
AsyncIO

Magnus Holmgren

AsyncIO ii

COLLABORATORS

TITLE :

AsyncIO

ACTION NAME DATE SIGNATURE

WRITTEN BY Magnus Holmgren February 14, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AsyncIO iii

Contents

1 AsyncIO 1

1.1 AsyncIO.guide . 1

1.2 AsyncIO.guide/Background . 1

1.3 AsyncIO.guide/Contents . 3

1.4 AsyncIO.guide/Usage . 3

1.5 AsyncIO.guide/Technical notes . 5

1.6 AsyncIO.guide/Technical notes/The AsyncFile structure . 5

1.7 AsyncIO.guide/History . 6

1.8 AsyncIO.guide/Authors . 11

AsyncIO 1 / 11

Chapter 1

AsyncIO

1.1 AsyncIO.guide

AsyncIO library

Version 39.2

Original code by Martin Taillefer
updates by Magnus Holmgren

AsyncIO is a library providing double buffered asyncronous IO to files in a
DOS-like manner.

Background

Contents

Usage

Technical notes

History

Authors

1.2 AsyncIO.guide/Background

Background

Reading and writing data is crucial to most applications and is in many
cases a major bottleneck. Using AmigaDOS’ sophisticated file system
architecture can help reduce, and sometimes eliminate, the time spent
waiting for IO to complete. This package offers a few small routines that
can greatly improve an application’s IO performance.

AsyncIO 2 / 11

Normally, an application processes a file in a manner similar to the
following:

1 - Open the file

2 - Read some data

3 - Process data just read

4 - Repeat steps 2 and 3 until all data is processed

5 - Close file

Although the above sequence works fine, it doesn’t make full use of the
Amiga’s multitasking abilities. Step 2 in the above can become a serious
bottleneck. Whenever the application needs some data by using the DOS
Read() function, AmigaDOS has to put that task to sleep, and initiate a
request to the file system to have it fetch the data. The file system then
starts up the disk hardware and reads the data. Once the data is read, the
application is woken up and can start processing the data just read.

The point to note in the above paragraph is that when the file system is
reading data from disk, the application is asleep. Wouldn’t it be nice if
the application could keep running while data is being fetched for it?

Most Amiga hard drives make use of DMA (Direct Memory Access). DMA enables
a hard drive to transfer data to memory at the same time as the CPU does
some work. This parallelism is what makes the set of accompanying routines
so efficient. They exploit the fact that data can be transfered to memory
while the application is busy processing other data.

Using the asynchronous IO routines, an application’s IO happens like this:

1 - Open the file, ask the file system to start reading ahead

2 - Read some data, ask the file system to read more data

3 - Process data

4 - Repeat steps 2 and 3 until all data is processed

5 - Close file

Immediately after opening the file, a request is sent to the file system to
get it reading data in the background. By the time the application gets
around to reading the first byte of data, it is likely already in memory.
That means the application doesn’t need to wait and can start processing
the data. As soon as the application starts processing data from the file,
a second request is sent out to the file system to fill up a second buffer.
Once the application is done processing the first buffer, it starts
processing the second one. When this happens, the file system starts
filling up the first buffer again with new data. This process continues
until all data has been read.

The whole technique is known as "double-buffered asynchronous IO" since it
uses two buffers, and happens in the background (asynchronously).

AsyncIO 3 / 11

The set of functions presented below offers high-performance IO using the
technique described above. The interface is very similar to standard
AmigaDOS files. These routines enable full asynchronous read/write of any
file.

1.3 AsyncIO.guide/Contents

Contents

The archive contains the following drawers:

dlib Link libraries for DICE.
emodules "Include" files for E. These are currently not up to date.
include Include files for C:

clib Function prototypes.
diceclib Special header for DICE 3.0 or higher, and is used

when the "-mi" option is used. Similar to the
proto file for SAS. Place them in DInclude:clib.

fd Function descriptor, e.g. used by various
programming language tools (not really a C include
file).

libraries General include file(s), for needed structures
and constants.

pragmas Pragma file for DICE and SAS/C (and perhaps
StormC).

proto Proto file for SAS/C.
lib Link libraries for SAS/C.
libs The shared library.
src Source code for AsyncIO.

1.4 AsyncIO.guide/Usage

Usage

AsyncIO is available both as a C link library, and as a shared library.
Their usage should be fairly straight forward. There are a couple of
details though, since some of the include files are used for both the
shared and the link library. I’ll only adress the use of AsyncIO from C
here, as this is more or less the only language I use (in addition to some
assembler).

Using the shared library

When using the shared library, make sure ASIO_SHARED_LIB is defined before
you include any header file for AsyncIO.

DICE: Include <clib/asyncio_protos.h>. Then link with
dlib/asynciolib#?.lib, if you want the autoinit code, or you didn’t
use the "-mi" option. If "-mi" is used, remeber to copy the file
"include/diceclib/asyncio_protos.h" to "dinclude:clib".

AsyncIO 4 / 11

SAS/C: Include the file <proto/asyncio.h>, and link with lib/asyncio.lib
if you need the autoinit code. The proto file defines
ASIO_SHARED_LIB for you, so this should be all you need to do.
Currently there is no glue code available.

Using the link library

DICE: Simply define ASIO_REGARGS when you want the regards
version, and link with the proper library. If you use dcc for
linking, DICE should link with the right library. Otherwise you
will get linker errors.

SAS/C: Do not include <proto/asyncio.h>. Include <clib/asyncio_protos>
instead. It is very important that you link with the right library,
and define ASIO_REGARGS and link with "lib/asyncior.lib" when you
want the regargs version.

Warning: If you link with the wrong library, the program will link
properly, but will show strange errors when run! The reason for
this "problem" is that I wanted to be able to use the regargs
version from assembler, without assuming which register contained
which argument, and then SAS/C does it this way (i.e. no difference
in function names, as would normally happen for register argument
functions).

To use the "no externals" version of the link library, you first need to
compile it. ;) Then define ASIO_NOEXTERNALS, link with the new library, and
otherwise follow the instructions for the normal link libraries. ("No
externals" means that the code does not require any external data symbols,
like DOSBase or ExecBase, making the code purer. To do this, certain
function calls takes DOSBase and ExecBase as arguments.)

To create the link libraries:

DICE: Type e.g. "lbmake asyncio s r e" and have dtmp: set to some
temporary space. This creates a regargs, smalldata version.

SAS/C: Type e.g. "dmake lib/asyncioer.lib" to get the regargs version.

Notes

Remember that all ASIO_#? symbols must be set before any AsyncIO header is
read. There is one exception: ASIO_SHARED_LIB does not need to be defined
before you include <proto/asyncio.h>.

I haven’t personally tested all library versions in the makefile/lib.def.

SAS/C users still need DMake (from DICE) to compile things. I’m used to
DMake, and haven’t really used SMake. ;)

The code was originally compiled with DICE. Current version is compiled
with SAS/C (as well).

Getting the code to compile with other compilers (GCC, StormC, ...) should
be fairly easy, since I’ve tried to keep all compiler specific things
within #defines in a header file, and generally tried to only use normal
ANSI/C.

AsyncIO 5 / 11

The DICE link libraries are created with the help of the LbMake utility in
the DICE package. The file Lib.Def contains the definitions for them.

1.5 AsyncIO.guide/Technical notes

Technical notes

The purpose of this chapter is to describe the inner workings of the code.
It is partly for my benefit, so that I don’t need to remember all details,
and partly for your benefit, if you want to try to find bugs, or maybe use
asyncronous code in places were AsyncIO as is does not provide the needed
functionality.

The comments in the code do help, but here is the place to put everything
together, and place additional comments.

Please note that the information described herein may change, and can not
be used in normal applications that use AsyncIO! It is intended for persons
dealing with the AsyncIO code itself (or derivates thereof).

The AsyncFile structure
(More to be added...)

1.6 AsyncIO.guide/Technical notes/The AsyncFile structure

The AsyncFile structure

af_File (BPTR)
The DOS file handle.

af_BlockSize (ULONG)
Blocksize of the device the file resides on.

af_Handler (struct MsgPort *)
Handler port of the file system responsible for the file.

af_BytesLeft (LONG)
Number of bytes left in the buffer we are currently reading data from.

af_BufferSize (ULONG)
The size of one of the two IO buffers.

af_Buffers[2] (UBYTE *)
Pointers to the two IO buffers.

af_Packet (struct StandardPacket)
Packet structure used when communicating with the file system.

af_PacketPort (struct MsgPort)

AsyncIO 6 / 11

Message port used to receive the packets sent to the file system. No
signal bit is allocated of this port; SIGB_SINGLE is used when needed.

af_CurrentBuf (ULONG)
Number of the buffer that is currently being filled (by the file system),
or, if AS_WaitPacket() just has been called, the newly arrived buffer. It
does not refer to the buffer we are currently copying data from. Can be
used to index the af_Buffers[] array.

af_SeekOffset (ULONG)
In order to keep the buffers block aligned while seeking in a read mode
file, this offset keeps track of the distance from the start of the buffer
to the position we should start reading the new data from.

af_SysBase (struct ExecBase *)
Pointer to SysBase. Only available if ASIO_NOEXTERNALS is defined.

af_DOSBase (struct DosLibrary *)
Pointer to DOSBase. Only available if ASIO_NOEXTERNALS is defined.

af_PacketPending (UBYTE)
If true, then the file system is currently filling a packet for us, and it
will eventually be waiting for us on the message port.

af_ReadMode (UBYTE)
If true, then the file is used for reading only. Otherwise the file is used
for writing only.

af_CloseFH (UBYTE)
If true, then CloseAsync() will close the file in af_File. If
OpenAsyncFromFH() is used to open the file, then this field will be false.

af_SeekPastEOF (UBYTE)
If true, then the last SeekAsync() tried to seek past EOF. SeekAsync() uses
this to allow the application to seek back to a valid position, and
continue reading from there.

af_LastRes1 (ULONG)
af_LastBytesLeft (ULONG)
These two stores the last af_BytesLeft and af_Packet.sp_Pkt.dp_Res1. This
is needed in order to be able to resume seeking after a seek past EOF.

1.7 AsyncIO.guide/History

History

Release 1 - 23-Mar-94

* When seeking within the current read buffer, the wrong packet would
be sent out to be filled asynchronously. Depending on the data read
from the buffer, and how fast it was read, you could end up getting
incorrect data on subsequent ReadAsync() calls.

* There was actually bufferSize*2 bytes allocated for IO buffers
instead of just bufferSize. This is fixed. So if you want the same

AsyncIO 7 / 11

effective buffer size as before, you must double the value of the
bufferSize argument supplied to OpenAsync().

* MEMF_PUBLIC is now specified for the IO buffers. This is in support
of VM hacks such as GigaMem.

* A Seek() call had the mode and offset parameters reversed. The code
worked, because both values were luckily always 0, but it was not
very clean.

* Now uses a typedef for the AsyncFile structure, and enums for the
open modes and seek modes.

Release 2 - 16-Feb-94

* SeekAsync() now consistently works. It was getting confused when
called multiple times in a row with no intervening IO.

* WriteAsync() would produce garbage in the destination file if it
had to bring up a "Disk is full" requester, and the user freed some
room on the disk and selected "Retry".

Release 3 - 12-Aug-95 - Changes from now on by Magnus Holmgren

* SeekAsync() is now not unecessarely slow when doing some "kinds" of
read-mode seeks (typically when seeking after some small amount of
initial read). The problem was that it usually only considered the
newly arrived buffer, not both buffers. This could make it discard
both buffers, and restart reading, although one of the buffers
already had the needed data.

Note that the kind of seeks that caused the above problem may still
seem to be somewhat slow, since the code must wait for both buffers
to be loaded. This cannot (easily) be avoided.

* SeekAsync() doesn’t cause the read buffer to contain garbage after
certain seeks any more. The problem was that ReadAsync() would read
from the wrong buffer (the one currently being loaded). This made
the files seem to contain garbage. This happened when the seek
location was within the newly arrived buffer.

* The code package is now supplied as a link library, rather than a
single source module. The internal functions labeled "AS_#?" are
private and should not be called directly by the application.

* A few minor "cosmetic" changes were done, to either make the code
more readable, or to make it slightly smaller.

* Include file restructured a little (a public and a private part).

* OpenAsync() now offers some new "options" (all from the AIFF code
by Olaf Barthel):

* Opening a file from an already open filehandle is now possible.

* A "no externals" version may be compiled, that doesn’t require any
external variables to be available.

AsyncIO 8 / 11

* Each of the buffers will now be roughly bufferSize / 2 bytes large,
rather than bufferSize bytes (rel 6 note: Really from Taillefers
third release).

* If there isn’t enough memory for the requested buffer size, the
code will try with smaller buffers (still properly "aligned")
before giving up.

Release 4 - 13-Sep-95

* Oops. Forgot to include the include/asyncio.h file. Maybe as well,
since I anyway had forgot to mention a few things in it.. ;)

* Asyncio is now also available as a shared library (to be placed in
libs:). This means that a couple of new include files were added,
and a one include file was split up.

The main reason for doing this was to simplify the use of it in
other languages (only need to "port" a few includes). I have no
other include files than those for (DICE) C at the moment, but feel
free to send me headers for other languages as well.

Note: I have not yet verified that the SeekAsync function works,
but since read and write works just fine, I see no reason why
SeekAsync wouldn’t work. ;)

Also, I haven’t really used it in programs much either (only some
testing), so the different defines and similar to use different
versions may be a bit clumsy to use (see above for more
information). Feel free to send me comments on how to improve this.

* Changed so that a non-regargs version of the link library can be
created. To use the regargs version now, simply make sure that
ASIO_REGARGS is defined, and link with the proper link library.

* Changed the name of the NOEXTERNALS define to ASIO_NOEXTERNALS.
Define this before you include <clib/asyncio_protos.h> if you want
to use that feature. Note that you need to create a proper link
library yourself! (With DICE, all you need to do is "LbMake asyncio
s r e" in the Src drawer.)

* Modified OpenAsync() a little, to work around a problem when having
SnoopDos (with SendARexx active), MungWall and Enforcer running.
Not an asyncio bug as such, but.. ;)

Release 6 - 10-Nov-95

* Bumped to version 6, since there was an "official" release 3 that I
was unaware of. However, most of the changes were in the AIFF
source. Thus, not much was "lost" due to this. (In fact, the
SeekAsync bugfix in the real release 3 was not correct. ;)

* Sigh. The SeekAsync fix (to the performance problem) was buggy. :/
I think I’ve got it right now.

* asyncio.library bumed to version 37.1.

AsyncIO 9 / 11

* Cleaned up this documentation.

* Fixed some bugs in the include files.

* Made some fixes to the shared library.

Release 7 - 7-Jan-96

* Files to use asyncio.library from E included.

* Fixed yet some SeekAsync() problems. It could (still) get confused
when called multiple times in a row with no intervening IO. I
wonder if there are any holes left. ;)

* Some more fixes to the shared library.

* asyncio.library bumped to version 37.2.

* Recompiled asyncio.library using SAS/C 6.56, and added general
SAS/C support.

* Cleaned up parts of this doc.

Release 8 - 28-Jan-97

* Yet another hole in SeekAsync() (hopefully) plugged. ;) Seeking in
a double-buffered file is tricky business it seems. Thanks to David
Eaves for finding it, and sending me a good report about it
(including source to reproduce it).

* The problem was that when SeekAsync() really seeked past the end of
the file, it didn’t notice, and would try to reload the "last"
buffer.

* Finally finished up the ReadLineAsync() function. Only difference
from dos.library/FGets() should be the return value. I hope it
works properly, since I haven’t tested it that much. ;)

* Bumped the library version to 38, because of the new functions.

Release 9 - 27-Apr-97

* Oops. The include/clib/asyncio_protos.h file wasn’t quite correct,
causing problems when compiling with SAS/C and ASIO_REGARGS
defined. Also updated includes for StormC. Thanks to Alexander
Kazik who sent me the needed changes for StormC.

* Michael B. Smith pointed out that ReadLineAsync() wasn’t quite
FGets()-compatible. So he sent me his version, which was. I’ve now
added his version (with some minor changes by me), and changed the
implementation for ReadLineAsync() to first call the new function
FGetsLenAsync(), and then skip up to the LF char, for backward
compatibility.

* Added PeekAsync(), to allow you to look ahead in the current buffer
without actually "reading" anything. Useful when reading from pipes

AsyncIO 10 / 11

to e.g. find out the file type (needed in Visage ;).

* Bumped the library version to 39, because of the new functions.

* The autoopen code for SAS/C now uses __asiolibversion rather than
__oslibversion (in case of failure, __oslibversion is set to the
value of __asiolibversion, and the standard __autoopenfail is
called, in order to save code). The default value is 39, and any
external reference to __asiolibversion will cause the autoopen code
to be linked.

* Ouch. The DMakeFile/lib.def files contained some laws. As a result,
the DICE linker libraries (in dlib/) were not updated at all. Now
there should be fresh libraries for both DICE and SAS/C.

* Fixed a couple of typos in the autodocs, including the problem with
the enum arguments specified as (U)BYTE, when they need to be LONG
(some compilers assumes enums to be longs, unless told otherwise).

Version 39.1 - 27-Jul-97

* Ouch. The "David Eaves" bug fix in SeekAsync() was wrong. Not only
did it not work as intended, the intention was all wrong. Should be
fixed now, I hope. ;)

* Cleaned up the messy asyncio.doc file, and moved all non-autodoc
stuff to this AmigaGuide file. Also added some technical notes (not
complete yet).

* Changed to "real" version numbers for the release archive.

* Referencing __asiolibversion alone isn’t enough to drag in autoinit
code any more. Should also make it easier for user programs to set
their own version now. ;)

* Actually compiled a SAS/C version with ASIO_NOEXTERNALS defined.
PeekAsync() and FGetsLenAsync() needed a tweak because of this. The
generated link library seems to work as well.

* Tweaked the DMakeFile (and fixed a few quirks), to create the
object files in various sub-drawers.

* FGets(Len)Async() would never fill the entire read buffer, even when
it could (we’re talking about one byte not used here! ;).

* Tried to make the usage instructions a bit clearer.

Version 39.2 - 2-Sep-97

* ReadLineAsync() didn’t detect end-of-file if the last line wasn’t
terminated by a line feed.

* ReadLineAsync() could write one byte too much to the read buffer.

* Tried to make SeekAsync() allow seeks after a seek past EOF (in
order to be more DOS-compatible). I hope I didn’t break anything. ;)

AsyncIO 11 / 11

* Old bug: ReadCharAsync() and WriteCharAsync() could sometimes
manage to do their job successfully when they really should fail
(and return -1).

1.8 AsyncIO.guide/Authors

Authors

Martin Taillefer wrote the original code.

Magnus Holmgren (that’s me ;) "took over" the development in 1995, since I
had found a couple of bugs in SeekAsync(). I contacted Martin Taillefer
about it, and asked if I could release new versions of AsyncIO, and he
didn’t complain.

Olaf Barthel provided inspiration for some of the changes in release 3
(one or two of them most likely came from Martin Taillefers third release,
which I was unaware of at the time).

Michael B. Smith wrote the FGetsAsync() and FGetsLenAsync() functions,
which I added after some (really) minor changes.

Most of the changes I have done are marked in the sources with a comment
that starts with "MH:".

If you want to contact me about something, feel free to send a message to:

cmh@lls.se (internet)
"Magnus Holmgren", 2:203/512.10 (fidonet)

Please note that I don’t poll the fidonet address that often. ;)

	AsyncIO
	AsyncIO.guide
	AsyncIO.guide/Background
	AsyncIO.guide/Contents
	AsyncIO.guide/Usage
	AsyncIO.guide/Technical notes
	AsyncIO.guide/Technical notes/The AsyncFile structure
	AsyncIO.guide/History
	AsyncIO.guide/Authors

