
   

Contents
Chapter 1     Introduction
        1.1 Igraphs
        1.2 Extensive Operator Libraries
        1.3 Generalized Data Objects
        1.4 Data-Flow Environment
        1.5 Client/Server Model
        1.6 Parallel Execution
        1.7 Data/Demand-Driven Modes
        1.8 CAD-like Environment
        1.9 User Extendable
Chapter 2     Getting Started
        2.1 Installation
        2.2 Building Operators and Servers
        2.3 Using WATCOM C with WiT
        2.4 How to Avoid Reading This Manual
        2.5 The Main Panel
        2.6 Microsoft Windows Environment
Chapter 3     Manipulating Data Objects
        3.1 Viewing Images and Objects
        3.2 Images and Image Properties
        3.3 General Objects
        3.4 Reading/Writing and Search Paths
        3.5 Object File Format
Chapter 4     Data-Driven Mode
        4.1 Executing an Igraph
        4.2 Data-Driven Options
        4.3 Run Controls
        4.4 More Example Igraphs
        4.5 Building an Igraph
        4.6 Splitting Links
        4.7 Editing Links
        4.8 Moving Operators and Links
        4.9 Zooming and Panning the Workspace
        4.10 Saving and Deleting Igraphs
        4.11 Getting Help
        4.12 Operator Selector
        4.13 The Graph Menu
Chapter 5     Advanced Igraph Building
        5.1 Operator Properties
        5.2 Link Properties
        5.3 Customizing the Grid
        5.4 Pick Tolerance

        5.5 Object Names
        5.6 Cut and Paste Across Top Level Igraphs
        5.7 Parameters as Inputs
        5.8 Hierarchical Operators
Chapter 6     Data-Flow Model
        6.1 The Scheduler
        6.2 / Extensions to Basic Data-Flow Model
        6.3 Some Caveats of Data-Flow
Chapter 7     Demand-Driven Mode
        7.1 Reading and Displaying Images
        7.2 Demand-Driven Mode Cards
        7.3 Executing a Series of Operators
        7.4 Demand-Driven Options
        7.5 Demand-Mode Scripts
Chapter 8     General Tools and Techniques
        8.1 Zooming and Panning with the Mouse
        8.2 Resizing Windows
        8.3 Selecting Graphical Objects
        8.4 Moving and Adjusting Graphical Objects
        8.5 Color Panel
        8.6 Zoom/pan
        8.7 Printing
        8.8 Icon Editor
        8.9 Array Editor
Chapter 9     Interactive Operators
        9.1 GetData
        9.2 Surface
        9.3 Graph
        9.4 System
Chapter 10     Configuration
        10.1 Command Line Options
        10.2 Directories
        10.3 Designing Your Own Icons
        10.4 Color
        10.5 Servers
        10.6 Execution Environment
Appendix A     WiT File Format

Chapter 1      Introduction
WiT is a powerful visual programming package for designing computer algorithms with block
diagrams which can be executed. It is particularly suitable for complex image processing
applications in areas such as machine vision, medical imaging, and imaging research. Solutions
are rapidly developed and elegantly described by building imaging graphs, called Igraphs, using
icons and    links with ``point-and-click'' simplicity.    Figure Example WiT Session shows an
example of an Igraph and a typical WiT session.

Example WiT Session
(Figure omitted on purpose on demos)

1.1 Igraphs

The Igraph concept is one of the most noticeable features in WiT. An Igraph is a graphical
representation of an imaging algorithm. On an Igraph, each icon represents an operation, such as
reading an image file, performing a convolution, or generating a lookup table. Each operation
takes some number of input objects and produces some output objects, which flow along paths
specified by directed links.

Operators are represented by graphical icons, not just a block diagram with text inside. This
makes your imaging algorithm pleasant to work with and easy to understand. The properties of
each operator can be interactively modified and displayed below the icon so that the Igraph is a
complete representation of your algorithm. Flow control operators such as if-then-else and for-
loop allow you to incorporate conditional logic within an Igraph.

When an Igraph is executed, WiT dynamically shows you data objects travelling along links or
being processed by operators, and which inputs and outputs are being consumed and generated.
Controls for pausing, continuing, or stopping Igraph execution are available.

Igraphs present a quick way of prototyping and testing image analysis procedures without
committing hours of tedious programming. Igraphs also serve as concise and accurate
documentation of an algorithm which is easy to read and understand.

1.2 Extensive Operator Libraries

WiT comes with a rich set of operators classified into iconified libraries in areas such as
read/write, point, filter, transform,    morphology, segmentation, and measurement.    A powerful
flow control library provides operators which allow Igraphs to employ conditional branches,
loops, synchronization, and sequencing through arrays of objects.

Operators are available for interactive manipulation and viewing of image data. For example,
you can interactively enter graphical data, such as points, rectangles, or polygons on images; plot
data sets as graphs in a variety of styles; display image data as 3-D surfaces; adjust image
contrast; and display image intensity profiles.

1.3 Generalized Data Objects

The initial stages of imaging algorithms may deal exclusively with images, but as an imaging
algorithm progresses to a higher level segmentation, measurement, or recognition phase, other
data types such as chain-codes and feature vectors become necessary. All data types, not just
images, are treated as objects in WiT. An object is similar to the structure or record
used in some programming languages. It can contain many fields. For example, an object for an
employee may contain his name, address, position, and salary as fields. A department object
may contain an array of employee objects. An image object would contain its width,
height, depth, and data bits.

 Any object type can be viewed by placing a magnifying glass (see Figure Example WiT
Session) on a link. All object types can be displayed, read, saved, and printed. For example, an
image and a vector of statistical data are being displayed in Figure Example WiT Session.

1.4 Data-Flow Environment

WiT adopts the data-flow model of program execution instead of the control-flow model used in
most programming languages such as C or BASIC. In the data-flow model, an algorithm is
expressed in terms of operators that process input data and produce output data (called tokens).
An operator may be a simple procedure, such as addition or subtraction, or it may be an intricate
function consisting of thousands of lines of code. An operator becomes ready for execution when
all its input objects are available. With data-flow, it is not necessary to assign names to variables.
The relationship of program code (operators) to data (objects that flow along links) is expressed
graphically by how operators are connected. This makes the data-flow model more suitable for a
graphical environment. Moreover, it is natural to express parallel program execution with data-
flow. For example, suppose you want to program the equation

 C = (A + B) x (A - B) If you program this in C, you might write

 T1 = A + B;
 T2 = A - B;
 C = T1*T2;

Notice the use of variable names, particularly T1 and T2 for holding temporary results. You
may argue that you can program the entire equation in a single C statement and thus avoid
temporary variables, but bear in mind that this is a simplified example. The operations + and -
may be arbitrarily complex expressions.

Notice also that in reality it is not necessary that the computation of T2 should follow T1, or vice
versa. T1 and T2 can be computed at the same time, since they both depend only on A and B.
Most programming languages do not allow such parallelism to be expressed explicitly. Special
languages (such as Ada and Occam) are needed. One possible implementation might look like
this

 CoBegin {

 {
 T1 = A + B;
 }
 {
 T2 = A - B;
 }
 }
 C = T1*T2;
where we assumed a hypothetical programming language which has the keyword CoBegin
which allows you to explicitly specify what instructions can be computed in parallel.

In contrast, this equation can be elegantly expressed in a data-flow diagram (generally called a
data dependency graph) as in Fig. Data Dependency Graph.

Data Dependency Graph
(Figure omitted on purpose on demos)

The parallelism is implied by the link branches after the READ A and READ B operators.
There is no longer need for intermediate variable names. Their existence is represented implicitly
by the links between the + and - operations and the x operation. In fact, if A and B are results
from some other graph, then even their names are unnecessary.

Parallel computation can greatly reduce program execution time. For example, your algorithm
may require an image to be filtered with ten different filters so that the results can be compared.
If you have ten computers in your local area network, WiT can instruct each computer to filter
the image with a different filter. The overall execution speed of the algorithm can then be up to
ten times faster.

WiT exploits these advantages of the data-flow model to offer the user Igraphs which are
intuitive, self-descriptive, and capable of executing in parallel on many computers at the same
time.

1.5 Client/Server Model

WiT is based on a client/server model and consists of two parts: a graphical user interface (GUI)
and some (zero to infinitely many) computational servers, which are separate programs
communicating with one another using some kind of interprocess process communication (IPC)
mechanism. The client/server arrangement is superior to a single program in many respects:

· The GUI and server components can run on different computers, which may even be of

different makes. For example, you can have the GUI running on a PC, and the server running
on a Cray supercomputer.

· You can have more than one server, which together with the data-flow model, will be able to
run operators in parallel on different servers at the same time.

· New operators can be added by rewriting the server only, which is small and easy to

understand, and compiles fast.
· Because the server is small, it can even run on a diskless computer, which may need to be

physically close to special purpose hardware.
· The server is often continually changed to accommodate new operators, which means it is

prone to bugs. Since the server is a separate program from the GUI, any bugs are confined to
the server itself, which makes it easy to detect errors and debug new operators.

1.6 Parallel Execution

Parallel computation is understandably highly complicated and is still a major research topic.
WiT does not solve all the issues in parallel computation, but it offers a practical application
environment which allows the user to tap into the power of networked computers which are so
common nowadays.

A parallel algorithm which involves running small operations, such as the example in Figure
Data Dependency Graph, is termed fine grain parallelism. If the individual operations are
large, perhaps each involving the execution of a program such as a compiler or word processor,
then it is termed coarse grain. If it is something in between, such as when the operators are
function calls, then it is termed medium grain. Obviously the boundaries between the different
classification are rather vague. WiT is best suited to medium to coarse grain parallelism. It will
work with fine grain operations, but the overhead involved may destroy any potential speed
gains.

Parallelism is expressed in an Igraph by having link branches, or operators that produce more
than one output. You can have as many branches as you like from a link. This allows you to
easily represent parallelism in your algorithm. WiT employs a sophisticated scheduler that can
analyze link connections and determine how to dispatch operations efficiently across a network
of servers (if available).   

An operation is dispatched by sending the necessary data objects to a server and then instructing
it to carry out the operation. While this server is busy, another operation can be dispatched to
another server, and so on until all available servers are busy. As soon as a server comes back with
results, it can be given a new task. The WiT scheduler knows what servers are capable of
executing which operators (if the servers are different).

Objects can be sent between heterogeneous machine architectures so that WiT can take
advantage of different hardware platforms such as vxWorks host processors, Datacube hardware,
or DSP networks. All the necessary data conversion and communication is transparent to the
user.

1.7 Data/Demand-Driven Modes

Although Igraphs are extremely powerful in expressing complex imaging algorithms, sometimes
it is more convenient to try different operators and see the results immediately.    For this reason,
WiT provides two modes of execution: data-driven and demand-driven.

Igraphs are used only in data-driven mode. In demand-driven mode, you can run operators on
images or objects that you specify, and the results are displayed    immediately. This is helpful in
exploring and understanding the set of imaging operations WiT offers, as well as debugging any
new operators that you have developed yourself. Actions performed in demand mode can be
saved as demand scripts and played back later.

1.8 CAD-like Environment

WiT is designed to handle highly complex Igraphs. Hundreds of operators can be utilized in a
single algorithm without any problems. High-speed zoom and pan features make it possible to
view hundreds of operators on the computer screen.

WiT facilitates the design and layout of Igraphs by providing various features which are
commonly found in CAD systems. Igraph components may be selected then copied or moved
about the workspace. The    workspace may be increased or reduced in size. Links are easily
wired or reshaped where vertices are snapped to a grid of variable resolution. Pick accuracy can
be set small so that closely spaced objects can be distinguished, or set large so that objects can be
easily selected. Groups of operators can be interactively made into sub-graphs, allowing
algorithm details to be hidden if the user is not interested. Named ports are used to specify
connectivity among Igraphs. Sub-graph nesting level is unlimited. Multiple sub-graphs can be
viewed at the same time.

1.9 User Extendable

Users can easily extend WiT by defining new C functions and data types, and custom servers to
access specialized hardware. Although WiT was developed for image processing, it can serve as
a    general visual programming tool for developing solutions to problems interactively using a
data-flow model. The object-oriented structure of WiT promotes the design of well structured
and well behaved algorithms. Here we take a brief look at the procedures. For details, see the
Programmer's Guide.

1.9.1 Adding New Operators

Adding your own operators to WiT is easy. All you have to do is:

1. Specify the number and type of inputs, outputs, and parameters that the new operator

requires, using a special but very simple operator definition language.
0. Write a C function to process the inputs and generate the appropriate outputs,
1. Rebuild the server.

The new operator is then ready for use!

1.9.2 Adding New Object Types

Just about any data structure you can create in the C programming language can be made into a
WiT object. Built-in object types include integers, floats, strings, images, and vectors of these
basic types.

By using the WiT object definition language similar to the C struct syntax,    user-defined
objects are rapidly defined and    built into WiT using a separate program called witbuild. WiT
will then know how to send/receive, free, copy, print, read/write, and display the new object
type.

1.9.3 Adding New Server Types

Due to the client/server nature of WiT, the server code is extremely simple. It is shipped with
WiT in source code form, so that you can modify it to create your own server. For example, you
may want to make a server which initializes you specialized hardware on start-up, or you may
want to make a server that has a graphical user interface, possibly running on a different display
than the WiT GUI.

Chapter 2      Getting Started
2.1 Installation

WiT is a 32-bit Windows application which can be run on either Windows NT or Windows 3.1
systems. For Windows 3.1 users, the    Win32s package produced by Microsoft must be installed
prior to installing WiT. Win32s is a set of 32-bit DLLs which are automatically invoked when a
32-bit application is launched. It will not affect other Windows applications.

If you are using WiT on Windows NT, do not install Win32s. If you are using Windows 3.1 and
do not already have Win32s installed, follow the instructions on the supplied Win32s diskette
to install it.

To install WiT, follow the instructions printed on the WiT diskettes. The WiT installation uses a
Windows setup program which will prompt you for a target drive and directory name.
Setup automatically modifies your autoexec.bat file to define a $WITHOME
environment variable which is set to the name of the WiT directory on your hard drive. We will
refer to this directory as the WiT directory. It will also create a WiT and WiT builder icon in a
WiT folder. To launch WiT, double click on the WiT icon in the WiT folder.

The WiT distribution files are organized into a directory hierarchy    as shown in Figure WiT
Distribution Tree.    The contents of the directories are:

 bin WiT executables.

 config Default icon, witrc, and iconcache. On-line help files.
 demo Example igraphs.
 images Collection of 8-bit, 16-bit, float, and color images.
 include Header files for object/operator/server development.
 lib WiT operator development directory containing operator and    object

definition files, icons, help files, include files, and libraries.
 def Operator and object definition files.
 icons Operator icon files.
 help Operator help files.
 include Operator and object header files.
 src Operator source directory for Prototype library.
 arch Prebuilt libraries for your architecture.

 servers Server directory containing executables and interface source code.
 bin Server executables.
 src Server interface source code.
 wit arch Server build directory.

 samples A WiT development directory example setup.

WiT Distribution Tree
(Figure omitted on purpose on demos)

2.2 Building Operators and Servers

If you intend to build your own operators or servers, you need to have a 32-bit compiler that can
link your new C code to the supplied WiT prebuilt libraries. Currently, WiT supports WATCOM
C on both Windows 3.1 and NT platforms. Microsoft C is supported on NT platforms only. The
list of supported compilers will grow in the future.

2.3 Using WATCOM C with WiT

WATCOM C 10.0 has been tested thoroughly with WiT. However, any earlier version may or
may not work properly. Hereafter, whenever we refer to WATCOM C, it is understood that we
mean WATCOM C 10.0.

WATCOM C has numerous switches some of which can be deadly if you    do not select
carefully. For example, some switches specify what operating system you are supposed to be
using, but WATCOM does not check whether you are actually using that operating system or
not.

To aid the programmer, we have summarized the procedures you should adopt when you compile
new operators and servers for WiT. It is not absolutely necessary that you follow these steps, but
if you decide not to follow these steps and you get into trouble, refer to the steps outlined here to
determine where the error is.

For your convenience, all suggested settings mentioned in this section can be found in    ASCII
form in the directory $WITHOME\samples\watcom. We will refer to this as the samples
directory.

2.3.1 The G Environment

The supplied WiT prebuilt libraries provide utilities to simplify cross-platform program
development. It is a subset of the G program development environment that Logical Vision uses
internally. G is a package for developing platform independent applications with or without a
graphical user interface (GUI).

To ensure your programs are portable, it is very important that you include only the G header
files and not any header files from the platform you are using (e.g. windows.h). Logical
Vision has undergone extensive testing to verify that all G functions perform correctly under
supported platforms. If you decide to interact directly with the underlying platforms, you are on
your own.

The WiT installation procedure automatically creates a directory G under the WiT directory. It
also creates an environment variable GHOME that points to this directory. We will refer to this as
the G directory.

2.3.2 Include File Fixes

WATCOM C has a non-standard interface for variable argument list function calls. This has to
be fixed if you want your applications portable. The directory watcom under the samples
directory contains these corrected header files:

 stdarg.h
 stdio.h

For safety reasons, the install procedures do not automatically copy these files to the standard
WATCOM include directory \WATCOM\H. You must copy them yourself.

2.3.3 Compiler and Linker Switches

WATCOM can use a combination of environment variables and makefile flags to specify
compiler and linker switches. We suggest you put these lines in your autoexec.bat file:

 set wcc386=/dWINNT /w1 /e5 /zq /j /zp4 /d2 /ei
 set wcl386=/dWINNT /w1 /e5 /zq /j /zp4 /d2 /ei

These lines can be found in file autoexec.bat in the samples directory. The /dWINNT
switch is needed some that you can do conditional compilation when you port your files to other
platforms. WINNT is used for both Windows 3.1 and NT platforms.

2.3.4 Makefiles

To simplify user makefiles, we provide master makefiles stored in the G directory which should
be included in user makefiles.

There are two master makefiles:

1. lib.mk is for static libraries.
2. exe.mk is for executables.

Sample user makefiles can be found in the samples directory:

1. libsam.mk is a sample makefile for making static libraries. It includes lib.mk from

the G directory.
3. exesam.mk is a sample makefile for making executables. It includes exe.mk from the

G directory.

To make a new library, copy libsam.mk to makefile, and modify the OBJS list in the
makefile. Then simply type wmake/u.

Making executables is similar. Just substitute libsam.mk with exesam.mk.

2.4 How to Avoid Reading This Manual

As with many complex tools, most people prefer to learn by experimentation rather than going
through thick manuals. This manual has been written as a tutorial with a step-by-step
presentation which should be easy to follow and not take long to go through. However, if you
would rather start experimenting right away, please read this section at least! If you are not
familiar with Microsoft Windows, you should read Section Microsoft Windows Environment
first.

Like all graphical programs, most of your interaction with WiT is done via your mouse. WiT
requires a three button mouse to operate. If you have a two button mouse, you can simulate the
middle button by holding down the control key and use the left button. Specifically, WiT
recognizes these mouse actions for various functions:

 Button Down Up Drag
 Left

Select.
Start area

select.
Set position.     

Done area
select.

   

Move and
modify
objects.     

 Middle
Add to or
remove

objects from
selected list.

Backup
when

entering
polyline.     

No function No function

 Right
Display pop-

up menus.     

No function No function

With shift key held down:

 Button Down Up Drag
 Left

Start area
zoom.   

Done area
zoom.   

Update area
zoom.   

 Middle
Start pan
windows.   

Done pan
windows.   

Pan
windows.   

 Right No function No function No function

Context sensitive on-line help is available for most objects, such as icons, links, and Igraph.
Point the mouse at the object and hit the F1 key. The complete User's Guide (what you are
reading now) is available on-line from the Help pull-down menu.

With this knowledge, you are ready to explore WiT. But if you would rather get a complete feel
of what WiT offers before starting to experiment, read on.

2.5 The Main Panel

The main panel consists of a menu bar and a tool bar below it. Each item on the menu bar
produces a pull-down menu when pressed. Within a menu, items that are followed by an ellipsis
(...) bring up a sub-panel when selected.

 File Load... Load a new Igraph or demand script. The
current Igraph or demand script is
cleared.

 Save Save the current Igraph or demand
script.

 Save as... Save the current Igraph under a different
name.

 Delete... Delete an Igraph or object file.
 New Clear current Igraph.
 View objects... Display an object on a detached window.
 Print... Make a hardcopy of the workspace

and/or displayed objects.
 Quit Exit WiT. A warning message will be

issued to confirm this.
 Edit Cut Delete all selected objects.

 Copy Copy selected objects to buffer.
 Duplicate Duplicate selected objects (copy and

paste).
 Paste Paste objects in buffer to Igraph.
 Undo Undo the last edit change. Other

changes such as erase or running an
igraph cannot be undone.

 Graph Select all Select all objects in Igraph workspace.
 Node group properties... Set properties for all selected nodes.
 Link group properties... Set properties for all selected links.
 Trace all Trace data-flow path for selected objects.
 Trace inputs Trace data-flow path for inputs of

selected objects.

 Trace outputs Trace data-flow path for outputs of
selected objects.

 Make operator... Make Igraph into an operator.
 Operators Selector Text-based operator selector with wild-

card capability and access to operators
from all libraries.

 Dataflow Flow control operators (must be
present).

 Interactive Operators that run on the GUI (must be
present).

 Read/Write Operators for reading and writing
objects.

 Point Operators that operate on each pixel
individually, e.g. invert, subtract.

 Filter Digital filters, e.g. low-pass, high-pass, 1
and 2-D convolution.

 Morphology Operators that operate on shapes, e.g.
dilate, erode.

 Transform Transform operators, e.g. FFT, discrete
cosine.

 Measurement Operators that measure various aspects
of an image, e.g. statistics, spectrum.

 Segmentation Operators that classify portions of an
image into distinct segments, e.g. collect
blobs, local thresholding.

 Pyramids Multi-resolution imaging, e.g. decimate,
burt.

 Options Setup... General setup options, such as execution
mode and heap size tracking.

 Data driven... Data-driven options, such as grid
spacing and scheduling mode.

 Demand driven... Demand-driven options, such as number
of objects cards to be maintained in the
workspace.

 Run Start Start Igraph or demand script execution,
clearing all previous states.

 Pause Pause Igraph execution. Can resume
later with continue.

 Continue Continue after a previous pause.
 Stop Stop Igraph or demand script execution,

cannot continue afterwards.
 Reset tiles Reset object frame tiling to begin at

upper left corner of screen.
 Help Contents Complete user's manual.

 About... General information about WiT.

The tool bar provides a set of push buttons to perform many of the commonly used operations.

On the left hand side of the tool bar, a status indicator informs you about the current status of
WiT. The meanings of the indicators are:

     Execution stopped, waiting for user action: edit Igraph, start run, etc.

   

Executing at walk speed.

   

Executing at run speed.

   

Executing at sprint speed.

    Executing at warp speed.

   

Waiting for user input for an operator.

    User has requested execution to be stopped.

    User has requested execution to be paused.

    Execution has been successfully paused.

The meanings of the tool bar buttons    are:

  
Erase current Igraph or demand script.

 
Read Igraph or demand script.

 
Save Igraph or demand script.

 
Switch to data-driven mode.

 
Switch to demand-driven mode.

 
Run at walk speed.

 
Run at run speed.

 
Run at sprint speed.

 
Run at warp speed.

 
Pause execution.

 
Continue execution after pause.

 
Stop execution.

 
Reset window tiling to start at upper left of screen.

 
Make hierarchical operator for current Igraph.

 
Home workspace to upper left corner.

 
Pan workspace left.

 
Pan workspace right.

 
Pan workspace up.

 
Pan workspace down.

 
Cut selected Igraph objects or first demand card.

 
Copy selected Igraph objects.

 
Paste selected Igraph objects.

 
Undo last Igraph editing action.

2.5.1 Setup Panel

The Setup panel provides general setup options (Fig. Setup Panel for General Options). The
entries are:

Setup Panel for General Options
(Figure omitted on purpose on demos)

 Run mode    Select between demand or data-driven mode.
 Object placement This option controls how new object (images or text) windows are to be

placed:

· Random --- random locations on the screen.
· Mouse    --- current mouse position.
· Tile    --- objects are tiled (i.e. without overlap) across the screen.

 Status You can show or hide the WiT status panel with this control. If the status
window is hidden, all status messages will be discarded. This allows you
to eliminate the delay caused by printing these messages. When WiT
issues a warning (which goes to the status window), it will always bring
up the status window.

 Workspace Colors This option controls colors used operators, links, etc:

· Color --- multi-colored.
· Light --- dark objects on a bright background.
· Dark    --- bright objects on a dark background.
· Custom    --- (color displays only) user defined color scheme.

 Speed      The speed control determines whether how much feedback WiT
provides when an Igraph is run or when a demand script is played back.
Walk is slowest and warp is fastest.

 At walk speed, operators turn green when they execute, and their names
appear on the status window. The scheduler waits one second after each
operator execution before proceeding to the next operator. Token travel
on links is animated slowly so that it is easy to follow the progress of the
Igraph.

 At run speed, the scheduler pause duration is shorter, and token travel is
animated at higher speed than walk speed.
At sprint speed, token animation is turned off completely.
At warp speed, all feedback is disabled, the status window is taken
down, and even the running boy icon becomes a static lightning bolt
display, thus allowing Igraphs to run absolutely unimpeded.

 With demand-driven mode, the speed selection only affects the delay
between each step when a script is playback. Speed selection does not
affect manual execution in demand-driven mode.

 Adjust... This will bring up a new panel for you to adjust the delay associated
with each execution speed. The delay affects minimum operator
execution time and token animation time in data mode and script
playback speed in demand mode. Since some computers are faster than
others, the numbers should be treated as relative rather than absolute
(such as number of seconds). In other words, simply adjust the numbers
until the delay is satisfactory, without paying much attention to what the
delay value actually is.

 Heap This gauge reports the heapsize (in Kbytes) currently in use by WiT. It
can be enabled/disabled with the On/Off selector.

2.6 Microsoft Windows Environment

Before you start experimenting with WiT, it is important that you know the basic techniques to
interact with a Microsoft Windows application. If you are already familiar with the techniques,
then you can skip this section.

Only the GUI techniques relevant to WiT are discussed here, so that you can quickly learn the
basics and proceed to explore WiT. Refer to the Windows User's Manual for more information.

2.6.1 Mouse Buttons and Movement

WiT works with a three-button mouse. In general, the left button is used for selecting things and
most other actions, and to display pull-down menus from the menu bar. The middle button is
used for adjusting things, such as augmenting a previous selection set. The right button , is used
for invoking a menu on a canvas (graphics window), or bringing up properties of an object.

Different actions are sometimes invoked by pressing a mouse button when the shift or control
keys are held down.

When you move the mouse with none of the mouse buttons held down, you are moving the
mouse. When you move the mouse with any one of the mouse buttons held down, you are
dragging it.

2.6.2 Menu Bar

Some windows (most importantly the main application window) contain a menu bar at the top.
Each item on the menu bar contains a menu which you can pull down by clicking with the left
mouse button. You can then move the mouse to the item you want and then click the left mouse
button there to select it.

2.6.3 Buttons

Buttons should be pressed by using the left mouse button. Actions associated with a button are
normally executed when a button is released.

2.6.4 Resize Corners

Windows that are decorated with double line borders can be resized. Resize corners are used in
WiT to permit the user to alter the size of graphs, images, the Igraph workspace, etc.

2.6.5 Disabled Items

When an item is not applicable in the current context (such as a delete action when there is
nothing to delete), it is disabled so that the user will not accidentally try to execute an invalid
action. Disabled text items are shown with a gray dithered appearance. Disabled iconic items are
shown with a stippled screen.

2.6.6 On-line Help

On-line help is available by hitting the F1 key on the keyboard with the mouse cursor pointing
to the object for which help is required. This is called context sensitive help. Of course, the
window must have the current keyboard focus when you do this. (The window with the keyboard
focus has a highlighted title bar.)

At this moment, context sensitive help is not supported for control widgets (buttons, sliders, etc).
It is only supported for Igraphs, Igraph operators, and Igraph link.

The entire User's Guide (what you are reading now) is available from the Help menu bar item.

Chapter 3      Manipulating Data Objects
Data objects play a vital role in WiT. They can be images, simple scalar values such as integers
or strings, or complex data structures which consist of many different fields. WiT can read, write,
display, print, and send data objects across networks, and WiT performs its work by processing
data objects with its operators. So before we get into the details of how to design algorithms with
WiT, let us first take a moment to look at the rich set of utilities that WiT provides for
manipulating images and general objects.

3.1 Viewing Images and Objects

Let us start by displaying one of the example images in WiT. Select the View objects... item
from the File menu on the top menu bar. This will bring up the familiar file dialog.

If you have followed the instructions so far, you should now be in the demo directory (check
the directory shown on the File dialog). To access the sample images, you need to go up one
directory level and then go down to the images directory. You should now see the sample
image files. Select a file (say saturn). The image will appear in a detached window. Try to
display all the images at the same time!

3.2 Images and Image Properties

WiT provides many utilities for studying image data. Assuming you have brought up the
saturn image, move the cursor inside the image and bring up the pop-up menu by pressing and
holding the right mouse button. Select the Properties... item. You should get a panel like Figure
Image Properties Panel. The functions of the various image property controls are listed below.
Different image types may have specific properties shown only with those types, e.g. profiles are
not applicable to color images, and image index is only applicable to an image vector. What
follows is a complete list of all the possible properties.

Image Properties Panel
(Figure omitted on purpose on demos)

 Size/Type Original width and height of image, and the type of each pixel.
 Position Position of mouse in image coordinates. Upper left corner is (0,0).
 Value Value of pixel at which mouse is pointing at.
 Pixel scale Screen size of each image pixel.
 Frame size The size of the image window relative to the original size of the image. If

Custom is selected, the sizes specified in the Custom frame explained below
is applicable.

 Custom frame The size of the image window, or frame, expressed as a floating-point number
for the X (horizontal) and Y (vertical) directions, relative to the original size of
the image. These numbers track changes caused by the built-in choices from
the Frame size item above, the resize corners on the image window, or

zooming in or out with the rubber band area select box (see below).
 Show profile Show a plot of pixel values along a line on the image in the X or Y directions.

The plot will be shown in a separate window, initially placed beneath (X) or to
the left (Y) of the image. You can move and resize the profile window once it
has come up. As you drag (move with left button held down) the mouse up and
down on the image, the profile plot will be updated accordingly.
 Not available for color images.

 Image index Applicable to vector of images only. Select which image in the vector to
display.

 Load all Applicable to vector of images only. A vector of images is cached on the
display server so that the scrollbar can be used effectively to quickly select
different images within the vector. Normally this cache operate like most
caches: an image is placed in the cache only when it has been accessed, i.e.,
when it is displayed.    This can create some annoying initial delay when using
the scrollbar.    The Load all button allows you to force all the images in the
vector to be loaded in the cache, provided that the cache size is not exceeded.
No harm is done if the cache is not large enough.    In that case the cache will
be filled to capacity.   
 Consideration must be given to memory consumption.    Images typically take
up a large amount of memory.    Loading a vector of images can cause severe
performance degradation to WiT and other programs, due to excessive
swapping of RAM data to and from disk.    If you do not need to access all
components of the image vector, then it may be better to let the cache load the
images on demand.   
 The cache is flushed whenever the image scale has changed, such as when
you scale an image using the resize corners.    If you wish to pre-load all
images in the cache, then you will have to click the Load all button every
time you resize the image window. An example of image vector will be
presented in Section Collect.   

 Colormap
Behavior of this item is different for grayscale and color images.
For grayscale images, three colormap types are available:   

· Grayscale: Consists of 48 shades of gray. The number of shades can be

user configured (see Chapter Configuration, Configuration).
· Pseudo: Grayscale values in an image are mapped to a set of colors

representing the visible light spectrum from blue to yellow to red. Pseudo-
color is useful for enhancing the contrast between different parts of a
grayscale image.

· Custom: Bring up a Custom Color panel which allows you to specify
colors for specific pixel intensity ranges. See Section User Defined
Color Mapping for details.

   

For color images, two colormap types are available:

· Shared: A low quality map shared by all displayed color images. The low

quality allows all color images to be displayed reasonably at the same
time.

· Render: A special colormap is computed for the current image. This map
is the best colormap that can be used given the total number of colors

available to WiT, but may cause other color images to be displayed with
incorrect colors.

   
 Refresh Redisplay the image. Useful when parts of the image are not displayed

properly due to    actions from other windows.
 Save Save the current image as a WiT object to a file. The name of the file will be

the name shown on the top name stripe of the image. The saved object can be
read by the rdObj operator. See Section Directories for more information
about which directory the image will be written to.

Experiment with these controls, particularly the X and Y profiles.

In addition to the control gadgets, you will also notice a grayscale ramp on the right hand side of
the properties panel. The use of the ramp will be discussed in detail in Section Color Control.

3.2.1 Resizing Images

When images are first displayed, they are displayed in their original size. You can change the
size of the image by changing the size of the window. WiT handles all window size changes in a
consistent way, see Section Resizing Windows for details.

Sometimes you want to magnify an image without increasing the window size, i.e., make the
window size smaller than the image size, and the window displays only a portion of the image.
You will also want to pan the window to look at different portions of the image while
maintaining a constant scale. Zoom and pan are handled in a consistent manner across all
windows in WiT. Details can be found in Section Zooming and Panning with the Mouse.   

3.2.2 Image Types

WiT supports many different image types. Samples of all supported image types are provided in
the images directory:

 Image Type                                Example Image
8-bit unsigned                                    saturn
8-bit signed  mri

16-bit unsigned                                  fighter
16-bit signed                                      brain

32-bit grayscale floating-point moon
24-bit color  frog

Thanks to the carefully planned colormap manipulation procedures, you can display all these

image types corectly at the same time within WiT (unless you modified some of the image
properties, see Section Color Control). The saturn image that we used is an 8-bit grayscale
unsigned image. The type of an image is shown on the image properties panel.

With the exception of color images, all built-in WiT operators can deal with all image types.
Only a subset of WiT operators can deal with color images directly. Typically, color images are
processed by first splitting them into their RGB or HSV components (these operators are
provided), processing the components, and then merging them back to form a color image again.

3.2.3 Color Control

Sometimes it is convenient to change the contrast on images to enhance certain features for
viewing purposes. More technically speaking, we would like to change the size and position of
the pixel intensity window through which we look at an image. This is what the ramp on the
right of the image properties panel is for.

The current color map of the image is represented by the ramp. The arrows with numbers on the
right indicate the current intensity window settings. You can drag these arrows with the left
mouse button to define a smaller or larger intensity window. When the window size changes, the
grayscale ramp is remapped to the new range. You can keep the intensity window size fixed but
move its position on the gray scale by dragging the middle arrow. The ramp is applicable to both
grayscale and pseudo-color colormaps.

For color images, you can display them using a shared color map, which uses a stipple pattern to
approximate colors. This allows multiple color images to be displayed correctly simultaneously.
However, resolution is reduced because of the stipple effect. Alternatively, you can choose to use
a private color map (using the image properties panel), which means the color map is set up so
that only colors relevant to this particular image are stored. The effect is that the image is no
longer stippled, so resolution is increased. But the side effect is that if there are other color
images being displayed, their colors will not be correctly displayed. Switching between private
and shared color maps on color images does not affect the display of grayscale images.

When images are displayed with the default settings, they can be all displayed correctly at the
same time. For example, you can display any number of 8-bit, 16-bit, and color images
simultaneously. However, if you have adjusted the intensity window differently on different
images, or selected a private color map for a color image, then WiT can no longer correctly
display all the images. You can load the correct colors for a particular image by clicking the left
mouse button at the image.

3.2.4 User Defined Color Mapping

WiT allows you to selectively map a range of grayscales to a specified color. When you select
Custom option for the Colormap item, WiT brings up a Color Editor window (Fig. User
Defined Color Mapping).

Custom Color Panel
(Figure omitted on purpose on demos)

If we take the saturn image as an example again, suppose we want to map the background
(grayscale range 0-31) to a deep blue, and the range 104-143 to a bright yellow color. On the
grayscale ramp on the left side of the Color Editor, move the window to (0, 31), then select
Add from the Edit menu. A new entry will appear on the box on the right side of Color Editor.
The entry will show the mapping (000, 031) (000, 000, 192). Repeat the process for the range
(104-143) on the grayscale ramp. Now click Apply. The saturn image will now be shown
with a blue background with some yellow patches. This custom color map will be used for this
image for as long as it is displayed. You can delete a particular color mapping by selecting (with
left mouse button) an entry in the mapping window and then selecting Delete from the Edit
menu. You can restore the original grayscale color map by clicking the Remove button.

The File menu allows you to save the mapping to a file and to read in a previously saved
mapping file to apply to the current image.

3.3 General Objects

WiT can process objects other than images. The images directory contain an example named
general. Use View objects... to bring up this object. The data will come up in a detached
window, as when an image is displayed, but this time the window contains the content of the
object as formatted text.

Many of the controls which apply to image windows also apply to general object windows. For
example, you can change the size of the window, and the text will be rescaled to fit the window.
It is rescaled such that horizontally, the number of columns displayed per line is constant
regardless of how large the window is, but vertically, as many lines as can fit in the window are
displayed. So if you want to make the characters larger, increase the window width but not the
height. If you want to see more of the object while maintaining the character size, keep the width
of the window constant and increase its height.

You can also pan the object vertically. Horizontal panning is not supported since general object
data is formatted as a long column, so it is unlikely anyone would want to view only a portion of
a line, when the entire width can be comfortably displayed. Likewise, area zooming is not
supported because it is unlikely that anyone will want to magnify a portion of a line of text, or to
shrink the text so that part of the window is unused. If you have a large (long) object and you
want to see more of it, you can reduce the width of the window (but not the height) so that the
text size becomes smaller.

3.4 Reading/Writing and Search Paths

When WiT reads an object, it uses a search path to look for it. Search paths allow frequently used
objects to be found regardless of where your working directory is, and without you having to
specify the complete path. Search paths will be discussed in detail in Section Execution
Environment.

Writing objects is handled differently. Objects and print files are always written to the object
directory, which can be specified with the Object dir... item from the main panel File menu.

Igraphs are written to the igraph directory, which is set when Save as... is used from the
File pull-down menu. See Section Directories for more information.

3.5 Object File Format

WiT objects are stored in an architecture independent format. This means that, for example, if
you have WiT running on a SUN SPARCStation, someone who has WiT running on an i486 can
give you some WiT object files, and you will be able to read them without any problems.
Provided, of course, that the file is transmitted in a medium (tape, floppy disk, etc.) and medium
format (tar, bar, FAT, etc.) that is supported by both systems. See Appendix WiT File Format for
a description of the WiT object file format.

Chapter 4      Data-Driven Mode
When you explain an algorithm to other people, or prepare documentation for it, you would
probably draw a block diagram so that the algorithm can be visualized. It would be nice if such a
diagram can actually be used for the execution of the algorithm. This is precisely what the data-
driven mode of WiT provides. It allows you to specify an algorithm with a graph (block
diagram), called an Igraph. Igraphs are made up of icons connected with links. Icons represent
operators. Links specify the direction of data-flow through the operators, i.e. the order in which
the operations are performed.

This data-flow environment is suitable for a variety of applications, the most notable of which is
probably image processing. A typical image processing algorithm involves running images
through a series of operations in a particular order. For example, you may want to smooth an
image with a low-pass filter, threshold it at a certain grayscale, then extract the skeletal
representation of the resulting blobs. The order of execution is as important as the operations
themselves. This suits the data-flow environment perfectly.

In WiT, operators process data objects which are transmitted along links. An operator may
modify an incoming object and then send it out, or simply consume it. The behavior of operators
can be controlled with interactively modifiable parameters. Output objects in turn travel along
links to be processed by other operators. Links can branch off into an unlimited number of
directions. When an object reaches a branch junction, it multiplies itself and the individual
branches can be executed in parallel, provided that you have more than one processor available.
In addition, WiT provides flow control operators such as if-then-else and for-loop to allow even
greater flexibility in the construction of large complicated graphs.

With meaningful graphical icons for operators and parameter values displayed directly below
each operator, an Igraph is not only the means of executing an algorithm, it also serves as precise
and accurate documentation for it.

4.1 Executing an Igraph

Let us start by reading and    executing a simple Igraph. Select the Load... item from the File
menu on the main panel. For this exercise, choose simple from the list. WiT will load the
simple Igraph shown in Figure A Simple Igraph.

A Simple Igraph
(Figure omitted on purpose on demos)

This Igraph has two operators connected by a single link. Normally, an operator is shown as an
icon with the operator    name at the top, parameters at the bottom, input ports on the left, and
output ports on the right. Links are always uni-directional, the direction of data-flow indicated by
the arrow on the link. In this Igraph, the rdObj operator will read the object saturn and send it
to the display operator for viewing. The display operator will use the name `saturn' on its name
stripe.

Bring up the Run menu from the top menu bar and select the Start item to execute the Igraph.

You will notice the status indicator below the File menu item changes from a mouse icon to a
running-boy icon, indicating that the Igraph is now running. The rdObj operator will turn green
momentarily, indicating that it is processing (on a monochrome screen, icons are highlighted
with a stipple pattern). When the file is read, a data object is generated by the rdObj operator.
This object is then sent to the display operator. You can actually see this object travel along the
link! When display obtains its data, it begins execution and becomes highlighted in green.
Display will bring up the saturn image in a detached window.

4.1.1 Color Indicators

On a color display, in addition to the green color which indicates an operator is busy, other colors
are used to indicate various states:

 Color                          Meaning
Red  selected

Green                                      busy
Blue  output blocked

Brown                                      waiting for user input

All colors are user configurable, see Section Color for more details. On displays which do not
have enough colors (or monochrome), WiT will try to indicate different states as well as it can.
For example, on a monochrome display, WiT uses different stipple patterns to indicate selected
and busy operators.

4.2 Data-Driven Options

You can configure the data-driven environment using the Data-Driven Options panel (Fig.
Data-Driven Options Panel) from the Options menu item. The available controls are:

Data-Driven Options Panel
(Figure omitted on purpose on demos)

 Scheduler                  This is a rather advanced control. See Section The Scheduler for details.
 Auto clear Controls whether object data is automatically cleared when the Igraph is

started or when a new graph is loaded.
 When off, object data remain displayed until the window is closed by the
user. This is useful when you want to compare results from different
Igraphs.

 Snap            When snap is on, Igraph objects (icons or links) placed on the workspace
will be snapped to the nearest grid point.
 Turning snap off will generally make it extremely difficult to create a neat
looking graph. It is probably better to reduce the grid size rather than turn
off snap when you are trying to fine position objects.

 Grid            Set the desired grid size in pixels. In addition to improving readability, the
grid is also used for snapping icons and links.
 Sometimes the visual presence of a grid can be annoying, particularly when
the grid size is small.    Hiding (choosing the Hide option) the grid
maintains its snap function, but does not show it.

 Pick tolerance    Specify the accuracy (in pixels) by which the user may pick an Igraph
object such as a link or icon. The tolerance relates to how close in screen
pixels the mouse arrow must be to an object before it is picked. Closely
spaced icons, for example, require a smaller pick tolerance.
 The Igraph cursor will change to reflect the pick tolerance. Pick tolerance is
not affected by settings of Snap or Grid.

 Show Names    Controls how Igraph object instance names are displayed. See Section
Object Names.

4.3 Run Controls

You can pause Igraph execution by bringing down the Run pull-down menu and selecting
Pause. WiT may take a while to respond to your request, because it has to wait till all currently
active operators have finished before it can pause. The run mode indicator will change from the
running-boy    to a small `z' (sleep) immediately after you select the Pause item, then when all
the active operators are finished, the run mode indicator changes to `zZ' to indicate that the
Igraph is now paused. You can resume execution by selecting Continue from the run menu. You
can also stop execution altogether by selecting Stop while an Igraph is running. Again, WiT can
stop only after all currently active operators are finished. So like pausing, the run mode indicator
first changes to a stop sign, then back to the mouse sign when the Igraph is completely halted.
You cannot Continue after a Stop.

4.4 More Example Igraphs

Besides the simple Igraph, there are many example Igraphs in the demo directory that will give
you a good understanding of the kind of algorithms that you can construct with WiT. Some of
these examples incorporate flow control operators such as if-then-else, for-loop, and the
sequencer, which allow you to build much more complicated algorithms than the linear graph in
simple. Load them like you loaded simple and see what they do. Try running with different
speed settings (from Setup panel).

Following are brief explanations of what some of the example Igraphs do, and points of interest
that they introduce.

4.4.1 If

Igraph `if'
(Figure omitted on purpose on demos)

This Igraph    (Figure Igraph `if') is a good demonstration of how the if operator works, and how
a data probe (the magnifying glass icon) can be used to display data. In this example, we read an
image, threshold it, and send it to a skeleton operator. We continue to apply the skeleton
operator until the number of pixels removed by skeleton becomes zero, at which point we
display the final image. We have a probe on the N output of skeleton so that we can keep track
of how many pixels are actually removed after each iteration. The probe inside the if loop allows
us to see the image gradually reduced to its skeleton.

We could have used the display operator instead of the probe, but the probe is more compact in
appearance, and, as we shall see in Section Creating and Editing Links, it is also much easier to
invoke.

This example also illustrates a convention which WiT uses when displaying detached object
windows: objects with the same name are displayed in the same window. If it were not for this
feature, we would have many windows each with a different count of pixels removed and
numerous images of the various stages of the skeletonization.

4.4.2 Sequence

Igraph `sequence'
(Figure omitted on purpose on demos)

The `sequence' Igraph (Figure Igraph `sequence') demonstrates the use of the sequencer and
collector operators, as well as the use of parameters as inputs and the graph operator. The
sequencer operator takes a vector of objects as input and sends the components out one by one
to its output port. In this example, we first use the ui operator dir to read all files in the working
object directory that match the specified pattern (s*.wit). This produces a vector of strings.
The names are sequenced one at a time to the rdObj operator, which reads the image file, and
sends it to the zoomSize operator to scale the image size to 64x64. The scaled images are then
sent to the stats operator to compute an image variance. Notice that only one output of the stats
operator is connected. This is allowed.    Unconnected outputs are simply discarded. Finally, the
individual variance (which is a single floating-point number) of each image is collected by the
collector operator, which takes a number of simple objects as inputs and combines them into a
vector on the output.    Because collector must know when to stop collecting, it has a flag input
at the lower port. As long as the flag is 0, it will keep on collecting. When the flag is 1, it forms
the vector and sends the output. The sequencer has a flag output for the purpose of
communicating with the collector. In our example, the vector of variances is sent to the graph
operator for plotting. Graph is a powerful operator which enables you to plot multiple curves on

the same graph, select how each graph is displayed (line, bar chart, scatter plot, etc), and zoom in
and out freely. See Section Graph for more information about graph.

Also of interest in this example are the rdObj and display operators connected to sequencer.
Let us consider the display operator. We put it there because we want to see what each
individual image looks like. However, if we simply specify a name for the name parameter of
the display operator, all the images will go to the same window. In this Igraph, we want to see
all the images at the same time, so instead of specifying a fixed value for the name parameter of
display, we made it into an input port instead (see Section Parameters as Inputs for how it is
done), and we connect the output of sequencer to this input. Parameter input ports always
appear on the bottom of an icon. This way, every time display receives a new image from
rdObj, it will also receive the corresponding file name from sequencer, so the images will be
displayed in separate windows, with the appropriate names on the title bars.

4.4.3 Hunter

Igraph `hunter'
(Figure omitted on purpose on demos)

The `hunter' Igraph (Figure Igraph `hunter') demonstrates color image processing and user
defined operators. This algorithm involves operations on both color and grayscale images and
demonstrates an interesting example of heuristic-based searching. The algorithm involves color
thresholding (brightWhite and darkReddish operators), binary segmentation (getBlobs), and
feature formation (getFeatures). The hunter operator is an example of a user-defined operator
specifically designed for this algorithm. It accepts as input two sets of feature vectors. One set
describes all the bright white objects in the color scene whereas the second set describes all dark
red objects. By stepping through the two feature vectors, the hunter operator identifies a
sailboat whenever a white object, the sail, is located above a dark narrow object, the hull, and
both objects are comparable in size. User-defined operators are covered in detail in the
Programmer's Guide.

The resulting match generates a circle which is sent on to an overlay operator to mark the
sailboat in a grayscale representation of the color image computed by converting from rgb to
hsv space.

4.4.4 Collect

Igraph `collect'
(Figure omitted on purpose on demos)

When a series of images is collected, such as from a video camera monitoring some moving
object, it is convenient to store the images as a group, or vector. The sequencer and collector

operators make it easy to deal with image vectors. Moreover, the image control panel has special
controls which allow you to quickly browse individual images from an image vector.

The `collect' Igraph illustrates how the collector operator can be used without a matching
sequencer operator. The Boolean operators true and false are used to supply the flags that
collector needs to decide when to stop collecting.

This Igraph also demonstrates how the image vector controls in the image properties panel work.
When the final image is brought up by display, bring up the image properties panel. Notice that
the Image index slider is now active (not stippled gray). Displaying an image involves a fair
amount of computation. When viewing a vector of images, it is often helpful to be able to
quickly show individual images within the vector (like animation). For this reason, WiT uses a
cache to speed up image display from a vector of images.

Normally WiT loads images into the cache only on demand. But you can force all the images in
the vector to be loaded by clicking the Load all button. With all images in the cache, you can
use the slider for smooth animation! You should bear in mind that caching a large number of
images do take up considerable memory and unless you are certain you want to view each image
within an image view, you should let WiT load the cache as required.

The image scale is maintained across all elements in an image vector. For example, if you resize
the image frame using the resize corners, you will see the Custom scale item in the image
properties panel change to reflect the new scale. Now type in another image index. Notice that
this new image is also taking on the scale that you have specified. Notice also the delay in
displaying the image. The cache is emptied every time the scale is changed. If you want to scroll
the images quickly at this new scale, you will have to click the Load all button again.

4.5 Building an Igraph

After you have tried all the demo Igraphs, you should have a fairly good idea of how powerful
the Igraph concept is. Let us now build an Igraph from scratch, and see how simple it all is. As a
practical example, let us build an Igraph to invert and then brighten an image, then save the
result. Our algorithm consists of the following steps:

1. Read an image.
2. Invert.
3. Brighten.
4. Display and write result.

Let us start by clearing the workspace: select the New item from the File pull-down menu. We
are now ready to create a new Igraph.

4.5.1 Creating Operator Instances

The first operation we need to perform is reading an image. To do this, bring up the Operators
menu from the main panel. You will get a list of operator libraries available. Operators are stored

in different libraries based on function. Since reading an object is a read operation, we should
expect to find a read operator in the Read/Write library. Select therefore the Read/Write menu
item. A panel like Figure Read/Write Library should appear.

Read/Write Library
(Figure omitted on purpose on demos)

All data types, images as well as other data structures, are treated as objects in WiT. So what we
need now is the rdObj operator, which, as the name (and the graphics in the icon) implies, reads
an object from a file. Invoke the rdObj operator by clicking (press then release) the left mouse
button at the rdObj icon.

Now when you move your mouse in the workspace, you will see a copy of the icon moving
along with the mouse. Move the icon to some place on the left hand side of the Igraph and drop it
into place by clicking the left mouse button. This creates an instance of the rdObj operator. We
will sometimes refer to operator instances on an Igraph as nodes, since that is a common term in
describing graphs in general (in technical terminology, a graph consists of nodes connected by
arcs). and you should get a panel like Figure Operator Properties Panel in Data-Driven
Mode.

Operator Properties Panel in Data-Driven Mode
(Figure omitted on purpose on demos)

This is the property panel for the rdObj operator. The filename field is the single parameter
that rdObj requires, namely the name of the file that you want to read. In general, each operator
has a number of parameters that you need to specify. Parameters are simple object types such as
integers, characters or strings (they cannot be complex data structures). They also have a name
(e.g. filename in this case). On the properties panel, each parameter is listed with its name
followed by a data entry area such as a slider or choice list for you to enter a value.

There are other controls such as Disable in this operator panel, but for now, we are only
interested in the filename item. Click the left mouse button on the filename field. Enter
saturn.

Now click the Apply button (the Reset button cancels all data entered and takes down the
properties panel). The properties panel will go down and you should see the parameter value
saturn shown under the icon. We are now finished with step 1 of our algorithm.

After you have placed an icon on the workspace, you can move it around by pressing and
holding the left mouse button while pointing at the icon. Now as you move your mouse, the icon
will follow. The icon will be placed where you release the mouse button.

If you want to change the operator parameters, click the right mouse button at the icon, and the
properties panel for that operator will be displayed again.

If you want to delete an operator, you need to select it first. WiT handles graphical objects in a
consistent manner (see Section Selecting Graphical Objects and Section Moving and
Adjusting Graphical Objects for details). An operator icon is a graphical object, since it has
both shape and size. Currently the only other graphical object type allowable in an Igraph is a
link, which we will come to later.

A graphical object is selected by clicking (press and then release) the left mouse button while
pointing at it. The object turns red when it is selected (stippled on a monochrome). Selecting
another object will cause the previous one to be deselected.

After some objects have been selected,    you can choose the Cut item from the workspace menu
to delete them. Bring up the workspace menu (cursor in workspace, press and hold right mouse
button). The items below are available from the workspace menu in data-driven mode:

 Select        Select workspace for printing (see Section Printing).
 Cut              Delete the selected objects (operator or link) from the Igraph.
 Copy            Copy selected objects to buffer.
 Duplicate Duplicate selected objects on Igraph (copy followed by paste).
 Paste          Paste objects from buffer to Igraph.
 Undo            Undo the last edit action. Undo only keeps track of graph editing events. This

means that you cannot undo things such as parameter changes or loading in the
wrong Igraph.

 View all    Scale Igraph so that all objects are visible.
 Zoom/Pan... Bring up a zoom/pan control panel (See Section Zoom/pan).
 Redisplay Redisplay the Igraph in case it is not updated properly.

Some of these same items are also available from the main panel Edit pull-down menu. Which
menu to use is merely a personal preference.

Now let us proceed on to step 2. We require an operator to invert an image. Select the Point
library from the Operators menu. The Point pop-up panel will appear. Select invert and place
this icon in the Igraph to the right of the rdObj icon. Invert does not require any parameters, so
just click Apply.

Next we require an operator that brightens an image. This is done by adding a fixed amount to
each pixel in the image. The unaryOp in the Point library will do this. Place unaryOp to the
right of the invert icon. Define the unaryOp parameter to be addition (` +').

We will also need to supply an amount to brighten the image with. Select the constant operator

from the Interactive library, and place it on the lower left of unaryOp (later we will connect
the output of constant to the `K' input of unaryOp). Enter 20 for the constant parameter.
Finally, create an instance of the wrObj operator to the right of unaryOp.

You should now have a set of operators laid out as in Figure Operators in Simple Example
Igraph.

Operators in Simple Example Igraph

4.5.2 Creating and Editing Links

Unconnected inputs and outputs of operators on an Igraph are denoted by arrows, called ports,
on the left and right sides of icons respectively. For example, in the case of rdObj, no inputs are
required, and one output is generated, whereas wrObj accepts one input and produces no output.
We now need to connect the icons together with the proper data-flow. Start by pointing at the
output port of the rdObj icon and double click the left mouse button. Now when you move
your mouse, a rubber band wire will be created between the port and the cursor. Move the cursor
to the input port of the invert icon and double click the left mouse button. The two ports
attached to the link will disappear. They are now connected by the link and data will flow from
the rdObj output to the invert input when the Igraph is executed.

There is another way to initiate and terminate a link without double clicking: by hitting the
period (`.') key on the keyboard with the mouse pointing at the port you want to connect to. This
alternate method is provided because some people find the rapid finger motions in double
clicking difficult. Also, double clicking deselects all previously selected objects. So if you want
to create a link without losing your current selection (very useful in tracing, for example. See
Section Tracing), this method is invaluable.

You may create an arbitrary path for a link by clicking with the left mouse button every time you
need a corner. Do not worry about making a `pretty' wire as WiT will straighten it out for you
once the wire is attached at both ends. Use the middle mouse button to backup. When you have
backed up all the way to the port, the rubber band will be deactivated, and the link is canceled.

Wire the output port of invert to the top input port of unaryOp. Wire the output port of
constant to the lower input port of unaryOp. Finally, wire the output of the unaryOp to the
input port of wrObj.

We now need to tell WiT to display the final result before writing it out to a file. We could have
used the display operator, but an easier and more compact way to do this is to add a probe to the
link between the unaryOp and wrObj. To do this, click the right mouse button at about the
mid-point of the link and a pop-up panel like Figure Link Properties Panel will appear.

Link Properties Panel
(Figure omitted on purpose on demos)

Erase the default name on the Name field and enter inverted (which will appear on the window
title bar when the image is displayed), then click the Yes choice for Probe. A magnifying glass
will appear on the link where you invoked the panel.

If you want to delete a probe, bring up the link properties panel and select the No choice for
Probe.

If you delete the probe now, you will see that the name `inverted' is still displayed at the link
arrow. The name `inverted' is associated with the link, not just the probe. Default link names are
not displayed on the Igraph, but user names are. If you do not want `inverted' displayed, erase the
name field from the properties panel. See Section Object Names for a more thorough
discussion of object names on an Igraph.

Our Igraph is now complete, and should look something like Figure Completed Simple Igraph
Example. Select start from the Run menu and watch your algorithm work!

Completed Simple Igraph Example

4.6 Splitting Links

Suppose we want to display the final result of our simple Igraph example as a surface plot as
well as an image. Select the surface operator from the Interactive library, and place it
somewhere above wrObj. Now we need to send the image from unaryOp to both surface and
wrObj, To do this, point at the link about half way between the unaryOp and wrObj icons and
double click the left mouse button. A rubber band wire is again created, but this time between the
mouse pointer and a newly created junction on the link, shown as a large dot. Connect this link
branch to the top input port of surface. You can have as many branches from a link as you want.
This is how multiple instances of an object can be sent to different operators. Again, you can use
the middle mouse button to back up from any incorrect corner points that you have created.
When you back up all the way to the link junction, the junction is also deleted.

Now if you run your graph again, you will see the token branch off at the link junction, and the
brightened image will be shown with a surface plot of the same image. For more information
about the surface operator, see Section Surface.

4.7 Editing Links

Links can be selected and deleted just like operators. However, when a link is deleted from a
junction, WiT employs some intelligence to determine whether the junction can be deleted or
not. If a junction has only two links connected to it after a link is deleted, and one link is pointing
towards the junction and the other one is pointing away from it, then the junction can be deleted,
otherwise it is retained. It is therefore possible for a junction to have only links bringing data to it
but no links carrying them away, or vice versa. Such a construct of course will not run properly,
but is a valid state during the Igraph design process.

You can interactively adjust (as opposed to moving) a link after it has been created. Move your
cursor to a link corner which you want to modify. Make sure the link is not selected (otherwise
the entire link will move as you drag your mouse). Notice the cursor is square. You only need to
position the cursor so that the link corner is within the square. After positioning the cursor, click
and hold the left mouse button. Now when you drag your mouse, the link corner will move with
the cursor. When you adjust links, WiT no longer tries to make the wire pretty by forcing it to lie
along grid lines or multiple of 90 degree angles.

It is also possible for a link to become disconnected from everything (for example, when you
delete a node which has some connected links). Such dangling link ends are displayed with a
frayed end on the Igraph. You can connect a link to a frayed end by double clicking the left
mouse button at the frayed end to start wiring, or you can connect an operator port to it by simply
dropping an operator icon on top of the link end, provided the direction of the operator port is
proper. For example, you can replace invert with flip by deleting invert and then dropping
flip in its place. The links on both ends of the operator will be automatically connected.

Another note about making links: the direction of a link is often implicitly determined by the
kind of ports it is connected to. If you attempt to connect a link between two input ports, or
between two output ports, WiT will warn you and refuse to make the link. When the direction of
a newly created link cannot be determined (e.g. a branch between two links), the data is assumed
to flow in the direction that the link is created, i.e. following the order in which the points on the

link are entered.

4.8 Moving Operators and Links

Adjusting links and moving operators and links follow the same general rules for all graphical
objects. (see Section Moving and Adjusting Graphical Objects for details.) There is, however,
one behavior which is specific to moving operators. When one operator with links connected is
moved, all the links stretch with the movement of the operator. This allows you to shift an
operator small amounts without having to reconnect all its ports. This behavior does not apply
when multiple operators are moved.

4.9 Zooming and Panning the Workspace

The zoom and pan techniques that you tried with images in Section Resizing Images also apply
to the workspace. In addition, if you select the Zoom/pan... item from the workspace pop-up
menu, you will get a panel for incremental zooming and panning. Details about this panel can be
found in Section Zoom/pan.

4.10 Saving and Deleting Igraphs

Save the Igraph by selecting the Save as... item from the File pull-down menu. This will bring
up the file dialog. Enter a name for the new Igraph or choosing an existing file to overwrite, then
hit the Apply button. Igraph names have a ` .igr' extension on disk. WiT adds the extension
automatically to the name you enter, so do not type that yourself. When you are editing an
existing Igraph, you normally use the Save item, and WiT will quietly save your Igraph. If you
use Save as to save an Igraph, WiT will check if that Igraph already exists and ask for your
confirmation to overwrite the previous file if it exists.

An Igraph is stored with most of the editing options that are used at the time the Igraph is saved.
These are:

· Workspace window size.
· Grid size.
· Grid visibility.
· Pick tolerance.

With this information, WiT can restore the (possibly different) working environments that you
used to created different Igraphs. For example, you probably want to use a dense but invisible
grid to design a very complex Igraph with many small objects, but a larger visible grid for simple
Igraphs.

If there are old Igraphs that you want to delete, you should do it using the Delete panel, which is
invoked by selecting the Delete item from the file pull-down menu. Do not delete Igraphs from
a shell or file manager. WiT needs to keep track of related Igraphs and hierarchical operators
(discussed later), if you do not use the Delete panel to delete an Igraph, WiT would not know

about it and may have problems later.

Although the Delete panel is primarily for deleting Igraphs, you can also use it to delete other
WiT files, such as images or other data objects. Unlike Igraphs however, you can delete WiT
data files from a shell or file manager without any ill effects.

4.11 Getting Help

4.11.1 Getting Help for Operators

You can get help for an operator by pointing at the operator icon in the operator library panel and
hitting the Help key. You can also bring up the help window by pointing at an instance of the
operator in an Igraph.

4.11.2 Getting Help for an Operator Port

Sometimes an operator has so many ports that it is not obvious what each port does. Usually the
graphics in the icon should indicate the functions of the ports, but when there are many ports,
attempting to show port functions graphically may result in extremely complex looking icons,
which would defeat the purpose of icons, which should be something simple and easy to
recognize. For this reason, a help window can be invoked for an individual port by pointing the
mouse at the port and hitting the Help key. The help window will tell you the port number and
name, and the type of object that the port is expected to receive or produce.

4.11.3 Getting Help for Igraphs and Links

You can also get help for what an Igraph does by hitting the Help key at an empty spot on an
Igraph. Similarly, if you hit Help on a link, you will get general information about links.

4.12 Operator Selector

Often you know the name of the operator you wish to execute, but you are not sure which library
it is in. Sometimes you only remember part of name of the operator you want. Going through the
graphical operator library panels to locate such an operator can be a frustrating task. The
Operator Selector panel is provided to address this requirement. Invoke this panel from the
Operators pull-down menu. You will see a panel like the one shown in Figure Operator
Selector Panel.

Operator Selector Panel
(Figure omitted on purpose on demos)

This panel provides many useful ways to select an operator:

· On the left list, you can select a library you are interested in, or you can choose to look at all

libraries at the same time. Once a choice is made by clicking the mouse at the appropriate
item on this list, the corresponding list of operators is shown on the right list.

· Double-clicking on an item on the right list launches the operator, or you can select an
operator first by clicking once and then click the Apply button.

· Regardless of the library selection, you can type the name of the operator you want on the
Name line. You can use the `*' wild-card on the Name line. When you hit return, operators
within the library currently selected which match the name typed are shown in the right list.

Notice the file name entered on the Name field is always in effect. It is a common mistake to
leave some specific name on this field while switching libraries looking for an operator. If you
do this, you may find the operator list on the right appear unusually short! So be sure that the
Name field is set to `*' if you want to see all operators listed.

The Filter item allows us to display only primitive or hierarchical (Section Hierarchical
Operators) operators. For now, just make sure that Filter is set to All, which means that all
operators will be shown.

The functions of the buttons on the right hand side are:

 Help... Help information (see Section Getting Help).
 Edit... Edit the icon (see Section Icon Editor).
 Delete... Delete the operator from WiT, use caution!
 Apply Launch operator in Name field.
 Cancel Bring down window without launching any operator.

4.13 The Graph Menu

The Graph menu (from the main panel Graph button) consists of controls applicable only to
Igraphs. The meaning of its items have been listed in Section The Main Panel.

4.13.1 Group Properties

Sometimes it is desirable to disable whole sections of an Igraph, or set a number of links to a
thicker width to emphasize a data path. Such collective changes can be done easily from the
Node group properties and Link group properties panel (Figure Node and Link Group
Properties Panels), invoked from the main panel Graph button. The attributes are the same
for individual operators or links, the only exception is that you can choose the As is option to
preserve the original attributes.

Node and Link Group Properties Panels

(Figure omitted on purpose on demos)

4.13.2 Tracing

Igraphs tend to get larger and larger. Particularly because WiT can be used to control hardware
where Igraph operators can be made to represent small operations in order to provide more
graphical programming flexibility. When Igraphs contains hundreds of operators and links, with
parallel data-flow, it can become difficult to trace how data will travel on the graph without
actually running it. The trace utility from the Graph menu provides a convenient way of
studying data paths in a large Igraph.

For example, in an Igraph with a large cross-bar switch, it is useful to be able to select some links
or operators and trace what other operators are related in terms of data flow. Tracing even works
across sub-graphs. So you can select an operator at the top level Igraph, which contains
hierarchical operators. When you trace the operator, and if the data path related to that operator
involves any of the sub-graphs, at any level, all such items, regardless of whether the sub-graphs
are currently displayed or not, will be put on the selected list (and therefore highlighted).

In wiring crossbars, it is desirable to use the tracing function to locate which ports of the crossbar
are to be connected. However, if you start the connection by double clicking at one of the ports,
all selected objects (i.e. traced objects) become dehighlighted, so the port that you want to
connect to is no longer highlighted. You can easily avoid this problem by using `.' on the
keyboard to start and terminate the wiring (see Section Creating and Editing Links).

When tracing outputs, all outputs are followed for primitive operators. For hierarchical operators,
the underlying graph structure is used to trace only those outputs related to the selected objects.

When tracing inputs, if the operator is fire-on-any (see Section Firing Strategy), then the input
is traced only if there is only one input connected. If the operator is fire-on-all, then all inputs are
traced.

Chapter 5      Advanced Igraph Building
5.1 Operator Properties

We have seen a simple use of the node properties panel in Section Creating Operator
Instances. Now we can describe this panel in more detail:

 Operator                  By default, when you create an operator instance on an Igraph, the first instance of
that operator will have the same name as the name of the operator shown on the
library. We will refer to the name of the operator on the library as the operator
name, and the name of the operator on the Igraph as the instance name. If you have
more than one instance of one operator in an Igraph, subsequent instances will have
a number appended to the operator name, e.g. rdObj #1, rdObj #2, etc.
 The Operator control allows you to override this default behavior. For example,
you may want to name some of your rdObj operators as readXRayImage,
readProfileData, etc., so that the Igraph is easier to understand, and you can refer to
a particular instance of rdObj in your documentation. See Section Object Names
for even more ways to control instance names.

 Execute                  A Disabled    means that although the operator is shown on the Igraph, it will not
be executed. For example, you may have an Igraph with multiple starting nodes. By
disabling a starting node, you can disable a whole branch of the Igraph.
 A disabled operator functions as though it is not on the Igraph at all. Tokens sent to
a disabled operator will stop there. Disabled operators are shown with a cross-hatch
pattern.
 Bypass    means the operator performs no function, and yet allows tokens to pass
through. For example, you may have a low-pass filter in an Igraph, and you want to
see what the result will be if the filter is taken out. Only operators which have the
same number of inputs and outputs and the input and output types have a one-to-
one correspondence can be bypassed. Bypassed operators are shown with a large
arrow superimposed on the icon.

 Flip                  Flip the icon in the X or Y direction, or both. This is useful when you have loop-
backs or branches coming from the top of an icon.

 Apply and Cancel are self-explanatory. Promote will be discussed in Section Promoting
Parameters.

For each operator parameter, a choice control is presented to the left which allows you to control
whether a parameter is displayed with its name and value (All, value only (Value), or not
displayed at all (None). The Input choice will be discussed in Section Parameters as Inputs.

5.2 Link Properties

The link properties panel was first introduced in Section Creating and Editing Links. Now we
can describe this panel in more detail:

 Name                  Change the name of a link. See Section Object Names for more information about
object names.

 Execute                  Enable/disable a link. Disabled links are shown as a dashed line. No data flows along
a disabled link.

 Width                  Set how thick a link should be drawn . This can be useful if you want to emphasize
certain links. Link thickness does not affect Igraph execution in any way.

 Probe                  If Yes is selected, a probe is place at where you clicked your mouse to bring up the
properties panel. If you want to move the probe, you have to select No first and
Apply the properties. Then click the right mouse button on the position of the link
that you want the probe to be,    and select Yes for Probe.

 Apply and Cancel are self-explanatory. Promote will be discussed in Section Promoting
Parameters.

5.3 Customizing the Grid

The grid that is shown on the workspace is not just for decoration only. When snap is enabled
(from the Data Driven Options    panel), objects will snap to a grid point when placed or moved
on the workspace. When making a link, however, operator ports and link corners have priority
over the grid. For example, if you branch off from a link in the middle of one of its link
segments, then WiT will choose to break the segment at a grid point. But if you branch off from
near a link corner, WiT will break the segment right at the corner. This usually results in a better
looking Igraph.

If you want to position objects at a different resolution, you can change the grid size from the
Data Driven Options    panel. If you set the grid size to 0, the grid will not be displayed at all.

Sometimes you may find the grid distracting, so you can Hide the grid. The effects of snapping
are still enabled even when the grid is hidden.

5.4 Pick Tolerance

When you need to select something on the Igraph, the size of the square cursor tells you how
accurate you need to be. You can change the pick tolerance from the Data Driven Options
panel. When you change the pick tolerance, the size of the square cursor will change accordingly.

When objects are close together, you might want to lower the pick tolerance to allow finer, pin-
point control. Conversely, you may set a coarse pick tolerance on sparse Igraphs so that it is
easier to pick things. The pick tolerance is not related to snap or the grid size.

5.5 Object Names

Every node and link on an Igraph must have a name. By default, the first instance of an operator
is given the operator name . Any more occurrences of the same operator will have a number

appended to the basic operator name. You can rename an operator to whatever name you want,
provided that same name is not already in use. If it is, then a number will be appended to the
name to make it unique. If you delete the name altogether, WiT automatically replaces it with the
default invisible base name: a single underscore character (`_').

Most printable characters can be used in instance names, including space (`__'), but you should
avoid the backslash (`\', used internally for hierarchical information) and the number (`#', used
for instance numbers) characters. Also, WiT does not display any name that starts with the
underscore character (`_'). So do not use it as the first character of a name if you want that name
displayed.

Link names are assigned following the same rules. The only exception is that by default, link
names are not displayed (they start with an underscore).

By default, instance numbers are shown. However, when dealing with large Igraphs, instance
numbers can make the Igraph look cluttered and are best turned off. In addition to specifying
individual instance names, you can control how instance names are generally displayed using the
Show names control item on the Data-driven Options panel. They can be turned off
completely (None), with only the base name showing (Base), or with the instance number
showing as well (Instance).

5.6 Cut and Paste Across Top Level Igraphs

Sometimes you may want to incorporate in part or all of one Igraph into another. This is easily
done because the copy buffer (filled when you copy something using the Copy item from the
workspace pop-up menu) is preserved when you load a new Igraph. So all you need to do is load
the Igraph that you want to copy from, select the operators and links you want, and copy them.
Then load the Igraph you want to copy the objects to (or clear the workspace for a new Igraph),
and paste the objects. When you paste, WiT automatically goes into drag mode so that the
objects can be placed interactively.

5.7 Parameters as Inputs

Often it is necessary to redefine an operator parameter as an input. For example, you may want
to set the filter width of a low pass filter dynamically depending on the contents of the image
itself. So you would like the filter width to be an input rather than a fixed value. Such an input
could then be connected to a link to get its data. WiT will produce an input port for a parameter if
the parameter field in the property panel of the operator is empty, or if the Input choice is
selected for the parameter. Parameter input ports are created on the bottom of the operator icon.

5.8 Hierarchical Operators

WiT allows you to make an Igraph into a new operator, which can then be incorporated in
another Igraph. Such operators will be referred to as either hierarchical or derived operators. You
can use hierarchical operators to group a series of operations that you commonly use, or to make
a large Igraph easier to handle and understand. Hierarchical operators can be compared to
procedures in a programming language. If a user is not interested in the internal structure of a
hierarchical operator, he can simply use the operator like he would any other operator.

An example of hierarchical operator usage can be found in the hierEg example Igraph in the
demo directory.

Hierarchical Operator Usage Example
(Figure omitted on purpose on demos)

Load this Igraph, and notice    the derivedHipass operator has a red dot on its upper right corner
(see Figure Hierarchical Operator Usage Example). This is how derived operators are shown
on the Igraph. If you want to see what is contained in derivedHipass, bring up its properties
panel. You will see that in addition to the usual parameters and buttons, there is another button,
labeled Expand. Click this button, and you will get a pop-up window with an Igraph in it. This
is the Igraph contained in derivedHipass. DerivedHipass will be referred to as the super-node
of this graph, while the Igraph will be referred to as the sub-graph of derivedHipass.

Notice that on the sub-graph, there is an input and an output port which look like the ordinary
ports on an operator, but are hollow and a bit larger. These ports correspond to the ports that are
on the super-node. Try running the Igraph with the sub-graph displayed, and with animation
turned on (select Walk or Run speed from the Setup panel). You will see the token traveling to
the input port of    derivedHipass, and then the token will appear at the input port of the sub-
graph. After going through all the operations in the sub-graph, the token will reach the output
port on the sub-graph, and then it will emerge from the output of derivedHipass.

We will discuss how hierarchical operators are created in Section Making a New Hierarchical
Operator.

5.8.1 Changing Operator Parameters in a Sub-Graph

You might have noticed that on the sub-graph of hierEg, the parameters of lopass2d are
shown in reverse. This indicates that these parameters have been promoted to the upper level,
i.e., they are linked to the parameters of the super-node. In this example, the width and height
parameters of derivedHipass are linked to width and height of lopass2d. Try to change
width of derivedHipass to some other value, with the sub-graph displayed. You will see that the
width parameter of lopass2d in the sub-graph also changes to the new value that you entered.

A sub-graph can in turn contain hierarchical operators. There is no limit to the number of levels
on an Igraph. There is also no limit to the number of input or output ports on a sub-graph, or the
number of promoted parameters.

Even if the parameters in a sub-graph are not promoted, you can still change them by bringing up
the properties panel of the node in the sub-graph whose parameters you want to change, and
making the changes there.

Since it is possible that hierarchical operators are incorporated in many Igraphs (just like
procedures can be called from different programs), the changes that you make to either promoted
or unpromoted parameters will only affect that particular invocation of that hierarchical operator.
On the other hand, if you actually load and edit the Igraph associated with the hierarchical
operator itself, and change some parameters there, then every invocation of that operator will be

affected, unless the parameter values have been overridden.

5.8.2 Modifying a Sub-Graph

You are not allowed to modify the existing structure of a sub-graph. For example, you cannot
delete a node from a sub-graph, or change the path of a link. The reason is that sub-graphs can
potentially be incorporated into many Igraphs, so modifying a sub-graph may lead to unexpected
behavior in other Igraphs. If you really want to modify a sub-graph, you have to exit the current
top level Igraph and read the sub-graph in as the top level Igraph (using Load from the File
menu).

Even though you cannot delete or copy objects in a sub-graph, you are allowed to select objects
in a sub-graph, and they will be highlighted just as when the objects are in the top level Igraph.
This is useful for example when you have a complex link network and you want to see the path
of a particular link.

Moreover, you are allowed to add links (but not operators) to a sub-graph. Links thus added
only apply to one particular instance of the sub-graph. For example, suppose you have two
Igraphs, G1 and G2, both of which include a sub-graph SG. Suppose you load G1 as the top
level Igraph, then add some links to the SG sub-graph and save G1. The instance of SG which
is part of G2 will not have the new link.

Such sub-links can be edited like top level links. They can be moved, adjusted, and deleted.

5.8.3 Copy, Paste, and Undo Across Sub-Graphs

You can copy objects from one sub-graph and paste it to another (including the top level Igraph).
If you have selected objects from different Igraphs and then execute a copy, duplicate, or cut, the
action only applies to the objects within the Igraph which you invoked the action. But you can
copy objects from one graph and paste it in another. You are only allowed to paste operators to
the top level Igraph, not sub-graphs.

5.8.4 Making a New Hierarchical Operator

Creating a hierarchical operator is simple. Select the Make operator item from the main panel
Graph button. You will be prompted with a panel like Figure Make Operator Panel.

Make Operator Panel
(Figure omitted on purpose on demos)

The size of the operator icon is automatically set so that all input and output ports can
comfortably fit on the left and right of the icon respectively. The location of these ports are also
computed automatically, and follows the order in which they appear in the Igraph. You can alter
the default icon size if you want, but normally you should not reduce the height of the icon, since
that can leave insufficient room for the placement of ports.

Select the operator library that you want the new operator to be put in, then click Apply. A new

operator, with the same name as the Igraph that is currently being edited, will then appear in the
library that you specified.

If you want to delete an operator from a library, move the mouse inside the library panel and to
the operator you want to delete, then bring up the pop-up menu (right mouse button). Select the
delete item. You will be given a warning before WiT actually removes the operator. The
corresponding Igraph will not be removed, though.

Sub-graph input and output ports are operators found in the Dataflow library. You should try to
give ports meaningful names, since they will be used to label the super-node ports, and will come
up on the help panel when the user asks for help.

The location of the ports on the super-node is determined by their relative vertical positions in
the sub-graph. Input ports will be placed on the left, output ports on the right. If two ports of the
same type are at the same vertical position, then the one on the left (smaller horizontal
coordinate) will be assigned first.

WiT tries to set the port positions as wide apart and evenly distributed on each icon side. In most
cases, you should check the port positions, and change them if necessary. Bring up the pop-up
menu from the library panel that the new operator is placed, and select the Edit icon item. A
new window will come up showing a large version of the operator icon with a grid and the ports
at their current positions. You can change the port positions by dragging them. When you are
finished, click Apply. See Section Icon Editor for details about the icon editor.

When you modify a hierarchical Igraph, WiT will maintain the positions of all previously
defined port positions. Only new ports will be given automatically computed positions.

5.8.5 Promoting Parameters

We have so far avoided the mention of the Promote button in the operator property panels.
When you click this button, another panel will come up for you to enter the name(s) of the
promoted parameters, to be used on the super-node. If you leave the name field blank for a
parameter, then that parameter will not be promoted. If that parameter was previously promoted,
it will be un-promoted.

Chapter 6      Data-Flow Model
WiT uses the data-flow model so that algorithms can be constructed as intuitive block diagrams
and can run in parallel when the computer hardware is capable. However, because most
computer languages are control driven, the data-flow model may be foreign to most users. In this
chapter, we will take a more analytical look at the data-flow model that WiT uses. Such
knowledge may be necessary in the design of more advanced Igraphs.

Data-flow is a common concept used especially in the area of parallel processing computer
architecture. In the data-flow model, an algorithm is expressed in terms of operators that process
input data and produce output data. An operator may be a simple procedure, such as addition or
subtraction, or it may be an intricate function consisting of thousands of lines of code. An
operator becomes ready for execution when all its input objects (called tokens) are available. It is
this property that makes the data-flow model ideal for describing parallel algorithms. At any
time, there may be many operators ready for execution. If there is an infinite supply of
processors, then each operator can be mapped to a unique processor, and all the operations that
are ready can proceed in parallel. In practice, the degree of parallelism is limited by the number
of processors available, and how efficient the mechanism is that maps operators to processors. In
WiT, you can install multiple servers (of potentially different architectures consisting of special
hardware, more about this later), in which case the internal scheduler in WiT will take care to
keep as many of the servers as busy as possible, thus fully utilizing your networked resources
and the inherent parallelism in your algorithm.

When an Igraph starts running, only operators that do not require any input tokens, such as
rdObj, are ready for execution. After an operator finishes processing its inputs, it may generate
one or more output tokens, which will be sent along the links down the execution chain, and the
input tokens will be consumed. A token can be sent to the input port of a following operator only
if that port is empty. If an operator cannot send all its outputs successfully to all its descendants
because some of the ports are full, it is blocked    until the descendants are ready to receive the
new tokens.

An Igraph execution is considered complete if there are no more operators ready for execution
and all the servers are idle, which means that no tokens can be produced that may unblock any
blocked operators. With animation turned on (walk or run speed), you can easily see where the
Igraph execution is blocked (if it is) by the location of any unconsumed tokens.

6.1 The Scheduler

WiT uses a scheduler to decide which operators to run on which servers to maximize parallelism
but maintain correct data-flow. Some operators are always run on the GUI program. These
include all operators in the dataflow and interactive libraries. Dataflow library operators must
run on the GUI because they are intimately tied to the scheduler. Interactive library operators
either need access to the GUI display, or are fine grain operations which take little time to
execute.

6.1.1 Data transport

Token data generally are not transported between the GUI and servers or among the servers
themselves unless it is necessary. Often an entire algorithm, including input/output operations,

can be executed on a single server without any data transfer at all. Data transfer is necessary
when the object needs to be displayed, or when the server that has data does not support a
required operation.

When multiple servers are involved, the scheduler maintains information about where    each data
object resides. When an operator needs to be scheduled, the scheduler assigns it to the available
(not busy) server which requires the least amount of data transfer.

When an link branches into parallel branches, copies of the token data will be physically copied
to multiple servers. But after this initial copying, the servers will be able to execute in parallel.

6.1.2 Firing Strategy

In general, operators are executed in the order in which they become ready. But if they become
ready at the same time, then the scheduler is free to select whichever to execute first. Also, for
efficiency and implementation reasons, UI operators are always scheduled before server
operators, even if the server operators become ready before the UI operators.

An operator becomes ready whenever all its inputs are available (see Section Fire-On-Any
Operators for exceptions). After execution, it tries to send all its outputs to its descendants.
However, it may not be successful because some of its descendants may still be processing
previous inputs, and are not ready to accept any new inputs. In this case the ancestor operator
becomes blocked. When an operator has finished execution, it will clear its inputs and try to
wake up any direct ancestors that were previously blocked.

You can have more than one output connected to the input of an operator. In this case, whichever
token arrives first at the port will be accepted, and all other tokens will be blocked until the
operator has consumed the first token.

6.1.3 Flat and Hierarchical Scheduling

The Data-Driven Options panel has a control for selecting between flat and hierarchical
scheduling. This distinction only applies when an Igraph contains hierarchical operators.

In flat scheduling mode, the scheduler is free to choose any of the ready operators to execute,
regardless of which Igraph the operators belong to. Hierarchical operators therefore act as though
they are Igraphs shrunk to the size of icons. Not only do data tokens enter hierarchical operators
and get executed immediately, outputs from hierarchical operators are sent downstream as soon
as they become available.

In hierarchical scheduling mode, hierarchical operators behave as though they are primitive
operators. In other words, data tokens tend to be collected before they get passed inside the
underlying sub-graph to be processed. Also, output tokens are sent downstream only when all
that can be produced from the sub-graph has been generated. This behavior is due to the fact that,
in hierarchical scheduling, each sub-graph is considering as a distinct unit. Once scheduling has
started in an Igraph, only operators from that Igraph are scheduled until there are no more
operators to schedule from that Igraph.

The reason for providing two scheduling modes is that flat scheduling maximizes parallelism,
whereas hierarchical scheduling executes functionally related operators in groups, which is

important in generating readable program code.

6.2 / Extensions to Basic Data-Flow Model

In order to address the different requirements of diverse algorithms, WiT provides some useful
variations to the basic data-flow model.

6.2.1 Unconnected Output Ports

If any output of an operator is not connected, then the operator will not block on these output
ports. This makes it easier to construct Igraphs when you do not need one or more of the outputs
from some of the operators. See the sequence Igraph for an example of unconnected outputs.

6.2.2 Fire-On-Any Operators

Some operators are best implemented if they fire as soon as any one of their inputs are ready, as
opposed to waiting until all the inputs have arrived. An example is the memory operation in the
interactive library. Memory takes either one of two inputs: an object and a flag. When the
object input is fed to memory, it stores the object while sending the object to the output at the
same time. If the flag input is fed, then memory recalls the stored object and sends it to the
output.

If more than one input arrives at the same time to a fire-on-any operator, the tokens are
consumed one by one, starting from the top port.

6.2.3 Sync Tokens

When WiT is used to control external hardware, pure data-flow is not adequate. For example,
often you need to initialize the hardware before it can be used. The initialization can be
represented as WiT operators. Because hardware devices can often run in parallel, you would
like to take advantage of the parallelism on the Igraph. So you would want the image processing
to start only after all the initialization operators are finished.

You can create a null operator for this purpose. For example, if you have three hardware devices,
you will have three parallel initialization branches, whose output you can send to a null operator
that accepts three inputs to produce one output. The output is there simply to tell the rest of the
Igraph that the hardware is now ready (we can depend on the fact that, in data-flow, an operator
fires only after all its inputs have arrived). However, depending on the number of branches you
want to merge, you will need null operators that accept different numbers of inputs. Our work
will be easier and our Igraph more elegant if we can somehow tell a link junction (there are no
limits to the number of links connected to a junction) to wait for all its input links to bring in a
token before proceeding.

A special data token type called a sync token has been created for this purpose. Sync tokens do
not carry any data, and they are treated specially by link junctions. If the tokens sent to a junction
are sync tokens, then the junction will not propagate the token until each input link has brought
in a sync token. If any of the links connected to the junction has been disabled (see Chapter
Advanced Igraph Building), then the junction will not wait for a sync token to come from the
disabled link. In other words, disabled links behave as if they have been deleted as far as sync
behavior is concerned.

When all the input links connected to a junction have brought in a sync token, the sync token
(one only) is broadcast to all the output links connected to the junction.

You should never send sync tokens and regular data tokens to the same junction. There is no
logical interpretation of how the junction should behave in such a construction.

6.3 Some Caveats of Data-Flow

Data-flow is a natural way of expressing parallel algorithms. However, most of us are much
more familiar with the traditional control-flow model, where all data is stored in a commonly
accessible area, and we specify the sequence of operations to be performed on the data. Almost
all common programming languages, such as C, Pascal, or FORTRAN, work this way. In this
paradigm, operations are performed on the data regardless of whether the data is valid or not. If
the execution sequence is correct, then the data will be valid at the right time.

If you are not familiar with data-flow, you may find the behavior of WiT sometimes strange, but
after you have a good understanding of the data-flow concept, you should find that it all makes
sense and it is easy to construct data-flow algorithms in WiT. Some caveats of data-flow that you
may encounter are explained in this section.

6.3.1 Deadlock

One of the first problems you may encounter while building your own Igraphs is that sometimes
execution is blocked before the desired outputs are produced. For example, suppose we want to
overlay a small image (say a company logo) onto a list of images. We can use the sequencer and
the dir operator to form the image list, and use aluOp to do the overlay. Afterwards, we want to
display the results, as illustrated in the Figure Example of Deadlock in an Igraph (Igraph
deadlock in demo directory).

Example of Deadlock in an Igraph
(Figure omitted on purpose on demos)

Deadlock Fixed
(Figure omitted on purpose on demos)

We used the file names as inputs to display so that the results will be shown in different
windows.

However, this Igraph will stop after the first image is processed. With animation turned on, you
will see that aluOp has one token waiting on the upper input. This means that aluOp is blocked
because it needs a token on the lower port before it can fire. The logo token has been consumed
when the first image was processed, and is no longer available.    You may think that perhaps we

should not consume input tokens, but this is the only way that an operator can signify to its
ancestors that it is ready to process new tokens, and to eliminate unnecessary tokens, which
require memory to store. The correct solution is to use the memory operator, which retains its
output token so that it can be recalled later. The correct Igraph is shown in Figure Deadlock
Fixed (Igraph deadlockFixed in demo directory).

6.3.2 Connecting an Operator to Itself

In general, loops are perfectly acceptable in an Igraph. However, you cannot connect an output of
an operator directly (i.e. no other operators in the loop) to one of its own inputs. An example of
such unsupported construct is shown in Figure Illegal Igraph Constructs. Such a construct is a
problem because operator execution conceptually proceeds as follows:

Illegal Igraph Constructs

1. The inputs are used to produce the outputs, if there are errors, exit.
2. Try to send the outputs to all descendants.
3. If successful, goto 4, else goto 2.
4. Delete the inputs and exit.

If you connect an output directly to one of the inputs, then step 2 will always fail, since a token
can only be sent to a port if that port is empty, but we are sending the token to our own input
ports, and the input ports are not cleared until step 4 is executed. In practice, you should not do
this anyway since that would result in an infinite loop. If you really want an infinite loop (for use
as a free running demo, for example), then you should do something in the loop. See the if-
demo Igraph for an example.

Chapter 7      Demand-Driven Mode
Although Igraphs are extremely powerful and easy to use, there are times when you just want to
apply one or two operators to some images. For example, you may want to read an image and
transpose it, then save it back. Having to build a tiny graph and then run it is inconvenient. So
WiT provides a demand-driven mode of execution. In this mode, operators that you select are
executed and the results shown immediately. Demand-driven mode is useful in exploring and
understanding the rich set of imaging operations WiT offers, as well as debugging any new
operators that you have developed yourself.

You can switch between data-driven and demand-driven mode interactively from the WiT Setup
panel. In demand-driven mode, there are no Igraphs. Instead, the workspace has a number of
rectangular regions which look like the back of playing cards (see Figure WiT in Demand-
Driven Mode).

WiT in Demand-Driven Mode
(Figure omitted on purpose on demos)

These cards are storage places for results (objects). As results are produced as a consequence of
executing an operator, they are written to these cards in a stack fashion (last in first out).

7.1 Reading and Displaying Images

Let us start by reading and displaying an image. Switch to demand-driven mode, and invoke the
rdObj just like when in data-driven mode. You should get a panel like Figure Operator
Properties Panel in Demand-Driven Mode.

Operator Properties Panel in Demand-Driven Mode
(Figure omitted on purpose on demos)

Notice that some graph related parameters, such as Flip and Disable, are not present. For this
example, enter saturn as the file name. When you click the Apply button, rdObj is executed
immediately (instead of being placed on the Igraph), and the image should appear on the first
card in the workspace. All objects are shown with a fixed standard size on a card. To get a look at
the saturn image at the original resolution, click the left mouse button on the first card. The card
will momentarily move to a lower position and then fall back to its original position (more about
this behavior later), and a larger image of saturn will now appear in a detached window.

Notice the name rdObj shown on the title bar of the detached window. It is inherited from the
name of the operator that produced this image. So if you want to read another image and have it
displayed in another detached window, you need to change the operator instance name before
you Apply it.

7.2 Demand-Driven Mode Cards

The number of cards in the workspace is the number of memory cells available for displaying

intermediate results. Because WiT always searches from left to right for input objects when
executing operators, you may want to move the cards around to control what input objects are to
be used for the next operator. To move a card, point the cursor at the card you want and press and
hold the left mouse button. The card will move to a lower position, and an arrow will appear to
indicate the insertion point that the image will go to. With the left mouse button held down,
move the cursor until the arrow is at the desired position, then release the button. Notice all the
cards to the right of the inserted card are automatically pushed to the right. If you release the
button while the arrow is pointing to the original position of the card (this is the same as clicking
the left mouse button on the card), WiT will take that as a request to display the object in a
detached window.

More control is available from the pop-up menu in the workspace (cursor in workspace, press
and hold right mouse button):

 Select        Select workspace for printing    (see Section Printing).
 Cut              Delete the first object.
 Duplicate Make a copy of the first object, and push all the objects down one

slot.
 Clear          Delete all objects.
 Zoom/Pan... Bring up a zoom/pan control panel (See Section Zoom/pan).
 Redisplay Redisplay the workspace.

WiT will not use a card more than once in the execution of an operator. If you want to feed the
same object to an operator more than once, make a copy of the object using Duplicate from the
workspace menu.

7.3 Executing a Series of Operators

When you execute an operator that requires one or more inputs (as opposed to parameters), WiT
will search the current set of cards for an object of the appropriate type, starting from the left.
When a new object is created, it becomes the first card in the workspace, and all previous cards
are pushed one position to the right.

For an exercise, perform the following operations:

· Transpose the image (flip in Point library).
· Add noise to it (addNoise in Point library).
· Rotate it 30 degrees (rotate in Point library).

7.4 Demand-Driven Options

You can customize the demand-driven environment with the Demand Driven Options panel
(Fig. Demand-Driven Options Panel). Currently there is only one control:

Demand-Driven Options Panel
(Figure omitted on purpose on demos)

 No. registers Set the number of registers that are used when operating in demand-driven
mode. More registers give you more flexibility in data manipulation, but
require more memory for storage. This is an important consideration if your
computer has a small amount of memory, particularly when large images are
manipulated.

7.5 Demand-Mode Scripts

Every imaging operation you perform (including moving the cards around) in demand-mode is
automatically logged. Try doing a few simple operations, such as reading an image, apply some
operations (e.g. take the transpose, low-pass filter), move the cards around, and apply some more
operations. Now select the Start item from the Run menu, and watch the sequence of actions
you just did being played back.

You can adjust the speed at which scripts are played back. See Section Setup Panel for details.

You can erase the recorded actions with the New item from the File menu, and you can save
and read demand-mode scripts with Save and Load from the File menu. Demand-mode scripts
are saved with a ` .wdh' (which stands for WiT Demand History) extension.

Chapter 8      General Tools and Techniques
Every effort has been made to make WiT a user-friendly program. Consequently, many common
operations, such as zooming and panning, or choosing a font, which are needed in different
situations, are done in a similar way. Sometimes such shared techniques involve some simple
combinations of the mouse and/or keyboard. For example, to magnify a portion of a window,
whether the window contains an Igraph, an image, or a 3-D plot, the same combination of mouse
button and motion is used.

In other cases, shared panels are used. For example, when selecting a color for links in an Igraph,
or a color for a graphical data object associated with an image, the same Color panel is used.

Most of these techniques have been introduced in previous chapters, but only with just enough
explanation for the user to proceed through the tutorial smoothly. This chapter contains complete
information about these techniques.

8.1 Zooming and Panning with the Mouse

Most windows in WiT can be zoomed and panned. For example, you may find the default icon
sizes too large when designing a large Igraph, so zooming out (making the icons smaller) is more
convenient. Or when you are examining images, you may want to study the image on a larger
scale, but you do not want to make the window bigger, which may take up too much room on
your screen. Zooming changes the scale of whatever the window contains without changing the
window size. WiT provides you with a consistent and convenient way to do zooming and
panning on all windows where such actions are appropriate.

8.1.1 Zooming

To activate zooming, press and hold down the shift key on the keyboard, then press and hold the
left mouse button at the upper left corner of the area that you wish to magnify. When you move
your mouse to the right of the position that you initiated the zoom, a magnifying glass with a `+'
sign will appear. If you move to the left, the magnifying glass with have a `-' sign instead. The `+'
sign indicates that if you release your mouse button now, objects will appear larger (zoom in),
The `-' sign means the opposite (objects smaller, zoom out).

When zooming in, the area within the rubber band rectangle will be magnified to take up the
entire window. When zooming out, the entire window will be shrunk to fit into the rubber band
rectangle.

8.1.2 Panning

You pan the contents of a window by dragging with the middle mouse button and shift key
down. Notice the cursor changes to a truck to indicate a move operation.

8.1.3 Restoring to Original Scale and Position

Windows which support zooming and panning will have a View all item on their pop-up menu,
displayed when the right mouse button is pressed within the window. Choosing this item will
cause the window contents to be scaled such that all objects are visible. For example, when
viewing an image, the image will be scaled so that it exactly fills the window. Or when applied to

an Igraph, operators and links will be scaled so that all objects can be seen and exactly fills the
available window area.

The Normal item in the pop-up menu will restore all objects at original scale.

8.2 Resizing Windows

When a WiT window that displays any graphics (Igraph, image, object text, etc) is resized, the
contents of the window will be scaled according to the new window size. For example, when you
display a 64x64 image, the window size will default to 64x64 when it is first displayed, i.e., the
image exactly fills the window. If you then resize the window to a size of 256x128 pixels, the
displayed image will be scaled so that it still fills the new window exactly. Which means every
pixel in the image will occupy a 4x2 rectangular area on the screen.

One exception to this rule is the main WiT workspace. The workspace is a design area, a resize
of this window does not change the scale of the contents, but simply alters the size and shape of
the design area.

If the contents of a window has been zoomed or panned, then resizing the window will preserve
the relative scale and offset between contents and window. For example, suppose you have a
128x128 image. When it is first displayed, the window size will also be 128x128. Suppose you
have zoomed in on this image so that now you are looking at an area of 64x64 of the image. Each
pixel in the image therefore occupies 2x2 pixels on the screen. Further suppose that you have
panned the image so that pixel (50, 50) of the image is at the upper left corner of the window. If
you now resize the window to a size of 256x64, pixel (50, 50) of the image will still be at the
upper left corner of the window. Also, the new window will still show the same 64x64 portion of
the image, so that each pixel in the image will now occupy a 4x1 area on the screen.

8.3 Selecting Graphical Objects

WiT attempts to be as consistent as possible in its treatment of similar graphical objects. For
example, operators and links in an Igraph, or a graphical object used with the getData operator
(Section GetData), can all be considered graphical objects, since they have shape and size, and
so can be moved, adjusted, deleted, etc.

A graphical object is selected by clicking (press and then release) the left mouse button while
pointing at it. The object turns red when it is selected (stippled on a monochrome). Selecting
another object will cause the previous one to be deselected. To add an object to the selected list,
click the middle mouse button instead. Clicking the middle mouse button on an object already
selected will cause it to be deselected.

You can also select objects by area. Move the cursor to some blank spot, then press and hold the
left mouse button. Now as you drag your mouse, you will see a rubber band rectangle. When you
release your button, all objects that are completely within this rectangle will become selected.

8.4 Moving and Adjusting Graphical Objects

Where appropriate, graphical objects (operators, links, or graphical objects), can be moved
around or their sizes and shapes can be adjusted. To move an object, first select it, then press and

hold the left mouse at the selected object. Now as you drag your mouse, the object will move
along with the mouse. The cursor also changes to a truck to indicate you are moving objects. The
object will be placed wherever you release the left mouse button. If multiple objects are to be
moved, select them all, and then start dragging your mouse while pointing at any one of the
selected objects.

Some objects, such as Igraph links and polygon graphical objects, can be adjusted (moving the
link corners or polygon vertices). Others, such as Igraph operators, are fixed in both size and
shape and cannot be modified. Where applicable, you modify an object by first making sure it is
not selected. Then press and hold the left mouse button at the feature (link corner, polygon
vertex, etc.) which you want to modify. Now as you drag your mouse,    you will see the cursor
changes to a screw driver, and the feature will rubber band to the position of your mouse.

8.5 Color Panel

WiT Color Panel
(Figure omitted on purpose on demos)

Whenever the user needs to specify a new color for WiT to use, WiT brings up a Color panel
(Figure WiT Color Panel). The Color panel presents different methods of specifying a color,
because different people have different preferences, and the most appropriate method also varies
depending on the application. The color disc on the upper left corner (based on the HSV color
model, which stands for Hue, Saturation, Value) is useful when you want to specify a color
approximately. As you drag the mouse in this area, the color under the mouse is displayed in a
rectangular box on the lower right corner. This box is divided into two parts, the actual (exact)
color on the left, and the closest color that WiT can provide on the right. The closest color cannot
always be exact because WiT only uses a limited number of colors from the window manager.
The R, G, and B sliders on the lower left are also updated as you drag the mouse inside the
color disc. These sliders represent the red, green, and blue components of the selected color.

RGB is of course another method of specifying colors. People who are used to mixing paints
may find that RGB provides more intuitive control. Even though mixing light and mixing paint
work in opposite ways, the procedure of adding small amounts of primary colors to achieve a
desired color can easily be mastered by someone with an understanding of color. For example, to
get a specific shade of brown, we can start with gray, add a little red, adjust with a little green
(which when mixed with red light, gives a shade of yellow). Proceeding this way, it is not
difficult to achieve the exact shade of brown one wants. As you change either one of the R, G or
B components, the crosshair on the color disc moves to reflect the corresponding HSV
representation of the same color.

The color disc only allows you to select the hue and saturation for the HSV model. The value
component can be altered with the V slider above the RGB sliders. A high V means bright
colors, and a low V means dark colors.

In addition to RGB and HSV, the Color panel also provides a list of common colors on the

upper right. You can select these colors by clicking with the left mouse button. Again, both the
RGB and HSV input gadgets are adjusted accordingly to reflect the selected color.

Whichever input method you employ, you must click the Apply button to activate the color.

8.6 Zoom/pan

In addition to using combinations of mouse buttons and motion to do zoom and pan (Section
Zooming and Panning with the Mouse), WiT sometimes also offers a Zoom/pan panel
(Figure Zoom/pan Panel) as an alternative. For example, zoom/pan on the main WiT
workspace, whether in data-driven or demand-driven mode, can be performed using the mouse
or by bringing up the Zoom/pan panel from the workspace pop-up menu.

Zoom/pan Panel
(Figure omitted on purpose on demos)

The arrow buttons on the left controls panning up, down, left, and right. Every click of the button
pans the view area in the indicated direction a certain amount, which is controlled by the Pan %
slider below these buttons. The amount is specified in percentage of the visible area. The center
button bring the viewing area `home.'    For example, when using this panel with an Igraph,
`home' positions the viewing area such that the upper-left most object in the Igraph is positioned
at the upper-left corner of the workspace.

The magnifying glass buttons in the middle of the Zoom/pan panel control zooming. The zoom
amount is controlled by the Zoom % below these buttons. Again, as in panning, the amount is
specified in percentage of the visible area. The Normal rescales such that objects appear in their
original size, and View all scales the view area so that all objects are visible.

8.7 Printing

Most graphics windows in WiT can be printed either directly to a printer or to a file. To print
something, select the Print... item from the main panel File button to bring up the Print panel
(Figure Print Panel). Currently only PostScript is supported. The options are:

Print Panel
(Figure omitted on purpose on demos)

 Windows to print All Print all windows.
 Selected Print only selected windows.

 Format As displayed Frames printed with same relative positions
as displayed on screen.

 One/page Each frame on a separate page, centered.
 Image quality Draft Use the resolution of the screen. If you are

using a monochrome display, the output will
have exactly the same number of dots as
you see on the screen.

 High Images are sent to the printer in grayscale.
This allows the printer the freedom to use
whatever halftone screen to produce the best
results. On low-cost printers, the results may
not look very good, but you can send the
same file to a professional printer and obtain
flawless images. Grayscale images requires
much more data to be transferred to the
printer, and so may take more time to print,
particularly if the link to the printer is serial.
The images can be more difficult to
photocopy too.

 Show frame Enable or disable a frame with the window
name around each printed window (Igraph,
images, etc.)

Most graphics windows in WiT can be selected for printing. If you bring up the pop-up menu in
a graphics window, you should see that the first item is Select. Choosing this item will cause a
check mark to be displayed on the upper left corner of the window. When Frames to print is set
to Selected on the Print panel, only frames with the check marks will be printed.

After you have finished choosing all the applicable options, click the Print button.

8.8 Icon Editor

WiT has a built-in icon editor (Figure Example Icon Editor Session) which not only lets you
design the appearance of operator icons, but also allows you to move input and output ports,
among other things. Because it is built-in to WiT, when you change an icon with the icon editor,
those changes are updated immediately on the Igraphs you are looking at.

Example Icon Editor Session
(Figure omitted on purpose on demos)

The icon editor is invoked by selecting the Edit item from the library pop-up menus, or clicking
the Edit button in the Operator Selector panel. The following controls are available:

 Mode Input mode, see below.
 Title Justify Specifies how the operator title text is justified.
 Position Position of mouse in icon coordinates.
 Grid Size of grid in icon coordinates. Ports, origin, and title in the icon editor

always snap to this grid (not the same as the Igraph grid).
 Frame Specify whether the icon should be drawn with a frame or not. On a color

display, framed icons have a 3-D look.

The editor operator works in four possible input modes, selectable with the Mode item as
follows:

 Ports Move input or output ports.
 Icon Change icon graphics. A click of the left mouse button sets a pixel, the middle button

clears it.
 Origin Move the origin (hot spot) of the icon. The origin is indicated as a green center of

gravity symbol in the icon editor. When an operator icon is placed on the Igraph
which snap turned on, the origin of the icon is snapped to the closest grid
intersection point. You should place the origin in such a way that the input and output
ports will all be lying on the same grid as the origin.

 Title The title of an operator is normally shown on the top of the operator icon, centered.
You can change the position and alignment of the operator title text in this mode. The
title position is shown as a blue flag in the icon editor.

8.9 Array Editor

When WiT requires the    user to input two-dimensional data, such as convolution kernels, it
brings up an array editor (Fig. Example Array Editor). The editor consists of three regions: a
menu bar, a panel, and the actual array.

Example Array Editor
(Figure omitted on purpose on demos)

8.9.1 Menu bar

The menu bar contains a single item File, which gives you the following functions:

 Load... Load a data file into the array.
 Save Save array data to the file the data came from originally.
 Save as... Save array data to new file.
 Done Apply contents of editor and take it down.

8.9.2 Panel

The array editor panel contains these controls:

 Entry Value of selected item (see below) in array.
 Rows Number of rows in array.
 Cols Number of columns in array.
 Apply Change array size to Rows and Cols.

The selected item is highlighted with a bold line box in the array region.

When the editor first comes up, it usually defaults to a certain meaningful size. For example,
most imaging filters defaults to a 3x3 array for the kernel. This size can be changed interactively
by modifying the Rows and Cols text entries on the array editor. After you changed these
entries, you must click the Apply button for them to take effect.

8.9.3 Array

The array region consists of three areas: row labels, column labels, and the array data. At any one
time, one of the array items is the selected item, and it is highlighted with a bold line box. The
value of this entry also appears in the Entry item on the array editor panel. When you modify
the Entry item value, the new value is immediately copied to the actual array item. To change
the selected item to a different element of the array, click the left mouse button on the desired
element. You can also copy the value in the Entry item to any element by clicking the middle
mouse button at the desired element.

For some applications, it is necessary to define an `origin' in the array. This is indicated by a
center of gravity symbol on the upper right corner of the array element. You can define the origin
at a new position with the right mouse button.

When the array size is larger than the window size, scroll bars will appear. You can use these

scroll bars to look at different regions of the array. You can increase or decrease the visible
portion of the array by resizing the window itself. Notice that the actual size (rows and columns)
of the array is not affected by changes in the window size.

Chapter 9      Interactive Operators
Some operators in the Interactive library allow you to interact with the operator, with graphical
feedback. Several of these, such as getData, provide such extensive functionalities that they are
not described in the online operator help files, whose main purpose is to document simple-to-
explain operators, but are explained here instead.

9.1 GetData

The getData operator allows you to place graphical objects: points, rectangles, text, etc, to
specific positions on an image. It accepts an image as input, and it displays the image together
with a getData properties panel when the image is received (Figure GetData Panel). Graphics
objects are then entered interactively on the image. Objects can be given different colors or fonts.
They can be adjusted, moved, copied, etc, after they are entered.

GetData Panel
(Figure omitted on purpose on demos)

Graphics objects on images can be printed from the Print panel. The usual conventions apply.

9.1.1 Entering Graphical Objects

The Type button menu in the getData panel allows you to choose among the various graphical
objects that you can enter, or to select and edit objects already entered with the Select item.

Because each graphic object type is so different from the others, the input procedures for each
are necessarily different. Following is a description of how each graphical object type is entered.
GetData also reminds you of what you should do next in the WiT status window.

 Select Select or edit existing objects.
 Point Each click defines a point.
 Line Press and hold left mouse button to define first end of line, then drag to other end

of line and release button.
 Polyline Click (press and release) left mouse button to define first point. Each subsequent

click defines a corner. Terminate with double-click.
 Rectangle Press and hold left mouse button to define first corner, then drag to second corner

and release button.
 Circle Press and hold left mouse button to define center of circle, then drag to desired

size and release button.
 Text Click at where you want text to begin. You will see a vertical bar (the text cursor)

appear. Enter text string from keyboard. Click left mouse button or hit escape key
to terminate text entry.

Try to enter some of each of the object types. Do not try to use Select until you are finished
experimenting with the different graphic object types. Its use is covered in the following section.

9.1.2 Selecting, Moving, and Adjusting Objects

When you enter graphic objects, you are almost certain to make mistakes. The getData operator
is in fact a miniature drawing program. It allows you to cut, copy, paste, move, and adjust objects
which you have entered.

After you have finished entering your last object, choose the Select item from the Type menu.
You are now in edit mode. Follow the techniques described in Section Selecting Graphical
Objects.

9.1.3 Editing Objects

The Edit button provides all the common editing features in a drawing program:

 Undo Undo the last edit action.
 Cut Cut the selected objects.
 Paste Paste deleted or copied objects.
 Copy Copy selected objects to buffer.

9.1.4 Fill Patterns

You can choose to fill graphical objects with solid color, or have them appear hollow. This is
done via the Fill choice widget.

9.1.5 Fonts

 GetData allows you to associate a specific font (family, style, and size) to each text string you
enter. To try this out, click the Font... button from the image properties panel. This brings up the
familiar font dialog.

After you have selected a font and clicked the Apply button on the Font panel, the next text
string you enter will take on the new font. There is no limit on the number of text strings with
different fonts that can appear on each image.

9.1.6 Graphical Object Colors

You can select a color for each graphical object you enter. Click the Color... button on the
getData properties panel, a Color panel will pop up. See Section Color Panel for details about
how to use this panel. After you have selected a color and clicked the Apply button on the

Color panel, all selected objects will adopt the new color, as well as all subsequent graphical
objects you enter. There is no limit on the number of colors that can appear on each image.
Because WiT uses only a small number of colors from the window manager (see Section Color
for details), the color that you see for the graphical objects may not be exactly the color you
specified, but the exact color is stored internally with the objects.

9.2 Surface

The surface operator draws a gray scale image as a three dimensional surface, with the intensity
of the image as the height of the surface. Figure Example Surface shows an example of
surface and its associated properties panel. (The properties panel is brought up from the window
pop-up menu, as in image windows).

Example Surface
(Figure omitted on purpose on demos)

In addition to the usual zoom and pan controls, surface provides you with 3-D controls on its
properties panel. Figure 3-D Controls illustrates some of the terms related to 3-D viewing
manipulation.

3-D Controls
(Figure omitted on purpose on demos)

In our 3-D viewing model, we imagine ourselves to be looking through the viewfinder of a
camera, which we will refer to as the eye (E), at some 3-D object (in this case, a surface that
looks like a piece of mountainous land). The focus (F) is the point in 3-D space that we are
pointing our camera at. Axes are assigned to the 3-D surface: the X-axis is along the width of the
image, Y is along the height of the image, and Z is the intensity of the image, represented as the
elevation of the 3-D surface. The line (L) between the eye (E) and the focus (F) is called the view
axis.

We always stand upright (in other words, we do not rotate the eye about the view axis). Other
than this restriction, we are free to move the eye (but not the focus) to wherever we want. If we
imagine ourselves to be standing on the X-Y plane of the 3-D surface we are looking at, and we
walk around the focus, then we are varying the angle between L and X (A_h), which we will call
the horizontal angle. (We are also varying the angle between L and Y, but that is redundant.) If
we step on a ladder to look at the surface from a higher vantage point, then we are varying the
angle between L and Z (A_v), this we will call the vertical angle.

The surface properties panel provides you with 3-D viewing controls and differents ways of
rendering the surface as follows:

 Horz. angle The angle between the view axis projected on the X-Y plane and the X-axis
(A_h).

 Vert. angle The angle between the view axis and the Z-axis (vertical axis) (A_v). When
Vert. angle is zero, you are looking straight down at the image.

 Distance The distance between the camera and the focus, i.e. the length of (L). This has a
different effect than the two-dimensional zooming available in most windows
(also available on surface windows too). Our camera analogy will help explain
the difference.
 The view displayed in the window is like the picture taken on film in a camera.
Move closer to or away from the object we are taking a picture of is the same as
changing distance. Two-dimensional zooming is equivalent to enlarging or
reducing the picture after the object has been photographed. Therefore, varying
distance has a perspective effect, zooming does not. Zooming and panning may
also cause part of the object to be clipped.

 Scale The magnification applied to the image intensity to compute the height of each
point on the surface. A smaller magnification means the surface will appear
flatter.

 Pix/sq Pixel per square. The 3-D surface is drawn as a rectangular mesh. Each
rectangle (square) on the surface represents an area of one or more pixels in the
image. A small Pix/sq gives you a fine and more accurate surface, but takes
longer to render. So when you are adjusting your view angle, distance, etc, it is
a good idea to first set Pix/sq to a large value, do the viewing adjustments, and
then set Pix/sq to the value you want.
 Pix/sq behaves slightly differently on a color and on a monochrome display.
On a color display, no boundaries are drawn between the squares. Boundaries
are drawn with the size specified by Wireframe (see below). Wireframe is
forced to be always larger than or equal to Pix/sq.
 On a monochrome display, boundaries are drawn between the Pix/sq squares,
and the Wireframe is not drawn, except when Pix/sq is set to zero.
 When Pix/sq is zero, then for both color and monochrome displays, the 3-D
surface will no longer appear solid. Instead, a wireframe is drawn at the size of
Wireframe. Figure 3-D Wireframe shows such a view.

 Wireframe Specifies the size of the visible grid overlaid on the 3-D surface. Wireframe
behaves differently in color and monochrome displays. See Pix/sq above for
details.

3-D Wireframe
(Figure omitted on purpose on demos)

Surfaces can be printed from the Print panel. The usual conventions apply.

9.3 Graph

The graph operator accepts a variety of input types and plots the data on a graph.

If the input is a vector of integers or floating-point numbers then each item in the vector is
plotted against    its position within the vector.

If the input is a vector of points (ordered pairs), then the y value of each point is plotted against
its corresponding x value.

The input can also be a vector of any of the above vector types, in which case each vector will be
plotted as a separate curve within the same graph.

Figure Multi-Data-Set Graph shows an example of a multi-data-set plot.

Multi-Data-Set Graph
(Figure omitted on purpose on demos)

The title of the graph and the labels on the X and Y axes are parameters of the graph operator.
When multiple data sets (curves) are shown, different colors (on color displays) or line styles (on
monochrome displays, and when graphs are printed) are used to distinguish between the sets.
The legend on the bottom identifies the curves. Data sets can be plotted in a variety of ways,
such as histograms or scatter plots, or be turned off altogether. A data set must be selected before
its attributes can be changed. Data sets are selected by selecting their corresponding legends. A
selected legend is shown in reverse.

You can also display the coordinates of various positions on the graph. Simply click the left
mouse button at the position you want (see Figure Multi-Data-Set Graph). If you drag your
mouse on the graph, the coordinates will be continuously updated.

Zoom and pan is of course supported also, with automatic recalculation of axis labels. Because it
is highly unlikely that someone will want to zoom in or out on the axis labels, zooming and
panning only applies to the data set area, not the axis labels or legends.

As in displayed images, if two graph operators have the same name, then only one window will
be used. Whenever a new set of data is sent to a graph operator, the previous data sets will be
erased before the new one is plotted on the same window. This is useful to keep track of
changing data sets as an Igraph is executed.

 Graph also has an associated properties panel (Figure Graph Properties Panel) with the
following controls:

Graph Properties Panel
(Figure omitted on purpose on demos)

 Curve type Select how the selected data sets are plotted.
 Select all Select all curves.
 Deselect all Deselect all curves.
 Next set Whenever a large number of curves are plotted on the same graph, the legend

on the bottom only show a subset of the curves (initially, the first few). Click
this button to display the next set of curves on the legend.

 Previous set Display the previous set of legends in a multi-curve plot.

Graphs can be printed from the Print panel. The usual conventions apply.

9.4 System

The system operator allows you to invoke another program from within WiT. It takes a single
sync token as input and produce a sync token output. The program to execute and command line
arguments should be specified in the single parameter as a single string, exactly as you would
type when invoking the command from the shell. The program is executed when the input token
arrives, and the output token is produced when the program is terminated.

In addition to allowing you to execute programs you did not write yourself, system can be a
useful alternative to invoke your own operators, instead of using the client/server mechanism.
You can use operators that have a GUI interface, and they can even be compiled with compilers
totally incompatible with the compiler used to compiled the WiT libraries.

If the program you want to execute requires more than one input which are produced upstream in
WiT, and you want to make sure the program is only executed when all the inputs are available,
you can convert those object tokens to sync tokens and have the sync tokens converge in a
junction which leads to the system operator.

 System generates a sync output so that it can synchronize whatever outputs the command it
executes produces to the rest of the Igraph. The operator syncRead is specifically designed to
work with system. The program executed by system can create WiT objects and save them in
files, then the sync output from system can trigger any number of syncRead operators to read
the WiT objects back into the Igraph and then processed further by other operators.

If you want your program to process WiT data objects or produce objects that you can send back
to WiT operators, you will need to read and write data in WiT format (with a wit extension).
See Chapter WiT File Format for sample code and object format information.

Figure Example Use of System Operator shows an example of the use of system and
syncRead.

Example Use of System Operator
(Figure omitted on purpose on demos)

Chapter 10      Configuration
WiT provides mechanisms for you to configure your work environment, such as where pop-up
windows are placed, where servers, libraries, or icons are located, how many servers to run, and
customizing operator icons, etc.

10.1 Command Line Options

You may want to start WiT with some personal preferences. For example, you may want to start
up in data-driven mode, with no grid. WiT provides the following command line options:

 -speed Set execution speed. Default is walk.
 -autoclr Toggle object auto clear. Default is on.
 -igrDir <string> Set the Igraph directory.
 -objDir <string> Set the object directory.
 -grid <size> Set grid size amount (in pixels).    Default is 60.
 -mode <data/demand> Set data or demand-driven mode. Default is data.
 -ngray <integer> Set the number of gray scales to be used for grayscale images.

Default is 48.
 -nreg <integer> Set the number of registers to be used in demand-driven mode.

Default is 5.
 -pick Set pick tolerance. Default is 5.
 -rgb <choice> Set number of colors for color images. Choose from none,

coarse, medium or fine. Default is medium.
 -scheme Select color scheme to use color, light, or dark. Default

is light.
 -showgrid Toggle show grid flag. Default is on.
 -snap Toggle snap on/off flag. Default is on.
 -window <W> <H> Set the size of the WiT window. Default is 800x400.

You can also specify an Igraph name to use on start up. For example, to set the options we
mentioned previously and to use the Igraph mygraph on start up, type:

wit -mode data -showgrid mygraph

10.2 Directories

When WiT reads something from the file system, such as an Igraph or an image, it goes through

a list of directories (search path) to locate it. The first file that has the correct name will be used.
See Section Execution Environment for an explanation of search paths, and how they can be
set up.

When WiT writes out something, only two possible directories are used: an Igraph directory for
Igraphs, and an object directory for objects. The Igraph directory can be changed when you
invoke either the Load and Save as items from the File menu. The object directory can be
changed from the Object dir item from the File menu.

One exception to this rule is that when saving an Igraph, if the Igraph has been read from the file
system (as opposed to having been designed from scratch), then when it is saved using the Save
item from the File menu, the Igraph will be saved to where it originally came from. If you do
not want this, use the Save as... item instead, which will allow you to specify both a new name
for the Igraph and choosing which directory the Igraph will be saved to.

Both Igraph and object directories default to the directory that you start up WiT initially.

10.3 Designing Your Own Icons

Every attempt has been made to provide icons that reflect the meaning of all operators in
standard WiT distribution libraries. These are stored in the $WITHOME\lib\icons directory. The
file format is an ASCII format used commonly on UNIX, called X11 bitmap.

Simple changes can be conveniently done on line with the WiT built-in icon editor, details of
which has been described in Section Icon Editor. The size should preferably be 60x40, although
WiT can handle any reasonable size. Notice the port positions are not defined with the icon file,
but in the operator definition files in $WITHOME\lib\def.

It is easiest to position ports interactively with the WiT built-in icon editor.

Store new icons that you have created under the directory \$WITHOME\lib\icons.

We also suggest that you make a backup of the original icon, in case you or somebody else want
to revert to the default icon. See the Programmer's Guide for information about making an icon
for a new operator (as opposed to changing an icon for an existing operator).

Because of the large number of operators that WiT supports, reading in all the icons that are in
ASCII can take considerable time. For this reason, WiT maintains an icon cache, normally stored
as witicons in the home directory (which can be changed, see Section Execution
Environment). New icons are parsed and stored in the cache every time WiT is run. However, if
you modified an existing icon, WiT will not know about it and will still use the old icon from the
cache. To force WiT to use the new icon, delete the witicons file. If you use the WiT icon
editor, it is done automatically. This will cause some delay the next time WiT is started, because
it has to parse all the ASCII files, but that will only need to be done once. The next time WiT is
started, it will revert to the icon cache again.

10.4 Color

When WiT is run on color workstations, sharing of colors with other applications you may be
running become an issue. Many workstations support only 256 colors. These colors must be

shared among all applications currently running, or else the system colormap will have to be
swapped as you move your mouse into different applications, causing irritating color flashes. By
default, WiT requests just enough colors from the window manager so that animation and Igraph
editing (rubber banding, etc) can be nicely done and images can be shown with reasonable
contrast, both grayscale and color. Specifically, WiT uses 8 colors for the Igraph and other
graphics, 48 colors for grayscale images, and 64 colors for color images.

The default 48 colors used for grayscale images provide reasonably smooth rendition of
grayscale images. However, if necessary you can increase the number of colors allocated with
the -ngray command line option.

10.4.1 Configuring Workspace Colors

You can change the colors that WiT uses for the workspace, such as colors used for drawing
icons, the workspace background, and the grid. If you bring up the Setup panel from the
Options menu, and select Custom for Workspace Colors, a color editing panel will come up.
On the left of this panel is a list of object types whose colors can be changed. On the right is a
color selection panel (described in Section Color Panel). The object types are:

 Background Background for Igraphs, operator panels, filer, etc.
 Foreground Links, probes, ports, and icon graphics.
 Selected Selected objects.
 Busy Operators currently being executed.
 Labels Operator names above icons.
 Parameters Parameter names and values below icons.
 Icons Background of icons.
 IconBright Top and left borders of icons (for 3D effect).
 IconDark Bottom and right borders of icons (for 3D effect).
 Grid Grid on Igraph.

When you are satisfied, click the Apply button. Your customized colors will be written to the
file witrc in your home directory. You can discard all yours changes by hitting Reset,
although this does not affect your previously saved custom colors. If you really want to remove
all records of custom colors, click the Remove button.

10.5 Servers

As shipped, WiT is configured to run all built-in operators within the GUI program (the `WiT'
program that you see). However, WiT is based on a server/client model where the client is the
GUI part and the server(s) is comprised of one or many computational servers. The client and
servers are separate programs, possibly running on different computers! If your computer is
connected to a local area network, you may want to run WiT servers on all machines that are not

busy, so that your Igraphs can execute faster if there is any inherent parallelism in them.

Even if your computer is not networked, the separation into client and server halves allows you
to add your own operators to WiT by rebuilding the server part only. The client (GUI) part never
needs to be changed. If you want to launch the server as a separate program, copy the
witrc.svr file under the $WITHOME\config directory to witrc. This will give you a
single detached server running on the same machine as the GUI. If you want to switch back to a
no server configuration, copy witrc.gui to witrc. See Section Witrc File for more
information about the witrc file.

If you want to start multiple servers, you will need to modify the witrc.svr file. Copy
witrc.svr to witrc, and have a look at witrc. It contains nested keyword/attribute pairs
(enclosed with angle brackets) for various setup options that will be discussed in detail in Section
Execution Environment. For now, we are only interested in the server keyword. A separate
server entry is needed for each server you want to run. Each server entry in turn consists
of six sub-entries. For now, we need not worry about the meaning of these sub-entries. They are
explained in full detail in the Programmer's Guide.

In general, the user need only duplicate an existing server entry then change the machine
name for where the server will run. For example, suppose we have a network which consists of
four machines: earth running Windows NT, mars running Windows NT, venus running
Windows 3.1, and pluto running SunOS. We want to run the WiT GUI on earth, with a
WiT server running on each of earth, mars, venus, and pluto. The server on
earth is a local server using DDE to communicate with the GUI. The others use sockets to
communicate. Our witrc file should look like this:

<objpath ...
 ...
 ...
<server
 <binary witnt>
 <group general>
 <arch win32>
 <ipc dde>
 <hostname mars>
 <maxOp 200>
 <maxObj 10>
 >
<server
 <binary witnt>
 <group general>
 <arch win32>
 <ipc socket>
 <hostname mars>
 <maxOp 200>
 <maxObj 10>
 >
<server
 <binary witnt>
 <group general>
 <arch win31>

 <ipc socket>
 <hostname venus>
 <maxOp 200>
 <maxObj 10>
 >
<server
 <binary witsun4>
 <group general>
 <arch sun4>
 <ipc socket>
 <hostname pluto>
 <maxOp 200>
 <maxObj 10>
 >
<operators
 ...
 ...

10.5.1 Multiple server types

When the same operator name appears for different server types in the witrc file, a server
type property in the parameter panel will appear when the operator is selected (Figure Multiple
Server Types). This permits the user to decide where an operator is to be executed. The icon for
the duplicate operator will appear in the first operator library panel. For example, consider the
case where you have two servers called witsparc and witi860 where the former is a general
server and the latter is a server supporting the Intel i860 processor. If the rdObj operator is
defined in ioLib which is included in both the general and i860 servers then the property panel
for the rdObj operator would appear as in Figure Multiple Server Types.

Multiple Server Types
(Figure omitted on purpose on demos)

There is a new item called Server on this property panel. Using our example, you can select
either witsparc or witi860, and WiT will schedule the operator only on the specified server. If
the specified server is busy but the other server is available, WiT will still wait for the specified
server to become available. If you do not care which server the operator runs on, you can select
any. When any is selected and all the servers are idle, the server whose name appears first in the
Server list will be selected.

10.6 Execution Environment

Controls of execution environment such as the list of servers and search paths for WiT objects
and Igraphs are performed by modifying the file witrc, which contains (possibly nested)
attribute/value pairs surrounded by angle brackets. We have seen how to set the number of
servers in Section Servers. Here we will explain how the other attributes are set up.

10.6.1 Witrc File

All the configuration information for WiT is kept in the file $WITHOME\config\witrc.

If you want to customize your working environment, such as adding new operators, changing the
number of servers, or the architecture types of the servers, you would modify witrc. If you
have defined an environment variable $HOME, WiT will make a copy of witrc there, and
that is the copy you should modify.

In addition to the default witrc file, the config directory also contains the default operator
icon (when the user does not supply an icon), and help files for general topics (as opposed to
specific operators).

The default witrc as shipped looks like this:

#
WIT uses search paths to lookup the location of
objects (objpath), igraphs (igrpath), operator libraries
(libpath), and WIT servers (svrpath).
#
A pathname is a directory which may utilize environment
variables. Each pathname is separated by a colon.
Any path entry may be used more than once in which case
the collective set of paths are used starting from the
search from the first definition.

<objpath .;${WITHOME}\images>
<igrpath .;${WITHOME}\lib;$WITHOME>
<libpath ${WITHOME}\lib>
<svrpath ${WITHOME}\servers>
#
The iconcache defines a cache file for reading
operator icons. When this entry is present, icons for operators
are read from this file to accelerate the start up process.
If new icons are introduced, then this file must first be
removed to force an update of the cache.
#
<iconcache ${HOME}\witicons>
#
The server keyword defines a WIT server which is to be started
and utilized by the UI. The set of nested keyword-value
pairs describe the name of the server (binary), the type
of operators the server can run (group), the server's
architecture (arch), which machine the server will run
on (hostname), and two attributes to be used in the future
(maxOp and maxObj).
#
<server
 <binary witnt>
 <group general>
 <arch win32>
 <ipc dde>
 <hostname localhost>
 <maxOp 200>
 <maxObj 20>
>
#
The operators keyword defines a list of operator libraries
belonging to a particular group. This group is then associated
with a server. The set of nested

keyword-value pairs defines the group name (group) and
the various operator definition files (define). A define
has two attributes, the name of the actual C library where the
operators can be found and a descriptive name to be used
by WIT in the operators pull-down menu.
#
<operators
 <group ui>
 <define flow Dataflow>
 <define ui Interactive>
 >
<operators
 <group general>
 <define io Read/Write>
 <define data DataManipulation>
 <define point Point>
 <define filter Filters>
 <define xform Transforms>
 <define meas Measurement>
 <define segment Segmentation>
 <define morpho Morphology>
 <define pyramid Pyramids>
 <define proto Prototypes>
 >

10.6.2 Search Paths

 Objpath specifies where objects can be found. The value is a colon (;) separated list of
directories, much like the syntax used to specify search paths in MS-DOS. You can use
environment variables in the paths, such as ${WITHOME} and ${HOME}.

You can use drive letters.

You can also use dot (.) and double dot (..) to specify the current directory and the parent
directory respectively. Since the .witrc file is parsed when you start WiT, the current
directory that dot refers to will be the directory in which you start WiT.

When WiT reads an object, the objpath is searched for the object name. Searching is
performed from left to right. So for the example objpath, the current directory (.) will be
searched first for the object. If found, it will be loaded. If not, the searching continues with the
next directory on the path list until either the object is found or the directories are exhausted.

 Igrpath works similarly as objpath, except that it applies to Igraphs.

 Libpath specifies where libraries used by the WiT servers can be found. The syntax of the
value is similar to that for objpath.

The actual library names are specified by the operators attribute. Operators in turn
consists of sub-attributes group and definition. Group specifies the functional class
of the operators, and definition is a sub-classification of operators within the library
group. Unless you want to add new operators or server types, you do not need to modify the
operators entries. Refer to the Programmer's Guide if you want more information.

Appendix A      WiT File Format
When objects are written to files using wrObj, they are stored in WiT file format. This file data
is binary but machine independent in the sense that you can read and interpret the binary data
correctly on any    machine architecture. The major machine incompatibilities lie in how floating
point numbers are represented, i.e. IEEE or VAX, and in how bytes are ordered within words and
long words. On Intel machines, bytes are ordered in what is called little endian. On most other
machines such as Sparc or Motorola, bytes are ordered in big endian. Regardless of these
differences, the WiT file format ensures the data integrity is preserved by standardizing on a
network ordering scheme common in all network packet transmissions.

All WiT object files begin with an object descriptor which is comprised of two fields. The first
field is a 4-byte integer describing the size of the object description string. This size must
be rounded to the nearest multiple of 4. The next field is read in as a character string of size
length.

Based on the object name, the rest of the object data can be read in appropriately. Here is the
code to read in all of the simple WiT objects including images and vectors of simple objects.

#include <stdio.h>

static void readObject(char *fn);
static void readObjHeader(FILE *fp, char *s);
static void readObjData(FILE *fp, char *objString);
static void readWitImage(FILE *fp);

main(int argc, char **argv)
{
 if(argc < 2) {
 fprintf(stderr, "usage: readObj NAME.wit\n");
 exit(1);
 }
 readObject(argv[1]);
}

static void
readObjHeader(FILE *fp, char *s)
{
 int size;

 fread(&size, 4, 1, fp);
 /*
 * Padd size to multiple of 4
 */
 size = (size+3)/4*4;

 fread(s, size, 1, fp);
}

static void
readObject(char *fn)
{
 FILE *fp;
 char objString[80];

 if(!(fp = fopen(fn, "r"))) {
 fprintf(stderr, "cannot open \"%s for read", fn);
 exit (1);
 }
 readObjHeader(fp, objString);
 fprintf(stderr, "Reading object: %s...\n", objString);
 readObjData(fp, objString);
 fclose(fp);
}

static void
readObjData(FILE *fp, char *objString)
{
 unsigned tmp;
 unsigned char uc;
 char c;
 unsigned short us;
 short s;
 unsigned ui;
 int i;
 float f;
 double d;

 if(!strcmp(objString, "OBJ_IMAGE")) {
 readWitImage(fp);
 }
 if(!strcmp(objString, "OBJ_FLOAT"))
 fread(&f, 4, 1, fp);
 else if(!strcmp(objString, "OBJ_DOUBLE"))
 fread(&d, 8, 1, fp);
 else if(!strcmp(objString, "OBJ_VECTOR")) {
 /*
 * Vectors have four fields:
 *
 * # bytes type description
 *
 * 4 int # of elements
 * 4 int ncols
 * 4 int object string length giving type of
 * vector data
 * (len+3)/4+4 char * object string (padded to multiple of
 * 4 bytes)
 * ? void * vector data
 */
 int nelems;

 int ncols;
 int size;
 char vecString[80];

 fread(&nelems, 4, 1, fp);
 fread(&ncols, 4, 1, fp);
 readObjHeader(fp, vecString);
 for(i=0; i < nelems; i++) {
 /*
 * Here we call recursively this function to
 * extract the vector data. You'll have to modify
 * this code to save the vector data somewhere,
 * otherwise it will be lost after extraction.
 */
 readObjData(fp, vecString);
 }
 }
 else {
 fread(&tmp, 4, 1, fp);
 if(!strcmp(objString, "OBJ_CHAR"))
 c = tmp;
 else if(!strcmp(objString, "OBJ_UCHAR"))
 uc = tmp;
 else if(!strcmp(objString, "OBJ_SHORT"))
 s = tmp;
 else if(!strcmp(objString, "OBJ_USHORT"))
 us = tmp;
 else if(!strcmp(objString, "OBJ_INT"))
 i = tmp;
 else if(!strcmp(objString, "OBJ_UINT"))
 ui = tmp;
 else if(!strcmp(objString, "OBJ_HEX"))
 ui = tmp;
 }
}

/*
 *

A WiTImage object file is formatted as follows:

bytes Data Type Description

4 int Image type
4 int Image bpp
4 int Image width
4 int Image height
4 int not used, was Image org_W
4 int not used, was Iamge org_H
n*bpp*w*h variable Image data
 If imageType is

 8-bit, bpp=1, n=1

 16-bit, bpp=2, n=1
 24-bit, bpp=1, n=3 (R,G,B)
 float, bpp=4, n=1
 complex, bpp=4, n=2 (Real, Imag)
 *
 */

enum ImageType {
 WIT_UINT8 = 0,
 WIT_INT8,
 WIT_UINT16,
 WIT_INT16,
 WIT_FLOAT,
 WIT_COMPLEX,
 WIT_RGB
};

static void
readWitImage(FILE *fp)
{
 int type, bpp, w, h, orgW, orgH;
 int n;
 int size;
 void *data;
 char objString[80];

 fread(&type, 4, 1, fp);
 fread(&bpp, 4, 1, fp);
 fread(&w, 4, 1, fp);
 fread(&h, 4, 1, fp);
 fread(&orgW, 4, 1, fp);
 fread(&orgH, 4, 1, fp);
 switch(type) {
 case WIT_UINT8:
 case WIT_INT8:
 case WIT_UINT16:
 case WIT_INT16:
 case WIT_FLOAT:
 n = 1;
 break;
 case WIT_COMPLEX:
 n = 2;
 break;
 case WIT_RGB:
 n = 3;
 break;
 }
 size = w*h*bpp*n;
 if(!(data = (void *)malloc(size))) {
 fprintf(stderr, "unable to allocate %d bytes\n", size);
 exit (1);
 }
 fread(data, size, 1, fp);
}

