
DIRA: Automatic Detection,
Identification, and Repair of
Control-Hijacking Attacks

Alexey Smirnov and Tzi-cker Chiueh
SUNY at Stony Brook

{alexey, chiueh}@cs.sunysb.edu
DEFCON 13

Introduction
♦ Buffer overflow attacks are the most common way

for an attacker to gain control of a remote system.
♦ A comprehensive defense strategy should include

of the following components:
– Attack detection – to prevent the attack from causing

damage and further propagation;
– Attack identification – to prevent the attack from

penetrating into the system in the future;
– Attack repair – to allow the compromised application to

continue its normal execution.
♦ In this presentation we describe a compile-time

defense mechanism that provides all three
components.

Outline of the Talk
♦ Introduction
♦ Related Work
♦ DIRA Architecture

– Attack Detection
– Memory Logging Approach
– Attack Identification (signature generation)
– Attack Repair
– Limitations

♦ Implementation Issues
♦ Performance Evaluation
♦ Conclusion

What is a Buffer Overflow Attack

♦ Control-hijacking attacks work by overwriting a
control pointer such as the return address,
function pointer, stack frame pointer, jump table
entry, interrupt handler address, etc.

♦ Buffer overflows are possible when the length of
the target buffer is less than the length of the data
that can be written into it.

♦ Standard libc functions such as strcpy() or
sprintf() are responsible for most buffer overflows.

♦ Once the control is hijacked, it can be (1)
redirected into the malicious code or (2) redirected
into a standard function (return-into-libc attacks).

Outline of the Talk
♦ Introduction
♦Related Work
♦ DIRA Architecture

– Attack Detection
– Memory Logging Approach
– Attack Identification and Repair
– Limitations

♦ Implementation Issues
♦ Performance Evaluation
♦ Conclusion

Taxonomy of Attack Detection Methods

♦ Extending the OS/hardware
– Non-executable stacks and address-space

randomization (PaX, Openwall for Linux, NGSEC
StackDefender for Windows). Machine emulators
(Bochs, Valgrind) allow to implement instruction
randomization, pointer encryption, memory tainting.

♦ Extending the applications
– Program analysis approaches: lint, Flawfinder, a

number of commercial tools;
– Run-time approaches: Libsafe, Libverify, Dinamo

(program shepherding);
– Hybrid approaches: program transformation + run-time

monitoring – Stackguard, RAD.

Source-code Based Attack Detection

♦Stackguard – place a canary word before
the RA in the function prologue and check
it in the function epilogue. The assumption
is that the attacker will have to overwrite
the canary word in order to overwrite the
RA.

♦RAD – save the original RA in a safe place
in the function prologue and compare it to
the value stored in the stack in the function
epilogue.

Approaches to Attack Identification
♦ Automatic ways to identify attacks (that is, to generate

their signatures) are very important for worm epidemics
confinement.

♦ The previous systems either provided a single attacking
packet or required a large pool of malicious network data.

♦ Toth and Kruegel – look at network packets payloads
and perform abstract code execution.

♦ TaintCheck – uses the value of compromised control
pointer as the attack signature.

♦ Autograph – extracts most common subsequences from
suspicious flows and reports them as signatures.

♦ Polygraph and Nemean – use machine learning
algorithms to derive common patterns from a large set of
malicious flows.

Approaches to Attack Repair
♦ Program rollback and replay is used in software

debugging. Two approaches: (1) keep execution history
(Spyder) or (2) do periodic state check-pointing. Check-
pointing is easy under Linux because of copy-on-write
fork() system call (RECAP and Flashback). Can be more
difficult under other OS.

♦ Check-pointing relies on the OS rather than on the
applications.

♦ Shadow Honeypot runs two versions of the application
(protected and non-protected) and dynamically switches
between the two once an attack has been detected.

Outline of the Talk
♦ Introduction
♦ Related Work
♦DIRA Architecture

– Attack Detection
– Memory Logging Approach
– Attack Identification
– Attack Repair

♦ Implementation Issues
♦ Performance Evaluation
♦ Conclusion

DIRA Approach
♦ DIRA provides a unified compile-time solution to the three problems

and is implemented as an extension to GCC 3.4.1. It uses a unified
approach called memory updates logging.

♦ The idea is to maintain a run-time log of all operations that change the
memory state of the program.
– To detect an attack – compare the current RA with that saved in the log;
– To identify the attack – trace back the data that replaced the control pointer

to the point where this data first appeared in the program;
– To repair the program – restore the memory state using the values stored

in the log.
♦ DIRA has three modes of compilation: D-mode (detection only), DI-

mode (detection+identification), DIR-mode (detection+identification
+repair).

♦ At compile time, DIRA instruments the source code to perform logging
and to check correctness of control pointers. At run-time, the logging
code generates the memory updates log.

Attack Detection (D-mode)
♦ DIRA uses RAD-like approach: the code to safe the

RA in a protected buffer (for example, sliced
between a pair of mprotected() pages) is added to
the function prologue. The actual RA stored in the
stack is compared with this value in function
epilogue. Using a separate buffer to store RAs is an
optimization of using a common memory update
log to store RAs.

♦ DIRA can protect other sensitive data structures
such as GOT, signal handler tables in a similar
fashion (not implemented yet).

Memory Updates Logging
♦ Memory updates log is a circular buffer; each entry has

four fields: read_addr, write_addr, len, data.
♦ Three sources of memory image changes: assignment

operations (X=Y) and standard functions (strcpy(), …),
function invocations.

♦ DIRA logs effect of each operation of the form X=Y
where X and Y are directly referenced variables, array
references (a[i]), or de-referenced variables (*(a+1)).
– read_addr is set to &Y,
– write_addr is set to &X,
– len is set to sizeof(Y),
– data is set to the pre-image of X in DIR mode and is empty in

other modes.

Memory Updates Logging
♦ If the right-hand side is a complex expression then a log

record is created for each variable of it.
♦ To handle updates performed by libc functions DIRA

proxies a number of them.
– String manipulation functions;
– Format string functions;
– File and Network I/O functions;
– and others.

♦ The log is in fact a dual-purpose buffer. It is used to store
the memory updates and tags, special marks indicating
program state change.
– FUNCTION_ENTRY tag is inserted when a function is called;
– FUNCTION_EXIT tag is inserted before a function returns.

Attack Identification (DI-mode)
♦ The purpose of attack detection is to identify attack

packets and generate attack signatures that minimize the
false positive and false negative rates.

♦ DIRA’s signature format: multiple packets, each packet
represented as a regular expression. The final attacking
packet has the length constraint in it.

♦ Attack packet identification leverages the dependency
information available in the memory updates log.

♦ There are two types of dependencies: data dependencies
and control dependencies:
– A data dependency is created whenever one variable is assigned

to another.
– A control dependency is created between a variable X and a

variable Y when variable X used in a conditional expression can
prevent control flow from reaching variable Y.

Packet Identification Using Data
Dependencies
♦ Trace-back algorithm allows one to trace the

malicious data back to the point where it was
received. The following code illustrates how data
dependencies can be used to identify a malicious
packet.

Definition of Control Dependencies

♦ Whenever variable
X can prevent
control flow from
reaching variable Y
a control
dependency between
X and Y is created.

♦ stmt1 and stmt2 are
always dependent.

♦ Control dependencies can also be created when loops
such as for and while are used. These dependencies are
also stored in the memory updates log.

Complete Trace-back Algorithm
♦ Two special tags – START_SCOPE and END_SCOPE are

added to the memory updates log. The conditional
variables are stored in the START_SCOPE tag along with
the closing scope ID.

♦ The new version of the trace-back algorithm will maintain
a set of currently tracked addresses rather then just one
address.

♦ In order to account for the control dependencies the trace-
back algorithm should find all currently open scopes and
add the variables saved in the START_SCOPE tags to the
set of tracked addresses.

♦ Identifying all attack packets can reduce the false positives
rate.

Attack Identification (DI-mode)
♦ Several classes of libc functions need to be

proxied:
– Copying/concatenation (strcpy(a, b)) – read_addr is set

to the address of b, write_addr – address of a, len to
strlen(b) and data to NULL (DI-mode);

– Network I/O (recv()) – read_addr=-1 (external data).
data field stores the post-image of the buffer being
written; this data is presented as the malicious packet
content when the trace-back algorithm finishes;

– File I/O (read()) – same as network I/O;
– Format string (sprintf()) – similar to copying functions,

but can produce multiple log records;

Representing Packets as Regular
Expressions
♦ Polymorphic worms change their appearance from one

attack instance to another so the packets need to be
generalized.

♦ For each byte of the attacking packet DIRA determines
whether it was looked at by the program or not looked at.
For example, strcmp() applied to some bytes of the
packet converts them into looked-at bytes. If, however, the
bytes were blindly copied by a strcpy() then they are still
non-looked-at.

♦ Initially all bytes are not-looked-at.
♦ DIRA traverses the log forward from where the packets

were received and records all packet bytes that were
looked at.

Length Constraint Generation

♦The length
constraint limits
the attacking part
of the packet by
specifying the
terminating
character and its
maximum offset
in any benign
packet.

DIRA’s Signature File Format
♦ N – number of packets
♦ L_i – length of i-th packet
♦ Regular expression of the

packet. Possible characters
are shown on the right:

♦ The length constraint is
specified for the last
attacking packet.

Attack Recovery (DIR-mode)
♦ Main goal: bring the program to a state in which

it was before the attack packet(s) was received.
♦ Two issues:

1. How to restore the pre-attack state?
2. From which point to continue execution?

♦ Memory updates log is used to solve (1).
Program restart points can only be at the
beginning of a function because only global
updates are logged. The proper function turns
out to be the least common dynamic ancestor of
the function in which the attack was detected
and the function in which the data was read in.

Choosing the Restart Point

♦ depth is a loop invariant: it is the relative depth of the
current function with respect to the greatest dynamic
ancestor seen so far.

Choosing the Restart Point
♦ Sometimes, it is possible to resume execution

from the middle of a function. This becomes
possible if there are no local variable updates
between when f_read returns and f_attack begins.

♦ No system support is required for restarting –
longjmp() and setjmp() are used. A setjmp() call is
inserted before the function that can be a potential
restart point is called (to push the arguments
again).

♦ DIRA inserts the first local update tag when it
encounters such an update after a function call.

Tags Used in DIR-mode
♦Function entry tag – inserted in function

prologue;
♦Function exit tag – inserted in function

epilogue;
♦ Jump buffer tag – indicates that the data

field contains data returned by setjmp();
♦First local update – inserted when the first

local update after a function call is
encountered.

Proxy Function for DIR-mode
♦ Memory management functions (malloc, free, …). Deferred free is

used to keep the objects in memory as they can be brought to life again
after repair completes. The data is actually freed when the log entry is
revoked (circular buffer of limited length).

♦ Interprocedural Jump Functions (setjmp, longjmp) – proxy functions
keep the log consistent by inserting the proper number of function exit
tags.

♦ Privilege Management Functions (seteuid, setegid) – at repair time, the
application needs to restore its original effective uid/gid.

♦ Process Management Functions (fork) - no need to create a new log
explicitly because of copy-on-write semantics of fork. DIRA does not
perform cascading rollback; it roll backs only the process in which an
attack occurred. No change to parent process is performed.

Limitations of the Prototype
♦Single read address in logging. For B=A+C,

the read address is set to ‘unknown’.
♦Redundant logging. For example, if the

same global variable is updated in a loop
without any function calls, it needs to be
logged only once.

♦Better multithreading support needed
(vfork()).

♦Alarms and signals are not recovered.

Outline of the Talk
♦ Introduction
♦ Related Work
♦ DIRA Architecture

– Attack Detection
– Memory Logging Approach
– Attack Identification and Repair
– Limitations

♦ Implementation Issues
♦ Performance Evaluation
♦ Conclusion

Implementation Issues
♦ Source code instrumentation is performed at two

levels: AST level and machine code level.
♦ Basic AST transformation: X=Y ->

(log(&Y,&X,sizeof(Y),X), X=Y).
♦ Special care is taken of unary arithmetic

operations (to avoid double modification).
♦ Each function call expression is prefixed with a

call to setjmp(): func() -> (setjmp(), func()).
♦ Function prologue and epilogue are changed at

machine code level (specific to GCC).

Implementation Issues
♦ Special support for libraries: they should be

reusable.
♦ Solution: each function is duplicated. The first

copy is left intact, the second is instrumented. An
if-expression is inserted in front of the function. It
checks need_logging==0. If the condition is true
then the uninstrumented branch is taken, otherwise
the instrumented one is taken. need_logging is a
special variable added to each library. It is set to
zero by default and can be changed to one by any
application that requires DIRA support.

Outline of the Talk
♦ Introduction
♦ Related Work
♦ DIRA Architecture

– Attack Detection
– Memory Logging Approach
– Attack Identification and Repair
– Limitations

♦ Implementation Issues
♦Performance Evaluation
♦ Conclusion

DIRA Evaluation
♦ Programs tested:

– ghttpd 1.4 – have exploit;
– drcatd 0.5.0 – have exploit;
– named 8.1 – have exploit;
– qpopper 4.0.4;
– proftpd 1.2.9;

♦ Two goals: measure run-time overhead and study the
impact of the recovery procedure on the program
availability.

♦ Configuration: server machine (P-4M 1.7GHz, 512 MB
RAM), two clients (Athlon 1.7GHz, 512 MB RAM).

♦ Used exploit programs from securiteam.com and
insecure.org.

Run-time Overhead

♦The following two graphs show run-time
overhead for programs compiled in DIR-
mode:

File System Undo
♦ Is it necessary? Three out of five programs

of the test suite do not perform any file I/O
at all. The remaining two write temp files
and log information. This file system state
is not critical.

Program Recovery
♦ Bind 8.1 – recovery OK.
♦ Ghttpd – recovery OK.
♦ drcatd – not exactly OK. The least common

dynamic ancestor is main(), and there are local
updates between f_read and f_attack. Solutions
(both non-automatic): (1) rewrite the source code
so that the least common dynamic ancestor is not
main (2) track all updates, not only locals. The
second solution is used currently.

Is Recovery Really Useful?
♦Recovery does not work sometimes and can

be expensive. Is it really better than just
terminating the program? We believe that
yes because:
– In case of a single-threaded multi-client

program (such as a high-performance web-
server), terminating the program disconnects all
clients.

– This question is equivalent to asking whether
the source-code checking tools are necessary or
we can do well just by using Stackguard.

Outline of the Talk
♦ Introduction
♦ Related Work
♦ DIRA Architecture

– Attack Detection
– Memory Logging Approach
– Attack Identification and Repair
– Limitations

♦ Implementation Issues
♦ Performance Evaluation
♦Conclusion

Conclusion
♦ DIRA is the first system that solves the problems of attack

detection, identification, and repair in a unified way.
♦ It can produce accurate multi-packet signatures from a

single attack instance.
♦ Our main research contribution is applying dynamic slicing

which is a well-known technique in programming
languages to some interesting security problems.

♦ We are planning to apply the same technique for automatic
patch generation. Indeed, the information contained in the
memory log allows one to tell the amount by which a
buffer was overwritten and come up with a fix to the
vulnerability such as using a larger buffer or limiting the
number of bytes read from network.

Questions?

