
ODBC Text Driver
For All Users
The following topics discuss the ODBC text driver and how to install it.
Overview
Hardware and Software Requirements
Setting Up the ODBC Text Driver
Adding, Modifying, and Deleting a Text Data Source
Connecting to a Text Data Source
Using the ODBC Text Driver

For Advanced Users
The following topics discuss how to use the ODBC text driver directly.
Connection Strings (Advanced)
Text File Format (Advanced)
SQL Statements (Advanced)
Data Types (Advanced)
Error Messages (Advanced)

For Programmers
The following topics provide programming information on the ODBC text driver.    They are
intended for application programmers and require knowledge of the Open Database
Connectivity (ODBC) application programming interface (API).
SQLGetInfo Return Values (Programming)
ODBC API Functions (Programming)
Implementation Issues (Programming)

Overview
See Also

A text database is a directory that contains text files (tables).    You specify information
called a schema that describes the content and format of text files you want to access.   
The schema is what the ODBC text driver uses to open and create new text tables.
The ODBC text driver allows you open and query a text database through the Open
Database Connectivity (ODBC) interface.
The application/driver architecture is:

Application
|

ODBC Driver Manager (ODBC.DLL)
|

ODBC Text Driver (SIMBA.DLL, TXTISAM.DLL)
|

Text File

See Also
For All Users

Adding, Modifying, and Deleting a Text Data Source
Connecting to a Text Data Source
Hardware and Software Requirements
Setting Up the ODBC Text Driver
Using the ODBC Text Driver

Hardware and Software Requirements
See Also

To access text files, you must have:
The ODBC text driver.
The ODBC Driver Manager 1.0 (ODBC.DLL).
A computer running MS-DOS 3.3 or later.
Microsoft Windows 3.0a or later.

To add, modify, or delete drivers or data sources, you should have the ODBC Control Panel
option (or the ODBC Administrator program if you're running Windows 3.0a) installed on
your computer.

See Also
For All Users

Setting Up the ODBC Text Driver

Setting Up the ODBC Text Driver
See Also

To set up the ODBC text driver
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows 3.0a, start the ODBC Administrator by double-clicking the ODBC
Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box, choose the Drivers button.
3 In the Drivers dialog box, choose the Add button.
4 In the Add Driver dialog box, enter the name of the drive and directory containing the

ODBC text driver in the text box.    Or choose the Browse button to select a drive and
directory name.

5 Choose the OK button.
6 In the Install Drivers dialog box, choose Text from the Available ODBC Drivers list.
7 Choose the OK button to install the driver.

Note      The ODBC text driver may share some of the same dynamic link libraries (DLLs)
with other drivers installed on your computer.    If so, you will be asked to overwrite the
ODBC text driver, regardless of whether it has been installed.    Choose the Yes button to
install the driver.

After installing the driver, you must then add a data source for it.
To delete the ODBC text driver
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows 3.0a, start the ODBC Administrator by double-clicking the Microsoft
ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box choose the Drivers button.
3 In the Drivers dialog box, select the ODBC text driver from the list.
4 Choose the Delete button.

The ODBC text setup program asks if you want to remove the driver and all the data
sources that use the driver.

5 Choose the Yes button.

See Also
For All Users

Hardware and Software Requirements
Adding, Modifying, and Deleting a Text Data Source

Adding, Modifying, and Deleting a Text Data Source
See Also

Before you can access data with the ODBC text driver, you must add a data source for it.   
The ODBC text driver uses the information you enter to access the data.    You can change
or delete a data source at any time.
To add a text data source
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows 3.0a, start the ODBC Administrator by double-clicking the Microsoft
ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box, choose the Add button.
3 In the Add Data Source dialog box, select Text from the Installed ODBC Drivers list and

choose OK.
4 In the ODBC Text Setup dialog box, enter information to set up the data source.    To

define the format of tables in the data source, choose the Define Format button.    This
displays the Define Text Format dialog box, with which you can specify the schema for
the data source.

To modify a text data source
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note     For Windows 3.0a, start the ODBC Administrator by double-clicking the Microsoft
ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box, select the data source from the Data Sources list.
3 Choose the Setup button.
4 In the ODBC Text Setup dialog box, enter information to set up the data source.    To

define the format of tables in the data source, choose the Define Format button.    This
displays the Define Text Format dialog box, with which you can specify the schema for
the data source.

To delete a text data source
1 In the Main group in the Program Manager window, double-click the Control Panel icon.   

In the Control Panel window, double-click the ODBC icon.

Note      For Windows 3.0a, start the ODBC Administrator by double-clicking the Microsoft
ODBC Administrator icon in the Microsoft ODBC group.

2 In the Data Sources dialog box, select the data source from the Data Sources list.
3 Choose the Delete button, and then choose the Yes button to confirm the deletion.

schema
The schema includes information about each table (text file) in a data source, including the
table's format, the number of rows to scan to determine column types, whether the first
row of the table contains column names, and each column's name, data type, and width.

See Also
For All Users

Connecting to a Text Data Source
Setting Up the ODBC Text Driver

ODBC Text Setup Dialog Box
See Also

The ODBC Text Setup dialog box contains the following fields:
Data Source Name
A name that identifies the data source, such as Payroll or Personnel.

Description
An optional description of the data in the data source; for example, "Hire date, salary
history, and current review of all employees."

Directory
Displays the currently selected directory.    Before you add the data source, you must either
use the Select Directory button to select a directory, or select the Use Current Directory
check box to use the application's current working directory.
When defining a text data source directory, specify the directory where your most
commonly used text files are located.    The ODBC Text driver uses this directory as the
default directory.    Copy other text files into this directory if they are used frequently.   
Alternatively, you can qualify file names in a SELECT statement with the directory name:
SELECT * FROM C:\MYDIR\EMP.TXT
Or, you can use the USE statement to specify a new default directory:
USE C:\MYDIR

Options
Displays the following options:

Extensions List
Lists the filename extensions of the text files on the data source.    To use all files in the
directory, select the Default (*.*) check box.    To use only those files with certain
extensions, clear the Default (*.*) check box and add each extension you want to use.
To add an extension, type the extension in the Extension box and click the Add button.   
The extension must use the format *.xxx.    For example, to use .DAT files, type the
extension *.DAT.    To remove an extension, highlight the extension in the Extensions list and
click the Remove button.

Define Format
Displays the Define Text Format dialog box and enables you to specify the schema for
individual tables in the data source directory.

data source (text)
A text data source specifies the default data directory in which the ODBC text driver
searches for text files you want to access, as well as other driver information.

See Also
For All Users

Adding, Modifying, and Deleting a Text Data Source
Define Text Format Dialog Box

Define Text Format Dialog Box
See Also

The Define Text Format dialog box enables you to define the format for columns in a
selected file.

Note      The ODBC text driver does not change the format of a text file to match the format
defined with the Define Text Format dialog box.    If the format of the text file does not
match the format defined with this dialog box, the ODBC text driver returns an error when it
uses the format, such as when it attempts to retrieve data from the text file.

The Define Text Format dialog box contains the following fields:
Tables
Lists text files in the data source directory having filename extensions that were listed in
the Extensions list of the ODBC Text Setup dialog box.    Select the file you want to define
the format for, or select <default> to specify the format for files not explicitly defined.   
When <default> is selected, the Columns list and associated fields are disabled.

Column Name Header
Check this box if the first row of the file lists column names.

Format
Allows you to select the file format:

CSV Delimited (Comma Separated Value)
Fields are separated by a comma.    Character columns can be enclosed in double
quotation marks ("").
Tab Delimited
Fields are separated by a tab.    Character columns can be enclosed in double quotation
marks ("").
Custom Delimited
Fields are separated by a delimiter other than a comma or tab.    Use the Delimiter field
to specify the delimiter.    Character columns can be enclosed in double quotation marks
("").
Fixed Length
Fields are of a fixed length.    On output, column values less than the fixed length are
padded with spaces.

Delimiter
Specify the delimiter character used in Custom Delimited text files (it is disabled
otherwise).    For example, * specifies that asterisks separate columns.    You can also
specify the delimiter in hexadecimal (\xHH) or decimal (\dDDD) format.    For example, an
asterisk (ASCII 42) in hexadecimal format is \x2A and in decimal format is \d042.

Note      Double quotes (") may not be used as the delimiter character.

Rows to Scan
Enter the number of rows scanned to determine information about the text file.    To scan
the entire file, enter 0.    This field is enabled only with Delimited text files.

Characters
If the text file uses a non-ANSI character set, select the OEM option button.
If the text file uses the ANSI character set, select the ANSI option button.

Columns
Lists the columns in the selected table.

Data Type, Name, Width, and Date Separator

Enables you to specify the schema for each data source.    This information is written to a
SCHEMA.INI file in the data source directory.    There is a separate SCHEMA.INI for each text
data source directory.
For fixed-length tables, Width is displayed for all data types but cannot be changed except
in the Parse dialog.    For other formats, Width is enabled only for Char or LONGCHAR data
types.
The Date Separator field is enabled only for columns that have a Date data type.

Guess (CSV Delimited, Custom Delimited, and Tab Delimited Formats)
Automatically generates the column's data type, name and width values for the columns in
the selected table by scanning the table's contents according to the Format list box
selection.    Any previously defined columns in the Columns list are cleared and replaced
with new entries.

Note      For fixed-length tables, the Guess button is replaced by the Parse button.

Parse (Fixed-Length Format)
Displays the Parse dialog box.    Vertical lines separate the columns and a vertical line
marks the end of the last column.    To add a line separating two columns, place the cursor
after the last character in the first column and double-click the mouse button or press the
SPACEBAR.    It is not necessary to specify the start of the first column or the end of the last
column.    To remove a line separating two columns, place the cursor on the line and double-
click the mouse button or press the SPACEBAR.
Choose OK to close the dialog box and return to the Define Text Format dialog box.    The
column names are displayed in the Columns list and the data type of each column is set to
Char.    Use the Data Type, Name, Width, and Date Separator fields and the Modify button to
modify the attributes of each column.

Add
Adds an entry to the schema for the data source.    When you choose the Add button, the
entry identified by the Data Type, Name, Width, and Date Separator fields is added to the
end of the Column list.

Modify
Modifies a column entry.    To update an entry, select a column from the Column list, enter
new values in the Data Type, Name, Width, and Date Separator fields, and then choose the
Modify button.

Remove
Deletes a column entry.    To delete an entry, select a column from the column list, and then
choose the Remove button.

See Also
For All Users

ODBC Text Setup Dialog Box

Connecting to a Text Data Source
See Also

When you connect to a text data source, an application may prompt you to enter the name
of a directory.    If you are prompted, enter or select the directory containing the text files
you want to access.

See Also
For All Users

Adding, Modifying, and Deleting a Text Data Source
Using the ODBC Text Driver

For Advanced Users
Connection Strings (Advanced)

Using the ODBC Text Driver
The following information may be useful when using the ODBC text driver to access text
files:

Column and Table Names
If column or table names contain any characters except letters, numbers, and underscores,
they must be delimited.    To delimit a column or table name, enclose the name in double
quotes(").

Columns
Column names over 30 characters are truncated.
The driver allows column names to contain any valid text characters (for example,
spaces).    If column names contain any characters except letters, numbers, and
underscores, they must be delimited.    To delimit a column name, enclose the name in
double quotes(").
If you do not specify a column name, the driver provides a default name.    For example,
the driver calls the first column Col1, the second column Col2, and so on.
Although not required, character columns in delimited text files can be enclosed in
double quotation marks ("").    Fixed-length tables should not use double quotation-mark
delimiters.
The maximum size of a LONGCHAR column is 65,500 characters.
For all columns, null values are represented by a blank padded string in fixed-length files,
but are represented by no spaces in delimited files.    For example, in the following row
containing three fields, the second field is a null value:
"Smith", , 123
All column values may be padded with leading spaces.

Literals
The maximum length of any literal (for example, a string) is 1000 characters.
A character string literal can be any ANSI character (1 - 255 decimal).    Use two
consecutive single quotation marks ('') to represent one single quotation mark (').

Rows
The length of any row must be less than or equal to 65, 532 bytes.

Tables
The maximum width of a table is 256 columns for both fixed and delimited tables.
All tables are opened shared, except for tables created for inserting.    Those tables are
opened exclusive and can only be modified by one user at a time.    Data in tables cannot
be updated or deleted.
The driver allows table names to contain any valid MS-DOS characters.    If table names
contain any characters except letters, numbers, and underscores, they must be
delimited.    To delimit a table name, enclose the name in double quotes(").

Connection Strings (Advanced)
See Also

The connection string for the ODBC text driver uses the following keywords:
Keyword Description
DSN Name of the text

data source.
DBQ The text directory.
FIL File type (TEXT).

For example, to connect to the Accounting data source in the directory C:\ACCT, use the
following connection string:
DSN=Accounting;DBQ=C:\ACCT;FIL=TEXT

See Also
For All Users

Connecting to a Text Data Source

Text File Format (Advanced)
See Also

The ODBC text driver supports both delimited and fixed-width text files.    A text file consists
of an optional header line and zero or more text lines.
Although the header line uses the same format as the other lines in the text file, the ODBC
text driver interprets the header line entries as column names, not data.
A delimited text line contains one or more data values separated by delimiters: commas,
tabs, or a custom delimiter.    The same delimiter must be used throughout the file.    Null
data values are denoted by two delimiters in a row with no data between them.    Character
strings in a delimited text line may be enclosed in double quotation marks (" ").
The width of each data entry in a fixed-width text line is specified in a schema.    Null data
values are denoted by blanks.
The following grammar, written for programmers, defines the format of a text file that can
be read by the ODBC text driver.    Non-italics represent characters that must be entered as
shown, italics represent arguments that are defined elsewhere in the grammar, brackets
([]) represent optional items, braces ({}) delimit a list of mutually exclusive choices,
vertical bars (|) separate these choices, and ellipses (...) represent items that can be
repeated one or more times.
The format of a text file is:
text-file ::=

[delimited-header-line] [delimited-text-line]... end-of-file |
[fixed-width-header-line] [fixed-width-text-line]... end-of-file

delimited-header-line ::= delimited-text-line
delimited-text-line ::=

blank-line |
delimited-data [delimiter delimited-data]... end-of-line

fixed-width-header-line ::= fixed-width-text-line
fixed-width-text-line ::=

blank-line |
fixed-width-data [fixed-width-data]... end-of-line

end-of-file ::= <EOF>
blank-line ::= end-of-line
delimited-data ::= delimited-string | number | date | delimited-null
fixed-width-data ::= fixed-width-string | number | date | fixed-width-null
The width of each column in a fixed width text file is specified in the SCHEMA.INI file.
end-of-line ::= <CR> | <LF> | <CR><LF>
delimited-string ::= unquoted-string | quoted-string
unquoted-string ::= [character | digit] [character | digit | quote-character]...
quoted-string ::=

quote-character
[character | digit | delimiter | end-of-line | embedded-quoted-string]...
quote-character

embedded-quoted-string ::=
quote-character quote-character
[character | digit | delimiter | end-of-line]
quote-character quote-character

fixed-width-string ::= [character | digit | delimiter | quote-character] ...
character ::=    any character except:

delimiter
digit
end-of-file
end-of-line
quote-character

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
delimiter ::= , | <TAB> | custom-delimiter
custom-delimiter ::= any character except:

end-of-file
end-of-line
quote-character

The delimiter in a custom-delimited text file is specified in the SCHEMA.INI file.
quote-character ::= "
number ::= exact-number | approximate-number
exact-number ::= [+ | -] {unsigned-integer[.unsigned-integer] |

unsigned-integer. |
.unsigned-integer

approximate-number ::= exact-number{e | E}[+ | -]unsigned-integer
unsigned-integer ::= {digit}...
date ::=

mm date-separator dd date-separator yy |
mmm date-separator dd date-separator yy |
dd date-separator mmm date-separator yy |
yyyy date-separator mm date-separator dd |
yyyy date-separator mmm date-separator dd

mm ::= digit [digit]
dd ::= digit [digit]
yy ::= digit digit
yyyy ::= digit digit digit digit
mmm ::= Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
date-separator ::= - | / | .
delimited-null ::=
For delimited files, a NULL is represented by no data between two delimiters.
fixed-width-null ::= <SPACE>...
For fixed width files, a NULL is represented by spaces.

See Also
For All Users

Adding, Modifying, and Deleting a Text Data Source

SQL Statements (Advanced)
See Also

The ODBC text driver supports most SQL statements and clauses in the ODBC minimum
grammar.    While the driver supports the grammar for reading data, it has limitations for
writing data.
For information about ODBC SQL grammar limitations, and additional and driver-specific
grammar supported, see the following topics:
For Advanced Users
Additional Supported ODBC SQL Grammar (Advanced)
Driver-specific ODBC SQL Grammar (Advanced)
Limitations to ODBC SQL Grammar (Advanced)

See Also
For Advanced Users

Data Types (Advanced)

Additional Supported ODBC SQL Grammar (Advanced)
See Also

The ODBC text driver completely supports the following SQL statements and clauses in the
Core and Extended ODBC grammar:

Core and Extended Grammar
Supported Comments
Approximate numeric literal Supported
AVG(expression), COUNT(*),
MAX(expression), MIN(expression),
and, SUM(expression)

See also the description of
COUNT(expression) in Driver-specific
ODBC SQL Grammar.

BETWEEN predicate Supported
Correlation names are fully supported,
including within the table list.

For example, in the following string, E1
is the correlation name for the table
named Emp:
SELECT * FROM Emp E1
WHERE E1.LastName = 'Smith'

Exact numeric literal Supported
[GROUP BY column-name [,column-
name]...]

Supported

[HAVING search-condition] Supported.
IN (value-list) Implemented as specified in the ODBC

core grammar.    For example:
SELECT * FROM Emp
WHERE Dept
IN ('Sales','Marketing')

INSERT supports full paths for table
names

For example:
INSERT INTO R:\MYDIR\EMP\MYTABLE

See Also
For Advanced Users

Driver-specific ODBC SQL Grammar Supported (Advanced)
Limitations to ODBC SQL Grammar (Advanced)

Driver-specific ODBC SQL Grammar (Advanced)
See Also

The ODBC text driver supports the following driver-specific ODBC SQL grammar:   
Driver-specific ODBC SQL Grammar Comments
BETWEEN predicate The syntax:

expression1 BETWEEN expression2 AND
expression3
returns True only if expression1 is
greater than or equal to expression2
and expression1 is greater than or equal
to expression3.

COUNT(expression) Counts all non-null values for an
expression across a predicate.    This
function behaves like other set
functions, such as SUM, AVG, MIN, and
MAX.    For example, the following
statement counts all the rows in Q
where A+B does not equal NULL:
SELECT COUNT(A+B) FROM Q

Date arithmetic The driver supports adding and
subtracting an integer from a date
column.    The integer specifies the
number of days to add or subtract.    The
driver also supports subtracting of one
date column from another to return a
number of days.

Date literals The YYYY-MM-DD format is supported.
GROUP BY expression-list GROUP BY supports an expression list as

well as a column name.
ORDER BY expression-list If the expression is a single integer

literal, it is interpreted as the number of
the column in the result set.    Ordering
is done on one of the result table
columns.    No ordering is allowed on set
functions or an expression that contains
a set function.
For example, in the following clauses the
table is ordered by three key
expressions: a+b, c+d, and e.
SELECT * FROM emp
ORDER BY a+b,c+d,e

ORDER BY with GROUP BY ORDER BY can be performed on any
expression in the GROUP BY expression-
list or any column in the result set.

Outer Joins A SELECT statement can contain a list of
OUTER JOIN clauses.

Scalar Functions Supported.
Table names that occur in the FROM
clause of SELECT, after the INTO clause
in INSERT, and after CREATE and DROP
TABLE can contain a valid path,
primary name, and filename extension.

Filename extensions are required for
text databases.    Use of a table name
elsewhere in a SQL statement does not
support the use of paths or extensions
but will accept only the primary name
(for example, C:\ABC\EMP).    Correlation
names can be used.    You can access a

table from the current directory:
SELECT * FROM EMP.CSV
WHERE EMP.COL1 = 'aaa'

You can also specify the full path of a
file:
SELECT * FROM C:\TXTDIR\EMP.TXT

USE [drive:]\dir Sets the current database directory.   
drive is a valid drive name and dir is any
valid MS-DOS directory name.
For example, the following changes the
current directory to C:\DBDIR:
USE C:\DBDIR

USE is same as setting DataDirectory to
an MS-DOS directory in your ODBC.INI
file.

Using paths with CREATE INDEX and
DROP INDEX

You can specify a path with a table
name.    For example:
CREATE INDEX index-name
ON R:\MYDIR\EMP (A,B)
DROP INDEX R:\MYDIR\EMP.ext

See Also
For Advanced Users

Additional Supported ODBC SQL Grammar (Advanced)
Limitations to ODBC SQL Grammar Supported (Advanced)

Outer Joins (Advanced)
See Also

The ODBC text driver extends the OUTER JOIN syntax to support nested outer joins.    The
OUTER JOIN syntax is:
left-outer-join ::=
        table-reference LEFT OUTER JOIN table-reference
      ON search-condition
table-reference ::=
      table-name | [(] left-outer-join [)]
where table-name can be a table name or a table name followed by a correlation name.   
For example, the following statement uses a three-way outer join to create a list of sales
orders.    For each sales order, all line numbers (if any) are listed, and for each line number,
the part and description (if any) are listed.
SELECT Order.SONum,
Line.LineNum,
Part.PartNum,
Part.Description

FROM Order LEFT OUTER JOIN
(Line LEFT OUTER JOIN Part
ON Line.PartNum=Part.PartNum)
ON Order.SONum=Line.SONum

Note      The rightmost ON corresponds to the leftmost LEFT OUTER JOIN.

See Also
For Advanced Users

Additional Supported ODBC SQL Grammar (Advanced)
Limitations to ODBC SQL Grammar (Advanced)

Limitations to ODBC SQL Grammar (Advanced)
See Also

The ODBC text driver imposes the following limitations on the ODBC SQL grammar:
Grammar Limitation
AND predicates A maximum of 300 supported.
CREATE INDEX,
DELETE, DROP
INDEX, and
UPDATE

Not supported.

LIKE predicate If data in a column is longer than 255
characters, the LIKE comparison will be
based only on the first 255 characters.

Sort Keys The maximum length of a sort key in a
GROUP BY clause, ORDER BY clause,
SELECT DISTINCT statement, or outer
join is 255 bytes; the maximum length
of all sort keys in a sort row is 65,500
bytes.
If the length of the data in a column is
greater than 255 characters, sorting will
be based on the first 255 characters.

See Also
For Advanced Users

Additional Supported ODBC SQL Grammar (Advanced)
Driver-specific ODBC SQL Grammar (Advanced)

Data Types (Advanced)
See Also

The following table shows how text data types are mapped to ODBC SQL data types.    Note
that not all ODBC SQL data types are supported by the ODBC text driver.

Text Data Type ODBC Data Type
CHAR WIDTH colwidth SQL_CHAR
DATE dateformat WIDTH
colwidth

SQL_DATE

FLOAT WIDTH SQL_DOUBLE
INTEGER WIDTH colwidth SQL_INTEGER
LONGCHAR WIDTH colwidth SQL_LONGVARCHAR

where colwidth is the maximum width of the data (number of characters) in the text file.

Note      SQLGetTypeInfo returns ODBC data types.    All conversions in Appendix D of the
Microsoft ODBC Programmer's Reference are supported for the SQL data types listed
above.

See Also
For Advanced Users

Data Type Limitations (Advanced)
For Programmers

Implementation Issues (Programming)

Data Type Limitations (Advanced)
See Also

The ODBC text driver imposes the following limitations on the data types:
Data Type Limitation Description
CHAR columns Maximum length (fixed length or

delimited) is 255 bytes.
DATE format MM-DD-YY (for example, 01-17-92)

MMM-DD-YY (for example, Jan-17-92)
DD-MMM-YY (for example, 17-Jan-92)
YYYY-MM-DD (for example, 1992-01-17)
YYYY-MMM-DD (for example, 1992-Jan-
17)

Float columns The maximum width includes the sign
and decimal point.    In SCHEMA.INI, the
width is denoted as follows:
14.083 is Float Width 6
-14.083 is Float Width 7
+14.083 is Float Width 7
14083. is Float Width 6
ODBC always returns 8 for float
columns.
Float columns can also be in scientific
notation, for example:
-3.04E+2 is Float Width 8
25E4 is Float Width 4
Note    Decimal and scientific notation
cannot be mixed in a column.

Integer columns The maximum width is 11 for delimited
columns, and include the sign but no
decimal point.    The length can be larger
for fixed-length columns because of the
blanks added.
In SCHEMA.INI, the width is denoted as
follows:
14083 is Integer Width 5
0 is Integer Width 1
ODBC always returns 4 for integer
columns.

LONGCHAR columns Maximum length (fixed length or
delimited) is 65,500 bytes.

SQL_C_TINYINT When converting text data to the C data
type SQL_C_TINYINT, numbers from 0 to
127 are converted correctly.    Numbers
from 128 to 255 are converted to
numbers from -128 to -1.    Numbers less
than 0 or greater than 255 cannot be
converted.
When converting data from the C data
type SQL_C_TINYINT to text data,
numbers from 0 to 127 are converted
correctly.    Numbers from -128 to -1 are
converted to numbers from 128 to 255.
This occurs because SQL_C_TINYINT is

signed, but the ODBC text driver uses
unsigned single-byte integers.

See Also
For Advanced Users

SQL Statements (Advanced)

Error Messages (Advanced)
When an error occurs, the ODBC text driver returns the native error number, the SQLSTATE
(an ODBC error code), and an error message.

Native Error
For errors that occur in the data source, the ODBC text driver returns the native error
returned to it by the ODBC File Library.    For errors that are detected by the driver or the
Driver Manager, the ODBC text driver returns a native error of zero.

SQLSTATE
For errors that occur in the data source, the ODBC text driver maps the returned native
error to the appropriate SQLSTATE.    For errors that are detected by the driver or the Driver
Manager, the ODBC text driver or Driver Manager generates the appropriate SQLSTATE.

Error Message
For errors that occur in the data source, the ODBC text driver returns an error message
based on the message returned by text.    For errors that occur in the ODBC text driver or
the Driver Manager, the ODBC text driver returns an error message based on the text
associated with the SQLSTATE.
Error messages have the following format:

[vendor][ODBC-component][data-source]message-text
where the prefixes in brackets ([]) identify the location of the error.    When the error occurs
in the Driver Manager or Simba driver, data-source is not given.    When the error occurs in
the data source, the [vendor] and [ODBC-component] prefixes identify the vendor and
name of the ODBC component that received the error from the data source.
The following table shows the error messages returned by the Driver Manager, Simba driver
and Text ISAM:

Error Message Error location
[Microsoft][ODBC DLL]message-text Driver Manager

(ODBC.DLL)
[Microsoft][ODBC Single-Tier Driver]message-text Simba Driver

(SIMBA.DLL)
[Microsoft][ODBC Single-Tier Driver][ODBC File
Library]message-text

Text ISAM
(TXTISAM.DLL)

SQLGetInfo Return Values (Programming)
See Also

The following table lists the C language #defines for the fInfoType argument and the
corresponding values returned by SQLGetInfo.    This information can be retrieved by
passing the listed C language #defines to SQLGetInfo in the fInfoType argument.    Where
SQLGetInfo returns a 32-bit bitmask, a vertical bar (|) represents a bitwise OR.    For more
information about the values return by SQLGetInfo, see the Microsoft ODBC SDK
Programmer's Reference, Version 1.0.

fInfoType Value (#define) Returned Value
SQL_ACCESSIBLE_PROCEDURES "N"
SQL_ACCESSIBLE_TABLES "N"
SQL_ACTIVE_CONNECTIONS 0
SQL_ACTIVE_STATEMENTS 0
SQL_CONCAT_NULL_BEHAVIOR 1
SQL_CONVERT_BIGINT 0
SQL_CONVERT_BINARY 0
SQL_CONVERT_BIT SQL_CVT_CHAR |

SQL_CVT_DOUBLE |

SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_CHAR SQL_CVT_CHAR |
SQL_CVT_DATE |
SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_DATE SQL_CVT_CHAR |
SQL_CVT_DATE

SQL_CONVERT_DECIMAL 0
SQL_CONVERT_DOUBLE SQL_CVT_CHAR |

SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_FLOAT SQL_CVT_CHAR |
SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CONVERT
SQL_CONVERT_INTEGER SQL_CVT_CHAR |

SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_LONGVARBINARY 0
SQL_CONVERT_LONGVARCHAR SQL_CVT_CHAR |

SQL_CVT_LONGVARCHAR
SQL_CONVERT_NUMERIC SQL_CVT_CHAR |

SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_REAL SQL_CVT_CHAR |
SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_SMALLINT SQL_CVT_CHAR |
SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_TIME SQL_CVT_CHAR
SQL_CONVERT_TIMESTAMP SQL_CVT_CHAR |

SQL_CVT_DATE
SQL_CONVERT_TINYINT SQL_CVT_CHAR |

SQL_CVT_DOUBLE |
SQL_CVT_INTEGER |
SQL_CVT_LONGVARCHAR

SQL_CONVERT_VARBINARY 0
SQL_CONVERT_VARCHAR 0
SQL_CORRELATION_NAME 2
SQL_CURSOR_COMMIT_BEHAVIOR 2
SQL_CURSOR_ROLLBACK_BEHAVIOR 0
SQL_DATA_SOURCE_READ_ONLY "Y"
SQL_DBMS_NAME "TEXT"
SQL_DBMS_VER "1.0"
SQL_DEFAULT_TXN_ISOLATION 0

SQL_DRIVER_NAME "SIMBA.DLL"
SQL_DRIVER_VER " 1.01.nnnn"    (nnnn specifies

the build date.)
SQL_EXPRESSIONS_IN_ORDERBY "Y"
SQL_FETCH_DIRECTION SQL_FD_FETCH_NEXT
SQL_IDENTIFIER_CASE 4
SQL_IDENTIFIER_QUOTE_CHAR """ (double quotation mark).
SQL_MAX_COLUMN_NAME_LEN 30
SQL_MAX_CURSOR_NAME_LEN 18
SQL_MAX_OWNER_NAME_LEN 0
SQL_MAX_PROCEDURE_NAME_LEN 0
SQL_MAX_QUALIFIER_NAME_LEN 66
SQL_MAX_TABLE_NAME_LEN 12
SQL_MULT_RESULT_SETS "N"
SQL_MULTIPLE_ACTIVE_TXN "N"
SQL_NON_NULLABLE_COLUMNS 0
SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_MOD
SQL_ODBC_API_CONFORMANCE 1
SQL_ODBC_SAG_CLI_CONFORMANCE 1
SQL_ODBC_SQL_CONFORMANCE 0
SQL_ODBC_SQL_OPT_IEF "N"
SQL_OUTER_JOINS "Y"
SQL_OWNER_TERM ""
SQL_PROCEDURE_TERM ""
SQL_PROCEDURES "N"
SQL_QUALIFIER_NAME_SEPARATOR "\"    (backslash)
SQL_QUALIFIER_TERM "DIRECTORY"
SQL_ROW_UPDATES "N"
SQL_SCROLL_CONCURRENCY SQL_SCCO_READ_ONLY
SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY
SQL_SEARCH_PATTERN_ESCAPE "\"    (backslash)
SQL_SERVER_NAME "TEXT"
SQL_STRING_FUNCTIONS SQL_FN_STR_CONCAT |

SQL_FN_STR_LCASE |
SQL_FN_STR_LEFT |
SQL_FN_STR_LENGTH |
SQL_FN_STR_LOCATE |
SQL_FN_STR_LTRIM |
SQL_FN_STR_RIGHT |
SQL_FN_STR_RTRIM |
SQL_FN_STR_SUBSTRING |
SQL_FN_STR_UCASE

SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_DBNAME |
SQL_FN_SYS_USERNAME

SQL_TABLE_TERM "TABLE"
SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_CURDATE |

SQL_FN_TD_CURTIME |
SQL_FN_TD_DAYOFMONTH |
SQL_FN_TD_DAYOFWEEK |
SQL_FN_TD_MONTH |

SQL_FN_TD_YEAR
SQL_TXN_CAPABLE 0
SQL_TXN_ISOLATION_OPTIONS 0

See Also
For Advanced Users

Data Types (Advanced)
SQL Statements (Advanced)

For Programmers
Scalar Functions (Programming)

Scalar Functions (Programming)
The following table lists the scalar functions supported by the ODBC text driver.

CONCAT LCASE RIGHT
CONVERT LEFT RTRIM
CURDATE LENGTH SUBSTRING
CURTIME LOCATE UCASE
DATABASE LTRIM USER
DAYOFMONTH MOD YEAR
DAYOFWEEK MONTH

For information about the arguments and return values of scalar functions, see Appendix G
of the Microsoft ODBC SDK Programmer's Reference.

ODBC API Functions (Programming)
See Also

The ODBC text driver supports all Core and Level 1 functions and the following Level 2
functions:

SQLDataSources
SQLMoreResults

These ODBC API functions have the following implementations with the ODBC text driver:
Function Description
SQLDriverConnect The following keywords are

supported in the connection
string: DSN, DBQ, and FIL.

SQLGetConnectOptio
n and
SQLSetConnectOptio
n

These functions support the
SQL_ACCESS_MODE,
SQL_CURRENT_QUALIFIER,
SQL_OPT_TRACE, and
SQL_OPT_TRACEFILE
connection options.   
SQLGetConnectOption also
supports the
SQL_AUTOCOMMIT option.

SQLGetCursorName
and
SQLSetCursorName

These functions are supported,
but cannot be used for
positioned updates or deletes
(for example, WHERE CURRENT
OF cursor-name).

SQLGetData This function can retrieve data
from any column, whether or
not there are bound columns
after it and regardless of the
order in which the columns are
retrieved.

SQLGetInfo SQLGetInfo supports a driver-
specific information type,
SQL_FILE_USAGE (65002).   
The returned value is a 16-bit
integer that indicates how the
driver directly treats files in a
data source:
0 (SQL_FILE_NOT_SUPPORTED)
= The driver is not a single-tier
driver.
1 (SQL_FILE_TABLE) = A single-
tier driver treats files in a data
source as tables.
3 (SQL_FILE_QUALIFIER) = A
single-tier driver treats files in
a data source as a qualifier.
The ODBC text driver returns 1,
since each text file is a table.

SQLGetStmtOption
and
SQLSetStmtOption

These functions support the
SQL_MAX_LENGTH,
SQL_MAX_ROWS, and
SQL_NOSCAN statement
options.

SQLGetTypeInfo Only data type names returned

by SQLGetTypeInfo can be
used with CREATE statements.

SQLMoreResults SQLMoreResults always
returns SQL_NO_DATA_FOUND. 
It cannot return additional
results.

SQLSpecialColumns This function always returns
SQL_SUCCESS and an empty
result set.

SQLTables The table names returned by
SQLTables have no filename
extensions.

SQLTransact This function supports
COMMIT, but not ROLLBACK.

See Also
For Advanced Users

Error Messages (Advanced)
For Programmers

Implementation Issues (Programming)

Implementation Issues (Programming)
See Also

The following implementation-specific issues might affect the use of the ODBC text driver.
Arithmetic Errors
The Text driver evaluates the WHERE clause in a SELECT statement as it fetches each row.   
If a row contains a value that causes an arithmetic error, such as divide-by-zero or numeric
overflow, the driver returns all rows, but returns errors for columns with arithmetic errors.   
When inserting or updating, however, the Text driver stops inserting or updating data when
the first arithmetic error is encountered.

Closing Open Tables (Files)
Calling SQLFreeStmt with the SQL_CLOSE option changes the statement state but does
not close the tables used by the hstmt.    To close the tables currently used by hstmt, you
must call SQLFreeStmt with the SQL_DROP option.   
In the following example, when SQLFreeStmt is called, the emp and dept tables remain
open:
SQLPrepare(hStmt,"SELECT * FROM emp,dept
WHERE emp.dept = dept.dept_id",SQL_NTS);
SQLExecute(hStmt);
/*.SQLFetch until NO_DATA_FOUND
SQLFreeStmt(hStmt,SQL_CLOSE);
SQLPrepare(hStmt,"SELECT * FROM emp",SQL_NTS);

Note      Each file used by the ODBC text driver requires a file handle.    Because tables
(files) remain open until SQLFreeStmt is called with the SQL_DROP option, reusing an
hstmt for different tables without dropping it can result in an error caused by attempting to
open too many files.

Creating and Opening Tables
A new table is created using the format specified in ODBC.INI.    If not specified, tables are
created in CSVDELIMITED format.    By default, INTEGER columns default to 11 characters
and FLOAT columns default to 22 characters.    DATE columns use the YYYY-MM-DD format.   
CHAR and LONGCHAR columns are the width specified in the CREATE statement.

Sorting with DISTINCT, GROUP BY, ORDER BY
DISTINCT, GROUP BY, and ORDER BY always result in a sort.    If indexes are found, data is
dynamically fetched and the sort is based using those indexes.    If indexes are not found, a
temporary table is created from the data and the sort occurs on the temporary table.    This
type of sort is not based on dynamic data since the temporary table is built from data
found in the original data file at statement execution time.

See Also
For All Users

Using the ODBC Text Driver

API
Application programming interface.    A set of routines that an application, such as Microsoft
Access, uses to request and carry out lower-level services.

character set
A character set is a set of 256 letters, numbers, and symbols specific to a country or
language. Each character set is defined by a table called a code page. An OEM (Original
Equipment Manufacturer) character set is any character set except the ANSI character set.
The ANSI character set (code page 1007) is the character set used by Microsoft Windows.

conformance level
Some applications can use only drivers that support certain levels of functionality, or
conformance levels.    For example, an application might require that drivers be able to
prompt the user for the password for a data source.    This ability is part of the Level 1
conformance level for the application programming interface (API).
Every ODBC driver conforms to one of three API levels (Core, Level 1, or Level 2) and one of
three SQL grammar levels (Minimum, Core, or Extended).    Drivers may support some of
the functionality in levels above their stated level.
For detailed information about conformance levels, programmers should see the Microsoft
ODBC SDK Programmer's Reference.

data source
A data source includes the data a user wants to access and the information needed to get
to that data.    Examples of data sources are:

A SQL Server database, the server on which it resides, and the network used to access
that server.
A directory containing a set of dBASE files you want to access.

DBMS
Database management system.    The software used to organize, analyze, search for,
update, and retrieve data.

DDL
Data definition language.    Any SQL statement that can be used to define data objects and
their attributes.    Examples include CREATE TABLE, DROP VIEW, and GRANT statements.

DLL
Dynamic-link library.    A set of routines that one or more applications can use to perform
common tasks.    The ODBC drivers are DLLs.

DML
Data manipulation language.    Any SQL statement that can be used to manipulate data.   
Examples include UPDATE, INSERT, and DELETE statements.

ODBC
Open Database Connectivity.    A Driver Manager and a set of ODBC drivers that enable
applications to access data using SQL as a standard language.

ODBC Driver Manager
A dynamic-link library (DLL) that provides access to ODBC drivers.

ODBC driver
A dynamic-link library (DLL) that an ODBC-enabled application, such as Microsoft Excel, can
use to gain access to a particular data source.    Each database management system
(DBMS), such as Microsoft SQL Server, requires a different driver.

SQL
Structured Query Language.    A language used for retrieving, updating, and managing
data.

SQL statement
A command written in Structured Query Language (SQL); also known as a query.    An SQL
statement specifies an operation to perform, such as SELECT, DELETE, or CREATE TABLE;
the tables and columns on which to perform that operation; and any constraints to that
operation.

translation option
An option that specifies how a translator translates data.    For example, a translation option
might specify the character sets between which a translator translates character data.    It
might also provide a key for encryption and decryption.

translator
A dynamic-link library (DLL) that translates all data passing between an application, such
as Microsoft Access, and a data source.    The most common use of a translator is to
translate character data between different character sets.    A translator can also perform
tasks such as encryption and decryption or compression and expansion.

