

VICE – Catch the hookers!
(Plus new rootkit techniques)

Jamie Butler
Greg Hoglund

Agenda

• Introduction to Rootkits
• Where to Hook
• VICE detection
• Direct Kernel Object Manipulation

(DKOM)
– No hooking required!

• Demonstration of FU rootkit

Operating System Design

• User Land
– Operating system provides common API for

developers to use
• Kernel32.dll
• Ntdll.dll

• Kernel Mode
– The low level kernel functions that implement

the services needed in user land
– Protected memory containing objects such as

those for processes, tokens, ports, etc.

Attack Scenario
• Attacker gains elevated access to computer system
• Attacker installs a Rootkit
• Rootkit’s functions

– Hide processes
– Hide files
– Hide network connections
– Install a backdoor for future access to the system

• Rootkits act as a part of the operating system so
they have access to kernel functions.

State of Current Rootkits
• Until recently, rootkits were nothing more than

Trojan programs such as ps, ls, top, du, and netstat
• Advanced rootkits filter data

– Hook the Import Address Table (IAT) in processes
– Hook the System Call Table of the operating system

(the functions exported by the kernel)
– Hook the Interrupt Descriptor Table (IDT)

• Interrupts are used to signal to the kernel that it has work to
perform.

• By hooking one interrupt, a clever rootkit can filter all
exported kernel functions.

Import Address Table

Table Entry

FunctionName
or Ordinal

0x11223344

IAT Hooks

Table Entry

FunctionName
or Ordinal

0x11223344

Some DLL

CODE

CODE
IAT Hooks

Some DLL

CODE

CODE

Some Rootkit

BAD CODE

IAT Hooks

Some DLL

CODE

CODE

Some Rootkit

BAD CODE

IAT Hooks

 USER MODE KERNEL MODE

KiSystemServiceSystem Call

Table Entry
System
Service
Descriptor
Table

Call
Number

0x11223344

 USER MODE KERNEL MODE

System Call

Table Entry
System
Service
Descriptor
Table

Call
Number

0x11223344

Kernel or
module

 USER MODE KERNEL MODE

System Call

System
Service
Descriptor
Table

Kernel
or
module

Some rootkit

 USER MODE KERNEL MODE

System Call

System
Service
Descriptor
Table

Kernel
or
module

Some rootkit

 USER MODE KERNEL MODE

System Call Kernel
or
module

Some rootkit

Control Flow … aka Places to
Hook

Kernel32

CreateFileW
NTDLL

NtCreateFile

User Land Kernel

Control Flow … aka Places to
Hook

User
Land Kernel

IDT

2E

&NtCreateFile

NtCreateFile
{

push ebp

mov ebp, esp

xor eax, eax

push eax

…

}

System Call Table

VICE

• VICE is a tool to detect rootkits
– Designed originally to detect hooks

• Kernel System Call Hooks
• Win32 API Hooks
• In-line function patching

• VICE has an API so other it can be easily
incorporated into other tools

VICE Demonstrations

• VICE

 vs

hxdef
rootkit

• VICE

 vs

Vanquish
rootkit

Consumers demand more…

• Corporations and many private consumers
see the need for more security
– Personal firewalls
– Host based intrusion prevention systems

Current HIDS/HIPS Functions
• To detect or prevent:

– Processes running
– Files that are created/deleted/modified
– Network connections made
– Privilege escalation

• Trusts the operating system to report these
activities.

• If the underlying operating system is
compromised, the HIDS/HIPS fails.

What Makes HIDS/HIPS
Possible?

• Querying kernel reporting functions
• Hooking user land API functions

– Kernel32.dll
– Ntdll.dll

• Hooking the System Call Table
• Registering OS provided call-back

functions

Problems with HIPS Design

• Required to be on the execution path of the
attacker to allow/deny actions

• Looks just like the hooks rootkits use (dual
technology)

• … who said an attacker has to use an
API

Operating System Design

• Intel has four
privilege
levels or rings

• Microsoft and
many other
OS vendors
use only two
rings

Operating System Design

• By only using two privilege levels, there is
no separation between the kernel itself and
third party drivers or loadable kernel
modules (LKM’s)

• Drivers can modify the memory associated
with kernel objects such as those that
represent a process’s token

Next Generation Rootkit Techniques

• Direct Kernel Object Manipulation
(DKOM) in memory
– A device driver or loadable kernel module has

access to kernel memory
– A sophisticated rootkit can modify the objects

directly in memory in a relatively reliable
fashion to hide.

– Recall the goal of rootkits is to hide things:
processes, files, and network connections.

• DKOM Uses
– Hide Processes
– Add Privileges to Tokens
– Add Groups to Tokens
– Manipulate the Token to Fool the Windows

Event Viewer
– Hide Ports

The Implication of Hidden
Processes

• The intruder has full control of the system.
• Defeats a Host Based IDS/IPS that depends

upon the underlying operating system.
• Will skew the results of forensic

examinations.

Hiding Processes - Windows
KPRCB

 *CurrentThread
 *NextThread
 *IdleThread

ETHREAD
KTHREAD

ApcState

EPROCESS
KPROCESS

LIST_ENTRY {
 FLINK

BLINK }

EPROCESS
KPROCESS

LIST_ENTRY {
 FLINK

BLINK }

EPROCESS
KPROCESS

LIST_ENTRY {
 FLINK

BLINK }

Hiding Processes - Windows

• Locate the Processor Control Block
(KPRCB)
– Located at 0xffdff120
– fs register in kernel mode points to 0xffdff000

• Within the KPRCB is a pointer to the
Current Thread block (ETHREAD)
– Located at fs:[124] or 0xffdff124
– An ETHREAD contains a KTHREAD structure

Hiding Processes - Windows

• The KTHREAD structure contains a pointer
to the EPROCESS block of the current
process

• The EPROCESS block contains a LIST
structure, which has a forward and
backward pointer to active processes
– This creates the doubly linked list of active

processes in Windows

Hiding Processes - Windows

• To hide a process
– Locate the EPROCESS block of the process to

hide
– Change the process behind it to point to the

process after the process you are hiding
– Change the process after it to point to the

process before the one you are trying to hide

Essentially, the list of active now processes points “around”
the hidden process

Hiding Processes - Windows
KPRCB

 *CurrentThread
 *NextThread
 *IdleThread

ETHREAD
KTHREAD

ApcState

EPROCESS
KPROCESS

LIST_ENTRY {
 FLINK

BLINK }

EPROCESS
KPROCESS

LIST_ENTRY {
 FLINK

BLINK }

EPROCESS
KPROCESS

LIST_ENTRY {
 FLINK

BLINK }

Hiding Processes - Windows

• Why does the process continue to run?
– Scheduling in the Windows kernel is thread based and

not process based.
• Although scheduling code to run is based upon

threads, when the kernel reports what is running
on the system, it reports based upon EPROCESS
blocks which can be modified with no adverse
affect. This is what current tools (IDS/IPS’s) rely
upon to discover what is running on the system.

Hiding Processes – LINUX
• The LINUX kernel contains an array of

task_struct’s.
• A task_struct is similar to an EPROCESS block in

Windows
• task_struct contains pointers to the prev_task and

next_task
• task_struct also contains pointers to the prev_run

and next_run for the running processes

Hiding Processes – LINUX

• To hide a process, remove the process from
the list of prev_task and next_task

• Leave next_run and prev_run alone

Hiding Processes - LINUX
task_array

PID
Process 0

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 (null)

 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

Hiding Processes – LINUX
task_array

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

PID
Process 0

State

*next_task
*prev_task

*next_run
*prev_run

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

...

...

 *p_pptr
 *p_cptr
 *p_ysptr
 *p_osptr

Hiding Processes - LINUX

• To prevent the process from freezing

– The LINUX scheduler walks the list of task_struct’s to
calculate the goodness value of the process to decide
rather to schedule it or not.

– The LINUX scheduler must be modified to allocate
time quantums to the parent of process of PID 0

Synchronization Issues

• Modifying shared objects such as the active
process list is not completely safe.
– Rootkit could be swapped out
– Multiprocessor issues

• In Windows, the list of active processes is
protected by PspActiveProcessMutex.

• PsLoadedModuleResource guards the list of
device drivers.

Synchronization Issues
• Problem: These symbols are not exported by the

operating system
• Need a way to find these and other symbols

– Hardcoding addresses – very unreliable
– Search for patterns in memory

• Functions within the kernel use PspActiveProcessMutex
• Find the mutex’s use within functions with a relatively

consistent pattern.

Synchronization Research and Code done by Sherri Sparks from the University of
Central Florida.

Token Manipulation

• Add Privileges to Token
• Add Groups to Token
• Make the Owner of the Token Any User
• Make Any Actions Taken by the Process

Appear to be Someone else such as System
– Makes forensics difficult
– Totally fakes out the Windows Event Viewer

Tokens
• Static Part

– TOKEN SOURCE
– TokenId
– AuthenticationId
– ParentTokenId
– ExpirationTime
– TokenLock
– ModifiedId
– SessionId
– UserAndGroupCount
– RestrictedSidCount
– PrivilegeCount
– VariableLength
– Etc…

Tokens
• Variable Part

– Privileges
• LUID
• Attribute

– User and Groups
• Pointer to SID
• Attribute

– Restricted SID’s
• Pointer to SID
• Attribute

Manipulating Tokens

• Difficult to just grow the token because you
are not sure what is after the variable part in
memory

• Although static portion has pointers to the
privileges and groups, just changing these
to point to newly allocated memory does
not work due to crazy math in a
SepDuplicateToken() function

Manipulating Tokens

• There are a lot of Privileges in a token that
are disabled

• We can discard these since they are
disabled anyway and free up space for new
privileges and groups
– The “in-line” method

Adding Privileges to Tokens with
DKOM

• Typedef struct _LUID_AND_ATTRIBUTES{

DWORD Luid;
DWORD Attributes;

}

Adding Privileges to Tokens with
DKOM
Static Portion

LUID
LUID 0x00000000

0x00000000

0x00000001
0x00000001

LUID

LUID

SID’s

Restricted SID’s

0x00000001
0x00000001

LUID
LUID

0x00000001LUID

0x00000001LUID

Disabled Priv’s
Enabled Priv’s
Added Priv’s

Adding Groups to Tokens with
DKOM

• Typedef struct _SID_AND_ATTRIBUTES
{

DWORD pSID;
DWORD Attributes;

}

Adding Groups to Tokens with
DKOM
Static Portion

LUID
LUID 0x00000000

0x00000000

0x00000001
0x00000001

LUID

LUID

SID’s

Restricted SID’s

0x00000001
0x00000001

LUID
LUID

Disabled Priv’s
Enabled Priv’s
Added SID’s

pSID 0x00000007

SID
SID

pSID 0x00000007

Faking Out the Windows Event
Viewer using DKOM

• Change one DWORD in Static Portion of
Token
– SYSTEM_LUID = 0x000003E7

• Make FIRST SID in Token the System SID
• All logging of the Process now appears as

System
• Useful if Detailed Process Tracking is

Enabled

Detecting Hidden Processes in
Windows

• Methodology: Examine each thread to
ensure its corresponding process descriptor
(EPROCESS) is appropriately linked.

• This requires patching the kernel in
memory, in particular the SwapContext
function.

• Hunt and Brubacher introduced Detours for
intercepting Win32 binary functions.

Detours
• Overwrite beginning of target function (SwapContext)

with an unconditional jump to a Detour function
• Detour function eventually calls a Trampoline function
• The Trampoline function contains the overwritten

bytes of the target (SwapContext) function and calls
the target (SwapContext) function

• The Target function returns to the Detour function
• The Detour function returns to the source caller

(kernel dispatcher)

Detours

Source
Function

Detour
Function

Trampoline
Function

Target
Function

1 2 3

45

Patching the Windows kernel
• SwapContext function does context switching

between threads in Windows
• Overwrite the first seven bytes of SwapContext

with a jump to our Detour function
• The EDI register points to the KTHREAD of the

thread to be scheduled to run
• Our Detour function follows the KTHREAD to

the EPROCESS block and determines if it is still
appropriately linked in the list of active processes.

Other Ways to Detect Hidden
Processes

• Klister by Joanna Rutkowska
– Presented at Black Hat Las Vegas 2003
– Looks at Thread Queues since threads must be

in one of four queues to be scheduled
– Problem: Queue addresses are not exported so

the addresses must be hard coded for each
version of the OS

Detecting Hidden Processes in
LINUX

• Injectso is a library similar to Detours
except for LINUX

• When process state is Task_Running and it
is placed in the LINUX run queue by
setting the prev_run and next_run pointers
appropriately, make sure it is properly
linked by testing the next_task and
prev_task of its neighbors.

Tool Demonstration: Process Hiding

Tool Demonstration: Gaining System
Privilege

Conclusion

• We have shown the evolution of rootkit
technology and detection
– No longer trojanized programs
– No longer just hooking, which VICE detects
– Now act as a part of the Trusted Computing

Base (TCB)
– DKOM … what will it be used for next?

Questions?

Thank you.
Email: james.butler@hbgary.com

Attend the Black Hat Training
“Aspects of Offensive Root-kit

Technology”

	VICE – Catch the hookers! (Plus new rootkit techniques)
	Agenda
	Operating System Design
	Attack Scenario
	State of Current Rootkits
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Control Flow … aka Places to Hook
	Slide 16
	VICE
	VICE Demonstrations
	Slide 19
	Slide 20
	Consumers demand more…
	Current HIDS/HIPS Functions
	What Makes HIDS/HIPS Possible?
	Problems with HIPS Design
	Slide 25
	Slide 26
	Next Generation Rootkit Techniques
	Slide 28
	The Implication of Hidden Processes
	Hiding Processes - Windows
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Hiding Processes – LINUX
	Slide 37
	Hiding Processes - LINUX
	Slide 39
	Slide 40
	Synchronization Issues
	Slide 42
	Token Manipulation
	Tokens
	Slide 45
	Manipulating Tokens
	Slide 47
	Adding Privileges to Tokens with DKOM
	Slide 49
	Adding Groups to Tokens with DKOM
	Slide 51
	Faking Out the Windows Event Viewer using DKOM
	Detecting Hidden Processes in Windows
	Detours
	Slide 55
	Patching the Windows kernel
	Other Ways to Detect Hidden Processes
	Detecting Hidden Processes in LINUX
	Tool Demonstration: Process Hiding
	Tool Demonstration: Gaining System Privilege
	Conclusion
	Questions?
	Thank you.

