

0-7803-8367-2/04/$20.00 ©2004 IEEE

Abstract-- Techniques and methods currently exist to detect if
a certain type of rootkit has exploited a computer systems.
However, these current techniques and methods can only
indicate that a system has been exploited by a rootkit. We are
currently developing a methodology to indicate if a rootkit is
previously known or if it is a modified or entirely new rootkit.
We present in this paper an application of our methodology
against a previously unseen rootkit that was collected from the
Georgia Tech Honeynet. We conduct our analysis process
against this rootkit and are able to identify specific
characteristics for subsequent detections of this rootkit. This
ability will provide system administrators, researchers, and
security personnel with the information necessary in order to
take the best possible recovery actions. This may also help to
detect and fingerprint additional instances and prevent
further security instances involving rootkits.

Index Terms-- forensics, Honeynet, rootkits, signatures

I. INTRODUCTION

Rootkits are a phenomenon that has recently drawn
attention. Prior to rootkits, system utilities could be trusted
to provide a system administrator with accurate
information. Modern crackers have developed methods to
conceal their activities and programs to assist in this
concealment [1]. Rootkits are a serious threat to the
security of a networked computer system.

Modern operating systems are subject to a variety of
exploits that allow hackers to gain root access on networked
computer systems. This in turn, provides hackers with the
ability to install rootkits on these compromised systems.
System administrators need to be aware of the threats that
their computers face from rootkits as well as the ability to
recognize if a particular rootkit has been installed on their
computer system.

Part of our efforts is the use of a Honeynet to collect new
rootkit type exploits. Rootkits are also available from other
sources including the Internet. The Honeynet, however,
offers us an opportunity to collect rootkits that may not
have been previously seen by other researchers [2]. These
rootkits are targeted against actual live systems on the
Honeynet that have been compromised by a hacker. We
believe that the Honeynet offers us an actual opportunity to
collect existing, modification to existing, and entirely new
rootkit exploits.

On 1 June 2003 a system installed on the Georgia Tech
Honeynet was compromised, allowing a hacker to gain root
level access. The hacker then installed a rootkit on this
system. No traffic should have been going to or come from
this system since it is a Honeynet machine [3]. By
following the principles of data capture and data control we
were able to capture the exploit that the hacker executed
against this system and prevent this system from being used
to compromise any other systems.

A. Target System Description

The target system that was employed on the Honeynet was
a standard version of the Red Hat Linux 6.2 operating
system running the Linux 2.2 kernel. This system was
configured to install all available packages and no special
modifications were made to this system. The install process
was a default installation for this configuration. No
additional services besides those that were started by the
default installation were enabled on the target system. The
following ports were opened on this system:

21 ftp 23 telnet 25 smtp
79 finger 98 Linux conf 111 sun rpc
113 auth 513 login 514 shell
515 printer 954 unknown 1024 kdm
1025 listen 1033 net info 6000 x11

B. Method of Compromise

At 10:34 AM ZULU on June 1, 2003 an exploit was
launched against the target system on port 21 (ftp daemon)
to attempt to gain root level access. The ftp server running
on Red Hat Linux 6.2 is wu-ftpd2.6.0(1) ftp daemon, the
default ftp server. Exploits that allow a hacker to gain root
level access have been published against this particular
service and are available on the Internet. This attack was
successful and the hacker was able to gain root level access
on the target system. Figure 1 shows the start of the tcp
stream that was extracted from the Honeynet data
concerning this attack. The string RNFR ././ is a
signature of the WU-FTP exploit for the ftp server that is
running on this system [4].

Application of a Methodology to Characterize
Rootkits Retrieved from Honeynets

John Levine, Julian Grizzard, Henry Owen, Members, IEEE
levine@ece.gatech.edu, grizzard@ece.gatech.edu, owen@ece.gatech.edu

Figure 1: Start of Exploit

 The hacker was successful utilizing this exploit to gain
root level access on the target system. This is indicated in
Figure 2 where the hacker queries the system for his id and
the user id (uid) of 0(root) is returned. The hacker then adds
a user andrey with a password of andrey to the system.

Figure 2: System Compromise Indication

The hacker, having gained root access, is now able to
install a rootkit on the target system. The rootkit that the
hacker chooses to install in called ‘r.tgz’ which was
downloaded through a telnet session using the wget
command. We do not believe that this particular rootkit has
been publicly analyzed before. There is an ssh rookit called
‘r.tgz’ but the characteristics of that rootkit, including the
file size, differ from the rootkit that was installed on the
target system [5]. In any event, we were unable to find any

detailed examination of a rootkit called ‘r.tgz’ with
characteristics similar to the one that was installed on the
target system.

The hacker extracts the exploit code within the ‘r.tgz’ file
and then runs the exploit on the target system. Figure 3
shows the actual Honeynet logs of the hacker’s session. The
‘r.tgz’ rootkit deletes all traces of itself on the target system
after installation. However, we were able to reconstruct
what the hacker accomplished by utilizing the Honeynet
logs for this exploit session.

Figure 3: Installation of 'r.tgz' rookit

II. METHODOLOGY TO CHARACTERIZE ROOTKIT EXPLOITS

We are able to apply our methodology to the valid copy
of the rootkit that we retrieved from the Georgia Tech
Honeynet. The following is a description of the
methodology that we follow to identify the specific delta
(∇) of a rootkit exploit targeting the Linux operating
system. The concept of identifying a specific delta is
described in our paper titled “A Methodology to Detect and
Characterize Kernel Level Rootkit Exploits Involving
Redirection of the System Call Table” presented at the
Second International Information Assurance Workshop [6].
In this case we choose Linux as our operating system for
this specific investigation but this methodology should
apply to other UNIX type operating systems.

1. Start with a clean installation of the specific kernel

version of the operating system that was the intended
target of the rootkit exploit.

2. Install a kernel level debugger on this system. The
installation of the kernel level debugger will probably
require the system to be recompiled with a custom
kernel.

3. Install and run a file integrity checker program on
this system. Select target directories based on an
analysis of the installation that occurred when the
rootkit was originally acquired.

4. Install a rootkit detection program such as chkrootkit
on the target system. This will detect many existing
system utility rootkit exploits and may help to
identify modification to existing as well as entirely
new rootkit exploits.

5. Install a program such as kern_check [7] to check the
integrity of the system call table within the kernel.
Run this program on the target system to establish a
baseline and ensure that the kernel integrity has not
been compromised on this initial installation.

6. Make a copy of the kernel text segment of memory
via /dev/kmem for future comparison. We have
presented a method to do this in our paper titled “ A
Methodology to Characterize Kernel Level Rootkit
Exploits that Overwrite the System Call Table” to be
present at SoutheastCon 2004 [8]. The kernel text
segment of kernel memory should remain consistent
for a particular kernel build. Any deviation between
this copy and a future copy could indicate that the
kernel may have been compromised by a kernel level
rootkit exploit. A more detailed analysis of kernel
space can then be conducted via the kernel debugger
(kdb) program that has previously been installed.

7. Run the file integrity checker program and the rootkit
detection program on the target system prior to
infecting the system with the rootkit to establish a
baseline for comparison between a clean and infected
system.

8. Install the rootkit on the target system. Follow the
installation steps that were used when the rootkit was
initially acquired for analysis.

9. Run the file integrity checker program on the system
and note the results. The presence of certain types of
rootkits should be indicated by the results of the file
integrity checker program but other types of rootkits,
specifically those that target the kernel, may not be
detected by this type of program.

10. Run the rootkit detection program (chkrootkit [9]) on
the system that has been infected with the rootkit that
is being analyzed. If this is a previously known
system utility rootkit then a program such as
chkrootkit should be able to detect the presence of
this rootkit. If the file integrity checker program
detected a change to a system utility binary program
file but the rootkit detection program did not detect
the presence of a rootkit then we can assume that we
are dealing with either a modification to an existing
system utility rootkit or an entirely new system utility
rootkit.

11. Run the kernel integrity check program on the target

system. If the system call table was modified or
redirected, then this program should be able to detect
what has been modified. Make note of each system
call that is indicated as being modified as well as a
total count of the number of system calls that have
been modified by this rootkit. The system calls that a
rootkit modifies can establish a signature for a
specific kernel level rootkit [10]. This program may
not be able to detect some other modification to the
kernel text code segment of the kernel.

12. Make a copy of the kernel text code and compare it
against the original copy of the kernel text code that
was prepared before infecting this system with the
rootkit. A difference between these two files may
indicate the presence of a kernel level rootkit. This is
especially significant if the existing kernel integrity
checker programs failed to detect any modification to
the kernel. This would indicate that one is dealing
with a new type of kernel level rootkit that does not
target the system call table. The system call table is
the normal avenue of attack for hackers who are
attempting to create a kernel level rootkit.

The results of these steps can be used to classify a rootkit

exploit as an existing, modification to an existing, or an
entirely new rootkit.

III. ANALYSIS PROCESS

The Georgia Tech Honeynet was able to capture the entire
exploit session of a system compromise including the
downloaded files as well as the remote machines that the
hacker connected to from the compromised machine. This
provided us with the scripts and files that were used by the
hacker to install the r.tgz rootkit. Preliminary analysis of
these files gave us an indication of how this rootkit could be
installed on a target system similar to the system on the
Honeynet. We then set out to install the r.tgz rootkit on a
target system to analyze and classify it.

We have initially set up a baseline system that consists of
the same operating system as the system that was
compromised on the Honeynet. In this case it is Red Hat
6.2 running the Linux 2.2.14 kernel. Following the
procedures outlined in Section II, we installed a kernel level
debugger (kdb) on this system as well as a file integrity
checker program (AIDE [11]) . We then installed a known
rootkit detection program (chkrootkit [9]) and made a copy
of the kernel text segment via /dev/kmem. Prior to
infecting this system with the r.tgz rootkit we ran the AIDE
and chkrootkit program to establish a clean baseline for
analysis and classification. We then infected this system
with the r.tgz rootkit.

The first check that we ran on the infected system is the
file integrity check to determine what files have been added,
changed, or deleted. Running the AIDE program on the
infected system indicated that 2 files had been added to the
infected system and 178 files had been changed by the r.tgz
program. This is a large number of files and initial analysis

of the install scripts for this rootkit does not indicate that all
of these files are being modified. Follow on analysis was
conducted on these modified files to determine the nature of
these changes. Figure 4 shows the results of running AIDE
on the infected system.

Figure 4: AIDE results on r.tgz infected system

The next step was to run the known rootkit detection
program (chkrootkit) on the target system. Running this
program utilizing the binaries that are currently installed on
the target system only results in the identification of one
system binary as being infected. The binary that is indicated
as being infected is ifconfig. The chkrootkit program also
detects five suspicious files and possible infections by the
“Showtee” and “Romanian” rootkits.

The recommended method of using the chkrootkit
program is to use known good binary files. Known good
binary files can be copied to a read-only disk and the files
on this disk can be accessed by the chkrootkit program
using the –p switch. Using known good binary to check the
system results in the identification of the same changes
identified in the previous paragraph plus 5 additional
binaries being identified as being infected on the target
system. These five binary files are: du, ifconfig, killall, ls,
and pstree. The check using known good binaries also
indicates the following under the lkm check: 1 process
hidden from readdir command, 15 processes hidden form ps
command. The differences between the output using known
good binaries and the output using the binaries currently
installed on the system indicate that the r.tgz rootkit
modified some of the system binary files that are used by
the chkrootkit program to check the system status. As a
result we can conclude that known good binaries should
always be used while running the chkrootkit program. The
five files detected as being changed by the chkrootkit
program are also detected as being changed by the AIDE
file integrity checker program. These results are used in our
methodology to classify this rootkit exploit.

The next step in the methodology is to verify the integrity
of the kernel. Running the kernel check program
(kern_check) on the target system utilizing a known good
/boot/System.map file indicates that there is a mismatch of
21 system calls between the kernel and the known good
/boot/System.map file. The results of the kern_check
program are shown in figure 5.

Figure 5: Results of kern_check program

This is an indication that the kernel of the target system
may have been compromised by the r.tgz rootkit. Checking
the current kernel text segment code against the previously
archived version of the kernel text segment code indicates
that the kernel has been compromised. The previously
archived version of the kernel text segment code was built
when the target system was first compiled.

 Analysis of the kernel using kdb indicates that the pointer
to the system call table is being redirected to a new instance
of this table. The correct system call table address is
0xc0248928 and can be retrieved from the
/boot/System.map file. The current system call table
address as displayed by kdb in kernel memory is
0xc31ac000. The following is the results of running a kdb
query on the system call interrupt within kernel space. The
returned call statement should refer to the address of the
system call statement that is stored in the /boot/System.map
file (0xc024928) and it does not.

 kdb> id 0xc0109d84 ~ (address of system call interrupt
from /boot/System.map)

 system_call + 0x2d: call *0xc31ac000(,%eax,4)

This is an indication that the system call table is being
redirected by a kernel rootkit

Since the kernel is a fundamental part of the computer
operating system we will first examine this aspect of the
r.tgz rootkit to determine the method that this rootkit used to
compromise the target system. You can not trust any of the
system output if the kernel has been compromised.

As previously mentioned, the Honeynet allowed us to
retrieve the install scripts and code that is utilized by the
r.tgz rootkit. The main install file for the r.tgz rootkit calls a
series of script files to install the rootkit. Analysis of these
scripts indicates that the startfile script is the script that

compromises the kernel on the target system. The replace
script is used to replace the system binaries.

The startfile script copies the r.tgz file init to the
/etc/rc.d/init.d directory. Analysis of the r.tgz init file
indicated that this is the script that compromises the kernel.
The init script file executes several binary files named
sendmail (executed as a daemon), write (executed as a
daemon), and two instances of the executable all with the
‘i’ switch and a pid. The sendmail binary file is actually
another instance of the all program that is copied over in the
createdir script file that is executed by the r.tgz startup script
file. This analysis resulted in the identification of three
instances of the all binary executable file being executed by
the r.tgz rootkit. Two of these instances of the all binary
file have pid’s associated with them. The fact that the init
file, which calls these three instances of the all file, has been
copied into the /etc/rc.f/init.d directory is an indication that
the r.tgz rootkit developer wanted this code to be executed
upon system reboot, making the kernel compromise portion
of this rootkit resident within memory. The use of file
names such as init, sendmail, and write are examples of a
direct masquerade as described by Thimbleby, Anderson,
and Cairns. Direct masquerades are files that pretend to be
normal programs [12]. As a result of this analysis, we
choose to examine the all program. This program is a
binary executable file and we do not have the underlying
source code that was used to create this rootkit. We choose
to use a tool such as strings on this file initially in
conducting our analysis. An segment of the results of
running the strings command on the r.tgz all binary file are
indicated in Figure 6.

Figure 6: strings output of r.tgz all program

The strings output of this program indicates that the all
program is a kernel level rootkits known as INKIT. A
search on the Internet for a kernel rootkit called INKIT does
not result in any references to this particular rootkit.
According to the use statement that is output by the strings
command, the ‘i’ switch that is used in the init script with a
particular pid is used to make that pid invisible. The last
string displayed in Figure 6 is significant to note. This text

string makes reference to the SuckIT rootkit. We presented
an in depth analysis of the SuckIT kernel level rootkit in
[6]. The fact that this string appears in INKIT, including the
misspelling of successfully just like the actual SuckIT
rootkit, leads us to believe that INKIT is a modification or a
copy of the SuckIT kernel level rootkit. Next we attempted
to uninstall the INKIT kernel level rootkit using the ‘u’
switch as indicated by the use statement in Figure 7.

Figure 7: Uninstall of INKIT kernel rootkit

This command was successful in uninstalling the kernel
level rootkit. We then verified the integrity of the kernel
with the kern_check kernel integrity check program. The
indication was that there are no system calls currently being
redirected by the kernel. An examination of the kernel
using kdb indicated that the system call interrupt is now
referencing the correct system call table. As a final check,
we compared the current kernel text segment against the
original archived text segment. These files now match. At
this point the kernel is no longer compromised and we reran
the file integrity checker and known rootkit detection
programs on the target system since we can now trust the
kernel output. The output from the AIDE file integrity
checker program now indicates that 196 files have changed.
This is an increase of 19 files from the previous check of the
AIDE program where 177 files were detected as being
changed by the r.tgz rootkit. It appears that the kernel
element of the r.tgz rootkit was hiding these 19 changed
programs from the AIDE program. Next in the analysis
process we analyzed these changed files and the r.tgz install
scripts to determine how these files had been changed. The
results of the new instance of the AIDE program are
indicated in Figure 8.

Figure 8: New AIDE results on target system.

Analysis of the install scripts for the r.tgz rootkit does not
indicate that 196 files are being changed when the rootkit is
installed. Analysis of the AIDE results indicates that all of
the executable files in the /bin directory are changing.
Comparison of the files in the /bin directory with known
good files indicates that the files that are not being changed
by the r.tgz rootkit are increasing in size by 8759 bytes.
This increase in file size is a signature of the
Linux.OSF.8759 virus. This virus is associated with the
hax.tgz rootkit [13]. Application of the methodology thus
far has indicated that r.tgz is composed of elements of two
rootkits; the INKIT kernel level rootkit which is based on
SuckIT, and the hax.tgz binary level rootkit.

Another signature of the Linux.OSF.8759 virus is that a
trojan port is opened on the target system at 3049. This
trojan port is detected by the chkrootkit program which
checks for processes listening on ports with the use of the
netstat command with the –anp switch to detect open ports
on the system in question. Other Trojan ports can be
detected in a similar fashion.

There is a utility named clean.OSF.8759-ps that can be
used to clean infection of the Linux.OSF.8759 virus [14].
However, these files can not be cleaned by the root user
after the r.tgz rootkit is installed on the target system. This
is a result of the socklist script within the r.tgz rootkit
changing the attributes on all of the files in the /bin directory
with the chattr +ASacdisu command. Attributes on
selected files in the /sbin and /usr/bin directories are also
reset by the replace script within the r.tgz rootkit after these
files are infected with the Linux.OSF.8759 virus. Files and
directories with their attributes reset could be used as an
indication that a possible rootkit is installed on the target
system. These attributes must be turned off using the chattr
-ASacdisu command to disinfect these files.

To produce an accurate count of the number of binary files
that are added, deleted, or changed by the r.tgz rootkit the
attributes of the files within the /bin, /sbin, and /user/bin
directories must first be reset. Then these directories can be
disinfected with the clean.OSF.9759-ps utility. Once these
files and directories have been disinfected the AIDE
program is run to provide an accurate count of the files that
have been changed on the target system by the r.tgz rootkit.
Figure 9 shows the results of this instance of the AIDE
program on the target system. The results are that 2 files
have been added and 14 files have been changed by r.tgz.
These results correspond with the install scripts for the r.tgz
rootkit.

Figure 9: Accurate AIDE count of changed files

IV. ROOTKIT CHARACTERISTICS

The chkrootkit program only detects 5 of the 14 files that
are detected as being changed by the AIDE program. It may
be possible to develop new signatures for the 9 changed
files that are not detected by chkrootkit. These files are: dir,
vdir, md5sum, top, and strings in the /usr/bin directory; ps,
netstat, and login in the /bin directory; and ifconfig in the
/sbin directory. Two other possible signatures are the two
added files, /usr/bin/strings and /sbin/sendmail. There are
currently two instances of the strings command in the
/usr/bin directory. The socklist script of the r.tgz rootkit
copies the original /usr/bin/strings file to the following file:
/usr/bin/strings<blank space>. This would make it hard to
detect that this file has been tampered with under a visual
examination. However, this is a signature that can be used
to detect the presence of either the r.tgz rootkit of the binary
elements that make up the r.tgz rootkit on the target system.

Using the elements of the methodology to detect unique
rootkit string signatures that we have presented in our paper
“A Methodology for Detecting New Binary Rootkit
Exploits” we are able to detect some possible unique string
signatures in the binary files that are replaced by the r.tgz
rootkit [14]. The following are potential string signatures
that can be used by a program such as chkrootkit to detect
the presence of the r.tgz rootkit binary file replacements.

 /usr/bin/dir “stpcpy”
/usr/bin/vdir “/usr/include/file.h”
/usr/bin/md5sum “/usr/local/share/locale”
/usr/bin/top “proc_hackinit”
/usr/bin/strings “/bin/su –“
/usr/bin/socklist “bin/egrep –v”
/bin/ps “/tmp/extfsRNV23Z”
/bin/netstat “__bzero”
/bin/login “cococola”

We have already characterized the kernel rootkit that is an

element of r.tgz. This kernel rootkit is one that redirects the
system call table to an entirely new system call table as
previously described by the authors in [6]. Based on other
analysis that we have done, we were able to uninstall and
reinstall this rootkit on the target system. It is significant to
note that every new reinstallation of this kernel level rootkit
will results in a new address in kernel space for the new
instance of the compromised system call table.

As previously stated, we concluded that the r.tgz rootkit is
a blended rootkit that contains elements of the INKIT kernel
rootkit and the hax.tgz binary rootkit. The INKIT rootkit is
based on SuckIT. The hax.tgz rootkit is based on bigwar.tgz
rootkit [13].

V. SUMMARY
We have applied our methodology to a rootkit that we

were able to acquire on the Honeynet research network that
we established at Georgia Tech. Our methodology enabled
us to identify the binary elements that this rootkit replaced
on the target system. New signatures were identified that
can help to detect the presence of this rootkit.

The methodology enabled us to characterize the kernel
element of this rootkit as a modification to an already
existing kernel rootkit. We were able to uninstall this kernel
rootkit on the target system.

We have also applied this methodology to nine additional
rootkits. This analysis enable us to characterize these
rootkits and identify specific signatures that could be used in
subsequent detection and analysis [15].

The analysis that we have presented concerning the
application of our methodology to a rootkit would benefit
network administrators, researchers, and network security
personnel in characterizing rootkits as well as provide
methods to detect these rootkits.

VI. REFERENCES

[1] D. Dettrich, (2002, 5 JAN) “Root Kits” and hiding

files directories/processes after a break-in, [Online].
Available: http://staff.washington.edu/dittrich/misc
/faqs/rootkits.faq

[2] L. Spitzner, Honeypots- Tracking Hackers,
Indianapolis, IN: Addison-Wesley, 2003, p. 69.

[3] The Honeynet Project, Know Your Enemy,
Indianapolis, IN: Addison-Wesley, 2002, p. 19.

[4] http://www.linuxsecurity.com/feature_stories
/feature_story-141.html, Nov 2003.

[5] http://www.packetfu.org/hpa.html, Nov 2003.
[6] J. Levine, J. Grizzard, H. Owen, “A Methodology to

Characterize Kernel Level Rootkit Exploits Involving
Redirection of the System Call Table”, to be presented at
the 2nd International Information Assurance Workshop,
Charlotte, NC, 8-9 Apr 2004.

[7] http://la-samhna.de/library/rootkits/detect.html, Sep
2003

[8] J. Levine, J. Grizzard, P. Hutto, H. Owen, “A
Methodology to Characterize Kernel Level Rootkit
Exploits that Overwrite the System Call Table”, to be
presented at SoutheastCon 2004, Greensboro NC, 26-28
Mar, 2004.

[9] http://www.chkrootkit.org, Dec 2003.
[10] Zovi, D., “Kernel Rootkits”, http://www.cs.unm.edu

/~ghandi/lkr.pdf, 3 July 2001, Oct 2003.

[11] http://www.cs.tut.fi/~rammer/aide.html, Sep 2002.
[12] Thimbleby, S. Anderson, p. Cairns, “A Framework for

Modeling Trojans and Computer Virus Infections,” The
Computer Journal, vol. 41, no.7 pp. 444-458, 1998.

[13] http://www.honeylux.org.lu/project/honeyluxR1/result
/sub01/report/hax.html, Aug 2003.

[14] http://packetstormsecurity.nl/trojans/indexdate.shtml/c
lean-osf.8759.tgz /README, Dec 2003.

[15] J. Levine, H. Owen, B. Culver, “A Methodology for
Detecting New Binary Rootkit Exploits”, presented at
the 2003 IEEE SoutheastCon 2003, Ocho Rios,
Jamaica, 4-6 Apr 2003.

[16] J. Levine, A Methodology for Detecting and
Classifying Rootkit Exploits, PhD Thesis, Georgia
Institute of Technology, Atlanta, GA, to be published.

