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Abstract-- Techniques and methods currently exist to detect if 
a certain type of rootkit has exploited a computer systems.  
However, these current techniques and methods can only 
indicate that a system has been exploited by a rootkit.  We are 
currently developing a methodology to indicate if a rootkit is 
previously known or if it is a modified or entirely new rootkit.   
We present in this paper an application of our methodology 
against a previously unseen rootkit that was collected from the 
Georgia Tech Honeynet.  We conduct our analysis process 
against this rootkit and are able to identify specific 
characteristics for subsequent detections of this rootkit.  This 
ability will provide system administrators, researchers, and 
security personnel with the information necessary in order to 
take the best possible recovery actions. This may also help to 
detect and fingerprint additional instances and prevent 
further security instances involving rootkits.    
 
Index Terms-- forensics, Honeynet, rootkits, signatures 
 

I. INTRODUCTION 
 

Rootkits are a phenomenon that has recently drawn 
attention.  Prior to rootkits, system utilities could be trusted 
to provide a system administrator with accurate 
information.  Modern crackers have developed methods to 
conceal their activities and programs to assist in this 
concealment [1].  Rootkits are a serious threat to the 
security of a networked computer system. 

Modern operating systems are subject to a variety of 
exploits that allow hackers to gain root access on networked 
computer systems.  This in turn, provides hackers with the 
ability to install rootkits on these compromised systems.  
System administrators need to be aware of the threats that 
their computers face from rootkits as well as the ability to 
recognize if a particular rootkit has been installed on their 
computer system.   

Part of our efforts is the use of a Honeynet to collect new 
rootkit type exploits.  Rootkits are also available from other 
sources including the Internet.  The Honeynet, however,  
offers us an opportunity to collect rootkits that may not 
have been previously seen by other researchers [2].  These 
rootkits are targeted against actual live systems on the 
Honeynet that have been compromised by a hacker.  We 
believe that the Honeynet offers us an actual opportunity to 
collect existing, modification to existing, and entirely new 
rootkit exploits.   

On 1 June 2003 a system installed on the Georgia Tech 
Honeynet was compromised, allowing a hacker to gain root 
level access.  The hacker then installed  a rootkit on this 
system.  No traffic should have been going to or come from 
this system since it is a Honeynet machine [3].  By 
following the principles of data capture and data control we 
were able to capture the exploit that the hacker executed 
against this system and prevent this system from being used 
to compromise any other systems.   

A. Target System Description 
 

The target system that was employed on the Honeynet was 
a standard version of the Red Hat Linux 6.2 operating 
system running the Linux 2.2 kernel.  This system was 
configured to install all available packages and no special 
modifications were made to this system.  The install process 
was a default installation for this configuration.  No 
additional services besides those that were started by the 
default installation were enabled on the target system.  The 
following ports were opened on this system: 
 
21 ftp  23 telnet  25 smtp 
79 finger 98 Linux conf 111 sun rpc 
113 auth  513 login 514 shell 
515 printer 954 unknown 1024 kdm 
1025 listen 1033 net info 6000 x11   

B. Method of Compromise 
 

At 10:34 AM ZULU on June 1, 2003 an exploit was 
launched against the target system on port 21 (ftp daemon) 
to attempt to gain root level access.  The ftp server running 
on Red Hat Linux 6.2 is wu-ftpd2.6.0(1) ftp daemon, the 
default ftp server.  Exploits that allow a hacker to gain root 
level access have been published against this particular 
service and are available on the Internet.  This attack was 
successful and the hacker was able to gain root level access 
on the target system.  Figure 1 shows the start of the tcp 
stream that was extracted from the Honeynet data 
concerning this attack.    The string RNFR  ././  is a 
signature of the WU-FTP exploit for the ftp server that is 
running on this system [4]. 
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Figure 1: Start of Exploit 

  The hacker was successful utilizing this exploit to gain 
root level access on the target system.    This is indicated in 
Figure 2 where the hacker queries the system for his id and 
the user id (uid) of 0(root) is returned.  The hacker then adds 
a user andrey with a password of andrey to the system.  

  

 
Figure 2: System Compromise Indication 

The hacker, having gained root access, is now able to 
install a rootkit on the target system.   The rootkit that the 
hacker chooses to install in called ‘r.tgz’ which was 
downloaded through a telnet session using the wget 
command.   We do not believe that this particular rootkit has 
been publicly analyzed before.  There is an ssh rookit called 
‘r.tgz’ but the characteristics of that rootkit, including the 
file size, differ from the rootkit that was installed on the 
target system [5].  In any event, we were unable to find any 

detailed examination of a rootkit called ‘r.tgz’ with 
characteristics similar to the one that was installed on the 
target system.   

The hacker extracts the exploit code within the ‘r.tgz’ file 
and then runs the exploit on the target system.  Figure 3 
shows the actual Honeynet logs of the hacker’s session.  The 
‘r.tgz’ rootkit deletes all traces of itself on the target system 
after installation.  However, we were able to reconstruct 
what the hacker accomplished by utilizing the Honeynet 
logs for this exploit session.  

 

 
Figure 3: Installation of 'r.tgz' rookit 

II. METHODOLOGY TO CHARACTERIZE ROOTKIT EXPLOITS 
 

We are able to apply our methodology to the valid copy 
of the rootkit that we retrieved from the Georgia Tech 
Honeynet.  The following is a description of the 
methodology that we follow to identify the specific delta 
( ∇ ) of a rootkit exploit targeting the Linux operating 
system.    The concept of identifying a specific delta is 
described in our paper titled “A Methodology to Detect and 
Characterize Kernel Level Rootkit Exploits Involving 
Redirection of the System Call Table”  presented at the 
Second International Information Assurance Workshop [6].  
In this case we choose Linux as our operating system for 
this specific investigation but this methodology should 
apply to other UNIX type operating systems. 

 
1. Start with a clean installation of the specific kernel 

version of the operating system that was the intended 
target of the rootkit exploit.   



 

 

2. Install a kernel level debugger on this system.  The 
installation of the kernel level debugger will probably 
require the system to be recompiled with a custom 
kernel. 

3. Install and run a file integrity checker program on 
this system.  Select target directories based on an 
analysis of the installation that occurred when the 
rootkit was originally acquired. 

4. Install a rootkit detection program such as chkrootkit 
on the target system.  This will detect many existing 
system utility rootkit exploits and may help to 
identify modification to existing as well as entirely 
new rootkit exploits. 

5. Install a program such as kern_check [7] to check the 
integrity of the system call table within the kernel.    
Run this program on the target system to establish a 
baseline and ensure that the kernel integrity has not 
been compromised on this initial installation.   

6. Make a copy of the kernel text segment of memory 
via /dev/kmem for future comparison.  We have 
presented a method to do this in our paper titled “ A 
Methodology to Characterize Kernel Level Rootkit 
Exploits that Overwrite the System Call Table” to be  
present at SoutheastCon 2004 [8].  The kernel text 
segment of kernel memory should remain consistent 
for a particular kernel build.   Any deviation between 
this copy and a future copy could indicate that the 
kernel may have been compromised by a kernel level 
rootkit exploit.    A more detailed analysis of kernel 
space can then be conducted via the kernel debugger 
(kdb) program that has previously been installed. 

7. Run the file integrity checker program and the rootkit 
detection program on the target system prior to 
infecting the system with the rootkit to establish a 
baseline for comparison between a clean and infected 
system. 

8. Install the rootkit on the target system.  Follow the 
installation steps that were used when the rootkit was 
initially acquired for analysis. 

9. Run the file integrity checker program on the system 
and note the results.  The presence of certain types of 
rootkits should be indicated by the results of the file 
integrity checker program but other types of rootkits, 
specifically those that target the kernel, may not be 
detected by this type of program. 

10. Run the rootkit detection program (chkrootkit [9]) on 
the system that has been infected with the rootkit that 
is being analyzed.  If this is a previously known 
system utility rootkit then a program such as 
chkrootkit should be able to detect the presence of 
this rootkit.  If the file integrity checker program 
detected a change to a system utility binary program 
file but the rootkit detection program did not detect 
the presence of a rootkit then we can assume that we 
are dealing with either a modification to an existing 
system utility rootkit or an entirely new system utility 
rootkit.   

11. Run the kernel integrity check program on the target 

system.  If the system call table was modified or 
redirected, then this program should be able to detect 
what has been modified.  Make note of each system 
call that is indicated as being modified as well as a 
total count of the number of system calls that have 
been modified by this rootkit. The system calls that a 
rootkit modifies can establish a signature for a 
specific kernel level rootkit [10].  This program may 
not be able to detect some other modification to the 
kernel text code segment of the kernel. 

12. Make a copy of the kernel text code and compare it 
against the original copy of the kernel text code that 
was prepared before infecting this system with the 
rootkit.  A difference between these two files may 
indicate the presence of a kernel level rootkit.  This is 
especially significant if the existing kernel integrity 
checker programs failed to detect any modification to 
the kernel.  This would indicate that one is dealing 
with a new type of kernel level rootkit that does not 
target the system call table.  The system call table is 
the normal avenue of attack for hackers who are 
attempting to create a kernel level rootkit.  

 
The results of these steps can be used to classify a rootkit 

exploit as an existing, modification to an existing, or an 
entirely new rootkit.   

III.  ANALYSIS PROCESS 
 

The Georgia Tech Honeynet was able to capture the entire 
exploit session of a system compromise including the  
downloaded files as well as the remote machines that the 
hacker connected to from the compromised machine.  This 
provided us with the scripts and files that were used by the 
hacker to install the r.tgz rootkit.  Preliminary analysis of 
these files gave us an indication of how this rootkit could be 
installed on a target system similar to the system on the 
Honeynet.   We then set out to install the r.tgz  rootkit on a 
target system to analyze and classify it. 

We have initially set up a baseline system that consists of 
the same operating system as the system that was 
compromised on the Honeynet.  In this case it is Red Hat 
6.2 running the Linux 2.2.14 kernel.  Following the 
procedures outlined in Section II, we installed a kernel level 
debugger (kdb) on this system as well as a file integrity 
checker program (AIDE [11]) .  We then installed a known 
rootkit detection program (chkrootkit [9]) and made a copy 
of the kernel text segment via /dev/kmem.    Prior to 
infecting this system with the r.tgz rootkit  we ran the AIDE 
and chkrootkit program to establish a clean baseline for 
analysis and classification.  We then infected this system 
with the r.tgz rootkit.   

The first check that we ran on the infected system is the 
file integrity check to determine what files have been added, 
changed, or deleted.  Running the AIDE program on the 
infected system indicated that 2 files had been added to the 
infected system and 178 files had been changed by the r.tgz 
program.  This is a large number of files and initial analysis 



 

 

of the install scripts for this rootkit does not indicate that all 
of these files are being modified.   Follow on analysis was 
conducted on these modified files to determine the nature of 
these changes.  Figure 4 shows the results of running AIDE 
on the infected system. 

 
Figure 4: AIDE results on r.tgz infected system 

The next step was to run the known rootkit detection 
program (chkrootkit) on the target system.   Running this 
program  utilizing the binaries that are currently installed on 
the target system only results in the identification of one 
system binary as being infected.  The binary that is indicated 
as being infected is ifconfig.  The chkrootkit program also 
detects five suspicious files and possible infections by the 
“Showtee” and “Romanian” rootkits.   

The recommended method of using the chkrootkit 
program is to use known good binary files.  Known good 
binary files can be copied to a read-only disk and the files 
on this disk can be accessed by the chkrootkit program 
using the –p switch.  Using known good binary to check the 
system results in the identification of the same changes 
identified in the previous paragraph plus 5 additional 
binaries being identified as being infected on the target 
system.  These five binary files are:  du,  ifconfig, killall, ls, 
and pstree.  The check using known good binaries also 
indicates the following under the lkm check:   1 process 
hidden from readdir command, 15 processes hidden form ps 
command.  The differences between the output using known 
good binaries and the output using the binaries currently 
installed on the system indicate that the r.tgz rootkit 
modified some of the system binary files that are used by 
the chkrootkit program to check the system status.  As a 
result we can conclude that known good binaries should 
always be used while running the chkrootkit program.  The 
five files detected as being changed by the chkrootkit 
program are also detected as being changed by the AIDE 
file integrity checker program.  These results are used in our 
methodology to classify this rootkit exploit. 

The next step in the methodology is to verify the integrity 
of the kernel.  Running the kernel check program 
(kern_check) on the target system utilizing  a known good 
/boot/System.map file indicates that there is a mismatch of 
21 system calls between the kernel and the known good 
/boot/System.map file.  The results of the kern_check 
program are shown in figure 5. 

 
Figure 5: Results of kern_check program 

This is an indication that the kernel of the target system 
may have been compromised by the r.tgz rootkit.  Checking 
the current kernel text segment code against the previously 
archived version of the kernel text segment code indicates 
that the kernel has been compromised.  The previously 
archived version of the kernel text segment code was built 
when the target system was first compiled. 

  Analysis of the kernel using kdb indicates that the pointer 
to the system call table is being redirected to a new instance 
of this table. The correct system call table address is 
0xc0248928 and can be retrieved from the 
/boot/System.map file.   The current system call table 
address as displayed by kdb in kernel memory is 
0xc31ac000.  The following is the results of running a kdb 
query on the system call interrupt within kernel space.  The 
returned call statement should refer to the address of the 
system call statement that is stored in the /boot/System.map 
file (0xc024928) and it does not.  

    
      kdb> id 0xc0109d84 ~ (address of system call interrupt 
from /boot/System.map) 
 
       system_call + 0x2d:  call *0xc31ac000(,%eax,4) 
 
This is an indication that the system call table is being 
redirected by a kernel rootkit 

Since the kernel is a fundamental part of the computer 
operating system we will first examine this aspect of the 
r.tgz rootkit to determine the method that this rootkit used to 
compromise the target system.   You can not trust any of the 
system output if the kernel has been compromised. 

As previously mentioned, the Honeynet allowed us to 
retrieve the install scripts and code that is utilized by the 
r.tgz rootkit.  The main install file for the r.tgz rootkit calls a 
series of script files to install the rootkit.  Analysis of these 
scripts indicates that the startfile script is the script that 



 

 

compromises the kernel on the target system.  The replace 
script is used to replace the system binaries.   

The startfile script  copies the r.tgz file init to the 
/etc/rc.d/init.d directory.  Analysis of the r.tgz init file 
indicated that this is the script that compromises the kernel.  
The init script file executes several binary files named 
sendmail (executed as a daemon),  write (executed as a 
daemon),  and two instances of the executable all with the 
‘i’ switch and a pid.  The sendmail binary file is actually 
another instance of the all program that is copied over in the 
createdir script file that is executed by the r.tgz startup script 
file.  This analysis resulted in the identification of three 
instances of the all binary executable file being executed by 
the r.tgz rootkit.  Two of these instances of the all binary 
file have pid’s  associated with them.   The fact that the init 
file, which calls these three instances of the all file, has been 
copied into the /etc/rc.f/init.d  directory is an indication that 
the r.tgz rootkit developer wanted this code to be executed 
upon system reboot, making the kernel compromise portion 
of this rootkit resident within memory.  The use of file 
names such as init, sendmail, and write are examples of a 
direct masquerade as described by Thimbleby, Anderson, 
and Cairns.  Direct masquerades are files that pretend to be 
normal programs [12].  As a result of this analysis, we 
choose to examine the all program.  This program is a 
binary executable file and we do not have the underlying 
source code that was used to create this rootkit.  We choose 
to use a tool such as strings on this file initially in 
conducting our analysis.  An segment of the results of 
running the strings  command on the r.tgz all binary file are 
indicated in Figure 6. 

 

 
Figure 6: strings output of r.tgz all program 

The strings output of this program indicates that the all 
program is a kernel level rootkits known as INKIT.  A 
search on the Internet for a kernel rootkit called INKIT does 
not result in any references to this particular rootkit.  
According to the use statement that is output by the strings 
command, the ‘i’ switch that is used in the init script with a 
particular pid is used to make that pid invisible.  The last 
string displayed in Figure 6 is significant to note.  This text 

string makes reference to the SuckIT rootkit.  We presented 
an in depth analysis of the SuckIT  kernel level rootkit in 
[6].  The fact that this string appears in INKIT, including the 
misspelling of successfully just like the actual SuckIT 
rootkit, leads us to believe that INKIT is a modification or a 
copy of the SuckIT kernel level rootkit.  Next we attempted 
to uninstall the INKIT kernel level rootkit using the ‘u’ 
switch as indicated by the use statement in Figure 7.   

 

 
Figure 7: Uninstall of INKIT kernel rootkit 

This command was successful in uninstalling the kernel 
level rootkit.  We then verified the integrity of the kernel 
with the kern_check kernel integrity check program.  The 
indication was that there are no system calls currently being 
redirected by the kernel.  An examination of the kernel 
using kdb indicated that the system call interrupt is now 
referencing the correct system call table.  As a final check, 
we compared the current kernel text segment against the 
original archived text segment.  These files now match.  At 
this point the kernel is no longer compromised and we reran 
the file integrity checker and known rootkit detection 
programs on the target system since we can now trust the 
kernel output.  The output from the AIDE file integrity 
checker program now indicates that 196 files have changed.  
This is an increase of 19 files from the previous check of the 
AIDE program where 177 files were detected as being 
changed by the r.tgz rootkit.  It appears that the kernel 
element of the r.tgz rootkit was hiding these 19 changed 
programs from the AIDE program.  Next in the analysis 
process we analyzed these changed files and the r.tgz install 
scripts to determine how these files had been changed.  The 
results of the new instance of the AIDE program are 
indicated in Figure 8. 

 

 
Figure 8: New AIDE results on target system. 



 

 

Analysis of the install scripts for the r.tgz rootkit does not 
indicate that 196 files are being changed when the rootkit is 
installed.    Analysis of the AIDE results indicates that all of 
the executable files in the /bin directory are changing.   
Comparison of the files in the /bin directory with known 
good files indicates that the files that are not being changed 
by the r.tgz rootkit are increasing in size by 8759 bytes.  
This increase in file size is a signature of the 
Linux.OSF.8759 virus.  This virus is associated with the 
hax.tgz rootkit [13]. Application of the methodology thus 
far has indicated that r.tgz is composed of elements of two 
rootkits; the INKIT kernel level rootkit which is based on 
SuckIT, and the hax.tgz binary level rootkit.   

Another signature of the Linux.OSF.8759 virus is that a 
trojan port is opened on the target system at 3049.  This 
trojan port is detected by the chkrootkit program which 
checks for processes listening on ports with the use of the 
netstat command with the –anp switch to detect open ports 
on the system in question.   Other Trojan ports can be 
detected in a similar fashion. 

There is a utility named clean.OSF.8759-ps that can be 
used to clean infection of the Linux.OSF.8759 virus [14].  
However, these files can not be cleaned by the root user 
after the r.tgz rootkit is installed on the target system.  This 
is a result of the socklist script within the r.tgz rootkit 
changing the attributes on all of the files in the /bin directory 
with the chattr  +ASacdisu command.  Attributes on 
selected files in the /sbin and /usr/bin directories are also 
reset by the replace script within the r.tgz rootkit after these 
files are infected with the Linux.OSF.8759 virus.  Files and 
directories with their attributes reset could be used as an 
indication that a possible rootkit is installed on the target 
system.  These attributes must be turned off using the chattr  
-ASacdisu command to disinfect these files.   

To produce an accurate count of the number of binary files 
that are added, deleted, or changed by the r.tgz rootkit the 
attributes of the files within the /bin, /sbin, and /user/bin 
directories must first be reset.  Then these directories can be 
disinfected with the clean.OSF.9759-ps utility.    Once these 
files and directories have been disinfected the AIDE 
program is run to provide an accurate count of the files that 
have been changed on the target system by the r.tgz rootkit.  
Figure 9 shows the results of this instance of the AIDE 
program on the target system.  The results are that 2 files 
have been added and 14 files have been changed by r.tgz.  
These results correspond with the install scripts for the r.tgz 
rootkit. 

 

 
Figure 9: Accurate AIDE count of changed files 

IV. ROOTKIT CHARACTERISTICS 
 

The chkrootkit program only detects 5 of the 14 files that 
are detected as being changed by the AIDE program.  It may 
be possible to develop new signatures for the 9 changed 
files that are not detected by chkrootkit.  These files are: dir, 
vdir, md5sum, top, and strings in the /usr/bin directory; ps, 
netstat, and login in the /bin directory; and ifconfig in the 
/sbin directory.  Two other possible signatures are the two 
added files, /usr/bin/strings and /sbin/sendmail.   There are 
currently two instances of the strings command in the 
/usr/bin directory.  The socklist script of the r.tgz rootkit 
copies the original /usr/bin/strings file to the following file: 
/usr/bin/strings<blank space>.  This would make it hard to 
detect that this file has been tampered with under a visual 
examination.  However, this is a signature that can be used 
to detect the presence of either the r.tgz rootkit of the binary 
elements that make up the r.tgz rootkit on the target system.   

Using the elements of the methodology to detect unique 
rootkit string signatures that we have presented in our paper 
“A Methodology for Detecting New Binary Rootkit 
Exploits”  we are able to detect some possible unique string 
signatures in the binary files that are replaced by the r.tgz 
rootkit [14].  The following are potential string signatures 
that can be used by a program such as chkrootkit to detect 
the presence of the r.tgz rootkit binary file replacements.   

 
 /usr/bin/dir     “stpcpy” 
/usr/bin/vdir    “/usr/include/file.h” 
/usr/bin/md5sum  “/usr/local/share/locale” 
/usr/bin/top   “proc_hackinit” 
/usr/bin/strings   “/bin/su  –“ 
/usr/bin/socklist   “bin/egrep  –v” 
/bin/ps    “/tmp/extfsRNV23Z” 
/bin/netstat   “__bzero” 
/bin/login   “cococola” 
 
We have already characterized the kernel rootkit that is an 



 

 

element of r.tgz.  This kernel rootkit is one that redirects the 
system call table to an entirely new system call table as 
previously described by the authors in [6].  Based on other 
analysis that we have done, we were able to uninstall and 
reinstall this rootkit on the target system.  It is significant to 
note that every new reinstallation of this kernel level rootkit 
will results in a new address in kernel space for the new 
instance of the compromised system call table.   

As previously stated, we concluded that the r.tgz rootkit is 
a blended rootkit that contains elements of the INKIT kernel 
rootkit and the hax.tgz binary rootkit.   The INKIT rootkit is 
based on SuckIT.  The hax.tgz rootkit is based on bigwar.tgz 
rootkit [13]. 

V. SUMMARY 
We have applied our methodology to a rootkit that we 

were able to acquire on the Honeynet research network that 
we established at Georgia Tech.  Our methodology enabled 
us to identify the binary elements that this rootkit replaced 
on the target system.  New signatures were identified that 
can help to detect the presence of this rootkit.  

The methodology enabled us to characterize the kernel 
element of this rootkit as a modification to an already 
existing kernel rootkit.  We were able to uninstall this kernel 
rootkit on the target system. 

We have also applied this methodology to nine additional 
rootkits.  This analysis enable us to characterize these 
rootkits and identify specific signatures that could be used in 
subsequent detection and analysis [15]. 

The analysis that we have presented concerning the 
application of our methodology to a rootkit would benefit 
network administrators, researchers, and network security 
personnel in characterizing rootkits as well as provide 
methods to detect these rootkits. 
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