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Preface

Java is fashionable, but is it reliable?  Java is entertaining, but is it 
secure?  Java is useful, but is it safe?

The purpose of this book is to answer those questions, from the point 
of view of people who want to use Java, but want to do so reliably, 
securely and safely.  That makes it different from much recent writing 
on Java which focuses, perfectly legitimately, on how Java can be 
broken and how to avoid those dangers.  We focus on how Java can 
be made secure and how to exploit its strengths.  The goal is to be a 
practical help to the various groups of people involved in making a 
Java-based application or Web site into an industrial-strength 
commercial proposition.

These various groups of people have different needs and different 
skills, which we have tried to meet in the different parts of the book.  
The first part is aimed at the intelligent non-specialist who has to 
oversee system management or application development, or 
incorporate Java into the security policy.  Only a basic understanding 
of computers and a limited exposure to Java is assumed, but all the 
themes of Java security are introduced in a context which stresses 
over and over again how Java security must be seen as an integral 
part of system security.

The second part goes into more detail of how Java security works, and 
is aimed more at system and network administrators and 
programmers, who need to know more of what is going on.  Perhaps, 
though, only the programmers will ever read the tables in Chapters 4 
and 5.

The third part looks at the broader context in which Java operates, 
including some extensions to Java security and some aspects of its 
future.  At the time of writing, the Java Development Kit is at JDK 1.1 
level, though most people’s browsers are still at an earlier level.  
Accordingly, the book is written primarily from the point of view of JDK 
1.1, in the knowledge that current practical Internet applications must 
be usable from JDK 1.0 browsers, and in the knowledge that JDK 1.2 
with its domains of protection is not long away.
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  -
Chapter 1.  An Overview of Java Security

The purpose of this chapter is not only to introduce the themes of the 
book to those who will later read the more detailed chapters that 
follow, but also to act as a brief overview for the intelligent 
non-specialist who does not need all the details. This is because the 
focus of the book is on helping people to deploy Java in a secure way. 
There are many people involved in that – managers, administrators, 
developers, systems programmers, users – all of whom play a part.

1.1  What Java Does

What Java does is to solve the problem of executable content. What’s 
that? Well, the early sites on the Worldwide Web were static: pictures 
and text. That was revolutionary enough. The richness of the pages 
was a revelation to anyone used to the usual staid appearance of 
information downloaded from a server; the hypertext links, which made 
cross-referencing easy, made it a more useful information source than 
an encyclopedia; and the amount of information available was 
staggering. But if you wanted a program to run, you had to send a data 
file to the server where that program was – you filled in a form on the 
screen, clicked the send button, and waited for the result.

Some programs are better run on the client than on a server. So why 
couldn’t part of the content of the Web pages be executable? Why 
couldn’t a page comprise some text, some pictures, and some 
programs that run on the client? There were two reasons:

1. It would be dangerous from a security point of view. There are 
enough viruses on the Web anyway. With executable content, you 
might not even realize that you were downloading potentially 
dangerous code.

2. The programs might not run on a particular operating system. One 
of the joys of the Web was that you could choose whatever client 
system was right for you and download pages running on a 
completely different system.

But executable content is not just cute – it is extremely valuable:

  • Executable content can make a Web page much more exciting. 
This is what Java became well known for in its early days: 
dancing cartoon characters, bouncing heads, ticker tapes. You 
can’t do these if all the programs must run on the server. Some 
An Overview of Java Security 3



of the early examples were indeed just cute – they showed what 
the technology could do, not why it was important – but 
appearance, excitement, and even cuteness are important in 
attracting customers to a business site. 

  • Many dialogues with a customer are unbearably slow if you 
have to communicate with a Web server at each interaction. 
With executable content, the dialogue – an insurance proposal, 
a request for a credit card, a browse through a catalogue, or 
whatever – can be completed on the client machine, and the 
resulting transaction sent across the Web.

Java makes executable content possible while solving the problems 
noted above by having three components:

1. A Java Virtual Machine (JVM) designed to prevent the downloaded 
code (usually called an applet) from tampering with the client 
system. The applet runs in a protected space, known informally as 
the sandbox, and has only limited and always strictly controlled 
access to the surrounding system. This is to meet requirement 1 
above.

2. A set of bytecodes – virtual machine instructions – which are 
interpreted by the JVM. You have to have these to prevent the 
applet from jumping outside the sandbox, but they have a benefit of 
their own. Since they are machine-independent, if you have a JVM 
for your workstation, then you can run any applet from any server, 
satisfying requirement 2 above.

3. A high-level object-oriented language in which to write the classes 
that make up the applets. This is a language similar in many ways 
to C++ with some functions (such as pointers) omitted because 
they could be used to escape from the sandbox.

There is now a Java Development Kit (JDK) – comprising JVM, 
compiler, and basic classes – for most operating systems, and most 
Web browsers contain a JVM, so executable content is now real.

So far, we have concentrated on executable content and on the 
downloaded code known as an applet.  Java high-level language, 
however, has wider uses than just applets.  It is a general-purpose 
language, a well designed object-oriented language, in which you can 
write any program you like.  

A Java program which is loaded locally, rather than from the Web, is 
called an application.  Because it has not come over the Web, it is not 
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constrained by the sandbox and can access the local machine, just 
like a program written in any other language.  In this book we always 
clearly distinguish between applets and applications.

All you have to do is write an application once in Java, and you can run 
it anywhere that has a JVM.  This makes it very useful for people 
writing applications which will be used by a wide variety of users – 
quite independently of whether they will ever be downloaded from the 
Web.

1.2  Java Is Not an Island: Java as a Part of Security

The geographical Java certainly is an island: a separate part of 
Indonesia. But Java the computer system is not something separate 
from the other components that make up the total system. So it is 
essential that the security of Java is seen as being one part of the 
security of the whole. This is hardly a new message. More than 100 
years ago, Conan Doyle was ridiculing an approach to physical 
security that fitted a top-grade door lock and left the windows 
unsecured.

What this means for Java security is that it must be holistic, adequate 
and perpetual.

First, Java security must be holistic. An attacker who wishes you harm 
(rather than one who wants to prove his own cleverness) will focus on 
the weak links in the security, so the security of a system that uses 
Java must be reviewed as a whole, following the flows of data and 
application, and considering the potential for attack or accident at each 
point. Specifically, if Java is being used to pass applets over a shared 
network like the Internet, then you have to consider:

  • Private network protection, using a firewall and allied security 
policies

  • Private data protection, using encryption to shield data as it flows 
over the public network

�&KXEE�ORFN�WR�WKH�GRRU�����DQG�WKRVH�SUHSRVWHURXV�(QJOLVK�ZLQGRZV�ZKLFK�
D�FKLOG�FRXOG�RSHQ����6KHUORFN�+ROPHV��$�6FDQGDO�LQ�%RKHPLD

�$�&RQDQ�'R\OH�������
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  • User authentication, using digital signatures, or protected 
passwords

Secondly, Java security must be adequate. It has to be strong enough 
for the purpose in hand: Java must not be the weak link. But there is 
no need to spend extra to make it far and away the strongest link, 
unless either:

  • Your potential attackers don’t just want to crack your system, they 
want to crack your Java system, or

  • Your users have a particular fear of Java, and you need to reassure 
them (security has to match levels of threat and worry, as well as, 
levels of potential loss)

So, if you cannot put fastenings on your sash windows, you don’t need 
that Chubb lock on the front door.

Thirdly, Java security must be perpetual. This book will help you build 
a secure Java system to face today’s perils of accident and attack. But 
those perils will change. So you must review your Java security – as a 
part of your overall security of course – regularly, to stay one jump 
ahead of potential attackers.

How well does Java meet those needs? Three points:

1. Java architecture permits secure design. Java’s use of a 
“sandbox” provides the capability of separating your computer from 
the applets you download. This is described in much more detail 
later. The point here is that the problems with Java that have been 
reported are problems with the implementation, not problems with 
the design.

2. Java implementations respond to error reports. The attack 
applets we describe later were all reported by applet hunters; they 
come, not from incidents of loss on the Internet, but from laboratory 
studies of how Java can be used and abused. The applet hunters 
have been as responsible as they are clever, and have alerted the 
Java implementors to the problems before telling the public. So 
normally you will hear of an implementation loophole at the same 
time as hearing of the fix. Thus any risk of using Java gets 
gradually less as loopholes are closed.

3. Nothing in Java should permit complacency. Installers and 
users of Java must be as willing to respond as the implementors. 
That is, users must recognize that loopholes will be found and must 
be closed without delay.
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In summary, provided that you have an implementation that is free of 
known errors, and that you install, maintain and review Java carefully, 
you can reach levels of security which are appropriate for any 
business purpose.

1.2.1  Safety and Security
To enthusiastic object-oriented programmers, it is the Java language 
that is important. It contains a number of important differences from 
C++ which reduce the chance of writing a rogue program by accident, 
as well as making it more difficult to write a rogue program by design.

But, from a security point of view, it is the Java virtual machine that 
matters. The business benefits of Java are the security and portability 
of the JVM, and these come from the bytecodes, not from the Java 
source language.

So, we shall be more concerned with bytecode programs, which are 
different from Java source programs. All valid Java source programs 
can be compiled to bytecode programs, but there are bytecode 
programs that have no corresponding Java source. And, of course, it 
is possible to generate Java bytecode programs from other high-level 
languages.  The first other language was NetREXX, a variant of the 
REXX language, and others have followed.

This difference between high-level and bytecode is both bad and good:

  • It is bad because people can circumvent the design features of the 
Java language. This was designed to produce well-behaved 
bytecode programs, a design that has limited security strength if an 
attacker can write directly in bytecode.

  • It is good because you can foil the decompilers. These take 
bytecode and generate Java source code – source code which is 
very readable because of the large amount of information a Java 
class file contains. To prevent people decompiling your valuable 
copyright code, you can modify the compiled class file so that there 
is no decompiled version. (We discuss this in detail in 
“Decompilation Attacks” on page 60.

So the good features of the high-level Java language should be seen 
as safety features, not as security features. 
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1.2.2  Java as an Aid to Security
Sometimes, discussions of Java and security focus only on the perils 
of Java, as though there was only a downside to using it, from a 
security point of view anyway. But this is not the whole story. Java can 
be a great help to the security of a system, and can strengthen weak 
links, primarily because code distribution is a risky process.

Many applications need code running on the client in cooperation with 
code running on the server – for example, graphical front ends, or 
dialers to connect to the telephone network – and this code has to be 
installed there somehow. The distribution of this code is often a weak 
link in an online system, and it is usually much easier to attack this 
than to waste time trying to decrypt messages flowing over the 
Internet. 

What is the danger? If this code can be tampered with, then, for 
example, a dialer number can be changed so that the client dials the 
attacker’s site rather than the proper server. The client will never 
realize this because the attacker, acting as a “man in the middle” 
forwards all traffic between client and server, reading it as it goes. Or a 
virus can be introduced, or a host of other horrible possibilities.

The options for code distribution are:

  • To send a physical diskette or CD-ROM to the client

  • To have the client download the code over an existing network

  • To use Java

The safest of the three is Java. It isn’t always suitable – the client must 
already have a network connection that is fast enough for the purpose 
– but it is by far the easiest to update with a new release, it is less 
easily intercepted than a physical distribution and, unlike a normal 
download, it is checked on arrival. Moreover, it can be signed.

The checking and signing of Java applets is central to Java security 
and (very) much more will be said about them in later chapters. In this 
introductory chapter, it is enough to describe briefly the three 
components of applet checking: 

1. The Class Loader is responsible for bringing together all of the 
different parts of the program so that it can be executed.

2. The Class File Verifier (which includes the bytecode verifier) 
checks that the program obeys the rules of the Java Virtual 
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Machine (but note that this does not necessarily mean that it obeys 
the rules of the Java language).

3. The Security Manager imposes local restrictions on the things that 
the program is allowed to do. It is perfectly possible to customize 
this to allow applets limited access to carefully controlled 
resources, but in practice the browser vendors have implemented a 
version of the highly restrictive default that Sun supplies. This 
allows no access to the local file system, and network access only 
to the location from which the applet, or its Web page, came.

The way forward for allowing wider access is via the signed applets of 
JDK 1.1. You may wish, for example, to print something from an 
applet. You are unlikely to want your security manager to allow anyone 
to do that, but you might allow access to especially trustworthy people. 
So you download the applet; discover that it is encrypted with 
someone’s private key; check the accompanying public-key certificate 
to make sure it is valid, and identifies someone especially trustworthy; 
decrypt the applet with that public key, and then allow it the necessary 
access.

One important thing that distinguishes Java from other forms of 
executable content is that it has both the web of trust that signatures 
bring and the three security components to validate the downloaded 
code. These precautions are taken, not because Java users are less 
trustful than others, but because even the most trusted of code 
suppliers sometimes make mistakes, or can have their systems 
compromised. Without the validation, a web of trust can become a web 
of corruption if any one trusted site is successfully cracked. 

1.2.3  Java as a Threat to Security
So, in the absence of implementation errors, either on the part of the 
browser vendors or on the part of computer operators, administrators 
and systems programmers, Java should be safe. The browser vendors 
have a good reputation for responding to reports of flaws in their 
implementations, and one of the key purposes of this book is to help 
you avoid any slips in your installation.

If something does go wrong, then the most severe threat you face is 
system modification, the result of what are sometimes called “attack” 
applets. This is worse than someone’s being able to read data from 
your system, because you have no idea what has been left behind. 
There could be a virus on your computer, or on any computer to which 
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you are connected. Alternatively, some of your business data could 
have been modified so that it is no longer valid.

This is exactly the sort of thing that Java is intended to prevent, and its 
defences against attack applets are strong. They are equally strong 
against the next, still severe, threat of privacy invasion, in which read 
access rather than update access is gained. This does not leave you 
having to reinstall all your software and reassemble all your business 
data, but the loss can be serious enough. In addition to the exposure 
of business data, if your private key is compromised, then it can be 
used to sign electronic payments in your name.

Because Java has the strongest security for executable content, it has 
been seen as a challenge by security specialists, who find both the 
intellectual challenge exciting and want to help close any loopholes in 
Java implementations. Up to the date of writing, all the reported attack 
applets were developed by such specialists, not by malicious or 
criminal attackers.

There are another couple of, much less severe, threats against which 
Java does not have strong defences. The very essence of Java is that 
a program from a server will come down and run on your client with 
little, if any, intervention from you. What if the program is not one you 
want to run... if it is stealing your cycles? 

The most extreme form of cycle stealing is a denial of service attack. 
The applet can use so much of the client’s machine time that it cannot 
perform its normal function. This is the Java equivalent of flooding a 
company with mail or with telephone calls; like those nuisances it 
cannot readily be prevented – all you can do is find out who is 
responsible and take action after the event.

Less extreme examples of cycle stealing are the irksome, nuisance, 
applets. These run unhelpful programs intended to show how clever 
the author is and embarrass the owner of the client machine. They can 
even pretend to be you (psyche stealing?), for example by sending 
e-mail that appears to come from you.

1.2.4  Java as Something to Be Secured
This is a different point of view again. From this point of view, Java 
applets are seen neither as aids to strengthening security weak links, 
nor as potential weak links themselves, but as assets that need to be 
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protected. They can cost a lot to write and are valuable. They must not 
be copied and their use should be charged for.

This is an area which is still in its infancy. As was described earlier in 
this chapter, Java is a well-behaved language, and a Java class file 
can be decompiled to give a thoroughly intelligible Java program. So 
the same person who developed the Mocha decompiler has also 
developed the Crema obfuscator, which smudges the information in 
the class file so that the decompiler will no longer work. There is more 
on this subject in “Beating the Decompilation Threat” on page 67.

However, the long term goal has to be to charge for the use of valuable 
Java applets. The most promising approach at the moment is the work 
on Cryptolopes, whereby the bulk of the applet is downloaded in 
encrypted form. Enough is unencrypted that the user can see what he 
is being offered, and request the decryption key, thereby agreeing to 
pay. This approach is discussed in Chapter 13, “Java and Cryptolopes” 
on page 201.

1.2.5  Writing Secure Java
The sort of applet described in the previous section – one that is an 
asset because it performs significant business function – is likely to 
need to communicate with the server it came from, and to do so 
securely. All sensitive communication over the Internet needs proper 
cryptographic protection, and so JDK 1.1 contains an application 
programming interface (API) for security.

There are two keys parts of this for writing applets that use 
cryptography. One of the reasons for the division is that some 
cryptographic functions are seen as being dangerous in the wrong 
hands. No government wants to provide organized crime, or terrorist 
groups, with a cheap effective way of communicating that the police 
cannot decrypt. Exactly how to prevent this is not so clear, so there are 
many different export and import rules for cryptographic products. The 
cryptographic interfaces are divided into two parts, JCA and JCE, 
which reflect the divide between exportable and unexportable 
cryptography. We discuss this in more detail in “Cryptography to the 
Rescue!” on page 31.

1.2.6  Staying One Jump Ahead
To get ahead, the owners of a client or a Web site need to develop an 
overall security policy of which Java is a part, and implement it with 
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care. They need to use the latest information on what is known about 
Java security. This is bound to change; realistically, Java is so young 
that it cannot be otherwise.

So how do they find the very latest information? Two key sources are 
the CERT Coordination Center, which is on the Web at 
http://www.cert.org/ and Sun Microsystems’s list of frequently asked 
questions about applet security at http://java.javasoft.com/sfaq. This 
gets you ahead. Staying ahead means that the security policy should 
include regular checks of these sites, and regular reviews of which are 
the right sites to check.

Another part of staying ahead involves balancing security with stability. 
If an implementation error is discovered in the browser you use, and 
you see on the Web sites a description of the problem together with 
news of a new beta version of the browser to fix the problem, do you 
change to the new beta at once? Systems managers are traditionally 
very cautious about beta code: they want to see a lot of testing before 
they put it live on their production systems. This caution is one of the 
most important causes of the very high availability levels of modern 
systems, so systems managers are not about to change.

Traditionally, a change to include new function is forced to wait until it 
passes thorough testing, while a security change may be allowed 
through with less testing. It’s a business decision, and it’s worth 
including guidance in the security policy. The only way in which Java is 
different from all other areas of security, where similar business 
decisions must be made, is that news of a loophole can be spread 
worldwide extremely quickly, so the presumption should be that 
security fixes must go on quickly. 

1.2.7  The Vigilant Web Site
The cure for abuse is proper use, not non-use. Executable content has 
such a great value to computer systems and to computer business that 
we need to do it properly, not to ban it.

Proper use of Java involves vigilance on everybody’s part, including:

  • Vigilance on the part of the systems administrators who need to be 
sure that they can trust their sources

  • Vigilance on the part of the network administrators who need to 
protect against network attacks such as the man-in-the-middle
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  • Vigilance on the part of applet developers who need to be sure that 
the tools they are using do not corrupt their class files: their 
workstations may not be production machines, but they must be 
properly protected

There is something of an irony in remarks one sometimes hears about 
how Java should be turned off, made by people who are happy to 
download a code patch or a driver from a Web site. It is similar to 
those who are deeply concerned about sending their credit card 
information over the Web, but would willingly hand a credit card to a 
waiter in a restaurant.

If Java is used with vigilance, then its unique combination of web of 
trust and code validation makes it more secure than forms of 
executable content which depend on the web of trust alone. And, of 
course, dramatically more secure than downloading natively 
executable code from the Web.
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Chapter 2.  Attack and Defense

Many claims have been made for the security of Java. A lot of these 
claims have been rather exaggerated, but underlying them is the fact 
that security was designed-in at an early stage in the development of 
the language. Saying that Java has strong security is like challenging 
the world to find the holes in it, which is exactly what has happened. 
Some very clever (and very devious) people have been applying their 
brain-power to the problem of breaking down the Java defenses.

In this chapter we give a high-level view of how Java defends itself and 
then summarize the different ways in which it can be attacked. 

2.1  Java Is Not Just a Language

Most of the books on the subject deal with Java as a programming 
language. As a programming language it has much to recommend it. 
Its syntax is very like C, but with many of the features that hurt your 
brain removed. It is strongly object-oriented, but it avoids the more 
obscure corners of the O-O world. 

For most programming languages the question of "how secure is it" 
does not arise. It’s the application that needs to implement security, 
not the language it is written in. However, Java is many other things in 
addition to being a programming language:

  • A set of object-oriented frameworks, primarily for GUI building and 
networking

  • An operating system

  • A client/server management mechanism

  • A unifying force that cuts across operating system and network 
boundaries

It is not surprising that Java has become so widely accepted, so 
quickly. Before we look at the security issues, let us review some Java 
fundamentals.

2.2  Components of Java

There are a number of different components to Java:
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  • Development environment 
The Java Development Kit (JDK) contains the tools and executable 
code needed to compile and test Java programs. However, unlike a 
normal language, the JDK includes object frameworks for creating 
graphical user interfaces, for networking and for complex I/O. 
Normally these things are provided as additions, either by the 
operating system or by another software package. Of course, 
fully-featured development environments do exist for Java, but the 
core language includes a lot of what they would normally have to 
provide.

  • Execution environment
Java’s execution environment is neither that of a compiled 
language nor an interpreted language. Instead it is a hybrid, 
implemented by the Java Virtual Machine (JVM). Java is often said 
to be platform-independent, but first the JVM must be ported to 
each platform to provide the environment it needs. The JVM 
implementation is responsible for all of the built-in security of Java, 
so it is important that it is done properly.

  • Interfaces and architectures
Java applications live in the real world. This means that they must 
be able to interact with non-Java applications. Some of these 
interactions are very simple (such as the way that a Java applet is 
invoked in a Web page). Others are the subject of more complex 
architectural definitions, such as the JDBC interface for relational 
database support. The mechanism for adding encryption to Java 
security, the Java Cryptography Architecture (JCA), falls into this 
latter category.

2.2.1  The Development Environment
Once you have installed the JDK, you can start creating Java source 
code and compiling it. Java is like any other high-level programming 
language, in that you write the source code in an English-like form. 
The source code then has to be converted into a form that the machine 
can understand before it can be executed. To perform this conversion 
for a normal language, the code is usually either compiled (converted 
once and stored as machine code) or interpreted (converted and 
executed at runtime).

Java combines these two approaches. The source code has to be 
compiled with a Java compiler, such as javac, before it can be used. 
This is a conventional compilation, but the output that it produces is 
not machine-specific code, but instead is bytecode, a system 
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independent format. We will take a closer look at how bytecode is 
constructed in “Java Bytecode” on page 69. 

In order to execute, the compiled code has to be processed by an 
interpreter, which is part of the Java execution environment (known as 
the Java virtual machine, or JVM). The JVM is a runtime platform, 
providing a number of built-in system services, such as thread support, 
memory management and I/O, in addition to the interpreter.

2.2.1.1  Class Consciousness
Java is an object-oriented language, meaning that a program is 
composed of a number of object classes, each containing data and 
methods. One result of this is that, although a program may consist of 
just a single class, when you have compiled it into bytecode only a 
small proportion of the code that gets executed is likely to be in the 
resulting .class file. The rest of the function will be in other classes that 
the main program references. The JVM uses dynamic linking to load 
these classes as they are needed. As an example, consider the simple 
applet contained in the following two Java source files:

Figure 1.  Applet Source Code, PointlessButton.java

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import jamjar.examples.Button;
public class PointlessButton extends java.applet.Applet implements 
java.awt.event.ActionListener {
  Button  donowt = new Button( "Do Nothing" );
  int     count = 0;
/**
 * The button was clicked.
 */
  public void actionPerformed(java.awt.event.ActionEvent e) {
    donowt.setLabel( "Did Nothing " + ++count + " time" + ( count == 1? "": "s" ) );
  }
  public void init( ) {
    setLayout( new BorderLayout( ) );
    this.add( "Center", donowt );
    donowt.addActionListener( this );
  }
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Figure 2.  Invoked Class File, Button.java

The first listing, pointlessButton.java, is an applet that places a button 
on the Web page. It is not a very useful button, but we like it. Instead of 
using the standard AWT Button class it uses a class of our own, also 
called Button (see the second listing), but in a locally-written package. 
This works like a normal button, except that it changes color when you 

package jamjar.examples;
import java.awt.Color;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
/**
 * This class was generated by a SmartGuide.
*/
public class Button extends java.awt.Button implements MouseListener {
/**
 * @param title java.lang.String
 */
  public Button(String title) {
    super( title );
    addMouseListener( this );
    setBackground( Color.white );
  }
/**
 * Set the color of the button to red when the mouse enters
 */
  public void mouseEntered( MouseEvent m ) {
    setBackground( Color.red );
  }
/**
 * Reset the color of the button to white when the mouse exits
 */
  public void mouseExited( MouseEvent m ) {
    setBackground( Color.white );
  }
/**
 * Three do nothing methods.
 * Needed to implement the MouseListener interface
 */
  public void mouseClicked(java.awt.event.MouseEvent e) {}
public void mousePressed(java.awt.event.MouseEvent e) {}
public void mouseReleased(java.awt.event.MouseEvent e) {}

}
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move the mouse pointer over it. Figure 3 shows two copies of the 
applet running in a Web page.

Figure 3.  Running the pointlessButton Applet

The total size of the bytecode for this example is only 2 KB. However, 
the two classes cause a lot of other code to be dynamically installed, 
either as a result of inheritance (defined by the extends keyword in the 
class definition) or by instantiation (when a class creates an instance 
of another class with the new keyword). Figure 4 shows the hierarchy 
of classes that could potentially be loaded to run our simple applet 
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(this is a simplified view, because it does not consider classes that 
may be invoked by classes above the lowest level of the hierarchy).

Figure 4.  Classes Loaded for the pointlessButton Applet

This diagram illustrates a number of things about Java classes:

1. The classes are arranged in packages which are collections of 
related classes. The language defines a large number of these, 
which have to be implemented by every JVM implementation. You 
can add your own class packages by defining new classes that 
inherit from one of the basic classes. In our example, all but two of 
the classes are provided as standard. Normally, Java class loaders 
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impose a direct relationship between a package name and the 
location of the directory in which it expects to find the class files for 
the package. So, in our example, the classes contained in the 
jamjar.examples package will be found in directory 
{codebase}/jamjar/examples (codebase is the base directory on the 
server from which the applet is loaded, specified in the applet tag).1

2. Classes are defined as extending existing classes. This means that 
they can inherit the properties (variables and methods) of the 
higher (or super) class. They can also selectively override the 
properties of the super class. They also add new properties of their 
own. 

3. Java identifies classes using the fully-qualified class name, that is, 
the combination of the package name and the class name. This 
allows you to have duplicated class names, such as our two Button 
classes. If two classes in different packages do have duplicate 
names, the programmer must take care to use the right one. Two 
things that help with this are: importing classes by name, instead of 
importing the whole package, and placing the trusted classes at the 
start of the class path.

2.2.1.2  VABs and Beans
Java is unusual in the breadth of function that its built-in class 
frameworks provide; however, for a project of any complexity you are 
likely to employ graphical tools, such as a visual application builder 
(VAB) to link together predefined components, thereby reducing the 
code you have to write to the core logic of the application. Examples of 
VABs include IBM VisualAge for Java and Lotus Development’s 
BeanMachine. 

A component in this context is a package of Java classes that perform 
a given function. The JavaBeans definition describes a standard for 
components, known as Beans. Basically a Bean is a package of code 
containing both development and runtime components that:

  • Allows a builder tool to analyze how it works (“introspection”).

  • Allows a builder tool to customize its appearance and behavior.

  • Supports “events,” a simple communication metaphor than can be 
used to connect beans.

1  In fact we are guilty of using an improper name construction here. If your package will be used together with
packages from other sources, you should follow the naming standard laid down in the Java Language
Specification, Gosling, Joy and Steele. In our case this would lead to a package name something like
com.ibm.JamJar.examples. If you want to know more about the Java language specification, refer to
http://java.sun.com/docs/books/jls/.
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  • Supports “properties,” or settable attributes, used both when 
developing an application and programmatically when the 
application is running.

  • Supports persistence, so that a bean can be customized in an 
application builder and then have its customized state saved away 
and reloaded later.

  • Provides interfaces to other component architectures, such as 
ActiveX and LiveConnect.

From this list you can infer that, although a Bean is mostly made up of 
Java classes, it can also include other files, containing persistent 
information and other resources such as graphical elements, etc. 
These elements are all packed (or pickled) together in a JAR (Java 
Archive) file. 

From a security viewpoint, VABs and Beans do not affect the 
underlying strengths and weaknesses of Java. However, they may add 
more uncertainty, in that your application now includes sizeable 
chunks of code that you did not directly write. Their ability to provide 
interfaces to other component architectures may also cause problems, 
as we discuss in “Interfaces and Architectures” on page 27.

2.2.2  The Execution Process
We have said that the Java virtual machine operates on the stream of 
bytecode as an interpreter. This means that it processes bytecode 
while the program is running and converts it to "real" machine code 
that it executes on the fly. You can think of a computer program as 
being like a railroad track, with the train representing the execution 
point at any given time. In the case of an interpreted program it is as if 
this train has a machine mounted on it, which builds the track 
immediately in front of the train and tears it up behind. It’s no way to 
run a railroad.

Fortunately, in the case of Java, the virtual machine is not interpreting 
high-level language instructions, but bytecode. This is really machine 
code, written for the JVM instruction set, so the interpreter has much 
less analysis to do, resulting in execution times that are very fast.The 
JVM often uses "Just in Time" (JIT) compiler techniques to allow 
programs to execute faster, for example, by translating bytecode into 
optimized local code once and subsequently running it directly. 
Advances in JIT technology are making Java run faster all the time. 
IBM is one of many organizations exploring the technology. Check the 
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IBM Tokyo research lab site at http://www.trl.ibm.co.jp for project 
information.

Before the JVM can start this interpretation process, it has to do a 
number of things to set up the environment in which the program will 
run. This is the point at which the built-in security of Java is 
implemented. There are three parts to the process:

1. The first component of applet checking is the applet class loader. 
This separates the classes it loads to avoid attack: local classes 
are separated from remote classes, and classes from different 
applets are separated from each other. The search order is then 
Java built-in classes first, local classes next, remote classes last. 
So, if, by accident or design, an applet contains a class of the same 
name as a built-in or local class, it will not overwrite it.

2. The second component is the class file verifier. This runs when the 
applet is loaded, and aims either to confirm that the bytecode 
program will stay within the sandbox, or to reject it. It is a multipass 
process which begins by making sure that the syntax is valid, 
checks for stack overflow or underflow, and runs a theorem prover 
that looks to see that access and type restrictions are observed.

3. The third component is the security manager, which checks 
sensitive accesses at runtime. This is the component that will not 
allow Java applets illicit access to the file system, or to the network, 
or to the runtime operating system. 

2.2.2.1  The Class Loader
So how do these classes get loaded? When the browser finds an 
<applet> tag in a page, it starts the Java virtual machine which, in turn, 
invokes the applet class loader. This is, itself, a Java class which 
contains the code for fetching the bytecode of the applet and 
presenting it to the JVM in an executable form. The bytecode includes 
a list of referenced classes and the JVM works through the list, checks 
to see if the class is already loaded and attempts to load it if not. It first 
tries to load from the local disk, using a platform-specific function 
provided by the browser. In our example, this is the way that all of the 
core java classes are loaded. If the class name is not found on the 
local disk, the JVM again calls the class loader to retrieve the class 
from the Web server, as in the case of the JamJar.examples.Button 
class (above).
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2.2.2.2  Where Class Loaders Come From
The class loader is just another Java class, albeit one with a very 
specific function. An application can declare any number of class 
loaders, each of which could be targeted at specific class types. The 
same is not true of an applet. The security manager prevents an applet 
from creating its own class loader. Clearly, if an applet can somehow 
circumvent this limitation it can subvert the class loading process and 
potentially take over the whole browser machine.

The JVM keeps track of which class loader was responsible for loading 
any particular class. It also keeps classes loaded by different applets 
separate from each other. 

2.2.2.3  The Class File Verifier
At first sight, the job of the class file verifier may appear to be 
redundant. After all, bytecode is only generated by the Java compiler, 
so if it is not correctly formatted and valid, surely the compiler needs to 
be fixed, rather than having to go through the overhead of checking 
each time a program is run? 

Unfortunately, life is not that simple. The compiled program is just a file 
of type ".class" containing a string of bytes, so it could be created or 
modified using any binary editor. Given this fact, the Java virtual 
machine has to treat any code from an external source as potentially 
damaged and therefore in need of verification.

In fact, Java divides the world into two parts, Trusted and Untrusted. 
Trusted code includes the "local" Java classes which are shipped as 
part of the JVM and sometimes other classes on the local disk 
(detailed implementation varies between vendors). Everything else is 
untrusted and therefore must be checked by the class file verifier. As 
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we have seen, these are also the classes that the applet class loader 
is responsible for fetching. Figure 5 illustrates this relationship.

Figure 5.  Where the Class File Verifier Fits

We will look in detail at the things that the class file verifier checks in 
“The Class File Verifier” on page 86.

You can see that, for an applet, the class loader and the class file 
verifier need to operate as a team, if they are to succeed in their task 
of making sure that only valid, safe code is executed. 

From a security point of view the accuracy of the job done by the class 
file verifier is critical. There are a large number of possible bytecode 
programs, and the class file verifier has the job of determining the 
subset of them that are safe to run, by testing against a set of rules. 
There is a further subset of these verifiable programs: programs that 
are the result of compiling a legal Java program. Figure 6 illustrates 
this. The rules in the class file verifier should aim to make the 
verifiable set as near as possible to the set of Java programs. This 
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limits the scope for an attacker to create bytecode that subverts the 
safety features in Java and the protection of the security manager. 

Figure 6.  Decisions the Class File Verifier Has to Make

2.2.2.4  The Security Manager
The third component involved in loading and running a Java program 
is the security manager. This is similar to the class loader in that it is a 
Java class (java.lang.SecurityManager) that any application can 
extend for its own purpose. 

The SecurityManager class provides a number of check methods 
associated with specific actions that may be risky. For example, there 
is a checkRead method which receives a file reference as an 
argument. If you want your security manager to prevent the program 
from reading that particular file, you code checkRead to throw a 
security exception. 

Although any application could implement SecurityManager, it is most 
commonly found when executing an applet, that is, within a Web 
browser. The security manager built into your browser is wholly 
responsible for enforcing the sandbox restrictions: the set of rules that 
control what things an applet is allowed to do on your browser 
machine. Any flaw in the coding of the security manager, or any failure 
by the core classes to invoke it, could compromise the ability to run 
untrusted code securely. 

2.2.2.5  The Sandbox Restrictions
The main objectives of the sandbox are to:
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  • Prevent damage to the browser system caused by updating files or 
running system commands.

  • Prevent the uninvited retrieval of data by reading files or extracting 
environmental information.

  • Prevent the browser machine from being used as a platform to 
attack other systems.

  • Prevent the trusted built-in Java classes on the browser from being 
overridden or corrupted.

This last objective is the key to all of the others. This is because the 
security manager is, itself, a built-in class so if an attacker can corrupt 
or bypass it, all control is lost.

The Security Manager is part of the local browser code, so the 
implementation of the sandbox restrictions is the responsibility of each 
browser vendor. However, they all have the same objectives, so the 
result is a set of restrictions that is common across most vendors’ 
implementations:

  • No local disk access

  • Very limited environmental information

  • The "phone home" rule: the only host that an applet can establish a 
network connection to is the one from which it was loaded

  • No linkage to local code

  • No printing

We will look at the sandbox restrictions in more detail in “What the 
Security Manager Does” on page 97.

2.2.3  Interfaces and Architectures
We have discussed two parts of the world of Java, the development 
environment and the execution environment. The third part is where 
the world of Java meets the rest of the world, that is, the capabilities it 
provides for extending Java function and integrating with applications 
of other types. The simplest example is the way that a Java applet is 
created and integrated into a Web page by writing the program as a 
subclass of the Applet class and then specifying the class name in an 
<applet> HTML tag. In return, Java provides classes such as URL and 
a number of methods for accessing a Web server.
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2.2.3.1  Don’t Go Native! Seek Purity!
Another simple way to extend Java is by the use of native methods. 
These are sections of code written in some other, less exciting, 
language which provides access to native system interfaces. For 
example, imagine an organization with a helpdesk application which 
provides a C API for creating new problem records. You may well want 
to use this so that your new Java application can perform 
self-diagnosis and automatically report any faults it finds. One way to 
do so is to create a native method to interpret between Java and the 
helpdesk application’s API. This provides simple extensibility, but at 
the cost of portability and flexibility, because: 

  • The native method has to be compiled for a specific system 
platform.

  • It must be pre-installed and cannot be installed dynamically like a 
Java applet.

  • It cannot be invoked from an applet, because the sandbox 
restrictions prevent it.

The Java purist will deprecate this kind of application. In fact, although 
the quest for 100% Pure Java sounds like an academic exercise, there 
are a number of real-world advantages to only using well-defined, 
architected interfaces, not the least of which is that the security 
aspects have (presumably) already been considered.

2.2.3.2  Some of the Roads to Purity
As projects using Java have matured from being interesting exercises 
in technology into mission-critical applications, so the need has arisen 
for more complex interactions with the outside world. The Java applet 
gives a very effective way to deliver client function without having to 
install and maintain code on every client. However, the application you 
create this way still needs access to data and function contained in 
existing "legacy" systems.2 With JDK 1.1 JavaSoft have introduced a 
number of new interfaces and architectures for this kind of integration. 
The objective is to enable applications to be written in 100% Pure 
Java, while still delivering the links to the outside world that real 
requirements demand.

Some of the more notable interfaces of this kind are:

2  "Legacy" seems to be the current word-of-the-month to describe any computer system that does not fit the
brave new architecture under discussion. It is an unfortunate choice, in that it implies a system that is outdated or
inadequate. You may have a state-of-the-art relational database that is critical to the running of your business,
but to the Web-based application that depends on the data it contains, it is still a "legacy system".
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  • JavaBeans. As we discussed above, these not only provide easier 
application development, but also provide integration with other 
distributed object architectures. From a security point of view this 
capability opens a back door which an attacker could exploit. The 
Java security manager provides strict and granular controls over 
what a Java program may do. But these controls are dependent on 
the integrity of the Java Virtual Machine and in particular the trusted 
classes it provides. A Java applet cannot meddle with the trusted 
classes directly, but a Bean can provide linkage to a different type 
of executable content, with less stringent controls. This could be 
used to corrupt the JVM trusted classes, thereby allowing an attack 
applet to take over. 

  • Remote Method Invocation (RMI). This allows a Java class 
running on one system to execute the methods of another class on 
a second system. This kind of remote function call processing 
allows you to create powerful distributed applications with a 
minimal overhead. For example, an applet running on a browser 
system could invoke a server-side function without having to 
execute a CGI program or provide its own sockets-based protocol. 
The security concerns for RMI are, in fact, similar to the CGI case. 
The server code is not subject to the applet sandbox restrictions, so 
the programmer needs to be wary of unintentionally giving the 
client more access than he or she intends. 
For example, consider a Java application that accesses a database 
of personal information, consisting of a server-side application 
communicating with a client applet. When writing the application, 
the programmers will naturally assume that the only code involved 
is what they write. However, the Java code that initiates the 
connection does not have to be their friendly applet, it could be the 
work of a cracker. The server application must be very careful to 
check the validity of any requests it gets and not rely on client-side 
validation.

  • Object Request Brokers (ORBs). RMI provides a way to remotely 
execute Java code. However, for many years the O-O world has 
been trying to achieve a more generic form of remote execution. 
That is, a facility that allows a program to access the properties and 
methods of a remote object, regardless of the language in which it 
is implemented or the platform on which it runs. The facility that 
provides the ability to find and operate on remote objects is called 
an object request broker, or ORB. One of the most widely-accepted 
standards for ORBs is the Common Object Request Broker 
Architecture (CORBA) and packages are becoming available that 
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provide a CORBA-compatible interface for Java (for example, 
VisiBroker for Java from VisiGenic Corp, which is soon to be part of 
the core Java classes). Figure 7 on page 30 illustrates the 
relationship between a Java application or applet and a remote 
object. Clearly, in an implementation of this kind the Java program 
relies on the security of the request brokers. It is the responsibility 
of the ORB and the inter-ORB communications to authenticate the 
endpoints and apply access control. The official standard for 
inter-ORB communications is the Internet Inter-ORB Protocol 
(IIOP).

Figure 7.  Interacting with an ORB

  • JDBC. This ought to stand for "Java Database Connectivity," but 
actually it is a name in its own right (when you are changing the 
world, who needs vowels?). JDBC is an API for executing SQL 
statements from Java. Most relational databases implement the 
ODBC API (which does stand for something: Open Database 
Connectivity), originated by Microsoft. JBDC thoughtfully includes 
an ODBC bridge, thereby giving it instant usefulness. From a 
security point of view, there are some concerns. You should beware 
of giving access to more data than you intended. For example, 
imagine an applet which invokes JDBC on the Web server to 
extract information from a database. It is important that the server 
application is written to allow only the SQL requests expected from 
the applet, and not the more revealing requests that an attacker 
could make.
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2.2.4  Cryptography to the Rescue!
The interfaces that we have briefly described above illustrate a big 
issue in Java. The applet environment, fenced in as it is by the 
sandbox restrictions, is a relatively safe platform (only "relatively" safe, 
because it relies on software controls that have been found to contain 
bugs and because it provides limited protection from nuisances such 
as denial of service attacks). However, in the real world we need to 
extend the security model to allow more powerful applications and 
interfaces. 

The security model needs to answer questions such as the following:

  • Where did this piece of Java code come from?

  • What type of things should the code be allowed to do?

  • If someone appears to be using an applet I provide, how can I find 
out who they are?

  • How can I protect the confidentiality of the data my Java application 
is handling?

The answers to questions of this kind lie in cryptography and JDK 1.1 
introduces the Java Cryptography Architecture (JCA) to define the way 
that cryptographic tools are made available to Java code.

2.2.4.1  Cryptographic Tools in Brief
The derivation of the word "cryptography" is from Greek and means 
literally "secret writing." Modern cryptography is still involved in 
keeping data secret, but the ability to authenticate a user (and hence 
apply some kind of access control) is even more important.

Although there are many cryptographic techniques and protocols, they 
mostly fall into one of three categories:

Bulk encryption This is the modern equivalent of "secret 
writing." A bulk encryption algorithm uses a 
key to scramble (encrypt) data for 
transmission or storage. It can then only be 
unscrambled (or decrypted) using the same 
key. Bulk encryption is so called because it is 
effective for securing large chunks of data. 
Some common algorithms are DES, IDEA and 
RC4.

Public key encryption This is also a technique for securing data but 
instead of using a single key for encryption 
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and decryption, it uses two related keys, 
known as a key pair. If data is encrypted using 
one of the keys it can only be decrypted using 
the other, and vice versa. Compared to bulk 
encryption, public key is computationally 
expensive and is therefore not suited to large 
amounts of data. The most commonly-used 
algorithm for public key encryption is the RSA 
system.

Hashing A secure hash is an algorithm that takes a 
stream of data and creates a fixed-length 
digest of it. This digest is a unique "fingerprint" 
for the data. Hashing functions are often found 
in the context of digital signatures. This is a 
method for authenticating the source of a 
message, formed by encrypting a hash of the 
source data. Public key encryption is used to 
create the signature, so it effectively ties the 
signed data to the owner of the key pair that 
created the signature.

We describe the process of creating a digital signature in “The 
Security Classes in Practice” on page 115.

2.2.4.2  Java Cryptography Architecture
JCA is described as a provider architecture. It is designed to allow 
different vendors to provide their own implementation of the 
cryptographic tools and other administrative functions. This makes a 
very flexible framework which will cater for future requirements and 
allow vendor independence. 

The architecture defines a series of classes, called engine classes, 
that are representations of general cryptographic functions. So, for 
example, there are several different standards for digital signatures, 
which differ in their detail implementation but which, at a high level, are 
very similar. A single engine class (java.security.Signature) represents 
all of the variations. The actual implementation of the different 
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signature algorithms is done by a provider class which may be offered 
by a number of vendors.

Figure 8.  Provider and Engine Classes

The provider architecture has the virtue of offering a standard interface 
to the programmer who wants to use a cryptographic function, while at 
the same time having the flexibility to handle different underlying 
standards and protocols. The providers may be added either statically 
or dynamically. Sun, the default provider, provides:

  • Digital signatures using DSA

  • Message digests using MD-5 and SHA-1

Support for the management of keys and access control lists were not 
in the initial release of JDK 1.1, but will be provided later.

We discuss the JCA in more detail in “Introducing JCA: the Provider 
Concept” on page 113. 

2.2.4.3  US Export Rules for Encryption
Unfortunately, only a subset of the cryptographic possibilities are 
implemented in JDK 1.1. It includes all of the engine classes needed 
for digital signatures, plus a provider package, but nothing for bulk or 
public key encryption. The reason for this is the restrictions placed by 
the US government on the export of cryptographic technology.

The National Security Agency (NSA) is responsible for monitoring 
communications between the US and the rest of the world, aiming to 
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intercept such things as the messages of unfriendly governments and 
organized crime. Clearly, it is not a good thing for such people to have 
access to unbreakable encryption, so the US Government sets limits 
on the strength of cipher that a US company can export for commercial 
purposes.3 This applies to any software that can be used for "general 
purpose" encryption. So, the SUN provider package that comes with 
JDK 1.1 can include the full-strength RSA public key algorithm, but it 
can only be used as part of a digital signature process and not for 
general encryption.

Finally, in 1996, the US government relaxed the export rules. The 
promise is that any strength of encryption may be exported, so long as 
it provides a technique for key recovery, that is, a way for the NSA to 
retrieve the encryption key if they need to break the code.

The JavaSoft response to the current restrictions was to define two, 
related, packages for cryptography in Java. JCA is the exportable part, 
which contains the tools for signatures and is partially implemented in 
JDK 1.1. The not-for-export part is the Java Cryptography Extensions 
(JCE) which include the general purpose encryption capabilities. 
These consist of engine classes for bulk and public key encryption, 
plus an extension to the Sun provider package that offers the DES bulk 
encryption algorithm. 

The eventual aim is to develop a full strength, exportable 
cryptographic toolkit with key recovery built into it.

2.2.5  Signed Applets
Using JCA, it is possible for a Java application or applet to create its 
own digital signatures. This allows you to write more sophisticated 
programs, but a more common scenario is where you want an applet 
to do something that the sandbox restrictions normally forbid. In this 
case, the browser user needs to be convinced that the applet is from a 
trustworthy source. The way this is achieved is by digitally signing the 
applet.

The signature on an applet links the code to the programmer or 
administrator who created or packaged it. However, the user has to be 
able to check that the signature is valid. The signer enables this by 

3  Cipher strength is controlled by the size of the key used in the encryption algorithm. Current export rules limit
the key size for bulk encryption to 40 bits, which can now be cracked in a matter of hours with quite modest
computing facilities. Each extra bit doubles the key space, so a key size of 64 bits is 16 million times tougher than
40 bits. A similar rule applies to public key encryption, where an export-quality 512-bit modulus is inadequate, but
a 1024-bit modulus is expected to remain effective for the next ten years, at least for commercial use.
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providing a public key certificate. We discuss this in detail in Chapter 
9, “Java Gets Out of Its Box” on page 119.

2.2.5.1  The Other Side of the Coin: Access Control
When you receive an applet that has been digitally signed you know 
where it came from and you can make a judgement of whether or not it 
is trustworthy. Next, you want to exercise some access control. For 
example, an applet may want to use your hard disk to store some 
configuration information. You probably have no objection to it doing 
so, but that does not mean that you are happy for it to overwrite any 
file on the system. This is the difference between a binary trust model 
("I trust you, do what you like") and a fine-grained trust model ("tell me 
what you want to do and I’ll decide whether I trust you").

Other types of executable content, such as browser plug-ins and 
ActiveX currently use the binary model. By contrast, signed Java 
operates on top of the very tight sandbox restrictions. This means that 
fine-grained controls can be implemented. At the time of writing, the 
standards for controlling access were still being evolved. We discuss 
the different approaches in “JAR Files and Applet Signing” on 
page 119.

2.3  Attacking the World of Java

In the early days of most software developments, security is a long 
way down the list of priorities. This makes Java very unusual, in that 
security has been an important consideration from the very beginning. 
No doubt, this is because the environment to which the infant 
language has been exposed in its formative years is a cruel and 
unforgiving one: the Internet. In this section we take a cracker’s-eye 
view; what opportunities do we have to abuse a Java applet, to make it 
do our dastardly deeds for us? 

2.3.1  Perils in the Life of an Applet
The Java applet that runs in your Web browser has had an unusually 
long and interesting life history. Along the way it has passed through a 
number of phases, each of which is in some way vulnerable to attack. 
Figure 9 illustrates the points of peril in the life of an applet.
Attack and Defense 35



Figure 9.  Perils in the Life of an Applet

Let us look at the points of vulnerability in some detail:

1. You may think that all of the programmers you know are angels, but 
there is no way to tell if really there is a devil inside. In the case of a 
Java applet you are another step away from the person who wrote 
the code. So, when you buy a software product from a well-known 
company, you can be fairly sure that the contents of the shrink-wrap 
will not do you any harm. When you receive any code from the 
Internet you have to be wary of where it really comes from. In the 
case of a Java applet, the risk is in some ways worse, because you 
may not even be conscious that you have received the program at 
all. We will show some examples of the kind of things that a hostile 
applet can do in “Malicious Applets” on page 104 and we will 
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discuss the code signing capabilities of JDK 1.1 in Chapter 9, “Java 
Gets Out of Its Box” on page 119. 

2. The Java compiler, javac, takes source code and compiles it into 
class files (in bytecode format) that can be executed by the Java 
virtual machine. It is quite common for a developer to have multiple 
versions of javac on his or her computer. For example, the Java 
development kit for various system platforms is available for 
download from Javasoft and other computer manufacturers. Very 
often, a developer will have a current and one or more beta 
versions installed. javac is also provided as part of many 
application development tools. 

Normally you expect that the bytecode generated by a compiler 
would reflect the source code you feed in. However, a compiler can 
easily be hacked so that it adds its own, nefarious, functions. Even 
worse, a compiler could produce bytecode output that cannot be a 
translation of normal Java source code. This would be a way to 
introduce code to exploit some frailty of the Java code verification 
process, for example.

Although a hacked compiler is the most obvious example of a 
compromised programming tool, the same concern also applies to 
other parts of the programmer’s arsenal, such as editors, 
development toolkits and pre-built components.

3. If an attacker can get update access to the class files, wherever 
they are stored, they can subvert the function of the applet. For 
example, by modifying business data used in the applet or inserting 
rude messages. One obvious point of attack is where the class files 
are stored on the Web server. If an attacker can get update access 
to the directory they are in, they can be corrupted. Java class files 
should therefore be protected in much the same way as CGI 
programs, for example. Some basic principles for protection are:

For the Applet Developer

Can You Trust Your Tools?

Naturally, you want to be at the leading edge of development, using the latest and
greatest tools for your Java development. However, this enthusiasm needs to be
moderated by some caution. You must make sure that the tools you use come from
a reputable source. You should also report any odd behavior to the manufacturer.
It is probably only a bug, but it could be the manifestation of a hacker’s work.
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  • Don’t allow update permissions for the user ID that the Web 
server runs under. Many successful attacks on Web servers rely 
on finding holes in the logic or implementation of CGI programs 
and tricking them into executing arbitrary commands.

  • Make sure that the server has been properly hardened to reduce 
the risk of someone gaining access beyond the normal Web 
connection. You should remove unwanted network services and 
user IDs, enforce password restrictions and limit access using 
firewall controls. You should also make sure that you have the 
fixes for the latest security advisories installed.

4. One side-effect of Java’s portability is that a Webmaster can get 
applet code from any number of different sources. The code could 
just generate some entertaining animation or cool dialogs. 
Alternatively it could be a fully-fledged application, containing 
thousands of lines of source code. 

Any applets you import in this way should be treated with suspicion. 
This raises a moral question: how responsible should you feel if 
your Web site somehow damages a client connecting to it, even if 
you are not ultimately responsible for the content that caused the 
damage? Most reasonable people will agree that there is a duty of 
care which should be balanced against your desire to build the 
world’s most dynamic and attractive Web site. Indeed it would be a 
good idea to check whether your agreements with others mean that 
you have a formal legal duty of care. You do not want a 
thoughtlessly-included applet to result in your being sued.
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5. The next journey in the life of an applet is when it is loaded into the 
browser virtual machine across the network from the server. 
Although it could, potentially, be intercepted in mid-flight and 
modified, a much more likely form of attack would involve some 
type of spoofing. What this means is that the attacker fools the 
browser into thinking that it is connecting to rocksolid.reliable.org, 
when really the applet is coming from nogood.badguys.com. The 
most sophisticated form of spoofing is the Web spoof, where the 
attacker acts as a filter for all of the traffic between the browser and 
anywhere else, passing most requests straight through, but 
intercepting particular requests and modifying them or replacing 

So, you’re the administrator of a Web site and you want to include some applet
code from somewhere else. You want to be sure that the applet is safe, but how
can you check it? 

For simple applets you should try to get the code in source form, so that you can
inspect it and compile it yourself. This means that you need to understand the Java
language. Your job already requires you to have a superhuman knowledge of
computer systems and the Web; adding Java to your knowledge base must be a
trivial matter for a person of such skill.

In fact the problem is not so great as it first appears. It is much easier to read a
computer program and understand what it is doing than to write it in the first place.
In “Malicious Applets” on page 104 we will discuss some of the things that you
should watch for.

Applets that are only provided in compiled form are more of a problem. Very often
they are too large to do a practical visual check and anyway, if they are
commercially-produced, the writer is unlikely to want to share his coding tricks with
the world at large. You can, of course, check the external behavior, but that gives
no clue to what browser holes it may be probing or background threads it may be
spinning. There are tools like javap and Mocha which allow you to at least get an
idea of what an applet is doing; refer to “Decompilation Attacks” on page 60 for
more information.

JDK 1.1 introduces signed applets which allow you to check who the real originator
of an applet is and know that it has not been altered on its way to you. You still have
to make a judgment of who to trust, but at least you are basing the judgment on
sound data.

For the System Administrator

Checking Your Sources
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them with something more sinister (see Figure 10 on page 40). 
Note that it does not have to be this way around. It is equally 
possible for a Web spoof to screen everything going to and from a 
server, rather than a client system.

Figure 10.  A Web Spoof

Spoofing is not just a problem for Java applets, of course. Any Web 
content can be attacked in this way. With Java this gives the attacker 
an opportunity to execute a malicious applet or try to exploit security 
holes in the browser environment. However, compared to the risk of 
downloading and installing a conventional program in this kind of 
environment, the risk is small.
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Signed applets can again help with this problem. An attacker may 
be able to substitute subversive class files to attack the browser, 
but it is much more difficult to forge the class signature.

6. Finally the applet arrives at the browser; class files are loaded and 
verified and the virtual machine goes to work. If the installation is 
working as designed, the worst peril that can befall you as a user is 
that the applet may annoy you or eat excessive system resources 
(see Chapter 4, “Class of 1.1” on page 55 for a description of class 
loader and security manager controls). There are two things that 
can go wrong with this idyllic picture:

  • There may be bugs in the Java implementation.

  • You may have installed a hacked version of the browser code.

Of these two, the first is more likely. There have been a number of 
well-publicized security breaches found in the Java virtual machine 
components. The best description of how these operate can be 
found in Java Security, Hostile Applets, Holes, and Antidotes, by 
Felten and McGraw. You can also find more up-to-date online 
information at the sites listed in Appendix A, “Sources of 
Information about Java Security” on page 211. The best way to 
protect yourself is to make sure you are aware of the latest 
breaches and install the fixes as they arrive.

The possibility of installing a browser that has been tampered with 
is a real one, although there are considerable practical hurdles for 
an attacker to overcome in creating such a thing. If you do as we 

For the Network Administrator

Guarding against Spoofing

If you are a network administrator responsible for a site in which browsers or
servers live, how do you protect yourself from an attacker that spoofs as a
legitimate address? The first thing is to ensure that your systems and firewalls do
not accept any of the common methods that can induce them to believe that a
network node is really somewhere else. The ICMP redirect and IP source route
functions are good examples. Refer to Chapter 11, “Firewalls: In and Out of the Net”
on page 169 for more firewall discussions.

You may consider that you do not want any of the browsers in your site to be able
to run applets from outside the firewall. A number of firewall implementations now
provide screening for Java in general or for specific classes.
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recommend (above) and install the latest fixes, you will inevitably 
be running a downloaded version of the browser. There is some 
small risk that this could be a hacked version, but no examples of 
this have yet been detected.

2.3.2  Vulnerabilities in Java Applications
A Java applet is an obvious vehicle to mount an attack, because it can 
install itself uninvited and probe for weaknesses. And, of course, this is 
why so much thought has gone into the construction of the sandbox 
and the JDK 1.1 code-signing capabilities. 

A Java application, on the other hand, is a much less obvious target. 
There are many ways in which such an application could be 
implemented, for example:

  • On a Web server using CGI to interface with Web pages or applets

  • As a stand-alone application on a server, interfacing with client 
code using socket connections

  • As a stand-alone application on a server, using remote object 
request services (like RMI or CORBA) for communication

To a cracker, the fact that the application is written in Java rather than 
any other language is not really important. The strategies that he or 
she would use to search for vulnerabilities are the same. For example:

For the Web User

Should I Switch Java Off?

The Big Question that all browser users ask about Java is this: should I allow it to
run or not? In the final analysis, this is a personal decision. As we have described,
there is some peril in allowing Java applets to run in your system, because you
cannot be sure of where they have come from or whether they exploit security holes
in your browser. You may decide that this risk is too high to take.

If you take this view, you should also review your other Web usage. If you download
any executable program from the Web it is potentially far more dangerous to the
health of your system than any Java applet. 

Many companies and software producers are writing applications that use Java
applets for their client component. These are usually designed for intranet, rather
than Internet use, so the likelihood of attack is (presumably) much lower. 
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  • Many successful attacks rely on driving the application with data 
that it is not equipped to handle. In particular, if the application uses 
a command line interface, it should be very careful to screen out 
escape sequences that an attacker could use to execute arbitrary 
commands.

  • Applications frequently have to give themselves temporary higher 
privileges to use system functions or get special access (such as 
user IDs for database control). If an attacker can crash the 
application at this critical point, or link to it from another running 
program he or she can use the special privileges illegally.

As we said earlier, vulnerabilities of this kind apply to applications 
written in Java the same as any other application programming 
environment. However, Java does include safety features that make it 
harder for an attacker to find a flaw. These safety features work at two 
levels:

Java source The Java language uses strong type constraints to 
prevent the programmer from accessing data in an 
inconsistent way. You can cast objects from one type to 
another, but only if the two classes are related by 
inheritance; that is, one must be a superclass of the 
other. This does not operate symmetrically, which 
means you can always cast from a subclass to its 
superclass, but not always vice versa. Referring again 
to Figure 4 on page 20, you could access an instance 
of the Button class as an Object, but you could not 
access a Button as a Panel.

Furthermore, Java prevents you from having direct 
access to program memory. In C it is common to use a 
pointer to locate a variable in memory and then to 
manipulate the pointer to process the data in it. This is 
a frequent source of coding errors, due to the pointer 
becoming corrupted or iterating beyond the end of the 
data. Java allows a variable to be accessed only 
through the methods of the object that contains it, 
thereby removing this class of error.

Bytecode The Java virtual machine is type-aware. In other words, 
most of the primitive machine instructions are 
associated with a particular type. This means that the 
JVM also applies the type constraints that the compiler 
imposes on the Java source. In fact, this job is split 
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between the class file verifier, which handles 
everything that can be statically checked and the JVM, 
which deals with runtime exceptions. Contrast this with 
other languages, in which the compiler produces 
microprocessor machine code. In this case the 
program is just handled as a sequence of bytes, with 
no concept of the data types that are being 
represented.

The JVM is also, at a basic level, strongly 
compartmentalized, mirroring the object orientation of 
the Java source. This means that each method in the 
code has its own execution stack and only has access 
to the memory of the class instance for which it was 
invoked.

2.4  Summary

This first part of the book has been a tour through the many aspects of 
Java security. You should now have a good high-level understanding 
of the issues involved and the mechanisms that are at work. In the 
next section we look under the covers, at the detailed operation of the 
Java virtual machine and the security classes.
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Part 2. Under The Hood
45



46 Java Network Security



  
Chapter 3.  The Java Virtual Machine

This part of the book is aimed primarily at people who wish to 
understand the inner workings of the Java security model. The level of 
detail is deliberately high and you should ensure that you are seated 
comfortably with some soothing music and a scratch pad to hand.

You should probably consult your doctor before attempting to read the 
whole of Part 2 at once.

Understanding how the various components of the JVM cooperate to 
provide a secure execution environment for Java code will enable you 
to implement your own extensions to the JVM in order to provide a 
more tailored security policy.

3.1  The Java Virtual Machine, Close Up

Later chapters in Part 2 examine the various components of the JVM 
in detail. In this chapter we identify the key components of the JVM 
and in particular, those which are found in Web browsers.

Figure 11 shows a simplified representation of the JVM. Those 
components which are highlighted are generally only found in Web 
browsers rather than in the stand-alone implementations required to 
execute Java applications.
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Figure 11.  Components of the JVM

As you will see, the additional components are required to provide the 
additional security needed when loading and executing Java bytecode 
which has been loaded from an untrusted source such as a Web 
server.

3.1.1  The Class Loader
Before the JVM can run a Java program, it needs to locate and load 
the classes which comprise that program into memory. In a traditional 
execution environment, this service is provided by the operating 
system which loads code from the filing system in a platform-specific 
way.

The operating system has access to all of the low level I/O functions 
and has a set of locations on the filing system which it searches for 
programs or shared code libraries. On PC and UNIX systems this is 
some combination of PATH settings which specify a list of directories 
to be searched for files. In mainframe environments the same function 
is provided by the LINKLIST.
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In the Java runtime environment things are complicated a little by the 
fact that not all class files are loaded from the same type of location. In 
general classes can be divided into three categories:

  • Classes forming the core Java API

These are the classes shipped with the JVM which provide access 
to network, GUI and threading functions. They are shipped with the 
JVM implementation and are part of the Java specification. As such 
they are regarded as highly trusted classes and are not subject to 
the same degree of scrutiny at runtime as classes brought into the 
JVM from an external source.

  • Classes installed in the local filing system

While not a part of the core Java class set, these classes are 
assumed to be safe since the user has at some point installed them 
onto his or her machine and presumably accepted the associated 
risks. In many cases these classes are treated in the same way as 
those classes in the core Java API.

  • Classes loaded from other sources

In a Web browser, these would be the classes constituting an 
applet loaded from a remote Web server. These are the least 
trusted classes of all as they are being brought into the safe 
environment of the JVM from potentially hostile sources and often 
without the specific consent of the user. For this reason, these 
classes must be subjected to a high degree of checking before 
being made available for use in the JVM.

Given the diverse range of possible sources for class files and the 
different checking requirements of the JVM it is clear that different 
mechanisms will be required to locate and load classes. The class 
loader comes in various flavors, each responsible for locating and 
loading one type of class file.

Users may also implement their own class loaders to load classes 
from particular locations or to impose more rigorous checking of class 
files loaded from normally trusted sources. This allows you to 
implement highly flexible security policies.

3.1.2  The Class File Verifier
As mentioned above, some of the class files loaded by the JVM will 
come from untrusted sources. These files need to be checked prior to 
execution to ensure that they do not threaten the integrity of the JVM. 
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The class file verifier is invoked by the class loader to perform a series 
of tests on class files which are regarded as potentially unsafe.

These tests check all aspects of a class file from its size and structure 
down to its runtime characteristics. Only when these tests have been 
passed is the file made available for use.

3.1.3  The Heap
The heap is an area of memory used by the JVM to store Java objects 
during the execution of a program. Precisely how objects are stored on 
the heap is implementation specific and this adds another level of 
security since it means that a hacker can have no idea of how the JVM 
represents objects in memory. This in turn makes it far more difficult to 
mount an attack that depends on accessing memory directly.

When an object is no longer used, the JVM marks it for garbage 
collection and at some point the memory on the heap is freed up for 
reuse.

3.1.4  The Class Area
The class area is where the JVM stores class-specific information 
such as methods and static fields. When a class is loaded and has 
been verified, the JVM creates an entry in the class area for that class.

Often the class area is simply a part of the heap. In this case classes 
may also be garbage-collected once they are no longer used. 
Alternatively, the class area may be a separate part of memory and will 
require additional logic on the part of the JVM implementor to clean up 
classes which are not being used.

When a JIT compiler (see section 3.1.10) is present, the native code 
generated for class methods is also stored in the class area.

3.1.5  The Native Method Loader
Many of the core Java classes, such as those classes representing 
GUI elements or networking features, require native-code 
implementations to access the underlying OS functions. Programmers 
may also implement their own native methods, assuming of course 
that they don’t want their code to be portable. These native methods 
are composed of a Java wrapper – which specifies the method 
signature – and a native-code implementation – often a DLL or shared 
library. 
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Core Java classes aren’t hindered by the fact that they use 
native-code; they’re part of the JVM implementation for a particular 
operating system. Applets and applications, on the other hand, are 
more useful if they are portable, but they are portable only if they 
eschew native methods.

The native method loader is responsible for locating and loading these 
shared libraries into the JVM. Note that it is not possible for the JVM to 
perform any validation or verification of native code and installing such 
code exposes you to all of the risks associated with running untrusted 
programs on your machine.

3.1.6  The Native Method Area
Once native code has been loaded, it is stored in the native method 
area for speedy access when required.

3.1.7  The Security Manager
Even when untrusted code has been verified, it is still subject to 
runtime restrictions. The security manager is responsible for enforcing 
these restrictions. In a Web browser, the security manager is provided 
by the browser manufacturer and is the component of the JVM which 
prevents applets from reading or writing to the file system, accessing 
the network in an unsafe way, making inquiries about the runtime 
environment, printing and so on.

By default, in a stand-alone JVM implementation there is no security 
manager (since there is no mechanism to load classes from an 
untrusted source). It is, however, possible for an application writer to 
implement a security manager to enforce a particular security policy.

3.1.8  The Execution Engine
The execution engine is the heart of the JVM. It is the virtual processor 
which executes bytecode. Memory management, thread management 
and calls to native methods are also performed by the execution 
engine.

3.1.9  The Trusted Classes
The trusted Java classes are those classes which ship as part of the 
JVM implementation. This includes all classes in packages which start 
“java.” and “sun.” as well as any vendor-provided classes used to 
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implement the platform-specific parts of core classes (such as the GUI 
components).

They are often stored in the filing system (usually in a ZIP archive 
called classes.zip) but may be held as part of the JVM executable 
itself.

3.1.10  The Just In Time (JIT) Compiler
Since Java bytecodes are interpreted at runtime in the execution 
engine, Java programs generally execute more slowly than the 
equivalent native platform code. This performance overhead occurs 
because each bytecode instruction must be translated into one or 
more native instructions each time it is encountered.

The performance of Java is still significantly better than that of other 
interpreted languages because the bytecode instructions were 
designed to be very low level – the simplest instructions have a 
one-to-one correlation with native machine code instructions.

Nevertheless, Sun saw that there would be a need to improve the 
execution performance of Java and to do so in a way which did not 
compromise either the "write once run anywhere" goal and did not 
undermine the security of the JVM.

Since all bytecode instructions are ultimately translated to native 
machine code, the principal ways of speeding performance involve 
making this translation as quick as possible and performing it as few 
times as possible.

On the other hand, the security and portability of Java is dependent on 
the bytecode and class file format which enable code to be run on any 
JVM and to be rigorously tested to ensure that it is safe prior to 
execution. Thus, any translation must occur after a class file has been 
loaded and verified.

Two options present themselves:

1. Translate the whole class file into native code as soon as it is 
loaded and verified.

2. Translate the class file on a method-by-method basis as needed.

The first option seems quite attractive but it is possible that many of 
the methods in a class file will never be executed. Time to translate 
these methods is therefore wasted. The second option was the one 
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selected by Sun. In this case, the first time a method is called, it is 
translated into native code, which is then stored in the class area. The 
class specification is updated so that future calls to the method run the 
native code rather than the original bytecode.

This meets our requirement that bytecode should be translated as few 
times as is necessary – once when the code is executed and not at all 
in the case of code which is not executed.

The process of translating the bytecode to native code on the fly is 
known as just in time (JIT) compilation and performed by the JIT 
compiler. Sun provided a specification for how and when JIT compilers 
should execute and vendors were left to implement their own JIT 
compilers as they chose.

JIT compiled code executes much more quickly than regular bytecode 
– between 10 to 50 times faster – without impacting portability or 
security.

3.2  Summary

You now have a good idea of how the various components of the JVM 
work together. The next four chapters examine the principle elements 
of the Java security architecture – the class file structure, the class 
loader, the bytecode verifier and the security manager – in greater 
detail.
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Chapter 4.  Class of 1.1

In this chapter we will explore a number of topics:

  • The relationship between Java class files and conventional object 
and executable files

  • The threat presented by the class file format

  • How bytecodes aid security

In addition, we will:

  • Describe the contents of a Java class file

  • Describe ways in which to reduce the threat of decompilation

4.1  The Traditional Development Life Cycle

As you have seen earlier, Java is a compiled language. That is, source 
code is written in a high-level language and then converted through a 
process of compilation to a machine-level language, the Java 
bytecode, which then runs on the Java Virtual Machine. Before we 
look more closely at Java bytecode, we’ll quickly review the 
differences between high- and low-level languages, the compilation 
process and runtime behavior of a more traditional environment.

On the PC, program files are recognized in two ways. The first is by 
the file extension (.EXE, .COM) and the second is by the file format 
itself. Executable files contain some information in a header which 
informs the operating system that this file is a program and has certain 
requirements in order to run. These requirements include such things 
as the address at which the program should be loaded, other 
supporting files which will be required and so on.

When DOS or Windows attempts to run a program file, it loads the file 
and ensures that the header is legitimate, that is, that it describes a 
real program. The header also indicates where the starting point of the 
program itself is. The program is stored in the program file as machine 
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code instructions. These instructions are numeric values which are 
read and interpreted by the processor as it executes. Having validated 
the header, the operating system starts executing the code at this 
address.

From the above description, it should be clear that anyone with a good 
understanding of the header format and of the machine code for a 
particular operating system could construct a program file using little 
more than an editor capable of producing binary files. (Such an 
individual would be well advised to seek urgent medical attention.)

Of course this is not how programs are produced. The closest that 
anyone gets to this is writing assembly code. Assembly language 
programming is very low level. Its statements, after macro expansion, 
usually translate into one or at most two machine language 
instructions. The assembly source code is then fed through an 
assembler which converts the (almost) human readable code into 
machine code, generates the appropriate header and finally outputs 
an executable file.

Most programs, however, are written in a high-level language such as 
C, C++, COBOL and so forth. Here it is the task of the compiler to 
translate high-level instructions into low-level machine code in the 
most optimal way. The resultant machine code output is generally very 
efficient, although – depending on the compiler – it may be possible to 
write more efficient assembler language. Because different compilers 
manage the translation and optimization process in different ways, 
they will produce different output for the same source code. In general 
it is true to say that the higher level the source language, the more 
scope there is for variation in the resultant executable file since there 
will be more than one possible translation of each high-level statement 
into low-level machine code.

During the compilation process, high-level features such as variable 
and function names are replaced by references to addresses in 
memory and by machine code instructions, which cause the 
appropriate address to be accessed (in the case of variables) or 
jumped to (in the case of functions).

In the case of both assembly language and high-level language 
programming, the output of the assembly or compilation phase is 
generally not immediately executable. Instead, an intermediate file 
(known as an object module or object file1) is produced. One object file 
is produced for each source file compiled, regardless of the content or 
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structure of the source code. These object modules are then combined 
using a tool called a linker which is responsible for producing the final 
executable file (or shared library). The linker ensures that references 
to a function or variable in one object module from another object 
module are correctly resolved. 

Figure 12.  Program Compilation and Linking

In summary then:

  • An object file contains the machine code which is the actual 
program plus some additional information describing any 
dependencies on other object files.

  • An executable file is a collection of object files with all inter-file 
dependencies resolved, together with some header information 
which identifies the file as executable.

4.2  The Java Development Life Cycle

Moving back to the world of Java, we see that it is a high-level 
programming language and that bytecode is the low-level machine 
language of the Java Virtual Machine. Java is an object-oriented 
language; that is, it deals primarily with objects and their 
interrelationships. Objects are best thought of in this context as a 
collection of data (fields in Java parlance) and the functions (methods) 
which operate on that data. Objects are created at runtime based on 
templates (classes) defined by the programmer. 

A Java source file may contain definitions for one or more classes. 
During compilation each of these classes results in the generation of a 
single class file. In some respects, the class file is the Java equivalent 
of an object module rather than an executable program file; that is, it 
contains compiled machine code, but may also contain references to 

1  An unfortunate nomenclature and nothing at all to do with object-oriented programming. If the source file is the
subject of the compilation process then the resultant file must be the object.

Source File Object File
Program FileCompile Link
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methods and fields which exist in other classes and hence in other 
class files.

Class files are the last stage of the development process in Java. 
There is no separate link phase as linking is performed at runtime by 
the Java Virtual Machine. If a reference is found within one class file to 
another, then the JVM loads the referenced class file and resolves the 
references as needed.

The astute reader will deduce that this demand loading and linking 
requires the class file to contain information about other class files, 
methods and fields which it references, and in particular, the names of 
these files, fields and methods. This is in fact the case as we shall see 
in the next section.

Even more astute readers may be pondering some of the following 
questions.

  • Is it possible to compile Java source code to some machine 
language other than that of the JVM?

  • Is it possible to compile some other high-level language to 
bytecode for the JVM?

  • Is there such a thing as an assembler for Java?

  • What is the relationship between the Java language and bytecode?

The simple answer to the first three questions is yes.

It is possible with the appropriate compiler (generally referred to as a 
native code compiler) to translate Java source code to any other low- 
level machine code, although this rather defeats the “write once run 
anywhere” proposition for Java programs since the resultant 
executable program will only run on the platform for which it has been 
compiled.

It is also possible to compile other high-level languages into Java 
bytecode, possibly via an interim step in which the source code is 
translated into Java source code which is in turn compiled. Bytecode 
compilers already exist for Ada, COBOL, BASIC and NetREXX (a 
dialect of the popular REXX programming language).

Finally, Jasmin is a freely available Java assembler which allows 
serious geeks to write Java code at a level one step removed from 
bytecode.
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Figure 13.  Compiler Models

4.3  The Java Class File Format

The class file contains a lot more information than its cousin, the 
executable file. Of course, it still contains the same type of information, 
program requirements, an identifier indicating that this is a program 
and executable code (bytecode) but it also contains some very rich 
information about the original source code.

The high level structure of a class file is shown in Table 1. 

Table 1.  Class File Contents

Field Description

Magic number Four bytes identifying this file as a Java class file. Always 
set to 0xCAFEBABE
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Much here is as we would expect. There is information to identify the 
file as a Java class file, as well as the virtual machine on which it was 
compiled to run. In addition, there is information describing the 
dependencies of this class in terms of classes, interfaces (a special 
type of Java class file), fields, and methods. There is much more 
information than this however, buried within the constant pool: 
information which includes variable and method names within both this 
class file and those on which it depends.

In addition to managing dynamic linking, the JVM must also ensure 
that class files contain only legal bytecode and do not attempt to 
subvert the runtime environment, and to do this, still more information 
is required in the class. More details of how this works are in Chapter 
5, “The Class Loader and Class File Verifier” on page 77.

The main thing to understand at this point is that the inclusion of all of 
this information makes the job of a hacker much simpler in many ways.

4.3.1  Decompilation Attacks
One of the areas seldom discussed when considering security 
implications of deploying Java is that of securing Java assets. Often 
considerable effort is put into developing software and the resultant 
intellectual property can be very valuable to a company.

JVM minor 
version

The minor version number of the JVM on which this class 
file is intended to run

JVM major 
version

The major version number of the JVM on which this class 
file is intended to run

Constant pool See below

Class name The name of this class

Super class name The name of the superclass in the Java class hierarchy

Interfaces Description of the interfaces implemented for this class

Fields Description of the class variables defined for this class

Methods Description of the methods declared by this class

Source file name The file from which this class file was compiled

Field Description
60 Java Network Security



  
Hackers are a clever (if misguided) bunch and there are many reasons 
why they might want to get “inside” your code. Here are a few:

  • To steal a valuable algorithm for use in their own code

  • To understand how a security function works to enable them to 
bypass it

  • To extract confidential information (such as hard-coded passwords 
and keys)

  • To enable them to alter the code so that it behaves in a malicious 
way (such as installing Trojan horses or viruses)

  • To demonstrate their prowess

  • For their entertainment (much as other people might solve 
crosswords)

The chief tool in the arsenal of the hacker in these cases is the 
decompiler. A decompiler, as its name suggests, undoes the work 
performed by a compiler. That is, it takes an executable file and 
attempts to re-create the original source code. 

Advances in compiler technology now make it effectively impossible to 
go from machine code to a high-level language such as C. Modern 
compilers remove all variable and function names, move code about to 
optimize its execution profile and, as was discussed previously, there 
are many possible ways to translate a high-level statement into a low- 
level machine code representation. For a decompiler to produce the 
original source code is impossible without a lot of additional 
information which simply isn’t shipped in an executable file.

It is, however, very easy to recover an assembly language version of 
the program. On the other hand, the amount of effort required to 
actually understand what such a program is doing makes it far less 
worthwhile to the hacker to do. (Nevertheless, it is done. Much pirated 
software is distributed in a “cracked” format, that is, with software 
protection disabled or removed.) So, it is fair to say that it is impossible 
to completely protect any program from tampering. 

When JDK 1.02 was shipped, a decompiler named Mocha was quickly 
available which performed excellently. It was able to recover Java 
source code from a class file. It was so successful that at least one 
person used it as a way of formatting his source code! In fact the only 
information lost in the compilation process and unrecoverable using 
Mocha are the comments. If meaningful variable names are used 
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(such as “accountNumber”, or “password”) then it is readily possible to 
understand the function of the code, even without the comments.

The current version of Mocha is unable to decompile Java 1.1 class 
files but this is not because the class files contain any less information, 
merely because the format has changed slightly. It is only a matter of 
time before a functional decompiler for Java 1.1 class files is 
developed.

4.4  The Constant Pool

We said earlier that the constant pool contained a great deal of 
information. In fact it contains a strange mixture of items. The constant 
pool combines the function of a symbol table for linking purposes as 
well as a repository for constant values and string literals present in 
the source code. It may be considered as an array of heterogeneous 
data types which are referenced by index number from other sections 
of the class file such as the Field and Method sections. In addition, 
many Java bytecode instructions take as arguments numbers which 

For the System Administrator

Should You Have a Decompiler

If you can read Java source code, it is a good idea to have a decompiler 
available, to check the function of Java class files that you receive, partic-
ularly if they come from an unknown origin.
The only problem with this is that you are stepping into a legal and moral 
minefield. Decompilers are downloadable from a number of sources and 
also are in some commercial Java development packages. However there 
have been strong attempts to prevent them being available in this way, 
because it allows unscrupulous people to steal the source code of propri-
etary products.
The authors’ view is that, until signed, verifiable Java is more generally 
available, there is a place for the decompiler as a tool for checking what is 
really going on inside a class file.

in Your Toolkit?
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are in turn used as indexes into the constant pool. Table 2 shows the 
types of entries in the constant pool, as defined by the current JVM.

Table 2.  Constant Pool Entry Types

As an example of a constant pool, let’s take a look at the 
PointlessButton example we met earlier. Table 3 shows a dump of the 

a. The signature of a field is simply its type. The signature of a method is both its return type and the types of any
parameters which it takes. Method signatures are represented by a pair of parentheses with the parameter types
enclosed and separated by semicolons. The parentheses are followed by the return type of the method. See
Appendix B, “Signature Formats” on page 217 for a full description of Java type representations.

Type Name Used For Contains

UTF8 String in UTF8 format (a shorthand 
for writing Unicode strings)

An array of bytes making up the 
string

Integer A constant 32-bit signed integer 
value

The numeric value of the integer

Long A constant 64-bit signed integer 
value

The numeric value of the long

Float A constant 32-bit floating point 
value

The numeric value of the float

Double A constant 64-bit double precision 
floating point value

The numeric value of the double

String A Java string literal Reference to the UTF8 
representation of the string

ClassRef Symbolic reference to a class Reference to a UTF8 
representation of the class name

FieldRef Symbolic reference to a field Reference to a ClassRef for the 
class in which the field occurs and 
a NameAndType for this field

MethodRef Symbolic reference to a method Reference to a ClassRef for the 
class in which the method occurs 
and a NameAndType for this 
method

InterfaceMethodRef Symbolic reference to an interface 
method

Reference to a ClassRef for the 
interface in which the field occurs 
and a NameAndType for this 
method

NameAndType Shorthand representation of a field 
or method signature and name

Reference to a UTF8 
representation of the name and 
another to the signaturea
Class of 1.1 63



constant pool for the PointlessButton class. The information in this 
table was generated using the DumpConstantPool application, which 
is on the CD accompanying this book.

Table 3.  Constant Pool Example

The full table has 83 entries, not bad for such a simple program. 
Looking at this data you can see that there is a wealth of information 
here. As an example of how a method is represented, let’s look at 
entry number 56. This is a MethodRef entry and as such it has two 
further references to track down. The first is the Class entry, (4) which 
in turn references a UTF8 entry (3) for the class name: 
java.applet.Applet. 

Index Type Value

1 UTF8 bytes = "PointlessButton"

2 Class name = (1) "PointlessButton"

3 UTF8 bytes = "java/applet/Applet"

4 Class name = (3) "java/applet/Applet"

13 NameAndType name = (8) "donowt", type = (7) "Ljamjar/examples/Button;"

14 FieldRef class = (2) "PointlessButton", name and type = (13) "donowt", 
"Ljamjar/examples/Button;"

17 UTF8 bytes = "Did Nothing "

18 String value = (17) "Did Nothing "

24 MethodRef class = (20) "java/lang/String", name and type = (23) "valueOf", 
"(Ljava/lang/Object;)Ljava/lang/String;"

25 UTF8 bytes = "<init>"

33 NameAndType name = (31) "append", type = (32) "(I)Ljava/lang/StringBuffer;"

34 MethodRef class = (16) "java/lang/StringBuffer", name and type = (33) "append", 
"(I)Ljava/lang/StringBuffer;"

52 MethodRef class = (49) "java/awt/Button", name and type = (51) "setLabel", 
"(Ljava/lang/String;)V"

53 UTF8 bytes = "Code"

54 UTF8f bytes = "()V"

55 NameAndType name = (25) "<init>", type = (54) "()V"

56 MethodRef class = (4) "java/applet/Applet", name and type = (55) "<init>", "()V"value = (37) 
" times"
64 Java Network Security



  
The second is the NameAndType entry, which surprisingly enough 
identifies the method name and the type of the method. The 
NameAndType entry (55) references a UTF8 entry (25) for the method 
name: <init>, and another UTF8 entry (54) for the type: ()V.

The name used here is a little special; <init> is not a valid name in 
itself, but it is used by the JVM to represent a constructor for a class. 
The type entry ()V indicates a method which takes no parameters 
(empty parentheses) and returns no value (V following the 
parentheses indicates a return type of void - Java’s term for no value).

From this little jaunt through the constant pool we see that the 
pointlessButton class calls the java.applet.Applet default constructor. 
Following a similar process, we can identify all of the other fields and 
methods utilized in this class. Furthermore, by finding where entry 
number 56 is referenced in the bytecode, we can build a clear picture 
of what this code does.

This is precisely what the javap utility shipped with the JDK does. By 
examining the constant pool and other parts of the class file structure, 
it is able to produce a high-level picture of the class file. Here’s the 
output of javap when run against pointlessButton:

Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements 
java.awt.event.ActionListener 
    /* ACC_SUPER bit set */
{
    jamjar.examples.Button donowt;
    int count;
    public void actionPerformed(java.awt.event.ActionEvent);
    public PointlessButton();
    public void init();
}

As we already knew, pointlessButton extends java.applet.Applet and 
as such it must call the Applet constructor - the method reference we 
saw by tracing through the constant pool.

If this were all that javap did then it would still be a useful tool for 
examining class files for which we didn’t have the source code in an 
attempt to reuse them or work out what they were doing. But it’s not 
all. By using additional option switches it is possible to get richer 
information, including even the disassembled bytecode. The following 
is the result of running javap with the c (disassemble) and p (include 
private fields) options enabled.

Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements 
java.awt.event.ActionListener 
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    /* ACC_SUPER bit set */
{
    jamjar.examples.Button donowt;
    int count;
    public void actionPerformed(java.awt.event.ActionEvent);
    public PointlessButton();
    public void init();
Method void actionPerformed(java.awt.event.ActionEvent)
   0 aload_0
   1 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
   4 new #16 <Class java.lang.StringBuffer>
   7 dup
   8 ldc #18 <String "Did Nothing ">
  10 invokestatic #24 <Method 
java.lang.String.valueOf(Ljava/lang/Object;)Ljava/lang/String;>
  13 invokespecial #28 <Method 
java.lang.StringBuffer.<init>(Ljava/lang/String;)V>
  16 aload_0
  17 dup
  18 getfield #30 <Field PointlessButton.count I>
  21 iconst_1
  22 iadd
  23 dup_x1
  24 putfield #30 <Field PointlessButton.count I>
  27 invokevirtual #34 <Method 
java.lang.StringBuffer.append(I)Ljava/lang/StringBuffer;>
  30 ldc #36 <String " time">
  32 invokevirtual #39 <Method 
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
  35 aload_0
  36 getfield #30 <Field PointlessButton.count I>
  39 iconst_1
  40 if_icmpne 48
  43 ldc #41 <String "">
  45 goto 50
  48 ldc #43 <String "s">
  50 invokevirtual #39 <Method 
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
  53 invokevirtual #47 <Method 
java.lang.StringBuffer.toString()Ljava/lang/String;>
  56 invokevirtual #52 <Method java.awt.Button.setLabel(Ljava/lang/String;)V>
  59 return
Method PointlessButton()
   0 aload_0
   1 invokespecial #56 <Method java.applet.Applet.<init>()V>
   4 aload_0
   5 new #58 <Class jamjar.examples.Button>
   8 dup
   9 ldc #60 <String "Do Nothing">
  11 invokespecial #61 <Method 
jamjar.examples.Button.<init>(Ljava/lang/String;)V>
  14 putfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
  17 aload_0
  18 iconst_0
  19 putfield #30 <Field PointlessButton.count I>
  22 return
Method void init()
   0 aload_0
   1 new #64 <Class java.awt.BorderLayout>
   4 dup
   5 invokespecial #65 <Method java.awt.BorderLayout.<init>()V>
   8 invokevirtual #71 <Method 
java.awt.Container.setLayout(Ljava/awt/LayoutManager;)V>
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  11 aload_0
  12 ldc #73 <String "Center">
  14 aload_0
  15 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
  18 invokevirtual #77 <Method 
java.awt.Container.add(Ljava/lang/String;Ljava/awt/Component;)Ljava/awt/Componen
t;>
  21 pop
  22 aload_0
  23 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
  26 aload_0
  27 invokevirtual #81 <Method 
java.awt.Button.addActionListener(Ljava/awt/event/ActionListener;)V>
  30 return
}

Here we have the complete code for all of the methods albeit in Java 
“assembly” language.  By appropriate use of a binary editor it would be 
a relatively simple matter for a hacker to subvert the function of this 
code. For example, simply changing the value of String (3) “Did 
Nothing” in the constant pool we could cause the button to print a rude 
message when pressed.  This is a trivial example but hopefully 
illustrates the vulnerability of class files.

4.4.1  Beating the Decompilation Threat
The very real threat of decompilation is not going to go away.  
Decompilers work by recognizing patterns in the generated bytecode 
which can be translated back into Java source code statements.  The 
field  and method names required to make this source code more 
readable are readily available in the constant pool as we have seen.

To date, there have been two main approaches to thwarting would-be 
decompilers, code obfuscation and bytecode hosing.2

The principle of obscuring (or obfuscating) source code to make it 
more difficult to read is not new.  In the UNIX world – where 
incompatibilities between platforms and implementations make it 
necessary to distribute many applications in source format – 
“shrouding” is common. This is the process of replacing variable 
names with meaningless symbols, removing comments and white 
space and generally leaving as little human readable content in the 
source code without impacting its compilability.

After the release of Mocha, the author released Crema, a further 
appalling coffee pun, which was designed to thwart Mocha.  It did this 
by replacing names in the constant pool with illegal Java variable 
names and reserved words (such as “if” and “class”).  This had no 

2  For the benefit of Non-US readers, if something is "hosed" it is seriously damaged, in this case deliberately.
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affect on the JVM, which merely used the names as tags to resolve 
references without attributing any meaning to them. Nor did it actually 
prevent decompilation.  It did  however mean that the decompiled code 
was more difficult to read and understand and also would not 
recompile as the Java compiler would object to the illegal names.

Bytecode hosing is more subtle and is aimed at preventing the 
decompiler from recognizing patterns within the bytecode from which it 
could recover valid source.  It does this by breaking up recognizable 
patterns of bytecodes with “do nothing” instruction sequences (such as 
the NOP code or a PUSH followed by a POP).  A good example of a 
bytecode hoser is HoseMocha.

Of course, this approach can be defeated since once a hacker has 
established what types of do-nothing sequences are being generated 
by a bytecode hoser, he or she can modify the behavior of the 
decompiler to ignore such sequences.  Furthermore, attempts to 
decompile hosed bytecode will generally result in broadly readable 
code interspersed with unintelligible passages rather than completely 
unreadable code.

In addition to this, bytecode hosers present a more insidious problem 
to Java users.  As we have already seen, the principal method of 
optimizing Java performance is in the JVM and in particular through 
the use of just in time (or JIT) compilation. And how do JITs work ? 
Yup, you guessed it, they recognize patterns in the generated 
bytecode which can be optimized into native code.  Breaking up these 
patterns through the use of a bytecode hoser can seriously impact the 
performance of JIT compilers.

For this reason, it is safe to assume that Java compilers will not follow 
the same evolutionary path as their native compiler cousins in terms of 
generating wildly differing output for the same source code since this 
too would thwart JIT compilers.

This is a well understood dilemma in security circles, the trade off 
between security and performance/price/ease of use.

The only safe course of action is to assume that ALL Java code will at 
some point be decompiled.  

For developers this means ensuring that no sensitive information is 
distributed in the class file either algorithmically or as hard-coded 
values.  This can be accomplished by building client/server type 
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applications with a Java presentation layer which can be run anywhere 
and a secured server side where sensitive information or algorithms 
can be stored.  This may also involve extending the development and 
testing process to ensure that distributed Java code is “safe”.

Finally you may decide that the existing method of protecting 
distributed code, that of legal sanction under copyright laws, is 
sufficient to deal with any serious threat to Java-based intellectual 
property...in which case we have some real estate you may be 
interested in buying.

4.5  Java Bytecode

In the next chapter we look at how the Java class loader and class file 
verifier provide a level of security against rogue class files.  This 
section prepares us for that chapter by looking more closely at 
bytecode.

4.5.1  A Bytecode Example
Though you may not realize it, you have already seen an example of 
bytecode or at least the human readable format.  The output 
generated by the javap command when we ran it with the -c flag 
contained a disassembly of each of the methods in the class file.  The 
code snippet in Figure 14 was taken from the actionPerformed method 
of our pointlessButton class. It was compiled from three lines of Java 
source code:

public void actionPerformed(java.awt.event.ActionEvent e) {
donowt.setLabel( "Did Nothing " + ++count + " time" + ( count == 1? "": "s" ) );
}

Figure 14.  Decompiled Method (Part 1 of 2)

Method void actionPerformed(java.awt.event.ActionEvent)
   0 aload_0
   1 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
   4 new #16 <Class java.lang.StringBuffer>
   7 dup
   8 ldc #18 <String "Did Nothing ">
  10 invokestatic #24 <Method java.lang.String.valueOf(Ljava/lang/Object;)Ljava/lang/String;>
  13 invokespecial #28 <Method java.lang.StringBuffer.<init>(Ljava/lang/String;)V>
  16 aload_0
  17 dup
  18 getfield #30 <Field PointlessButton.count I>
  21 iconst_1
  22 iadd
  23 dup_x1
  24 putfield #30 <Field PointlessButton.count I>
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Figure 15.  Decompiled Method (Part 2 of 2)

Notice the #nn references in the bytecode such as instruction 30:

ldc #36 <String “ times”>

The #36 here refers to entry number 36 in the constant pool, the text 
after the #36 is a comment for the benefit of the reader showing that 
entry #36 in the constant pool is a String with value “ times”.

The next thing that you should notice about this code is that even at 
this level, there are still references made to Methods and Fields.  From 
this you may infer that Java is object-oriented even at the bytecode 
level and you would be correct.

We are not going to analyze all of this code, there are other books 
which serve to teach bytecode.  Instead we will compare this code 
fragment with 80x86 equivalent code and draw some conclusions 
about the measures that exist within bytecode itself to protect the JVM 
against subversion.

Let’s look at the following fragment :

  13 aload_0
  14 dup
  15 getfield #30 <Field pointlessButton.count I>
  18 iconst_1
  19 iadd
  20 dup_x1
  21 putfield #30 <Field pointlessButton.count I>

 27 invokevirtual #34 <Method java.lang.StringBuffer.append(I)Ljava/lang/StringBuffer;>
  30 ldc #36 <String " times">

32 invokevirtual #39 <Method 
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
  35 aload_036 getfield #30 <Field PointlessButton.count I>
  39 iconst_1
  40 if_icmpne 48
  43 ldc #41 <String "">
  45 goto 50
  48 ldc #43 <String "s">
  50 invokevirtual #39 <Method 
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
  53 invokevirtual #47 <Method java.lang.StringBuffer.toString()Ljava/lang/String;>
  56 invokevirtual #52 <Method java.awt.Button.setLabel(Ljava/lang/String;)V>
  59 return
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Table 4 explains what each of these instructions does.

Table 4.  Bytecode Byte-by-Byte

The net of this sequence of operations is to have incremented the 
count field of the current object by one and left a copy of it on the stack 
(for use in the next instruction which prints the count).

The equivalent 80x86 code looks like this:

MOV BX, thisPointlessButton ; Set BX to the base address of this button
MOV SI, count_field ; Set SI to the offset of the count in button class
MOV CX, [ BX + SI ] ; Get the count field in register CX
INC CX ; increment the CX register
MOV [ BX + SI ], CX ; Store the result in BX+SI (the count field)

There are a few differences here which we’ll examine in turn.

Instruction Effect Stack after 
instruction

aload_0 Push a copy of local variable 0 onto the stack. 
This variable is equivalent to the “this” keyword in Java
source code; it holds a reference to the current object.
In this case, that object is an instance of
pointlessButton.

this (pointlessButton)
[end of stack ]

dup Duplicates the item on the top of the stack. this (pointlessButton)
this (pointlessButton)
[end of stack ]

getfield #30 Pops the top item from the stack. 
Checks that it is a pointlessButton reference.
Gets the count field with type I (integer) from it.
Pushes the count field onto the stack.

this.count (int)
this (pointlessButton)
[end of stack ]

iconst_1 Pushes the integer constant 1 onto the stack. 1 (int)
this.count (int)
this (pointlessButton)
[end of stack ]

iadd Pops the top two values from the stack. 
Adds them.
Pushes the result (as an integer).

this.count + 1 (int)
this (pointlessButton)
[end of stack ]

dup_x1 Duplicates the value on top of the stack and inserts it
under the second item from the top.

this.count + 1 (int)
this (pointlessButton)
this.count + 1 (int)
[end of stack ]

putfield #30 Store the value on top of the stack in the
pointlessButton.count field of the object second from
the top of the stack.

this.count + 1 (int)
[ end of stack ]
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  • Stack-based architecture vs register-based architecture

The JVM has a stack-based architecture.  This means that its 
instructions deal with pushing values onto, popping values from, 
and manipulating values on a stack.

The 80x86 processor range from Intel are register-based.  They 
have a number of temporary storage areas (registers) some of 
which are general purpose, others of which have a particular 
function.

The advantage of making the JVM stack based is that it is easier to 
implement a stack-based architecture using registers than vice 
versa. Thus, porting the JVM to Intel platforms is easy compared 
with porting a register-based virtual machine to a stack-based 
hardware platform.

In addition, there are benefits in a stack-based architecture when it 
comes to establishing what code actually does – more of this in the 
next chapter.

  • Object-oriented vs non-object-oriented

As we have already mentioned, the Java bytecode is 
object-oriented.  This makes for safer code since the JVM checks 
at runtime that the type of fields being accessed or methods 
invoked for an object are genuinely applicable to that object.  

In the 80x86 code snippet, we have variable names to make it 
clearer what the code is doing but, there are no checks to make 
sure that the value loaded into the base register really is a pointer 
to an object of type pointlessButton and that the offset loaded into 
SI represents the count field of that object.

There is no object-level information at all stored in 80x86 machine 
code, regardless of the high-level language from which it was 
compiled!  

This is so important we’ll restate it: even if you write programs in 
Java, once you compile them to 80x86 machine code, all object 
information is lost and with it a degree of security since the runtime 
engine cannot test for the validity of method and/or field accesses.

  • Type Safety

While on the subject of type information, another difference to 
notice is the inclusion of type information in JVM bytecode 
instructions.  The instruction iadd, for example, pops the top two 
values from the stack, adds them and pushes the return value.  The 
i- prefix indicates that the instruction operates on and returns an 
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integer value.  The JVM will actually check that the stack contains 
two integers when the iadd instruction is to be executed. In fact 
this check is performed by the bytecode verifier, prior to runtime 
execution. 

Contrast this with the 80x86 instructions which contain no type 
information.  In this case, it is possible that the data loaded into the 
CX register for incrementing is an integer.  It is also possible that it 
is part of a telephone number, an address, or a recipe for apple pie.  
There are simply no checks performed on data type.  This is fine if 
you can trust your compiler and there is no likelihood of programs 
being attacked en route to their execution environment.  As we 
have seen, however, in a networked environment, these 
assumptions cannot be made so lightly.

Not all bytecodes are typed; with a maximum of 256 distinct 
bytecode values there simply aren’t enough to go around.  Where a 
bytecode instruction is typed, the type on which it can operate is 
indicated by the prefix of the instruction.  Table 5 lists the type 
prefixes and Table 6 shows the bytecodes in detail.

Table 5.  Type Prefixes for Bytecodes

Table 6.  Bytecode Table

Prefix Bytecode type Prefix Bytecode type

i Integer b Byte

f Floating point s Short

l Long c Character

d Double precision floating point a Object reference

Bytecode int long float double byte char short object
 ref

Function

?2c X Convert value of type <?> to 
character

?2d X X X Convert value of type <?> to double

?2i X X X Convert value of type <?> to integer

?2f X X X Convert value of type <?> to float

?2l X X X Convert value of type <?> to long

?2s X Convert value of type <?> to short

?add X X X X Add two values of type <?>

?aload X X X X X X X X Push an element of type <?> from an 
array onto the stack
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?and X X Perform logical AND on two values of 
type <?>

?astore X X X X X X X X Pop a type <?> from the stack and 
store in an array of type <?>

?cmp X Compare two long values. If they’re 
equal push 0, if the first is greater 
push 1, else push -1

?cmpg X X Compare two IEEE values of type 
<?> from the stack. If they’re equal 
push 0, if the first is greater push 1 if 
the second is greater push -1. If 
either is NaN (not a number) push 1

?cmpl X X Compare two IEEE values of type 
<?> from the stack. If they’re equal 
push 0, if the first is greater push 1 if 
the second is greater push -1. If 
either is NaN (not a number) push 1

?const X X X X X Push constant value <n> of type <?> 
onto the stack

?div X X X X Perform a division using two values 
of type <?> and store the quotient

?inc X Increment the top of the stack 
(possibly by a negative value)

?ipush X X Push sign extender byte or short 
value onto stack

?load X X X X Push a value of type <?> from a local 
variable

?mul X X X X Perform multiplication of two values 
of type <?>

?neg X X X X Negate a value of type <?>

?newarray X Create a new array of object 
references

?or X X Perform logical OR on two values of 
type <?>

?rem X X X X Perform a division using two values 
of type <?> and store the remainder

?return X X X X X Return a value of type <?> to the 
invoking method

?shl X X Perform arithmetic shift left on type 
<?>

?shr X X Perform arithmetic shift right on type 
<?>

Bytecode int long float double byte char short object
 ref

Function
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There are a few seeming anomalies about this table. For example, the 
?cmp and ?newarray instructions are typed and yet only apply to a 
single type (long in the case of ?cmp and object references in the case 
of ?newarray).  Interestingly enough there is no equivalent of the ?cmp 
instruction for integers.  These oddities can be explained away in 
terms of future expansions to the instruction set. However there are 
other peculiarities which are not as easily explained.

Consider the fact that there are no typed arithmetic instructions for 
byte or short values. This, coupled with the lack of support for short 
and byte values in the constant pool, might lead you to believe that the 
underlying support in the JVM for these types is less than full.  You 
would be right.

The JVM’s processor stack  is 32 bits wide.  Values which are longer 
(doubles or longs) or shorter (bytes or shorts) than this are treated 
specially within the JVM.  Double and long values occupy two spaces 
each on the stack and thus require special instructions to deal with 
them.  Bytes and shorts on the other hand are treated as integers 
within the JVM for arithmetic and logical operations.  If you are dealing 
with pure Java source code then this is not a problem as the Java 
compiler will take care of generating the appropriate instructions on 
your behalf.  If you start to work with bytecode which has not been 
generated from the Java compiler then things become a little different 
and it is quite possible that variables of byte or short types may end up 
containing values larger than their maximum permissible ones.

This is a symptom of one of the general difficulties with the JVM.  
There is no one-to-one relationship between Java source code and 
bytecode.  On the one hand, the lack of a tight binding between the 
source language and bytecode enables cross-compilation from other 
source languages as we discussed previously.

On the other hand it does mean that there has to be a lot more work  
performed to ensure that the bytecode being executed is safe.  There 
is some concern that the lack of a rigid relationship between the Java 
language and Java bytecode may be the source of some as yet 

?store X X X X X Pop a value of type <?> and store in 
a local variable

?sub X X X X Perform a subtraction using two 
values of type <?>

Bytecode int long float double byte char short object
 ref

Function
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undiscovered nastiness which could emerge to overthrow the entire 
Java security model. The next chapter looks at some of the measures 
which have been taken to prevent this type of nastiness.
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Chapter 5.  The Class Loader and Class File Verifier

In this chapter we explore a number of topics:

  • How the components of the Java virtual machine work together to 
implement the Java security model

  • How the class loader locates and loads class files

  • How the class file verifier ensures that class files are legal prior to 
execution

In addition, we discuss issues to keep in mind when designing your 
own ClassLoader.

5.1  Overview of the Java Security Model

Before examining the components of the security model in detail, we’ll 
take a high-level look at the whole process involved in loading and 
running a class.

Figure 16 illustrates the steps involved in loading a class into the JVM.
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Figure 16.  Steps in Loading a Class

1. When an applet or application requests a class file, the execution 
environment, whether it be a browser or the Java VM running from 
a command line, invokes a class loader to locate and load the 
class.1

2. The class loader receives the class as an array of bytes and 
converts it into a Class object in the class area of the JVM. The 
class area may be a part of the JVM heap (where all other objects 
are created and stored) or a separate region of memory.

3. Depending on the class loader which loaded the class file, the JVM 
may also run the class file verifier. The verifier is responsible for 
making sure that class files contain only legal Java bytecodes and 
that they behave in a consistent way (for example, they do not 
attempt to underflow or overflow the stack, forge illegal pointers to 
memory or in any other way subvert the JVM). More details of this 
are in “The Class File Verifier” on page 86.

1  Throughout this chapter we refer to “class loaders” by which we mean the general mechanism by which class
files are located and loaded into a JVM and “ClassLoader” by which we mean the specific Java ClassLoader
class or classes derived from it.
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4. Assuming that the class passes verification, the JVM is handed a 
loaded class. It then links the class by resolving any references to 
other classes within it.  This may result in additional calls to the 
class loader to locate and load other classes.

5. Next, static initialization of the class is performed; that is, static 
variables and static initializers are run. Finally, the class is available 
to be executed.

6. In the context of an applet executing within a Web browser, there 
will always be an instance of the SecurityManager constructed. 
This may also be true in a Java application. When a 
SecurityManager is present, calls which could result in the system’s 
integrity being violated (such as file read and write requests, 
network access requests, or requests to access the environmental 
variables) are presented to the SecurityManager for validation. If 
the SecurityManager refuses access, it does so by throwing a 
SecurityException. Since access to these key system functions is 
controlled by API calls within the trusted classes, there is no way to 
avoid the SecurityManager other than by replacing these classes.

5.2  Class Loaders

 A class loader has a number of duties. Class loaders are the 
gatekeepers of the JVM, controlling what bytecode may be loaded and 
what should be rejected.  As such they have two primary 
responsibilities:

1. To separate Java code from different sources, thus preventing 
malicious code from corrupting known good code

2. To protect the boundaries of the core Java class packages (trusted 
classes) by refusing to load classes into these restricted packages

The class loader has another, useful, side effect. By controlling how 
the JVM loads code, all platform-specific file I/O is channelled through 
one part of the JVM, thus making porting the JVM to different platforms 
a much simpler task.

Let’s look a little more closely at these two aims and why they are 
necessary. First, Java code can be loaded from a number of different 
sources. These include but are not limited to:

  • The trusted core classes which ship with the JVM (java.lang.*, 
java.applet.* etc.)
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  • Classes stored in the local file store and locatable via the 
CLASSPATH environmental variable

  • Classes retrieved from Web servers (as parts of applets)

Clearly, we would not want to overwrite a trusted JVM class with an 
identically named class from a Web server since this would undermine 
the entire Java security model (the SecurityManager class is 
responsible for a large part of the JVM runtime security and is a 
trusted local class; consider what would happen to security if the 
SecurityManager could be replaced by an applet loaded from a remote 
site). The class loader must therefore ensure that trusted local classes 
are loaded in preference to remote classes where a name clash 
occurs.

Secondly, where classes are loaded from Web servers, it is possible 
that there could be a deliberate or unintentional collision of names 
(although the Sun Java naming conventions exist to prevent 
unintentional name collisions).  If two versions of a class exist and are 
used by different applets from different Web sites then the JVM, 
through the auspices of the class loader, must ensure that the two 
classes can coexist without any possibility of confusion occurring. 
Class type confusion is a key way of attacking the JVM and is 
discussed later in this chapter.

The last point, that the class loader must protect the boundaries of the 
trusted class packages merits further explanation. The core Java class 
libraries that ship with the JVM reside in a series of packages which 
begin “java.”, for example, java.lang and java.applet. Within the Java 
programming language, it is possible to give special access privileges 
to classes which reside in the same package; thus, a class which is 
part of the java.lang package has access to methods and fields within 
other classes in the java.lang package which are not accessible to 
classes outside of this package.

If it were possible for a programmer to add his or her own classes to 
the java.lang package, then those classes would also have privileged 
access to the core classes. This would be an exposure of the JVM and 
consequently must not be allowed.

The class loader must therefore ensure that classes cannot be 
dynamically added to the various core language packages. It achieves 
this by examining the name of the class which it is being asked to load 
and refusing to load those which start with “java.”
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5.2.1   How Class Loaders Are Implemented
The JVM architecture diagram (Figure 16 on page 78) shows two class 
loaders. In fact, the JVM may have many class loaders operating at 
any point in time, each of which is responsible for locating and loading 
classes from different sources.

One of the class loaders, the primordial class loader, is a built-in part 
of the JVM; that is, it is written in C or whatever language the JVM is 
written in and is an integral part of the JVM. It is the root class loader 
and is responsible for loading trusted classes; these are classes from 
the core Java classes and those classes which can be found in the 
CLASSPATH and usually in the local filestore.

Classes loaded by the primordial class loader are regarded as special 
insofar as they are not subject to verification prior to execution; that is, 
they are assumed to be well formed, safe Java classes. Obviously if 
would-be attackers could somehow inveigle a malicious class into the 
CLASSPATH of a JVM they could cause serious damage.2

In addition to this primordial class loader, application writers (including 
JVM implementors) are at liberty to build more class loaders to handle 
the loading of classes from different sources such as the Internet, an 
intranet, local storage or perhaps even from ROM in an embedded 
system.  These class loaders are not a part of the JVM; rather, they 
are part of an application running on top of the JVM, written in Java 
and extending the java.lang.ClassLoader class. 

The most obvious example of this is in the context of a Web browser 
which knows how to load classes from an HTTP (Web) server. The 
class loader which does this is generally known as the applet class 
loader and is itself a Java class which knows how to request and load 
other Java class files from a Web server across a TCP/IP network.

In addition, application writers can implement their own class loaders 
by subclassing the ClassLoader class (note that such behavior may be 
disallowed by the SecurityManager in an applet; we discuss more of 
this in the next chapter).

It is clear then that there can be many types of class loader within a 
Java environment at any one time.  In addition, there may be many 
instances of a particular type of class loader operating at once.

2  This was the basis of one of the attacks discovered by the Secure Internet Programming team at Princeton
University.  Their attack, “Slash and Burn”, is described more fully in Java Security, Hostile Applets, Holes and
Antidotes, Gary McGraw and Ed Felten.
The Class Loader and Class File Verifier 81



To summarize the above;

  • There will always be one and only one primordial class loader. It is 
part of the JVM, like the execution engine.

  • There will be zero or more additional ClassLoader derivatives, 
written in Java and extending the ClassLoader abstract class. In a 
Web browser environment there will be at least one additional class 
loader: the applet class loader.

  • For each additional ClassLoader type, there will be zero or more 
instances of that type created as Java objects.

Let’s look at this last point more closely. Why would we want to have 
multiple instances of the same class loader running at any one time?

To answer this question we need to examine what class loaders do 
with a class once it has been loaded.

Every class present in the JVM has been loaded by one and only one 
class loader. For any given class, the JVM “remembers” which class 
loader was responsible for loading it. If that class subsequently 
requires other classes to be loaded, the JVM uses the same class 
loader to load those classes. 

This gives rise to the concept of a name space: the set of all classes 
which have been loaded by a particular instance of a class loader. 
Within this name space, duplicate class names are prohibited. More 
importantly, there is no cross name space visibility of classes; a class 
in one name space (loaded by a particular class loader) cannot access 
a class in another name space (loaded by a different class loader).

Returning to the question “Why would we want to have multiple 
instances of a given ClassLoader derivative?”, consider the case of 
the applet class loader. It is responsible for loading classes from a 
Web server across the Internet or intranets. On most networks (and 
certainly the Internet) there are many Web servers from which classes 
could be loaded and there is nothing to prevent two Webmasters from 
having different classes on their sites with the same name. 

Since a given instance of a class loader cannot load multiple classes 
with the same name, if we didn’t have multiple instances of the applet 
class loader we would very quickly run into problems when loading 
classes from multiple sites. Moreover, it is essential for the security of 
the JVM to separate classes from different sites so that they cannot 
inadvertently or deliberately cross reference each other. This is 
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achieved by having classes from separate Web sites loaded into 
separate name spaces which in turn is managed by having different 
instances of the applet class loader for each site from which applets 
are loaded.

5.2.2   The Class Loading Process
The ability to create additional class loaders is a very powerful feature 
of Java. This becomes particularly apparent when you realize that 
user- written class loaders have first refusal when it comes to loading 
classes; that is, they take priority over the primordial class loader. This 
enables a user-written class loader to replace any of the system 
classes, including the SecurityManager. In other words, since the 
class loader is Cerberus to the JVM’s Hades, you had better be sure 
that when you replace it, you don’t inadvertently install a lapdog in its 
place.

We have already stated that a class loader which has loaded a 
particular class is invoked to load any dependent classes. We also 
know that a class loader generally has responsibility for loading 
classes from one particular source such as Web servers. 

What if the class first loaded requires access to a class from the 
trusted core classes such as java.lang.String? This class needs to be 
loaded from the local core class package, not from across a network. It 
would be possible to write code to handle this within the applet class 
loader but it is unnecessary. We already have a class loader in the 
shape of the primordial class loader which knows how to load classes 
from the trusted packages.

This leads us to our second observation about class loaders: they 
frequently interoperate, one class loader asking another to load a 
class for it.

To illustrate how this works, consider the PointlessButton applet. As a 
reminder, PointlessButton uses a second class, 
JamJar.examples.Button which represents a push button on the 
browser display. Pushing the button results in nothing happening and 
a display being updated to inform you how many times nothing has 
happened to date.

When a Web browser encounters the pointlessButton applet in a Web 
page the following sequence of events occurs:
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1. The browser finds the <APPLET> tag in the Web page and 
determines that it needs to load PointlessButton.class from the 
Web server. It creates an instance of the applet class loader 
(specific to this Web site) to fetch the class.

2. The applet class loader first asks the primordial class loader to load 
PointlessButton.class. The primordial class loader which only 
knows about the trusted classes fails to locate the class and returns 
control to the applet class loader.

3. The applet class loader connects to the Web site using the HTTP 
and downloads the class.

4. The JVM begins executing the PointlessButton applet.

5. PointlessButton needs to create an instance of 
JamJar.examples.Button, a class which currently has not been 
loaded. It requests the JVM to load the class.

6. The JVM locates the applet class loader which loaded 
PointlessButton and invokes it to load JamJar.examples.Button.

7. The applet class loader again first asks the primordial class loader 
to load the JamJar.examples.Button class and again the primordial 
class loader fails to find it and returns control to the applet class 
loader which is able to load the class from the Web server.

8. JamJar.examples.Button creates a java.lang.String object as the 
title of the button. The String class has not yet been loaded so 
again the JVM is requested to load the class.

9. The applet class loader which loaded both PointlessButton and 
JamJar.examples.Button is now invoked to load the java.lang.String 
class.

10.The applet class loader requests the primordial class loader to load 
the String class. This time, the primordial class loader is able to 
locate and load the class since it is part of the trusted classes 
package. Since the primordial class loader was successful, the 
applet class loader needs look no further and returns.

There are a couple of interesting points to note here.

First, at step 7, if we were using a regular java.awt.Button class then 
the primordial class loader would have been able to find the class in 
the trusted packages and the search would have stopped.

Secondly, there are actually many references to the java.lang.String 
class in the code. However, only the first reference results in the class 
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being loaded from disk. Subsequent requests to the class loader will 
result in it returning the class already loaded. Since it is the primordial 
class loader which loads the String class, if there are multiple applets 
on a single page, only the first one to request a String class will result 
in the primordial class loader loading the class from disk.

Note also the order in which the applet class loader searches for 
classes. An applet class loader could always search the Web server 
from which it loaded the applet first for any subsequent classes and 
this would cut out some calls to the primordial class loader. This would 
have been incredibly bad practice for two reasons:

  • Most of the class load requests for an applet will be for trusted 
classes from the java.* packages.

  • More importantly, if classes were sought on the Web server before 
being sought in the trusted package, it would allow subversion of 
built-in types, enabling malicious programmers to substitute their 
own implementations of core, trusted classes such as the 
SecurityManager or even the applet class loader itself.

For this reason all commercially available browsers have applet class 
loaders which implement the following search strategy:3

1. Ask the primordial class loader to load the class from the trusted 
packages.

2. If this fails, request the class from the Web server from which the 
original class was loaded.

3. If this fails, report the class as not locatable by throwing a 
ClassNotFound exception.

This search strategy ensures that classes are loaded from the most 
trusted source in which they are available.

5.2.3  Why You Might Want to Build Your Own Class Loader
If it is done correctly, a user-built class loader can significantly 
enhance the security of an application deployed on an intranet, 
particularly if it is used in conjunction with a firewall and other local 
security measures.

Note that at the time of writing, Web browsers use the security 
manager to prohibit the creation of new derivatives of ClassLoader, 
although this may change with the new Java security model and the 

3  This is common practice but note that it is not enforced by the JVM architecture. Class loader writers are at
liberty to implement any search strategy they choose for locating classes.
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various permissions APIs which are being implemented. Chapter 7, 
“Playing in the Sandbox” on page 97 examines the security manager 
in more detail.

Some of the situations in which a user-written class loader could be 
used are:

  • To restrict searches for trusted classes to a particular directory or 
path other than the CLASSPATH

  • To allow the JVM to load classes from a particular source such as 
from EPROM or a non-TCP/IP network

  • To specify paths which should be searched in advance of the 
CLASSPATH

  • To provide auditing information about access to classes

In each of these cases you will need to build your own class loader 
and implement your own search strategy for locating classes.

It is beyond the scope of this book to show you how to write your own 
extension to ClassLoader and there are other resources, both books 
and on-line, which will teach you the specifics.  For the serious 
codeheads out there, there is a sample ClassLoader included on the 
CD accompanying this book which implements a simple audit trail for 
class libraries. 

5.3  The Class File Verifier4

Once a class has been located and loaded by a class loader (other 
than the primordial class loader), it still has another hurdle to cross 
before being available for execution within the JVM. At this point we 
can be reasonably sure that the class file in question cannot supplant 
any of the core classes, cannot inveigle its way into the trusted 
packages and cannot interfere with other safe classes already loaded.

We cannot, however, be sure that the class itself is safe. There is still 
the safety net of the SecurityManager which will prevent the class from 
accessing protected resources such as network and local hard disk, 
but that in itself is not enough. The class might contain illegal 
bytecode, forge pointers to protected memory, overflow or underflow 
the program stack, or in some other way corrupt the integrity of the 
JVM.

4  Important note: The class file verifier is sometimes referred to as the bytecode verifier, but as we show in this
section, running the bytecode verifier is only one part of the class file verification process.
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As we have said in earlier chapters, a well behaved Java compiler 
produces well behaved Java classes and we would be quite happy to 
run these within the JVM since the Java language itself and the 
compiler enforce a high degree of safety. Unfortunately we cannot 
guarantee that everyone is using a well behaved Java compiler. Nasty 
devious hacker types may be using home made compilers to produce 
code designed to crash the JVM or worse, subvert the security thereof. 
In fact, as we saw in Chapter 4, we can’t even be sure that the source 
language was Java in the first place!

In addition to this there is the problem of release-to-release binary 
compatibility. Let’s say that you have built an applet which uses a class 
called TaxCalculator from a third party. You have constructed your 
applet with great care and have purchased and installed the 
TaxCalculator class on the server with your applet code.

At this point you are certain that the methods you call in TaxCalculator 
are present and valid but what happens if/when you upgrade 
TaxCalculator? Of course you should make sure that the API exposed 
by TaxCalculator hasn’t changed and that your class will still work, but 
what if you forget? In practice it is quite possible that TaxCalculator 
has changed between versions and methods or fields which were 
previously accessible have become inaccessible, been removed or 
changed type from dynamic to static fields. In this case, when your 
applet is downloaded to a browser and it tries to make method calls or 
access fields within TaxCalculator those calls may fail. 

This is because the binary (code) compatibility between the classes 
has been broken between releases. These problems exist with all 
forms of binary distributable libraries. On most systems this results in 
at best a system message and the application refusing to run; at worst 
the entire operating system could crash. The JVM has to perform at 
least as well as other systems in these circumstances and preferably 
better.

For all of the above reasons, an extra stage of checking is required 
before executing Java code and this is where the class file verifier 
comes in. 

After loading an untrusted class via a ClassLoader instance, the class 
file is handed over to the class file verifier which attempts to ensure 
that the class is fit to be run. The class file verifier is itself a part of the 
Java Virtual Machine and as such cannot be removed or overridden 
without replacing the JVM itself.
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5.3.1   The Duties of the Class File Verifier
Before we discuss what the class file actually does we look at the 
possible ways in which a class file could be "unsafe." By 
understanding the threat, we can see better how the Java architecture 
goes about countering it and expose any holes in the security provided 
by the class file verifier.

The following are some of the things that a class file could do which 
could compromise the integrity of the JVM:

  • Forge illegal pointers. If a Java class can obtain a reference to an 
object of one type and treat it as an object of a different type then it 
effectively circumvents the access modifiers (private, protected or 
whatever) on the fields of that object. This type of attack is known 
as a class confusion attack since it relies on confusing the JVM 
about the class of an object.

  • Contain illegal bytecode instructions. The JVM’s execution 
engine is responsible for running the bytecode of a program in the 
same way as a conventional processor runs machine code.

When a conventional processor encounters an illegal instruction in 
a program, there is nothing that it can do other than stop execution. 
You may have seen this in Windows programs where the operating 
system can at least identify that an illegal instruction has been 
found and display a message.

Similarly, if the execution engine finds a bytecode instruction that it 
cannot execute, it is forced to stop executing. In a well written 
execution engine this would not be good but in a poorly written 
version it is possible that the entire JVM, or the Web browser in 
which it is embedded or even the underlying operating system 
might be halted. This is obviously unacceptable.

  • Contain illegal parameters for bytecode instructions. Passing 
too many or too few parameters to a bytecode instruction, or 
passing parameters of the wrong type, can lead to class confusion 
or errors in executing the instruction.

  • Overflow or underflow the program stack. If a class file could 
underflow the stack (by attempting to pop more values from it than 
it had placed on it) or overflow the stack (by placing values on it 
that it did not remove) then it could at best cause the JVM to 
execute an instruction with illegal parameters or at worst crash the 
JVM by exhausting its memory.
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  • Perform illegal casting operations. Attempting to convert from 
one data type to another – for example, from an integer to a floating 
point or from a String to an Object – is known as casting. Some 
types of casting can result in a loss of precision (such as converting 
a floating point number to an integer) or are simply illegal (such as 
converting a String to a DataInputStream).

The legality of other types of casts is less clear, for example, all 
Strings are Objects (since the String class is derived from the 
Object class) but not all Objects are Strings. Trying to cast from an 
Object to a String is legal only if the Object is originally a String or a 
String derivative. Allowing illegal casts to be performed will result in 
class confusion and thus must be prevented.

  • Attempt to access classes, fields or methods illegally. As 
discussed above, a class file may attempt to access a nonexistent 
class. Even if the class does exists, it may attempt to make 
reference to methods or fields within the class which either do not 
exist or to which it has no access rights. This may be part of a 
deliberate hacking attempt or as a result of a break in 
release-to-release binary compatibility.

By tagging each object with its type, the JVM could check for illegal 
casts. By checking the size of the stack before and after each method 
call, stack overflows and underflows can be caught. The JVM could 
also test the stack before each bytecode was executed and thus avoid 
illegal or wrongly numbered parameters.

In fact, all of these tests could be made at runtime but the performance 
impact would be significant.  Any work that the class file verifier can do 
in advance of runtime to reduce the performance burden is welcome.  
With some idea of the magnitude of the task before the class file 
verifier, we now look at how it meets this challenge.

5.3.2   The Four Passes of the Class File Verifier
Before we go into any detail on how the class file verifier works it is 
important to note that the Java specification requires the JVM to 
behave in a particular way when it encounters certain problems with 
class files, which is usually to throw an error and refuse to use the 
class.

The precise implementation varies from one vendor to the next and is 
not specified. Thus some vendors may make all checks prior to 
making a class file available; others may defer some or all checks until 
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runtime.  The process described below is the way in which Sun’s 
HotJava Web browser works; it has been adopted by most JVM 
writers, not least because it saves the effort of reinventing a complex 
process.  

The class file verifier makes four passes over the newly loaded class 
file, each pass examining it in closer detail.  Should any of the passes 
find fault with the code then the class file is rejected.  For reasons 
which we explain below, not all of these tests are performed prior to 
executing the code.  The first three passes are performed prior to 
execution and only if the code passes the tests here will it be made 
available for use.

The fourth pass, really a series of ad hoc tests,  is performed at 
execution time, once the code has already started to run.

5.3.2.1  Pass 1 - File Integrity Check
The first and simplest pass checks the structure of the class file. It 
ensures that the file has the appropriate signature (first four bytes are 
0xCAFEBABE) and that each of the structures within the file is of the 
appropriate length.  It checks that the class file itself is neither too long 
nor too short and that the constant pool contains only valid entries. Of 
course class files may have varying lengths but each of the structures 
(such as the constant pool) has its length included as part of the file 
specification.

If a file is too long or too short, the class file verifier throws an error 
and refuses to make the class available for use.

5.3.2.2  Pass 2 - Class Integrity Check
The second pass performs all other checking which is possible without 
examining the actual bytecode instructions themselves.  Specifically, it 
ensures that: 

  • The class has a superclass (unless this class is Object).

  • The superclass is not a final class and that this class does not 
attempt to override a final method in its superclass.

  • Constant pool entries are well formed, and that all method and field 
references have legal names and signatures.

Note that in this pass, no check is made as to whether fields, methods 
or classes actually exist, merely that their names and signatures are 
legal according to the language specification.
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5.3.2.3  Pass 3 - Bytecode Integrity Check
This is the pass in which the bytecode verifier runs and is the most 
complex pass of the class file verifier.  The individual bytecodes are 
examined to determine how the code will actually behave at runtime.  
This includes data-flow analysis, stack checking and static type 
checking for method arguments and bytecode operands.

It is the bytecode verifier which is responsible for checking that the 
bytecodes have the correct number and type of operands, that 
datatypes are not accessed illegally, that the stack is not over or 
underflowed and that methods are called with the appropriate 
parameter types.

The precise details of how the bytecode verifier operates may be 
found in Appendix C, “The Bytecode Verifier in Detail” on page 219.  
For now, it is important to state two points:

First, the bytecode verifier analyzes the code in a class file statically. It 
attempts to reconstruct the behavior of the code at runtime, but does 
not actually run the code.

Secondly, some very important work has been done in the past and 
more recently by one of the authors of this book which demonstrates 
that it is impossible for static analysis of code to identify all of the 
problems which may occur at runtime. We include this proof in Chapter 
6, “An Incompleteness Theorem for Bytecode Verifiers” on page 95.

To restate this in simple terms, any class file falls into one of three 
categories:

  • Runtime behavior is demonstrably safe.

  • Runtime behavior is demonstrably unsafe.

  • Runtime behavior is neither demonstrably safe nor demonstrably 
unsafe.

Clearly the bytecode verifier should accept those class files in the first 
category and reject those in the second category.  The problem arises 
with class files in the third category.

These class files may or may not contain code which will cause a 
problem at runtime, but it is impossible from static analysis of the code 
alone to determine which is the case.
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The more complex the bytecode verifier becomes, the more it can 
reduce the number of cases which fall into the third category but no 
matter how complex the verifier, it can never completely eliminate the 
third category and for this reason there will always be bytecode 
programs which pass verification, but which may contain illegal code.

This means that simply having the bytecode verifier is not enough to 
prevent runtime errors in the JVM and that the JVM must perform 
some runtime checking of the executable code.

Lest you be panicking at this stage you should comfort yourself with 
the thought that the level of verification performed by the JVM prior to 
executing bytecode is significantly higher than that performed by 
traditional runtime environments for native code (that is, none at all).

5.3.2.4   Pass 4 - Runtime Integrity Check
As we have hinted, the JVM must make a tradeoff between security 
and efficiency.  For that reason, the bytecode verifier does not 
exhaustively check for the existence of fields and classes in pass 3. If 
it did, then the JVM would need to load all classes required by an 
applet or application prior to running it.  This would result in a very 
heavy overhead which is not strictly required.

We’ll examine the following case with three classes, MyClass, 
MyOtherClass and MySubclass, which is derived from MyClass. 
MyOtherClass has two public methods

  • methodReturningMyClass() which returns an instance of MyClass 
(huzzah! for meaningful method names!) and

  • methodReturningSubclassOfMyClass( ) which returns an instance 
of SubclassOfMyClass.

Against this background, consider the following code snippet.

MyOtherClass x = new MyOtherClass( );
MyClass y = x.methodReturningMyClass( );

In pass 3, the class file verifier has ascertained that the method 
methodReturningMyClass( ) is listed in the constant pool as a method 
of MyOtherClass which is public (and therefore reachable from this 
code).

It also checks that the return type of methodReturningMyOtherClass( ) 
is MyClass.  Having made this check and assuming that the classes 
and methods in question do exist, the assignment statement in the 
92 Java Network Security



second line of code is perfectly legal. The bytecode verifier does not in 
fact need to load and check class MyOtherClass at this point.

Now consider this similar code:

MyOtherClass x = new MyOtherClass( );
MyClass y = x.methodReturningSubclassOfMyClass( );

In this case, the return type of the method call does not return an 
object of the same class as y, but the assignment is still legal since the 
method returns a subclass of MyClass.  This is not, however, obvious 
from the code alone: the verifier would need to load the class file for 
the return type SubclassOfMyClass and check that it is indeed a 
subclass of MyClass.

Loading this class involves a possible network access and running the 
class file verifier for the class and it may well be that these lines of 
code are never executed in the normal course of the program’s 
execution in which case loading and checking the subclass would be a 
waste of time.

For that reason, class files are only loaded when they are required, 
that is when a method call is executed or a field in an object of that 
class is modified.  This is determined at runtime and so that is when 
the fourth pass of the verifier is executed.

5.4   Summary

You have now seen the types of checking which take place before a 
class file from an untrusted source can be loaded and run inside the 
JVM.  While not perfect, this is significantly more checking than is 
performed on any conventional operating system (that is, none at all).

Once it is running, code from untrusted sources is subject to further 
checking at the hands of the security manager which we have 
mentioned briefly here.  Chapter 7, “Playing in the Sandbox” on page 
97 describes how the security manager works and looks at ways in 
which it is possible to reduce the burden placed on the class loader 
and class file verifier by extending the range of classes which the JVM 
regards as trusted.
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Chapter 6.  An Incompleteness Theorem for Bytecode
Verifiers

The bytecode verifier is a key component of Java security.  Practical 
bytecode verifiers divide bytecode programs into three classes: those 
that will not cause problems when they run, those that will cause 
problems when they run, and those where the verifier is not certain.  
You can improve a bytecode verifier by reducing its area of 
uncertainty.  Can you eliminate uncertainty completely?  Can you build 
a complete bytecode verifier that determines whether a program is 
safe or not before it runs?

The answer is no, you cannot.  It is mathematically impossible.  This 
short chapter shows why.1

To demonstrate this, we focus on one aspect of bytecode verification, 
stack-underflow checking.  This involves determining whether a 
bytecode program will underflow the stack, by removing more items 
from it than were ever placed on it.  Then we use the argument known 
as reductio ad absurdum.  We assume that there is a complete 
stack-underflow checker and show that this assumption leads to a 
contradiction.  This means that the assumption must have been false –  
a complete stack-underflow checker is impossible.  Since a complete 
bytecode verifier must contain a complete stack-underflow checker, a 
complete bytecode verifier is impossible too.

Suppose then that there is such a thing as a complete stack-underflow 
checker. We write a method in standard Java bytecode which takes as 
its argument the name of a class  file and returns the value true if the 
specified class file does not underflow the stack, and false if it does.2 
We call this method doesNotUnderflow( ).

1  The problem has been deliberately stated in terms that mathematicians may recognize as being similar to the
halting problem. The proof, a diagonalization argument, follows the flow of Christopher Strachey’s
halting-problem proof (Computer Journal 1967).
2  We have here used Church’s Thesis, which states that a programming language (such as the Java bytecode
language) which can code a Turing machine can code any computable function.
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This is an allusion to the most famous Unentscheidbarsatz, or incompleteness theorem, 

proved by Kurt Gödel and published in 1931 in Über formal unentscheidbare Sätze der 

Principia Mathematica und verwandter Systeme
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We now consider the bytecode program Snarl, whose main method 
contains:

if doesNotUnderflow( classFile )
   while true pop( );           // thus underflowing Snarl’s stack
else 
    {  }                        // exiting gracefully

pop( ) – which removes the top element from the stack – may not be 
pure Java, but can certainly be written in bytecode.  The bytecode 
program Snarl is compiled into the class file Snarl.class.3

What happens if we give Snarl itself as a parameter?  The first thing it 
does is to invoke the method doesNotUnderflow on Snarl.class:

  • If doesNotUnderflow( Snarl.class ) is true, then Snarl immediately 
underflows the stack.

  • If doesNotUnderflow( Snarl.class ) is false, then Snarl exits safely, 
without underflowing the stack.

This contradiction means that there could never have been a method 
doesNotUnderflow which worked for all class files.  The quest for a 
way of determining statically that a class would behave itself at run 
time was doomed.  Complete checking for stack underflow must be 
done at runtime if it is to be done at all.

This result can be generalized and applied to any aspect of bytecode 
verification where you try to determine statically something that 
happens at runtime.  So all bytecode verifiers are incomplete.  This 
does not, of course, mean that they are not useful – they contribute 
significantly to Java security – nor that they cannot be improved.  It 
does mean, however, that some checking has to be left until runtime.

3  Snarl is a pretty nasty piece of programming, and most practical bytecode verifiers would reject it out of hand.
The reason for this is that while true pop ( ); is disastrous if executed and has no practical purpose; a good rule of
thumb is to leave it out.  But there's nothing invalid about Snarl – if we really have finite bytecode for the method
doesNotUnderflow( ), then we can readily construct the bytecode for Snarl – and doesNotUnderflow( ), being
complete, has no need for rules of thumb.
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Chapter 7.  Playing in the Sandbox

As we say in “Java as a Threat to Security” on page 9, we can imagine 
four levels of attack to which a Java applet can be subjected:

1. System Modification, in which the applet makes some change to 
the browser system (read/write access).

2. Privacy Invasion, in which the applet can steal restricted 
information from your system (read-only access).

3. Denial of service, in which the applet uses system resources 
without being invited.

4. Impersonation, in which the applet masquerades as the real user of 
the system.

The browser security manager implements the sandbox restrictions 
that are designed to prevent the first two of these. In this chapter we 
look at what the security manager does, how it does it, and then look 
at some of the loopholes (now closed) in which it has been 
circumvented. Finally we briefly consider the tricks that an applet can 
use to perform the "nuisance" attacks – denial of service and 
impersonation.

7.1  What the Security Manager Does

SecurityManager is an abstract class that any application developer 
can extend to implement a set of controls. SecurityManager contains a 
set of methods with names starting check, for example checkWrite() or 
checkConnect(). These methods answer the question "is the applet 
allowed to do this?" either by quietly returning to the caller (an implicit 
"yes") or by throwing a security exception (an emphatic "no"). 

Although the class itself is abstract, the methods within it are not, 
which means that if a subclass of SecurityManager does not 
implement a particular method, a default behavior will result. The 
default, in every case, is to deny the check by throwing an exception. 
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The security manager installed in most browsers overrides some of the 
default methods, but is still very restrictive, so that it prevents the 
applet from doing anything that would compromise the system. Table 7 
summarizes the checks and the normal browser implementation.

Table 7.  Security Manager Controls

Area of 
control

Check method "Is the applet 
allowed to..."

Allowed in an applet?

Network 
connections

checkAccept accept a socket 
connection?

No

checkConnect request a socket 
connection?

Restricted. Can only 
request a connection to 
the same server from 
which the applet was 
originally loaded

checkListen listen for 
connection?

No

checkMulticast use multicast? No

Threads checkAccess modify thread 
arguments?

Restricted to threads 
within the same thread 
group (that is, threads 
that are descended 
from a single parent 
thread).

File system checkDelete delete a specified 
file?

No

checkRead read from a 
specified file?

No

checkWrite write to a specified 
file?

No

Operating 
system 
access

checkExec execute a system 
command?

No

checkPrintJobAccess create a print job? No

checkSystemClipboardAccess access the system 
clipboard?

No

checkLink link to a system 
library?

No
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7.2  Operation of the Security Manager

Although any Java program, applet or application, can extend 
SecurityManager, the JVM will allow only one security manager to be 
active at a time. To make a security manager active you have to call a 
static system method: java.System.setSecurityManager(). This can be 
done only once in an application environment; any subsequent call 
results in an exception. In the case of an applet, the web browser has 
already installed a security manager as part of the JVM initialization. 
This means, assuming that the trusted classes are not subverted, that 
an applet has no choice but to live within the limitations of the security 
manager provided by the browser.

The installed security manager is only really active on request: it does 
not check anything unless it is called by other system functions. Figure 
17 illustrates the flow for a specific restricted operation, establishing a 
network connection. The calling code creates a new Socket class, 
using one of the constructor methods it provides. This method invokes 

Java Virtual 
Machine 
control

checkExit kill the JVM? No

checkPropertyAccess
checkPropertiesAccess

access specified 
system properties?

Restricted to a small list 
of uninteresting items. 
Cannot get a list of 
available property 
names.

checkAwtEventQueueAccess access the AWT 
event queue?

Yes

checkCreateClassLoader create a new class 
loader?

No

Packages 
and classes

checkPackageAccess
checkPackageDefinition

access a specified 
Java class 
package?

Yes

Security 
extensions

use a specified 
security package 
feature?

Yes

Area of 
control

Check method "Is the applet 
allowed to..."

Allowed in an applet?
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the checkConnect method of the local SecurityManager subclass 
instance.

Figure 17.  Security Manager Operation

In this case the security manager has a number of things to consider:

  • It needs to know whether the top level class (in this case 
your.own.applet) is trusted or not. That is, was it loaded by a class 
loader over the network or by a local class loader, or was it installed 
locally, from the trusted class path? We have seen in “How Class 
Loaders Are Implemented” on page 81 that each of the active class 
loaders maintains a unique name space. Whether the classes 
within a name space are trusted depends on the type of class 
loader that created it.

  • As an extension of the first point, if the security manager is 
checking a file access or network connection request (as here) it 

Socket(host, port)

your.own.applet

java.net.Socket

checkConnect(host, port)

1. Resolve host name
2. Compare with origin 
host of invoking class.

browser.SecurityManager
Return...

Or...

Security
Exception

Trusted name space

Untrusted name space
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not only needs to know if the applet is trusted, but also if it was 
loaded from the network or from a local file. This is because there 
are variations in the level of access allowed for these functions.

Refer to the JavaSoft security FAQ page for more information about 
this.

  • It may have to run some further check specific to the type of access 
requested. In this case, for example, it has to check whether the 
host to which the socket connection is being attempted is the same 
host from which the calling class was loaded. 

If all of these checks are successful, the security manager can permit 
the connection to go ahead.

7.2.1  Class Loader/Security Manager Interdependence
Although the three elements of JVM security – class loader, class file 
verifier and security manager – each have unique functions, this 
example illustrates their interdependence. The security manager relies 
on the class loader to keep untrusted classes and local classes in 
separate name spaces and to prevent the local trusted classes from 
being overwritten (for example, by a Socket class that failed to invoke 
checkConnect).

Conversely, the class loader relies on the security manager to prevent 
an applet from loading its own class loader, which could flag untrusted 
code as trusted. And everything relies on the class file verifier to make 
sure that class confusion is avoided and that class protection 
directives are honored.

The bottom line is this: if an attacker can breach one of the three 
defenses, the security of the whole system is usually compromised.

7.3  Attacking the Sandbox

We have now seen how the different parts of the Java defense act 
together to create a secure environment in which applets can run. If 
everything is working correctly, you should be safe from applets that 
try to attack your browser system or use it to mount attacks on other 
systems. In theory...

In practice, a number of holes have been found in the implementation 
of the Java defense, and a variety of attack applets have been 
demonstrated that exploit them. We do not go into the details of these 
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applets here, partly because all of the publicized holes have already 
been closed by the main browser vendors, but mainly because most of 
them have already been described in detail in Java Security: Hostile 
Applets, Holes and Antidotes, by Gary McGraw and Ed Felten. Dr. 
Felten is the leader of the Princeton Secure Internet Programming 
team, which has, more than any other group, subjected the JVM 
environment to scrutiny and attack in its lab.

Attack techniques do not stand still, so you should also regularly 
monitor the sources listed in Appendix A, “Sources of Information 
about Java Security” on page 211. 

It is not surprising that holes have been found in the Java defenses. 
The JVM is a large piece of code and, inevitably, there are bugs in it. 
Some of the attacks have exploited bugs, but most of them rely on 
finding ambiguities: using JVM facilities in a way that the original 
writers did not envision. If one were to redesign Java from scratch, 
with the benefit of hindsight, it would be possible to reduce the areas 
in which there is scope for ambiguity. However, we should not let this 
detract from the fact that, in general, the Java defenses have proven 
very strong and effective.

7.3.1  Types of Attack
Although we do not describe any attacks in detail, it is worth 
summarizing some of the techniques that have been successfully 
used:

  • Infiltrating local classes. You will have realized from the 
descriptions of the class loader and security manager functions that 
they depend completely on the integrity of Java classes on the local 
browser disk. This applies not only to "system" classes – the java.* 
classes of the JVM – but to any class installed in the browser 
system (in the browser home directory or in the CLASSPATH). This 
is because these classes operate outside the controls of the 
sandbox. 

There was a bug (discovered by David Hopwood) that allowed an 
applet to load a class from any directory on the browser system. 
This has been fixed, but opportunities still exist for the opportunist 
cracker. Downloading code packages from the Internet has become 
a part of everyday life for many people. Any of those packages 
could have been modified to plant a Trojan horse class file along 
with their legitimate payload. Of course, this is not just a Java 
problem, but more like a new form of computer virus. One solution 
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lies in signed content, so that you know that the package you 
download has not been tampered with. JDK 1.2 also promises 
some additional protection by applying restrictions to locally-loaded 
classes, as described in “Protection Domains” on page 129.

  • Type confusion. Java goes to great lengths to ensure that objects 
of a particular type are dealt with consistently, whenever they are 
referenced. We see this both in the compiler and later in the third 
pass of the class file verifier (see “Pass 3 - Bytecode Integrity 
Check” on page 91). It is crucial to the operation of the sandbox 
that the class of an object and level of access it allows (as specified 
by the private, protected or public keywords) is preserved. In 
the JVM, objects are referenced by entries in the constant pool. As 
the example in “The Constant Pool” on page 62 showed, each entry 
includes the type of the referenced object.

If, somehow, an attacker can create an object reference that is not 
of the type it claims to be, there is a possibility of breaking down the 
sandbox protection. Several exploits have shown ways to achieve 
type confusion, by taking advantage of a various flaws, such as:

  • A bug that allowed a class loader to be created but avoided 
calling the ClassLoader constructor that normally invokes 
checkCreateClassLoader() (see Table 7 on page 98).

  • Flaws in JVM access checking which allowed a method or 
object defined as private in one class to be accessed by another 
class as public.

  • A bug in the JVM that failed to distinguish between two classes 
with the same name but loaded by different class loaders.

  • Network loopholes. The first JVM flaw to get worldwide attention 
was a failure to check the source IP address of an applet rigorously 
enough. This was exploited by abusing the domain name service 
(DNS, a network service responsible for resolving names to 
addresses and vice versa) to fool the security manager into 
allowing the applet to connect to a host that would normally have 
been invisible to the server from which the applet was loaded. In 
this way the attacker could access a system that would normally be 
safe behind a firewall.

  • JavaScript back doors. There was a series of JavaScript exploits 
that allowed a script to persist after the Web page it was invoked 
from had been exited. This was used to track the user’s Web 
accesses. The flaw was fixed, but then reappeared when Netscape 
introduced LiveConnect, which allows a JavaScript script to create 
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Java objects and invoke Java methods. Both languages have strict 
limitations on what they are allowed to do, but the limitations are 
different limitations. By combining them you effectively get a union 
of the two protection schemes.

Looking at this catalog of flaws, you may feel gloomy about the whole 
question of making Java secure. However, the encouraging thing 
about these examples is that they have all been identified by 
researchers in the field and fixed rapidly by Sun and the browser 
vendors. 

7.3.2  Malicious Applets
So much for finding holes in the JVM protection scheme. What about 
the last two categories of exposure – the things that are allowed by the 
framework but which can still be annoying or damaging?

Setting the rules for the client environment is always a question of 
striking a balance. The browser needs to give the applet some system 
and network resources; otherwise, it will not be useful at all. On the 
other hand, it must not allow an attacker to have free reign over the 
browser system.

We have said that there are two types of malicious applets, denial of 
service and impersonation. There is also another type of malice that is 
not Java-specific. This is based on deception, that is, to try to trick the 
user into entering information that they would not normally give away. 
This sort of thing is not specific to Java, in fact there are much easier 
ways to do the same thing using scripting languages or simple HTML 
forms, so we won’t consider them further here.

7.3.2.1  Cycle Stealing
Denial of service attacks have, for a long time, been a scourge of the 
Internet. Normally you think of them taking down a server or even a 
whole site. A denial of service applet is unusual in that it normally only 
affects a single system or user. 

"Denial of service" implies that the user can no longer use the system, 
but we refer here to "cycle stealing" to mean any applet that consumes 
resources, whether computer or human, without the user’s permission. 
The most extreme form of these are denial of service applets, but the 
most insidious ones may not be detected by their victim at all.
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There are obvious denial of service attacks. For example an applet 
could try to create an infinite number of windows, or it could sit in a 
tight loop, using up CPU cycles. These are very annoying and they 
can have a real impact, if the user has to reboot the machine to 
recover, for example. However, if they are tied to a particular web page 
the user will quite quickly realize where the problem is coming from 
and simply not go there. To be effective takes something that is not so 
easily traced back to its source.

The key to this kind of applet lies in persistent, background, threads. 
Every implementation of the Java virtual machine supports threads, 
and the language makes it very easy to use them. In fact there are two 
ways to implement a thread, either by creating a subclass of Thread, 
or by implementing the Runnable interface. The danger of threads lies 
in the fact that they are not tied to a particular Web page. When you 
leave the page containing an applet, that applet and all of the threads 
it has started will normally be terminated. This job is handled by the 
stop() method, which is a final method in Thread (that is, it cannot be 
overridden by the programmer). However, if you implement Runnable, 
you can design the stop() method to do anything you like, including 
nothing at all. Figure 18 shows an example of this technique.

Figure 18.  Never Ending Fortune Cookie Applet (Part 1 of 2)

public class Annoy extends Applet implements Runnable {
    Thread fred ;
    URL fortuneURL ;
    public void init() {
    try { fortuneURL = new URL(this.getCodeBase() + "cgi-bin/getFortuneCookie"); }
    catch ( MalformedURLException e) {
        System.err.println("Bad URL: " + fortuneURL);
    }

if (fred == null) {
    fred = new Thread(this) ;
    fred.start() ;

}

    }
init method for applet just sets up a URL 
object, starts a new thread ("fred") 
running and then ends.
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Figure 19.  Never Ending Fortune Cookie Applet (Part 2 of 2)

In this case the applet is just mildly annoying, popping up a new 
window containing a fortune cookie every five minutes (well, OK, after 
the first dozen times the annoyance could be more than mild). The 
subtle thing about it is that it seems to appear from nowhere; there is 
no sign of it on the Web page from which it loads and it does not 
appear until some time after you have left the page and surfed happily 
onward. The only way to get rid of it is to quit the browser completely.

This applet is fairly benign, and at least it is visible, so you know that 
something strange has happened. Really, what has happened here is 
that the attacker has got free use of machine cycles on your system. 
What sort of thing might he or she want to do with them? One example 
would be to do brute force cipher cracking. A feature of any good 
symmetric key encryption algorithm is a uniform key space. That is, if 
you want to crack the code there is no mathematical shortcut to finding 
the key, you just have to try all possible keys until you find one that 
works. Several recent encryption challenges have been solved by 
using spare cycles on a large number of computers working as a 

public void run() {
    String line;
    URLConnection conn;
    DataInputStream data ;
    while ( true ) {
    StringBuffer buf = new StringBuffer();

 try { Thread.sleep(300000) ; }
 catch ( InterruptedException e) {} ;

         try {
    conn = fortuneURL.openConnection();
    conn.connect();
    data = new DataInputStream(new BufferedInputStream(conn.getInputStream()));
    while ((line = data.readLine()) != null) {
        buf.append(line + "\n");
    }
    FortuneWindow fw = new FortuneWindow(buf.toString()) ;

       }
catch (IOException e) {

   System.err.println("IO Error:" + e.getMessage());
   System.err.println("Trying to get " + fortuneURL) ;

      }
    }

}

public void stop() {
}

run() method of new thread wakes up 
every 5 minutes, reads a URL and 
displays the result in a window.

Null stop() method allows the thread 
to keep running, even after the parent 
applet has gone.
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loosely-coupled complex, each being delegated a range of keys to try, 
under the direction of a central coordinator.

This sort of effort depends on the cooperation and goodwill of a lot of 
people who donate machine time and access. But, if we replaced the 
getFortuneCookie URL in the above example with, for example, 
getNextKeyRange, it would be possible to do the same thing without 
having to ask anybody. A number of other applets along the same lines 
have been demonstrated, such as applets that kill the threads of other 
applets executing concurrently. 

7.3.2.2  Impersonation
Internet e-mail is based on the Simple Mail Transfer Protocol (SMTP). 
Mail messages are passed from one SMTP gateway to another using 
sessions on TCP/IP port 25. Abusing these connections to send bogus 
e-mail is an old-established nuisance of the Internet. A hacker can 
create mail messages that appear to come from someone else, which 
can be used to embarrass or annoy the receiver of the mail and the 
apparent sender. 

Mail that has been forged in this way is not impossible to tell from the 
real thing, however. The SMTP gateways keep track of the original IP 
address, so you can trace the message back, if not to a person, at 
least to a machine (unless the originator was also using a spoofed IP 
address).

A Java applet allows this kind of errant behavior to go one stage 
further. There is nothing to prevent an applet from connecting to port 
25 and appearing to be a mail client. However, the only system it can 
connect to is the one that it was originally loaded from, because of the 
sandbox restrictions. So now, if an attacker has control over a web 
page, he or she can cause an applet to be sent to a client machine, 
which connects back to the server and sends e-mail to the target of the 
attack. When the recipient checks the IP address, it belongs to a 
complete stranger, who has no idea that anything has happened.

7.4  Summary

The applet security manager enforces a well-defined, secure 
environment in which to run an applet. In doing so, it places some 
severe restrictions on what the applet can do, which may impede the 
development of effective network applications. We show in Chapter 9, 
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“Java Gets Out of Its Box” on page 119 how signed applets can break 
out of these restrictions.

There are some types of undesirable behavior that the sandbox does 
not prevent. These are generally a nuisance, rather than a serious 
threat, and at present you have to view them as one of the risks of the 
Internet. As the concept of protection domains in Java develops, we 
expect to see more granular controls that will prevent this behavior 
from the general hacker, while offering a wider range of function to the 
trusted host.
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Chapter 8.  Cryptography in Java

From JDK 1.1 onwards, Java provides general purpose APIs for 
cryptographic functions, collectively known as the Java Cryptography 
Architecture (JCA) and Java Cryptography Extensions (JCE). Signed 
applets, which we will discuss in the next chapter, are one specialized 
use of the JCA capabilities. 

In this chapter we describe the sort of problems for which 
cryptography can provide solutions and then look in more detail at JCA 
and JCE.

8.1  Security Questions, Cryptographic Answers

We want to create secure applications, but "secure" means different 
things depending on what the application does and the environment in 
which it operates. In each case we need to understand what the 
requirements are, based on the following categories:

Authentication How sure does the client need to be that the server 
really is who it claims to be? And does the server 
need to identify the client, or can he or she remain 
anonymous? Normally, authentication is based on 
either something you know (such as a password), 
or something you have (such as an encryption key 
or card). A developing form of authentication is 
based on something you are, including biometric 
measurements such as retinal scans or voice 
recognition.

Access control Having found out who is at the other end of the 
session, the next step is to decide whether they are 
allowed to do what they want to do.

Data integrity You want to be sure that data has not been altered 
between what was sent and what was received. 

�,�DP�IDLUO\�IDPLOLDU�ZLWK�DOO�IRUPV�RI�VHFUHW�ZULWLQJV��DQG�DP�P\VHOI�WKH�
DXWKRU�RI�D�WULIOLQJ�PRQRJUDSK�XSRQ�WKH�VXEMHFW��LQ�ZKLFK�,�DQDO\]H�RQH�
KXQGUHG�DQG�VL[W\�VHSDUDWH�FLSKHUV��EXW�,�FRQIHVV�WKDW�WKLV�LV�HQWLUHO\�QHZ�WR�
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This is especially true if the application crosses an 
insecure network, such as the Internet, where a 
man-in-the-middle attack may be easily mounted.

Confidentiality If any of the data that you are sending is sensitive, 
you do not want an attacker to be able to read it in 
transit. To prevent this it needs to be encrypted.

Non-repudiation In a business application you often have to be able 
to prove that a particular transaction took place. 

If we measure applet sandbox security against these requirements we 
find that the only one it helps us with is access control. The control is 
very strict: the security manager says "I can’t authenticate the server 
that delivered this applet, so I will allow it to only do safe things." 

As we mentioned in “Cryptographic Tools in Brief” on page 31, we 
have a trio of tools to answer the questions that these requirements 
pose, namely: symmetric key encryption, public key encryption and 
hashing/digital signatures.

Symmetric key, or bulk, encryption provides confidentiality, by making 
sure that a message can be read only if the recipient has the same key 
as the sender. But how to share the key in a secure manner? A 
common answer is to use public key encryption. This is too inefficient 
for general encryption of the whole data stream, but it is ideal for 
encrypting a small item, such as a bulk encryption key. The sender 
uses the receiver’s public key to encrypt it, knowing that only the 
owner of the private half of the key pair, that is to say the receiver, will 
be able to decrypt it. Having secretly shared the bulk encryption key in 
this way, they can then use it to encrypt the real data that they want to 
keep private.

Digital signatures also use public key encryption, but the other way 
around. Figure 20 illustrates how they work.
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Figure 20.  Creating a Digital Signature

The sender generates a digest from the data and then encrypts it with 
its private key. It then sends the result, together with the public key, 
along with the data. The receiver uses the public key to decrypt the 
signature and then performs the same hashing function on the data. If 
the digest obtained matches the result of the decryption, the receiver 
knows:

1. That the data has not been changed in transit (data integrity)

2. That it really was sent by the owner of the key pair (authentication)

8.1.1  Public Key Certificates
Whenever public key encryption is used, the owner of the key pair has 
to make the public key available to the session partner. But how can 
the session partner be sure of where the key really came from? The 
answer lies in public key certificates. Instead of sending a naked key, 
the owner sends a certificate, which is a message containing:

  • The public key

  • Detailed information about the owner of it (This is known as the 
distinguished name. It is a formatted string that contains the name, 
address, network information, etc. about the person or organization 
that owns the key pair.)

  • The expiry date of the certificate

  • Optionally, additional application-specific data

The whole message is digitally signed by a trusted third party, that is, 
an organization that is trusted by both sender and receiver (usually 
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known as a Certificate Authority, or CA). The resulting certificate 
electronically ties the real identity of the user to the public key.

The international standard for public key certificates is called X.509. 
This has evolved over time and the latest version is V3. The most 
significant enhancement in X.509 V3 is the ability to add other, 
arbitrary, data in addition to the basic identity fields of the 
distinguished name. This is useful when constructing certificates for 
specific purposes (for example, a certificate could include a bank 
account number, or credit card information).

8.1.1.1  Certificate Hierarchies
A public key certificate can also embody a chain of trust. Consider the 
situation shown in Figure 21. A system has received a request 
containing a chain of certificates, each of which is signed by the next 
higher CA in the chain. The system also has a collection of root 
certificates from CAs that it views as trusted. It can match the top of 
the chain in the request with one of these root certificates ("Ham"). If 
the chain of signatures is intact, the receiver can infer that Nimrod is 
trustworthy and that it inherits its trustworthiness from Ham.

Figure 21.  Certificate Hierarchy

Note that one of the implications of a certificate chain is that the 
certificate at the top of the chain is self-signed.
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8.2  Introducing JCA: the Provider Concept

From the brief discussion above you can see that to use cryptographic 
solutions you may require a whole collection of tools and functions, not 
only the encryption algorithms themselves, but functions for message 
digests, certificate management and key generation. And of course, 
life would be too simple if there were only one way to do each of the 
functions. So, for example, there are two different message digest 
algorithms in common use, the MD5 algorithm from RSA and the US 
Government SHA standard.

The provider architecture of JCA aims to allow algorithm 
independence, by representing all functions of a given type by a 
generic engine class. This masks the idiosyncrasies of the algorithm 
behind standardized Java class behavior. Vendor independence is 
supported in the same way, by allowing any number of vendors to 
register their own implementations of the algorithms. Figure 22 
illustrates how the provider architecture works in practice.

Figure 22.  Vendor and Algorithm Independence
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The figure shows two providers of cryptographic algorithms, Bob and 
Alice. These are in fact subclasses of the java.security.provider class. 
The acceptable algorithms are defined in engine classes. In JCA the 
only engine classes are related to digital signatures: creating the keys 
and digests needed for signing and then performing the signature 
itself. Bob and Alice both implement a number of algorithms that fall 
into these classes. 

Now, let’s assume that in your Java code you want to generate a key 
pair. You invoke the getInstance() method of the KeyPairGenerator 
engine class, passing it the specific type of key pair as an argument. 
The engine class reads the provider registration information from the 
java.security configuration file. This identifies the provider package 
names and assigns each one a preference order. In this case, the 
"Bob" provider package comes before "Alice" in the preference order. 
The engine class then searches through the providers until it finds an 
implementation of the algorithm required.

JDK1.1 offers one built-in provider package as standard, named SUN. 
This includes:

  • An implementation of the Digital Signature Algorithm (NIST FIPS 
186)

  • An implementation of the MD5 (RFC 1321) and SHA-1 (NIST FIPS 
180-1) message digest algorithms

It is worth noting here what is not contained in this package. The main 
omission is a facility for managing user IDs (more properly called 
principals in crypto-speak) and public key certificates. This makes the 
practical uses of the 1.1 package rather limited, as we show in an 
example using the SUN provider functions in “The Security Classes in 
Practice” on page 115. JDK1.1 does include a set of tools for 
manipulating signed applets and these do provide management of 
principals, keys and certificates. We explore them in “JavaSoft Signed 
JAR Example” on page 122.

8.2.1  JCE and Export Considerations
As we discussed in “US Export Rules for Encryption” on page 33, JCA 
only provides for the digital signature part of the cryptographic 
spectrum. This allows us to perform reliable authentication which, in 
turn, can be used as a basis for implementing access controls that 
relax the sandbox restrictions. However, it does not provide the 
general purpose encryption needed to send confidential data.
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The Java Cryptography Extension (JCE) package uses the same 
structure as JCA, being composed of engine classes that expose the 
algorithms in a generic way. The exact specification of the API is not 
openly published. This is because it is not only the JCE package itself 
that falls under the US export restrictions, but also the documentation 
for it.

What can be said about JCE is that it provides engine classes for bulk 
(symmetric key) encryption algorithms and for generating and 
manipulating the secret keys that such algorithms require.

8.3  The Security Classes in Practice

In this section we describe an example of the kind of application that 
JCA could be used for. We will illustrate it using snippets of code that 
use the APIs. In this way we aim to show, not only the useful features 
of JCA, but also the areas in which, at the JDK 1.1 level, it is lacking.

8.3.1  The Scenario
Imagine a home banking application, in which the customer, sitting in 
front of a browser in the comfort of his or her home, wishes to make a 
payment. Two things, at least, are required here:

1. The server (the bank) wants to authenticate the user, to make sure 
that it is not an imposter.

2. The customer will want to be sure that the bank is really who it 
claims to be.

We assume that the user will be authenticated by normal means: a 
PIN number or pass-phrase. Both client and server side are written in 
Java.

8.3.1.1  Step 1: Generate Keys and Certificates
Before the transaction can start, the bank must have generated a key 
pair and requested a certificate for it. The first part is simple:

try {

KeyPairGenerator kg = KeyPairGenerator.getInstance("DSA");

kg.initialize(1024, new SecureRandom()) ;

// Now generate a key pair

keypair = kg.generateKeyPair();

}

catch (NoSuchAlgorithmException e) {

System.err.println("No implementation of DSA keypair generator");
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System.exit(1) ;

}

This instantiates the provider class for a DSA key pair and then 
generates it. Now it gets tricky. The server needs to use the same key 
pair each time it restarts, which means that it has to somehow save it 
securely in a file. There is no built-in facility for this, so the 
programmer would need to create a method to do it. Secondly, the 
server needs to generate an X.509 certificate request. JCA 1.1 defines 
an interface named Certificate, but there is no implementation of it in 
the SUN provider package. 

8.3.1.2  Step 2: Challenge the Server
The client applet starts off the transaction by establishing a socket 
connection to the server using the Socket class from java.net 
(alternatively, it could use RMI). There may be some firewall 
considerations here, as discussed in Chapter 11, “Firewalls: In and 
Out of the Net” on page 169, but we assume the connection can get 
through. 

Next, the browser generates a random array of bytes and sends it to 
the server. There are two types of algorithm for generating random 
numbers, true and pseudo. Pseudo random number generators are 
based on a seed, which means that they become predictable if you 
can predict the seed value. The standard JDK Random class is 
seeded from the system clock, so it is theoretically predictable, but in 
our case the predictability of the random data does not matter, so we 
can use it. 

When the server receives the data, it signs it using the private key 
from the key pair generated earlier:

try {

siggi = Signature.getInstance("SHA/DSA");

siggi.initSign( keypair.getPrivate() );

// Pipe the string into a stream and sign it

StringReader sr = new StringReader(line) ;

byte b ;

while (( b = (byte) sr.read()) != -1) {

try {

siggi.update(b);

}

catch (SignatureException e) {

failmsg((Exception) e, "Problem performing the signature") ;

}
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}

It then sends the signature, plus the certificate, to the client. It also 
generates and sends another piece of random data, this time 
challenging the client.

8.3.1.3  Client Accepts the Challenge
The client receives the data from the server and verifies the signature. 
The verification uses a standard method of the Signature class, but, as 
before, there is no way to handle the certificate using JDK 1.1 
functions. Even if there was a way to handle a certificate, the browser 
sandbox would pose some problems, because the applet would need 
to check the signature against a trusted root CA, which implies reading 
the CA certificate from disk.

Finally, the client needs to prove his or her identity. The way to do this 
is to take the random data provided by the server, combine it with the 
PIN or pass-phrase, encrypt it using the public key from the server 
certificate and send it to the server. This, too, is not possible with JDK 
1.1, because JCE has no general purpose public key encryption 
function. 

8.3.2  What Do We Learn from This?
The scenario described above has shown that the facilities provided 
by JCA and JCE in JDK 1.1 are very limited. Future versions of the 
development kit will fill in the gaps.

The scenario also prompts another, more fundamental, question: 
challenge-based authentication is a common requirement; should 
there not be a common solution that implements it? In other words, an 
application developer should be able to plug in code that performs the 
whole process, instead of designing the protocol from scratch and 
building it from basic components. This becomes more obvious when 
you start to consider the legal, contractual and practical implications of 
writing cryptographic code, for example:

  • The question of US export controls. Even if the final result of the 
development uses lower-strength encryption and is therefore 
exportable, the toolkit used to create it still falls under export 
control. In addition, other countries, such as France, impose further 
restrictions which the developer must conform to.

  • The question of licensed code. You have to pay a fee to use the 
RSA public key system in your code. Furthermore, other methods, 
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such as the Diffie-Hellman key exchange algorithm, are subject to 
license issues in some parts of the world.

  • Questions of the management of multiple keys. For example, public 
key pairs are mainly used for digital signatures, but those 
signatures may have different meanings. Imagine an online 
banking scheme in which you have to prove your identity by 
digitally signing a challenge. The same application may also use 
digital signatures for authorization purposes ("transfer amount X to 
account Y"). A well-designed application should use different keys 
for each function. Otherwise an imposter could trick the user into 
signing a transfer request by presenting it as an identification 
challenge. 

Buying a package that implements a complete protocol does not 
remove these obligations, of course, but it does mean that they have 
already been considered and resolved. 

8.3.3  IBM Packages for Cryptographic Protocols
IBM Research in Zurich has developed a complete cryptographic 
framework in Java, which handles most application requirements. For 
example, it includes classes for bulk-key and public-key encryption 
and for X.509v3 certificate management. This is compatible with JDK 
1.1, but it uses its own provider framework (because it was built before 
JDK 1.1 became available). 

IBM Zurich has built implementations of Secure Sockets Layer (SSL) 
as Java classes, based on this framework. SSL is a protocol that 
provides bulk data encryption with server and client authentication. We 
discuss it further in Chapter 12, “Java and SSL” on page 195. The 
Java crypto-framework has also been used by IBM Development in 
Hursley, UK, to create a package that is optimized for consumer 
transactions such as home banking, insurance and financial services.

The Consumer Transaction Framework (CTF) is a set of Java classes 
which are used by the sample programs. CTF provides a number of 
services such as menuing, user validation and a secure interface to 
the server so that the application developer need not be concerned 
with the infrastructure, but may concentrate on the end-user function. 
Furthermore the CTF package uses cryptography for specific, 
well-defined purposes, which means that IBM has been able to obtain 
an export license for the use of full strength (128-bit) encryption. 
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Chapter 9.  Java Gets Out of Its Box

We have seen in previous chapters that the applet sandbox is (at least 
in theory) a very safe place to run a program. However, one persons’s 
"safe" is another person’s "boring". To create effective client/server 
applications using Java often requires us to give the applet some 
freedom from the security of the sandbox. 

The Java security model is built around the concept of a protection 
domain. The applet sandbox is a protection domain with very tight 
controls. By contrast the Java application environment is a protection 
domain with no controls at all, other than those imposed by the 
underlying operating system. What we are looking for is a protection 
domain that lies somewhere between the two.

As we have discussed, JDK 1.1 offers signed applets as a way to 
escape from the sandbox restrictions. Signed applets provide the 
mechanism for the protection domain we describe above.

9.1  JAR Files and Applet Signing

One characteristic of the dynamic loading of class files is that a typical 
applet may involve a number of small network transfers. It may also 
involve the retrieval of other files, graphic images for example. Given 
the indifferent performance of many World Wide Web connections, this 
can be a serious performance hit. JDK 1.1 provides relief for this by 
introducing the JAR (Java Archive) format for packing everything into a 
single file. JAR also allows for compression, which can further improve 
performance.

JDK 1.1 provides the jar command line tool for creating and 
managing JAR files. If you know the UNIX tar command, jar will be 
very familiar. As an example, the following command will create an 
archive for the PointlessButton applet:

�0\�VXVSLFLRQV�ZHUH�DOO�FRQILUPHG�E\�KLV�SHFXOLDU�DFWLRQ�LQ�
W\SHZULWLQJ�KLV�VLJQDWXUH��ZKLFK��RI�FRXUVH��LQIHUUHG�WKDW�KLV�
KDQGZULWLQJ�ZDV�VR�IDPLOLDU�WR�KHU�WKDW�VKH�ZRXOG�UHFRJQL]H�HYHQ�WKH�
VPDOOHVW�VDPSOH�RI�LW����6KHUORFN�+ROPHV��$�&DVH�RI�,GHQWLW\
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jar -cvf pbutton.jar PointlessButton.jar JamJar\examples\Button.jar

Figure 23 shows the format of the pbutton.jar file that this creates

Figure 23.  The pbutton Archive

The files that make up the payload of the JAR are packed into a copy 
of the original directory structure. The MANIFEST.MF file contains 
details of the "payload" of the JAR. This is what the manifest looks like 
in this case:

Manifest-Version: 1.0

Name: PointlessButton.class

Digest-Algorithms: SHA MD5

SHA-Digest: Sj15dptWhrZhiIFRNU27WRY1brc=

MD5-Digest: vB0/XzCeLLiykR///CBfUQ==

Name: JamJar/Examples/Button.class

Digest-Algorithms: SHA MD5

SHA-Digest: Fo6pYkn6ZR17eessxEiN7fK5xpE=

MD5-Digest: Hzs6oj85/blmcTW1fNQm4Q==

The digest values recorded in the manifest are calculated from the 
contents of the payload files they refer to. They are used to validate 
the payload files when they are unpacked.

Jar signing allows you to generate digital signatures for any of the files 
in the archive. In fact, files can be signed by more than one signer. So, 
for example, an applet could be signed by the developer who created it 
and then also signed by the IT department of the company who use it. 
When the user loads the applet, he or she not only knows that the 
applet comes from a trustworthy source, but also knows that it has 
been approved for corporate use.
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When you sign the files in a JAR, two new files are added to the 
META-INF directory:

Signer file This is very like the manifest file shown 
above, except that the digests in it are 
calculated from the manifest file entries, not 
from the actual contents of the payload files. 
The signer file may contain fewer entries than 
in the manifest file, because a signer does 
not have to sign every file in the archive. The 
file name is <signer ID>.SF, where <signer 
ID> is an arbitrary name for the creator of the 
signature. If the JAR has been signed by 
more than one signer, each will have a 
separate .SF file. 

Digital signature file This is a binary file, containing the digital 
signature in PKCS7 format.1 The signature 
file name depends on the type of signature 
algorithm used. For example, a DSA 
signature would be in a file named <signer 
ID>.DSA (other possibilities are .RSA, for a 
signature using an MD5 digest and RSA 
encryption and .PGP for a Pretty Good 
Privacy signature).

9.1.1  Current Implementations
The JAR format is quite new and at the time of writing there are some 
discrepancies between the way that different vendors have interpreted 
the signature part of the standard. There are also different 
philosophies in the way that signed JARs are used to elicit extra 
permissions from the client. In the Sun case, the browser is configured 
in advance to allow a signed applet to do certain things that are 
normally forbidden by the security manager. In the Netscape case the 
applet has to ask for the specific permissions it wants, using a special 
API. Microsoft has taken yet another approach, not using JARs at all.

Let’s look at some examples of the different implementations.

1  Public Key Cryptography Standards, PKCS, is a set of rules for encoding various cryptographic structures.
PKCS7 defines a general-purpose signature format, including the signed digest, the certificate of the signer and
the CA certificates that support it.
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9.2  JavaSoft Signed JAR Example

JDK 1.1 provides the javakey and jar commands for managing 
databases of public keys and for creating, signing and manipulating 
JAR archives. In this section we show how to use the commands to 
create three key databases:

1. A certificate authority database

2. A database for a Web server

3. A database for a Web client

We then use these keys to sign a JAR file containing an applet that 
attempts to read a file on the browser system.

In the following sections we show the command dialog as it appears 
on a Windows NT system, using bold type for commands and normal 
type for the system and command responses, like this:

C:\directory\path>command

system response...

9.2.1  Creating the Certificate Authority Key Database 
The certificate authority is a principal in its own key database, with a 
self-signed certificate. We create it as follows:

1. The first thing to do is to create a new key database. The key 
database is created implicitly when you add the first principal to it:

D:\work\sun_signed_jar>javakey -cs "JamJar CA" true
Created identity [Signer]JamJar CA[identitydb.obj][trusted]

This creates key database itentitydb.obj in your home directory. 

2. Next, generate a key pair for the CA principal. We choose to use a 
1024 bit key:

D:\work\sun_signed_jar>javakey -gk "JamJar CA" DSA 1024
Generated DSA keys for JamJar CA (strength: 1024).

This can take a while to do. We ran it on a 75 MHz 486 machine 
and the command ran for 2 min 40 sec (the time is related to the 
key size). You can use the list option of javakey to check the results 
so far:

D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file: 
C:\users\default\identitydb.obj
[Signer]JamJar CA[identitydb.obj][trusted]
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        public and private keys initialized
        certificates:
        No further information available.

3. The key pair allows the CA to sign certificates, but we also need to 
generate a certificate for the CA itself, so that others can accept the 
CA’s signatures. The first thing to do is to create a certificate 
information file, containing the distinguished name information for 
the CA and the certificate issuer. In this case, the certificate is 
self-signed, so the issuer and the subject are the same:

issuer.name=JamJar CA 
subject.name=JamJar CA 
subject.real.name=Project JamJar Certificate Authority 
subject.org.unit=ISL 
subject.org=IBM 
subject.country=UK 
start.date=12 Sep 1997 
end.date=12 Sep 1998 
serial.number=1 
out.file=cert.jamjar

We save this file as certinfo.jamjar.

4. Finally we can sign the CA’s certificate:

D:\work\sun_signed_jar>javakey -gc certinfo.jamjar
Generated certificate from directive file certinfo.jamjar.
D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file: 
C:\users\default\identitydb.o
bj
[Signer]JamJar CA[identitydb.obj][trusted]
        public and private keys initialized
        certificates:
        certificate 1   for  : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK
                        from : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK
        No further information available.

9.2.2  Creating the Server Key Database
Now we want to create a key database for our server:

1. If we go ahead and use javakey to create the principal for the 
server, it will add it to the CA database. So first we must choose to 
use a different key database, by setting the identity.database 
directive in the main security properties file. 
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(<JDK_root>\lib\security\java.security, where <JDK_root> is the 
directory where JDK 1.1 was installed). We added the following 
line:

identity.database=D:/work/sun_signed_jar/serverdb.obj

2. The server has to know about the CA that signed its own certificate, 
so first we add the CA principal to the key database and import the 
CA certificate:

D:\work\sun_signed_jar>javakey -cs "JamJar CA" true
Created identity [Signer]JamJar 
CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
D:\work\sun_signed_jar>javakey -ic "JamJar CA" cert.jamjar
Imported certificate from cert.jamjar for JamJar CA.
D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file: 
D:/work/sun_signed_jar/server
db.obj
[Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
        no keys
        certificates:
        certificate 1   for  : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK
                        from : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK

Notice that in this case the list command shows a key database 
with no keys in it, just a public key certificate (this is slightly 
misleading, because the certificate contains the public key; the 
display should really say that there are no key pairs).

3. We create the principal and generate a key pair for our server:

D:\work\sun_signed_jar>javakey -cs "Robusta"
Created identity 
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
D:\work\sun_signed_jar>javakey -gk "Robusta" DSA 512
Generated DSA keys for Robusta (strength: 512).

4. Next we want to use the CA key pair to sign the server’s public key. 
First we export the public key to a file:

D:\work\sun_signed_jar>javakey -ek Robusta pubkey.robusta
Public key exported to pubkey.robusta.

5. We need to import this key into the CA’s key database. To do this 
we comment out the identity.database entry that we added to 
java.security (above), create the server’s principal in the CA 
database and import the public key:
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D:\work\sun_signed_jar>javakey -cs "Robusta"
Created identity 
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
D:\work\sun_signed_jar>javakey -ik Robusta pubkey.robusta
Set public key from pubkey.robusta for Robusta.

6. Now we can sign the server’s certificate. The process is the same 
as for the CA certificate. First we create the certificate information 
file:

issuer.name=JamJar CA
issuer.cert=1
subject.name=Robusta
subject.real.name=All Java is secure but signed Java is Robusta
subject.org.unit=ISL
subject.org=IBM
subject.country=UK
start.date=12 Sep 1997
end.date=12 Sep 1998
serial.number=2
out.file=cert.robusta

Then we sign the certificate:

D:\work\sun_signed_jar>javakey -gc certinfo.robusta
Generated certificate from directive file certinfo.robusta.

7. To use the certificate, we have to import it into the server’s key 
database, which means that we first have to find out the number 
assigned to the certificate in the CA database and export the 
certificate to a file:

D:\work\sun_signed_jar>javakey -li Robusta
Identity: Robusta
[Signer]Robusta[identitydb.obj][not trusted]
        no keys
        certificates:
        certificate 1   for  : CN=All Java is secure but signed 
Java is Robusta
OU=ISL, O=IBM, C=UK
                        from : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK
D:\work\sun_signed_jar>javakey -ec Robusta 1 cert.robusta
Certificate 1 exported to cert.robusta.

8. Finally, we switch the active key database back to the server (by 
restoring the identity.database entry in java.security) and then 
import the certificate:

D:\work\sun_signed_jar>javakey -ic Robusta cert.robusta
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Imported certificate from cert.robusta for Robusta.
D:\work\sun_signed_jar>javakey -ld

Scope: sun.security.IdentityDatabase, source file: 
D:/work/sun_signed_jar/serverdb.obj
[Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
        no keys
        certificates:
        certificate 1   for  : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK
                        from : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK
        No further information available.
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
        public and private keys initialized
        certificates:
        certificate 1   for  : CN=All Java is secure but signed 
Java is Robusta OU=ISL, O=IBM, C=UK
                        from : CN=Project JamJar Certificate 
Authority, OU=ISL,O=IBM, C=UK

9.2.3  Creating and Signing a JAR File
To illustrate the use of the key databases we have a simple Java 
applet that attempts to perform an action normally prohibited by the 
sandbox; it reads a local file and displays the contents on screen. We 
need to package this in a JAR archive and then sign it. 

1. We create the jar file and display its contents using the jar 
command:

D:\work\sun_signed_jar>jar -cvf jam.jar GetFile.class
adding: GetFile.class (in=2239) (out=1201) (deflated 46%)
D:\work\sun_signed_jar>jar -tf jam.jar
META-INF/MANIFEST.MF
GetFile.class

2. We have to tell javakey which key pair to use for the signature (in 
fact, the key database only has one key pair in it, but javakey does 
not know that). To do this we create a signature directive file, as 
follows:

signer=Robusta
cert=1
chain=0
signature.file=ROBUSTA

The signature.file directive does not define a real file, but the file 
name part of the signer and signature files that are placed in the 
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META-INF directory of the JAR (see “JAR Files and Applet Signing” 
on page 119).

3. Now we can sign the JAR:

D:\work\sun_signed_jar>javakey -gs sign_directive.robusta 
jam.jar
Adding entry: META-INF/MANIFEST.MF
Creating entry: META-INF\ROBUSTA.SF
Creating entry: META-INF\ROBUSTA.DSA
Adding entry: GetFile.class
Signed JAR file jam.jar using directive file 
sign_directive.robusta.

Notice the conflicting use of forward slash (/) and back slash (\) in 
the metadata files. In theory a JAR should use forward slashes 
only, but this mixed use does not seem to cause a problem.

4. The result of performing the signature is a file named jam.jar.sig. 
Now we can put that on the Web server and reference it in a web 
page using the <APPLET> tag:

<APPLET CODE=GetFile.class archive=jam.jar.sig WIDTH=600 
HEIGHT=600>
<PARAM NAME=FileToTry VALUE="c:\thingy">
</APPLET>

5. Finally we can try to load the page into a Web browser (or, for 
testing purposes, the JDK 1.1 applet viewer). However, when we do 
so we get the same error as if it was a normal applet running under 
the sandbox restrictions:

sun.applet.AppletSecurityException: checkread
at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:384)
at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:346)
at java.io.FileInputStream.<init>(FileInputStream.java:58)
at GetFile.init(GetFile.java:15)
at sun.applet.AppletPanel.run(AppletPanel.java:287)
at java.lang.Thread.run(Thread.java:474)

You can see that the checkRead method of the security manager is 
throwing an exception. Why is this? The reason is that the client 
does not have the certificate that it needs to decrypt the JAR’s 
signature, and hence establish trust in the signer. 

According to the signature hierarchy the client should only need the 
JamJar CA certificate to authenticate the server (because JamJar 
CA signed the server’s certificate). However, at the time of writing 
this did not work as expected for JDK 1.1. We found we had to add 
the server certificate to the client’s key database, as follows:
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1. We set the key database to a new one for the client, by changing 
the identity.database directive in java.security:

identity.database=d:\work\sun_signed_jar\clientdb.obj

2. Then we create the entry for the server and import the certificate:

D:\work\sun_signed_jar>javakey -cs "Robusta" true
Created identity 
[Signer]Robusta[D:/work/sun_signed_jar/clientdb.obj][trusted]
D:\work\sun_signed_jar>javakey -ic "Robusta" cert.robusta
Imported certificate from cert.robusta for Robusta.

3. Now, at last, the applet runs as we want it to:

Figure 24.  Running the Signed Applet

The applet viewer gives full access to any signed applet, which is 
acceptable because it is a test tool. A real browser needs to provide 
more control over access. HotJava, for example, allows you to set a 
range of different trust levels:

Untrusted This is like the normal sandbox environment, 
except that it is even more restricted because the 
applet cannot make any network connections.

High Security This is similar to the sandbox, with the addition of 
the ability for an applet to listen on network ports 
above 1024.

Medium Security Prompts the user whenever the applet tries to do 
something that is normally not allowed, so that the 
user can permit or deny it.

Low Security Allows the applet to do anything, without prompting 
the user.
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9.3  Coming Next from JavaSoft: JDK 1.2

From the example in the previous section, you can see that applet 
signing, as implemented in JDK 1.1, really only implements half of the 
process – it provides a mechanism for creating signed JAR files but it 
does not provide a real implementation of access control. 

At the time of writing, JDK 1.2 is still under development and only 
limited information about its security model is publicly available. What 
is known is that Sun will develop the sandbox model with the following 
objectives in mind:

  • To provide fine-grained access control. Under the present 
scheme you have to write customized SecurityManager and 
ClassLoader classes to do this. The intention is that the JDK and 
Java Runtime Environment (JRE) will provide much of this 
programming by default.

  • To enable an easily configurable security policy. When the 
HotJava browser was introduced it provided some limited 
capabilities for modifying the restrictions of the sandbox. However, 
in the face of press coverage, later Java-capable browsers 
removed all such controls, leaving the restrictive virtual machine of 
today. The runtime environment needs to be fitted with controls that 
allow a user or administrator to define their security policy.

  • To allow security checks to be extended to other Java 
programs. Under the present scheme, local code is always treated 
as being trusted, whereas applet code is not. The new model will 
apply consistently to local code as well, whether classes 
permanently installed on a browser that interact with applets or part 
of Java applications. This does not eliminate the concept of system 
code. There must always be a layer of trusted code that applet and 
local classes invoke when they need access to protected 
resources. What it does mean is that applets and applications can 
be subjected to the same set of controls.

9.3.1  Protection Domains
The JDK 1.2 security model will extend the concept of protection 
domains. These are logical boundaries within which a given security 
policy applies. A protection domain is defined by a set of permissions, 
which act as a set of filters to tie together:

  • The code source, made up of an origin (where a piece of code 
comes from) and a principal (who the code is signed by).
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  • Resources (protected system or network elements)

Figure 25.  A Protection Domain

The way the permissions are applied will mirror the current 
SecurityManager function. That is, every attempt to access a 
protected resource will be routed to the access control function, which 
will examine the permissions of its protection domain and either return 
quietly or throw an exception (in fact it will have to trace back the 
execution thread to check all of the protection domains, so that 
unauthorized code cannot beat the system by calling an authorized 
function). 

The elements for the protection domain will initially be controlled by a 
policy configuration file. So, for example, you could specify an entry in 
the file that would grant applet code from a specific site, signed by a 
named trusted signer, read-only permission to a specific file.

Each of the elements of the protection domain can be defined as 
tightly or as loosely as required. This means that at one extreme it will 
be possible to define a protection domain that re-creates the operation 
of the sandbox by specifying an origin of "any URL" and a principal of 
"unsigned." 

9.4  Netscape Signed JAR Example

While Javasoft has been working on developing the security model for 
JDK 1.2, the major browser manufacturers have also been wrestling 
with ways to relax the access control applied to signed applets.

Netscape have embraced the JAR format and the opportunities that 
signing offers. In fact, they are using the format for other types of Web 
content, such as JavaScript programs, plug-ins and Web pages. 

Origin

Principal Java code

Permissions

Resources
130 Java Network Security



  
However, at the time of writing you could not simply use a Netscape 
browser to access a JAR signed using the javakey command as 
described in “JavaSoft Signed JAR Example” on page 122. There are 
two reasons for this:

1. Netscape browsers require that the CA that signs a JAR file be 
predefined as a trusted root. The self-signed certificates used by 
javakey cannot be loaded into the browser.

2. The trust model implemented by HotJava works on an exception 
basis: the applet tries to do something that is forbidden, which 
causes a prompt to ask the user if it is acceptable. Netscape have 
implemented a more sophisticated model, in which the applet code 
requests the permissions it needs and in which it can control the 
period for which each permission is active. 

In other words, the programmer decides in advance what permissions 
are needed, instead of trying to use the permissions and relying on the 
browser to handle the exception. Although this may seem like a small 
distinction, it does allow a more natural style of application. For 
example, if an applet attempts several privileged actions, the user can 
be prompted to allow access to all of them at once, instead of being 
repeatedly interrupted each time one of them is encountered in the 
code. 

The ability to turn permissions on and off within the code is also 
important, because it reduces the exposure to an attack where another 
applet invokes the trusted applet’s methods, thereby using the JAR 
signature illicitly.

The Netscape access control request mechanism is implemented as a 
Java class package named netscape.security. We illustrate the 
security model with an example of an applet that requests permission 
to read system properties and also to read a file on the browser disk. 
There are three parts to the setup: writing the applet to use the 
netscape.security extensions, installing and configuring the key pairs 
and certificates and then signing the JAR and running the applet.

9.4.1  Using the netscape.security Package
The netscape.security mechanism is based on privilege targets. These 
are definitions of operations that the applet may want to perform. 
Control over whether they should, or should not be permitted lies with 
a new security function, the privilege manager. This places indicators 
on the JVM stack to show what privileges the applet has been allowed. 
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The Netscape version of the security manager then refers to the 
indicators when performing its authorization checking.

The package includes a large number of predefined privilege targets 
and also allows the programmer to register new targets. The applet 
shown in Figure 26 requests access to two of the standard targets: 
access to system properties and read access to a local file.

Figure 26.  GetFileNS.java (Part 1 of 2)

import java.awt.*;
import java.io.*;
import netscape.security.* ;
public class GetFileNS extends java.applet.Applet implements Runnable {
  String filename ;
 Thread t ;
  TextArea ta = new TextArea("",10,50);
  public boolean granted = false ;
  PrivilegeManager privMgr ;
  protected Principal lilOlMe ;
  public void init() {
   filename = getParameter("FileToTry") ;
    add(ta);
     // Find out what operating system we are on

try { 
         PrivilegeManager.enablePrivilege("UniversalPropertyRead");
         String osName = System.getProperty("os.name");
         a.appendText("\nI see you are running " + osName);

  PrivilegeManager.revertPrivilege("UniversalPropertyRead") ;
     } 

catch (netscape.security.ForbiddenTargetException e) {
         ta.appendText("\nPermission to read system properties denied by user.");
     }

    / Request permission to read a specific file
   lilOlMe = PrivilegeManager.getMyPrincipals()[0] ;
   privMgr = PrivilegeManager.getPrivilegeManager() ;
    try {
        Target freadTgt = Target.findTarget("FileRead") ;

privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename) ;
granted = true ;

    }
    catch(ForbiddenTargetException e) {
        ta.appendText("\nUser won’t let me read " + filename) ;
    }
    // Start the thread running
    if(t == null) {
        t = new Thread(this);

t.start() ;
    }
  }

Note that we revert 
the privilege 
immediately. This 
minimizes the time for 
which the applet is 
open to abuse.

The second example is more complex. In this case the privilege is 
not universal ("view any system property") but specific ("read file X"). 
We therefore cannot just refer to the privilege target by name, but 
have to pass a netscape.security.Target object to enablePrivilege. 
This could be a target that we created ourselves, or, as in this case, 
a target provided by the package. The file name is passed to 
enablePrivilege(). This version of the method also requires details of 
the applet signer, contained in a Principal object.

Here we request permission to read system 
properties. The enablePrivilege() method 
causes a dialog box to pop up asking for 
permission. If the user refuses, it throws an 
exception. Otherwise the applet goes on to read 
the property (the type of operating system that 
the browser is running on)
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Now you are probably wondering why we requested access to read the 
local file but then did not do so. In fact we are going to need the file 
access later in the applet, in another thread. Figure 27 shows the 
second half of the applet, in which the FileRead privilege is used. This 
illustrates an oddity of the mechanism: the privilege manager grants 
privileges for the life of the applet, but the indicators are placed on the 
program stack, which is unique to each method and the methods it 
invokes. This means that you have to re-issue the enablePrivilege() 
request from the method where the privilege is actually exercised. 
However, as the privilege manager has kept track of what permissions 
have been granted, it will not ask the user again. 

Figure 27.  GetFileNS.java (part 2 of 2)

When you start to ease the restrictions in your browser you have to be 
aware that you may be opening yourself to attack. The applet itself is 
signed by someone you trust, based on the signature in the certificate, 
so it should not do anything dangerous directly. However, as we 

public void run() {
    // Did we get the permission we wanted?
    if ( granted == true ) {
        try {

    Target freadTgt = Target.findTarget("FileRead") ;
    privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename) ;
    ta.appendText("\nThis is the content of file " + filename + ":\n" + 

readTheFile(filename).toString());;
}
catch(ForbiddenTargetException e) {

           ta.appendText("\nShould never reach here...") ;
    }
    }

}
private StringBuffer readTheFile(String filename) {

    DataInputStream dis;
    String line;
    StringBuffer buf = new StringBuffer();
    FileInputStream theFile;

try { theFile = new FileInputStream(filename); 
        try { 

dis = new DataInputStream(new BufferedInputStream(theFile));
           while ((line = dis.readLine()) != null) {

     buf.append(line + "\n");
           } 
           }
        catch (IOException e) {
          System.out.println("IO Error:" + e.getMessage());
        }
      }

catch ( FileNotFoundException e) {
       System.out.println("File not found: " + filename);
      }

return(buf) ;
  }

Here we request the FileRead privilege again 
and, this time, we actually read the file.

This method reads the data. It is a 
general purpose function, so we 
do not request privileges within it. 
If we did, an attack applet could 
invoke it using inter-applet 
communication and get privileges 
without a signature. It is also 
private, which protects the run() 
method from a similar attack.
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alluded to in the example above, another applet could get a free ride 
on the signature by using inter-applet communications to invoke 
methods that have had privileges granted to them. You will recall that 
such an attack can only be launched from an applet within the same 
context (that is, contained within the same document). This highlights 
an important point about signed applets: the signature implies a 
trustworthy programmer, not a trustworthy site. 

9.4.2  Installing Keys and Certificates in Netscape
Now that we have written the code that will request and use special 
privileges, we need to install it in a signed JAR. But before we can 
generate a signature, we need a key pair and a certificate.

Public key signatures rely on a web of trust. That is, anyone receiving 
a signed message needs to have the certificates of certificate 
authorities that establish the trustworthiness of the signer. This does 
not only apply to signed Java, of course. One of the most widespread 
uses of digital signatures is in the Secure Sockets Layer (SSL), a 
general purpose protocol for encrypting Web data and authenticating 
the server and client. 

To get around the problem of establishing the web of trust needed by 
SSL, the browser manufacturers provide key databases containing 
trusted roots (the certificates of a number of widely-accepted CAs) as 
part of the browser installation. This allows a browser to accept any 
signature that is supported by a certificate from one of the known CAs. 
But signed Java poses other problems:

For the Applet Developer

Using Privileges with Care

The GetFileNS applet (above) illustrates a number of techniques for reducing the
risk of a second applet abusing your privileges. In summary the techniques are:

1. Enable privileges for as short a time as possible.
2. Place privileged accesses within private or protected methods.
3. When creating general purpose methods (like readTheFile() in the example),

enable privileges in the calling code, not the method itself.

http://developer.netscape.com/library/documentation/signedobj/capabilities
has some more detailed guidelines on this issue.
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1. If you are creating a signed JAR for general use you can purchase 
a certificate from one of the well-known CAs. But if you are creating 
a local, intranet, application with a limited web of trust, you need a 
way for the signer and the browser to install the local CA certificate 
as a trusted root.

2. As the signer of the code, you need the facility to generate a key 
pair and then acquire a certificate for your own public key and 
install it into your own key database.

Netscape has developed mechanisms to solve both of these problems. 
They are based on messages with special MIME types that trigger key 
management functions in the browser. The MIME types are:

  • application/x-x509-ca-cert. This message delivers a new CA 
certificate. When it is received, the browser pops up a dialog in 
which the user can check the details of the certificate before 
installing it as a trusted root (see Figure 29).

  • application/x-x509-user-cert. This message delivers a new 
personal certificate. This does not make sense unless the browser 
has previously generated a key pair and provided distinguished 
name information to place in the certificate. Netscape uses a 
special HTML tag: <KEYGEN>, which causes the browser to 
generate the key pair. Figure 28 shows how this works.

Figure 28.  Requesting a Certificate: the KEYGEN Mechanism 

Browser Certificate Server

1) HTTP GET for "request certificate" URL

2) Form prompts for distinguished name details and
includes <KEYGEN> tag.

3) User fills in details 

4) Browser generates 
5) Form data and certificate request POSTed to
server

Later...
6) HTTP GET for "receive certificate" URL

key pair

7) x-x509-user-cert response message invokes
certificate install process in browser

and submits form
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Figure 29.  Receiving a New CA Certificate

In our example we used the Netscape Certificate Server product to 
generate and install a new CA key and a personal key for code 
signing. Any suitable key management software could be used, so 
long as it supports the special MIME types and KEYGEN tag. The IBM 
Registry product has this capability, for example, and it will also be 
available in a future release of the Lotus Go Web server.

In order to use the key pair for signing JAR files, it must be a X.509 v3 
certificate with a special attribute set to indicate that it is suitable for 
code signing.

9.4.3  Signing JAR Files with Netscape JAR Packager
Now everything is in place to store the applet in a JAR and to sign it. 
Netscape provide a tool called the JAR Packager which makes this 
easy to do. At the time of writing the tool was available for download 
from the Netscape Developer Connection Web site. 
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We used the graphical version of the tool, which is a Java application 
invoked from Netscape Navigator (see Figure 30).

Figure 30.  JAR Packager, Initial Screen

Once you have selected the file(s) that you want in the JAR, you can 
sign them all by clicking on the appropriate button (see Figure 31).

Figure 31.  Signing the Files in a JAR

First click here and select the class 
file(s) for the applet and any other 
files it needs.

This dialog box lists all of the 
personal certificates that you have 
installed in Netscape Navigator (as 
described previously). Note that 
only certificates that are identified 
as being for code signing can be 
used here.
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Now we can save the signed JAR file and quit the JAR Packager. If we 
look at the file with the jar command we see the expected structure of 
manifest, signer and signature files:

D:\work\ns_signed_jar>jar -tvf nsjam.jar

   249 Tue Sep 16 20:08:12 GMT+01:00 1997 META-INF/MANIFEST.MF

   250 Tue Sep 16 20:08:14 GMT+01:00 1997 META-INF/robusta.SF

  1518 Tue Sep 16 20:08:26 GMT+01:00 1997 META-INF/robusta.RSA

  3008 Tue Sep 16 20:08:26 GMT+01:00 1997 GetFileNS.class

To use the JAR, we must place it on the Web server and reference it in 
an <APPLET> tag as we did in the javakey/jar example. When we load 
the page in a Netscape browser, each of the enablePrivilege() method 
calls causes a dialog box to pop up on the user’s screen, as shown in 
Figure 32.

Figure 32.  Applet Requests a Privilege

Privileges are categorized by 
the damage they could do to 
your system.

The CA that signed the 
certificate of the JAR signer 
is shown. You can also 
request detailed certificate 
information.
138 Java Network Security



  
Figure 33 shows the applet running successfully, after we gave it the 
two permissions it needed. 

Figure 33.  Signed Applet Running in Netscape

You can also review the permissions that you have given a particular 
signer, as shown in Figure 34 on page 140. Note that under this 
scheme there is no way to predefine permissions in this dialog; they 
only appear when a signed applet (or JavaScript script) requests 
privileges.
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Figure 34.  Displaying Privileges Given to a Signer

9.5  Microsoft and Signed Applets

At the time of writing, Sun Microsystems is locked in litigation with 
Microsoft over the way they have implemented Java in Internet 
Explorer 4.0. Part of that quarrel relates to the approach to signed 
applets. We will not discuss the rights and wrongs of that suit, but 
simply describe the way that Microsoft Internet Explorer works.

Externally, the most distinctive thing about the Microsoft approach is 
that it uses Cabinets (files with extension .cab, we will call them CABs 
for brevity) to contain the applets and other data, instead of JARs. This 

Click here to see 
details of assigned 
privileges

Privileges can either be 
persistent (you will not be 
prompted when the signer 
requests them again) or for the 
current session only.
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is not to say that Internet Explorer will not handle JAR archives, but it 
does not deal with signed JARs in any special way. CABs are also 
used for packaging the installation images of other Microsoft software. 
And, just as Netscape are using signed JARs to deliver many types of 
Web content, CABs are used by Microsoft to install ActiveX controls 
and other platform-specific code. 

The Internet Explorer security model is built around Security Zones. 
These are groupings of applet sources, based on URLs. By default 
four zones are defined:

Intranet Web sites that are within the local, secure, network 
or are only accessed via secure (SSL) connections. 
Sites in this category may be defined by URL or by 
other attribute, for example, sites that are not 
reached through a proxy server.

Trusted sites A list of sites that are trustworthy, but which don’t 
quite give the same level of reassurance that the 
intranet sites do.

Internet The great unwashed horde of Web sites.

Restricted sites  Sites that you have reason to believe are actually 
dangerous.

Each of these zones has a security level associated with it of low, 
medium, high or custom. These apply for all sorts of Web elements, 
such as ActiveX controls, cookies, and user IDs as well as Java. The 
first three are related to a very specific set of permissions. The high 
security level is equivalent to the sandbox restrictions, the medium 
level adds the ability for an applet to use a scratchpad directory on the 
browser disk for storing and retrieving persistent data. The low level 
allows an applet unrestricted access. The custom level allows you (or 
an administrator) to set specific controls for different types of Web 
content. 

Of course, a protection scheme based solely on URLs and IP 
addresses would be very risky. To be effective, the security model 
requires Java code to be delivered in signed CABs. Functionally, a 
signed CAB is like a signed JAR with one, important, exception: in 
addition to identifying the originator of the code, the signature on a 
CAB also defines the permissions that the code is requesting.

The best way to understand this is to illustrate it with an example.
Java Gets Out of Its Box 141



9.5.1  Two Signed CAB Examples
Here are two examples of signed cabinets:

1. A simple example that uses the base signature function

2. A more complex example that uses the scratchpad facility of the 
Internet Explorer browser.

9.5.1.1  Simple Signed CAB Example
For the first example we create an applet that attempts to read a file on 
the browser disk. It uses basic Java I/O stream classes and will 
therefore normally fail with a security exception. There are three steps 
to placing this into a signed CAB.

Step 1: Create a Signing Certificate
The Microsoft Software Development Kit (SDK) for Java 2.0 provides a 
command-line tool, makecert, for generating a software developer 
certificate:

makecert -sk jamjarkey -n "CN=JamJar Software Co" JamJar.cert

This command generates a key pair called "jamjarkey" and places it in 
the Windows registry under HKEY_Current_User/Cryptography. It also 
creates a certificate request file, using the public key and the 
distinguished name information from the command.

Normally, the next step would be to send this to a CA for 
authentication and signing (Internet Explorer defines just one root CA, 
the Microsoft Authenticode Root CA, for software signing, but there is 
a technique to update the list, using ActiveX controls). However, in our 
case we are only signing the applet for test purposes, so we can use 
another tool from the SDK, cert2spc, to convert the certificate file into 
a valid certificate:

cert2spc JamJar.cert JamJar.cert

Step 2: Creating and Signing the CAB
Cabinet files are potentially much more complex than JARs, but for our 
purposes we can create a simple one using the cabarc tool:

cabarc N jamjar.cab GetFileMS.class

This creates a CAB file called jamjar.cab with just one file, our applet, 
in it. To sign this as a Java archive we use the signcode tool, again 
from SDK for Java. At this point we must decide what level of security 
the applet will ask for – low, medium or high. The rule is that if we ask 
for a lower level of security than the browser is configured to give us, 
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the user will receive a prompt asking if the action should be allowed. 
So if we ask for a level of "medium" and the browser has the default 
configuration, the user will be prompted when our applet comes from 
an internet URL, but not when it comes from the intranet.

The command to perform the signature is:

signcode -j JavaSign.dll -jp medium -spc jamjar.cert -k jamjarkey 

jamjar.cab

Step 3: Using the CAB in a Web Page
The format for coding an APPLET tag using a CAB archive is different 
from the JAR version. This is the tag for our example:

<APPLET CODE=GetFileMS.class  WIDTH=350 HEIGHT=200>

<PARAM NAME="cabbase" VALUE="jamjar.cab">

<PARAM NAME=FileToTry VALUE="C:\Temp\thingy">

</APPLET> 

Now we can try the applet. When we first select the URL from Internet 
Explorer the popup dialog in Figure 36 on page 144 appears. The 
security level we requested matches the level of the zone, so why 
does this happen? The reason is that Internet Explorer is warning us 
that the JamJar Software Co may not be trustworthy, because it does 
not own a valid software developer’s certificate. Throwing caution to 
the winds we click on Yes and the applet runs as intended (Figure 35).

Figure 35.  Our Signed Applet Can Read a File
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Figure 36.  Warning from Internet Explorer

9.5.1.2  A More Complex Signed CAB Example
Not content with creating a method for delivering signed applets and 
requesting permissions, Microsoft has also produced classes that 
allow an applet to store and recover data from a limited disk cache on 
the browser. The rationale behind this is that for many developers the 
really irksome restriction imposed by the sandbox is the inability to 
store local configuration and state information. 

The data caching function is in a class package called 
com.ms.io.clientstorage. The code snippet in Figure 37 is an example 
from an applet that uses the package to write information into a file 
and then reads it.
144 Java Network Security



  
Figure 37.  Section of Applet Using Client Storage Classes

We could place this applet in a signed CAB in the same way as the last 
example. However, when that applet loaded it told the user that we 
wanted a lot of permissions that, in fact, we did not (see Figure 36 on 
page 144). This is because we specified a security level of "medium" 
in the signcode command. It would be friendlier if we could just ask 
for the things we really need.

 public void run() {
    String line ;
    ClientStore harrods ;

    try {
harrods = ClientStorageManager.getStore() ;

       PrintWriter pw = new PrintWriter(harrods.openWritable("preserve.log", 
ClientStore.OPEN_FL_APPEND)) ;

pw.println("JamJar was here! " + new Date().toString()) ;
pw.close() ;

    }
    catch (IOException e) { yikes(e, "Could not create or update our file"); }

    try {
        harrods = ClientStorageManager.getStore() ;

BufferedReader br = new BufferedReader(new 
InputStreamReader(harrods.openReadable("preserve.log"))) ;

ta.appendText("This is the contents of clientstore file preserve.log:\n") ;
        while ((line = br.readLine()) != null) {

ta.appendText(line + "\n");
        }

br.close() ;
    }
    catch (IOException e) { yikes(e, "Could not read our file"); }
}

public void yikes( Exception e, String msg) {
    ta.appendText(msg + ": " + e.toString()) ;
    System.exit(1) ;

}

First get access to the client store.

Open a "file" in the client 
store and update it.

The store is persistent, so we can 
read it later, but the maximum size 
of the store allocated to a given 
code signer is fixed, so the applet 
cannot fill the hard disk.
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The way to do this is to create an .INI file specifying the requested 
permissions and then feed it to signcode. Figure 38 shows the file we 
used.

Figure 38.  JamJar.ini Requests Permission for Client Storage and Threads

The thread permissions are needed to run a multi-threaded applet. 

The results of running this applet from a signed CAB are shown below.

Figure 39.  This Time the Warning Is More Reasonable

[com.ms.security.permissions.ClientStoragePermission]
; Limit is in bytes
Limit=100000
RoamingFiles=true
GlobalExempt=true
;
; ThreadPermission
;
[com.ms.security.permissions.ThreadPermission]
AllThreadGroups=true
AllThreads=true
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Figure 40.  The Applet Keeps Persistent Data on the Browser Disk

9.6  Future Developments

In this chapter we have seen examples of four different approaches to 
the use of digital signatures for authenticating applet code and 
relaxing the constraints of the sandbox. The first, using the basic JDK 
1.1 tools, is the first, unsophisticated foray into this area, but JDK 1.2 
promises to fill in the missing function and set a standard for applet 
signing. The Netscape and Microsoft approaches are, as you would 
expect, strongly browser-centric. They both seek to reduce the impact 
of cryptography on the end user, not only for Java but also for other 
active Web content.

Table 8 summarizes the differences between the approaches.

Table 8.  Comparison of JavaSoft, Netscape and Microsoft Signed Applet Support

Function JDK Netscape Microsoft

Delivery 
mechanism

Signed JARs Signed JARs Signed CABs

Signing Command-line tools 
shipped with JDK

Downloadable toolkit, both 
command-line and GUI 
versions

Downloadable toolkit, 
command-line tools.
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Clearly, there are some basic incompatibilities between the different 
mechanisms. This is not to say that the development of competing 
extensions to the security framework is a bad thing; just that there 
should be a base level of function at which they should all 
interoperate. 

It may be that by the time you read this book, the differences 
described above will have been resolved by the vendors and a 
common base will have emerged. We hope so. One thing that is clear 
from the discussion is that any solution cannot simply concentrate on 
the mechanics of code-signing and requests for privileges. The 
problems of the end user are equally important. Solutions must answer 
questions like: how to tell the user, in a clear way, the permissions an 
applet requires, and how to install and maintain certificates for signers 
and CAs.

Certificate 
handling

Facilities for self-signed 
root certificate. JDK 1.2 to 
provide more robust 
solution.

Uses the standard key and 
certificate management 
capabilities of Netscape 
Communicator. Well 
documented mechanism for 
installing trusted roots and 
personal keys.

Uses command-line tools 
for signer key creation and 
certificate requests. 
Standard key and certificate 
management capabilities of 
Internet Explorer for client 
side. Mechanism for 
updating trusted roots not 
openly documented.

Request for 
privileges

By exception. Applet 
attempts privileged action 
and an exception is thrown 
if it is not permitted.

Programmer defines the 
privileges required by 
calling PrivilegeManager 
methods. 

Code signer defines the 
privileges required as part 
of CAB signature.

Configuration 
of permissions 
granted

Browser configuration file 
maps code origin (URL plus 
signer) to privileges.

User prompted the first time 
privileges are requested. 
Granted permissions can 
be perpetual or per session.

Basic security zone (low, 
medium, high) preset by 
user. More complex 
permission scheme can be 
defined by administrator.

Function JDK Netscape Microsoft
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Chapter 10.  Application Architectures

The first two parts of this book have described the security issues in 
running Java programs on a single workstation, usually your PC. But 
that is only one application area for Java. Java can also be used on a 
Web server, or any other networked server, in a full-scale client/server 
approach. In the introduction we stated that security must be holistic, 
as attackers will concentrate on the weakest links. This applies even 
more forcefully when many computer systems are connected through 
a network, as there are more possible points to attack.

This chapter describes a number of different architectural approaches, 
illustrated with real examples that are in use today. We consider the 
security implications of these approaches. 

Firewalls are often touted as a defense against network attacks. 
Chapter 11, “Firewalls: In and Out of the Net” on page 169 describes 
how firewalls work, and what the implications are, to both simple users 
of Web browsers and to Java application designers.

Cryptography is another valuable tool to provide integrity, 
confidentiality and authentication between distributed systems. We 
conclude by examining uses of cryptography to provide security to 
real-world applications.

10.1  Browser Add-on Applets

Perhaps the simplest use of a Java application is the browser add-on 
applet, to extend the facilities provided by a Web browser. This may be 
to enhance the user interface, by adding extra interactivity such as 
context-sensitive help or local search functions. Or it may be to handle 
additional data types such as compressed astronomical images or 
packed database records. These examples all depend directly upon 
the Java security architecture already described, where the security 
manager and sandbox prevent undesirable access. And because they 
read data only from the server, if at all, there are no wider security 
issues.
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10.2  Networked Architectures

The next level of complexity is seen in network-aware applets, which 
perform more network operations than simply reading data. Terminal 
emulators fall into this category. These applets provide the functions of 
a "dumb terminal" or VDU (Visual Display Unit), connected via a LAN 
to a host system, where the applications are run. An example is IBM’s 
Host On Demand, which emulates a 3270 mainframe display session, 
communicating with a mainframe over TCP/IP (see Figure 41).

Figure 41.  Host On Demand

When run as an applet, such programs are subject to the restrictions 
on the Java security manager; in particular, they may only open a 
network connection back to the system from which they were 
downloaded. However, terminal emulation programs usually wish to 
communicate with many different host systems, not just one. If the 
host is a large mainframe, crucial to business, its owners may be 
reluctant to install the TCP/IP software, preferring to remain with SNA 
(System Network Architecture) LANs. And even on other host 
systems, it might not be desirable to install, configure, run and 
maintain a Web server just to download the JAVA emulator applet, and 
this approach would still restrict access to that single host.

10.2.1  Two-Tier Architecture
One possibility would be to run the Java emulator as a stand-alone 
application, so relaxing the restrictions on which hosts the emulator 
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may connect to. This is the classic "two-tier client/server" application 
architecture. The security issues are then very similar to running any 
other executable program, namely that it is wise to use trusted sources 
of supply only. Java has some safety and security advantages over 
other binary programs like .EXE files, and digitally-signed applets can 
provide a cryptographic guarantee that the code author is who they 
say they are. It would be possible to create a Java security manager 
that restricts the functions that the application is allowed to use, but 
this is not a solution of the non-programming user.

10.2.2  Three-Tier Architecture
The easiest solution is to run gateway software on the Web server 
which holds the Java applet. The applet will communicate over TCP/IP 
with the gateway software, which can then pass through the messages 
to the ultimate destination. In the case of 3270 terminal emulation, 
IBM’s Communications Server (running on several operating systems) 
will provide the TCP/IP connection to the Java emulator, and can 
connect to hosts over both TCP/IP and SNA. This is then a "three-tier 
client/server" application.

Figure 42.  Three-Tier Example

Another approach is to use Web server Common Gateway Interface 
(CGI) programs to provide the middle tier. The IBM CICS Internet 
Gateway takes this approach. To the application server it emulates the 

Browser
3270
Terminal
Emulator

HTTP
Server

Communications
Server

Application

SNA

2-way Communications

TN3270

Applet download

HTTP

S/390 MainframeGateway Server 
Application Architectures 153



functions of a 3270 terminal, but downstream it generates HTML code 
which is displayed in the Web browser window.

Figure 43.  CICS Internet Gateway Example

This avoids using Java altogether in the client. It doesn’t provide as 
much flexibility, as the display is restricted to what can be done in 
HTML. But it may be a simpler solution to the problem. Just because 
you happen to have a Java-shaped hammer doesn’t mean that all 
solutions must be Java-shaped nails!

The gateway server approach can also be used to provide extended 
facilities to Java applets. The IBM CICS Gateway for Java is a good 
example of this; it allows a Java applet to access transaction 
processing capabilities of CICS servers running on a variety of server 
platforms. This provides a class library package to access CICS 
functions. The class library itself does not perform the bulk of the 
functions; instead, it transmits the request to the gateway server, and 
returns the server’s response to the applet. The gateway server is a 
small program that receives the requests and calls the real CICS client 
library, which communicates with the CICS system itself. It would be 
common to run the CICS transaction processing engine on its own 
system, separate from the Web server (see Figure 44).
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Figure 44.  CICS Gateway for Java Example

The security analysis for this type of system is more complex. We wish 
to ensure the security of the gateway system as well as the systems 
with which it connects, especially if the server is on the public Internet, 
where any malicious hacker may attempt to access it. Intranet systems 
should already have some defenses in place to restrict access to 
company personnel, but security is still of concern, especially where 
sensitive data is at risk.

Figure 45.  Adding Firewalls to the Mix
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The normal approach is to provide a number of barriers which must be 
overcome before data access is granted. Often the first barrier is the 
company firewall system (see Chapter 11, “Firewalls: In and Out of the 
Net” on page 169 for more on firewalls). Firewalls can check that 
requests are coming from, and going to, apparently valid addresses; 
some firewalls will check the data content of selected protocols, but 
there are limits to what can be checked. There have been several 
embarrassingly public demonstrations of Web servers whose content 
has been replaced by derogatory pages, despite firewalls being in 
place. Often these hacks have succeeded because valid HTTP URL 
requests to the Web server allowed software to be run on the server 
which had an accidental "security hole" in it, such as allowing any data 
file to be read or written, or even executing arbitrary binary code 
supplied as part of the URL.

So it is necessary to secure the Web server against as many possible 
hazards as possible, and also to try to ensure that when (not if!) it is 
compromised, the attacker still does not have access to critical data.

Hardening Web servers against attack has been the subject of several 
books, such as Practical Unix and Internet Security by Simson 
Garfinkel and Gene Spafford, so only a brief checklist will be given 
here:

1. Disable all network services that do not need to be present; if 
possible only allow HTTP and the gateway protocol.

2. Check the Web server configuration files, to only allow access to 
the required set of pages.

3. Delete any cgi-bin and other executable programs that are not 
required; if they are not present, they cannot be run!

4. Restrict the privileges of the Web server program, if possible. UNIX 
allows it to be run as a normal user, with few access rights.

These guidelines also apply to any gateway software being run. Try to 
ensure it does not provide access to more facilities than needed. In 
particular, don't depend on the client to validate any requests, but 
assume that a hacker might have constructed a modified client which 
can generate any possible request. For example, for a 3270 gateway, 
don't assume that the client will only request connection to a limited 
set of hosts, but configure the gateway so that those are the only hosts 
that can be connected to, and that no other host names can be even 
made visible. For database access and transaction processing, make 
sure the gateway allows no more than the set of permitted requests.
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10.2.3  Network Security
The classic three-tier architecture pictures can hide other attack 
routes. The diagram implies that there are separate connections 
between the client and the Web server/gateway, and the gateway and 
the end server. But maybe the real network is not configured that way. 
For simplicity or cost, there might be only a single network interface on 
the Web server, so that in reality the third tier server is on the same 
network, and can potentially be accessed directly from the firewall 
(Figure 46).

Figure 46.  Web Server with One Network Interface

Now maybe the firewall is configured correctly, and will prevent direct 
access to the end server. But will this be true tomorrow, after additional 
services have been added? For very little extra cost, the networks can 
be physically separated by providing two network interfaces in the 
Web server.

(Make sure the cables are well labelled; we have heard of a firewall 
being bypassed when someone tripped over the cables, and plugged 
them back the wrong way round!)
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Figure 47.  Separating the Third Tier

Or, a second firewall system can be used, which has the benefit that 
even if the Web server is compromised, the second firewall still 
restricts access to the rest of the network. It is more expensive to 
provide such a "De-militarized zone" (DMZ), though you may require 
such a configuration in any case, to provide safe Internet connection, 
in which case there is no extra cost. The cost of a second firewall is 
likely to be less than the value of the data it protects, so you need to 
do your own value calculations (this is the configuration shown in 
Figure 45 on page 155).

One additional security barrier to consider using is the type of network 
itself. You could link the gateway and end server using SNA protocols, 
or by a small custom-built program communicating over a dedicated 
serial link (Figure 48 on page 159). These effectively use the network 
connection as another firewall; if TCP/IP cannot travel over it, many 
possible hacking techniques are simply not possible. Don’t forget, 
though, that if the Web server is totally compromised, the hacker has 
all your communications software at their disposal, if they can discover 
it, so you still should guard the third-tier server.
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Figure 48.  Protection Using Mixed Connection Protocols

10.3  Secure Clients and Network Computers

If you have great concern about what damage an applet may cause on 
your client, whether by malicious design or by programming accident, 
you may wish to consider the Network Computer approach. Many 
types of Network Computers (NCs) are now available on the market, 
with varying feature sets. Some are little different from ordinary 
Personal Computers, though they may have sealed cases to prevent 
expansion. Some may be intended for domestic use, and connect to a 
television set and a telephone line, for home Web browsing.

But the type we consider here are the diskless clients, such as the IBM 
Network Station. This is a small book-sized processor unit, without any 
local disk, which connects to a local area network (LAN). It has a 
display, keyboard and mouse. When switched on, it downloads its 
kernel software from a server on the LAN, and then downloads 
applications such as a Web browser and terminal emulator. These 
allow it to run applications on one or more remote servers. The IBM 
Network Station can also download and run Java programs locally, in 
fact Java is the only published API for running local programs.
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In a secure environment, this has some advantages. There is no local 
disk storage at the Network Station, so there is little chance of 
permanent data corruption from malicious or misbehaving software. 
Although Java programs are not the only things that can run on the NS 
(it also supports terminal emulation, X-Windows and remote Windows 
access) there is no capability for integration between the different 
application types. This means that the Java security restrictions 
cannot be easily bypassed. All disk storage is held on the servers, 
allowing a fully managed backup service to be provided. Software 
updates are performed centrally, reducing administration workload. 

For these reasons alone, Network Computers have a great potential in 
providing universal access to applications and data, with Java as a key 
technology. The main impetus behind the Network Computer is usually 
the potential for large cost savings. But in the appropriate application 
areas, the cost savings may be much less important than the other 
advantages listed above.

10.4  Server-Side Java

We’ve described the use of Java at the client in these distributed 
architectures, but what about using Java elsewhere? This can fulfill 
the goal of "write once, run anywhere" with a vengeance! It can greatly 
simplify the work of software developers, especially of distributed 
architectures. It might be possible to argue that the majority of client 
systems will be a PC running some flavor of Microsoft Windows, so 
that you can satisfy most people most of the time by only developing a 
Windows version of your code. But this is not true for servers; the 
majority of the world’s crucial business data is kept on mainframe and 
UNIX servers. So if you develop the server side of your distributed 
application in Java, it will be capable of being run on almost any of 
these servers, whether they run MVS,VM, OS/390, Windows NT, 
OS/2, OS/400 or one of the many flavors of UNIX.

At the other end of the spectrum, the server-side Java might be 
running in an intelligent peripheral device, such as a printer, modem 
rack, photocopier or coffee vending machine. At the time of writing, 
these applications are just in the future, though Web browser 
interfaces for device configuration are becoming more common. But 
clearly there are immense opportunities to reduce development costs, 
providing there is agreement on common standards of Java classes. 
There are also clear security implications; imagine the effect of 
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re-programming a rival company’s vending machine if you managed to 
break the access codes!

In many ways, Java is an ideal environment for server applications. 
The multi-threaded environment is ideally suited for supporting 
simultaneous requests to a server. Even the standard classes are 
simplified, as many server programs are unlikely to need the java.awt 
windowing classes as well as several others, which is where most 
cross-platform problems have arisen to date (especially prior to JDK 
1.1).

As an example, the gateway component of the CICS Java gateway 
could be written in Java, so it could be run on any Web server system 
without the need for extensive cross-platform porting and testing.

10.4.1  The Cost of Server-Side Java
But what is the cost of this portability? In the case of server-side Java, 
when Java is used as a program development language,  the potential 
risk is reduced execution performance. This is not always a problem; 
the next section on Servlets shows how Java can sometimes enhance 
server performance.

Performance is more important for a server than a client, as the server 
needs to handle many simultaneous users. Just-in-time compilers may 
help somewhat, but the real solution is to use true Java compilers, at 
least until processors executing Java bytecode become commonplace. 
But doesn’t this defeat the "write once run anywhere" approach? Not 
entirely, as vendors can still supply system-independent code, which 
gets compiled once during the installation process.

True compilers can take two different approaches. The first is to treat 
Java as just another programming language, and compile Java source 
into native object code for a given machine. This would imply that 
software would need to be supplied in source form, which would be 
less attractive to many developers, although it could be passed 
through an obfuscating program, to remove meaningful identifiers, etc.

The second approach, which is likely to be more promising, is to 
compile Java bytecode, rather than source code, into native object 
code. This allows the compiler to be run on all the wealth of Java 
bytecode that is available, not just that supplied by server developers. 
And since Java bytecode is closely related to source code under 
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normal circumstances, some Java true compilers may provide both 
options and accept source or bytecode input.

10.4.2  Servlets
Java is not only used to develop stand-alone programs. In our 
Web-based world, many of the servers run an HTTP Web server. The 
traditional approach to add customized function to a Web server has 
been to write Common Gateway Interface (CGI) programs (often 
termed "cgi-bin" programs after the directory name where they are 
conventionally stored). 

These CGI programs are stand-alone programs which are called by 
the HTTP server, when it receives requests for specific pages. Rather 
than return static HTML text, the HTTP server starts the CGI program, 
and passes it the user’s request, together with many details about the 
server environment. The CGI program must handle the request, and 
return HTML text to the HTTP server, which in turn returns it to the 
user:

Starting execution of any program, not just a CGI program, can be a 
lengthy process. Memory needs to be allocated, the program code 
needs to be read from disk into memory, references to dynamic 
libraries need to be linked, standard input and output streams need to 
be created and connected, and finally the program needs to do the 
processing required. 

In a very simple HTTP Web server, multi-threading may not be 
implemented, which means that no other HTTP requests could be 
served until the CGI program returns, possibly after many seconds. 
Most modern HTTP servers support multi-threading (on appropriate 
operating systems), so this is less of an issue. But there are still limits 
to the number of process threads that can be created, as the individual 
threads still need to wait for the CGI program to complete.

Browser HTTP Request

HTMLHTML

CGI

HTTP
Server

CGI
Program
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CGI programs are also the target of hackers; many of the successful 
attacks on Web servers have been through poorly tested CGI 
programs, which may fail to test the parameters passed to them, or 
may overflow input buffers when passed overlong data.

Other alternatives to CGI have been implemented, such as NSAPI 
from Netscape, MSAPI from Microsoft, or ICAPI from IBM. These 
permit native software routines to be directly called by the Web server, 
significantly reducing the startup overhead. But the add-on routines 
still need to be compiled for each platform, and the different 
programming interfaces may not be fully compatible, restricting the 
choice of Web server to a particular manufacturer (although ICAPI, for 
example, has been designed to include the NSAPI calls). Program 
testing is even more important, to prevent badly written software from 
corrupting the Web server itself.

Java can be employed to overcome these issues. A "servlet" is a small 
Java program called by the HTTP server. A JVM is started by the 
HTTP Web server, and when a request is received it is passed to the 
servlet object. The servlet must generate the HTML reply, and return it 
to the HTTP server.

Since the servlet is run from the server, there is no overhead in 
starting a new process, only that of creating a new Java thread. The 
built-in safety features of Java will prevent many types of attacks, such 
as buffer overruns, from taking place. And the Java servlet code is 
portable to other Web servers and systems. Performance of Java 
servlets is significantly greater than CGI programs, especially if the 
CGI programs are written in an interpreted language like Perl.

It is still necessary for servlets to perform some security checking; they 
need to check their input to ensure they cannot be tricked into 
returning more information than intended. As they are granted similar 
privileges to the HTTP server itself, it may be possible for a servlet to 
read from, or even write to, the HTTP server configuration or log files. 
Correct programming should prevent this. But deliberate corruption 
attacks which attempt to overwrite buffers or the program stack should 
not be possible, due to the built-in safety features of the Java 
language and the JVM.
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10.5  Distributed Object Architectures - RMI

CGI uses a transaction model: the client issues a transaction request 
and then waits until the server returns the results. Distributed object 
architectures are a more elegant approach. Effectively, the "object 
space" that an applet or application is working with is extended to 
include objects on different systems. Client-side Java and server-side 
Java can be combined to create a full distributed architecture, where 
functions can be split between the client and server to optimize 
processing and network loads.

Apart from getting object-oriented purists excited, distributed object 
architectures have a number of advantages over more conventional 
transactional systems, including security advantages. For example, 
you can design systems in which mission-critical objects may be kept 
safe behind a firewall with access allowed only via method calls from 
clients. This is far safer than shipping data out of the organization to 
multiple clients who may simultaneously make changes. 

Java JDK 1.1 has provided a tool kit to aid the creation of distributed 
architectures, the Remote Method Invocation (RMI). This extends the 
Java object model to the network, by allowing objects in one Java 
virtual machine to invoke methods seamlessly on objects in another, 
remote, virtual machine. The remote virtual machine can, in turn, 
invoke other remote objects.

With RMI, an object, B, residing on one machine (the server) may be 
manipulated by another object, A, on a remote machine (the client).  
Object B doesn’t really exist on the client, rather an alternative object 
is used as a kind of "stunt-double." This stub- or proxy-object  provides 
the same interface as the real object B, but under the covers it uses 
the RMI services to pass method requests over the network to the real 
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object B.  Object A therefore doesn’t need to know whether object B is 
local or remote.

Figure 49.  Invoking a Method with RMI

If another object, C, needs to be passed between the client and the 
server – for instance as a parameter for a method – RMI uses a 
technique called object serialization to "flatten" the object, turning it 
into a stream of bytes. These are sent to the RMI system on the 
remote machine, which rebuilds the object C and passes it into the 
method call.  Return values from methods are handled in the same 
way.

A simple naming service, the RMI Registry, is provided to connect 
clients and servers together using a URL-style of names, such as 
rmi://host.port/name. A client asks for the remote objects, and the 
remote server returns the stub object to the client. Developers use the 
rmic compiler to generate the matching stub and skeleton classes for a 
remote object.

This means it becomes possible to write distributed applications, with 
little need to be aware of exactly where the software will be executed. 
A RemoteException may be thrown on error conditions, but apart from 
that, the program need not be aware that portions are executing 
remotely. 
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10.5.1  The Security of RMI
RMI appears to be a straightforward way of creating a distributed 
application. But there are a number of security issues:

  • RMI has a simple approach to creating the connection between the 
client and server. Objects are serialized and transmitted over the 
network. They are not encrypted, so anyone on the network could 
read all the data being transferred.

  • There is no authentication; a client just requests an object (stub), 
and the server supplies it. Subsequent communication is assumed 
to be from the same client. This negates one of the security 
advantages of distributed objects: the ability to hide the real object 
away and only allow client access through specific, well-defined 
methods. Key to this is that the clients are authenticated before 
being allowed to manipulate objects which is why the weak 
authentication services in RMI are dangerous.

  • There is no access control to the objects.

  • There are no security checks on the registry itself; it assumes any 
caller is allowed to make requests.

  • Objects are not persistent; the references are only valid during the 
lifetime of the process which created the remote object.

  • Stubs are assumed to be matched to skeletons; however, programs 
could be constructed to simulate the RMI network calls, while 
allowing any data to be placed in the requests.

  • Network and server errors will generate exceptions, so applications 
must be prepared to handle these.

  • There is no version control between stubs and skeletons; thus, it is 
possible that a client may use a down-level stub to access a more 
recent skeleton, breaking release-to-release binary compatibility.

The class loading mechanism also has to be extended to cater for RMI 
remote classes. When the RMIClassLoader is invoked, it attempts to 
load classes over the network. A security manager must be defined; 
otherwise, this would cause an exception. Programmers can write their 
own security manager, or can use the restrictive RMISecurityManager. 
This disables all functions except class definition and access. If used, 
it will also be invoked to subsequently load any local classes. If you 
require a different (more or less restrictive) security policy, you will 
need to create your own security manager instead.
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If the client and server are connected through one or more firewalls, 
there are additional issues to be considered. These are covered in 
“Java Network Connections through the Firewall” on page 189. 

Our conclusions are that you should only use RMI in pure intranet 
configurations, or for applications where it cannot usefully be attacked. 
An inter-company chat system may be a reasonable use of RMI, but 
designing remote objects to represent customer bank accounts would 
be asking for bankruptcy! Closely coupled internal systems might use 
RMI, if the appropriate access controls were put in place by network 
and firewall design. But the lack of authentication and access control 
in the raw RMI must limit the wider use in secure applications.

If you need to create a distributed secure application, you need to 
investigate alternatives to RMI. The CORBA (Common Object Request 
Broker Association) implementations available today provide 
heavier-weight remote execution methods, and other suppliers can 
provide alternatives to RMI. Plans are being made to extend JDK 1.2 
to include some of these alternative remote execution systems.
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Chapter 11.  Firewalls: In and Out of the Net

In this chapter, we consider how Java security can be affected when 
firewall systems are used on the network. 

11.1  What Is a Firewall?

By "firewall", we mean any computer system, network hardware or 
combination of them that links two or more networks, and enforces 
some access control policy between them. Thus one side of the 
network is protected from any dangers in the other part of the network, 
in an analogous way to the solid firewalls in buildings, which prevent a 
fire spreading from one part of the building to another.

Figure 50.  A Firewall

Until recent years, very few organizations thought seriously about the 
need for firewalls, despite the efforts of firewall vendors. Some well-
publicized security breaches, when the content of several public web 
sites were vandalized, proved to be an ideal marketing opportunity. 
Almost any type of access control system was called a "firewall." The 
National Computer Security Association (NCSA) has subsequently 
created standard tests to enforce minimum standards for a firewall, but 
that has not stopped some vendors from using the term creatively.

"Moreover they that work in fine flax, and they that weave networks, 
shall be confounded." 

Isaiah 19:9

Firewall

Secure Network Non-Secure Network
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To add to the complexity, sometimes a single hardware system is 
called a firewall, while other times a complex collection of multiple 
routers and servers implement the firewall function. But we only need 
to be concerned with the policies enforced by the firewall, and what 
the effect is on the data traffic.

11.2  What Does a Firewall Do?

Firewalls can have an effect on any type of network traffic, depending 
on their configuration. The areas we are especially concerned with are 
the loading of Java applets to a client from a server, and network 
accesses by Java applets to a server. Firewalls may be present at the 
client network, the server network, or both. In order to understand the 
implications, we shall need to understand the basic functions provided 
by a firewall.

If you have seen any literature on firewalls, you will be well aware that 
there are many buzzwords used by firewall specialists, to describe the  
different software techniques that can be used to create them. Current 
techniques include packet filtering, application gateways, proxy 
servers, dynamic filters, bastion hosts, demilitarized zones, and dual-
homed gateways. Luckily, for the purpose of this book, we can ignore 
the details of the software technologies, and simply concentrate on 
what a firewall does with data packets flowing "through" it. 

There are several other functions of firewalls which have no real affect 
on Java security; for example, logging, reporting and management 
functions  will be required, and these may themselves be written in 
Java. As an  example, the IBM Firewall has a graphical user interface 
using Java. 

The basic security functions of any firewall are to examine data 
packets sent "through" the firewall, and to accept, reject or modify the 
packets according to the security policy requirements. Most of today’s 
firewalls only work with TCP/IP data, so it is worth seeing what is 
inside a TCP/IP data packet, in order to understand the firewall’s 
actions.

11.2.1  Inside a TCP/IP Packet
All network traffic exchange is performed by sending blocks of data 
between two connected systems. The blocks of data will be 
encapsulated within a data packet, by adding header fields to control 
what happens to the data block en route and when it reaches its final 
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destination. Network architectures are constructed of layers of 
function, each built on the services of the layer beneath it. The most 
thorough layered architecture is the Open Systems Interconnection 
(OSI) model, whereas other architectures, such as TCP/IP use 
broader layer definitions. On the wire, these layers are translated into 
a series of headers prepended to the data being sent (see Figure 51).

Figure 51.  Mapping the Layered Network Model to Packet Headers

The first part of the header, the Data Link/Physical header, is 
determined by the type of network. Ethernet, token-ring, serial lines, 
FDDI, and so on, each have their own headers, containing 
synchronization, start-of-packet identifiers, access control, and 
physical (MAC) addresses as required by the network type. There may 
be fields to distinguish Internet Protocol (IP) packets from other types 
of packets, such as NetBIOS or SNA. We only need to consider IP 
packets here.

The next part of the header of IP packets is the standard Internet 
Protocol header, which specifies the originator (source) address and 
the intended recipient (destination) address, together with fields to 
control how the packet is forwarded through the Internet.  There are 
two main types of IP headers:  the common IPv4 standard, and the 
new IPv6 standard, which is intended to replace IPv4.

This is followed by the transport layer header, which controls what 
happens to the packet when it reaches its destination. Almost all the 
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user-level protocols commonly referred to as "TCP/IP"  use either a 
TCP (Transmission Control Protocol) or a UDP (User Datagram 
Protocol) header at the transport layer. 

Finally, application protocol headers and data are contained in the 
payload portion of the packet, and are passed from the sending 
process to the receiving process.

Each of these packet headers contain a number of data fields, which 
may be examined by a firewall, and used to decide whether to accept 
or reject the data packet. 

Each header has a number of data fields. For current purposes, the 
most important ones are:

Source IP address a 32-bit address (IPv4) or a 128-bit 
address (IPv6) 

Destination IP address a 32-bit address (IPv4) or a 128-bit 
address (IPv6) 

Source port number a 16-bit value 

Destination port number a 16-bit value

The source and destination IP addresses identify the machines at 
each end of the connection, and are used by intermediate machines to 
route the packet through the network. Strictly speaking, an IP address 
identifies a physical or logical network interface on the machine, which 
allows a single  machine to have several IP addresses.

The source and destination port numbers are used by the TCP/IP 
networking software at each end, to send the packets to the 
appropriate program running on the machines. Standard port numbers 
are defined for the common network services; for example, an FTP 
server expects to receive TCP requests addressed to port 21, and an 
HTTP Web server expects to receive TCP requests to port 80. 

However, non-standard ports may be used. It is quite possible to put a 
Web server on port 21, and access it with an URL of http://server:21/. 
Because of this possibility, some firewall systems will examine the 
inside details of the protocol data, not just headers, to ensure that only 
valid data can flow through.

As an elementary security precaution, port numbers less than 1024 
are "privileged" ports. On some systems, such as UNIX, programs are 
prevented from listening to these ports, unless they have the 
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appropriate privileges. On less secure operating systems, a program 
can listen on any port, although it may require extra code to be written. 
HTTP Web servers, in particular, are often run on non-standard ports 
such as 8000 or 8080 to avoid using the privileged standard port 80.

The non-privileged ports of 1024 and above can be used by any 
program; when a connection is created, a free port number will be 
allocated to the program. For example, a Web browser opening a 
connection to a web server might be allocated port 1044 to 
communicate with server port 80. But what happens, you may ask, if a 
Web browser from another client also gets allocated port 1044? The 
two connections are distinguished by looking at all four values (source 
IP address, source port, destination IP address, destination port), as 
this group of values is guaranteed to be unique by the TCP standards.

11.2.2  How Can Programs Communicate through a Firewall?
Simple packet-filtering firewalls use the source and destination IP  
addresses and ports to determine whether packets may pass through 
the  firewall. Packets going to a Web server on destination port 80, and 
the  replies on source port 80, may be permitted, while packets to 
other port numbers might be rejected by the firewall. This may be 
allowed in one direction only and it may be further restricted by only 
allowing packets to and from a particular group of Web servers (see 
Figure 52).

Figure 52.  Asymmetric Firewall Behavior

Internet

Request for
HTTP session
(tcp/80)

Request for
HTTP session
(tcp/80)

Firewall

requests

responses
 173



 

There may be more than one firewall through which data needs to 
pass. Users in a corporate network will often have a firewall between 
them and the Internet, in order to protect the entire corporate network. 
And at the other end of the connection, the remote server will often 
have a  firewall to protect it and its networks.

These firewalls may enforce different rules on what types of data are  
allowed to flow through, which can have consequences for Java (or 
any other) programs. It is not uncommon to find Java-enabled Web 
pages that work over a home Internet connection, simply fail to run on 
a corporate network.

There are two problem areas: can the Java program be downloaded 
from a remote server, and can it create the network connections that it 
requires?

The HTTP protocol is normally used for downloading. In order to 
understand the restrictions that firewalls put on HTTP, especially with 
regard to proxy servers and SOCKS servers (discussed in “Proxy 
Servers and SOCKS” on page 181), we describe this protocol in detail 
in the next section.

11.3  Detailed Example of TCP/IP Protocol

Let us consider the simple case of a browser requesting a Web page 
using HTTP. There are two steps to this: first the browser must 
translate a host name (for example, www.ibm.com) into its IP address 
(204.146.17.33 in this case). The normal way to do this in the Internet 
is to use the domain name service (DNS). The second step is when 
the browser sends the HTTP request and receives a page of HTML in 
response. 
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11.3.1  DNS Flow (UDP Example)
DNS uses the UDP protocol at the transport layer, sending application 
data to the Domain Name Service (udp/53) port of a nameserver. The 
packet header for UDP is shown in Figure 53)

Figure 53.  IP V4 and UDP Headers

If the newer IPv6 is used, the header is simpler, but with 128-bit long 
addresses, instead of 32-bit.

Now for the actual DNS request. It is a simple request and response 
sequence (see  Figure 54 and Figure 55).

Figure 54.  Client Requests Name Resolution

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

VERS=4 HLEN Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

20
bytes

IP Options (if any) ... Padding (if needed)

IP

8
bytes

UDP
Source Port Destination Port

Length Checksum

Data Bytes (packet payload)

Client Server Packet 1, length 57 bytes 

UDP

IP Source address 10.1.1.1 (client) 
Destination address 10.1.1.5 (server)

Data

Source port 1048 (dynamically assigned)
Destination port 53 (DNS well-known port)

DNS question:
www.ibm.com, type=A, class=IN

(Browser) (DNS Server)
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Figure 55.  DNS Name Resolution Response

11.3.2  HTTP Flow (TCP Example)
Now the client can request the URL of 
http://www.ibm.com/example1.html, because it knows the real IP 
address of www.ibm.com (204.146.17.33). Requests such as this use 
TCP at the transport layer, to carry the HTTP application data. HTTP  
is a very simple protocol, where the client requests a particular item of 
data from the server, and the server returns the item, preceded by a 
short descriptive header. 

TCP headers are similar to UDP, but have more control fields to 
provide a guaranteed1 delivery service:

1. In this context, "guaranteed" means that the data will be delivered, or an error will be returned (eventually). 
With UDP, in comparison, data may be discarded without warning.

Packet 2, length 73 bytes 

UDP

IP Source address 10.1.1.5  
Destination address 10.1.1.1 

Data DNS Question: 
www.ibm.com, type=A, class=IN
DNS Answers: 
www.ibm.com  internet 
address=204.146.17.33

Source port 53
Destination port 1048

Client Server 
(Browser) (DNS Server)
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Figure 56.  IP V4 and TCP Packet Headers

TCP using IPv6 is similar, with an IPv6 header followed by a TCP 
header.

The following data packets are sent:

Figure 57.  Web Page Request (1 of 4)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

VERS=4 HLEN Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

20
bytes

IP Options (if any) ... Padding (if needed)

IP

20
bytes

TCP
Source Port Destination Port

Data Bytes (packet payload)

Sequence Number

Acknowledgment Number

Data Reserved U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

offset

Checksum Urgent Pointer

TCP Options (if any) ... Padding (if needed)

Client Server Packet 1, length 44 bytes 

TCP

IP Source address 10.1.1.1 (client) 
Destination address 204.146.17.33 (server)

Data

Source port 1044 (dynamically assigned)
Destination port 80 (WWW well-known port)
Flags: SYN
Options: Set maximum segment size to 1452 bytes

(None)

(Browser) (Web Server)
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Figure 58.  Web Page Request (2 of 4)

Client Server Packet 2, length 44 bytes 

TCP

IP Source address 204.146.17.33 (server) 
Destination address  10.1.1.1 (client)

Data

Source port 80 
Destination port 1044
Flags: SYN+ACK
Options: Set maximum segment size to 1452 bytes

(None)

(Browser) (Web Server)

Packet 3, length 40 bytes 

TCP

IP Source address  10.1.1.1 (client) 
Destination address  204.146.17.33 (server)

Data

Source port 1044 
Destination port 80
Flags: ACK

(None)

This completes the opening connection sequence (sometimes called the "three-way-handshake").

Packet 4, length 229 bytes 

TCP

IP Source address  10.1.1.1 (client) 
Destination address  204.146.17.33 (server)

Data

Source port 1044 
Destination port 80
Flags: PUSH+ACK

GET /example1.html HTTP/1.0
Connection: Keep-alive
User-Agent: Mozilla/v3.01 (X11;I;AIX1)
Host: www.ibm.com
Accept: image/gif, image/x-xbitmap, image/jpeg, 
image/pipeg, */*
<empty line>
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Figure 59.  Web Page Request (3 of 4)

Client Server 
Packet 5, length 388 bytes 

TCP

IP Source address 204.146.17.33 (server) 
Destination address  10.1.1.1 (client)

Data

Source port 80 
Destination port 1044
Flags: PUSH+ACK

HTTP/1.1 200 Document follows
Server: IBM-ICS/4/2/1
Date: Mon, 22 Sep 1997 12:45:27 GMT
Connection: Keep-Alive
Accept-Ranges: bytes
Content-Type: text/html
Content-Length: 116
Last-Modified: Wed, 10 Jul 1996 14:59:23 GMT

<HTML>
<TITLE>Example 1</TITLE>
<H1>Example 1 - HTML only</H1>
<A HREF="example2.html"> Example 2</A>
</HTML>

(Browser) (Web Server)

Packet 6, length 40 bytes 

TCP

IP Source address 204.146.17.33 (server) 
Destination address  10.1.1.1 (client)

Data

Source port 80 
Destination port 1044
Flags: FIN+ACK

(None)

Packet 7, length 40 bytes 

TCP

IP Source address  10.1.1.1 (client) 
Destination address  204.146.17.33 (server)

Data

Source port 1044 
Destination port 80
Flags: ACK

(None)

The page has been sent. Now the connection is shut down.
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Figure 60.  Web Page Request (4 of 4)

  • Packets 1, 2 and 3 establish the TCP connection with a "three-way 
handshake."

  • Packet 4 contains the HTTP request from the browser; you can see 
the GET request itself, together with other data being passed to the 
server. 

  • Packet 5 contains the reply from the server, with the page data 
preceded by  page information. You can see this information using 
"view document source" and "view document info" from a Web 
browser. Larger replies would need to be sent in more than one 
packet, and the client would periodically send TCP 
acknowledgment packets back to the server. But only a single item 
of data is returned, so that the page data, images, applets and 
other components are returned separately. Using JAR files, several 
items can now be sent in a single TCP connection, which is more 
efficient. 

  • Packets 6 and 7 close the connection from the server end, and 
packets 8 and 9 close it from the client. 

Packet 8, length 40 bytes 

TCP

IP Source address  10.1.1.1 (client) 
Destination address  204.146.17.33 (server)

Data

Source port 1044 
Destination port 80
Flags: FIN+ACK

Client Server 
(Browser) (Web Server)

Packet 9, length 40 bytes 

TCP

IP Source address 204.146.17.33 (server) 
Destination address  10.1.1.1 (client)

Data

Source port 80 
Destination port 1044
Flags: ACK

(None)

(None)
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Although at first sight this seems quite complicated, on closer 
inspection it can be seen to be simply sending a request (in readable 
ASCII text) and receiving a reply, surrounded by packets to open and 
close the TCP  connection.

11.4  Proxy Servers and SOCKS

Proxy Servers and SOCKS Gateways are two common approaches 
used to provide Internet access through corporate firewalls. The 
primary goal is to allow people within the company network the ability 
to access the world-wide Internet, but prevent people from outside 
from accessing the company internal networks.

Figure 61.  Where a Proxy Server Fits

11.4.1  Proxy Servers
A proxy server’s function is to receive a request from a web browser, 
to perform that request (possibly after authorization checks), and 
return the results to the browser.

What actually happens is that, instead of sending a request directly to 
server www.company.com of:

GET /page.html

a browser will send a request  to proxy.mycompany.com, asking:

GET http://www.company.com/page.html

InternetFirewall

Proxy Server 

Web Server

Proxy
HTTP

HTTP
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proxy.mycompany.com will then contact www.company.com with the 
request

GET /page.html

There are several advantages to this indirect approach:

  • All external web access can be forced to go through the proxy 
server, so creating a single control point. This is achieved by 
blocking all HTTP protocol data, except for that from the proxy 
server itself.

  • All pages being transferred can be logged, together with the 
address of the requesting machine.

  • Requests for certain sites can be restricted or banned.

  • The IP addresses or names of the internal systems never appear 
on the Internet, just the address of the proxy server. So attackers 
cannot use the addresses to gain information about your internal 
system names and network structure.

  • The proxy can be configured as a caching proxy server, and will 
save local copies of Web pages retrieved. Subsequent requests will 
return the cached copies, thus providing faster access and 
reducing the load on the connection to the Internet.

  • Web proxy servers usually support several protocols, including 
HTTP, FTP, Gopher, HTTPS (HTTP with SSL), and WAIS.

  • Proxy servers can themselves use the SOCKS protocol to provide 
additional security. This does not affect the browser configuration.

The disadvantages are that browser configuration is more complex, 
the added data transfers can add an extra delay to page access, and 
sometimes proxies impose additional restrictions such as a time-out 
on the length of a connection, preventing very large downloads.

11.4.2  What Is SOCKS?
The SOCKS protocol is mentioned several times in this section. It is a 
simple but elegant way of allowing users within a corporate firewall to 
access almost any TCP service outside the firewall, but without 
allowing outsiders to get back inside.

It works through a new TCP protocol, SOCKS, together with a SOCKS 
server program running in the firewall system. (SOCKS, incidentally, is 
a shortened version of "sockets," the term used for the data structures 
which describe a TCP connection.)
 182



 

Figure 62.  A SOCKS Connection

In basic terms, SOCKS is a means of encapsulating any TCP protocol 
within the SOCKS protocol. On the client system, within the corporate 
network, the data packets to be sent to or from an external system will 
be put inside a SOCKS packet and sent to a SOCKS server. For 
example, a request for http://server.company.com/page.html would, if 
sent directly, be contained in a packet with the following 
characteristics:

Destination address: server.company.com
Destination port: 80 (HTTP)
Data: "GET /page.html"

If SOCKS were used, the packet sent would be (effectively):

Destination address: socks_server.mycompany.com
Destination port: TCP 1080 (SOCKS)
Data: Destination address = server.company.com,

Destination port = TCP 80 (HTTP), 
Data = "GET /page.html"

When the SOCKS server receives this, it extracts the required 
destination address, port and data and sends this packet; naturally, the 
source IP address will be that of the SOCKS server itself. The firewall 
will have been configured to allow these packets from the SOCKS 
server program, so they won’t be blocked. Returning packets will be 
sent to the SOCKS server, which will encapsulate them similarly, and 
pass on to the original client, which in turn strips off the SOCKS 
encapsulation, giving the required data.

(This description is simplified; in reality, requests between the client 
and the SOCKS server are in a socket API format, rather than the pure  
protocol data as shown above. Details!)
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The advantage of all this is that the firewall can be very simply 
configured, to allow any TCP/IP connection on any port, from the 
SOCKS server to the non-secure Internet, trusting it to disallow any 
connections which are initiated from the Internet.

Figure 63.  SOCKS Flexibility

The disadvantage is that the client software must be modified to use 
SOCKS. The original approach was to recompile the network client 
code with a new SOCKS header file, which translated TCP system 
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When linked with the libsocks library, these new names will access the 
SOCKS version, rather than the standard system version. This, 
therefore, creates a new "SOCKSified" version of the client software.

This approach is still used for clients running on UNIX. However, a 
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TCP calls above are replaced by a SOCKSified version, usually 
termed a "SOCKSified TCP  stack." This SOCKSified stack can then 
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11.4.3  Using Proxy Servers or SOCKS Gateways
We have described three options:

  • Using a proxy server

  • Using a SOCKS gateway with a "SOCKSified" client application

  • Using a SOCKS gateway with a "SOCKSified" TCP/IP stack

Each of these options has its own advantages and disadvantages, for 
the company network security manager to evaluate for the company’s 
particular environment. But what does the end user need to do to use 
these options?

Both Netscape Navigator and Microsoft Internet Explorer Web 
browsers  have built-in support for both proxy servers and for the 
SOCKS protocol. Options are provided to select either a proxy server, 
or a SOCKS server (don't select both, or requests will be sent via the 
SOCKS server to the proxy server, causing unnecessary network 
traffic). But currently, support for SOCKS is limited to specifying the 
server name; all page requests will be passed to that server, whether 
or not direct access is possible (as in the case of internal Web 
servers).

The advantage in using the SOCKSified stack is that it provides better 
support for deciding whether to use SOCKS or not, rather than 
sending all requests to the SOCKS server (which may overload it), as 
well as supporting other clients. This is controlled by a configuration 
file, which specifies which range of addresses are internal and can be 
handled directly, and which must go through the SOCKS server. Of 
course, if you use a SOCKSified stack, you should not enable SOCKS 
in the browser configuration. Then again, a SOCKSified stack is not 
available for all platforms, so you may be forced to use the browser’s 
SOCKS configuration.

The SOCKsified stack approach will also work with Java applets run 
from a Web browser, as the normal Java.net classes will use the 
underlying TCP protocol stack, so this provides a simple way of 
running Java applets through a SOCKS server through a firewall. But if 
a SOCKSified stack is not available, you will need to SOCKSify the 
library classes yourself, if you have  source code, or look for a vendor 
who supports SOCKS.
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11.5  The Effect of Firewalls on Java

We now consider the effect of firewalls on Java applets, first from the 
point of view of loading them, then on the network connections that the 
applets themselves may create.

11.5.1  Downloading an Applet Using HTTP
Java applets within a Web page are transferred using HTTP, when the 
browser fetches the class files referred to by the <APPLET> tag. So, if 
a Web page contains a tag of: 

<APPLET code="Example.class" width=300 height=300>
<PARAM NAME=pname VALUE="example1">
</APPLET> 

the browser would transfer the Web page itself first, then the file  
example.class, then any class files referred to in example.class. Each 
HTTP transfer would be performed separately (unless HTTP 1.1 is 
used).

JDK 1.1 allows a more efficient transfer, where all the classes are  
combined into a compressed Java Archive (JAR) file. In this case the 
Web page contains a tag of:

<APPLET archive="example.jar" code="Example.class" width=300 
height=300>
</APPLET> 

If there are problems finding example.jar, or if an older browser (Java 
1.0) is used, the archive option is ignored, and the code option is used 
instead as in the previous example.

11.5.2  Stopping Java Downloads with a Firewall
But what effect do firewalls have on the downloading of Java class 
files? If the security policy is to allow HTTP traffic to flow through the 
firewall, then Java applets and JAR files will simply be treated like any 
other component of a Web page, and transferred. On the other hand, if 
HTTP is prohibited, then it is going to be very difficult to obtain the 
applet class files, unless there is another way of getting them, such as 
using FTP.  Quite frequently, Web servers using non-standard TCP 
ports such as 81, 8000, 8080 may be blocked by the firewall, so if you 
are running a Web server, stick to the standard port 80 if you want as 
many people as possible to see your Web pages and applets.
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Now since Java is transferred using HTTP, the IP and TCP headers 
are indistinguishable from any other element of a Web page.  Simple 
packet filtering based on IP addresses and port numbers will therefore 
not be able to block just Java. If you require more selective filtering, 
you will need to go one step beyond basic packet filtering and examine 
the packet payload: the HTTP data itself. This can be done with a 
suitable Web proxy server or an HTTP gateway which scans the data 
transferred.

If a Web proxy server is used, a common arrangement is to force all 
clients to go through the proxy server (inside the firewall), by 
preventing all HTTP access through the firewall, unless it came from 
the proxy server itself. If you don’t have an arrangement like this, a 
user could bypass the checking by connecting directly.

Figure 64.  Forcing Connections through a Proxy
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application/octet-stream (for class files)
www/unknown
text/plain
multipart/x-zip (for JAR files)
application/zip

This means it is necessary to examine the actual data being 
transferred, to see if it might be Java bytecode or JAR files. Bytecode 
files must start with hexadecimal values "CAFEBABE" in the first four 
bytes (see “Java Bytecode” on page 69). This string will also be found  
in JAR files, but as a JAR file may be compressed, a scanner has to 
work harder to find the signature. Commercial products are available 
which can perform this inspection. They usually work as, or with, an 
HTTP proxy server, and check all HTTP requests passing through. 

Searching for the class file signature in this way is an effective way to 
stop Java, but it indiscriminately chops out good code and bad. A more 
subtle scanner could extend the principle to other types of "signature". 
For example, it would theoretically be possible to filter out any applet 
that overrode the stop() method (see “Malicious Applets” on 
page 104), by analyzing the bytecode in detail.

Of course, in these restrictive environments, you would also want to 
filter out any other types of executable content which are less secure 
than Java, such as ActiveX, and maybe JavaScript, .EXE files, and so 
on. You would also have to consider other protocols such as FTP, 
HTTP or FTP encapsulated in SOCKS, HTTP encapsulated in SSL 
(which adds the problem of decoding the type of encrypted data).

We have been focussing on scanning for Java at a single point for the 
enterprise: the firewall or proxy server. Recent developments by the 
browser manufacturers and by systems management specialists, such 
as Tivoli Systems, point to an alternative strategy. They have  
developed mechanisms for installing and configuring browsers on 
multiple user systems from a single point. This certainly offers cost 
savings: a single administrator can be responsible for hundreds of 
workstations. However, as a security measure it can only work if it is 
backed up by controls and monitors that prevent individual users from 
overriding the "official" configuration.

The cleanest solution to the problem of selectively stopping Java is in 
the use of signed applets. As certificates become used more 
frequently, it will be possible to permit Java bytecode from sites where 
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you trust the signer (maybe your own company sites), and disallow 
other sites.

11.5.3  Java Network Connections through the Firewall
When a Java applet or application wishes to create its own network  
connections through a firewall, it faces all the difficulties above,  and 
also, for applets, the default security manager restriction of only being 
able to contact the server it was downloaded from.

There are three approaches that an applet can take:

1. Use the URL classes from the java.net package to request data 
from a Web server using HTTP.  JDK 1.1 adds a new class to this 
package – HttpURLConnection – as a specialization of the  
URLConnection class.

2. Use  other classes from the java.net package to create socket 
connections to a dedicated server application.

3. Use remote object access mechanisms, such as RMI or CORBA.

The first of these is the easiest to implement (look at the never-ending 
fortune cookie applet in Figure 18 on page 105 for an example). It is 
also likely to be the most reliable, because the JVM passes the URL 
request to the normal browser connection routines to process. This 
means that, if a proxy  is defined, the Java code will automatically use 

For the Network Administrator

Should You Allow Java 

Leaving aside the question of how to block Java classes at the firewall. You may be
faced with the decision of whether you should allow Java (or any other type of
executable content) to  travel through the firewall. If your site has public web
servers, then you would expect that Java code is allowed to be sent to the Internet.
But you might wish to make restrictions on Java code that can be received.

The most permissive policy is to allow Java to be received, and let users make their
own defenses, or trust in the Java security model. More  restrictive policies might
only allow Java from trusted Web sites, or not at all. The question that you must ask
is: what data is at risk if I allow this? We have shown that, compared with other
types of executable content, Java applets are very safe, so if you choose to block
applets you should also prevent other downloads. For example, macro viruses
contained in word-processor files are a major problem, but few companies would
prevent employees exchanging such files with customers and suppliers.

Through Your Firewall?
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it. However, URL connections suffer from the fact that the server side 
of the connection has limited capability; it can only be a simple file 
retrieval or a CGI (or similar) program. 

For the second approach – socket connection to the server – the 
applet will need to choose a port number to connect to, but many will 
not be allowed through firewall. Some types of applets have no real 
choice as to port number. For example IBM Host-on-Demand is a Java 
applet which is a 3270 terminal emulator, hence needs to use the 
tn3270 protocol to telnet port 23. It is quite likely that this standard port 
would be allowed through the firewall; otherwise, encapsulation of 
tn3270 inside the SOCKS protocol may be the only answer.

Other applets need to make a connection to the server, but don't need 
any special port. It may be that they can use a non-privileged server 
port of 1024 or greater, but often these, too, are blocked by simple 
packet filtering firewalls. A flexible approach is to let the applet be  
configurable to allow direct connections (if allowed), otherwise to use 
the SOCKS protocol to pass through the firewall.

Many HTTP proxy servers implement the Connect Method. This allows 
a client to send an HTTP request to the proxy which includes a header 
telling it to connect to a specific port on the real target system. The 
connect method was originally developed to allow SSL connections to 
be handled by a proxy server, but it has since been extended to other 
applications. For example, Lotus Notes servers can use it. The 
connect method operates in a very similar way to SOCKS and you can 
implement Java applet connections with it in much the same way as 
you would with SOCKS.

For the Applet Developer

Different Kinds of Sockets

As we have described, SOCKS encapsulates the real data flow in its own TCP/IP
connection. This means that the client code must call the SOCKS library functions
instead of the functions provided by the normal TCP/IP APIs. 

As far as we know, these library functions do not exist for Java, but the java.net
package does provide a convenient technique for implementing such things, by
using a specialized SocketFactory class.
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Another approach is to disguise the packets in another protocol, most  
likely HTTP, as this will have been allowed through the firewall. This 
will allow two-way transfer of data between applet and server, but will 
require a special type of Web server. The server will need to act as a 
normal Web server, to supply the Web pages and applets in the first 
place, but must be able to communicate with the applets to process 
their disguised network traffic.

11.5.4  RMI Remote Method Invocation
Java’s RMI allows developers to distribute Java objects seamlessly 
across the Internet.  But RMI needs to be able to cross firewalls too.

The normal approach that RMI uses, in the absence of firewalls, is that 
the client applet will attempt to open a direct network connection to the 
RMI port (default is port 1099) on the server. The client will send its 
request to the server, and receive its reply, over this network 
connection.

The designers of RMI  have made provision for two firewall scenarios, 
both using RMI calls embedded in HTTP requests, under the 
reasonable assumption that HTTP will be allowed through the firewall 
(as the applet was delivered that way). The RMI server itself will 
accept either type of request, and format its reply accordingly. The 
client actually sends an HTTP POST request, with the RMI call data 
sent as the body of the POST request, and the server returns the 
result in the body of an HTTP response.

Figure 65.  Proxy Configuration for RMI (1)
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In the first scenario, we assume that the proxy server is permitted by 
the firewall to connect directly to the remote server’s RMI port (1099).  
The client applet will make an HTTP POST request to http://
rmi.server:1099/. This passes across the Internet to the remote server, 
where it is found to be an encapsulated RMI call. Therefore the reply is 
sent back as an HTML response. In theory this method could also be 
used with a SOCKS server, instead of a proxy server, if run by a 
SOCKS-enabled browser.

As well as assuming that the firewall on the client passes the RMI port, 
this assumes that the remote firewall also accepts incoming requests 
directly to the RMI port. But in some organizations, the firewall 
manager may be reluctant to permit traffic to additional ports such as 
the RMI port. So an alternative configuration is available, in case RMI 
data is blocked by either firewall.

Figure 66.  Proxy Configuration for RMI (2)
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also copies the standard CGI environment variables to Java 
properties.

So, the client code sends a POST request to http://rmi.server/cgi-bin/
java-rmi.cgi?forward=1099. The cgi-bin program passes it on to the 
RMI port specified in the ?forward parameter. The reply will be passed 
back to the Web server, which adds the HTML header line, and returns 
the response to the client. In principle, this would allow the RMI server 
to reside on a different system than the remote Web server, in a three-
tier model.

Fortunately, all the work above is performed automatically in the 
java.rmi package, so the software developer need not be concerned 
about the detailed mechanism. It is only necessary to configure the 
RMI server correctly, and to ensure the client uses the automatic 
mechanism for encapsulating RMI.

In the current version of RMI, the client stub code checks for the 
presence (not value) of system properties proxyHost or 
http.proxyHost, in order to decide whether to try using the HTTP 
encapsulation. If you are using a Web browser and encapsulated RMI 
does not seem to work, try explicitly setting these properties, as the 
browser may be using its own proxy HTTP, without setting proxyHost.

All this automatic encapsulation is not free, of course. Encapsulated 
RMI calls are at least an order of magnitude slower than direct 
requests, and proxy servers may add extra delays to the process as 
they receive and forward requests.

For the Network Administrator

What Is Allowed Through

Do you allow your proxy servers access to any TCP/IP port on the Internet? If so,
you may allow your internal users to access risky servers; if not, you may prevent
them from accessing useful services. You can scan the proxy server log files for
non-standard port accesses, to assess the balance of risk.

Your Firewall?
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11.6  Summary

We’ve shown how firewalls provide added security to an organization’s 
network, at the expense of some restrictions on what client users can 
do. Firewalls use a variety of techniques to provide this security, 
including packet filtering, proxy servers and SOCKS servers. We’ve 
described approaches which can be used with these techniques to 
allow secure access through the firewalls.
 194



Chapter 12.  Java and SSL

In Chapter 7, “Playing in the Sandbox” on page 97 we discussed the 
capabilities for invoking cryptographic functions from within Java code. 
We also stepped through a simple transaction, to show the ways that 
cryptography can be used in an application.

But, as we concluded at the time, most programmers and application 
designers would prefer ready-built cryptographic protocols, rather than 
having to create them from the basic elements of encryption and digital 
signatures. Secure Socket Layer (SSL) is the most widely used 
protocol for implementing cryptography in the Web. In this chapter we 
look at how it can be invoked from within Java.

12.1  What Is SSL?

SSL has two security aims:

1. To authenticate the server and (optionally) the client using public- 
key signatures.

2. To provide an encrypted connection for the client and server to 
exchange messages.

As the name suggests, SSL provides a secure alternative to the 
standard TCP/IP sockets protocol. In fact, SSL is not a drop-in 
replacement because the application has to specify additional 
cryptographic information. Nonetheless, it is not a large step for an 
application that uses regular sockets to be converted to SSL. Although 
the most common implementation of SSL is for HTTP, several other 
application protocols have also been adapted. 

SSL is comprised of two protocols: the record protocol and the 
handshake protocol. The record protocol defines the way that 
messages passed between client and server are encapsulated. At any 
point in time it has a set of parameters, known as a cipher suite, 
associated with it, which define the cryptographic methods being used. 
There are a number of cipher suites defined by the SSL standard, with 
names that describe their content. For example, the cipher suite 
named SSL_RSA_EXPORT_WITH_RC4_40_MD5 uses:

  • RSA public key encryption for key exchange, using an 
export-strength modulus (see “US Export Rules for Encryption” on 
page 33)
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  • RC4 cipher for bulk data encryption, using a 40-bit (export strength) 
key

  • MD5 hashing to ensure data integrity

When the SSL record protocol session is first established it has a 
default cipher suite of SSL_NULL_WITH_NULL_NULL (no encryption 
at all). This is where the SSL handshake protocol comes in. It defines 
a series of messages in which the client and server negotiate the type 
of connection that they can support, perform authentication, and 
generate a bulk encryption key. At the end of the handshake they 
exchange ChangeCipherSpec messages, which switches the current 
cipher suite of the record protocol to the one that they negotiated (see 
Figure 67). 

Figure 67.  The SSL Handshake for Dummies
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In the case shown in the diagram, only the server is authenticated, so 
the client does not need to provide a certificate. If client authentication 
was required, the handshake would be a little longer. The full 
specification is at http://home.netscape.com/newsref/std/SSL.html.

12.2  Using SSL from an Applet

The advantage of a protocol such as SSL is that it removes the need 
for the application developer to deal with the nuts and bolts of 
cryptography. There are two ways in which Java can exploit this 
function: by using the SSL support built into the browser, or by using 
an SSL class package.

12.2.1  Using SSL URLs with Java
When a Webmaster wants users of a site to enter an SSL connection, 
he or she simply codes a hypertext link with a prefix of "https:" in place 
of "http:". When the user clicks on the link, the browser automatically 
starts the SSL handshake, connecting to the default SSL port on the 
server (TCP port 443). 

Any relative URL within an SSL page is also retrieved using SSL. For 
example, an <APPLET> tag could cause the applet bytecode to be 
encrypted as it passes across the network. More importantly, the user 
knows that the applet comes from a trustworthy site, because the 
authentication process in the SSL handshake will have checked the 
certificate of the server. You will recall that the signature on a JAR file 
only shows that the creator of the file can be trusted, not the site from 
which it came (discussed in Chapter 9, “Java Gets Out of Its Box” on 
page 119). By delivering a signed JAR file using SSL you can add the 
extra authentication without the Web site having to re-sign the file.

If an applet wants to read or write data to the server, it can use the 
URL classes from the java.net package. These allow the applet code 
to specify the URL of a Web page or CGI program and to receive the 
output from the URL in an I/O stream. We showed an example of doing 
this in the NeverEndingFortuneCookie applet in Figure 18 on page 
105. If we changed the assignment of fortuneURL in that example to 
use an https: prefix, the browser would automatically retrieve the data 
using SSL.
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12.2.2  SSL Class Packages
Fetching data using the URL technique (above) is a very simple 
approach, but it limits the applet because client/server 
communications can only exploit the capabilities offered by CGI (or 
another, similar, server interface). Even if this is adequate for the 
function, it imposes some performance overhead. A direct socket 
connection between client and server allows more sophisticated and 
responsive applets to be created.

One possibility is to use a package that provides SSL function in a 
Java class package. IBM Research in Zurich have created such a 
package, called SSLight, based on their comprehensive cryptographic 
toolkit for Java. Although this package is for internal IBM use (due in 
part to license and export restrictions), it can be used for joint projects 
with IBM customers. Alternatively, toolkits are available from other 
vendors.

In the SSLight package the context information for the current SSL 
connection (in other words, the cipher suite details) is maintained in a 
Java class named SSLContext. The package then provides a set of 
classes that mirror the java.net socket classes (including SSLSocket, 
SSLServerSocket and so on). These behave like their java.net 
equivalents, except that the constructor methods also require an 
SSLContext among their arguments. This means that it is a relatively 
simple matter to modify an application that communicates with sockets 
to use the package.

The tricky part is setting up the SSLContext class in the first place. It 
requires a key ring which is, conventionally, a file containing a 
database of keys and certificates. An SSL client always needs a key 
ring, even if client authentication is not in use, because it has to check 
the validity of the certificate presented by the server. To perform the 
check, the client needs the certificate for the CA that signed the 
server’s certificate. The problem with reading a key ring from a file is 
that normally it is forbidden by the applet sandbox restrictions. 

One solution to this lies in signed applets, but that can lead to further 
problems, due to the differences in implementation that we discussed 
in Chapter 9, “Java Gets Out of Its Box” on page 119. The SSLight 
package provides an innovative alternative, by defining an 
SSLightKeyRing interface. This means that a key ring can be sent 
imbedded in the Java class files of the applet, thus avoiding the need 
for disk I/O. How can the applet know that this key ring (and the CA 
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certificates inside it) can be trusted? The answer is to send the applet 
itself in an SSL URL. The chain of trust from the point of view of the 
applet is then:

  • This applet is from a host that is trusted, because the certificate it 
sent when downloaded in a URL was signed by an independent, 
trusted third party (a CA).

  • Therefore the key ring that the applet includes can also be trusted.

  • Therefore the CA key in the key ring can be trusted, and the applet 
can use it to validate the server certificate when the applet starts a 
connection with SSLight.

This is not a rigorous chain of trust, but even if the applet does not 
have strong authentication for the server, it can still establish an 
encrypted session. In other words, privacy of the data is guaranteed, 
even if authentication of the server is based on doubtful logic.

12.3  Summary

The history of the World Wide Web is based on pragmatism. For 
example, no one would argue that sending uncompressed ASCII text 
data on sessions that are set up and torn down for every single 
transaction is efficient in any way. However, this is what HTTP does, 
and it is very successful. The reason for its success is that it is simple 
enough to allow many different systems to interoperate without 
problems of differing syntax. The cost of simplicity is in network 
overhead and a limited transaction model.

Using cryptography in Java offers a similar dilemma. It is possible to 
write secure applications using a toolkit of basic functions. Such an 
application can be very sophisticated, but it will also be complex. 
Alternatively, using SSL URL connections offers a way to simplify the 
application, but at the cost of application function. SSL Java packages, 
such as SSLight, provide a middle way, retaining simplicity but 
allowing more flexible application design.
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Chapter 13.  Java and Cryptolopes

As we saw earlier, Java applets may be considered to be assets, 
pieces of intellectual property which need to be protected from prying 
eyes. We discussed the threat from decompilation attacks and how 
you might attempt to foil decompilers.

There is, however, another way in which applets may have value 
which must be protected.

Most Java applets you encounter on the Web are available to you free 
of charge. Usually the Web page owner uses them to make the page 
more attractive or to provide a function he or she wants you to use – 
such as an investment planning application intended to help sell you a 
mutual fund. Sometimes, however, it is you who want to use the 
applet: an applet might be a particularly good game, or a useful 
spreadsheet that you want to use. In this case the applet owner may 
wish to charge for the use of the applet.

If I am the applet owner, I have three main obstacles to overcome:

1. I would like to send my applet to you in a protected form, such that 
nobody – including you – can execute it. In addition, I would like to 
send you information about how much I intend to charge you for its 
use, what it does and other such information (technically known as 
metadata).

2. I must be able to accept some form of payment from you in order to 
allow you to use my applet. Ideally, you should be able to pay 
different amounts depending on how you wish to use it. For 
example, I might charge a single sum for unlimited use, a different 
sum for a single use and yet another sum to use the applet for a 
specified period of time.

3. I must be able to grant you the usage rights for which you have paid 
without allowing you any additional rights and particularly, without 
allowing you to give access to your friends (who haven't paid me for 
the privilege).

Of course, I could encrypt the applet code and sell you a key which 
would allow you to decrypt it and this would meet requirement 1 and 
some of requirement 2. It would fall short of requirement 3, however, 
since once you have decrypted the applet class files, you would be 
free to distribute them among your friends. In addition to this 
fundamental flaw, there is something deeply unsatisfying about the 
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payment model. It lacks subtlety and flexibility: you either have the 
code and can use it as often as you please, or you don’t.

In fact, the third requirement proves to be the most difficult to satisfy 
and it is this requirement which is addressed by IBM’s Cryptolope Live! 
product, the latest evolution of Cryptolope technology.

13.1  Cryptolope History

Cryptolopes were first designed (at the IBM laboratory in Falls Church, 
Virginia) to address the general issue of charging for intellectual 
property on the Web, and on other networks. Like many other Internet 
security ideas, they have their roots in cryptography. If you access my 
Web page to download some chargeable material (which could be a 
magazine article or a detailed weather forecast just as easily as it 
could be an applet) and I send the material to you, I shall want to send 
a bill later. But how do I know whether you ever received it? 

The Internet does not guarantee delivery, far from it, and if you say you 
never received it, how am I to know whether you are lying, let alone 
prove that you are lying. We can use SSL to authenticate both ends of 
the dialogue; that is, you can be sure that the Web page is really mine, 
and I can be sure that the browser is really yours. The use of 
public-key certificates ensures that. But it does not tell me that the 
delivery of the chargeable material happened without problems, and it 
does not give me anything that proves that you requested that 
particular chargeable material. Cryptolopes can give you both of these 
by the simple expedient of sending the material in encrypted form. 
When you request a decryption key, you confirm that you have 
received the material and that you are willing to pay for it. 

Originally, Cryptolopes focused primarily on the delivery and payment 
mechanisms for content. Ultimately, whatever the asset, be it a font, 
some HTML, an audio or video file or even an entire application, it 
needed to be extracted from the protective shell of the Cryptolope and 
handed to an application which would render it. This exposed the 
asset to the risk of copying.

This sort of problem has affected copyright material for centuries, and 
people still manage to make money out of writing books and recording 
music. This is because honest citizens and respectable companies 
don’t make a habit of massively infringing copyright – they want to 
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have legal original copies. So does it matter? Well, yes, to some extent 
it does.

The difference between a book on paper and a book in HTML is that a 
photocopy of the paper book is much less usable than the original; a 
copy of an HTML book is identical to the original. A tape copy of a 
music CD is less clear than the original; a copy of a digital audio file 
isn’t. Digital copies are perfect copies, and with the prevalence of 
Internet access, it is possible for a single unscrupulous vendor to 
create and sell many perfect copies of an original, all over the world 
and even from a server in a country with less restrictive copyright laws.

13.2  Today: Cryptolope Live!

Cryptolope Live! is a major evolution of the original Cryptolope 
concept. Whereas early Cryptolopes focused on content commerce, 
Cryptolope Live! emphasizes the process of presenting the content, 
installing the content, metering the content use and interacting with the 
end user. In short, it addresses requirement 3 above.

Cryptolope Live! deals in Cryptolope objects. These are a combination 
of content, scripts and extensions. The content (part) is the payload of 
a Cryptolope object and may be Java classes, digital audio or any type 
of digital content. A Cryptolope object may contain a number of parts 
all of which are held in a folder structure, similar to a filing system.  
The scripts are a small set of business rules associated with each part 
and folder which determine what the Cryptolope object will do in terms 
of rendering content, billing the user, metering usage or whatever. The 
extensions are pure Java classes which extend the capabilities of the 
scripting language when more complex functions are required (see 
Figure 68 on page 204).
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Figure 68.  Cryptolope Live! Objects

Scripts are written using Cryptolope script, a simple yet powerful 
programming language based on ECMAScript, a standard scripting 
language defined by the European Computer Manufacturers’ 
Association and based on JavaScript.

The main component of Cryptolope Live! is the Cryptolope Player. This 
is written in Java and runs the Cryptolope objects. There are several 
parts to the Cryptolope player as shown in Figure 69 on page 205.
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Figure 69.  Components of the Cryptolope Live! Player

The Cryptolope player first loads the Cryptolope object and validates 
its structure. If the Cryptolope object has been digitally signed then the 
certificates are presented to the user who reviews this information and 
approves it. Finally, the Cryptolope object is authenticated and the 
main script is loaded and executed.

The Cryptolope Player implements a Sandbox and security manager, 
exactly like the JVM (indeed, it uses a Java security manager class). 
Thus, Cryptolope objects are prevented from accessing local storage, 
running native code and all of those restrictions which we saw earlier 
applied to unsigned applets. If this process seems familiar, then you 
should not be surprised. Any resemblance to the Java security 
architecture is purely intentional.

The script itself is responsible for implementing business rules which 
may require providing payment information for the content prior to 
making it available (decrypting the content) to the end user.

Another implementation may simply require authentication of the end 
user (for example, via a user ID and password) prior to rendering the 
information. The rules may only authorize the end user to view the 
content, or they may authorize saving it to a file, or printing it.

The Cryptolope Live! product is delivered with a set of scripts and 
extensions that let you write and customize your own information 
commerce system for the distribution of, and payment processing for, 
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digital content. The provided scripts allow your enterprise to build a 
Cryptolope object and encrypt one or more documents within it. This 
system flow proceeds as follows:

  • You specify if the content can be viewed, printed, or saved to file for 
specified prices, and whether the content within the Cryptolope 
object ever expires.

  • When an end user receives a Cryptolope object (via the Internet as 
a Java applet or to be run as a Java application) the Cryptolope 
object is run by the Cryptolope Player.

  • The Cryptolope Player executes the scripts located in the 
Cryptolope object and presents to the end user information about 
the documents they may select to purchase (for example, an 
abstract, authoring information, or a thumbnail diagram of a larger 
picture that is encrypted in the object), along with the information 
the end user requires to make a purchase decision.

  • When the end user chooses to purchase the content, the script 
then presents a dialogue to request credit card payment 
information. This information is sent to a clearing center run by your 
enterprise or trusted third party. The clearing center works with the 
Cryptolope Cashier which can link to third-party payment systems.

  • Upon completion of the credit card transaction, the clearing center 
sends the appropriate document key for decrypting the purchased 
document content back to the end user's Cryptolope Player. Then 
the application decrypts the document and renders the purchased 
content in the trusted viewer.

  • After the content is displayed, the end user can elect to print or 
save the document if these options have been enabled.

When a Cryptolope object is loaded, the following actions occur:

  • The Cryptolope object itself is evaluated for authenticity based on 
the digital signatures it may contain.

  • If the Cryptolope object appears not to have been altered, then the 
loader creates the Cryptolope object model, representing the 
structure of the object and the elements comprising it.

  • The object model calls the Cryptolope Script interpreter and starts 
running the script in the Cryptolope object.

  • The scripts then control the actions of the Cryptolope object on the 
end user's system. The scripts can call extensions (Java class files 
either internal to the Cryptolope object or external on the user’s 
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CLASSPATH) or can make available script functions that an 
extension can call directly.

Cryptolope Live! also includes the Cryptolope Builder. This is a simple 
mechanism for creating Cryptolope objects. In addition to the 
development tools, the IBM Cryptolope Live! system includes 
subsystems for security-rich content delivery and content commerce. 
They are:

1. The IBM Cryptolope Clearing Center, along with extensions for 
Cryptolope objects which allow them to connect to and 
communicate with the clearing center.

2. The IBM Cryptolope Cashier which is a gateway to a payment 
mechanism from the clearing center, allowing for the all important 
collection of money!

13.3  Example Applications

Imagine that you have developed the ultimate killer app. Perhaps it is a 
Java based streaming video viewer which tunes into an Internet news 
channel. You want to sell access to the channel on a pay-per-view 
basis.

First you embed your Java class files in a Cryptolope object.   Then 
you write a simple script which charges the end user in blocks of five 
minutes, calls the clearing center, obtains a decryption key, decrypts 
the classes and executes them. When the time limit is up, viewing is 
interrupted by the script which prompts for more credit for the next 
five-minute period.

You now have a totally flexible, secure product which will run 
anywhere, either stand-alone or inside a browser. You can give it away 
to your customers who will be charged as they use it. If they give 
copies to their friends, this is fine since their friends will also be 
charged as they use it; thus, now your customers have become a 
distribution channel for your software and they even pay you for the 
privilege!

13.4  Tomorrow

This is only a first step. In the future, Cryptolope technology may be 
tightly integrated into the JVM rather than requiring the layer of 
indirection provided by Cryptolope Script. Then Java classes rather 
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than whole applications or applets could be distributed on a 
pay-per-use basis. 

Vendors of class libraries or software components will be able to 
distribute their code widely without charging developers who use it and 
without having to draw up complex licensing agreements. They will be 
able to rest easy, safe in the knowledge that they will be paid in full 
each time an end user uses their libraries, regardless of the product 
those libraries are embedded in.
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Chapter 14.  Epilogue

The authors believe that Java provides a powerful tool with which to 
create secure computer systems. This security does not depend on 
the underlying operating system; indeed, insecure PC operating 
systems will benefit, while secure operating systems like MVS and 
UNIX will have their security enhanced, using the same portable 
software as that on the PC. Java is sufficiently secure to allow other 
software to be run safely, even if it came from a dubious source.

This security depends on vigilance by the users, in ensuring that the 
software that they must trust does not contain any loopholes, and is 
correctly configured. Undoubtedly, Java flaws will continue to emerge 
and so continuing vigilance is needed. 

The most publicized (and hence quickly fixed) flaws have appeared in 
the Java virtual machine. We believe that the next generation of flaws 
will appear in situations where Java is working together with other 
types of client executable content. For example, it is now very common 
to find Web pages that use a bewildering mixture of technologies – 
Java, JavaScript, ActiveX, Macromedia Shockwave and other 
plug-ins, dynamic HTML, and so on. Each of these works within its 
own zone of protection, which may overlap but are not identical. The 
wily cracker can take advantage of this fact to bypass the restrictions 
of one technology by exploiting another. Fixes for this type of exploit 
will probably not appear so quickly, because each component may be 
working correctly on its own terms.

Signed content (all types of content, not just Java) offers one solution 
to these problems, by guaranteeing the trustworthiness of its source. 
But there are dangers here also. Cryptography is not a simple subject 
and it is important to mask complexity from the end user. At the time of 
writing, the variety of different approaches to signed content reflects 
the difficulty of doing this. We hope that a consistent approach will 
soon emerge. One area that merits attention is the question of how to 
warn the user that some component of a Web page wants to perform 
some potentially dangerous function. The problem is that the user 
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becomes "click-happy." When confronted by an endless sequence of 
dialog boxes warning of one thing or another, it is too easy to just keep 
clicking "OK." We need a method that makes it clear that, for example, 
a request by a Java applet to read environmental information is 
potentially an order of magnitude less dangerous than allowing an 
ActiveX control to run.

Java, because of its unique design, offers many safety and security 
advantages over alternative approaches. In this book we have 
illustrated this fact and, we hope, given you some insight into how to 
create secure Java applications, how to protect Java assets, and how 
to use Java securely.
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Appendix A.  Sources of Information about Java Security

This appendix contains information about Internet resources and 
interesting Java security sites. It is in two parts: the first covers 
companies involved in Java development, and the second contains 
sites which are maintained at educational establishments. This section 
also contains interesting sites which are maintained by individual 
experts within the educational establishments. 

The purpose of this appendix is to give you an insight into where we 
have obtained some of our information and to give you the opportunity 
to look at other resource sites to obtain a view of Java security from 
different angles. This also gives you the opportunity to keep on top of 
new developments via the Web.

A.1  Companies

There are many companies which maintain Java Security sites; it 
would be an impossible task to list them all. For this reason we have 
decided to concentrate on the few companies who are at the cutting 
edge of the Java phenomenon.

A.1.1  JavaSoft

The main JavaSoft URL is:

 http://www.javasoft.com 

This is an excellent Web page and one to keep a regular check on, 
because it  has many links to various topics related to Java. Many of 
these are not directly related to security, but have a bearing on it, for 
example, new versions of the JDK and standarization activity. There is 
also a page dedicated to security:

http://www.javasoft.com/security

This page contains lots of links to downloads and documentation for 
the latest JavaSoft Java security packages. These documents are very 
well constructed and easy to follow; however, they assume a high level 
of knowledge from the user. As an example of this, there are manual 
pages for UNIX commands which are not easy if you are not a UNIX 
user.
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This page also contains links to specifications pages which, in general, 
describe various parts of Java specifications such as the Java 
cryptographic architecture. The core of this is in three guides linked 
from the page: Security API Overview, Java Cryptography Architecture 
API Specification and Reference, and How to Integrate Your 
Cryptography Algorithms into Java Security.

One especially interesting link is the JDK 1.1 Security Tutorial:

http://java.sun.com/docs/books/tutorial/security1.1/index.html

This tutorial claims, “You will learn the definitions of various 
cryptography terms, and see an overview of the Java Security API and 
its core classes. You will then learn how to produce "digital signatures" 
for data, and how to verify the authenticity of such signatures.” The 
author of the tutorial is Mary Daegforde.

The JavaSoft Security page contains a lot besides the items already 
mentioned, such as links to FAQs, white papers and other articles.

Finally, you may wish to refer to the JavaSoft archives. These archives 
date back to November 96 and contain a massive amount of 
information about problems encountered in the development of the 
various Java tools since that time.

A.1.2  Sun

The Sun home page URL is:

http://www.sun.com

As the originator and prime mover behind Java, you would expect it to 
feature in many parts of the Sun site. So, for example, the Sun news 
highlights include many Java-related developments. The URL for the 
main page for specifically Java-related issues is:

http://www.sun.com/java

This page has links to a lot of Java-related topics and it also leads you 
back to the JavaSoft site.

A.1.3  Microsoft

The Microsoft home page URL is:

http://www.microsoft.com
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Although late to join the Java fold, Microsoft now offer a range of 
products for developing and running applications written in Java.

The URL of the main page for Java-related issues is:

http://www.microsoft.com/java

This page has links to a lot of Java-related topics such as news, issues 
and trends, technical information and the Microsoft SDK for Java. 
There are also many related topics, which change frequently, such as 
information about bugs found in beta version of products which can be 
downloaded from the Microsoft site.

The URL for the main page about Java security is:

http://www.microsoft.com/java/security

This page at first appears to be for a user who knows very little or 
nothing at all about Java security, but there are some very good links 
to more technical information. We found that a more effective way to 
get the required information from the Microsoft site was to use the 
internal search function. Searching for Java security produced more 
than 50 hits, although a number of them were for material that is only 
available to members of the Microsoft Developers Network. 

A.1.4  IBM

The IBM home page URL is:

http://www.ibm.com

There are many links from this page, including a fair proportion of 
Java-related pages. The URL of the main page for Java information is:

http://www.ibm.com/java

This page has a number of links to various pages but the easiest way 
to approach it is to link to the site index page:

http://www.ibm.com/Java/siteindex.html

This page lists all of the Java-related topics on this site in alphabetical 
order.
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A.1.5  Reliable Software Technologies

RST performs research and consultancy in all aspects of the security, 
safety, and testability of computer systems. They work closely with 
academics, in particular the Princeton Safe Internet Programming 
team (see below).

http://www.rstcorp.com

A.2  Universities

There are many universities which maintain Java sites and Java 
Security sites; it would be an impossible task to list them all. For this 
reason, we have decided to concentrate on the universities who’s 
pages we found most useful and informative. There is also a brief list 
at the end of this section which contains some other Java sites which 
you may find interesting.

A.2.1  Princeton

Princeton University is the leading center for Java security research. 
The main Java security page is:

http://www.cs.princeton.edu/sip

This page contains a lot of information and links about Java security.

The purpose of this site is to study the security of widely used Internet 
software, especially mobile code systems like Java, ActiveX, and 
JavaScript. They try to understand how security breaks down, and to 
develop technology to address the underlying causes of security 
problems.

This Web site has the following sections: news, people, partners, 
research, publications, FAQ and a miscellaneous section. There are 
also links to many publications about Java security

A.2.2  Yale

There are a number of Java security sites at Yale, for example:

http://pantheon.yale.edu/~dff/java.html

This site is mainly a collection of links to various Java security sites.

Another Yale site worth visiting is:
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http://daffy.cs.yale.edu/java/java_sec/java_sec.html

This site gives a good breakdown of Java security and some good 
guidelines for security measures to take.

Finally:

http://pantheon.yale.edu/help/programming/jdk1.1.1/docs/api

This site gives a list of many topics, including some good Java security 
papers produced by the university. 

A.2.3  Georgia Institute of Technology

This is the home of Mark LaDue, who has written a number of hostile 
applets, illustrating the capacity for cycle-stealing attacks in Java. His 
page of increasingly vicious attack applets is now hosted by Reliable 
Software Technologies Corporation:

http://www.math.gatech.edu/~mladue/HostileApplets.html

The second page of interest is:

http://voreg.cc.gatech.edu/gvu/user_surveys/survey-10-1996/gra
phs/author/Knowledge_Of_Java_Security.html 

This page contains some statistics about how many professionals 
have Java knowledge all over the world. Well worth a look.

Finally:

http://shannon.math.gatech.edu/~mladue/java_was_1.html

This page is Mark LaDue’s report on how the difference between the 
capabilities of Java and bytecode leads to some of the flaws in the 
Java virtual machine.

A.2.4  Others

The following pages are from other university sites which have some 
good information and links :

A page of information put together by Patricia Evans (a grad student at 
the University of Victoria):

http://gulf.uvic.ca/~pevans/java.html
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David Hopwood, a student at Oxford, discovered some of Java’s flaws 
that led to attack applets. His page has good information, though it is 
now aging:

 http://ferret.lmh.ox.ac.uk/~david/java/bugs/public.html

A list of Java security resources provided by Steven H. Samorodin of 
the UC Davis Security lab:

http://seclab.cs.ucdavis.edu/~samorodi/java/javasec.html

Gene Spafford of Purdue University’s security hotlist entry for Java 
security. A bit out of date, but the rest of the list is amazing:

http://www.cs.purdue.edu/homes/spaf/hotlists/csec-body.html#ja
va00 

A page at the University of Utah, devoted to Java Security. Includes 
pointers to talk slides, and a few pointers to related Web sites.

The URL for this site is:

http://www.cs.utah.edu/~gback/javasec

Compiling Functional Programs to Java Byte-Code, by Gary Meehan 
at the University of Warwick:

http://lite.ncstrl.org:3803/Dienst/UI/2.0/Describe/ncstrl.warwick_c
s%2fCS-RR-334?abstract=

A research group at the University of Washington implementing a new 
Java security architecture based on factored components for security, 
performance, and scalability. See their Security Flaws in Java page:

http://kimera.cs.washington.edu

University of Arizona's Sumatra Project, research on mobile code. See 
especially the Java Hall of Shame:

http://www.cs.arizona.edu/sumatra

JAWS (Java Applets With Safety) is an Australian National University 
project using theorem-proving technology to analyze safety and 
security properties of Java Applets. Java down under:

http://cs.anu.edu.au/people/Tony.Dekker/JAWS.HTML
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Appendix B.  Signature Formats

Both fields and methods have signatures within the Java class file. 
They are a shorthand to describe the type (of a field) and the return 
type and parameters (of a method). Signatures are constructed using 
characters or strings to represent the various data types. The 
signature of a field is simply the character or string representing its 
datatype.

The signature of a method is a pair of parentheses enclosing a list of 
the characters or strings representing the datatypes of the parameters, 
separated by semicolons. The parentheses are followed by the 
datatype of the return type of the method.

Table 9 indicates how data types are represented by characters or 
strings.

Table 9.  Data Type Representations in Method Signatures

Table 10.  Examples of Method Signatures

a. The class name here is the full name of the class with ‘/’s in place of ‘.’s

Type Character or String Used in 
Signature

long J

byte B

character C

double D

float F

integer I

object reference L<classname>a

short S

boolean Z

array [<datatype>

Signature Type Description

[C char[] An array of character

Ljava/lang/String String A Java string
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[[java/lang/Object Object[][] A two dimensional array 
of objects

()V void methodName() A method taking no 
parameters and 
returning no value

([Ljava/lang/String;I)I int
methodName(String,
int)

A method taking a String 
and an integer value 
and returning an integer.

Signature Type Description
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Appendix C.  The Bytecode Verifier in Detail

The first stage of the bytecode verifier process is the identifying of 
bytecode instructions and their arguments. This operation is 
completed in two passes. The first pass locates the start of each 
instruction and stores it in a table. Having found the start of each 
instruction, the verifier makes a second pass, parsing the instructions. 
This involves building a structure for each instruction, storing the 
instruction and its arguments. These arguments are checked for 
validity at this point. Specifically:

  • All arguments to flow-control instructions must cause branches to 
the start of a valid instruction.

  • All references to local variables must be legal. That is, an 
instruction may not attempt to read or write to a local variable 
beyond those that a method declares.

  • All references to the constant pool must be to an entry of the 
appropriate type.

  • All opcodes must have the correct number of arguments.

  • Each exception handler must have start and end points at the 
beginning of valid instructions with the start point before the end 
point. In addition, the offset of the exception handler must be the 
start of a valid instruction.

C.1  The Data Flow Analyzer

Having established that the bytecodes are syntactically correct, the 
bytecode verifier now has the task of analyzing the runtime behavior of 
the code (within the limitations we examined in Chapter 6, “An 
Incompleteness Theorem for Bytecode Verifiers” on page 95).

To perform this analysis, the bytecode verifier has to keep track of two 
pieces of information for each instruction:

  • The status of the stack prior to executing that instruction in the form 
of the number and type of items on the stack.

  • The contents of local variables prior to executing that instruction. 
Only the type of each local variable is tracked. The value is 
ignored.
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Where types are concerned, the analyzer does not need to distinguish 
between the various normal integer types (byte, short, char) since, as 
we discuss in “Java Bytecode” on page 69, they all have the same 
internal representation.

The first stage is the initialization of the data flow analyzer:

  • Each instruction is marked as unvisited. That is, the data flow 
analyzer has not yet examined that instruction

  • For the first instruction, the stack is marked as empty and the local 
variables corresponding to the method’s arguments are initialized 
with the appropriate types

  • All other local variables declared as used by the method are 
marked as containing illegal values

  • The “changed” bit of the first instruction is set, indicating that the 
analyzer should examine this instruction

Finally, the data flow analyzer runs, looping through the following 
steps:

1. Find a virtual machine instruction whose “changed” bit is set. 

2. If no instruction remains whose “changed” bit is set, the method 
has successfully been verified, otherwise turn off the changed bit of 
the instruction found and proceed to step 3.

3. Emulate the effect of this instruction on the stack and local 
variables:

  • If the instruction uses values from the stack, ensure that there 
are sufficient elements on the stack and that the element(s) on 
the top of the stack are of the appropriate type.

  • If the instruction pushes values onto the stack, ensure that there 
is sufficient room on the stack for the new element(s) and 
update the stack status to reflect the pushed values.

  • If the instruction reads a local variable, ensure that the specified 
variable contains a value of the appropriate type.

  • If the instruction writes a value to a local variable, change the 
type of that variable to reflect that change.

4. Determine the set of all possible instructions which could be 
executed next. These are:

  • The next instruction in sequence if the current instruction isn’t 
an unconditional goto, a return, or a throw.
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  • The target instruction of a conditional or unconditional branch. 

  • The first instruction of all exception handlers for this instruction. 

5. For each of the possible following instructions, merge the stack and 
local variables as they exist after executing the current instruction 
with the state prior to executing the following instruction. In the 
exception-handler case, change the stack so that it contains a 
single object of the exception type indicated by the exception 
handler information. Merging proceeds as follows:

  • If the stacks are of different sizes then this is an error. Stop!

  • If the stacks contain exactly the same types, then they are already 
merged

  • If the stacks are identical other than having differently typed object 
references at corresponding places on the stacks then the merged 
stack will have this object reference replaced by an instance of the 
first common superclass or common superinterface of the two 
types. Such a reference type always exists because the type Object 
is a supertype of all class and interface types. 

  • If this is the first time the successor instruction has been visited, set 
up the stack and local variable values using those calculated in 
Step 2 and set the “changed” bit for the successor instruction. If the 
instruction has been seen before, merge the stack and local 
variable values calculated in Step 2 and Step 3 into the values 
already there; set the “change” bit if there is any modification. 

6. Go to Step 1. 

If the data-flow analyzer runs on the method without reporting any 
failures, then the method has been successfully verified by Pass 3 of 
the class file verifier.
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Appendix D.  What’s on the CD?

The CD that accompanies this book contains a number of things:

The sample code
All of the samples contained in Chapters 2, 4, 7, and 9 are on the CD 
both as source Java and as compiled class files. There is also the 
DumpConstantPool application which we used to examine the applet 
files in Chapter 4.

The book itself in HTML
The complete book is on the CD in HTML format so that you can read 
it using your browser (because "you can’t grep a tree").

Some useful links
There is a table of HTML links to Java and security Web sites which 
we found useful while creating the book.

VisualAge for Java Entry
VisualAge for Java is IBM’s award-winning visual application builder 
environment. We have included the Entry version for Windows (95 or 
NT) on the CD. This has all of the function of the full professional 
product, except that it is limited to creating a maximum of 100 new 
classes. 

NetREXX
REXX is a programming language used widely in IBM mainframe 
environments and OS/2. It offers powerful facilities, particularly in the 
area of data parsing, but at the same time it is very user-friendly. 
NetREXX is a version of REXX that incorporates object-oriented 
constructions and which can be used to generate Java source code or 
bytecode.

D.1  How to Access the CD

To access the contents of the CD, simply point your Web browser at 
file index.htm in the CD root directory and follow the links you find 
there.
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Glossary

3270 Usually any of a family of 
block-mode VDUs including the 
IBM model 3270

AWT Abstract Windows Toolkit, the Java 
package for creating GUIs

CGI Common Gateway Interface, an 
interface that allows server-side 
executable code to be linked to be 
invoked as a URL.

CICS Customer Information Control 
System

CERT Computer Emergency Response 
Team. An organization that acts as 
a clearing house of information 
about security problems

CORBA The Common Object Request 
Broker Architecture, a standard for 
implementing a distributed object 
architecture

DES Data Encryption Standard, a bulk 
(symmetric key) encryption 
algorithm

DMZ De-militarized zone, used here to 
indicate the portion of a network 
surrounded by firewalls

DNS Domain Name Service

FTP File Transfer Protocol

GET An HTTP command which requests 
the server to send data to the client

Gopher An information service providing 
linked pages

HOD Host-On-Demand, an IBM 3270 
terminal emulator

HTML Hypertext markup language

HTTP HyperText Transfer Protocol

HTTPS HTTP encapsulated in SSL 
protocol

ICMP Internet Control Message Protocol
IIOP Internet Inter ORB Protocol, a 
specification for the way that ORBs 
communicate

IP Internet Protocol

IPv4 Version 4 of Internet Protocol

IPv6 Version 6 of Internet Protocol

JCA Java Cryptography Architecture

JCE Java Cryptography Extensions (the 
parts of JCA that cannot be 
exported from the US

JVM Java Virtual Machine

KeyPair A matching pair of public and 
private keys, used for digital 
signatures and public key 
encryption

LAN Local Area Network, with typical 
bandwith greater than 4 M 
bits/second

MD5 A message digest (secure hash) 
algorithm from RSA Corp

MIME Multipurpose Internet Mail 
Extensions

NetBIOSLAN protocol generally used by 
PCs

ORB Object Request Broker, a program 
that provides services to enable 
the use of distributed objects

PC Personal Computer

POST An HTTP command which sends 
client data to the server

RC4 A bulk (symmetric key) encryption 
algorithm which allows variable 
key sizes

RMI RemoteMethod Invocation, a 
technique to allow Java on one 
system to access objects on 
another

RSA Rivest, Shamir and Adelman 
formed the RSA corporation to 
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market cryptographic software and 
algorithms, in particular the public 
key encryption mechanism that 
also bears their initials.

SHA Secure Hash Architecture

SNA System Network Architecture

SOCKS A protocol used to encapsulate 
other TCP protocols

SSL Secure Sockets Layer

TCP/IP Often used as a generic term for 
the suite of TCP, IP and related 
protocols

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VDU Visual Display Unit

WAIS Wide Area Information Service

WAN Wide Area Network, with typical 
bandwith less than 4 M bits/second

WWW World Wide Web, usually refers to 
systems using HTTP
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