
 Proposed Specification for MIXER API
 copyright Media Vision (c) 1991,1992
 version 1.0 -- Ken Nicholson

MCIMIXER.DRV MCI interface to the mixer driver
MMMIXER.DLL Multimedia Mixer DLL
MVMIXER.DRV Media Vision Mixer driver

THE MULTIMEDIA MIXER DLL

The Multimedia Windows Mixer DLL, as proposed by Media Vision, is a
library of generalized routines that provides a common, device-independent
interface to software controllable mixers. Its design is based on the uses
and functionality of real world audio mixers.

This DLL is responsible for loading the device-dependent mixer driver.
In the past, the only device-dependent drivers available were for Media
Vision hardware. Recently, a company has developed a mixer driver
for the Sound Blaster Pro. The company is called Animotion and can
be reached by calling (205) 591-5715. Their product, MCS stereo,
provides a common interface for mixing on any device.

MMMIXER.DLL gives the MultiMedia application programmer control over a complete
range of audio capabilites. Every conceivable audio mixing, patching, equalization and
amplification need can be handled by this DLL and its API. It is capable of supporting mixing
features far beyond those available with today's PC hardware.

WHY A MULTIMEDIA MIXER ?

The Multimedia PC Specification version 1 (May 13,1991) calls for
"On-board analog audio mixing capabilities," requiring "... input
from three (recommended four) sources and [must] present the sources as
a stereo, line-level audio signal at the back panel. ... Individual
audio source and master digital volume control registers and extra
line-level audio sources are highly recommended."

Such hardware requires a set of standard functions calls (API's) that
will handle volume changes in a device-independent and extensible way.
Furthermore, there are a number of issues, apart from the setting of
an input's or an output's volume levels, that should be handled in a
standard way. Functions such as equalization, special effects, patch
changes, device association, connection mapping, smooth timed transitions,
power-up settings and device sharing are not addressed by Windows 3.1.

What is provided?

The WAVEOUT and MIDIOUT drivers have Get- and SetVolume
entry points for control of a device's output volume. In addition, the
Multimedia Extensions define an AUX device type that allows
applications to get and set the volumes of additional devices. The

only two types of AUX devices defined are CD audio and auxillary
input.

In the current design of the Multimedia Extensions, there is no link
between an AUX device and the audio device associated with it. It
may be assumed, when there is only one AUX device, that it controls
the audio output of the CD-ROM drive. But in the presence of multiple
AUX devices there is no mechanism for an application to determine
which AUX device to control to change the CD volume. Varying
AUX-to-Device association will cause chaos for application writers.

This raises the question of volume control for devices in general.
Most consumer audio devices (cassette decks, turntables, video disk
players, televisions) don't have a variable line output. These
devices rely on a mixer or integrated amplifier to control the volume
level. The term "attenuator" is applied to controls that vary the
line output of a device.

Attenuation of PCM and MIDI audio output is not something users need
concern themselves with and therefore volume control functions do not
belong in waveout and midiout drivers; volume control is properly a
mixing function. Users and multimedia authors will want to individually
adjust the relative volumes of a number of device outputs and this is the
primary need for a mixer. The Mixer API solves this problem by supporting
volume controls on each of any number of mixer inputs as well supporting
volume controls for each mixer output.

Some professional audio mixers feature a myriad of knobs to enhance or
alter input audio. Among these are controls for bass, midrange and treble,
controls to add reverb, effects and stereo-mono crossover. In fact, Media
Vision's Pro-Audio Spectrum supports many of these features. The
existing Multimedia Windows API's don't address these features.

Another feature of the MMMIXER.DLL API set is its ability to maintain and
coordinate mixer patch information. A mixer device that supports
software selectable input patching would allow any one of several audio
devices to be "patched" to a mixer input. Similarly an application
can interrogate the mixer API to find out which devices are connected
to which mixer inputs.

Fading the volume up of one sound source while fading out the volume
of another seems such an intrinsically necessary function for multimedia
that we have incorporated it into the DLL. Without this feature, the
application programmer would be required to send auxSetVolume
messages in "ping-pong" fashion to the devices to be cross-faded.

Some users will have powered speakers with no volume control. MMWindows
start-up sounds are capable of producing DEAFENING DECIBELS OF DIN.
Mixer drivers conforming to this spec read WIN.INI to determine the
desired start-up, or mixer reset, volume settings.

Frequently an application will fill the entire screen and on occasion
a Multimedia application will suprise the user with unexpectedly loud
audio. Such moments find the user frantically trying to bring up the
volume control application in order to lower the volume. An equally
dismaying situation is starting a multimedia application only to

discover that the volumes are too low for the sound to be audible.
The MMMIXER.DLL intercepts the CTRL-ALT-U and CTRL-ALT-D sequences
and translates them into driver volume up and down calls. This
allows the user to quickly change volumes up and down.

Media Vision has developed the Multimedia Windows DLL to address these and
other issues in audio control on the MPC. We gratefully acknowledge
Microsoft and especially the members of the Multimedia Windows
Development Team for their advice and assistance in developing the
Multimedia Mixer DLL and the Media Vision Mixer driver.

MEDIA VISION IMPLEMENTATION

The Multimedia Mixer DLL is capable of supporting virtually any type
of mixing hardware. The limitations of the Pro AudioSpectrum mixing
hardware should not be confused with the capabilities of the
Multimedia Mixer DLL.

MVMIXER.DRV is implemented as a single Mixer device. This mixer has
seven input lines and two output lines. The Pro AudioSpectrum 16 has
new mixer circuitry that allows 8 input lines.

The standard input lines are by default patched to:
1) FM SYNTHESIZER 5) MICROPHONE
2) RECORD MONITOR 6) WAVE (PCM)
3) AUXILLARY INPUT 7) PC speaker
4) INTERNAL CD 8) Snd Blaster WAVE (mono PCM)

On the Pro AudioSpectrum and Pro AudioSpectrum Plus, Input #2 is the mix
of all devices being routed to Output #2. For the Pro AudioSpectrum 16,
Input #2 becomes a second internal CD connector.

Each input can be connected to one (but not both) of the two outputs.
1) PLAY (Line Out)
2) RECORD (Wave In)

Output #1, apart from supporting volume control, supports treble and
bass, loudness, stereo enhance and mute.
Output #2 volume control of the second output is possible on the Pro-16 only.

Input #2 should not be patched to Output #2.
Input #6 should be patched to Output #2 during playback for proper
waveform filtering. This is only necessary on the 8-bit Pro
AudioSpectrum.

mixGetDevCaps returns the following structure:

MIXERCAPS MVMixer= {
 MM_MEDIAVISION, // manufacturer id
 MM_PROAUD_MIXER, // product id
 (VERSION) 0x100, // version of the driver
 "Pro AudioSpectrum", // product name (NULL terminated string)
 7, // number of inputs supported.
 2, // number of outputs supported.
 9, // number of input patches supported.

 3, // number of output patches supported.
 MIXERCAP_MANUALPATCHSWITCH, // supports some manual patching
 NULL // reserved
 };

A Line Capabaility structure for the Pro Audio Spectrum Mixer
would look like this:
{
wNumber =0; // This is the current caps for input # 0
dwDeviceType=MIX_MICROPHONE // Microphone currently patched;

 +MIX_USER_CONNECTED;// Requires user to plug it in (for prompting)
wNumSoftPatches=1; // This input always patched to the Microphone
wPatchNumber=0; // the only mic
wNumChannels=2; // The mic is actually mono with a splitter
dwSupport =MIX_SUPPORT_LRVOLUME // supported functionality
szIOname ="Line 1: Microphone Jack" // Input Name
szPname ="MIC"; // patch name
}

Each Mixer has a built in number of INPUT and OUTPUT patches. They
are referenced by an ordinal number starting from zero. Patch number
zero is always defined as NO CONNECT.

Here is the capability structure for Output #1:

{
wPatchNumber =1; // This patch's ordinal number
dwDeviceType =MIX_AMPLIFIER+ // device connected is amplifier

 MIX_LISTENER + // all output patches are listeners
 MIX_USER_CONNECTED; // requires a cable connection
dwLineNumbers=1<<0; // bit-field, lines connectable to
szPname[] ="MASTER"; // patch name (NULL terminated string)
dwAssociation=NULL; // HIWORD=type, LOWORD=device
dwReserved1 =NULL; // reserved for future use
}

//
//

 MIXER API OVERVIEW

MIXER GENERAL FUNCTIONS:

mixGetNumDevs - returns the number of mixer devices
mixGetDevCaps - provides information on mixer device capability
mixOpen - opens mixer device
mixClose - closes mixer device
mixGetErrorText - gets a text string corresponding to error number

MIXER PRESET FUNCTIONS:

mixMute - global mixer mute
mixReset - resets mixer inputs, volumes, patches etc.
mixGetState - gets current state of the mixer device
mixSetState - sets mixer state with optional timed fade
mixGetFadeStatus - returns time remaining of current fadeprocess

// INPUT TO OUTPUT CONNECTION

mixGetConnections - gets the connection map of an input or output
mixSetConnections - sets input to output connection map

// LINE CONTROLS
mixGetControl - gets the setting of a line's control
mixSetControl - sets the level of a line's control
mixGetLineInfo - gets functionality and current status of a line

// PATCH CALLS
mixGetPatch - gets a line's patch number
mixSetPatch - sets a line's patch information
mixGetPatchInfo - returns information on a standard mixerpatch

// DEVICE ORIENTED CALLS
mixGetDeviceName - converts device type to device name
mixGetDeviceLines - finds which lines have a specified device
mixSetDeviceConnections - performs abstract device connection
mixGetDeviceConnections - determines device types connected

MIXER DEVICE GENERAL FUNCTIONS

mixGetNumDevs - returns the number of mixer devices
mixGetDevCaps - provides information on mixer device capability
mixOpen - opens mixer device
mixClose - closes mixer device
mixGetErrorText - gets a text string corresponding to error number

__

Syntax WORD mixGetNumDevs(void)
This function retrieves the number of mixer devices
present in the system.

Parameters None

Return Value Returns the number of mixer devices present in the
system

__

Syntax mixGetDevCaps(wDeviceID, lpCaps, wSize)

Parameters WORD wDeviceID
 Identifies the mixer device to be queried.

LPMIXERCAPS lpCaps
 Specifies a far pointer to a MIXERCAPS structure.
 This structure is filled with information about the
 capabilities of the device.

WORD wSize
 Specifies the size of the MIXERCAPS structure.

Return Value When the wDeviceID is non-zero, the return value will
be MIXERR_NOERR (zero) if the function was successful.
If wDeviceID is zero, the return value is the size of
the drivers MIXERCAPS structure.

Comments Use mixGetDevCaps to determine the number of mixer
devices present in the system. The Device ID specified
by wDeviceID varies from zero to one less than the number
of devices present. Only wSize bytes(or less of information
will be copied to the location pointed to by lpCaps. If
wSize is 0, nothing will be copied and MMSYSERR_NOERROR is
returned.

See Also mixGetNumDevs
__

Syntax mixOpen(lphMixer, wDeviceID, dwFlags)

This function opens a specified mixer device.

Parameters LPHMIXER lphMixer
 Specifies a far pointer to an HMIXER handle. This
 location is filled with a handle identifying the
 opened mixer device.

WORD wDeviceID

DWORD dwFlags
 Specifies flags for opening the device

Return Value Returns zero if the function was successful.
Otherwise, it returns an error.

Comments Use mixOpen before making any control/enquiry calls
to the mixer driver.

See Also mixClose
__

Syntax mixClose(hMixer)

Parameters HMIXER hMixer

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

MMSYSERR_INVALHANDLE
 Specified device handle is invalid.

See Also mixOpen
__

Syntax mixGetErrorText(wError, lpText, wSize)

This function retrieves a textual description of the
error identified by the specified error number.

Parameters WORD wError
 Specifies the error number.

LPSTR lpText
 Specifies a far pointer to a buffer which is filled
 with the textual error description.

WORD wSize
 Specifies the length of the buffer pointerd to by
 lpText.

Return Value Returns the length of the string copied to zero if the function was successful.

__

MIXER PRESET FUNCTIONS

mixMute - Global Mute. Causes all mixer devices to mute/unmute
mixReset - resets mixer inputs, volumes, patches etc.
mixGetState - gets current state of the mixer device
mixSetState - sets current state of the mixer device
mixGetFadeStatus - returns time remaining of current fadeprocess

__

Syntax mixMute(wFlag)

Toggles the state of all mixer devices to mute
 or back to non-mute.

Parameters WORD wFlag

 if wFlag is MIXMUTE_TOGGLE, mixMute will toggle
 the mixer state
 if wFlag == MIXMUTE_STATUS, mixMute will return

 the current state of the global mute flag
 Identifies the mixer device to be reset.

Return Value Returns:
 MIXMUTESTATUS_MUTE when mixer is muted
 MIXMUTESTATUS_NOMUTE when mixer is not muted

__

Syntax mixReset(hMixer)

Resets the mixer to a default state. The default
state is read from the WIN.INI file.

Parameters HMIXER hMixer
 Identifies the mixer device to be reset.

Return Value Returns zero if the function was successful.
Otherwise, it returns an error.

See Also mixOpen, mixGetSetup, mixSetSetup

__

Syntax mixGetState(hMixer, lphMixerState, lpwSize)

Returns a handle to a structure containing the
current state of the mixer. The structure is

defined by the device.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

LPHANDLE lphMixerState
 Specifies a far pointer to a handle to where the mixer
 state information is saved.

LPWORD lpwSize
 Specifies a far pointer to a word where the size of
 the mixer state information is stored.

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

MIXERR_BADMIXERPTR null pointer to mixer

Comments This function is used to save the current state of
the specified mixer device.

See Also mixSetState
__

Syntax mixSetState(hMixer,lpMixerState,wSize,dwTime,
 dwFlags,dwCallback);

Restores the mixer to a saved state.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

LPMIXERSTATE lpMixerState
 Handle to a mixer state structure as returned by
 the mixGetState function.

WORD wSize
 Size of the mixer state structure.

DWORD dwTime
 The high word is delay time in tenths of seconds.
 The low word is the duration of the fade in tenths
 of seconds. A dwTime value of zero results in an
 instant mixer setting.

DWORD dwFlags
 MIX_FADE_OVERRIDE override a fade in progress

DWORD dwCallback
 Address of a procedure to be called when fade is
 complete. Note: this has not yet been implemented

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

MIXERR_FADEINPROGRESS

Comments If wSize is not correct, this function will be
rejected.

See Also mixGetState, mixGetFadeStatus

__

Syntax mixGetFadeStatus(hMixer,lpdwTime)

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

LPDWORD lpdwTime
 The high word is the delay time remaining in tenths
 of seconds.
 The low word is the fade time remaining in tenths
 of seconds.
 An lpdwTime value of zero indicates no fade is in
 progress.

Return Value Returns zero if the function was successful.

Comments Status indicators displaying the time remaining of
a fade may wish to call this function upon receipt of
any of the following MIXER MESSAGES:

 WM_MIX_CONTROLCHANGED
 WM_MIX_CONNECTIONCHANGED
 WM_MIX_PATCHCHANGED

See Also mixSetState

__

// INPUT TO OUTPUT CONNECTION

mixGetConnections - gets the connection map of an input or output
mixSetConnections - sets input to output connection map

__

Syntax mixGetConnections(hMixer,WORD wLine, LPDWORD lpdwConnections);

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

WORD wLine
 The low byte indicates the mixer line to get the
 connections information for.
 The high byte indicates whether the line is an
 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT

LPDWORD lpdwConnections
 A far pointer to a DWORD where the connection
 information is to be stored. Each bit of the
 double word represents a mixer line. If the
 bit is 1, wLine is connected to that line.
 For example, assume wLine=0x0000, indicating Input
 Line #1. If that Input line is connected to Output
 Line #0, bit 0 of *lpdwConnections will be set.
 Logically, connection information can only be
 maintained for a mixer with a maximum of 32 inputs
 and 32 outputs.

Return Value Returns zero if the function was successful.
Possible Errors:
 MIXERR_INVALINPUT illegal input line
 MIXERR_INVALOUTPUT illegal output line

Comments

See Also mixSetConnections

__

Syntax mixSetConnections(Mixer,WORD wLine, DWORD dwConnections);

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

 '
WORD wLine
 The low byte indicates the mixer line to get the

 connections information for.
 The high byte indicates whether the line is an
 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT

DWORD dwConnections
 This parameter specifies the connection map for the
 given line of the mixer. If wLine refers to an
 input Line, the outputs specified by this parameter
 will be connected to that input. Bit 0 refers to
 line 0, bit 1 to line 1, etc.

Return Value Returns zero if the function was successful.
Possible Errors:
 MIXERR_INVALINPUT illegal input line
 MIXERR_INVALOUTPUT illegal output line

Comments This function allows inputs to be selectively patched
to one or more outputs. It also allows outputs to
be connected to one or more inputs. This function
allows the caller to say "connect input lines 1, 3 and 5
to output #1" or "connect input line 4 to outputs 1 and 2"
If the hardware cannot support all connections requested,
the mixer driver will connect the lower numbered lines
first. Calling mixGetConnections after mixSetConnections
is recommended for verification of requested connections.

See Also mixGetConnections

__

// LINE CONTROLS
mixGetControl - gets the setting of a line's control
mixSetControl - sets the level of a line's control
mixGetLineInfo - gets support functionality of a line

__

Syntax mixGetControl(hMixer, wLineNum, dwControl, lpdwSetting);

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

WORD wLineNum
 The low byte indicates the mixer line to get the
 connections information for.
 The high byte indicates whether the line is an
 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT

DWORD dwControl
 Specifies the control to get the setting of.
 Here is the current list of possible controls:

 MIX_SUPPORT_LRVOLUME left-right volume control
 MIX_SUPPORT_ALC Auto Level Control
 MIX_SUPPORT_BMT B-M-T equalization
 MIX_SUPPORT_CROSSOVER crossover change
 MIX_SUPPORT_LOUDNESS loudness equalization
 MIX_SUPPORT_MUTE channel mute
 MIX_SUPPORT_REVERB reverb
 MIX_SUPPORT_STEREOENHANCE stereo enhance
 MIX_SUPPORT_CUSTOM1 custom effect #1
 MIX_SUPPORT_CUSTOM2 custom effect #2
 MIX_SUPPORT_CUSTOM3 custom effect #3

LPDWORD lpdwSetting
 Specifies a far pointer to a location that will be
 filled with the current Control setting. For
 stereo controls, the high-order word of this
 location contains the left channel setting and
 the low-order word contains the right channel setting.
 A value of 0xFFFF represents full intensity and a value
 of 0x0000 is full cutout.

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALINPUT illegal input line
 MIXERR_INVALOUTPUT illegal output line
 MIXERR_NOTSUPPORTED control not supported

See Also mixSetControl
__

Syntax mixSetControl(hMixer, wLineNum, dwControl, dwSetting)

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

 WORD wLineNum
 The low byte indicates the mixer line to get the
 connections information for.
 The high byte indicates whether the line is an
 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT
 Specifies the input to set Control for

DWORD dwControl
 Specifies the control to set
 Here is the current list of possible controls:

 MIX_SUPPORT_LRVOLUME left-right volume control
 MIX_SUPPORT_ALC Auto Level Control
 MIX_SUPPORT_BMT B-M-T equalization
 MIX_SUPPORT_CROSSOVER crossover change
 MIX_SUPPORT_LOUDNESS loudness equalization
 MIX_SUPPORT_MUTE channel mute
 MIX_SUPPORT_REVERB reverb
 MIX_SUPPORT_STEREOENHANCE stereo enhance
 MIX_SUPPORT_CUSTOM1 custom effect #1
 MIX_SUPPORT_CUSTOM2 custom effect #2
 MIX_SUPPORT_CUSTOM3 custom effect #3

DWORD dwSetting
 Specifies a far pointer to a location that will be
 filled with the current Control setting. For
 stereo controls, the high-order word of this
 location contains the left channel setting and
 the low-order word contains the right channel setting.
 A value of 0xFFFF represents full intensity and a value
 of 0x0000 is full cutout.

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALINPUT illegal input line
 MIXERR_INVALOUTPUT illegal output line
 MIXERR_NOTSUPPORTED control not supported

See Also mixGetControl, CONTROL SETTING NOTES

Syntax mixGetLineInfo(hMixer, wLineNum, lpInfo, wSize);

Retrieves information about the specified input's
capabilities.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

WORD wLineNum
 The low byte indicates the mixer line to get the
 connections information for.
 The high byte indicates whether the line is an
 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT

LPMIXERLINEINFO lpInfo
 Specifiies a far pointer to be filled with the capability
 information for the specified input.

WORD wSize
 Specifies the size of the LPMIXERLINEINFO structure.

Return Value Returns zero if the function was successful.

Comments

See Also

__

// PATCH CALLS
mixGetPatch - gets a line's patch number
mixSetPatch - sets a line's patch information
mixGetPatchInfo - returns information on a standard mixerpatch

__

Syntax mixGetPatch(hMixer,wLineNum, lpwPatchNum);

Returns information regarding a specific input patch
that can be selected into an input

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

WORD wLineNum
 The low byte indicates the mixer line to get the
 connections information for.
 The high byte indicates whether the line is an
 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT

LPWORD lpwPatchNum
 Destination for the patch number. A value of -1
 signifies a user-defined patch.

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALINPUT illegal input line
 MIXERR_INVALOUTPUT illegal output line

Comments The range of wPatchNum must be from 0 to 1 less than
the number of software patches returned in
mixGetDevCaps.

See Also mixSetPatch, mixGetPatchInfo

__

Syntax mixSetPatch(hMixer,wLine, wPatchNum,lpPatch,wSize);

Allows the user to set the patch of an input to
another device.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

WORD wLine
 The low byte indicates the mixer line to get the
 connections information for.
 The high byte indicates whether the line is an

 input line or an output line. The following
 macros (equates) are used for the high byte:
 MIX_INPUT
 MIX_OUTPUT

WORD wPatchNum
 Specifies the patch number to set. Each mixer
 driver has a number of internal patches that

 are selected by this parameter.

LPPATCHINFO lpInfo
 If this parameter is not NULL, the wPatchNum
 parameter is ignored and the PATCHINFO structure
 pointed to is used to set the patch information.
 The patch number assigned will be -1;

WORD wSize
 Specifies size of PATCHINFO structure

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALINPUT illegal input line
 MIXERR_INVALOUTPUT illegal output line
 MIXERR_PATCHMISMATCH patch-to-line mismatch

Comments The MIX_USER_CONNECTED bit may be OR'd with the patch
type to indicate a patch that is to be connected by
the user rather than one that is selected via
software control. Applications should check this bit
at initialization time to advise users to make the
external connection. If the patch number of a user-
connected patch is illegal, the driver's default
patch for that line will be used.

See Also mixGetPatchInfo, mixGetPatch
__

Syntax mixGetPatchInfo(hMixer,wPatchNum,lpInfo,wSize);

Returns information about a pre-defined patch.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

WORD wPatchNum
 Specifies the patch number to set. Each mixer
 driver has a number of internal patches that

 are selected by this parameter.

LPPATCHINFO lpInfo
 If this parameter is not NULL, the wPatchNum
 parameter is ignored and the PATCHINFO structure
 pointed to is used to set the patch information.

WORD wSize
 Specifies size of PATCHINFO structure

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALPATCH patch number out of range

Comments The current patch information for a line is
available by calling mixGetLineInfo. Now that
patch information is stored in WIN.INI, the default
patch information is automatically overridden. In
most cases the wPatchNum will be -1. User defined
patch information is not returned by this call.

See Also mixGetPatch, mixSetPatch, mixGetLineInfo
__

// DEVICE ORIENTED CALLS
mixGetDeviceName - converts device type to device name
mixGetDeviceLines - finds which lines have a specified device
mixSetDeviceConnections - performs abstract device connection
mixGetDeviceConnections - determines device types connected

__

Syntax mixGetDeviceName(dwDeviceType, lpDeviceName, wSize);

Returns information regarding a specific input patch
that can be selected into an input

Parameters DWORD dwDeviceType
 A 32-bit value indication the device type

LPSTR lpDeviceName
 points to the destination for the device name

WORD wSize
 buffers size pointed to by lpDeviceName
 If wSize <= MIX_DEVICESHORTNAME, the three letter
 standard device mnemonic string will be copied to
 the buffer. In all cases wSize will be the limit
 of characters copied.

Return Value Returns zero if the function was successful.

Comments The device short name is intended for display in
dialog boxes and in win.ini's mixer configuration
settings.

See Also mixGetDeviceLines, mixGetDeviceConnections

__

Syntax mixGetDeviceLines(hMixer,lpDeviceLines);

/// Given a device type, this function will report the lines that the given
/// device is connected to. If the association is not NULL, only
/// lines with the same association will be reported. Otherwise, all
/// devices of the given type are reported on.
///

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

LPDEVICELINES lpDeviceLines
 far pointer to DEVICELINES data structure

struct {
DWORD dwDeviceType; // aka technology
WORD wNumDevices; // return value: # lines with device found
DWORD dwLines; // return value: line map
DWORD dwAssociation; // for exclusive search
} DEVICELINES;

typedef DEVICELINES FAR *LPDEVICELINES;

Return Value Returns zero if the function was successful.

Comments Be sure that the dwAssociation element of the
DEVICELINES structure is NULL unless you intend
to find a specific device line of which the
association has been established.

See Also mixGetDeviceConnections, mixGetPatchInfo

__

Syntax mixGetDeviceConnections(hMixer,lpDeviceConnect);

Given a device type, this function will return device
types that the given device type is connected to.
Input device types will yield reporting of output device
types connected and vice versa. If the associationType
is given, only devices with the same association
will be reported. Otherwise, all devices of the given
type are reported on.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

LPDEVICECONNECT lpDeviceConnect
 long pointer to DEVICECONNECT structure

typedef struct{
DWORD dwInputDeviceType;
DWORD dwOutputDeviceType;
DWORD dwInputAssociation;
DWORD dwOutputAssociation;
} DEVICECONNECT;

Return Value Returns zero if the function was successful.

Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALSTRUCTPTR null lpDeviceConnect

Comments An output device type is one that can be connected to
a mixer output and is distingquished by having the
MIX_LISTENER bit set in its dwDeviceType field.

See Also mixSetDeviceConnections

__

Syntax mixSetDeviceConnections(hMixer,lpDeviceConnect)

Given two device types, input and output, this function
will attempt to connect the two types. If the
associationType and associationValue fields are not NULL,
only devices with the same association will be
connected.

Parameters HMIXER hMixer
 Identifies the mixer device to be used.

LPDEVICECONNECT lpDeviceConnect
 long pointer to DEVICECONNECT structure

typedef struct{
DWORD dwInputDeviceType;
DWORD dwOutputDeviceType;
DWORD dwInputAssociation;
DWORD dwOutputAssociation;
} DEVICECONNECT;

Return Value Returns zero if the function was successful.
Otherwise, it returns an error. Possible errors are:

 MIXERR_INVALSTRUCTPTR null lpDeviceConnect
Comments

See Also mixGetDeviceConnections

__

CONTROL SETTING NOTES

The functions mixGetControl and mixSetInputControl
have a dwControl parameter and a dwSetting parameter.

Following the example set by Microsoft's volume settings, each
control setting will have associated with it a double word value
for specifying its setting.

dwControl description format
--------- ----------- ------

MIX_SUPPORT_VOLUME volume control LLLL:RRRR scalar
MIX_SUPPORT_LRVOLUME left-right volume control LLLL:RRRR scalar
MIX_SUPPORT_ALC Auto Level Control LLLL:RRRR on/off
MIX_SUPPORT_BMT B-M-T equalization --BB:MMTT scalar
MIX_SUPPORT_CROSSOVER crossover change MIXCROSSCAPS
MIX_SUPPORT_LOUDNESS loudness equalization LLLL:RRRR on/off
MIX_SUPPORT_MUTE mute - don't change volume LLLL:RRRR on/off
MIX_SUPPORT_REVERB reverb LLLL:RRRR scalar
MIX_SUPPORT_STEREOENHANCE stereo enhance LLLL:RRRR on/off
MIX_SUPPORT_CUSTOM1 custom effect #1 LLLL:RRRR on/off
MIX_SUPPORT_CUSTOM2 custom effect #2 LLLL:RRRR scalar

Scalars are unsigned values from 0-65535 except in the case of BMT
where they are unsigned values from 0-255. These values should be
interpolated to match the mixer hardware's scale.

On/Off values are ON for any non-zero value.

//

MCI INTERFACE

Media Vision is now providing an MCI driver for controlling the mixer
hardware. For many of you, this will make the control of mixing
functions much easier than it ever has been.

MCI, as you must know, stands for Media Control Interface. In the
case of a mixer, there is no media (medium). When we speak of
CDs, wave files, MIDI, we connote some sort of media transport,
(ie. position within the data, support for PLAY, STOP, REWIND, etc)

A PLAY command sent to a mixer does not make sense. In fact most MCI
commands have little meaning for a mixer.

Still, MCI is powerful. One of its outstanding features is its
ability to convert strings into driver commands. We have, therefore,
developed an MCI driver for Multimedia Windows.

The documentation for the MCI mixer is found in the file
mcimixer.doc.

//

MIXER NOTES:

The mixSetState function allows timed fades. If it would be useful
to developers we can add the capability for timed fades to the
mixSetControl function. Let us know if you want this. Soon.

User-defined patches are not accessible through mixGetPatchInfo.
The mechanism of user-defined patches may change in the future.

//
GLOSSARY:

line - a stereo input or output of a mixer

patch - the association of a line to a particular sound producing
or recording device

connection - this term refers to a mixer's internal input-to-output
routing of an audio signal

control - the capability to modify an audio signal (ie volume)

cross-fade - fading one or more controls up while fading other out

//

▯

