Network Mathematics - Why is it a Small World?

Oskar Sandberg

Networks

 Formally, a network is a collection of points and connections between them.

Networks

- Formally, a network is a collection of points and connections between them.
- This is an abstraction which can be used to describe a lot of different systems (technical, physical, biological, sociological, etc. etc.).

Networks

Math	Graph	Vertex	Edge
CS	Network	Node	Link
Physics	System	Site	Bond
Sociology	Social Network	Actor	Tie
		Individual	Friendship
	WWW	Webpage	Link (d)
	Internet	Site	Connection
		Network	Bridge
	Road System	Crossing	Road

$$G = (V, E)$$

$$G = (V, E)$$

V is a set (collection) of vertices.

$$G = (V, E)$$

- V is a set (collection) of vertices.
- E is a set of edges (pairs (u, v) where $u, v \in V$).

$$G = (V, E)$$

- V is a set (collection) of vertices.
- E is a set of edges (pairs (u, v) where $u, v \in V$).
- Structured and designed: Corporate LANs, telephone networks.

$$G = (V, E)$$

- V is a set (collection) of vertices.
- E is a set of edges (pairs (u, v) where $u, v \in V$).
- Structured and designed: Corporate LANs, telephone networks.
- Randomly evolved: The Web, social networks.

$$G = (V, E)$$

- V is a set (collection) of vertices.
- E is a set of edges (pairs (u, v) where $u, v \in V$).
- Structured and designed: Corporate LANs, telephone networks.
- Randomly evolved: The Web, social networks.
- Somewhere in between: The Internet, P2P Networks.

Network Mathematics

The questions depend on the type of network.

Network Mathematics

The questions depend on the type of network.

 When designing structured networks, questions are usually algorithmic. (How do I create a network with this property?)

Network Mathematics

The questions depend on the type of network.

- When designing structured networks, questions are usually algorithmic. (How do I create a network with this property?)
- When studying randomly generated networks questions tend to analytic. (Does the network have this property?)

Random Graph Theory

The simplest model for a random graph $G(n,p) = (V,\overline{E})$:

Random Graph Theory

The simplest model for a random graph G(n,p) = (V,E):

•
$$V = \{0, 1, 2, \dots, n\}$$

Random Graph Theory

The simplest model for a random graph G(n, p) = (V, E):

- $V = \{0, 1, 2, \dots, n\}$
- $u \leftrightarrow v$ (that is $(u, v) \in E$) independently and with probability p for every pair of vertices u and v.

There are a lot of interesting results regarding this type of graph. Relevant properties include:

There are a lot of interesting results regarding this type of graph. Relevant properties include:

• If p > 1/n "most" of the vertices form one connected cluster.

There are a lot of interesting results regarding this type of graph. Relevant properties include:

- If p > 1/n "most" of the vertices form one connected cluster.
- If $p > \log n/n$ all of the vertices are connected.

There are a lot of interesting results regarding this type of graph. Relevant properties include:

- If p > 1/n "most" of the vertices form one connected cluster.
- If $p > \log n/n$ all of the vertices are connected.
- The "diameter" of the connected cluster is $\log n$.

 However, this isn't a great model for studying real world networks.

- However, this isn't a great model for studying real world networks.
- The vertex degree is highly concentrated (varies little).

- However, this isn't a great model for studying real world networks.
- The vertex degree is highly concentrated (varies little).
- Triangles are relatively rare.

- However, this isn't a great model for studying real world networks.
- The vertex degree is highly concentrated (varies little).
- Triangles are relatively rare.

In recent years, new models have been introduced for networks with various properties.

 The "Small World Phenomenon" is that many naturally occurring networks have a small graph diameter.

- The "Small World Phenomenon" is that many naturally occurring networks have a small graph diameter.
- It was famously illustrated for social networks by Stanley Milgram in 1967.

Stanley Milgram

- The "Small World Phenomenon" is that many naturally occurring networks have a small graph diameter.
- It was famously illustrated for social networks by Stanley Milgram in 1967.
- He experimented by having volunteers in Omaha, Nebraska forward letters to a stockbroker in Boston through friends.

Stanley Milgram

- The "Small World Phenomenon" is that many naturally occurring networks have a small graph diameter.
- It was famously illustrated for social networks by Stanley Milgram in 1967.
- He experimented by having volunteers in Omaha, Nebraska forward letters to a stockbroker in Boston through friends.
- Milgram reported that on average the packages reached their destination in only six steps.

Stanley Milgram

An Example.

Using social networking websites (in this case orkut) we can create similar paths. For example:

An Example.

Using social networking websites (in this case orkut) we can create similar paths. For example:

From:

Miss Fernanda Trincado, Santa Cruz del Sol, Brazil.

An Example.

Using social networking websites (in this case orkut) we can create similar paths. For example:

From:

Miss Fernanda Trincado, Santa Cruz del Sol, Brazil.

To:

Oskar Sandberg, Göteborg, Sweden.

Leandro Toledo

Is related to:

Marcelo Toledo

Is related to:

Marcelo Toledo

Who knows:

Who knows:

Knows:

Leandro Toledo Who knows:

Roger Dingledine

Is related to:

Marcelo Toledo

An Example. cont.

Who knows:

Knows:

Leandro Toledo Who knows:

Roger Dingledine

Is related to:

Marcelo Toledo

Who Knows:

Oskar Sandberg

Mathematical Models.

 The simple type of random graphs discussed before have low diameter.

Mathematical Models.

- The simple type of random graphs discussed before have low diameter.
- As noted, however, they are not a good model for social networks.

Mathematical Models.

- The simple type of random graphs discussed before have low diameter.
- As noted, however, they are not a good model for social networks.
- It isn't possible to search in them.

For searching to be possible, vertices need to have locations, and whether $u \leftrightarrow v$ should depend on the distance between them (d(u,v)).

- For searching to be possible, vertices need to have locations, and whether $u \leftrightarrow v$ should depend on the distance between them (d(u,v)).
- Let $P(x \leftrightarrow w) \propto 1/d(x,w)^{\alpha}$, where d(x,w) is the distance between them.

- For searching to be possible, vertices need to have locations, and whether $u \leftrightarrow v$ should depend on the distance between them (d(u,v)).
- Let $P(x \leftrightarrow w) \propto 1/d(x,w)^{\alpha}$, where d(x,w) is the distance between them.
- ullet lpha tunes the degree of "locality" the shortcuts.

- For searching to be possible, vertices need to have locations, and whether $u \leftrightarrow v$ should depend on the distance between them (d(u,v)).
- Let $P(x \leftrightarrow w) \propto 1/d(x,w)^{\alpha}$, where d(x,w) is the distance between them.
- α tunes the degree of "locality" the shortcuts.
- Route using greedy routing: step to the neighbor which is closest to destination.

Kleinberg's Model, cont.

Efficient routing is possible when α is such that:

$$\mathbf{P}(x \leadsto w) \propto \frac{1}{\# \text{ nodes closer to } x \text{ than } w}$$

This can be seen to be $\alpha = d$, where d is the dimension of the space (2 in the simulations).

Dynamics

The question I have been trying to answer: how do navigable networks form?

Dynamics

- The question I have been trying to answer: how do navigable networks form?
- Kleinberg's result is mostly negative: for the vast majority of networks, searching is not possible.

Dynamics

- The question I have been trying to answer: how do navigable networks form?
- Kleinberg's result is mostly negative: for the vast majority of networks, searching is not possible.
- Why should one expect real-world networks to have the necessary edge distribution?

Take the numbers 1, 2, ..., n and draw them in a random order. What is the probability that the k-th number drawn is the biggest yet?

Take the numbers 1, 2, ..., n and draw them in a random order. What is the probability that the k-th number drawn is the biggest yet?

Consider only the relative size of the first k
numbers drawn.

Take the numbers 1, 2, ..., n and draw them in a random order. What is the probability that the k-th number drawn is the biggest yet?

- Consider only the relative size of the first k
 numbers drawn.
- These have a random order: each is equally likely to be the biggest of them.

Take the numbers 1, 2, ..., n and draw them in a random order. What is the probability that the k-th number drawn is the biggest yet?

- Consider only the relative size of the first k
 numbers drawn.
- These have a random order: each is equally likely to be the biggest of them.
- Thus the k-th number has probability 1/k of being the biggest one yet.

This observation leads directly to a method for generating searchable graphs.

 Let u associate with each other node v a random quantity representing u's interest in v.

This observation leads directly to a method for generating searchable graphs.

- Let u associate with each other node v a random quantity representing u's interest in v.
- Let $u \leftrightarrow v$ if u is more interesting to v than any node which is closer.

It follows that

$$\mathbf{P}(u \leftrightarrow v) = \frac{1}{1 + \text{# nodes closer to } u \text{ than } v}$$

This is now independent for each v.

It follows that

$$\mathbf{P}(u \leftrightarrow v) = \frac{1}{1 + \text{# nodes closer to } u \text{ than } v}$$

This is now independent for each v.

• Expected number of shortcuts from each node is $\log n$.

It follows that

$$\mathbf{P}(u \leftrightarrow v) = \frac{1}{1 + \text{# nodes closer to } u \text{ than } v}$$

This is now independent for each v.

- Expected number of shortcuts from each node is $\log n$.
- One can see that greedy routing takes $O(\log n)$ steps on a graph generated like this.

A Proof

If d is the distance between u and v, the yellow disk is the vertices within (3/2)d of u and the green within d/2 of v.

A Proof

- If d is the distance between u and v, the yellow disk is the vertices within (3/2)d of u and the green within d/2 of v.
- u must have a shortcut to the very "most interesting" vertex in the yellow disk.

A Proof

- If d is the distance between u and v, the yellow disk is the vertices within (3/2)d of u and the green within d/2 of v.
- u must have a shortcut to the very "most interesting" vertex in the yellow disk.
- The probability that that vertex is in the green part is 1/9.

19

The above model is still not very realistic. For example, u's interest in v and v's interest in u are not likely to be independent.

The above model is still not very realistic. For example, u's interest in v and v's interest in u are not likely to be independent.

A better model:

The above model is still not very realistic. For example, u's interest in v and v's interest in u are not likely to be independent.

A better model:

• With each vertex u we associate a position p(u) in some "space of interests".

The above model is still not very realistic. For example, u's interest in v and v's interest in u are not likely to be independent.

A better model:

- With each vertex u we associate a position p(u) in some "space of interests".
- Let *u*'s interest in *v* be the inverse of |p(u) p(v)|.

The above model is still not very realistic. For example, u's interest in v and v's interest in u are not likely to be independent.

A better model:

- With each vertex u we associate a position p(u) in some "space of interests".
- Let *u*'s interest in *v* be the inverse of |p(u) p(v)|.
- That is: $u \leftrightarrow v$ if p(u) is closer to p(v) than p of any node closer to u to than v.

The Double Clustering Graph

Definition 1 Let $(x_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ be two sequences of points without repetition in possibly different spaces M_1 and M_2 with distance functions d_1 and d_2 respectively. The digraph G = (V, E) is constructed as follows:

- $V = \{1, 2, \dots, n\}$.
- $(i,j) \in E$ if for all $k \in V$, $k \neq i,j$:

$$d_1(x_i, x_k) < d_1(x_i, x_j) \Rightarrow d_2(y_i, y_k) \ge d_2(y_i, y_j)$$

(Make undirected by removing directionality of the edges.)