
ESA v1.5 Documentation

ESA v1.5 Documentation ii

COLLABORATORS

TITLE :

ESA v1.5 Documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ESA v1.5 Documentation iii

Contents

1 ESA v1.5 Documentation 1

1.1 ESA v1.5 doc (30.10.1998) . 1

1.2 DISCLAIMER and Distribution . 2

1.3 Requirements & Installation . 3

1.4 Introduction . 3

1.5 Features . 4

1.6 Using ESA . 5

1.7 ESA Grammar & Constructions (back to school...) . 5

1.8 General Notes . 7

1.9 Correct Use . 7

1.10 How Do I Get the Best Performance? . 8

1.11 Miscellaneous Notes . 9

1.12 Error Messages . 12

1.13 Pass 1 Errors . 12

1.14 Pass 2 Errors . 13

1.15 General Errors . 16

1.16 Errors List . 16

1.17 Bugs . 20

1.18 History . 20

1.19 Future . 24

1.20 Hi there! . 25

1.21 Greetz and Thanx . 25

1.22 Include Files Handling . 26

1.23 Multiple Instructions on a Single Line . 27

1.24 Conventions and Types . 27

1.25 Effective Address . 29

1.26 Logical Operators . 29

1.27 Comparison Operators and Condition Codes . 29

1.28 Mathemathical Operators . 30

1.29 Sizes . 30

ESA v1.5 Documentation iv

1.30 A Little Mistake in the Grammar... 30

1.31 Registers . 31

1.32 Registers Lists . 31

1.33 Symbols . 31

1.34 Boolean Expressions . 32

1.35 Mathemathical Expressions . 33

1.36 Restricted Values . 34

1.37 boolean evaluation . 34

1.38 a bit of AMOS, too! . 35

1.39 exiting loops . 36

1.40 68k ’dbra’ . 38

1.41 what to say?!? . 39

1.42 just like Pascal! . 41

1.43 BASIC’s ’while’ ... ’wend’ . 42

1.44 jump table (branches) . 43

1.45 jump table (subroutines) . 44

1.46 much better than C’s! . 46

1.47 ’if’ ... ’else if’ ... ’else’ ... ’end if’ . 47

1.48 defining functions . 50

1.49 calling functions . 52

1.50 premature exit from a procedure or function . 53

1.51 defining procedures . 55

1.52 calling procedures . 57

ESA v1.5 Documentation 1 / 59

Chapter 1

ESA v1.5 Documentation

1.1 ESA v1.5 doc (30.10.1998)

Extended Syntax Assembly v1.5 (30.10.1998)

© 1998 Simone Bevilacqua

DISCLAIMER & Distribution
some legal stuff

Requirements & Installation
did you buy another 32Mb Simm?

Introduction
got time to waste?!? Read here!!!

Features
what can it do?

Usage
how to run it?

Grammar & Constructions
what you can write and what you can’t

General Notes
things you have to know

Error Messages
what’s wrong, now?!?

Bugs
oh, no!

History
what has happened till now

Future

ESA v1.5 Documentation 2 / 59

what’s still to be done?

Author
some notes about me...

Greetz & Thanx
ciao!

1.2 DISCLAIMER and Distribution

DISCLAIMER

**
* THIS PROGRAM IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND *
* EITHER EXPRESSED OR IMPLIED. *
*

I
ACCEPT NO RESPONSABILITY OR LIABILITY FOR ANY DAMAGE OR PROBLEM *

* DERIVING FROM THE USE OF THIS PROGRAM: USE AT YOUR OWN RISK!!! *
**

Distribution

This program is FREEWARE, therefore IT CANNOT BE SOLD FOR PROFIT.
So, only the distribution charges (i.e.: disk, postage, handling, etc.)
can be applied.

No fee is required from
me
, but donations of any kind (something like

the 1st original tankobon of "Dr.Slump & Arale chan" would be just a
dream... ;) will be gladly accepted.

If distributed on a coverdisk, please send a copy of the mag!!!

ALL the following files *MUST* be included in the same package (regard-
less of the form it comes in):

ESA/ (main dir)

ESA main executable
ESA.guide this manual

examples/ (examples dir)

tab.txt tabulation indicator
MergeSort.ei example source
QuickSort.ei example source

sss/ (dir of a complete example program)

sss.guide prog’s documentation
do script for quick compiling
defs.i standard asm source

ESA v1.5 Documentation 3 / 59

main.esa ESA source code
misc.ei ESA include file
opt.ei ESA include file
split.ei ESA include file
data.i standard asm source

1.3 Requirements & Installation

Requirements

ESA requires a 020+ CPU.
It should work also on KS1.3, but I can give no guarantee.
About 90kb + 40kb (or as much as specified with

-b
) + enough room

for all the
source files
of the program to compile are needed.

Installation

It doesn’t need to be installed, just put it anywhere on your HD
(preferably on your commands path).

1.4 Introduction

Introduction

Oh... so you’re wondering why I wrote this prog...
No special purpose indeed... I came from a long period during which
I just studied and didn’t code anything (coding is kinda disease...
you know when you start, but don’t know when you’ll finish... sadly
this doesn’t help with exams...). At the end of this interminable
period of forced coding inactivity, I would’ve coded just anything.
And that’s what happened. ESA was the 1st idea which came to my mind
and so I immediately started it, getting up in the depths of night.
OK, I guess you can imagine perfectly how I felt like, so I’ll try
to be brief.
Between one project and another, I continued (slowly) developing
this program, even though, when the "creative attack" was over, I
was no longer much convinced about it. Yes, an interesting piece of
software to produce, but - I was wondering - will it somehow come in
handy? I didn’t find an answer... I wish that somebody of you will
find it useful or (this would please me even more) that it will
help someone to approach the assembly language...

what do you think

about it?!?
I wouldn’t be surprised of hearing comments of the kind:

«Junk. Afraid of asm? Stop complaining about its "difficulty" and go
on with an high level language. No need of this "extension" at all.»

ESA v1.5 Documentation 4 / 59

No. I wouldn’t be surprised, because that’s EXACTLY what *I* think.
Can’t believe it? It doesn’t matter. The only other thing, apart from
the pleasure of coding a program that I personally found interesting
to code, which pushed me to complete my work is the fact that I’ve
learned that in this world there’s always somebody who likes what you
wouldn’t have ever believed that could appeal to anyone (phew! Cor-
rect? If not, I hope you can get the general sense the same!!!).

1.5 Features

Features

The job of this program is to take a "strange" assembly source and con-
vert it to a "standard" one, ready to be assembled by your favourite
assembler. A kinda asm-preprocessing, in short.

So now - you’re surely wondering - what can this prog do, precisely?
Well, as its name suggests, it handles "extended" asm sources (read be-
low to see how), so that, in the end, it can be said that a new, enri-
ched (if you like, this can also be read as: "at an higher level" - but
that’s *not* what I want at all) assembly language comes out of it.
In a nutshell: ESA takes an "extended" asm source as input and outputs
a standard 020+ asm source.

The simplest feature is the possibility of writing
several assembly

instructions on a single line
. While this does *not* ease the reading,

sometimes it can help since it permits to have more code than usual on
a single page.

Surely this is not all that ESA can offer.
In fact, it allows you to use some constructions for the program flow
control, which are typical of high-level languages.
Normally you have inline asm inside C, Pascal, Basic, etc.;
ESA, instead, gives inline C, Pascal, Basic, etc. inside asm, with all
the consequent advantages (yeah! we can mess around with CPU’s and HW’s
registers, variables, the stack, etc. in total freedom!).

Besides, there are some facilities for the program’s structure design:
yes, I’m referring to procedures and functions...
All I’m talking about is described in detail

here
.

Obviously, any construction can be used in nested form (there’s only a

very loose limitation...
)!

Finally, ESA treats the include files of any kind (i.e.: both the "old"
"#?.i"s and ESA’s "#?.ei"s) in a "special" way:
it’s well worth having a look at

these info about this

ESA v1.5 Documentation 5 / 59

!

1.6 Using ESA

Using ESA

Run it from both CLI or WB (no tooltypes support... do you really
wanna launch it from icon?!? I can’t believe it!!!).

SYNTAX
esa [OPTIONS] source [dest]

ARGS
source : asm source file to convert
dest : output filename

(def.: source="file.esa" -> dest="file.s"
source="anything" -> dest="anything.s")

OPTIONS
-sS {S}: ’S’ is the instructions’ separator (def.: S=’§’)

with this you can decide how to separate
two or

more instructions on the same line
-c {D}: include comments in the output file

(normally they are omitted)

-lC {D}: ’C’=first char of labels (def.: ’.’)
each label produced by ESA will start with ’C’

-bSIZE {M}: work buffer of SIZE bytes (SIZE=>4096; def.: 40Kb)
(the bigger the faster... less accesses to disk!)

-q {M}: quiet mode (no message will be given)

NOTES
- {S}=source option, {D}=dest option, {M}=misc option
- the options can be placed anywhere in the command line
- the options and their args can be separated by spaces
- press CTRL-C to break execution anytime

1.7 ESA Grammar & Constructions (back to school...)

ESA Grammar & Constructions (back to school...)

Although ESA makes asm coding a little "easier", to use it without pro-
blems you *do* need to know at least the basics of 68k asm (and of the
Amiga, of course).
Yet, certainly you don’t need to be a master...
so don’t let this messy manual fool you: the formal definitions of the
grammar are a bit scary, but in the end everything is extra-simple.

ESA v1.5 Documentation 6 / 59

The fundamental thing to bear in mind is that you can mix pure 68k as-
sembly and ESA code wherever and whenever you want.
To know how to write ESA code, just read on...

Urgh... quite hard to explain clearly and deeply how the syntax works!
Anyway, once you’ve understood the general sense, everything should co-
me easy (at least I hope).
To start, I advice you to have a good look at

this quite formal list

of the valid types
of the grammar: if something somewhere is not clear

go on the same (don’t worry!) taking some glances at the examples in
any of the sections below, and then go back for better understanding.

logic:
bool
boolean evaluation

loops:
do ... loop
a bit of AMOS, too!

exit
exiting loops

expire ... nexp
68k "dbra"

for ... to ... step ... next
what to say?!?

repeat ... until ...
just like Pascal!

while ... ewhile
BASIC’s "while"..."wend"

decisions:
on ... goto ...
jump table (branches)

on ... gosub ...
jump table (subroutines)

switch .. -> .. def .. eswitch
much better than C’s!

when .. owhen .. othw .. ewhen
"if".."else[if]".."endif"

functions:
function ... efunc
defining functions

FUNCNAME[]
calling functions

ESA v1.5 Documentation 7 / 59

pop
exiting functions

procedures:
procedure ... eproc
defining procedures

PROCNAME[]
calling procedures

pop
exiting procedures

directives:
incdir & include
using external sources

1.8 General Notes

General Notes

This section gives you a few hints about:

correct use
problems with generated code

speed
performance of generated code

misc notes
interesting things

1.9 Correct Use

Correct Use

The most important thing you have to bear in mind in order to get fully
working code is that you can’t use the stack pointer (sp) freely inside

ESA constructions
(avoid dirty sp tricks!): in fact, the code produced

needs to mess a lot with the sp, so don’t be surprised if crashes hap-
pen when (sp)-like modes are used inside expressions. Just think about
something else and let ESA take total control of the sp inside its own
constructions.

Remember: the stack is heavily used by ESA generated code!

Another thing to remember is that constructions nesting is permitted to
a certain degree: the biggest nest possible is 64 entries long.

ESA v1.5 Documentation 8 / 59

Pay attention! There is *no* check... instead of inserting checks, I’d
prefer to enlarge the internal stack (even doubled would be still very
small) used for this purpose in order to avoid the consequent slowdown.

Let me know
if you feel too constrained.

Finally, I advice you to increase the default stack size (4096 bytes)
when working with long & complex sources.

1.10 How Do I Get the Best Performance?

How Do I Get the Best Performance?

Basic, simple, speedy, flexible... but hard to work with due to the
length of the use procedures.

This applies to almost everything in this world.
And particularly to the hardware/software worlds.
Often, to make things a little bit shorter, simplicity, speed and fle-
xibility are sacrificed.
And this is exactly what (naturally) happens with ESA.

**
WHEN WRITING TIME-CRITIC ROUTINES, DON’T RELY ON ESA CODE’S SPEED!!!
**

There’s not much to add. You gotta write them by hand (and that’s not
so much bad...).
The reason is that to allow total flexibility to the various constru-
ctions, the code has got to be as much general as possible, and, conse-
quently, slower than it could be if hand written.

ESA’s
add-ons
affect the speed in different degrees:

-
procedures
and

functions
cause a very little speed loss (sometimes

no loss at all)

- the
for
and

expire
constructions also cause a minor speed loss,

(
expire
, in particular, thanks to its nature (simple), is often as

fast as hand written code). Be careful, though, when using a vari-
able for the counter of

for...next

ESA v1.5 Documentation 9 / 59

: in small loops the overhead
could be quite heavy!

- the real beasts are all the others, as they include the evaluation
of

boolean expressions
.

Here I’d like to spend a couple of words (you can skip this...):
writing code which automatically generates pieces of code to evalu-
ate (almost) all kinds of boolean expressions, *without* having the
possibility of using registers, is a tough thing (I looked at it as
a challenge... I really enjoyed writing the code about this part -
- I wonder if there’s any theory about this... if you know, please

contact me
); it isn’t easy to get rid of the difficulties that this

problem presents (mainly because there is no availability of regi-
sters), since not only variables (like in high level languages) but
also the registers themselves have to be handled (carefully) as bo-
olean and integer variables in the expressions.
The result is that the code produced for boolean expressions’ evalu-
ation looks ugly (and it is, indeed), altough I put in as many opti-
mizations as possible (for example: "not" ("

~
") is treated in a ve-

ry smart way, making large use of the "De Morgan" rules): so, if you
need speed, avoid automatically generated boolean expressions.

My advice is: use
procs
,
funcs
,
fors
on so on almost everywhere, but

do pay attention when a
boolean expression
pops up!!!

1.11 Miscellaneous Notes

Miscellaneous Notes

These notes come in no particular order.
If you have followed a link then you should be automatically pointed to
the relevant section (unless you’re at the bottom of the page... this
is a problem of the amigaguide viewers!)

- some constructions produce jumps to labels generated automatically:
if they are local (=start with ’.’) and if between these jumps you
use any global definition, probably the assembler will fail with an
error of the kind: "undefined symbol"

- default size is ".l" (except where differently stated);

ESA v1.5 Documentation 10 / 59

- place spaces/TABs wherever you want, except between the arguments
and their own sizes;

- remember that ESA makes mainly *syntactical* checks, *semantics* is
left to the assembler: so, if you write an invalid expression, ESA
won’t warn you at all (give a look at

this simple example
)!!!

- since
var
accepts almost anything, it’s up to you to avoid

weird things...

- ESA is *case sensitive* for speed’s sake!

- remarks must start with ’*’ or ’;’ if they are at the beginning of a
line or are not preceded by any instruction/directive;
otherwise ’;’ is the only char which marks a comment (in this case it
has to be used after a TAB or space);

- comments can be put only at the end of any
sequence of instructions
;

- all spaces and TABs in the arguments will be removed (except if en-
closed between "" or ’’);

- when ESA is halted by
an error during pass 2
, the output file holds

all the code generated until that moment

- as shown in the examples scattered in the
grammar
chapter, sometimes

ESA doesn’t seem able to align properly the asm instructions in their
column... weird, huh?!? Well, this is not a bug, it’s another "tribu-
te" to speed!!! For the same reason, a negated exclusive or (~eor)
makes some capitalized letters appear in the code ("EOR")!!!

- the labels generated by ESA have this format: CXXXXXXX, where XXXXXXX
is a number in hexadecimal notation and C is generally ’.’ (or the
char you have selected with the

-l option
); otherwise, it can be ei-

ther ’p’ for
global procedures
or ’f’ for

global functions
.

In theory, up to 3*268435456 different labels can be generated, but
once passed the 268435455 mark, it’s highly likely to produce repeti-
tions... but who’s gonna pass it, anyway?!?

- for those who are going to deeply and critically analyze the code
produced: somewhere you’ll find things like "(-6,sp)" where, in-

ESA v1.5 Documentation 11 / 59

stead, it should have been "(-5,sp)". Don’t worry. This is due to a
"bug" in the MC68k which decreases [increases] sp by 2 when using a
byte size and a predecrement [postincrement] addressing mode!

- notice on
error reports
: rarely (in just *one* particular case -

challenge (no prize): find it!) the printing of the string which ge-
nerated the error could be somehow corrupted (truncated or partially
modified in the middle, etc.); this is *not* a bug: it’s because du-
ring pass1 some integer values are directly written in the source (to
speed up several things): since it happens not so often, I chose not
to fix this problem (to avoid a little slowdown and an increase of
memory needs)

- lines longer than 2048 characters could cause malfunctioning (even
GURUs!!!) when the work buffer is almost full

- little discussion on the kind of brackets used for funcs/procs or
boolean expressions: yes, I was *forced* to use ’[’,’]’ or ’{’,’}’,
respectively. Wanna know why?!?

Look at this: " ~(a0) " [this is a
boolean expression
]

What does it mean to you?
1. logical complement of the data stored at the address in a0
2. logical complement of the data stored in a0

If I had used ’(’,’)’, both answers would have been right.
Using the ungraceful ’{’s any ambiguity is swept away:
1. ~(a0) = ~{(a0)}
2. ~a0 = ~{a0}

About functions: " move.l MyLabel(a0),d0 "
What’s your pick?
1. load in d0 the value at the address calculated as a0+MyLabel
2. load in d0 the value returned by the function MyLabel() with the

parameter a0
Again, those would’ve been both right.
But those unusual brackets help us once again:
1. move.l MyLabel(a0),d0 = move.l (MyLabel,a0),d0
2. move.l MyLabel[a0],d0

And what about procs?
Honestly, there is no problem with them, thanks to the way they are

called
. But how could I mix together ’[’s and ’(’s ?

- not to complicate too much the code which checks the syntactical cor-
rectness of

vars
, "-(ax)+" is accepted even if wrong bigtime!

ESA v1.5 Documentation 12 / 59

1.12 Error Messages

Error Messages

As you may have guessed, this section covers the errors reported by
ESA and all the related stuff. I’ve not been too fussy, so the same
error could be given for a number of different mistakes. My advice
is to check the syntax, the prob is almost always there!

Error reports take the form of:

"ERROR " ERRNO ": " ERRTEXT

or (when needed):

"ERROR " ERRNO ": " ERRTEXT " at line " LINENO " of " FILENAME ":"
">" CODELINE

where:

- ERRNO is the number of the error found (it will also be returned as
the AmigaOS fail returncode)

- ERRTEXT is the concise explanation of what happened
- LINENO is the line which the error occurred at
- FILENAME is the file which contains the error (only the file

part of the path is printed)
- CODELINE is the wrong line in the source

(there’s also another little
notice about this
...)

Errors are grouped into 3 classes; below you can find a few info
about them (no description/info given for self-explaining messages):

pass 1
reports during pass 1

pass 2
reports during pass 2

misc
general messages

You may also find useful an ordered
list of all messages
.

1.13 Pass 1 Errors

Pass 1 Errors

1: user break

ESA v1.5 Documentation 13 / 59

- this is your own business...
2: couldn’t load source file
4: not enough memory

- ESA either didn’t find enough room to load a
source file
or

failed to allocate dinamically one of the little structures used
for

procedures
and

functions
definitions!

12: wrong syntax in
procedure declaration
13: wrong syntax in

function declaration
24: too many

nested includes
- max recursion degree for

include files
is 64 - and you’ve just

passed beyond!
25: couldn’t access source directory

- ESA couldn’t get the lock to the dir of a
source/include file
33: directory not found

-
incdir
specifies a directory which cannot be reached from the

current directory

1.14 Pass 2 Errors

Pass 2 Errors

1: user break
- this is your own business...

5: unexpected end of file
- there is a construction of the type: "begin"..."end" which

hasn’t been closed (i.e. "end" part missing) before the end
of the source file

6: unexpected end mark
- ESA met an "end" statement used for the constructions of the

kind: "begin"..."end" which wasn’t the one it was waiting for.
Pay attention to the

nested constructions
in your source

7: unsignificant string after ESA declaration
- side comments must start with ’;’
- no string is allowed after an ESA construction, unless separated

by the
separator char

8: wrong syntax in
boolexpr

9: wrong syntax in

ESA v1.5 Documentation 14 / 59

bool
declaration

10: wrong syntax in
expire
declaration

11: wrong
condition code
in

nexp
declaration

14: wrong size in
pop
declaration

15:
pop
statement not inside a

procedure
/
function

-
pop
doesn’t work for loops

16: unknown
procedure
17: unknown

function
18: wrong syntax in

procedure call
19: wrong syntax in

function call
20: arguments mismatch in

procedure
/
function
call

- you passed less or more arguments than expected from the decla-
ration of the

procedure
/
function
21: wrong syntax in

until
declaration

22: wrong syntax in
while
declaration

23: wrong syntax in
when
declaration

26: wrong syntax in on...
goto
/
gosub
... declaration

27: wrong syntax in
for...to...step
declaration

ESA v1.5 Documentation 15 / 59

28: byte size in conjunction with address register
- CTR has a byte size in the

for...to...step
declaration and END

or STP is an address register (this applies also to
functions
’

return values!)
- you simply wrote "ax.b"!

29: wrong size in
next
declaration

30:
othw
not inside

when...ewhen
31: wrong syntax in

switch
declaration

32: wrong value declaration after
->
34: error inside

switch...eswitch
- at least 1 "->" is needed (indepentently of

def
case}

-
def
must be the last case statement

35:
othw
repetition

- othw has already been declared inside the current
when...ewhen
36:

owhen
not inside

when...ewhen
37:

othw
already specified before

-
owhen
can’t be declared after

othw
38: wrong size in

loop
declaration

39: wrong size in
exit
declaration

40: not enough loops to
exit
41: cannot

exit

procedures

ESA v1.5 Documentation 16 / 59

/
functions

- you have to use
pop
!

42: bad
efunc
return value

1.15 General Errors

General Errors

3: couldn’t open dest file
4: not enough memory

- ESA failed to allocate the work buffers.
Try freeing some memory or decreasing the

work buffer size

1.16 Errors List

Errors List

no class text

1
1
2

: user break
2

1
: couldn’t load source file

3
m
: couldn’t open dest file

4
1

m
: not enough memory

5
2

: unexpected end of file
6

2
: unexpected end mark

7
2

: unsignificant string after ESA declaration
8

2
: wrong syntax in

ESA v1.5 Documentation 17 / 59

boolexpr
9

2
: wrong syntax in

bool
declaration

10
2

: wrong syntax in
expire
declaration

11
2

: wrong
condition code
in

nexp
declaration

12
1

: wrong syntax in
procedure declaration
13

1
: wrong syntax in

function declaration
14

2
: wrong size in

pop
declaration

15
2

:
pop
statement not inside a

procedure
/
function
16

2
: unknown

procedure
17

2
: unknown

function
18

2
: wrong syntax in

procedure call
19

2
: wrong syntax in

function call
20

2

ESA v1.5 Documentation 18 / 59

: arguments mismatch in
procedure
/
function
call

21
2

: wrong syntax in
until
declaration

22
2

: wrong syntax in
while
declaration

23
2

: wrong syntax in
when
declaration

24
1

: too many
nested includes
25

1
: couldn’t access source directory

26
2

: wrong syntax in on...
goto
/
gosub
... declaration

27
2

: wrong syntax in
for...to...step
declaration

28
2

: byte size in conjunction with address register
29

2
: wrong size in

next
declaration

30
2

:
othw
not inside

when...ewhen
31

2
: wrong syntax in

switch

ESA v1.5 Documentation 19 / 59

declaration
32

2
: wrong value declaration after

->
33

1
: directory not found

34
2

: error inside
switch...eswitch
35

2
:

othw
repetition

36
2

:
owhen
not inside

when...ewhen
37

2
:

othw
already specified before

38
2

: wrong size in
loop
declaration

39
2

: wrong size in
exit
declaration

40
2

: not enough loops to
exit
41

2
: cannot

exit

procedures
/
functions
42

2
: bad

efunc
return value

ESA v1.5 Documentation 20 / 59

1.17 Bugs

Bugs

Some versions of ESA have been tested (not so deeply) on:

- Unexpanded A1200
- A1200 + BZ1230-IV
- A1200 + BZ1260
- A4000/040
- A4000 + CS060-II

No known bug at the moment.

If you think you have found any, please
send me
a detailed bug report.

Machine specs ain’t strictly necessary, the most important thing is the
part of code which you think to be responsible for the bad behaviour of
ESA and the (bad) code generated.

After this, just hope for a prompt fix!!!

1.18 History

History

v1.5 (30.10.1998)

-
efunc
extended

- little optimization in
boolexpr
check code

- little manual retouches

Well, no bugfixes this time... it seems I’m almost done with this prog
(at least I wish so)!

v1.4 (25.10.1998)

- as I feared, the "frantic" changes in the previous version led to a
number of mistakes:
1. the usual "bne" <-> "beq" error in type detection code
2.

>> and <<
were considered

cmpops
if used in

mathexprs
inside

ESA v1.5 Documentation 21 / 59

boolexprs
3.

predecrement/postincrement
modes weren’t recognized correctly as

var
, because ’+’ and ’-’ were considered separator chars

4. negative
symbols
weren’t accepted (this should have been fixed

much time ago, but I simply forgot to do it!!!)
5. ’.’ was recognized as an "empty"

symbol
- removed superfluous TAB+ENTER in the code produced by

switch
- several optimizations (particularly in the grammar handling ←↩

code)
- manual update

All the bugs fixed in the last two versions (including this one) have
been discovered while writing the program "sss" (contained in the ar-
chive "sss.lha" in the directory "examples" of this

distribution
.

Please, Mr.Murphy, stop tormenting me...

v1.3 (23.10.1998)

- brackets changed again!
Procs
and

funcs
now use ’[’,’]’: nicer and

more practical (no SHIFT - one keystroke less) (sorry if you have
already defined many {}-procs, but there was also a serious reason:
the ’{’s produced some conflicts with boolexprs and resolving them
in another way would have been less efficient... and less stylish!!!

- bugfixes:
1. by changing the brackets used for procs/funcs (in v1.2) I introdu-

ced several bugs (ex.: funcs were handled incorrectly inside bool-
exprs; during debugging I even found one which should have screwed
up everything, but all misteriously worked perfectly!!!).

2. silly flaws in
do
,
repeat
and

expire
code which, in some

combinations, messed up the labels
3. little correction to include handling
4. few minutes before going to the uni computer lab (and just after

getting up...) to upload this version, I realized that due to the
last changes the grammar code had to be modified!!! So I turned on
my Amiga and made this fix "on the fly", with one hand on the key-
board and the other putting on my shoes...

ESA v1.5 Documentation 22 / 59

- little change in
when...ewhen
routines to make generated code a

little more readable if compiling interrupts in the middle of that
construction

- small optimizations
- oh damn! I fear I’ll never stop updating this .guide!!!

Several important parts of the code had to be modified in a hurry, I
just hope I didn’t throw in any other bugs... I’ve been fighting for
the whole night!!!

v1.2 (16.10.1998)

- major changes in parsing routine (optimised)
- the elegant form "name(args)" for proc/func calls has been dropped

in favour of the awkward form "name{args}"...
...but now

calls to undefined functions can be detected
!!!

-
do...loop
added

- "exit" renamed "
pop
"

- (new)
exit
added!

- some flaws fixed
- elapsed time report added
- usual boring changes to this manual

Although this is not a definitive version, I decided to release it be-
cause I’m going away for a few days and, when I’ll be back, I’ll be
very busy with studies...
Since it’s complete (and bugfree, I hope) now, there’s no reason to
delay the release for an undefined period of time

v1.1 (12.10.1998)

-
switch
100% working: now nesting is permitted and "beq" replaced

the wrong "bne" (little moment of absent-mindedness of mine...)
-

switch
and

when...ewhen
capabilities extended (explicit condition

declaration and
owhen
, respectively)

-
for...next

ESA v1.5 Documentation 23 / 59

default step set to -1 when using
dwto
(I just forgot

about it before...)
- bugfixes:

1. source file loading
2.

incdir
(after pass1 this directive wasn’t preserved)

3.
until
("bne"<->"beq"... same as

switch
!)

4. parameters loading in
proc
/
func
calls

-
includes
handling improved (now names between " or ’ are accepted)

- misc optimizations
-

grammar definition of type imm
extended (I totally forgot the forms

of the kind: #"symb" or #’symb’)
-

grammar definition of type args
changed (compatible with previous)

-
AmigaOS fail returncode
added

- default
work buffer size
changed (10Kb -> 40Kb)

- manual deeply revised/updated

WOW! it seems I’m almost finished with it!!!

v1.0 (05.10.1998)

-
switch
included at 99%

-
size types
extended ({dsize, asize, jsize} instead of {size})

- better handling of regs’ sizes ("ax.b" somewhere would have been
used as a

val
instead of causing an error)

-
procedures
and

functions

ESA v1.5 Documentation 24 / 59

declaration syntax slightly changed:
"PROCNAME,loc()" has become a much more meaningful: "loc:PROCNAME()"

- bugfixes:
1.

error reports
2.

othw
3.

include
4. type detection code (probably introduced in v0.9b!), "/" ←↩

recogni
tion as a

matop
- manual revised/updated ;)

Not released, although it’s the 1st (almost) complete version

v0.9b (14.09.1998)

-
incdir
handling added

For some unknown reasons the upload of this version failed several
times: hence it’s never been publically released!!!

v0.9 (15.07.1998)

First public release.
For time reasons

switch
and

incdir
couldn’t be implemented.

1.19 Future

Future

First, let me say that I don’t think I’ll have much time to spend on im-
proving this program. Too bad this *doesn’t depend on me*.
I just can ensure that I’ll do my best to fix all the

bugs
you’ll find

(as soon as I’ll have the time) and add those easy, minor improvements
which could make ESA a little more friendly.

Speaking about "real" additions/expansions or whatever...

To be honest, I’m not willing at all to add more constructions, for one
simple, plain reason: I don’t wanna end up writing a new language.
If you need to pass to an even higher level, than switch to C or E or
anything else.

ESA v1.5 Documentation 25 / 59

ESA has already a few features which at the beginning I didn’t plan nor
want to implement (which ones? procedures, functions... and something
else), ’coz I considered too "advanced"...
Well, now you got’em, enjoy and let’s forget about this.
But, pleeeeeze, don’t ask me to add other magic commands, unless they’re
are really something special...
However, don’t be discouraged by what I just said:
got an idea? Just

gimme a call
and let’s see if I fancy it.

Maybe it turns out to be that damn nice feature ESA was missing!

1.20 Hi there!

Hi there!

I *do* want your feedback.
Let me know what you think and if you have any problems/ideas or need
some explanations/hints.

Write to:

bevilacq@cli.di.unipi.it

I can also be reached by snail mail at the following addresses:

(during "normal" periods)

Simone Bevilacqua
P.za Garibaldi 9
56100 Pisa (PI)
ITALY

(during uni vacation periods - "safer" address!!!)

Simone Bevilacqua
Via A.Volta 6
86010 Ferrazzano (CB)
ITALY

1.21 Greetz and Thanx

Greetz and Thanx

Thanks to all the Amiga coders still around and in particular to:

Michele Berionne, Pietro Ghizzoni: help with uploading and testing;
Fabio Bizzetti: testing;
Frank Wille: testing and... his magic PhxAss!!!

Mega greetings to my family and all my friends!!!

ESA v1.5 Documentation 26 / 59

(the next time I’d like to scribble here something like:
"WOOOOOOOOOOOoooooooooOOOOOOOOOOOOW!FINALLYMYPATIENCEHASBEENREWARDED!!!
THANXALOTAMIGAINC./INT.FORHAVINGGIVENTHEWORLDANEWBEAUTYANDAHOPETOSAVEIT
FROMTHOSEDIRTYM$OFT/INTEL’SHANDS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

Now I wonder: will that moment ever come before 2177a.d.?!?
PLEASE, MAKE IT SO, MAKE IT SOON!!!)

1.22 Include Files Handling

Include Files Handling

ESA processes the include files listed in the source so that you can
freely build your own "libraries" of

functions
/
procedures
.

It will recursively (max depth: 64) parse the includes, producing a
single output file without *any* include statement. Of course, each
include file will be included and compiled just once (BTW: as a side
effect, this will ease the assembler’s task, as it will have to load
only a single source).
Please note that "IF" directives are simply ignored, so this kind of
declarations:

IFND EXEC_TYPES_I
include "exec/types.i"
ENDC

would be compiled as:

IFND EXEC_TYPES_I

ENDC

if "exec/types.i" has already been included (even if specified with a
different path).

The directory which will be scanned to find the include files listed
in a source is the source’s one (when no full path is declared - this
applies recursively also to includes).

The above rule is void if an "incdir" directive is found: in that case,
any other subsequent include statement in the source containing that
"incdir" will refer to the specified directory.

Dir/file names can be enclosed in "" or ’’.

Please note that it doesn’t make any sense to compile ESA include files
(my proposal is to call them "#?.ei" for convention) separately from
the source[sources] which makes[make] use of them because ESA generates
unique labels only when all the source files are available.

ESA v1.5 Documentation 27 / 59

* WARNING: DUE TO TIME REASONS, VERY FEW TESTS HAVE BEEN DONE! *
* IF SOMETHING STRANGE HAPPENS (ESPECIALLY WITH "incdir") IT *
* COULD BE WELL A

BUG
(though I had no problem)! *

1.23 Multiple Instructions on a Single Line

Multiple Instructions on a Single Line

ESA allows you to put several instructions and/or ESA commands (with
their arguments, if required), separated by a special char, on a single
line.

Let’s make an example:

lea.l buffer,a0 § bool d1=d2,d0.b § add.b d0,d0

I stopped at the 3rd instruction, but there can be as many instructions
as you want... but then you’ll find yourself scrolling the screen hori-
zontally rather than vertically! Not a great deal!!!

As you can see, the instructions are separated by " §" (note: the lea-
ding ’ ’ is compulsory, the following not), which is the default sepa-
rator. If you wish to change it, use the

-s option
.

WARNING: don’t put labels after an instruction using the separator
(they would be exchanged for instructions)!

1.24 Conventions and Types

CONVENTIONS USED IN THE WHOLE TEXT

... = ESA and/or asm code
[xyz] = xyz is optional
ID:type = ID is an identifier of the type specified
"xyz" = xyz is a string of characters
’xyz’ = as above (less frequent)

Also, have a look at the
misc notes
.

TYPES

0.
logop

: "&" | "|" | "^"

ESA v1.5 Documentation 28 / 59

1.
cmpop

: "<" | ">" | "<=" | ">=" | "=" |
"«" | "»" | "«=" | "»=" | "<>"

2.
matop

: "+" | "-" | "*" | "/" | "//" | "<<" | ">>"
3.

dsize
: ".l" | ".w" | ".b"

4.
asize

: ".l" | ".w"
5.

jsize
: ".l" | ".w" | ".b" | ".s"

6. dreg : "d0" | "d1" | ... | "d7" |
dreg dsize

7. areg : "a0" | "a1" | ... | "a7" |
areg asize

8.
reg

: dreg | areg
9.

regslist
: reg | reg"/"regslist |

dreg"-"dreg | dreg"-"dreg"/"regslist |
areg"-"areg | areg"-"areg"/"regslist

10.
sym

: any symbol accepted by the assembler
11. var :

ea
[size] except imm

12.
boolexpr

: rval | rval cmpop rval | boolexpr logop boolexpr |
imm cmpop rval | "

~
" boolexpr | "{" boolexpr "}"

13.
mathexpr

: sym matop sym | sym matop mathexpr |
mathexpr matop sym | mathexpr matop mathexpr |
"(" mathexpr ")"

14. imm : "#"sym | "#"mathexpr | "#’?’" | ’#"?"’
(where "?" is a string 1,2 or 4 characters long)

15. val : imm | var | func
16.

rval
: var | func

17. args : val | val "," args
18. func : any valid ESA

function call
19.
cc

: "eq" | "ne" | "vc" | "vs" | "pl" | "mi" |

ESA v1.5 Documentation 29 / 59

"lo" | "ls" | "hi" | "hs" | "cc" | "cs" |
"lt" | "le" | "gt" | "ge" | "t" | "f"

1.25 Effective Address

Effective Address

ea = any valid addressing mode

ESA won’t make any check on several addressing modes, so eas correct-
ness is in your hands.

1.26 Logical Operators

Logical Operators

"&" = and
"|" = or
"^" = exclusive or

These operators work on boolean basis:
they are *not* bitwise operators operators, but just know 0 and <>0.

Please note that "~" (not), being an unary logic operator, can be used
only in some positions in

boolean expressions
.

1.27 Comparison Operators and Condition Codes

Comparison Operators and Condition Codes

Here’s the list of the operators which can be used in
boolexprs
(with the corresponding condition codes):

op cc meaning

"=" eq equal to
"<>" ne not equal
"<" lt less than (signed)
">" gt greater than (signed)
"<=" le less or equal (signed)
">=" ge greater or equal (signed)
"«" lo lower than (unsigned)
"»" hi higher than (unsigned)
"«=" ls lower or same (unsigned)
"»=" hs higher or same (unsigned)

Other valid condition codes are:

ESA v1.5 Documentation 30 / 59

cc meaning

t true
f false
vc overflow clear
vs overflow set
cc carry clear
cs carry set
pl plus
mi minus

1.28 Mathemathical Operators

Mathemathical Operators

"+" = addition
"-" = subtraction
"*" = multiplication
"/" = division
"//" = modulo
"<<" = shift left
">>" = shift right

These are the ones accepted by PhxAss;
dunno other assemblers.

1.29 Sizes

Sizes

".b", ".s" = byte
".w" = word
".l" = long

1.30 A Little Mistake in the Grammar...

A Little Mistake in the Grammar

According to the definition adopted in the
conventions
, a thing in

the shape of: "d0.b.b.w" is a *correct* dreg.
Actually, this is *not* true, but that’s just a simplification in the
grammar (to make it a bit more readable).

ESA v1.5 Documentation 31 / 59

1.31 Registers

Registers

Only data & address registers can be used, sorry.
(For now) forget about ssp, sr, and so on...
If you try to use one of them, it will be treated just like a normal
symbol!

1.32 Registers Lists

Registers Lists

This is the type used for movems in 68k asm.
With ESA it assumes a more versatile aspect: in fact you can declare
also the size of any argument.
This, obviously, doesn’t applies to movems (sizes are discarded, ".l"
is used as default), but has a great importance in

procs
and

funcs
calls.

A declaration of the kind: "a0.w/d3.b-d5" is perfectly legal and means,
if included in a call:

- load a0 with a 2 bytes long value
- load d3, d4, d5 with 1 byte long values

The same would have happened if the declaration had been:
"a0.w/d3.b-d5.w"
since only the 1st size, in "dx.y-di.j" or "ax.y-ai.j" statements, is
taken into account (y here).

Moreover, as the syntax shows, it’s possible to mix in any order aregs
and dregs: "a3.w / d0-d2 / a5 - a7 / d5 / a1" is still valid (but *NO*
check is performed on repetitions! An "a5" in the place of "a1" would
not cause any error!).

1.33 Symbols

Symbols

Here are listed all the chars which can be used in symbols (labels).
If you think that someone is missing, just

drop me a line
.

0 1 2 3 4 5 6 7 8 9
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

ESA v1.5 Documentation 32 / 59

@ $ \ _ 1 2 3 ¢ ¼ ½ ¾ · ì è à ù § ò å \textdegree{} © ® þ ¤ $\mathrm{\ ←↩
mu}$ ¡

ø ¶ æ ß ð £ £ \ensuremath{\pm} \times ç ª º

The chars ’.’ and ’-’ are allowed only at the beginning of a symbol.

ESA will only partially check the correctness of symbols, so it can
happen that unvalid symbols are used without any warning.

1.34 Boolean Expressions

Boolean Expressions

Click here
for some hints on how to use these expressions in the most

effective way.
Also have a look at the

boolean
and

comparison
operators.

The arguments of boolean expressions are treated in this way:
false=0, true<>0.
Yet, after the execution of the evaluation code, it will always be:
false=0, true=-1 (255);
that’s why it’s possible to write expressions like: "a0.w & Sendo.b",
whose code would be:

cmpa.w #0,a0
sne.b -(sp)
tst.b Sendo
sne.b -(sp)
move.l d0,(-4,sp)
move.b (sp)+,d0
and.b d0,(sp)
move.l (-6,sp),d0

The size used in comparisons is the one of the 1st register or, when
there’s no reg, of the 1st argument:

code produced for "Hanamichi.w=Kaede.b":

move.l d0,(-6,sp)
move.w Hanamichi,d0
cmp.w Kaede,d0

seq.b -(sp)
move.l (-4,sp),d0

code produced for "d5.b=Haruko.l" or "Haruko.l=d5.b":

cmp.b Haruko,d5
seq.b -(sp)

ESA v1.5 Documentation 33 / 59

As an additional note, when an argument is an address register only
".w" and ".l" can be used, thus it’s impossible to write something like
"a5.b = Senbe";
on the other hand, a statement of the kind "d0.b > a3.w" will make use
of ".w", since aregs have priority over dregs.

OK. Why don’t you use the same size in both arguments ;)

As you can see, the best code is obtained when at least one argument
is a register:

code produced for "Ronzaman<d1":

cmp.l Ronzaman,d1
sgt.b -(sp)

code produced for "a5.w »= Suppaman":

cmpa.w Suppaman,a5
shs.b -(sp)

code produced for "Suppaman.b »= Ronzaman":

move.l d0,(-6,sp)
move.b Suppaman,d0
cmp.b Ronzaman,d0

shs.b -(sp)
move.l (-4,sp),d0

"Style" note: boolean expression can be contained inside ’{’ and ’}’.
I know it isn’t stylish, but there’s

a very serious reason
behind.

1.35 Mathemathical Expressions

Mathemathical Expressions

These are made of constats/symbols and
math operators
.

As always, ESA will check only their syntactical correctness:

- ((say+hello-to-Pippo)

this will be reported as wrong (FYI (if you’re a very curious dude):
(say+hello-to-Pippo) will be accepted and used. Upon completion of all
the operations with it, going on with the parsing, the second ’)’ will
not be found and an error will be generated);

- ApplePie/0

this, instead, won’t cause any warning, even if the assembler will
clearly scream out loud that divisions by 0 are a little hard to do...

ESA v1.5 Documentation 34 / 59

1.36 Restricted Values

Restricted Values

This type is defined for (almost) exclusive use in
boolexprs
.

As the name suggests, it’s a restricted version of val, lacking of the

imm type
.

1.37 boolean evaluation

bool

SYNTAX

"bool" BL:boolexpr "," DEST:var

MEANING

1. evaluates BL
2. writes its value (true, false) to DEST

NOTES

- the default size used for DEST is *byte*;
- to obtain the fastest results, use the default size, especially

if DEST is not a dreg (see below);
- if DEST is an areg without explicit size, ".w" is used as default;

EXAMPLE 0

ESA asm:

bool { {Suppaman=d4} & Slump} | {~{d4=d5}}, d2.l

68k asm:

cmp.l Suppaman,d4
seq.b -(sp)
tst.l Slump
sne.b -(sp)
move.l d0,(-4,sp)
move.b (sp)+,d0
and.b d0,(sp)
move.l (-6,sp),d0
cmp.l d5,d4

sne.b -(sp)
move.l d0,(-4,sp)

ESA v1.5 Documentation 35 / 59

move.b (sp)+,d0
or.b d0,(sp)

move.l (-6,sp),d0 ;BL evaluation
move.b (sp)+,d2 ;.l size doesn’t affect
extb.l d2 ;much the speed...

EXAMPLE 1

ESA asm:

bool Makusa,ObabaHaru.w

bool Makusa,ObabaHaru.b ;default size

68k asm:

tst.l Makusa ;1st "bool"
sne.b -(sp)
move.l d0,(-4,sp)
move.b (sp)+,d0
extb.l d0
move.w d0,ObabaHaru
move.l (-6,sp),d0 ;slooow...

tst.l Makusa ;2nd "bool"
sne.b -(sp)
move.b (sp)+,ObabaHaru ;much faster, huh?!?

1.38 a bit of AMOS, too!

do ... loop

SYNTAX

"do"
...
...
...

"loop"[SZ:jsize]

MEANING

1. executes the code between "do" and "loop"
2. repeats 1 forever

NOTES

- SZ is the size for the bra instruction used (default: none);

EXAMPLE 0

ESA v1.5 Documentation 36 / 59

ESA asm:

do ;here’s a nice
addq.l #1,d0 ;way of wasting

loop.s ;processor time...

68k asm:

.0000000
addq.l #1,d0
bra.s .0000000

1.39 exiting loops

exit

SYNTAX

"exit"[SZ:jsize]["," CNT:imm]

MEANING

1. exits from the last CNT loops entered
(if CNT undeclared, then CNT=1 by default)

NOTES

- SZ is the size to be used for the bra (default: none);
- CNT is the number of loops you wish to exit from (CNT>0; default: 1)
- if used also inside a begin...end-type construction, this will be

"broken", too (except if it’s a proc or func: that would generate an
error)!

EXAMPLE 0

ESA asm:

do
repeat
while d0
expire d1=#23
for d2=#0 upto #10 ;this example does nothing!
exit.s #5 ;exit all the loops at once!
next

nexp
ewhile
until d3

loop

68k asm:

.0000000 ;do label

ESA v1.5 Documentation 37 / 59

.0000001 ;repeat label

.0000002 tst.l d0 ;while condition
sne.b -(sp)
tst.b (sp)+
beq .0000003
move.w #23,d1

.0000004 ;expire label
move.l #0,d2 ;for args loading
move.l #10,.0000005
move.l #1,.0000005+4
bra.s .0000006

.0000005 dc.l 0,0

.0000006 cmp.l .0000005,d2
bgt .0000007
bra.s .0000008 ;this is exit!!!
add.l .0000005+4,d2
bra .0000006 ;next

.0000007
dbra d1,.0000004 ;nexp
bra .0000002 ;ewhile

.0000003 ;until condition
tst.l d3
sne.b -(sp)
tst.b (sp)+
beq .0000001
bra .0000000 ;loop

.0000008

EXAMPLE 1

ESA asm:

do ;looks like a rather *WorRyiNG*
when.s #1000=d0.b ;delay-loop!!!
exit.s
othw
addq.l #1,d0
ewhen

loop.s

68k asm:

.0000000
cmpi.b #1000,d0
seq.b -(sp)
tst.b (sp)+
beq.s .0000002
bra.s .0000003 ;exits when...ewhen, too
bra.s .0000001

.0000002
addq.l #1,d0

.0000001
bra.s .0000000

ESA v1.5 Documentation 38 / 59

.0000003

1.40 68k ’dbra’

expire ... nexp

SYNTAX

"expire" DX:dreg "=" ST:val
...
...
...

"nexp" ["," COND:cc]

MEANING 0 (when COND not declared)

1. assigns to DX the value of ST
2. executes the code
3. decrements DX by 1
4. if DX=>0, goes to 2

MEANING 1 (when COND declared)

1. assigns to DX the value of ST
2. executes the code
3. if COND is satisfied then the execution contines with the first

instruction after "nexp"
4. else decrements DX by 1
5. if DX=>0, goes to 2

NOTES

- since the instruction used is dbcc, the size of DX and ST is always
word (any specification is ignored);

- if DX=ST, no assignment is done, so that you can use a register ini-
tialized externally;

EXAMPLE 0

ESA asm:

lea.l Buffer,a0
.air expire d7 = BufLen

clr.b (a0)+
nexp

68k asm:

lea.l Buffer,a0
.air move.w BufLen,d7 ;counter initialization
.0000000

ESA v1.5 Documentation 39 / 59

clr.b (a0)+
dbra d7,.0000000

EXAMPLE 1

ESA asm:

expire d3=d3
nop § nop § tst.l d1 ;ran out of fantasy...

nexp,pl

68k asm:

.0000001
nop ;no init here!
nop
tst.l d1
dbpl d3,.0000001 ;dbra with COND

1.41 what to say?!?

for ... to ... step ... next

SYNTAX

"for" CTR:var "=" ST:val "upto"|"dwto" END:val ["step" STP:val]
...
...
...

"next"[SZ:jsize]

MEANING 0 ("upto", STP>0)

1. assigns the value of ST to the counter CTR
2. if CTR>END, goes to 6
3. executes the code "..."
4. adds STP to CTR
5. goes to 2
6. first instruction after "next"

MEANING 1 ("dwto", STP<0)

2. if CTR<END, goes to 6

NOTES

- defaults: STP= 1 if "upto";
STP=-1 if "dwto";

- *NEVER* use STP=0!!! No check!
- SZ is the size of the bcc instruction used (default: none);
- size of CTR is its own;

ESA v1.5 Documentation 40 / 59

size of ST, END and STP is forced to be equal to CTR’s;
- never use "upto" with negative STP or "dwto" with positive STP!
- it is necessary to declare the direction with "upto"/"dwto" because

statically STP’s sign is unknown. Direct checks in the generated co-
de would produce even more unefficient code...

EXAMPLE 0

ESA asm:

for d4.b=#100 upto d6
clr.l (a0)+

next.s

68k asm:

move.b #100,d4 ;load CTR with ST
move.b d6,.0000002 ;store END
move.b #1,.0000002+4 ;default STP
bra.s .0000003

.0000002 dc.l 0,0 ;local variables (END,STP)

.0000003 cmp.b .0000002,d4 ;compare CTR with END
bgt .0000004 ;exit if CTR>END
clr.l (a0)+
add.b .0000002+4,d4 ;update CTR
bra.s .0000003 ;repeat the loop

.0000004

EXAMPLE 1

ESA asm:

for tmp.w = d3 dwto #23 step NegStep[]
move.l (a1)+,(a2)+

next

bra WhoKnowsWhere

function NegStep[]:d1
bsr _rnd
neg.l d0
efunc

68k asm:

move.w d3,tmp ;load CTR with ST
move.w #23,.0000002 ;store END
bsr f0000000 ;call NegStep[]
move.w d1,.0000002+4 ;store function result (STP)
bra.s .0000003

.0000002 dc.l 0,0 ;local variables (END,STP)

.0000003 move.l a0,-(sp) ;this quite complex way of
exg.l d0,a0 ;performing the boundary
move.w tmp,d0 ;check is caused by the fact
cmp.w .0000002,d0 ;that CTR is not a reg!

ESA v1.5 Documentation 41 / 59

exg.l d0,a0
movea.l (sp)+,a0
blt .0000004 ;exit if CTR<END
move.l (a1)+,(a2)+
move.l d0,-(sp) ;again, things get complicated!
move.w tmp,d0 ;using a reg for CTR would
add.w .0000002+4,d0 ;noticeably speed up this
move.w d0,tmp ;part (see above)!
move.l (sp)+,d0
bra .0000003

.0000004

bra WhoKnowsWhere

f0000000 ;NegStep[]
bsr _rnd
neg.l d0

f0000001 rts

1.42 just like Pascal!

repeat ... until ...

SYNTAX

"repeat"
...
...
...

"until"[SZ:jsize] BL:boolexpr

MEANING

1. executes the code "..."
2. evaluates BL
3. if BL is false, goes to 1, else exits

NOTES

- the code is always executed at least once;
- SZ is the size of the bcc instruction used (default: none);

EXAMPLE

ESA asm:

moveq.l #1,d0
repeat
add.b d0,d0

until.s #16=d0.b ;silly, but works...

68k asm:

ESA v1.5 Documentation 42 / 59

moveq.l #1,d0

.000000A
add.b d0,d0
cmpi.b #16,d0
seq.b -(sp) ;BL evaluation
tst.b (sp)+
beq.s .000000A ;until

1.43 BASIC’s ’while’ ... ’wend’

while ... ewhile

SYNTAX

"while"[SZ:jsize] BL:boolexpr
...
...
...

"ewhile"

MEANING

1. evaluates BL
2. if BL is false, goes to 5
3. executes the code "..."
4. goes to 1
5. 1st instruction after "ewhile"

NOTES

- if the 1st time BL is false, the code is never executed;
- SZ is the size of the bcc instruction used (default: none);

EXAMPLE

ESA asm:

while.s {Arale<d7.w}&{#Gacchan>d3}
addq.l #1,Arale
add.l Arale,d3
ewhile ;don’t try to find a meaning...

68k asm:

.000000D cmp.w Arale,d7
sgt.b -(sp)
cmpi.l #Gacchan,d3
slt.b -(sp)
move.l d0,(-4,sp)
move.b (sp)+,d0

ESA v1.5 Documentation 43 / 59

and.b d0,(sp)
move.l (-6,sp),d0 ;BL evaluation
tst.b (sp)+
beq.s .000000E ;if while fails...
addq.l #1,Arale
add.l Arale,d3
bra.s .000000D ;repeat loop

.000000E

1.44 jump table (branches)

on ... goto ...

SYNTAX

"on" V:val "," RX:reg "goto" ["safe"](S0:sym, S1:sym, ... , Sn:sym)

MEANING 0 ("safe" not declared)

1. evaluates V
2. V=x and x<=n: the execution continues at the address Sx

V=x and x>n : get ready for a GURU!!!

MEANING 1 ("safe" declared)

1. evaluates V
2. V=x and x<=n: the execution continues atthe address Sx

V=x and x>n : jumps to the first instruction after "on ... goto"

NOTES

- RX is the register which can be freely trashed to perform the jump;
- RX’s size is discarded;
- V is loaded to RX only if V<>RX (obvious enough...);
- the size of V can be only ".w" and ".l" (def.: ".w");
- no check is done on SXes...

EXAMPLE 0

ESA asm:

on d5,a6 goto (.shoot, .block, .pass, .jump
.steal, .dunk, .run, .fly) ;very legal!!!

68k asm:

move.w d5,a6 ;get V
jmp ([.0000000,pc,a6.w*4])

.0000000 dc.l .shoot,.block,.pass,.jump,.steal,.dunk,.run,.fly

ESA v1.5 Documentation 44 / 59

EXAMPLE 1

ESA asm:

on UnitID.w,a2 goto safe (68k,Copper,Blitter,Paula)

68k asm:

move.w UnitID,a2 ;get V
cmp.w #$0004,a2 ;is it valid?
bhs .0000001 ;if not...
jmp ([.0000002,pc,a2.w*4])

.0000002 dc.l 68k,Copper,Blitter,Paula

.0000001

1.45 jump table (subroutines)

on ... gosub ...

SYNTAX

"on" V:var","RX:reg "gosub" ["safe"](S0:sym, S1:sym, ... , Sn:sym)

MEANING 0 ("safe" not declared)

1. evaluates V
2. V=x and x<=n: jumps to the subroutine indicated by Sx

V=x and x>n : get ready for a GURU!!!
3. the code at the address Sx is expected to return with an "rts"
4. execution goes on with the first instruction after "on ... gosub"

MEANING 1 ("safe" declared)

1. evaluates V
2. V=x and x<=n: jumps to the subroutine indicated by Sx

V=x and x>n : goes to 4
3. the code at the address Sx is expected to return with an "rts"
4. execution goes on with the first instruction after "on ... gosub"

NOTES

- RX is the register which can be freely trashed to perform the jump;
- RX’s size is discarded;
- the size of V can be only ".w" and ".l" (def.:".w");
- no check is done on SXes...

EXAMPLE 0

ESA asm:

Mangas on Rumiko.w,a0 gosub (.ataru, .akane, .lum, .ranma)

ESA v1.5 Documentation 45 / 59

68k asm:

Mangas move.w Rumiko,a0
jsr ([.0000003,pc,a0.w*4])
bra .0000004 ;skip jump table

.0000003 dc.l .ataru,.akane,.lum,.ranma

.0000004

EXAMPLE 1

ESA asm:

on fool.l,a3 gosub safe(
this
is
unquestionably
silly

)

68k asm:

move.l fool,a3 ;".l" is often useless!!!
cmp.l #$00000004,a3 ;safety check
bhs .0000005
jsr ([.0000006,pc,a3.l*4])
bra .0000005

.0000006 dc.l this,is,unquestionably,silly

.0000005

EXAMPLE 2

ESA asm:

MyLife on WhatIWillDo[],d0 gosub (code,PlayBBall,
sleep,eat,study)

bra.s MyLife

function WhatIWillDo[]:d0 ;d0’ll get the def size (".l")
repeat
bsr _rnd
until #4<>d0 ;eh, eh...
efunc

68k asm:

MyLife bsr f0000000 ;func call; no RX loaded
jsr ([.000000C,pc,d0.l*4]) ;note also the size!!!
bra .000000D

.000000C dc.l code,PlayBBall,sleep,eat,study

.000000D
bra.s MyLife

f0000000 ;nothing here because I
;didn’t save any reg

ESA v1.5 Documentation 46 / 59

.000000E
bsr _rnd
cmpi.l #4,d0
sne.b -(sp)
tst.b (sp)+
bne .000000E

f0000001 rts

1.46 much better than C’s!

switch ... -> ... eswitch

SYNTAX

"switch"[SZ:jsize] SW:rval
"->" [CO:cmpop] V1:val

...
["->" [CO:cmpop] V2:val

...

"->"
...

"->" [CO:cmpop] Vn:val
...]

["def"
...]

"eswitch"

MEANING

1. executes the code contained between the brackets whose Vx is compa-
red successfully to SW according to the condition CO specified (if
CO is omitted, ’=’ is used as default);
if the case that no condition is satisfied, the default code is
executed (if "def" declared)

2. jumps to the 1st instruction after "eswitch"

NOTES

- if one or more Vx potentially satisfy their own condition, only the
code of the 1st one (starting from the top) is executed;

- SZ is the size to be used for branches (bccs - default: none);
- the "def" statement must be the last case;
- to decide the case to execute, a series of comparisons between SW

and the Vxs have to be done: the rules about their sizes (if diffe-
rent) are explained

here
;

EXAMPLE

ESA v1.5 Documentation 47 / 59

ESA asm:

switch.s WhatHasHappened.w

-> #2
lea.l OhDamn,a0
bsr Say

-> a0
lea.l WOWILIKEIT,a0
bsr Say

-> >= xz
bsr GetUpset

def
move.l #"OKOK",answer

eswitch

68k asm:

cmpi.w #2,WhatHasHappened ;1st comparison
seq.b -(sp) ;CO omitted, ’=’ used
tst.b (sp)+
beq.s .0000000 ;if not successful, go to next
lea.l OhDamn,a0 ;else execute the code inside
bsr Say

bra.s .0000001 ;then continue after switch
.0000000 cmpa.l WhatHasHappened,a0 ;2nd comparison - please note

seq.b -(sp) ;that the size used is .l,
tst.b (sp)+ ;cos aregs’ size has priority
beq.s .0000002
lea.l WOWILIKEIT,a0
bsr Say

bra.s .0000001
.0000002 move.l d0,(-6,sp) ;3rd comparison

move.w WhatHasHappened,d0
cmp.w xz,d0

sge.b -(sp) ;CO is ">="
move.l (-4,sp),d0
tst.b (sp)+
beq.s .0000003 ;go to default case
bsr GetUpset

bra.s .0000001
.0000003

move.l #"OKOK",answer
.0000001

1.47 ’if’ ... ’else if’ ... ’else’ ... ’end if’

when ... owhen ... othw ... ewhen

ESA v1.5 Documentation 48 / 59

SYNTAX

"when"[SZ:jsize] BLW:boolexpr
...
...
...

["owhen" BLO:boolexpr]
...
...
...

["othw"]
...
...
...

"ewhen"

MEANING

1. evaluates BLW
2. if BLW is true, executes the code between "when" and the following

"owhen" or "othw" or "ewhen";
then goes to 8

3. if any "owhen" is declared goes to 6
4. if "othw" is specified, executes the code between "othw" and "ewhen"
5. goes to 8
6. if BLO is true, executes the code between "owhen" and the following

"owhen" or "othw" or "ewhen";
after that goes to 8

7. repeats from step 3
8. execution continues after "ewhen"

NOTES

- SZ is the size to be used for branches (bccs - default: none);
- there can be as many "owhen"s as you want;
- "othw" can be declared only once and after any "owhen" statement;

EXAMPLE 0

ESA asm:

when.s ~{d0.w ^ ~d1.b}
bsr OhDamn

ewhen

68k asm:

tst.w d0
seq.b -(sp)
tst.b d1
sne.b -(sp)
move.l d0,(-4,sp)
move.b (sp)+,d0
EOR.b d0,(sp)

ESA v1.5 Documentation 49 / 59

not.b (sp)
move.l (-6,sp),d0 ;BL evaluation
tst.b (sp)+
beq.s .000000F ;if false condition...
bsr OhDamn

.000000F ;...jump here!

EXAMPLE 1

ESA asm:

when rains
bsr OpenUmbrella

othw
bsr PutOnSunGlasses

ewhen

68k asm:

tst.l rains
sne.b -(sp) ;BL evaluation
tst.b (sp)+
beq .0000011 ;jump performed when false
bsr OpenUmbrella
bra .0000010 ;skip "othw" section

.0000011
bsr PutOnSunGlasses

.0000010

EXAMPLE 2

ESA asm:

when.s d0=d1
nop

owhen d1<d2
nop § nop

owhen d3>d4
nop § nop § nop

othw
bsr DoSomething

ewhen

68k asm:

cmp.l d1,d0
seq.b -(sp) ;d0=d1?
tst.b (sp)+
beq.s .0000001 ;if not...
nop
bra.s .0000000 ;exit

.0000001 cmp.l d2,d1
slt.b -(sp) ;d1<d2?
tst.b (sp)+
beq .0000002 ;if not...

ESA v1.5 Documentation 50 / 59

nop
nop
bra.s .0000000 ;exit

.0000002 cmp.l d4,d3
sgt.b -(sp) ;d3>d4?
tst.b (sp)+
beq .0000003 ;if not...
nop
nop
nop
bra.s .0000000 ;exit

.0000003
bsr DoSomething ;default case

.0000000

1.48 defining functions

function

SYNTAX

"function" ["loc:"] NAME:sym "[" [RL1:regslist] "]" ["," RL2:regslist] ":" OUT: ←↩
var
...
...
...

"efunc" [’,’ RESULT:val]

MEANING

1. a label is defined as the entry point of the function
2. if RL2 is declared, the registers are stored in the stack with a

movem
3. the code "..." is copied (and processed, of course)
4. if RESULT is specified, it is copied to OUT (with OUT’s size)
5. if RL2 is specified, the registers are restored from the values

previously saved in the stack (another movem)
6. rts is put at the end of the function

NOTES

- RL1 tells ESA how to assign the arguments when this function is

called
;

- OUT tells ESA where to get the function’s result from;
- pay attention to RL2 and OUT!!! RL2 *SHOULD NOT* contain OUT, if OUT

is a reg (*no* check)!!!
- "function" must be separated from NAME by one or more spaces/TABs,

otherwise "functionNAME" would be acknowledged as an instruction/
/macro/etc...

- the exit point of the function is marked by a label to allow the

ESA v1.5 Documentation 51 / 59

forced exit from the func
;

- normally functions’ labels are global (
whatever char has been

chosen
for labels); instead, if "loc" is declared, the function

definition will be "local", i.e. its labels will start with ’.’;
- NAME can be up to 30 char long;
- don’t put a label on the same line of "function" (why should you

enter a func in that way?!?);
- size of OUT is used only if inside a boolexpr;
- ESA won’t check for repetitions of function names;
-

wondering why you have to use ’[’,’]’-type brackets?
EXAMPLE 0

ESA asm:

function SetDMA[d0.w],d1:d0
move.w $dff002,d1
ori.w #$8000,d0
move.w d0,$dff096
move.w d1,d0
efunc

68k asm:

f0000000 movem.l d1,-(sp) ;save regs in RL2
move.w $dff002,d1
ori.w #$8000,d0
move.w d0,$dff096
move.w d1,d0

f0000001 movem.l (sp)+,d1
rts

EXAMPLE 1

ESA asm:

function GetMess[], d0-d7/a0-a6 :MessAmount.b
lea.l TileTable,a0
bsr MessWithRegs
move.b (a5),MessAmount
efunc

68k asm:

f0000002 movem.l d0-d7/a0-a6,-(sp)
lea.l TileTable,a0
bsr MessWithRegs
move.b (a5),MessAmount

f0000003 movem.l (sp)+,d0-d7/a0-a6
rts

ESA v1.5 Documentation 52 / 59

EXAMPLE 2

Go
here
to learn a way of using local definitions.

EXAMPLE 3

ESA asm:

function MessWithDMA[],d0:d1
bsr _Rnd ;let’s get a random d0...
efunc , SetDMA[d0] ;... and watch some fireworks!

68k asm:

f0000004 movem.l d0,-(sp)
bsr _Rnd
bsr f0000000 ;see example 0
move.l d0,d1 ;return SetDMA[] retcode

f0000005 movem.l (sp)+,d0
rts

1.49 calling functions

Calling a Function

SYNTAX

NAME:sym [SZ:jsize] "[" [["sav:"] PARAMS:args] "]"

MEANING

1. if "sav:" is declared, stores the RL1 registers (declared in the

function definition
) in the stack

2. loads to RL1 the parameters passed inside the brackets
3. executes function code
4. after the execution of NAME (if "sav:" is declared, the registers

of RL1 are restored) the program continues with the 1st instruction
after this call

NOTES

- a function can be called only as an argument of an asm instruction
or ESA construction, i.e. you can’t put it in the label/instruction
fields;

- SZ is the size to be used for the bsr (default: none);
- when SZ=".l", the instruction jsr is used instead of bsr.l to easily

allow calls to other code sections;
- since ESA is fully orthogonal, funcs can be used everywhere their re-

ESA v1.5 Documentation 53 / 59

turn type (
var
) is expected to be found;

- when "sav:" declared make sure that OUT (returned by the function),
if reg, is not included in RL1;

- be extremely cautious when calling functions inside other ESA con-
structs, as you could accidentally trash some variables/registers!

-
wondering why you have to use ’[’,’]’-type brackets?
EXAMPLE 0

ESA asm:

move.w
SetDMA.l[#$f]
,OldDMA ;1st

move.w SetDMA[sav:#$f],OldDMA ;2nd

68k asm:

move.w #$f,d0 ;load arg
jsr f0000000
move.w d0,OldDMA ;1st OK!
movem.l d0,-(sp) ;"sav:" used in the 2nd
move.w #$f,d0
bsr f0000000
movem.l (sp)+,d0 ;WRONG! the result
move.w d0,OldDMA ;is lost!!!

EXAMPLE 1

ESA asm:

bool #24=
GetMess[]
,d7 ;compound call!

68k asm:

bsr f0000002 ;execute function
cmpi.b #24,MessAmount
seq.b -(sp) ;BL evaluation
move.b (sp)+,d7 ;result

1.50 premature exit from a procedure or function

pop

SYNTAX

"pop"[SZ:jsize]

MEANING

ESA v1.5 Documentation 54 / 59

1. the last procedure/function being defined is forced to terminate
(a jump to the end label is performed)

NOTES

- SZ is the size to be used for the bra (default: none);
- make sure that the sp is in the same position when the proc/func was

entered, otherwise a crash is almost sure!
- if inside a func, don’t forget about the return value...

EXAMPLE 0

ESA asm:

procedure UpperCase[a0/d0],d0-d1/a0
IFNE TEST_ON ;if we’re in test mode,
pop.s ;we wanna do nothing...
ENDIF
moveq.l #$df,d1
subq.l #1,d0
expire d0=d0
and.b d1,(a0)+

nexp,eq
eproc

68k asm:

p0000000 movem.l d0-d1/a0,-(sp)
IFNE TEST_ON
bra.s p0000001 ;jump to exit label
ENDIF
moveq.l #$df,d1
subq.l #1,d0

.0000002
and.b d1,(a0)+
dbeq d0,.0000002

p0000001 movem.l (sp)+,d0-d1/a0
rts

EXAMPLE 1

ESA asm:

procedure StrangePlot[a0],d0-d1/a0

expire d0=#199
move.b fx[d0],(a0)+

nexp

pop ;fx *MUST* be skipped!!!

function loc:fx[d1]:d1 ;local func definition:

ESA v1.5 Documentation 55 / 59

mulu.w d1,d1 ;as StrangePlot[] is glo-
eori.l RndSeed,d1 ;bal, fx[] isn’t visible
efunc ;externally

eproc

68k asm:

p0000000 movem.l d0-d1/a0,-(sp)

move.w #199,d0
.0000004

move.l d0,d1
bsr .0000002
move.b d1,(a0)+
dbra d0,.0000004

bra p0000001

.0000002
mulu.w d1,d1
eori.l RndSeed,d1

.0000003 rts

p0000001 movem.l (sp)+,d0-d1/a0
rts

1.51 defining procedures

procedure

SYNTAX

"procedure" ["loc:"] NAME:sym "[" [RL1:regslist] "]" ["," RL2:regslist]
...
...
...

"eproc"

MEANING

1. a label is defined as the entry point of the procedure
2. if RL2 is declared, the registers are stored in the stack with a

movem
3. the code "..." is copied (and processed, of course)
4. if RL2 is specified, the registers are restored from the values

previously saved in the stack (another movem)
5. rts is put at the end of the procedure

NOTES

- RL1 tells ESA how to assign the parameters when this procedure is

ESA v1.5 Documentation 56 / 59

called
;

- movems size is always long;
- size of RL2 is always ".l";
- "procedure" must be separated from NAME by one or more spaces/TABs,

otherwise "procedureNAME" would be acknowledged as an instruction/
/macro/etc...

- the exit point of the procedure is marked by a label to allow the

forced exit from the proc
;

- normally procedures’ labels are global (
whatever char has been

chosen
for labels); instead, if "loc" is declared, the procedure

definition will be "local", i.e. its labels will start with ’.’;
- NAME can be up to 30 char long;
- don’t put a label on the same line of "procedure" (why should you

enter a proc in that way?!?);
- ESA won’t check for repetitions of procedure names;
-

wondering why you have to use ’[’,’]’-type brackets?
EXAMPLE 0

ESA asm:

procedure loc: WaitMouse[]
.w btst.b #6,$bfe001

bne.s .w
eproc

68k asm:

.0000002 ;local labels

.w btst.b #6,$bfe001
bne.s .w

.0000003 rts

EXAMPLE 1

ESA asm:

procedure SlowClr[a0/d0.b],a0/d1
move.l d0,d1
lsr.l #2,d1
subq.l #1,d1

.c clr.l (a0)+
dbra d1,.c ;from "Writing Bad Code", Chapter 1
eproc

68k asm:

p0000000 movem.l a0/d1,-(sp) ;save regs in RL2
move.l d0,d1
lsr.l #2,d1

ESA v1.5 Documentation 57 / 59

subq.l #1,d1
.c clr.l (a0)+

dbra d1,.c
p0000001 movem.l (sp)+,a0/d1

rts

EXAMPLE 2

Go
here
to learn a way of using local definitions.

1.52 calling procedures

Calling a Procedure

SYNTAX

NAME:sym [SZ:jsize] "[" [["sav:"] PARAMS:args] "]"

MEANING

1. if "sav:" is declared, stores the RL1 registers (declared in the

procedure definition
) in the stack

2. loads to RL1 the parameters passed inside the brackets
3. executes the proc code
4. after the execution of NAME (if "sav:" is declared, the registers

of RL1 are restored) the program continues with the 1st instruction
after this call

NOTES

- procedure calls can only be put in the instruction field;
- SZ is the size to be used for the bsr (default: none);
- when SZ=".l", the instruction jsr is used instead of bsr.l to easily

allow calls to other code sections;
- if one of the args matches exactly the corrispondent destination re-

gister in RL1, no "move" is done!
-

wondering why you have to use ’[’,’]’-type brackets?
EXAMPLE 0

ESA asm:

WaitMouse.s[]
bra SomewhereElse ;avoid "collisions" with procs

procedure loc:WaitMouse[]
.w btst.b #6,$bfe001

bne.s .w

ESA v1.5 Documentation 58 / 59

eproc

68k asm:

bsr.s .0000000
bra SomewhereElse

.0000000

.w btst.b #6,$bfe001
bne.s .w

.0000001 rts

EXAMPLE 1

ESA asm:

SlowClr[sav: #buffer , d1]
bra SomewhereElse

procedure SlowClr[a0/d0.b],a0/d1
move.l d0,d1
lsr.l #2,d1
subq.l #1,d1

.c clr.l (a0)+
dbra d1,.c ;from "Writing Bad Code", Chapter 1
eproc

68k asm:

movem.l a0/d0,-(sp) ;"sav:" -> save regs in RL1
move.l #buffer,a0
move.b d1,d0 ;.b according to declaration
bsr p0000000 ;call proc
movem.l (sp)+,a0/d0
bra SomewhereElse

p0000000 movem.l a0/d1,-(sp)
move.l d0,d1
lsr.l #2,d1
subq.l #1,d1

.c clr.l (a0)+
dbra d1,.c

p0000001 movem.l (sp)+,a0/d1
rts

EXAMPLE 2

ESA asm:

SlowClr.l[sav:#Buffer,d0] ;same proc as above

68k asm:

movem.l a0/d0,-(sp)
move.l #Buffer,a0 ;only a0 loaded!

ESA v1.5 Documentation 59 / 59

jsr p0000002 ;jsr instead of bsr
movem.l (sp)+,a0/d0

	ESA v1.5 Documentation
	ESA v1.5 doc (30.10.1998)
	DISCLAIMER and Distribution
	Requirements & Installation
	Introduction
	Features
	Using ESA
	ESA Grammar & Constructions (back to school...)
	General Notes
	Correct Use
	How Do I Get the Best Performance?
	Miscellaneous Notes
	Error Messages
	Pass 1 Errors
	Pass 2 Errors
	General Errors
	Errors List
	Bugs
	History
	Future
	Hi there!
	Greetz and Thanx
	Include Files Handling
	Multiple Instructions on a Single Line
	Conventions and Types
	Effective Address
	Logical Operators
	Comparison Operators and Condition Codes
	Mathemathical Operators
	Sizes
	A Little Mistake in the Grammar...
	Registers
	Registers Lists
	Symbols
	Boolean Expressions
	Mathemathical Expressions
	Restricted Values
	boolean evaluation
	a bit of AMOS, too!
	exiting loops
	68k 'dbra'
	what to say?!?
	just like Pascal!
	BASIC's 'while' ... 'wend'
	jump table (branches)
	jump table (subroutines)
	much better than C's!
	'if' ... 'else if' ... 'else' ... 'end if'
	defining functions
	calling functions
	premature exit from a procedure or function
	defining procedures
	calling procedures

