
application. A thorough understanding of these factors and how they relate can help the programmer to
obtain maximum performance from XCaliper in any measurement application.

 Factors Affecting Performance: Speed

Speed is defined as the run time required to execute a tool and obtain a result inside an application. To
be able to understand how to optimize the execution speed, it is necessary to be aware of the various
steps of the processing and measuring process.

Edge Tools
Once an image has been acquired and is resident in a frame buffer, a region of interest must be read to
generate a projection of gray level intensities in the region. When this curve has been generated, the
system CPU processes the projection to find the locations of maximum edge strength, or edges.
Finally, the list of edges is evaluated to find those that match a set of input criteria. For a more
complete discussion of the process steps of an edge tool, refer to the Edge Tools Theory of Operation.

Blob Tools
Once an image has been acquired and is resident in a frame buffer, a region of interest is accessed,
pixel by pixel by the system CPU, with the result being placed in the computer's system memory. From
this point on, all the processing is done using the personal computer's CPU, namely the steps of
segmentation, labelization, feature extraction, filtering, and display. For a more complete discussion of
the process steps of a blob tool, refer to the BlobAnalyzer Theory of Operation.

A number of additional considerations are necessary to optimize the execution speed of XCaliper tools.
These include:

Hardware Considerations
Setup Considerations

 Factors Affecting Performance: Hardware Considerations - Speed

The process of generating a projection is by far the largest portion of the cycle time of an edge tool,
taking up to 90% of the total time required when running the tool in software. This is governed by the
access time of reading the pixels in the frame buffer, and the speed of the processor performing the
projection operation. To maximize the speed of both these steps, a frame grabber should be chosen
that can perform profiling in hardware, and can then send the projection result to the system CPU.
Should the frame grabber not have on-board processing, the system CPU will be used to perform the
projection operation which must access the frame grabber's memory to process the image.

The system CPU is usually used exclusively for the BlobAnalyzer and the LightMeter tools. In each
case, the rate of pixel access is dependent on the system's bus: an EISA based frame grabber will allow
the CPU to access the frame buffer at EISA bus clock speeds of up to 33 MHz, whereas an ISA based
frame grabber is restricted to 8 MHz bus speed. Other frame grabber boards that are based on VL or
PCI local bus standards can operate even faster. Other than access time, the speed of the CPU
directly affects the time taken to generate the projection curve of an edge tool, or to perform the
labelization of the image for the BlobAnalyzer. In any case, if processing is to be done in software, the
execution speed of any tool can be improved using the fastest CPU possible with a cache of at least 128
KBytes.

 Factors Affecting Performance: Setup Considerations - Speed

Because generating a projection an edge tool or performing a segmentation using the BlobAnalyzer is
the most time consuming step in performing a measurement, the speed of execution of XCaliper is
directly proportional to the shape, size and inclination of its Viewport. For an edge tool, the first
concern should be to minimize the Viewport width (or height of columns which are totaled to calculate
the projection). Secondly, the length of the Viewport, while not as significant, can help to reduce the
overall cycle time. In other words, a Viewport 50 pixels wide and 100 pixels long will be faster to
projection than a Viewport 100 pixels wide and 50 pixels long. Finally, inclination of the Viewport is also
significant to the execution speed of XCaliper: a Viewport that has its major axes along one of the
cardinal axes (e.g. 0, 90, 180, 270) will operate much faster than one with its axes along an intermediate
angle because no interpolation will have to occur.

The edge tools can also be made to run slightly faster by fine tuning the parameters for inspection when
designing the application: when numerous edges are found in the Viewport, the tool will take slightly
longer to evaluate all the edges to find the ideal edge or edge pair. By activating the discriminators
such as minimum strength, pair straddle, etc., the Edge Evaluation Functions will not have to operate on
as many edges.

For the BlobAnalyzer, the smaller the Viewport is around the desired blob, the faster the tool will run.
As the processing time varies with the size of the Viewport, leaving extra space around a blob will add
extra processing time. In addition, if repeated filtering operations or feature extraction is to be done on
the same image, the tool should be set up to avoid the processing steps that are not required over and
over, e.g. segmentation or labelization.

 Factors Affecting Performance: Accuracy

Accuracy and repeatability are the two main metrics by which any measurement tool is rated. Accuracy
and repeatability are closely related: the accuracy of a process cannot be correctly calculated without
first determining the repeatability of the process.

A number of considerations are necessary to ensure accuracy of an XCaliper tool. These include:

Hardware Considerations

Optical Considerations

Lighting Considerations

Setup Considerations

 Factors Affecting Performance: Hardware Considerations -
Accuracy

The analog video signal produced by a video camera is a voltage proportional to the light intensity found
on the camera's sensor. Additional information exists in the video signal to define the timing of the scan
line, known as the horizontal sync pulse. When the video signal enters a frame grabber, it is digitized
by flash Analog-to-Digital converters (ADCs) at pixel rates (approx. 14.3 Megapixels/sec). The ADCs
attempt to lock sync with the video camera by picking up the horizontal sync pulse using Phase-Locked-
Loop (PLL) circuitry. Because of the nature of this process, an error is introduced into the digitized
image known as pixel jitter.

Each time the location of the horizontal sync differs from the locked sync, the position of all the
horizontal picture elements is shifted by an equal amount in the scan line. A large error in the horizontal
sync could cause the location of a single row of pixels to be off by one or more pixels in one scan, and
zero in the next, hence the name pixel jitter. Significant pixel jitter can affect an edge tool that has been
placed in the horizontal direction. When selecting a frame grabber, careful attention should be made of
the published pixel jitter. When pixel jitter does exist, vertically oriented edge tools will have higher
accuracy than horizontal edge tools.

Once the video signal is digitized, the resulting digital data is stored in video RAM and can be accessed
by either an on board processor or the computer's CPU. Each picture point in the image is referred to
as a pixel. The number of pixels in an image defines the resolution of an image and the number of bits
used to store the brightness information defines the depth of the image. Each pixel has a numerical
value that represents the average brightness of the image over the area that the pixel occupies in the
original analog image, where 0 represents black, 255 represents white, and the values in-between all
the shades of gray (for an 8 bit memory buffer). Although the camera has discrete physical pixels, the
exact timing between pixels is lost due to the time delay between transmitting that pixel and digitizing its
value, causing a temporal error.

By increasing the resolution of the image by using a larger frame buffer, a measurement can be made
more accurate. However, this has a practical restriction in that there is no point to digitize an image into
a frame buffer whose resolution is greater than that of the camera sensor from whom the image was
derived. To represent a perfect edge in an image, at least two pixels are required on a scan line. A
perfect edge can only be generated by a perfect alignment of the image with the pixel array using a
perfect optical system, which happens rarely. Based on Nyquist's sampling theory, we can say that a
768 X 493 pixel camera can display up to 383 X 246 distinct lines, or objects in the image. A typical
image has much less information content than this number.

Because physical pixels are not the same sizes horizontally and vertically, and the digitization process
does not occur on pixel boundaries, any pixel based measurements do not give the same calibration
value horizontally and vertically. Therefore, the correlation between the photosites (camera pixels), and
the digitally stored pixels can only be approximated by calibrating the pixel size in both the horizontal
and vertical directions.

 Factors Affecting Performance: Optical Considerations -
Accuracy

Optics, the study of light and behavior of optical elements, is a very important part of machine vision.
The input to a machine vision system is almost exclusively via optics. A scene or object is imaged onto
a camera sensor. Well designed optics will improve the chances of creating a successful system, and
will significantly reduce the software effort required to bring the project to completion. Conversely,
many machine vision projects fail, or are late because of poor optical design. Software cannot
compensate for poor lighting, out of focus images, or incorrectly chosen perspectives. For the above
reasons, optics will be discussed in detail with emphasis placed on lenses.

The camera sensor, or CCD, typically come in sizes of 1/3", 1/2", and 1". A common mistake is to
assume a 1/2" CCD has 1/2" diagonal sensing distance. In reality, about half of the chip is used for
storage, and the rest for image acquisition. For a 1/2" CCD, the usable diagonal area for image
acquisition is approximately 0.31" (8mm).

The optical path between the camera's sensing device and the component under inspection is critical for
an accurate measurement system. The physical set up of the camera and component under
inspection can greatly affect accuracy: should the camera not be perpendicular to the component under
inspection for example, a linear distortion will occur across the image. Similarly, should the distance
between the component and the camera from one inspection to the next change significantly relative to
the focal length of the application, a further process inaccuracy will develop. The choice of optic
components to use in a gauging application, such as lenses, filters and mirrors must be carefully made
to avoid introducing optical aberrations to the system. Careful selection of the optical components must
be made to avoid optical aberrations such as:

Spherical - When rays from the center and edges of the lens focus at different distances.

Chromatic - When different gray level intensities focus at different distances or depths. Lens may have
different sensitivities to specific light wavelengths.

Coma - When an off-axis image appears to have asymmetric blurring which is comet-like in shape, such
as an uneven spot.

Astigmatism - When horizontal and vertical features focus at different depths.

Distortion - When there is a difference in lateral magnification, usually appearing as a Barrel or
Pincushion image. Can be minimized by avoiding wide angle lenses.

There are four fundamental equations that need to be considered when designing lens systems. Two
of the equations only apply when the optical system is focused. The equations are derived for simple
lens systems, but will give a reasonable starting point when used on a complex one.

1) Basic lens equation:
1/f = 1/s + 1/s" (when in focus)

where f is the focal length of the lens

s is lens to object distance

s" is lens to sensor distance

2) Magnification:
m = s"/s (when in focus)

where m is the magnification of the lens

s, s" are the same as above

3) Refraction index of a beam at a glass/air boundary:
n = sin(i) / sin(r)

where i is the angle to the incoming beam

r is the angle of the refracted beam

n is the refractive index of the glass (typically 1.52 for optical glass.)

The refractive index is the ratio of the speed of light in a vacuum to the same glass. Light slows down
in glass.

4) Compound lens equation:
(This applies when two simple lenses are combined.)

1/f = 1/f1 + 1/f2 - d/f1*f2

where f is the resultant focal length

f1 is the focal length of lens #1

f2 is the focal length of lens #2

d is the distance between the principal points on the lenses

The above equations will allow you to calculate most optical systems involving simple lenses, glass
plates, windows, and prisms. Equations (1) and (2) can be used to calculate the kind of camera lens to
be selected for a given job and the length of the extension tube to be applied with the lens. Frequently,
solving two simple simultaneous equations will be required for extension tube calculations.

The light gathering power of lenses depends on the ratio of active diameter to focal length. This is
called f-number. The active diameter of the lens is called aperture, which is adjustable in camera
lenses. The aperture scale engraved on the lens is a series of values: 2, 2.8, 4, 5.6, 8, 11, 16, etc.
These numbers represent the inverse of the actual f-number and really mean: 1/2, 1/2.8, etc. and are
part of a series based on the square root of 2. Each increment in the series halves the light transmitted
by the lens. The aperture of the lens, which is also referred to as f-stop, is adjusted by two or more thin
blades inside the compound lens. The aperture works on the entire image, so setting the aperture to a
small opening does not just cut the light on the perimeter of the image, but dims the entire field of view.
Reducing the aperture also increases the depth of field. So there is a trade-off between brightness of
a scene and the depth of field.

Camera Lenses
The use of standard camera lenses has several advantages over the use of simple lenses in a video
imaging system:

1) Spherical and chromatic aberrations are corrected for in the design

2) Built-in focusing adjustment

3) Built-in Adjustable aperture

4) Standard screw-mount supplied, usually 'C'-mount

5) C'-mount is a recognized standard: 1" dia X 32 TPI, with flange to sensor distance of 17.53 mm

6) Video lenses are available in standard focal lengths: 16 mm, 25 mm, 50 mm, 75 mm, although for
most machine vision applications 25mm or 50mm lenses are used due to their superior optics.

Zoom (variable focal length) lenses are impractical for precise machine vision applications because of
their design: with loose fitting internal adjustable lens elements, the lens axis can be thrown off its ideal
center line; and the scale factor of the lens/camera system can never be guaranteed due to the moving
zoom action of the lens. A further limitation of zoom lenses is that they are generally not designed for
close focus work.

Microscope Objectives
For large magnifications ordinary camera lenses are not suitable, as they are not designed for such
applications. A better solution would be to use commercially available microscope objectives from large
microscope vendors. They do not have adjustable focus and aperture, but will produce sharp images
at high magnifications. Some, such as the Nikon measuring microscope objective, will allow the
designer to work at a significant distance from the object and yet obtain high magnifications. This
feature is achieved through a very complex optical train inside the lens barrel.

Other Optical Devices
Mirrors, flat or curved, come in two versions: front surfaced and rear surfaced. In all applications
where imaging is done through a mirror, front coating should be chosen for optimum image quality.
When looking through a glass plate 4% of the light is reflected off the front face of the glass. In a rear
coated mirror two such reflections occur, one on entry, the other on exit. All these extra reflections
contribute to image degradation. Front faced mirrors do not exhibit the same behavior. Rear surfaced
mirrors are generally more robust and can be used in optically less demanding applications, such as
reflectors for light sources

Beam-splitters are generally made with glass plate that has one side coated with a partial light
transmitting layer, while the other side is anti-reflection coated. Beam-splitters are useful in combining
two or more optical systems to create complex systems such as light source and image travelling in the
same optical path.

Windows are generally anti-reflection coated glass plates and are useful in keeping dirt, etc. out of an
optical system. For very abrasive environments they may be made of synthetic sapphire at a
reasonable cost.

Prisms are generally used to replace mirrors in special applications. Because of their well known
dispersive properties (color separating) they are also used in spectral analysis.

 Factors Affecting Performance: Lighting Considerations -
Accuracy

The selection of an appropriate lighting technique for a machine vision project will greatly simplify the
software effort and enhances the success of the entire project. There are no rules in selecting the
proper lighting for the job, the best way is often found by experimenting with a variety of techniques.
The goal is to highlight the feature of interest without illuminating areas of no concern.

An image typically consists of surfaces and edges, where each surface in the image has a different
reflectance and creates a unique brightness level. Lighting is one of the most important considerations
when setting up any machine vision system, particularly a gauging application. The way that light
bends around and reflects off objects is extremely variable between any two parts. The main objective
when choosing a lighting method for gauging is to illuminate the target in such a way as to generate
edges in the image that are as sharp as possible. Sharp edges are ideal for highly accurate
measurements because the edge locating algorithm will find the maximum rate of change of strength
across an edge more consistently when the edge is sharper. The steeper the edge gradient, the less
the algorithm is influenced by minor intensity changes across the edge.

To achieve the best measurement results, a consistent light source should be used that can provide as
close as possible to constant intensity. Light sources that are driven by DC, strobe or high frequency
AC power supplies are recommended. By minimizing the variation in light intensity, the strength
projection across an edge will be more consistent, thereby improving both the repeatability and accuracy
of the measurement. The ideal light source to use for gauging is a backlight with a collimated cover to
generate only parallel light rays with a minimum amount of distortion by the time they hit the camera's
sensor. By using such a light source, more accurate edges can be obtained, and image aberrations
such as flare (hot spots or uneven illumination caused by reflections from part of the optical equipment)
and vignetting (uneven illuminated image, such as a bright center spot with dark edges) can be
minimized. The lighting and optics to be used for a measurement application should be designed so
that no pixels in the image are at their maximum level as this could cause saturation or blooming (when
charge from one pixel spills over to the adjacent pixels, causing a smearing of the region) on the camera
pick up sensor.

When choosing a lighting method, there are a few basic considerations:

1) Low angle lighting enhances contrast exhibited by the surface structure of an object.

2) High angle lighting enables more precise feature measurements.

3) Certain 3-dimensional features can be enhanced using selective lighting.

4) Highly reflective, mirror like objects can be best viewed using collinear or co-axial lighting normal to
the surface.

5) 3-Dimensional contours show up well under structured (zebra-stripe) lighting.

6) Polarizers may eliminate unwanted reflections at the cost of loss of light.

7) One polarizer in front of the light source, the other in front of the lens at 90 degrees to the first will
allow otherwise impossible situations to work. This method is called Polarizer/Analyzer technique.

8) Ambient light can be excluded by the use of monochromatic light, such as LEDs combined with
optical filters of the same spectral band.

 Factors Affecting Performance: Setup Considerations - Accuracy

The way in which a Viewport is set up during the design phase can also have an impact on the accuracy
of the measurement. Because a single edge tool can be subject to noise and local discontinuities in the
image, the edge tool was designed with a two dimensional window, or Viewport, from which
measurements can be made. This provides the programmer some flexibility in that the Viewport can be
sized to suit: by making the Viewport several lines in width, an averaging effect can be achieved to
provide a better, overall edge location. However, this can be a problem if the Viewport is made too
wide because the resulting edge projection may be too weak for proper detection or accurate location of
the edge.

The size of the filter used to locate edges in the projection can also influence accuracy of the tool: a
larger filter size will tend to smooth the projection curve, taking into account information about the edge
farther away from the actual edge location and therefore slightly change the location of the edge found.
In addition, a larger filter size may smooth the projection so much that it may desired edges are
removed from the image.

Methods
All of the methods are listed in the following table.    For information on standard Visual
Basic methods, please see the Visual Basic Programmer's Guide or the Visual Basic on-line
Help.

Move*

Refresh*

ZOrder*

Move Method
Applies To

LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
This method is used to move and size a control.

Syntax
[object.]Move left[, top[, width[, height]]]

Remarks

The Move method has these parts:

Part Description
object Form or control to move. May be any control except timers

and menus.

left Single-precision value indicating the horizontal coordinate for
the left edge of object.

top Single-precision value indicating the vertical coordinate for the
top edge of object.

width Single-precision value indicating the new width of object.

height Single-precision value indicating the new height of object.

Only the left argument is required. However, to specify any other arguments, you must specify all
arguments that appear in the syntax before the argument you want to specify. For example, you cannot
specify width without specifying left and top. Any trailing arguments that are unspecified remain
unchanged.

For forms and for controls within frames, the coordinate system is always twips. Moving a form on the
screen or moving a control within a frame is always relative to the origin (0,0), which is the upper-left
corner. When moving controls on a form or in a picture control, the coordinate system of the object is
used. The coordinate system is set using ScaleHeight, ScaleWidth, ScaleLeft and ScaleRight
properties.

Refresh Method
Applies To

LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
This method is used to refresh a control.

Syntax
[formname. | controlname. | objectname.]Refresh

Remarks
Use this method to force a complete repaint of a form or control. This is useful when you want a form
to display completely while another form is loading, or when you want to update the contents of a
system list box, such as a file list box, or the data structures of a data control.

Generally, painting a form or control is handled automatically while no events are occurring. However,
there may be situations where you want the form or control updated immediately. For example, if you
use a file list box, a directory list box, or a drive list box to show the current status of the file system, you
can use Refresh to update the list whenever a change is made to the directory structure.

ZOrder Method
Applies To

LightMeter, LineCaliper, LineEdgeLocator, ArcCaliper, ArcEdgeLocator, BlobAnalyzer

Description
This method is used to change the z-order of a control.

Syntax
[object.]ZOrder [position]

Remarks
Integer indicating the position of the control relative to other controls. If position is 0 or omitted, the
control is positioned at the front of the z-order. If position is 1, the control appears at the back of the z-
order.

The z-order of controls can be set at design time using Bring To Front and Send To Back choices on the
Edit menu.

Note: There are three graphical layers associated with forms and containers. The back layer is the
drawing space, where the results of the graphics methods appear. Next is the middle layer where
graphical controls and labels appear. The front layer is where all non-graphical controls like command
buttons, check boxes, and file controls appear. Anything in one layer covers anything in the layer
behind. The ZOrder method arranges controls only within the layer where the control appears.

 LineCaliper
See Also Properties Events Methods

Description
The LineCaliper detects Edge Pairs inside a Viewport. The Viewport can be oriented at various angles
to suit the application. The program designer and/or user provides a series of constraints which
describe the ideal edge pair to be found and the tool reports back the position and size of each edge
pair. Constraints are modified using the Setup Dialog Boxes.

File Name
XVBXELOC.VBX

Remarks
The control is represented on the Visual Basic toolbox by an icon depicting an actual Caliper (the
mechanical device used to measure the size of an object). When the control is placed in a container, it
is represented by a rectangular box. The search for an edge pair is performed inside this box.

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* PathLength*
Apply* Position*
ApplyOnChange* RefType*
DrawColor ResultIndex*
Edge1Position* ScaleType*
Edge1X* ScaleX*
Edge1Y* ScaleY*
Edge2Position* Score*
Edge2X* Setup*
Edge2Y* Size*
EdgeDisplay* Skew*
ElapsedTime* SortOrder*
EndPointX* StartPointX*
EndPointY* StartPointY*
Height SubPixel*
Inclination* Tag*
Index TeachMode*
Left TeachState*
LockAngle* Thickness*
MaxResults* Top
Mode* Translate*
Name UserInterface*
NumResults* Visible

Width

See Also
LineEdgeLocator

 ArcCaliper
See Also Properties Events Methods

Description
The ArcCaliper detects Edge Pairs inside a Viewport. The Viewport can be configured as an open or
closed (e.g. a circle) arc for a range of Aspect Ratios. The program designer and/or user provides a
series of Constraints which describe the edge pair to be found and the tool reports back the Position and
Size of each edge pair. Constraints are modified using the Setup Dialog Boxes.

File Name
XVBXELOC.VBX

Remarks
The control is represented on the Visual Basic toolbox by an icon depicting an actual Caliper (the
mechanical device used to measure the size of an object) superimposed over a circle. When placed in
a container, it is represented by an arc. The search for an edge pair is performed along this arc. Also,
in the case of closed curve Viewports, the edge extraction process wraps around the start point such
that edges and edge pairs that span the start point will be detected.

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* MidPointX*
Apply* Name
ApplyOnChange* NumResults*
AspectRatio* PathLength*
CenterX* PathSize*
CenterY* Position*
ClosedCurve* ResultIndex*
DrawColor Score*
Edge1Angle* Setup*
Edge1Position* Size*
Edge1X* Skew*
Edge1Y* SortOrder*
Edge2Angle* StartPointX*
Edge2Position* StartPointY*
Edge2X* SubPixel*
Edge2Y* Tag*
EdgeDisplay* TeachMode*
ElapsedTime* TeachState*
EndPointX* Thickness*
EndPointY* Top
Height Translate*
Index UserInterface*
Left Visible
MaxResults* Width
MidPointY*

See Also

ArcEdgeLocator

 LineEdgeLocator
See Also Properties Events Methods

Description
The LineEdgeLocator detects one or more Edges in a Viewport. The Viewport can be oriented at
various angles to suit the application. The program designer and/or user provides a series of
constraints which describe characteristics of the edge(s) to be found and the tool reports back the
position of each edge. Constraints are modified using the Setup Dialog Boxes.

File Name
XVBXELOC.VBX

Remarks
The control is represented in the Visual Basic toolbox by an icon depicting a box in the shape of a line
with edge markers appearing at points of change of contrast. When the control is placed in a container,
it is represented by a rectangular box. The search for single edges is performed inside this box.

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* ScaleType*
Apply* ScaleX*
ApplyOnChange* ScaleY*
DrawColor Score*
EdgeDisplay* Setup*
ElapsedTime* Skew*
EndPointX* SortOrder*
EndPointY* StartPointX*
Height StartPointY*
Inclination* SubPixel*
Index Tag*
Left TeachMode*
LockAngle* TeachState*
MaxResults* Thickness*
Mode* Top
Name Translate*
NumResults* UserInterface*
PathLength* Visible
Position* Width
RefType* X*
ResultIndex* Y*

See Also
LineCaliper

 ArcEdgeLocator
See Also Properties Events Methods

Description
The ArcEdgeLocator detects one or more Edges in a Viewport. The Viewport can be configured as an
open or closed (e.g. a circle) arc for a range of Aspect Ratios. The program designer and/or user
provides a series of Constraints which describe characteristics of the edge(s) to be found and the tool
reports back the Position of each edge. Constraints are modified using the Setup Dialog Boxes.

File Name
XVBXELOC.VBX

Remarks
The control is represented in the Visual Basic toolbox by an icon depicting a box in the shape of an arc
with edge markers appearing at points of change of contrast, as shown above. When the control is
placed in a container, it is represented by an arc. The search for single edges is performed along this
arc. Also, in the case of a closed curve Viewport, the edge extraction process wraps around the start
point such that edges on or near the start are detected regardless of the edge filter size.

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* PathLength*
Angle* PathSize*
Apply* Position*
ApplyOnChange* ResultIndex*
AspectRatio* Score*
CenterX* Setup*
CenterY* Size*
ClosedCurve* Skew*
DrawColor SortOrder*
EdgeDisplay* StartPointX*
ElapsedTime* StartPointY*
EndPointX* SubPixel*
EndPointY* Tag*
Height TeachMode*
Index TeachState*
Left Thickness*
MaxResults* Top
MidPointX* Translate*
MidPointY* Visible
Name Width
NumResults* X*

Y*

See Also
ArcCaliper

Events
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

Applied* KeyUp
Click* LostFocus
DblClick* MouseDown*
GotFocus MouseMove*
KeyDown MouseUp*
KeyPress

 Edge Tools Theory: Overview

XCaliper provides four types of edge tools: a Line EdgeLocator, a Line Caliper, an Arc EdgeLocator,
and an Arc Caliper. Each of these XCaliper edge tools operate on a region of an image called a
Viewport. The Viewport, defined by the program or the user, contains the Path along which the edge
tools locate and measure edges.

Linear edge tools operate in one of three modes: Horizontal, Vertical, and AnyAngle. This distinction is
made because a horizontal or vertical Viewport is orthogonal with respect to the Frame Buffer axes,
meaning there will be a one-to-one correspondence between the pixels in the frame buffer and those in
the Viewport. They therefore are optimized versions that bypass the interpolation techniques required
for non-orthogonal tools. XCaliper defines Horizontal as left-to-right and Vertical as top-to-bottom (0
and 270 respectively). The Viewport can be moved and sized anywhere on the image until it contains
all of the edges that are to be analyzed.

The edge tools take advantage of the fact that differences in brightness will be most rapid around an
Edge in an image. If rapid changes in brightness can be found, the edges within a Viewport can also
be found. To minimize the effects of Noise in an image, the gray level information of a region is used,
rather than of one line.

A series of steps are used by the XCaliper edge tools to find and process edges:

i) Generating a Projection
ii) Generating an Edge Strength Array
iii) Determining Edge Location
iv) Applying Discriminators
v) Applying the Scoring Engine

 Edge Tools Theory: Generating a Projection

After the Viewport has been defined, it is processed into a one dimensional array of light intensities,
known as a Projection. The number of elements in this array corresponds to the length of the Viewport
in pixels. Each element in the projection array represents the average brightness of a line of pixel
intensities at a specified angle relative to the Viewport. The Viewport should be sized so that its
thickness is not greater than the length of the edge(s) to be measured. In so doing, the average
brightness of a line of pixel intensities will be a true representation of the brightness across the edge(s)
desired. The projection of the Viewport can be viewed in the Projection Window of the Edges Dialog
Box.

To generate a projection from an orthogonal Viewport, the Frame Buffer is simply scanned in the
appropriate direction and the results stored into the projection. However, non-orthogonal Viewports
require use of a mapping technique between the pixels in the Viewport and the points in the projection.
To improve performance, generation of this mapping is separated out into a distinct Teach operation
which is a long, computationally intensive process. By separating the Teach operation where not
required, edges can be extracted from a non-orthogonal Viewport almost as fast as from an orthogonal
one.

To simplify the distinction between generating the map and extracting the edges, the edge tools support
a TeachMode property as well as a TeachState property. When TeachMode is set to TM_AUTO_TEACH,
an edge tool will re-generate the mapping whenever a modification to its state causes the mapping to
become invalid. Otherwise, the mapping is only generated by explicit programmer action. The
mapping becomes invalid whenever the shape of the Viewport or the Skew angle changes. The
TeachState property is a read-only Boolean that permits the developer to query the tool as to whether or
not the mapping is currently valid. If the property returns True then the tools mapping is valid and can
be safely applied. If it returns False, the tool must be retaught (using the TeachMode property) before
being applied. An attempt to apply the tool without reteaching will generate an error.

The angle at which a projection is generated is defined by the Skew property which ranges from (-
60º,60º). A skew of 0º indicates that pixel intensities should be averaged at an angle perpendicular to
the Viewport. Skews increase in a clockwise direction and decrease in a counter-clockwise direction.
The Skew property is ignored in orthogonal Viewports because if it is set to something other than 0º, the
one-to-one correspondence to the frame buffer is lost. Although the Skew property is supported in Arc
tools as well, non-zero skews are more commonly used in linear tools.

Before searching the edges in a non-orthogonal Viewport, the edge tool position must be translated from
the point in the buffer at which it was taught to the point in the buffer at which it will be applied. In order
to avoid invalidating the mapping, the translation must be of a whole number of pixels. That is, if a map
was generated at location (1.2, 3.7), then a translation to (3.2, 4.7) is OK but a translation to (3.3, 4.7) is
not. In order to avoid constantly re-teaching the part, XCaliper limits the precision of the translation.
The SubPixel property selects this limit, the default being to round the translation to the nearest pixel.
Increasing the precision causes additional mappings to be generated, effectively allowing more precise
translations.

The effect of a more precise translation is not to increase the Accuracy of edge location but rather the
probability that the edge will be detected at all. However, there is rarely any reason to change the
default because the tool is very good at detecting edges unless dealing with extremely narrow edges
and/or highly elliptical arcs. Increasing the sub-pixel precision is costly; CPU and memory resources
used for generating maps and the time taken to Teach increase in proportion to the square of its value.

 Edge Tools Theory: Generating an Edge Strength Array

Once the Projection is generated, a Differential Filter, whose size is defined in the Edges Dialog Box, is
applied to the projection to create an array of new values that indicate the change in light intensity over
a number of pixels. This is done by performing a Convolution of a one dimensional differential filter
across the projection. The result is an Edge Strength Array. In the convolution, for each element in
the projection array, the elements of the filter are multiplied by their corresponding elements in the
projection array, and the products are summed together to create an element in the Edge Strength
Array.

The absolute value of the resulting array is taken to allow all peaks to be displayed in the Edge Strength
Window of the Edges Dialog Box. The sign of each value in the array yields the polarity of the edge.
The values in this array are known as the edge strength, where peaks in the graph of the array
correspond to locations of edges in the Viewport, and the height of the peaks in the graph of the array
corresponds to the strength across the edge. A peak of greater height therefore corresponds to an
edge of greater strength.

A filter of a larger size has the effect of smoothing the edge strength graph since the change in light
intensity is found over a greater number of pixels. The effect of changing the filter size can be seen in
real time by viewing the graph of the edge strength located in the Edge Strength Window of the Edges
Dialog Box. The filter size should be chosen so that the total width of the filter is roughly equal to the
width of the edge in pixels. The edge finding algorithm defines the filter size to be = 1/2(filter width - 1).
Choosing a small filter size will result in finding edges whose change in light intensity span just a few
pixels, conversely choosing a larger filter size will result in finding edges whose change in light intensity
spans a larger number of pixels. If the change in light intensity of the pixels surrounding an ideal edge
spans a large number of pixels, and a small filter size is used, it is likely that the ideal edge will be found
along with several other edges found as a result of noise across the edge. Generally speaking, a filter
size of 2 or 3 is ideal for most applications.

 Edge Tools Theory: Determining Edge Location

The algorithm for locating Edges finds the local maxima of the edge strength array to sub-pixel
precision. Like the output of any Difference Filter, peaks of the difference array are found at the same
locations of the most rapid rate of change of the original curve. Consequently, by finding the peaks in
the edge strength array, the points of maximum rate of change (i.e. edges) can be found. The
technique used is capable of finding the edge to a high degree of precision, 1/8 pixel or more, based on
the type of application.

Once the edges have been found in an image, the next step is to evaluate the edges to determine
which, if any, are suitable for measurement. This is done through the Edge Evaluation Criteria.

 Edge Tools Theory: Edge Evaluation Criteria

The Edge Evaluation Criteria evaluates Edges which have been found in an image to determine if any
are suitable for measurement. This is done by comparing the edges with the parameters established
for the tool during design time. The evaluation is a two step process: first a set of discriminators, and
then a set of constraints, are applied to the list of edges to eliminate those edges which do not meet the
design requirements. Discriminators are a set of boolean edge evaluation criteria that eliminate edges
that do not possess certain basic attributes, such as Minimum Strength, Edge Polarity and Pair Straddle.
Edges that pass the discriminators are then evaluated by a more comprehensive set of edge evaluation
criteria, known as constraints. Constraints are weighted functions that assign a constraint score to
various edge attributes, such as Position and Size. Finally, an edge score is generated as a sum of all
the weighted scores for each active constraint. Should an edge score be higher than the minimum
accept level, the edge will be accepted.

 Edge Tools Theory: Applying Discriminators

To help minimize processing time, a set of boolean discriminators are applied against the Edges found
from the edge strength array. These discriminators are set up by the designer during design mode as a
method of eliminating edges that are too far outside the design criteria to be acceptable.

Discriminators for Calipers:
Pair Straddle Minimum Edge Strength

E1 Polarity E2 Polarity

Discriminators for EdgeLocators:
PolarityPOLARITY Minimum Edge Strength

The Minimum Strength discriminator can be graphically displayed and edited in the Edges Dialog Box.
The graphical representation of the minimum strength is made relative to the strength of the edges
viewed. Only edges whose strength is greater than or equal to the minimum strength will be accepted
for further analysis, all other edges will be eliminated. This effect can be graphically demonstrated in
the Edge Strength Window by marking only those edges whose peaks in the edge strength curve are
higher than the minimum strength line. The minimum strength discriminator is useful for inspecting a
noisy image. Raising the minimum strength above the largest noise peak will cause the scoring engine
to ignore the noise in the image and only use stronger edges for inspection. The default value for the
minimum strength is 20.

Edge Polarity is another type of discriminator that will eliminate edges or edge pairs. The behavior of
this discriminator varies depending on the mode of operation. In an EdgeLocator tool, the Polarity
discriminator will throw out edges that did meet the Minimum Strength criteria. In a Caliper tool, the
Polarity discriminator is applied to each edge in the edge pair (E1 being the first edge) and will throw out
any combination of edge pairs where either edge does not meet the polarity discriminators for that edge
pair.

Pair Straddle is the third discriminator, only applicable to a Caliper tool. When this discriminator is
enabled, a Caliper tool will throw out a combination of two edges if either the left edge is not to the left
of, or the right edge is not to the right of, the midpoint of the ideal position of the edges. The ideal
position of an edge is the location at which an edge is expected to be found.

 Edge Tools Theory: Applying the Scoring Engine

Once the Edges have been evaluated by the Discriminators, the remaining edges are evaluated using a
Scoring Engine to rank how well each edge matches a set of Constraints. A constraint is a method
establishing by the designer to further evaluate the edges in the field of view. A Constraint Score is
generated for each active constraint applied to each edge. As in the case of discriminators, some
constraints are applied to single edges for both an EdgeLocator and a Caliper tool, while others are
applied only on edge pairs in a Caliper tool. In both cases a comparison is made between the Ideal
Value of a constraint and the actual value of an edge or edge pair. For non ideal edges, a constraint
score is generated for each active constraint based on the Edge Evaluation Function (EEF) for that
constraint.

Constraints for Calipers:
Pair Position Pair Size

E1 Position E1 Strength

E2 Position E2 Strength

Constraints for EdgeLocators:
Position Strength

The set of constraints that are applied to edge pairs act to filter out those edge pair combinations that
are not valid. Constraints are activated by selecting the corresponding option button in the Setup
Dialog Box. Pair Position behaves in a fashion similar to the Position constraint for a single edge,
although it operates on two edges rather than one. In some applications of a Caliper tool, it may be
advantageous to score on the position of one or both edges (e.g. measuring the length of an object that
is justified to one side), rather than scoring on the position of the pair together. Because scoring on
Pair Position or scoring on the Position of each edge are mutually exclusive, enabling Pair Position will
disable the Position constraint for edge 1 and edge 2. Similarly, enabling the Position constraint for
either edge 1 or edge 2 will disable the Pair Position constraint.

The Pair Size constraint is useful when searching for an object of a particular known size in the
Viewport. This is quite useful when looking for an object that could vary in position from one image to
another, such as a Fiducial on a printed circuit board. Using the Pair Size constraint with the Pair
Position constraint will search for an object of a particular size that is in some known location in the
Viewport. Both the Pair Position and the Pair Size constraints will return a constraint score reflecting
how close the attribute of the edge pair matched the ideal value.

A Constraint score is generated for each edge based on the shape of the Edge Evaluation Function for
each constraint. The EEF for each constraint is centered around an ideal value, or the value at which
an ideal edge (with a perfect constraint score) would exist. For example, the ideal value for the Position
constraint describes the expected position of an edge or edge pair, the expected size of an edge pair for
the Size constraint, or the ideal strength across an edge for the Strength constraint. Should the value
of an edge or edge pair constraint be evaluated to match the ideal value, the constraint score for that
edge is determined to be perfect and is assigned a perfect score (1.0). If the actual value of the
constraint is not the ideal value, the constraint score is defined by the Edge Evaluation Function.

It is worth noting that the scoring engine has been optimized for one particular combination of
constraints/discriminators. When the only active constraint is Pair Size and the only active
discriminator is Edge Polarity an optimized version fo the engine is invoked.

The scoring engine has the ability to place a greater emphasis on constraints that are considered to be

of greater importance by assigning Weights to each of the constraint scores, known as a weighted
score. The final step in scoring an edge is to calculate the Total Score for that edge.

By modifying the weights and the Edge Evaluation Functions for each of the active constraints, the
scoring engine can be made to select a specific edge/edge pair from a list of candidates. By correctly
setting up the weighting parameters, a powerful tool can be developed to perform various edge/edge
pair finding applications, including:

i) extracting an edge pair of specific width (e.g. looking for a single pair of edges such as finding a
fiducial that could appear anywhere in the Viewport; or looking for multiple pairs of edges across the
Viewport such as finding all the leads on an integrated circuit);

ii) extracting an edge pair centered about a particular position (e.g. searching for tooling holes of a
specific size on a plate that has other holes of similar size);

iii) extracting an edge pair that starts or ends in a particular position (e.g. looking for, and measuring
the width of an object of variable size that always has one side located in a specific position such as
measuring the length of bolts);

iv) extracting a count of edges in a Viewport (e.g. counting the number of threads on a bolt by finding
all the positive polarity edges in the Viewport);

v) extracting the presence of a single edge (e.g. detecting the presence of a component in an
assembly by placing an EdgeLocator where the edge of the component is expected to be);

vi) locating a specific edge, (e.g. looking for the fourth edge in a list of edges to determine its location;
or locating the side of an object to find its position for further analysis).

 Edge Tools Theory: Edge Evaluation Functions

All detected edges that pass the Discriminators are scored with Constraints to find the best edge or
edge pair depending on the mode of operation. Edge constraint scores that are said to be perfect are
scored highest, assigned a constraint score of 1.0, otherwise they are given a constraint score less than
1.0, possibly as low as 0 depending on the shape of the Edge Evaluation Function.

There is an EEF associated with each active constraint. Each EEF consists of an Ideal Value, and six
EEF Points. These define how XCaliper should score a constraint.

The Edge Evaluation Function defines how rapidly the constraint score assigned to a non-perfect edge
falls to zero as the constraint becomes less and less perfect. If the actual value of a constraint is equal
to the ideal value, the Edge Evaluation Function assigns a perfect constraint score of 1.00 to that
property. If the actual value of the property is to the left of P2 Left, or to the right of P2 Right, the
constraint score is zero; and if the actual value of the property is located somewhere between the P2
Left and the P2 Right, the constraint score assigned is the 'Y' value of the Edge Evaluation Function
curve at the position on the curve of the input value.

The shape of the EEF can be altered using the Edge Evaluation Function Editor in the Edges Dialog
Box. To move any of the points simply click and drag the point to its new location. The points that
define the regions of the EEF are restricted in their movement around the curve: P0 can only move in
the horizontal direction between the ideal value and P1; and P1 must be closer to the ideal value than
P2, although it is possible for P1 and P2 to overlap.

 Edge Tools Theory: Weighting and Scoring

XCaliper enables the user to place a greater emphasis on Constraints that are considered to be of
greater importance by assigning weights to each of the Constraint Scores, known as the weighted
score. Weights are only applied to active constraints, where the sum of all weights is defined to be
always 1.00, or 100%. All weights in the default configuration are set to be equal (e.g. if two constraints
are selected each is evaluated at 50%, if three constraints are selected each is evaluated at 33%, etc.)
Assigning weights to a constraint is done in the Setup Dialog Box for EdgeLocators, and in the Weights
Dialog Box for Caliper tools.

 Edge Tools Theory: Total Score of an Edge

The total edge score is defined as the sum of all Weighted Scores of active Constraints for that edge.
Each weighted score is determined by multiplying the Constraint Score obtained from the Edge
Evaluation Function, by the weight set for that constraint. The edge or edge pair that has the best total
edge score is the best edge or edge pair found. This total edge score is available to the Visual Basic
application in the Score property, and a list of edges returned in a linked list based on their score is
available under program control. For visual feedback, the scoring breakdown for all edges or edge
pairs can be seen by invoking the Edge/Edge Pair Information Report Box. This is done by clicking on
one of the edge/edge pair scores displayed in the Edges Dialog Box.

 Edge Tools Setup: Edge Information Report Box
The Edge Information Report Box is invoked by clicking the numbers that indicate the Score of an edge
near the top of the Edges Dialog Box. When the cursor is moved over a score, it will change to a hand
indicating that the mouse can be clicked to invoke the Edge Information Report box. This dialog box
displays information about each edge found and a scoring breakdown that indicates how the score for
the edge was obtained.

Click on the dialog box for help on a specific item.

 Edge Tools Setup: Edge Pair Information Report Box
The Edge Information Report Box is invoked by clicking the numbers that indicate the Score of an edge
pair near the top of the Edges Dialog Box. When the cursor is moved over a score it will change to a
hand indicating that the mouse can be clicked to invoke the Edge Pair Information Report box. This
dialog box displays information about each edge pair found and a scoring breakdown that indicates how
the score for the edge pair was obtained.

Click on the dialog box for help on a specific item.

 Edge Tools Setup: Polarity Group
This group chooses what Polarity an edge should be to be accepted for further evaluation.

Checking Don't Care will causes both positive (dark-to-light) and negative (light-to-dark) polarity
edges to be accepted.

Checking Positive will causes only positive polarity edges to be accepted.
Checking Negative causes only negative polarity edges to be accepted.

 Edge Tools Setup: Caliper Setup Dialog Box
The Setup Dialog Box is invoked in one of two ways: either at design time when the Setup property from
the Properties window of a Caliper tool is double clicked, or at run time when the mouse is double
clicked anywhere inside an edge tools Viewport. This dialog box allows the various Constraints to be
enabled or disabled and launches the Edges Dialog Box and the Weights Dialog Box.

When a Caliper is initially created, Pair Position and Pair Size are selected by default, and both have a
Weight of 50%. Selecting any more constraints will result in an equal distribution of weights between
the selected constraints so the weights sum to 100%.

Click on the dialog box for help on a specific item.

 Edge Tools Setup: Pair Position Check Box
Enabling this box selects the Pair Position as a Constraint when evaluating edge pairs.

When this Position check box is enabled, the Position check boxes in the Edge 1 and Edge 2 groups
become disabled since scoring on the Pair Position and the individual edge positions are mutually
exclusive.

 Edge Tools Setup: Pair Size Check Box
Enabling this box selects the Pair Size as a Constraint when evaluating edge pairs. Similarly when this
box is disabled, the Pair Size is not used in the evaluation of edge pairs.

 Edge Tools Setup: Pair Straddle Check Box
Enabling this box causes the Caliper to search for edge pairs whose Edge 1 and Edge 2 are on
opposite sides of the Pair Position. Similarly when this box is disabled Pair Straddle is not used in the
evaluation of edge pairs.

Pair Straddle is a Boolean Discriminator, hence there is no Weight associated with it.

 Edge Tools Setup: Edge 1 Position Check Box
Enabling this box selects the Edge 1 Position as a Constraint when evaluating edge pairs.

When the Edge 1 Position check box is enabled, the Position check box in the Pair group becomes
disabled since scoring on Edge 1 Position and Pair Position are mutually exclusive.

 Edge Tools Setup: Edge 1 Strength Check Box
Enabling this box selects the Edge 1 Strength as a Constraint when evaluating edge pairs.

 Edge Tools Setup: Edge 2 Position Check Box
Enabling this box selects the Edge 2 Position as a Constraint when evaluating edge pairs. Similarly
when this box is disabled, Edge 2 Position is not used in the evaluation of edge pairs.

When this Position check box is enabled, the Position check box in the Pair group becomes disabled
since scoring on Edge 2 Position and Pair Position are mutually exclusive.

 Edge Tools Setup: Edge 2 Strength Check Box
Enabling this box selects the Edge 2 Strength as a Constraint when evaluating edge pairs. Similarly
when this box is disabled, Edge 2 Strength is not used in the evaluation of edge pairs.

 Edge Tools Setup: Position Check Box
Enabling this box selects the Edge Position as a Constraint when evaluating edges. Similarly when this
box is disabled, Edge Position is not used in the evaluation of edges.

 Edge Tools Setup: Strength Check Box
Enabling this box selects the Edge Strength as a Constraint when evaluating edges. Similarly when
this box is disabled, Edge Strength is not used in the evaluation of edges.

Polarity: Don't Care Button

The Don't Care button will cause the edge tool to allow an edge of any Polarity to be accepted.

Polarity: Positive Button

The Positive button will cause the edge tool to allow only an edge of positive (dark-to-light) Polarity to be
accepted.

Polarity: Negative Button

The Negative button will cause the edge tool to allow only an edge of negative (light-to-dark) Polarity to
be accepted.

 Edge Tools Setup: Edges Dialog Box
The Edges Dialog Box is invoked when the Edges... button is clicked in the Setup dialog box. This
dialog box allows the Edge Evaluation Functions for the various Constraints to be set up and altered.
The dialog box will also allow several other parameters to be altered such as the Minimum Strength, the
Minimum Accept Threshold, and the Filter Size.

Click on the dialog box for help on a specific item:

 Edge Tools Setup: Profile View
The Profile View is a group of items in the Edges Dialog Box that include the following items:

Projection Window
Edge Strength Window
Best Edge Pairs Indicators
Expected Position Markers

 Edge Tools Setup: Filter Size Edit Box
The Filter Size Edit Box allows the Filter Size to be edited. To change the filter size, type the new filter
size into the box, or use the spin buttons to change the value by unit increments. The entry is parsed
so as to accept only valid numbers, between 0-255.

 Edge Tools Setup: Edge Evaluation Function Editor
The Edge Evaluation Function Editor occupies the bottom of the Edges Dialog Box, and consists of a
title bar and the editor.

The title bar contains the name of the function that is in the editor area, the Constraint Score of the
best edge pair found, and the Mirror Checkbox. The title that represents the function in the editor area
can be changed by using the Edge Evaluation Function Selector.

The editor itself is a large window containing a representation of an Edge Evaluation Function. The
editor allows all six EEF Points and the Expected Position to be moved by clicking and dragging the item
to be moved to the desired location. Whenever the mouse pointer is on top of a movable object, the
mouse pointer will change to arrows representing the directions the object is allowed to move. Should
the object being moved be attempted to move outside its valid range, the object will stop moving at the
last valid place in its range.

Should a EEF Point be moved off the screen by moving the Expected Position, the Point can be brought
back on to the screen at its original position relative to the Expected Position by moving the Expected
Position back far enough so that the EEF Point appears on the screen once again.

While the mouse pointer moves across the editing area, the current position of the mouse pointer is
displayed in the upper left or right corner of the editing area. The X value is the position of the cursor
with respect to the left of the Viewport, and the Y value would be the score obtained for the current
height of the cursor in the editing area.

A ruler is located at the bottom of the editing area which shows the width of the editing area with respect
to the Viewport width.

 Edge Tools Setup: Mirror Checkbox
The Mirror Checkbox makes editing symmetrical Edge Evaluation Functions easier. When the Mirror
Checkbox is enabled, all edits made in the Edge Evaluation Function Editor will be mirrored about the
Expected Position.

In order to specify which side of the Edge Evaluation Function mirrors the other, when Mirror is first
enabled the function in the Edge Evaluation Function Editor remains as it was. However when the first
EEF Point is clicked, all EEF Points on the opposite side of the Expected Position are set to mirror the
EEF Points on the side just clicked.

 Edge Tools Setup: Edge Evaluation Function Selector
The Edge Evaluation Function Selector is a standard Windows drop down combo box that selects one
of the Edge Evaluation Functions for the active Constraints into the Edge Evaluation Function Editor.

Only the currently active constraints will be displayed in the Edge Evaluation Function Selector.
Constraints can be activated or de-activated from within the Setup dialog box or the Weights Dialog Box.

 Edge Tools Setup: Lock> Button
The Lock> Button will invoke the Function Lock group which contains two check boxes: Position and
Strength. Both check boxes perform the same function except Position operates on the E1 Position
and E2 Position EEFs, and Strength operates on the E1 Strength and E2 Strength Edge Evaluation
Functions (EEFs).

Enabling one of these Function Lock buttons will force the E1 and E2 functions of Position or Strength to
have identical EEFs about their Expected Positions. This means that all edits on one of the E1 or E2
EEFs will cause the same changes to be made to its counterpart for the opposite edge.

When either of these two buttons are enabled, a dialog box will open up to prompt which function will
initial mirror the other. Clicking the E1 = E2 button will cause E1 to initially mirror the E2 function, and
vice-versa for the E2 = E1 button.

Enabling Function Lock will not make the Expected Positions equal, but it will make the EEF about the
Expected Positions equal.

 Edge Tools Setup: Projection Window
The Projection Window is the upper window in the Edges Dialog Box that displays a representative gray
scale picture of the Viewport overlaid by a graph of the Projection of the Viewport. All edges or edge
pairs that pass the imposed constraints will be represented by vertical lines. Above the lines, the two
best Edge Scores will be displayed.

 Edge Tools Setup: Edge Strength Window
The Edge Strength Window is the lower window in the Edges Dialog Box that displays a gray scale
representation of the Projection of the Viewport. The picture is made up of vertical stripes where the
brightness of each stripe represents the average light intensity of each column in the Viewport.
Superimposed over the representation of the projection and scaled for visibility is a graph of the Edge
Strength. In addition, the location of the edges found in the Viewport are represented by vertical lines.

When the Check Box in the Minimum Strength Edit Box is selected, a horizontal line across the Edge
Strength Window will appear. Clicking and Dragging this line will have the effect of increasing or
decreasing the value in the Minimum Strength Edit Box.

 Edge Tools Setup: Expected Position Markers
The Expected Position Marker resides on the scale that appears below the Edge Strength Window and
can be identified as a triangular object that points to a value on the scale. For a Caliper tool, there are
usually two Expected Position Markers, the leftmost for Edge 1 and the rightmost for Edge 2. For an
EdgeLocator there is only one Expected Position Marker as only single edges are to be found.

An Expected Position Marker identifies the ideal location of an edge. This information, in combination
with the Edge Evaluation Functions, can be used to score edges/edge pairs as they appear in the
Viewport.

Clicking and dragging the Edge 1 Marker will update the Expected Position for Position E1. Similarly,
clicking and dragging the Edge 2 Marker will update the Expected Position for Position E2. If Pair Size
or any one of the Position EEFs are displayed in the EEF Editor, any changes made to the Expected
Positions using these Markers will automatically cause these functions to update based on the new
Edge 1 and Edge 2 Expected Positions.

When an Expected Position Marker is being dragged, a vertical line representing the Expected Position
appears in the Projection Window and the Edge Strength Window and moves along with the Expected
Position Marker.

 Edge Tools Setup: Minimum Strength Edit Box
The Minimum Strength Edit Box allows the Minimum Strength to be edited. To change the minimum
strength, type the new minimum strength into the box, or use the spin buttons to change the value by
unit increments.

The valid range for Minimum Strength is from 0 to 255.

To the left of the Minimum Strength Edit Box is a check box. Enabling this check box will cause a
horizontal line to appear in the Edge Strength Window. The horizontal line represents the value of the
Minimum Strength and how it compares to the Edge Strength. Clicking and Dragging this horizontal
line will increase or decrease the value of the Minimum Strength.

If the check box is clicked and does not become enabled, then the value of the Minimum Strength
currently set in the edit box is too large to appear in the Edge Strength Window. If this happens, reduce
the value of the Minimum Strength and try again.

 Edge Tools Setup: Minimum Accept Threshold Edit Box
The Minimum Accept Threshold Edit Box allows the Minimum Accept Threshold to be edited. To
change the minimum accept threshold, enter a new threshold between 0-255 into the box, or use the
spin buttons to change the value by unit increments.

 Edge Tools Setup: Weights Dialog Box
The Weights Dialog Box is invoked when the Weights... button is clicked in the Setup dialog box. This
dialog box allows the relative Weights of the various Constraints to be altered so as to place greater
emphasis on some contraints at the expense of others. When a Caliper is first created the weights for
all constraints are equal so that every constraint that is active has a weight equal to all of the other
active constraints. This is also the Default condition.

Click on the dialog box for help on a specific item.

 Edge Tools Setup: Weight Distribution Bar
The Weight Distribution Bar shows the relative Weight of each of the active Constraints used in an edge
tool. Each active Weight Distribution Bar has a value between 0-100% and can be altered to suit the
application. The total of all weights will always sum to 100%.

To change the weight of a constraint, place the mouse pointer over the end of the bar. When the cursor
changes to a set of horizontal arrows, press the left mouse button and drag the bar to the left or right
until the percentage display in the bar is at the value that is desired. Release the left mouse button for
the change to take effect.

A constraints weighting can be locked at a set percentage so that changes made to the weights of other
constraints do not affect it. To lock a weighting, click on the center of the bar. The bar then will appear
to have a chain wrapped around it, representing that its weight is locked. To unlock the weight, click the
bar again and the chain will disappear.

Undo Button
This button will undo all the changes that have been made in the dialog box since the dialog box was
opened.

 Edge Tools Setup: Default Button
This button will change the state of the associated control to a suitable pre-defined default value that
works well in most situations.

If this button is clicked within the Edges Dialog Box the associated feature that is returned to its default
value is the Edge Evaluation Function Editor. The default value in this case is a curve that would work
in most situations.

If this button is clicked within the Weights Dialog Box, the associated feature that is returned to its
default value is the Weights Editor. The default value in this case is to set all constraint Weights to
equal values so that a constraint will have an equal weight with other active constraints when it becomes
enabled.

 Edge Tools Setup: EdgeLocator Setup Dialog Box
The Setup Dialog Box is invoked in one of two ways: either at design time when the Setup property from
the Properties window of an edge tool is double clicked, or at run time when the mouse is double clicked
anywhere inside an edge tools Viewport. This dialog box allows the various Constraints to be enabled
or disabled and launches the Edges Dialog BoxWhen an EdgeLocator is initially created, Position and
Strength are selected by default, and both have a Weight of 50%. In addition, the Polarity of an edge is
set to Dont Care.

Click on the dialog box for help on a specific item.

 Edge Tools Setup: Best Edge/Edge Pair Markers

Best Edge/Edge Pair markers are used to identify the best two edges or edge pairs found using the
current set up.

For Caliper tools, the Best Edge Pair Markers are visible above the Projection Window as a set of
distance markers pointing to Edge 1 and Edge 2 of an Edge Pair. There are up to two Best Edge Pair
Markers, the highest one in the dialog box shows the Best Edge Pair, and the one on the second row
represents the Second Best Edge Pair. The Score of the Edge Pair is shown in the center of the Edge
Pair Markers. Clicking the Score will open the Edge Pair Information Report Box which will illustrate
how the score for that edge pair was obtained.

For EdgeLocator tools, the Best Edge Markers are visible above the Projection Window as single
markers pointing to the best two edges. There are up to two Best Edge Markers, the highest one being
the Best Edge. The Score of the edge is displayed directly above the marker. Clicking the Score will
open the Edge Pair Information Report Box which will illustrate how the score for that edge was
obtained.

As other components in the Edges Dialog Box are changed, the Edge Markers may move and change
to reflect the new best edges/edge pairs that were found as a result of the changes made.

File> Button
Clicking the File> Button provides access to the File Menu from where the complete configuration of the
tool can be saved or loaded. The File Menu that is invoked contains four options:

New This restores the state of the entire tool to the default values. This option can be
selected when a new configuration file is to be created.

Open... This allows an existing configuration file to be loaded.

Save This saves the current configuration using the active configuration file name (which is set
whenever an Open... or Save As... option is used)

Save As... This saves the current configuration using a new filename.

OK Button
The OK Button will exit the current dialog box and will keep any changes that were made.

Help Button
The Help Button invokes the XCaliper help on a specific topic.

Cancel Button
The Cancel Button will exit the current dialog box and will undo any changes that have been made in
the dialog box while it was open.

Weights... Button
The Weights... Button will open the Weights Dialog Box.

Edges... Button
The Edges... Button will open the Edges Dialog Box.

Edge/Edge Pair Selection Box
Use this drop down selection box to change which edge/edge pair is displayed in the Information Box.
Selecting a new edge will automatically update the contents of the dialog box.

More >> / Less << Button
The More >> / Less << button will expand and shrink the Edges Dialog Box.

 ImageDevice Tool
See Also Properties Commands

Description
The ImageDevice control manages the Frame Grabber. The control manages all aspects of the image
acquisition sub-system such as gain and offset controls, input channel selection, sync settings and the
position of the acquired image in the Frame Buffer. It also manages the display of the grabbed image
on the underlay or secondary monitor and provides services that allow the analysis and processing tools
access to the acquired image.

It also provides support for display of the image on the Windows monitor, either in "pass-through" mode
or as a standard Windows bitmap. It does this through its implicit or bundled ImageHook. This
implicit hook behaves identically to an actual ImageHook except that an ImageDevices hook can only
attach to the devices image.

File Name
XVBXIMG.VBX

Remarks
During design time the control is represented by an icon depicting an image inside a monitor. The
control is invisible during run time except for its possible effect on the background of the Container.

See Also
ImageHook

MemoryBuffer

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* InputZoomY*
ActiveControl* Left
BufferSizeX* Name
BufferSizeY* OutputLut*
Command* OutputOriginX*
ContGrabType* OutputOriginY*
DeviceFile* OutputPan*
ElapsedTime* OutputScroll*
Genlock* OutputSizeX*
GrabMode* OutputSizeY*
Height OutputZoomX*
Index OutputZoomY*
InputChannel* ScaleType*
InputGain* ScaleX*
InputLut* ScaleY*
InputOffset* Setup*
InputOriginX* SyncMode*
InputOriginY* Tag*
InputPan* Top
InputScroll* Transparent*
InputSizeX* UpdateMode*
InputSizeY* Width
InputZoomX*

Commands
All of the commands are listed in the following table. Commands can be executed either during design
time or run time. To execute a command during design time, enter the command into Command
property of an ImageDevice.

Clear LoadFile

Close Median

Convolve Open

Copy SaveFile

Dilate TuneInput

Erode

 ImageHook Tool
See Also Properties Commands

Description
The ImageHook control manages the display of an ImageDevice or MemoryBuffer on the Windows
screen. It is responsible for performing whatever operations are necessary to make a copy of the
image appear on the system monitor. It also supplies support mechanisms and mappings which allow
image tools to access the ImageDevice. The ImageDevice and MemoryBuffer have built-in image
hooks for managing the display, but for advanced display methods, such as viewing different parts of the
same frame buffer, a separate ImageHook control (or controls) is required.

File Name
XVBXIMG.VBX

Remarks
An ImageHook works by taking over the background display of the Container in which it is placed. The
background properties of the container are then ignored. Instead of drawing the color or Picture
specified by these properties, the image buffer is displayed instead. All of the other properties of the
container work normally, therefore other controls such as buttons may be placed inside the container.
(This will make it look as though the button is on top of the frame buffer which is what is normally
wanted). Overlay lines and text using graphic controls or draw methods can also be used.

The ImageHook control is represented in the Visual Basic toolbox by an icon depicting an image on a
fish hook. At design time, this icon is displayed on the container. At run time, it is invisible except for
its effect on the container's background.

There are two basic types of ImageHooks: transparent and non-transparent. There are two types of
transparent modes: Locked Window mode and Floating Window mode.

A transparent ImageHook is a window which looks through to the underlying Frame Buffer. This type
of hook assumes that the frame buffer and Windows are displayed on a single monitor and that the
frame grabber supports switching from one to the other on a pixel-by-pixel basis. In the Floating
Window case the OutputPan, OutputScroll, OutputOriginX and OutputOriginY properties of the
ImageDevice control the alignment between the VGA screen and the image buffer. Thus, changing the
location of the container changes the part of the frame buffer being displayed. On the other hand, in
the Locked Window case, these same properties control the alignment between the container and the
image buffer. In this mode, changing the location of the container does not result in any change in the
display image.

Note that, when employing an actual ImageHook control in a transparent mode, any modifications to its
output properties are passed on to its attached device as it is the device which controls the underlay.

Non-transparent hooks work like the Picture property of the enclosing container. That is, if you move
the container, the image viewed moves with it. Non-transparent hooks are the only type of ImageHook
which will work with devices that do not support hardware overlay. Your frame buffer card may or may
not support overlay; MemoryBuffers will not.

Non-transparent hooking, however, gives more control over the relationship between the Frame Store
and the image. It is possible to specify that the image being displayed be automatically updated. The
ImageHook supplies zoom factors and the position in the frame buffer to display.

Most importantly, the ImageHook specifies a spatial relationship, or mapping, between the frame buffer
and image tools placed in the container. A Caliper placed inside a hooked container will correctly
access the frame buffer using this relationship. In contrast, if the Caliper is placed on an unhooked
container, it uses a default mapping strictly to allow the tool to function without crashing the system.
The use of tools that are placed on unhooked containers is strongly discouraged as the result is
undefined.

See Also
ImageDevice

MemoryBuffer

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* OutputScroll*
ActiveControl OutputZoomX*
Command* OutputZoomY*
DeviceName* Setup*
ElapsedTime* Tag*
Height Top
Index Transparent*
Left UpdateMode*
Name Width
OutputPan*

Commands
All of the commands are listed in the following table. Commands can be executed either during design
time or run time. To execute a command during design time, enter the command into Command
property of an ImageHook.

Clear LoadFile

Close Median

Convolve Open

Copy SaveFile

Dilate TuneInput

Erode

 MemoryBuffer Tool
See Also Properties Commands

Description
A MemoryBuffer is a Frame Buffer allocated out of system memory. MemoryBuffers can be used to
store images in system memory and process them in a manner similar to those associated with
ImageDevices. They may be displayed on the Windows screen using non-transparent setting of the
Transparent.

File Name
XVBXIMG.VBX

Remarks
The MemoryBuffer control is represented in the Visual Basic Toolbox by an icon depicting an image
sitting on an integrated circuit. At design time, this icon is displayed on the Container. At run time, it is
invisible except for its effect on the containers background.

There may be as many MemoryBuffers as desired, limited only by the amount of memory available in
the system. The size of the buffer is specified by the BufferSizeX and BufferSizeY properties.
Changing the size of a buffer will result in the loss of its contents.

In order to add a MemoryBuffer to an application, simply place the icon in a Visual Basic container. If
you wish to have an image in the buffer on initialization, set the Command property to load the image.
It will automatically be loaded when the buffer comes up.

See Also
ImageDevice

ImageHook

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
Help screens.

About* OutputScroll*
ActiveControl*
AutoSize* OutputZoomX*
BufferSizeX* OutputZoomY*
BufferSizeY* ScaleType*
Command* ScaleX*
ElapsedTime* ScaleY*
Height Setup*
Index Tag*
Left Top
Name Transparent*
OutputLut* UpdateMode*
OutputPan* Width

Commands
All of the commands are listed in the following table. Commands can be executed either during design
time or run time. To execute a command during design time, enter the command into Command
property of the MemoryBuffer.

Clear Erode

Close LoadFile

Convolve Median

Copy Open

Dilate SaveFile

 Image Tools Theory: Overview

XCaliper includes three controls, implemented as Custom Controls, which interact with the Frame
Buffer and the display: the ImageDevice which manages interaction with a Frame Grabber, the
MemoryBuffer which stores an image into system memory, and the ImageHook which optionally
manages the interface between one of the first two controls and the monitor. The ImageDevice and
MemoryBuffer have built in display capabilities which make the use of an ImageHook unnecessary
when displaying only one image from one image source (i.e. an ImageDevice or MemoryBuffer).
The ImageHook provides the developer with the capability to separate image display from image
storage. There are several reasons why this may be necessary. Most importantly, it makes it possible
to display different images in the same location on the screen, or the same image at different locations
on the screen. At run-time the tools themselves are invisible although their effects, namely the display
of an image on the screen, may be visible.

The XCaliper Image Tools Theory on-line documentation provides a discussion on the following
topics:

i) Accessing Images
ii) Creating a Frame Store
iii) Grabbing an Image
iv) Displaying an Image
v) MemoryBuffers
vi) Device Drivers Restrictions

 Image Tools Theory: Accessing Images

XCaliper is a set of image processing and analysis tools which are designed to run in single monitor
mode. That is, unlike some other packages, the user interface and the images are kept together on a
single screen. It would, in fact, be difficult to imagine a dual monitor approach which would work in the
Visual Basic environment. Visual Basic allows the user to add a series of building blocks together on
one or more Forms to create an application.

Since XCaliper only uses one monitor, it must incorporate a mechanism for mixing graphics and
images together on a single screen. In fact two mechanisms exist: the image may be copied on the
VGA screen or a pass-through mechanism may be put in place that allows the VGA buffer and the
image frame buffer to be mixed on a single monitor on a pixel-by-pixel basis. This second technique
requires special hardware to perform the mixing. In either case, the XCaliper image controls must be
placed within Visual Basic container controls which have a Picture property. Applications involving dual
monitors require special considerations.

Because image storage and image display are distinct operations, XCaliper has two types of image
controls: the Frame Stores (the ImageDevice and MemoryBuffer) and the ImageHook. The
ImageDevice provides access to a frame grabber while the MemoryBuffer exists to allow storage of
images in high speed system memory. In fact, a MemoryBuffer could be viewed as a special kind of
ImageDevice, which stores images in system memory, and is not capable of digitization, nor does it
support pass-through display. Both of these controls will also display their image within the container
in which they reside. The ImageHook is strictly an image display device and becomes necessary
when the developer wishes to control image storage and display independently for example, when
attempting to display the same image in multiple locations on the screen, or perhaps using the same
container to display images from different frame stores. All three of these controls appear as icons on
the VGA screen and are only visible at design time.

In summary, if you wish to see an image on the display, a frame store control is all that is necessary to
hold the image and display it in the chosen container. The frame store could be either an
ImageDevice or a MemoryBuffer depending on the requirements of the application. If, on the other
hand the goal is to display different portions of an image, perhaps at different zoom settings, each in its
own container, then a frame store and multiple ImageHooks must be used. The frame store is placed
in one container and an ImageHook is placed in the remaining containers in order to tie, or hook, each
of the remaining containers display to the frame store. By including multiple frame stores in the
application, containers can be made to display different images with various settings simply by setting
and resetting certain ImageHook properties.

 Image Tools Theory: Creating a Frame Store

Frame grabber interfaces are extensions of XCaliper kept in DLLs where each supported device has its
own DLL. To use a frame grabber the appropriate DLL must be loaded into your project. By
convention, these DLLs have names of the form: XDRV????.DLL where the question marks are some
combination of letters which describe the frame grabber. For example, the NULL device is called
XDRVNULL.DLL. To gain access to a device driver, simply place an ImageDevice control on some
Form in your project and change its DeviceFile property to that of the file name of the DLL. XCaliper
assumes that if the name is four letters long or less, then the device name is being specified, not the
filename. Thus, if you write NULL into the DeviceFile property, XCaliper will take this to mean
xdrvnull.dll.

To add a MemoryBuffer to your project, simply place the control on some container it should
immediately go to black. Unlike an ImageDevice, before actually using the buffer, you have to allocate
some image memory. This can be done in two ways: either the AutoSize property can be set to True
and perform some operation which will copy an image into it (the buffer will be re-sized to fit), or set the
AutoSize property to False and modify the BufferSizeX and BufferSizeY properties as desired. If the
AutoSize property is set to False, the size of the buffer will be fixed and images that are too large to fit
into the buffer will be clipped.

 Image Tools Theory: Displaying an Image

Adding a Frame Store to an application will typically provide all the display capability that is required by
the application. The ImageHook is used when the developer requires more flexibility and control over
the display of images. The ImageHook provides a mapping between a frame store and a Visual Basic
container that is, it hooks the container to a frame stores image. It does this by taking over the
redraw feature and associated properties of the container control and displaying an image in it. In fact,
the display capabilities of a frame store control are provided by a bundled ImageHook that maps, or
hooks, the controls image to its container. The use of an ImageHook control, on the other hand,
permits the developer to select which existing frame store to display simply by manipulating the
ImageHooks property values.

It should be noted at this point that a container can only be hooked to one frame store at any one time
(i.e. it can only display one image at a time), either through a frame stores own hooking capabilities or
through an actual ImageHook control. Which control is actually hooked to the container is determined
by the controls Transparent property. This property has four enumerated values three that select a
different kind of hooked state, while the fourth unhooks the control from the container. XCaliper
permits only one image control per container to be in a hooked state, the remainder are set to the
unhooked state. Therefore, the only way to change which control is hooked to a given container is to
first unhook the currently hooked control.

Hooking a container to an ImageHook is a three-step operation. First the ImageHook must be pasted
into the control in question. At this point, if there is not already a hooked control in the container, it will
take over the display of the container contents and the background should change in some way. Next
the frame store which is to be mapped into the container needs to be selected, or attached. This is
done by setting the DeviceName property of the hook to be the same as the Tag property of the frame
store. Since this is the specification technique, the Tag property should always be unique across all
frame stores. Finally, the ImageHooks Transparent property should be set appropriately. Note that if
the container already has a hooked control, any attempt to change the new ImageHook to a hooked
state will generate a Visual Basic error.

XCaliper tries to facilitate this process as much as possible, which is accomplished in several ways.
When a frame store control is created, the Tag property is given a default value (unlike other controls for
which the default value is the empty string). This value will be copied from the Name property so that it
will initially be MemBuf1 or ImgDev3. There are two things to remember at this point: first the Name
property is not necessarily unique. Controls in control arrays or in different forms may have the same
name. Hence there is no guarantee that the initial Tag property value will be unique. The second
thing to remember is that it is the value of the Tag property that is relevant, not that of the Name
property.

When the ImageHook is created, it will attempt to find a frame store to which it should attach. It will try
to find a frame store in the container, or failing that, in the Form. If it succeeds it will set its
DeviceName property appropriately. And similarly, when a frame store is created, any existing
unattached ImageHooks will attempt to try to attach to the new frame store.

The final step which may be required when setting up the hook is choosing between the various hooked
settings for the Transparent property. Once again, XCaliper tries to help. Each frame store has its
own default Transparent mode (either Non-Transparent, or Floating Window Transparent) that is used
when the hook is first attached, although this can be changed if the frame store will support more than
one type of display mode.

 Image Tools Theory: Pass-Through vs. VGA-only Display Modes

In one of the two Pass-Through, or Transparent, modes, the Frame Store is displayed as if it is sitting
just behind the VGA screen. A Transparent ImageHook or frame store opens up a window in the VGA
display that allows the user to see through to the image buffer. The first type of pass-through mode,
called Floating Window mode, causes the container to behave like a floating window looking through to
the stationary image behind. When the window on the VGA display is moved around, a different
portion of the image buffer becomes visible. The second type, called Locked Window mode, causes
the container to always display the same portion of the image buffer regardless of its location on the
screen that is, the underlay moves with the container.

In VGA-only, or Non-transparent mode, by contrast, the image is copied into the VGA buffer for display.
Therefore, as in the Locked Window mode, when the window is moved around, the portion of the frame
buffer viewed remains the same. VGA-only mode is slower because of the time required to transfer
the image to VGA memory (as such, a live image display is not possible with ISA bus frame grabbers.
However it is the only mode which supports MemoryBuffers.

 Image Tools Theory: Pass-Through Mode Display

In pass-through mode, the process is somewhat more complicated because the ImageDevice and the
hook (either bundled with the frame store or used explicitly) interact in order to decide what will be
displayed. In Pass-Through mode, the ImageDevices output properties control the Underlay (as
opposed to controlling the Overlay as they do in VGA-only mode). The result is that they have the
same visual effect on the image that they do in VGA-only mode. This is also true when an explicit
ImageHook is used to display the image that is, the hooks output properties values are passed onto
the device and so affect the underlay as well. This is because the device is responsible for all
operations taking place in the underlay, while the ImageHook is responsible for all operations in the
overlay. Therefore what is seen on the screen will depend on the output properties of the device (set
either directly or through an attached hook) as well as the exact transparency mode being employed.
It should also be noted that since it is the underlay that is being modified, changing these properties on
the ImageDevice will have an effect on all containers that are hooked to that device not simply the
container within which the ImageDevice resides.

In Floating Window mode, the frame bufferorigin is mapped to the upper left corner of the VGA monitor
(with the output origin, pan and scroll properties set to 0) regardless of the position of the container.
The container acts as a floating window displaying different areas of the frame buffer depending on its
location on the VGA screen. In the Locked Window case, the frame buffers origin is mapped to the
origin of the container (again, with the output origin, pan and scroll properties set to 0), regardless of its
location on the VGA screen.

The developer should be aware that certain interactions arise when a Locked Window mode container
and another transparent mode container (either locked or floating) share the VGA screen. Due to
hardware limitations, changing the position of the Locked Window mode container results in an identical
translation in the image contained within the second container. If the second container is also a
Locked Window container, this is typically an undesirable, but unavoidable effect. As such, it is
recommended that an application have only a single Locked Window mode container. However,
secondary Floating Window containers are fine they will shift in step with the Locked Windows.

 Image Tools Theory: VGA-only Mode Display

In VGA-only mode, display is controlled exclusively by the hook (be it the bundled hook in the frame
store, or an actual ImageHook control). What is displayed on the VGA monitor (and how it is
displayed) is controlled by the following output properties of the ImageHook or frame store: Briefly
these are: the OutputPan and OutputScroll positions which specify what part of the image is to be
displayed. The pixel in the Frame Buffer at (OutputPan, OutputScroll) will be displayed at the upper-
left corner of the Container. Note that the amount of the frame store displayed is implicit: it depends
on the Width and Height of the container. The OutputZoomX and OutputZoomY properties specify the
zoom factor used when transferring from the frame store to the display. These are floating point
numbers; any positive zoom factors are allowed. Factors less than 1.0 cause minification of the image
while numbers greater than 1.0 cause magnification. A nearest-neighbor interpolation is used to deal
with non-integral zooms.

 Image Tools Theory: Dual Monitor Considerations

When the system requires the use of a secondary monitor for image display purposes, the developer
must be aware of certain special considerations. When displaying an image in one of the transparent
modes, any alterations to the output properties of the device will alter the secondary image in an
identical fashion as the image displayed on the VGA screen. On the other hand, when these
properties are altered on a device in Non-Transparent mode they have no effect on the image displayed
on the secondary monitor. The reason being, that the properties are modifying the Overlay as opposed
to the Underlay. If it is necessary to modify the underlay when displaying a non-transparent image,
you must unhook the ImageDevice (by setting its Transparent property appropriately) and use an
explicit ImageHook to handle the image display on the VGA screen. Now, with the ImageDevice
unhooked, any alterations to the devices output properties will only affect the underlay and hence will
only have an effect on the secondary monitors image. If you wish to modify the image on the VGA
screen you must employ the ImageHooks output properties accordingly.

 Image Tools Theory: Grabbing an Image

The ImageDevice has a series of properties that are used to control the information that is digitized from
an image, as well as where the resulting data is written. Some of these properties control the Input
Signal Conditioning, while others manipulate channels and sync sources, as well as control the Image
Display.

 Image Tools Theory: Signal Conditioning

There are three properties which are used to modify the signal between the source and the Frame
Buffer: the InputGain, InputOffset, and InputLUT.

The InputGain and InputOffset specify what the dynamic range of the input signal will be and what
voltage will digitize to black. Frame Grabbers define these terms in many different ways. XCaliper
tries to reduce the variations by imposing the following rules on the values: it represents the gain and
offset values ranging from 0 to 255. The lower the value of either one, the darker the resulting image.
Exactly what voltage is associated with any of these numbers is undefined, as is whether the gain is
added to the offset or it is a separate value (i.e. whether it is defined as a slope up from the black level
or as a white level).

The InputLUT is an Array of 256 Integers containing the lookup table used when an image is digitized.
Because it is an array, it is not accessible at design time. To modify the LUT simply write to the array.

 Image Tools Theory: Selecting the Image Size

In XCaliper, an input image is assumed to have a nominal size. This is the size of images acquired
when the zoom factors are 1 in both X and Y and the entire incoming signal is digitized. For example,
RS-170 signals are normally considered to have a nominal size of 480 lines in the Y-direction. In the
X-direction, things are a bit more complicated because the signal is continuous. Typically a line will be
broken up into either 512 pixels (corresponding to a digitization rate of 9.83Mhz) or 640 pixels
(12.27Mhz). In the current implementation, this nominal size is not available directly but is an attribute
of the frame grabber and/or camera used.

The ImageDevice has InputSizeX, InputSizeY, InputOriginX, and InputOriginY properties. The size
properties do NOT give the nominal size of the signal, instead they specify how much of the incoming
signal will be digitized. Therefore, although the number might be less than the nominal size, it can
never be greater. The origin properties state at what point in the video signal to start digitizing relative
to the upper-left corner of the incoming signal.

It is important to understand that these properties determine how the incoming signal is treated. They
do not specify how many pixels will be placed in the frame buffer nor where they will be placed. The
point in the frame buffer at which digitization starts is determined by the InputPan and InputScroll
properties. The number of pixels digitized is calculated from the size properties together with the
corresponding zoom property: InputZoomX or InputZoomY. It is equal to the InputSize divided by the
InputZoom (i.e. the number of nominal pixels digitized divided by the hold rate).

 Image Tools Theory: Image Display

It is best to view the transparent modes as being a mixture of two video signals together on a single
monitor. The ImageDevice is responsible for deciding what is displayed on the image video signal.
There are several properties which go together to display what is seen on the monitor As this is so,
there are several properties which go together to describe what is seen on the monitor whether
underneath the VGA screen, or on a separate display.

Most of these properties directly correspond to the equivalent input property. The OutputOriginX,
OutputOriginY, OutputSizeX, and OutputSizeY describe the placement of the image on the output video
signal. These numbers are fixed on many frame grabber boards because they are either incapable of
changing the values or it would be meaningless to do so . The OutputPan, OutputScroll, OutputZoomX,
and OutputZoomY properties describe what part of the frame buffer will be placed on the screen
starting at the position in the video signal given by the output origin.

There is also an OutputLut. This is an array of 256 Long Integers (a Visual Basic data type) which
contain RGB values in exactly the same format as other Visual Basic color properties such as
BackColor. Like any array, it is not available at design time and hence special color effects are only
available when the program is running. In design mode the OutputLut is set to a gray-scale ramp. It
is suggested that you turn the UpdateMode off when writing more than one entry to the OutputLut. If
UpdateMode is on, the modification will be much slower and involve disturbing visual effects. The
OutputLut of the device is also used by the ImageHook when it displays an image in VGA-only mode.
Therefore, consistency between the two modes is ensured.

 Image Tools Theory: MemoryBuffers

A MemoryBuffer is simply a restricted type of ImageDevice that resides in system memory instead of a
plug-in board. As such it can only be displayed in VGA-only mode. Its Transparent property (or that of
an ImageHook attached to it) cannot be set to Pass-Through Mode. The tool has an output LUT which
will be used by the hook when it is displayed. This is done to be consistent with the way an
ImageDevice behaves.

Another difference between a MemoryBuffer and an ImageDevice is that it is possible to dynamically
change the amount of image memory allocated in a MemoryBuffer. This can be set in one of two
ways: if the AutoSize property is set to True, the buffer will take on the size and attributes of whatever
image is copied into it; if it is set to False, the buffer will have a fixed size as set in the BufferSizeX and
BufferSizeY properties. When an image is copied into the device, it will be clipped to fit.

 Image Tools Theory: Device Drivers Restrictions

An ImageDevice is an abstraction of a Frame Grabber. These devices have a variety of tradeoffs in
what they can and cannot do. Some have offset and gain capabilities, others have LUTs. Some can
support special cameras, others are restricted to RS-170 (TV camera) input. XCaliper takes the
approach that special capabilities should be supported. This is especially true in machine vision where
the choice of grabber and/or camera may be directly related to these capabilities.

Therefore an abstract frame grabber is not a minimal device but rather incorporates the best capabilities
of all. If a particular grabber does not support a given feature, the driver will attempt to do the best it
can and change the property setting to reflect the actual state of the card, not the state requested by the
programmer. As a consequence, unless you know how the driver you are using will react, you should
always check the value of a property after you set it to see how the driver reacted.

For example, if you set the InputZoomX to 5.2, one grabber might choose to set it to 4.0 because it only
supports zooms in powers of two while the next one might set it to 5.0 and another, which doesnt zoom
at all might set it to 1.0. Another possibility might be the x and y-zooms are linked so that this change
to the x-zoom would cause a similar change to the y-zoom.

As a result, you should always know the capabilities of your hardware and how it will react to a request.
One feature which can help notify you how the hardware will respond, is the write back feature of Visual
Basic. If a property is set in design mode, Visual Basic will react by writing the property to the control
and reading back the values of ALL properties in the control. If you are not sure how the hardware will
react, try to set the property in design mode and examine the changes on the property list as Visual
Basic automatically updates all property values any time one is altered.

 BlobAnalyzer Theory: Overview

The XCaliper BlobAnalyzer tool is implemented as a custom control which operates inside a region of
interest known as a Viewport. All of the image inside the Viewport is subject to the blob analysis.

The BlobAnalyzer tool is used to extract more than thirty different characteristics, or features, of the
blobs in a Viewport. It is possible to restrict the list of features extracted in order to reduce execution
time and memory requirements. The current implementation is limited to about 15000 blobs in a single
image. As even the most complicated scenes never have more than a thousand or so, this should be
far more than necessary for any real-world application.

The tool starts by splitting its Viewport into foreground and background pixels based on light intensity or
on a user-specified mask. Next, each object in the Viewport is given identifying tags and their features
are stored into an internal list. These features may be used to filter out uninteresting objects and to
display the resultant blobs. Alternately, the features can be reported back to the programmer or
another software module for further processing.

The BlobAnalyzer tool is often used in qualitative measurements. Determining presence or absence
of a crucial feature in a complex scene or sorting similar parts into different categories are common
applications. Normally, the built-in filtering provided with the tool is used to find the object which needs
to be measured among all of the objects in the image. In addition, the BlobAnalyzer can also be used
to determine if a part is good or bad based on the value of one or more of its features. Once the
desired object is found, other features or processing tools can be used to perform final measurements.

The BlobAnalyzer Theory of Operation on-line documentation provides a discussion on the following
topics:

i) Principles of Blob Analysis
ii) Application of the Tool
iii) Examining Extracted Features
iv) Blob Statistics

 BlobAnalyzer Theory: Principles of Blob Analysis

Blob analysis is the process of extracting blobs from images in order to obtain statistics and other
information about them. This information can then be used to determine presence or absence, location
and many other characteristics of the real-world objects which these blobs represent.

Blob analysis consists of four essential steps:
i) Segmentation
ii) Labelization
iii) Feature Extraction
iv) Filtration

In addition, this tool incorporates mechanisms to display results, to support user interaction with the tool
and to read the results of the analysis.

While a complete analysis requires all four of the above operations, it is possible to restrict the actions
of the BlobAnalyzer tool, thus reducing overhead in those cases where part of the analysis has already
been performed. For example, it is often necessary to Filter the same set of data more than once.
Re-extracting this data from the image would be a waste of time.

 BlobAnalyzer Theory: Segmentation

Segmentation is the processing step of separating an image into foreground and background,
determining which pixels belong to blobs and which belong to the background of the image.

The BlobAnalyzer tool segments an image based on pixel intensity. That is, a pixel is attributed to the
foreground or to the background based on its gray level intensity. In most real-world images, there is
one range of intensities which contains the background pixels and another range which contains the
foreground pixels. In addition, there will be an intermediate set of gray level values which represent
those pixels which are on the edge of objects. As such, they should not be considered as either
foreground or background but rather as transitional values on the edge of objects. Accurate
processing of any blob to extract features must take into account these border pixels to get a true
representation of the object.

The BlobAnalyzer tool supports a WeightTable used to specify what percentage of each pixel is
attributed to foreground for all of the 256 possible gray level values. Gray levels below the background
threshold are assigned a weighting of 0, those above the foreground level are assigned a weighting of
1, and the gray levels in between are assigned a weighting between 0-1 based on their gray level. For
example, assume that the transition region starts at intensity level 82 and continues to 160. A pixel
with a value of 85 should be considered mainly part of the background while one with a value of 150 is
mainly foreground. Allowing a pixel to be considered as partial foreground gives more precision in the
calculation of several blob features, particularly position and area. The more common technique of
setting an arbitrary threshold point in the middle of the transition is less accurate.

Three properties, the LowerThreshold, UpperThreshold and BlobType exist to write typical
segmentation algorithms into the weight table without requiring the programmer to calculate all 256
entries individually. Note that they serve no purpose on their own but simply make it easier to write to
the WeightTable. However, if other unsupported techniques are required, the capability does exist in
the BlobAnalyzer to write a custom WeightTable. This can be done by writing to the table directly.
The BlobType property selects among five schemes and the LowerThreshold and UpperThreshold
properties supply associated limits.

The weighting rules are modified by the HoleFill property. If HoleFill is set to True, holes inside blobs
are filled in when segmentation occurs. Hole-filling is the process whereby background areas (and
other blobs) which are inside a blob are considered as part of that blob for the purpose of later
analysis . A hole is defined as an area of one or more pixels with weights of less than 1.0 inside a blob
which is entirely surrounded by pixels whose weightings are 1.0. A pixel is considered to be inside a
blob if it is entirely surrounded by a connected area of pixels which are 100% foreground. Pixels in the
hole, even those with weights of 0.0, will have their weights changed to 1.0 after segmentation.

The BlobAnalyzer tool supports a second method of describing what part of the image is to be
considered foreground and what part is background. This method involves segmentation using the
Mask.

 BlobAnalyzer Theory: Segmentation Using the Mask

The BlobAnalyzer tool supports an alternate method of describing what part of the image is be
considered foreground and what part is background. The Mask property allows specification of
foreground and background on a pixel-by-pixel basis. This can be done by copying a binary bitmap
into the Mask as follows:

BlobAnalyzer1.Mask = picture1.Picture

then using an Apply mode which does not segment the image, such as AM_MASK_LABEL or
AM_MASK_NO_LABEL, since the Mask provides the segmentation. When a segmentation mask is
supplied, analysis is performed on the area which is the intersection between the Mask and the
WeightTable. The Mask will determine which blob, if any, a pixel belongs to while the WeightTable will
determine its relative weighting within the blob. If the intent is to use only the Mask and ignore the
WeightTable all together, then the BlobType should be set to BT_MASKONLY. In this mode pixels which
are set in the mask are considered foreground pixels those which are not set are part of the
background.

It is also possible to extract the Mask from the BlobAnalyzer tool as shown below. However, the tool
mask will only contain background pixels unless previously set using the Mask property or one of the
segmenting Apply modes.

picture1.Picture = BlobAnalyzer1.Mask
or

SavePicture BlobAnalyzer1.Mask, <FILENAME>

When a segmentation mask is extracted from the BlobAnalyzer it is converted from a weighted form to
a binary form. Pixels with a non-zero weight are considered part of the foreground. Pixels with a zero
weight are considered to be part of the background. While it is necessary, a segmentation must be
applied to obtain a valid mask. If not, the mask will contain only background pixels. Currently there is
no method to save either the weighting or blob identifiers.

 BlobAnalyzer Theory: Labelization

This is the process of assigning unique identifiers to each blob in the image. The segmented image is
scanned from top left to bottom right and each connected group of blobs is assigned a unique number
starting with 0 for the first blob and continuing on to the last blob in the image. Blob numbers are
assigned in scan-order. The following is the eight connectivity, neighboring pixels used in labelization:

1 2 3

4 5

6 7 8

This means that pixels are considered to be part of the same blob if they touch in any of the eight major
directions including diagonals. The weighting assigned to each pixel is ignored for the labelization
process. As long as the weight of two adjoining pixels is above zero, they will be considered part of the
same blob. Therefore, once the labelization process is complete, labeled blobs do not touch in any
direction and are completely isolated by pixels which are 100% background.

For example, the following diagram shows three blobs numbered in scan-major order just as the tool
would do. The hole in blob 1 will not be filled in as there is no connected area of fully foreground while
the partial foreground pixels on the boundary will be left unchanged.

 BlobAnalyzer Theory: Feature Extraction

Feature extraction is the process whereby information is extracted about each of the blobs contained in
the image. The BlobAnalyzer tool, in its current release, supports over 30 different features including
such parameters as area, location, perimeter, orientation, shape, density and texture. The tool extracts
only those features which are actually requested, thus saving processing time and memory. The
information obtained may be retrieved for analysis by the program or passed to other VBXs or programs
such as the grid and graph tools supplied by Microsoft.

The list of features extracted can be specified in two ways: through use of the Filters and Features
dialog box or by specifying the features individually at run time through Visual Basic code. The dialog
box is simple to use and is often the best way to play with an image and decide exactly which features
are needed to extract and which filters to apply. However, it is only able to specify a single set of
analysis and filter criteria for the entire application. This will not be sufficient if either the list of features
or, as is more often the case, the filters and filter limits will have to change dynamically. Using Visual
Basic code at run time allows the designer to change the filter criteria while the program is executing.

All features extracted are scaled and translated, if appropriate, in both the x and y direction according to
the current scaling mode. This mode is controlled by three properties which determine the scaling
factor and two properties which control the origin of the co-ordinate system. The ScaleX and ScaleY
properties give the scale factors in X and Y respectively. ScaleType is an enumerated integer which
determines what generates these scaling factors.

The BlobAnalyzer tool is currently capable of extracting the following features from blobs:

Area Feret90
Moment1X Orientation
Moment1Y Eccentricity
Moment2X EquivDiameter
Moment2Y EulerNumber
MomentXY NumHoles
BoundBoxLeft GrayMass
BoundBoxTop GrayMean
BoundBoxRight GrayStdDev
BoundBoxBottom GrayMin
Perimeter GrayMax
FormFactor GrayRange
TouchesBorder GrayContrast
Feret0 GrayTexture

 BlobAnalyzer Theory: Application of the Tool

The basic programming technique for the BlobAnalyzer tool is to set up the analysis desired in Design
mode using Visual Basic properties which control each of the four phases of the blob analysis. Once
all the properties are set, the Apply property must be set to its appropriate value to cause the analysis
to take place. When the value of this property is written, the BlobAnalyzer executes, updating its
internal data lists and, optionally, the display.

The main set up operations include specifying which features to extract and which filters to apply.
Other considerations include calibration of the analysis to real-world co-ordinates and determining the
order in which blobs are to be reported back to the programmer.

 BlobAnalyzer Theory: Filtration

Once the features have been extracted for all the blobs in a region of interest, uninteresting blobs can
be eliminated from further analysis through the process of Filtering. For example, it might be desired to
exclude all blobs which have an area below three pixels and all those which touch the border of the
BlobAnalyzer. This would be done in order to set a noise threshold and to eliminate partial objects
from the analysis. The next step would be to find those blobs with some interesting characteristic, for
example a highly deformed shape.

In a typical application, these blobs would be tagged and the abnormal shape signaled to the user in
some fashion. To that end, the tool supports mechanisms for displaying all blobs or just those blobs
which pass or fail a filter criteria. It is also possible to set up multiple classes of blobs. In this
example, it may be desired to color the deformed blobs red and the other ones green. Perhaps the
small ones should not be colored at all to reduce clutter will those which touch the border are set to
black.

Two properties exist to select the list of features to extract and to enable or disable filtration: Features
and Filters. These properties are arrays indexed by feature number. Features is an array of
enumerated integers which specify whether a given feature is to be extracted and, if so, whether it
should be filtered as well. Assuming filtration is enabled for a given property then the Filters array
specifies exactly which filter to apply.

For example, assume that we wish to extract the area and orientation of each blob and to report back a
count of those blobs with an orientation between 0º and 90º. We need therefore to set the area and
orientation entries in the Features array and the orientation entry in the Filters array as follows:

BlobTool1.Features(BA_AREA) = FE_EXTRACT
BlobTool1.Features(BA_ORIENTATION) = FE_EXTRACT_AND_FILTER
BlobTool1.Filters(BA_ORIENTATION) = [0,90]
BlobTool1.Apply = AM_SEGMENT_LABEL
MsgBox Found + Format$(BlobTool1.Count) + blobs

 BlobAnalyzer Theory: Displaying Blobs

The display properties are used to show the results of the blob analysis overlaid on the image. Blobs
are sorted according to whether they passed or failed the active filter criteria. The AcceptDisplay and
RejectDisplay properties control how the tool reacts to blobs which pass and to blobs which fail.

By setting the RejectDisplay property to NoChange and the AcceptDisplay property to Color, it is
possible to segment the blobs into multiple categories by applying successive Filters, one for each
class. Choose a color for a class. Apply the tool with the appropriate filter set. The blobs which pass
the filter will appear in the correct color. Now choose a second filter and a second color for the next
class. Apply the tool again. The blobs which passed the first filter will remain in the first color while
those which passed the second will appear in the second color. Repeat this operation once for each
class. If it is desired to have everything appear to happen at once, perform these operations with the
tools Visible property set to False. When the sequence is finished, set the Visible property to True.

The last property controlling blob display is the DisplayMode. This chooses the appearance of blobs
on the screen. This property applies to all blobs on the screen, not just the last group to pass or fail a
filter.

 BlobAnalyzer Theory: Examining Extracted Features

In many applications it is sufficient to simply set up some Filters and determine how many blobs pass
them. However, sometimes it may be necessary to actually analyze the information extracted about
features. In the BlobAnalyzer, two methods are supported for accessing the data: the results can be
returned feature by feature, or as a single string containing all the data extracted from the image.

 BlobAnalyzer Theory: Examining Individual Features

An individual feature datum can be retrieved through use of three properties: CurValue, CurFeature and
CurBlob. For example, the following code would obtain the area of the fifth blob:

BlobTool1.CurFeature = BA_AREA
BlobTool1.CurBlob = 5
f = BlobTool1.CurValue

In practice the end user would almost always want to access multiple pieces of data. A built-in Auto-
increment mode automatically increments the values of the CurFeature and CurBlob properties on each
access to the CurValue property making code to process the data simpler and faster. The
Autoincrement mechanism, supplied through the CurAutoInc property, can also be used to cycle
through all the features of a blob as opposed to the same feature in all the blobs. For example, the
following code fragments would obtain the sum of the areas of all the blobs in an image:

BlobTool1.CurAutoInc = AI_BY_BLOB
BlobTool1.CurFeature = BA_AREA
area = 0
For I = 0 To BlobTool1.Count - 1

area = area + BlobTool1.CurValue
Next I

Alternatively, this could be written less efficiently, as:

BlobTool1.CurAutoInc = AI_NONE
BlobTool1.CurFeature = BA_AREA
area = 0
For I = 0 To BlobTool1.Count - 1

BlobTool1.CurBlob = I
area = area + BlobTool1.CurValue

Next I

The best method, however, would be to obtain the Sum statistic.

Autoincrement only goes through the set of features actually enabled and through the set of blobs
which passed the last filtering operation. Note, however, that all the data actually extracted at the last
blob analysis is saved and therefore can be retrieved. Consider the following code fragment:

Rem extract area and orientation, filter on area
BlobTool1.Features(BA_AREA) = FE_EXTRACT_AND_FILTER
BlobTool1.Features(BA_ORIENTATION) = FE_EXTRACT
BlobTool1.Features(BA_NUM_HOLES) = FE_EXTRACT
BlobTool1.Filters(BA_AREA) = (100,1000)
BlobTool1.Apply = AM_SEGMENT_LABEL
Rem at this point auto-inc would go through three features
Rem and all the blobs which passed the filter

BlobTool1.Features(BA_NUM_HOLES) = FE_DONT_EXTRACT
Rem at this point auto-inc would only access two features

BlobTool1.Features(BA_AREA) = FE_EXTRACT
BlobTool1.Apply = AM_FILTER_ORIGINAL
Rem this would cause the filter to be discarded
Rem all of the blobs would be returned

Note that eliminating the BA_NUM_HOLES feature took effect immediately while eliminating the filter had
to wait until the next apply. This is because eliminating the filter requires a re-evaluation of the data
while eliminating a feature merely changes the list of which things are to be returned. At this point it
would be possible to add back the BA_NUM_HOLES feature since it was extracted from the image and
the information still exists. However an attempt to read information about a feature which was not
extracted, for example the perimeter, would cause a Visual Basic error.

 BlobAnalyzer Theory: Extracting All the Data at Once

It is possible to obtain all the data at once using the QuickData property. It returns all of the data in a
single Basic string. This string is a 2-dimensional table with values separated by <TAB> characters in
the horizontal direction and <CR><LF> pairs in the vertical direction. This format is the one used by
Visual Basics Grid and Graph tools and hence can be used to copy data into those controls for display
or analysis. The order of the table depends on the setting of the CurAutoInc property. If CurAutoInc is
set to AI_BY_FEATURE, features will be shown along the horizontal axis; if it is set to AI_BY_BLOB,
blobs will be shown horizontally. The string may also be labeled, if desired, by setting the QuickLabels
property to True.

The following is an example of QuickData results with QuickLabels on and CurAutoInc set to
AI_BY_BLOB:

0 1 2 3
Area 27.23 56.97 45.33 83.68
NumberOfHoles 1 0 0 0
GrayMean 187.39 163.77 192.44 62.2

 BlobAnalyzer Theory: Blob Statistics

The BlobAnalyzer tool can perform statistical analysis of the distribution of blobs according to any
feature. The Stats property is an array of values from which a variety of statistical measures can be
obtained. Statistics are only available from code and are obtained by indexing the array with an
enumerated integer type as:

sd = ctlName.Stats(statsNumber%)

The Stats property is affected by the CurFeature property which specifies which feature is analyzed.
Statistics are calculated on request. E.g. accessing the array causes the statistic in question to be
calculated. The following statistics can be extracted:

Mean Max
StdDev Range
Mode Sum
Median SumOfSquares
Min Variance

Area
The area in pixels of a blob.

Moment1X
The x-component of the blob first moment (otherwise known as centroid).

Moment1Y
The y-component of the blob first moment (otherwise known as centroid).

Moment2X
The standard deviation of all points in the blob from the centroid in the x-direction.

Moment2Y
The standard deviation of all points in the blob from the centroid in the y-direction.

MomentXY
The tendency of the X and Y moments to deviate in the same manner..

BoundBoxLeft
The left side of the smallest enclosing rectangle that can hold the blob.

BoundBoxTop
The top side of the smallest enclosing rectangle that can hold the blob.

BoundBoxRight
The right side of the smallest enclosing rectangle that can hold the blob.

BoundBoxBottom
The bottom side of the smallest enclosing rectangle that can hold the blob.

Perimeter
The actual perimeter of the blob, in pixels.

FormFactor
The ratio of the blobs perimeter to the area. Ranges from 0.0 to 1.0 such that 1.0 indicates that the
blob is a perfect circle.

TouchesBorder
Set to 1.0 if the blob touches the border of the Viewport and to 0.0 if it does not.

Feret0
The diameter of the blob in the 0 direction (e.g. BoundBoxRight - BoundBoxLeft).

Feret90
The diameter of the blob in the 90 direction (e.g. BoundBoxTop - BoundBoxBottom).

Orientation
The axis of minimum inertia in engineering degrees (e.g. 0 is due East and numbers increase in the
counter-clockwise direction).

Eccentricity
Moment-based shape factor where 0.0 indicates a perfect circle.

EquivDiameter
Diameter of a circle with the same area as the selected blob.

EulerNumber
Number of particles in the blob minus the number of holes.

NumHoles
Number of holes in the blob.

GrayMass
The sum total of the pixel values of the blob.

GrayMean
The average pixel value in the blob.

GrayStdDev
The standard deviation of gray levels in the blob from the average value.

GrayMin
The lowest gray level in a blob.

GrayMax
The highest gray level in a blob.

GrayRange
The difference between the min and max gray levels in a blob.

GrayContrast
The average difference of a pixel in gray level from its eight nearest neighbors. As currently
implemented this feature takes into account neighbors which are outside the blob. Hence the value
tends to become unusable for very small blobs (those with a diameter below about 7 pixels).

GrayTexture
Slope of the line through the GrayContrasts as the distance of the neighbors from the pixel gets larger.
Currently the slope is calculated from the GrayContrasts at distances of 1, 2, 3 pixels.

 BlobAnalyzer
Properties Commands Events Methods

Description
The BlobAnalyzer tool analyzes characteristics of objects within a Viewport. It can generate both
binary and gray level information about objects, or blobs. The tool can segment images into foreground
and background, assign unique labels to all the objects in the resulting binary image, extract
characteristics or features of each blob, and finally performing a filtration process to eliminate unwanted
blobs. The filtration process can be set up in software or by using the Setup Dialog Box.

File Name
XVBXBLOB.VBX

Remarks
The control is represented in the Visual Basic toolbox by an icon depicting a blob superimposed by a
question mark and a ruler lying horizontally below the blob. When placed in a container, it is
represented by a rectangular Viewport in which the blob analysis will take place.

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* Mask*
AcceptColor* Name
AcceptDisplay* QuickData*
Apply* QuickLabels*
ApplyOnChange* RefType*
BlobType* RejectColor*
Command* RejectDisplay*
Count* ScaleType*
CurAutoInc* ScaleX*
CurBlob* ScaleY*
CurFeature* Setup*
CurValue* SortFeature*
DisplayMode* SortOrder*
DrawColor* Stats*
ElapsedTime* Tag*
Features* Top
Filters* UpperThreshold*
Height UserInteface*
HoleFill* Visible
Index WeightTable*
Left Width
LowerThreshold*

Commands
All of the commands are listed in the following table. Commands can be executed either during design
time or run time. To execute a command during design time, enter the command into Command
property of a BlobAnalyzer.

Clear LoadFile

Close Median

Convolve Open

Copy SaveFile

Dilate TuneInput

Erode

 BlobAnalyzer Setup: Features & Filters

The Features and Filters Dialog Box provides the designer or end user a method to review and change
the features extracted from a set of blobs in a region of interest known as a Viewport, and the filter
criteria used on those features to eliminate unwanted blobs from the list. This dialog box is invoked at
design time by double-clicking the Setup property in the Properties window, and is invoked at run time
either by program action or by double-clicking inside the tool's Viewport if the UserInterface property is
to allow this action.

Click on the dialog box for help on a specific item.

 BlobAnalyzer Setup: Feature Check List

The Feature Check List is a list box containing the features that can be extracted from the blobs in a
region of interest. Beside each feature is a check box that allows the feature to become enabled. The
features are organized into groups of similar features, where each feature is connected by hierarchical
lines that lead to the parent feature. Selecting any feature within a group causes its parent feature to
be selected as it would have to be included in the calculation required for each blob.. When a parent
feature is selected or de-selected, all of its children become selected or de-selected.

To select or de-select a feature, the cursor must be over the check box for the feature. If a feature
name is selected, it will be highlighted and the relevant filter string, if any, will be displayed on the Filter
Edit Box.

 BlobAnalyzer Setup: Filter Edit Box

The Filter Edit Box allows the designer to eliminate those blobs that do not meet specific filter criteria.
This is done by defining a set of rules through which the features that have been calculated for the
blobs in a Viewport must pass. Filters can be set by entering a string into the Filter Edit Box. This
same string can also be specified in Visual Basic code. To view or change a filter, first select the
desired feature from the Feature Check List by clicking on the feature name. To modify the filter, enter
the criteria using the same syntax as that used in Visual Basic code. The string entered is then
validated and will be rejected if the syntax is incorrect.

 BlobAnalyzer Setup: Filter Syntax

A filter is defined using a string which must adhere to the following syntax:

[NOT] { (| [} [NUMBER] , [NUMBER] {] |) }

[NOT] - an optional operator that inverts the logical sense of the filter
{ (| [} - a required symbol that indicates greater than ([) or greater than or equal to (()
[NUMBER] - a floating point number that indicates a lower or upper bound
{] |) } - a required symbol that indicates less than (]) or less than or equal to ())

Examples:

5 < Area < 10 [5,10]
Area <= 45 [,45)
Area <= 5 OR Area >= 10 NOT [5,10]

[10,5]

Apply Button

The Apply Button will apply the tool, updating the display showing those blobs which pass the new set
of filter criteria.

Description Box

The Description Box contains a brief description of the currently selected feature.

 LightMeter Theory: Overview

The XCaliper LightMeter tool is implemented as a Custom Control which operates inside a Viewport.

The LightMeter tool extracts information about light levels in its Viewport. It can obtain the Histogram
of intensity values in the Viewport, or extract various Statistical information about light levels of the
Viewport. This tool is most often used to detect failures in the camera or lighting equipment of an
automatic inspection process. As a result, it is often the first tool to be executed in an inspection cycle.
The tool can also be used for simple inspection tasks, such as detecting the presence or absence of a
part or performing simple texture analysis, simply by looking at the shape and distribution of the
histogram of the appropriate region of interest.

The LightMeter Theory of Operation on-line documentation provides a discussion on the following
topics:

i) Application of the Tool
ii) Statistical Quantities
iii) Histogram
iv) Examining the Data

 LightMeter Theory: Application of the Tool

Using the LightMeter control is as straightforward as using the mouse to draw a rectangular box on the
screen image. The rectangular region specifies the region of interest or Viewport that defines which
pixels are to be included in the generation of the Histogram and other Statistical data.

The programmer can then generate, simply by reading or writing the Apply property, a histogram of the
intensity values contained within the Viewport. If the UserInterface property has been set
appropriately, an implicit Apply will also occur whenever the Viewport is repositioned or re-sized.

 LightMeter Theory: Examining the Data

The LightMeter tool offers two methods for examining the data generated when the control is Applied.
One method is to access each data point in the histogram array through the Histogram property. An
alternative is through the use of the QuickData property, which is similar to the QuickData property of
the Graph control. Through this property, the programmer can quickly and easily access all the
histogram data at once for further processing and analysis.

 LightMeter Theory: Statistical Quantities

The LightMeter tool can provide Statistical measures through the read-only array property, Stats.
Statistics are computed from the pixel intensity data obtained the last time the control was applied
through the Apply property. These quantities are only available from code and are obtained by
indexing the array with an enumerated integer type as:

sd = ctlName.Stats[StdDev]

Statistics are calculated on request. E.g. accessing the array causes the statistic in question to be
calculated. The following statistics can be extracted:

Mean Range
StdDev Sum
Mode SumOfSquares
Median Variance
Min LeftTail
Max RightTail

 LightMeter Theory: Histogram

The Histogram generated by the LightMeter tool is a plot of the pixel intensity values versus the
frequency of occurrence of those intensity values. The pixel intensity values are plotted along the x-
axis while the frequency of occurrence of those intensity values is plotted along the y-axis.

Two areas of the histogram worthy of further mention are the Left Tail and Right Tail regions. These
represent the extremes of the data, and are often considered unreliable or biased due to noise, signal
saturation, etc., and as such, pixels falling into these regions are often ignored in subsequent analysis.
Exactly how large the tail sizes should be is left up to the programmer. Through the LeftTailSize and
RightTailSize properties, the programmer can set the percentage area of the total histogram that should
be considered part of the left or right tail respectively. This percentage can also be interpreted as a
percentage of the total number of pixels under examination.

After generating a histogram for a particular region of the image, the programmer can obtain, through
the Stats property, the left and right tail values - the pixel intensity values that bound the left and right
tails.

Mean
The average value.

StdDev
The standard deviation of a particular value from the average value.

Mode
The most common value.

Median
The point at which half the blobs have a value below and half the blobs have a value above.

Min
The lowest value of any blob.

Max
The highest value of any blob.

Range
The difference between the Min and the Max.

Sum
The arithmetic sum of the values of all blobs.

SumOfSquares
The arithmetic sum of the squares of the values of all blobs.

Variance
The variance of a particular value from the average value (effectively the square of the StdDev).

LeftTail
The smallest intensity value such that one or more (and possibly all) of its pixels are not part of the Left
tail as determined by the LeftTailSize property.

RightTail
The largest intensity value such that one or more (and possibly all) of its pixels are not part of the right
tail as determined by the RightTailSize property.

 LightMeter
Properties Commands Events Methods

Description
The LightMeter generates statistics of the intensity values inside a Viewport. The tool provides the
capability to obtain and manipulate a Histogram of the intensity values. It also allows the program
designer and/or user to obtain a variety of Statistical quantities derived from these values.

File Name
XVBXLMTR.VBX

Remarks
The control is represented in the Visual Basic Toolbox by a picture of a light bulb with a scale across it.
When placed on a form, it is represented by a rectangular box with eight pick points on its perimeter.
All processing is performed on the intensity values inside the box.

Properties
All of the properties are listed in the following table. Properties that are not standard or that require
special consideration when used with this control are marked with an asterisk (*). For information on
standard Visual Basic properties, please see the Visual Basic Programmer's Guide or the Visual Basic
on-line Help.

About* Name
Apply* QuickData*
ApplyOnChange* QuickDataMode*
Area* RightTailSize*
Command* Setup*
DrawColor* Stats*
ElapsedTime* Tag*
Height Top
Index UpperLimit*
Left UserInteface*
Histogram* Visible
LeftTailSize* Width
LowerLimit*

Commands
All of the commands are listed in the following table. Commands can be executed either during design
time or run time. To execute a command during design time, enter the command into Command
property of a LightMeter.

Clear LoadFile

Close Median

Convolve Open

Copy SaveFile

Dilate TuneInput

Erode

