
PopupMenu

PopupMenu ii

COLLABORATORS

TITLE :

PopupMenu

ACTION NAME DATE SIGNATURE

WRITTEN BY June 24, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

PopupMenu iii

Contents

1 PopupMenu 1

1.1 PopupMenu Library V5.x . 1

1.2 What is this?? . 2

1.3 Requirements . 2

1.4 Author . 3

1.5 DISCLAIMER . 3

1.6 Popup Menu Style Guide . 4

1.7 History & Future . 4

1.8 " . 7

1.9 PM_MakeMenuA() . 7

1.10 PM_MakeItemA() . 8

1.11 PM_OpenPopupMenuA() . 10

1.12 PM_MakeIDListA() . 11

1.13 PM_FreePopupMenu() . 12

1.14 PM_SetItemAttrsA() . 12

1.15 PM_GetItemAttrsA() . 13

1.16 PM_FindItem() . 14

1.17 PM_ItemChecked() . 15

1.18 PM_AlterState() . 15

1.19 SimpleMenu . 15

1.20 StartMenu . 15

1.21 Disable . 16

1.22 BigMenu . 16

1.23 Demo . 16

1.24 Macros Example . 16

PopupMenu 1 / 17

Chapter 1

PopupMenu

1.1 PopupMenu Library V5.x

Visit the PopupMenu homepage!

http://www.algonet.se/~henisak/pm/pm.html

What is this??

Requirements

The author.

Disclaimer, Copyright and Distrubition

History and Future of popupmenu.library

Style Guide

Acknowledgements

Functions in the library

PM_FindItem()

PM_FreePopupMenu()

PM_GetItemAttrsA()

PopupMenu 2 / 17

PM_ItemChecked()

PM_MakeIDListA()

PM_MakeItemA()

PM_MakeMenuA()

PM_OpenPopupMenuA()

PM_SetItemAttrsA()

Some examples

SimpleMenu - A very simple menu.

Disable - Shows disabling and enabling.

StartMenu - A little start menu with icons.

BigMenu - Unlimited submenus?

Demo - From here you can run all the demos above.

Macros - Some examples of macro usage.

1.2 What is this??

Introduction

This is The One and Only Popup Menu Library you use when you want a nice
popup menu in your programs!

1.3 Requirements

PopupMenu 3 / 17

PopupMenu.library requires the following:

* Amiga OS 3.0 or higher.

* commodities.library V36 or higher.

1.4 Author

Feel free to mail your comments, suggestions, and everything else to:

Henrik Isaksson
Garvarvägen 33
950 40 Töre
SWEDEN

Or...

EMail:
hki@hem1.passagen.se

The old one should still work:
amiga_rules@hotmail.com

Try it if you don’t get a reply from the first...

1.5 DISCLAIMER

COPYRIGHT
=========

This software is copyrighted by its developer(s). That means that you
are NOT ALLOWED to modify the program(s) and documentation in any way.
Especially you MUST NOT REMOVE the documentation or this text file.

You are NOT allowed to use this software or any part of it for any other
purpose than that one mentioned in its documentation, this also includes
any fonts, images or samples. If the developer(s) did NOT include the
source code of the program(s) in this package you are NOT allowed to de-
compile any part of it.

* You may use this library for free if your product is free to the user
(FreeWare, Public Domain or similar).
The only thing I want is that you mail me and tell me where to find
the program.

* If your application is ShareWare, you should send me the full release
or a keyfile.

* If your application is a commercial product you’d better ask me first...

PopupMenu 4 / 17

DISTRIBUTION
============

This package is freely distributable. That means you are allowed to re-
distribute this package as long as you follow these points:

* You may NOT ADD any files to the archive!

* You may NOT CHANGE any files in this archive!

* You may NOT REMOVE any of the files in this archive!

* You may include the library file, and the preferences editor in your own
distributions, if you follow the copyright rules stated above.

This package may be freely distributed via BBSs, InterNet/UseNet,
software libraries such as Fred Fish’s and Aminet® CD-ROM, and other
similar electronic channels.

Disk magazines and services that charge extra for file transfers may
NOT distribute it without written permission by the developer(s)!

DISCLAIMER
==========

By using this product, you accept the FULL responsibility for any damage
or loss that might occur through its use or the inability to use it. The
developer(s) of the software and the author and the translators of this
"Copyright Note" can NOT be held responsible.

Some names used in this text are trademarks or registered trademarks.
The use of these names does not imply that they are free.

1.6 Popup Menu Style Guide

First read the "Amiga User Interface Style Guide".
Then think about this when designing your menus:

* Font sensitivity is automatically handled by popupmenu.library.
No need to care for that part. :)

* Use the PMMenu macro for the first menu.
(Except pulldown menus)

* Submenus should not use a title. (unless they need to)

1.7 History & Future

The history of popupmenu.library:

5.35 Optimized the pen allocation a bit.

5.3 Moved the submenus a bit to the left. Now it looks more like the
other menus, and it’s easier to open the submenus.

PopupMenu 5 / 17

Fixed a bug in pen allocation/freeing.

Made a few adjustments to the separator bars.

Fixed bug in "Submenu Delay" code.

Fixed an enforcer hit in window mode.

Got rid of a few unnecessary bytes again. (about 1k smaller)

5.2 Fixed delay bug in non-window mode.

Improved the remapping of magic images.
Right look and a few hundred percent faster. :)

Pulldown menus should now work in non-window mode too.

Fixed the shadows. They were 1 pixel to wide before.

Added a new tag, PM_Shadowed, to make the text shadowed.

Changed the PMMenu macro so the titles will use shadowed text.

Fixed refresh problem in window-mode.

Made the separator bars look more like MM2.

And this time the library is actually 1272 bytes smaller!

5.1 Fixed the deadlock bug in non-window mode.

Added MagicMenu2 Images, and it’s special remapping.
(relative color values)

Added support for pulldown menus.
(works only in window-mode at the moment)

5.0 Opening the menu does no longer deactivate the active window.

The menus can now use the blitter instead of windows, wich is much
faster. (this has to be activated in the prefs-editor.)

The menu font is now fetched from the DrawInfo, and not the menu’s
parent window.

There is now a space between the bottom of the text and the bottom
of the select bar.

Clicking the mousebutton very fast should no longer result in a
menu that doesn’t dissapear. (as it should, when you release the
button)

Some of the tags send to OpenPopupMenu() has become obsolete.
(The preferences has taken over)

The input method has changed, so the library now requires

PopupMenu 6 / 17

commodities.library (wich is a disk library).

The menu shadows now look like MagicMenu2 shadows.
(the size increases for each submenu opened)

Starting with this version, kickstart 3.0 is required. At least for
the non-window mode. In window mode it _may_ still work with 2.0,
but it’s not tested. So if you have ks 2.0, I would appreciate if
you could try it out.

Fixed a bug. Submenus could appear at the bottom of the screen
when the mouse was moved quickly over an item.

Added a new function, PM_AlterState().

4.3 Fixed a bug. (read from adress 0)

4.2 Now the menus can have shadows.

4.1 Images are now remapped correctly.

Small changes for colour and image prefs.

4.0 More bugs fixed.

A new demo, MenuVerify, shows how to use popupmenu.library with
IDCMP_MENUVERIFY.

3.6 Bug fix. (never released, i got more bug reports...)

3.5 Now checks for the file ENV:PopupMenu.cfg, and if it exists,
loads it, and replaces the default settings.

Bug in PM_SubMenuTimer fixed.

PM_Code added. Read this!

3.0 Added PM_GetItemAttrs(), PM_SetItemAttrs(), PM_IsChecked
and PM_FindItem.

Added the tags PM_Left and PM_Top.

Added a few more demos.

Changed the naming of functions and macros to avoid interfering
with other libraries.

2.0 Entirely rewritten and is now a shared library!

1.3 Added submenu support

1.2 Lots of new flags, and checkable menuitems

1.1 OpenPopupMenuPos()

1.0 First release

PopupMenu 7 / 17

The future:

1. Finish the prefs editors.

2. Datatype loading of images.

3. Font settings. (maybe)

4. Replacement for BGUI’s popbuttonclass using popupmenu.library.

5. Standard icons for common menu items.

6. Add support for multiple selections.

7. Mail me if there’s anything else!

1.8 "

Special thanks goes to:

Thanks to Stefan Sommerfeld for his very good bugreports, help with the
SwapBitsClipRectRastPort() bit, and the remapping code (too bad I coudn’t
use it ;().

Thanks to Trond Werner Hansen for helping me with the shadows!
(Heja Norge!)

Thanks to Mario Cattaneo for all the MagicMenu2 images, the other
MM2 specs and a lot of good advices!

Thanks to all the rest of you!

1.9 PM_MakeMenuA()

NAME
PM_MakeMenu -- Create a new menu list.

SYNOPSIS
menu = PM_MakeMenuA(taglist);
d0 a1

struct PopupMenu *PM_MakeMenuA(struct TagItem *tags);

menu = PM_MakeMenu(tag1, ...);

struct PopupMenu *PM_MakeMenu(ULONG, ...);

FUNCTION
This function is used to link menu items returned by

PM_MakeItemA()
.

PopupMenu 8 / 17

INPUTS
taglist - pointer to a taglist listing your menu items.

TAGS
PM_Item - pointer to a menuitem returned from

PM_MakeItemA()
.

RETURNS
Returns a pointer to a list of items if successful.

SEE ALSO

PM_MakeItemA()

1.10 PM_MakeItemA()

NAME
PM_MakeItem -- Create a new menu item.

SYNOPSIS
menu = PM_MakeItemA(taglist);
d0 a1

struct PopupMenu *PM_MakeItemA(struct TagItem *tags);

menu = PM_MakeItem(tag1, ...);

struct PopupMenu *PM_MakeItem(ULONG, ...);

FUNCTION
This function is used to create a new menu item to be passed to

PM_MakeMenuA()
, for linking.

INPUTS
taglist - pointer to a taglist listing your menu items.

TAGS
PM_Title (STRPTR) Pointer to the menu text you want.

PM_UserData (ULONG) Anything of your choice, can be used to
identify the item when it is selected. The value
stored here will be returned from

PM_OpenPopupMenuA()
when the user selects this item.

PM_ID (ULONG) An ID number, only needed if you want to
be able to read or change the attributes of this
item later. (for example, to find out if an item
is checked)

PM_Sub (struct PopupMenu *) A pointer to a menu list

PopupMenu 9 / 17

returned from
PM_MakeMenuA()
. The item

will automatically get an arrow to the right
showing that it has a sub menu.

PM_Flags (ULONG) Used internally. Do not use this tag!

PM_NoSelect (BOOL) Make the item unselectable.

PM_FillPen (BOOL) Draw the item title in FILLPEN.

PM_Checkit (BOOL) Leave some space for a checkmark.

PM_Checked (BOOL) Put a checkmark to the left of the item.

PM_Italic (BOOL) Draw the text in italic.

PM_Bold (BOOL) Make the text bold.

PM_Underlined (BOOL) Underline the text.

PM_WideTitleBar (BOOL)
PM_TitleBar (BOOL) Draw a horizontal separator instead of the

text.

PM_ShadowPen (BOOL) Draw the text in SHADOWPEN color.

PM_ShinePen (BOOL) Draw the text in SHINEPEN color.

PM_Exclude (struct PM_IDLst *) List of items to be selected
or unselected when this item gets selected.
The list should be created with

PM_MakeIDListA().
PM_Disabled (BOOL) Makes the item unselectable, and ←↩

draws a
disable pattern over the item.

PM_ImageSelected (struct Image *)
PM_ImageUnselected (struct Image *)

Specifies an image to be rendered under the item
title.

PM_IconSelected (struct Image *)
PM_IconUnselected (struct Image *)

Specifies an image to be rendered to the left of the
item title.

PM_AutoStore (BOOL *) A pointer to a BOOL that will reflect the
state of the checkmark. The best way to find out
if an item is checked or not.

PM_TextPen (ULONG) A pen number for the text. You are
responsible for allocating/deallocating a pen
yourself.

PM_Shadowed (BOOL) Give the the text a shadow using SHADOWPEN.

PopupMenu 10 / 17

RETURNS
Returns a pointer to an item if successful.

SEE ALSO

PM_MakeMenuA()

PM_MakeIDListA().

PM_OpenPopupMenuA()

1.11 PM_OpenPopupMenuA()

NAME
PM_OpenPopupMenuA -- Open a popup menu.

SYNOPSIS
userdata = PM_OpenPopupMenuA(prevwnd, taglist);
d0 a1 a2

ULONG PM_OpenPopupMenuA(struct Window *prevwnd, struct TagItem *tags);

userdata = PM_OpenPopupMenu(prevwnd, tag1, ...);

ULONG PM_OpenPopupMenu(struct Window *, ULONG, ...);

FUNCTION
This function is used to open a popup menu based on an item list
created with

PM_MakeMenuA()
.

INPUTS
prevwnd - pointer to parent window, used to find out screen, font

and other drawing attributes.
taglist - pointer to a taglist of menu options.

TAGS
PM_Menu (struct PopupMenu *) Pointer to a menu list

created by
PM_MakeMenuA()
.

PM_RecessSelected OBSOLETE!
PM_WideSelectBar OBSOLETE!
PM_Compact OBSOLETE!
PM_SubMenuTimer OBSOLETE!
PM_OldLook OBSOLETE!
PM_SameHeight OBSOLETE!
PM_CheckMark OBSOLETE!
PM_ExcludeMark OBSOLETE!
PM_SubMenuMark OBSOLETE!
PM_SmartRefresh OBSOLETE!

PopupMenu 11 / 17

PM_Left (ULONG) Horizontal position of the menu, relative
to the menus left edge. (V3)

PM_Top (ULONG) Vertical position of the menu, relative
to the menus top edge. (V3)

PM_Code (UWORD) The contents of the Code field of the
IntuiMessage structure. Used to find out if the
mousebutton was pressed or released, so the user
can specify in the preferences if she/he want the
menu to open when the button is pressed or
released. Must always be specified!

PM_PullDown (BOOL) Turn the menu into a pulldown menu. (V5.1)

RETURNS
Returns the value of UserData of the selected item, if no item
was selected, NULL is returned.

SEE ALSO

PM_MakeMenuA()

1.12 PM_MakeIDListA()

NAME
PM_MakeIDListA -- Create a list of ID’s for exclusion/inclusion.

SYNOPSIS
list = PM_MakeIDListA(taglist);
d0 a1

struct PM_IDLst *PM_MakeIDListA(struct TagItem *tags);

list = PM_MakeIDList(tag1, ...);

struct PM_IDLst *PM_MakeIDList(ULONG, ...);

FUNCTION
This function is used to create a list of ID’s that is used to
tell wich items an item should include, exclude, reflect or
inverse reflect.

INPUTS
taglist - pointer to a taglist.

TAGS
PM_ExcludeID (ULONG) ID of a item that should be unselected when

when this item is selected.

PM_IncludeID (ULONG) ID of a item that should be selected when
when this item is selected.

PM_ReflectID (ULONG) ID of a item that should copy the state

PopupMenu 12 / 17

of this item, when it gets selected/unselected.

PM_InverseID (ULONG) ID of a item that should copy the inverse
state of this item, when it gets selected/
unselected.
Useful if you want to make sure only one of two
items is selected at a time.

RETURNS
Returns a pointer to a list of id’s if successful.

SEE ALSO

PM_MakeItemA()

1.13 PM_FreePopupMenu()

NAME
PM_FreePopupMenu -- Free a menu list created by

PM_MakeMenuA()
.

SYNOPSIS
PM_FreePopupMenu(popupmenu);

a1

void PM_FreePopupMenu(struct PopupMenu *);

FUNCTION
This function is used to free the list of menu items created by

PM_MakeItemA()
, and
PM_MakeMenuA()
.

INPUTS
popupmenu - pointer to a popup menu to free.

SEE ALSO

PM_MakeItemA()

PM_MakeMenuA()

1.14 PM_SetItemAttrsA()

NAME
PM_SetItemAttrsA -- Specify attribute values for an object. (V3)

SYNOPSIS
result = PM_SetItemAttrsA(item, tags);

PopupMenu 13 / 17

D0 A2 A1

ULONG PM_SetItemAttrsA(struct PopupMenu *, struct TagItem *);

result = PM_SetItemAttrs(item, tag1, ...);

ULONG PM_SetItemAttrs(struct PopupMenu *, ULONG, ...);

FUNCTION
Specifies a set of attribute/value pairs with meaning as
defined in libraries/pm.h.
item can be directly taken from

PM_FindItem()
as the input is

checked against NULL pointers.

EXAMPLE

struct PopupMenu *menu;

....
/* Initialize the menu... */
....

PM_SetItemAttrsA(PM_FindItem(menu, itemid),
PM_Checkit, TRUE,
PM_Checked, TRUE,
TAG_DONE);

INPUTS
item = pointer to a popup menu item.
tags = array of TagItem structures with attribute/value pairs.

RESULT
Returns the number of successfully changed attributes.

SEE ALSO

1.15 PM_GetItemAttrsA()

NAME
PM_GetItemAttrsA -- Get attribute values for an object. (V3)

SYNOPSIS
result = PM_GetItemAttrsA(item, tags);
D0 A2 A1

ULONG PM_GetItemAttrsA(struct PopupMenu *, struct TagItem *);

result = PM_GetItemAttrs(item, tag1, ...);

ULONG PM_GetItemAttrs(struct PopupMenu *, ULONG, ...);

FUNCTION

PopupMenu 14 / 17

Used to get attributes from an item.
item can be directly taken from

PM_FindItem()
as the input is

checked against NULL pointers.

EXAMPLE

struct PopupMenu *menu;
struct Image *image;
BOOL checked;

....
/* Initialize the menu */
....

PM_GetItemAttrsA(PM_FindItem(menu, itemid),
PM_SelectImage, &image,
PM_Checked, &checked,
TAG_DONE);

INPUTS
item = pointer to a popup menu item.
tags = array of TagItem structures with attribute/value pairs.

RESULT
Returns the number of successfully copied attributes.

SEE ALSO

1.16 PM_FindItem()

NAME
PM_FindItem -- Find an item in a popupmenu list. (V3)

SYNOPSIS
item = PM_FindItem(menu, id);
D0 A1 D1

struct PopupMenu *PM_FindItem(struct PopupMenu *, ULONG);

FUNCTION
Find the pointer to an item using the ID number.

INPUTS
menu = pointer to a popup menu list.
id = ID number (PM_ID).

RESULT
Returns a pointer to the found item, or NULL if unsuccessful.

SEE ALSO

PopupMenu 15 / 17

1.17 PM_ItemChecked()

NAME
PM_ItemChecked -- Find out if an item is checked. (V3)

SYNOPSIS
item = PM_ItemChecked(menu, id);
D0 A1 D1

BOOL PM_ItemChecked(struct PopupMenu *, ULONG);

FUNCTION
Fast way to find out if an item is checked using the item ID.

INPUTS
menu = pointer to a popup menu list.
id = ID number (PM_ID).

RESULT
TRUE (-1L) if the item is checked, FALSE (0L) if not checked,
PMERR (-5L) if the ID was not found in the list.

SEE ALSO

1.18 PM_AlterState()

NAME
PM_AlterState -- Change a lot of items at the same time. (V5)

To be continued... (next release)

1.19 SimpleMenu

This menu shows how a context sensitive Trashcan popup menu, could look
like, in a workbench replacement application.
The menu opens on either a click with the left or the right mouse button.

Run and click the mouse in the window!
See the source!

1.20 StartMenu

This example shows how to put icons in your menus.
(Theese icons are NOT remapped, and will look best with a MagicWB palette)
The menu opens when the mousepointer touches the bottom of the screen.

Run and move the mouse to the bottom of the screen!
See the source!

PopupMenu 16 / 17

1.21 Disable

This examples shows how disable/enable menu items, and how to see if an
item is checked or not.

Run and play with the menu!
See the source!

1.22 BigMenu

This example is kind of a hack.
It doesn’t free all the memory it uses, and crashes eventuallty.
It opens a menu with a submenu with a submenu with another submenu, and so
on... It’s not really possible to an unlimitet number of submenus, and it
has been reported to act strange at the 53rd submenu... :)
(If you want to see it crash earlier, try to reduce the stack size. :))

Run, but don’t open too many submenus!!
See the source!

1.23 Demo

This example can be used to start all the other demos, and it also shows one
way to have two different menus. The menu opens only when you hold down the
right mousebutton. The first menu is in the dragbar, and the second is in
anywhere below the dragbar.

Run and try it out!

1.24 Macros Example

struct PopupMenu *menu;

/*
Creating a menu with the macros...

*/

menu = PMMenu("The title of the menu"),
End;

/*
Creating a menu like the one above, but with items...

*/

menu = PMMenu("The menu title"),
PMItem("The item text"),

/* Tags for the item */
End,
PMItem("The item text (2)"),

PopupMenu 17 / 17

/* Tags for the item */
End,

End;

/*
Creating a sub-menu for an item...

*/

menu = PMMenu("The menu title"),
PMItem("Item with submenu"),

PMSubMenu("This is the submenu"),
/* Here are the items... */

End,
End,

End;

/*
Creating an exclude ID list for PMExclude

*/

PM_Exclude,
PMExl ExID(1),

ExID(2),
End,

	PopupMenu
	PopupMenu Library V5.x
	What is this??
	Requirements
	Author
	DISCLAIMER
	Popup Menu Style Guide
	History & Future
	"
	PM_MakeMenuA()
	PM_MakeItemA()
	PM_OpenPopupMenuA()
	PM_MakeIDListA()
	PM_FreePopupMenu()
	PM_SetItemAttrsA()
	PM_GetItemAttrsA()
	PM_FindItem()
	PM_ItemChecked()
	PM_AlterState()
	SimpleMenu
	StartMenu
	Disable
	BigMenu
	Demo
	Macros Example

