HEGary

VICE — Catch the hookers!

(Plus new rootkit techniques)

Jamie Butler

Greg Hoglund

HEGary

Agenda

* Introduction to Rootkits
* Where to Hook
* VICE detection

* Direct Kernel Object Manipulation
(DKOM)

— No hooking required!
* Demonstration of FU rootkit

Hecay

Operating System Design

 User Land

— Operating system provides common API for
developers to use

 Kernel32.dll
e Ntdll.dll

e Kernel Mode

— The low level kernel functions that implement
the services needed 1n user land

— Protected memory containing objects such as
those for processes, tokens, ports, etc.

Hecay

Attack Scenario

* Attacker gains elevated access to computer system
Attacker 1nstalls a Rootkit

Rootkit’s functions

— Hide processes
— Hide files
— Hide network connections

— Install a backdoor for future access to the system

Rootkits act as a part of the operating system so
they have access to kernel functions.

Hecay

State of Current Rootkits

* Until recently, rootkits were nothing more than
Trojan programs such as ps, Is, top, du, and netstat

* Advanced rootkits filter data
— Hook the Import Address Table (IAT) in processes
— Hook the System Call Table of the operating system
(the functions exported by the kernel)
— Hook the Interrupt Descriptor Table (IDT)

* Interrupts are used to signal to the kernel that it has work to
perform.

* By hooking one interrupt, a clever rootkit can filter all
exported kernel functions.

HB)Gary

IAT Hooks

Import Address Table

Table Entry

IAT Hooks

Table Entry

IAT Hooks

Some DLL

Some Rootkit

IAT Hooks

CODE

Some DLL

Some Rootkit

HB)Gary

Software Security Success

l . 4— KiSystemService

Table Entry

System
Service
Descriptor
Table

USER MODE KERNEL MODE

HB)Gary

Software Security Success

Kernel or
module

Table Entry

System
Service
Descriptor
Table

USER MODE KERNEL MODE

Some rootkit

System
Service
Descriptor
Table

USER MODE KERNEL MODE

HBGary

Software Security Success

Some rootkit

System
Service
Descriptor
Table

USER MODE KERNEL MODE

HBGary

SoﬂmreSecuntySuecess

Il-" -

Some rootkit

USER MODE KERNEL MODE

HBGary

Control Flow ... aka Places to
Hook

Kernel32 NTDLL
CreateFileW NtCreateFile

e

User Land Kernel

HEGary

Control Flow ... aka Places to
Hook

IbT System Call Table

NtCreateFile

{
push ebp

mov ebp, esp
>
2E XOr eax, eax

push eax

}

User
Land Kernel

HEGary

VICE

* VICE 1s a tool to detect rootkits

— Designed originally to detect hooks
* Kernel System Call Hooks

* Win32 API Hooks
* In-line function patching

* VICE has an API so other 1t can be easily
incorporated into other tools

HBGary

VICE Demonstrations

HB)Gary

Software Security Success

Wl WEP SP1a -1

¥ vICE Console

Llzer Mode Rootkits:

* VICE

VS

hxdef
rootkit

B TR N T RNt T

L NP e AL

[-~ - YR,

i R

Infected Process | DLL Mame | Functiof | Hook Address | Hooker |
@l C:Ww MDY S svstem32hsarvices ene KERMEL 2.4l GetLastEmar (771802 C:WaIN D0 SAS pstema2sntdll dll
@, C:iadIM DO S hapstem 32 services. exe KERMEL 2.l Heapdlloz 47 7f216al C: W IN DO 555 patem32sntdll dll
@, C:iadIN DO S hspstem 32 services exe KERMEL3Z I HeapFres (775156 C: Wi IN D0 ShS patem32ntdll dll
@, CNwIMDOW S \system3iservices.exe KERMELZZ I GetLastEmor Q771502 CNwIND 0w SAS pstem32sntdLdll
@l CNwINDOW S system32lzass. exe KERMEL32.dI RtUnwind 04776044 CNwINDOWSAS pstem32yntdLdll
ﬁ C:ad MDY Shsnstem 32t zass. exe Cw MDY S5 pstemd2intdldl - LdrShutdownProcess 47(F341e9

i Cad MDY S hapstem 324 zass exe CwINDOw ShSpstem32ntdl dll - MiCreatebdutant (1713488

% Coad MDY Shgystem 32 zars eve Cwd MDY S S petem32intdldl - MtEnumeratey/aluekep (7 iE945E7

% CNwINDOW S hsystem32lzass. exe CNWINDOW S S pstem32intdldl MtFlushinstructionCache 04763381 o

ﬁ CowIMNDOWShapstem 32\ sass. exe CowWINDOWS\System32hatdildl MEFluskWirtualkemary 47HI3611

? C:ad MDY Shsnstem 32t zass. exe Cwd MDD ShSpstema2intdldl - MiOpenThreadTaken (x7(f34828

a Cad MDY S hapstem 324 zass exe Cw MDY ShSpetem32ntdl dll - MiQuemnformationdobOby.. Ox733c0

% MDY S system 32 zars. eve CHWINDOW S S petem32intdlLdl - MtQueusdpeT hread (07(E9305e

% N INDOW S hsystem32lzass exe CHWINDOW S Spstem32intdlLdl MtReadVitualkemany 047tE34527

% C:ad MDY S hsnstem 32t zass. exe Cw MDD ShSpstema2intdldl - MiRenametiey (+7HE9 33

& C:ad MDY S avstem 324 zass. exe Cw MDD 543 pstem32intdldl MESetContextThread (4719301

% Coad MDY Shgystem 32 zars eve Cwd MDY S petem32intdldl - MEwTiteFile (07169352

% CNwINDOW S hsystem32lzass. exe CAWINDOWS S pstem32intdlLdl - RtiGetNtYersionMumbers (47(E3305e

ﬁ CowIMNDOWShapstem 32\ sass. exe CwWINDOWS\System32intdildl - 2wCreateFile («7F948ad

ﬁ C:ad MDY Shsnstem 32t zass. exe Cw MDY S5 pstemd2intdldl - ZwDeviceloCantralFile (7HE94567

i Cad MDY S hapstem 324 zass exe Cw MDY S S patem32intdl dl - ZwEnumeratel.ey (+7H33e1

% Coad MDY Shgystem 32 zars eve Cwf MDY ShS petem32iuntdldl - ZwEnumeratel/alusken 07EE33611

% CNwINDOW S hsystem32lzass. exe CNWINDOWS S pstem32intdlLdl - ZwlpenProcess (47fE34828

ﬁ C:ww MDY S svstem 32 zass. exe CAwINDOW S S pstem3dintdldl - ZwlueryDirectanyFile (719340

? C:ad MDY Shsnstem 32t zass. exe CAWINDOWS System32intdlldl 2wluerySysteminformation 079305

a C:iadIM DO S sstem 32 zass eve Cwf MDY S S petem32intdl dl - Zwluendolumelnformatio.. (734527

% MDY S system 32 zars. eve CHwINDOW S S petem32intdldl - ZwReadyirtualbemany (7HE9 36

ﬁ CNwINDOW S system32lzass. exe CNWINDOWS S pstem32intdldl - ZwResumeT hread 0476693dc

% C:ad MDY S hsnstem 32t zass. exe CwINDOw ShSpstema2intdldl 2w dmCantral (47(F93d52

i Cad MDY S hapstem 324 zass exe CwINDOW Shapstem3Zikemel3.. ReadFile (471f93a74

F.emel Mode Rootkits:

Infected Object | Functior

| Hook Address | Footkit Path

I| ScanNowl Dione | About... |

HBGary

Software Security Success

* VICE

VS

Vanquish
rootkit

= WP SP1a -1

B ¥ICE Console
User Mode Rootkits:

@[SEACAWINDOWShsystemnI2hcarss. exe:b40

r'-l [TR A KN TN L T U L SR Sy [_.raAn

[Pa i n [W W]

[

n.IMCACTL

|rfected Process | DLL Mame | Function | Hook Address | Hooker
@[W WIN DO S aystem 32 ceres exec B0 KERMELZZ I Heapélos (w7 7E16al C:awIND DWW S WS ystem 32ntdll di
@l WEACAWINDOWS system32hcarss. ene:640 KERMEL3Z.d HeapFree (477f5156b C:wINDOW S\ SystemZZvntdll. di
ﬁ WS I DO S aystem 320 ceres, enec G40 CwINDOW S heysternI2CERNELZZ dIl - CreateProcesad, (x1a23190
ﬁ WIS AWINDOWS system 32\ cerss. ewe: 640 CAWINDOW Shaystem32AKERNELIZ.dI - CreateProcessin 0x1ae3283
ﬁ WP CAWINDOWS aystem 32 cerss ene:640 CwWIMDOW S eystem 323 KERMELIZ. Al FindFirstFileEsw (14300
ﬁ WEACAWINDOWS system32hcerss. exe: 640 CAWINDOW Shaystem3ZAKERNEL3Z.dI - FindWestFilew Oxlae3fdc
i WEACAWINDOWS system32hcarss. ene:640 CAWINDOW S \aystem3ZAKERMELIZ.dI - FreeLibrary (x1aededd
ﬁ W IO S aystem 32 ceres exec B0 CAWINDOW S haystermIMCERNELIZ dl - LoadLibrangE s [x1ae3R50
@l WEACAWINDOW S aystem 32\ cerss. exe 640 KERMEL3Z.dll DeleteCriticalSection (477f525¢0a CwIMDOW S SystemZZvntdl. di
@[WIACAWINDOWS aystem 32 ceras ane:G40 KERMNEL3ZdIl LeaveCriticalS ection (7 7F7RE90 C:aINDOWS A System32vntdll di
@], WEACAWINDOWS system32hcerss. ewe 640 KERMEL3Z.dll EnterCriticalS ection 047 7F75hde CwINDOW S System32ntdll. di
@[WP CAWINDOWS aystem 32 cerss ene:640 KERMEL3ZdI SetlastErmrar 07 7F5150c C:wIMDOW S System32wntdll. di
@[W WIN DO S aystem 32 ceres exec B0 KERMELZZ I et astEmor (71502 C:awIND DWW S WS ystem 32ntdll di
% WEACAWINDOWS system32hcarss. ene:640 CAWINDOW Shaystem32ADVARI 32 dl CreateProcessbsl serw (x1ae3376
ﬁ WS I DO S aystem 320 ceres, enec G40 CwIND DWW S haystern 32N AP dl - CreateProcesswithLogonia (nlas3463
% WIS AWINDOWS system 32\ cerss. ewe: 640 CAWINDOW S \aystem328ADWARI32.dIl EnumServicesStatusExa 0x1ae5120
ﬁ WP CAWINDOWS aystem 32 cerss ene:640 o IMDOW S hepstem3Z2WADWARI32.d1 EnumerateT raceGuids (ulachkd?
ﬁ WEACAWINDOWS system32hcerss. exe: 640 CAWINDDW Shaystem32WADVAPI32.dIl LogonUserd, [0x1aehchf
i WEACAWINDOWS system32hcarss. ene:640 CAWINDOW Shaystem32ADVARI3Z.dl Logonl serw (x1aebec20
ﬁ W IO S aystem 32 ceres exec B0 CWIND DWW S haystemIMa o P32 dl - RegClosekey [n1aedcaf
% WEACAWINDOW S aystem 32\ cerss. exe 640 CAWINDOW S \aystem3ZWADVARI32.dl RegE numkeps, (x1aeddbe
ﬁ WIACAWINDOWS aystem 32 ceras ane:G40 CAWINDOWS \epstem328ADVARI32.dl RegEnumbepExd, (xlaedebl
ﬁ WEACAWINDOWS system32hcerss. ewe 640 CAWINDOW Shaystem3ZWADVAPI32 Il RegE numk ey sy 0«1 aedddt
i WP CAWINDOWS aystem 32 cerss ene:640 CwIMDOW S \epstem3Z2WADVAPI32.dI RegE numkepy (xlaedcid
ﬁ W WIN DO S aystem 32 ceres exec B0 CAWINDOW S hayatemI2MalvaPIaZ dl - RegE numyalued, [xlacdf3?
% WEACAWINDOWS system32hcarss. ene:640 CAWINDOW S haystem3ZNADVARI32.dl RegE numt alugis’ (xlagdect
ﬁ WS I DO S aystem 320 ceres, enec G40 CwINDOW S haystemI2NaaPIZ2 dl Regluenhultipley alussd, (nlash05:
% WIS AWINDOWS system 32\ cerss. ewe: 640 CAWINDOW Shaystem32ADWARI32.dl - RegQueryMultipley aluesw (0x1aedfad
KERMEL3ZdI DeleteCriticalSection (47 7f525ca C:wIMDOWSASystem32wntdll. di

[RN T O T PO S TN] J|I

m

Kemel Mode Roothits:

Infected Object I Function

| Hook Address | Rootkit Path

Scan Mow | Daone |

Abaut... |

HEGary

Consumers demand more...

* Corporations and many private consumers
see the need for more security

— Personal firewalls

— Host based intrusion prevention systems

Hecay

Current HIDS/HIPS Functions

* To detect or prevent:
— Processes running
— Files that are created/deleted/modified
— Network connections made
— Privilege escalation

* Trusts the operating system to report these
activities.

* If the underlying operating system 1s
compromised, the HIDS/HIPS fails.

HBGary

What Makes HIDS/HIPS
Possible?

* Querying kernel reporting functions

* Hooking user land API functions
— Kernel32.dll
— Ntdll.dll

* Hooking the System Call Table

* Registering OS provided call-back
functions

HBGary

Problems with HIPS Design

* Required to be on the execution path of the
attacker to allow/deny actions

* Looks just like the hooks rootkits use (dual
technology)

* ... who said an attacker has to use an
API

HEGay

Operating System Design

* Intel has four
privilege
levels or rings

* Microsoft and
many other
OS vendors

use only two
rings

HBGary

Operating System Design

* By only using two privilege levels, there 1s
no separation between the kernel 1tself and
third party drivers or loadable kernel
modules (LKM’s)

* Drivers can modify the memory associated
with kernel objects such as those that
represent a process’s token

HBGary

Next Generation Rootkit Techniques

* Direct Kernel Object Manipulation
(DKOM) in memory

— A device driver or loadable kernel module has
access to kernel memory

— A sophisticated rootkit can modify the objects
directly in memory 1n a relatively reliable
fashion to hide.

— Recall the goal of rootkits 1s to hide things:
processes, files, and network connections.

HBGary

* DKOM Uses
— Hide Processes
— Add Privileges to Tokens
— Add Groups to Tokens

— Manipulate the Token to Fool the Windows
Event Viewer

— Hide Ports

HBGary

The Implication of Hidden
Processes

* The intruder has full control of the system.

* Defeats a Host Based IDS/IPS that depends
upon the underlying operating system.

* Will skew the results of forensic
examinations.

'HB)Gary

Software Security Success
Hiding P Wind
| KPRCB
|
| *CurrentThread
. *NextThread
. *ldleThread
|
ETHREAD
| KTHREAD '«
|
I ApcState)
EPROCESS EPROCESS ¢ EPROCESS
| KPROCESS . KPROCESS . KPROCESS |
| | | |
| LIST ENTRY{ | LIST ENTRY{ | LIST ENTRY{ |
. FLINK < I__" FLINK < I_" FLINK
| BLINK } — BLINK } — BLINK }

HBGary

Hiding Processes - Windows

* [ocate the Processor Control Block
(KPRCB)

— Located at Oxftdff120
— fs register in kernel mode points to 0xffdff000

* Within the KPRCB 1s a pointer to the
Current Thread block (ETHREAD)

— Located at fs:[124] or Oxftdff124
— An ETHREAD contains a KTHREAD structure

HBGary

Hiding Processes - Windows

* The KTHREAD structure contains a pointer
to the EPROCESS block of the current

process

* The EPROCESS block contains a LIST
structure, which has a forward and
backward pointer to active processes

— This creates the doubly linked list of active
processes in Windows

HBGary

Hiding Processes - Windows

* To hide a process

— Locate the EPROCESS block of the process to
hide

— Change the process behind it to point to the
process after the process you are hiding

— Change the process after it to point to the
process before the one you are trying to hide

Essentially, the list of active now processes points “around”
the hidden process

HB)Gary

Software Security Success

Hiding Processes - Windows

KPRCB

*CurrentThread
*NextThread
*IdleThread

ETHREAD
KTHREAD

ApcState T

A

EPROCESS EPROCESS EPROCESS
KPROCESS KPROCESS KPROCESS
LIST_ENTRY { LIST_ENTRY { LIST_ENTRY {
FLINK < > FLINK < > FLINK

BLINK } BLINK } BLINK }

i

Hecay

Hiding Processes - Windows

* Why does the process continue to run?

— Scheduling in the Windows kernel 1s thread based and
not process based.

* Although scheduling code to run 1s based upon
threads, when the kernel reports what 1s running
on the system, it reports based upon EPROCESS
blocks which can be modified with no adverse
affect. This 1s what current tools (IDS/IPS’s) rely
upon to discover what 1s running on the system.

Hecay

Hiding Processes — LINUX

* The LINUX kernel contains an array of
task struct’s.

* A task struct is similar to an EPROCESS block 1n
Windows

* task struct contains pointers to the prev task and
next task

* task struct also contains pointers to the prev run
and next run for the running processes

HEGary

Hiding Processes — LINUX

* To hide a process, remove the process from
the list of prev task and next task

* Leave next run and prev run alone

HB)Gary

Software Security Success

Hiding Processes -

task_array
y y Y A\
PID PID PID PID
Process 0 1901
State State State State
-——| *next_task *next_task *next_task *next_task
*prev_task *prev_task *prev_task *prev_task
*next_run *next_run *next_run *next_run
*prev_run *prev_run *prev_run *prev_run
*p_pptr
(null) *p_pptr *p_pptr *p_pptr
*p_cptr *p_cptr *p_cptr
*p_cptr *p_ysptr *p_ysptr *p_ysptr
*p_ysptr *p_osptr *p_osptr *p_osptr
*p_osptr

LINUX

HB)Gary

Software Security Success

Hiding Processes — LINUX

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

*p_pptr
*p_cptr
*p_ysptr
*p_osptr

task_array
A A\
PID PID
Process 0

State State
*next_task *next_task
*prev_task *prev_task
*next_run *next_run
*prev_run *prev_run
*p_pptr *p_pptr
*p_cptr *p_cptr
*p_ysptr *p_ysptr
*p_osptr *p_osptr

HBGary

Hiding Processes - LINUX

* To prevent the process from freezing

— The LINUX scheduler walks the list of task struct’s to
calculate the goodness value of the process to decide
rather to schedule it or not.

— The LINUX scheduler must be modified to allocate
time quantums to the parent of process of PID 0

HBGary

Synchronization Issues

* Modifying shared objects such as the active
process list 1s not completely safe.

— Rootkit could be swapped out
— Multiprocessor issues

* In Windows, the list of active processes 1s
protected by PspActiveProcessMutex.

* PsLoadedModuleResource guards the list of
device drivers.

Hecay

Synchronization Issues

* Problem: These symbols are not exported by the
operating system
Need a way to find these and other symbols
— Hardcoding addresses — very unreliable

— Search for patterns in memory
* Functions within the kernel use PspActiveProcessMutex

* Find the mutex’s use within functions with a relatively
consistent pattern.

Synchronization Research and Code done by Sherri Sparks from the University of
Central Florida.

HBGary

Token Manipulation

* Add Privileges to Token
* Add Groups to Token
* Make the Owner of the Token Any User

* Make Any Actions Taken by the Process
Appear to be Someone else such as System
— Makes forensics difficult

— Totally fakes out the Windows Event Viewer

'HB)Gary

Software Security Success

Tokens

e Static Part

— TOKEN SOURCE

- TokenId

— AuthenticationId
— ParentTokenId

- ExpirationTime

— TokenLock

— ModifiedId

— Sessionld

— UserAndGroupCount
— RestrictedSidCount
— PrivilegeCount

— VariableLength

- Etc..

HBGary

Tokens

 Variable Part
— Privileges
 LUID
* Attribute

— User and Groups
* Pointer to SID
* Attribute

— Restricted SID’s
* Pointer to SID
* Attribute

HBGary

Manipulating Tokens

* Diafficult to just grow the token because you
are not sure what is after the variable part in
memory

* Although static portion has pointers to the
privileges and groups, just changing these
to point to newly allocated memory does
not work due to crazy math in a
SepDuplicateToken() function

HRGary

Manipulating Tokens

* There are a lot of Privileges 1n a token that
are disabled

* We can discard these since they are
disabled anyway and free up space for new
privileges and groups

— The “in-line” method

HECary

Adding Privileges to Tokens with
DKOM

* Typedef struct LUID AND ATTRIBUTES/{

DWORD Luid;
DWORD Attributes;

HBGary

Adding Privileges to Tokens with
DKOM

HECary

Adding Groups to Tokens with

DKOM
» Typedefstruct SID AND ATTRIBUTES

!
DWORD pSID;
DWORD Attributes;

HEGay

Adding Groups to Tokens with
DKOM

HBGary

Faking Out the Windows Event
Viewer using DKOM

* Change one DWORD 1n Static Portion of
Token

— SYSTEM LUID = 0x000003E7
* Make FIRST SID 1n Token the System SID

* All logging of the Process now appears as
System

* Useful if Detailed Process Tracking is
Enabled

e Gary

Detecting Hidden Processes 1n

Windows

* Methodology: Examine each thread to

ensure 1ts corresponding process descriptor
(EPROCESS) 1s appropriately linked.

* This requires patching the kernel in
memory, 1n particular the SwapContext
function.

 Hunt and Brubacher introduced Detours for
intercepting Win32 binary functions.

Hecay

Detours

* Overwrite beginning of target function (SwapContext)
with an unconditional jump to a Detour function

* Detour function eventually calls a Trampoline function

* The Trampoline function contains the overwritten
bytes of the target (SwapContext) function and calls
the target (SwapContext) function

* The Target function returns to the Detour function

* The Detour function returns to the source caller
(kernel dispatcher)

HBGary

Detours

NPT Y 2T
Source Detour Trampoline
Function Function

Function
N

Target
Function

Hecay

Patching the Windows kernel

* SwapContext function does context switching
between threads in Windows

* Overwrite the first seven bytes of SwapContext
with a jump to our Detour function

* The EDI register points to the KTHREAD of the
thread to be scheduled to run

* Qur Detour function follows the KTHREAD to
the EPROCESS block and determines if it 1s still
appropriately linked 1n the list of active processes.

HEGary

Other Ways to Detect Hidden
Processes

* Klister by Joanna Rutkowska
— Presented at Black Hat Las Vegas 2003

— Looks at Thread Queues since threads must be
in one of four queues to be scheduled

— Problem: Queue addresses are not exported so
the addresses must be hard coded for each
version of the OS

HBGary

Detecting Hidden Processes 1n
LINUX

* Injectso 1s a library similar to Detours
except for LINUX

* When process state 1s Task Running and it
1s placed in the LINUX run queue by
setting the prev run and next run pointers
appropriately, make sure 1t is properly
linked by testing the next task and
prev_task of its neighbors.

HBGary

Tool Demonstration: Process Hiding

HEGary

Tool Demonstration: Gaining System
Privilege

HEGary

Conclusion

* We have shown the evolution of rootkit
technology and detection

— No longer trojanized programs
— No longer just hooking, which VICE detects

— Now act as a part of the Trusted Computing
Base (TCB)

— DKOM ... what will 1t be used for next?

HBGary

Questions?

HEGary

Thank you.
Email: james.butler@hbgary.com

Attend the Black Hat Training
“Aspects of Offensive Root-kit
Technology”

	VICE – Catch the hookers! (Plus new rootkit techniques)
	Agenda
	Operating System Design
	Attack Scenario
	State of Current Rootkits
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Control Flow … aka Places to Hook
	Slide 16
	VICE
	VICE Demonstrations
	Slide 19
	Slide 20
	Consumers demand more…
	Current HIDS/HIPS Functions
	What Makes HIDS/HIPS Possible?
	Problems with HIPS Design
	Slide 25
	Slide 26
	Next Generation Rootkit Techniques
	Slide 28
	The Implication of Hidden Processes
	Hiding Processes - Windows
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Hiding Processes – LINUX
	Slide 37
	Hiding Processes - LINUX
	Slide 39
	Slide 40
	Synchronization Issues
	Slide 42
	Token Manipulation
	Tokens
	Slide 45
	Manipulating Tokens
	Slide 47
	Adding Privileges to Tokens with DKOM
	Slide 49
	Adding Groups to Tokens with DKOM
	Slide 51
	Faking Out the Windows Event Viewer using DKOM
	Detecting Hidden Processes in Windows
	Detours
	Slide 55
	Patching the Windows kernel
	Other Ways to Detect Hidden Processes
	Detecting Hidden Processes in LINUX
	Tool Demonstration: Process Hiding
	Tool Demonstration: Gaining System Privilege
	Conclusion
	Questions?
	Thank you.

