High Insecurity: Locks, Lies, and Liability

Marc Weber Tobias

Matt Fiddler

Agenda

- Security Standards
 - Conventional and High Security
 - UL-437
 - ANSI /BHMA (A156.5-2001)
 - ANSI (A156.30)
- LOCKS:
 - Bypass Methods
- LIES:
 - Representations
 - Design issues
- LIABILITY:
 - Legal issues

High Security Locks and Standards

- Normal vs. High Security
- Facility specifications based on UL/ANSI
- Protection: Forced, Covert, Key control
- Protection of high value and critical targets

UL-437 Attack Resistance

(Door locks and Cylinders)

Picking	10 Minutes
Impressioning	10 Minutes
Forcing	5 Minutes
Drilling	5 Minutes
Sawing	5 Minutes
Prying	5 Minutes
Pulling	5 Minutes
Driving	5 Minutes

Standards (ANSI/BHMA)

- ANSI 156.5
 - Auxiliary Locks
 - Graded 1-3 (1=highest rating)
- ANSI 156.30
 - High Security Cylinders
 - Graded A-C (A=highest rating)

Standards (ANSI A156.5) Security Tests

- Impact
- Tension
- Torque
- Impact
- Sawing
- Pressure
- Tensile

In addition to the above requirements all cylinders must meet all DRILLING(5min) and PICKING(10min) requirements of UL-437

Standards (ANSI A156.30) High Security Cylinders

- Key Control (ratings are cumulative)
 - C Manufacturer restricted blanks
 - B Blanks protected by law
 - A Authorization required
- Forced Entry Extensions (Above A156.5)

Standards (ANSI A156.30)

- Pick Resistance (Cumulative)
 - C: Minimum of 2 Security Pins
 - Paracentric Keyway
 - Minimum of one bore depth designed to prevent overlifting
 - B: Meets all levels of C plus UL-437 for pick resistance (10 min)
 - A: Resist picking for 15 min as tested by 5 "ALOA Certified" Locksmiths with "commercially" available tools

What is "High Security"?

Standards (UL-437)

- Cabinet Locks
- Door Locks
- Locking Cylinder
- Security Containers
- Two-Key Locks

UL-437 Higher Security: Not High Security

Tests Include:

- Endurance
- Attack Resistance
- Corrosion
- Material Strength

UL-437 Attack Resistance

- "A product shall not open or be compromised as a result of application of the tools and methods described..."
 - Common hand tools
 - Hand or portable electronic tools
 - Saw blades
 - Puller mechanisms
 - Picking tools

UL-437 Tools (Hand or Electric)

Forced Entry

- Pry bars(up to 3ft)
- Chisels
- Screwdrivers (max 15in)
- Hammers (max 3lbs)
- Wrenches
- Pliers
- Drills
- Saw blades
- Pulling tools

Covert Entry

- Picking
- Impressioning

LOCKS

- Drilling
- Pulling
- Prying
- Sawing
- Picking
- Impressioning

Forced Entry - Drilling

Drilling a standard cylinder and high security cylinder

Security.Org

Forced Entry - Pulling

PULLING A MUL-T-LOCK

Use of a puller on the plug

Forced Entry - Prying

Forced Entry - Sawing

in Security.Org

Covert Entry - Picking

Covert Entry - Impressioning

Common Hand Tools

LIES

- Representations by lock manufacturers
- Design issues and failures
- Bypass methods not contemplated

Representations by Manufacturers

- Locks are secure
- High security v. standard locks
- Implied representations
- Know or should have known of problems
- Meet specifications?
- Need truth in packaging and advertising

Design Issues

- Failure of imagination
- Design engineer problem
- Key never unlocks the lock
- Moshe Dyan problem

Mechanical Bypass

- Defeating locks in less than a minute
- Not included in standards
 - Not forced or covert entry
- Many certified locks can be compromised
- Public is misled

Mechanical Bypass: Another Method of Entry

- Wires and shims
- Vibration, shock, bumping
- Air pressure
- Magnetics
- Breaking of internal components
- Radio Frequency energy
- Temperature

Failure of Imagination

- Mechanical bypass
- Forced entry techniques
- Covert entry techniques
- Key control compromise
 - Manufacturers cannot find the vulnerabilities

Design Defects

- Failure to understand laws of physics
- Failure to understand methods of entry
- Failure to imagine
 - Generally simple design failures
 - Directly affect the security of the lock
 - Affect any security ratings
 - Mislead the consumer

Case Examples

- El Safe (UnSafe) hotel safe
- File cabinet locks
- Targus Defcon CL
- Padlocks: Master and Corbin Sesamee
- Codelock electronic lock
- Kwikset
- Medeco

El Safe in room hotel safe

Security = gear drive in back of door

File Cabinet Locks

Security = spring loaded locking dog

Targus Defcon CL

Piece of plastic to decode gate position

Padlocks

- Master combination
- Corbin Sesamee

Codelocks CL1000

Security = spring loaded blocking tab

Codelocks 5000 Moshe Dyan Problem

"The road from Damascus to Tel Aviv also runs from Tel Aviv to Damascus"

• Drain hole out: wire in

Kwikset Maximum Security

- Defective design
- No real security
- Open in under 30 seconds
- No apparent evidence of entry

Kwikset Ultra Max

- No real security
- Defective design

Common Myths

- Key Control
- Bumping
- Picking
- Mechanical Bypass

MEDECO: The High Security Cylinder

- Protects high value and critical targets
- For 35 years: THE lock to attack
- UL437 and ANSI 156.30 rated
- Advertising Statements: Consider in context
 - "bump proof"
 - Highly pick resistant
 - Key control
 - Secure

MEDECO "CAVEATS"

- High quality locks and hardware
- Secure for most locations and uses
- May be vulnerable for high value targets
- User needs to assess security
- Security depends upon many factors
 - Location and value of target
 - Expected sophistication of attack
 - Master key or non-master key system

MEDECO m³

- Replaced the Biaxial in 2005 when patent expired
- Biaxial design with slider
- Three levels of security:
 - Pin tumblers elevated to shear line
 - Pin tumblers rotated to correct angles
 - Slider moved to correct position

Medeco m³ Design

Common Myth #1: Key Control

- UL 437: No key control criteria
- ANSI 156.30
 - Patent protected blanks
 - Cannot replicate the blanks
 - Cannot duplicate the keys
 - Factory control of keys produced by code

Medeco Key Control

- Biaxial patent expired in 2005
- Replaced with m³
- m³ is protected but can be simulated
- Restricted keyways can be bypassed
- Security feature of m³ can be bypassed which does not infringe on patent

Medeco m³ Meets the Paper Clip

"Michaud M3 Degrade Attack"

Common Myth #2: Bumping

- Some High security locks can be bumped open
 - Locks can be bumped: Not all but many
 - Depends on many factors
 - Sidebar codes must be known or simulated
 - Patent filing for technique to bump

Medeco Not Bump-proof

- Medeco:
 - "Our locks are bump proof!"
 - "Our locks are virtually bump proof!"

Virtually bump proof = virtual reality

Virtual Reality

Common Myth #3: Picking

- Special pick and decoder tools developed
- Medeco locks can be extremely difficult to pick because of pin rotation
- A target for 35 years
- Attempts largely unsuccessful
- Caveats

Picking Medeco Locks

- Medeco locks can be picked with conventional tools with a special technique in patent filing
- High percentage of these locks can be picked

Common Myth #4: Hardware Bypass

- Kwikset UltraMax and others
- Medeco hardware security: Is it really secure?
- Example: Deadbolts A failure of imagination
- The entire security is based upon two small components

"The key never unlocks the lock!"

Medeco Security: Two Screws Loose!

Medeco Security: Two Screws Loose!

- Medeco Deadbolt Lock
 - Security is based upon two tiny screws
 - Can be compromised in under 30 seconds
 - Will not meet high security standards
 - UL and ANSI does not address this issue
 - Bypass of deadbolt mechanism
 - Design incompetence

LIABILITY

- Defective or deficient products
- Negligent designs
- Misrepresentations in packaging
- Manufacturers are experts
- Federal statutes
- Fiduciary duty to customers
 - DCR v. PEAK

NEEDED: Real World Testing

- Propose Security Laboratories
 - Security professionals
 - Manufacturers
 - Law enforcement
 - Locksmiths
 - Hackers: Vulnerability Geeks
 - Why we need Physical Security Hackers

SECURITY LABORATORIES

- Disclosure Policy
 - Product beta v. introduced
 - Can the problem be fixed
 - Who's at risk
 - Notify manufacturer: recall or replace
 - How many locks are affected
 - Level of risk
 - National security issues?

DISCLOSURE CRITERIA

- Public or private disclosure
- Level of threat
- Likelihood of exploit
- Market penetration
- Level of disclosure
 - Security issues only
 - Detail the vulnerability
 - Demonstrate the vulnerability

Product Testing

- For members
- For non-members
- Confidentiality
- Privilege
- Propose new designs

Feedback

- Idea of joint cooperation
- Structure of Security Laboratories
- Disclosure policy
- Use of hackers

Thank You

Marc Weber Tobias mwtobias@security.org

Matt Fiddler mjfiddler@gmail.com

Web: http://security.org

Blog: http://in.security.org

