BasicCard

Decl are Conmand (&HIO _
Cet Bal ance (Bal anceg&)

Function CheckFunds (Wt hdrawal &)
Rem Check that the balance in the card
Rem i s enough to cover the withdrawal

Status = CetBal ance (Bal ance& —Jp» 1110

010 If Status = swCommandCOK Then

End If
End Function

CheckFunds = (Bal ance& >= Wt hdrawal &)
El se
Cal | LogError (Status)
CheckFunds = Fal se

10100111001010010010010

[N
o
=
o

RPORPOORFRPOOFRORFROROOORRF OO

ron—\ RPORRROROOOR R

%
3

OR OROORORRR ORR OROROR ROR 000 0O0OR RRRF ORR ORO OOR ROO ORRF

001011101010011100101001001011001 €¢—

_

Eepr om NunServices = 0
Type Service
Bal ance&
SecurityLevel
End Type
Eepr om Dynami ¢ Servi ceList() As Service

Conmand &40 &H10 Cet Bal ance (Bal ance&)
Rem Return the balance in the card

Bal ance& = 0
For I = 1 To NunServices
Bal ance& = Bal ance& + _
Servi celLi st (1).Bal ance&
Next |

End Command

The Compact and Enhanced BasicCards

Z.ZeitControl

cardsystems GmbH

The ZeitControl Compact and Enhanced BasicCards

Document version 2.72
17" May 1999

Author: Tony Guilfoyle

e-mail: development@ZeitControl.de

Copyright© ZeitControl cardsystems GmbH
Siedlerweg 39
D-32429 Minden
Germany

Tel: +49 (0) 571-50522-0
Fax: +49 (0) 571-50522-99
Web sites:
http://www.ZeitControl.de
http://www.BasicCard.com

Overview

Like most computer hardware, the price of smart cards is steadily decreasing, while performance and
capacity are improving al the time. You can now buy a fully-functional computer, the size of your
thumb-nail, for just afew Deutschmarks. However, until now the cost of developing software for smart
cards has been out of all proportion to the cost of the hardware. A typical development project might
take six months and cost half a million marks. This has been the major barrier to the widespread use
and acceptance of smart cards.

But now you can program your own smart card in an afternoon, with no previous experience required.
If you can program in Basic, you can design and implement a custom smart card application. With
ZeitControl’ s BasicCard, the development cycle of writing code, downloading, and testing takes a few
minutes instead of weeks.

The products described in this document are the Compact BasicCard and the Enhanced BasicCard.
Both BasicCards contain 256 bytes of RAM, and user-programmable EEPROM: 1 kilobyte in the
Compact BasicCard, and up to 16 kilobytes in the Enhanced BasicCard (depending on the version).
The EEPROM contains the user’s Basic code, compiled into a virtual machine language known as P-
Code (the Java programming language uses the same technology). The user’s permanent data is also
stored in EEPROM - in the Compact BasicCard, permanent data takes the form of Basic variables, but
the Enhanced BasicCard contains a directory-based file system as well. The RAM contains run-time
data and the P-Code stack.

How much Basic code can you squeeze into 1 kilobyte of EEPROM? While no exact figure can be
given, our experience suggests aratio of about 10-20 bytes of P-Code to every statement of Basic code.
Assuming on average one statement every two lines (for comments and blank lines), this works out at
100-200 lines of source code for the Compact BasicCard. And the Enhanced BasicCard can hold up to
sixteen times as much.

To create P-Code and download it to the BasicCard, you need ZeitControl’s BasicCard support
software. This software is free of charge, and can be downloaded at any time from ZeitControl’s
BasicCard page on the Internet (www. Basi cCar d. com). The support software runs under MS-DOS®
and Microsoft® Windows® 95. These support packages let you test your software even if you don’t
have a card reader, by simulating the BasicCard in the PC. (The Windows® 95 software package
contains a fully-functional, split-screen symbolic debugger, that can run Terminal and BasicCard
programs simultaneously.) So you can try out your idea for a smart card application without it costing
you apfennig.

The Smart Card Environment

Obviously, programming a smart card is not the same as programming a desktop computer. It has no
keyboard or screen, for a start. So how does a smart card receive its input and communicate its output?
It talks to the outside world through its bi-directional 1/0O contact. Communication takes place at 9600
baud, according to the T=1 protocol defined in ISO/IEC standards 7816-3 and 7816-4. But this is
completely invisible to the Basic programmer — all you have to do is define acommand in the card, and
program it asif it was an ordinary Basic procedure. Then you can call this command from a ZC-Basic
program running on the PC. Again, the command is called asif it was an ordinary procedure.

The BasicCard operating system takes care of all the communications for you. It will even encrypt and
decrypt the commands and responses if you ask it to. All you have to do is specify a different two-byte
ID for each command that you define. (If you are familiar with ISO/IEC 7816-4: Interindustry
commands for interchange, you will know these two bytes asCLA and INS, for Class and Instruction.)

Hereisasimple example. Suppose you run a discount warehouse, and you are issuing the BasicCard to
members to store pre-paid credits. Y ou will want a command that returns the number of credits left in
the card. So you might define the command GetCustomerCredits, and give it an ID of &H20 &HO1
(&H isthe hexadecimal prefix):

Eeprom CustonerCredits ' Declare a permanent |nteger variable

Command &H20 &HO1 Get CustonerCredits (Credits)
Credits = CustonerCredits
End Command

Y ou can call this command from the PC with the following code:

Const swConmandOK = &H9000

Decl are Command &H20 &HO1 Cet CustonerCredits (Credits)
Status = CetCustonmerCredits (Credits)

If Status <> swCommandOK Then GoTo Cancel Transacti on

The value &H9000 is defined in I SO/IEC 7816-4 as the status code for a successful command. This
value is automatically returned to the caller unless the ZC-Basic code specifies otherwise. The return
value from a command should always be checked, even if the command itself has no error conditions —
for instance, the card may have been removed from the reader.

It's as simple as that. Of course, there is alot more going on below the surface, but you don’t have to
know about it to write a BasicCard application.

Technical Summary

The Compact BasicCard contains 9K of ROM code, 1K of EEPROM, and 256 bytes of RAM. The
ROM code contains:

afull implementation of the T=1 communications protocol defined in | SO/IEC 7816-3: Electronic
signals and transmission protocols, including chaining, retries, and WTX requests;

a command dispatcher built around the structures defined in 1SO/IEC 7816-4: Interindustry
commands for interchange (CLA INSP1 P2 [Lc IDATA] [Leg]);

built-in commands for loading EEPROM, enabling encryption, etc.;
aVirtual Machine for the execution of ZeitControl’s P-Code;

code for the automatic encryption and decryption of commands and responses, using the Shrinking
Generator algorithm designed by D. Coppersmith, H. Krawczyk, and Y. Mansour.

In addition, the Compact BasicCard operating system requires 71 bytes of RAM and 35 bytes of
EEPROM for its own use. The remainder is available for the user’s ZC-Basic program.

The Enhanced BasicCard contains: 17K of ROM code; up to 16K (BasicCard ZC2.4) of EEPROM,;
and 256 bytes of RAM. Of this, the Enhanced BasicCard operating system requires 107 bytes of RAM
and 338 byes of EEPROM for its own use. As well as the components listed above for the Compact
BasicCard, the ROM code in the Enhanced BasicCard contains:

code for the encryption and decryption of commands and responses using DES, the internationally
recognised Data Encryption Standard (Single DES and Triple DES are supported);

adirectory-based, DOS:-like file system;

| EEE-compatible floating-point arithmetic.
In addition, the following EEPROM libraries are available for the Enhanced BasicCard:

EC-160: 160-bit Elliptic Curve Cryptography (proposed |EEE standard P1363);

SHA-1: Secure Hash Algorithm, revision 1 (Federal Information Processing Standard FIPS 180-1).
The softwar e support package consists of:

ZCBASIC, acompiler for the ZC-Basic programming language;

ZCDD, a split-screen ‘ Double Debugger’ that runs under Windows® 95, for debugging Terminal
code and BasicCard code simultaneously;

ZCDOS, a P-Code interpreter that runs compiled ZC-Basic programs under MS-DOS®. ZCDOS

runs your Termina program, and can either run your BasicCard program simultaneously in a
simulated BasicCard, or communicate over the serial port with agenuine BasicCard;

BCL OAD, for downloading P-Code to the BasicCard;
KEYGEN, aprogram that generates random keys and primitive polynomials for usein encryption;
BCKEYS, for downloading cryptographic keysto the BasicCard.

Contents

Part |: User’'s Guide

1. TheBasicCard

11 Processor Cards
1.2 Programmable Processor Cards
13 BasicCard Features
14 BasicCard Program Layout
15 BasicCard Versions
2. The Terminal
2.1 The Terminal Program
2.2 Terminal Program Layout

3. The ZC-Basic Language

31
3.2
3.3
34
35
3.6
3.7
3.8
3.9
3.10
311
312
313
314
315
3.16
317
318
319
3.20
321
322

The Source File

Tokens

Pre-Processor Directives
Data Storage

Data Types

Arrays

DataDeclaration
User-Defined Types
Expressions

Assignment Statements
Program Control
Procedure Definition
Procedure Calls

Procedure Parameters
Built-in Functions
Encryption

Random Number Generation
Error Handling

Basi cCard-Specific Features
Terminal-Specific Features
Miscellaneous Features
Technical Notes

4. Filesand Directories

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Directory-Based File Systems

The Enhanced BasicCard File System
File System Commands

Directory Commands

Creating and Deleting Files

Opening and Closing Files

Writing To Files

Reading From Files

File Locking and Unlocking

© oo o Ul MNP

10
10
10

RRRR

16
17
18

BE8B &

23
27
28

K88REY

37

V)

IPABBEIE &G

4.10 Miscellaneous File Operations 59
411 File Definition Sections 59
4.12 The Definition File FILEIO.DEF 60
5. Support Software 62
51 Hardware Requirements 62
5.2 Installation 62
5.3 The MS-DOS® Support Package 62
5.4 The ZeitControl Double Debugger for Windows® 95 70
6. Plug-In Libraries 76
6.1 EC-160: The Elliptic Curve Library 76
6.2 SHA-1: The Secure Hash Algorithm Library 78
6.3 MATH: Mathematical Functions 82
6.4 MISC: Miscellaneous Procedures 83
Part I1: Technical Reference
7. Communications 86
7.1 The T=1 Protocol 86
7.2 Commands and Responses 87
7.3 Status Bytes SW1 and SW2 89
7.4 Pre-Defined Commands 91
7.5 The Command Definition File COMMANDS.DEF 106
8. Encryption Algorithms 108
8.1 The DES Algorithm 108
8.2 Implementation of DES in the Enhanced BasicCard 109
8.3 Certificate Generation Using DES 111
8.4 The SG-LFSR Algorithm 111
8.5 Implementation of SG-LFSR in the Compact BasicCard 111
8.6 SG-LFSR with CRC 112
8.7 Encryption — a Worked Example 113
9. The ZC-Basic Virtual Machine 122
9.1 The BasicCard Virtual Machine 122
9.2 The Terminal Virtual Machine 122
9.3 The P-Code Stack 123
9.4 Run-Time Memory Allocation 123
9.5 Data Types 124
9.6 P-Code Instructions 125
9.7 The SYSTEM Instruction 131
10. Output File Formats 134
101 ZeitControl Image File Format 134
10.2 ZeitControl Debug File Format 137
10.3 List File Format 141
104 Map File Format 142
Index 144

Part |

User’s Guide

1. TheBasicCard

1.1 Processor Cards

A processor card looks likethis:

4)

Acme

Processor Cards

Inc.

\. J

Most of thisisjust plastic. The important part is the metallic contact area:

This area has the same layout as a standard telephone card. However, a telephone card contains only
memory, while a processor card contains a CPU as well —in effect, a complete miniature computer. A
typical processor card today might contain 8-32 kilobytes of ROM (Read-Only Memory) for the
operating system machine code, 1-16 kilobytes of EEPROM (Electrically Erasable, Programmable
Read-Only Memory) for the data in the card, and 256 bytes of RAM (Random Access Memory). The
EEPROM is the ‘hard disk’ of the card — data written to EEPROM retains its value when the card is
powered down.

The single most important aspect of processor card design is security. That's what processor cards are
for. If | want to make telephone calls for free, | can buy the equipment to make my own telephone
cards — but the reward is not proportional to the effort required (not to mention the risk of detection).
But if those telephone cards contained real money, instead of just telephone credits, there would be
plenty of people working on making illegal copies.

So for cards that contain so-called electronic cash that can be spent like real money, a processor card is
required. The processor protects access to the memory, using tamper-proof hardware design coupled
with high-security software algorithms.

1.2 Programmable Processor Cards

Communication with a processor card is by means of a command-response protocol. When a card is
inserted in the reader, a command-response session isinitiated:

Acme

—. Processor Cards

Inc.

I
Terminal Card Reader Processor Card
Reset Card ——P»
< Answer To Reset (ATR)
Command >
< Response
Command >
< Response
etc.

The processor card is the passive partner in this exchange. After sending the Answer To Reset, it does
nothing until it receives a command from the Terminal. Then after sending the response to this
command, it waits passively for the next command, and so on. The command-response protocol used
by most processor cardsis defined in the | SO standard documents| SO/IEC 7816-3: Electronic signals
and transmission protocols and |SO/IEC 7816-4: Interindustry commands for interchange. These
documents are summarised in Chapter 7: Communications.

1.2 Programmable Processor Cards

Until recently, programming a processor card was a major undertaking. The following skills were
involved:

Assembly language programming. Although ‘C’ compilers were available for some processor
cards, it was not possible to write the whole operating systemin ‘C’.

Byte-level communication protocols, such as the T=1 protocol.
Block-level communication protocols at the command-response level.
Programming at the hardware level for writing to EEPROM.

Security algorithms. Y ou had to write your own.

Y ou would also need a complex (and expensive) development environment. And on top of everything,
after submitting your program to the chip manufacturer, you would have to wait for two or three
months, while it was burned into ROM in several thousand chips, before you could test itin areal card.

However, the situation has improved. Programmable processor cards are now available. The heart of a
programmable processor card is its P-Code interpreter. Y ou write a program for the card, in Java or
Basic (the two languages currently available on the market). This is compiled into so-called P-Code,
which is a machine-independent language that looks like machine code. The P-Code is downloaded to
the card, where it is executed by the interpreter. And if your code doesn’'t work first time, you can
download a new version into the same card. So the development cycle is closer to what most
programmers are used to.

1. TheBasicCard

1.3 BasicCard Features

The BasicCard is a programmable processor card, with a P-Code interpreter optimised for executing
programs written in Basic. It was designed with four criteriain mind at al times. It had to be:

Inexpensive The development software is free of charge — you can download the latest version
from our web site at any time at www. Basi cCar d. com. And both versions of the
BasicCard cost less than half as much as any other currently-available programmable
processor card.

Easy to program Everybody can program in Basic — or if they can't, they can pick it up in an
afternoon. That's all you need to program the BasicCard. A command from the
Terminal to the BasicCard is defined and called just like a Basic function. The file
system in the Enhanced BasicCard looks just like a regular diskette. Encryption has
been made as simple as possible — you just turn it on or off. And EEPROM data is
read and written just like RAM data.

Secure The Enhanced BasicCard uses the well-known DES standard, and the EC-160
Elliptic Curve Cryptography library is provided. The Compact BasicCard uses the
Shrinking Generator algorithm designed by D. Coppersmith, H. Krawczyk, and Y.
Mansour (“The Shrinking Generator”, Advances in Cryptology — CRYPTO ’'93
Proceedings, Springer-Verlag, 1994): a full description is given in 8.4 The SG-
LFSR Algorithm, and C++ source code is provided in the distribution kit. The
security of the BasicCard implementation is enhanced by our cryptographic key
generation program — see 5.34 The Key Generator KEYGEN.EXE for more
information.

ISO-compliant In the ZC-Basic programming language, defining your own | SO-compliant command
is as easy as declaring a function. Just as importantly, | SO-defined commands, such
as SELECT FILE and READ RECORD, can be programmed in ZC-Basic. So you
can implement your own |1SO card, or call an existing 1SO card from a ZC-Basic
Terminal program. See 7.2 Commands and Responses for more information.

The operating systems in both BasicCards contain the following features:

A full implementation of the T=1 communications protocol defined in ISO/IEC 7816-3:
Electronic signals and transmission protocols, including chaining, retries, and WTX requests.

The T=1 protocol defines the structure and duration of the bits and bytes that constitute the
messages in a command-response session. See 7.1 The T=1 Protocol for more information.
Pre-defined commands for downloading programs and data to the BasicCard, enabling automatic
encryption, etc.

These commands are described in 7.4 Pre-Defined Commands.

A Virtual Machine for the execution of ZeitControl’s P-Code.

The compiler ZCBASIC.EXE compiles ZC-Basic source code into P-Code, an intermediate
language that can be thought of as the machine code for a Virtual Machine. (The Java
programming language uses the same technology, although the P-Code instruction set is not the
same.) The P-Code is downloaded to the card using the BCLOAD.EXE Card Loader program.
Then the Virtual Machine in the BasicCard executes the P-Code instructions at run-time.

1.4 BasicCard Program Layout

BasicCard programs are written in the ZC-Basic language, which is a modern procedure-oriented
Basic, with special features for the processor card environment. It is described in Chapter 3: The ZC-
Basic Language.

A program consists of initialisation code followed by procedure definitions. Programs for the
Enhanced BasicCard can also contain optional file definition sections.

1.4 BasicCard Program Layout

1.4.1 Initialisation Code

Thefirst block of code that is not contained inside a procedure definition is initialisation code: it gets
executed when the first user-defined command is called from the Terminal. Initialisation code is not
required, but it can be useful for certain things; for instance, checking that the card has not been
cancelled by theissuer, or that the expected files and directories are present.

1.4.2 Procedure Definitions

ZC-Basic has three types of procedure: subroutines, functions, and commands. Each procedure is self-
contained — nested procedure definitions are not allowed, and GoTo and GoSub statements can only
transfer control to labels within the current procedure. Subroutines and functions are familiar to Basic
programmers — a subroutine is a block of code that can be called from other procedures, and a function
is a subroutine that returns a value. The command is special to ZC-Basic; it is the mechanism by which
the Terminal program communicates with the BasicCard program.

According to the 1 SO standard document 1 SO/IEC 7816-4: Interindustry commands for interchange,
each command is assigned a unique two-byte ID. Thisis al the ZC-Basic programmer needs to know
about 1SO standards. For the curious, these two bytes are known as CLA and INS (for Class and
Instruction); the full command-response protocol defined in the standard is described in 7.2
Commands and Responses. The two-byte ID must be supplied between the Command keyword and
the name of the command. Here is an example (& H is the hexadecimal prefix):

Command &HB80 &H10 Get Cust omer Name (Nane$)
Nane$ = Cust oner Nane$
End Conmand

Then whenever the BasicCard receives a command from the Terminal with CLA=&H80 and
INS=&H10, the operating system in the card automatically executes the GetCustomerName
command.

A command behaves like a cross between afunction and a subroutine: it is defined like a subroutine (as
above), but called like a function (see 2.2 Terminal Program Layout). The BasicCard operating
system fills in the return value that gets passed back to the Terminal program. This return value
consists of the two status bytes SW1 and SW2 defined in 1SO/IEC 7816-4. The return value of a
command should always be checked; the card may have been removed from the reader, or the reader
may have lost power for some reason. If SW1=&H90 and SW2=&HOQ0, or if SW1=&HG61, then
the command completed successfully. Otherwise a problem has occurred that prevented successful
execution of the command.

These two status bytes are available as pre-defined variables in the BasicCard, so you can define your
own error codes. For convenience of access, the two-byte Integer variable SW1SW2 is also defined.
For instance:

Eeprom Bal ance As Long : Rem Decl are pernmanent (Eeprom variable
Const InsufficientCredit = &H6F0O
Command &H80 &H20 Debit Account (Anmount As Long)
I f Bal ance < Ampunt Then
SWLSW2 = I nsufficientCredit
El se
Bal ance = Bal ance - Anmpunt
End | f
End Conmand

Notes:

Y ou don’t need to specify SW1 and SW?2 if the command completes successfully. They are set to
& H90 and & HOO before the command is called.

If you specify values for SW1 and SW2 other than the two indicators of successful completion
(SW1SW2 =& H9000 or SW1 =& H61), the operating system throws away the response data and
just returns the two status bytes to the Terminal program. (This is in accordance with ISO/IEC
7816-4.)

1. TheBasicCard

Your own SW1-SW2 error codes can take any values. However, for 1SO compliance, the high
nibble of SW1 should be6, i.e. SW1=&H6X. You should also avoid assigning new meanings to
ZC-Basic’'sown error codes. ZC-Basic' s error codes are listed in 7.3 Status Bytes SW1 and SW2;
you can avoid any clashesif youuse SW1 =&H6B, & H6C, or & H6F.

1.4.3 File Definition Sections

The Enhanced BasicCard contains a DOS-like file system, with directories organised in atree structure.
There are several waysto access files and directories in the Enhanced BasicCard.

From within the BasicCard itself, files can be created, read, and written with exactly the same
statements that you would use in a Basic program running under DOS or Windows. There are also
some special statements for setting access conditions on files and directories, to restrict access
from Terminal programs. These access conditions can depend on cryptographic keys, user
passwords, etc.

From a Terminal program, the BasicCard looks just like a diskette, with the special drive name
“@ ". If the access conditions permit it, you can create, read, and write files and directories in the
Enhanced BasicCard asif it was afloppy disk.

You can initialise directory structures and files in a BasicCard program with File Definition
Sections.

144 Permanent Data

Most BasicCard applications will contain permanent data, that retains its value while the BasicCard is
powered down. Permanent datais stored in EEPROM (Electrically Erasable, Programmable Read-Only
Memory). In the Enhanced BasicCard, you can store permanent data in files, but in the Compact
BasicCard permanent data must be stored as Eeprom data. An example of Eeprom data was given in
the previous section:

Eeprom Bal ance As Long : Rem Decl are pernanent (Eeprom variable

Thevariable Balance declared here can be read or written just like aregular variable. Eeprom strings
and arrays can also be declared. This can be a very convenient way of storing permanent data, in the
Enhanced BasicCard as well as the Compact BasicCard.

Writing to EEPROM can take up to 6 milliseconds, so the possibility is always present that the card
will lose power in the middie of the write operation. The Enhanced BasicCard automatically logs all
EEPROM write operations, to enable it to recover in the event of power loss. The Compact BasicCard
has no such recovery mechanism, so EEPROM data may be left in an inconsistent state. In the
Compact BasicCard, therefore, important Eeprom data should be duplicated to protect against possible
corruption if the card is powered down during an EEPROM write operation. For example:

Eeprom Bal ance As Long : Rem A very inportant piece of data
Eepr om ShadowBal ance As Long
Eeprom Committed = Fal se

Command &HB80 &H30 ChangeBal ance (NewBal ance As Long)
ShadowBal ance = NewBal ance
Committed = True
Bal ance = ShadowBal ance
Committed = Fal se
End Conmmand

Then in theinitialisation code:

If Committed Then
Bal ance = ShadowBal ance
Committed = Fal se

End | f

This technique guarantees that Balance will never be left in an inconsistent state.

Note: In the Compact BasicCard, power loss during memory allocation can lead to corruption of the
EEPROM heap. For this reason, we recommend that you avoid ReDim statements and assignment of

1.5 BasicCard Versions

variable-length strings in all Compact BasicCard code that may be executed after the card is issued to
the end user. (The Enhanced BasicCard always protects itself against heap corruption, so no such
caution is necessary in Enhanced BasicCard code.)

1.5 BasicCard Versions

At the time of writing, the devel opment software recognises the following versions of the BasicCard:

151 Compact BasicCard

BasicCard ZC1.1
BasicCard ZC1.2

Contains 1K of user-programmable EEPROM. Available since June 1998.

Contains 1K of user-programmable EEPROM. This version was produced
as a temporary measure while version ZC1.1 was in the manufacturing
phase. It is no longer issued by ZeitControl, but is fully suppported by the
software.

1.5.2 Enhanced BasicCard

BasicCard ZC2.0

BasicCard ZC2.1
BasicCard ZC2.2
BasicCard ZC2.3

BasicCard ZC2.4

Contains 610 bytes of user-programmable EEPROM. This version was
produced as a temporary measure while version ZC2.3 was in the
manufacturing phase. It is no longer issued by ZeitControl, but is fully
suppported by the software.

Contains 2K of user-programmable EEPROM. Available mid-1999.
Contains 4K of user-programmable EEPROM. Available mid-1999.

Contains 8K of user-programmable EEPROM. This is the first production
version of the Enhanced BasicCard. Available since February 1999.

Contains 16K of user-programmable EEPROM. Available mid-1999.

2. The Terminal

2.1 The Terminal Program

The ZC-Basic language was designed with the BasicCard in mind. But it can also run in a PC, with or
without a card reader attached to the serial port. Y ou can write a stand-alone ZC-Basic program to do
your monthly accounts, or to help you solve crosswords, or whatever you like.

A ZC-Basic program that runs on a PC is referred to in this documentation as the Terminal program.
Usually it will communicate with another ZC-Basic program running in a (real or simulated) BasicCard
—the BasicCar dprogram.

The compiler can create executable files and image files from a Terminal program source file — see
5.3.1 The ZC-Basic Compiler ZCBASIC.EXEfor details.

2.1.1 ExecutableFiles

The compiler can create standard executable files (files with .EXE extension), that will run as
programs under MS-DOS® or Windows® 95. Such programs can’t communicate with a simulated
BasicCard — if they call any BasicCard commands, then a real BasicCard must be present. Also, such
programs are not self-modifying, so they can’t execute Write Eeprom statements (see 2.2.4
Permanent Databelow).

Command-line parameters passed to the executable file can be accessed from ZC-Basic in the pre-
defined string array Param$ (1 To nParams) — see 3.20.10 Pre-Defined Variables.

2.1.2 ImageFiles

For more flexibility during program development, the compiler can also create a ZeitControl Image
File (with .IMG extension) from your Terminal program source file. The ZCDOS P-Code interpreter
can then run this Terminal program together with a BasicCard program running in a real or simulated
BasicCard —see 5.3.2 The P-Code I nterpreter ZCDOS.EXE for details.

The ZCDD Double Debugger for Windows® 95 works with ZeitControl Debug Files (with .DBG
extension), which are simply ZeitControl Image Files with debugging information included. Image files
and debug files are described in Chapter 10: Output File Formats.

2.2 Terminal Program Layout

A Terminal program consists of the main procedure and procedure definitions BasicCard commands
are declared in command declarations, after which they can be called just like functions.

The Terminal program is executed by ZeitControl’s P-Code interpreter — see 5.3.2 The P-Code
Interpreter ZCDOS.EXE. This program can run the BasicCard program simultaneously inthe PC in a
simulated BasicCard , or it can communicate with a genuine BasicCard via a card reader — a
ZeitControl Chipi® card reader connected to the serial port, or any other PC/SC-compatible card reader.

2.2.1 TheMain Procedure

The main procedure starts at the first statement that is not contained inside a procedure definition, and
ends at the start of the next procedure definition (or the end of the source file). The Terminal program
begins execution at the first statement in the main procedure, and continues until it reaches the end of
the main procedure, or until an Exit statement is executed.

10

2.2 Terminal Program Layout

2.2.2 Procedure Definitions

Procedure definitions in the Terminal program consist of functions and subroutines, exactly like a
regular Basic program. Each procedure is self-contained — nested procedure definitions are not allowed,
and GoTo and GoSub statements can only transfer control to labels within the current procedure.

2.2.3 Command Declarations

Before you can call a BasicCard command, you must declare it, so that the ZC-Basic compiler knows
the two 1D bytes of the command, and the types of the command parameters. Apart from the two ID
bytes, a command declaration looks like a subroutine declaration. Here are declarations of the three
example commandsfrom 1.4 BasicCard Program L ayout:

Decl are Conmmand &H80 &H10 Get Cust oner Name (Nane$)
Decl are Conmand &H80 &H20 Debit Account (Amount As Long)
Decl are Conmand &H80 &H30 ChangeBal ance (NewBal ance As Long)

Calling these commandsisjust like calling afunction:

St at us = Get Cust oner Name (Nane$)

If Status <> &H9000 And (Status And &HFF00) <> &H6100 Then
Print "GetCustonerNane: Status = &H'; Hex$ (Status)
GoTo Retry

End | f

Y ou should always check the return value, even if the command itself has no error conditions, in case a
communication problem has occurred (such as the card being removed from the reader). If you prefer,
you can use the pre-defined variables SW1, SW2, and SW1SW2, which contain the status bytes from
the most recently called command:

Cal | Get Cust oner Name (Nane$)

If SWLSW2 <> &HI000 And SWL <> &H61 Then
Print "GetCustonerNane: Status = &H'; Hex$ (SWLSW2)
GoTo Retry

End | f

See 7.3 Status Bytes SW1 and SW2 for alist of ZC-Basic status codes. The file COMMANDS.DEF
defines these status codes in Const statements, so you can refer to &H9000 and &H61 as
swCommandOK and swllL eWarning respectively if you include thisfile in your program — see 3.3.1
Sour ce File Inclusion.

2.2.4 Permanent Data

ZC-Basic contains a very convenient mechanism for the reading and writing of permanent data in the
BasicCard: you just declare data of storage type Eeprom, and the BasicCard operating system does the
rest. Although the Terminal program contains no genuine EEPROM data, this useful feature is
available in Terminal programs as well, if they were loaded from a ZeitControl Image File (or Debug
File). Eeprom datain a Terminal program iswritten back to theimage filein two circumstances:

1. Onprogram exit, if the appropriate options were specified:

in the Windows® 95 Double Debugger, checking the Save Terminal EEPROM entry in the
Prefer ences menu;

with the —W parameter on the ZCDOS command line (see 5.3.2 The P-Code Interpreter
ZCDOS.EXE).

2. When the Terminal program executes a Write Eeprom statement (see 3.20.7 Saving Eeprom
Data).

Note: The Write Eeprom statement is only valid if the Terminal program is running in the ZCDOS
P-Code interpreter or the Windows® 95 Double Debugger. Programs containing Write Eeprom
statements can’t be compiled into executable files.

1

3. The ZC-Basic L anguage

The ZC-Basic programming language is a fully functional, modern Basic, with function and subroutine
calls, user-defined data types, file I/0O, and pre-processor directives. In addition, it has some special
features for the smart card environment, including command definition and invocation, 1/0O encryption,
file access control, and EEPROM write logging.

In this chapter, the following conventions are observed:

ZC-Basic keywords are printed in bold text.

Statement fields that must be supplied by the programmer are printed initalic text.
Programming examples are printed inf i xed-wi dt h bol d t ext.

Optional statement fields are enclosed in [square brackets].

Alternatives are separated by avertical bar and enclosed in braces, e.g. { ByVal | ByRef}.

File /O in ZC-Basic is described in Chapter 4: Filesand Directories.

3.1 The SourceFile

A ZC-Basic program must consist of a single compilation unit — there is no linking stage. This lets the
compiler work out the storage requirements of the whole program, so that it can use the 256 bytes of
RAM as efficiently as possible. You may, however, split your source into several files and #lnclude
them all in amaster sourcefile.

The source consists of lines, which may be logically extended with the line continuation character *

(underscore). Each line consists of statements, separated from each other with ‘:’ (colon). A comment
character **’ (single quote) causes the rest of the line to be ignored (unlessit occursinside a string). The
Rem keyword may also be used to introduce a comment, but it is only allowed at the beginning of a
statement. For instance:

X=0 ' Comment introduced by comment character
Rem OK to use Remon its own |ine...
Y=0: Z=0: Rem ...but here we need the col on
3.2 Tokens

At the lowest level, a source program consists of a sequence of tokens. There are four kinds of token:
constants, identifiers, reserved words, and special symbols. Except for string constants, tokens may not
contain spaces or tabs.

A constant can be an integer, a floating-point number, or a string. Integer constants are decimal by
default; the prefixes & O (or just &) and & H denote octal and hexadecimal constants respectively.
Integer constants have the range —2147483648 to +2147483647.

If a constant contains a decimal point or an exponent (E or €), it is a floating-point constant. ZC-Basic
supports only single-precision floating-point numbers. Floating-point numbers are stored in |[EEE
denormalised format, with an 8-bit exponent and a 23-bit mantissa. This gives a precision of 7 decimal
places, and arange of 1.401298E-45 to 3.402823E+38.

A string constant is any sequence of printable characters enclosed in double quotes‘"’. To include non-
printable charactersin astring constant, use Chr$(); the double quote itself isChr $(34). For example:

X$ = Chr$(34) + "STRING' + Chr$(34) + Chr$(10) ' 10 = new line

Variables, procedures, etc. must be given names, or identifiers. In ZC-Basic, an identifier consists of
letters (A-Z, a-z) and digits (0-9), followed by an optional type character (@, %, &, !, $). It may be
any length. An identifier must start with aletter. The type character specifies the data type of afunction
or variable, asfollows:

Datatype:

Character: @

Byte

%

Integer

&
Long

3.2 Tokens

! $

Single String

If atype character is not present, the default type isinteger (but you can change this default behaviour
with DefByte, DefLng etc — see 3.21.2 Def Type Statement). Case is not significant in ZC-Basic, so
ABC, AbC, and abc are considered identical. An identifier must not clash with a reserved word, which

isaword with a pre-defined meaning.

Hereisalist of the reserved wordsin ZC-Basic:

Abs Access

As Asc

Bi nary By Ref
Cardl nReader CardReader
ChDri ve Chr$
Const CurDir
Def I nt Def Lng
Dim Dir
Eeprom El se

End EOF

File For

Cet Attr GoSub

I nKey$ | nput

Kill LBound
Let Li ne

Loop LTri n$
Nane Next
Option O

Poke Pol ynomi al s
Put Random
Rem Reset Card
Rnd RTri nt
Shar ed Si ngl e
Static Step

Sub Tab

Tri Type
Until Val !

VWhi | e Wite

And

At

Byt e
Case

Cl ose
CurDrive
Def Sng
Di sabl e
El sel f
Er ase
FreeFil e
GoTo

I nt eger
LCase$
Lock

M d$

Not

Cut put
Pri nt
Random ze
Ret urn
Seek
Space$
Str$
Then
UBound
Val &
WI'X

Append Applicationl D
ATR Base

By Val Cal
Certificate ChDi r
Cs Commuand
Decl are Def Byt e
Def String DES

Do Dynami c
Enabl e Encryption
Exi t Explicit
Functi on Get

Hex$ i

I's Key
Left$ Len

Log Long
MkDi r Mbd

On Open
Over fl owCheck Peek
Private Publ i c
Read ReDi m

Ri ght $ RnDi r
Sel ect SetAttr
Spc Sgrt
String String$
Ti me$ To
UCase$ Unl ock
Val H VENnd

Xor

In addition to constants, identifiers, and reserved words, the following special symbols are recognised:

+ o~

Underscore (line continuation)

Left parenthesis
Plus

Multiply

Comma

Equals

Lessthan

Lessthan or equal to
Full stop or Period
Semi-colon

)

/

Single quote (comment character)
Right parenthesis

Minus

Divide

Colon

Not equals

Greater than

Greater than or equal to

Pre-processor directive or file number

Double quote (string delimiter)

13

3. The ZC-Basic Language

3.3 Pre-Processor Directives

Pre-processor directives are instructionsto the ZCBASI C compiler. For instance, they tell the compiler
which lines of source code to compile, and whether these lines should be written to the list file if a
listing is requested. They can also be used to specify various command-line parameters in the source
code itself —in this case, the compiler accepts the first occurrence of the parameter, so directivesin the
source code are overridden by parameters on the command line.

A pre-processor directive begins with the hash character ‘#, which must be the first character on the
input line (excluding spaces and tabs).

3.3.1 SourceFileInclusion
Thedirective
#Include filename

causes the named file to be included and compiled as if it was part of the source file itself. Included
files can themselves contain # nclude directives, nested to any depth. If filename contains any space
characters, it must be enclosed in double quotes (“ filename”); otherwise the quotes are optional. The
compiler looks for the file in the following directories:

first, the directory of the including file;

next, directories specified in—I parameters, in the order that they appear in the command line (see
5.3.1 The ZC-Basic Compiler ZCBASIC.EXE);

finally, the current directory.

3.3.2 LibraryInclusion
Thedirective
#Library filename

loads a ZeitControl Plug-In Library. See Chapter 6: Plug-In Libraries for alist of currently available
libraries. The compiler looks for the#Library file in the same directories as it looks for #l nclude files
—see 3.3.1 Source File Inclusion for details.

Note: ZeitControl provides a definition file library.def for each library file library.lib. The definition
file contains the appropriate #L ibrary directive, along with all the required declarations. Y ou should
normally just #l nclude this definition file, rather than loading the library yourself with a #Library
directive.

3.3.3 Conditional Compilation

Sections of code can be included or excluded according to the values of constants defined earlier (or on
the compiler command line).

#f conditionl
code block 1
[#Elself condition2
code block 2]
[#Elself condition3
code block 3]
[#Else
code block n]
#EndIf

where conditionl, condition2,... are constant numerical expressions, which may include symbols
defined in Const statements or on the compiler command line (with the “—Dsymbol” parameter — see
5.3.1 The ZC-Basic Compiler ZCBASIC.EXE). Code block i is compiled if condition i is non-zero.

14

3.3 Pre-Processor Directives

Instead of testing the value of anumerical expression, you can test whether a constant symbol has been
defined:

#1fDef symboll
code block 1
[#Elsel fDef symbol2
code block 2]
[#Elsel fDef symbol 3
code block 3]
[#Else
code block n]
#EndIf

The directives #IfNotDef and #ElselfNotDef have the opposite sense to directives #fDef and
#E|sel fDef respectively.

#EndIf has the alternative form #End If (with a space) for compatibility with the Basic End If
statement.

See als0 3.3.12 Pre-Defined Constants.

3.3.4 Listing Directives

Y ou can cause sections of code (or complete included files) to be omitted from the listing file with the
directive

#NoL ist
The#NoList directiveis cancelled by #L ist.

3.35 Card Sate

By default, the BasicCard is switched to state TEST after a ZC-Basic program is downloaded. Y ou can
override thiswith the #State directive:

#State { LOAD | TEST | RUN }

This is equivalent to the command-line parameter —Sstate (see 5.3.1 The ZC-Basic Compiler
ZCBASIC.EXE).

3.3.6 Number of Open File Sots

Each open filein a ZC-Basic program is assigned an open file slot. The Terminal program has 32 open
file slots, so the maximum number of files that can be opened simultaneously is fixed at 32. In the
Enhanced BasicCard, the default number of open file slots is 2, but this can be overridden with the
#Files directive:

#FilesnFiles

with 0 <= nFiles <= 16. This number includes files opened in the BasicCard program and BasicCard
files opened from a Terminal program. The amount of RAM used by the file systemis (6* nFiles+ 7)
bytes (unlessnFilesis zero, in which case no file system isinstalled, so no RAM isrequired).
3.3.7 SackSze
The#Stack directive specifies the size of the P-Code stack:

#Stack stack-size

This is equivalent to the compiler command-line parameter —Sstack-size (see 5.3.1 The ZC-Basic
Compiler ZCBASIC.EXE). If no stack size is specified, the compiler works out for itself how big the
stack should be.

15

3. The ZC-Basic Language

3.3.8 EEPROM Sze

The #Eeprom directive specifies the start and end addresses of the EEPROM in the BasicCard:
#Eeprom [start] [Toend]

Thisis equivalent to the compiler command-line parameters—ESstart and -EEend (see 5.3.1 The ZC-
Basic Compiler ZCBASIC.EXE). Normally the compiler knows these addresses; you only need to
specify them if you have a non-standard BasicCard configuration.

3.3.9 Message Directive

Y ou can output a message at any point during compilation with
#M essage message

The messageis printed to the screen, and compilation continues unaffected.

3.3.10 Error Directive

Y ou can define your own compiler error messages with the #Error directive. For instance:

#1 f MaxLi neLength > 80
#Error MaxLi neLength too big (nmax 80)
#End| f

Then if anybody tries to compile the program with MaxL ineL ength defined as 100, say, the compiler
will issue the error message “#Error MaxLineL ength too big (max 80)” and stop compilation.

3.3.11 Block Waiting Time
In aBasicCard program, the BW T field in the ATR can be specified with
#BWTn

wheren is a power of 2 between 1 and 512 inclusive. This Block Waiting Time specifies the time that
the card is given to execute a command, before the card reader returns with status swCardTimedOut.
It is expressed in tenths of a second (giving a maximum of 51.2 seconds). Its default value is 16 (1.6
seconds) in a Compact BasicCard, and 128 (12.8 seconds) in an Enhanced BasicCard.

3.3.12 Pre-Defined Constants

According to the target machine (Terminal, Compact BasicCard, or Enhanced BasicCard), one of the
following constantsis pre-defined by the compiler (and has the value 1):

Terminal Program CompactBasicCard EnhancedBasicCard
For instance:

#1 f Not Def EnhancedBasi cCar d
#Error This program nust be conpiled for the Enhanced Basi cCard!
#EndI f

3.4 Data Storage

All variables in a ZC-Basic program belong to one of four data storage classes: Eeprom, Public,
Static, or Private.

3.4.1 Eepromdata

EEPROM isthe BasicCard’s equivalent of a hard disk. It retains its contents while the card is powered
down in the customer’s pocket. EEPROM contains your ZC-Basic program (compiled into P-Code),
directories and files (in the Enhanced BasicCard), and all permanent variables (such as the customer’'s
name or the credit balance in the card). For example:

16

3.5 Data Types

Eeprom CustonerNane$ = "" ' We don’t know customer’s nanme yet
Eepr om Bal ance& = 500 " Free 5-Mark bonus for new nenbers

If you don’'t specify an initial value, the data will be initialised to zero. This initialisation takes place
when the program (P-Code and data) is downloaded to the card.

Eeprom data has global scope— it can be accessed by all proceduresin the program.

3.4.2 Public and Satic data

The RAM data area contains Public and Static data, that retains its value as long as the BasicCard
remains powered up in the card reader. Public data has global scope; Static data has local scope — it
can only be accessed by the procedure that declared it.

Public and Static data can be initialised, just like Eeprom data. The initialisation takes place every
time the card is powered up.

3.4.3 Private data

Data declared in a procedure as Private exists only until the procedure returns. It is allocated on the
P-Code stack every time the procedureis called. It haslocal scope. Private data can be initialised with
constant val ues:

Private LoopCounter = 100

This initialisation takes place every time the procedure is called. Uninitialised Private data is set to
zero when the procedureis called.

Y ou don’t have to declare every variable before you use it. If the compiler meets a variable name that it
doesn’t recognise, it implicitly declaresit asPrivate — unless you have overridden this behaviour with
the Option Explicit statement (see 3.21.4 Explicit Declaration of Variables and Arrays), or by
declaring the procedureitself Static (see 3.12 Procedure Definition).

3.5 Data Types

ZC-Basic supports the following data types:
Byte 1-byte unsigned integer. Range: 0 to 255.
I nteger 2-byte signed integer. Range: —32768 to +32767.
Long 4-byte signed integer. Range: —2147483648 to +2147483647.

Single 4-byte single-precision floating-point number (denormalised IEEE format: 1 sign bit,
8-bit exponent, and 23-bit mantissa with implied msb=1 unless exponent is zero).
Precision: 7 decimal digits. Range: +/—1.401298E—-45 to +/-3.402823E+38.

Note: The Single data type is not supported in the Compact BasicCard. You may store
Single data in the Compact BasicCard, but you can’'t perform floating-point arithmetic
operations or string conversions. However, al floating-point operations and string
conversions are supported in the Enhanced BasicCard.

String Character string, up to 254 bytes long. Requires n+3 bytes of storage, where n is the
length of the string — a 2-byte pointer to an (n+ 1)-byte (length, data) pair.

String*n Fixed-length string, n bytes long, where n is a constant between 1 and 254. Requires n
bytes of storage.

Y ou may also define your own data types — see 3.8 User-Defined Types.

17

3. The ZC-Basic Language

3.6 Arrays

An array in ZC-Basic can belong to any of the four data storage classes (Eeprom, Public, Private,
Static), and its elements may be of any type (Byte, Integer, Long, Single, String, String*n, or a user-
defined type). It may have up to 32 dimensions. The upper and lower bounds for each dimension are
subject to the constraints:

—32 <=lower bound <= 31 and lower bound <= upper bound <=lower bound + 1023

All arrays are either Dynamic or Fixed. The upper and lower bounds of a Fixed array must be constant
expressions, and can’'t be changed. The bounds of a Dynamic array can be any integer expression, and
the array can bere-sized at any time with a ReDim statement. However, the number of dimensions of a
Dynamic array can't be changed.

If any of the subscriptsin an array accessis out of bounds, arun-time P-Code error is generated.
The ReDim statement has the following syntax:
ReDim array (bounds|, bounds, . .]) [Astype] [, array (bounds[, bounds, . ..]) [Astype], ..]

array If array has already been declared, it must be a Dynamic array, and one bounds
specifier must be present for each dimension. (In this case, As type is not required,
but if present it must match the type as originally declared.) If array has not yet been
declared, then the ReDim statement does double duty as a data declaration statement.
In other words, the statement

ReDim array (bounds[, bounds, . .]) [Astype]
is expanded to

Dim Dynamicarray ([,,...]) [Astype]
ReDim array (bounds|, bounds, . .])

(The Dim statement is described in3.7 Data Declar ation.)

bounds The bounds specifier gives the upper and lower bounds for each dimension, in the
form [lower-bound To] upper-bound. If lower-bound is not given, it defaults to O,
unless otherwise specified in an Option Base statement (see 3.21.3 Array Subscript
Base).

An array can be cleared with the Er ase statement:
Erasearray|[,array, . ..]

If array is Fixed, al its elements are set to zero. If array is Dynamic, its data area is freed. In either
case, if the elements of array are of type String, they are all freed.

3.7 Data Declaration

Data items and arrays are declared and initialised in a data declaration statement. A data declaration
statement consists of a sequence of data declarations separated by commas. Data may optionally be
initialised with constant values:

storage-class [Dynamic] data-declaration [=initial-valu€] [, data-declaration [=initial-valu€], . . .]

storage-class ~ Thiscan be Eeprom, Public, Private, or Static. The keyword Dim is also allowed,;
outside a procedure, Dimis a synonym for Public, and inside a procedure, it has the
same meaning as Private (or Static in aprocedure declared as Static).

Dynamic If the Dynamic keyword is present, then all arrays declared in the statement are
Dynamic arrays.

3.7 Data Declaration

data-declaration Thisfield takes one of two forms:
1. For scalar (non-array) data, data-declaration hasthe form
name [Astype] [At address]]
Thetype of the variable name is determined as follows:
by type if [Astype]ispresent;
otherwise, by the last character of name if it belongs to the following list:
Character: @ % & ! $
Datatype: Byte I nteger Long Single String

otherwise, by the initial character of name, as specified in the most recent
DefType statement (see 3.21.2 DefType Statement).

By default, al initial characters are assigned toInteger type in ZC-Basic, asif by the
statement Deflnt A—Z.

The address of the variable name is automatically assigned by the compiler, unless
overridden by [At address]. If present, address takes the form jvar +/—] constant,
where var is the name of a previously declared variable. This feature lets you write to
any addressin RAM or EEPROM —useit at your own risk!

2. If an array is being declared, data-declaration hasthe form
array (bounds|, bounds, . . .]) [Astype]

The type of the elements of the array is determined as described above for scalar
variables. The form of the bounds specifier is described in the previous section under
ReDim. Thereis an additional possibility —the empty array syntax:

array ([, . . .]) [Astype]

This declares a Dynamic array, while deferring the allocation of the array to a later
time. The following example declares empty Dynamic arrays Al, A2, and A3 with
one, two, and three dimensions respectively:

Di m Al()
Di m A2(,)
Di m A3(,,)

Otherwise, array is Dynamic if (i) the Dynamic keyword was specified; or (ii) any
of its boundsis non-constant.

If no initialisation data is present, the data item or array is initialised to zero (or empty strings in the
case of String data). In ZC-Basic, any type of data may be initialised, with two exceptions. Dynamic
arrays with non-constant initial bounds, and Private Dynamic arrays. Initialisation data must be
constant. If an array isinitialised, the data must be specified in the order of the array elements, with the
leftmost subscript varying the fastest (‘column-major’ order). For instance, the following example
initialises each element of a2x2 String array to contain an ASCII description of itself:

Option Base 1 ' Set |ower bound of arrays to 1
Private X$(2,2) = "X$(1,1)", "X$(2,1)", "X$(1,2)", "X$(2,2)"

If the end of the initialisation data is reached before the array has been filled, the rest of the array is
initialised to zero (or empty strings for a String array).

Fixed-length String*n data can be initialised in two ways: as a string, or as a list of bytes. These two
ways can be combined, but the string must be the last dataitem in the list. For example:

Eeprom S1 As String*5 "ABC' ' Padded with two NULL bytes
Public S2 As String*3 &H81, &H82, &H83

Private S3 As String*7 = 3, 4, "XYZ"
Rem This is equivalent to:
Rem Private S3 As String*7 = 3, 4, 88, 89, 90, 0, O

19

3. The ZC-Basic Language

3.8 User-Defined Types

ZC-Basic supports the user definition of structured data types:

Typetype-name
member-name [As type] [, member-name [Astypel, . .]
member-name [Astype] [, member-name [Astype], . .]

End Type

type-name and member-name are regular identifiers. The type of each member can be Byte, Integer,
Long, Single, String*n, or another user-defined type. It may not be an array, or a String of variable
length. The total size of all the members must not exceed 254 bytes.

If var is avariable or array element of type type-name, then the members of var are referred to using
the syntax var.member-name (asinthe‘C’ programming language). For example:

Type Point: X', Y!': End Type ' Character ‘!’ => type Single...

Type Rectangl e
Area As Single ' ...or the type can be declared explicitly
TopLeft As Point
Bott onRi ght As Poi nt

End Type

Sub Area (R As Rectangl e)
Wdth! = R BottonRight. X! — R TopLeft. X

Hei ght! = R BottonRight.Y' — R TopLeft.Y!
R Area = Wdth! * Height!
End Sub

A user-defined type can be copied as a unit, with a single assignment statement:
Public UnitSq As Rectangle = 0,0,0,1,1 "' BottonRight = (1.0, 1.0)

Call Area (UnitSg) ' Fill in the Area
Public RA(10) As Rectangle
For I =1 To 10 : RA(I) = UnitSqg : Next |

Variables or array elements of the same user-defined type can be compared for equality using = and <>
(but the comparison operators <, >, <=, and >= arenot allowed).

3.9 Expressions

An expression is built up by applying operationsto terms. For example:

X+ 5 " Apply ‘+ (addition) to ternms X and 5
A(l) * Rnd " Apply “* (multiplication) to terms A(l) and Rnd
S$ + "o" " Apply ‘+ (concatenation) to ternms S$ and "O0O"

A term can be one of the following:

A constant: the type of a constant term is Byte, Integer, or Long (depending on the value of the
constant) for whole-number expressions, Single for floating-point expressions, and String for
string constants.

A scalar variable, an array element, or a member of a variable or array element of user-defined
type.

A function call. This can be a user-defined function or command, or a built-in function (such as
Abs, Sgrt, LBound, Chr$, or CurDir).

An array name, with no parentheses (or an empty pair of parentheses). This returns the address of
the data area of the array, so that you can check whether a dynamic array has been allocated or not.
For instance:

3.9 Expressions

Eeprom Dynam c A() ' Declare an Integer array

If A=0 Then RedimA (10) ' or ‘If A() =0...’

An expression has one of the following types: Byte, Integer, Long, Single, String, boolean, or user-
defined. A boolean expression is an expression of type Integer that is the result of a comparison; it
takesthe value True (1) or False(0). Normally aboolean expression is treated the same as an I nteger
expression; any exceptions are noted below.

3.9.1 Numerical Expressions

If exprl and expr2 are numerical expressions (i.e. expressions of type Byte, Integer, Long, Single, or
boolean), the following operations are allowed, grouped in descending order of priority:

—exprl Unary minus
Group 1
+exprl Unary plus (has no effect)
Group 2 | Notexprl Bitwise complement
exprl* expr2 Multiplication
Group 3 | exprl/expr2 Division
exprl Mod expr2 Remainder
exprl +expr2 Addition
Group 4)
exprl—expr2 Subtraction
exprl<expr2 Trueif exprl isless than expr2
G exprl <=expr2 Trueif exprl islessthan or equal toexpr2
roup 5
P exprl > expr2 Trueif exprl is greater than expr2
exprl >=expr2 Trueif exprl is greater than or equal to expr2
exprl=expr2 Trueif exprl isequal toexpr2
Group 6])
exprl<>expr2 Trueif exprl isnot equal toexpr2
Group 7 | exprl And expr2 Bitwise And
Group 8 | exprl Xor expr2 Bitwise exclusive-or
Group 9 | exprl Or expr2 Bitwise Or

The priority of an operator determines the order of the operations. For instance, 3 +-5* 7 is evaluated
as 3+((-5)*7),and A Or BANnd Cisevaluatedas A Or (B And C).

Groups 1, 3, and 4 are the numerical operators. The type of the resulting expression is determined as
follows:

If exprl or expr2 is Single, then the other is converted to Single if necessary, and the resulting
expression if of type Single.

Otherwise, if exprl or expr2 is Long, then the other is converted to Long if necessary, and the
resulting expression if of type Long.

Otherwise, exprl and expr2 are converted to Integer, and the resulting expression is of type
Integer.

Note: Even if exprl and expr2 are both Byte expressions, they are converted to Integer before any
operation is performed. (This means that the only expressions of type Byte are those consisting of a
singleterm.)

Groups 5 and 6 are the comparison operators. Exactly the same conversions are applied as for the
numerical operators, but the type of the resulting expression is boolean.

21

3. The ZC-Basic Language

Groups 2, 6, 7, and 8 are the bitwise operators. Bitwise operations are never performed on Single
expressions; if exprl or expr2 is Single, it is converted to Long before a bitwise operation is
performed. If both exprl and expr2 are of boolean type, then the result is also of boolean type.

Thereisaspecial rule concerning the evaluation of expressions of boolean type:

If expr1 and expr2 are both of boolean type, and one of the expressions
exprl And expr2 exprl Or expr2

occursin the program, then expr2 is not evaluated if the value of the whole
expression can be deduced from the value of expr1 alone.

In other words:

if exprl is False then “exprl Andexpr2” is awaysFalse as well, soexpr2 is not evaluated;
if exprl isTrue, then “exprl Or expr2” isalways Trueaswell, so expr2 isnot evaluated.

Thisisimportant if the evaluation of expr2 has any side-effects. For instance:
If Xt =0 O F(1/X') > 100 Then Goto 100

If X! iszero, then 1/ X! isnot evaluated (which would otherwise cause arun-time error), and the
function F is not called (which might, for instance, have changed Public data).
3.9.2 Sring Expressions

If either exprl or expr2 is of type String, then the other must be of type String as well: there are no
mixed numerical/string operations. The following string operations are allowed:

Group 1 | exprl+expr2 String concatenation
exprl<expr2 Trueif exprl isless than expr2
exprl<=expr2 Trueif exprl islessthan or equal to expr2
Group 2 . .
exprl>expr2 Trueif exprl is greater than expr2
exprl>=expr2 Trueif exprl is greater than or equal toexpr2
exprl=expr2 Trueif exprl isequal toexpr2
Group 3])
exprl<>expr2 Trueif exprl isnot equal toexpr2

The resulting expression is of String type after string concatenation (Group 1), and of boolean type
after string comparison (Groups 2 and 3). The comparison operations in Group 2 are performed by
finding the first characters that differ in the two strings, and comparing their ASCII values. In ASCII,
all lower-case letters are greater than all upper-case letters, so for instance “abc” is greater than “XYZ".
For case-insensitive comparison, use UCase$ or L Case$ to convert both arguments to the same case.
For example:

I f UCase$(S1$) > UCase$(S2$%) Then T$ = S1$: S1$ = S2%: S2% = T$

3.9.3 Expressions of User-Defined Type

Theonly operation allowed on user-defined types is comparison for equality:

exprl=expr2 Trueif exprl isequal toexpr2
Group 1

exprl<>expr2 Trueif exprl isnot equal toexpr2

The resulting expression is of boolean type.

3.10 Assignment Statements

3.10 Assignment Statements

An assignment statement has the form
[L et] var = expression

wherevar is ascalar variable, or an array element, or a member of avariable or array element of user-
defined type. The L et keyword is optional. The following rules apply:

If var has numerical type (Byte, Integer, Long, or Single), then expression must have numerical
type.

If var has type String or String* n, then expression must have type String.
If var has a user-defined type, then expression must have the same user-defined type.
There are four special string assignment statements:
[Lef] Mid$ (string, start [, length]) = expression
[Let] Left$ (string, length) = expression
[L ef] Right$ (string, length) = expression
[L et] string (n) = expression

Mid$ overwriteslength characters of string with the value expression, starting from position start. (The
first character in the string has position 1.) A value of start less than 1 results in a run-time error; a
value of start greater than the length of string is not an error, but no characters are copied. If length is
absent, or if start+length is greater than the length of string, the whole of rest of the string is
overwritten.

L eft$ overwrites the first length characters of string with the value expression. If length is greater than
the length of string, the whole of string is overwritten.

Right$ overwrites the last length characters of string with the value expression. If length is greater than
the length of string, the whole of string is overwritten.

In ZC-Basic, string (n) is shorthand for Mid$ @tring, n, 1). So the last statement in the above list
assignsthe first character of expression to the nth character of string.

In the first three string assignment statements, only the first length characters of expression are copied
into string. If length is greater than the length of expression, then the destination sub-string is filled out
with NULL characters (i.e. ASCI| zeroes).

3.11 Program Control

3.11.1 Exit Satements

An Exit statement jumps out of an enclosing block of code, according to the type of the statement:

Exit For Jumps to the statement following the innermost current For -loop.
Exit While Jumps to the statement following the innermost current While-loop.
Exit Do Jumps to the statement following the innermost current Do-loop.
Exit Case Jumps to the statement following End Select.

Exit Sub Returns from a subroutine to the calling procdedure.

Exit Function Returnsfrom afunction to the calling procdedure.

Exit Command Returnsfrom aBasicCard command to the caller in the Terminal program.

Exit Exitsthe program. Exit in a Terminal program returns to the operating system; Exit
in aBasicCard program returns to the caller in the Terminal program.
Note: The Exit statement (with no parameters) exits the program immediately,
without freeing Private strings and arrays. This is not a problem in the Terminal
program, but it can cause pcOutOfMemory errors in subsequent commands in a
BasicCard program, until the card is reset. So you should only use such an Exit
statement in a BasicCard program if you detect an error condition that prevents the
card from continuing the command-response session.

23

3. The ZC-Basic Language

3.11.2 Labels

There are two types of label in ZC-Basic: named labels, and line numbers. A named label is an
identifier followed by a colon. A line number is simply a decimal number, which may or may not be
followed by a colon. A label, of either type, may only be accessed from within the procedure that
definesit. Label names and line numbers must be unique within each procedure, but the same name or
line number can be used in two different procedures.

3.11.3 GoTo

The simplest program control statement isthe GoTo statement:
GoTolabel
label:

The program continues execution at the statement following label.

Note: You can’'t use GoToto jump from one procedure to another.

3.11.4 GoSub

A procedure can call its own private subroutines with the GoSub statement. Such a private subroutine
isnot a procedure; it has no parameters, and no data of its own. It issimply a part of the procedure that
definesit. It returns with the Return statement:

GoSub label

label:
subroutine-code

Return [return-label]

If return-label is specified in the Retur n statement, the subroutine returns there; otherwise it returns to
the statement following the GoSub call.

3.11.5 If-Then-Else
The If statement executes code depending on the value of a conditional expression:

If condition Then
code block
End If

The full form of the | f-Then-Elseblock is as follows:

If conditionl Then
code block 1

[Elself condition2 Then
code block 2]

[Elself condition3 Then
code block 3]

[Else
code block n]

End If

Each condition is anumerical expression. code block i is executed if conditioni isnon-zero (true). If al
the conditions are zero (false), then code block n is executed.

If there are any statements on the same line after the Then of the initial If-statement, then this is a
single-line If -statement. In this case, the | f-Then-Elseblock is terminated not with End If, but with the
end of the line. (Thisis the only place in the ZC-Basic language where a colon is not equivalent to an
end of line.) For instance:

24

3.11 Program Control

If X =0 Then GoTo 100
If X< 0 Then X = 0 : Elself X > 50 Then X = 50

Thisisequivalent to

If X = 0 Then
GoTo 100
End | f

If X < 0 Then
X=0

El self X > 50 Then
X = 50

End If

3.11.6 For-Loop
The For -loop executes ablock of code a specified number of times:

For loop-var = start To end [Step increment]
[code block]
[Exit For]
[code block]

Next [loop-var]

loop-var A numerical variable, used to count the number of times the For-loop has been
executed.

start A numerical expression, theinitial value of loop-var.

end A numerical expression. The For -loop terminates when loop-var passes this value.

More precisely:
If increment >= 0, then the For -loop terminates whenloop-var > end.
If increment < 0, then the For -loop terminates when loop-var < end.

increment The amount by which loop-var is incremented after each execution of the For -loop.
If [Step increment] is absent, increment takes the value 1.

The Exit For statement breaks out of the For -loop to the statement following the Next instruction.

loop-var is optional in the Next statement (but it can be useful as areminder if the loop islarge).

If For-loops are nested, the Next statement can specify more than one loop variable. For example:
For I =1 To 10: For J = 1 To 10: A(l,J) =0 : Next I, J

Note: The Exit For statement breaks out of only the innermost For -loop, even if the Next statement
specifies more than one loop variable. So the following example prints the values11 and 21:

For | =1 To 2 : For J =1 To 2
Print 10*I + J : Exit For
Next 1|, J

3.11.7 While-Loop and Do-Loop

The While-loop is executed as long ascondition is hon-zero:

While condition
[code block]
[Exit Whilg]
[code block]
Wend

25

3. The ZC-Basic Language

The Do-loop has more flexibility:

Do [{While| Until} condition]
[code block]
[Exit Dq]
[code block]

Loop [{While | Until} condition]

Theoptional [{ While | Until} condition] may appear at the beginning or the end of the Do-loop, but
not both. If it appears at the end, then the loop is always executed at least once. If neither is present,
then the loop is executed endlessly until left by some other means (such asExit Do or GoT o).

3.11.8 Sdect Case

The Select Case statement executes one of several blocks of code, depending on the value of a test
expression:

Select Case test-expression
Casecase-test [, case-test, . .]
[code block]

[Exit Casq
[code block]
Case case-test [, case-test, . . .]
[code block]
[Exit Casq
[code block]
[Case Else
[code block]
[Exit Casq
[code block]]
End Select

test-expression An expression of any type (numerical, String, or user-defined)

case-test Thistakes one of three forms:
expression Trueif test-expression = expression
exprl Toexpr2 Trueif exprl <= test-expression <= expr2
[1s] op expr True if test-expression op expr, where op is one of the six
comparison operators; < <= > >= = <>

The Iskeyword is optional .
If test-expression is of user-defined type, only thefirst of these three formsisvalid.

The Select Case statement executes the code following the first Case statement that contains a case-
test that is True. If more than one such Case statement exists, only the first is executed. If no such
Case statement exists, then the code following the Case Else statement is executed (and if there is no
Case Elsestatement, none of the codein the Select Case block is executed). The Exit Case statement
jumps to the statement following End Select.

3.11.9 Computed GoTo and Computed GoSub
Y ou can jump to one of alist of labels depending on the value of atest expression:

On expression{ GoTo| GoSub } labell[,label2,...,labeln]

expression An expression of type Integer. If itisequal tor, with 1 <= r <= n, then GoTo labelr
or GoSub labelr is executed. If expression < 1 or expression > n, execution proceeds
with the following statement.

26

3.12 Procedur e Definition

3.12 Procedur e Definition

A ZC-Basic program consists of a sequence of procedure definitions. Each procedure is either a
Subroutine, a Function, or a Command. The Private and Static data declared in a procedure belongs
to that procedure alone, and can’t be accessed from other procedures (such data is said to have local
scope); Public and Eeprom data can be accessed from all procedures (it has global scope).

3.12.1 Subroutine

The simplest procedure type is the subroutine. A subroutine returns no value to the caller, except
through its arguments. A subroutine definition is as follows:

[Static] Sub proc-name ([param-def, param-def, .. .])

[procedure code]
[Exit Sub]
[procdedure code]
End Sub
Static If the Static keyword is present in the definition, undeclared variables in the

procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [Astype], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.14 Procedure
Parameters for afull discussion of parameters.

3.12.2 Function
A Function isaSubroutinethat returns avalue to the caller. A function definition is as follows:

[Static] Function proc-name ([param-def, param-def, ..]) [Astype]
[procedure code]
[proc-name = expression]
[Exit Function]
[procedure code]
End Function

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [Astype], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.14 Procedure
Parameters for afull discussion of parameters.

The return type of the function is determined as if proc-name were a variable name: from [As type] if
present; otherwise from the last character in proc-name if it is a type character (@, %, &, !, or $);
otherwise from the first character in proc-name. (The type characters are defined in 3.2 Tokens.) A
function can have return type Byte, Integer, Long, Single, or String. Other types (including fixed-
length strings) are not allowed.

Inside the function, proc-name behaves like a Private variable. It is initialised to zero when the
functionis called, and its valueis returned to the caller when the function exits.

3.12.3 Command

A command is defined like a subroutine, but you must specify the two ID bytes (CLA and INS) by
which the command will be invoked:

[Static] Command CLA INS proc-name ([param-def, param-def, ..])
[procedure code]
[Exit Command]
[procdedure code]

End Command

27

3. The ZC-Basic Language

CLA The ‘Class byte. All the pre-defined commands in the BasicCard have

CLA=&HCO, so you should avoid this value for your own commands, unless you
want to override a pre-defined command.

INS The ‘Instruction’ byte. To be |SO-compliant, you should make this an even number,
although the compiler accepts any value.

Static If the Static keyword is present in the definition, undeclared variables in the
procedure have Static storage class, instead of Private.

param-def [{ByVal | ByRef}] param-name[()] [Astype], where param-name is a variable name
by which the parameter is accessed in procedure-code. See 3.14 Procedure
Parameters for afull discussion of parameters.

Notes:

1. Thespecia syntax “[Static]Command Else proc-name ([param-def, param-def, . .])” defines a

default command in the card, that is called when CLA and INSare not recogni sed.
A Command parameter may not be an array.

A Command definition is only valid in a BasicCard program; it is not allowed in a Terminal
program.

If aCommand parameter is a variable-length string, it must be the last (or only) parameter in the
list. In the Compact BasicCard, the compiler must know how long this string can be, so that it can
make sure the P-Code stack is large enough; you can specify a maximum length for the string with
the special syntax:

param-name <= maxlen
For example:

Conmand &H20 &HOO Set User Name(User | D, Nanme$<=25)

In the absence of this special syntax, maxlen defaults to 40. (The Enhanced BasicCard uses a more
flexible mechanism, and the length of the string is limited only by the requirement that the total
parameter list be no larger than 255 bytes. So this special syntax is not required.)

3.13 Procedure Calls

3.13.1 Procedure Declaration

The

compiler can't process a procedure call unless it knows what kinds of parameters the procedure

accepts. It knows thisif the procedure has already been defined:

Function Square (X!) As Single

Square = XI * X

End Function

Sub S()

Y! = Square (5.5) ' OK - Square already defined
End Sub

But the compiler won't accept the following:

Sub S()

Y! = Square (5.5) ' Error - Square not defined yet
End Sub

Function Square (X!') As Single

Square = XI * X

End Function

To call a procedure before it is defined, you must provide a procedure declaration that tells the
compiler what it needs to know. A procedure declaration consists of the word Declare, followed by a
procedure definition as defined in the preceding section:

3.13 Procedure Calls

Declar e Sub proc-name ([param-def, param-def, . ..])
Declare Function proc-name ([param-def, param-def, . . .]) [Astype]
Declare Command CLA INS proc-name ([param-def, param-def, . .])

In the case of aCommandcalled from a Terminal program, the procedure definition does not appear in
the current program at all. In this case, a procedure declaration is obligatory. Otherwise, if a declaration
and adefinition of the same procedure occur in the program, then they must match. More precisely:

for a Function, the return type in the declaration must match the return type in the definition;
for aCommand, CLA and INSmust be the same in the declaration and the definition;

the types of the parameters must match exactly;

the parameter-passing method (ByVal or ByRef) must be the same for each parameter.

However, the names of the parameters don't need to match. Parameter names in a procedure
declaration are just place-holders; the only restriction is that they may not be reserved words (see 3.2
Tokens for alist of reserved words). For example:

Decl are Function Square (Z!) As Single

Sub S()

Y! = Square (5.5) ' OK - Square decl ared
End Sub

Function Square (X!) As Single
Square = X! * Xl

End Function

OK — mat ches decl aration

In Command declarations, a special override syntax is available, for changing the default values of the
I SO-defined command parameters P1, P2, Lc, and Le. This is not necessary if you are declaring a
command that was written in ZC-Basic, but it is useful for declaring the pre-defined commands in the
BasicCard, or commandsin aforeign card to be called from a ZC-Basic Terminal program:

Declare Command CLA INS proc-name ([P1=expr,] [P2=expr,] [L c=expr,] arg-list [, L e=expr])

wherearg-list is the list of parameters that are required for a regular procedure call. In the absence of
this override syntax, P1 and P2 are initialised to zero, and Lc and Le are initialised to the length of arg-
list. Any or al of P1, P2, Lc, and Le may be overridden in thisway, but they must appear in the correct
order, with P1, P2, and Lc before arg-list, and Le after it. You can aso initidise P1 and P2
simultaneously with P1P2=expr. And you can specify that no Le byte be sent, with Disable Le.

For more information on these command parameters, see Chapter 7: Communications.

3.13.2 Calling a Subroutine
The recommended way to call asubroutineis
Call procedure-name ([[{ByVal | ByRef}] expression, [{ByVal | ByRef}] expression, ...])

The expressions in the list must match the parameters in the subroutine declaration (or definition) in
number and type. (See Procedure Parameters below for afuller explanation.) If the subroutine takes no
parameters, then the parentheses are optional:

Call procedure-name [()]

Alternatively, ZC-Basic accepts the older subroutine call syntax (with parentheses not allowed):

procedure-name[[{ByVal |ByRef}] expression, [{ByVal |ByRef}] expression, . . .]

3.13.3 Calling a Function
A Function call returns avalue, that can be used as aterm in an expression. For example:
Xl = XI' + Square (X! +1)

A Function can also be called just asif it were a Subroutine, in which case the return value is simply
discarded.

3. The ZC-Basic Language

3.13.4 Calling a Command

A Command iscalled asif it were a Function — although it is defined as if it were a Subroutine. The
reason for this is that the Terminal program automatically returns the command status word (SW1—
SW?2) asif it were the return value of afunction. This command status word should always be checked,
as it is possible that communications were disrupted for some reason before the command could be
successfully completed in the BasicCard.

In addition, the same override syntax is available in a command call as in a command declaration, for
setting the values of the | SO-defined command parametersP1, P2, Lc, and Le:

var = command-name ([P1=expr,] [P2=expr,] [L c=expr,] arg-list [, L e=expr])

You can also initialise P1 and P2 simultaneously with P1P2=expr. And you can specify that no Le
byte be sent, with Disable Le.

For more information on these command parameters, see Chapter 7: Communications.

3.14 Procedur e Parameters

3.14.1 Parameter Passing

In traditional Basic, procedure parameters are passed by value or by reference. Passing by value means
that the procedure receives its own copy of the parameter; any changes it makes to this copy are lost
when the procedure returns. Passing by reference means that the address (or ‘reference’) of the
parameter is passed to the procedure; knowing its address, the called procedure can change the value of
avariable in the calling procedure.

In general, ZC-Basic can't do this, because the BasicCard can’'t change the value of a variable in the
Terminal program directly. However, it uses awrite-back mechanism to achieve the same effect (and it
retains the keywords ByVal and ByRef, although they are not strictly accurate). With the exception of
String and array parameters, all parameters are passed by value (in the traditional sense); the value of
each parameter is pushed onto the P-Code stack before the procedureis called. The parameters are then
referenced like Private variables in the called procedure, and can be read or written directly. Then
when the procedure returns to the caller, any parameters that were passed ByRef are copied back from
the stack into their original locations.

By default, all parameters are passed ByRef (in the ZC-Basic sense). If the ByVal keyword is specified
in the procedure definition or declaration, then the following parameter is passed by value, and not
written back when the procedure returns. (The ByRef keyword is also alowed here, although it is
superfluous.) The parameter-passing method specified in the procedure definition or declaration can be
overridden for a particular procedure call by specifying ByVal or ByRef in front of a parameter. (Here
ByRef is not superfluous if the parameter was specified as ByVal in the procedure definition or
declaration.)

In order for the write-back mechanism to be invoked for a given parameter, the parameter-passing
method must be ByRef, and the expression in the function call must be avariable, an array element, or
amember of avariable or array element of user-defined type. In other words, it must be an assignable
expression — an expression that can appear on the left-hand side of an assignment statement. If you
don’t want a variable to be changed by a called procedure, you can specify ByVal, or you can enclose
the variable in parentheses (which is avalid expression, but not an assignable expression). An example
may make this clearer:

Declare Sub S (X, ByVval Y, ByRef Z) ' ‘ByRef’ redundant here
Private A, B, C

Call S (A B, O ' A and C can change

Call S (Byval A, ByRef B, C ' B and C can change

Call S (A+1, B, (Q) " Nothing can change — ‘A+1’ and ‘' (Q)’

are not assignabl e expressions

3.15 Built-in Functions

3.14.2 String Parameters

There is an important difference between parameters of type String and parameters of type String*n.
The former take up 3 bytes on the P-Code stack, the latter take up n bytes. So you should where
possible use String parameters rather than String*n parameters. However, a variable-length string
parameter to a Command is only alowed if it is the last (or only) parameter; any other string
parameters must be of fixed-length String*n type.

Note: You can pass a fixed-length string in a String parameter, or a variable-length string in a
String*n parameter; the compiler performs the necessary conversions. The parameter type only
determines how the string is passed to the procedure.

For more information on String parameters, see 3.22.2 String Parameter Format.

3.14.3 Array Parameters

An array parameter takes up just two bytes on the P-Code stack (the address of the array descriptor is
passed to the procedure — see 3.22.1 Array Descriptor Format).

An array parameter is specified in a procedure definition or declaration by a pair of parentheses after
the parameter name:
param-name() [Astype]

The parentheses must be empty. To pass an array parameter in a procedure call, the array name is
sufficient; an empty pair of parentheses after the array name is optional. The type of the array must
match exactly the type of the parameter. For example:

Declare Sub S (A() As Integer) ' Parentheses required here
Dim X (10) As Integer, Y (20) As Long

Call S (X) 'K
Call S (X()) ' Also OK — parentheses optional in call
Call S (Y) " Error — Y is Long array, not Integer array

The number of dimensions of the array is checked at run-time. The following code will compile, but
will generate arun-time error:

Declare Sub S (A() As Integer)
Dim X (5, 5, 5)
Call S (X

Sub S (A() As Integer)
A(2, 2) =0"' Run-tinme error — paranmeter X has 3 di nensions

3.14.4 Parameters of User-Defined Type

A parameter of user-defined type is passed to a procedure by pushing every member onto the P-Code
stack. (This is not as economical as passing an address, but it enables Command parameters to have
user-defined type.) The P-Code stack occupies precious RAM, so you should avoid passing large user-
defined types as procedure parameters. Otherwise, a parameter of user-defined type behaves just like a
parameter of numerical type.

3.15 Built-in Functions

3.15.1 Numerical Functions

Abs(X) Returns the absolute value of X (that is to say, X or =X, whichever is positive).
Thetype of the result isthe type of X, unless X is Byte, in which case Abs(X) has
type Integer.

Rnd Returns a random number of type Long: —2147483648 <= Rnd <= 2147483647.

See 3.17 Random Number Generation.
Sqrt(X) Returns the square root of X. Theresult isof type Single.

31

3. The ZC-Basic Language

3.15.2 Array Functions

LBound(array [, dim])
UBound(array [, dim])

These two functions return the lower and upper bounds of subscript dim in
the given array. If dimis not present, the lower or upper bound for the first
subscript isreturned. Theresult isof type Integer.

3.15.3 Sring Functions

string (n)

Asc(string)
Chr$(char-code)

Hex$(val)

L eft$(string, len)

L Caseb(string)
Len(string)

L Trim$(string)

Mid$ (string, start[, len])

Right$(string, len)

RTrim$(string)

Space$(len)

Str$(val)

String$(len, char)

Trim$(string)
UCase$(string)
Val& (string], len])

Vall(string[, len])

ValH(string[, len])

32

Returns astring of length 1, containing the nth character of string. (The first
byte of the string has position 1.) It is shorthand for Mid$(string, n, 1).

Returnsthe ASCI| value of thefirst character of string, as a Byte.

Returns a string of length 1, containing the ASCII character with the given
char-code.

Returns a string containing the hexadecimal representation of the Long
number val.

Returns the first len bytes of string.

Returns string with all upper-case | etters converted to lower-case.
Returnsthe length of string, as a Byte.

Returns string with leading spaces and NULL bytes removed.

Returnslen bytes of string, starting from positionstart. (The first byte of the
string has position 1.) If start > Len(string), the empty string is returned. If
start +len > Len(string) , or if len is absent, then the whole of string from
position start is returned. If start <= 0 or len < O, a run-time error is
generated.

Returns the last len bytes of string.
Returns string with trailing spaces and NUL L bytes removed.
Returns a string containing len space characters (ASCI| 32).

Returns a string containing the decimal representation of val. If val is of
type Single, itsvalueis given to 7 significant figures. Note: If val is of type
Single, use of this statement in an Enhanced BasicCard program will reduce
the amount of user-programmable EEPROM available — see 3.22.4 Single-
to-String Conversion for details.

Returns astring consisting of len characters with ASCII value char. If char
isitself a string, then the returned string consists of len copies of the first
character of char.

Returns string with leading and trailing spaces and NULL bytes removed.
Returns string with all lower-case letters converted to upper-case.

Returns the decimal number represented by string, asaLong value. If len is
present, it must be a variable (not an array element). This variable is set to
the number of characters used.

Returns the decimal number represented by string, as a Single value. If len
ispresent, it must be avariable (not an array element). Thisvariableis set to
the number of characters used. Note: Use of this statement in an Enhanced
BasicCard program will reduce the amount of user-programmable EEPROM
available —see 3.22.4 Single-to-String Conversion for details.

Returns the hexadecimal number represented by string, as a Long value. If
len is present, it must be a variable (not an array element). This variable is
set to the number of characters used.

3.16 Encryption

3.15.4 Encryption Functions
Note: These functions are not available in the Compact BasicCard.

Key(keynum) Returns key number keynum as a string. If no such key exists, a zero-length
string isreturned. This function may also appear on the left of an assignment
statement:

Key(keynum) = string

In the Terminal program, Key is a pre-defined, Static array of strings:
Key(0 To 255) As String. In the Enhanced BasicCard, only keys declared
in Declare Key statements can be accessed, and the length of each key is
fixed; see 3.16.2 Key Declaration for details.

DES(type, key, block$) Performs a single DES block encryption or decryption operation, returning
the result as an 8-byte string. key is either a key number from 0 to 255, or a
string containing a cryptographic key. block$isastring at least 8 byteslong.
See 3.16.6 DES Encryption Primitives for more information.

Certificate(key, data) Returns a cryptographic certificate of data, as an 8-byte string. key is either
a key number from 0 to 255, or a string containing a cryptographic key. See
3.16.7 Certificate Generation for more information.

3.15.5 Other Functions

Len(variable) Returnsthe size, in bytes, of ascalar variable (arrays are not allowed).
L en(type) Returnsthe size of adatatype (e.g. I nteger, or auser-defined type).
Peek (address) Returns the contents of memory location address, as a Byte value.
Pokeaddress, val Sets the contents of addressto the Byte val. Use at your own risk!

3.16 Encryption

3.16.1 Implementing Encryption

The Compact and Enhanced BasicCards contain a sophisticated mechanism for the encryption and
decryption of commands and responses. For full details of the algorithms, see Chapter 8: Encryption
Algorithms. To implement this mechanism for your commands:;

1. Usethe KEYGEN program to generate a key file, containing cryptographic keys (and primitive
polynomialsfor the SG-L FSR algorithm if you are programming for the Compact BasicCard).

2. Include the generated key filein both the Terminal program and the BasicCard program.

3. Includethefile COMMANDS.DEF in the Terminal program, to define the StartEncryption and
EndEncryption commands.

4. Inthe Terminal program, turn automatic encryption on and off with the statements

Call StartEncryption (P1=algorithm, P2=keynum)
Call EndEncryption()

That’s all you haveto do. An example program is provided in8.7 Encryption —a Worked Example.

The program running in the BasicCard will usually want to know whether encryption is currently in
force. It can check this through the pre-defined variables Algorithm and KeyNumber, which contain
the two parameters P1 and P2 that were passed in the most recent StartEncryption command. If
encryptionisnot in force, both these variabl es have the value zero.

3.16.2 Key Declaration

The Declare Key statement declares a cryptographic key (the KEYGEN program outputs its keys as
Declare K ey statementsin the key file):

3. The ZC-Basic Language

Declare Key keynum [(length [, counter])] [= b1, b2, b3, . ..]

keynum The key number, by which the key can be specified (for example, in a
StartEncryption command). It can take any value from 0 to 255 inclusive.

length The length of the key. If absent, the key length defaults to 8 bytes. If an initial value
field (b1, b2, b3, .. .) ispresent, and no length is specified, the key length is set to the
number of bytesin the initial value field. (If the length is specified, the initial value
field is padded with zeroes to the required length.)

Note: In the Compact BasicCard, all keys are 8 byteslong.

counter The error counter for the key (0 <= counter <= 15). If counter is zero, the key is
initially disabled. If counter is absent, the error counter for the key is initially
inactive. See 3.16.5 Key Error Counter for details.

Note: the counter parameter is allowed in all programs, but it is ignored except in
Enhanced BasicCard programs. This allows the same key file to be used in all
programsin an application.

bl,b2,b3,... Theinitia value of the key. If no initial value is provided, the key is initialised to
zeroes. The key may be changed later, in one of three ways:

with Key(keynum) = string in a Terminal program or an Enhanced BasicCard
program (see 3.15.4 Encryption Functions);

with the Read Key File statement in a Terminal program (see 3.16.4 Run-Time
Key Configuration);

with the BCKEYS program in a BasicCard (see 535 The Key Loader
BCKEYS.EXE).

Note: For Triple DES encryption (not supported in the Compact BasicCard), 16-byte keys are
required.
3.16.3 Polynomial Declaration

The encryption algorithm described in 84 The SG-LFSR Algorithm requires two primitive
polynomials, of degree 31 and 32. (This is the encryption algorithm used by the Compact BasicCard —
the Enhanced BasicCard uses the DES algorithm.) You don't need to know what a primitive
polynomial is, because the KEYGEN program generates them for you, and outputs them to the key file
as a Declar e Polynomials statement:

Declare Polynomials = PolyA& , PolyS&

PolyA& A primitive polynomial of degree 31, the generator of the Linear Feedback Shift Register A.
PolyS& A primitive polynomial of degree 32, the generator of the Linear Feedback Shift Register S.
The polynomials may be initialised at compile time, or later — with the Read Key File statement in a
Terminal program, or with the BCKEY S program in a BasicCard.

3.16.4 Run-Time Key Configuration

The Terminal program can load keys and/or polynomials from akey file at run-time, with the statement
Read Key File filename

If thiscommand fails, the File System variable FileError contains a non-zero error code indicating the
reason for the failure — see 4.12 The Definition File FILEIO.DEF for alist of error codes.

In Terminal programs and Enhanced BasicCard programs, keys can also be accessed as strings via the
Key(keynum) function. See3.15.4 Encryption Functions for details.

3.16.5 Key Error Counter

In the Enhanced BasicCard, each cryptographic key has an error counter. If the error counter for a
particular key is active, it [imits the number of times that a Terminal program can attempt to guess the

3.16 Encryption

key. For example, suppose the error counter for key keynum has an initial value of 10. Whenever the
Enhanced BasicCard receives acommand that is encrypted with key keynum:

if the encryption isinvalid, the error counter is decremented, and the BasicCard returns the status
code SW1-SW2 = swRetriesRemaining+X (&H63C0+X), where X is the new value of the error

counter. When the error counter reaches zero the key is disabled, until an Enable Key command is
executed in the BasicCard program (see below);

if the encryptionisvalid, the error counter isreset to itsinitial value (in this case, 10);

if the key is disabled (i.e. the error counter is already zero), the BasicCard responds with status
code SW1-SW2 = swKeyDisabled (& H6614).

So the Terminal program is given 10 chances, after which no more commands encrypted with key
keynumare accepted.

In an Enhanced BasicCard program, two commands are available for setting akey’s error counter:

Enable Key keynum [(counter)]

Enablesthe key. If counter is present, the error counter for the key is activated, and itsinitial value is
set to Max (counter, 15). If counter is absent, or equal to 255, the error counter for the key is
deactivated (i.e. the key will remain enabled regardless of how many times a command is badly
encrypted with the key).

Disable Keykeynum
Disables the key, until a subsequent Enable K ey command is executed.

Note: This error counter mechanism only applies to the encryption of commands. Even if a key is
disabled, it can always be used from within an Enhanced BasicCard program. ZC-Basic functions that
use cryptographic keys are listed in 3.15.4 Encryption Functions.

3.16.6 DESEncryption Primitives

DES message encryption and decryption is based on the four block encryption primitives Ex , Dg , Ex ,
and D% , as defined in 8.1 The DES Algorithm. In Terminal programs and Enhanced BasicCard
programs, these primitives are available to the ZC-Basic programmer viathe DES function:

result$ = DES(ype, key, block$)

type Thetype of primitive: +1, -1, +3, or -3, asfollows:

+1: Ex (block) Single DES encryption
-1 Dy (block) Single DES decryption
+3: Ex (block) Triple DES encryption
-3 D% (block) Triple DES decryption

key Either a key number from 0 to 255, or a string containing a cryptographic key. The key must
be at least 8 byteslong for types +1 and —1, and at least 16 bytes long for types +3 and —3.

block$ An 8-byte string containing the block to encrypt or decrypt. If longer than 8 bytes, only the
first 8 bytes are used; if shorter than 8 bytes, P-Code error pcBadStringCall (&HOD) is
generated.

result$ The 8-byte result of the DES encryption or decryption function.

3.16.7 Certificate Generation

The Termina program and the Enhanced BasicCard can generate “digital certificates’” using
cryptographic keys. A digital certificate is an electronic verification of a piece of data. Suppose you
have a network of dealers, who can unload cash credits from the cards that you issue to your customers,
in return for goods and services that they provide. At the end of the week, they come to you to
exchange these el ectronic cash credits for real money. How can you be sure that the dealers are honest?

Digital certificates are the answer. To unload credits from a customer’s card, the dealer sends a
message saying “| am dealer number A, and | want B credits’. The customer’s BasicCard will have its
own ID number C, and it can maintain a transaction counter D, which it increments after each
transaction. The BasicCard program puts these four numbers A, B, C, and D together into a string or a

3. The ZC-Basic Language

user-defined variable, and generates a certificate using a secret key not known to the dealer or the
customer. This certificate is then returned to the dealer, who shows it to you to claim reimbursement
for the credits. You can write a Terminal program to check that A, B, C, and D really do generate the
correct certificate with the secret key. And because the key is known only to you and the BasicCard,
you know that the dealer hasn’t forged the certificate.

To generate a certificate:
S$ = Certificate (key, data)

where key is a key number from 0 to 255 or a string containing a cryptographic key, and data is the
data to be verified — either an expression of type String, or a fixed-length variable or array element.
This generates a Triple DES certificate if key number key is 16 bytes or longer, otherwise a Single
DES certificate. Theresult, S$, is always 8 byteslong. The certificate generation algorithm is described
in 8.3 Certificate Generation Using DES.

3.17 Random Number Generation

The Rnd built-in function returns a 4-byte random number. The Terminal and the BasicCard have
different mechanisms for random number generation.

3.17.1 The Terminal

The Terminal program initialises its random number generator with a seed based on the system clock.
This ensures that the Rnd function returns a different sequence every time a program runs. You can
override this behaviour with the Randomize command:

Randomize seed
where seed is any expression of type Long or String.
Y ou might want to do this for the following reasons:

to generate a predictable sequence of random numbers while developing a program, to make
debugging easier;

to use amore unpredictable seed than the system clock, for better security.

Note: The default behaviour of the random number generator is good enough for the encryption
algorithms used in communication with the BasicCard — these algorithms don’t depend critically on the
unpredictability of theinitial valuesRA and RB (see 7.4.11 The START ENCRYPTION Command
for details). However, they do depend critically on the secrecy of the keys used, and for this purpose we
provide a high-quality random number generation mechanism in the KEYGEN program (see 5.3.4 The
Key Generator KEYGEN.EXE).

3.17.2 The BasicCard

Each BasicCard has a unique serial number burnt into its memory. The first time in its life that the
BasicCard generates a random number, this serial number is used as the seed. The seed is then updated
and stored in EEPROM for the next random number generation. This ensures that:

each BasicCard generates a different sequence of random numbers;
agiven BasicCard doesn't generate the same sequence each timeit isreset.
The Randomize command is not available in the BasicCard.

Note: The BasicCard simulatorsin the ZCDOS and ZCDD programs do generate the same sequence of
random numbers each time they run. This is because they have no access to a unique serial number to
seed the generation mechanism. But when the program is downloaded to a genuine BasicCard, the
random number sequence will become unpredictable.

3.18 Error Handling

3.18 Error Handling

If the P-Code interpreter in the BasicCard detects a run-time error, such as arithmetic overflow or
insufficient memory, it calls the ErrorHandler procedure. If there is no procedure with this name in
the program, it exits with the status code SW1 = sw1lPCodeError (&H64). SW2 contains the P-Code
error code (see 7.3.2 BasicCard P-Code Interpreter for a list of these error codes). The
ErrorHandler procedure may perform clean-up operations, but it cannot cause execution to be
resumed at the statement that caused the error. The pre-defined variable PCodeError contains the
P-Code error code.

In the Enhanced BasicCard, the address of the instruction where the error occurred is passed to the
ErrorHandler procedure as an|nteger parameter, so you can access it by declaring e.g.

Sub ErrorHandler (PC As Integer)
3.19 BasicCar d-Specific Features

3.19.1 Customised ATR

When the BasicCard is reset, it provides information about itself by means of the ATR (Answer To
Reset). The ATR contains technical information about the communication parameters that the card
uses, followed by up to fifteen bytes (the ‘historical characters’) by which the card can identify itself.
The historical characters in the BasicCard are of the form ‘BasicCard ZCvw”, where v is the
version number of the card. You can supply your own historical characters with the Declare ATR
statement:

Declare ATR =data
data Any sequence of Byte and String constants, with atotal length <= 15.

3.19.2 Application ID

The BasicCard has a pre-defined command GET APPLICATION ID (see 7.4.10 The GET
APPLICATION ID Command). You can use this command to check that the BasicCard in the card
reader contains your application. To configure an Application ID:

Declare Applicationl D = data

data Any sequence of Byte and String constants, with atotal length <= 127.

3.19.3 Enabling and Disabling Encryption Algorithms
{Enable| Disable} Encryption [AlgorithmID [, AlgorithmID, .. .]]

AlgorithmiD The ID of an encryption algorithm. If no algorithm is specified, al available
algorithms are enabled or disabled. The following algorithm IDs are available;

Compact BasicCard: &H11 SG-LFSR
&H12 SG-LFSR with CRC

Enhanced BasicCard: &H21 SingleDES
&H22 Triple DES

For maximum security, you should disable any encryption algorithms that you don’t plan to use. (The
most secure algorithms are & H12 in the Compact BasicCard, and & H22 in the Enhanced BasicCard.)

Note: This command is executed when the program is compiled, and it lasts for the lifetime of the card.
Algorithms can’t be enabled or disabled at run-time.

3.19.4 Asking the Terminal for More Time

TheBasicCard hasaBWT (Block Waiting Time) of 1.6 seconds (see 7.1 The T=1 Protocol for more
information). If a command is going to take longer than 1.6 seconds to complete, it must request more

37

3. The ZC-Basic Language

time, otherwise the caller will time out (but see 3.20.9 Giving the Card More Time). It does this with
aWTX (Waiting Time Extension) statement:

WTX BWT-units

BWT-units Any expression of type Byte: the number of multiples of BWT requested. WTX
reguests are not cumulative — each request cancels all previous requests.

3.19.5 Pre-Defined Variables

The BasicCard operating system has a number of internal variables that can be accessed from the ZC-
Basic language. Most of these have to do with communications — see Chapter 7: Communications for
details. Thefollowing are all Public variables (in RAM) of type Byte:

CLA Class byte —first byte of two-byte CLA INS command identifier.

INS Instruction byte — second byte of two-byte CLA INS command identifier.

P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.

P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.

Lc Length of IDATA field in command.

Le Expected length of ODATA field in response (supplied by caller).

ResponselL ength Actual length of ODATA field in response (supplied by called command).

sSwi First status byte in response field SW1-SW 2.

SW2 Second status byte in response field SW1-SW2.

Algorithm ID of currently active encryption algorithm. Commands can check this byte to

ascertain whether an appropriate encryption mechanism isin force. If no encryption
is currently active, Algorithm is zero. See 3.19.3 Enabling and Disabling
Encryption Algorithms for alist of algorithm IDs.

KeyNumber The number of the cryptographic key being used by the currently active encryption
algorithm. If no encryption is currently active, KeyNumber is zero (but zero is also
a valid key number, so you should not use KeyNumber to check whether
encryption is active — use Algorithm for this purpose).

PCodeError If a run-time error occurs, and the program contains a subroutine with the name
ErrorHandler, then this subroutine is caled. The error code is available to the
ErrorHandler subroutinein the variable PCodeError.

FileError The most recent error code generated by the file system (Enhanced BasicCard only).
Two Integer variables are defined:

P1P2 Concatenation of P1 and P2.

SW1SW2 Concatenation of SW1 and SW2.

3.20 Terminal-Specific Features

3.20.1 Screen Output

Screen output uses the Cls and Print statements in conjunction with the four pre-defined variables
FgCol, BgCol, Cursor X, and CursorY (see 3.20.10 Pre-Defined Variables).

The Cls command clears the screen, and setsCursor X and Cursor Y to 1:
Cls

The Print statement:

Print [field | separator] [field | seperator] . . .

field Any Byte, Integer, Long, Single, or String expression

3.20 Terminal-Specific Features

separator ‘" (semi-colon) Leavesthe output column unchanged.
;" (comma) Advances the output column to the next output field (an output
field is 14 characters wide).
Spc(n) Prints n space characters.
Tab(n) Advances the output column to positionn.

After the print statement, the cursor advances to the start of the next line, unless the last character is a
separator. (So you can stay on the same output line by adding a semi-colon at the end of the command.)

3.20.2 Keyboard Input

InKey$ Returns a string containing 0, 1, or 2 bytes: 0 bytesif there is no character waiting
in the keyboard buffer; 1 if aregular key was pressed; 2 if an extended-ASCI| key
was pressed (in which case thefirst byteis zero).

Line Input X$ Reads a line from the keyboard into the string variable X$, until the carriage
return key is pressed.

Inputvariable-list Readsthe variablesin thelist from the keyboard. If the list contains more than one
variable, the user must separate the values with commas or spaces. This statement
can also appear on the right-hand side of an assignment statement:

n = Input variable-list

Thisreturns the number of variablesin the list that were successfully input.

3.20.3 Communications

Three functions are provided for determining the status of the card reader and card. These functions
return a status code in SW1-SW 2, just like command calls:

CardReader [(name$)]

Attempts to detect a card reader via the configured serial port. If a string parameter is passed, the
identification string of the card reader is returned. If the BasicCard is being simulated in the PC, the
words “ Simulated Card Reader” are returned in the name$ parameter.

Status Codesin SW1-SW2:

swCommandOK Card reader detected
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader

CardInReader
Returns swCommandOK (&H9000) if acard isin the card reader.
Satus Codes in SW1-SW2:

swCommandOK Card isin card reader
swNoCardReader Card reader not detected
swCardReaderError Invalid response from card reader
swNoCardlnReader No card in reader

ResetCard [(ATRS$)]

Attempts to reset the card, returning swCommandOK (&H9000) if the card responded with a valid
Answer To Reset. If a string parameter is passed, the Historical Bytes of the Answer To Reset are
returned. See also0 3.19.1 Customised ATR.

Satus Codes in SW1-SW2:

swCommandOK Valid Answer To Reset received

swNoCar dReader Card reader not detected

swCardReaderError Invalid response from card reader
swNoCardlnReader No card in reader

swT1Error T=1 protocol error (see 7.1 The T=1 Protocol)
swCardError Invalid response from card

3. The ZC-Basic Language

swCardTimedOut Card failed to send an ATR within the prescribed time

3.20.4 PC/SC Functions

Two functions are provided for obtaining information about the PC/SC-compatible card readers
configured in the system:

nReaders = PcscCount
Returns the number of configured PC/SC card readers, as an I nteger.
Satus codesin SW1-SW2:

swNoPcscDriver The PC/SC driver is not installed in the system.
swPcscError The PC/SC driver returned an unexpected error code.

ReaderName = PcscReader (Reader Num)

Returns the name of PC/SC card reader ReaderNum, as a String. If ReaderNumis zero, the name of the
default PC/SC reader is returned. To access PC/SC reader number ReaderNum, set the pre-defined
variable ComPort to Reader Num+100.

Status codesin SW1-SW2:

swNoCar dReader Reader Numis less than zero or greater than nReaders.
swNoPcscDriver The PC/SC driver is not installed in the system.
swPcscError The PC/SC driver returned an unexpected error code.

Note: To configure a default PC/SC reader, add the reader’ s name to the Windows® system registry, in
the field “HKEY_CURRENT_USER\Software\ZeitControNBCPCSC\Default” (you can do this with
the Windows system tool Regedit.Exe). If no such field is found, reader number 1 is the default.

3.20.5 1/0 Logging

The Open Log File statement initiates the logging of all 1/0 between the Terminal program and the
BasicCard program:

Open Log File filename

Previous contents of the log file are destroyed. If the file open fails, the pre-defined variable FileError
is set to anon-zero value — see 4.12 The Definition File FILEIO.DEF for error codes. The statement

Close Log File

ends 1/0 logging and closes the log file.

3.20.6 Date and Time

The string function Time$ returns a 24-character string containing the current date and time in fixed
format:

“Ddd Mmm DD HH: MVt SS YYYY” (forexample: “Wed Jun 24 15:50: 35 1998").

3.20.7 Saving Eeprom Data
The statement
Write Eeprom [(filename)]

writes the permanent Eeprom data in the Terminal program to a disk file. If filename is not given, the
data is written back to the original image file (or debug file). If the file couldn’t be opened for any
reason, the pre-defined variable FileError is set to a non-zero value — see 4.12 The Definition File
FILEIO.DEF for alist of error codes.

Note: The Write Eeprom statement is only valid if the Terminal program is running in the ZCDOS
P-Code interpreter or the Windows® 95 Double Debugger. Programs containing Write Eeprom
statements can’t be compiled into executablefiles.

3.20 Terminal-Specific Features

3.20.8 Automatic Encryption
{ Enable | Disable} Encryption

The P-Code interpreter that runs the Terminal program monitors all commands to the BasicCard,
watching for START ENCRYPTION and END ENCRYPTION commands. If it sees a well-formed
START ENCRYPTION command that receives a valid response from the BasicCard, it automatically
turns on encryption of commands and decryption of responses, until it seesan END ENCRYPTION
command. If for any reason you want to disable this monitor, you can do it with a Disable Encryption
command. Y ou can turn the monitor back on at any time with Enable Encryption.

3.20.9 Giving the Card More Time

Sometimes the BasicCard needs more than the Block Waiting Time to execute a command. In
principle, the card is responsible for requesting more time, which it does with a WT X statement — see
3.19.4 Asking the Terminal for More Time. However, you can also override the default Block
Waiting Time from the Terminal program with aW T X statement:

WT X seconds

seconds Any expression of type Byte: the number of seconds to give the card before timing
out. Unlike WTX requests in the BasicCard program, this time-out value remains in
effect until explicitly cancelled (by WTX 0). If seconds is equal to 255, the card is
given unlimited time to respond.

The Terminal program waits for a response from the card until both time-outs (those set by the
BasicCard program and the Terminal program) have expired.

Note: This feature is only available if ComPort <= 4 — that is, if you are accessing a ZeitControl
Chipi® card reader via the serial port. The PC/SC standard interface does not support this feature. See
3.3.11 Block Waiting Time for an alternative method of increasing time-outs.

3.20.10Pre-Defined Variables

The Terminal P-Code interpreter contains the following Public pre-defined variables, of type Byte:

ComPort The number of the COM port that the card reader is attached to. To specify PC/SC
card reader number n, set ComPort = n+100 (or ComPort = 100 for the default

PC/SC reader — see 3.20.4 PC/SC Functions for details.).
Responsel ength The length of the ODATA field in the last response received from the card.

SW1 First byte of SW1-SW2 statusfield in the last response received from the card.
SW2 Second byte of SW1-SW2 status field in the last response received from the card.
Algorithm ID of currently active encryption algorithm. Commands can check this byte to

ascertain whether the appropriate encryption mechanism isin force. If no encryption
is currently active, Algorithm is zero. See 3.19.3 Enabling and Disabling
Encryption Algorithms for alist of algorithm IDs.

KeyNumber The number of the cryptographic key being used by the currently active encryption
algorithm. If no encryption is currently active, KeyNumber is zero (but zero isalso a
valid key number, so you should not use KeyNumber to check whether encryption is
active— use Algorithmfor this purpose).

PCodeError If a run-time error occurs, and the program contains a subroutine with the name
ErrorHandler, then this subroutine is called. The error code is available to the
ErrorHandler subroutinein the variable PCodeError .

FgCal Foreground colour for Print statements to the screen (0-15).
BgCol Background colour for Print statementsto the screen (0-15).
Cursor X X-coordinate of text cursor (1-80).
CursorY Y -coordinate of text cursor (1-25).
FileError The most recent error code generated by afile 1/0 operation.

41

3. The ZC-Basic Language

nParams Number of command-line parameters (see 5.3.2 The P-Code Interpreter
ZCDOS.EXE).

One I nteger variable is defined:

SW1SwW?2 Concatenation of SW1 and SW2.

Two String arrays are defined:

Param$(1 TonParams) Command-line parameters passed to the ZCDOS program (see 5.3.2 The
P-Code Interpreter ZCDOS.EXE).

Key(0 To 255) Cryptographic keys.

3.21 Miscellaneous Featur es

This section lists all the ZC-Basic statements that are not covered in the preceding sections or in
Chapter 4: Filesand Directories.

3.21.1 Overflow Checking

{ Enable | Disable} OverflowCheck

Normally, if the result of an arithmetic operation is too big or too small to be represented in the target
type, a P-Code error is generated. You can enable or disable this overflow checking with Enable
OverflowCheck or Disable OverflowCheck. These statements are executed at run-time, and don’t
apply to the whole program. (So if you want to disable overflow checking for the whole program, then
Disable OverflowCheck should appear in your initialisation code.)

Note: This statement only affects whole-number arithmetic Byte, Integer, and Long data types).
Floating-point overflow checking (Single datatype) cannot be turned off.

3.21.2 DefType Satement

A DefType statement specifies the default type of variables, arrays, and functions that begin with a
certain letter or range of letters:

{ DefByte | DefInt | DefLng | DefSng | DefString } range ([, range, . . .]

range Either a single letter, or arange of letters separated by a minus sign (e.g. 1-N). The
case of theletter(s) isnot significant.

Theinitial setting isDeflnt A—Z, i.e. all variables, arrays, and functions have type I nteger by default.

3.21.3 Array SQubscript Base
An array subscript range takes the form
[lower-bound To] upper-bound

If the optional lower-bound is missing, it defaults to 0. You can change this default value with the
Option Basecommand, which appliesto all subsequent array declarations:

Option Basesubscript-base
subscript-base Any constant expression with avalue from —-32 to +31.
Or you can specify that the lower bounds of array subscripts must always be explicitly declared, with

Option Base Explicit

3.21.4 Explicit Declaration of Variables and Arrays
By default, ZC-Basic allowsimplicit declaration of variables and arrays:

If it meets a variable that it doesn’t recognise in an expression or an assignment statement, it will
treat it as a newly-declared variable. The type of the variable is determined from its name, as
described in 3.7 Data Declar ation.

42

3.22 Technical Notes

If a ReDim statement contains an unrecognised array name, the compiler inserts an implicit Dim
statement to declare the array.

The Basic programming language has always behaved this way. However, this can be dangerous, as it
accepts mis-typed variable names as new variables. In the following example, this results in
TransactionState ending with the value 1 instead of 13:

TransactionState = 12

TransactionState = TransatcionState + 1
Y ou can catch all such errors by using the Option Explicit statement:
Option Explicit

This tells the compiler not to accept variables or array names that haven't been explicitly declared. It
applies only to following code; preceding code can contain implicit declarations.

3.22 Technical Notes

3.22.1 Array Descriptor Format

Anarray in ZC-Basic consists of afixed-lengtharray descriptor, and a data area (which is of variable
length if the array is Dynamic). If an array has n dimensions, then its descriptor occupies 2*n + 4
bytes:

Address of dataarea (0 if not allocated) (2 bytes)

Size of each element (1 byte) D n (7 bits)
LO(1) (6 hits) RANGE(1) (10 bits)

LO(n) (6 bits) RANGE(n) (10 bits)

D Thishbitis1 for Dynamic arrays, O for Fixedarrays.
LO() Lower bound for suscript(i): =32 <= LO(i) <= 31.
RANGE(i) Range for subscript(i): 0 <= RANGE(i) <= 1023.

The upper bound of subscript(i) isequal to LO(i) + RANGE(i).

3.22.2 Sring Parameter Format
A variable of type String isa2-byte pointer to a (len, data) pair:

address (2 bytes) | —» len (1 byte) data (len bytes)

This requireslen+3 bytes of storage (unlesslen is zero, in which case the pointer itself is zero, so only
2 bytesarerequired).

A variable of type String*n requires just n bytes of storage:

data (n bytes)

A procedure parameter of type String* n also takes up n bytes on the P-Code stack.

However, a procedure parameter of type String is rather more complicated. Two requirements must be
fulfilled:

A procedure can change the value of a String variable passed as a parameter;

A String*nvariable can be passed as a String parameter.

3. The ZC-Basic Language

So a String parameter takes up 3 bytes on the P-Code stack. If a fixed-length String*n variable was
passed, then the first of these bytes contains the length n (0-254) and the next two bytes contain the
address of the data. Otherwise, the first byte contains 255 (& HFF) and the next two bytes contain the
address of the pointer (not the address of the data). So if the address of the data has to be changed
because the string increasesin length, the String variable can be updated to point to the new data. (By
the way, thisisthe reason for the 254-byte length restriction on all strings.)

3.22.3 Memory Allocation in the BasicCard

The ZC-Basic compiler calculates the sizes of all the memory regions in RAM and EEPROM. Any
memory |eft over is assigned to the two heaps, RAMHEAP and EEPHEAP. These regions are for run-
time memory allocation. (See 9.4 Run-Time Memory Allocation for the format of the allocated
memory blocks.)

The ZC-Basic P-Code interpreter uses run-time memory allocation for three kinds of data: variable-
length String data, Dynamic arrays, and files (in the Enhanced BasicCard only). Files and Eeprom
data are allocated as Permanent blocks in EEPHEAP. Other datais allocated in RAMHEAP if there
is room, but if not, it is allocated as Temporary blocks in EEPHEAP. All Temporary blocks are
freed the next time the BasicCard is reset or the Terminal program is started. EEPROM writes require
up to 6 milliseconds to complete, so a BasicCard program runs more slowly when it has to use
EEPHEAP in thisway.

3.22.4 Sngle-to-Sring Conversion

The operating system in the Enhanced BasicCard consists of 17.7K of code; the chip, however,
contains only 17K of ROM. The last 705 bytes contain the Single-to-String conversion routines. If an
Enhanced BasicCard program requires these routines, the ZCBASIC compiler automatically loads them
into EEPROM (inthe STRVAL region —see 9.1.3 Memory Layout in the BasicCard). This means,
of course, that the amount of EEPROM available for your code and datais reduced by 705 bytes.

If any of the following ZC-Basic statements occur in an Enhanced BasicCard program, this STRVAL
region will be loaded:

Str$(val) with aval parameter of type Single;
Vall(string) (String to Single conversion);
Print to file, with a parameter of type Single.

Note: Enhanced BasicCard version ZC2.0 does not support these Single-to-String conversion
statements.

4. Filesand Directories

4.1 Directory-Based File Systems

Everybody who owns a PC is familiar with directory-based file systems. Each disk drive has a special
directory, called theroot directory, which contains data files and sub-directories. These sub-directories
themselves can contain data files and sub-directories, and so on. This determines a tree of directories,
in which any directory in the tree can contain data files and sub-directories. The directory containing a
given datafile or sub-directory is called itsparent directory.

Both MS-DOS® and Windows® 95 support such directory-based file systems. As far as the ZC-Basic
programmer is concerned, the only important difference between the two systems is the format of file
and directory names. (Windows® 95 calls its directories folders, but they will be called directories in
this chapter.)

4.1.1 Fileand Directory Names

MS-DOS” file and directory names must be of the form filename.ext, where filename and ext can
contain up to 8 and 3 characters respectively. The only characters allowed are the upper-case letters A-
Z, the digits 0-9, and the following characters (spaces are not allowed):

_ Underscore A Caet - Hyphen @ At-sign

$ Dollarsign ~ Tilde { Leftbrace } Right brace

! Exclamation mark # Hashsign ‘ Single quote " Apostrophe

% Percent sign & Ampersand (Leftparenthesis) Right parenthesis

Under Windows® 95, filenames can be up to 255 characters long, and may contain any printable
character (including the space character), except the following:

\ Backslash ! Slash . Coalon * Asterisk
? Question mark " Doublequote < Leftangle-bracket > Right angle-bracket
| Vertica bar

In both MS-DOS® and Windows® 95, case is not significant when referring to an already existing file
or directory. So if afile hasthe name“FILE.NAM”, you can access it as “File.Nam” or “FiLe.nAm” or
whatever. The difference is that MS-DOS® stores filenames in upper case, whereas Windows® 95
retains the case of the characters specified when the file was originally named. So if you create afile as
“File.Nam” and then ask for a directory listing, MS-DOS® lists it as “FILE.NAM”, but Windows® 95
listsit as“File.Nam”.

4.1.2 Path Names

Each file and directory can be uniquely identified by a full path name. This consists of the disk drive
name, followed by every sub-directory on the path from the root directory to the parent directory,
followed by the name of the file or directory itself. The disk drive name is a letter A-Z followed by a
colon, eg. “C: ” or “A: ”. (As with MS-DOS" file names, lower-case |etters may also be used to refer
to disk drives, but a drive name returned by a ZC-Basic function will always be upper-case.) The drive
name is immediately followed by a backslash character (this signifies the root directory); and
subsequent directory names in the path are separated by backslash characters ‘\ ’. For example, a full
path name might be “C:\1997 Clients\Account Data” under Windows® 95,
or“C: \ CLI ENTS. 97\ ACC_DATA. DAT” under MS-DOS”.

To save having to give the full path name every time, every disk drive in the system has a current
directory, and the system as a whole has a current drive. If the disk drive name is missing from the
front of a path name, the current drive is assumed. And if the first character after the disk drive nameis

4. Filesand Directories

not a backslash, then the chain of directories is followed starting from the current directory for the
drive, instead of the root directory. Such a path name is called a relative path name. For instance,
suppose the current drive is “C.”, and the current directories for drives “A:” and “C.” are
“\CLI ENTS. 97" and “\ PROGRAMS\ CPP” respectively. Then the relative path names
“A: AUGUST\ TOTALS. DAT” and “HEADERS\ SUM H'" expand to the full path names
“A:\ CLI ENTS. 97\ AUGUST\ TOTALS. DAT" and “C:\ PROGRAMS\ CPP\ HEADERS\ SUM H’
respectively.

[T]

Thedirectory names*“. " and “. . ” have special meanings: “. " denotes the current position in the chain
of directories, and“. . ” denotesthe parent directory. So“. \ ” in a path has no effect, and “. . \ " goes
back to the previous directory in the chain. For instance, in the previous example, the path name
“..\BASI C\ FI LElI O. BAS" expands to “C:\PROGRAMS\ CPP\..\BASI C\ FI LElI O. BAS",
which is the same as “C. \ PROGRAMS\ BASI C\ FI LEI O. BAS". The single-dot notation is useful
when a directory name is required as a parameter to a file system operation; for example, the ZC-Basic
statement

Name "..\FILELI ST" As ".\"

movesthefile“FI LELI ST” from the parent directory to the current directory.

4.2 The Enhanced BasicCard File System

The Enhanced BasicCard contains a directory-based file system, with the same file-naming rules as
those described in the previous section for Windows® 95 (except that the maximum length of a full
path name is 254 characters). The Enhanced BasicCard has one root directory, so path hames don’t
begin with a disk drive name. With the exception of the commands CurDrive, ChDrive, and SetAttr,
the ZC-Basic file and directory commands available to a BasicCard program are the same as those
availableto a Terminal program.

4.2.1 FileAccessfroma Terminal Program

If the Enhanced BasicCard allows it, files and directories in the card can be accessed from a Terminal
program, just as if the card was a diskette. The card has the special drive name “@ ”. Suppose the
Enhanced BasicCard containsafile“\ Tr anspor t \ Bus\ Cr edi t s”. Then the full path name of this
file from the point of view of the Terminal program is “@ \ Tr anspor t\ Bus\ Credi ts”. And if
the Terminal program sets the current drive to “@ ” and the current directory to “\ Transport”, it
can refer to the file as simply “Bus\ Cr edi t s”. The full range of file and directory commands is
available to the Terminal program for accessing BasicCard files and directories, subject to appropriate
access being granted.

Each file or directory in the BasicCard has its own access conditions, specifying the circumstances
under which the Terminal programis allowed read and write access. These access conditions can be set
and changed with Lock and Unlock statements. There are three types of access condition: Read,
Write, and Custom. The following general rules apply to file and directory access:

Read and Write access to all files and directories is available to the BasicCard program at all
times.

Read and Write access to all files and directories is available to the Terminal program as long as
the BasicCard isin state LOAD (see 7.4.1 States of the BasicCard).

Otherwise, to access afile or directory from the Terminal program, Read access is required to all
directories in the path from the root to the parent. To delete a file or directory, or to change its
access conditions, Write access is required to the file or directory, and to its parent directory. (In
particular, when the card is in state TEST or RUN, the Terminal program can never change the
root directory’ s access conditions, because the root directory has no parent.)

If aCustom lock is placed on afile or directory, it islocked against Read and Write access every
time the card is reset. It can only be unlocked from within the BasicCard program, after which the
file'sregular Read and Write access conditions apply until the next reset. So you can write a
command that unlocks a particular file if the Terminal program sends the correct PIN number, for
instance.

4.3 File System Commands

The Read and Write access conditions on afile or directory can be:
Allowed — accessis alowed from the Terminal program;
Forbidden — accessis forbidden from the Terminal program; or
Keyed — accessis allowed only if encryption with the appropriate key is enabled.

Read and Write access conditions and key numbers can be set independently of each other. If accessis
Keyed, up to two keys can be specified — if encryption with either of the two keysis enabled, accessis
allowed. The encryption algorithm must be Triple DES for keys at least 16 bytes long, and Single
DES for shorter keys. So to access a Keyed file from a Terminal program, you must first call
StartEncryption with the appropriate algorithm and key number — see 3.16.1 Implementing
Encryption.

Note: The default access conditions on the root directory are Read=Allowed and Write=Forbidden.

4.2.2 Pre-Defined Files and Directories

In an Enhanced BasicCard program, you can pre-define directories and data files using Dir and File
statements. The compiler constructs the appropriate structures in EEPROM for downloading to the
card. See4.11 File Definition Section for details.

4.2.3 Sorage Requirements

In the Enhanced BasicCard, data files and directories are stored in EEPROM. To make efficient use of
the limited space available, you should know how much memory is used. A data file or directory
allocates space for its header and its name; a data file owns data blocks as well:

A directory header requires 13 bytes of EEPROM; adatafile header requires 19 bytes.

The name of a file or directory takes up n+2 bytes of EEPROM, where n is the number of
charactersin the name.

Each data block in a data file uses n+4 bytes of EEPROM, where n is the block length specified
when the file was created. (The default block length is 32 bytes.) These blocks are allocated
automatically when data is written to afile. Note: Contiguous data blocks are merged if they are
also contiguous in EEPROM; this saves the overhead of 4 bytes per block. So if you are creating a
file that is going to be written to just once, you can achieve optimum EEPROM usage by
specifying ablock length of 1 byte.

As well as these EEPROM requirements, the file system in the Enhanced BasicCard uses
(6* nFiles+ 7) bytes of RAM, where nFiles is the number of open file slots configured (see 3.3.6
Number of Open File Slots).

4.3 File System Commands

This chapter describes all the file system commands available to the ZC-Basic programmer. There are
three cases that the ZC-Basic interpreter must distinguish:

1. A Terminal program accessing the file systemin the PC (disk drives“A: ” through “Z:).
2. A Terminal program accessing the BasicCard file system (disk drive“ @ ”).
3. A BasicCard program accessing its own BasicCard file system (no disk drive).

However, these cases all ook the same to the ZC-Basic programmer. Apart from the disk drive names,
there are no differences, unless explicitly noted in the command descriptions that follow.

After each command, its required access conditions are listed. These access conditions apply only when
the Terminal program attempts to access a file or directory in a BasicCard that is in state TEST or
RUN.

All file system commands return a status byte in the pre-defined variable FileError. A zero value
(feFileOK) indicates success. A non-zero value is an error code, and indicates the first error that
occurred since this variable was last set to zero. (It is reset to zero every time a new command is

a7

4. Filesand Directories

received from the Terminal program; you may also set it to zero yourself if you want to continue after
an error.) Error codes for each command are listed below.

Aswell asthe error codes documented below under individual commands, there are some general error
codes that apply to all commands:

felnvalidDrive In cases 1 and 2 above (Terminal program), a disk drive name in a path was
not aletteror“@ ”.

feBadFilename A filename contains an invalid character, or is too long (see 4.1.1 File and
Directory Names).

feBadFilenum A file number is out of range. In ZC-Basic, an open file is referred to by a
file number. In a Terminal program, this number must be between 0 and 32
inclusive (with O indicating the screen or keyboard). In a BasicCard
program, zero is not allowed; the maximum number allowed defaults to 2,
but this can be overridden with a #Files directive (see 3.3.6 Number of
Open File Slots).

feFileNotFound A file or directory specified in a path name does not exist.

feFileNotOpen The file number passed to the command is not associated with an open file.
Note: This need not be the result of a programming error. If a Terminal
program opens afilein the BasicCard, and then calls a BasicCard command,
the BasicCard command can close al files unilaterally —including remotely-
opened files — by using the Close command with no parameters. This is so
that the BasicCard program can always find a free open file slot when it

needs one.
feAccessDenied The access conditions on afile or directory do not allow the execution of the
command.
feBadFileChain Thefile system in the BasicCard is corrupted.
feBadParameter Aninvalid parameter value was passed to the command.
feOutOfMemory The BasicCard has insufficient free EEPROM to execute the command.
feUnexpectedError An operating system command in the PC returned an unexpected error code

when afile system function was called.

feCommsError In case 2 above (Terminal program accessing the BasicCard file system), the
command failed because of a communications failure with the BasicCard.
The status bytes describing the communications failure can be found in the
pre-defined variablesSW 1 and SW 2.

feNoFileSystem The card has no file system installed, either because
it's a Compact BasicCard; or
no program has yet been downloaded to the card; or
the file system was disabled with a #Files O directive (see 3.3.6
Number of Open File Slots).

Definitions of these error codes, as well as all the other constants that appear in this chapter, are
contained in the file FILEIO.DEF. Thisfileis supplied in the distribution kit, and islisted in 4.12 The
Definition File FILEIO.DEF.

4.4 Directory Commands

4.4 Directory Commands

4.4.1 Creating aDirectory

The MkDir command creates anew directory (but see also4.11 File Definition Sections):
MkDir path

path The path name of the new directory. A final backslash ‘\’ is optional.
Access Conditions:

Write access to the parent directory is required. The Read and Write access conditions of the new
directory are the same as those of the parent directory.

Error Codes:

feFileNotFound The parent directory does not exist.

feFileAlreadyExists A file or directory with the given path name already exists.
feNameT ool ong The full path name of the directory would be longer than 254 characters.

4.4.2 Deleting a Directory

The RmDir command deletes an existing directory. The directory must be empty before it can be
deleted:

RmbDir path
path The path name of the directory. A final backslash *\" is optional.
Access Conditions:

Write accessisrequired, both to the directory and to its parent directory.

Error Codes:

feFileNotFound The directory does not exist.

feNotDirectory Thefileisadatafile, not adirectory. Use Kill to delete datafiles.
feDirNotEmpty Thedirectory is not empty, and therefore can’'t be deleted.

4.4.3 Setting the Current Directory

The ChDir command sets the current directory.

ChbDir path

path The path name of the new current directory. A final backslash ‘\' is optional.

Note (Terminal programs only): If the path contains a disk drive name, the current directory for that
disk drive is changed, but the current disk drive is not changed. Use ChDrive to change the current
disk drive.

Access Conditions:;

Read access to the directory isrequired.

Error Codes:
feFileNotFound The directory does not exist.
feNotDirectory Thefileisadatafile, not adirectory.

4. Filesand Directories

4.4.4 Retrieving the Current Directory
The CurDir function returns the path of the current directory asa String:
S$ = CurDir [(drive)]

drive The disk drive for which the current directory is requested. The first character must
bealetter (‘A-Z’ or ‘a-z’'), or the character ‘ @. If absent, the current directory of the
current disk drive isreturned.

Note: The optional drive parameter is accepted only in Terminal programs.
Access Conditions:

No access conditions are required for this command.

Error Codes:
felnvalidDrive The disk drive specified in the drive parameter does not exist.
feNameT ool ong The full path name of the current directory is longer than 254 characters

(Terminal program only).

445 Renaming aFileor Directory

The Name command renames a file or directory, or moves it to a new directory, or both. It cannot be
used to move afile from one disk drive to another.

Name OldPath As NewPath
OldPath The old path name of thefile or directory.

NewPath The new path name. If no backslash appears in NewPath, the file or directory is
renamed without being moved. If NewPath ends with a backslash character ‘\', the
file or directory is moved without being renamed.

Note: Under MS-DOS®, directories can be renamed, but not moved.
Access Conditions:

Write accessisrequired (i) to the file or directory being renamed, (ii) to its parent directory, and (iii) to
the destination directory if different from the current parent directory.

Error Codes:

feFileNotFound The file specified in OldPath does not exist, or the directory specified in
NewPath does not exist.
feFileAlreadyExists Thefile specified in NewPath already exists.

feNameT ool ong The operation would result in afile or directory in the BasicCard with a full
path name longer than 254 bytes.
feRenameError One of thefollowing error conditions:

OldPath istheroot directory, which cannot be renamed.
NewPath and OldPath are on different disk drives.
An attempt was made to move a directory under MS-DOS®.
feRecur siveRename The directory in NewPath is a sub-directory of OldPath, so the rename
operation would result in an endless |oop in the directory tree.

4.4 Directory Commands

4.4.6 Searching for Files

Use the Dir command to search for files and directories matching a given wild-card specification. This
hastwo forms:

nFiles=Dir (filespec) Returnsthe number of matching files and directories, as an I nteger.
file$ = Dir (filespec,n) Returnsthe name of the nth matching file or directory, asa String.

filespec The path name of the file(s) to search for. The last component of the path may
contain the wild-card characters ‘?’ (matching any single character) and ‘*’
(matching any sequence of zero or more characters). For example, “A*” finds all
filenames that start with the character ‘A’ or ‘&, and “* =?” finds all filenames whose
penultimate character is‘=".

n The number of the matching file, 1 <= n <=nFiles.
Notes:

1. |If filespec refersto afile or filesin the PC, the first Dir command for a given filespec saves al the
matching files in memory. This list is retained for future Dir commands of the second form that
have the same filespec parameter (unless a ZC-Basic command intervenes that can change the
directory contents). Thisis amajor speed improvement in most cases. However, if another process
changes the directory contents, ZC-Basic won’'t know about it, and will continue to use the original
list. You can override this at any time and re-load the list from the disk, by calling a Dir command
of thefirst form.

2. ZC-Basic uses the host operating system to match wild-card specifications in the PC. MS-DOS®
and Windows® 95 handle wild-card characters a little differently, due to the differences in what
constitutes avalid filename, but “* . *” matches all files and directories in both systems.

3. The Enhanced BasicCard uses a case-insensitive matching algorithm that treats the full stop

(period) character *.’ no differently from any other character (unlike MS-DOS® and Windows®
95). However, as aspecia case, thewild-card string “* . *” matches all files and directories.

Access Conditions:

Read access to the parent directory isrequired.

Error Codes:

feBadFilename filespec is not a valid path name (this error code is also returned if filespec
contains wild-card charactersin any component except the last).

feBadFilenum nislessthan 1 or greater than nFiles.

4.4.7 Setting the Attributes of a File or Directory
The SetAttr command sets the attributes of afile or directory:
SetAttr filename, attributes

filename The path name of thefile or directory.

attributes A bit map of the attributes to set. The attributes available depend on the host
operating system. See 4.4.8 Retrieving the Attributes of a File or Directory for
details.

Note: Thiscommand is available in Terminal programs only.
Access Conditions:

Access conditions are not relevant for this command, as a BasicCard file has no attributes that can be
changed.

Error Codes:

feRemoteFile filename isaBasicCard file, so it has no attributes that can be changed.

51

4. Filesand Directories

4.4.8 Retrieving the Attributes of a File or Directory
The GetAttr command returns the attributes of afile or directory:
attributes = GetAttr filename

filename The path name of thefile or directory.

attributes A bit map of the attributes of the file or directory. The attributes that can be returned
depend on the host operating system, as follows:

The BasicCard file system supports two attributes:

faDirectory Indicates that the fileisadirectory, and not adatafile.
faCardFile Indicates that the file or directory isin the BasicCard.

MS-DOS® supports these two attributes, plus the following:

faReadOnly Indicates aread-only file.

faHiddenFile Indicatesahiddenfile.

faSystemFile Indicates asystemfile.

faArchived Indicates that file has been backed up since last changed.

Windows® 95 supports all the above attributes, plus the following:

faNormal Indicates that no other attribute bits are set.
faTemporary Indicatesthat fileis being used for temporary storage.

These constants are defined in the file FILEIO.DEF.
Access Conditions:

Read accessis required to the parent directory (but not to the file itself).

449 Setting the Current Disk Drive
The ChDrive command sets the current disk drive.
ChDrivedrive

drive The disk drive for which the current directory is requested. The first character must
bealetter (‘A-Z’ or ‘a-Z’'), or the character ‘' @.

Note: Thiscommand is availablein Terminal programsonly.
Access Conditions:

No access conditions are required for this command.

Error Codes:

felnvalidDrive The disk drive specified in the drive parameter does not exist.

4.4.10 Retrieving the Current Disk Drive

The CurDrive function returns the current disk drive as a single-character String containing an upper-
case letter *A-Z’ or the character ‘' @:

S$=CurDrive
Note: Thiscommand is available in Terminal programs only.
Access Conditions:

No access conditions are required for this command.

52

4.5 Creating and Deleting Files

45 Creating and Deleting Files

451 CreatingaFile

There is no special command to create a new file (but BasicCard files can be defined at compile time —
see 4.11 File Definition Sections). A file is created simply by opening a non-existent file for output,
using the Open command (see 4.6.1 Opening a File). A file can't be created in this way if mode is
I nput or access is Read.

452 DeetingaFile

The Kill command deletes an existing file:
Kill filename

filename The name of thefile.

Access Conditions:

Write accessisrequired, both to the file and to its parent directory.

Error Codes:

feFileNotFound Thefile does not exist.

feNotDataFile Thefileisadirectory, not adatafile. Use RmDir to delete directories.
feFileOpen Thefile can't be deleted, becauseit is currently open.

4.6 Opening and Closing Files

4.6.1 Opening aFile

In traditional Basic, the programmer has to specify filenum, the number of the open file slot. But in the
BasicCard file system, with open file slots shared between the BasicCard program and the Terminal
program, the programmer can't always know which file slots are in use. So ZC-Basic alows an
aternative form of the Open command, where the operating system automatically selects a free open
file slot. (This is equivalent to calling FreeFile to select an open file slot, followed by a traditional
Open command.)

Traditional form: Open filename [For mode] [Access access] [lock] As[#] filenum[L en=recordlen]
Alternative form: filenum= Open filename [For mode] [Access access] [lock] [L en=recordlen]
filename The path name of thefile to be opened.

mode If modeis Input, Output, or Append, the file is opened for sequential 1/O, in which
all write operations take place at the end of the file. If mode is Binary or Random,
write operations can take place anywhere in the file, overwriting existing data:

I nput Opensthefile for sequential input.

Output Opensthefile for sequential output. Existing datais destroyed.

Append Opens the file for sequential output and sets the file pointer to the end
of thefile. Existing datain thefileis preserved.

Binary Opensthefile for random access by file position, using Get and Put.
Random Opensthefile for random access by record number, using Get and Put.

If the mode parameter is absent, its value depends on the access parameter: Input for
Access Read, Output for Access Write, and Append for Access Read Write. If
both mode and access are absent, mode defaults to Input and access defaults to
Read.

4. Filesand Directories

access

lock

filenum

recordlen

Specifies which types of operations will be executed on the file. It takes the value
Read, Write, or Read Write.

If mode is Input, then access, if present, must be Read.

If mode isOutput, then access, if present, must be Write.

If modeis Append, then access, if present, must be Write or Read Write.

If mode is Binary or Random, then access can take any value; it defaults to
Read Write.

For a file in the PC, this parameter specifies whether the file can be opened
simultaneously by other processes. For afile in the BasicCard, it specifies whether
the file can be opened simultaneously from the Terminal program and the BasicCard
program. It also determines whether a file can be opened simultaneously under
different open file slots in the same program. The lock parameter can take the
following values:

Shared Allows simultaneous read and write operations by other processes.
Lock Read Prevents simultaneous read operations by other processes.
Lock Write Prevents simultaneous write operations by other processes.

Lock Read Write Prevents simultaneous access by other processes (the default).

The number of an open file slot, by which read and write operatons will be executed.
In the Terminal program, filenum must be between 1 and 32 inclusive. In the
BasicCard program, filenummust be 1 or 2, unless the number of open file slots has
been configured with the #Files directive (see 3.3.6 Number of Open File Slots).

Record length or block length.

If thefileisbeing created, this parameter specifies the size of its data blocks (see
4.2.3 Storage Requirements for more information). If absent (or zero), the data
block size for the new fileis 32 bytes. If present, it must be <= 8191.

If access is Random, this parameter specifies the record length of the file. This
record length must be between 1 and 254 inclusive.

Access Conditions:

If the file already exists, the access conditions required depend on the access parameter: Read, Write,
or Read Write. If the file is being created, Write access to the parent directory is required, and the
Read and Write access conditions on the new file are the same as those of the parent directory.

Error Codes:

feFileNotFound

feNotDataFile
feFileOpen

Thefile does not exist, and could not be created, because:
the parent directory does not exist; or
mode is Input; or
access isRead.
Thefileisadirectory, not adatafile.
(Traditional form only) Open file slot number filenumisalready in use.

feTooManyOpenFiles (Alternative form only) There are no more free open file slots.
feTooManyCardFiles (Terminal program only) An attempt was made to open a BasicCard file

from a Terminal program, but there are no more free open file slots in the
BasicCard.

feNameT ooL ong (BasicCard file system only) The file can’t be created, because its full path
name would be longer than 254 characters.

feRecordToolL ong Either access is Random, and recordlen is greater than 254; or the file is
being created, and recordlen is greater than 8191.

feBadParameter Either access is Random, and recordlen isless than 1 (or absent); or the file
isbeing created, andrecordlenislessthan 0.

feSharingViolation Thefileisaready open, and the required shared accessis not available.

4.7 Writing To Files

4.6.2 Closing Files
The Close command closes one or more files:
Close|[[#] filenum[, [#] filenum, .. .]]

Note: If no parameters are supplied, all open files are closed. (But the P-Code interpreter automatically
closes all files on program exit.) If the BasicCard program closes all open files in this way, even files
that were opened from the Termina program are closed. In this way, the BasicCard program can
alwaysfind afree open file slot when it needs one.

4.7 Writing To Files

4.7.1 Writing to Sequential Files

If afile was opened for writing, with a mode parameter equal to Output or Append, it can be written
towith aPrint or Write command. All write operations take place at the end of thefile.

The Print command outputs data to a sequential file in human-readable format. It has the same format
as the Print command for displaying data on the screen (see 3.20.1 Screen Output), except for the
initial #filenumparameter:

Print #filenum, [field | separator] [field | seperator] . . .

filenum The filenum parameter to the Open command by which the file was opened.
field Any Byte, Integer, Long, Single, or String expression
separator ‘" (semi-colon) Leavesthe output column unchanged.
‘)" (comma) Advances the output column to the next output field (an output
field is 14 characters wide).
Spc(n) Prints n space characters.
Tab(n) Advances the output column to positionn.

A new-line character is added at the end, unless the last character is a separator. (So you can stay on the
same output line by adding a semi-colon at the end of the command.)

Note: Use of this statement in an Enhanced BasicCard program with a parameter of type Single will
reduce the amount of user-programmable EEPROM available — see 3.22.4 Single-to-String
Conversion for details.

The Write command writes data to a sequential file, in abinary format that is specific to ZC-Basic. If a
sequence of valuesiswritten to afile with Write statements, then the same values can subsequently be
read from the file using ZC-Basic | nput statements (see 4.8.1 Reading from Sequential Files).

Write [#] filenum, expression-list
filenum The filenum parameter to the Open command by which the file was opened.

expression-list A list of expressions separated by commas. Expressions can be of numerical, string,
or user-defined type.

Access Conditions:

The file must have been opened with the access parameter equal toWrite or Read Write.

Error Codes:
felnvalidM ode The file was not opened with mode equal to Output or Append.
felnvalidAccess The file was not opened with access equal to Write or Read Write.

4. Filesand Directories

4.7.2 Writing to Binary and Random Files

The Put command is used to write to files that were opened with mode equal to Binary or Random.
The write operation takes place at the current file position, overwriting any existing data at that
position. After the Put command, the current file position advances to the next character (for Binary
files) or the next record (for Random files):

Put [#] filenum, [pog], data

filenum The filenum parameter to the Open command by which the file was opened.

pos A record number for Random files, and a character position for Binary files. If pos
is not present (“Put [#] filenum, , data”), the variable is written to the current file
position.

data A variable or array element, or a String expression.

Access Conditions:

The file must have been opened with the access parameter equal toWrite or Read Write.

Error Codes:

felnvalidM ode The file was not opened with mode equal to Binary or Random.
felnvalidAccess The file was not opened with access equal to Write or Read Write.
feSeekError posisaninvalid file position.

4.8 Reading From Files

4.8.1 Reading from Sequential Files

If afile was opened for reading, with a mode parameter equal to Input or Append, it can be read with
aLine Input statement, an Input function, or an Input statement.

Line Input #filenum X$ Reads a string from the file, up to the next new-line character or end-
of-file, or until 254 characters have been read (the new-line character, if
read, is discarded).

X$ = Input (len, [#] filenum) The Input function reads a given number of characters from the file
into astring.

Input #filenum, variable-list The Input statement reads a list of variables from a file, expecting
them in the format produced by a corresponding Write statement (see
4.7.1 Writing to Sequential Files). This statement can also appear on
the right-hand side of an assignment statement:

n = Input #filenum, variable-list

This returns the number of variables in the list that were successfully

input.
filenum The filenum parameter to the Open command by which the file was opened.
X$ A variable or array element of type String.
len The number of charactersto read.
variable-list A list of variables or array elements, separated by commas.

Access Conditions:;

The file must have been opened with the access parameter equal to Read or Read Write.

Error Codes:

felnvalidM ode The file was not opened with mode equal to Input or Append.
felnvalidAccess The file was not opened with access equal to Read or Read Write.
feReadError The end of file was reached before enough bytes were read.

4.9 File Locking and Unlocking

4.8.2 Reading from Binary and Random Files

The Get command is used to read from files that were opened with mode equal to Binary or Random.
The read operation takes place at the current file position. After the Get command, the current file
position advances to the next character (for Binaryfiles) or the next record (for Random files):

Get [#] filenum, [pog], variable[, len]
filenum The filenum parameter to the Open command by which the file was opened.

pos A record number for Random files, and a character position for Binary files. If pos
is not present (e.g. “Get filenum, , variable”), the read operation takes place at the
current file position.

variable A variable or array element. If thisis of type String, it must be followed by the len
parameter; otherwise the len parameter must be absent.

len The number of charactersto read, in the case that variable is of type String.
Access Conditions:

The file must have been opened with the access parameter equal to Read or Read Write.

Error Codes:

felnvalidM ode The file was not opened with mode equal to Binary or Random.
felnvalidAccess The file was not opened with access equal to Read or Read Write.
feSeekError File position posdoes not exist.

feReadError The end of file was reached before enough bytes were read.

4.9 FileLocking and Unlocking
The commandsin this section are valid only for filesin the Enhanced BasicCard.

49.1 Setting Read and Write Access Conditions
The Read and Write access conditions of afile or directory are changed with the following commands:

Read Lock filename [Key =k1 [, k2]]
Read Unlock filename

Write Lock filename [Key = k1 [, k2]]
Write Unlock filename

Read Write Lock filename [Key = k1 [, k2]]
Read Write Unlock filename

filename The path name of thefile or directory.
k1,k2 The key numbers required to access the file or directory.

The Lock command with no parameters sets the Read and/or Write access conditions of the
specified file or directory to Forbidden.

TheLock command with k1 or k2 specified sets the Read and/or Write access conditions of the
specified file or directory to Keyed — the file can’t be read or written from the Terminal program
unless DES encrpytionis currently active.

The Unlock command sets the Read and/or Write access conditions of the specified file or
directory to Allowed.

Access Conditions:
Write accessisrequired to thefile or directory, and to its parent directory.
Error Codes:

feNotRemoteFile filename is not aBasicCard file or directory.

57

4. Filesand Directories

4.9.2 Setting and Unlocking a Custom Lock

If afile or directory has a Custom lock, it can’t be read or written from a Terminal program unless the
BasicCard program explicitly unlocks it. This allows access to afile or directory to be subject to any
conditions, such as the presentation of avalid customer PIN number by the Terminal.

To set aCustom lock:

Lock filename

To unlock a Custom lock (BasicCard program only):

Unlock filename

Notes:

1. OnceaCustom lock is set, it can never be permanently removed. A Custom lock is for ever.

2. IfaCustom lock is unlocked, it can only be accessed from the Terminal program until the card is
reset. After the card is reset, the BasicCard program must unlock the file or directory again before
the Terminal program can accessit.

Access Conditions:

For the “L ock filename” command, Write access is required to the file or directory, and to its parent
directory. The“ Unlock filename” command is not allowed in a Terminal program, so access conditions
are not relevant.

Error Codes:
feNotRemoteFile filename is not a BasicCard file or directory.

feTooM anyCustomLocks The maximum allowed number of Custom locks are already in place.
(The implementation of the Custom lock mechanism in the Enhanced
BasicCard limits the number of locked filesto 125.)

4.9.3 Retrieving the Access Conditions on a File or Directory

The access conditions on afile or directory can be obtained with the Get Lock command:
Get Lock filename, Locklnfo

filename The path name of the file or directory.

Lockinfo A variable of user-defined type or a fixed-length string, at least seven bytes long. A
suitable user-defined type L ocklnfo is defined in FILEIO.DEF:

Type Locklnfo
ReadlLock As Byte
WiteLock As Byte
Cust onLock As Byte
ReadKeyl@ ReadKey2@
WiteKeyl@ WiteKey2@
End Type

ReadL ock and Writel ock can be liAllowed, liForbidden, liKeyedl, or liKeyed2.
If liKeyedl or liKeyed2, then ReadKeyl@ etc. contain the appropriate key
numbers.

CustomL ock can beliAllowed, liUnlocked, or liL ocked.
Access Conditions:
Read accessisrequired to the parent directory.
Error Codes:

feNotRemoteFile filename is not aBasicCard file or directory.

4.10 Miscellaneous File Operations

4.10 Miscellaneous File Oper ations

filenum= FreeFile Returns afree filenumfor use in atraditional Open statement. Returns —1 if
no more file numbers are avail able, with error code feT ooM anyOpenFiles.

Seek [#] filenum pos Setsthefile pointer to position pos (of type Long) for the next read or write
operation on file filenum pos is a record number for files opened with
mode=Random; otherwise it is a byte count. Records and bytes are
numbered from 1.

Note: If the file contains less than pos-1 bytes (or records), Seek fails with
error code feSeekError, unless the file was opened for output in random
access mode (mode=Binary or mode=Random, with Write access
specified). In this case, thefileisfilled with zeroes to the required length.

Seek ([#] filenum) Returns the read/write position for file filenum, asa L ong value.
Len (#ilenum) Returns the length of filefilenumin bytes, asaLong value.
EOF ([#] filenum) Returns Trueif the end of file has been reached.

4.11 File Definition Sections

Using File Definition Sections, files and directories can be defined in the source code of the BasicCard
program, to be created by the compiler. Files and directories so defined are downloaded to the
BasicCard together with the BasicCard program itself. A File Definiton Section begins with a Dir
command and ends with the matching End Dir command. It may occur anywhere in an Enhanced
BasicCard program; it may contain only File Definition statements, not regular ZC-Basic statements. A
program may contain any number of File Definition Sections.

4.11.1 Directory Definition

Dir path
Lock Definitions
File Definitions
Sub-directory Definitions

End Dir

path The path name of the directory. It may be a new directory or an existing
directory.

Lock Definitions Lock and Unlock statements for the path directory. These have the same
format as the statements described in 4.9 File Locking and Unlocking, but
without the filename parameter.

File Definitions Definitions of files contained in the path directory (see 4.11.2 File

Definition).

Sub-directory Definitions Nested Directory Definitions, defining sub-directories of the path
directory. Each nested Directory Definition must end with its own End Dir
statement.

File Definitions and nested Directory Definitions may occur in any order.

59

4. Filesand Directories

4.11.2 File Definition

A File Definition may occur only inside a Directory Definition. It ends with the next File or Dir
statement, or with the End Dir statement of the enclosing Directory Definition.

File filename [Len = blocklen]
Lock Definitions
Data Definitions

filename The path name of thefile.

blocklen The size of the new file's data blocks (see 4.2.3 Storage Requirements for more
information). If absent, blocklen defaultsto 32.

Lock Definitions Lock and Unlock statements for the file. These have the same format as the
statements described in 4.9 File Locking and Unlocking, but without the filename
parameter.

Data Definitions Theinitial data contained in thefile. A Data Definition statement looks like this:
expr [Astype] [(repeat-count)] [, expr [Astype] [(repeat-count)], . . .]
expr Any constant expression of numerical or string type.

type A datatype. If absent, it defaults to the smallest data type that can
contain expr. If type is a fixed-length string longer than expr, it is
padded with NULL characters (ASCIl zeroes) to the required
length.

(repeat-count) The number of copies of expr to storein thefile.

Note: To store a new-line character in the data, use the constant 10.

4.12 The Definition File FILEIO.DEF

Rem FI LEl O. DEF
Rem
Rem Decl arations for ZC-Basic File |/0O

#1 f Not Def Fil ei oDeflncluded ' Prevent nultiple inclusion
Const Fil ei oDef I ncl uded = True

#1 f Def Conpact Basi cCard
#Error File 1/Ois not suported in the Conpact BasicCard!
#End| f

Rem Fil eError codes

Const feFileK

Const felnvalidDrive
Const feBadFil enane
Const feBadFil enum
Const feFil eNot Found
Const feFil eNot Open
Const feOpenError
Const feSeekError
Const feReadError
Const feWiteError
Const feC oseError
Const felnvalidivbde
Const felnvalidAccess
Const feRenaneError
Const feAccessDeni ed

O©CoOoO~NOUM_WNEO

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

feSharingVi ol ati on
feFil eAl readyExi sts
f eNot Dat aFi | e
feNotDirectory

f eDi r Not Enpt y

f eBadFi | eChai n
feFil eOpen

f eNanmeToolLong

f eRecordToolLong

f eTooManyOpenFi | es
f eTooManyCar dFi | es
f eComrsEr r or
feRenpteFil e

f eNot Renpt eFi | e

f eRecur si veRenane
fel nval i dFr onKeyboard
f eBadPar anet er
feQut Of Menory

f eNoFi | eSystem

f eUnexpect edErr or

f eNot | npl enent ed

f eTooManyCust onmlLocks

Rem File Attribute bits

Const
Const

&HO0010
&H0040

faDirectory
faCardFil e

#1 f Def Term nal Program

Const
Const
Const
Const
Const
Const

#EndI f

faReadOnl y = &HO001
faHi ddenFil e = &H0002
faSystenFil e = &H0004
faArchi ved = &H0020
f aNor mal = &H0080
faTenporary = &H0100

Rem Locklnfo defined type,

Type Lockl nfo
ReadLock As Byte '
WiteLock As Byte '
Cust onLock As Byte '
ReadKeyl@ ReadKey2@ '
WiteKeyl@ WiteKey2@"
End Type

Rem Locklnfo constants

Const
Const
Const
Const
Const
Const

#EndI f

i Al'l onwed
i Keyedl

i Keyed2

| i For bi dden
| i Unl ocked
| i Locked

NFWNEFEO

Fi | ei oDef | ncl uded

4.12 The Definition File FILEIO.DEF

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

for GET LOCK st at ement

i All oned, |iKeyedl, |iKeyed2, or |i Forbidden
i Al'l owed, |iKeyedl, |iKeyed2, or |iForbidden
i Al'l owed, IiUnlocked, or |iLocked

Key number (s) for ReadLock

Key nunber(s) for WitelLock

61

5. Support Software

This document describes Version 2.70 of the software support package. All the software described in
this chapter is available free of charge from our web site atwww. Basi cCar d. com

5.1 Hardware Requirements

No special hardware is required to develop programs in ZC-Basic — the support software can simulate
the BasicCard inside your PC, so you can compile and test software on any MS-DOS® or Windows® 95
system. Once the software is written and tested, you will need a Chipi® card reader from ZeitControl,
and one or more BasicCards. The card reader is available in a stand-alone desktop version, or as an
internal device that fits into the diskette drive bay in the PC. A development kit containing Chipi
reader, BasicCards, and printed documentation is available from ZeitControl — contact us at
Sal es@ei t Control . de.

5.2 Installation

To install the BasicCard software from the CD, just copy the Basi cCr d directory to your hard disk,
together with all its subdirectories. For example, if the CD is in drive E: , the following MS-DOS®
command installs the software on drive C:

XCOPY E:\BasicCrd C:\BasicCrd\ /S

If you have downloaded BasicCrd.zip from our web site, you should unzip it from the root directory,
enabling the “restore Directory structure” option (in PKUNZIP, this is —d; in WinZip, check “Use
Folder Names’ in the Extractdialog box.). Thiswill createthe Basi c¢Cr d directory for you.

Y ou can add the Basi cCr d directory to your PATH environment variable if you like, but this is not
necessary in order to compile and run the example programs.

5.3 The MS-DOS® Support Package

The following programs make up the MS-DOS® support package:
ZCBASIC, acompiler for the ZC-Basic programming language.

ZCDOS, a P-Code interpreter that runs compiled ZC-Basic programs under MS-DOS®. ZCDOS
runs your Terminal program, and can either run your BasicCard program simultaneously in a
simulated BasicCard, or communicate over the serial port with a genuine BasicCard.

BCL OAD, for downloading P-Code to the BasicCard.
KEYGEN, aprogram that generates random keys and primitive polynomials for use in encryption.
BCKEYS, for downloading keysto the BasicCard.

Each of these programs takes a filename as its main parameter. Other command-line parameters begin
with ‘= (minus sign) followed by one or more option letters, sometimes followed by data. No spaces
are allowed between the minus sign and the option letters, or between the option letters and the data.
Option letters may be upper or lower case.

Notes:

Three of these programs — ZCDOS, BCLOAD, and BCKEYS — communicate with the Chipi®
card reader viathe serial port. However, 16-bhit DOS programs can experience problems accessing
the serial port under Windows® 95. If you are running any of these programs in a DOS box under
Windows® 95, you should use the Win32 Console versions WZCDOS, WBCLOAD, and
WBCKEYS.

62

5.3 The MS-DOS® Support Package

The 16-hit DOS versions of these programs will run in a DOS box under Windows® 95, but they
will only accept filenames that conform to the MS-DOS “8.3" convention — eight-character
filename plus three-character extension. The Win32 Console version of the compiler,
WZCBASIC, accepts long filenames and filenames with spaces. (If a filename contains spaces, it
must be enclosed in quotation marks on the command line. For example: WZCBASI C - O
"Hello Worl d" compiles the file “Hel 1 o Wér | d. BAS” and creates the file “Hel | o
Wor | d. | MG'.) Thisversion is also needed to create Win32 Console executabl e files.

5. Support Software

5.3.1 TheZC-Basic Compiler ZCBASIC.EXE

The compiler ZCBASI C.EXEtakes ZC-Basic source code as input, and produces P-Code as output. It
compiles the entire program in one pass; thereis no linking stage. To run the compiler:

ZCBASIC [param[param...]] input-file [param[param...]]

input-file

param

The ZC-Basic sourcefile. If no file extension is supplied, input-file.bas is assumed.

One of the following:

—Ctype

—Dsymbol[=val]

—ED [exe-file]
—EW [exe-filg]

—ESsdtart
—EEend

—Ipath

—Ol[image-file]

—OD[debug-fil€]

—OL[list-fil€]

—OM[map-file]

—OHerror-file]

—Sstack-size

Compiles code for the given virtual machine type:

—-CT Terminal (the default).
—CClor—-CC2 Compact BasicCard version ZC1.1 or ZC1.2.
—CEOto—CE4 Enhanced BasicCard versionZC2.0 to ZC2.4.

See 1.5 BasicCard Versions for more information.

Defines symbol as if the source program contained the statement
Const symbol=val. The val parameter must be an integer or a string;
arithmetic expressions are not allowed. If val isabsent, it defaultsto 1.

Creates an executabl e file that will run under MS-DOS®.

Creates a Win32 Console executable file that will runin a DOS box under
Windows® 95. (This option is available only in the WZCBASIC Win32
Console compiler.)

If no file extension is supplied, exe-file.exe is created. If exe-file is absent,
input-file.exe is created.

Defines the start address of EEPROM, as a hexadecimal number.
Defines the end address of EEPROM, as a hexadecimal number.

These parameters are only required if compiling for a custom BasicCard
with anon-standard configuration. (See als0 3.3.8 EEPROM Size)

Adds path to the list of directories to search for #nclude files (see 3.3.1
Source File Inclusion). A closing backslash in path is optional.

Generates an image file. If no file extension is supplied, image-file.img is
created. If image-file is absent, input-fileimg is created.

Theimagefileisdescribed in 10.1 ZeitControl Image File Format.

Generates adebug information file. If no file extension is supplied, debug-
filedbg is created. If debug-fileisabsent, input-file.dbg is created.

The debug file is described in 10.2 ZeitControl Debug File Format.

Generates alist file. If no file extension is supplied, list-file.Ist is created.
If list-fileis absent, input-file.lst is created.

Thelist fileisdescribed in10.3 List File Format.

Generates a map file. If no file extension is supplied, map-file.map is
created. If map-fileisabsent, input-filemap is created.

The map fileis described in 10.4 Map File Format.

Writes all error messagesto afile. If error-file already exists, it is deleted
before compilation begins. If no file extension is supplied, error-file.err is
created. If error-fileis absent, input-file.err is created.

Sets the size of the P-Code stack. Normally the compiler can work out for
itself how big the stack has to be. But if the program contains recursive
procedure calls or recursive GoSub calls, the compiler must guess the
stack size, because it can’t know how deep the recursion will go. You can
override this guess with —Sstack-size (or with the #Stack pre-processor
directive—see 3.3.7 Stack Size).

5.3 The MS-DOS® Support Package

—Sstate Switches the card into the specified state after the P-Code is downloaded.
See als0 3.3.5 Card State. Only thefirst letter of state is significant:

First letter of state: ‘L’ ‘T ‘R’
New card state: | LOAD | TEST RUN

Note: The WZCBASI C Win32 Console version of the compiler should be used if:
any of your source files have Windows-style long names; or
you want to create a Win32 Console executable file; or

the ZCBASI C compiler runs out of memory during compilation.

5. Support Software

5.3.2 TheP-Code Interpreter ZCDOSEXE

The program ZCDOS.EXE loads and runs a compiled ZC-Basic Terminal program from a ZeitControl
Image File (or Debug File). It can also simultaneously run a BasicCard program in a simulated
BasicCard, or it can communicate with a genuine BasicCard through the serial port. To run the
ZCDOS program:

ZCDOS [param[param...]] imagefile [P1$[P2$...]]

Parameters before the image-file name are processed by the ZCDOS program, as described below.
Parameters after the image-file name (P1$, P2$,...) are passed to the Terminal program via the pre-
defined String array Param$(1 To nParams) — see 3.20.10 Pre-Defined Variables.

image-file

param

P1$, P23,...

The image file output by the compiler. If no file extension is supplied, image-fileimg is

assumed.

One of thefollowing:

—Ccard-file

—L[log-filg]

—Pcom-port

-WT[new-filg]

-WC[new-file]

The image file of the BasicCard program. If this parameter is present,
ZCDOS simulates aBasicCard in the PC.

Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-filelog is created. If log-
fileis absent, image-file.log is created.

The number of the COM port that the card reader is attached to. (This
can aso be set from within the Terminal program itself, via the
ComPort pre-defined variable.)

Write the EEPROM data back to the image file(s) when the Terminal
program exits. The Terminal program EEPROM data is written back to
image-file. If the —C parameter is present on the command line, the
EEPROM data in the simulated BasicCard program is written back to
card-file when the Terminal program exits.

Write the Terminal program EEPROM data back to new-file when the
Terminal program exits. If no file extension is supplied, new-fileimg is
created. If new-file is absent, the EEPROM data is written back to
image-file.

Write the EEPROM data in the simulated BasicCard program back to
new-file when the Terminal program exits. If no file extension is
supplied, new-file.img is created. If new-file is absent, the EEPROM data
iswritten back to card-file.

These parameters are separated by spaces or tabs. To pass a space or tab in a parameter,
enclose it in quotation marks; to pass a quotation mark in a parameter, precede it with a
backslash. (Backslashes not followed by quotation marks are passed as is.)

Note: 16-bit DOS programs can experience problems accessing the serial port under Windows® 95. I
you are running this program in a DOS box under Windows® 95, you should use the Win32 Console
version WZCDOS.EXE

5.3 The MS-DOS® Support Package

5.3.3 The Card Loader BCLOAD.EXE
The program BCL OAD.EXE downloads P-Code and data to the BasicCard.

The ZC-Basic compiler produces a ZeitControl Image File as output, containing P-Code and data in
binary form. To run the BCL OAD program:

BCLOAD [param[param...]] imagefile [param[param...]]

image-file The image file output by the compiler. If no file extension is supplied, image-fileimg is
assumed. (A debug fileis also allowed here.)

param Oneof thefollowing:
-D Displays the commands on the screen as they are executed.

—L[log-file] Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-filelog is created. If log-file
isabsent, image-filelog is created.

—HEerror-file] Writesall error messagesto afile. If error-file already exists, it is deleted
before the download begins. (So if error-file exists after the program exits,
it means that an error occurred.) If no file extension is supplied,
error-file.err iscreated. If error-fileis absent, image-file.err is created.

—Pcom-port The number of the COM port that the card reader is attached to.

—Sstate Switches the card into the specified state after the download. Only the first
letter of state is significant:

First letter of state: ‘L’ ‘T ‘R’
New card state: | LOAD | TEST RUN

Notes:

The ZC-Basic source code for this program is supplied on the distributon disk, in the
Basi cCr d\ Sour ce\ BCLoad directory. The two versions BCLOAD.EXE and
WBCL OAD.EXE were compiled with the COMPILE.BAT command file in the same directory.

16-bit DOS programs can experience problems accessing the serial port under Windows® 95. If
you are running this program in a DOS box under Windows® 95, you should use the Win32
Console versionWBCLOAD.EXE

67

5. Support Software

5.34 TheKey Generator KEYGEN.EXE

The progran KEYGEN.EXE generates cryptographic keys and primitive polynomials for the
encryption and decryption of commands and responses. It creates a ZC-basic source file containing
Declare Keyand/or Declare Polynomial statements. Thisfile can be #lncluded in the source code of
the Terminal and BasicCard programs, or it can be downloaded separately to the BasicCard using the
BCKEYS Key Loader program. The program prompts the user to press keys on the keyboard at
random; the cryptographic keys and polynomials are generated from this user input, after hashing with
the MD5 algorithm (see R.L. Rivest, “The MD5 Message Digest Algorithm”, RSA Data Security, Inc.,
April 1992). To run the KEYGEN program:

KEYGEN [param[param...]] key-file [param [param...]]

key-file The name of the key file to create or update. If no file extension is supplied, key-filebas is
assumed.

param One of thefollowing:

—Kkey[(len[, count])] key isakey number between 0 and 255; len is a key length between 1
and 255; and count isthe initial value of the error counter for the key,
between 0 and 15 (see 3.16.2 Key Declaration). If len is absent, it
defaults to 8; if count is absent, the error counter for the key is
disabled. You can create multiple keys by specifying the —-K
parameter more than once.

-P Generates two random primitive polynomials for use by the SG-
L FSR encryption algorithms.

-Q Generates random numbers quickly, without requiring keyboard
input from the user.

Note: This feature is provided for convenience of use during the
development of an application. Keys and polynomials generated with
the —Q parameter should not be used in areleased application, as this
might compromise the security of the encryption algorithms.

-U key-file is updated, rather than being created from scratch — existing
keys and polynomials in key-file are preserved, unless overridden by
—K or —P.

Note: The generation of cryptographic keys is a delicate business. The security of the encryption
algorithms used by the BasicCard relies on the secrecy of the keys and polynomials generated by the
KEYGEN program, which in turn relies on the quality of the random number generator. To foster
confidence in the security of our product, we provide the C++ source code of the KEYGEN program
in the directory Basi cCr d\ Sour ce\ Keygen.

5.3 The MS-DOS® Support Package

5.3.5 TheKey Loader BCKEYSEXE

The program BCKEY S.EXE downloads cryptographic keys and/or polynomials to a BasicCard. The
following conditions apply to the downloading of keys and polynomials:

The BasicCard must be in state LOAD (or switchableto state LOAD).
The BasicCard must already have been loaded with P-Code and data by the BCL OAD program.

All keys that you want to download must have been declared in the ZC-Basic source code, with
Declare K ey statements.

The program takes a key file as input. Thisis a ZC-basic source file that contains only Declare Key
and/or Declar e Polynomials statements. The KEYGEN program can generate key files for you — see
5.3.4 The Key Generator KEYGEN.EXE.

To runthe BCKEY S program:

BCKEYS [param[param...]] key-file [param[param...]]
key-file Thekey file, asdescribed above. If no file extension is supplied, key-file.bas is assumed.
param Oneof thefollowing:

—K[key] key is a key number between 0 and 255. Y ou can download multiple keys
by specifying this parameter more than once. If key is absent, all the keys
in key-file are downloaded.

-P Downloads the polynomials to the BasicCard.

If neither —K nor —P appears on the command line, then all the keys and
polynomials in key-file are downl oaded.

—L[log-filg] Generates a log file, containing the commands sent to the card and their
responses. If no file extension is supplied, log-file.log is created. If log-file
isabsent, key-file.log is created.

-D Displays the commands on the screen as they are executed.
—Pcom-port The number of the COM port that the card reader is attached to.

—Sstate Switches the card into the specified state after the download. Only the first
letter of state is significant:

First letter of state: ‘L’ ‘T ‘R’
New card state: | LOAD | TEST RUN

Note: 16-bit DOS programs can experience problems accessing the serial port under Windows® 95. If
you are running this program in a DOS box under Windows® 95, you should use the Win32 Console
version WBCKEYS.EXE

69

5. Support Software

5.4 The ZeitControl Double Debugger for Windows® 95

The ZeitControl Double Debugger, ZCDD.EXE, is a development environment for ZC-Basic
applications. It contains the following components:

atext editor, for creating ZC-Basic sourcefiles;
the ZC-Basic compiler WZCBASI C.EXE;
aBasicCard simulator, for running a BasicCard program in a PC;

a split-screen debugger, for debugging a Termina program and a BasicCard program
simultaneously;

the card loader WBCL OAD.EXE, for downloading a ZC-Basic program into a BasicCard;

communication software for running a command-response session with a BasicCard, via a
ZeitControl Chipi® card reader in the serial port.

To install the Double Debugger, see 5.2 Installation. The Double Debugger is the program
ZCDD.EXE. If you run this program, you should see the following:

EA| ZeitControl Double Debugger

EEiIe Comple Fun Preferonces ﬂmdnwﬂelp

1] eB(eslen] slslodel &

5.4.1 Debugging With Two Source Windows

The working of the Double Debugger will be illustrated with the help of an example application. The
BasicCard program Calc.BAS implements a CALCULATOR command, that evaluates ASCII
expressions. The Terminal program CalcTest.BAS calls this command with various expressions, with
and without encryption enabled. These two source files are included in the devel opment package.

70

5.4 The ZeitControl Double Debugger for Windows® 95

Selecting the Sour ce Files... item from the Preferences menu brings up the following dialog box:

Source Files |
— Project

Froject File | |CABASICCRD\D efavit ZCP |

Terminal File | |"~B asicCrd\E xamplessCalchcalctest BAS |

BazicCard FilEl | %B agicCrd4ExampleshCalchcalc. BAS |

Cancel |

The project file Default.ZCP contains the names of the source files for the CALCULATOR

demo.These source files can be edited viathe Open... item in the File menu:

¥ ZeitControl Double Debugger - [C:ABasicCrd\EXAMPLESACAL Chcalctest.bas]

i File Edt Search Comple Bun Preferences “Window Help _IE!ﬂ

pr

ez sagiicy > (B [=] 2

Rem BasicCard Sample Source Code
Ren

Femn Copvright (C) 1997-1999 ZeitControl GmbH

Rem You hawve a rovalty—free right to use, modify, reproduce and

Fen distribute the Sample Application Files (and<or any modified
Fem wversion) in any way vou find useful, provided that wyvou agree
Rem that ZeitControl GmbH has no warranty. obligations or liability
Rem for anvy Sample Application Files.

Femn

Option Explicit
DOption Ba=ze Explicit

#Include CALCKEYS BAS

#Include CARDUTIL.DEF
#Include COMMERE.DEF
#Include COLOURS.DEF

Rem Declare decimal and hex Calculator commands
Declare Command &HZ20 &HO1 Calculator (Expression$)
Declare Command &H20 &HO1 HexCalculator (Pl=1, Ezxpres=ion$)

15 CAFS [HUM | OVR
&

|

Now select the Compile All item in the Compile menu. You should see a “Compilation successful”

message in the status line (bottom left in the main window).

71

5. Support Software

To start a debugging session, select Start from the Run menu (it's a good idea to maximise the
window first):

% ZeitControl Double Debugger - [Debugging Session] MEIER
A File View Compile Bun Preferences Window Help =151
| B ey | E . =

sl e (TR [el R Es el

DOS Screen BaszicCard Regs

FE: 0000
SE: 0000
PC:0SAR

Terminal Program: \BasicCrd\EXAMPLESACALCAcalctest BAS BasicCard Program
22: Declare Command &HZ20 &HO1 Calculator (E AI

23: Declare Command &H20 &HO1 HexCalculator

25: Eem Declare locally defined procedures
26: Declare Sub TestEzpressions()

27 Declare Sub DecimalTe=st (X3)

28: Declare Sub HexTest (H35)

30: Rem Execution starts here —

a1

IEEE =11 VaitForCard()
33 ResetCard : Call CheckSWISW2{)
34: Call TestExpressions=()

35:

36: Do

32 FgCol = Cyan

38 Print "Type an ezpression (H for he
a9 Print "and press Enter: " :

40: FgCol = BrightYellow

41 Private Expres=szion% : Line Input Ex
42 Expres=zion? = Trimn$ (Expres=sioni)

43: FaCol = White ¥
4] | 4

Terminal Watch

| Program Start - Use Step [F8] or Go [F5] | 111 [CAPS [HUM [OWR

The highlighted line number shows the position of the program counter, or PC, in the source file.
Initially, only the Terminal program is displayed. Pressing the F8 key steps to the next line. Pressing
F8 again executes the ResetCard statement there, at which point the ATR (Answer To Reset) is
displayed in the 1/O Monitor window:

% ZeitControl Double Debugger - [Debugging Session] HEE
i#l) File View Compile Run Preferences 'window Help 8] x|

oo e e - [[

FE: 0004 <— 3B EF 00 FF 81 31 20 75 42 ¢
SE: 0004
PC:05EY

Terminal Program: \BasicCrd\EXAMPLESACALC\calctest. BAS BasicCard Program
22 Declare Command &HZ20 &HO1 Calculator (E AI

Declare Command &H20 &HO1 HexCalculator

Pl == &Y
DOS Screen BazicCard Regs

FEen Declare locally defined procedures
Declare Sub TestEzpressions()

Declare Sub DecimalTest (X$)

Declare Sub HexTe=t (X$)

Rem Erecution starts here —
Call WaitForCard()

FesetCard : Call CheckSU1SW2({)
Call TestEzpressionsi()

Do

FgCol = Cyan

Frint "Type an expression (H for he

Print "and press Enter: "

FgCol = Bright¥Yellow

Private Expression$: Line Input Ex

Expres=iond = Trim$ (Expression$) ;

FaCol = Whits _l;l
4| v

Terminal Watch BasicCard Watch

[CAPS [MUM [OVE

72

5.4 The ZeitControl Double Debugger for Windows® 95

If you pressF11 (Skip to 10), the program runs until the next I/O event, which in this case is the Call
Calculator statement on line 101. The BasicCard program becomes the active window:

- ZeitControl Double Debugger - [D ebugging Session]

i File Wiew Compile Bum Preferences wWindow Help = |
N 3 £ g gt |
Lileelesi= s(SzleoE] v ele] == 5
__|'-J'D Monitor |ID0S Screen BasicCard Regs
FE:001E <— 3B EF 00 FF 81 31 20 75 42 ¢ FF: 00
SE. 0024 —» 00 00 0OF 20 01 00 00 01 31 ¢ SBs 22
Bl PC: 8183
Terminal Program: \BasicCrd\EXAMPLES\CALC\calctest BAS M BasicCard Program; \BasicCrd\EXAMPLES\CAL Chcalc BAS
7 Call StartEncryption (P1l=&H12, P2=1, = 36: Const SyntazxError = &HEL

el If SW1SW2 = =ylInknownAlgorithm Then 37 Const ParenthesisHismatch = &HBZ

83 Eem That didn't work., =so it must b 38: Const InvalidNumber = &HE3

4. Call StartEncryption (Pl=&H21. F2=1 39: Const BadOperator = &HAE4

85 End If 40:

86 Call CheckSW1SW2() 41: ' Forward references

e 42: Declare Function EwaluateEzpression (5%

ag. Call HexTe=t ("A+3%4") 43: Declare Function EvaluateTerm (5%) A=z L

a9 Call HexTest ("i{c + 3) = 4"} 44: Declare Sub Error {(Code@)

S Call HexTest ("10000 = 7FFF + FFFF") 45

9 iZall HexTe=t ("-10000 = 3000") Command &H20 &HO1 Calculator (55)

! Call HexTest ("-10000 = 4000") 47

A Frint 15 Frivate ¥ Az Long

94 19: S% = Trim$ (S$)

B Zall EndEncryption() : Call CheckSW1S 50 X = EvaluateEzpression (5%, 0)

96 : 51: If Len (Trim$% (S5%)) <> 0 Then Call

97 End Sub ' TestEzpressions g2 If P1 = 0 Then 5% = Str$ () : Else

a8 B3

99: Sub DecimalTe=t (H5) 54: End Command

100: Print X$: " = " | E5:
Call Caloulator (X8$) @ Call ChecksW Ct: Function EwvaluateExpression (5%, Preced

102, Print %S __'ﬂ 57 -
4 | APz EN | o
Terminal Watch || BasicCard Watch |
! | [CAFS [NOM [OVA

The command can be seen in the I/O Monitor, and the Terminal program has Printed two lines in the
DOS Screen window (the third window from the left in the top row). Now you can step through the
BasicCard program with F7 (Step In) and F8 (Step Over).

Now press F5 to run the program to the end. The Line Input Expression$ statement on line 41 waits
for an expression to be typed in from the keyboard. If you press the Enter key to input an empty line,
the program will halt. The DOS Screen window should look like this;

DOS Screen

Decimal te

73

5. Support Software

5.4.2 Viewing P-Code

P-Code instructions can be displayed in the Source window, interspersed with the ZC-Basic source
code. To continue the exampl e of the previous section, click on each of the two Source windows in turn
and select the Mixed item in the View menu:

7. ZeitControl Double Debugger - [Debugging Session] [_ 5] =]
ﬂ File View Compile Bun Preferences window Help B |ﬁ||i!
o e e) s 1 (Dl o 2

FE: 0004 —: 00 00 D& CO 10 12 01 04 704 FE: 00
SE: 0004 ¢— 00 00 02 66 15 71 SE 78
BC: 0610 —> 00 40 0A& CO 10 21 01 04 1¢ FC:81BE5
c— NN A0 NA 79 F7 K FF 490 00
0600 &C COMPS - 81AC BO PUFLOO .
0601 4D D& JEQUE Cas=060 81AD 1A FC EUFSE =1
0603 1A 04 PUFSE Temp0l15$ 81AF EB STELS
005 OB 01 FUCCE o1 81B0 G54 EXIT
0607 O0OE BF 2B PUCHY StrCon074 El==002:
0604 &C COMEPS 9181 BO EUFLOO _I
0e0B 4E 04 JHEWE HextCaszelsl _| 9182 14 FC EUFSE =1
Ca==060: 81B4 &9 HEXS
oe0D 1B 04 PUFAE Temp01E5s 5
060F 5SE FREEES 54: End Command
L4 EXIT 81 EC=r] EXIT
47 Iee
48 Caze "T": Call TestEzpressionsi) E6: Function EwvaluateEzpression (5%, Preced
HeztCass060: EVALUATEEXPRESSTION :
0611 14 04 PUFSE Temp0l15% 81Be 46 02 ENTER 02
0613 0B 01 PUCCE o1 5%
0g6l5 OE EE BC PUCWT StrConl7?5 g EvaluateEzpres=ion = EvaluateTerm
0618 &C COMES g1B8 01 04 ADDSE 04
0619 4E 08 JHEWE HextCaselel 81BA 1D F7 FUFSE =15
061B 1E 04 PUFAE Templl1E5% 81BC 45 83 58 CALL EVALUATETERH
061D EE FREES 21BF 01 FD ADDSP FD
061E 45 06 86 CALL TESTEXPRESS_Ilﬂ B1ELEER BOFLF3 ind
1 | e oAl | vl
|Plogramended-PressHESTAHT[F2] | |EAF'5 HUM | 0%R

Lines numbered in the left-hand column are ZC-Basic statements from the source file. Lines beginning
with a4-digit hexadecimal address are P-Code instructions generated by the compiler.

See 9.6 P-Code Instructions for a description of ZC-Basic P-Code. When P-Code instructions are
displayed in the Source window like this, the Step Into and Step Over instructions execute one P-Code
instruction, instead of one Basic statement.

54.3 SepInstructions

A Step instruction is a command to the debugger to execute code until a certain condition is met. A
variety of Step instructions are provided:

Sep In (F7 key): Execute one statement. If this statement contains a procedure call or GoSub, step
into the called procedure or subroutine.

Step Over (F8 key): Execute one statement. If this statement contains a procedure call, acommand
call, or a GoSub statement, step over the called procedure or subroutine, to the next statement in
the current procedure.

Step Basic (F9 key): Execute one Basic statement. Thisis the same as “ Step In” unless the source
window isin “Mixed” mode.

Skip to Terminal (F10 key): Run until the Terminal program becomes active.

Skip to 1/0 (F11 key): Run the program until the next 1/O event.

74

5.4 The ZeitControl Double Debugger for Windows® 95

5.4.4 \Watch Variables

Double-clicking on a variable name anywhere in the Source window causes the variable to be added to
the Watch window (situated directly underneath the Source window). The Watch window displays the
values of its variables, automatically updating them if they change. For example:

Terminal Watch

Byte: FGCOL = 7
String: H§ = "2+43%4"
Const: BRIGHTGREEN = 100&HOOOOOO0A) ﬂ

{&HO7)

To cancel aWatch variable, double-click on the variable in the Watch window.

5.4.5 Breakpoints

Double-clicking on a line in the Source window in the line-number column sets a breakpoint. This
causes the debugger to halt whenever it reaches the breakpoint line. Breakpoint lines are displayed in
red in the Source window. To cancel a breakpoint, double-click on the breakpoint line.

5.4.6 Programming a Real BasicCard

When your code is working correctly in the simulated BasicCard environment, it'stime to test it in a
real BasicCard. After plugging a ZeitControl Chipi card reader into the serial port, insert a BasicCard
into the card reader and select the Download Code item in the Preferences menu. This invokes the
WBCLOAD.EXE download program, which displays the download commands on the screen as it
executes them. If all goes well, the message “ Download successful” appearsin the status line.

Now select the Real BasicCard item in the Preferences menu, followed by the Restart and Run items
in the Run menu. This runs the Terminal program as before, but now the commands are sent to the
BasicCard in the Chipi card reader.

75

6. Plug-In Libraries

In Terminal programs and Enhanced BasicCard programs, the functionality of the ZC-Basic language
can be extended using ZeitControl Plug-ln Libraries. For each Plug-In Library, we provide a
ZeitControl Library Filelibrary.lib and adefinition filelibrary.def. To use alibrary:

#lncludelibrary.def
Thisloadsthelibrary, and declaresits procedures and data.

The following ZeitControl Plug-In Libraries are currently available:

Name Description Terminal Enhanced BasicCard
EC-160 | 160-bit Elliptic Curve Cryptography 4 4

SHA-1 Secure Hash Algorithm, revision 1 v 4

MATH Mathematical functions 4

MISC Miscellaneous procedures 4 v

These libraries are supplied with the distribution kit, inthe Basi cCr d\ Li b directory.

In the descriptions of the individual libraries, error codes may be defined. These error codes are
signalled viathe LibError variable. The ZCBASIC Compiler automatically declares this variable if
any libraries are included that can return an error code. LibError contains the most recent error code
signalled by alibrary procedure. A library procedure never sets LibError back to zero; if you want to
continue after detecting alibrary error, you should setLibError to zero yourself.

A library error code is aways a 2-byte value of the form & H4X XX, with the high nibble equal to 4.
Therefore (at the cost of strict 1ISO compatibility) you can return LibError inthe SW1SW2 status
word if alibrary error issignalled in a BasicCard program. For example:

Sub CheckLi bError ()
If LibError <> 0 Then
SWLSW2 = Li bError
Li bError = 0 ' Reset LibError for the next conmmand
Exi t
End If
End Sub

6.1 EC-160: TheElliptic CurvelLibrary

The EC-160 library implements 160-bit Elliptic Curve Cryptography, for Terminal programs and
Enhanced BasicCard programs. The following operations are supported:

private/public key pair generation;

session key generation;

digital signature generation;

digital signature verification (Terminal program only).

Thisimplementation follows the proposed standard | EEE P1363: Standard Specifications for Public
Key Cryptography. Section 6.1.9 Conformance Specification specifies the methods used in library
EC-160, using the terminology of |EEE P1363.

6.1.1 Elliptic Curve Cryptography

Elliptic Curve Cryptography is a branch of Public Key Cryptography that is especially suitable for
Smart Card implementation, for two reasons:

the generation of private/public key pairsis simple enough to be implemented in a Smart Card;

76

6.1 EC-160: The Elliptic Curve Library

it requires much smaller key sizes than other well-known methods for the same level of security.

The library EC-160 uses points with 160-bit prime order; this is considered equivalent in security to
1024-hit RSA.

To load the Elliptic Curve library:
#Include EC-160.DEF
The file EC-160.DEF is supplied with the distribution kit, in the Basi cCr d\ Li b directory.

6.1.2 Setting the Elliptic Curve Parameters

An Elliptic Curveis defined by its EC Domain Parameters; Five suitable Elliptic Curves are supplied in
the directory Basi cCrd\Li b. Choose one of these at random for your application. Files

CURVEL.DEF through CURVES.DEF contain curve definitions in ZC-Basic, for inclusion in a source
program. File CURVES.BIN contains the binary data for all five curves, for run-time loading in a
Terminal program.

To specify an Elliptic Curve in an Enhanced BasicCard program:
#lnclude CURVEX.DEF

where X is a number from 1 to 5. In a BasicCard program, the curve must be chosen at compile time; it
can’'t bere-loaded at run-time.

In the Terminal program, an Elliptic Curve must be explicitly loaded using EC160SetCurve. There are
three ways of doing this:

If you know in advance which curve to use, you can include its definition file. For example:

#1 ncl ude CURVES. DEF
Cal | EC160Set Curve (ECl60Paramns)

But note that only one such definition file is allowed in a program.

If the card has a suitable command, you can |oad the curve from the card. For example:

Private Curve As EC160Domai nPar amns
Call GetCurve (Curve) : Call CheckSWLSW2()
Cal | EC160Set Curve (Curve)

SeeBasi cCr d\ Exanpl es\ ECfor an example of this.
Y ou can read the curve from the binary file CURVES.BIN. For example:

Private Curve As EC160Domai nPar amns

Open "CURVES. BI N' For Random As #1 Len=64
Get #1, 3, Curve ' Read Elliptic Curve #3
Cl ose #1

Cal | CheckFil eError ()

Cal | EC160Set Curve (Curve)

If the EC domain parameters are invalid, procedure EC160SetCurve returns error code
EC160BadCurveParams invariable LibError .

In the Terminal program, you must call EC160SetCurve before you call any other procedures from the
EC-160 library. If not, error code EC160CurveNotl nitialised will be returned in variableLibError .
6.1.3 Key Generation

To generate a public/private key pair:

Call EC160Gener ateK eyPair (Seed$)

This procedure uses library SHA-1 to generate a cryptographically strong pseudo-random number
from Seed$, for use as a private key. The 20-byte private key and its associated 21-byte public key are
stored in Eeprom strings EC160PrivateK ey and EC160PublicK ey.

See 6.2.2 Pseudo-Random Number Generation for more about pseudo-random numbersin SHA-1.

6. Plug-In Libraries

6.1.4 Setting an Explicit Private Key
To set an explicit value for aprivate key:
Call EC160SetPrivateK ey (Key$)

This procedure copies Key$ (reduced modulor) to the 20-byte Eeprom string EC160PrivateK ey, and
computes the associated 21-byte Eeprom string EC160PublicKey. (r is explained in 6.1.8 Binary
Representation Formats: EC Domain Parameters.)

If Key$ is zero modulor, error code EC160BadProcParams isreturned in variable LibError .

Note: In the BasicCard, this procedure takes about 6 seconds to execute at a clock speed of 3.57 MHz.
However, if you don't need to compute EC160PublicKey, you can simply copy Key$ to
EC160PrivateK ey, and the Elliptic Curve routines will work correctly.

6.1.5 Generating a Digital Sgnature

A private key is used to generate digital signatures. To sign a message consisting of a String
expression:

Sgnature$ = EC160HashAndSign (Message$)
This function returns a 40-byte string.

To sign a longer message, first compute the hash function for the message (see 6.2.1 Hashing
Functions), and then call

Signature$ = EC160Sign (Hash$)

If no private key has been set, these functions return error code EC160K eyNotl nitialised in variable
LibError .

In the BasicCard, digital signature generation takes about 6 seconds at a clock speed of 3.57 MHz.

6.1.6 Verifying a Digital Sgnature

Note: Verification of Digital Signatures is only possiible in a Terminal program. It is not supported in
the Enhanced BasicCard.

To verify a digital signature, you need the signer’s public key. To verify the signature of a message
consisting of aString expression:

Status= EC160HashAndVerify (Signature$, Message$, PublicKey$)

Sgnature$ The 40-byte signature to be verified

Message$ The message that was signed

PublicKey$ The signer’ s 21-byte public key

This function returns True of Falseaccording to whether the signatureisvalid or not.

To verify a longer message, first compute the hash function for the message (see 6.2.1 Hashing
Functions), and then verify its signature with the function:

Status= EC160Verify (Signature$, Hash$, PublicKey$)

If Signature$ is not 40 bytes, or PublicKey$ is not 21 bytes, error code EC160BadProcParams is
returned in variable LibError.

6.1.7 Session Key Generation

If two parties know each other’s public keys, they can use them to agree on a secret 21-byte value. This
valueiscalled the shared secret for the two parties; to compute it, you need to know the private key of
one party (either one will do) and the public key of the other party. To compute the shared secret:

SharedSecret$ = EC160Shar edSecr et (PublicKey$)
PublicKey$ The other party’s 21-byte public key
SharedSecret$ The 21-byte shared secret

78

6.1 EC-160: The Elliptic Curve Library

If PublicKey$ is not 21 bytes long, or it is not a point on the curve, error EC160BadProcParams is
returned in variable LibError.

Technical Note: If PublicKey$ isa point on the elliptic curve, but it does not have order r, then it is not
avalid public key, and SessionKey$ will therefore be meaningless. Thiswill not, however, compromise
the security of your private key; the library EC—160 protects against invalid public keys by using
Secret Value Derivation Primitive ECSVDP-DHC with cofactor multiplication, to prevent so-called
small subgroup attacks on the private key.

This shared secret can then be used to generate 20-byte session keys for encrypting messages between
the two parties; unlike the shared secret, a session key can be different on different occasions.

To generate a session key, the parties must agree on a Key Derivation Parameter, which can be any
sequence of bytes, and need not be kept secret. For maximum security, it should be different each time
a session key is generated. For example, it might be a standard header followed by the date and time.
To generate the session key:

SessionKey$ = EC160SessionK ey (KDP$, SharedSecret$)

KDP$ Key Derivation Parameter, astring of any length
SharedSecret$ The shared secret value, returned by EC160Shar ed Secr et
SessionKey$ The 20-byte session key

Note: In the BasicCard, generating a shared secret is very time-consuming — it takes about 25 seconds
at a clock speed of 3.57 MHz. But once a shared secret has been generated for a given public key,
session key generation takes less than half a second at the same clock speed, provided Len(KDP$) <=
42. (Typically, asmart card application will only need to generate session keys for a single public key,
for which the shared secret is computed just once in the card’ slifetime.)

6.1.8 Binary Representation Formats

This section specifies the binary representations of the data objects that are used in the library: integers,
field elements, elliptic curves, points on the curve, and signatures.

Integers

Integersin this implementation have alength of either 1 byte or 20 bytes. Thefirst (or leftmost) byteis
the most significant — in a 20-byte integer, in contains bits 159-152. The last (or rightmost) byte
contains bits 7-0.

Field Elements
The library EC—-160 implements operations on Elliptic Curves over the field GF(2™), with m = 162. A
Polynomial Basis representation of GF(2™) is used; the irreducible field polynomial p(t) is given by

pt) =t +t™ T +tM 2 +tZ4t+ 1
An element of GF(2™) is represented by a polynomial over GF(2) modulo p(t), of degree <= m — 1. Its
binary representation occupies 162 bits stored in 21 bytes, with bits 161-160 in the first (leftmost) byte

and bits 7-0 in the last (rightmost) byte. Biti is the coefficient of t' in the polynomial representation of
the element.

EC Domain Parameters
An Elliptic Curve E over GF(2™) is defined by an equation of the form
y2+xy:x3+ax2+b

where a and b are elements of GF(2™) withb * 0. The curve E consists of all points (x, y) with x, y T

GF(2™ that satisfy this equation, together with a Point at Infinity, denoted O. The order #E of the
curve is the number of pointsin E. For cryptographic purposes, this order must have a large prime
divisor, i.e. #E = kr for some (large) primer. Aswell asa, b, r, andk, apoint GT E must be specified,
of order r (that is, r isthe smallest positive integer such thatrG = O.) Field elementsaandb1 GF(2™),
integers r and k, and point GT E constitute the EC domain parameters. (k is redundant, as it can be
calculated from a, b, andr; it isincluded for convenience.)

79

6. Plug-In Libraries

The library EC-160 accepts any set of EC domain parameters (a, b, r, k, G) that satisfies the following
conditions:

aisasingle byte (with bits 161-8 all zero);
r isexactly 160 bitslong, i.e. 2 < r < 2';
r has at least one digit equal to zero in its base-32 expansion.

Mathematically, #E will always lie between 2'%2 — 22 + 1 and 2'%% + 22 + 1; <0 if r is 160 bits long,
thenk =#E /r must be equal to 4, 6, or 8.

The user-defined type EC160DomainParams, defined in file Basi cCrd\ Li b\ EC- 160. DEF,
contains curve parametersa (1 byte), b (21 bytes), r (20 bytes), k (1 byte), and G (21 bytes), for a total
of 64 bytes.

Points on the Curve
Points on the curve play two rolesin library EC-160:

EC domain parameter G is a point on the curve;
every public key is apoint on the curve. (For a private key s, the corresponding public key issG.)

If Pisonthecurveandxe® O, theny? + xpy = Xp° + axp> + b has two solutions, y, and y;. Moreover,
the two expressionsyp / x> and y; / Xp differ only in bit 0; so if we know xp and bit O of yp / Xp , we can
recover point P in full. This bit is called the compressed y-coordinate of the point P, denoted y)p. A
point P on the curve is represented by 163 bits stored in 21 bytes, with xp in bits 161-0, and the
compressed y-coordinate y)p in bit 162.

Sgnatures
A signature consists of two 20-byteintegers(c, d). See |EEE P1363 for the definitions of c and d.

6.1.9 Conformance Specification

This implementation follows the proposed standard |EEE P1363 / D9 (Draft Version 9): Standard
Specifications for Public Key Cryptography. In the terminology of this standard, the following
schemes, primitives, and additional techniques are implemented:

Enhanced
Scheme Description Terminal BasicCard
ECKAS-DH1 Elliptic Curve Key Agreement Scheme, Diffie-
Hellman version, where each party contributes one v v
key pair. This scheme uses primitive ECSVDP-
DHC, with additional technique KDF1.
ECSSA Elliptic Curve Signature Scheme with Appendix.
This scheme uses primitives ECSP-NR (in the v v
Terminal and the BasicCard) and ECSV-NR (in the
Terminal only), and additional technique EM SA1.
Enhanced
Primitive Description Terminal BasicCard
ECSVDP-DHC | Elliptic Curve Secret Value Derivation Primitive,
Diffie-Hellman version with cofactor multiplication. v v
Compatibility with ECSVDP-DH is enabled.
ECSP-NR Elliptic Curve Signature Primitive, Nyberg-Rueppel v v
version.
ECVP-NR Elliptic Curve Verification Primitive, Nyberg- v

Rueppel version.

6.2 SHA-1: The Secure Hash Algorithm Library

Additional Enhanced
Technique Description Terminal BasicCard
KDF1 Key Derivation Function. The hash functionis v v
SHA-1: Secure Hash Algorithm, revision 1.
EMSA1L Encoding Method for Signatures with Appendix.
The hash function isSHA-1: Secure Hash v v
Algorithm, revision 1.

6.2 SHA-1: The Secure Hash Algorithm Library

This library implements the Secure Hash Algorithm as defined in the Federal Information Processing
Standards document FIPS 180-1. The algorithm takes an arbitrary message as input, and outputs a 20-
byte hash of that message. It is supposed to be computationally infeasible to invert this algorithm. More
specifically:

given a 20-byte hash, it is computationally infeasible to construct a message with that hash;
it is computationally infeasible to construct two different messages with identical hashes.
FIPS 180-1 is available on the Internet, at www.itl.nist.gov/div897/pubs/fip180-1.htm.

The SHA-1 library was implemented as an adjunct to the EC-160 Elliptic Curve library. In the first
place, it is specified in the proposed |EEE standard P1363 as one of the approved hashing algorithms
for use in Elliptic Curve digital signature generation; and in the second place, it provides a source of
cryptographically strong pseudo-random numbers, for the generation of keys and signatures.

However, it can also be used as a stand-alone library. To load thislibrary:
#lnclude SHA-1.DEF
The file SHA-1.DEF is supplied with the distribution kit, in the Basi cCr d\ Li b directory.

6.2.1 Hashing Functions

If amessageis contained in a String, you can compute its hash with a single function call:
Function ShaHash (S$) As String
To hash longer messages, you must use the following procedures:

Sub ShaStart()
Sub ShaAppend (S$)
Function ShaEnd() As String

Call ShaStart() to initialise the hashing process, then ShaAppend (S$) for successive blocks of data,
and finally ShaEnd() to get the 20-byte hash value.
6.2.2 Pseudo-Random Number Generation

The Secure Hash Algorithm can be used to generate cryptographically strong pseudo-random numbers.
To do this properly, it must be fed with some initial source of random data, for instance user key-
strokes (see example program ECTERM in directory Basi cCr d\ Exanpl es\ EC).

Sub ShaRandomSeed (Seed$)
This function mixes the given seed into the ‘randomness pool’.
Function ShaRandomHash() As String

This function returns a 20-byte random string. Each byte in the string is a random number between 0
and 255 inclusive.

Each time that you call ShaRandomSeed (Seed$) , the seed is mixed into the ‘randomness pool’. The
effect is cumulative, so the more data you mix in, the better. The ZC-Basic interpreter mixes in some
data of its own each time this procedure is called:

81

6. Plug-In Libraries

The Terminal program mixes in the date and time, and the elapsed CPU time for the process.

The Enhanced BasicCard mixes in its unique serial number. So any two cards will generate
different sequences, even if they are fed with the same seeds.

The BasicCard has no other internal source of randomness, so you must send it random data from the
Terminal program if cryptographically strong random numbers are required, for instance when
generating key pairs for use by the EC-160 Elliptic Curve Cryptography library.

6.3 MATH: Mathematical Functions

The MATH library provides standard mathematical functions such as Exp and Sin. It may only be
used in Terminal programs. To load thislibrary:

#Include MATH.DEF
Thefile MATH.DEF is supplied with the distribution kit, inthe Basi cCr d\ Li b directory.

6.3.1 Error Codes

The MATH library procedures can signal the following error codesinLibError:

MathDomain A parameter was outside the valid range, e.g. L og (-1.0)
MathSingularity Thefunction hasasingularity at the given point, e.g. Tan (MathPi / 2)
MathOver flow The maximum Single value of 3.402823E+38 was exceeded
MathUnder flow Theminimum Single value of 1.401298E—45 was truncated to zero

MathL ossOfPrecision Total loss of precision renders the result meaningless, e.g. Sin (1E30)

These constants are defined in MATH.DEF.

6.3.2 Integer Rounding
Function Floor (X!) AsSingle Thelargest integer <= X!, asa Single value
Function Ceil (X!) AsSingle The smallest integer >= X!, asa Single value

6.3.3 Exponentiation

Function Pow (X!, Y!) AsSingle X! to the power Y!

Function (X!) AsSingle eto the power X! (e isthe base of natural logarithms)
Function LogE(X!) AsSingle The natural logarithm of X! (i.e. the logarithm to base €)
Function Logl0 (X!) As Single The logarithm of X! to base 10

6.3.4 Trigonometric Functions

Function Hypot (X!, Y!) AsSingle Sgrt (X * X+ Y1 * Y1) (with no intermediate overflow)
Function Sin (X!) As Single Sine function

Function Cos (X!) As Single Cosine function

Function Tan (X!) AsSingle Tangent function Tan (X!) = Sin (X!) / Cos (X!)
Function ASin (X!) AsSingle Inverse Sinefunction (—p/2 <= ASin (X!) <= p/2)
Function ACos (X!) AsSingle Inverse Cosine function (0 <= ACos (X!) <=p)

Function ATan (X!) As Single Inverse Tangent function (—p/2 <ATan (X!) <p/2)
Function ATan2 (Y!, X!) As Single Inverse Tangent at (X!, Y!) (—p < ATan2 (Y!, X!) <= p)

82

6.4 MISC: Miscellaneous Procedures

6.3.5 Hyperbolic Functions

Function SinH (X!) AsSingle Hyperbolic Sine: (Exp (X!) —Exp (=X!))/2
Function CosH (X!) As Single Hyperbolic Cosine: (Exp (X!) + Exp (—X!))/2
Function TanH (X!) As Single Hyperbolic Tangent: SinH (X!) / CosH (X!)

6.3.6 Mathematical Constants

The following constants are defined in MATH.DEF:
Const MathE = 2.718281828 The base e of natural logarithms

Const MathPi = 3.141592654 p

6.4 MISC: Miscellaneous Procedures

The MISC library provides miscellaneous utility procedures. To load thislibrary:
#lnclude MISC.DEF
Thefile MISC.DEF is supplied with the distribution kit, inthe Basi cCr d\ Li b directory.

6.4.1 Suspending the Program

In a Terminal program, the following subroutine suspends execution for the specified number of
milliseconds:

Sub Sleep (Milliseconds As L ong)

Under Windows® 95 (and later versions), this frees the CPU for other processes to use. Under DOS, the
program simply continues running in atight loop until the specified time has elapsed.

6.4.2 Fast EEPROM Writes

The EEPROM in the BasicCard has an erase/write cycle time of 6 milliseconds — it takes this long to
guarantee that each bit has been completeley discharged and/or recharged. The BasicCard has no
internal clock, so it must count instruction cycles to estimate the elapsed time. However, it has no way
of knowing the clock frequency, so it must assume the worst case — it must assume that the clock is
running at its maximum allowed speed. This maximum speed is specified in standard 1SO/IEC 7816-3
as5MHz.

If in fact the card reader is generating a slower clock frequency, then EEPROM writes will take longer
than they need to. For instance, most readers (including ZeitControl’s Chipié card reader) generate a
clock frequency of 3.57 MHz; so instead of 6 milliseconds, an EEPROM write takes 8.4 milliseconds.
If speed isimportant to you, and if you know that the clock frequency is only 3.57 MHz (or less), you
can call the following procedure;

Sub FastEepromWrites()

The BasicCard operating system will then speed up its EEPROM writes, so that they take 6
milliseconds at the assumed slower clock speed. This procedure is available in an Enhanced BasicCard
program only.

Warning: If in fact the card reader is running at faster than 3.57 MHz, calling this procedure may result
in subsequent loss of EEPROM data through charge leakage.

Part ||

Technical Reference

7. Communications

Note: Throughout this chapter, boldnumbers are hexadecimal.

7.1 TheT=1 Protocol

The T=1 protocol is a transmission protocol for integrated circuit cards with contacts, defined in the
document | SO/IEC 7816-3: Electronic signals and transmission protocols. The BasicCard contains a
full implementation of thisT=1 standard, including NAD awareness, chaining, retries, WTX requests,
and IFS requests. This section describes those parts of the T=1 protocol that a programmer of the
BasicCard might want to know: (i) the ATR ; (ii) the error-free transmission of I-blocks; (iii) the WT X
request. The mechanisms for chaining, error handling, and IFS adjustment are hidden from the
programmer, and are not described here. For a detailed definition of the T=1 protocol, see document
|SO/IEC 7816-3.

The T=1 protocol is defined as a sequence of messages exchanged between the |FD (interface device)
and the | CC (integrated circuit card). In the present context, the IFD is the Terminal program, and the
ICC isthe BasicCard. The exchange begins when the ICC is powered up and responds with an ATR
(Answer To Reset). Thereafter the | FD sends an |-block containing a command, and the | CC responds
with an I-block containing the response. In between receiving acommand and sending its response, the
ICC may transmit a WTX request (waiting time extension), to ask for more time:

IFD ICC

€« ATR
Command I-block =>»

€ Response I-block
Command I-block =>»

€« WTX request
WTX response =

€ Response I-block

7.1.1 Answer To Reset

The BasicCard sends the followingATR:

TS TO TB1 | TC1 | TD1 | TD2 | TA3 | TB3 | T1-TK
3B EF 00 FF 81 31 50 45 | ‘BasicCard ZOvw’

Briefly, what this meansiis:

TS=3B Direct convention (high = 1, low = 0; most significant bit arrives first)

TO=EF E® TB1, TC1, TD1 follow; F® 15 historical characters

TB1=00 No EEPROM programming voltage required

TCl1=FF Waiting time between two characters=11 ETU

TD1=81 TD2 follows (T=1 indication)

TD2=31 TA3, TB3follow (T=1 indication)

TA3=50 IFSC = &H50 (information field size for the ICC)

TB3=45 BWT (block waiting time) = (11 + 16 * 960) ETU (= 1.6 seconds between blocks);
CWT (character waiting time) = (11 + 32) ETU (= 3.33 ms between characters)

T1-TK The historical characters (vwv is the BasicCard version number)

An ETU (elementary time unit) is one hit, or 372 clock cycles. The timing figures assume a clock
frequency of 3.57 MHz. Historical characters T1-TK can be configured in ZC-Basic with the Declare
ATR statement —see 3.19.1 Customised ATR.

7.2 Commands and Responses

7.1.2 Sructure of an I-block

AttheT=1 level, an I-block contains the following fields. All fields are one byte, except the INF:

I-block: | NAD | PcB | LEN | | INF | [LRC|

NAD Node Address byte. The low nibble contains the Node Address (0-7) of the sender,
and the high nibble contains the Node Address (0-7) of the intended recipient. The
BasicCard responds to all Node Address values, unless otherwise instructed with the
pre-defined ASSIGN NAD comand. The NAD of the response I-block is equal to the
NAD of the command I-block with the high and low nibbles reversed.

PCB Protocol control byte. Alternates between 00 and 40 (unless chaining is in progress).
The BasicCard programmer can ignore this byte.
LEN Thelength of the INF field in bytes. The maximum length of the INF field is equal

to the IFSC parameter in the ATR. However, longer messages can be sent by means
of the chaining mechanism. (This mechanism is invisible to the BasicCard
programmer, so it is not described here.)

INF Information field — the information content of the I-block. The T=1 protocol says
nothing about the internal format of the INF field. See 7.2 Commands and
Responses for the format of the INF fields of commands and responses.

LRC Longitudinal redundancy check. A simple Xor of all the preceding bytes.

7.1.3 WTX Request

The BWT (block waiting time) defined in the ATR tells the IFD how long to wait for a response
before timing out. The BasicCard ATR definesa BWT of 1.6 seconds. If a command is going to take
longer than this, it must request more time using aW T X (waiting time extension) request. In ZC-Basic,
thistakesthe form

WTX BWT-units

BWT-units A Byte expression, giving the requested time in multiples of the BWT. WTX
requests are not cumulative; the time allowed is counted from the time of the request,
and cancels any previousWTX requests.

A WTX request contains the following fields:

WTX request: | NAD | pcB=c3 | LEN=01 | | INF | |LRC |

The INFfield haslength 1, and contains the value BWT-units. The response to this request contains an
identical INF field:

WTX response: | NAD | PcB=E3 | LEN=01 | | INF | | LRC |

7.2 Commands and Responses

This section describes the contents of commands and responses, as defined in the document 1SO/IEC
7816-4: Interindustry commands for interchange. The previous section described the transmission of
I-blocks containing I NF fields, and mentioned that | NF fields of successive I-blocks could be chained
together to produce longer messages. The result of chaining INF fields together is the APDU
(application protocol data unit). In the following example, APDU is the concatenation of INF, , INF,,
and INF; :

87

7. Communications

IFD ICC
Chained I-block containing I NF, >

€ Request for next I-block
Chained I-block containing INF; >

€ Request for next I-block
Unchained I-block containing INF; =

The APDU of acommand has the following structure (shaded blocks are optional):

CLA | INS P1 P2 Lc IDATA Le

CLA Class byte —first byte of two-byte CLA INS command identifier.

INS Instruction byte — second byte of two-byte CLA INS command identifier. For 1SO
compatibility, this byte should be even.

P1 Parameter 1 of 4-byte CLA INS P1 P2 command header.

P2 Parameter 2 of 4-byte CLA INS P1 P2 command header.

Lc Length of IDATA field in command.

IDATA Data expected by command. In the case of a ZC-Basic command, this field contains
the parameters passed by the caller.

Le Expected length of ODATA field in response (supplied by caller).

In the BasicCard, CLA and INS can refer to pre-defined commands (all of which have CLA=CO0) or
ZC-Basic commands (CL A and INS are specified by the programmer for each command). P1 and P2
are retained in the BasicCard for 1SO compatibility; you can use them if you like, or ignore them. If
you want to use them, the parameters passed to you by the caller are available as Public Byte variables
P1 and P2; and you can specify their values in commands that you call using the special override
syntax described in3.13.4 Calling a Command:

Call command-name ([P1=expr,] [P2=expr,] [L c=expr,] arg-list [, L e=expr])
The APDU of aresponse has the following structure (the shaded block is optional):

ODATA SW1 | SW2

ODATA Data returned by command. In the case of a ZC-Basic command, this field contains
the parameters that were passed by the caller, as modified by the called command.

Swi First status byte.

SW2 Second status byte.

SW1 and SW2 are pre-defined Public variables of type Byte. Before a command is executed, they
have the values & H90 and & HOO, which is a standard status code meaning “Command successfully
completed”. If you want to return an error code to the caller, just set SW1 and SW2 to the appropriate
values before you exit the command. Note: if SW1-SW2 <> &H9000, and SW1 <> &H61, then
ODATA isdiscarded: any return values are lost.

7.3 Status Bytes SW1 and SW2

7.3 StatusBytesSW1and SW2

7.3.1 BasicCard Operating System
The following status codes are returned by the BasicCard operating system:

swCommandOK
swilleWarning
swRetriesRemaining
swlPCodeError
swEepromWriteError

swKeyNotFound

swPolyNotFound

swKeyTooShort

swK eyDisabled

swUnknownAlgorithm

swAlreadyEncrypting

swNotEncrypting

swBadCommandCRC

swDesCheckError

swLcLeError

swCommandTooL ong

swinvalidState

swCardUnconfigured

swNewStateError

9000

61XX

63CX

64XX

6581

6611

6612

6613

6614

6615

66C0

66C1

66C2

66C3

6700

6781

6985

6986
6987

Command successfully completed.
Command successfully completed, but Le was not equal to XX.

A command was wrongly encrypted, and the error counter for the
active key has been decremented to X. If X reaches zero, the key is
disabled.

P-Code error XX occurred in the BasicCard. (The P-Code error
codes are described in the next section.)

A write to EEPROM failed. (Thisis ahardware error.)

The key specifiedinaSTART ENCRYPTION command was
not configured with aDeclare Key statement in the BasicCard
program.

The SG-LFSR algorithm was specifiedinaSTART
ENCRYPTION command, but primitive polynomials were not
configured with a Declar e Polynomials statement in the
BasicCard program.

The cryptographic key specifiedinaSTART ENCRYPTION
command was too short for the algorithm. All algorithms require
at least 8-byte keys; the Triple DES algorithm requires 16-byte
keys.

The active key has been disabled, either explicitly with a Disable
K ey statement, or automatically when its error counter reached
zero.

Parameter P1in aSTART ENCRYPTION command does not
specify avalid algorithm.

A START ENCRYPTION command was received while
encryption was already active.

An END ENCRYPTION command was received while
encryption was not active.

The active encryption algorithm isSG_L FSR with CRC, and the
CRC in acommand was invalid.

The active encryption algorithm is Single DES or Triple DES,
and the authentication bytesin acommand were invalid.

Either Lc has an unexpected value; or Le is absent when it should
be present, or present when it should be absent.

A command will not fit in the command buffer. In the Compact
BasicCard, thisis the same size as the P-Code stack; in the
Enhanced BasicCard, it is 256 bytes. (In state L OAD, other limits
may apply, but the software support package handles this case.)

A built-in command was called, but the state of the BasicCard is
invalid for the command.

The card has not been configured by ZeitControl.

The state of the BasicCard has been changed withaSET STATE
command. After aSET STATE command, the BasicCard must be
reset beforeit will accept any furhter commands.

7. Communications

SWP1P2Error 6A00 PlorP2isinvalid for the command.

swOutsideEeprom 6A02 Aninvalid address was passed in P1P2 to one of the built-in
EEPROM access commands.

swDataNotFound 6A88 The built-in command GET APPLICATION ID returnsthiserror
codeif no Application ID was configured in the BasicCard.

swINSNotFound 6D00 ThelINS byte of the command was not recognised (although the
CLA bytewasvalid).

swCLANotFound 6E00 The CLA byte of the command was not recognised.

7.3.2 BasicCard P-Code Interpreter

If the P-Code interpreter in the BasicCard detects an error, it returns swlPCodeError (64) in SW1,
and the specific P-Code error in SW2. The P-Code error is one of the following:

pcStackOver flow 01 The P-Code stack has grown beyond its comfigured size.
pcDivideByZero 02 A division by zero (or aMod with zero divisor) occurred.
pcNotl mplemented 03 An unimplemented P-Code instruction was executed (e.g. a
floating-point instruction in the Compact BasicCard).
pcBadRamHeap 04 Corruption of RAM has |eft the heap in an inconsistent state.
pcBadEepromHeap 05 Corruption of EEPROM has |eft the heap in an inconsistent state.
pcReturnWithoutGoSub 06 A Return statement was executed with no corresponding GoSub.
pcBadSubscript 07 One of the subscriptsin an array access was out of bounds.
pcBadBounds 08 One of the array subscript bounds in a ReDim statement was out
of range.
pclnvalidReal 09 A floating-point operand was not avalid IEEE-format number.
pcOverflow OA Theresult of an arithmetic operation wastoo large or small for the
destination.
pcNegativeSqgrt OB An attempt was made to take the square root of a negative number.
pcDimensionError 0C Anarray parameter did not have the expected number of
dimensions.
pcBadStringCall 0D Aninvalid parameter was passed to astring function.
pcOutOfMemory OE There was not enough free memory left to complete the
instruction.
pcArrayNotDynamic OF Thearray parameter in aReDim statement was not Dynamic.
pcArrayTooBig 10 Thearray sizerequested in a ReDim statement was too large.
pcDeletedArray 11 Anattempt was made to access an element of adeleted array.
pcPCodeDisabled 12 A previous P-Code error has disabled the BasicCard. The card
must be reset before it can execute P-Code again.
pcBadSystemCall 13 A SYSTEM instruction had an invalid sub-function code.
pcBadK ey 14 Aninvalid key number was passed to a cryptographic function.

7.3.3 Terminal P-Code Interpreter
The P-Code interpreter in the Terminal program can return the following status codes in SW 1-SW2:

swNoCar dReader 6782 No card reader detected on the given COM port.

swCardReaderError 6783 Aninvalidreply was received to a card reader command.

7.4 Pre-Defined Commands

swNoCardlnReader 6784 Nocardisinserted in the card reader.

swCardPulled 6785 The card has been removed from the card reader.

SwT1Error 6786 Anunrecoverable T=1 protocol error occurred while
communicating with the card.

swCardError 6787 Aninvalid response was received to a BasicCard command.

swCardNotReset 6788 Thecard has not been reset. A BasicCard must be reset before
the Terminal program can send it any commands.

swK eyNotL caded 6789 Thekey specifiedinaSTART ENCRYPTION command is
unknown to the Terminal program.

swPolyNotL oaded 678A The SG-LFSR algorithm was specifiedinaSTART

ENCRYPTION command, but primitive polynomials have
not been configured in the Terminal program.

swBadResponseCRC 678B The active encryption algorithm isSG_L FSR with CRC, and
the CRC in aresponse wasinvalid.

swCardTimedOut 678C The card did not respond within the time allowed.

swTermOutOfMemory 678D The Terminal program hasinsufficient free memory to process
the response.

swBadDesResponse 678E Theactive encryption algorithmis Single DES or Triple DES,

and the authentication bytesin aresponse wereinvalid.
swinvalidComPort 678F The COM portisnotintherange 1-4.

swComPortNotSupported 6790 The COM portis 3 or 4; these values are allowed only in the
Windows® 95 support software, not in the MS-DOS® software.

7.4 Pre-Defined Commands

741 Satesof theBasicCard
The BasicCard has four states:

NEW: Thecardisin state NEW before ZeitControl configuresit.
LOAD: ThecardisinstateLOAD when the application developer getsit.
TEST : State TEST lets the application developer test software in the card.
RUN: Thecardisin state RUN when it isissued to the end user.

The card can be switched from LOAD to TEST and back again any number of times, but the RUN
state is permanent. Once the card is switched to state RUN, it can’'t be re-programmed.
7.4.2 Pre-Defined Commands —a Summary

The BasicCard operating system contains twelve or thirteen pre-defined commands. All commands
have class byte CLA = CO. The INS byte takes the values00, 02, 04, . . ., 16, 18, asfollows:

GET STATE 00 Get the state of the card (and the version number of an Enhanced BasicCard)
EEPROM SIZE 02 Getthe addressand length of EEPROM
CLEAR EEPROM 04 Set specified bytesto FF
WRITE EEPROM 06 Load datainto EEPROM
READ EEPROM 08 Read datafrom EEPROM

91

7. Communications

EEPROM CRC O0A Calculate CRC over aspecified EEPROM address range
SET STATE O0OC Set the state of the card
GET APPLICATION ID OE GettheApplication ID string
START ENCRYPTION 10 Start automatic encryption of command/response data
END ENCRYPTION 12 End automatic encryption
ECHO 14 Echothecommand data
ASSIGN NAD 16 AssignaNodeAddressto the card
FILE IO 18 Executeafilesystem operation (Enhanced BasicCard only)
Most of these commands are enabled only when the BasicCard isin an appropriate state. The following

table summarises which internal commands are valid in which states:

NEW LOAD TEST RUN
v v

GET STATE

EEPROM SIZE
CLEAR EEPROM
WRITE EEPROM
READ EEPROM
EEPROM CRC

SET STATE

GET APPLICATION ID
START ENCRYPTION
END ENCRYPTION
ECHO v

ASSIGN NAD v

FILE 1O v

* The READ EEPROM command is alowed in statesTEST and RUN if encryption
with key number O is enabled (see 7.4.7 The READ EEPROM Command)

*
>*

SRR
SRR

ANAN

ANASAYAYAYANAY
AAYATAYLAL

In state NEW, no checks are performed on addresses of EEPROM reads and writes. (This is to allow
ZeitControl to install upgrades to the BasicCard operating system, before delivery to the application
developer.)

In state LOAD, the EEPROM access commands are restricted to user EEPROM.

These commands will typically be called at the following pointsin the development cycle:

=

Write and test a ZC-Basic application on the PC

EEPROM Sl ZE - check that the card has the expected EEPROM size
CLEAR EEPROM - set EEPROM to aknown state

WRITE EEPROM - download the application to the card

EEPROM CRC - check that the EEPROM was correctly written

FILE 10 —create files and directories (Enhanced BasicCard only)

SET STATE to TEST and reset the card

Run the application in the card

. SET STATE to LOAD and reset the card

10. READ EEPROM to check any EEPROM changes made by the application

(Most of this is handled automatically by the ZCDD Double Debugger.) When the application is
written and tested, cards can be switched into the RUN state for delivery to end users.

© 0o N O g~ Wb

92

7.4 Pre-Defined Commands

7.4.3 The GET STATE Command

GET STATE - Get the state of the card (and the version number of an Enhanced BasicCard)

Command syntax: | CLA | INS P1 P2 Le
co 00 00 00 03

Response fromthe | ODATA SW1 | SW2
Compact BasicCard: | state (1 byte) 61 01

Response fromthe | ODATA SW1 [SW2
Enhanced BasicCard: | state (1 byte), version (2 bytes) 90 00

This command returns the state of the BasicCard; an Enhanced BasicCard also returns the version
number of the card. If present, thefirst byte of version is equal to 2 (for Enhanced BasicCard), and the
second byteisequal to 0, 1, 2, 3, or 4, for card versionsZC2.0 through ZC2.4.

The state byte is one of the following:

state: 00 01 02 03
State of card: | NEW LOAD | TEST RUN

Command-Specific Error Codesin SW1-SW2:

swLcLeError Lcispresent, or Leis absent
SWP1P2Error P1<>000r P2 <>00

Tocal GET STATE from aTerminal program:

#1 ncl ude COMVANDS. DEF
Call GetState (State@ Version%

Note: A Compact BasicCard will leave Ver si on%unchanged; an Enhanced BasicCard (and all later
versions of the BasicCard) will set the high byte of Ver si on%to 2 (or higher). So the following code
can be used to determine the type of aBasicCard:

#1 ncl ude COVMMANDS. DEF
Ver si on% = &H100
Call GetState (State@ Version%
Sel ect Case Version%/ 256
Case 1 ' Conpact BasicCard

Case 2 ' Enhanced BasicCard
Case Else ' A later type that we don't recognise

End Sel ect

7. Communications

7.4.4 The EEPROM SZE Command

EEPROM S| ZE - Get the address and length of EEPROM

Command syntax: | CLA | INS P1 P2 Le
Cco 02 00 00 04

Response: | ODATA SW1 | SW2

start (2 bytes), length (2 bytes) 90 00

Returnsthe start address and length of loadable EEPROM.
Command-Specific Error Codesin SW1-SW2:

swLcLeError Lcispresent, or Leis absent
swinvalidState Cardisnot inNEW or L OAD state
swP1P2Error P1<>000r P2 <> 00

To call EEPROM SIZE from aTerminal program:

#1 ncl ude COVIMANDS. DEF
Cal| Eeprontize (Start% Length%

7.4 Pre-Defined Commands

745 The CLEAR EEPROM Command

CLEAR EEPROM - Set specified bytes to FF

Command syntax: | CLA | INS P1 P2 Lc | IDATA
Cco 04 hi lo 02 | length (2 bytes)

Response: [SW1 | SW2
90 00

Sets length bytes of EEPROM to FF, starting from addresshi:lo.
Command-Specific Error Codesin SW1-SW2:

swLcLeError Lc <> 02, or length of IDATA <>02
swlnvalidState Cardisnot inNEW or L OAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call CLEAR EEPROM fromaTerminal program:

#1 ncl ude COVIMANDS. DEF
Cal | ClearEeprom (P1lP2=address, Length%

95

7. Communications

746 The WRITE EEPROM Command

WRITE EEPROM - Load datainto EEPROM

Command syntax: | CLA | INS P1 P2 Lc | IDATA

Cco 06 hi lo len | data

Response: [SW1 | SW2
90 00

Writes data (len bytes) to EEPROM starting at addresshi:lo.
Command-Specific Error Codesin SW1-SW2:

swLcLeError Lc <>length of IDATA
swlnvalidState Cardisnot inNEW or L OAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call WRITE EEPROM from aTerminal program;

#1 ncl ude COVIMANDS. DEF
Call WiteEeprom (P1lP2=address, Data$)

7.4 Pre-Defined Commands

7.4.7 The READ EEPROM Command

READ EEPROM - Read data from EEPROM

Command syntax: | CLA | INS P1 P2 Le
Cco 08 hi lo len

Response: | ODATA SW1 | SW2
len bytes 90 00

Readslen bytes from EEPROM starting from address hi:lo. If you have configured key number 00 in
the card, then the READ EEPROM command can be called whatever the state of the card, by enabling
encryption with key 00. You should consider this option whenever the card contains data that is not
available elsewhere — if the card becomes unusable for any reason, for example because of hardware
errorswriting to EEPROM, you can recover the data this way.

Command-Specific Error Codesin SW1-SW2:

swLcLeError Lcispresent, or Leis absent
swlnvalidState Cardisnot inNEW or L OAD state, and key 00 is not active
swOutsideEeprom Address range not wholly contained in EEPROM

To call READ EEPROM from aTerminal program:

#|l ncl ude COMVANDS. DEF
Cal | ReadEeprom (PlP2=address, Data$, Le=len)

97

7. Communications

7.4.8 The EEPROM CRC Command

EEPROM CRC - Calculate a CRC over a specified EEPROM address range

Command syntax: | CLA | INS P1 P2 Lc IDATA Le
Cco 0A hi lo 02 | length (2 bytes) 02
Response: | ODATA SW1 | SW2
CRC (2 bytes) 90 00

Returns the CRC of length bytes from address hi:lo. All bytes must be in EEPROM. This command
can be used to verify the contents of EEPROM after downloading an application to the card.

In the Enhanced BasicCard, this command also serves the function of enabling the BasicCard file
system. To access the file system while the card is still in state LOAD, an EEPROM CRC command
must be sent, to let the card know that the relevant data structures have been downloaded; the
BCL OAD program does this automatically after downloading a ZC-Basic program to the BasicCard.

Warning: Do not call this command in the Enhanced BasicCard before a valid ZC-Basic program has
been loaded. The card will attempt to enable a non-existent file system, which can permanently disable
the card.

Hereisa‘C’ function to calculate the CRC:

unsi gned short CRC (unsigned char *p, unsigned int |en)
{
unsi gned short crc = 0 ;
while (len--)

{
unsi gned char NextByte = *p++ ;
int i ;
for (i =0 ; i <8 ; i++, NextByte >>= 1)
{
if ((crc ™ NextByte) & 1)
{
crc >>=1 ;
crc = 0xCAO0O0 ;
}
else crc >>=1 ;
}
}
return crc ;
}
Command-Specific Error Codesin SW1-SW2:
swLcLeError Lc <> 02or length of IDATA <> 02or Le not present
swlnvalidState Cardisnot inNEW or L OAD state
swOutsideEeprom Address range not wholly contained in EEPROM

To call EEPROM CRC from a Terminal program:

#1 ncl ude COVIMANDS. DEF
Cal | EepronCRC (PlP2=address, Length%

The CRC isreturned in the Lengt h%variable.

749 The SET STATE Command

SET STATE — Set the state of the card

Command syntax: | CLA

Response: [SW1

This command changes the state of the card, asfolllows:

INS P1 P2
Cco oc state 00
SW2
90 00

state: 01

02

03

New card state: | LOAD

TEST

RUN

7.4 Pre-Defined Commands

After this command is successfully called, no further commands are allowed until the card isreset.
Command-Specific Error Codesin SW1-SW2:

swLcLeError Lc or Le present

swlnvalidState Cardisin RUN state
swCardUnconfigured The card has not been configured by ZeitControl. If you see this error,

contact ZeitControl for areplacement card.
SwP1P2Error P1=00o0r P1>03o0r P2<>00

Tocall SET STATE fromaTerminal program:

#1 ncl ude COVMANDS. DEF
Call SetState (Pl=State@

7. Communications

7.4.10 The GET APPLICATION ID Command

GET APPLICATION ID — Get the Application ID string

Command syntax: | CLA | INS P1 P2 Le
Cco OE 00 00 00

Response: | ODATA SW1 | SW2
Application-I1D 61 len

This command returns the Application I D specified in the ZC-Basic source code statement:
Declare ApplicationI D = Application-1D
Command-Specific Error Codesin SW1-SW2:

swLcLeError Lcispresent or Leis absent
swinvalidState Cardisnot inTEST or RUN state
SwP1P2Error P1<>000r P2 <> 00
swDataNotFound Application 1D not configured

Tocal GET APPLICATION ID fromaTerminal program:

#1 ncl ude COVIMANDS. DEF
Cal | Get Applicationl D (Nane$)

100

7.4 Pre-Defined Commands

7.4.11 The START ENCRYPTION Command

START ENCRYPTION - Start automatic encryption of command/response data

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

Cco 10 | algorithm | key 04 Random number RA (4 bytes) | 04

Response: | ODATA SW1 | SW2
Random number RB (4 bytes) 90 00

This command initiates automatic encryption of command and response data fields.

The Compact BasicCard accepts the following two algorithms:

algorithm
11 SG-LFSR (Shrinking Generator — Linear Feedback Shift Register)
12 SG-LFSR withCRC

The Enhanced BasicCard accepts the following two algorithms:

algorithm
21 Single DES (Data Encryption Standard)
22 Triple DES

The Enhanced BasicCard supports automatic algorithm selection: if algorithmis zero, then Single DES
is used if the key is shorter than 16 bytes, otherwise Triple DES is used. (The Compact BasicCard
returns with SW1-SW2 = swUnknownAlgorithmif algorithmiszero.)

key isthe key number. It must match one of the key numbers configured in the BasicCard program with
the ZC-Basic Declare K ey statement, and it must be long enough — at least 16 bytesfor Triple DES, at
least 8 bytes for the other three algorithms.

For descriptions of these algorithms, and the role of RA and RB, see Chapter 8. Encryption
Algorithms.

Command-Specific Error Codesin SW1-SW2:

swKeyNotFound Key number key was not configured
swPolyNotFound Primitive polynomialswere not initialised
swKeyTooShort Key number key istoo short
swKeyDisabled Key number key is disabled

swUnknownAlgorithm algorithmis unknown, or is not enabled in the card
swAlreadyEncrypting Encryption isalready enabled

swLcLeError Lcis present

swinvalidState Cardisnot inTEST or RUN state

Tocall START ENCRYPTION fromaTerminal program:

#1 ncl ude COMVANDS. DEF
Call StartEncryption ([P1=Algorithm] P2=KeyNunber, Rnd)

101

7. Communications

7.4.12 The END ENCRYPTION Command

END ENCRYPTION - End automatic encryption

Command syntax: | CLA | INS P1 P2
Co 12 00 00

Response: [SW1 | SW2
90 00

This command ends automatic encryption of command and response data fields.
Command-Specific Error Codesin SW1-SW2:

swNotEncrypting Encryption is not currently enabled
swLcLeError Lc or Le present

swinvalidState Cardisnot inTEST or RUN state
SwP1P2Error P1<>00o0r P2 <> 00

To call END ENCRYPTION fromaTerminal program:

#1 ncl ude COVIMANDS. DEF
Cal | EndEncryption()

102

7.4.13 The ECHO Command

ECHO - Echo the command data

Command syntax: | CLA

7.4 Pre-Defined Commands

Response: | ODATA

INS P1 P2 Lc IDATA Le

Cco 14 increment 00 len | data len
SW1 | SW2
data+increment 90 00

This command simply adds increment to each byte in data. It is intended for testing communication

and encryption (see 8.7 Encryption —a Worked Example).

Command-Specific Error Codesin SW1-SW2:

swLcLeError
swP1P2Error

Lc <>length of IDATA or Le not present
P2 <> 00

To call ECHO fromaTerminal program:

#1 ncl ude COVIMANDS. DEF
Echo (Pl=increnment, S$)

Cal |

103

7. Communications

7.4.14 The ASSGN NAD Command

ASSIGN NAD — Assign aNode Addressto the card

Command syntax: | CLA | INS P1

P2

Cco 16 NAD

00

Response: [SW1 | SW2
90 00

If 1 <= NAD <=7, this command tells the card to respond only to those messages in which the high
nibble of thefirst byte (the NAD) isequal toNAD. If NAD = 0, this command tells the card to respond

to all messages. Other values of NAD areinvalid.

Note: All commands sent by the Terminal program have NAD=00. The ASSIGN NAD command is
intended for use by future versions of ZC-Basic that are capable of communicating with more than one

BasicCard at atime.

Command-Specific Error Codesin SW1-SW2:

swLcLeError Lc or Le present

swP1P2Error P1>07o0r P2 <> 00

To call ASSIGN NAD from aTerminal program:

#1 ncl ude COMVANDS. DEF
Cal | Assi gnNAD (P1=NAD)

104

7.4 Pre-Defined Commands

7.4.15 The FILE 10 Command

FILE 10 — Execute afile system operation (Enhanced BasicCard only)

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

Cco 18 | SysCode| filenum | CommandLen | CommandData | ResponselLen

Response: | ODATA SW1 | SW2
status (1 byte) + ResponseData 90 00

This command is sent whenever the Terminal program attempts to access the file system in the
BasicCard. The P-Code interpreter in the PC builds the command automatically, sends it to the
BasicCard, and interprets the response. SysCode is the same as the SysCode parameter to the SY STEM
P-Codeinstruction —see 9.7.4 FILE SYSTEM Functions. The status byte in the ODATA field is the
FileError byte for the operation. The format of the CommandData and ResponseData fields depends
on the value of SysCode, and is not described in this document.

Command-Specific Error Codesin SW1-SW2:
swLcLeError Lc <>length of IDATA, or Leabsent
swP1P2Error SysCodeisnot avalid file system operation

The FILE 10 command was not designed to be called directly from a Terminal program. The P-Code
interpreter calls it automatically when afile system operation is requested — see Chapter 4: Files and
Directories for a description of the file system commands availablein ZC-Basic.

105

7. Communications

7.5 The Command Definition File COMMANDS.DEF

The file COMMANDS.DEF can be found in the directory Basi cCr d\ | nc. It contains:

declarations of all the pre-defined commands;
definitions of the ZC-Basic SW1-SW 2 status codes; and
definitions of P-Code error codes.

See 7.3 Status Bytes SW1 and SW2 for descriptions of the status and error codes.
Here isthe file COMMANDS.DEF:

Rem Pre-defi ned Basi cCard conmands

#1 f Not Def CommandsDef I ncluded ' Prevent nultiple inclusion
Const CommandsDef | ncl uded = True

Decl are Command &HCO &HOO Get State(Lc=0, State@ Version%
Decl are Command &HCO &HO2 EepronSi ze(Lc=0, Start% Length%
Decl are Command &HCO &HO04 Cl ear Eepron{Lengt h% Di sable Le)
Decl are Command &HCO &HO6 Wit eEepronm(Data$, Disable Le)
Decl are Command &HCO &HO8 ReadEeprom(Lc=0, Data$)

Decl are Command &HCO &HOA Eepr omCRC(Lengt h%

Decl are Command &HCO &HOC Set St at e()

Decl are Command &HCO &HOE Get Applicati onl D(Lc=0, Nane$)
Decl are Command &HCO &H10 Start Encrypti on(RA&)

Decl are Command &HCO &H12 EndEncryption()

Decl are Conmand &HCO &H14 Echo(S$)

Decl are Command &HCO &H16 Assi gnNAD()

Rem Basi cCard operating systemerrors

Const swCommandOK = &H9000
Const swRetri esRemai ni ng = &H63C0
Const swkepronmWiteError = &H6581
Const swKeyNot Found = &H6611
Const swPol yNot Found = &H6612
Const swKeyTooShort = &H6613
Const swKeyDi sabl ed = &H6614
Const swuUnknownAl gorithm = &H6615
Const swAl readyEncrypting = &H66C0
Const swNot Encrypting = &H66C1
Const swBadConmmandCRC = &H66C2
Const swDesCheckError = &H66C3
Const swLcLeError = &H6700
Const swCommandToolLong = &H6781
Const swinvalidState = &H6985
Const swCardUnconfi gured = &H6986
Const swNewSt at eError = &H6987
Const swP1P2Err or = &H6A00
Const swCut si deEeprom = &H6A02
Const swbDat aNot Found = &H6A88
Const sw NSNot Found = &H6D00
Const swCLANot Found = &H6EO00
Rem SWL=&H61 i s Le warning:

Const swllLeWar ni ng = &H61

106

7.5 The Command Definition File COMMANDS.DEF

Rem P- Code interpreter errors (SW=&H64, SW2=P-Code error)

Const swlPCodeErr or = &H64
Const pcStackOverfl ow = &HO1
Const pcDivi deByZero = &HO2
Const pcNot | nmpl enment ed = &HO3
Const pcBadRanHeap = &HO4
Const pcBadEepr onHeap = &HO5
Const pcReturnW t hout GoSub = &HO6
Const pcBadSubscri pt = &HO7
Const pcBadBounds = &HO08
Const pclnval i dReal = &HO09
Const pcOverfl ow = &HOA
Const pcNegativeSgrt = &HOB
Const pcDi mensi onError = &HOC
Const pcBadStringcCal | = &HOD
Const pcCQut Of Menory = &HOE
Const pcArrayNot Dynam ¢ = &HOF
Const pcArrayTooBig = &H10
Const pcDel et edArray = &H11
Const pcPCodeDi sabl ed = &H12
Const pcBadSyst ental | = &H13
Const pcBadKey = &H14
Const pcBadLi braryCal | = &H15

Rem Error codes generated by the Term nal

Const swNoCar dReader = &H6782
Const swCar dReader Err or = &H6783
Const swNoCar dl nReader = &H6784
Const swCar dPul | ed = &H6785
Const swT1Error = &H6786
Const swCardError = &H6787
Const swCar dNot Reset = &H6788
Const swKeyNot Loaded = &H6789
Const swPol yNot Loaded = &H678A
Const swBadResponseCRC = &H678B
Const swCar dTi nedQut = &H678C
Const swTer nut Of Menory = &H678D
Const swBadDesResponse = &H678E
Const swi nval i dConPort = &H678F
Const swComnPor t Not Supported = &H6790
Const swNoPcscDri ver = &H6791
Const swPcscReader Busy = &H6792
Const swPcscError = &H6793

#Endl f ' ConmmandsDef | ncl uded

107

8. Encryption Algorithms

The Compact BasicCard supports the following two encryption algorithms:

AlgorithmID
11 SG-LFSR (Shrinking Generator — Linear Feedback Shift Register)
12 SG-LFSR withCRC

The Enhanced BasicCard supports the following two encryption algorithms:

AlgorithmID
21 Single DES (Data Encryption Standard)
22 Triple DES

This chapter describes these algorithms in detail, to give interested readers the opportunity to evaluate
them. But you don’t need to know how these algorithms work in order to use them; if you only want to
know how to use them from ZC-Basic, skip this chapter and see instead 3.16.1 Implementing
Encryption.

8.1 TheDESAIgorithm

The DES algorithm is the internationally recognised Data Encryption Standard, defined in the ANSI
standard documents X3.92-1981 (Data Encryption Algorithm) and X3.106-1983 (Data Encryption
Algorithm — Modes of Operation). See these documents for a definition of the DES algorithm itself; for
a fuller treatment, including ‘C’ source code, see Bruce Schneier's Applied Cryptography (Second
Edition, John Wiley & Sons, Inc., 1996).

Asyou can see from the dates of the ANSI documents, the DES algorithm is no longer young. In fact,
the original DES algorithm is usually referred to as Single DES, and must now be regarded as | ess than
completely secure. Special-purpose hardware can be constructed for several tens of thousands of
dollars, that can break Single DES encryption in less than a day. For this reason, a stronger version,
Triple DES, has become a de facto standard in the banking world. This algorithm is generally believed
to be safe against al currently feasible attacks. However, Single DES is still used for protecting
confidential but financially worthless data, such as a patient’s medical records.

The original ANSI X3.92 document defines DES as an encryption function that takes a 56-bit key K
and an 8-byte data block P asinput, and returns an 8-byte datablock C as output:

C =E(P)
Theinverse of thisisthe DES decryption function:
P= DK(C)

(This notation is taken from Bruce Schneier's Applied Cryptography: P and C denote plaintext and
ciphertext, E and D are encryption and decryption, andK isthe key.)

Note that a Single DES key contains only 56 hits, although ZC-Basic requires 8-byte keys. This is
usua in DES implementations; the top hit of each byte can be used as a parity check, or simply thrown
away (which iswhat the BasicCard does).

The Triple DES algorithm takes a 16-byte key and splitsit into two 8-byte keysKL and KR. Then the
encryption and decryption functions are given by

C = Ex(P) = Ex.(Dxr(ExL(P))) and
P= D|3<(C) = DkL(Exr(DkL(C)))

108

8.2 Implementation of DESin the Enhanced BasicCard

(The four functions E¢ , Dk , Ex , and D% can be called directly from ZC-Basic — see 3.16.6 DES
Encryption Primitives.)

Given such encryption and decryption functions, there are several ways that they can be used to encrypt
and decrypt a message of arbitrary length. The method used by the Enhanced BasicCard is described in
the next section.

8.2 Implementation of DESin the Enhanced BasicCard

Apart from their encryption and decryption functions (E and D versus E* and D), the implementations
of Single DES and Triple DES in the Enhanced BasicCard are identical. To start with, we need to
know how to encrypt a message that is longer than 8 bytes. (All commands and responses encrypted
with DES in the BasicCard are at least 8 byteslong.)

8.2.1 The Message Encryption Functions MEk and ME;
The Single DES message encryption function C = M E¢ (P) isdefined asfollows. We are given:
amessage P, at least 8 bytesin length;
an 8-byte key K;
the Single DES encryption and decryption functionsEx and D ;
an 8-byteinitialisation vector Cy (more about thisin8.2.3 The Initialisation Vector).

First, split the message P into 8-byte blocksP; , P, ..., Pn_1 , plus afinal block P, that may be shorter
than 8 bytes. Pad this final block with m zeroesto alength of 8 bytes (so 0 <= m <= 7). Then compute,
for 1<=i<=n:

Ci = Ex(Cj_ Xor Py)

(Note that the initialisation vector Cgy is needed to compute C;.) Then throw away the last m bytes of
the penultimate block C,_; , and concatenate the resulting blocks C; ,..., C, to get the encrypted
ciphertext C.

If we threw away the last m bytes of the last block C,, , then the message C couldn’t be decrypted by its
recipient. But the recipient can reconstruct the last m bytes of C,_; , asfollows:

Thelast block is computed from C,, = E¢ (C,,_1 Xor Pp)
Therefore, Dk (Cy) = Cy1 Xor Py
which means that Ch-1 =Dk(Cp) Xor P,

But the last m bytes of P, are all zero, so the last m bytes of C,_; are equal to the last m bytes of
Dk (Cr), which can be computed without prior knowledge of the plaintext P. This trick is called
ciphertext stealing, and it allows us to keep encrypted messages to their original size.

The Triple DES message encryption function C = MEx(P) is defined in exactly the same way, except
that the key K is 16 bytes long, and the Triple DES encryption function E® is substituted for the Single
DES function E

8.2.2 The Message Decryption Functions MDk and MD;?

The Single DES message decryption function P = MDk(C) is the inverse of MEg. First restore the
penultimate block C,_; to 8 bytes, as described in the previous section. Then compute, for 1 <=i <=n:

P = Ci—l Xor DK(Ci)

Throw away the last m bytesin P, (which should all be zero), and concatenate all the resulting blocks
P; ,..., Py to get the original plaintext message P.

The Triple DES message decryption function C = MD%(P) is defined in exactly the same way, except
that the Triple DES decryption function D? is substituted for the Single DES function D.

109

8. Encryption Algorithms

8.2.3 Thelnitialisation Vector

Theinitialisation vector Cy is determined as follows:

For the first command following a START ENCRYPTION command, the initialisation vector Cg
depends on the command and response fields of the START ENCRYPTION command:

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

Cco 10 | algorithm | key 04 Random number RA (4 bytes) | 04

Response: | ODATA SW1 | SW2
Random number RB (4 bytes) 90 00

Inthiscase, Cy consists of thefirst two bytes of RA, followed by all four bytes of RB, followed by the
last two bytes of RA.

For subsequent commands and responses, Co is simply the last ciphertext block C, of the previous
message.

8.2.4 Encryption of Commands Using DES

A command has the following structure (shaded blocks are optional):

lcea| ins | p1 | P2 | | Le |IDATA | | Le |

Encryption consists of the following steps:

If the Lc or Lefields are absent, insert Lc' = 00 and/or Le' = 00:

lctal ins | Pt [P2 | Le [IDATA | Le |

Append two zeroes (the resulting command now contains at least 8 bytes):

p=|ctAa|iNs | Pr | P2 | Lc [IDATA | Le | 00 | 00 |

Encrypt the whole command P, with C = MEx (P) or C = MEx(P):

Wrap the resulting ciphertext C in the original command parameters:

|CLA|INS| P1|P2|Lc'+8| c | Le |

The resulting command is always exactly 8 bytes longer than the original command. These 8 bytes of
redundancy enable an authentication check to be done: the command parameters CLA INS P1 P2 L¢'
L€' 00 00 in the decrypted command must match the wrapping, otherwise the command is rejected,
with SW1-SW2 = swDesCheckError.

8.2.5 Encryption of Responses Using DES
A response has the following structure (the shaded block is optional):

[oDATA | | swi | sw2 |

Encryption consists of the following steps:

110

8.3 Certificate Generation Using DES

Append six zeroes:

P = | ODATA |sw1|sw2| 00 | 00 | 00 | 00 | 00 | 00 |

Encrypt the resulting response P, with C = ME (P) or C = ME%(P):

Append the original SW1-SW2:

| c [swi]sw2]|

The resulting response is always exactly 8 bytes longer than the original response. As with command
encryption, these 8 bytes of redundancy enable an authentication check to be done on the response: if
the decrypted response doesn’t end with SW1-SW2 followed by six zeroes, the response is rejected,
and SW1-SW2 = swBadDesResponseis returned to the caller in the Terminal program.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
swill eWarning), then the responseis not encrypted.

8.3 Certificate Generation Using DES

The ZC-Basic Certificate command is described in 3.16.7 Certificate Generation. The certificate
generation algorithm is as follows:

Let P bethe datato be signed. Append the byte 80 to P (this ensures that messages differing only in the
number of trailing zeroes will have different certificates). Split the resulting P into 8-byte blocks Py ...,
P, , padding the last block P, with zeroes if necessary. Fill the initialisation vector Cy with zeroes, and
then compute, for 1 <=i<=n;

Ci = Ex(Ci_y Xor P) (for keysK shorter than 16 bytes)
C= E?((Ci_l Xor Py) (for keysK 16 bytes or longer)

The certificate isthefinal ciphertext block C,.

8.4 The SG-LFSR Algorithm

This algorithm was designed by D. Coppersmith, H. Krawczyk, and Y. Mansour (“The Shrinking
Generator”, Advances in Cryptology — CRYPTO " 93 Proceedings, Springer-Verlag, 1994). It uses two
Linear Feedback Shift Registers, A and S, to generate a stream of bits: the registers are run in parallel
until register S generatesa 1 bit, at which point the bit generated simultaneously by register A is used
asthe next bit in the stream.

The Compact BasicCard implements this algorithm with Linear Feedback Shift Registers A and S of
length 31 and 32 respectively. In order for the system to be secure against attack with registers of this
size, it is necessary to use generating polynomials PolyA and PolyS that are unknown to the attacker.
To this end, we supply a program for the generation of random cryptographic keys and primitive
polynomials—see 5.3.4 The Key Generator KEYGEN.EXE

C++ source code for the SG-LFSR algorithm is provided in the development kit, in the directory
Basi cCr d\ Sour ce\ SG LFSR.

8.5 Implementation of SG-LFSR in the Compact BasicCard

The BasicCard implementation uses primitive polynomials PolyA and PolyS of degree 31 and 32
respectively, and a cryptographic key K, all of which are known only to the two communicating

111

8. Encryption Algorithms

parties. (The KEYGEN program generates random polynomials and keys — see 5.3.4 The Key
Generator KEYGEN.EXE.) The START ENCRYPTION command is called to enable encryption:

Command syntax: | CLA | INS P1 P2 Lc IDATA Le

(60] 10 | algorithm | key 04 Random number RA (4 bytes) | 04

Response: | ODATA SW1 | SW2
Random number RB (4 bytes) 90 00

The caller and responder both contribute 4-byte random numbers to the register initialisation procedure.
RA may take any value; for maximum security, a different RA should be generated for each session.
RB is generated by the BasicCard.

To describe how the encryption mechanism is initialised, we split all the parts into two-byte words:
RA(0):RA(1), RB(0):RB(1), and K(0):K(1):K (2):K(3), where K isthe (eight-byte) key number key.

Then thetwo registersA and S are initialised as follows:

A(0) = (RA(0) Xor K(0)) And &H7FFF
A(1) = RB(0) Xor K(1)
S(0) = RB(1) Xor K(2)
S(1) = RA(1) Xor K(3)

So theinitial value of each register depends on both of the random numbers, and on the key.
Zeroisaninvalidinitialisation value, so asafinal step:

If A(0) = 0 And A(1) = O Then A(1l) = 1
If S(0) = 0 And S(1) = O Then S(1) = 1

Encryption starts with the first command after the START ENCRYPTION command is received, and
remains in effect for commands and responses until an END ENCRYPTION command is received
(the responses to the START ENCRYPTION and END ENCRYPTION commands themselves are
not encrypted). A ZC-Basic command can tell what kind of encryption is currently active, by looking at
the pre-defined variables Encryption (the algorithm I1D) and KeyNumber. (If encryption is currently
inactive, then Encryption is zero.) Encryption and decryption are identical, and consist of Xor-ing
each byte with the result of the function SG_LFSR::GetByte() (defined in the C++ source file
Basi cCr d\ Sour ce\ SG LFSR\sg_I fsr.cpp) .

A command has the following structure (shaded blocks are optional):

lcea| ins | Pt | P2 | | Le |IDATA | [Le |

Only the datafield IDATA is encrypted. The command bytes CLA, INS, P1, P2, Lc, and Le are not
encrypted, for two reasons:

The value of these bytes is often predictable. The number of predictable bytes that are encrypted
should be kept aslow as possible, to make it harder to break the key.

Compatibility with SO standardsislost if these bytes are altered.
A response has the following structure (the shaded block is optional):

| ODATA | | swi | sw2 |

Again, only the datafield ODATA is encrypted. The status bytes SW 1 and SW 2 are not encrypted.

8.6 SG-LFSR with CRC

The SG-LFSR algorithm is simple to implement, and runs efficiently. However, it provides no
authentication for the data it encrypts — | don't need to know the key in order to send encrypted

112

8.7 Encryption —a Worked Example

messages. It's true that | won't know what I'm sending, and | won’t understand the response. But |
could still cause problems by sending random data. If authentication is important (and it usualy is),
then you should use encryption algorithm 12: SG-LFSR with CRC (Cyclic Redundancy Check). The
same 2-byte CRC is used asin the EEPROM CRC command. ‘C’ source code for calculating the CRC
isgivenin7.4.8 The EEPROM CRC Command.

A command has the following structure (shaded blocks are optional):

lcea| ins | Pt | P2 | | Le |IDATA | [Le |

It isencrypted asfollows:

A two-byte random number Rcis appended to IDATA, and Lc is amended accordingly. (Without
this random number, the CRC would be predictable in the case of a command with no IDATA
field. Asthe CRC islater encrypted, we want to avoid this.)

lcta| ins | p1 | P2 | [Le2 [IDATA | Re | | Le |

The CRC is calculated over the whole of the resulting message (CLA INS P1 P2 Lc+2 IDATA
Rc Le). It isthen appended to the two-byte random number, and Lc is updated accordingly.

lcta|ins | 1 | P2 | |Le+a [IDATA | Re [crc| | Le |

The resulting message is encrypted using SG-L FSR, as described in section 8.5.

A response has the following structure (the shaded block is optional):

| obATA | | swi | sw2 |

It isencrypted in asimilar fashion:
A two-byte random number Rr is appended to ODATA.

ODATA | R | |[swi|sw2|

The CRC is calculated over the whole of the resulting response (ODATA Rr SW1 SW2), and
appended to the two-byte random number.

ODATA | R |CRC| [swi|sw2|

Theresulting response is encrypted using SG-L FSR, as described in section 8.5.

Note: If status bytes SW1 SW2 indicate an error (i.e. SW1SW2 <> swCommandOK and SW1 <>
swill eWarning), then the responseis not encrypted.

8.7 Encryption —a Worked Example

This section shows the progression from ZC-Basic source code to encrypted messages. All source files
are supplied with the software development kit, in the Basi cCr d\ Exanpl es\ echot est directory.

8.7.1 The Source Code

We ran the KEYGEN program to generate encryption polynomials and two cryptographic keys:
KEYGEN TESTKEYS —-K99 - K100(16) -P

113

8. Encryption Algorithms

This produced output file TESTKEY S.BAS:

Decl are Pol ynom al s = &H609FBB9C, &HD23B770D

Decl are Key 99 = &H3E, &H1F, &HA7, &H55, &H81, &HDB, &HC3, &H25

Decl are Key 100(16) = &H83, &H24, &H24, &H59, &H86, &H8B, &H8F, &H3F, _
&HAO, &HC4, &H1B, &HFE, &H3E, &HF4, &HE2, &H16

We edited thisfile so that it could be included in a Compact BasicCard program:

Decl are Pol ynom als = &H609FBB9C, &HD23B770D
Decl are Key 99 = &H3E, &H1F, &HA7, &H55, &H81, &HDB, &HC3, &H25

#1 f Not Def ConpactBasicCard ' 16-bit keys not allowed in Conpact BasicCard
Decl are Key 100(16) = &HB83, &H24, &H24, &H59, &H86, &H8B, &H8F, &H3F, _

&HAO, &HC4, &H1B, &HFE, &H3E, &HF4, &HE2, &H16
#EndIf

Then we wrote a simple ZC-Basic Terminal program ECHOTEST.BAS to send encrypted ECHO
commands. The ECHOTEST program takes a command-line parameter 0, 1, or 2.

“ECHOTEST 0" runs with no encryption:
Cal | EchoTest ()

“ECHOTEST 1" tests SG-L FSR encryption in the Compact BasicCard:

Rem Encryption algorithm &Hll = SG LFSR

Call StartEncryption (P1=&H11l, P2=99, Rnd) : Call CheckStatus()
Cal | EchoTest ()

Call EndEncryption() : Call CheckStatus()

Rem Encryption algorithm &Hl2 = SG LFSR with CRC

Call StartEncryption (P1=&H12, P2=99, Rnd) : Call CheckStatus()
Cal | EchoTest ()

Cal | EndEncryption() : Call CheckStatus()

“ECHOTEST 2" tests DES encryption in the Enhanced BasicCard:

Rem Encryption algorithm &H21 = Si ngl e DES

Call StartEncryption (P1=&H21, P2=99, Rnd) : Call CheckStatus()
Cal | EchoTest ()

Call EndEncryption() : Call CheckStatus()

Rem Encryption algorithm &H22 = Triple DES (16-byte key required)
Call StartEncryption (P1=&H22, P2=100, Rnd) : Call CheckStatus()
Cal | EchoTest ()

Cal | EndEncryption() : Call CheckStatus()

The BasicCard program ECHOCARD.BASjust includes the key file:
#1 ncl ude TESTKEYS. BAS

8.7.2 ThelogFiles

The COMPILE.BAT batch file in the source directory creates a Terminal program image file
ECHOTEST.IMG, and two BasicCard program image files COMPACT.IMG and ENHANCED.IMG:

\ Basi cCrd\ WZCBasi ¢ EchoTest -O -1\BasicCrd\Inc
\ Basi ¢cCr d\ WZCBasi ¢ EchoCard - O Conpact.| MG -CCl -1\BasicCrd\Inc
\ Basi cCr d\ WZCBasi ¢ EchoCard - O Enhanced. | MG -CE1 -1\BasicCrd\Inc

The SIM.BAT batch file runs the EHCOTEST program three times, and creates the 1/0 log files
PLAIN.LOG, COMPACT.LOG, and ENHANCED.LOG:

\ Basi cCr d\ WZCDos - CConpact -LPlain EchoTest 0
\ Basi cCr d\ WZCDos - CConpact -LConpact EchoTest 1
\ Basi cCr d\ WZCDos - CEnhanced -LEnhanced EchoTest 2

114

=

10:
11:

12:

13:

14:

15:

16:

8.7 Encryption —a Worked Example

These were the resulting log files. (Note: If you run the ECHOTEST program yourself, your log files
will be different, due to the different random numbers generated.)

PLAIN.LOG:

3B EF 00
-> 00 00 09
00 00 05

COMPACT.LOG:

<-

<-

<-
->
<-

->

3B
00
00
00
00
00
00
00
00
00
00
00
00

EF
40
40
00
00
40
40
00
00
40
40
00
00

00
0A
06
09
05
04
02
0A
06
0D
09
09
02

E8h81N8388k8M8T

ENHANCED.LOG:

KpBexdoahrwdhk
P o

OB

16:

3B
00
00
00
00
00
00
00
00
00
00
00
00

EF
40
40
00
00
40
40
00
00
40
40
00
00

00
0A
06
11
0D
0D
02
0A
06
11
0D
0D
02

FF

S8%8R8887K8Q8

81
14
63

81
10
6C
14
A5
12
00
10
BB
14
C1
12
00

81
10
F1
14
BD
12
00
10
82
14
EC
12
00

31
01
64

31
11

01
92
00
D2
12
E9
01
1C
00
92

31
21
B5
01

00
D2
22

01
EB
00
92

20
00
61

20
63
AE
00
61
00

63
EB
00
13
00

20
63
02
00
51
00

64
F9
00
E4
00

45
03
03

45
04
90
03
03
96

04
90
07
8F
04

45
04
90
0B
0oC
08

04
90
0B
B8
08

42
61
02

42
29
00
E5
F2

52
00
92
FO
BC

42
A3
00
D1
F8
34

FF
00

84
F6

61
62

61
23
23

90

98
E7
E2

61
F7
57
2D
c7
70

7D
AC
40
90
F8

73
63

73
BE

30

49

33
61

73
76

F3
7C

78
6F
43

69
00

69
84

00

F1

c7
03

69
62

39
AF
93
1A

6D
29

63
BF

63
04

04

32
62
99

63
04

92
A0
08

04
E4

0D
1E

43

D1

39

43
98

7D
82
EE
BC

8D
A9

61

61

35

61

E3
61
9B

61
47

72

72

00

72

43
03
89

03
38

START ENCRYPTION command (algorithm = & H11) and response
Encrypted ECHO command and response (algorithm =& H11)
END ENCRYPTION command and response

ATR from the simulated Compact BasicCard, asin 1 above.

START ENCRYPTION command (algorithm = & H12) and response
Encrypted ECHO command and response (algorithm =& H12)
END ENCRYPTION command and response

END ENCRYPTION command and response
START ENCRYPTION command (algorithm = & H22) and response
Encrypted ECHO command and response (algorithm = & H22)
END ENCRYPTION command and response

64

64

5F

64

EA
FB
A4

79
37
7B

20 5A 43 31 2E 31 BE

20 5A 43 31 2E 31 BE

20 5A 43 32 2E 31 BF

75 C8 00 C9

05 29 00 CA

ATR (Answer To Reset) from the simulated BasicCard, including the text “BasicCard ZC1.1"
Unencrypted ECHO command and response

. ATR from the simulated Enhanced BasicCard, including the text “BasicCard ZC2.1"
. START ENCRYPTION command (algorithm = & H21) and response
. Encrypted ECHO command and response (algorithm = & H21)

We will look at these commands one by one, disregarding the T=1 parameters NAD PCB LEN . . .

LRC in every message.

115

8. Encryption Algorithms

8.7.3 Unencrypted ECHO Command and Response
The parameter “abc” is61 62 63 in hexadecimal. The ECHO command adds P1=01 to every byte:

Command: | CLA | INS P1 P2 Lc | IDATA Le
Cco 14 01 00 03 | 61 62 63 00

Response: | ODATA SW1 | SW2
62 63 64 61 03

8.7.4 START ENCRYPTION (Algorithm = &H11)

The Rnd function in the Terminal program returned RA = & H2923BEB84, and the random-number
generator in the BasicCard operating system returned RB = & HE16CDG6AE. This led to the following
START ENCRYPTION command-response pair:

Command: | CLA INS P1 P2 Lc IDATA Le
Cco 10 11 63 04 29 23 BE 84 04

Response: | ODATA SW1 | SW2
E1l 6C D6 AE 90 00

Together with the polynomials and key 99 from file KEY S.BAS:

Decl are Pol ynom al s = &H609FBB9C, &HD23B770D
Decl are Key 99 = &H3E, &H1F, &HA7, &H55, &H81, &HDB, &HC3, &H25

we now have all the datawe need to initialise the SG_LFSR encryptor. As described in section 8.5, we
build the A and S registers from the following two-byte words:

RA(0) 2923, RA(1) BE84

RB(0) E16C, RB(1) D6 AE

K(0) = 3E1F, K(1) = A755, K(2) = 81DB, K(3) = C325
Then

A(0) = (RA(0) Xor K(0)) And &H7FFF = 173C
A(1) = RB(0) Xor K(1) = 4639
S(0) = RB(1) Xor K(2) = 5775
S(1) = RA(1) Xor K(3) = 7DA1l

Now the Terminal program operating system initialises its SG-LFSR encryptor, first with the
polynomials PolyA and PolyS, and then with the registersA and S:

SG_LFSR Encryptor (0x609FBB9CL, 0xD23B770DL) ;
Encryptor.Initialise (0x173C4639L, 0Ox57757DAlL) ;

(C++ source code for the SG_LFSR class is provided in the development kit — see 8.4 The SG-LFSR
Algorithm.) The IDATA and ODATA sections of subsequent commands and responses will be
encrypted by Xor-ing them with successive bytes returned by Encryptor. GetByte(). The
initialisation values given here generate the sequence:

84 B4 53 CO C6 F6...

8.7.5 Encrypted ECHO Command (Algorithm= &H11)

From the above sequence, the IDATA and ODATA sections of the encrypted ECHO command and
response will be:

61 Xor 84
62 Xor CO

E5, 62 Xor B4
A2, 63 Xor C6

D6, 63 Xor 53
A5, 64 Xor FG6

30
92

116

8.7 Encryption —a Worked Example

So the ECHO command and response will be:

Command: | CLA INS P1 P2 Lc IDATA Le
Cco 14 01 00 03 E5 D6 30 00

Response: | ODATA SW1 | SW2
A2 A5 92 61 03

8.7.6 END ENCRYPTION

Before calling START ENCRYPTION for algorithm & H12, the END ENCRYPTION command
must be called to cancel the currently enabled encryption. It has no IDATA or ODATA field, soitis
not affected by encryption algorithm & H11.:

Command: | CLA INS P1 P2
Co 12 00 00

Response: [SW1 | SW2
90 00

8.7.7 START ENCRYPTION (Algorithm= &H12)

Thistime, the Rnd function in the Terminal program returned RA = & H529049F1, and the random-
number generator in the BasicCard operating system returned RB = & HFIBBE9EB . This led to the
following START ENCRYPTION command-response pair:

Command: | CLA | INS P1 P2 Lc | IDATA Le
Cco 10 12 63 04 | 52 90 49 F1 04

Response: | ODATA SW1 | SW2
F1 BB E9 EB 90 00

We repeat the process from section 8.7.4 to generate the new A and S registers:

RA(0) = 5290, RA(1) = 49F1

RB(0) = F1BB, RB(1) = E9EB

K(0) = 3ELF, K(1) = A755, K(2) = 81DB, K(3) = C325
A(0) = (RA(0) Xor K(0)) And &H7FFF = 6C8F

A(1l) = RB(0) Xor K(1) = 56EE

S(0) = RB(1) Xor K(2) = 6830

S(1) = RA(1) Xor K(3) = 8AD4

So the Terminal program operating system re-initialises its SG-L FSR encryptor:
Encryptor.lnitialise (Ox6C8F56EEL, 0x68308AD4L) ;

and the sequence generated thistimeis
F3 FA 50 74 94 OF 45 7D A2 78 C8 B3 82 61 3B EE 99 40...

8.7.8 Encrypted ECHO Command (Algorithm= &H12)
The unencrypted ECHO command:

Command: | CLA INS P1 P2 Lc IDATA Le
(0] 14 01 00 03 61 62 63 00

117

8. Encryption Algorithms

Add atwo-byte random number Rc, and set L.c = 05:

CLA

INS P1

P2

Lc

IDATA

Rc

Le

Co

14 01

00

05

61 62 63

B3 A6

00

Add the CRC calculated over CO 14 01 00 05 61 62 63 B3 A6 00, and setLc = 07:

CLA

INS P1

P2

Lc

IDATA

Rc

CRC

Le

Co

14 01

00

07

61 62 63

B3 A6

36 70

00

Encrypt IDATA Rc CRC with the SG-L FSR sequence F3 FA 50 74 94 OF 45 to get thefinal

Version:
CLA INS P1 P2 Lc IDATA Rc CRC Le
Cco 14 01 00 07 92 98 33 C7 32 | 39 35 00

The unencrypted response to the ECHO command:

Response:

ODATA

SW1

SW2

62 63 64

61

03

Add atwo-byte random number Rr :

ODATA

Rr

SW1

SwW2

62 63 64

DB 3C

61

03

Add the CRC calculated over 62 63 64 DB 3C 61 03:

ODATA

Rr

CRC

SW1

SW2

62 63 64

DB 3C

72 86

61

03

Encrypt ODATA Rr CRC with the SG-LFSR sequence 7D A2 78 C8 B3 82 61.

ODATA

Rr

CRC

Sw1i

SW2

1F C1 1C

13 8F

FO E7

61

03

8.7.9 END ENCRYPTION

This time, the END ENCRYPTION command is affected by the encryption algorithm. The

unencrypted END ENCRYPTION command:

Command:

CLA | |

NS

P1

P2

Co

12

00

00

Add atwo-byte random number Rc, and set L c = 02:

CLA

INS P1

P2

Lc

Rc

Co

12 00

00

02

87 0C

118

8.7 Encryption —a Worked Example

Add the CRC calculated over CO 12 00 00 02 87 0OC, and setLc = 04:

CLA | INS

P1

P2

Lc

Rc CRC

Co 12

00

00

04

87 0C | 44 85

Encrypt Rc CRC with the SG-LFSR sequence 3B EE 99 40:

CLA | INS P1 P2 Lc | Rc CRC
Cco 12 00 00 04 |BC E2 | DD C5
Theresponse is not encrypted:
Response: [SW1 | SW2
90 00

8.7.10 START ENCRYPTION (Algorithm = &H21)

Thistime, the Rnd function in the Terminal program returned RA = & HA3F77662, and the random-
number generator in the BasicCard operating system returned RB = & HC7F1B502:

Command: | CLA | INS P1 P2 Lc | IDATA Le
Cco 10 12 63 04 | A3 F7 76 62 04
Response: | ODATA SW1 | SW2
C7 F1 B5 02 90 00

So theinitialisation vector Cy isloaded with A3 F7 C7 F1 B5 02 76 62.

8.7.11 Encrypted ECHO Command (Algorithm= &H21)
The unencrypted ECHO command:

Command: | CLA INS P1 P2 Lc IDATA Le
Cco 14 01 00 03 61 62 63 00
Add two zeroes:
CLA | INS P1 P2 Lc IDATA Le
Cco 14 01 00 03 61 62 63 00 00 00

Now we must encrypt the plaintext message P = C0 14 01 00 05 61 62 63 00 00 00 using
the Single DES message encryption function MEx . Referring back to 8.2.1 The Message
Encryption Functions MEx and ME?;:

K=3E 1F A7 55 81 DB C3 25
Co=A3 F7 C7 F1 B5 02 76 62
P, =CO0 14 01 00 03 61 62 63

P, = 00 00 00 (00 00 00 00 00)

m=5

is key number 99 from TESTKEY S.BAS;
fromthe START ENCRYPTION command,;
isthe first message block;

is the second message block;

isthe length of padding required in P, .

119

8. Encryption Algorithms

So we compute (you can check these in ZC-Basic, using the DES function):

Cy = Ex(Cp Xor P1) = Ex(63 E3 C6 F1 B6 63 14 01)=D1 2D DB 19 3E 80 B1 FB
C, = Ex(Cy Xor P,) = E¢(D1 2D DB 19 3E 80 B1 FB)=39 92 7D E3 43 EA 75 C8

and we throw away the last m bytes of C; to get:
C=MEx(P)=D1 2D DB 39 92 7D E3 43 EA 75 C8

To get the final version, C iswrapped in the original CLA INSP1 P2 . .. Le, with Lc adjusted
appropriately:

CLA | INS P1 P2 Lc |C Le
Co 14 01 00 OB [D12D DB 39 92 7D E3 43 EA 75 C8 00

The unencrypted response to the ECHO command:

Response: | ODATA SW1 | SW2
62 63 64 61 03

Add six zeroes:

ODATA SW1 | SW2
62 63 64 61 03 00 00 00 00 00 00

Encrypt P=62 63 64 61 03 00 00 00 00 00 00 using MEk , where

K =3E 1F A7 55 81 DB C3 25 iskey number 99 from TESTKEY S.BAS;
Cp=39 92 7D E3 43 EA 75 C8 is C, from the ECHO command just received,
P; =62 63 64 61 03 00 00 00 isthe first message block;
P, = 00 00 00 (00 00 00 00 00) is the second message block;
m=5 isthe length of padding required inP, .

So we compute:

C1 = Ex(Co Xor Py) = Ex(5B F1 19 82 40 EA 75 C8)=BE BD C6 6C 9E BO 59 F2
C, = Ex(Cy Xor P,) = E«(BE BD C6 6C 9E B0 59 F2)=51 0C F8 C7 F3 AF A0 CF

and we throw away the last m bytes of C; to get:
C=MEk(P)=BE BD C6 51 0OC F8 C7 F3 AF A0 CF
Now the original SW1-SW 2 are appended, to get:

C SW1 | SW2
BE BD C6 51 0C F8 C7 F3 AF AO0 CF 61 03

8.7.12 END ENCRYPTION
The unencrypted END ENCRY PTION command:

Command: | CLA INS P1 P2
Co 12 00 00

120

8.7 Encryption —a Worked Example

AddLc' =00, Le =00, and two zeroes:

CLA | INS P1 P2 Lc Le
Co 12 00 00 00 00 | 0O 00

Encrypt P=C0 12 00 00 00 00 00 00 with ME« , where

K =3E 1F A7 55 81 DB C3 25 iskey number 99 from TESTKEY S.BAS;

Cy=51 0C F8 C7 F3 AF A0 CF isC, fromthe ECHO response;

P, =C0 12 00 00 00 00 00 00 is the only message block;

m=0 isthelength of padding required inP; .
So we compute:

C; = Ex(Co Xor P1) = Ex(91 1E F8 C7 F3 AF A0 CF)=34 70 7C 93 08 82 9B 89
and C = ME(P) issimply C; .

Thefinal version:

CLA | INS P1 P2 Lc | C
Co 12 00 00 08 |34 70 7C 93 08 82 9B 89

(Le isnot appended in this case, because it wasn't present in the unencrypted command.)

Theresponse is not encrypted:

Response: [SW1 | SW2
90 00

8.7.13 Triple DES (Algorithm = & H22)

The three commands (START ENCRYPTION, ECHO, and END ENCRYPTION) are encrypted in
exactly the same way for Triple DES asfor Single DES, with two exceptions:

Triple DES requires a 16-byte key, so key number 100 is used instead of key number 99;
the Triple DES message encryption function ME¥ is subsituted for ME .

121

0. The ZC-Basic Virtual Machine

Note: Throughout this chapter, boldnumbers are hexadecimal.

9.1 TheBasicCard Virtual Machine

9.1.1 The Compact BasicCard

The Compact BasicCard contains 100 bytes of RAM (= 256 in decimal), and 3EO bytes of EEPROM
(=992 in decimal). Of this, the operating system uses the first 47 bytes of RAM and the first 23 bytes
of EEPROM. The memory available for use by an application written in ZC-Basic is thus B9 bytes of
RAM and 3BD bytes of EEPROM.

9.1.2 The Enhanced BasicCard

The Enhanced BasicCard contains 100 bytes of RAM (= 256 in decimal), and up to 3FEO bytes of
EEPROM (= 16352 in decimal). Of this, the operating system uses the first 6B bytes of RAM, and the
first 15D bytes of EEPROM. If the file system is not disabled, it requires7 bytes of RAM, plus 6 bytes
for each file slot. (Files and directories themselves are all ocated from the EEPHEAP region.)

9.1.3 Memory Layout in the BasicCard
RAM and EEPROM are divided into regions, in the following order:

RAM Regions EEPROM Regions
RAMSYS System RAM EEPSYS System EEPROM
STACK The P-Code stack STRVAL Single-to-String code*
RAMDATA Public and Static data CMDTAB Command descriptor table
RAMHEAP Run-time memory allocation PCODE The ZC-Basic program code
FILEINFO Openfileslotsand file system work- STRCON String constants
space (Enhanced BasicCard only) KEYTAB Keysfor encryption

(FRAME) Procedure frame (containedinSTACK) EEPDATA Eepromdata
EEPHEAP Run-time memory allocation
Libraries Plug-In Libraries

* The STRVAL region is only present for Enhanced BasicCard programs that use Single-to-String
conversion — see 3.22.4 Single-to-String Conversion.

The ZC-Basic compiler calculates how much static memory is required for each region, and assigns
any remaining memory to RAMHEAP and EEPHEAP, for run-time memory allocation of strings,
arrays, and files. The map filelists the sizes of all these regions—see 10.4 Map File Format.

9.2 The Terminal Virtual Machine

A Terminal program contains a CODE segment and a DAT A segment, each of which may be up to 64
kilobytes long. The CODE segment contains only the PCODE region. The DATA segment contains
RAM and EEPROM regions (see 2.2.4 Permanent Data for the meaning of EEPROM data in a
Terminal program). The regions occur in the following order (RAM before EEPROM):

122

9.3 The P-Code Stack

RAM Regions EEPROM Regions
STACK TheP-Code stack EEPDATA Eepromdata
RAMSYS System RAM EEPHEAP Run-time memory allocation

RAMDATA Public and Static data
RAMHEAP Run-time memory allocation
STRCON String constants
(FRAME) Procedure frame (contained in STACK)

9.3 The P-Code Stack

The P-Code Virtual Machine has three registers:
PC Program counter (2 bytes)
SP Stack Pointer (BasicCard: 1 byte; Terminal: 2 bytes)
FP Frame Pointer (BasicCard: 1 byte; Terminal: 2 bytes)

The P-Code stack grows upwards; the SP register contains the address of the first free byte on the
stack. The stack contains four kinds of data:

Command parameters, received from the I/O port (BasicCard only). These are located at the
bottom of the stack.

Procedure parameters and return addresses. Before a procedureis called, its parameters are pushed
onto the P-Code stack. (If the procedureisa Function, space is reserved below the parameters for
the function return value.)

FRAME data, consisting of Private data and compiler-generated temporary variables. Each
procedure has its own FRAME region, of afixed size, that is allocated from the stack when the
procedureis called. The FP register pointsto the base of the FRAME region.

Intermediate results of computations. The Virtual Machine has no dataregisters; all computation is
performed on the top of the P-Code stack.

Thefirst P-Code instruction in aprocedureis
ENTER frame-size
Thisinstruction sets up the FRAME region as follows:

Push FP
Push SP + frame-size + 1 (BasicCard) or SP + frame-size + 2 (Terminal)
FP =SP
SP = SP +frame-size
Thelast instruction in every procedureis
LEAVE
This undoes the effect of the ENTER instruction before returning to the caller:
SP =FP -1 (BasicCard) or FP — 2 (Terminal)
Pop FP
Pop PC

9.4 Run-Time Memory Allocation

The Virtual Machine has two heaps for the run-time allocation of strings and arrays: RAMHEAP and
EEPHEAP. Each is composed of variable-length blocks, that are either allocated or free; adjacent free
blocks are concatenated as soon as they are created. In addition, an allocated block in EEPHEAP is

123

9. The ZC-Basic Virtual Machine

either permanent or temporary. Each block consists of a block header followed by a data area. The
block header contains the length of the data area, and one or two bits describing the block:

EEPHEAP block RAMHEAP block (BasicCard) RAMHEAP block (Terminal)
F | T | Len (14 hits) F | Len (7 bits) F | Len (15 hits)
Dataarea (L en bytes) Dataarea (L en bytes) Data area (L en bytes)

F=1iftheblock isfree, O if the block is allocated.

T =1if the block is temporary, O if the block is permanent. A temporary block is automatically freed
the next time the BasicCard is reset or the Terminal program is run.

9.5 Data Types

The BasicCard Virtual Machine implements the following data types:

CHAR 1-byte unsigned integer

WORD 2-byte signed integer

LONG 4-byte signed integer

REAL 4-byte |EEE-format floating-point number
STRING See Strings below

These types correspond to the ZC-Basic data types Byte, Integer, Long, Single, and String
respectively. Arithmetic operations are provided for WORD, LONG, and REAL data; CHAR data
must be converted to WORD before performing arithmetic on it.

9.5.1 Srings
There are two types of string: variable-length and fixed-length.

A variable-length string is a 2-byte pointer to a Pascal-type string, which consists of alength byte
followed by the string contents.

A fixed-length string is a sequence of characters, whose length is known at compile time.

Both types are restricted to 254 bytes in length; if an operation would result in a longer string, it
truncates the result.

String variables take various forms, depending on the storage type:

Eeprom A fixed-length Eeprom string variable is a sequence of characters in the
EEPDATA region. A variable-length Eeprom string variable is a 2-byte
pointer, inthe EEPDATA region, to a Pascal-type string in the EEPHEAP
region.

Public, Static A fixed-length Public or Static string variable is a sequence of charactersin
the RAMDATA region. A variable-length Public or Static string variable is
a 2-byte pointer, in the RAMDATA region, to a Pascal-type string, which
may be in RAMHEAP or EEPHEAP. Strings are allocated from
RAMHEAP if thereisroom, but if not they are allocated from EEPHEAP.
In this case they are marked as temporary, so that they can be deleted when
the BasicCard isreset or the Terminal program isrestarted.

Private A fixed-length Private string variable is a sequence of characters in the
FRAME region. A variable-length Private string variable is a 2-byte
pointer, in the FRAME region, to a Pascal-type string, which may be in
RAMHEAP or EEPHEAP.

124

String parameters

9.6 P-Code I nstructions

A String parameter takes up 3 bytes on the stack: a one-byte length
followed by atwo-byte address. If length <= 254, the address points directly
to afixed-length string. If length = 255, the address is a handle, and points
to a variable-length string variable. (This is the reason for the 254-byte
length restriction on all strings.)

9.6 P-Codelnstructions

In this section, namesinitalics obey the following conventions:

Initial characterss and u denote signed and unsigned values respectively.

Initial character r, or second character c, w, |, denote REAL, CHAR, WORD, and LONG data
respectively.

Aisthe address of an array descriptor.
X$, Y$, Z$ are STRINGs.

9.6.1 Miscellaneous Instructions

Name
NOP
ADDSP
DUP
COMPL
RAND
ERROR
SYSTEM

00
01
02
03
04
05
06

OpCode Param Description

No operation
scDelta SP += scDelta. If scDelta >0, ‘pushed’ bytes are initialised to zero.
ucLen Push the top ucLen stack bytes
Pop slY; pop siX ; compare ; push for WORD comparison
Push aL ONG random number
ucError Generate a P-Code error condition
ucSysCode Operating system call —see 9.7 The SYSTEM Instruction.

9.6.2 Data Conversion Instructions

Name

CVTCW
CVTWC
CVTWL
CVTLW

07
08
09
0A

OpCode Description

Pop ucX ; swY = ucX ; push swY
Pop swX ; ucY =swX ; push ucY
Pop swX ; dY =swX; pushslY
Pop 81X ; swY = sl X; push swY

125

9. The ZC-Basic Virtual Machine

9.6.3 Data Access Instructions (Push and Pop)

Name OpCode Param Description

PUCCB 0B ucConst Push constant CHAR ucConst

PUCWB oC scConst Push constant scConst sign-extended to WORD
PUCWC OD ucConst Push constant ucConst zero-extended to WORD
PUCWW OE swConst Push constant WORD swConst

PURCB OF ucAddr Push CHAR at address ucAddr

PURWB 10 ucAddr Push WORD at address ucAddr

PURLB 11 ucAddr Push L ONG at address ucAddr

PURSB 12 ucAddr Push STRING at address ucAddr

PUECW 13 uwAddr Push CHAR at address uwAddr

PUEWW 14 uwAddr Push WORD at address uwAddr

PUELW 15 uwAddr Push LONG at address uwAddr

PUESW 16 uwAddr Push STRING at address uwAddr

PUFCB 17 scAddr Push CHAR at address FP + scAddr

PUFWB 18 scAddr Push WORD at address FP + scAddr

PUFLB 19 scAddr Push LONG at address FP + scAddr

PUFSB 1A scAddr Push STRING at address FP + scAddr
PUFAB 1B scAddr Push FP + scAddr asWORD

PUSAB 1C ucAddr Push SP —ucAddr asWORD

PUPSB 1D scAddr Push 3-byte STRING parameter at address FP + scAddr
PUINC 1E Pop uwAddr ; push CHAR at address uwAddr
PUINW 1F Pop uwAddr ; pushWORD at address uwAddr
PUINL 20 Pop uwAddr ; push LONG at address uwAddr
PORCB 21 ucAddr Pop CHAR at addressucAddr

PORWB 22 ucAddr Pop WORD at addressucAddr

PORLB 23 ucAddr Pop LONG at addressucAddr

POECW 24 uwAddr Pop CHAR at address uwAddr

POEWW 25 uwAddr Pop WORD at address uwAddr

POELW 26 uwAddr Pop LONG at address uwAddr

POFCB 27 scAddr Pop CHAR at address FP + scAddr

POFWB 28 scAddr Pop WORD at addressFP + scAddr

POFLB 29 scAddr Pop LONG at address FP + scAddr

POINC 2A Pop uwAddr ; pop CHAR at address uwAddr
POINW 2B Pop uwAddr ; pop WORD at address uwAddr
POINL 2C Pop uwAddr ; pop LONG at address uwAddr

126

9.6.4

Name
ADDW
ADDL
SUBW
SUBL
MULW
MULL
DIVW
DIVL
MODW
MODL
ANDW
ANDL
ORW
ORL
XORW
XORL
NEGW
NEGL
ABSW
ABSL
INCW
INCL
NOTW
NOTL

9.6 P-Code I nstructions

Integer Arithmetic Instructions

OpCode Description

2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44

Pop swY ; pop swX ; push swX + swY
Pop dY; popslX; pushsIX+dlY

Pop swY ; pop swX ; push swX —swY
Pop dY; popsiX; pushsIX—gY

Pop swY ; pop swX ; push swX * swY
Pop dY; popsiX; pushsIX* gY

Pop swY ; pop swX ; push swX / swY
Pop dY; popsiX; pushsiX/slY

Pop swY ; pop swX ; push swX Mod swY
PopdY; popsiX; pushsiIXMod slY
Pop uwY ; pop uwX ; push uwX And uwY
Pop ulY; pop ulX; pushulX And ulY
Pop uwY ; pop uwX ; push uwX Or uwY
Pop ulY ; pop ulX; push ulX Or ulY

Pop uwY ; pop uwX ; push uwX Xor uwY
Pop ulY ; pop ulX; push ulX Xor ulY
Pop swX ; push —swX

Pop sIX ; push —sIX

Pop swX; push Abs(swX)

Pop sIX; push Abs(slX)

Pop swX ; push swX + 1

Pop slX ; pushsl X +1

Pop uwX ; push Not(uwX)

Pop ul X ; push Not(ulX)

127

9. The ZC-Basic Virtual Machine

9.6.5 Program Control Instructions

(Inthe ENTER and L EAVE instructions, F denotes the size of the FP register: 1 in the BasicCard, 2 in
the Terminal.)

Name OpCode Param Description

CALL 45 uwAddr Procedure call or GoSub: push PC+3 asWORD ; PC = uwAddr
ENTER 46 ucFrmSz Push FP; push SP + ucFrmSz+ F; FP=SP; SP = SP + ucFrmSz
LEAVE 47 Return from procedure: SP = FP —F ; pop FP ; pop PC

RETURN 48 Returnfrom GoSub: pop PC

JUMPB 49 scDisp PC = PC + scDisp+ 2

JUMPW 4A uwAddr PC = uwAddr

JZRWB 4B scDisp Pop swX ; if swX = 0 then PC = PC + scDisp + 2

JNZWB 4C scDisp Pop swX ; if swX <> 0thenPC = PC +scDisp + 2

JEQWB 4D scDisp Pop swY; pop swX ; if swX =swY then PC = PC + scDisp + 2
JNEWB 4E <cDisp Pop swY; pop swX ; if swX <> swY then PC = PC + scDisp + 2
JLEWB aF scDisp Pop swY; pop swX ; if swX <=swY then PC = PC + scDisp + 2
JGTWB 50 scDisp Pop swY'; pop swX ; if swX >swY then PC = PC + scDisp + 2
JGEWB 51 scDisp Pop swY ; pop swX ; if swX >=swY then PC = PC + scDisp + 2
JLTWB 52 scDisp Pop swY ; pop swX ; if swX <swY then PC = PC + scDisp + 2
LOOP 53 scDisp Pop swX ; if swX >= 0 then execute JLEWB else execute JGEWB
EXIT 54 Exit the Virtual Machine

9.6.6 Array Instructions

Name OpCode Param Description
ARRAY 55 Pop A ; pop subscript swir for each dimensionr, in reverse order ;
push address of array element A (swll, swi2, ..., swin)

CHKDIM 56 ucNdims Pop A; push A ; if Dim(A) <> ucNdims then execute ERROR 0C

ALLOCA 57 Pop A ; pop bounds word uwBr for each dimensionr, in reverse

order; allocate data area of A and initialise all elementsto 0
FREEA 58 Pop A ; if Dynamic then deallocate A, else set all elementsof Ato 0
FREEA$ 59 Pop string array A ; free all stringsin A ; if Dynamic then deallocate A
BOUNDA 5A Pop swHi ; pop swLo ; push 400* swLo + (swHi —swLo) asWORD
LBOUND 5B Pop A ; pop ucDim; push lower bound of subscript ucDimasWORD
UBOUND 5C Pop A ; pop ucDim; push upper bound of subscript ucDimasWORD

128

9.6 P-Code I nstructions

9.6.7 Sring Instructions

Name OpCode Description

COPY$ 5D PopX$; popVY$; X$=VY$

FREE$ 5E Pop 2-byte handle to variable-length string X$; X$ = empty string
ADD$ 5F Pop X$; popZ$; pop Y$; X$=Y$ + Z$

MID$ 60 Pop swLen ; pop swStart ; pop X$; push Mid$(X$, swStart, swLen)
LEFTS$ 61 Pop swLen ; pop X$; push L eft$(X$, swLen)

RIGHT$ 62 Pop swLen ; pop X$; push Right$(X$, swLen)

LTRIM$ 63 Pop X$; push L Trim$(X$)

RTRIM$ 64 Pop X$; push RTrim$(X$)

UCASE$ 65 Pop X$; pop Y$; X$ = UCase$(Y$)

LCASE$ 66 Pop X$; pop Y$; X$ = L Case$(Y$)

STRING$ 67 Pop X$; pop ucChar ; pop swLen ; X$ = String$(swLen, ucChar)

STRL$ 68 Pop X$; pop sIX ; X$= Str$(slX)

HEX$ 69 Pop X$; pop sIX ; X$= Hex$(dlX)

ASC$ 6A Pop X$; push Asc(X$) as CHAR

LEN$ 6B Pop X$; pushLen(X$) asCHAR

COMPS$ 6C Pop Y$; pop X$; compare ; push for WORD comparison
VALLS$ 6D Pop X$; slVal = Val& (X$, ucLen) ; push slVal ; pushucLen

VALHLS$ 6E Pop X$; slVal = ValH(X$, ucLen) ; pushslVal ; pushucLen

9.6.8 Data Initialisation Instructions

Name OpCode Params Description
RDATA 6F ucAddr, ucLen, data Copy data (ucLen bytes) to addressucAddr
FDATA 70 scAddr, ucLen,data Copy data (ucLen bytes) to addressFP + scAddr

129

9. The ZC-Basic Virtual Machine

9.6.9 Floating-Point Instructions

Note: These instructions are not implemented in the Compact BasicCard.

Name OpCode Description

COMPR 71 PoprY; poprX; compare; push for WORD comparison
CVTWR 72 Pop swX ; push swX as REAL

CVTRW 73 Pop rX; pushrXasWORD

CVTLR 74 Pop sIX ; push sl X asREAL

CVTRL 75 PoprX; pushrXasLONG

ADDR 76 PoprY; poprX; pushrX+rY

SUBR 77 PoprY; poprX; pushrX—rY

MULR 78 PoprY; poprX; pushrX* rY

DIVR 79 PoprY; poprX; pushrX/rY

NEGR 7A Pop rX; push —rX

ABSR 7B Pop rX ; push Abs(rX)

SQRTR 7C Pop rX; push Sgrt(rX)

STRR$ 7D Pop X$; poprX; X$ = Str3(rX)

VALRS$ 7E Pop X$;rVal = Vall(X$, ucLen) ; pushrVal ; pushucLen

9.6.10 The XMIT Command Call Instruction

Note: Thisinstruction isavailable only in a Terminal program.

Name OpCode Params Description

XMIT 7F ucType, ucLen Send command and process response

Before thisinstruction is executed, a command must be pushed onto the P-Code stack:

lcta| ins | P1 | P2 | Lc |IDATA paddedtouctenbytes | Le |

Then the command is transmitted according toucType, as follows:

ucType

0 Send Lc bytesin IDATA (no Le)

1 Send Lc bytesin IDATA, followed by Le

2 The top 3 bytes of the IDATA field contain a variable-length string parameter X$. Send
ucLen — 3 bytesinIDATA, followed by X$.

3 The same asucType = 2, with Le appended to IDATA.

4 Thetop 3 bytes of the IDATA field contain a variable-length string parameter X$. Send up
to Lc bytes of (ucLen —3 bytes followed by X$).

5 The same asucType = 4, with Le appended to IDATA.

130

9.7 The SYSTEM Instruction

9.6.11 Abbreviated Instructions

Instructions from 80 to FF are single-byte abbreviations of 2-byte PUFxB / POFxB instructions. For
example, PUFLF1 (instruction A6) is an abbreviation of PUFLB F1.

Name OpCode Description

PUFWED — PUFWFC 80-8F Push WORD at address FP — (93 —OpCode)
PUFW00 — PUFWOF 90-9F Push WORD at address FP + (OpCode — 90)
PUFLEB — PUFLFA AO-AF Push LONG at address FP — (B5 — OpCode)
PUFL 00 — PUFL OF BO-BF Push LONG at address FP + (OpCode—BO0)
POFWED - POFWFC CO-CF Pop WORD at addressFP — (D3 — OpCode)
POFW00 — POFWOF DO-DF Pop WORD at address FP + (OpCode — DO)
POFLEB - POFLFA EO-EF Pop LONG at address FP — (F5 —OpCode)
POFL 00— POFLOF FO-FF PopLONG at address FP + (OpCode — FO0)

9.7 The SYSTEM Instruction

The SYSTEM P-Code instruction (OpCode 06) calls an operating system function, according to the
first parameter, SysCode.

9.7.1 SYSTEM Functions in the Compact BasicCard
The Compact BasicCard hasjust three SYSTEM functions:

OpCode SysCode Name

06 00 WTX Send a Waiting Time Extension request
06 01 CommandsString | Convert acommand parameter to a variable-length string
06 02 ResponseString Convert avariable-length string to a response parameter

9.7.2 SYSTEM Functionsin the Enhanced BasicCard
The Enhanced BasicCard hasfive SY STEM functions with SysCode < 80:

OpCode SysCode Name

06 00 WTX Send a Waiting Time Extension request

06 03 EnableK ey Enable or disable a cryptographic key or its error counter
06 40 Certificate Calculate acryptographic certificate

06 41 DES DES block encryption primitives

06 55 Key Built-in Key() function

In addition, the Enhanced BasicCard supports the FILE SYSTEM functions — see 9.7.4 FILE
SYSTEM Functions.

131

9. The ZC-Basic Virtual Machine

9.7.3 SYSTEM Functionsin the Terminal

OpCode SysCode Name

06 00 WTX Give the card more time

06 40 Certificate Calculate a cryptographic certificate

06 41 DES Des block encryption primitives

06 42 Cls Clear the screen

06 43 UpdateScreen Update the screen

06 44 InKey$ Check for keyboard input

06 45 CardReader Look for a ZeitControl Chipi® card reader

06 46 CardInReader Check whether acard isin the reader

06 47 ResetCard Reset the card in the card reader

06 48 WriteEeprom Write EEPROM data back to the image file

06 49 KeyFile Load akey file

06 4A EnableEncrypt Enable auto-encryption (the default)

06 4B DisableEncrypt Disable auto-encryption

06 4C EnableOvCheck | Enable overflow checking (the default)

06 4D DisableOvCheck | Disable overflow checking

06 41E Time$ Date and time as e.g. “Wed Jun 20 15:50:35 1998”
06 aF ChDrive Change the current disk drive

06 50 CurDrive Retrieve the current disk drive

06 51 L ongSeed Seed the random number generator with a L ONG value
06 52 StringSeed Seed the random number generator withaSTRING
06 53 OpenLogFile Start logging of 1/O to file

06 54 CloseL ogFile End logging of 1/O tofile

In addition, the Terminal supportsthe FILE SY STEM functions listed in the next section.

9.7.4 FILE SYSTEM Functions

The file system functionality in the Terminal and the Enhanced BasicCard is implemented through the

SYSTEM P-Code instruction. Such FILE SY STEM commands all have SysCode >= 80:

OpCode SysCode Name

06 80 MKkDir Create adirectory

06 81 RmbDir Delete adirectory

06 82 ChDir Change the current directory

06 83 CurDir Retrieve the current directory

06 84 Dir Count Count the filenames that match awild-card spec
06 85 DirFile Return the nth matching filename

06 86 EraseFile Delete adatafile

06 87 RenameFile Rename or move afile or directory

132

OpCode SysCode Name

9.7 The SYSTEM Instruction

06 88 OpenFile Open afile

06 89 OpenFreeFile Open afile after finding afreefile slot for it

06 8A CloseFile Close afile

06 8B CloseAll Close dll files

06 8C FreeFile Find afreefile slot

06 8D FileLength Return the length of an open file

06 8E GetFilepos Return the read/write pointer of an open file

06 8F SetFilepos Set the read/write pointer of an open file

06 90 EOF Return Trueif at the end of an openfile

06 91 Get Read from abinary file

06 92 GetPos Get after setting the read/write pointer

06 93 Put Writeto abinary file

06 94 PutPos Put after setting the read/write pointer

06 95 Startlnput Set the counter of matched input itemsto O

06 96 Endlnput Return the counter of matched input items

06 97 Read Read a specified number of bytes from a sequential file
06 98 ReadL ong Read a formatted L ONG value from a sequential file
06 99 ReadSingle Read a formatted SINGL E value from a sequential file
06 9A ReadString Read a formatted STRING from a sequential file

06 9B ReadBlock Read aformatted fixed-size block from a sequential file
06 9C ReadLine Read aline from a sequential file

06 9D Writel ong Write aformatted L ONG value to asequential file
06 9E WriteSingle Write aformatted SINGL E value to a sequential file
06 9F WriteString Write aformatted STRING to asequential file

06 A0 PrintLong Write an ASCII LONG valueto asequential file

06 Al PrintSingle Write an ASCII SINGL E value to a sequential file
06 A2 PrintString Write an ASCII STRINGto asequential file

06 A3 PrintSpaces Write a specified number of spacesto aseguential file
06 A4 PrintTab Advance to the next 14-character output field

06 A5 SetColumn Advance to a specified output column

06 A6 PrintNewL ine Print a new-line character

06 A7 L ockFile Set the access conditions on afile or directory

06 A8 GetL ocks Retrieve the access conditions on afile or directory

06 A9 GetAttr Retrieve the attributes of afile or directory

06 AA SetAttr Set the attributes of afile or directory (Terminal only)

133

10. Output File Formats

This chapter describes the formats of the various output files generated by the ZC-Basic compiler:

Image file: program and data in binary format, for use by ZCDOS and BCL OAD programs.
Debug file: symbolic debugging information, for use by the ZCDD Double Debugger.

List file: source program, compiled P-Code, and datain human-readabl e text format.

Map file: the addresses of all symbolsin the program, ordered by name and by location.

Note: Throughout this chapter, boldnumbers are hexadecimal.

10.1 ZeitControl Image File For mat

Debug and Image files consist of Sections, each of which starts with a 4-byte ASCII name, followed by
a4-byte section length. Sections are guaranteed to occur in the following order:

For a BasicCard program:

‘ZCIF' Signature Section —“ZeitControl Image File”

‘VERS Version Section — File format version

‘VMTP Virtual Machine Type Section —target machine

‘SECA’ 32-byte security area

‘EEPR’ EEPROM Image Section — EEPSYS, CMDTAB, PCODE, STRCON, KEYTAB,
EEPDATA, and EEPHEAP regions

‘LIBR’ Libraries Section — Plug-In Library directory

For aTerminal program:

‘ZCIF Signature Section —“ ZeitControl Image File”

‘VERS Version Section— File format version

‘VMTP Virtual Machine Type Section —target machine

‘CODE’ P-Code Section — Contents of PCODE region

‘DATA’ Data Section — RAMSYS, STRCON, RAMDATA, and RAMHEAP regions

‘EEPR’ EEPROM Image Section — EEPDATA and EEPHEAP regions

‘LIBR’ Libraries Section — Plug-In Library directory

Numerical 2-byte and 4-byte fields are stored Isb to msb, Intel-style (or Little-Endian). This is in
contrast to the Virtual Machine, which is Big-Endian.

Some sections contain string tables. A string table consists of consecutive null-terminated strings.
Whenever aname occursin a Section field, it isto be interpreted as an offset into the string table of the
current Section.

10.1.1 Sgnature Section

Length
4 ‘ZCIF' (“ZeitControl Image File")

4 Total length of all remaining sections (= file length — 8)

134

10.1 ZeitControl Image File Format

10.1.2 Version Section

Length
4 ‘VERS
Section length = 04

Major version of software that created thisfile

Major version of oldest software compatible with thisfile

4
1
1 Minor version of software that created thisfile
1
1

Minor version of oldest software compatible with thisfile

10.1.3 Virtual Machine Type Section
Length
4 ‘VMTP
4 Section length = 02
1 Virtual Machinetype: 00 = Terminal, 01 = Compact BasicCard, 02 = Enhanced BasicCard
1

Virtual Machine sub-type (00 for Terminal; 00 to 04 for BasicCards)

See 1.5 BasicCard Versions for alist of BasicCard version numbers.

10.1.4 32-byte security area (BasicCard only)

Length
4 ‘SECA’

4 Section lengthlen
len Data (to be padded with FF to alength of 20 bytes)

The Security Area of the BasicCard is a 32-byte area containing 16 bytes of factory-programmed ROM
plus 16 bytes of PROM. This section is not downloaded to the BasicCard — it is for the simulated
BasicCard in the PC.

10.1.5 P-Code Section (Terminal only)

Length
4 ‘CODFE’

4 Section lengthlen

2 Program entry point

len-2 P-Code. The P-Code in the Terminal starts at address0000.

135

10. Output File Formats

10.1.6 Data Section (Terminal only)

Length
4 ‘DATA’

4 Section length

2 Start address of RAM data
2 Length of RAM data
2

2

Number of recordsn

Start address of record 0

2 Length leng of record 0

leng Contents of record 0

2 Start address of recordn—1

2 Lengthlen; of recordn—1

len,, | Contentsof recordn—1

All RAM bytes not contained in arecord must be initialised to 00.
The Data Section containsthe RAMSYS, STRCON, RAMDATA, and RAMHEAP regions.

10.1.7 EEPROM Image Section
Length

4 ‘EEPR’
4 Section length
2 Start address of EEPROM data
2 Length of EEPROM data
2
2

Number of recordsn

Start address of record 0

2 Length leng of record 0

leng Contents of record 0

2 Start address of recordn—1

2 Lengthlen,; of recordn—1

len,4 | Contentsof recordn—1

All EEPROM bytes not contained in arecord must beinitialised to FF.

In the Terminal, the EEPROM Image Section contains just the EEPDATA and EEPHEAP regions. In
the BasicCard, it contains the EEPSYS, CMDTAB, PCODE, STRCON, KEYTAB, EEPDATA, and
EEPHEAP regions.

136

10.2 ZeitControl Debug File Format

10.1.8 Libraries Section

Length
4 ‘LIBR’

4 Section length

2 String table length lengy

lensr | String table

2 Number of modulesn
Module 0

Modulen-1

Each modul e sub-section contains the following information:

Length
2 Name of module

Major version number of module

Minor version number of module

Major version number of interpreter needed to execute this module

Minor version number of interpreter needed to execute this module

Start address of module

End address of module

Number of Address List Entriesn
Address List Index0
Address0

NININININ|[FRP|RFRP|[FPL]|PF

2 AddressListIndex n—1
2 Addressn—-1

Note: The Libraries Section isfor the various PC-based interpreters —the BCLOAD program ignoresit.
Each ZeitControl Plug-In Library defines its own list of addresses that the interpreter needs to know;
these arethe Address List Entries.

10.2 ZeitControl Debug File Format

A debug file has the same format as an image file, with additional sections containing debug
information. The Signature Section has a different name:

‘ZCDF Signature Section —*“ ZeitControl Debug File”

The debug information sections occur immediately after the' VM TP’ Virtual Machine Type Section:
‘FILE’ Files Section — Names of all sourcefiles

‘TYPE’ Types Section — Descriptions of all datatypes used in the program

‘SYMB’ Symbols Sections — Labels and variables, one Section for each scope

‘LINE’ Line Numbers Section — Source line number information

‘FIXY Fixups Section — Cross-references

137

10. Output File Formats

10.2.1 Sgnature Section
Length

4 ‘ZCDF' (“ZeitControl Debug File”)

4 Total length of all remaining sections (= file length — 8)

10.2.2 Files Section

This section contains the names of all the source filesin the program:

Length

4 ‘FILE’

4 Section length

2 String table length lensr

lengr String table

2 Number of filesn

2 Name of fileO

2 Name of filen—1

10.2.3 Types Section
This section contains definitions of every datatype that occursin the program.

Length

4 ‘TYPE’

4 Section length

2 String table length lensr

lengr String table

2 Number of type entriesn

7 TypeO

7 Typen-1

Type format (shaded bytes are zero):

Byte

Integer

Long

Single

String

String*n n

Array ElementType nDims

UserType TypeName nMembers

0 |IN[oja |~]|]W|IN|F|O

Member MemberName Member Type

138

10.2 ZeitControl Debug File Format

ElementType, Member Type Indices of typesin the Types section

TypeName, MemberName Offsetsinthestring table

nDims Number of dimensions of the array

nMembers Number of membersin the user-defined type

Offset Offset of the member in its user-defined type User Type

A UserType entry isimmediately followed by nMemberstype entries of type Member.

10.2.4 Symbols Sections

The first Symbols Section contains global symbols. Each subsequent Symbols Section contains the
local symbolsfor asingle procedure. Symbols are sorted by name (according to the‘C’ library function
st rcnp). User-defined symbols are stored in upper case; symbols containing lower-case letters are
compiler-generated names.

Length
4 ‘SYMPB’
4 Section length
2 Procedure start address (0000 for the global Symbols Section)
2 Procedure end address (0000 for the global Symbols Section)

2 String table length lensr

lengr String table

2 Number of symbolsn
8 Symbol 0

8 Symbol n—1

Symbol format (shaded bytes are zero):

Const Long 0 SymbolName 4-byte integer
Const Single 1 SymbolName 4-byte floating-point number
Const String 2 SymbolName String Len
Label 3 SymbolName Address
Variable 4 SymbolName Address Type Sorage

SymbolName, String 2-byte offsetsin the string table
Type Index in the Types section

Sorage 0 = 2-byte absolute
1= 1-byte absolute
2 = 1-byte signed, FP-relative (procedure parameters, Private data)
3 = indirect 1-byte signed, FP-relative (String and array parameters)

139

10. Output File Formats

10.2.5 Line Numbers Section

Line-number entries are sorted in increasing code address order.
Length

4 ‘LINE’

4 Section length

2 Number of line-number entriesn

10 Line-number entry O

10 Line-number entry n—1

Line-number entry format:

Code address (2 bytes) | File number (2 bytes) [Line number (2 bytes) | File position (4 bytes)

10.2.6 Fixups Section

This Section contains two tables: Labels and Operands. Entries in the Labels table give the label(s) at a
given address. Entries in the Operands table give the operand of a P-Code instruction as a symbol
(Label or Variable).

Length
4 ‘FIXU’

Section length

4
2 Number of entriesin Labels table nLabs
6 Label entry O

(2}

Label entry nLabs—1

2 Number of entriesin Operands table nOps

6 Operand entry 0

6 Operand entry nOps—1

L abel entries and Operand entries have the same format:

Code address (2 bytes) | Symbols Section (2 bytes) | Index of symbol in Symbols Section (2 bytes)

140

10.3 List File Format

10.3 List File Format

The format of thelist fileisillustrated by means of a small example program:

Decl are ApplicationlD = "Smal|l Exanpl e Progrant
Eeprom Mont hLengt h(1 To 12) = 1, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
Const InvalidMonth = &H6F01
Command &H80 &HOO Get Mont hLength (N)
If N<1 O N> 12 Then
SWSW2 = I nvalidMonth
El se
N = Mont hLength (N)
End If
End Command

This program was compiled for the Compact BasicCard version ZC1.2, with list file and map file
requested:

ZCBASI C MONTHLEN -CC2 -OL -OM
Thelist file, MONTHLEN. LST:
O File: MONTHLEN. BAS

®1 Declare ApplicationlD = "Snmall Exanpl e Progrant
© | ni t Code:

O PCODE © A849: ® 46 00 @ ENTER 00
PCODE A84B: 6F 80 01 RDATA 80 01
FF FF
PCODE ABAF: 47 LEAVE
Applicati onl D:
© EEPDATA A86A: 15 53 6D 61 6C 6C 20 45 78 61 6D 70 6C 65 20 50
EEPDATA AB7A: 72 6F 67 72 61 6D

2 Eeprom MonthLength(1 To 12) = 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

© MONTHLENGTH:
EEPDATA A880: A8 88 02 01 04 OB 00 18
MONTHLENGTH DATA:

EEPDATA A888: 00 1F 00 1C 00 1F 00 1E 00 1F 00 1E 00 1F 00 1F
EEPDATA A898: 00 1E 00 1F 00 1E 00 1F
3 Const InvalidMvonth = &H6F01
4
5 Conmand &H30 &HOO Get Mont hLength (N)
GETMONTHLENGTH:
PCODE A850: 46 00 ENTER 00
CMDTAB A843: 01 80 00 02 A8 50
6 If N<1 O N> 12 Then
PCODE A852: 8F PUFWFC (N) ©
PCODE A853: 0C 01 PUCWB 01
PCODE A855: 52 05 JLTWB True001
PCODE A857: 8F PUFWFC (N)
PCODE A858: 0C 0OC PUCWB 0C
PCODE A85A. 4F 06 JLEWB El se001
7 SWLSW2 = | nval i dMont h
True001:
PCODE A85C. OE 6F01 PUCWVN 6F01
PCODE A85F: 22 45 PORWB SWLSW2
8 El se
PCODE A861: 54 EXIT
9 N = Mont hLength (N)
El se001:
PCODE A862: 8F PUFWFC (N)
PCODE A863: OE A880 PUCWN MONTHLENGTH

141

10. Output File Formats

PCODE A866: 55 ARRAY
PCODE AB67: 1F PUI NW
PCODE A868: CF POFWFC (N)
10 End If
11 End Command
PCODE A869: 54 EXIT
O Input filename
® Source code, with line number
© Compiler-generated label (contains lower-case |etters)
O P-Code (PCODE isthe name of the region)
© Address of P-Code instruction
O P-Codeinstruction and operands, in hexadecimal
® P-Codeinstruction and operands, in text
O Eeprom data (EEPDATA isthe name of the region)
© User-generated label (upper-case letters)
® Implicit operand of abbreviated P-Code instruction, in parentheses

10.4 Map File For mat

The map file MONTHLEN. MAP from the example program in the previous section, 10.3 List File
Format:

O Input file: MONTHLEN. BAS

A ==——= RAM regi ons =====
Nanme Start End Lengt h
RAMSYS 00 4B 4C
STACK 4C T7F 34
RANMDATA 00
RAVHEAP 80 FF 80

© =—==== EEPROM r egi ons =====
Nanme Start End Lengt h
EEPSYS A820 A842 0023
CNVDTAB A843 A848 0006
PCODE A849 A869 0021
STRCON 0000
KEYTAB 0000
EEPDATA A86A A89F 0036
EEPHEAP A8AOQ ABFF 0360

O ===== Syn‘b0| S by nane =====
Nane Scope Address Type
CLA d obal 47 PUBLI C BYTE
ENCRYPTI ON A obal 23 PUBLI C BYTE
FALSE d obal CONST=0000
GETMONTHLENGTH d obal A850 COVMVAND &H80 &H00
I NS Ad obal 48 PUBLI C BYTE
| NVALI DMONTH G obal CONST=6F01
KEYNUMBER G obal 40 PUBLI C BYTE
LC G obal 4B PUBLI C BYTE
LE G obal 44 PUBLI C BYTE
MONTHLENGTH d obal A880 EEPROM | NTEGER ARRAY

142

MONTHLENGTH DATA
N

P1

P1P2

P2

PCODEERROR
RESPONSELENGTH
Sw

SWLSW

SwW

TRUE

RAM syst em dat a:

Nane
ENCRYPTI ON
KEYNUMBER
PCODEERROR
RESPONSELENGTH
LE

SW1L.SW2

SwW

SW2

CLA

I NS

P1P2

P1

P2

LC

EEPROM user dat a:

Nane

MONTHLENGTH
MONTHLENGTH DATA

® User code:

Nane

Initialisation Code
GETMONTHLENGTH

@ Local vari abl es:
Name

N

O Input filename.

Synbol s by | ocation

d obal
GETMONTHLENGTH
d obal
d obal
d obal
d obal
d obal
d obal
d obal
d obal
d obal

GETMONTHLENGTH

A888
FC
49
49
4A
41
43
45
45
46

Addr ess

® RAM regions: The addresses and lengths of the regionsin RAM.
© EEPROM regions: The addresses and lengths of the regionsin EEPROM.
® Symbols by name: All the symbolsin alphabetical order.
© Symbolsby location: All the symbols, ordered according to location and address.
O User code: The addresses of all the procedures and |abels in the source program.

@ Local variables: The signed FP-relative addresses of parameters and Private data.

10.4 Map File Format

ARRAY DATA
PARAM | NTEGER

PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C

BYTE
I NTEGER
BYTE
BYTE
BYTE
BYTE
| NTEGER
BYTE

CONST=FFFF

Type

PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C
PUBLI C

Type

BYTE
BYTE
BYTE
BYTE
BYTE
| NTEGER
BYTE
BYTE
BYTE
BYTE
| NTEGER
BYTE
BYTE
BYTE

EEPROM | NTEGER ARRAY
ARRAY DATA

Type

SUB

COVVAND &HB0 &HO0

Type

PARAM | NTEGER

143

| ndex

A

Access Conditions...........ccveeenenne
ACosMathematical Function
AlGOrithMu.eceeecce s
Answer To Reset
APPENT MOUE......coeereeerreeerrereereireeeseeereerseiees
APPLCALTION ID ...
Array Descriptor Format
ATTay FUNCLIONS.....cocvieeieereeret e

Assignment Statements..........coceeerereeererenenens
At address

ATHDULES ...
Automatic Encryption.......c.cceeeeeeccenrescnenens

B

BaSiCCardcoeeieeieeiseeereese e
BasicCard Versions.........ccoeveuneee..

BasicCard Virtual Machine...........

BasicCard-Specific Features
BCKEYS.EXE..... e
BCLOAD.EXE.........
BQCol ...,
Binary Files...............
Binary mode..........ccovenirenienennennns
Block Waiting Time
Breakpoints........ccooveveereenececrennenes
Built-in Commands........ccccceeuu.e..
Built-in Functions...........ccoeveveuneee.

Cell Mathematical Function...........ccoeeeeeevenenee. 82
(O0= 8] 17= 1 (=T 33, 36

144

ClassS hyte.....ooceveccrrescce e 28, 38

CLEAR EEPROM.....cooovrieiereeeseeees 95
ClOSEFII@ e 55
Close LOg Fil@...ercecer v 40
O T 38
Command Calls.......ccoeeeeeeeeeeeeeeeeeeeeereeeeeas 30
Command DefinitioN........ccoeevveeevecseseceseenes 27
Command-response Protocol............cecereeennee. 5
COMMANDS.DEF ... 106
COMMUNICALIONS......oeeeieereeireeeiceseee e 39, 86
Compact BasicCard..........cccovveeerneneecreeerecnennn. 4
COMPON .. 41
Computed GOTo/GOSUD.........cccveeereeerrereenees 26
Conditional Compilation.........cccccceveveeerrerernnnas 14
Cos Mathematical Function..........cceceevvuennee. 82

....................... 83
O (T 98
Create Fil@... e 53
(10 | T 50
CUIDIIVE o 52
Current DisK DIVe ... 52

Debug File Format......................
Debug File, Generating..............
DebUGQET ...
Declare ApplicationlD.............
Declare ATR ...

DefType Statement.........ccoceveeee
Deete File......ovrnneerrecns
DES Algorithm.......ccccoevcvvvcrnenes
DES Encryption Primitives.......
D1 ST
Directory Attributes..................
Directory Commands.................
Directory Definition...................
Directory Names........cccccvvervevereresenesesessesneens
Directory-Based File Systems
Disable ENcryption........cccceeevvecenneneenens

Disable K@Y.....ocvrerereeerreseeseseses e 35
Disable Over flowChec ..o 42
Disk Drive

E

EC—160 Librarycccocoevveveeivreceeerecee e
EC160GenerateK eyPair
EC160HashANASIgN......cccocvevrrerrereererereeees
EC160HashANAVErify.....covvevreccrererennenn,
EC160SessionK ey........ccceeeeevrerenee.
EC160Set Curve
EC160SetPrivateK €y......ccocvvvreeerereeererereenens 78
EC160SharedSecret.........c.ceuene.

ECL160SIgNcovverreeerieeeriereeenesenens
EC160Verify............

EEPROM CRC.......
Eeprom data..............
EEPROM Size..........
EEPROM SIZE
Elliptic Curve Library
Enable Encryption
Enable Key...............
Enable OverflowCheck
ENCryption.......cccceeveveennereenerenns
Encryption Algorithms...................
Encryption Functions............c.......
END ENCRYPTION.....ccecovurene.
Enhanced BasicCard.........ccccvvenreeereneneeereneceeens

Error Counter
Error DIreCliVe.....coeceeecce e
Error File, Generating.........ccoovveveveveceevesenneens
Error Handling

Executable File, Generating........cccceeeeevereneen. 64
Executable Files ... 10

Exp Mathematical Function..........c.cccceeevereeneee. 82
EXPreSSiONS.......ceveerereereeereerneieiseeessiesesesesennens 20

F

File Attributes
File Definition
File Definition Sections.................
FILE 1O e
File Names
File System Commands.................
FIlEEITOr oo
FILEIO.DEF ...
Files and Directories.........coevunun.
Fixedarrays.......ceenenennenens
Floor Mathematical Function

G

GET APPLICATION ID..covvecererceeee 100
Get Lock

/O LOQING -..vrevrrremrrrenerreeernesessessesessesessesennesens
I-block (T=1 protocal)

If-Then-ElSe.....ccoenrnrnnenenee

Image File Format
Image File, Generating...............
Image Files.....coveeverecereinas
Implementing Encryption
Initialisation Code.........ccooeeuneee

Installation of Support Softwarecc.c....... 62
Instruction byte........ooevevveincnncnicnienn, 28, 38
INnteger datatype....ooorecereeeineeneneereneereeerenes 17
K

Key Configuration............ccccceeveveeneneneerennenns 4
Key Declarationccvveeeeenneneseeesensesesseens 3
Key Error COUNLES.......oovvevevererireresesiresesesesenens 4
Key GeNErator........cocvvvevevevirerenisisesesesesesesssesenens 68
=Y o [69
Keyboard INPUL.........ccocevvererrerceereeeeeerenes 39
KEY GEN.EXE....ooirrreereeeinnerseesesesessenenens 68
KeyNumber 38, 41
KT et 53
L

LabElS. .ot 24
LBOUNG...coiiirireeeeieeriree e seeesenes 32
LGt 38
LCASES.....criieieieireiree et 32
L e 38
LEFES oot 32
Len (Of data)......oceerereeeeerererrerinireseseresesssesesenens 32
= oI (o] I F1 =) 59
] o=t o 76
LiDraries ..o 76
LineInput............ 39, 56
List File Format 141
List File, Generating.........cccoceverveveereerereesersenns 64

145

ZeitControl BasicCard

Listing DireCtiVeS......cccovereeeerereseeerereseneresennenes 15
LOAD SEaLE....cverereereereereereenereereieeeeseeseeseeseeees 91

Pre-Defined Variables..........ccocveeveeveeenenee. 38, 41
Pre-Processor Directives........coceveeeeeecveennne. 14

L 0g10 Mathematical Function..........cccccoceeee.... 82
L ogk Mathematical Function
Long datatype....ccoccevevecrerereciereenesese e
LTEIMSB et snsees

M

Map File FOrmat.........cccooeveevevisenesecesennnns
Map File, Generating
MATH Library ...ccocoeeeevveccevseseseseseeesesesnens
Memory AllOCALTON........coveeeverererereeeeereseenens
Message Decryption Functions....
Message Encryption Functions
MIAS .t
MISC Library
MKDIF e

Numerical Expressions
Numerical FUNCLIONS........ccoovvveceeeceee e

O

Octal CONSEANLSceceeeeereeeeieieereerseeeseeeseneene 12
Open File
Open File SIOtS.....coeeeerrereeer e 15
Open Log File...ccceeeeeeeenne 40
Option Base
Option EXPliCit...cceeecceeeeeeeeee e 43
Output File Formats..........cccoeeeeerrenevereerenenennns 134
Output mode
Overflow Checking.......cocoeveveeeerreneeeeseseseennens a2

Parameter Passing..........ccveeeeenen.
Path Names. ..o
pc... P-Code Errors.......ooenveeienn:
PC/SC Functions........ccccceevuveeernnne.
P-Code Instructions.........ccccceeeueeee.
P-Code Interpreter........ccooeeeerrnenee.
P-Code StacK........ccveevveereneeirnnnes

Polynomial Declaration..................
Pow Mathematical Function
Pre-Defined Commands................
Pre-Defined Constants....................
Pre-Defined FIiles ...,

146

Procedure Calls.......coeeeeeeeeeceeeeeceeeeveeene
Procedure Declaration

Procedure Definition.........coceeeevecccsesesecennes
Procedure Definitions

Procedure Parameters

Processor Cards.........coccevceiieseesesisee s
Program Layoutcccoveevnnineienerieeeneseeieenes
Programming processor card.....

Public data.......cccocvveueieeeeeeereeceeeeeee s 17
PUL ..ot 56
R

RanNdom FilEs.......cooveireecereeeseseeeene

Random mode
Random Number Generation.........c..ccecevevennee. 36
Randomize

Renaming Files ...
Reserved words....
ResetCard........oooeeeeeeeeeeeeceeeee e
ResponseL engthccoovveeevevccesencncne,

Return

ROM code
RTIIMS oo
RUN state
Run-Time Memory Allocation............cuee... 123

S
Save Eeprom Data

SCreen OULPUL........coccurireice s
Searching for Files

Sequential Files
SET STATE e

Shrinking Generatorcoovvvereeerereseenens 111
Sin Mathematical Function..........cccccevevvveenne. 82
Single datatype

SinH Mathematical Function..........ccecevvveunee. 83

String datatype
String EXPreSsions.......oeevcceeneneeseesessessesnens
String FUNCLIONS......c.coveceieccccree e
String Parameter Format
String Parameters.........oveceveveeeeneneeesenenseseeenens
SEFNGP oo
String*n datatype
Strings, P-Code........covrerneceneecinieenerseerens

Subroutine CallS ...,
Subroutine Definition
SUPPOIt SOFtWEAre.....ccvveeeeeieiereeieiereeieisieeeeerenenas
sw... Status Codes

T
T=1 ProtoCol........cceveeeeeerreeeereeereesecree e 86
Tan Mathematical Function...........cccceceeveueeenen. 82
TanH Mathematical Function.............ccc......... 83
Terminal Program

Terminal Program Layout..........ccooceveerencenennn. 10
Termina Virtua Machine........cccccoceeeeveennnnee. 122
Terminal-Specific Features.......cocoeveveeverrennas 33

Write Eeprom
WRITE EEPROM
Write L ock
Writetofile
Wit UNIOCK ...t
WTX REQUESL......oeeceeeeeeereeere e
WTX Statement
WZCBASIC.EXE.....eerreeeeeeeeeiaa
WZCDOS.EXE.....oeiececeeeerseeeeee e

z

ZC-Basic COMPilEr.....cceverireeerereserereesesenns 64
ZC-Basic language..........cc.......
ZCBASIC.EXE.....ccocovvrrrrrerneene
ZCDD.EXE.....ooiriererereineineens
ZCDOS.EXE...rrreneineineeneeneseeeeeeseeneens
ZeitControl Double Debugger

147

	Contents
	Part I: User’s Guide
	Part II: Technical Reference

	User’s Guide
	1. The BasicCard
	1.1 Processor Cards
	1.2 Programmable Processor Cards
	1.3 BasicCard Features
	1.4 BasicCard Program Layout
	1.4.1 Initialisation Code
	1.4.2 Procedure Definitions
	1.4.3 File Definition Sections
	1.4.4 Permanent Data

	1.5 BasicCard Versions
	1.5.1 Compact BasicCard

	2. The Terminal
	2.1 The Terminal Program
	2.1.1 Executable Files
	2.1.2 Image Files

	2.2 Terminal Program Layout
	2.2.1 The Main Procedure
	2.2.2 Procedure Definitions
	2.2.3 Command Declarations
	2.2.4 Permanent Data

	3. The ZC-Basic Language
	3.1 The Source File
	3.2 Tokens
	3.3 Pre-Processor Directives
	3.3.1 Source File Inclusion
	3.3.2 Library Inclusion
	3.3.3 Conditional Compilation
	3.3.4 Listing Directives
	3.3.5 Card State
	3.3.6 Number of Open File Slots
	3.3.7 Stack Size
	3.3.8 EEPROM Size
	3.3.9 Message Directive
	3.3.10 Error Directive
	3.3.11 Block Waiting Time
	3.3.12 Pre-Defined Constants

	3.4 Data Storage
	3.4.1 Eeprom data
	3.4.2 Public and Static data
	3.4.3 Private data

	3.5 Data Types
	3.6 Arrays
	3.7 Data Declaration
	3.8 User-Defined Types
	3.9 Expressions
	3.9.1 Numerical Expressions
	3.9.2 String Expressions
	3.9.3 Expressions of User-Defined Type

	3.10 Assignment Statements
	3.11 Program Control
	3.11.1 Exit Statements
	3.11.2 Labels
	3.11.3 GoTo
	3.11.4 GoSub
	3.11.5 If-Then-Else
	3.11.6 For-Loop
	3.11.7 While-Loop and Do-Loop
	3.11.8 Select Case
	3.11.9 Computed GoTo and Computed GoSub

	3.12 Procedure Definition
	3.12.1 Subroutine
	3.12.2 Function
	3.12.3 Command

	3.13 Procedure Calls
	3.13.1 Procedure Declaration
	3.13.2 Calling a Subroutine
	3.13.3 Calling a Function
	3.13.4 Calling a Command

	3.14 Procedure Parameters
	3.14.1 Parameter Passing
	3.14.2 String Parameters
	3.14.3 Array Parameters
	3.14.4 Parameters of User-Defined Type

	3.15 Built-in Functions
	3.15.1 Numerical Functions
	3.15.2 Array Functions
	3.15.3 String Functions
	3.15.4 Encryption Functions
	3.15.5 Other Functions

	3.16 Encryption
	3.16.1 Implementing Encryption
	3.16.2 Key Declaration
	3.16.3 Polynomial Declaration
	3.16.4 Run-Time Key Configuration
	3.16.5 Key Error Counter
	3.16.6 DES Encryption Primitives
	3.16.7 Certificate Generation

	3.17 Random Number Generation
	3.17.1 The Terminal
	3.17.2 The BasicCard

	3.18 Error Handling
	3.19 BasicCard-Specific Features
	3.19.1 Customised ATR
	3.19.2 Application ID
	3.19.3 Enabling and Disabling Encryption Algorithms
	3.19.4 Asking the Terminal for More Time
	3.19.5 Pre-Defined Variables

	3.20 Terminal-Specific Features
	3.20.1 Screen Output
	3.20.2 Keyboard Input
	3.20.3 Communications
	3.20.4 PC/SC Functions
	3.20.5 I/O Logging
	3.20.6 Date and Time
	3.20.7 Saving Eeprom Data
	3.20.9 Giving the Card More Time
	3.20.10 Pre-Defined Variables

	3.21 Miscellaneous Features
	3.21.1 Overflow Checking
	3.21.2 DefType Statement
	3.21.3 Array Subscript Base
	3.21.4 Explicit Declaration of Variables and Arrays

	3.22 Technical Notes
	3.22.1 Array Descriptor Format
	3.22.2 String Parameter Format
	3.22.3 Memory Allocation in the BasicCard
	3.22.4 Single-to-String Conversion

	4. Files and Directories
	4.1 Directory-Based File Systems
	4.1.1 File and Directory Names
	4.1.2 Path Names

	4.2 The Enhanced BasicCard File System
	4.2.1 File Access from a Terminal Program
	4.2.2 Pre-Defined Files and Directories
	4.2.3 Storage Requirements

	4.3 File System Commands
	4.4 Directory Commands
	4.4.1 Creating a Directory
	4.4.2 Deleting a Directory
	4.4.3 Setting the Current Directory
	4.4.4 Retrieving the Current Directory
	4.4.5 Renaming a File or Directory
	4.4.6 Searching for Files
	4.4.7 Setting the Attributes of a File or Directory
	4.4.8 Retrieving the Attributes of a File or Directory
	4.4.9 Setting the Current Disk Drive
	4.4.10 Retrieving the Current Disk Drive

	4.5 Creating and Deleting Files
	4.5.1 Creating a File
	4.5.2 Deleting a File

	4.6 Opening and Closing Files
	4.6.1 Opening a File

	4.7 Writing To Files
	4.7.1 Writing to Sequential Files
	4.7.2 Writing to Binary and Random Files

	4.8 Reading From Files
	4.8.1 Reading from Sequential Files

	4.9 File Locking and Unlocking
	4.9.1 Setting Read and Write Access Conditions
	4.9.2 Setting and Unlocking a Custom Lock
	4.9.3 Retrieving the Access Conditions on a File or Directory

	4.10 Miscellaneous File Operations
	4.11 File Definition Sections
	4.11.1 Directory Definition
	4.11.2 File Definition

	4.12 The Definition File FILEIO.DEF

	5. Support Software
	5.1 Hardware Requirements
	5.2 Installation
	5.3 The MS-DOS ® Support Package
	5.3.1 The ZC-Basic Compiler ZCBASIC.EXE
	5.3.2 The P-Code Interpreter ZCDOS.EXE
	5.3.3 The Card Loader BCLOAD.EXE
	5.3.4 The Key Generator KEYGEN.EXE
	5.3.5 The Key Loader BCKEYS.EXE

	5.4 The ZeitControl Double Debugger for Windows ® 95
	5.4.1 Debugging With Two Source Windows
	5.4.2 Viewing P-Code
	5.4.3 Step Instructions
	5.4.4 Watch Variables
	5.4.5 Breakpoints
	5.4.6 Programming a Real BasicCard

	6. Plug-In Libraries
	6.1 EC–160: The Elliptic Curve Library
	6.1.1 Elliptic Curve Cryptography
	6.1.2 Setting the Elliptic Curve Parameters
	6.1.3 Key Generation
	6.1.4 Setting an Explicit Private Key
	6.1.5 Generating a Digital Signature
	6.1.6 Verifying a Digital Signature
	6.1.7 Session Key Generation
	6.1.8 Binary Representation Formats
	6.1.9 Conformance Specification

	6.2 SHA–1: The Secure Hash Algorithm Library
	6.2.1 Hashing Functions
	6.2.2 Pseudo-Random Number Generation

	6.3 MATH: Mathematical Functions
	6.3.1 Error Codes
	6.3.2 Integer Rounding
	6.3.3 Exponentiation
	6.3.4 Trigonometric Functions
	6.3.5 Hyperbolic Functions
	6.3.6 Mathematical Constants

	6.4 MISC: Miscellaneous Procedures
	6.4.1 Suspending the Program
	6.4.2 Fast EEPROM Writes

	Technical Reference
	7. Communications
	7.1 The T=1 Protocol
	7.1.1 Answer To Reset
	7.1.2 Structure of an I-block
	7.1.3 WTX Request

	7.2 Commands and Responses
	7.3 Status Bytes SW1 and SW2
	7.3.1 BasicCard Operating System
	7.3.2 BasicCard P-Code Interpreter
	7.3.3 Terminal P-Code Interpreter

	7.4 Pre-Defined Commands
	7.4.1 States of the BasicCard
	7.4.2 Pre-Defined Commands – a Summary
	7.4.3 The GET STATE Command
	7.4.4 The EEPROM SIZE Command
	7.4.5 The CLEAR EEPROM Command
	7.4.6 The WRITE EEPROM Command
	7.4.7 The READ EEPROM Command
	7.4.8 The EEPROM CRC Command
	7.4.9 The SET STATE Command
	7.4.10 The GET APPLICATION ID Command
	7.4.11 The START ENCRYPTION Command
	7.4.12 The END ENCRYPTION Command
	7.4.13 The ECHO Command
	7.4.14 The ASSIGN NAD Command
	7.4.15 The FILE IO Command

	7.5 The Command Definition File COMMANDS.DEF

	8. Encryption Algorithms
	8.1 The DES Algorithm
	8.2 Implementation of DES in the Enhanced BasicCard
	8.2.1 The Message Encryption Functions MEK and MEK 3
	8.2.2 The Message Decryption Functions MDK and MDK 3
	8.2.3 The Initialisation Vector
	8.2.4 Encryption of Commands Using DES
	8.2.5 Encryption of Responses Using DES

	8.3 Certificate Generation Using DES
	8.4 The SG-LFSR Algorithm
	8.5 Implementation of SG-LFSR in the Compact BasicCard
	8.6 SG-LFSR with CRC
	8.7 Encryption – a Worked Example
	8.7.1 The Source Code
	8.7.2 The Log Files
	8.7.3 Unencrypted ECHO Command and Response
	8.7.4 START ENCRYPTION (Algorithm = &H11)
	8.7.5 Encrypted ECHO Command (Algorithm = &H11)
	8.7.6 END ENCRYPTION
	8.7.7 START ENCRYPTION (Algorithm = &H12)
	8.7.8 Encrypted ECHO Command (Algorithm = &H12)
	8.7.9 END ENCRYPTION
	8.7.10 START ENCRYPTION (Algorithm = &H21)
	8.7.11 Encrypted ECHO Command (Algorithm = &H21)
	8.7.12 END ENCRYPTION
	8.7.13 Triple DES (Algorithm = &H22)

	9. The ZC-Basic Virtual Machine
	9.1 The BasicCard Virtual Machine
	9.1.1 The Compact BasicCard
	9.1.2 The Enhanced BasicCard
	9.1.3 Memory Layout in the BasicCard

	9.2 The Terminal Virtual Machine
	9.3 The P-Code Stack
	9.4 Run-Time Memory Allocation
	9.5 Data Types
	9.5.1 Strings

	9.6 P-Code Instructions
	9.6.1 Miscellaneous Instructions
	9.6.2 Data Conversion Instructions
	9.6.3 Data Access Instructions (Push and Pop)
	9.6.4 Integer Arithmetic Instructions
	9.6.5 Program Control Instructions
	9.6.6 Array Instructions
	9.6.7 String Instructions
	9.6.8 Data Initialisation Instructions
	9.6.9 Floating-Point Instructions
	9.6.10 The XMIT Command Call Instruction
	9.6.11 Abbreviated Instructions

	9.7 The SYSTEM Instruction
	9.7.1 SYSTEM Functions in the Compact BasicCard
	9.7.2 SYSTEM Functions in the Enhanced BasicCard
	9.7.3 SYSTEM Functions in the Terminal
	9.7.4 FILE SYSTEM Functions

	10. Output File Formats
	10.1 ZeitControl Image File Format
	10.1.1 Signature Section
	10.1.2 Version Section
	10.1.3 Virtual Machine Type Section
	10.1.4 32-byte security area (BasicCard only)
	10.1.5 P-Code Section (Terminal only)
	10.1.6 Data Section (Terminal only)
	10.1.7 EEPROM Image Section
	10.1.8 Libraries Section

	10.2 ZeitControl Debug File Format
	10.2.1 Signature Section
	10.2.2 Files Section
	10.2.3 Types Section
	10.2.4 Symbols Sections
	10.2.5 Line Numbers Section
	10.2.6 Fixups Section
	10.3 List File Format
	10.4 Map File Format

	Index

