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Latest Slides and Tools

PLEASE DOWNLOAD THE LATEST SLIDES AND TOOLS

[ Latest slides available ]
http://www.ece.gatech.edu/research/labs/nsa/presentations/dc13_grizzard.pdf

[ Latest system call table tools ]
http://www.ece.gatech.edu/research/labs/nsa/sct_tools.shtml

[ Latest spine architecture work ]
http://www.ece.gatech.edu/research/labs/nsa/spine.shtml



3Julian GrizzardDEFCON 13

Talk Overview

Talk focuses on Linux i386 based systems
– Rootkit background
– System call table tools

• Demos
– L4 microkernel introduction
– Spine architecture
– Intrusion recovery system (IRS)

• Demos
– Concluding remarks
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Rootkit Functionality

• Retain Access
– Trojan sshd client with hard coded user/pass

for root access
– Initiate remote entry by specially crafted

packet stream
• Hide Activity

– Hide a process including resource usage of
process

– Hide malicious rootkit kernel modules from
lsmod
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Additional Malware Functionality

• Information harvesting
– Credit cards
– Bank accounts

• Resource usage
– Spam relaying
– Distributed denial of service
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User-Level versus Kernel-Level

• User-Level
– Modify/replace system binaries
– e.g. ps, netstat, ls, top, passwd

• Kernel-Level
– Modify/replace kernel process
– e.g. system call table
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History of Kernel-Level Rootkits

• Heroin – October 1997
– First public LKM

• Knark – June 1999
– Highly popular LKM

• SucKIT – December 2001
– First public /dev/kmem entry

• Adore-ng 0.31 – January 2004
– Uses VFS redirection; works on Linux 2.6.X
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Kernel-Level Rootkit Targets

• System call table
• Interrupt descriptor table
• Virtual file system layer
• Kernel data structures
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Kernel Entry

• Linux kernel module (LKM)
• /dev/kmem, /dev/mem, /dev/port
• Direct memory access (DMA)
• Modify kernel image on disk
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System Call Table Modifications

• System calls are the main gateway from
user space to kernel space

• Most commonly targeted kernel structure
• Can redirect individual system calls or the

entire table
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Entry Redirection

Original read system
call.  No longer
pointed to by SCT.

Trojaned read
system call.  Active
SCT points to it.
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Entry Overwrite

System call code
overwritten; SCT still
intact
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Table Redirection

 Original SCT
intact

 Original system
calls intact

 Handler points to
Trojan table
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/dev/kmem Details from SucKIT

• SucKIT accesses kernel memory from
user space

• Redirects entire system call table
• How does sucKIT find the system call

table?
• How does sucKIT allocate kernel

memory?
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Find System Call Handler

struct idtr idtr;
struct idt idt80;
ulong old80;

/* Pop IDTR register from CPU */
asm("sidt %0" : "=m" (idtr));

/* Read kernel memory through /dev/kmem */
rkm(fd, &idt80, sizeof(idt80), idtr.base +
0x80 * sizeof(idt80));

/* Compute absolute offset of
 * system call handler for kmem
 */
old80 = idt80.off1 | (idt80.off2 << 16);
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Kmalloc as a System Call (sucKIT)

#define rr(n, x) ,n ((ulong) x)
#define __NR_oldolduname 59
#define OURSYS __NR_oldolduname
#define syscall2(__type, __name, __t1, __t2)    \
   __type __name(__t1 __a1, __t2 __a2)          \
   {                                            \
      ulong __res;                              \
      __asm__ volatile                          \
      ("int $0x80"                              \
      : "=a" (__res)                            \
      : "0" (__NR_##__name)                     \
      rr("b", __a1)                             \
      rr("c", __a2));                           \
      return (__type) __res;                    \
   }
#define __NR_KMALLOC OURSYS
static inline syscall2(ulong, KMALLOC, ulong, ulong);
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Example Kernel-Level Rootkits

VFS RedirectionModuleadore-ng

SCT Table RedirectionUserr.tgz

SCT Table RedirectionUserzk

SCT Table RedirectionUsersucKIT

SCT Entry RedirectionModuleadore

SCT Entry RedirectionModuleknark

SCT Entry RedirectionModuleheroin

ModificationKernel EntryRootkit
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Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks
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System Call Table Tools

• Developed tools that can query the state
of the system call table and repair it

• Tools based on sucKIT source code and
work from user space

• Algorithm to recover from rootkits is
similar to algorithm used by rootkits
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Algorithm (x86 architecture)

1) Copy clean system calls to kernel memory
2) Create new system call table
3) Copy system call handler to kmem
4) Query the idtr register (interrupt table)
5) Set 0x80ith entry to new handler
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Details

• Use a known good kernel image and rip
out the system call table with gdb

• Address of system call table must be set
in system call handler



22Julian GrizzardDEFCON 13

Copying Kernel Functions

• Some trickery involved with algorithm
• x86 code has call instructions with a

relative offset parameter
• Could recompile the code
• We chose to recompute relative offset

and modify the machine code
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Demos

System Call Table Tools
Demonstration
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Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks
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Intel Descriptor Privilege Level

• Level 3
– Minimal hardware access
– User space processes run at

level 3
• Level 2

– Limited hardware access
– N/A in Linux

• Level 1
– Limited hardware access
– N/A in Linux

• Level 0
– Unlimited hardware access
– Kernel space threads run at

level 0
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Virtual Machines/Hypervisors

• VMware
• User Mode Linux
• Xen
• L4
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Monolithic Operating System
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Microkernel Operating System



29Julian GrizzardDEFCON 13

History of Microkernels

• Mach project started at CMU (1985)
• QNX
• Windows NT
• LynxOS
• Chorus
• Mac OS X
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Microkernel Requirements

• Tasks
• IPC
• I/O Support

That’s it!
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L4 System Calls (Fiasco)

• 9 IPC Calls
– l4_ipc_call, l4_ipc_receive
– l4_ipc_reply_and_wait
– l4_ipc_send_deceiting, l4_ipc_reply_deciting_and_wait
– l4_ipc_send, l4_ipc_wait
– l4_nchief
– l4_fpage_unmap

• 5 Thread calls
– l4_myself
– l4_task_new
– l4_thread_ex_regs
– l4_thread_schedule
– l4_thread_switch
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L4 IPC’s

• Fast IPCS
• Flexpages
• Clans and chiefs
• System calls, page faults are IPC’s
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L4 I/O (from Fiasco lecture slides)

• Hardware interrupts: mapped to IPC
– Special thread id for interrupts
– IPC sender indicates interrupt source
– Kernel provides no sharing support, one thread per interrupt
– Malicious driver could potentially block all interrupts if given

access to PIC
– Cli/sti only allowed in kernel and trusted servers

• I/O memory and I/O ports: flexpages
• Missing kernel feature: pass interrupt association

– Security hole
• I/O port access
• DMA - big security risk
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Rmgr (lecture slides)

• Resources  --- serves page faults
– Physical memory
– I/O ports
– Tasks
– Interrupts
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Booting the System (lecture slides)

• Modified grub
• Multi-boot specification
• Rmgr, sigma0, root task (rmgr II), …
• IDT

– General Protection Exception #13
– Page Fault #14
– Divide by zero #0
– Invalid opcode #6
– System calls Int30 IPC

• Global Descriptor Table (GDT) vs. Local Descriptor
Table (LDT)



36Julian GrizzardDEFCON 13

L4 Security Problems?

• Passing interrupt association
• Direct memory access
• Fill up page mapping database
• Kernel accessible on disk
• Cli/sti
• A few more…
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Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks
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Spine Architecture
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Memory Hierarchy Detail
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Spine Architecture Details

• Uses L4 Fiasco microkernel
• L4Linux runs on top of microkernel
• User tasks run on L4Linux
• Intrusion recovery system consists of

levels 0 through 3
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L4Linux

• Port of Linux kernel to L4 architecture
• “paravirtualization” vs. pure virtualization
• Linux kernel runs in user space
• Binary compatible
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Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks



43Julian GrizzardDEFCON 13

Intrusion Recovery System

• Capable of recovering from rootkit
installations

• Maintain a copy of known good state to
verify system integrity and repair if needed

• Must be integral part of operating system
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IRS Cont…

• Intrusion detection system is part of IRS
– Must be able to detect that an intrusion has occurred

in order to recover from it
• Most difficult part of problem is verifying system

integrity
– How to verify data structures, config files, etc.

• Another important challenge is verifying integrity
of IRS itself
– Malware has been known to disable IDS’s
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Multi-Level IRS Reasoning

• Difficult to monitor state of entire system
from one vantage point

• Difficulty comes in bridging the semantic
gap between layers of the system

• We use a multi-level approach
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Multi-Leveled IRS Detail

• L3 - verify file system state and repair if needed
• L2 - kernel module to verify integrity of L4Linux

and L3 and repair if needed
• L1 - microkernel modifications to verify state of

L2 and repair if needed; also provides secure
storage for known good state

• L0 - hardware support for maintaining isolation
and verifying L1 (more hardware needed)
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Demos

Intrusion Recovery System
Demonstration
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Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks
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Limitations and Conclusions

• Can an attacker install a microkernel-level
rootkit?

• What if attacker has physical access?
• There is no be all end all solution!

However, an IRS can make systems more
reliable.
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Thanks!

• Henry Owen
• John Levine
• Sven Krasser
• Greg Conti
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Links
[ Network and Security Architecture website ]
http://www.ece.gatech.edu/research/labs/nsa/index.shtml

[ Georgia Tech Information Security Center ]
http://www.gtisc.gatech.edu/

[ Fiasco project ]
http://os.inf.tu-dresden.de/fiasco/

[ Xen ]
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[ Samhain Labs ]
http://la-samhna.de

[ Chkrootkit ]
http://www.chkrootkit.org

[ DaWheel, “So you don’t have to reinvent it!” ]
http://www.dawheel.org
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Questions?

Julian Grizzard
grizzard AT ece.gatech.edu


