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Networks
Formally, a network is a collection of points and
connections between them.
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Networks
Formally, a network is a collection of points and
connections between them.

This is an abstraction which can be used to
describe a lot of different systems (technical,
physical, biological, sociological, etc. etc.).
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Networks

Math Graph Vertex Edge

CS Network Node Link

Physics System Site Bond

Sociology Social Network Actor Tie

Individual Friendship

WWW Webpage Link (d)

Internet Site Connection

Network Bridge

Road System Crossing Road
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Definition and Types

G = (V,E)

V is a set (collection) of vertices.

E is a set of edges (pairs (u,v) where u,v ∈V ).

Structured and designed: Corporate LANs,
telephone networks.

Randomly evolved: The Web, social networks.

Somewhere in between: The Internet, P2P
Networks.
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Network Mathematics
The questions depend on the type of network.

When designing structured networks, questions are
usually algorithmic. (How do I create a network
with this property?)

When studying randomly generated networks
questions tend to analytic. (Does the network have
this property?)
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Random Graph Theory
The simplest model for a random graph G(n, p) = (V,E):
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Random Graph Theory
The simplest model for a random graph G(n, p) = (V,E):

V = {0,1,2, . . . ,n}

u ↔ v (that is (u,v) ∈ E) independently and with
probability p for every pair of vertices u and v.

p

1−p
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Random Graph Theory, cont.
There are a lot of interesting results regarding this type
of graph. Relevant properties include:
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Random Graph Theory, cont.
There are a lot of interesting results regarding this type
of graph. Relevant properties include:

If p > 1/n “most” of the vertices form one
connected cluster.

If p > logn/n all of the vertices are connected.

The “diameter” of the connected cluster is logn.

7



Random Graph Theory, cont.
However, this isn’t a great model for studying real
world networks.
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Random Graph Theory, cont.
However, this isn’t a great model for studying real
world networks.

The vertex degree is highly concentrated (varies
little).

Triangles are relatively rare.

In recent years, new models have been introduced for
networks with various properties.
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Small World Phenomenon
The “Small World Phenomenon” is that
many naturally occurring networks have
a small graph diameter.
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Small World Phenomenon
The “Small World Phenomenon” is that
many naturally occurring networks have
a small graph diameter.

It was famously illustrated for social
networks by Stanley Milgram in 1967.

He experimented by having volunteers
in Omaha, Nebraska forward letters to a
stockbroker in Boston through friends.

Milgram reported that on average the
packages reached their destination in
only six steps.

Stanley
Milgram
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An Example.
Using social networking websites (in this case orkut)
we can create similar paths. For example:
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An Example.
Using social networking websites (in this case orkut)
we can create similar paths. For example:

From:

Miss Fernanda
Trincado, Santa Cruz

del Sol, Brazil.

To:

Oskar Sandberg,
Göteborg, Sweden.
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An Example. cont.
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Trincado
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Fernanda
Trincado

Knows:

Leandro Toledo

Is related to:

Marcelo Toledo

Who knows:
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An Example. cont.

Fernanda
Trincado

Knows:

Leandro Toledo

Is related to:

Marcelo Toledo

Who knows:

Nat Friedman

Who knows:

Roger
Dingledine

Who Knows:

Oskar
Sandberg
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Mathematical Models.
The simple type of random graphs discussed
before have low diameter.
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Mathematical Models.
The simple type of random graphs discussed
before have low diameter.

As noted, however, they are not a good model for
social networks.

It isn’t possible to search in them.
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Kleinberg’s Model
For searching to be possible, vertices need to have
locations, and whether u ↔ v should depend on the
distance between them (d(u,v)).
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Kleinberg’s Model
For searching to be possible, vertices need to have
locations, and whether u ↔ v should depend on the
distance between them (d(u,v)).

Let P(x ↔ w) ∝ 1/d(x,w)α, where d(x,w) is the
distance between them.

α tunes the degree of “locality” the shortcuts.

Route using greedy routing: step to the neighbor
which is closest to destination.
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Kleinberg’s Model, cont.
Efficient routing is possible when α is such that:

P(x ; w) ∝ 1
# nodes closer to x than w

This can be seen to be α = d, where d is the dimension
of the space (2 in the simulations).
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Dynamics
The question I have been trying to answer: how do
navigable networks form?
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Dynamics
The question I have been trying to answer: how do
navigable networks form?

Kleinberg’s result is mostly negative: for the vast
majority of networks, searching is not possible.

Why should one expect real-world networks to
have the necessary edge distribution?
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Some Math
Take the numbers 1,2, . . . ,n and draw them in a random
order. What is the probability that the k-th number
drawn is the biggest yet?
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Some Math
Take the numbers 1,2, . . . ,n and draw them in a random
order. What is the probability that the k-th number
drawn is the biggest yet?

Consider only the relative size of the first k
numbers drawn.

These have a random order: each is equally likely
to be the biggest of them.

Thus the k-th number has probability 1/k of being
the biggest one yet.
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Interest Model
This observation leads directly to a method for
generating searchable graphs.

Let u associate with each other node v a random
quantity representing u’s interest in v.
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Interest Model
This observation leads directly to a method for
generating searchable graphs.

Let u associate with each other node v a random
quantity representing u’s interest in v.

Let u ↔ v if u is more interesting to v than any node
which is closer.
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Interest Model
It follows that

P(u ↔ v) =
1

1+# nodes closer to u than v

This is now independent for each v.
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Interest Model
It follows that

P(u ↔ v) =
1

1+# nodes closer to u than v

This is now independent for each v.

Expected number of shortcuts from each node is
logn.

One can see that greedy routing takes O(logn)
steps on a graph generated like this.
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A Proof

If d is the distance between u and v, the yellow disk
is the vertices within (3/2)d of u and the green
within d/2 of v.
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A Proof

If d is the distance between u and v, the yellow disk
is the vertices within (3/2)d of u and the green
within d/2 of v.

u must have a shortcut to the very “most
interesting” vertex in the yellow disk.

The probability that that vertex is in the green part
is 1/9.
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Double Clustering
The above model is still not very realistic. For
example, u’s interest in v and v’s interest in u are
not likely to be independent.
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Double Clustering
The above model is still not very realistic. For
example, u’s interest in v and v’s interest in u are
not likely to be independent.

A better model:

With each vertex u we associate a position p(u) in
some “space of interests”.

Let u’s interest in v be the inverse of |p(u)− p(v)|.

That is: u ↔ v if p(u) is closer to p(v) than p of any
node closer to u to than v.
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The Double Clustering Graph

Definition 1 Let (xi)
n
i=1 and (yi)

n
i=1 be two sequences of

points without repetition in possibly different spaces M1

and M2 with distance functions d1 and d2 respectively.
The digraph G = (V,E) is constructed as follows:

V = {1,2, . . . ,n}.

(i, j) ∈ E if for all k ∈V , k 6= i, j:

d1(xi,xk) < d1(xi,x j) ⇒ d2(yi,yk) ≥ d2(yi,y j)

(Make undirected by removing directionality of the
edges.)
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