
1Julian GrizzardDEFCON 13

Surgical Recovery from
Kernel-Level Rootkit Installations

Speaker: Julian Grizzard

July 2005

DEFCON THIRTEEN

2Julian GrizzardDEFCON 13

Latest Slides and Tools

PLEASE DOWNLOAD THE LATEST SLIDES AND TOOLS

[Latest slides available]
http://www.ece.gatech.edu/research/labs/nsa/presentations/dc13_grizzard.pdf

[Latest system call table tools]
http://www.ece.gatech.edu/research/labs/nsa/sct_tools.shtml

[Latest spine architecture work]
http://www.ece.gatech.edu/research/labs/nsa/spine.shtml

3Julian GrizzardDEFCON 13

Talk Overview

Talk focuses on Linux i386 based systems
– Rootkit background
– System call table tools

• Demos
– L4 microkernel introduction
– Spine architecture
– Intrusion recovery system (IRS)

• Demos
– Concluding remarks

4Julian GrizzardDEFCON 13

Rootkit Functionality

• Retain Access
– Trojan sshd client with hard coded user/pass

for root access
– Initiate remote entry by specially crafted

packet stream
• Hide Activity

– Hide a process including resource usage of
process

– Hide malicious rootkit kernel modules from
lsmod

5Julian GrizzardDEFCON 13

Additional Malware Functionality

• Information harvesting
– Credit cards
– Bank accounts

• Resource usage
– Spam relaying
– Distributed denial of service

6Julian GrizzardDEFCON 13

User-Level versus Kernel-Level

• User-Level
– Modify/replace system binaries
– e.g. ps, netstat, ls, top, passwd

• Kernel-Level
– Modify/replace kernel process
– e.g. system call table

7Julian GrizzardDEFCON 13

History of Kernel-Level Rootkits

• Heroin – October 1997
– First public LKM

• Knark – June 1999
– Highly popular LKM

• SucKIT – December 2001
– First public /dev/kmem entry

• Adore-ng 0.31 – January 2004
– Uses VFS redirection; works on Linux 2.6.X

8Julian GrizzardDEFCON 13

Kernel-Level Rootkit Targets

• System call table
• Interrupt descriptor table
• Virtual file system layer
• Kernel data structures

9Julian GrizzardDEFCON 13

Kernel Entry

• Linux kernel module (LKM)
• /dev/kmem, /dev/mem, /dev/port
• Direct memory access (DMA)
• Modify kernel image on disk

10Julian GrizzardDEFCON 13

System Call Table Modifications

• System calls are the main gateway from
user space to kernel space

• Most commonly targeted kernel structure
• Can redirect individual system calls or the

entire table

11Julian GrizzardDEFCON 13

Entry Redirection

Original read system
call. No longer
pointed to by SCT.

Trojaned read
system call. Active
SCT points to it.

12Julian GrizzardDEFCON 13

Entry Overwrite

System call code
overwritten; SCT still
intact

13Julian GrizzardDEFCON 13

Table Redirection

 Original SCT
intact

 Original system
calls intact

 Handler points to
Trojan table

14Julian GrizzardDEFCON 13

/dev/kmem Details from SucKIT

• SucKIT accesses kernel memory from
user space

• Redirects entire system call table
• How does sucKIT find the system call

table?
• How does sucKIT allocate kernel

memory?

15Julian GrizzardDEFCON 13

Find System Call Handler

struct idtr idtr;
struct idt idt80;
ulong old80;

/* Pop IDTR register from CPU */
asm("sidt %0" : "=m" (idtr));

/* Read kernel memory through /dev/kmem */
rkm(fd, &idt80, sizeof(idt80), idtr.base +
0x80 * sizeof(idt80));

/* Compute absolute offset of
 * system call handler for kmem
 */
old80 = idt80.off1 | (idt80.off2 << 16);

16Julian GrizzardDEFCON 13

Kmalloc as a System Call (sucKIT)

#define rr(n, x) ,n ((ulong) x)
#define __NR_oldolduname 59
#define OURSYS __NR_oldolduname
#define syscall2(__type, __name, __t1, __t2) \
 __type __name(__t1 __a1, __t2 __a2) \
 { \
 ulong __res; \
 __asm__ volatile \
 ("int $0x80" \
 : "=a" (__res) \
 : "0" (__NR_##__name) \
 rr("b", __a1) \
 rr("c", __a2)); \
 return (__type) __res; \
 }
#define __NR_KMALLOC OURSYS
static inline syscall2(ulong, KMALLOC, ulong, ulong);

17Julian GrizzardDEFCON 13

Example Kernel-Level Rootkits

VFS RedirectionModuleadore-ng

SCT Table RedirectionUserr.tgz

SCT Table RedirectionUserzk

SCT Table RedirectionUsersucKIT

SCT Entry RedirectionModuleadore

SCT Entry RedirectionModuleknark

SCT Entry RedirectionModuleheroin

ModificationKernel EntryRootkit

18Julian GrizzardDEFCON 13

Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks

19Julian GrizzardDEFCON 13

System Call Table Tools

• Developed tools that can query the state
of the system call table and repair it

• Tools based on sucKIT source code and
work from user space

• Algorithm to recover from rootkits is
similar to algorithm used by rootkits

20Julian GrizzardDEFCON 13

Algorithm (x86 architecture)

1) Copy clean system calls to kernel memory
2) Create new system call table
3) Copy system call handler to kmem
4) Query the idtr register (interrupt table)
5) Set 0x80ith entry to new handler

21Julian GrizzardDEFCON 13

Details

• Use a known good kernel image and rip
out the system call table with gdb

• Address of system call table must be set
in system call handler

22Julian GrizzardDEFCON 13

Copying Kernel Functions

• Some trickery involved with algorithm
• x86 code has call instructions with a

relative offset parameter
• Could recompile the code
• We chose to recompute relative offset

and modify the machine code

23Julian GrizzardDEFCON 13

Demos

System Call Table Tools
Demonstration

24Julian GrizzardDEFCON 13

Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks

25Julian GrizzardDEFCON 13

Intel Descriptor Privilege Level

• Level 3
– Minimal hardware access
– User space processes run at

level 3
• Level 2

– Limited hardware access
– N/A in Linux

• Level 1
– Limited hardware access
– N/A in Linux

• Level 0
– Unlimited hardware access
– Kernel space threads run at

level 0

26Julian GrizzardDEFCON 13

Virtual Machines/Hypervisors

• VMware
• User Mode Linux
• Xen
• L4

27Julian GrizzardDEFCON 13

Monolithic Operating System

28Julian GrizzardDEFCON 13

Microkernel Operating System

29Julian GrizzardDEFCON 13

History of Microkernels

• Mach project started at CMU (1985)
• QNX
• Windows NT
• LynxOS
• Chorus
• Mac OS X

30Julian GrizzardDEFCON 13

Microkernel Requirements

• Tasks
• IPC
• I/O Support

That’s it!

31Julian GrizzardDEFCON 13

L4 System Calls (Fiasco)

• 9 IPC Calls
– l4_ipc_call, l4_ipc_receive
– l4_ipc_reply_and_wait
– l4_ipc_send_deceiting, l4_ipc_reply_deciting_and_wait
– l4_ipc_send, l4_ipc_wait
– l4_nchief
– l4_fpage_unmap

• 5 Thread calls
– l4_myself
– l4_task_new
– l4_thread_ex_regs
– l4_thread_schedule
– l4_thread_switch

32Julian GrizzardDEFCON 13

L4 IPC’s

• Fast IPCS
• Flexpages
• Clans and chiefs
• System calls, page faults are IPC’s

33Julian GrizzardDEFCON 13

L4 I/O (from Fiasco lecture slides)

• Hardware interrupts: mapped to IPC
– Special thread id for interrupts
– IPC sender indicates interrupt source
– Kernel provides no sharing support, one thread per interrupt
– Malicious driver could potentially block all interrupts if given

access to PIC
– Cli/sti only allowed in kernel and trusted servers

• I/O memory and I/O ports: flexpages
• Missing kernel feature: pass interrupt association

– Security hole
• I/O port access
• DMA - big security risk

34Julian GrizzardDEFCON 13

Rmgr (lecture slides)

• Resources --- serves page faults
– Physical memory
– I/O ports
– Tasks
– Interrupts

35Julian GrizzardDEFCON 13

Booting the System (lecture slides)

• Modified grub
• Multi-boot specification
• Rmgr, sigma0, root task (rmgr II), …
• IDT

– General Protection Exception #13
– Page Fault #14
– Divide by zero #0
– Invalid opcode #6
– System calls Int30 IPC

• Global Descriptor Table (GDT) vs. Local Descriptor
Table (LDT)

36Julian GrizzardDEFCON 13

L4 Security Problems?

• Passing interrupt association
• Direct memory access
• Fill up page mapping database
• Kernel accessible on disk
• Cli/sti
• A few more…

37Julian GrizzardDEFCON 13

Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks

38Julian GrizzardDEFCON 13

Spine Architecture

39Julian GrizzardDEFCON 13

Memory Hierarchy Detail

40Julian GrizzardDEFCON 13

Spine Architecture Details

• Uses L4 Fiasco microkernel
• L4Linux runs on top of microkernel
• User tasks run on L4Linux
• Intrusion recovery system consists of

levels 0 through 3

41Julian GrizzardDEFCON 13

L4Linux

• Port of Linux kernel to L4 architecture
• “paravirtualization” vs. pure virtualization
• Linux kernel runs in user space
• Binary compatible

42Julian GrizzardDEFCON 13

Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks

43Julian GrizzardDEFCON 13

Intrusion Recovery System

• Capable of recovering from rootkit
installations

• Maintain a copy of known good state to
verify system integrity and repair if needed

• Must be integral part of operating system

44Julian GrizzardDEFCON 13

IRS Cont…

• Intrusion detection system is part of IRS
– Must be able to detect that an intrusion has occurred

in order to recover from it
• Most difficult part of problem is verifying system

integrity
– How to verify data structures, config files, etc.

• Another important challenge is verifying integrity
of IRS itself
– Malware has been known to disable IDS’s

45Julian GrizzardDEFCON 13

Multi-Level IRS Reasoning

• Difficult to monitor state of entire system
from one vantage point

• Difficulty comes in bridging the semantic
gap between layers of the system

• We use a multi-level approach

46Julian GrizzardDEFCON 13

Multi-Leveled IRS Detail

• L3 - verify file system state and repair if needed
• L2 - kernel module to verify integrity of L4Linux

and L3 and repair if needed
• L1 - microkernel modifications to verify state of

L2 and repair if needed; also provides secure
storage for known good state

• L0 - hardware support for maintaining isolation
and verifying L1 (more hardware needed)

47Julian GrizzardDEFCON 13

Demos

Intrusion Recovery System
Demonstration

48Julian GrizzardDEFCON 13

Talk Overview

• Rootkit background
• System call table tools

– Demos
• L4 microkernel introduction
• Spine architecture
• Intrusion recovery system (IRS)

– Demos
• Concluding remarks

49Julian GrizzardDEFCON 13

Limitations and Conclusions

• Can an attacker install a microkernel-level
rootkit?

• What if attacker has physical access?
• There is no be all end all solution!

However, an IRS can make systems more
reliable.

50Julian GrizzardDEFCON 13

Thanks!

• Henry Owen
• John Levine
• Sven Krasser
• Greg Conti

51Julian GrizzardDEFCON 13

Links
[Network and Security Architecture website]
http://www.ece.gatech.edu/research/labs/nsa/index.shtml

[Georgia Tech Information Security Center]
http://www.gtisc.gatech.edu/

[Fiasco project]
http://os.inf.tu-dresden.de/fiasco/

[Xen]
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[Samhain Labs]
http://la-samhna.de

[Chkrootkit]
http://www.chkrootkit.org

[DaWheel, “So you don’t have to reinvent it!”]
http://www.dawheel.org

52Julian GrizzardDEFCON 13

Questions?

Julian Grizzard
grizzard AT ece.gatech.edu

