
Java Network Security

November 1997

IBM International Technical Support Organization

© Copyright International Business Machines Corporation 1997. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Part 1. Introduction to Java and Security . 1

Chapter 1. An Overview of Java Security 3
1.1 What Java Does . 3
1.2 Java Is Not an Island: Java as a Part of Security 5

1.2.1 Safety and Security . 7
1.2.2 Java as an Aid to Security . 8
1.2.3 Java as a Threat to Security . 9
1.2.4 Java as Something to Be Secured 10
1.2.5 Writing Secure Java . 11
1.2.6 Staying One Jump Ahead . 11
1.2.7 The Vigilant Web Site . 12

Chapter 2. Attack and Defense . 15
2.1 Java Is Not Just a Language . 15
2.2 Components of Java . 15

2.2.1 The Development Environment. 16
2.2.2 The Execution Process . 22
2.2.3 Interfaces and Architectures . 27
2.2.4 Cryptography to the Rescue! . 31
2.2.5 Signed Applets . 34

2.3 Attacking the World of Java . 35
2.3.1 Perils in the Life of an Applet . 35
2.3.2 Vulnerabilities in Java Applications 42

2.4 Summary . 44

Part 2. Under The Hood . 45

Chapter 3. The Java Virtual Machine. 47
3.1 The Java Virtual Machine, Close Up. 47

3.1.1 The Class Loader . 48
3.1.2 The Class File Verifier . 49
3.1.3 The Heap . 50
3.1.4 The Class Area. 50
3.1.5 The Native Method Loader . 50
3.1.6 The Native Method Area . 51
3.1.7 The Security Manager . 51
3.1.8 The Execution Engine. 51
3.1.9 The Trusted Classes . 51
3.1.10 The Just In Time (JIT) Compiler 52
iii

3.2 Summary . 53

Chapter 4. Class of 1.1 . 55
4.1 The Traditional Development Life Cycle 55
4.2 The Java Development Life Cycle . 57
4.3 The Java Class File Format . 59

4.3.1 Decompilation Attacks . 60
4.4 The Constant Pool . 62

4.4.1 Beating the Decompilation Threat 67
4.5 Java Bytecode . 69

4.5.1 A Bytecode Example . 69

Chapter 5. The Class Loader and Class File Verifier 77
5.1 Overview of the Java Security Model . 77
5.2 Class Loaders . 79

5.2.1 How Class Loaders Are Implemented 81
5.2.2 The Class Loading Process . 83
5.2.3 Why You Might Want to Build Your Own Class Loader . . . 85

5.3 The Class File Verifier . 86
5.3.1 The Duties of the Class File Verifier 88
5.3.2 The Four Passes of the Class File Verifier 89

5.4 Summary. 93

Chapter 6. An Incompleteness Theorem for Bytecode Verifiers 95

Chapter 7. Playing in the Sandbox . 97
7.1 What the Security Manager Does . 97
7.2 Operation of the Security Manager . 99

7.2.1 Class Loader/Security Manager Interdependence. 101
7.3 Attacking the Sandbox . 101

7.3.1 Types of Attack. 102
7.3.2 Malicious Applets . 104

7.4 Summary . 107

Chapter 8. Cryptography in Java. 109
8.1 Security Questions, Cryptographic Answers 109

8.1.1 Public Key Certificates . 111
8.2 Introducing JCA: the Provider Concept 113

8.2.1 JCE and Export Considerations 114
8.3 The Security Classes in Practice . 115

8.3.1 The Scenario . 115
8.3.2 What Do We Learn from This? . 117
8.3.3 IBM Packages for Cryptographic Protocols 118
iv Java Network Security

Chapter 9. Java Gets Out of Its Box . 119
9.1 JAR Files and Applet Signing . 119

9.1.1 Current Implementations . 121
9.2 JavaSoft Signed JAR Example . 122

9.2.1 Creating the Certificate Authority Key Database 122
9.2.2 Creating the Server Key Database 123
9.2.3 Creating and Signing a JAR File 126

9.3 Coming Next from JavaSoft: JDK 1.2 129
9.3.1 Protection Domains . 129

9.4 Netscape Signed JAR Example . 130
9.4.1 Using the netscape.security Package 131
9.4.2 Installing Keys and Certificates in Netscape 134
9.4.3 Signing JAR Files with Netscape JAR Packager 136

9.5 Microsoft and Signed Applets . 140
9.5.1 Two Signed CAB Examples . 142

9.6 Future Developments . 147

Part 3. Beyond the Island of Java: Surfing into the Unknown149

Chapter 10. Application Architectures 151
10.1 Browser Add-on Applets . 151
10.2 Networked Architectures . 152

10.2.1 Two-Tier Architecture . 152
10.2.2 Three-Tier Architecture. 153
10.2.3 Network Security . 157

10.3 Secure Clients and Network Computers 159
10.4 Server-Side Java . 160

10.4.1 The Cost of Server-Side Java . 161
10.4.2 Servlets . 162

10.5 Distributed Object Architectures - RMI 164
10.5.1 The Security of RMI . 166

Chapter 11. Firewalls: In and Out of the Net 169
11.1 What Is a Firewall? . 169
11.2 What Does a Firewall Do? . 170

11.2.1 Inside a TCP/IP Packet. 170
11.2.2 How Can Programs Communicate through a Firewall? . 173

11.3 Detailed Example of TCP/IP Protocol 174
11.3.1 DNS Flow (UDP Example) . 175
11.3.2 HTTP Flow (TCP Example). 176

11.4 Proxy Servers and SOCKS. 181
11.4.1 Proxy Servers . 181
11.4.2 What Is SOCKS? . 182
 v

11.4.3 Using Proxy Servers or SOCKS Gateways 185
11.5 The Effect of Firewalls on Java. 186

11.5.1 Downloading an Applet Using HTTP 186
11.5.2 Stopping Java Downloads with a Firewall 186
11.5.3 Java Network Connections through the Firewall 189
11.5.4 RMI Remote Method Invocation 191

11.6 Summary . 194

Chapter 12. Java and SSL . 195
12.1 What Is SSL? . 195
12.2 Using SSL from an Applet . 197

12.2.1 Using SSL URLs with Java . 197
12.2.2 SSL Class Packages . 198

12.3 Summary . 199

Chapter 13. Java and Cryptolopes . 201
13.1 Cryptolope History . 202
13.2 Today: Cryptolope Live! . 203
13.3 Example Applications . 207
13.4 Tomorrow . 207

Chapter 14. Epilogue . 209

Appendix A. Sources of Information about Java Security 211
A.1 Companies . 211

A.1.1 JavaSoft . 211
A.1.2 Sun . 212
A.1.3 Microsoft . 212
A.1.4 IBM . 213
A.1.5 Reliable Software Technologies . 214

A.2 Universities . 214
A.2.1 Princeton. 214
A.2.2 Yale. 214
A.2.3 Georgia Institute of Technology . 215
A.2.4 Others . 215

Appendix B. Signature Formats. 217

Appendix C. The Bytecode Verifier in Detail 219
C.1 The Data Flow Analyzer . 219

Appendix D. What’s on the CD? . 223
D.1 How to Access the CD . 223
vi Java Network Security

Preface

Java is fashionable, but is it reliable? Java is entertaining, but is it
secure? Java is useful, but is it safe?

The purpose of this book is to answer those questions, from the point
of view of people who want to use Java, but want to do so reliably,
securely and safely. That makes it different from much recent writing
on Java which focuses, perfectly legitimately, on how Java can be
broken and how to avoid those dangers. We focus on how Java can
be made secure and how to exploit its strengths. The goal is to be a
practical help to the various groups of people involved in making a
Java-based application or Web site into an industrial-strength
commercial proposition.

These various groups of people have different needs and different
skills, which we have tried to meet in the different parts of the book.
The first part is aimed at the intelligent non-specialist who has to
oversee system management or application development, or
incorporate Java into the security policy. Only a basic understanding
of computers and a limited exposure to Java is assumed, but all the
themes of Java security are introduced in a context which stresses
over and over again how Java security must be seen as an integral
part of system security.

The second part goes into more detail of how Java security works, and
is aimed more at system and network administrators and
programmers, who need to know more of what is going on. Perhaps,
though, only the programmers will ever read the tables in Chapters 4
and 5.

The third part looks at the broader context in which Java operates,
including some extensions to Java security and some aspects of its
future. At the time of writing, the Java Development Kit is at JDK 1.1
level, though most people’s browsers are still at an earlier level.
Accordingly, the book is written primarily from the point of view of JDK
1.1, in the knowledge that current practical Internet applications must
be usable from JDK 1.0 browsers, and in the knowledge that JDK 1.2
with its domains of protection is not long away.
 vii

The Team That Wrote This Book

This book was produced by a team of specialists from the IBM
Installation Support Centre, Hursley, on behalf of the Systems
Management and Networking ITSO Center, Raleigh.

Dave Durbin is a specialist in Java and in Cryptolope technology at
IBM’s Internet Centre of Competence serving Europe, the Middle East
and Africa from the Installation Support Centre in Hursley, England.
He first became involved in Internet development in 1986 and has
been a frequent technical speaker on Java ever since the 1Alpha1
release in 1995. Dave graduated from the University of Edinburgh,
Scotland, in the late 1980s and worked as an object-oriented
programmer in the Life Insurance industry before joining IBM in
Edinburgh. He moved to Hursley at the beginning of 1997.

Rob Macgregor is a systems specialist at the IBM Installation Support
Centre, Hursley. He has long experience in the fields of distributed
systems management and network security, on which subjects he
writes and teaches IBM classes extensively. He also provides
technical support and advice for customers. Prior to joining the ISC in
1997, Rob was an assignee to the Raleigh ITSO Center, producing
redbooks and skills-transfer materials.

John Owlett is an Internet security specialist, also at the ISC. He first
became fascinated with logical data security while he was a visiting
associate professor at Aarhus University, Denmark, in the 1970s.
Later he had the opportunity to put the ideas into practice as a
systems manager for IBM’s large internal computer center at
Portsmouth, England. Dr. Owlett has been involved with Java since
early in 1995, the year he joined the Internet Centre of Competence
based in Hursley.

Andrew Yeomans specializes in UNIX, AIX, firewalls and security,
advising customers and teaching these subjects across Europe. He
joined the IBM Internet Centre of Competence in 1996 from IBM’s
Scientific and Technical group, where he managed the security of their
UNIX systems. He joined IBM in 1991, following 15 years in software
development and consultancy in high-quality color image processing,
page composition, hand-held terminals and word processing.
viii Java Network Security

Acknowledgements

This book had its genesis when IBM’s Internet Division asked Rick
Lacks of the International Technical Support Organization in Raleigh,
North Carolina, to arrange for a “redbook” on the subject and he
assigned the project to Rob Macgregor, then a member of his team.
The others, all members of the Internet Centre of Competence in
Hursley, christened the project JamJar; echoes of this working title can
be seen in some of the examples in the book.

Thanks to the following people for their invaluable advice and
guidance provided in the production of this book:

 • Our editors, Shawn Walsh and Gail Wojton (“the fair editrix”) of the
ITSO Center at Raleigh

 • Pete Lawther of the University of Sunderland and of the Installation
Support Centre at Hursley, who wrote Appendix A

 • Simon Phipps of the Centre for Java Technology at Hursley, for his
help in our early discussions of the project

Bibliography

Building Internet Firewalls, D. Brent Chapman and Elizabeth D. Zwicky
(O’Reilly & Associates) 1-56592-124-0

Firewalls and Internet Security, William R. Cheswick and Steven M.
Bellovin (Addison-Wesley) 0-201-63357-4

Web Spoofing: An Internet Con Game, Edward W. Felten, Drew Dean,
and Dan S. Wallach (Technical Report 540-96, Department of
Computer Science, Princeton University)

Practical UNIX and Internet Security, Simson Garfinkel and Gene
Spafford (O’Reilly & Associates) 1-56592-148-0

Vice President’s Statement on Encryption, October 1, 1996
(http://www.bxa,doc.gov/encrypt.htm)

Java Security: Hostile Applets, Holes, and Antidotes, Gary McGraw
and Edward W. Felten (John Wiley & Sons) 0-471-17842-X

TCP/IP Illustrated: Volume 1 - The Protocols, W. Richard Stevens
(Addison-Wesley) 0-201-63346-9
 ix

The Java Virtual Machine, John Meyer & Troy Downing (O’Reilly &
Associates) 1-56592-194-1

Using Assembly Language, 2nd Edition, Allen L. Wyatt (Que
Corporation) 0-88022-464-9
x Java Network Security

 -
Part 1. Introduction to Java and Security
1

2 Java Network Security

 -
Chapter 1. An Overview of Java Security

The purpose of this chapter is not only to introduce the themes of the
book to those who will later read the more detailed chapters that
follow, but also to act as a brief overview for the intelligent
non-specialist who does not need all the details. This is because the
focus of the book is on helping people to deploy Java in a secure way.
There are many people involved in that – managers, administrators,
developers, systems programmers, users – all of whom play a part.

1.1 What Java Does

What Java does is to solve the problem of executable content. What’s
that? Well, the early sites on the Worldwide Web were static: pictures
and text. That was revolutionary enough. The richness of the pages
was a revelation to anyone used to the usual staid appearance of
information downloaded from a server; the hypertext links, which made
cross-referencing easy, made it a more useful information source than
an encyclopedia; and the amount of information available was
staggering. But if you wanted a program to run, you had to send a data
file to the server where that program was – you filled in a form on the
screen, clicked the send button, and waited for the result.

Some programs are better run on the client than on a server. So why
couldn’t part of the content of the Web pages be executable? Why
couldn’t a page comprise some text, some pictures, and some
programs that run on the client? There were two reasons:

1. It would be dangerous from a security point of view. There are
enough viruses on the Web anyway. With executable content, you
might not even realize that you were downloading potentially
dangerous code.

2. The programs might not run on a particular operating system. One
of the joys of the Web was that you could choose whatever client
system was right for you and download pages running on a
completely different system.

But executable content is not just cute – it is extremely valuable:

 • Executable content can make a Web page much more exciting.
This is what Java became well known for in its early days:
dancing cartoon characters, bouncing heads, ticker tapes. You
can’t do these if all the programs must run on the server. Some
An Overview of Java Security 3

of the early examples were indeed just cute – they showed what
the technology could do, not why it was important – but
appearance, excitement, and even cuteness are important in
attracting customers to a business site.

 • Many dialogues with a customer are unbearably slow if you
have to communicate with a Web server at each interaction.
With executable content, the dialogue – an insurance proposal,
a request for a credit card, a browse through a catalogue, or
whatever – can be completed on the client machine, and the
resulting transaction sent across the Web.

Java makes executable content possible while solving the problems
noted above by having three components:

1. A Java Virtual Machine (JVM) designed to prevent the downloaded
code (usually called an applet) from tampering with the client
system. The applet runs in a protected space, known informally as
the sandbox, and has only limited and always strictly controlled
access to the surrounding system. This is to meet requirement 1
above.

2. A set of bytecodes – virtual machine instructions – which are
interpreted by the JVM. You have to have these to prevent the
applet from jumping outside the sandbox, but they have a benefit of
their own. Since they are machine-independent, if you have a JVM
for your workstation, then you can run any applet from any server,
satisfying requirement 2 above.

3. A high-level object-oriented language in which to write the classes
that make up the applets. This is a language similar in many ways
to C++ with some functions (such as pointers) omitted because
they could be used to escape from the sandbox.

There is now a Java Development Kit (JDK) – comprising JVM,
compiler, and basic classes – for most operating systems, and most
Web browsers contain a JVM, so executable content is now real.

So far, we have concentrated on executable content and on the
downloaded code known as an applet. Java high-level language,
however, has wider uses than just applets. It is a general-purpose
language, a well designed object-oriented language, in which you can
write any program you like.

A Java program which is loaded locally, rather than from the Web, is
called an application. Because it has not come over the Web, it is not
4 Java Network Security

 -
constrained by the sandbox and can access the local machine, just
like a program written in any other language. In this book we always
clearly distinguish between applets and applications.

All you have to do is write an application once in Java, and you can run
it anywhere that has a JVM. This makes it very useful for people
writing applications which will be used by a wide variety of users –
quite independently of whether they will ever be downloaded from the
Web.

1.2 Java Is Not an Island: Java as a Part of Security

The geographical Java certainly is an island: a separate part of
Indonesia. But Java the computer system is not something separate
from the other components that make up the total system. So it is
essential that the security of Java is seen as being one part of the
security of the whole. This is hardly a new message. More than 100
years ago, Conan Doyle was ridiculing an approach to physical
security that fitted a top-grade door lock and left the windows
unsecured.

What this means for Java security is that it must be holistic, adequate
and perpetual.

First, Java security must be holistic. An attacker who wishes you harm
(rather than one who wants to prove his own cleverness) will focus on
the weak links in the security, so the security of a system that uses
Java must be reviewed as a whole, following the flows of data and
application, and considering the potential for attack or accident at each
point. Specifically, if Java is being used to pass applets over a shared
network like the Internet, then you have to consider:

 • Private network protection, using a firewall and allied security
policies

 • Private data protection, using encryption to shield data as it flows
over the public network

�&KXEE�ORFN�WR�WKH�GRRU�����DQG�WKRVH�SUHSRVWHURXV�(QJOLVK�ZLQGRZV�ZKLFK�
D�FKLOG�FRXOG�RSHQ����6KHUORFN�+ROPHV��$�6FDQGDO�LQ�%RKHPLD

�$�&RQDQ�'R\OH�������
An Overview of Java Security 5

 • User authentication, using digital signatures, or protected
passwords

Secondly, Java security must be adequate. It has to be strong enough
for the purpose in hand: Java must not be the weak link. But there is
no need to spend extra to make it far and away the strongest link,
unless either:

 • Your potential attackers don’t just want to crack your system, they
want to crack your Java system, or

 • Your users have a particular fear of Java, and you need to reassure
them (security has to match levels of threat and worry, as well as,
levels of potential loss)

So, if you cannot put fastenings on your sash windows, you don’t need
that Chubb lock on the front door.

Thirdly, Java security must be perpetual. This book will help you build
a secure Java system to face today’s perils of accident and attack. But
those perils will change. So you must review your Java security – as a
part of your overall security of course – regularly, to stay one jump
ahead of potential attackers.

How well does Java meet those needs? Three points:

1. Java architecture permits secure design. Java’s use of a
“sandbox” provides the capability of separating your computer from
the applets you download. This is described in much more detail
later. The point here is that the problems with Java that have been
reported are problems with the implementation, not problems with
the design.

2. Java implementations respond to error reports. The attack
applets we describe later were all reported by applet hunters; they
come, not from incidents of loss on the Internet, but from laboratory
studies of how Java can be used and abused. The applet hunters
have been as responsible as they are clever, and have alerted the
Java implementors to the problems before telling the public. So
normally you will hear of an implementation loophole at the same
time as hearing of the fix. Thus any risk of using Java gets
gradually less as loopholes are closed.

3. Nothing in Java should permit complacency. Installers and
users of Java must be as willing to respond as the implementors.
That is, users must recognize that loopholes will be found and must
be closed without delay.
6 Java Network Security

 -
In summary, provided that you have an implementation that is free of
known errors, and that you install, maintain and review Java carefully,
you can reach levels of security which are appropriate for any
business purpose.

1.2.1 Safety and Security
To enthusiastic object-oriented programmers, it is the Java language
that is important. It contains a number of important differences from
C++ which reduce the chance of writing a rogue program by accident,
as well as making it more difficult to write a rogue program by design.

But, from a security point of view, it is the Java virtual machine that
matters. The business benefits of Java are the security and portability
of the JVM, and these come from the bytecodes, not from the Java
source language.

So, we shall be more concerned with bytecode programs, which are
different from Java source programs. All valid Java source programs
can be compiled to bytecode programs, but there are bytecode
programs that have no corresponding Java source. And, of course, it
is possible to generate Java bytecode programs from other high-level
languages. The first other language was NetREXX, a variant of the
REXX language, and others have followed.

This difference between high-level and bytecode is both bad and good:

 • It is bad because people can circumvent the design features of the
Java language. This was designed to produce well-behaved
bytecode programs, a design that has limited security strength if an
attacker can write directly in bytecode.

 • It is good because you can foil the decompilers. These take
bytecode and generate Java source code – source code which is
very readable because of the large amount of information a Java
class file contains. To prevent people decompiling your valuable
copyright code, you can modify the compiled class file so that there
is no decompiled version. (We discuss this in detail in
“Decompilation Attacks” on page 60.

So the good features of the high-level Java language should be seen
as safety features, not as security features.
An Overview of Java Security 7

1.2.2 Java as an Aid to Security
Sometimes, discussions of Java and security focus only on the perils
of Java, as though there was only a downside to using it, from a
security point of view anyway. But this is not the whole story. Java can
be a great help to the security of a system, and can strengthen weak
links, primarily because code distribution is a risky process.

Many applications need code running on the client in cooperation with
code running on the server – for example, graphical front ends, or
dialers to connect to the telephone network – and this code has to be
installed there somehow. The distribution of this code is often a weak
link in an online system, and it is usually much easier to attack this
than to waste time trying to decrypt messages flowing over the
Internet.

What is the danger? If this code can be tampered with, then, for
example, a dialer number can be changed so that the client dials the
attacker’s site rather than the proper server. The client will never
realize this because the attacker, acting as a “man in the middle”
forwards all traffic between client and server, reading it as it goes. Or a
virus can be introduced, or a host of other horrible possibilities.

The options for code distribution are:

 • To send a physical diskette or CD-ROM to the client

 • To have the client download the code over an existing network

 • To use Java

The safest of the three is Java. It isn’t always suitable – the client must
already have a network connection that is fast enough for the purpose
– but it is by far the easiest to update with a new release, it is less
easily intercepted than a physical distribution and, unlike a normal
download, it is checked on arrival. Moreover, it can be signed.

The checking and signing of Java applets is central to Java security
and (very) much more will be said about them in later chapters. In this
introductory chapter, it is enough to describe briefly the three
components of applet checking:

1. The Class Loader is responsible for bringing together all of the
different parts of the program so that it can be executed.

2. The Class File Verifier (which includes the bytecode verifier)
checks that the program obeys the rules of the Java Virtual
8 Java Network Security

 -
Machine (but note that this does not necessarily mean that it obeys
the rules of the Java language).

3. The Security Manager imposes local restrictions on the things that
the program is allowed to do. It is perfectly possible to customize
this to allow applets limited access to carefully controlled
resources, but in practice the browser vendors have implemented a
version of the highly restrictive default that Sun supplies. This
allows no access to the local file system, and network access only
to the location from which the applet, or its Web page, came.

The way forward for allowing wider access is via the signed applets of
JDK 1.1. You may wish, for example, to print something from an
applet. You are unlikely to want your security manager to allow anyone
to do that, but you might allow access to especially trustworthy people.
So you download the applet; discover that it is encrypted with
someone’s private key; check the accompanying public-key certificate
to make sure it is valid, and identifies someone especially trustworthy;
decrypt the applet with that public key, and then allow it the necessary
access.

One important thing that distinguishes Java from other forms of
executable content is that it has both the web of trust that signatures
bring and the three security components to validate the downloaded
code. These precautions are taken, not because Java users are less
trustful than others, but because even the most trusted of code
suppliers sometimes make mistakes, or can have their systems
compromised. Without the validation, a web of trust can become a web
of corruption if any one trusted site is successfully cracked.

1.2.3 Java as a Threat to Security
So, in the absence of implementation errors, either on the part of the
browser vendors or on the part of computer operators, administrators
and systems programmers, Java should be safe. The browser vendors
have a good reputation for responding to reports of flaws in their
implementations, and one of the key purposes of this book is to help
you avoid any slips in your installation.

If something does go wrong, then the most severe threat you face is
system modification, the result of what are sometimes called “attack”
applets. This is worse than someone’s being able to read data from
your system, because you have no idea what has been left behind.
There could be a virus on your computer, or on any computer to which
An Overview of Java Security 9

you are connected. Alternatively, some of your business data could
have been modified so that it is no longer valid.

This is exactly the sort of thing that Java is intended to prevent, and its
defences against attack applets are strong. They are equally strong
against the next, still severe, threat of privacy invasion, in which read
access rather than update access is gained. This does not leave you
having to reinstall all your software and reassemble all your business
data, but the loss can be serious enough. In addition to the exposure
of business data, if your private key is compromised, then it can be
used to sign electronic payments in your name.

Because Java has the strongest security for executable content, it has
been seen as a challenge by security specialists, who find both the
intellectual challenge exciting and want to help close any loopholes in
Java implementations. Up to the date of writing, all the reported attack
applets were developed by such specialists, not by malicious or
criminal attackers.

There are another couple of, much less severe, threats against which
Java does not have strong defences. The very essence of Java is that
a program from a server will come down and run on your client with
little, if any, intervention from you. What if the program is not one you
want to run... if it is stealing your cycles?

The most extreme form of cycle stealing is a denial of service attack.
The applet can use so much of the client’s machine time that it cannot
perform its normal function. This is the Java equivalent of flooding a
company with mail or with telephone calls; like those nuisances it
cannot readily be prevented – all you can do is find out who is
responsible and take action after the event.

Less extreme examples of cycle stealing are the irksome, nuisance,
applets. These run unhelpful programs intended to show how clever
the author is and embarrass the owner of the client machine. They can
even pretend to be you (psyche stealing?), for example by sending
e-mail that appears to come from you.

1.2.4 Java as Something to Be Secured
This is a different point of view again. From this point of view, Java
applets are seen neither as aids to strengthening security weak links,
nor as potential weak links themselves, but as assets that need to be
10 Java Network Security

 -
protected. They can cost a lot to write and are valuable. They must not
be copied and their use should be charged for.

This is an area which is still in its infancy. As was described earlier in
this chapter, Java is a well-behaved language, and a Java class file
can be decompiled to give a thoroughly intelligible Java program. So
the same person who developed the Mocha decompiler has also
developed the Crema obfuscator, which smudges the information in
the class file so that the decompiler will no longer work. There is more
on this subject in “Beating the Decompilation Threat” on page 67.

However, the long term goal has to be to charge for the use of valuable
Java applets. The most promising approach at the moment is the work
on Cryptolopes, whereby the bulk of the applet is downloaded in
encrypted form. Enough is unencrypted that the user can see what he
is being offered, and request the decryption key, thereby agreeing to
pay. This approach is discussed in Chapter 13, “Java and Cryptolopes”
on page 201.

1.2.5 Writing Secure Java
The sort of applet described in the previous section – one that is an
asset because it performs significant business function – is likely to
need to communicate with the server it came from, and to do so
securely. All sensitive communication over the Internet needs proper
cryptographic protection, and so JDK 1.1 contains an application
programming interface (API) for security.

There are two keys parts of this for writing applets that use
cryptography. One of the reasons for the division is that some
cryptographic functions are seen as being dangerous in the wrong
hands. No government wants to provide organized crime, or terrorist
groups, with a cheap effective way of communicating that the police
cannot decrypt. Exactly how to prevent this is not so clear, so there are
many different export and import rules for cryptographic products. The
cryptographic interfaces are divided into two parts, JCA and JCE,
which reflect the divide between exportable and unexportable
cryptography. We discuss this in more detail in “Cryptography to the
Rescue!” on page 31.

1.2.6 Staying One Jump Ahead
To get ahead, the owners of a client or a Web site need to develop an
overall security policy of which Java is a part, and implement it with
An Overview of Java Security 11

care. They need to use the latest information on what is known about
Java security. This is bound to change; realistically, Java is so young
that it cannot be otherwise.

So how do they find the very latest information? Two key sources are
the CERT Coordination Center, which is on the Web at
http://www.cert.org/ and Sun Microsystems’s list of frequently asked
questions about applet security at http://java.javasoft.com/sfaq. This
gets you ahead. Staying ahead means that the security policy should
include regular checks of these sites, and regular reviews of which are
the right sites to check.

Another part of staying ahead involves balancing security with stability.
If an implementation error is discovered in the browser you use, and
you see on the Web sites a description of the problem together with
news of a new beta version of the browser to fix the problem, do you
change to the new beta at once? Systems managers are traditionally
very cautious about beta code: they want to see a lot of testing before
they put it live on their production systems. This caution is one of the
most important causes of the very high availability levels of modern
systems, so systems managers are not about to change.

Traditionally, a change to include new function is forced to wait until it
passes thorough testing, while a security change may be allowed
through with less testing. It’s a business decision, and it’s worth
including guidance in the security policy. The only way in which Java is
different from all other areas of security, where similar business
decisions must be made, is that news of a loophole can be spread
worldwide extremely quickly, so the presumption should be that
security fixes must go on quickly.

1.2.7 The Vigilant Web Site
The cure for abuse is proper use, not non-use. Executable content has
such a great value to computer systems and to computer business that
we need to do it properly, not to ban it.

Proper use of Java involves vigilance on everybody’s part, including:

 • Vigilance on the part of the systems administrators who need to be
sure that they can trust their sources

 • Vigilance on the part of the network administrators who need to
protect against network attacks such as the man-in-the-middle
12 Java Network Security

 -
 • Vigilance on the part of applet developers who need to be sure that
the tools they are using do not corrupt their class files: their
workstations may not be production machines, but they must be
properly protected

There is something of an irony in remarks one sometimes hears about
how Java should be turned off, made by people who are happy to
download a code patch or a driver from a Web site. It is similar to
those who are deeply concerned about sending their credit card
information over the Web, but would willingly hand a credit card to a
waiter in a restaurant.

If Java is used with vigilance, then its unique combination of web of
trust and code validation makes it more secure than forms of
executable content which depend on the web of trust alone. And, of
course, dramatically more secure than downloading natively
executable code from the Web.
An Overview of Java Security 13

14 Java Network Security

Chapter 2. Attack and Defense

Many claims have been made for the security of Java. A lot of these
claims have been rather exaggerated, but underlying them is the fact
that security was designed-in at an early stage in the development of
the language. Saying that Java has strong security is like challenging
the world to find the holes in it, which is exactly what has happened.
Some very clever (and very devious) people have been applying their
brain-power to the problem of breaking down the Java defenses.

In this chapter we give a high-level view of how Java defends itself and
then summarize the different ways in which it can be attacked.

2.1 Java Is Not Just a Language

Most of the books on the subject deal with Java as a programming
language. As a programming language it has much to recommend it.
Its syntax is very like C, but with many of the features that hurt your
brain removed. It is strongly object-oriented, but it avoids the more
obscure corners of the O-O world.

For most programming languages the question of "how secure is it"
does not arise. It’s the application that needs to implement security,
not the language it is written in. However, Java is many other things in
addition to being a programming language:

 • A set of object-oriented frameworks, primarily for GUI building and
networking

 • An operating system

 • A client/server management mechanism

 • A unifying force that cuts across operating system and network
boundaries

It is not surprising that Java has become so widely accepted, so
quickly. Before we look at the security issues, let us review some Java
fundamentals.

2.2 Components of Java

There are a number of different components to Java:
15

 • Development environment
The Java Development Kit (JDK) contains the tools and executable
code needed to compile and test Java programs. However, unlike a
normal language, the JDK includes object frameworks for creating
graphical user interfaces, for networking and for complex I/O.
Normally these things are provided as additions, either by the
operating system or by another software package. Of course,
fully-featured development environments do exist for Java, but the
core language includes a lot of what they would normally have to
provide.

 • Execution environment
Java’s execution environment is neither that of a compiled
language nor an interpreted language. Instead it is a hybrid,
implemented by the Java Virtual Machine (JVM). Java is often said
to be platform-independent, but first the JVM must be ported to
each platform to provide the environment it needs. The JVM
implementation is responsible for all of the built-in security of Java,
so it is important that it is done properly.

 • Interfaces and architectures
Java applications live in the real world. This means that they must
be able to interact with non-Java applications. Some of these
interactions are very simple (such as the way that a Java applet is
invoked in a Web page). Others are the subject of more complex
architectural definitions, such as the JDBC interface for relational
database support. The mechanism for adding encryption to Java
security, the Java Cryptography Architecture (JCA), falls into this
latter category.

2.2.1 The Development Environment
Once you have installed the JDK, you can start creating Java source
code and compiling it. Java is like any other high-level programming
language, in that you write the source code in an English-like form.
The source code then has to be converted into a form that the machine
can understand before it can be executed. To perform this conversion
for a normal language, the code is usually either compiled (converted
once and stored as machine code) or interpreted (converted and
executed at runtime).

Java combines these two approaches. The source code has to be
compiled with a Java compiler, such as javac, before it can be used.
This is a conventional compilation, but the output that it produces is
not machine-specific code, but instead is bytecode, a system
16 Java Network Security

independent format. We will take a closer look at how bytecode is
constructed in “Java Bytecode” on page 69.

In order to execute, the compiled code has to be processed by an
interpreter, which is part of the Java execution environment (known as
the Java virtual machine, or JVM). The JVM is a runtime platform,
providing a number of built-in system services, such as thread support,
memory management and I/O, in addition to the interpreter.

2.2.1.1 Class Consciousness
Java is an object-oriented language, meaning that a program is
composed of a number of object classes, each containing data and
methods. One result of this is that, although a program may consist of
just a single class, when you have compiled it into bytecode only a
small proportion of the code that gets executed is likely to be in the
resulting .class file. The rest of the function will be in other classes that
the main program references. The JVM uses dynamic linking to load
these classes as they are needed. As an example, consider the simple
applet contained in the following two Java source files:

Figure 1. Applet Source Code, PointlessButton.java

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import jamjar.examples.Button;
public class PointlessButton extends java.applet.Applet implements
java.awt.event.ActionListener {
 Button donowt = new Button("Do Nothing");
 int count = 0;
/**
 * The button was clicked.
 */
 public void actionPerformed(java.awt.event.ActionEvent e) {
 donowt.setLabel("Did Nothing " + ++count + " time" + (count == 1? "": "s"));
 }
 public void init() {
 setLayout(new BorderLayout());
 this.add("Center", donowt);
 donowt.addActionListener(this);
 }
Attack and Defense 17

Figure 2. Invoked Class File, Button.java

The first listing, pointlessButton.java, is an applet that places a button
on the Web page. It is not a very useful button, but we like it. Instead of
using the standard AWT Button class it uses a class of our own, also
called Button (see the second listing), but in a locally-written package.
This works like a normal button, except that it changes color when you

package jamjar.examples;
import java.awt.Color;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
/**
 * This class was generated by a SmartGuide.
*/
public class Button extends java.awt.Button implements MouseListener {
/**
 * @param title java.lang.String
 */
 public Button(String title) {
 super(title);
 addMouseListener(this);
 setBackground(Color.white);
 }
/**
 * Set the color of the button to red when the mouse enters
 */
 public void mouseEntered(MouseEvent m) {
 setBackground(Color.red);
 }
/**
 * Reset the color of the button to white when the mouse exits
 */
 public void mouseExited(MouseEvent m) {
 setBackground(Color.white);
 }
/**
 * Three do nothing methods.
 * Needed to implement the MouseListener interface
 */
 public void mouseClicked(java.awt.event.MouseEvent e) {}
public void mousePressed(java.awt.event.MouseEvent e) {}
public void mouseReleased(java.awt.event.MouseEvent e) {}

}

18 Java Network Security

move the mouse pointer over it. Figure 3 shows two copies of the
applet running in a Web page.

Figure 3. Running the pointlessButton Applet

The total size of the bytecode for this example is only 2 KB. However,
the two classes cause a lot of other code to be dynamically installed,
either as a result of inheritance (defined by the extends keyword in the
class definition) or by instantiation (when a class creates an instance
of another class with the new keyword). Figure 4 shows the hierarchy
of classes that could potentially be loaded to run our simple applet
Attack and Defense 19

(this is a simplified view, because it does not consider classes that
may be invoked by classes above the lowest level of the hierarchy).

Figure 4. Classes Loaded for the pointlessButton Applet

This diagram illustrates a number of things about Java classes:

1. The classes are arranged in packages which are collections of
related classes. The language defines a large number of these,
which have to be implemented by every JVM implementation. You
can add your own class packages by defining new classes that
inherit from one of the basic classes. In our example, all but two of
the classes are provided as standard. Normally, Java class loaders

PointlessButton Button

Applet

ButtonPanel

Container

Component

Object

ActionEvent

AWTEvent

EventObject

Component
-

InputEvent

MouseEvent

String

Uses

Extends

Package
Boundary

java.lang

java.awt

java.applet

java.util

java.awt.event

jamjar.examples
20 Java Network Security

impose a direct relationship between a package name and the
location of the directory in which it expects to find the class files for
the package. So, in our example, the classes contained in the
jamjar.examples package will be found in directory
{codebase}/jamjar/examples (codebase is the base directory on the
server from which the applet is loaded, specified in the applet tag).1

2. Classes are defined as extending existing classes. This means that
they can inherit the properties (variables and methods) of the
higher (or super) class. They can also selectively override the
properties of the super class. They also add new properties of their
own.

3. Java identifies classes using the fully-qualified class name, that is,
the combination of the package name and the class name. This
allows you to have duplicated class names, such as our two Button
classes. If two classes in different packages do have duplicate
names, the programmer must take care to use the right one. Two
things that help with this are: importing classes by name, instead of
importing the whole package, and placing the trusted classes at the
start of the class path.

2.2.1.2 VABs and Beans
Java is unusual in the breadth of function that its built-in class
frameworks provide; however, for a project of any complexity you are
likely to employ graphical tools, such as a visual application builder
(VAB) to link together predefined components, thereby reducing the
code you have to write to the core logic of the application. Examples of
VABs include IBM VisualAge for Java and Lotus Development’s
BeanMachine.

A component in this context is a package of Java classes that perform
a given function. The JavaBeans definition describes a standard for
components, known as Beans. Basically a Bean is a package of code
containing both development and runtime components that:

 • Allows a builder tool to analyze how it works (“introspection”).

 • Allows a builder tool to customize its appearance and behavior.

 • Supports “events,” a simple communication metaphor than can be
used to connect beans.

1 In fact we are guilty of using an improper name construction here. If your package will be used together with
packages from other sources, you should follow the naming standard laid down in the Java Language
Specification, Gosling, Joy and Steele. In our case this would lead to a package name something like
com.ibm.JamJar.examples. If you want to know more about the Java language specification, refer to
http://java.sun.com/docs/books/jls/.
Attack and Defense 21

 • Supports “properties,” or settable attributes, used both when
developing an application and programmatically when the
application is running.

 • Supports persistence, so that a bean can be customized in an
application builder and then have its customized state saved away
and reloaded later.

 • Provides interfaces to other component architectures, such as
ActiveX and LiveConnect.

From this list you can infer that, although a Bean is mostly made up of
Java classes, it can also include other files, containing persistent
information and other resources such as graphical elements, etc.
These elements are all packed (or pickled) together in a JAR (Java
Archive) file.

From a security viewpoint, VABs and Beans do not affect the
underlying strengths and weaknesses of Java. However, they may add
more uncertainty, in that your application now includes sizeable
chunks of code that you did not directly write. Their ability to provide
interfaces to other component architectures may also cause problems,
as we discuss in “Interfaces and Architectures” on page 27.

2.2.2 The Execution Process
We have said that the Java virtual machine operates on the stream of
bytecode as an interpreter. This means that it processes bytecode
while the program is running and converts it to "real" machine code
that it executes on the fly. You can think of a computer program as
being like a railroad track, with the train representing the execution
point at any given time. In the case of an interpreted program it is as if
this train has a machine mounted on it, which builds the track
immediately in front of the train and tears it up behind. It’s no way to
run a railroad.

Fortunately, in the case of Java, the virtual machine is not interpreting
high-level language instructions, but bytecode. This is really machine
code, written for the JVM instruction set, so the interpreter has much
less analysis to do, resulting in execution times that are very fast.The
JVM often uses "Just in Time" (JIT) compiler techniques to allow
programs to execute faster, for example, by translating bytecode into
optimized local code once and subsequently running it directly.
Advances in JIT technology are making Java run faster all the time.
IBM is one of many organizations exploring the technology. Check the
22 Java Network Security

IBM Tokyo research lab site at http://www.trl.ibm.co.jp for project
information.

Before the JVM can start this interpretation process, it has to do a
number of things to set up the environment in which the program will
run. This is the point at which the built-in security of Java is
implemented. There are three parts to the process:

1. The first component of applet checking is the applet class loader.
This separates the classes it loads to avoid attack: local classes
are separated from remote classes, and classes from different
applets are separated from each other. The search order is then
Java built-in classes first, local classes next, remote classes last.
So, if, by accident or design, an applet contains a class of the same
name as a built-in or local class, it will not overwrite it.

2. The second component is the class file verifier. This runs when the
applet is loaded, and aims either to confirm that the bytecode
program will stay within the sandbox, or to reject it. It is a multipass
process which begins by making sure that the syntax is valid,
checks for stack overflow or underflow, and runs a theorem prover
that looks to see that access and type restrictions are observed.

3. The third component is the security manager, which checks
sensitive accesses at runtime. This is the component that will not
allow Java applets illicit access to the file system, or to the network,
or to the runtime operating system.

2.2.2.1 The Class Loader
So how do these classes get loaded? When the browser finds an
<applet> tag in a page, it starts the Java virtual machine which, in turn,
invokes the applet class loader. This is, itself, a Java class which
contains the code for fetching the bytecode of the applet and
presenting it to the JVM in an executable form. The bytecode includes
a list of referenced classes and the JVM works through the list, checks
to see if the class is already loaded and attempts to load it if not. It first
tries to load from the local disk, using a platform-specific function
provided by the browser. In our example, this is the way that all of the
core java classes are loaded. If the class name is not found on the
local disk, the JVM again calls the class loader to retrieve the class
from the Web server, as in the case of the JamJar.examples.Button
class (above).
Attack and Defense 23

2.2.2.2 Where Class Loaders Come From
The class loader is just another Java class, albeit one with a very
specific function. An application can declare any number of class
loaders, each of which could be targeted at specific class types. The
same is not true of an applet. The security manager prevents an applet
from creating its own class loader. Clearly, if an applet can somehow
circumvent this limitation it can subvert the class loading process and
potentially take over the whole browser machine.

The JVM keeps track of which class loader was responsible for loading
any particular class. It also keeps classes loaded by different applets
separate from each other.

2.2.2.3 The Class File Verifier
At first sight, the job of the class file verifier may appear to be
redundant. After all, bytecode is only generated by the Java compiler,
so if it is not correctly formatted and valid, surely the compiler needs to
be fixed, rather than having to go through the overhead of checking
each time a program is run?

Unfortunately, life is not that simple. The compiled program is just a file
of type ".class" containing a string of bytes, so it could be created or
modified using any binary editor. Given this fact, the Java virtual
machine has to treat any code from an external source as potentially
damaged and therefore in need of verification.

In fact, Java divides the world into two parts, Trusted and Untrusted.
Trusted code includes the "local" Java classes which are shipped as
part of the JVM and sometimes other classes on the local disk
(detailed implementation varies between vendors). Everything else is
untrusted and therefore must be checked by the class file verifier. As
24 Java Network Security

we have seen, these are also the classes that the applet class loader
is responsible for fetching. Figure 5 illustrates this relationship.

Figure 5. Where the Class File Verifier Fits

We will look in detail at the things that the class file verifier checks in
“The Class File Verifier” on page 86.

You can see that, for an applet, the class loader and the class file
verifier need to operate as a team, if they are to succeed in their task
of making sure that only valid, safe code is executed.

From a security point of view the accuracy of the job done by the class
file verifier is critical. There are a large number of possible bytecode
programs, and the class file verifier has the job of determining the
subset of them that are safe to run, by testing against a set of rules.
There is a further subset of these verifiable programs: programs that
are the result of compiling a legal Java program. Figure 6 illustrates
this. The rules in the class file verifier should aim to make the
verifiable set as near as possible to the set of Java programs. This

JVM
attempts
class load

1

2
Class File
Verifier

Built-in loader
for local, trusted
classes

Applet class loader
fetches classes
from URLs
Attack and Defense 25

limits the scope for an attacker to create bytecode that subverts the
safety features in Java and the protection of the security manager.

Figure 6. Decisions the Class File Verifier Has to Make

2.2.2.4 The Security Manager
The third component involved in loading and running a Java program
is the security manager. This is similar to the class loader in that it is a
Java class (java.lang.SecurityManager) that any application can
extend for its own purpose.

The SecurityManager class provides a number of check methods
associated with specific actions that may be risky. For example, there
is a checkRead method which receives a file reference as an
argument. If you want your security manager to prevent the program
from reading that particular file, you code checkRead to throw a
security exception.

Although any application could implement SecurityManager, it is most
commonly found when executing an applet, that is, within a Web
browser. The security manager built into your browser is wholly
responsible for enforcing the sandbox restrictions: the set of rules that
control what things an applet is allowed to do on your browser
machine. Any flaw in the coding of the security manager, or any failure
by the core classes to invoke it, could compromise the ability to run
untrusted code securely.

2.2.2.5 The Sandbox Restrictions
The main objectives of the sandbox are to:

All bytecode programs

Verifiable bytecode programs

"Java" bytecode programs

Bytecode programs
that are valid, but
which cannot be
verified
26 Java Network Security

 • Prevent damage to the browser system caused by updating files or
running system commands.

 • Prevent the uninvited retrieval of data by reading files or extracting
environmental information.

 • Prevent the browser machine from being used as a platform to
attack other systems.

 • Prevent the trusted built-in Java classes on the browser from being
overridden or corrupted.

This last objective is the key to all of the others. This is because the
security manager is, itself, a built-in class so if an attacker can corrupt
or bypass it, all control is lost.

The Security Manager is part of the local browser code, so the
implementation of the sandbox restrictions is the responsibility of each
browser vendor. However, they all have the same objectives, so the
result is a set of restrictions that is common across most vendors’
implementations:

 • No local disk access

 • Very limited environmental information

 • The "phone home" rule: the only host that an applet can establish a
network connection to is the one from which it was loaded

 • No linkage to local code

 • No printing

We will look at the sandbox restrictions in more detail in “What the
Security Manager Does” on page 97.

2.2.3 Interfaces and Architectures
We have discussed two parts of the world of Java, the development
environment and the execution environment. The third part is where
the world of Java meets the rest of the world, that is, the capabilities it
provides for extending Java function and integrating with applications
of other types. The simplest example is the way that a Java applet is
created and integrated into a Web page by writing the program as a
subclass of the Applet class and then specifying the class name in an
<applet> HTML tag. In return, Java provides classes such as URL and
a number of methods for accessing a Web server.
Attack and Defense 27

2.2.3.1 Don’t Go Native! Seek Purity!
Another simple way to extend Java is by the use of native methods.
These are sections of code written in some other, less exciting,
language which provides access to native system interfaces. For
example, imagine an organization with a helpdesk application which
provides a C API for creating new problem records. You may well want
to use this so that your new Java application can perform
self-diagnosis and automatically report any faults it finds. One way to
do so is to create a native method to interpret between Java and the
helpdesk application’s API. This provides simple extensibility, but at
the cost of portability and flexibility, because:

 • The native method has to be compiled for a specific system
platform.

 • It must be pre-installed and cannot be installed dynamically like a
Java applet.

 • It cannot be invoked from an applet, because the sandbox
restrictions prevent it.

The Java purist will deprecate this kind of application. In fact, although
the quest for 100% Pure Java sounds like an academic exercise, there
are a number of real-world advantages to only using well-defined,
architected interfaces, not the least of which is that the security
aspects have (presumably) already been considered.

2.2.3.2 Some of the Roads to Purity
As projects using Java have matured from being interesting exercises
in technology into mission-critical applications, so the need has arisen
for more complex interactions with the outside world. The Java applet
gives a very effective way to deliver client function without having to
install and maintain code on every client. However, the application you
create this way still needs access to data and function contained in
existing "legacy" systems.2 With JDK 1.1 JavaSoft have introduced a
number of new interfaces and architectures for this kind of integration.
The objective is to enable applications to be written in 100% Pure
Java, while still delivering the links to the outside world that real
requirements demand.

Some of the more notable interfaces of this kind are:

2 "Legacy" seems to be the current word-of-the-month to describe any computer system that does not fit the
brave new architecture under discussion. It is an unfortunate choice, in that it implies a system that is outdated or
inadequate. You may have a state-of-the-art relational database that is critical to the running of your business,
but to the Web-based application that depends on the data it contains, it is still a "legacy system".
28 Java Network Security

 • JavaBeans. As we discussed above, these not only provide easier
application development, but also provide integration with other
distributed object architectures. From a security point of view this
capability opens a back door which an attacker could exploit. The
Java security manager provides strict and granular controls over
what a Java program may do. But these controls are dependent on
the integrity of the Java Virtual Machine and in particular the trusted
classes it provides. A Java applet cannot meddle with the trusted
classes directly, but a Bean can provide linkage to a different type
of executable content, with less stringent controls. This could be
used to corrupt the JVM trusted classes, thereby allowing an attack
applet to take over.

 • Remote Method Invocation (RMI). This allows a Java class
running on one system to execute the methods of another class on
a second system. This kind of remote function call processing
allows you to create powerful distributed applications with a
minimal overhead. For example, an applet running on a browser
system could invoke a server-side function without having to
execute a CGI program or provide its own sockets-based protocol.
The security concerns for RMI are, in fact, similar to the CGI case.
The server code is not subject to the applet sandbox restrictions, so
the programmer needs to be wary of unintentionally giving the
client more access than he or she intends.
For example, consider a Java application that accesses a database
of personal information, consisting of a server-side application
communicating with a client applet. When writing the application,
the programmers will naturally assume that the only code involved
is what they write. However, the Java code that initiates the
connection does not have to be their friendly applet, it could be the
work of a cracker. The server application must be very careful to
check the validity of any requests it gets and not rely on client-side
validation.

 • Object Request Brokers (ORBs). RMI provides a way to remotely
execute Java code. However, for many years the O-O world has
been trying to achieve a more generic form of remote execution.
That is, a facility that allows a program to access the properties and
methods of a remote object, regardless of the language in which it
is implemented or the platform on which it runs. The facility that
provides the ability to find and operate on remote objects is called
an object request broker, or ORB. One of the most widely-accepted
standards for ORBs is the Common Object Request Broker
Architecture (CORBA) and packages are becoming available that
Attack and Defense 29

provide a CORBA-compatible interface for Java (for example,
VisiBroker for Java from VisiGenic Corp, which is soon to be part of
the core Java classes). Figure 7 on page 30 illustrates the
relationship between a Java application or applet and a remote
object. Clearly, in an implementation of this kind the Java program
relies on the security of the request brokers. It is the responsibility
of the ORB and the inter-ORB communications to authenticate the
endpoints and apply access control. The official standard for
inter-ORB communications is the Internet Inter-ORB Protocol
(IIOP).

Figure 7. Interacting with an ORB

 • JDBC. This ought to stand for "Java Database Connectivity," but
actually it is a name in its own right (when you are changing the
world, who needs vowels?). JDBC is an API for executing SQL
statements from Java. Most relational databases implement the
ODBC API (which does stand for something: Open Database
Connectivity), originated by Microsoft. JBDC thoughtfully includes
an ODBC bridge, thereby giving it instant usefulness. From a
security point of view, there are some concerns. You should beware
of giving access to more data than you intended. For example,
imagine an applet which invokes JDBC on the Web server to
extract information from a database. It is important that the server
application is written to allow only the SQL requests expected from
the applet, and not the more revealing requests that an attacker
could make.

Local Host Remote Host

Java application or
applet

Other Object
Implementation

ORB ORB

Java VM

IIOP
30 Java Network Security

2.2.4 Cryptography to the Rescue!
The interfaces that we have briefly described above illustrate a big
issue in Java. The applet environment, fenced in as it is by the
sandbox restrictions, is a relatively safe platform (only "relatively" safe,
because it relies on software controls that have been found to contain
bugs and because it provides limited protection from nuisances such
as denial of service attacks). However, in the real world we need to
extend the security model to allow more powerful applications and
interfaces.

The security model needs to answer questions such as the following:

 • Where did this piece of Java code come from?

 • What type of things should the code be allowed to do?

 • If someone appears to be using an applet I provide, how can I find
out who they are?

 • How can I protect the confidentiality of the data my Java application
is handling?

The answers to questions of this kind lie in cryptography and JDK 1.1
introduces the Java Cryptography Architecture (JCA) to define the way
that cryptographic tools are made available to Java code.

2.2.4.1 Cryptographic Tools in Brief
The derivation of the word "cryptography" is from Greek and means
literally "secret writing." Modern cryptography is still involved in
keeping data secret, but the ability to authenticate a user (and hence
apply some kind of access control) is even more important.

Although there are many cryptographic techniques and protocols, they
mostly fall into one of three categories:

Bulk encryption This is the modern equivalent of "secret
writing." A bulk encryption algorithm uses a
key to scramble (encrypt) data for
transmission or storage. It can then only be
unscrambled (or decrypted) using the same
key. Bulk encryption is so called because it is
effective for securing large chunks of data.
Some common algorithms are DES, IDEA and
RC4.

Public key encryption This is also a technique for securing data but
instead of using a single key for encryption
Attack and Defense 31

and decryption, it uses two related keys,
known as a key pair. If data is encrypted using
one of the keys it can only be decrypted using
the other, and vice versa. Compared to bulk
encryption, public key is computationally
expensive and is therefore not suited to large
amounts of data. The most commonly-used
algorithm for public key encryption is the RSA
system.

Hashing A secure hash is an algorithm that takes a
stream of data and creates a fixed-length
digest of it. This digest is a unique "fingerprint"
for the data. Hashing functions are often found
in the context of digital signatures. This is a
method for authenticating the source of a
message, formed by encrypting a hash of the
source data. Public key encryption is used to
create the signature, so it effectively ties the
signed data to the owner of the key pair that
created the signature.

We describe the process of creating a digital signature in “The
Security Classes in Practice” on page 115.

2.2.4.2 Java Cryptography Architecture
JCA is described as a provider architecture. It is designed to allow
different vendors to provide their own implementation of the
cryptographic tools and other administrative functions. This makes a
very flexible framework which will cater for future requirements and
allow vendor independence.

The architecture defines a series of classes, called engine classes,
that are representations of general cryptographic functions. So, for
example, there are several different standards for digital signatures,
which differ in their detail implementation but which, at a high level, are
very similar. A single engine class (java.security.Signature) represents
all of the variations. The actual implementation of the different
32 Java Network Security

signature algorithms is done by a provider class which may be offered
by a number of vendors.

Figure 8. Provider and Engine Classes

The provider architecture has the virtue of offering a standard interface
to the programmer who wants to use a cryptographic function, while at
the same time having the flexibility to handle different underlying
standards and protocols. The providers may be added either statically
or dynamically. Sun, the default provider, provides:

 • Digital signatures using DSA

 • Message digests using MD-5 and SHA-1

Support for the management of keys and access control lists were not
in the initial release of JDK 1.1, but will be provided later.

We discuss the JCA in more detail in “Introducing JCA: the Provider
Concept” on page 113.

2.2.4.3 US Export Rules for Encryption
Unfortunately, only a subset of the cryptographic possibilities are
implemented in JDK 1.1. It includes all of the engine classes needed
for digital signatures, plus a provider package, but nothing for bulk or
public key encryption. The reason for this is the restrictions placed by
the US government on the export of cryptographic technology.

The National Security Agency (NSA) is responsible for monitoring
communications between the US and the rest of the world, aiming to

Provider Three

Provider Two

Signature

KeyPair

MessageDigest

etc...

Algorithm A

Algorithm B

Algorithm C

User Code

Engine Classes

Provider One

Provider Classes
Attack and Defense 33

intercept such things as the messages of unfriendly governments and
organized crime. Clearly, it is not a good thing for such people to have
access to unbreakable encryption, so the US Government sets limits
on the strength of cipher that a US company can export for commercial
purposes.3 This applies to any software that can be used for "general
purpose" encryption. So, the SUN provider package that comes with
JDK 1.1 can include the full-strength RSA public key algorithm, but it
can only be used as part of a digital signature process and not for
general encryption.

Finally, in 1996, the US government relaxed the export rules. The
promise is that any strength of encryption may be exported, so long as
it provides a technique for key recovery, that is, a way for the NSA to
retrieve the encryption key if they need to break the code.

The JavaSoft response to the current restrictions was to define two,
related, packages for cryptography in Java. JCA is the exportable part,
which contains the tools for signatures and is partially implemented in
JDK 1.1. The not-for-export part is the Java Cryptography Extensions
(JCE) which include the general purpose encryption capabilities.
These consist of engine classes for bulk and public key encryption,
plus an extension to the Sun provider package that offers the DES bulk
encryption algorithm.

The eventual aim is to develop a full strength, exportable
cryptographic toolkit with key recovery built into it.

2.2.5 Signed Applets
Using JCA, it is possible for a Java application or applet to create its
own digital signatures. This allows you to write more sophisticated
programs, but a more common scenario is where you want an applet
to do something that the sandbox restrictions normally forbid. In this
case, the browser user needs to be convinced that the applet is from a
trustworthy source. The way this is achieved is by digitally signing the
applet.

The signature on an applet links the code to the programmer or
administrator who created or packaged it. However, the user has to be
able to check that the signature is valid. The signer enables this by

3 Cipher strength is controlled by the size of the key used in the encryption algorithm. Current export rules limit
the key size for bulk encryption to 40 bits, which can now be cracked in a matter of hours with quite modest
computing facilities. Each extra bit doubles the key space, so a key size of 64 bits is 16 million times tougher than
40 bits. A similar rule applies to public key encryption, where an export-quality 512-bit modulus is inadequate, but
a 1024-bit modulus is expected to remain effective for the next ten years, at least for commercial use.
34 Java Network Security

providing a public key certificate. We discuss this in detail in Chapter
9, “Java Gets Out of Its Box” on page 119.

2.2.5.1 The Other Side of the Coin: Access Control
When you receive an applet that has been digitally signed you know
where it came from and you can make a judgement of whether or not it
is trustworthy. Next, you want to exercise some access control. For
example, an applet may want to use your hard disk to store some
configuration information. You probably have no objection to it doing
so, but that does not mean that you are happy for it to overwrite any
file on the system. This is the difference between a binary trust model
("I trust you, do what you like") and a fine-grained trust model ("tell me
what you want to do and I’ll decide whether I trust you").

Other types of executable content, such as browser plug-ins and
ActiveX currently use the binary model. By contrast, signed Java
operates on top of the very tight sandbox restrictions. This means that
fine-grained controls can be implemented. At the time of writing, the
standards for controlling access were still being evolved. We discuss
the different approaches in “JAR Files and Applet Signing” on
page 119.

2.3 Attacking the World of Java

In the early days of most software developments, security is a long
way down the list of priorities. This makes Java very unusual, in that
security has been an important consideration from the very beginning.
No doubt, this is because the environment to which the infant
language has been exposed in its formative years is a cruel and
unforgiving one: the Internet. In this section we take a cracker’s-eye
view; what opportunities do we have to abuse a Java applet, to make it
do our dastardly deeds for us?

2.3.1 Perils in the Life of an Applet
The Java applet that runs in your Web browser has had an unusually
long and interesting life history. Along the way it has passed through a
number of phases, each of which is in some way vulnerable to attack.
Figure 9 illustrates the points of peril in the life of an applet.
Attack and Defense 35

Figure 9. Perils in the Life of an Applet

Let us look at the points of vulnerability in some detail:

1. You may think that all of the programmers you know are angels, but
there is no way to tell if really there is a devil inside. In the case of a
Java applet you are another step away from the person who wrote
the code. So, when you buy a software product from a well-known
company, you can be fairly sure that the contents of the shrink-wrap
will not do you any harm. When you receive any code from the
Internet you have to be wary of where it really comes from. In the
case of a Java applet, the risk is in some ways worse, because you
may not even be conscious that you have received the program at
all. We will show some examples of the kind of things that a hostile
applet can do in “Malicious Applets” on page 104 and we will

Source creation

Java
Virtual

Machine

1

2

4

3

6

Java
source

Byte
code

Byte
code

5

36 Java Network Security

discuss the code signing capabilities of JDK 1.1 in Chapter 9, “Java
Gets Out of Its Box” on page 119.

2. The Java compiler, javac, takes source code and compiles it into
class files (in bytecode format) that can be executed by the Java
virtual machine. It is quite common for a developer to have multiple
versions of javac on his or her computer. For example, the Java
development kit for various system platforms is available for
download from Javasoft and other computer manufacturers. Very
often, a developer will have a current and one or more beta
versions installed. javac is also provided as part of many
application development tools.

Normally you expect that the bytecode generated by a compiler
would reflect the source code you feed in. However, a compiler can
easily be hacked so that it adds its own, nefarious, functions. Even
worse, a compiler could produce bytecode output that cannot be a
translation of normal Java source code. This would be a way to
introduce code to exploit some frailty of the Java code verification
process, for example.

Although a hacked compiler is the most obvious example of a
compromised programming tool, the same concern also applies to
other parts of the programmer’s arsenal, such as editors,
development toolkits and pre-built components.

3. If an attacker can get update access to the class files, wherever
they are stored, they can subvert the function of the applet. For
example, by modifying business data used in the applet or inserting
rude messages. One obvious point of attack is where the class files
are stored on the Web server. If an attacker can get update access
to the directory they are in, they can be corrupted. Java class files
should therefore be protected in much the same way as CGI
programs, for example. Some basic principles for protection are:

For the Applet Developer

Can You Trust Your Tools?

Naturally, you want to be at the leading edge of development, using the latest and
greatest tools for your Java development. However, this enthusiasm needs to be
moderated by some caution. You must make sure that the tools you use come from
a reputable source. You should also report any odd behavior to the manufacturer.
It is probably only a bug, but it could be the manifestation of a hacker’s work.
Attack and Defense 37

 • Don’t allow update permissions for the user ID that the Web
server runs under. Many successful attacks on Web servers rely
on finding holes in the logic or implementation of CGI programs
and tricking them into executing arbitrary commands.

 • Make sure that the server has been properly hardened to reduce
the risk of someone gaining access beyond the normal Web
connection. You should remove unwanted network services and
user IDs, enforce password restrictions and limit access using
firewall controls. You should also make sure that you have the
fixes for the latest security advisories installed.

4. One side-effect of Java’s portability is that a Webmaster can get
applet code from any number of different sources. The code could
just generate some entertaining animation or cool dialogs.
Alternatively it could be a fully-fledged application, containing
thousands of lines of source code.

Any applets you import in this way should be treated with suspicion.
This raises a moral question: how responsible should you feel if
your Web site somehow damages a client connecting to it, even if
you are not ultimately responsible for the content that caused the
damage? Most reasonable people will agree that there is a duty of
care which should be balanced against your desire to build the
world’s most dynamic and attractive Web site. Indeed it would be a
good idea to check whether your agreements with others mean that
you have a formal legal duty of care. You do not want a
thoughtlessly-included applet to result in your being sued.
38 Java Network Security

5. The next journey in the life of an applet is when it is loaded into the
browser virtual machine across the network from the server.
Although it could, potentially, be intercepted in mid-flight and
modified, a much more likely form of attack would involve some
type of spoofing. What this means is that the attacker fools the
browser into thinking that it is connecting to rocksolid.reliable.org,
when really the applet is coming from nogood.badguys.com. The
most sophisticated form of spoofing is the Web spoof, where the
attacker acts as a filter for all of the traffic between the browser and
anywhere else, passing most requests straight through, but
intercepting particular requests and modifying them or replacing

So, you’re the administrator of a Web site and you want to include some applet
code from somewhere else. You want to be sure that the applet is safe, but how
can you check it?

For simple applets you should try to get the code in source form, so that you can
inspect it and compile it yourself. This means that you need to understand the Java
language. Your job already requires you to have a superhuman knowledge of
computer systems and the Web; adding Java to your knowledge base must be a
trivial matter for a person of such skill.

In fact the problem is not so great as it first appears. It is much easier to read a
computer program and understand what it is doing than to write it in the first place.
In “Malicious Applets” on page 104 we will discuss some of the things that you
should watch for.

Applets that are only provided in compiled form are more of a problem. Very often
they are too large to do a practical visual check and anyway, if they are
commercially-produced, the writer is unlikely to want to share his coding tricks with
the world at large. You can, of course, check the external behavior, but that gives
no clue to what browser holes it may be probing or background threads it may be
spinning. There are tools like javap and Mocha which allow you to at least get an
idea of what an applet is doing; refer to “Decompilation Attacks” on page 60 for
more information.

JDK 1.1 introduces signed applets which allow you to check who the real originator
of an applet is and know that it has not been altered on its way to you. You still have
to make a judgment of who to trust, but at least you are basing the judgment on
sound data.

For the System Administrator

Checking Your Sources
Attack and Defense 39

them with something more sinister (see Figure 10 on page 40).
Note that it does not have to be this way around. It is equally
possible for a Web spoof to screen everything going to and from a
server, rather than a client system.

Figure 10. A Web Spoof

Spoofing is not just a problem for Java applets, of course. Any Web
content can be attacked in this way. With Java this gives the attacker
an opportunity to execute a malicious applet or try to exploit security
holes in the browser environment. However, compared to the risk of
downloading and installing a conventional program in this kind of
environment, the risk is small.

The Web

Disk

Unsuspecting User

URL A

URL B

URL C

The Web
URL A

URL B

URL C
40 Java Network Security

Signed applets can again help with this problem. An attacker may
be able to substitute subversive class files to attack the browser,
but it is much more difficult to forge the class signature.

6. Finally the applet arrives at the browser; class files are loaded and
verified and the virtual machine goes to work. If the installation is
working as designed, the worst peril that can befall you as a user is
that the applet may annoy you or eat excessive system resources
(see Chapter 4, “Class of 1.1” on page 55 for a description of class
loader and security manager controls). There are two things that
can go wrong with this idyllic picture:

 • There may be bugs in the Java implementation.

 • You may have installed a hacked version of the browser code.

Of these two, the first is more likely. There have been a number of
well-publicized security breaches found in the Java virtual machine
components. The best description of how these operate can be
found in Java Security, Hostile Applets, Holes, and Antidotes, by
Felten and McGraw. You can also find more up-to-date online
information at the sites listed in Appendix A, “Sources of
Information about Java Security” on page 211. The best way to
protect yourself is to make sure you are aware of the latest
breaches and install the fixes as they arrive.

The possibility of installing a browser that has been tampered with
is a real one, although there are considerable practical hurdles for
an attacker to overcome in creating such a thing. If you do as we

For the Network Administrator

Guarding against Spoofing

If you are a network administrator responsible for a site in which browsers or
servers live, how do you protect yourself from an attacker that spoofs as a
legitimate address? The first thing is to ensure that your systems and firewalls do
not accept any of the common methods that can induce them to believe that a
network node is really somewhere else. The ICMP redirect and IP source route
functions are good examples. Refer to Chapter 11, “Firewalls: In and Out of the Net”
on page 169 for more firewall discussions.

You may consider that you do not want any of the browsers in your site to be able
to run applets from outside the firewall. A number of firewall implementations now
provide screening for Java in general or for specific classes.
Attack and Defense 41

recommend (above) and install the latest fixes, you will inevitably
be running a downloaded version of the browser. There is some
small risk that this could be a hacked version, but no examples of
this have yet been detected.

2.3.2 Vulnerabilities in Java Applications
A Java applet is an obvious vehicle to mount an attack, because it can
install itself uninvited and probe for weaknesses. And, of course, this is
why so much thought has gone into the construction of the sandbox
and the JDK 1.1 code-signing capabilities.

A Java application, on the other hand, is a much less obvious target.
There are many ways in which such an application could be
implemented, for example:

 • On a Web server using CGI to interface with Web pages or applets

 • As a stand-alone application on a server, interfacing with client
code using socket connections

 • As a stand-alone application on a server, using remote object
request services (like RMI or CORBA) for communication

To a cracker, the fact that the application is written in Java rather than
any other language is not really important. The strategies that he or
she would use to search for vulnerabilities are the same. For example:

For the Web User

Should I Switch Java Off?

The Big Question that all browser users ask about Java is this: should I allow it to
run or not? In the final analysis, this is a personal decision. As we have described,
there is some peril in allowing Java applets to run in your system, because you
cannot be sure of where they have come from or whether they exploit security holes
in your browser. You may decide that this risk is too high to take.

If you take this view, you should also review your other Web usage. If you download
any executable program from the Web it is potentially far more dangerous to the
health of your system than any Java applet.

Many companies and software producers are writing applications that use Java
applets for their client component. These are usually designed for intranet, rather
than Internet use, so the likelihood of attack is (presumably) much lower.
42 Java Network Security

 • Many successful attacks rely on driving the application with data
that it is not equipped to handle. In particular, if the application uses
a command line interface, it should be very careful to screen out
escape sequences that an attacker could use to execute arbitrary
commands.

 • Applications frequently have to give themselves temporary higher
privileges to use system functions or get special access (such as
user IDs for database control). If an attacker can crash the
application at this critical point, or link to it from another running
program he or she can use the special privileges illegally.

As we said earlier, vulnerabilities of this kind apply to applications
written in Java the same as any other application programming
environment. However, Java does include safety features that make it
harder for an attacker to find a flaw. These safety features work at two
levels:

Java source The Java language uses strong type constraints to
prevent the programmer from accessing data in an
inconsistent way. You can cast objects from one type to
another, but only if the two classes are related by
inheritance; that is, one must be a superclass of the
other. This does not operate symmetrically, which
means you can always cast from a subclass to its
superclass, but not always vice versa. Referring again
to Figure 4 on page 20, you could access an instance
of the Button class as an Object, but you could not
access a Button as a Panel.

Furthermore, Java prevents you from having direct
access to program memory. In C it is common to use a
pointer to locate a variable in memory and then to
manipulate the pointer to process the data in it. This is
a frequent source of coding errors, due to the pointer
becoming corrupted or iterating beyond the end of the
data. Java allows a variable to be accessed only
through the methods of the object that contains it,
thereby removing this class of error.

Bytecode The Java virtual machine is type-aware. In other words,
most of the primitive machine instructions are
associated with a particular type. This means that the
JVM also applies the type constraints that the compiler
imposes on the Java source. In fact, this job is split
Attack and Defense 43

between the class file verifier, which handles
everything that can be statically checked and the JVM,
which deals with runtime exceptions. Contrast this with
other languages, in which the compiler produces
microprocessor machine code. In this case the
program is just handled as a sequence of bytes, with
no concept of the data types that are being
represented.

The JVM is also, at a basic level, strongly
compartmentalized, mirroring the object orientation of
the Java source. This means that each method in the
code has its own execution stack and only has access
to the memory of the class instance for which it was
invoked.

2.4 Summary

This first part of the book has been a tour through the many aspects of
Java security. You should now have a good high-level understanding
of the issues involved and the mechanisms that are at work. In the
next section we look under the covers, at the detailed operation of the
Java virtual machine and the security classes.
44 Java Network Security

Part 2. Under The Hood
45

46 Java Network Security

Chapter 3. The Java Virtual Machine

This part of the book is aimed primarily at people who wish to
understand the inner workings of the Java security model. The level of
detail is deliberately high and you should ensure that you are seated
comfortably with some soothing music and a scratch pad to hand.

You should probably consult your doctor before attempting to read the
whole of Part 2 at once.

Understanding how the various components of the JVM cooperate to
provide a secure execution environment for Java code will enable you
to implement your own extensions to the JVM in order to provide a
more tailored security policy.

3.1 The Java Virtual Machine, Close Up

Later chapters in Part 2 examine the various components of the JVM
in detail. In this chapter we identify the key components of the JVM
and in particular, those which are found in Web browsers.

Figure 11 shows a simplified representation of the JVM. Those
components which are highlighted are generally only found in Web
browsers rather than in the stand-alone implementations required to
execute Java applications.

�����D�VSHFLDO�PDFKLQH�IRU�WKH�VXSSUHVVLRQ�RI�RQH�FODVV�E\�DQRWKHU�

�9�,�/HQLQ�
The Java Virtual Machine 47

Figure 11. Components of the JVM

As you will see, the additional components are required to provide the
additional security needed when loading and executing Java bytecode
which has been loaded from an untrusted source such as a Web
server.

3.1.1 The Class Loader
Before the JVM can run a Java program, it needs to locate and load
the classes which comprise that program into memory. In a traditional
execution environment, this service is provided by the operating
system which loads code from the filing system in a platform-specific
way.

The operating system has access to all of the low level I/O functions
and has a set of locations on the filing system which it searches for
programs or shared code libraries. On PC and UNIX systems this is
some combination of PATH settings which specify a list of directories
to be searched for files. In mainframe environments the same function
is provided by the LINKLIST.

Trusted Classes

Native Methods

ClassLoader
instance

Class file
verifier

Primordial Class Loader

Native Method Loader

Class
area

Native
Method
area

Execution
Engine

Operating System

HeapNetwork
JIT

Security
Manager
48 Java Network Security

In the Java runtime environment things are complicated a little by the
fact that not all class files are loaded from the same type of location. In
general classes can be divided into three categories:

 • Classes forming the core Java API

These are the classes shipped with the JVM which provide access
to network, GUI and threading functions. They are shipped with the
JVM implementation and are part of the Java specification. As such
they are regarded as highly trusted classes and are not subject to
the same degree of scrutiny at runtime as classes brought into the
JVM from an external source.

 • Classes installed in the local filing system

While not a part of the core Java class set, these classes are
assumed to be safe since the user has at some point installed them
onto his or her machine and presumably accepted the associated
risks. In many cases these classes are treated in the same way as
those classes in the core Java API.

 • Classes loaded from other sources

In a Web browser, these would be the classes constituting an
applet loaded from a remote Web server. These are the least
trusted classes of all as they are being brought into the safe
environment of the JVM from potentially hostile sources and often
without the specific consent of the user. For this reason, these
classes must be subjected to a high degree of checking before
being made available for use in the JVM.

Given the diverse range of possible sources for class files and the
different checking requirements of the JVM it is clear that different
mechanisms will be required to locate and load classes. The class
loader comes in various flavors, each responsible for locating and
loading one type of class file.

Users may also implement their own class loaders to load classes
from particular locations or to impose more rigorous checking of class
files loaded from normally trusted sources. This allows you to
implement highly flexible security policies.

3.1.2 The Class File Verifier
As mentioned above, some of the class files loaded by the JVM will
come from untrusted sources. These files need to be checked prior to
execution to ensure that they do not threaten the integrity of the JVM.
The Java Virtual Machine 49

The class file verifier is invoked by the class loader to perform a series
of tests on class files which are regarded as potentially unsafe.

These tests check all aspects of a class file from its size and structure
down to its runtime characteristics. Only when these tests have been
passed is the file made available for use.

3.1.3 The Heap
The heap is an area of memory used by the JVM to store Java objects
during the execution of a program. Precisely how objects are stored on
the heap is implementation specific and this adds another level of
security since it means that a hacker can have no idea of how the JVM
represents objects in memory. This in turn makes it far more difficult to
mount an attack that depends on accessing memory directly.

When an object is no longer used, the JVM marks it for garbage
collection and at some point the memory on the heap is freed up for
reuse.

3.1.4 The Class Area
The class area is where the JVM stores class-specific information
such as methods and static fields. When a class is loaded and has
been verified, the JVM creates an entry in the class area for that class.

Often the class area is simply a part of the heap. In this case classes
may also be garbage-collected once they are no longer used.
Alternatively, the class area may be a separate part of memory and will
require additional logic on the part of the JVM implementor to clean up
classes which are not being used.

When a JIT compiler (see section 3.1.10) is present, the native code
generated for class methods is also stored in the class area.

3.1.5 The Native Method Loader
Many of the core Java classes, such as those classes representing
GUI elements or networking features, require native-code
implementations to access the underlying OS functions. Programmers
may also implement their own native methods, assuming of course
that they don’t want their code to be portable. These native methods
are composed of a Java wrapper – which specifies the method
signature – and a native-code implementation – often a DLL or shared
library.
50 Java Network Security

Core Java classes aren’t hindered by the fact that they use
native-code; they’re part of the JVM implementation for a particular
operating system. Applets and applications, on the other hand, are
more useful if they are portable, but they are portable only if they
eschew native methods.

The native method loader is responsible for locating and loading these
shared libraries into the JVM. Note that it is not possible for the JVM to
perform any validation or verification of native code and installing such
code exposes you to all of the risks associated with running untrusted
programs on your machine.

3.1.6 The Native Method Area
Once native code has been loaded, it is stored in the native method
area for speedy access when required.

3.1.7 The Security Manager
Even when untrusted code has been verified, it is still subject to
runtime restrictions. The security manager is responsible for enforcing
these restrictions. In a Web browser, the security manager is provided
by the browser manufacturer and is the component of the JVM which
prevents applets from reading or writing to the file system, accessing
the network in an unsafe way, making inquiries about the runtime
environment, printing and so on.

By default, in a stand-alone JVM implementation there is no security
manager (since there is no mechanism to load classes from an
untrusted source). It is, however, possible for an application writer to
implement a security manager to enforce a particular security policy.

3.1.8 The Execution Engine
The execution engine is the heart of the JVM. It is the virtual processor
which executes bytecode. Memory management, thread management
and calls to native methods are also performed by the execution
engine.

3.1.9 The Trusted Classes
The trusted Java classes are those classes which ship as part of the
JVM implementation. This includes all classes in packages which start
“java.” and “sun.” as well as any vendor-provided classes used to
The Java Virtual Machine 51

implement the platform-specific parts of core classes (such as the GUI
components).

They are often stored in the filing system (usually in a ZIP archive
called classes.zip) but may be held as part of the JVM executable
itself.

3.1.10 The Just In Time (JIT) Compiler
Since Java bytecodes are interpreted at runtime in the execution
engine, Java programs generally execute more slowly than the
equivalent native platform code. This performance overhead occurs
because each bytecode instruction must be translated into one or
more native instructions each time it is encountered.

The performance of Java is still significantly better than that of other
interpreted languages because the bytecode instructions were
designed to be very low level – the simplest instructions have a
one-to-one correlation with native machine code instructions.

Nevertheless, Sun saw that there would be a need to improve the
execution performance of Java and to do so in a way which did not
compromise either the "write once run anywhere" goal and did not
undermine the security of the JVM.

Since all bytecode instructions are ultimately translated to native
machine code, the principal ways of speeding performance involve
making this translation as quick as possible and performing it as few
times as possible.

On the other hand, the security and portability of Java is dependent on
the bytecode and class file format which enable code to be run on any
JVM and to be rigorously tested to ensure that it is safe prior to
execution. Thus, any translation must occur after a class file has been
loaded and verified.

Two options present themselves:

1. Translate the whole class file into native code as soon as it is
loaded and verified.

2. Translate the class file on a method-by-method basis as needed.

The first option seems quite attractive but it is possible that many of
the methods in a class file will never be executed. Time to translate
these methods is therefore wasted. The second option was the one
52 Java Network Security

selected by Sun. In this case, the first time a method is called, it is
translated into native code, which is then stored in the class area. The
class specification is updated so that future calls to the method run the
native code rather than the original bytecode.

This meets our requirement that bytecode should be translated as few
times as is necessary – once when the code is executed and not at all
in the case of code which is not executed.

The process of translating the bytecode to native code on the fly is
known as just in time (JIT) compilation and performed by the JIT
compiler. Sun provided a specification for how and when JIT compilers
should execute and vendors were left to implement their own JIT
compilers as they chose.

JIT compiled code executes much more quickly than regular bytecode
– between 10 to 50 times faster – without impacting portability or
security.

3.2 Summary

You now have a good idea of how the various components of the JVM
work together. The next four chapters examine the principle elements
of the Java security architecture – the class file structure, the class
loader, the bytecode verifier and the security manager – in greater
detail.
The Java Virtual Machine 53

54 Java Network Security

Chapter 4. Class of 1.1

In this chapter we will explore a number of topics:

 • The relationship between Java class files and conventional object
and executable files

 • The threat presented by the class file format

 • How bytecodes aid security

In addition, we will:

 • Describe the contents of a Java class file

 • Describe ways in which to reduce the threat of decompilation

4.1 The Traditional Development Life Cycle

As you have seen earlier, Java is a compiled language. That is, source
code is written in a high-level language and then converted through a
process of compilation to a machine-level language, the Java
bytecode, which then runs on the Java Virtual Machine. Before we
look more closely at Java bytecode, we’ll quickly review the
differences between high- and low-level languages, the compilation
process and runtime behavior of a more traditional environment.

On the PC, program files are recognized in two ways. The first is by
the file extension (.EXE, .COM) and the second is by the file format
itself. Executable files contain some information in a header which
informs the operating system that this file is a program and has certain
requirements in order to run. These requirements include such things
as the address at which the program should be loaded, other
supporting files which will be required and so on.

When DOS or Windows attempts to run a program file, it loads the file
and ensures that the header is legitimate, that is, that it describes a
real program. The header also indicates where the starting point of the
program itself is. The program is stored in the program file as machine

�����0\�DQFHVWRUV�ZHUH�FRXQWU\�VTXLUHV��ZKR�DSSHDU�WR�KDYH�OHG�PXFK�WKH�VDPH�OLIH�
DV�LV�QDWXUDO�WR�WKHLU�FODVV����6KHUORFN�+ROPHV�7KH�$GYHQWXUH�RI�WKH�*UHHN�
,QWHUSUHWHU

�$��&RQDQ�'R\OH�
55

code instructions. These instructions are numeric values which are
read and interpreted by the processor as it executes. Having validated
the header, the operating system starts executing the code at this
address.

From the above description, it should be clear that anyone with a good
understanding of the header format and of the machine code for a
particular operating system could construct a program file using little
more than an editor capable of producing binary files. (Such an
individual would be well advised to seek urgent medical attention.)

Of course this is not how programs are produced. The closest that
anyone gets to this is writing assembly code. Assembly language
programming is very low level. Its statements, after macro expansion,
usually translate into one or at most two machine language
instructions. The assembly source code is then fed through an
assembler which converts the (almost) human readable code into
machine code, generates the appropriate header and finally outputs
an executable file.

Most programs, however, are written in a high-level language such as
C, C++, COBOL and so forth. Here it is the task of the compiler to
translate high-level instructions into low-level machine code in the
most optimal way. The resultant machine code output is generally very
efficient, although – depending on the compiler – it may be possible to
write more efficient assembler language. Because different compilers
manage the translation and optimization process in different ways,
they will produce different output for the same source code. In general
it is true to say that the higher level the source language, the more
scope there is for variation in the resultant executable file since there
will be more than one possible translation of each high-level statement
into low-level machine code.

During the compilation process, high-level features such as variable
and function names are replaced by references to addresses in
memory and by machine code instructions, which cause the
appropriate address to be accessed (in the case of variables) or
jumped to (in the case of functions).

In the case of both assembly language and high-level language
programming, the output of the assembly or compilation phase is
generally not immediately executable. Instead, an intermediate file
(known as an object module or object file1) is produced. One object file
is produced for each source file compiled, regardless of the content or
56 Java Network Security

structure of the source code. These object modules are then combined
using a tool called a linker which is responsible for producing the final
executable file (or shared library). The linker ensures that references
to a function or variable in one object module from another object
module are correctly resolved.

Figure 12. Program Compilation and Linking

In summary then:

 • An object file contains the machine code which is the actual
program plus some additional information describing any
dependencies on other object files.

 • An executable file is a collection of object files with all inter-file
dependencies resolved, together with some header information
which identifies the file as executable.

4.2 The Java Development Life Cycle

Moving back to the world of Java, we see that it is a high-level
programming language and that bytecode is the low-level machine
language of the Java Virtual Machine. Java is an object-oriented
language; that is, it deals primarily with objects and their
interrelationships. Objects are best thought of in this context as a
collection of data (fields in Java parlance) and the functions (methods)
which operate on that data. Objects are created at runtime based on
templates (classes) defined by the programmer.

A Java source file may contain definitions for one or more classes.
During compilation each of these classes results in the generation of a
single class file. In some respects, the class file is the Java equivalent
of an object module rather than an executable program file; that is, it
contains compiled machine code, but may also contain references to

1 An unfortunate nomenclature and nothing at all to do with object-oriented programming. If the source file is the
subject of the compilation process then the resultant file must be the object.

Source File Object File
Program FileCompile Link
Class of 1.1 57

methods and fields which exist in other classes and hence in other
class files.

Class files are the last stage of the development process in Java.
There is no separate link phase as linking is performed at runtime by
the Java Virtual Machine. If a reference is found within one class file to
another, then the JVM loads the referenced class file and resolves the
references as needed.

The astute reader will deduce that this demand loading and linking
requires the class file to contain information about other class files,
methods and fields which it references, and in particular, the names of
these files, fields and methods. This is in fact the case as we shall see
in the next section.

Even more astute readers may be pondering some of the following
questions.

 • Is it possible to compile Java source code to some machine
language other than that of the JVM?

 • Is it possible to compile some other high-level language to
bytecode for the JVM?

 • Is there such a thing as an assembler for Java?

 • What is the relationship between the Java language and bytecode?

The simple answer to the first three questions is yes.

It is possible with the appropriate compiler (generally referred to as a
native code compiler) to translate Java source code to any other low-
level machine code, although this rather defeats the “write once run
anywhere” proposition for Java programs since the resultant
executable program will only run on the platform for which it has been
compiled.

It is also possible to compile other high-level languages into Java
bytecode, possibly via an interim step in which the source code is
translated into Java source code which is in turn compiled. Bytecode
compilers already exist for Ada, COBOL, BASIC and NetREXX (a
dialect of the popular REXX programming language).

Finally, Jasmin is a freely available Java assembler which allows
serious geeks to write Java code at a level one step removed from
bytecode.
58 Java Network Security

Figure 13. Compiler Models

4.3 The Java Class File Format

The class file contains a lot more information than its cousin, the
executable file. Of course, it still contains the same type of information,
program requirements, an identifier indicating that this is a program
and executable code (bytecode) but it also contains some very rich
information about the original source code.

The high level structure of a class file is shown in Table 1.

Table 1. Class File Contents

Field Description

Magic number Four bytes identifying this file as a Java class file. Always
set to 0xCAFEBABE

COBOL
Source

C++
Source

Java
Source

NetREXX
Source

Object
Model

Class
File

Class
File

Class
File

Object
Model

Object
Model

Executable
 File

Java
Virtual

Machine

Nativ
e C

om
pil

er

Bytecode
Compiler

Bytecode
Compiler

Native Compiler

Bytecode
Compiler

Native Compiler

Link

Link

Lin
k

Load

Load

Lo
ad
Class of 1.1 59

Much here is as we would expect. There is information to identify the
file as a Java class file, as well as the virtual machine on which it was
compiled to run. In addition, there is information describing the
dependencies of this class in terms of classes, interfaces (a special
type of Java class file), fields, and methods. There is much more
information than this however, buried within the constant pool:
information which includes variable and method names within both this
class file and those on which it depends.

In addition to managing dynamic linking, the JVM must also ensure
that class files contain only legal bytecode and do not attempt to
subvert the runtime environment, and to do this, still more information
is required in the class. More details of how this works are in Chapter
5, “The Class Loader and Class File Verifier” on page 77.

The main thing to understand at this point is that the inclusion of all of
this information makes the job of a hacker much simpler in many ways.

4.3.1 Decompilation Attacks
One of the areas seldom discussed when considering security
implications of deploying Java is that of securing Java assets. Often
considerable effort is put into developing software and the resultant
intellectual property can be very valuable to a company.

JVM minor
version

The minor version number of the JVM on which this class
file is intended to run

JVM major
version

The major version number of the JVM on which this class
file is intended to run

Constant pool See below

Class name The name of this class

Super class name The name of the superclass in the Java class hierarchy

Interfaces Description of the interfaces implemented for this class

Fields Description of the class variables defined for this class

Methods Description of the methods declared by this class

Source file name The file from which this class file was compiled

Field Description
60 Java Network Security

Hackers are a clever (if misguided) bunch and there are many reasons
why they might want to get “inside” your code. Here are a few:

 • To steal a valuable algorithm for use in their own code

 • To understand how a security function works to enable them to
bypass it

 • To extract confidential information (such as hard-coded passwords
and keys)

 • To enable them to alter the code so that it behaves in a malicious
way (such as installing Trojan horses or viruses)

 • To demonstrate their prowess

 • For their entertainment (much as other people might solve
crosswords)

The chief tool in the arsenal of the hacker in these cases is the
decompiler. A decompiler, as its name suggests, undoes the work
performed by a compiler. That is, it takes an executable file and
attempts to re-create the original source code.

Advances in compiler technology now make it effectively impossible to
go from machine code to a high-level language such as C. Modern
compilers remove all variable and function names, move code about to
optimize its execution profile and, as was discussed previously, there
are many possible ways to translate a high-level statement into a low-
level machine code representation. For a decompiler to produce the
original source code is impossible without a lot of additional
information which simply isn’t shipped in an executable file.

It is, however, very easy to recover an assembly language version of
the program. On the other hand, the amount of effort required to
actually understand what such a program is doing makes it far less
worthwhile to the hacker to do. (Nevertheless, it is done. Much pirated
software is distributed in a “cracked” format, that is, with software
protection disabled or removed.) So, it is fair to say that it is impossible
to completely protect any program from tampering.

When JDK 1.02 was shipped, a decompiler named Mocha was quickly
available which performed excellently. It was able to recover Java
source code from a class file. It was so successful that at least one
person used it as a way of formatting his source code! In fact the only
information lost in the compilation process and unrecoverable using
Mocha are the comments. If meaningful variable names are used
Class of 1.1 61

(such as “accountNumber”, or “password”) then it is readily possible to
understand the function of the code, even without the comments.

The current version of Mocha is unable to decompile Java 1.1 class
files but this is not because the class files contain any less information,
merely because the format has changed slightly. It is only a matter of
time before a functional decompiler for Java 1.1 class files is
developed.

4.4 The Constant Pool

We said earlier that the constant pool contained a great deal of
information. In fact it contains a strange mixture of items. The constant
pool combines the function of a symbol table for linking purposes as
well as a repository for constant values and string literals present in
the source code. It may be considered as an array of heterogeneous
data types which are referenced by index number from other sections
of the class file such as the Field and Method sections. In addition,
many Java bytecode instructions take as arguments numbers which

For the System Administrator

Should You Have a Decompiler

If you can read Java source code, it is a good idea to have a decompiler
available, to check the function of Java class files that you receive, partic-
ularly if they come from an unknown origin.
The only problem with this is that you are stepping into a legal and moral
minefield. Decompilers are downloadable from a number of sources and
also are in some commercial Java development packages. However there
have been strong attempts to prevent them being available in this way,
because it allows unscrupulous people to steal the source code of propri-
etary products.
The authors’ view is that, until signed, verifiable Java is more generally
available, there is a place for the decompiler as a tool for checking what is
really going on inside a class file.

in Your Toolkit?
62 Java Network Security

are in turn used as indexes into the constant pool. Table 2 shows the
types of entries in the constant pool, as defined by the current JVM.

Table 2. Constant Pool Entry Types

As an example of a constant pool, let’s take a look at the
PointlessButton example we met earlier. Table 3 shows a dump of the

a. The signature of a field is simply its type. The signature of a method is both its return type and the types of any
parameters which it takes. Method signatures are represented by a pair of parentheses with the parameter types
enclosed and separated by semicolons. The parentheses are followed by the return type of the method. See
Appendix B, “Signature Formats” on page 217 for a full description of Java type representations.

Type Name Used For Contains

UTF8 String in UTF8 format (a shorthand
for writing Unicode strings)

An array of bytes making up the
string

Integer A constant 32-bit signed integer
value

The numeric value of the integer

Long A constant 64-bit signed integer
value

The numeric value of the long

Float A constant 32-bit floating point
value

The numeric value of the float

Double A constant 64-bit double precision
floating point value

The numeric value of the double

String A Java string literal Reference to the UTF8
representation of the string

ClassRef Symbolic reference to a class Reference to a UTF8
representation of the class name

FieldRef Symbolic reference to a field Reference to a ClassRef for the
class in which the field occurs and
a NameAndType for this field

MethodRef Symbolic reference to a method Reference to a ClassRef for the
class in which the method occurs
and a NameAndType for this
method

InterfaceMethodRef Symbolic reference to an interface
method

Reference to a ClassRef for the
interface in which the field occurs
and a NameAndType for this
method

NameAndType Shorthand representation of a field
or method signature and name

Reference to a UTF8
representation of the name and
another to the signaturea
Class of 1.1 63

constant pool for the PointlessButton class. The information in this
table was generated using the DumpConstantPool application, which
is on the CD accompanying this book.

Table 3. Constant Pool Example

The full table has 83 entries, not bad for such a simple program.
Looking at this data you can see that there is a wealth of information
here. As an example of how a method is represented, let’s look at
entry number 56. This is a MethodRef entry and as such it has two
further references to track down. The first is the Class entry, (4) which
in turn references a UTF8 entry (3) for the class name:
java.applet.Applet.

Index Type Value

1 UTF8 bytes = "PointlessButton"

2 Class name = (1) "PointlessButton"

3 UTF8 bytes = "java/applet/Applet"

4 Class name = (3) "java/applet/Applet"

13 NameAndType name = (8) "donowt", type = (7) "Ljamjar/examples/Button;"

14 FieldRef class = (2) "PointlessButton", name and type = (13) "donowt",
"Ljamjar/examples/Button;"

17 UTF8 bytes = "Did Nothing "

18 String value = (17) "Did Nothing "

24 MethodRef class = (20) "java/lang/String", name and type = (23) "valueOf",
"(Ljava/lang/Object;)Ljava/lang/String;"

25 UTF8 bytes = "<init>"

33 NameAndType name = (31) "append", type = (32) "(I)Ljava/lang/StringBuffer;"

34 MethodRef class = (16) "java/lang/StringBuffer", name and type = (33) "append",
"(I)Ljava/lang/StringBuffer;"

52 MethodRef class = (49) "java/awt/Button", name and type = (51) "setLabel",
"(Ljava/lang/String;)V"

53 UTF8 bytes = "Code"

54 UTF8f bytes = "()V"

55 NameAndType name = (25) "<init>", type = (54) "()V"

56 MethodRef class = (4) "java/applet/Applet", name and type = (55) "<init>", "()V"value = (37)
" times"
64 Java Network Security

The second is the NameAndType entry, which surprisingly enough
identifies the method name and the type of the method. The
NameAndType entry (55) references a UTF8 entry (25) for the method
name: <init>, and another UTF8 entry (54) for the type: ()V.

The name used here is a little special; <init> is not a valid name in
itself, but it is used by the JVM to represent a constructor for a class.
The type entry ()V indicates a method which takes no parameters
(empty parentheses) and returns no value (V following the
parentheses indicates a return type of void - Java’s term for no value).

From this little jaunt through the constant pool we see that the
pointlessButton class calls the java.applet.Applet default constructor.
Following a similar process, we can identify all of the other fields and
methods utilized in this class. Furthermore, by finding where entry
number 56 is referenced in the bytecode, we can build a clear picture
of what this code does.

This is precisely what the javap utility shipped with the JDK does. By
examining the constant pool and other parts of the class file structure,
it is able to produce a high-level picture of the class file. Here’s the
output of javap when run against pointlessButton:

Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements
java.awt.event.ActionListener
 /* ACC_SUPER bit set */
{
 jamjar.examples.Button donowt;
 int count;
 public void actionPerformed(java.awt.event.ActionEvent);
 public PointlessButton();
 public void init();
}

As we already knew, pointlessButton extends java.applet.Applet and
as such it must call the Applet constructor - the method reference we
saw by tracing through the constant pool.

If this were all that javap did then it would still be a useful tool for
examining class files for which we didn’t have the source code in an
attempt to reuse them or work out what they were doing. But it’s not
all. By using additional option switches it is possible to get richer
information, including even the disassembled bytecode. The following
is the result of running javap with the c (disassemble) and p (include
private fields) options enabled.

Compiled from PointlessButton.java
public class PointlessButton extends java.applet.Applet implements
java.awt.event.ActionListener
Class of 1.1 65

 /* ACC_SUPER bit set */
{
 jamjar.examples.Button donowt;
 int count;
 public void actionPerformed(java.awt.event.ActionEvent);
 public PointlessButton();
 public void init();
Method void actionPerformed(java.awt.event.ActionEvent)
 0 aload_0
 1 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
 4 new #16 <Class java.lang.StringBuffer>
 7 dup
 8 ldc #18 <String "Did Nothing ">
 10 invokestatic #24 <Method
java.lang.String.valueOf(Ljava/lang/Object;)Ljava/lang/String;>
 13 invokespecial #28 <Method
java.lang.StringBuffer.<init>(Ljava/lang/String;)V>
 16 aload_0
 17 dup
 18 getfield #30 <Field PointlessButton.count I>
 21 iconst_1
 22 iadd
 23 dup_x1
 24 putfield #30 <Field PointlessButton.count I>
 27 invokevirtual #34 <Method
java.lang.StringBuffer.append(I)Ljava/lang/StringBuffer;>
 30 ldc #36 <String " time">
 32 invokevirtual #39 <Method
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
 35 aload_0
 36 getfield #30 <Field PointlessButton.count I>
 39 iconst_1
 40 if_icmpne 48
 43 ldc #41 <String "">
 45 goto 50
 48 ldc #43 <String "s">
 50 invokevirtual #39 <Method
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
 53 invokevirtual #47 <Method
java.lang.StringBuffer.toString()Ljava/lang/String;>
 56 invokevirtual #52 <Method java.awt.Button.setLabel(Ljava/lang/String;)V>
 59 return
Method PointlessButton()
 0 aload_0
 1 invokespecial #56 <Method java.applet.Applet.<init>()V>
 4 aload_0
 5 new #58 <Class jamjar.examples.Button>
 8 dup
 9 ldc #60 <String "Do Nothing">
 11 invokespecial #61 <Method
jamjar.examples.Button.<init>(Ljava/lang/String;)V>
 14 putfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
 17 aload_0
 18 iconst_0
 19 putfield #30 <Field PointlessButton.count I>
 22 return
Method void init()
 0 aload_0
 1 new #64 <Class java.awt.BorderLayout>
 4 dup
 5 invokespecial #65 <Method java.awt.BorderLayout.<init>()V>
 8 invokevirtual #71 <Method
java.awt.Container.setLayout(Ljava/awt/LayoutManager;)V>
66 Java Network Security

 11 aload_0
 12 ldc #73 <String "Center">
 14 aload_0
 15 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
 18 invokevirtual #77 <Method
java.awt.Container.add(Ljava/lang/String;Ljava/awt/Component;)Ljava/awt/Componen
t;>
 21 pop
 22 aload_0
 23 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
 26 aload_0
 27 invokevirtual #81 <Method
java.awt.Button.addActionListener(Ljava/awt/event/ActionListener;)V>
 30 return
}

Here we have the complete code for all of the methods albeit in Java
“assembly” language. By appropriate use of a binary editor it would be
a relatively simple matter for a hacker to subvert the function of this
code. For example, simply changing the value of String (3) “Did
Nothing” in the constant pool we could cause the button to print a rude
message when pressed. This is a trivial example but hopefully
illustrates the vulnerability of class files.

4.4.1 Beating the Decompilation Threat
The very real threat of decompilation is not going to go away.
Decompilers work by recognizing patterns in the generated bytecode
which can be translated back into Java source code statements. The
field and method names required to make this source code more
readable are readily available in the constant pool as we have seen.

To date, there have been two main approaches to thwarting would-be
decompilers, code obfuscation and bytecode hosing.2

The principle of obscuring (or obfuscating) source code to make it
more difficult to read is not new. In the UNIX world – where
incompatibilities between platforms and implementations make it
necessary to distribute many applications in source format –
“shrouding” is common. This is the process of replacing variable
names with meaningless symbols, removing comments and white
space and generally leaving as little human readable content in the
source code without impacting its compilability.

After the release of Mocha, the author released Crema, a further
appalling coffee pun, which was designed to thwart Mocha. It did this
by replacing names in the constant pool with illegal Java variable
names and reserved words (such as “if” and “class”). This had no

2 For the benefit of Non-US readers, if something is "hosed" it is seriously damaged, in this case deliberately.
Class of 1.1 67

affect on the JVM, which merely used the names as tags to resolve
references without attributing any meaning to them. Nor did it actually
prevent decompilation. It did however mean that the decompiled code
was more difficult to read and understand and also would not
recompile as the Java compiler would object to the illegal names.

Bytecode hosing is more subtle and is aimed at preventing the
decompiler from recognizing patterns within the bytecode from which it
could recover valid source. It does this by breaking up recognizable
patterns of bytecodes with “do nothing” instruction sequences (such as
the NOP code or a PUSH followed by a POP). A good example of a
bytecode hoser is HoseMocha.

Of course, this approach can be defeated since once a hacker has
established what types of do-nothing sequences are being generated
by a bytecode hoser, he or she can modify the behavior of the
decompiler to ignore such sequences. Furthermore, attempts to
decompile hosed bytecode will generally result in broadly readable
code interspersed with unintelligible passages rather than completely
unreadable code.

In addition to this, bytecode hosers present a more insidious problem
to Java users. As we have already seen, the principal method of
optimizing Java performance is in the JVM and in particular through
the use of just in time (or JIT) compilation. And how do JITs work ?
Yup, you guessed it, they recognize patterns in the generated
bytecode which can be optimized into native code. Breaking up these
patterns through the use of a bytecode hoser can seriously impact the
performance of JIT compilers.

For this reason, it is safe to assume that Java compilers will not follow
the same evolutionary path as their native compiler cousins in terms of
generating wildly differing output for the same source code since this
too would thwart JIT compilers.

This is a well understood dilemma in security circles, the trade off
between security and performance/price/ease of use.

The only safe course of action is to assume that ALL Java code will at
some point be decompiled.

For developers this means ensuring that no sensitive information is
distributed in the class file either algorithmically or as hard-coded
values. This can be accomplished by building client/server type
68 Java Network Security

applications with a Java presentation layer which can be run anywhere
and a secured server side where sensitive information or algorithms
can be stored. This may also involve extending the development and
testing process to ensure that distributed Java code is “safe”.

Finally you may decide that the existing method of protecting
distributed code, that of legal sanction under copyright laws, is
sufficient to deal with any serious threat to Java-based intellectual
property...in which case we have some real estate you may be
interested in buying.

4.5 Java Bytecode

In the next chapter we look at how the Java class loader and class file
verifier provide a level of security against rogue class files. This
section prepares us for that chapter by looking more closely at
bytecode.

4.5.1 A Bytecode Example
Though you may not realize it, you have already seen an example of
bytecode or at least the human readable format. The output
generated by the javap command when we ran it with the -c flag
contained a disassembly of each of the methods in the class file. The
code snippet in Figure 14 was taken from the actionPerformed method
of our pointlessButton class. It was compiled from three lines of Java
source code:

public void actionPerformed(java.awt.event.ActionEvent e) {
donowt.setLabel("Did Nothing " + ++count + " time" + (count == 1? "": "s"));
}

Figure 14. Decompiled Method (Part 1 of 2)

Method void actionPerformed(java.awt.event.ActionEvent)
 0 aload_0
 1 getfield #14 <Field PointlessButton.donowt Ljamjar/examples/Button;>
 4 new #16 <Class java.lang.StringBuffer>
 7 dup
 8 ldc #18 <String "Did Nothing ">
 10 invokestatic #24 <Method java.lang.String.valueOf(Ljava/lang/Object;)Ljava/lang/String;>
 13 invokespecial #28 <Method java.lang.StringBuffer.<init>(Ljava/lang/String;)V>
 16 aload_0
 17 dup
 18 getfield #30 <Field PointlessButton.count I>
 21 iconst_1
 22 iadd
 23 dup_x1
 24 putfield #30 <Field PointlessButton.count I>
Class of 1.1 69

Figure 15. Decompiled Method (Part 2 of 2)

Notice the #nn references in the bytecode such as instruction 30:

ldc #36 <String “ times”>

The #36 here refers to entry number 36 in the constant pool, the text
after the #36 is a comment for the benefit of the reader showing that
entry #36 in the constant pool is a String with value “ times”.

The next thing that you should notice about this code is that even at
this level, there are still references made to Methods and Fields. From
this you may infer that Java is object-oriented even at the bytecode
level and you would be correct.

We are not going to analyze all of this code, there are other books
which serve to teach bytecode. Instead we will compare this code
fragment with 80x86 equivalent code and draw some conclusions
about the measures that exist within bytecode itself to protect the JVM
against subversion.

Let’s look at the following fragment :

 13 aload_0
 14 dup
 15 getfield #30 <Field pointlessButton.count I>
 18 iconst_1
 19 iadd
 20 dup_x1
 21 putfield #30 <Field pointlessButton.count I>

 27 invokevirtual #34 <Method java.lang.StringBuffer.append(I)Ljava/lang/StringBuffer;>
 30 ldc #36 <String " times">

32 invokevirtual #39 <Method
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
 35 aload_036 getfield #30 <Field PointlessButton.count I>
 39 iconst_1
 40 if_icmpne 48
 43 ldc #41 <String "">
 45 goto 50
 48 ldc #43 <String "s">
 50 invokevirtual #39 <Method
java.lang.StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;>
 53 invokevirtual #47 <Method java.lang.StringBuffer.toString()Ljava/lang/String;>
 56 invokevirtual #52 <Method java.awt.Button.setLabel(Ljava/lang/String;)V>
 59 return
70 Java Network Security

Table 4 explains what each of these instructions does.

Table 4. Bytecode Byte-by-Byte

The net of this sequence of operations is to have incremented the
count field of the current object by one and left a copy of it on the stack
(for use in the next instruction which prints the count).

The equivalent 80x86 code looks like this:

MOV BX, thisPointlessButton ; Set BX to the base address of this button
MOV SI, count_field ; Set SI to the offset of the count in button class
MOV CX, [BX + SI] ; Get the count field in register CX
INC CX ; increment the CX register
MOV [BX + SI], CX ; Store the result in BX+SI (the count field)

There are a few differences here which we’ll examine in turn.

Instruction Effect Stack after
instruction

aload_0 Push a copy of local variable 0 onto the stack.
This variable is equivalent to the “this” keyword in Java
source code; it holds a reference to the current object.
In this case, that object is an instance of
pointlessButton.

this (pointlessButton)
[end of stack]

dup Duplicates the item on the top of the stack. this (pointlessButton)
this (pointlessButton)
[end of stack]

getfield #30 Pops the top item from the stack.
Checks that it is a pointlessButton reference.
Gets the count field with type I (integer) from it.
Pushes the count field onto the stack.

this.count (int)
this (pointlessButton)
[end of stack]

iconst_1 Pushes the integer constant 1 onto the stack. 1 (int)
this.count (int)
this (pointlessButton)
[end of stack]

iadd Pops the top two values from the stack.
Adds them.
Pushes the result (as an integer).

this.count + 1 (int)
this (pointlessButton)
[end of stack]

dup_x1 Duplicates the value on top of the stack and inserts it
under the second item from the top.

this.count + 1 (int)
this (pointlessButton)
this.count + 1 (int)
[end of stack]

putfield #30 Store the value on top of the stack in the
pointlessButton.count field of the object second from
the top of the stack.

this.count + 1 (int)
[end of stack]
Class of 1.1 71

 • Stack-based architecture vs register-based architecture

The JVM has a stack-based architecture. This means that its
instructions deal with pushing values onto, popping values from,
and manipulating values on a stack.

The 80x86 processor range from Intel are register-based. They
have a number of temporary storage areas (registers) some of
which are general purpose, others of which have a particular
function.

The advantage of making the JVM stack based is that it is easier to
implement a stack-based architecture using registers than vice
versa. Thus, porting the JVM to Intel platforms is easy compared
with porting a register-based virtual machine to a stack-based
hardware platform.

In addition, there are benefits in a stack-based architecture when it
comes to establishing what code actually does – more of this in the
next chapter.

 • Object-oriented vs non-object-oriented

As we have already mentioned, the Java bytecode is
object-oriented. This makes for safer code since the JVM checks
at runtime that the type of fields being accessed or methods
invoked for an object are genuinely applicable to that object.

In the 80x86 code snippet, we have variable names to make it
clearer what the code is doing but, there are no checks to make
sure that the value loaded into the base register really is a pointer
to an object of type pointlessButton and that the offset loaded into
SI represents the count field of that object.

There is no object-level information at all stored in 80x86 machine
code, regardless of the high-level language from which it was
compiled!

This is so important we’ll restate it: even if you write programs in
Java, once you compile them to 80x86 machine code, all object
information is lost and with it a degree of security since the runtime
engine cannot test for the validity of method and/or field accesses.

 • Type Safety

While on the subject of type information, another difference to
notice is the inclusion of type information in JVM bytecode
instructions. The instruction iadd, for example, pops the top two
values from the stack, adds them and pushes the return value. The
i- prefix indicates that the instruction operates on and returns an
72 Java Network Security

integer value. The JVM will actually check that the stack contains
two integers when the iadd instruction is to be executed. In fact
this check is performed by the bytecode verifier, prior to runtime
execution.

Contrast this with the 80x86 instructions which contain no type
information. In this case, it is possible that the data loaded into the
CX register for incrementing is an integer. It is also possible that it
is part of a telephone number, an address, or a recipe for apple pie.
There are simply no checks performed on data type. This is fine if
you can trust your compiler and there is no likelihood of programs
being attacked en route to their execution environment. As we
have seen, however, in a networked environment, these
assumptions cannot be made so lightly.

Not all bytecodes are typed; with a maximum of 256 distinct
bytecode values there simply aren’t enough to go around. Where a
bytecode instruction is typed, the type on which it can operate is
indicated by the prefix of the instruction. Table 5 lists the type
prefixes and Table 6 shows the bytecodes in detail.

Table 5. Type Prefixes for Bytecodes

Table 6. Bytecode Table

Prefix Bytecode type Prefix Bytecode type

i Integer b Byte

f Floating point s Short

l Long c Character

d Double precision floating point a Object reference

Bytecode int long float double byte char short object
 ref

Function

?2c X Convert value of type <?> to
character

?2d X X X Convert value of type <?> to double

?2i X X X Convert value of type <?> to integer

?2f X X X Convert value of type <?> to float

?2l X X X Convert value of type <?> to long

?2s X Convert value of type <?> to short

?add X X X X Add two values of type <?>

?aload X X X X X X X X Push an element of type <?> from an
array onto the stack
Class of 1.1 73

?and X X Perform logical AND on two values of
type <?>

?astore X X X X X X X X Pop a type <?> from the stack and
store in an array of type <?>

?cmp X Compare two long values. If they’re
equal push 0, if the first is greater
push 1, else push -1

?cmpg X X Compare two IEEE values of type
<?> from the stack. If they’re equal
push 0, if the first is greater push 1 if
the second is greater push -1. If
either is NaN (not a number) push 1

?cmpl X X Compare two IEEE values of type
<?> from the stack. If they’re equal
push 0, if the first is greater push 1 if
the second is greater push -1. If
either is NaN (not a number) push 1

?const X X X X X Push constant value <n> of type <?>
onto the stack

?div X X X X Perform a division using two values
of type <?> and store the quotient

?inc X Increment the top of the stack
(possibly by a negative value)

?ipush X X Push sign extender byte or short
value onto stack

?load X X X X Push a value of type <?> from a local
variable

?mul X X X X Perform multiplication of two values
of type <?>

?neg X X X X Negate a value of type <?>

?newarray X Create a new array of object
references

?or X X Perform logical OR on two values of
type <?>

?rem X X X X Perform a division using two values
of type <?> and store the remainder

?return X X X X X Return a value of type <?> to the
invoking method

?shl X X Perform arithmetic shift left on type
<?>

?shr X X Perform arithmetic shift right on type
<?>

Bytecode int long float double byte char short object
 ref

Function
74 Java Network Security

There are a few seeming anomalies about this table. For example, the
?cmp and ?newarray instructions are typed and yet only apply to a
single type (long in the case of ?cmp and object references in the case
of ?newarray). Interestingly enough there is no equivalent of the ?cmp
instruction for integers. These oddities can be explained away in
terms of future expansions to the instruction set. However there are
other peculiarities which are not as easily explained.

Consider the fact that there are no typed arithmetic instructions for
byte or short values. This, coupled with the lack of support for short
and byte values in the constant pool, might lead you to believe that the
underlying support in the JVM for these types is less than full. You
would be right.

The JVM’s processor stack is 32 bits wide. Values which are longer
(doubles or longs) or shorter (bytes or shorts) than this are treated
specially within the JVM. Double and long values occupy two spaces
each on the stack and thus require special instructions to deal with
them. Bytes and shorts on the other hand are treated as integers
within the JVM for arithmetic and logical operations. If you are dealing
with pure Java source code then this is not a problem as the Java
compiler will take care of generating the appropriate instructions on
your behalf. If you start to work with bytecode which has not been
generated from the Java compiler then things become a little different
and it is quite possible that variables of byte or short types may end up
containing values larger than their maximum permissible ones.

This is a symptom of one of the general difficulties with the JVM.
There is no one-to-one relationship between Java source code and
bytecode. On the one hand, the lack of a tight binding between the
source language and bytecode enables cross-compilation from other
source languages as we discussed previously.

On the other hand it does mean that there has to be a lot more work
performed to ensure that the bytecode being executed is safe. There
is some concern that the lack of a rigid relationship between the Java
language and Java bytecode may be the source of some as yet

?store X X X X X Pop a value of type <?> and store in
a local variable

?sub X X X X Perform a subtraction using two
values of type <?>

Bytecode int long float double byte char short object
 ref

Function
Class of 1.1 75

undiscovered nastiness which could emerge to overthrow the entire
Java security model. The next chapter looks at some of the measures
which have been taken to prevent this type of nastiness.
76 Java Network Security

Chapter 5. The Class Loader and Class File Verifier

In this chapter we explore a number of topics:

 • How the components of the Java virtual machine work together to
implement the Java security model

 • How the class loader locates and loads class files

 • How the class file verifier ensures that class files are legal prior to
execution

In addition, we discuss issues to keep in mind when designing your
own ClassLoader.

5.1 Overview of the Java Security Model

Before examining the components of the security model in detail, we’ll
take a high-level look at the whole process involved in loading and
running a class.

Figure 16 illustrates the steps involved in loading a class into the JVM.

�0\�GHDU�IHOORZ��\RX�NQRZ�P\�PHWKRGV���6KHUORFN�+ROPHV��7KH�
$GYHQWXUH�RI�WKH�6WRFNEURNHU·V�&OHUN

�$��&RQDQ�'R\OH�
77

l

Figure 16. Steps in Loading a Class

1. When an applet or application requests a class file, the execution
environment, whether it be a browser or the Java VM running from
a command line, invokes a class loader to locate and load the
class.1

2. The class loader receives the class as an array of bytes and
converts it into a Class object in the class area of the JVM. The
class area may be a part of the JVM heap (where all other objects
are created and stored) or a separate region of memory.

3. Depending on the class loader which loaded the class file, the JVM
may also run the class file verifier. The verifier is responsible for
making sure that class files contain only legal Java bytecodes and
that they behave in a consistent way (for example, they do not
attempt to underflow or overflow the stack, forge illegal pointers to
memory or in any other way subvert the JVM). More details of this
are in “The Class File Verifier” on page 86.

1 Throughout this chapter we refer to “class loaders” by which we mean the general mechanism by which class
files are located and loaded into a JVM and “ClassLoader” by which we mean the specific Java ClassLoader
class or classes derived from it.

Trusted Classes

Native Methods

ClassLoader
instance

Class file
verifier

Primordial Class Loader

Native Method Loader

Class
area

Native
Method
area

Execution
Engine

Operating System

HeapNetwork
JIT

Security
Manager

1,2 3
4

6

5

78 Java Network Security

4. Assuming that the class passes verification, the JVM is handed a
loaded class. It then links the class by resolving any references to
other classes within it. This may result in additional calls to the
class loader to locate and load other classes.

5. Next, static initialization of the class is performed; that is, static
variables and static initializers are run. Finally, the class is available
to be executed.

6. In the context of an applet executing within a Web browser, there
will always be an instance of the SecurityManager constructed.
This may also be true in a Java application. When a
SecurityManager is present, calls which could result in the system’s
integrity being violated (such as file read and write requests,
network access requests, or requests to access the environmental
variables) are presented to the SecurityManager for validation. If
the SecurityManager refuses access, it does so by throwing a
SecurityException. Since access to these key system functions is
controlled by API calls within the trusted classes, there is no way to
avoid the SecurityManager other than by replacing these classes.

5.2 Class Loaders

 A class loader has a number of duties. Class loaders are the
gatekeepers of the JVM, controlling what bytecode may be loaded and
what should be rejected. As such they have two primary
responsibilities:

1. To separate Java code from different sources, thus preventing
malicious code from corrupting known good code

2. To protect the boundaries of the core Java class packages (trusted
classes) by refusing to load classes into these restricted packages

The class loader has another, useful, side effect. By controlling how
the JVM loads code, all platform-specific file I/O is channelled through
one part of the JVM, thus making porting the JVM to different platforms
a much simpler task.

Let’s look a little more closely at these two aims and why they are
necessary. First, Java code can be loaded from a number of different
sources. These include but are not limited to:

 • The trusted core classes which ship with the JVM (java.lang.*,
java.applet.* etc.)
The Class Loader and Class File Verifier 79

 • Classes stored in the local file store and locatable via the
CLASSPATH environmental variable

 • Classes retrieved from Web servers (as parts of applets)

Clearly, we would not want to overwrite a trusted JVM class with an
identically named class from a Web server since this would undermine
the entire Java security model (the SecurityManager class is
responsible for a large part of the JVM runtime security and is a
trusted local class; consider what would happen to security if the
SecurityManager could be replaced by an applet loaded from a remote
site). The class loader must therefore ensure that trusted local classes
are loaded in preference to remote classes where a name clash
occurs.

Secondly, where classes are loaded from Web servers, it is possible
that there could be a deliberate or unintentional collision of names
(although the Sun Java naming conventions exist to prevent
unintentional name collisions). If two versions of a class exist and are
used by different applets from different Web sites then the JVM,
through the auspices of the class loader, must ensure that the two
classes can coexist without any possibility of confusion occurring.
Class type confusion is a key way of attacking the JVM and is
discussed later in this chapter.

The last point, that the class loader must protect the boundaries of the
trusted class packages merits further explanation. The core Java class
libraries that ship with the JVM reside in a series of packages which
begin “java.”, for example, java.lang and java.applet. Within the Java
programming language, it is possible to give special access privileges
to classes which reside in the same package; thus, a class which is
part of the java.lang package has access to methods and fields within
other classes in the java.lang package which are not accessible to
classes outside of this package.

If it were possible for a programmer to add his or her own classes to
the java.lang package, then those classes would also have privileged
access to the core classes. This would be an exposure of the JVM and
consequently must not be allowed.

The class loader must therefore ensure that classes cannot be
dynamically added to the various core language packages. It achieves
this by examining the name of the class which it is being asked to load
and refusing to load those which start with “java.”
80 Java Network Security

5.2.1 How Class Loaders Are Implemented
The JVM architecture diagram (Figure 16 on page 78) shows two class
loaders. In fact, the JVM may have many class loaders operating at
any point in time, each of which is responsible for locating and loading
classes from different sources.

One of the class loaders, the primordial class loader, is a built-in part
of the JVM; that is, it is written in C or whatever language the JVM is
written in and is an integral part of the JVM. It is the root class loader
and is responsible for loading trusted classes; these are classes from
the core Java classes and those classes which can be found in the
CLASSPATH and usually in the local filestore.

Classes loaded by the primordial class loader are regarded as special
insofar as they are not subject to verification prior to execution; that is,
they are assumed to be well formed, safe Java classes. Obviously if
would-be attackers could somehow inveigle a malicious class into the
CLASSPATH of a JVM they could cause serious damage.2

In addition to this primordial class loader, application writers (including
JVM implementors) are at liberty to build more class loaders to handle
the loading of classes from different sources such as the Internet, an
intranet, local storage or perhaps even from ROM in an embedded
system. These class loaders are not a part of the JVM; rather, they
are part of an application running on top of the JVM, written in Java
and extending the java.lang.ClassLoader class.

The most obvious example of this is in the context of a Web browser
which knows how to load classes from an HTTP (Web) server. The
class loader which does this is generally known as the applet class
loader and is itself a Java class which knows how to request and load
other Java class files from a Web server across a TCP/IP network.

In addition, application writers can implement their own class loaders
by subclassing the ClassLoader class (note that such behavior may be
disallowed by the SecurityManager in an applet; we discuss more of
this in the next chapter).

It is clear then that there can be many types of class loader within a
Java environment at any one time. In addition, there may be many
instances of a particular type of class loader operating at once.

2 This was the basis of one of the attacks discovered by the Secure Internet Programming team at Princeton
University. Their attack, “Slash and Burn”, is described more fully in Java Security, Hostile Applets, Holes and
Antidotes, Gary McGraw and Ed Felten.
The Class Loader and Class File Verifier 81

To summarize the above;

 • There will always be one and only one primordial class loader. It is
part of the JVM, like the execution engine.

 • There will be zero or more additional ClassLoader derivatives,
written in Java and extending the ClassLoader abstract class. In a
Web browser environment there will be at least one additional class
loader: the applet class loader.

 • For each additional ClassLoader type, there will be zero or more
instances of that type created as Java objects.

Let’s look at this last point more closely. Why would we want to have
multiple instances of the same class loader running at any one time?

To answer this question we need to examine what class loaders do
with a class once it has been loaded.

Every class present in the JVM has been loaded by one and only one
class loader. For any given class, the JVM “remembers” which class
loader was responsible for loading it. If that class subsequently
requires other classes to be loaded, the JVM uses the same class
loader to load those classes.

This gives rise to the concept of a name space: the set of all classes
which have been loaded by a particular instance of a class loader.
Within this name space, duplicate class names are prohibited. More
importantly, there is no cross name space visibility of classes; a class
in one name space (loaded by a particular class loader) cannot access
a class in another name space (loaded by a different class loader).

Returning to the question “Why would we want to have multiple
instances of a given ClassLoader derivative?”, consider the case of
the applet class loader. It is responsible for loading classes from a
Web server across the Internet or intranets. On most networks (and
certainly the Internet) there are many Web servers from which classes
could be loaded and there is nothing to prevent two Webmasters from
having different classes on their sites with the same name.

Since a given instance of a class loader cannot load multiple classes
with the same name, if we didn’t have multiple instances of the applet
class loader we would very quickly run into problems when loading
classes from multiple sites. Moreover, it is essential for the security of
the JVM to separate classes from different sites so that they cannot
inadvertently or deliberately cross reference each other. This is
82 Java Network Security

achieved by having classes from separate Web sites loaded into
separate name spaces which in turn is managed by having different
instances of the applet class loader for each site from which applets
are loaded.

5.2.2 The Class Loading Process
The ability to create additional class loaders is a very powerful feature
of Java. This becomes particularly apparent when you realize that
user- written class loaders have first refusal when it comes to loading
classes; that is, they take priority over the primordial class loader. This
enables a user-written class loader to replace any of the system
classes, including the SecurityManager. In other words, since the
class loader is Cerberus to the JVM’s Hades, you had better be sure
that when you replace it, you don’t inadvertently install a lapdog in its
place.

We have already stated that a class loader which has loaded a
particular class is invoked to load any dependent classes. We also
know that a class loader generally has responsibility for loading
classes from one particular source such as Web servers.

What if the class first loaded requires access to a class from the
trusted core classes such as java.lang.String? This class needs to be
loaded from the local core class package, not from across a network. It
would be possible to write code to handle this within the applet class
loader but it is unnecessary. We already have a class loader in the
shape of the primordial class loader which knows how to load classes
from the trusted packages.

This leads us to our second observation about class loaders: they
frequently interoperate, one class loader asking another to load a
class for it.

To illustrate how this works, consider the PointlessButton applet. As a
reminder, PointlessButton uses a second class,
JamJar.examples.Button which represents a push button on the
browser display. Pushing the button results in nothing happening and
a display being updated to inform you how many times nothing has
happened to date.

When a Web browser encounters the pointlessButton applet in a Web
page the following sequence of events occurs:
The Class Loader and Class File Verifier 83

1. The browser finds the <APPLET> tag in the Web page and
determines that it needs to load PointlessButton.class from the
Web server. It creates an instance of the applet class loader
(specific to this Web site) to fetch the class.

2. The applet class loader first asks the primordial class loader to load
PointlessButton.class. The primordial class loader which only
knows about the trusted classes fails to locate the class and returns
control to the applet class loader.

3. The applet class loader connects to the Web site using the HTTP
and downloads the class.

4. The JVM begins executing the PointlessButton applet.

5. PointlessButton needs to create an instance of
JamJar.examples.Button, a class which currently has not been
loaded. It requests the JVM to load the class.

6. The JVM locates the applet class loader which loaded
PointlessButton and invokes it to load JamJar.examples.Button.

7. The applet class loader again first asks the primordial class loader
to load the JamJar.examples.Button class and again the primordial
class loader fails to find it and returns control to the applet class
loader which is able to load the class from the Web server.

8. JamJar.examples.Button creates a java.lang.String object as the
title of the button. The String class has not yet been loaded so
again the JVM is requested to load the class.

9. The applet class loader which loaded both PointlessButton and
JamJar.examples.Button is now invoked to load the java.lang.String
class.

10.The applet class loader requests the primordial class loader to load
the String class. This time, the primordial class loader is able to
locate and load the class since it is part of the trusted classes
package. Since the primordial class loader was successful, the
applet class loader needs look no further and returns.

There are a couple of interesting points to note here.

First, at step 7, if we were using a regular java.awt.Button class then
the primordial class loader would have been able to find the class in
the trusted packages and the search would have stopped.

Secondly, there are actually many references to the java.lang.String
class in the code. However, only the first reference results in the class
84 Java Network Security

being loaded from disk. Subsequent requests to the class loader will
result in it returning the class already loaded. Since it is the primordial
class loader which loads the String class, if there are multiple applets
on a single page, only the first one to request a String class will result
in the primordial class loader loading the class from disk.

Note also the order in which the applet class loader searches for
classes. An applet class loader could always search the Web server
from which it loaded the applet first for any subsequent classes and
this would cut out some calls to the primordial class loader. This would
have been incredibly bad practice for two reasons:

 • Most of the class load requests for an applet will be for trusted
classes from the java.* packages.

 • More importantly, if classes were sought on the Web server before
being sought in the trusted package, it would allow subversion of
built-in types, enabling malicious programmers to substitute their
own implementations of core, trusted classes such as the
SecurityManager or even the applet class loader itself.

For this reason all commercially available browsers have applet class
loaders which implement the following search strategy:3

1. Ask the primordial class loader to load the class from the trusted
packages.

2. If this fails, request the class from the Web server from which the
original class was loaded.

3. If this fails, report the class as not locatable by throwing a
ClassNotFound exception.

This search strategy ensures that classes are loaded from the most
trusted source in which they are available.

5.2.3 Why You Might Want to Build Your Own Class Loader
If it is done correctly, a user-built class loader can significantly
enhance the security of an application deployed on an intranet,
particularly if it is used in conjunction with a firewall and other local
security measures.

Note that at the time of writing, Web browsers use the security
manager to prohibit the creation of new derivatives of ClassLoader,
although this may change with the new Java security model and the

3 This is common practice but note that it is not enforced by the JVM architecture. Class loader writers are at
liberty to implement any search strategy they choose for locating classes.
The Class Loader and Class File Verifier 85

various permissions APIs which are being implemented. Chapter 7,
“Playing in the Sandbox” on page 97 examines the security manager
in more detail.

Some of the situations in which a user-written class loader could be
used are:

 • To restrict searches for trusted classes to a particular directory or
path other than the CLASSPATH

 • To allow the JVM to load classes from a particular source such as
from EPROM or a non-TCP/IP network

 • To specify paths which should be searched in advance of the
CLASSPATH

 • To provide auditing information about access to classes

In each of these cases you will need to build your own class loader
and implement your own search strategy for locating classes.

It is beyond the scope of this book to show you how to write your own
extension to ClassLoader and there are other resources, both books
and on-line, which will teach you the specifics. For the serious
codeheads out there, there is a sample ClassLoader included on the
CD accompanying this book which implements a simple audit trail for
class libraries.

5.3 The Class File Verifier4

Once a class has been located and loaded by a class loader (other
than the primordial class loader), it still has another hurdle to cross
before being available for execution within the JVM. At this point we
can be reasonably sure that the class file in question cannot supplant
any of the core classes, cannot inveigle its way into the trusted
packages and cannot interfere with other safe classes already loaded.

We cannot, however, be sure that the class itself is safe. There is still
the safety net of the SecurityManager which will prevent the class from
accessing protected resources such as network and local hard disk,
but that in itself is not enough. The class might contain illegal
bytecode, forge pointers to protected memory, overflow or underflow
the program stack, or in some other way corrupt the integrity of the
JVM.

4 Important note: The class file verifier is sometimes referred to as the bytecode verifier, but as we show in this
section, running the bytecode verifier is only one part of the class file verification process.
86 Java Network Security

As we have said in earlier chapters, a well behaved Java compiler
produces well behaved Java classes and we would be quite happy to
run these within the JVM since the Java language itself and the
compiler enforce a high degree of safety. Unfortunately we cannot
guarantee that everyone is using a well behaved Java compiler. Nasty
devious hacker types may be using home made compilers to produce
code designed to crash the JVM or worse, subvert the security thereof.
In fact, as we saw in Chapter 4, we can’t even be sure that the source
language was Java in the first place!

In addition to this there is the problem of release-to-release binary
compatibility. Let’s say that you have built an applet which uses a class
called TaxCalculator from a third party. You have constructed your
applet with great care and have purchased and installed the
TaxCalculator class on the server with your applet code.

At this point you are certain that the methods you call in TaxCalculator
are present and valid but what happens if/when you upgrade
TaxCalculator? Of course you should make sure that the API exposed
by TaxCalculator hasn’t changed and that your class will still work, but
what if you forget? In practice it is quite possible that TaxCalculator
has changed between versions and methods or fields which were
previously accessible have become inaccessible, been removed or
changed type from dynamic to static fields. In this case, when your
applet is downloaded to a browser and it tries to make method calls or
access fields within TaxCalculator those calls may fail.

This is because the binary (code) compatibility between the classes
has been broken between releases. These problems exist with all
forms of binary distributable libraries. On most systems this results in
at best a system message and the application refusing to run; at worst
the entire operating system could crash. The JVM has to perform at
least as well as other systems in these circumstances and preferably
better.

For all of the above reasons, an extra stage of checking is required
before executing Java code and this is where the class file verifier
comes in.

After loading an untrusted class via a ClassLoader instance, the class
file is handed over to the class file verifier which attempts to ensure
that the class is fit to be run. The class file verifier is itself a part of the
Java Virtual Machine and as such cannot be removed or overridden
without replacing the JVM itself.
The Class Loader and Class File Verifier 87

5.3.1 The Duties of the Class File Verifier
Before we discuss what the class file actually does we look at the
possible ways in which a class file could be "unsafe." By
understanding the threat, we can see better how the Java architecture
goes about countering it and expose any holes in the security provided
by the class file verifier.

The following are some of the things that a class file could do which
could compromise the integrity of the JVM:

 • Forge illegal pointers. If a Java class can obtain a reference to an
object of one type and treat it as an object of a different type then it
effectively circumvents the access modifiers (private, protected or
whatever) on the fields of that object. This type of attack is known
as a class confusion attack since it relies on confusing the JVM
about the class of an object.

 • Contain illegal bytecode instructions. The JVM’s execution
engine is responsible for running the bytecode of a program in the
same way as a conventional processor runs machine code.

When a conventional processor encounters an illegal instruction in
a program, there is nothing that it can do other than stop execution.
You may have seen this in Windows programs where the operating
system can at least identify that an illegal instruction has been
found and display a message.

Similarly, if the execution engine finds a bytecode instruction that it
cannot execute, it is forced to stop executing. In a well written
execution engine this would not be good but in a poorly written
version it is possible that the entire JVM, or the Web browser in
which it is embedded or even the underlying operating system
might be halted. This is obviously unacceptable.

 • Contain illegal parameters for bytecode instructions. Passing
too many or too few parameters to a bytecode instruction, or
passing parameters of the wrong type, can lead to class confusion
or errors in executing the instruction.

 • Overflow or underflow the program stack. If a class file could
underflow the stack (by attempting to pop more values from it than
it had placed on it) or overflow the stack (by placing values on it
that it did not remove) then it could at best cause the JVM to
execute an instruction with illegal parameters or at worst crash the
JVM by exhausting its memory.
88 Java Network Security

 • Perform illegal casting operations. Attempting to convert from
one data type to another – for example, from an integer to a floating
point or from a String to an Object – is known as casting. Some
types of casting can result in a loss of precision (such as converting
a floating point number to an integer) or are simply illegal (such as
converting a String to a DataInputStream).

The legality of other types of casts is less clear, for example, all
Strings are Objects (since the String class is derived from the
Object class) but not all Objects are Strings. Trying to cast from an
Object to a String is legal only if the Object is originally a String or a
String derivative. Allowing illegal casts to be performed will result in
class confusion and thus must be prevented.

 • Attempt to access classes, fields or methods illegally. As
discussed above, a class file may attempt to access a nonexistent
class. Even if the class does exists, it may attempt to make
reference to methods or fields within the class which either do not
exist or to which it has no access rights. This may be part of a
deliberate hacking attempt or as a result of a break in
release-to-release binary compatibility.

By tagging each object with its type, the JVM could check for illegal
casts. By checking the size of the stack before and after each method
call, stack overflows and underflows can be caught. The JVM could
also test the stack before each bytecode was executed and thus avoid
illegal or wrongly numbered parameters.

In fact, all of these tests could be made at runtime but the performance
impact would be significant. Any work that the class file verifier can do
in advance of runtime to reduce the performance burden is welcome.
With some idea of the magnitude of the task before the class file
verifier, we now look at how it meets this challenge.

5.3.2 The Four Passes of the Class File Verifier
Before we go into any detail on how the class file verifier works it is
important to note that the Java specification requires the JVM to
behave in a particular way when it encounters certain problems with
class files, which is usually to throw an error and refuse to use the
class.

The precise implementation varies from one vendor to the next and is
not specified. Thus some vendors may make all checks prior to
making a class file available; others may defer some or all checks until
The Class Loader and Class File Verifier 89

runtime. The process described below is the way in which Sun’s
HotJava Web browser works; it has been adopted by most JVM
writers, not least because it saves the effort of reinventing a complex
process.

The class file verifier makes four passes over the newly loaded class
file, each pass examining it in closer detail. Should any of the passes
find fault with the code then the class file is rejected. For reasons
which we explain below, not all of these tests are performed prior to
executing the code. The first three passes are performed prior to
execution and only if the code passes the tests here will it be made
available for use.

The fourth pass, really a series of ad hoc tests, is performed at
execution time, once the code has already started to run.

5.3.2.1 Pass 1 - File Integrity Check
The first and simplest pass checks the structure of the class file. It
ensures that the file has the appropriate signature (first four bytes are
0xCAFEBABE) and that each of the structures within the file is of the
appropriate length. It checks that the class file itself is neither too long
nor too short and that the constant pool contains only valid entries. Of
course class files may have varying lengths but each of the structures
(such as the constant pool) has its length included as part of the file
specification.

If a file is too long or too short, the class file verifier throws an error
and refuses to make the class available for use.

5.3.2.2 Pass 2 - Class Integrity Check
The second pass performs all other checking which is possible without
examining the actual bytecode instructions themselves. Specifically, it
ensures that:

 • The class has a superclass (unless this class is Object).

 • The superclass is not a final class and that this class does not
attempt to override a final method in its superclass.

 • Constant pool entries are well formed, and that all method and field
references have legal names and signatures.

Note that in this pass, no check is made as to whether fields, methods
or classes actually exist, merely that their names and signatures are
legal according to the language specification.
90 Java Network Security

5.3.2.3 Pass 3 - Bytecode Integrity Check
This is the pass in which the bytecode verifier runs and is the most
complex pass of the class file verifier. The individual bytecodes are
examined to determine how the code will actually behave at runtime.
This includes data-flow analysis, stack checking and static type
checking for method arguments and bytecode operands.

It is the bytecode verifier which is responsible for checking that the
bytecodes have the correct number and type of operands, that
datatypes are not accessed illegally, that the stack is not over or
underflowed and that methods are called with the appropriate
parameter types.

The precise details of how the bytecode verifier operates may be
found in Appendix C, “The Bytecode Verifier in Detail” on page 219.
For now, it is important to state two points:

First, the bytecode verifier analyzes the code in a class file statically. It
attempts to reconstruct the behavior of the code at runtime, but does
not actually run the code.

Secondly, some very important work has been done in the past and
more recently by one of the authors of this book which demonstrates
that it is impossible for static analysis of code to identify all of the
problems which may occur at runtime. We include this proof in Chapter
6, “An Incompleteness Theorem for Bytecode Verifiers” on page 95.

To restate this in simple terms, any class file falls into one of three
categories:

 • Runtime behavior is demonstrably safe.

 • Runtime behavior is demonstrably unsafe.

 • Runtime behavior is neither demonstrably safe nor demonstrably
unsafe.

Clearly the bytecode verifier should accept those class files in the first
category and reject those in the second category. The problem arises
with class files in the third category.

These class files may or may not contain code which will cause a
problem at runtime, but it is impossible from static analysis of the code
alone to determine which is the case.
The Class Loader and Class File Verifier 91

The more complex the bytecode verifier becomes, the more it can
reduce the number of cases which fall into the third category but no
matter how complex the verifier, it can never completely eliminate the
third category and for this reason there will always be bytecode
programs which pass verification, but which may contain illegal code.

This means that simply having the bytecode verifier is not enough to
prevent runtime errors in the JVM and that the JVM must perform
some runtime checking of the executable code.

Lest you be panicking at this stage you should comfort yourself with
the thought that the level of verification performed by the JVM prior to
executing bytecode is significantly higher than that performed by
traditional runtime environments for native code (that is, none at all).

5.3.2.4 Pass 4 - Runtime Integrity Check
As we have hinted, the JVM must make a tradeoff between security
and efficiency. For that reason, the bytecode verifier does not
exhaustively check for the existence of fields and classes in pass 3. If
it did, then the JVM would need to load all classes required by an
applet or application prior to running it. This would result in a very
heavy overhead which is not strictly required.

We’ll examine the following case with three classes, MyClass,
MyOtherClass and MySubclass, which is derived from MyClass.
MyOtherClass has two public methods

 • methodReturningMyClass() which returns an instance of MyClass
(huzzah! for meaningful method names!) and

 • methodReturningSubclassOfMyClass() which returns an instance
of SubclassOfMyClass.

Against this background, consider the following code snippet.

MyOtherClass x = new MyOtherClass();
MyClass y = x.methodReturningMyClass();

In pass 3, the class file verifier has ascertained that the method
methodReturningMyClass() is listed in the constant pool as a method
of MyOtherClass which is public (and therefore reachable from this
code).

It also checks that the return type of methodReturningMyOtherClass()
is MyClass. Having made this check and assuming that the classes
and methods in question do exist, the assignment statement in the
92 Java Network Security

second line of code is perfectly legal. The bytecode verifier does not in
fact need to load and check class MyOtherClass at this point.

Now consider this similar code:

MyOtherClass x = new MyOtherClass();
MyClass y = x.methodReturningSubclassOfMyClass();

In this case, the return type of the method call does not return an
object of the same class as y, but the assignment is still legal since the
method returns a subclass of MyClass. This is not, however, obvious
from the code alone: the verifier would need to load the class file for
the return type SubclassOfMyClass and check that it is indeed a
subclass of MyClass.

Loading this class involves a possible network access and running the
class file verifier for the class and it may well be that these lines of
code are never executed in the normal course of the program’s
execution in which case loading and checking the subclass would be a
waste of time.

For that reason, class files are only loaded when they are required,
that is when a method call is executed or a field in an object of that
class is modified. This is determined at runtime and so that is when
the fourth pass of the verifier is executed.

5.4 Summary

You have now seen the types of checking which take place before a
class file from an untrusted source can be loaded and run inside the
JVM. While not perfect, this is significantly more checking than is
performed on any conventional operating system (that is, none at all).

Once it is running, code from untrusted sources is subject to further
checking at the hands of the security manager which we have
mentioned briefly here. Chapter 7, “Playing in the Sandbox” on page
97 describes how the security manager works and looks at ways in
which it is possible to reduce the burden placed on the class loader
and class file verifier by extending the range of classes which the JVM
regards as trusted.
The Class Loader and Class File Verifier 93

94 Java Network Security

Chapter 6. An Incompleteness Theorem for Bytecode
Verifiers

The bytecode verifier is a key component of Java security. Practical
bytecode verifiers divide bytecode programs into three classes: those
that will not cause problems when they run, those that will cause
problems when they run, and those where the verifier is not certain.
You can improve a bytecode verifier by reducing its area of
uncertainty. Can you eliminate uncertainty completely? Can you build
a complete bytecode verifier that determines whether a program is
safe or not before it runs?

The answer is no, you cannot. It is mathematically impossible. This
short chapter shows why.1

To demonstrate this, we focus on one aspect of bytecode verification,
stack-underflow checking. This involves determining whether a
bytecode program will underflow the stack, by removing more items
from it than were ever placed on it. Then we use the argument known
as reductio ad absurdum. We assume that there is a complete
stack-underflow checker and show that this assumption leads to a
contradiction. This means that the assumption must have been false –
a complete stack-underflow checker is impossible. Since a complete
bytecode verifier must contain a complete stack-underflow checker, a
complete bytecode verifier is impossible too.

Suppose then that there is such a thing as a complete stack-underflow
checker. We write a method in standard Java bytecode which takes as
its argument the name of a class file and returns the value true if the
specified class file does not underflow the stack, and false if it does.2
We call this method doesNotUnderflow().

1 The problem has been deliberately stated in terms that mathematicians may recognize as being similar to the
halting problem. The proof, a diagonalization argument, follows the flow of Christopher Strachey’s
halting-problem proof (Computer Journal 1967).
2 We have here used Church’s Thesis, which states that a programming language (such as the Java bytecode
language) which can code a Turing machine can code any computable function.

hEHU�GHQ�8QHQWVFKHLGEDUVDW]�I�U�GHQ�%\WHFRGH�9HULILHU

This is an allusion to the most famous Unentscheidbarsatz, or incompleteness theorem,

proved by Kurt Gödel and published in 1931 in Über formal unentscheidbare Sätze der

Principia Mathematica und verwandter Systeme
95

We now consider the bytecode program Snarl, whose main method
contains:

if doesNotUnderflow(classFile)
 while true pop(); // thus underflowing Snarl’s stack
else
 { } // exiting gracefully

pop() – which removes the top element from the stack – may not be
pure Java, but can certainly be written in bytecode. The bytecode
program Snarl is compiled into the class file Snarl.class.3

What happens if we give Snarl itself as a parameter? The first thing it
does is to invoke the method doesNotUnderflow on Snarl.class:

 • If doesNotUnderflow(Snarl.class) is true, then Snarl immediately
underflows the stack.

 • If doesNotUnderflow(Snarl.class) is false, then Snarl exits safely,
without underflowing the stack.

This contradiction means that there could never have been a method
doesNotUnderflow which worked for all class files. The quest for a
way of determining statically that a class would behave itself at run
time was doomed. Complete checking for stack underflow must be
done at runtime if it is to be done at all.

This result can be generalized and applied to any aspect of bytecode
verification where you try to determine statically something that
happens at runtime. So all bytecode verifiers are incomplete. This
does not, of course, mean that they are not useful – they contribute
significantly to Java security – nor that they cannot be improved. It
does mean, however, that some checking has to be left until runtime.

3 Snarl is a pretty nasty piece of programming, and most practical bytecode verifiers would reject it out of hand.
The reason for this is that while true pop (); is disastrous if executed and has no practical purpose; a good rule of
thumb is to leave it out. But there's nothing invalid about Snarl – if we really have finite bytecode for the method
doesNotUnderflow(), then we can readily construct the bytecode for Snarl – and doesNotUnderflow(), being
complete, has no need for rules of thumb.
96 Java Network Security

Chapter 7. Playing in the Sandbox

As we say in “Java as a Threat to Security” on page 9, we can imagine
four levels of attack to which a Java applet can be subjected:

1. System Modification, in which the applet makes some change to
the browser system (read/write access).

2. Privacy Invasion, in which the applet can steal restricted
information from your system (read-only access).

3. Denial of service, in which the applet uses system resources
without being invited.

4. Impersonation, in which the applet masquerades as the real user of
the system.

The browser security manager implements the sandbox restrictions
that are designed to prevent the first two of these. In this chapter we
look at what the security manager does, how it does it, and then look
at some of the loopholes (now closed) in which it has been
circumvented. Finally we briefly consider the tricks that an applet can
use to perform the "nuisance" attacks – denial of service and
impersonation.

7.1 What the Security Manager Does

SecurityManager is an abstract class that any application developer
can extend to implement a set of controls. SecurityManager contains a
set of methods with names starting check, for example checkWrite() or
checkConnect(). These methods answer the question "is the applet
allowed to do this?" either by quietly returning to the caller (an implicit
"yes") or by throwing a security exception (an emphatic "no").

Although the class itself is abstract, the methods within it are not,
which means that if a subclass of SecurityManager does not
implement a particular method, a default behavior will result. The
default, in every case, is to deny the check by throwing an exception.

�2SHQ�WKH�SRG�ED\�GRRUV��+DO�
�,·P�VRUU\��'DYH��,·P�DIUDLG�,�FDQ·W�GR�WKDW����������$�6SDFH�2G\VVH\

�6WDQOH\�.XEULFN�DQG�$UWKXU�&��&ODUNH�
97

The security manager installed in most browsers overrides some of the
default methods, but is still very restrictive, so that it prevents the
applet from doing anything that would compromise the system. Table 7
summarizes the checks and the normal browser implementation.

Table 7. Security Manager Controls

Area of
control

Check method "Is the applet
allowed to..."

Allowed in an applet?

Network
connections

checkAccept accept a socket
connection?

No

checkConnect request a socket
connection?

Restricted. Can only
request a connection to
the same server from
which the applet was
originally loaded

checkListen listen for
connection?

No

checkMulticast use multicast? No

Threads checkAccess modify thread
arguments?

Restricted to threads
within the same thread
group (that is, threads
that are descended
from a single parent
thread).

File system checkDelete delete a specified
file?

No

checkRead read from a
specified file?

No

checkWrite write to a specified
file?

No

Operating
system
access

checkExec execute a system
command?

No

checkPrintJobAccess create a print job? No

checkSystemClipboardAccess access the system
clipboard?

No

checkLink link to a system
library?

No
98 Java Network Security

7.2 Operation of the Security Manager

Although any Java program, applet or application, can extend
SecurityManager, the JVM will allow only one security manager to be
active at a time. To make a security manager active you have to call a
static system method: java.System.setSecurityManager(). This can be
done only once in an application environment; any subsequent call
results in an exception. In the case of an applet, the web browser has
already installed a security manager as part of the JVM initialization.
This means, assuming that the trusted classes are not subverted, that
an applet has no choice but to live within the limitations of the security
manager provided by the browser.

The installed security manager is only really active on request: it does
not check anything unless it is called by other system functions. Figure
17 illustrates the flow for a specific restricted operation, establishing a
network connection. The calling code creates a new Socket class,
using one of the constructor methods it provides. This method invokes

Java Virtual
Machine
control

checkExit kill the JVM? No

checkPropertyAccess
checkPropertiesAccess

access specified
system properties?

Restricted to a small list
of uninteresting items.
Cannot get a list of
available property
names.

checkAwtEventQueueAccess access the AWT
event queue?

Yes

checkCreateClassLoader create a new class
loader?

No

Packages
and classes

checkPackageAccess
checkPackageDefinition

access a specified
Java class
package?

Yes

Security
extensions

use a specified
security package
feature?

Yes

Area of
control

Check method "Is the applet
allowed to..."

Allowed in an applet?
Playing in the Sandbox 99

the checkConnect method of the local SecurityManager subclass
instance.

Figure 17. Security Manager Operation

In this case the security manager has a number of things to consider:

 • It needs to know whether the top level class (in this case
your.own.applet) is trusted or not. That is, was it loaded by a class
loader over the network or by a local class loader, or was it installed
locally, from the trusted class path? We have seen in “How Class
Loaders Are Implemented” on page 81 that each of the active class
loaders maintains a unique name space. Whether the classes
within a name space are trusted depends on the type of class
loader that created it.

 • As an extension of the first point, if the security manager is
checking a file access or network connection request (as here) it

Socket(host, port)

your.own.applet

java.net.Socket

checkConnect(host, port)

1. Resolve host name
2. Compare with origin
host of invoking class.

browser.SecurityManager
Return...

Or...

Security
Exception

Trusted name space

Untrusted name space
100 Java Network Security

not only needs to know if the applet is trusted, but also if it was
loaded from the network or from a local file. This is because there
are variations in the level of access allowed for these functions.

Refer to the JavaSoft security FAQ page for more information about
this.

 • It may have to run some further check specific to the type of access
requested. In this case, for example, it has to check whether the
host to which the socket connection is being attempted is the same
host from which the calling class was loaded.

If all of these checks are successful, the security manager can permit
the connection to go ahead.

7.2.1 Class Loader/Security Manager Interdependence
Although the three elements of JVM security – class loader, class file
verifier and security manager – each have unique functions, this
example illustrates their interdependence. The security manager relies
on the class loader to keep untrusted classes and local classes in
separate name spaces and to prevent the local trusted classes from
being overwritten (for example, by a Socket class that failed to invoke
checkConnect).

Conversely, the class loader relies on the security manager to prevent
an applet from loading its own class loader, which could flag untrusted
code as trusted. And everything relies on the class file verifier to make
sure that class confusion is avoided and that class protection
directives are honored.

The bottom line is this: if an attacker can breach one of the three
defenses, the security of the whole system is usually compromised.

7.3 Attacking the Sandbox

We have now seen how the different parts of the Java defense act
together to create a secure environment in which applets can run. If
everything is working correctly, you should be safe from applets that
try to attack your browser system or use it to mount attacks on other
systems. In theory...

In practice, a number of holes have been found in the implementation
of the Java defense, and a variety of attack applets have been
demonstrated that exploit them. We do not go into the details of these
Playing in the Sandbox 101

applets here, partly because all of the publicized holes have already
been closed by the main browser vendors, but mainly because most of
them have already been described in detail in Java Security: Hostile
Applets, Holes and Antidotes, by Gary McGraw and Ed Felten. Dr.
Felten is the leader of the Princeton Secure Internet Programming
team, which has, more than any other group, subjected the JVM
environment to scrutiny and attack in its lab.

Attack techniques do not stand still, so you should also regularly
monitor the sources listed in Appendix A, “Sources of Information
about Java Security” on page 211.

It is not surprising that holes have been found in the Java defenses.
The JVM is a large piece of code and, inevitably, there are bugs in it.
Some of the attacks have exploited bugs, but most of them rely on
finding ambiguities: using JVM facilities in a way that the original
writers did not envision. If one were to redesign Java from scratch,
with the benefit of hindsight, it would be possible to reduce the areas
in which there is scope for ambiguity. However, we should not let this
detract from the fact that, in general, the Java defenses have proven
very strong and effective.

7.3.1 Types of Attack
Although we do not describe any attacks in detail, it is worth
summarizing some of the techniques that have been successfully
used:

 • Infiltrating local classes. You will have realized from the
descriptions of the class loader and security manager functions that
they depend completely on the integrity of Java classes on the local
browser disk. This applies not only to "system" classes – the java.*
classes of the JVM – but to any class installed in the browser
system (in the browser home directory or in the CLASSPATH). This
is because these classes operate outside the controls of the
sandbox.

There was a bug (discovered by David Hopwood) that allowed an
applet to load a class from any directory on the browser system.
This has been fixed, but opportunities still exist for the opportunist
cracker. Downloading code packages from the Internet has become
a part of everyday life for many people. Any of those packages
could have been modified to plant a Trojan horse class file along
with their legitimate payload. Of course, this is not just a Java
problem, but more like a new form of computer virus. One solution
102 Java Network Security

lies in signed content, so that you know that the package you
download has not been tampered with. JDK 1.2 also promises
some additional protection by applying restrictions to locally-loaded
classes, as described in “Protection Domains” on page 129.

 • Type confusion. Java goes to great lengths to ensure that objects
of a particular type are dealt with consistently, whenever they are
referenced. We see this both in the compiler and later in the third
pass of the class file verifier (see “Pass 3 - Bytecode Integrity
Check” on page 91). It is crucial to the operation of the sandbox
that the class of an object and level of access it allows (as specified
by the private, protected or public keywords) is preserved. In
the JVM, objects are referenced by entries in the constant pool. As
the example in “The Constant Pool” on page 62 showed, each entry
includes the type of the referenced object.

If, somehow, an attacker can create an object reference that is not
of the type it claims to be, there is a possibility of breaking down the
sandbox protection. Several exploits have shown ways to achieve
type confusion, by taking advantage of a various flaws, such as:

 • A bug that allowed a class loader to be created but avoided
calling the ClassLoader constructor that normally invokes
checkCreateClassLoader() (see Table 7 on page 98).

 • Flaws in JVM access checking which allowed a method or
object defined as private in one class to be accessed by another
class as public.

 • A bug in the JVM that failed to distinguish between two classes
with the same name but loaded by different class loaders.

 • Network loopholes. The first JVM flaw to get worldwide attention
was a failure to check the source IP address of an applet rigorously
enough. This was exploited by abusing the domain name service
(DNS, a network service responsible for resolving names to
addresses and vice versa) to fool the security manager into
allowing the applet to connect to a host that would normally have
been invisible to the server from which the applet was loaded. In
this way the attacker could access a system that would normally be
safe behind a firewall.

 • JavaScript back doors. There was a series of JavaScript exploits
that allowed a script to persist after the Web page it was invoked
from had been exited. This was used to track the user’s Web
accesses. The flaw was fixed, but then reappeared when Netscape
introduced LiveConnect, which allows a JavaScript script to create
Playing in the Sandbox 103

Java objects and invoke Java methods. Both languages have strict
limitations on what they are allowed to do, but the limitations are
different limitations. By combining them you effectively get a union
of the two protection schemes.

Looking at this catalog of flaws, you may feel gloomy about the whole
question of making Java secure. However, the encouraging thing
about these examples is that they have all been identified by
researchers in the field and fixed rapidly by Sun and the browser
vendors.

7.3.2 Malicious Applets
So much for finding holes in the JVM protection scheme. What about
the last two categories of exposure – the things that are allowed by the
framework but which can still be annoying or damaging?

Setting the rules for the client environment is always a question of
striking a balance. The browser needs to give the applet some system
and network resources; otherwise, it will not be useful at all. On the
other hand, it must not allow an attacker to have free reign over the
browser system.

We have said that there are two types of malicious applets, denial of
service and impersonation. There is also another type of malice that is
not Java-specific. This is based on deception, that is, to try to trick the
user into entering information that they would not normally give away.
This sort of thing is not specific to Java, in fact there are much easier
ways to do the same thing using scripting languages or simple HTML
forms, so we won’t consider them further here.

7.3.2.1 Cycle Stealing
Denial of service attacks have, for a long time, been a scourge of the
Internet. Normally you think of them taking down a server or even a
whole site. A denial of service applet is unusual in that it normally only
affects a single system or user.

"Denial of service" implies that the user can no longer use the system,
but we refer here to "cycle stealing" to mean any applet that consumes
resources, whether computer or human, without the user’s permission.
The most extreme form of these are denial of service applets, but the
most insidious ones may not be detected by their victim at all.
104 Java Network Security

There are obvious denial of service attacks. For example an applet
could try to create an infinite number of windows, or it could sit in a
tight loop, using up CPU cycles. These are very annoying and they
can have a real impact, if the user has to reboot the machine to
recover, for example. However, if they are tied to a particular web page
the user will quite quickly realize where the problem is coming from
and simply not go there. To be effective takes something that is not so
easily traced back to its source.

The key to this kind of applet lies in persistent, background, threads.
Every implementation of the Java virtual machine supports threads,
and the language makes it very easy to use them. In fact there are two
ways to implement a thread, either by creating a subclass of Thread,
or by implementing the Runnable interface. The danger of threads lies
in the fact that they are not tied to a particular Web page. When you
leave the page containing an applet, that applet and all of the threads
it has started will normally be terminated. This job is handled by the
stop() method, which is a final method in Thread (that is, it cannot be
overridden by the programmer). However, if you implement Runnable,
you can design the stop() method to do anything you like, including
nothing at all. Figure 18 shows an example of this technique.

Figure 18. Never Ending Fortune Cookie Applet (Part 1 of 2)

public class Annoy extends Applet implements Runnable {
 Thread fred ;
 URL fortuneURL ;
 public void init() {
 try { fortuneURL = new URL(this.getCodeBase() + "cgi-bin/getFortuneCookie"); }
 catch (MalformedURLException e) {
 System.err.println("Bad URL: " + fortuneURL);
 }

if (fred == null) {
 fred = new Thread(this) ;
 fred.start() ;

}

 }
init method for applet just sets up a URL
object, starts a new thread ("fred")
running and then ends.
Playing in the Sandbox 105

Figure 19. Never Ending Fortune Cookie Applet (Part 2 of 2)

In this case the applet is just mildly annoying, popping up a new
window containing a fortune cookie every five minutes (well, OK, after
the first dozen times the annoyance could be more than mild). The
subtle thing about it is that it seems to appear from nowhere; there is
no sign of it on the Web page from which it loads and it does not
appear until some time after you have left the page and surfed happily
onward. The only way to get rid of it is to quit the browser completely.

This applet is fairly benign, and at least it is visible, so you know that
something strange has happened. Really, what has happened here is
that the attacker has got free use of machine cycles on your system.
What sort of thing might he or she want to do with them? One example
would be to do brute force cipher cracking. A feature of any good
symmetric key encryption algorithm is a uniform key space. That is, if
you want to crack the code there is no mathematical shortcut to finding
the key, you just have to try all possible keys until you find one that
works. Several recent encryption challenges have been solved by
using spare cycles on a large number of computers working as a

public void run() {
 String line;
 URLConnection conn;
 DataInputStream data ;
 while (true) {
 StringBuffer buf = new StringBuffer();

 try { Thread.sleep(300000) ; }
 catch (InterruptedException e) {} ;

 try {
 conn = fortuneURL.openConnection();
 conn.connect();
 data = new DataInputStream(new BufferedInputStream(conn.getInputStream()));
 while ((line = data.readLine()) != null) {
 buf.append(line + "\n");
 }
 FortuneWindow fw = new FortuneWindow(buf.toString()) ;

 }
catch (IOException e) {

 System.err.println("IO Error:" + e.getMessage());
 System.err.println("Trying to get " + fortuneURL) ;

 }
 }

}

public void stop() {
}

run() method of new thread wakes up
every 5 minutes, reads a URL and
displays the result in a window.

Null stop() method allows the thread
to keep running, even after the parent
applet has gone.
106 Java Network Security

loosely-coupled complex, each being delegated a range of keys to try,
under the direction of a central coordinator.

This sort of effort depends on the cooperation and goodwill of a lot of
people who donate machine time and access. But, if we replaced the
getFortuneCookie URL in the above example with, for example,
getNextKeyRange, it would be possible to do the same thing without
having to ask anybody. A number of other applets along the same lines
have been demonstrated, such as applets that kill the threads of other
applets executing concurrently.

7.3.2.2 Impersonation
Internet e-mail is based on the Simple Mail Transfer Protocol (SMTP).
Mail messages are passed from one SMTP gateway to another using
sessions on TCP/IP port 25. Abusing these connections to send bogus
e-mail is an old-established nuisance of the Internet. A hacker can
create mail messages that appear to come from someone else, which
can be used to embarrass or annoy the receiver of the mail and the
apparent sender.

Mail that has been forged in this way is not impossible to tell from the
real thing, however. The SMTP gateways keep track of the original IP
address, so you can trace the message back, if not to a person, at
least to a machine (unless the originator was also using a spoofed IP
address).

A Java applet allows this kind of errant behavior to go one stage
further. There is nothing to prevent an applet from connecting to port
25 and appearing to be a mail client. However, the only system it can
connect to is the one that it was originally loaded from, because of the
sandbox restrictions. So now, if an attacker has control over a web
page, he or she can cause an applet to be sent to a client machine,
which connects back to the server and sends e-mail to the target of the
attack. When the recipient checks the IP address, it belongs to a
complete stranger, who has no idea that anything has happened.

7.4 Summary

The applet security manager enforces a well-defined, secure
environment in which to run an applet. In doing so, it places some
severe restrictions on what the applet can do, which may impede the
development of effective network applications. We show in Chapter 9,
Playing in the Sandbox 107

“Java Gets Out of Its Box” on page 119 how signed applets can break
out of these restrictions.

There are some types of undesirable behavior that the sandbox does
not prevent. These are generally a nuisance, rather than a serious
threat, and at present you have to view them as one of the risks of the
Internet. As the concept of protection domains in Java develops, we
expect to see more granular controls that will prevent this behavior
from the general hacker, while offering a wider range of function to the
trusted host.
108 Java Network Security

Chapter 8. Cryptography in Java

From JDK 1.1 onwards, Java provides general purpose APIs for
cryptographic functions, collectively known as the Java Cryptography
Architecture (JCA) and Java Cryptography Extensions (JCE). Signed
applets, which we will discuss in the next chapter, are one specialized
use of the JCA capabilities.

In this chapter we describe the sort of problems for which
cryptography can provide solutions and then look in more detail at JCA
and JCE.

8.1 Security Questions, Cryptographic Answers

We want to create secure applications, but "secure" means different
things depending on what the application does and the environment in
which it operates. In each case we need to understand what the
requirements are, based on the following categories:

Authentication How sure does the client need to be that the server
really is who it claims to be? And does the server
need to identify the client, or can he or she remain
anonymous? Normally, authentication is based on
either something you know (such as a password),
or something you have (such as an encryption key
or card). A developing form of authentication is
based on something you are, including biometric
measurements such as retinal scans or voice
recognition.

Access control Having found out who is at the other end of the
session, the next step is to decide whether they are
allowed to do what they want to do.

Data integrity You want to be sure that data has not been altered
between what was sent and what was received.

�,�DP�IDLUO\�IDPLOLDU�ZLWK�DOO�IRUPV�RI�VHFUHW�ZULWLQJV��DQG�DP�P\VHOI�WKH�
DXWKRU�RI�D�WULIOLQJ�PRQRJUDSK�XSRQ�WKH�VXEMHFW��LQ�ZKLFK�,�DQDO\]H�RQH�
KXQGUHG�DQG�VL[W\�VHSDUDWH�FLSKHUV��EXW�,�FRQIHVV�WKDW�WKLV�LV�HQWLUHO\�QHZ�WR�
PH�����6KHUORFN�+ROPHV��7KH�$GYHQWXUH�RI�WKH�'DQFLQJ�0HQ

�$�&RQDQ�'R\OH�
109

This is especially true if the application crosses an
insecure network, such as the Internet, where a
man-in-the-middle attack may be easily mounted.

Confidentiality If any of the data that you are sending is sensitive,
you do not want an attacker to be able to read it in
transit. To prevent this it needs to be encrypted.

Non-repudiation In a business application you often have to be able
to prove that a particular transaction took place.

If we measure applet sandbox security against these requirements we
find that the only one it helps us with is access control. The control is
very strict: the security manager says "I can’t authenticate the server
that delivered this applet, so I will allow it to only do safe things."

As we mentioned in “Cryptographic Tools in Brief” on page 31, we
have a trio of tools to answer the questions that these requirements
pose, namely: symmetric key encryption, public key encryption and
hashing/digital signatures.

Symmetric key, or bulk, encryption provides confidentiality, by making
sure that a message can be read only if the recipient has the same key
as the sender. But how to share the key in a secure manner? A
common answer is to use public key encryption. This is too inefficient
for general encryption of the whole data stream, but it is ideal for
encrypting a small item, such as a bulk encryption key. The sender
uses the receiver’s public key to encrypt it, knowing that only the
owner of the private half of the key pair, that is to say the receiver, will
be able to decrypt it. Having secretly shared the bulk encryption key in
this way, they can then use it to encrypt the real data that they want to
keep private.

Digital signatures also use public key encryption, but the other way
around. Figure 20 illustrates how they work.
110 Java Network Security

Figure 20. Creating a Digital Signature

The sender generates a digest from the data and then encrypts it with
its private key. It then sends the result, together with the public key,
along with the data. The receiver uses the public key to decrypt the
signature and then performs the same hashing function on the data. If
the digest obtained matches the result of the decryption, the receiver
knows:

1. That the data has not been changed in transit (data integrity)

2. That it really was sent by the owner of the key pair (authentication)

8.1.1 Public Key Certificates
Whenever public key encryption is used, the owner of the key pair has
to make the public key available to the session partner. But how can
the session partner be sure of where the key really came from? The
answer lies in public key certificates. Instead of sending a naked key,
the owner sends a certificate, which is a message containing:

 • The public key

 • Detailed information about the owner of it (This is known as the
distinguished name. It is a formatted string that contains the name,
address, network information, etc. about the person or organization
that owns the key pair.)

 • The expiry date of the certificate

 • Optionally, additional application-specific data

The whole message is digitally signed by a trusted third party, that is,
an organization that is trusted by both sender and receiver (usually

Data ... to ... be ... sent

Hashing Algorithm

Message Digest

Variable length (000s of bytes)

Fixed length
(128 or 160 bits)

Private key

Public key

Encrypt
Digital Signature

Key Pair
Cryptography in Java 111

known as a Certificate Authority, or CA). The resulting certificate
electronically ties the real identity of the user to the public key.

The international standard for public key certificates is called X.509.
This has evolved over time and the latest version is V3. The most
significant enhancement in X.509 V3 is the ability to add other,
arbitrary, data in addition to the basic identity fields of the
distinguished name. This is useful when constructing certificates for
specific purposes (for example, a certificate could include a bank
account number, or credit card information).

8.1.1.1 Certificate Hierarchies
A public key certificate can also embody a chain of trust. Consider the
situation shown in Figure 21. A system has received a request
containing a chain of certificates, each of which is signed by the next
higher CA in the chain. The system also has a collection of root
certificates from CAs that it views as trusted. It can match the top of
the chain in the request with one of these root certificates ("Ham"). If
the chain of signatures is intact, the receiver can infer that Nimrod is
trustworthy and that it inherits its trustworthiness from Ham.

Figure 21. Certificate Hierarchy

Note that one of the implications of a certificate chain is that the
certificate at the top of the chain is self-signed.

This is to certify
that Ham is a
trusted CA

This is to certify
that Cush is a
trusted CA

This is to certify that
you can trust
anything signed by
Nimrod

Ham’s Certificate

Cush’s Certificate

Received Certificate Chain

This is to certify
that Shem is a
trusted CAShem’s Certificate

This is to certify
that Ham is a
trusted CAHam’s Certificate

This is to certify
that Japhet is a
trusted CAJaphet’s Certificate

Trusted Root Certificates

Nimrod’s Certificate

Signatures
112 Java Network Security

8.2 Introducing JCA: the Provider Concept

From the brief discussion above you can see that to use cryptographic
solutions you may require a whole collection of tools and functions, not
only the encryption algorithms themselves, but functions for message
digests, certificate management and key generation. And of course,
life would be too simple if there were only one way to do each of the
functions. So, for example, there are two different message digest
algorithms in common use, the MD5 algorithm from RSA and the US
Government SHA standard.

The provider architecture of JCA aims to allow algorithm
independence, by representing all functions of a given type by a
generic engine class. This masks the idiosyncrasies of the algorithm
behind standardized Java class behavior. Vendor independence is
supported in the same way, by allowing any number of vendors to
register their own implementations of the algorithms. Figure 22
illustrates how the provider architecture works in practice.

Figure 22. Vendor and Algorithm Independence

KeyPairGenerator

MessageDigest

Signature

Engine Classes

KeyPairGenerator Y

MessageDigest A

Signature S

Provider Bob

KeyPairGenerator Y

KeyPairGenerator X

Signature S

Provider Alice

I need a key
pair of type X...

Registered providers:

1. Bob
2.Alice

Your Java Code

getInstance(X)
Cryptography in Java 113

The figure shows two providers of cryptographic algorithms, Bob and
Alice. These are in fact subclasses of the java.security.provider class.
The acceptable algorithms are defined in engine classes. In JCA the
only engine classes are related to digital signatures: creating the keys
and digests needed for signing and then performing the signature
itself. Bob and Alice both implement a number of algorithms that fall
into these classes.

Now, let’s assume that in your Java code you want to generate a key
pair. You invoke the getInstance() method of the KeyPairGenerator
engine class, passing it the specific type of key pair as an argument.
The engine class reads the provider registration information from the
java.security configuration file. This identifies the provider package
names and assigns each one a preference order. In this case, the
"Bob" provider package comes before "Alice" in the preference order.
The engine class then searches through the providers until it finds an
implementation of the algorithm required.

JDK1.1 offers one built-in provider package as standard, named SUN.
This includes:

 • An implementation of the Digital Signature Algorithm (NIST FIPS
186)

 • An implementation of the MD5 (RFC 1321) and SHA-1 (NIST FIPS
180-1) message digest algorithms

It is worth noting here what is not contained in this package. The main
omission is a facility for managing user IDs (more properly called
principals in crypto-speak) and public key certificates. This makes the
practical uses of the 1.1 package rather limited, as we show in an
example using the SUN provider functions in “The Security Classes in
Practice” on page 115. JDK1.1 does include a set of tools for
manipulating signed applets and these do provide management of
principals, keys and certificates. We explore them in “JavaSoft Signed
JAR Example” on page 122.

8.2.1 JCE and Export Considerations
As we discussed in “US Export Rules for Encryption” on page 33, JCA
only provides for the digital signature part of the cryptographic
spectrum. This allows us to perform reliable authentication which, in
turn, can be used as a basis for implementing access controls that
relax the sandbox restrictions. However, it does not provide the
general purpose encryption needed to send confidential data.
114 Java Network Security

The Java Cryptography Extension (JCE) package uses the same
structure as JCA, being composed of engine classes that expose the
algorithms in a generic way. The exact specification of the API is not
openly published. This is because it is not only the JCE package itself
that falls under the US export restrictions, but also the documentation
for it.

What can be said about JCE is that it provides engine classes for bulk
(symmetric key) encryption algorithms and for generating and
manipulating the secret keys that such algorithms require.

8.3 The Security Classes in Practice

In this section we describe an example of the kind of application that
JCA could be used for. We will illustrate it using snippets of code that
use the APIs. In this way we aim to show, not only the useful features
of JCA, but also the areas in which, at the JDK 1.1 level, it is lacking.

8.3.1 The Scenario
Imagine a home banking application, in which the customer, sitting in
front of a browser in the comfort of his or her home, wishes to make a
payment. Two things, at least, are required here:

1. The server (the bank) wants to authenticate the user, to make sure
that it is not an imposter.

2. The customer will want to be sure that the bank is really who it
claims to be.

We assume that the user will be authenticated by normal means: a
PIN number or pass-phrase. Both client and server side are written in
Java.

8.3.1.1 Step 1: Generate Keys and Certificates
Before the transaction can start, the bank must have generated a key
pair and requested a certificate for it. The first part is simple:

try {

KeyPairGenerator kg = KeyPairGenerator.getInstance("DSA");

kg.initialize(1024, new SecureRandom()) ;

// Now generate a key pair

keypair = kg.generateKeyPair();

}

catch (NoSuchAlgorithmException e) {

System.err.println("No implementation of DSA keypair generator");
Cryptography in Java 115

System.exit(1) ;

}

This instantiates the provider class for a DSA key pair and then
generates it. Now it gets tricky. The server needs to use the same key
pair each time it restarts, which means that it has to somehow save it
securely in a file. There is no built-in facility for this, so the
programmer would need to create a method to do it. Secondly, the
server needs to generate an X.509 certificate request. JCA 1.1 defines
an interface named Certificate, but there is no implementation of it in
the SUN provider package.

8.3.1.2 Step 2: Challenge the Server
The client applet starts off the transaction by establishing a socket
connection to the server using the Socket class from java.net
(alternatively, it could use RMI). There may be some firewall
considerations here, as discussed in Chapter 11, “Firewalls: In and
Out of the Net” on page 169, but we assume the connection can get
through.

Next, the browser generates a random array of bytes and sends it to
the server. There are two types of algorithm for generating random
numbers, true and pseudo. Pseudo random number generators are
based on a seed, which means that they become predictable if you
can predict the seed value. The standard JDK Random class is
seeded from the system clock, so it is theoretically predictable, but in
our case the predictability of the random data does not matter, so we
can use it.

When the server receives the data, it signs it using the private key
from the key pair generated earlier:

try {

siggi = Signature.getInstance("SHA/DSA");

siggi.initSign(keypair.getPrivate());

// Pipe the string into a stream and sign it

StringReader sr = new StringReader(line) ;

byte b ;

while ((b = (byte) sr.read()) != -1) {

try {

siggi.update(b);

}

catch (SignatureException e) {

failmsg((Exception) e, "Problem performing the signature") ;

}

116 Java Network Security

}

It then sends the signature, plus the certificate, to the client. It also
generates and sends another piece of random data, this time
challenging the client.

8.3.1.3 Client Accepts the Challenge
The client receives the data from the server and verifies the signature.
The verification uses a standard method of the Signature class, but, as
before, there is no way to handle the certificate using JDK 1.1
functions. Even if there was a way to handle a certificate, the browser
sandbox would pose some problems, because the applet would need
to check the signature against a trusted root CA, which implies reading
the CA certificate from disk.

Finally, the client needs to prove his or her identity. The way to do this
is to take the random data provided by the server, combine it with the
PIN or pass-phrase, encrypt it using the public key from the server
certificate and send it to the server. This, too, is not possible with JDK
1.1, because JCE has no general purpose public key encryption
function.

8.3.2 What Do We Learn from This?
The scenario described above has shown that the facilities provided
by JCA and JCE in JDK 1.1 are very limited. Future versions of the
development kit will fill in the gaps.

The scenario also prompts another, more fundamental, question:
challenge-based authentication is a common requirement; should
there not be a common solution that implements it? In other words, an
application developer should be able to plug in code that performs the
whole process, instead of designing the protocol from scratch and
building it from basic components. This becomes more obvious when
you start to consider the legal, contractual and practical implications of
writing cryptographic code, for example:

 • The question of US export controls. Even if the final result of the
development uses lower-strength encryption and is therefore
exportable, the toolkit used to create it still falls under export
control. In addition, other countries, such as France, impose further
restrictions which the developer must conform to.

 • The question of licensed code. You have to pay a fee to use the
RSA public key system in your code. Furthermore, other methods,
Cryptography in Java 117

such as the Diffie-Hellman key exchange algorithm, are subject to
license issues in some parts of the world.

 • Questions of the management of multiple keys. For example, public
key pairs are mainly used for digital signatures, but those
signatures may have different meanings. Imagine an online
banking scheme in which you have to prove your identity by
digitally signing a challenge. The same application may also use
digital signatures for authorization purposes ("transfer amount X to
account Y"). A well-designed application should use different keys
for each function. Otherwise an imposter could trick the user into
signing a transfer request by presenting it as an identification
challenge.

Buying a package that implements a complete protocol does not
remove these obligations, of course, but it does mean that they have
already been considered and resolved.

8.3.3 IBM Packages for Cryptographic Protocols
IBM Research in Zurich has developed a complete cryptographic
framework in Java, which handles most application requirements. For
example, it includes classes for bulk-key and public-key encryption
and for X.509v3 certificate management. This is compatible with JDK
1.1, but it uses its own provider framework (because it was built before
JDK 1.1 became available).

IBM Zurich has built implementations of Secure Sockets Layer (SSL)
as Java classes, based on this framework. SSL is a protocol that
provides bulk data encryption with server and client authentication. We
discuss it further in Chapter 12, “Java and SSL” on page 195. The
Java crypto-framework has also been used by IBM Development in
Hursley, UK, to create a package that is optimized for consumer
transactions such as home banking, insurance and financial services.

The Consumer Transaction Framework (CTF) is a set of Java classes
which are used by the sample programs. CTF provides a number of
services such as menuing, user validation and a secure interface to
the server so that the application developer need not be concerned
with the infrastructure, but may concentrate on the end-user function.
Furthermore the CTF package uses cryptography for specific,
well-defined purposes, which means that IBM has been able to obtain
an export license for the use of full strength (128-bit) encryption.
118 Java Network Security

Chapter 9. Java Gets Out of Its Box

We have seen in previous chapters that the applet sandbox is (at least
in theory) a very safe place to run a program. However, one persons’s
"safe" is another person’s "boring". To create effective client/server
applications using Java often requires us to give the applet some
freedom from the security of the sandbox.

The Java security model is built around the concept of a protection
domain. The applet sandbox is a protection domain with very tight
controls. By contrast the Java application environment is a protection
domain with no controls at all, other than those imposed by the
underlying operating system. What we are looking for is a protection
domain that lies somewhere between the two.

As we have discussed, JDK 1.1 offers signed applets as a way to
escape from the sandbox restrictions. Signed applets provide the
mechanism for the protection domain we describe above.

9.1 JAR Files and Applet Signing

One characteristic of the dynamic loading of class files is that a typical
applet may involve a number of small network transfers. It may also
involve the retrieval of other files, graphic images for example. Given
the indifferent performance of many World Wide Web connections, this
can be a serious performance hit. JDK 1.1 provides relief for this by
introducing the JAR (Java Archive) format for packing everything into a
single file. JAR also allows for compression, which can further improve
performance.

JDK 1.1 provides the jar command line tool for creating and
managing JAR files. If you know the UNIX tar command, jar will be
very familiar. As an example, the following command will create an
archive for the PointlessButton applet:

�0\�VXVSLFLRQV�ZHUH�DOO�FRQILUPHG�E\�KLV�SHFXOLDU�DFWLRQ�LQ�
W\SHZULWLQJ�KLV�VLJQDWXUH��ZKLFK��RI�FRXUVH��LQIHUUHG�WKDW�KLV�
KDQGZULWLQJ�ZDV�VR�IDPLOLDU�WR�KHU�WKDW�VKH�ZRXOG�UHFRJQL]H�HYHQ�WKH�
VPDOOHVW�VDPSOH�RI�LW����6KHUORFN�+ROPHV��$�&DVH�RI�,GHQWLW\

�$��&RQDQ�'R\OH�
119

jar -cvf pbutton.jar PointlessButton.jar JamJar\examples\Button.jar

Figure 23 shows the format of the pbutton.jar file that this creates

Figure 23. The pbutton Archive

The files that make up the payload of the JAR are packed into a copy
of the original directory structure. The MANIFEST.MF file contains
details of the "payload" of the JAR. This is what the manifest looks like
in this case:

Manifest-Version: 1.0

Name: PointlessButton.class

Digest-Algorithms: SHA MD5

SHA-Digest: Sj15dptWhrZhiIFRNU27WRY1brc=

MD5-Digest: vB0/XzCeLLiykR///CBfUQ==

Name: JamJar/Examples/Button.class

Digest-Algorithms: SHA MD5

SHA-Digest: Fo6pYkn6ZR17eessxEiN7fK5xpE=

MD5-Digest: Hzs6oj85/blmcTW1fNQm4Q==

The digest values recorded in the manifest are calculated from the
contents of the payload files they refer to. They are used to validate
the payload files when they are unpacked.

Jar signing allows you to generate digital signatures for any of the files
in the archive. In fact, files can be signed by more than one signer. So,
for example, an applet could be signed by the developer who created it
and then also signed by the IT department of the company who use it.
When the user loads the applet, he or she not only knows that the
applet comes from a trustworthy source, but also knows that it has
been approved for corporate use.

pbutton.jar

JamJar

examples

PointlessButton.class

Button.class

META-INF
MANIFEST.MF

Jar payload
120 Java Network Security

When you sign the files in a JAR, two new files are added to the
META-INF directory:

Signer file This is very like the manifest file shown
above, except that the digests in it are
calculated from the manifest file entries, not
from the actual contents of the payload files.
The signer file may contain fewer entries than
in the manifest file, because a signer does
not have to sign every file in the archive. The
file name is <signer ID>.SF, where <signer
ID> is an arbitrary name for the creator of the
signature. If the JAR has been signed by
more than one signer, each will have a
separate .SF file.

Digital signature file This is a binary file, containing the digital
signature in PKCS7 format.1 The signature
file name depends on the type of signature
algorithm used. For example, a DSA
signature would be in a file named <signer
ID>.DSA (other possibilities are .RSA, for a
signature using an MD5 digest and RSA
encryption and .PGP for a Pretty Good
Privacy signature).

9.1.1 Current Implementations
The JAR format is quite new and at the time of writing there are some
discrepancies between the way that different vendors have interpreted
the signature part of the standard. There are also different
philosophies in the way that signed JARs are used to elicit extra
permissions from the client. In the Sun case, the browser is configured
in advance to allow a signed applet to do certain things that are
normally forbidden by the security manager. In the Netscape case the
applet has to ask for the specific permissions it wants, using a special
API. Microsoft has taken yet another approach, not using JARs at all.

Let’s look at some examples of the different implementations.

1 Public Key Cryptography Standards, PKCS, is a set of rules for encoding various cryptographic structures.
PKCS7 defines a general-purpose signature format, including the signed digest, the certificate of the signer and
the CA certificates that support it.
Java Gets Out of Its Box 121

9.2 JavaSoft Signed JAR Example

JDK 1.1 provides the javakey and jar commands for managing
databases of public keys and for creating, signing and manipulating
JAR archives. In this section we show how to use the commands to
create three key databases:

1. A certificate authority database

2. A database for a Web server

3. A database for a Web client

We then use these keys to sign a JAR file containing an applet that
attempts to read a file on the browser system.

In the following sections we show the command dialog as it appears
on a Windows NT system, using bold type for commands and normal
type for the system and command responses, like this:

C:\directory\path>command

system response...

9.2.1 Creating the Certificate Authority Key Database
The certificate authority is a principal in its own key database, with a
self-signed certificate. We create it as follows:

1. The first thing to do is to create a new key database. The key
database is created implicitly when you add the first principal to it:

D:\work\sun_signed_jar>javakey -cs "JamJar CA" true
Created identity [Signer]JamJar CA[identitydb.obj][trusted]

This creates key database itentitydb.obj in your home directory.

2. Next, generate a key pair for the CA principal. We choose to use a
1024 bit key:

D:\work\sun_signed_jar>javakey -gk "JamJar CA" DSA 1024
Generated DSA keys for JamJar CA (strength: 1024).

This can take a while to do. We ran it on a 75 MHz 486 machine
and the command ran for 2 min 40 sec (the time is related to the
key size). You can use the list option of javakey to check the results
so far:

D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file:
C:\users\default\identitydb.obj
[Signer]JamJar CA[identitydb.obj][trusted]
122 Java Network Security

 public and private keys initialized
 certificates:
 No further information available.

3. The key pair allows the CA to sign certificates, but we also need to
generate a certificate for the CA itself, so that others can accept the
CA’s signatures. The first thing to do is to create a certificate
information file, containing the distinguished name information for
the CA and the certificate issuer. In this case, the certificate is
self-signed, so the issuer and the subject are the same:

issuer.name=JamJar CA
subject.name=JamJar CA
subject.real.name=Project JamJar Certificate Authority
subject.org.unit=ISL
subject.org=IBM
subject.country=UK
start.date=12 Sep 1997
end.date=12 Sep 1998
serial.number=1
out.file=cert.jamjar

We save this file as certinfo.jamjar.

4. Finally we can sign the CA’s certificate:

D:\work\sun_signed_jar>javakey -gc certinfo.jamjar
Generated certificate from directive file certinfo.jamjar.
D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file:
C:\users\default\identitydb.o
bj
[Signer]JamJar CA[identitydb.obj][trusted]
 public and private keys initialized
 certificates:
 certificate 1 for : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK
 from : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK
 No further information available.

9.2.2 Creating the Server Key Database
Now we want to create a key database for our server:

1. If we go ahead and use javakey to create the principal for the
server, it will add it to the CA database. So first we must choose to
use a different key database, by setting the identity.database
directive in the main security properties file.
Java Gets Out of Its Box 123

(<JDK_root>\lib\security\java.security, where <JDK_root> is the
directory where JDK 1.1 was installed). We added the following
line:

identity.database=D:/work/sun_signed_jar/serverdb.obj

2. The server has to know about the CA that signed its own certificate,
so first we add the CA principal to the key database and import the
CA certificate:

D:\work\sun_signed_jar>javakey -cs "JamJar CA" true
Created identity [Signer]JamJar
CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
D:\work\sun_signed_jar>javakey -ic "JamJar CA" cert.jamjar
Imported certificate from cert.jamjar for JamJar CA.
D:\work\sun_signed_jar>javakey -ld
Scope: sun.security.IdentityDatabase, source file:
D:/work/sun_signed_jar/server
db.obj
[Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
 no keys
 certificates:
 certificate 1 for : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK
 from : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK

Notice that in this case the list command shows a key database
with no keys in it, just a public key certificate (this is slightly
misleading, because the certificate contains the public key; the
display should really say that there are no key pairs).

3. We create the principal and generate a key pair for our server:

D:\work\sun_signed_jar>javakey -cs "Robusta"
Created identity
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
D:\work\sun_signed_jar>javakey -gk "Robusta" DSA 512
Generated DSA keys for Robusta (strength: 512).

4. Next we want to use the CA key pair to sign the server’s public key.
First we export the public key to a file:

D:\work\sun_signed_jar>javakey -ek Robusta pubkey.robusta
Public key exported to pubkey.robusta.

5. We need to import this key into the CA’s key database. To do this
we comment out the identity.database entry that we added to
java.security (above), create the server’s principal in the CA
database and import the public key:
124 Java Network Security

D:\work\sun_signed_jar>javakey -cs "Robusta"
Created identity
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
D:\work\sun_signed_jar>javakey -ik Robusta pubkey.robusta
Set public key from pubkey.robusta for Robusta.

6. Now we can sign the server’s certificate. The process is the same
as for the CA certificate. First we create the certificate information
file:

issuer.name=JamJar CA
issuer.cert=1
subject.name=Robusta
subject.real.name=All Java is secure but signed Java is Robusta
subject.org.unit=ISL
subject.org=IBM
subject.country=UK
start.date=12 Sep 1997
end.date=12 Sep 1998
serial.number=2
out.file=cert.robusta

Then we sign the certificate:

D:\work\sun_signed_jar>javakey -gc certinfo.robusta
Generated certificate from directive file certinfo.robusta.

7. To use the certificate, we have to import it into the server’s key
database, which means that we first have to find out the number
assigned to the certificate in the CA database and export the
certificate to a file:

D:\work\sun_signed_jar>javakey -li Robusta
Identity: Robusta
[Signer]Robusta[identitydb.obj][not trusted]
 no keys
 certificates:
 certificate 1 for : CN=All Java is secure but signed
Java is Robusta
OU=ISL, O=IBM, C=UK
 from : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK
D:\work\sun_signed_jar>javakey -ec Robusta 1 cert.robusta
Certificate 1 exported to cert.robusta.

8. Finally, we switch the active key database back to the server (by
restoring the identity.database entry in java.security) and then
import the certificate:

D:\work\sun_signed_jar>javakey -ic Robusta cert.robusta
Java Gets Out of Its Box 125

Imported certificate from cert.robusta for Robusta.
D:\work\sun_signed_jar>javakey -ld

Scope: sun.security.IdentityDatabase, source file:
D:/work/sun_signed_jar/serverdb.obj
[Signer]JamJar CA[D:/work/sun_signed_jar/serverdb.obj][trusted]
 no keys
 certificates:
 certificate 1 for : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK
 from : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK
 No further information available.
[Signer]Robusta[D:/work/sun_signed_jar/serverdb.obj][not trusted]
 public and private keys initialized
 certificates:
 certificate 1 for : CN=All Java is secure but signed
Java is Robusta OU=ISL, O=IBM, C=UK
 from : CN=Project JamJar Certificate
Authority, OU=ISL,O=IBM, C=UK

9.2.3 Creating and Signing a JAR File
To illustrate the use of the key databases we have a simple Java
applet that attempts to perform an action normally prohibited by the
sandbox; it reads a local file and displays the contents on screen. We
need to package this in a JAR archive and then sign it.

1. We create the jar file and display its contents using the jar
command:

D:\work\sun_signed_jar>jar -cvf jam.jar GetFile.class
adding: GetFile.class (in=2239) (out=1201) (deflated 46%)
D:\work\sun_signed_jar>jar -tf jam.jar
META-INF/MANIFEST.MF
GetFile.class

2. We have to tell javakey which key pair to use for the signature (in
fact, the key database only has one key pair in it, but javakey does
not know that). To do this we create a signature directive file, as
follows:

signer=Robusta
cert=1
chain=0
signature.file=ROBUSTA

The signature.file directive does not define a real file, but the file
name part of the signer and signature files that are placed in the
126 Java Network Security

META-INF directory of the JAR (see “JAR Files and Applet Signing”
on page 119).

3. Now we can sign the JAR:

D:\work\sun_signed_jar>javakey -gs sign_directive.robusta
jam.jar
Adding entry: META-INF/MANIFEST.MF
Creating entry: META-INF\ROBUSTA.SF
Creating entry: META-INF\ROBUSTA.DSA
Adding entry: GetFile.class
Signed JAR file jam.jar using directive file
sign_directive.robusta.

Notice the conflicting use of forward slash (/) and back slash (\) in
the metadata files. In theory a JAR should use forward slashes
only, but this mixed use does not seem to cause a problem.

4. The result of performing the signature is a file named jam.jar.sig.
Now we can put that on the Web server and reference it in a web
page using the <APPLET> tag:

<APPLET CODE=GetFile.class archive=jam.jar.sig WIDTH=600
HEIGHT=600>
<PARAM NAME=FileToTry VALUE="c:\thingy">
</APPLET>

5. Finally we can try to load the page into a Web browser (or, for
testing purposes, the JDK 1.1 applet viewer). However, when we do
so we get the same error as if it was a normal applet running under
the sandbox restrictions:

sun.applet.AppletSecurityException: checkread
at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:384)
at sun.applet.AppletSecurity.checkRead(AppletSecurity.java:346)
at java.io.FileInputStream.<init>(FileInputStream.java:58)
at GetFile.init(GetFile.java:15)
at sun.applet.AppletPanel.run(AppletPanel.java:287)
at java.lang.Thread.run(Thread.java:474)

You can see that the checkRead method of the security manager is
throwing an exception. Why is this? The reason is that the client
does not have the certificate that it needs to decrypt the JAR’s
signature, and hence establish trust in the signer.

According to the signature hierarchy the client should only need the
JamJar CA certificate to authenticate the server (because JamJar
CA signed the server’s certificate). However, at the time of writing
this did not work as expected for JDK 1.1. We found we had to add
the server certificate to the client’s key database, as follows:
Java Gets Out of Its Box 127

1. We set the key database to a new one for the client, by changing
the identity.database directive in java.security:

identity.database=d:\work\sun_signed_jar\clientdb.obj

2. Then we create the entry for the server and import the certificate:

D:\work\sun_signed_jar>javakey -cs "Robusta" true
Created identity
[Signer]Robusta[D:/work/sun_signed_jar/clientdb.obj][trusted]
D:\work\sun_signed_jar>javakey -ic "Robusta" cert.robusta
Imported certificate from cert.robusta for Robusta.

3. Now, at last, the applet runs as we want it to:

Figure 24. Running the Signed Applet

The applet viewer gives full access to any signed applet, which is
acceptable because it is a test tool. A real browser needs to provide
more control over access. HotJava, for example, allows you to set a
range of different trust levels:

Untrusted This is like the normal sandbox environment,
except that it is even more restricted because the
applet cannot make any network connections.

High Security This is similar to the sandbox, with the addition of
the ability for an applet to listen on network ports
above 1024.

Medium Security Prompts the user whenever the applet tries to do
something that is normally not allowed, so that the
user can permit or deny it.

Low Security Allows the applet to do anything, without prompting
the user.
128 Java Network Security

9.3 Coming Next from JavaSoft: JDK 1.2

From the example in the previous section, you can see that applet
signing, as implemented in JDK 1.1, really only implements half of the
process – it provides a mechanism for creating signed JAR files but it
does not provide a real implementation of access control.

At the time of writing, JDK 1.2 is still under development and only
limited information about its security model is publicly available. What
is known is that Sun will develop the sandbox model with the following
objectives in mind:

 • To provide fine-grained access control. Under the present
scheme you have to write customized SecurityManager and
ClassLoader classes to do this. The intention is that the JDK and
Java Runtime Environment (JRE) will provide much of this
programming by default.

 • To enable an easily configurable security policy. When the
HotJava browser was introduced it provided some limited
capabilities for modifying the restrictions of the sandbox. However,
in the face of press coverage, later Java-capable browsers
removed all such controls, leaving the restrictive virtual machine of
today. The runtime environment needs to be fitted with controls that
allow a user or administrator to define their security policy.

 • To allow security checks to be extended to other Java
programs. Under the present scheme, local code is always treated
as being trusted, whereas applet code is not. The new model will
apply consistently to local code as well, whether classes
permanently installed on a browser that interact with applets or part
of Java applications. This does not eliminate the concept of system
code. There must always be a layer of trusted code that applet and
local classes invoke when they need access to protected
resources. What it does mean is that applets and applications can
be subjected to the same set of controls.

9.3.1 Protection Domains
The JDK 1.2 security model will extend the concept of protection
domains. These are logical boundaries within which a given security
policy applies. A protection domain is defined by a set of permissions,
which act as a set of filters to tie together:

 • The code source, made up of an origin (where a piece of code
comes from) and a principal (who the code is signed by).
Java Gets Out of Its Box 129

 • Resources (protected system or network elements)

Figure 25. A Protection Domain

The way the permissions are applied will mirror the current
SecurityManager function. That is, every attempt to access a
protected resource will be routed to the access control function, which
will examine the permissions of its protection domain and either return
quietly or throw an exception (in fact it will have to trace back the
execution thread to check all of the protection domains, so that
unauthorized code cannot beat the system by calling an authorized
function).

The elements for the protection domain will initially be controlled by a
policy configuration file. So, for example, you could specify an entry in
the file that would grant applet code from a specific site, signed by a
named trusted signer, read-only permission to a specific file.

Each of the elements of the protection domain can be defined as
tightly or as loosely as required. This means that at one extreme it will
be possible to define a protection domain that re-creates the operation
of the sandbox by specifying an origin of "any URL" and a principal of
"unsigned."

9.4 Netscape Signed JAR Example

While Javasoft has been working on developing the security model for
JDK 1.2, the major browser manufacturers have also been wrestling
with ways to relax the access control applied to signed applets.

Netscape have embraced the JAR format and the opportunities that
signing offers. In fact, they are using the format for other types of Web
content, such as JavaScript programs, plug-ins and Web pages.

Origin

Principal Java code

Permissions

Resources
130 Java Network Security

However, at the time of writing you could not simply use a Netscape
browser to access a JAR signed using the javakey command as
described in “JavaSoft Signed JAR Example” on page 122. There are
two reasons for this:

1. Netscape browsers require that the CA that signs a JAR file be
predefined as a trusted root. The self-signed certificates used by
javakey cannot be loaded into the browser.

2. The trust model implemented by HotJava works on an exception
basis: the applet tries to do something that is forbidden, which
causes a prompt to ask the user if it is acceptable. Netscape have
implemented a more sophisticated model, in which the applet code
requests the permissions it needs and in which it can control the
period for which each permission is active.

In other words, the programmer decides in advance what permissions
are needed, instead of trying to use the permissions and relying on the
browser to handle the exception. Although this may seem like a small
distinction, it does allow a more natural style of application. For
example, if an applet attempts several privileged actions, the user can
be prompted to allow access to all of them at once, instead of being
repeatedly interrupted each time one of them is encountered in the
code.

The ability to turn permissions on and off within the code is also
important, because it reduces the exposure to an attack where another
applet invokes the trusted applet’s methods, thereby using the JAR
signature illicitly.

The Netscape access control request mechanism is implemented as a
Java class package named netscape.security. We illustrate the
security model with an example of an applet that requests permission
to read system properties and also to read a file on the browser disk.
There are three parts to the setup: writing the applet to use the
netscape.security extensions, installing and configuring the key pairs
and certificates and then signing the JAR and running the applet.

9.4.1 Using the netscape.security Package
The netscape.security mechanism is based on privilege targets. These
are definitions of operations that the applet may want to perform.
Control over whether they should, or should not be permitted lies with
a new security function, the privilege manager. This places indicators
on the JVM stack to show what privileges the applet has been allowed.
Java Gets Out of Its Box 131

The Netscape version of the security manager then refers to the
indicators when performing its authorization checking.

The package includes a large number of predefined privilege targets
and also allows the programmer to register new targets. The applet
shown in Figure 26 requests access to two of the standard targets:
access to system properties and read access to a local file.

Figure 26. GetFileNS.java (Part 1 of 2)

import java.awt.*;
import java.io.*;
import netscape.security.* ;
public class GetFileNS extends java.applet.Applet implements Runnable {
 String filename ;
 Thread t ;
 TextArea ta = new TextArea("",10,50);
 public boolean granted = false ;
 PrivilegeManager privMgr ;
 protected Principal lilOlMe ;
 public void init() {
 filename = getParameter("FileToTry") ;
 add(ta);
 // Find out what operating system we are on

try {
 PrivilegeManager.enablePrivilege("UniversalPropertyRead");
 String osName = System.getProperty("os.name");
 a.appendText("\nI see you are running " + osName);

 PrivilegeManager.revertPrivilege("UniversalPropertyRead") ;
 }

catch (netscape.security.ForbiddenTargetException e) {
 ta.appendText("\nPermission to read system properties denied by user.");
 }

 / Request permission to read a specific file
 lilOlMe = PrivilegeManager.getMyPrincipals()[0] ;
 privMgr = PrivilegeManager.getPrivilegeManager() ;
 try {
 Target freadTgt = Target.findTarget("FileRead") ;

privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename) ;
granted = true ;

 }
 catch(ForbiddenTargetException e) {
 ta.appendText("\nUser won’t let me read " + filename) ;
 }
 // Start the thread running
 if(t == null) {
 t = new Thread(this);

t.start() ;
 }
 }

Note that we revert
the privilege
immediately. This
minimizes the time for
which the applet is
open to abuse.

The second example is more complex. In this case the privilege is
not universal ("view any system property") but specific ("read file X").
We therefore cannot just refer to the privilege target by name, but
have to pass a netscape.security.Target object to enablePrivilege.
This could be a target that we created ourselves, or, as in this case,
a target provided by the package. The file name is passed to
enablePrivilege(). This version of the method also requires details of
the applet signer, contained in a Principal object.

Here we request permission to read system
properties. The enablePrivilege() method
causes a dialog box to pop up asking for
permission. If the user refuses, it throws an
exception. Otherwise the applet goes on to read
the property (the type of operating system that
the browser is running on)
132 Java Network Security

Now you are probably wondering why we requested access to read the
local file but then did not do so. In fact we are going to need the file
access later in the applet, in another thread. Figure 27 shows the
second half of the applet, in which the FileRead privilege is used. This
illustrates an oddity of the mechanism: the privilege manager grants
privileges for the life of the applet, but the indicators are placed on the
program stack, which is unique to each method and the methods it
invokes. This means that you have to re-issue the enablePrivilege()
request from the method where the privilege is actually exercised.
However, as the privilege manager has kept track of what permissions
have been granted, it will not ask the user again.

Figure 27. GetFileNS.java (part 2 of 2)

When you start to ease the restrictions in your browser you have to be
aware that you may be opening yourself to attack. The applet itself is
signed by someone you trust, based on the signature in the certificate,
so it should not do anything dangerous directly. However, as we

public void run() {
 // Did we get the permission we wanted?
 if (granted == true) {
 try {

 Target freadTgt = Target.findTarget("FileRead") ;
 privMgr.enablePrivilege(freadTgt , lilOlMe, (Object) filename) ;
 ta.appendText("\nThis is the content of file " + filename + ":\n" +

readTheFile(filename).toString());;
}
catch(ForbiddenTargetException e) {

 ta.appendText("\nShould never reach here...") ;
 }
 }

}
private StringBuffer readTheFile(String filename) {

 DataInputStream dis;
 String line;
 StringBuffer buf = new StringBuffer();
 FileInputStream theFile;

try { theFile = new FileInputStream(filename);
 try {

dis = new DataInputStream(new BufferedInputStream(theFile));
 while ((line = dis.readLine()) != null) {

 buf.append(line + "\n");
 }
 }
 catch (IOException e) {
 System.out.println("IO Error:" + e.getMessage());
 }
 }

catch (FileNotFoundException e) {
 System.out.println("File not found: " + filename);
 }

return(buf) ;
 }

Here we request the FileRead privilege again
and, this time, we actually read the file.

This method reads the data. It is a
general purpose function, so we
do not request privileges within it.
If we did, an attack applet could
invoke it using inter-applet
communication and get privileges
without a signature. It is also
private, which protects the run()
method from a similar attack.
Java Gets Out of Its Box 133

alluded to in the example above, another applet could get a free ride
on the signature by using inter-applet communications to invoke
methods that have had privileges granted to them. You will recall that
such an attack can only be launched from an applet within the same
context (that is, contained within the same document). This highlights
an important point about signed applets: the signature implies a
trustworthy programmer, not a trustworthy site.

9.4.2 Installing Keys and Certificates in Netscape
Now that we have written the code that will request and use special
privileges, we need to install it in a signed JAR. But before we can
generate a signature, we need a key pair and a certificate.

Public key signatures rely on a web of trust. That is, anyone receiving
a signed message needs to have the certificates of certificate
authorities that establish the trustworthiness of the signer. This does
not only apply to signed Java, of course. One of the most widespread
uses of digital signatures is in the Secure Sockets Layer (SSL), a
general purpose protocol for encrypting Web data and authenticating
the server and client.

To get around the problem of establishing the web of trust needed by
SSL, the browser manufacturers provide key databases containing
trusted roots (the certificates of a number of widely-accepted CAs) as
part of the browser installation. This allows a browser to accept any
signature that is supported by a certificate from one of the known CAs.
But signed Java poses other problems:

For the Applet Developer

Using Privileges with Care

The GetFileNS applet (above) illustrates a number of techniques for reducing the
risk of a second applet abusing your privileges. In summary the techniques are:

1. Enable privileges for as short a time as possible.
2. Place privileged accesses within private or protected methods.
3. When creating general purpose methods (like readTheFile() in the example),

enable privileges in the calling code, not the method itself.

http://developer.netscape.com/library/documentation/signedobj/capabilities
has some more detailed guidelines on this issue.
134 Java Network Security

1. If you are creating a signed JAR for general use you can purchase
a certificate from one of the well-known CAs. But if you are creating
a local, intranet, application with a limited web of trust, you need a
way for the signer and the browser to install the local CA certificate
as a trusted root.

2. As the signer of the code, you need the facility to generate a key
pair and then acquire a certificate for your own public key and
install it into your own key database.

Netscape has developed mechanisms to solve both of these problems.
They are based on messages with special MIME types that trigger key
management functions in the browser. The MIME types are:

 • application/x-x509-ca-cert. This message delivers a new CA
certificate. When it is received, the browser pops up a dialog in
which the user can check the details of the certificate before
installing it as a trusted root (see Figure 29).

 • application/x-x509-user-cert. This message delivers a new
personal certificate. This does not make sense unless the browser
has previously generated a key pair and provided distinguished
name information to place in the certificate. Netscape uses a
special HTML tag: <KEYGEN>, which causes the browser to
generate the key pair. Figure 28 shows how this works.

Figure 28. Requesting a Certificate: the KEYGEN Mechanism

Browser Certificate Server

1) HTTP GET for "request certificate" URL

2) Form prompts for distinguished name details and
includes <KEYGEN> tag.

3) User fills in details

4) Browser generates
5) Form data and certificate request POSTed to
server

Later...
6) HTTP GET for "receive certificate" URL

key pair

7) x-x509-user-cert response message invokes
certificate install process in browser

and submits form
Java Gets Out of Its Box 135

Figure 29. Receiving a New CA Certificate

In our example we used the Netscape Certificate Server product to
generate and install a new CA key and a personal key for code
signing. Any suitable key management software could be used, so
long as it supports the special MIME types and KEYGEN tag. The IBM
Registry product has this capability, for example, and it will also be
available in a future release of the Lotus Go Web server.

In order to use the key pair for signing JAR files, it must be a X.509 v3
certificate with a special attribute set to indicate that it is suitable for
code signing.

9.4.3 Signing JAR Files with Netscape JAR Packager
Now everything is in place to store the applet in a JAR and to sign it.
Netscape provide a tool called the JAR Packager which makes this
easy to do. At the time of writing the tool was available for download
from the Netscape Developer Connection Web site.
136 Java Network Security

We used the graphical version of the tool, which is a Java application
invoked from Netscape Navigator (see Figure 30).

Figure 30. JAR Packager, Initial Screen

Once you have selected the file(s) that you want in the JAR, you can
sign them all by clicking on the appropriate button (see Figure 31).

Figure 31. Signing the Files in a JAR

First click here and select the class
file(s) for the applet and any other
files it needs.

This dialog box lists all of the
personal certificates that you have
installed in Netscape Navigator (as
described previously). Note that
only certificates that are identified
as being for code signing can be
used here.
Java Gets Out of Its Box 137

Now we can save the signed JAR file and quit the JAR Packager. If we
look at the file with the jar command we see the expected structure of
manifest, signer and signature files:

D:\work\ns_signed_jar>jar -tvf nsjam.jar

 249 Tue Sep 16 20:08:12 GMT+01:00 1997 META-INF/MANIFEST.MF

 250 Tue Sep 16 20:08:14 GMT+01:00 1997 META-INF/robusta.SF

 1518 Tue Sep 16 20:08:26 GMT+01:00 1997 META-INF/robusta.RSA

 3008 Tue Sep 16 20:08:26 GMT+01:00 1997 GetFileNS.class

To use the JAR, we must place it on the Web server and reference it in
an <APPLET> tag as we did in the javakey/jar example. When we load
the page in a Netscape browser, each of the enablePrivilege() method
calls causes a dialog box to pop up on the user’s screen, as shown in
Figure 32.

Figure 32. Applet Requests a Privilege

Privileges are categorized by
the damage they could do to
your system.

The CA that signed the
certificate of the JAR signer
is shown. You can also
request detailed certificate
information.
138 Java Network Security

Figure 33 shows the applet running successfully, after we gave it the
two permissions it needed.

Figure 33. Signed Applet Running in Netscape

You can also review the permissions that you have given a particular
signer, as shown in Figure 34 on page 140. Note that under this
scheme there is no way to predefine permissions in this dialog; they
only appear when a signed applet (or JavaScript script) requests
privileges.
Java Gets Out of Its Box 139

Figure 34. Displaying Privileges Given to a Signer

9.5 Microsoft and Signed Applets

At the time of writing, Sun Microsystems is locked in litigation with
Microsoft over the way they have implemented Java in Internet
Explorer 4.0. Part of that quarrel relates to the approach to signed
applets. We will not discuss the rights and wrongs of that suit, but
simply describe the way that Microsoft Internet Explorer works.

Externally, the most distinctive thing about the Microsoft approach is
that it uses Cabinets (files with extension .cab, we will call them CABs
for brevity) to contain the applets and other data, instead of JARs. This

Click here to see
details of assigned
privileges

Privileges can either be
persistent (you will not be
prompted when the signer
requests them again) or for the
current session only.
140 Java Network Security

is not to say that Internet Explorer will not handle JAR archives, but it
does not deal with signed JARs in any special way. CABs are also
used for packaging the installation images of other Microsoft software.
And, just as Netscape are using signed JARs to deliver many types of
Web content, CABs are used by Microsoft to install ActiveX controls
and other platform-specific code.

The Internet Explorer security model is built around Security Zones.
These are groupings of applet sources, based on URLs. By default
four zones are defined:

Intranet Web sites that are within the local, secure, network
or are only accessed via secure (SSL) connections.
Sites in this category may be defined by URL or by
other attribute, for example, sites that are not
reached through a proxy server.

Trusted sites A list of sites that are trustworthy, but which don’t
quite give the same level of reassurance that the
intranet sites do.

Internet The great unwashed horde of Web sites.

Restricted sites Sites that you have reason to believe are actually
dangerous.

Each of these zones has a security level associated with it of low,
medium, high or custom. These apply for all sorts of Web elements,
such as ActiveX controls, cookies, and user IDs as well as Java. The
first three are related to a very specific set of permissions. The high
security level is equivalent to the sandbox restrictions, the medium
level adds the ability for an applet to use a scratchpad directory on the
browser disk for storing and retrieving persistent data. The low level
allows an applet unrestricted access. The custom level allows you (or
an administrator) to set specific controls for different types of Web
content.

Of course, a protection scheme based solely on URLs and IP
addresses would be very risky. To be effective, the security model
requires Java code to be delivered in signed CABs. Functionally, a
signed CAB is like a signed JAR with one, important, exception: in
addition to identifying the originator of the code, the signature on a
CAB also defines the permissions that the code is requesting.

The best way to understand this is to illustrate it with an example.
Java Gets Out of Its Box 141

9.5.1 Two Signed CAB Examples
Here are two examples of signed cabinets:

1. A simple example that uses the base signature function

2. A more complex example that uses the scratchpad facility of the
Internet Explorer browser.

9.5.1.1 Simple Signed CAB Example
For the first example we create an applet that attempts to read a file on
the browser disk. It uses basic Java I/O stream classes and will
therefore normally fail with a security exception. There are three steps
to placing this into a signed CAB.

Step 1: Create a Signing Certificate
The Microsoft Software Development Kit (SDK) for Java 2.0 provides a
command-line tool, makecert, for generating a software developer
certificate:

makecert -sk jamjarkey -n "CN=JamJar Software Co" JamJar.cert

This command generates a key pair called "jamjarkey" and places it in
the Windows registry under HKEY_Current_User/Cryptography. It also
creates a certificate request file, using the public key and the
distinguished name information from the command.

Normally, the next step would be to send this to a CA for
authentication and signing (Internet Explorer defines just one root CA,
the Microsoft Authenticode Root CA, for software signing, but there is
a technique to update the list, using ActiveX controls). However, in our
case we are only signing the applet for test purposes, so we can use
another tool from the SDK, cert2spc, to convert the certificate file into
a valid certificate:

cert2spc JamJar.cert JamJar.cert

Step 2: Creating and Signing the CAB
Cabinet files are potentially much more complex than JARs, but for our
purposes we can create a simple one using the cabarc tool:

cabarc N jamjar.cab GetFileMS.class

This creates a CAB file called jamjar.cab with just one file, our applet,
in it. To sign this as a Java archive we use the signcode tool, again
from SDK for Java. At this point we must decide what level of security
the applet will ask for – low, medium or high. The rule is that if we ask
for a lower level of security than the browser is configured to give us,
142 Java Network Security

the user will receive a prompt asking if the action should be allowed.
So if we ask for a level of "medium" and the browser has the default
configuration, the user will be prompted when our applet comes from
an internet URL, but not when it comes from the intranet.

The command to perform the signature is:

signcode -j JavaSign.dll -jp medium -spc jamjar.cert -k jamjarkey

jamjar.cab

Step 3: Using the CAB in a Web Page
The format for coding an APPLET tag using a CAB archive is different
from the JAR version. This is the tag for our example:

<APPLET CODE=GetFileMS.class WIDTH=350 HEIGHT=200>

<PARAM NAME="cabbase" VALUE="jamjar.cab">

<PARAM NAME=FileToTry VALUE="C:\Temp\thingy">

</APPLET>

Now we can try the applet. When we first select the URL from Internet
Explorer the popup dialog in Figure 36 on page 144 appears. The
security level we requested matches the level of the zone, so why
does this happen? The reason is that Internet Explorer is warning us
that the JamJar Software Co may not be trustworthy, because it does
not own a valid software developer’s certificate. Throwing caution to
the winds we click on Yes and the applet runs as intended (Figure 35).

Figure 35. Our Signed Applet Can Read a File
Java Gets Out of Its Box 143

Figure 36. Warning from Internet Explorer

9.5.1.2 A More Complex Signed CAB Example
Not content with creating a method for delivering signed applets and
requesting permissions, Microsoft has also produced classes that
allow an applet to store and recover data from a limited disk cache on
the browser. The rationale behind this is that for many developers the
really irksome restriction imposed by the sandbox is the inability to
store local configuration and state information.

The data caching function is in a class package called
com.ms.io.clientstorage. The code snippet in Figure 37 is an example
from an applet that uses the package to write information into a file
and then reads it.
144 Java Network Security

Figure 37. Section of Applet Using Client Storage Classes

We could place this applet in a signed CAB in the same way as the last
example. However, when that applet loaded it told the user that we
wanted a lot of permissions that, in fact, we did not (see Figure 36 on
page 144). This is because we specified a security level of "medium"
in the signcode command. It would be friendlier if we could just ask
for the things we really need.

 public void run() {
 String line ;
 ClientStore harrods ;

 try {
harrods = ClientStorageManager.getStore() ;

 PrintWriter pw = new PrintWriter(harrods.openWritable("preserve.log",
ClientStore.OPEN_FL_APPEND)) ;

pw.println("JamJar was here! " + new Date().toString()) ;
pw.close() ;

 }
 catch (IOException e) { yikes(e, "Could not create or update our file"); }

 try {
 harrods = ClientStorageManager.getStore() ;

BufferedReader br = new BufferedReader(new
InputStreamReader(harrods.openReadable("preserve.log"))) ;

ta.appendText("This is the contents of clientstore file preserve.log:\n") ;
 while ((line = br.readLine()) != null) {

ta.appendText(line + "\n");
 }

br.close() ;
 }
 catch (IOException e) { yikes(e, "Could not read our file"); }
}

public void yikes(Exception e, String msg) {
 ta.appendText(msg + ": " + e.toString()) ;
 System.exit(1) ;

}

First get access to the client store.

Open a "file" in the client
store and update it.

The store is persistent, so we can
read it later, but the maximum size
of the store allocated to a given
code signer is fixed, so the applet
cannot fill the hard disk.
Java Gets Out of Its Box 145

The way to do this is to create an .INI file specifying the requested
permissions and then feed it to signcode. Figure 38 shows the file we
used.

Figure 38. JamJar.ini Requests Permission for Client Storage and Threads

The thread permissions are needed to run a multi-threaded applet.

The results of running this applet from a signed CAB are shown below.

Figure 39. This Time the Warning Is More Reasonable

[com.ms.security.permissions.ClientStoragePermission]
; Limit is in bytes
Limit=100000
RoamingFiles=true
GlobalExempt=true
;
; ThreadPermission
;
[com.ms.security.permissions.ThreadPermission]
AllThreadGroups=true
AllThreads=true
146 Java Network Security

Figure 40. The Applet Keeps Persistent Data on the Browser Disk

9.6 Future Developments

In this chapter we have seen examples of four different approaches to
the use of digital signatures for authenticating applet code and
relaxing the constraints of the sandbox. The first, using the basic JDK
1.1 tools, is the first, unsophisticated foray into this area, but JDK 1.2
promises to fill in the missing function and set a standard for applet
signing. The Netscape and Microsoft approaches are, as you would
expect, strongly browser-centric. They both seek to reduce the impact
of cryptography on the end user, not only for Java but also for other
active Web content.

Table 8 summarizes the differences between the approaches.

Table 8. Comparison of JavaSoft, Netscape and Microsoft Signed Applet Support

Function JDK Netscape Microsoft

Delivery
mechanism

Signed JARs Signed JARs Signed CABs

Signing Command-line tools
shipped with JDK

Downloadable toolkit, both
command-line and GUI
versions

Downloadable toolkit,
command-line tools.
Java Gets Out of Its Box 147

Clearly, there are some basic incompatibilities between the different
mechanisms. This is not to say that the development of competing
extensions to the security framework is a bad thing; just that there
should be a base level of function at which they should all
interoperate.

It may be that by the time you read this book, the differences
described above will have been resolved by the vendors and a
common base will have emerged. We hope so. One thing that is clear
from the discussion is that any solution cannot simply concentrate on
the mechanics of code-signing and requests for privileges. The
problems of the end user are equally important. Solutions must answer
questions like: how to tell the user, in a clear way, the permissions an
applet requires, and how to install and maintain certificates for signers
and CAs.

Certificate
handling

Facilities for self-signed
root certificate. JDK 1.2 to
provide more robust
solution.

Uses the standard key and
certificate management
capabilities of Netscape
Communicator. Well
documented mechanism for
installing trusted roots and
personal keys.

Uses command-line tools
for signer key creation and
certificate requests.
Standard key and certificate
management capabilities of
Internet Explorer for client
side. Mechanism for
updating trusted roots not
openly documented.

Request for
privileges

By exception. Applet
attempts privileged action
and an exception is thrown
if it is not permitted.

Programmer defines the
privileges required by
calling PrivilegeManager
methods.

Code signer defines the
privileges required as part
of CAB signature.

Configuration
of permissions
granted

Browser configuration file
maps code origin (URL plus
signer) to privileges.

User prompted the first time
privileges are requested.
Granted permissions can
be perpetual or per session.

Basic security zone (low,
medium, high) preset by
user. More complex
permission scheme can be
defined by administrator.

Function JDK Netscape Microsoft
148 Java Network Security

Part 3. Beyond the Island of Java: Surfing
into the Unknown
149

150 Java Network Security

Chapter 10. Application Architectures

The first two parts of this book have described the security issues in
running Java programs on a single workstation, usually your PC. But
that is only one application area for Java. Java can also be used on a
Web server, or any other networked server, in a full-scale client/server
approach. In the introduction we stated that security must be holistic,
as attackers will concentrate on the weakest links. This applies even
more forcefully when many computer systems are connected through
a network, as there are more possible points to attack.

This chapter describes a number of different architectural approaches,
illustrated with real examples that are in use today. We consider the
security implications of these approaches.

Firewalls are often touted as a defense against network attacks.
Chapter 11, “Firewalls: In and Out of the Net” on page 169 describes
how firewalls work, and what the implications are, to both simple users
of Web browsers and to Java application designers.

Cryptography is another valuable tool to provide integrity,
confidentiality and authentication between distributed systems. We
conclude by examining uses of cryptography to provide security to
real-world applications.

10.1 Browser Add-on Applets

Perhaps the simplest use of a Java application is the browser add-on
applet, to extend the facilities provided by a Web browser. This may be
to enhance the user interface, by adding extra interactivity such as
context-sensitive help or local search functions. Or it may be to handle
additional data types such as compressed astronomical images or
packed database records. These examples all depend directly upon
the Java security architecture already described, where the security
manager and sandbox prevent undesirable access. And because they
read data only from the server, if at all, there are no wider security
issues.

��7KH�ROG�ZRUOG�RI�DUFKLWHFWXUH�ZDV�VLPSO\�VHOI�H[SUHVVLRQ��:H�KDYH�WKH�
WDVN�RI�PDNLQJ�PDQ�D�VXFFHVV���

5��%XFNPLQVWHU�)XOOHU
Application Architectures 151

10.2 Networked Architectures

The next level of complexity is seen in network-aware applets, which
perform more network operations than simply reading data. Terminal
emulators fall into this category. These applets provide the functions of
a "dumb terminal" or VDU (Visual Display Unit), connected via a LAN
to a host system, where the applications are run. An example is IBM’s
Host On Demand, which emulates a 3270 mainframe display session,
communicating with a mainframe over TCP/IP (see Figure 41).

Figure 41. Host On Demand

When run as an applet, such programs are subject to the restrictions
on the Java security manager; in particular, they may only open a
network connection back to the system from which they were
downloaded. However, terminal emulation programs usually wish to
communicate with many different host systems, not just one. If the
host is a large mainframe, crucial to business, its owners may be
reluctant to install the TCP/IP software, preferring to remain with SNA
(System Network Architecture) LANs. And even on other host
systems, it might not be desirable to install, configure, run and
maintain a Web server just to download the JAVA emulator applet, and
this approach would still restrict access to that single host.

10.2.1 Two-Tier Architecture
One possibility would be to run the Java emulator as a stand-alone
application, so relaxing the restrictions on which hosts the emulator

HTTP
Server

TN3270
Server

Application

Client S/390 Web Server

Applet download

2-way communications

Browser

3270
Terminal
Emulator
152 Java Network Security

may connect to. This is the classic "two-tier client/server" application
architecture. The security issues are then very similar to running any
other executable program, namely that it is wise to use trusted sources
of supply only. Java has some safety and security advantages over
other binary programs like .EXE files, and digitally-signed applets can
provide a cryptographic guarantee that the code author is who they
say they are. It would be possible to create a Java security manager
that restricts the functions that the application is allowed to use, but
this is not a solution of the non-programming user.

10.2.2 Three-Tier Architecture
The easiest solution is to run gateway software on the Web server
which holds the Java applet. The applet will communicate over TCP/IP
with the gateway software, which can then pass through the messages
to the ultimate destination. In the case of 3270 terminal emulation,
IBM’s Communications Server (running on several operating systems)
will provide the TCP/IP connection to the Java emulator, and can
connect to hosts over both TCP/IP and SNA. This is then a "three-tier
client/server" application.

Figure 42. Three-Tier Example

Another approach is to use Web server Common Gateway Interface
(CGI) programs to provide the middle tier. The IBM CICS Internet
Gateway takes this approach. To the application server it emulates the

Browser
3270
Terminal
Emulator

HTTP
Server

Communications
Server

Application

SNA

2-way Communications

TN3270

Applet download

HTTP

S/390 MainframeGateway Server
Application Architectures 153

functions of a 3270 terminal, but downstream it generates HTML code
which is displayed in the Web browser window.

Figure 43. CICS Internet Gateway Example

This avoids using Java altogether in the client. It doesn’t provide as
much flexibility, as the display is restricted to what can be done in
HTML. But it may be a simpler solution to the problem. Just because
you happen to have a Java-shaped hammer doesn’t mean that all
solutions must be Java-shaped nails!

The gateway server approach can also be used to provide extended
facilities to Java applets. The IBM CICS Gateway for Java is a good
example of this; it allows a Java applet to access transaction
processing capabilities of CICS servers running on a variety of server
platforms. This provides a class library package to access CICS
functions. The class library itself does not perform the bulk of the
functions; instead, it transmits the request to the gateway server, and
returns the server’s response to the applet. The gateway server is a
small program that receives the requests and calls the real CICS client
library, which communicates with the CICS system itself. It would be
common to run the CICS transaction processing engine on its own
system, separate from the Web server (see Figure 44).

Browser
3270
display in
Web page

HTTP
Server

CICS
Internet
Gateway

CICS
Client CICS

Server

CGI CPI
HTTP
(GET/POST)
154 Java Network Security

Figure 44. CICS Gateway for Java Example

The security analysis for this type of system is more complex. We wish
to ensure the security of the gateway system as well as the systems
with which it connects, especially if the server is on the public Internet,
where any malicious hacker may attempt to access it. Intranet systems
should already have some defenses in place to restrict access to
company personnel, but security is still of concern, especially where
sensitive data is at risk.

Figure 45. Adding Firewalls to the Mix

Browser HTTP
Server

CICS
Gateway for
Java

CICS
Client

CICS
Server

Java socket

Applet

HTTP Download

connection

CICS classes
downloaded
with applet

EPI/ECI Interface over
TCP/IP, APPC or NetBIOS

Browser
Applet

FirewallFirewall
Application Architectures 155

The normal approach is to provide a number of barriers which must be
overcome before data access is granted. Often the first barrier is the
company firewall system (see Chapter 11, “Firewalls: In and Out of the
Net” on page 169 for more on firewalls). Firewalls can check that
requests are coming from, and going to, apparently valid addresses;
some firewalls will check the data content of selected protocols, but
there are limits to what can be checked. There have been several
embarrassingly public demonstrations of Web servers whose content
has been replaced by derogatory pages, despite firewalls being in
place. Often these hacks have succeeded because valid HTTP URL
requests to the Web server allowed software to be run on the server
which had an accidental "security hole" in it, such as allowing any data
file to be read or written, or even executing arbitrary binary code
supplied as part of the URL.

So it is necessary to secure the Web server against as many possible
hazards as possible, and also to try to ensure that when (not if!) it is
compromised, the attacker still does not have access to critical data.

Hardening Web servers against attack has been the subject of several
books, such as Practical Unix and Internet Security by Simson
Garfinkel and Gene Spafford, so only a brief checklist will be given
here:

1. Disable all network services that do not need to be present; if
possible only allow HTTP and the gateway protocol.

2. Check the Web server configuration files, to only allow access to
the required set of pages.

3. Delete any cgi-bin and other executable programs that are not
required; if they are not present, they cannot be run!

4. Restrict the privileges of the Web server program, if possible. UNIX
allows it to be run as a normal user, with few access rights.

These guidelines also apply to any gateway software being run. Try to
ensure it does not provide access to more facilities than needed. In
particular, don't depend on the client to validate any requests, but
assume that a hacker might have constructed a modified client which
can generate any possible request. For example, for a 3270 gateway,
don't assume that the client will only request connection to a limited
set of hosts, but configure the gateway so that those are the only hosts
that can be connected to, and that no other host names can be even
made visible. For database access and transaction processing, make
sure the gateway allows no more than the set of permitted requests.
156 Java Network Security

10.2.3 Network Security
The classic three-tier architecture pictures can hide other attack
routes. The diagram implies that there are separate connections
between the client and the Web server/gateway, and the gateway and
the end server. But maybe the real network is not configured that way.
For simplicity or cost, there might be only a single network interface on
the Web server, so that in reality the third tier server is on the same
network, and can potentially be accessed directly from the firewall
(Figure 46).

Figure 46. Web Server with One Network Interface

Now maybe the firewall is configured correctly, and will prevent direct
access to the end server. But will this be true tomorrow, after additional
services have been added? For very little extra cost, the networks can
be physically separated by providing two network interfaces in the
Web server.

(Make sure the cables are well labelled; we have heard of a firewall
being bypassed when someone tripped over the cables, and plugged
them back the wrong way round!)

Browser
Applet

Firewall

Physical Network Configuration

Internet
Application Architectures 157

Figure 47. Separating the Third Tier

Or, a second firewall system can be used, which has the benefit that
even if the Web server is compromised, the second firewall still
restricts access to the rest of the network. It is more expensive to
provide such a "De-militarized zone" (DMZ), though you may require
such a configuration in any case, to provide safe Internet connection,
in which case there is no extra cost. The cost of a second firewall is
likely to be less than the value of the data it protects, so you need to
do your own value calculations (this is the configuration shown in
Figure 45 on page 155).

One additional security barrier to consider using is the type of network
itself. You could link the gateway and end server using SNA protocols,
or by a small custom-built program communicating over a dedicated
serial link (Figure 48 on page 159). These effectively use the network
connection as another firewall; if TCP/IP cannot travel over it, many
possible hacking techniques are simply not possible. Don’t forget,
though, that if the Web server is totally compromised, the hacker has
all your communications software at their disposal, if they can discover
it, so you still should guard the third-tier server.

Browser
Applet

Firewall

Physical Network Configuration

Internet
158 Java Network Security

Figure 48. Protection Using Mixed Connection Protocols

10.3 Secure Clients and Network Computers

If you have great concern about what damage an applet may cause on
your client, whether by malicious design or by programming accident,
you may wish to consider the Network Computer approach. Many
types of Network Computers (NCs) are now available on the market,
with varying feature sets. Some are little different from ordinary
Personal Computers, though they may have sealed cases to prevent
expansion. Some may be intended for domestic use, and connect to a
television set and a telephone line, for home Web browsing.

But the type we consider here are the diskless clients, such as the IBM
Network Station. This is a small book-sized processor unit, without any
local disk, which connects to a local area network (LAN). It has a
display, keyboard and mouse. When switched on, it downloads its
kernel software from a server on the LAN, and then downloads
applications such as a Web browser and terminal emulator. These
allow it to run applications on one or more remote servers. The IBM
Network Station can also download and run Java programs locally, in
fact Java is the only published API for running local programs.

Browser
Applet

Firewall

Internet

Serial Connection
Application Architectures 159

In a secure environment, this has some advantages. There is no local
disk storage at the Network Station, so there is little chance of
permanent data corruption from malicious or misbehaving software.
Although Java programs are not the only things that can run on the NS
(it also supports terminal emulation, X-Windows and remote Windows
access) there is no capability for integration between the different
application types. This means that the Java security restrictions
cannot be easily bypassed. All disk storage is held on the servers,
allowing a fully managed backup service to be provided. Software
updates are performed centrally, reducing administration workload.

For these reasons alone, Network Computers have a great potential in
providing universal access to applications and data, with Java as a key
technology. The main impetus behind the Network Computer is usually
the potential for large cost savings. But in the appropriate application
areas, the cost savings may be much less important than the other
advantages listed above.

10.4 Server-Side Java

We’ve described the use of Java at the client in these distributed
architectures, but what about using Java elsewhere? This can fulfill
the goal of "write once, run anywhere" with a vengeance! It can greatly
simplify the work of software developers, especially of distributed
architectures. It might be possible to argue that the majority of client
systems will be a PC running some flavor of Microsoft Windows, so
that you can satisfy most people most of the time by only developing a
Windows version of your code. But this is not true for servers; the
majority of the world’s crucial business data is kept on mainframe and
UNIX servers. So if you develop the server side of your distributed
application in Java, it will be capable of being run on almost any of
these servers, whether they run MVS,VM, OS/390, Windows NT,
OS/2, OS/400 or one of the many flavors of UNIX.

At the other end of the spectrum, the server-side Java might be
running in an intelligent peripheral device, such as a printer, modem
rack, photocopier or coffee vending machine. At the time of writing,
these applications are just in the future, though Web browser
interfaces for device configuration are becoming more common. But
clearly there are immense opportunities to reduce development costs,
providing there is agreement on common standards of Java classes.
There are also clear security implications; imagine the effect of
160 Java Network Security

re-programming a rival company’s vending machine if you managed to
break the access codes!

In many ways, Java is an ideal environment for server applications.
The multi-threaded environment is ideally suited for supporting
simultaneous requests to a server. Even the standard classes are
simplified, as many server programs are unlikely to need the java.awt
windowing classes as well as several others, which is where most
cross-platform problems have arisen to date (especially prior to JDK
1.1).

As an example, the gateway component of the CICS Java gateway
could be written in Java, so it could be run on any Web server system
without the need for extensive cross-platform porting and testing.

10.4.1 The Cost of Server-Side Java
But what is the cost of this portability? In the case of server-side Java,
when Java is used as a program development language, the potential
risk is reduced execution performance. This is not always a problem;
the next section on Servlets shows how Java can sometimes enhance
server performance.

Performance is more important for a server than a client, as the server
needs to handle many simultaneous users. Just-in-time compilers may
help somewhat, but the real solution is to use true Java compilers, at
least until processors executing Java bytecode become commonplace.
But doesn’t this defeat the "write once run anywhere" approach? Not
entirely, as vendors can still supply system-independent code, which
gets compiled once during the installation process.

True compilers can take two different approaches. The first is to treat
Java as just another programming language, and compile Java source
into native object code for a given machine. This would imply that
software would need to be supplied in source form, which would be
less attractive to many developers, although it could be passed
through an obfuscating program, to remove meaningful identifiers, etc.

The second approach, which is likely to be more promising, is to
compile Java bytecode, rather than source code, into native object
code. This allows the compiler to be run on all the wealth of Java
bytecode that is available, not just that supplied by server developers.
And since Java bytecode is closely related to source code under
Application Architectures 161

normal circumstances, some Java true compilers may provide both
options and accept source or bytecode input.

10.4.2 Servlets
Java is not only used to develop stand-alone programs. In our
Web-based world, many of the servers run an HTTP Web server. The
traditional approach to add customized function to a Web server has
been to write Common Gateway Interface (CGI) programs (often
termed "cgi-bin" programs after the directory name where they are
conventionally stored).

These CGI programs are stand-alone programs which are called by
the HTTP server, when it receives requests for specific pages. Rather
than return static HTML text, the HTTP server starts the CGI program,
and passes it the user’s request, together with many details about the
server environment. The CGI program must handle the request, and
return HTML text to the HTTP server, which in turn returns it to the
user:

Starting execution of any program, not just a CGI program, can be a
lengthy process. Memory needs to be allocated, the program code
needs to be read from disk into memory, references to dynamic
libraries need to be linked, standard input and output streams need to
be created and connected, and finally the program needs to do the
processing required.

In a very simple HTTP Web server, multi-threading may not be
implemented, which means that no other HTTP requests could be
served until the CGI program returns, possibly after many seconds.
Most modern HTTP servers support multi-threading (on appropriate
operating systems), so this is less of an issue. But there are still limits
to the number of process threads that can be created, as the individual
threads still need to wait for the CGI program to complete.

Browser HTTP Request

HTMLHTML

CGI

HTTP
Server

CGI
Program
162 Java Network Security

CGI programs are also the target of hackers; many of the successful
attacks on Web servers have been through poorly tested CGI
programs, which may fail to test the parameters passed to them, or
may overflow input buffers when passed overlong data.

Other alternatives to CGI have been implemented, such as NSAPI
from Netscape, MSAPI from Microsoft, or ICAPI from IBM. These
permit native software routines to be directly called by the Web server,
significantly reducing the startup overhead. But the add-on routines
still need to be compiled for each platform, and the different
programming interfaces may not be fully compatible, restricting the
choice of Web server to a particular manufacturer (although ICAPI, for
example, has been designed to include the NSAPI calls). Program
testing is even more important, to prevent badly written software from
corrupting the Web server itself.

Java can be employed to overcome these issues. A "servlet" is a small
Java program called by the HTTP server. A JVM is started by the
HTTP Web server, and when a request is received it is passed to the
servlet object. The servlet must generate the HTML reply, and return it
to the HTTP server.

Since the servlet is run from the server, there is no overhead in
starting a new process, only that of creating a new Java thread. The
built-in safety features of Java will prevent many types of attacks, such
as buffer overruns, from taking place. And the Java servlet code is
portable to other Web servers and systems. Performance of Java
servlets is significantly greater than CGI programs, especially if the
CGI programs are written in an interpreted language like Perl.

It is still necessary for servlets to perform some security checking; they
need to check their input to ensure they cannot be tricked into
returning more information than intended. As they are granted similar
privileges to the HTTP server itself, it may be possible for a servlet to
read from, or even write to, the HTTP server configuration or log files.
Correct programming should prevent this. But deliberate corruption
attacks which attempt to overwrite buffers or the program stack should
not be possible, due to the built-in safety features of the Java
language and the JVM.
Application Architectures 163

10.5 Distributed Object Architectures - RMI

CGI uses a transaction model: the client issues a transaction request
and then waits until the server returns the results. Distributed object
architectures are a more elegant approach. Effectively, the "object
space" that an applet or application is working with is extended to
include objects on different systems. Client-side Java and server-side
Java can be combined to create a full distributed architecture, where
functions can be split between the client and server to optimize
processing and network loads.

Apart from getting object-oriented purists excited, distributed object
architectures have a number of advantages over more conventional
transactional systems, including security advantages. For example,
you can design systems in which mission-critical objects may be kept
safe behind a firewall with access allowed only via method calls from
clients. This is far safer than shipping data out of the organization to
multiple clients who may simultaneously make changes.

Java JDK 1.1 has provided a tool kit to aid the creation of distributed
architectures, the Remote Method Invocation (RMI). This extends the
Java object model to the network, by allowing objects in one Java
virtual machine to invoke methods seamlessly on objects in another,
remote, virtual machine. The remote virtual machine can, in turn,
invoke other remote objects.

With RMI, an object, B, residing on one machine (the server) may be
manipulated by another object, A, on a remote machine (the client).
Object B doesn’t really exist on the client, rather an alternative object
is used as a kind of "stunt-double." This stub- or proxy-object provides
the same interface as the real object B, but under the covers it uses
the RMI services to pass method requests over the network to the real
164 Java Network Security

object B. Object A therefore doesn’t need to know whether object B is
local or remote.

Figure 49. Invoking a Method with RMI

If another object, C, needs to be passed between the client and the
server – for instance as a parameter for a method – RMI uses a
technique called object serialization to "flatten" the object, turning it
into a stream of bytes. These are sent to the RMI system on the
remote machine, which rebuilds the object C and passes it into the
method call. Return values from methods are handled in the same
way.

A simple naming service, the RMI Registry, is provided to connect
clients and servers together using a URL-style of names, such as
rmi://host.port/name. A client asks for the remote objects, and the
remote server returns the stub object to the client. Developers use the
rmic compiler to generate the matching stub and skeleton classes for a
remote object.

This means it becomes possible to write distributed applications, with
little need to be aware of exactly where the software will be executed.
A RemoteException may be thrown on error conditions, but apart from
that, the program need not be aware that portions are executing
remotely.

Invoke Method "A"
on Object "B"

Stub Object "B"

Distributed
Computing
Services

Execute Method "A"
on Object "B"

Skeleton Object "B"

Distributed
Computing
Services
Application Architectures 165

10.5.1 The Security of RMI
RMI appears to be a straightforward way of creating a distributed
application. But there are a number of security issues:

 • RMI has a simple approach to creating the connection between the
client and server. Objects are serialized and transmitted over the
network. They are not encrypted, so anyone on the network could
read all the data being transferred.

 • There is no authentication; a client just requests an object (stub),
and the server supplies it. Subsequent communication is assumed
to be from the same client. This negates one of the security
advantages of distributed objects: the ability to hide the real object
away and only allow client access through specific, well-defined
methods. Key to this is that the clients are authenticated before
being allowed to manipulate objects which is why the weak
authentication services in RMI are dangerous.

 • There is no access control to the objects.

 • There are no security checks on the registry itself; it assumes any
caller is allowed to make requests.

 • Objects are not persistent; the references are only valid during the
lifetime of the process which created the remote object.

 • Stubs are assumed to be matched to skeletons; however, programs
could be constructed to simulate the RMI network calls, while
allowing any data to be placed in the requests.

 • Network and server errors will generate exceptions, so applications
must be prepared to handle these.

 • There is no version control between stubs and skeletons; thus, it is
possible that a client may use a down-level stub to access a more
recent skeleton, breaking release-to-release binary compatibility.

The class loading mechanism also has to be extended to cater for RMI
remote classes. When the RMIClassLoader is invoked, it attempts to
load classes over the network. A security manager must be defined;
otherwise, this would cause an exception. Programmers can write their
own security manager, or can use the restrictive RMISecurityManager.
This disables all functions except class definition and access. If used,
it will also be invoked to subsequently load any local classes. If you
require a different (more or less restrictive) security policy, you will
need to create your own security manager instead.
166 Java Network Security

If the client and server are connected through one or more firewalls,
there are additional issues to be considered. These are covered in
“Java Network Connections through the Firewall” on page 189.

Our conclusions are that you should only use RMI in pure intranet
configurations, or for applications where it cannot usefully be attacked.
An inter-company chat system may be a reasonable use of RMI, but
designing remote objects to represent customer bank accounts would
be asking for bankruptcy! Closely coupled internal systems might use
RMI, if the appropriate access controls were put in place by network
and firewall design. But the lack of authentication and access control
in the raw RMI must limit the wider use in secure applications.

If you need to create a distributed secure application, you need to
investigate alternatives to RMI. The CORBA (Common Object Request
Broker Association) implementations available today provide
heavier-weight remote execution methods, and other suppliers can
provide alternatives to RMI. Plans are being made to extend JDK 1.2
to include some of these alternative remote execution systems.
Application Architectures 167

168 Java Network Security

Chapter 11. Firewalls: In and Out of the Net

In this chapter, we consider how Java security can be affected when
firewall systems are used on the network.

11.1 What Is a Firewall?

By "firewall", we mean any computer system, network hardware or
combination of them that links two or more networks, and enforces
some access control policy between them. Thus one side of the
network is protected from any dangers in the other part of the network,
in an analogous way to the solid firewalls in buildings, which prevent a
fire spreading from one part of the building to another.

Figure 50. A Firewall

Until recent years, very few organizations thought seriously about the
need for firewalls, despite the efforts of firewall vendors. Some well-
publicized security breaches, when the content of several public web
sites were vandalized, proved to be an ideal marketing opportunity.
Almost any type of access control system was called a "firewall." The
National Computer Security Association (NCSA) has subsequently
created standard tests to enforce minimum standards for a firewall, but
that has not stopped some vendors from using the term creatively.

"Moreover they that work in fine flax, and they that weave networks,
shall be confounded."

Isaiah 19:9

Firewall

Secure Network Non-Secure Network
169

To add to the complexity, sometimes a single hardware system is
called a firewall, while other times a complex collection of multiple
routers and servers implement the firewall function. But we only need
to be concerned with the policies enforced by the firewall, and what
the effect is on the data traffic.

11.2 What Does a Firewall Do?

Firewalls can have an effect on any type of network traffic, depending
on their configuration. The areas we are especially concerned with are
the loading of Java applets to a client from a server, and network
accesses by Java applets to a server. Firewalls may be present at the
client network, the server network, or both. In order to understand the
implications, we shall need to understand the basic functions provided
by a firewall.

If you have seen any literature on firewalls, you will be well aware that
there are many buzzwords used by firewall specialists, to describe the
different software techniques that can be used to create them. Current
techniques include packet filtering, application gateways, proxy
servers, dynamic filters, bastion hosts, demilitarized zones, and dual-
homed gateways. Luckily, for the purpose of this book, we can ignore
the details of the software technologies, and simply concentrate on
what a firewall does with data packets flowing "through" it.

There are several other functions of firewalls which have no real affect
on Java security; for example, logging, reporting and management
functions will be required, and these may themselves be written in
Java. As an example, the IBM Firewall has a graphical user interface
using Java.

The basic security functions of any firewall are to examine data
packets sent "through" the firewall, and to accept, reject or modify the
packets according to the security policy requirements. Most of today’s
firewalls only work with TCP/IP data, so it is worth seeing what is
inside a TCP/IP data packet, in order to understand the firewall’s
actions.

11.2.1 Inside a TCP/IP Packet
All network traffic exchange is performed by sending blocks of data
between two connected systems. The blocks of data will be
encapsulated within a data packet, by adding header fields to control
what happens to the data block en route and when it reaches its final
 170

destination. Network architectures are constructed of layers of
function, each built on the services of the layer beneath it. The most
thorough layered architecture is the Open Systems Interconnection
(OSI) model, whereas other architectures, such as TCP/IP use
broader layer definitions. On the wire, these layers are translated into
a series of headers prepended to the data being sent (see Figure 51).

Figure 51. Mapping the Layered Network Model to Packet Headers

The first part of the header, the Data Link/Physical header, is
determined by the type of network. Ethernet, token-ring, serial lines,
FDDI, and so on, each have their own headers, containing
synchronization, start-of-packet identifiers, access control, and
physical (MAC) addresses as required by the network type. There may
be fields to distinguish Internet Protocol (IP) packets from other types
of packets, such as NetBIOS or SNA. We only need to consider IP
packets here.

The next part of the header of IP packets is the standard Internet
Protocol header, which specifies the originator (source) address and
the intended recipient (destination) address, together with fields to
control how the packet is forwarded through the Internet. There are
two main types of IP headers: the common IPv4 standard, and the
new IPv6 standard, which is intended to replace IPv4.

This is followed by the transport layer header, which controls what
happens to the packet when it reaches its destination. Almost all the

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Internet

Network Interface
Physical

Header Payload

OSI model TCP/IP Model
 171

user-level protocols commonly referred to as "TCP/IP" use either a
TCP (Transmission Control Protocol) or a UDP (User Datagram
Protocol) header at the transport layer.

Finally, application protocol headers and data are contained in the
payload portion of the packet, and are passed from the sending
process to the receiving process.

Each of these packet headers contain a number of data fields, which
may be examined by a firewall, and used to decide whether to accept
or reject the data packet.

Each header has a number of data fields. For current purposes, the
most important ones are:

Source IP address a 32-bit address (IPv4) or a 128-bit
address (IPv6)

Destination IP address a 32-bit address (IPv4) or a 128-bit
address (IPv6)

Source port number a 16-bit value

Destination port number a 16-bit value

The source and destination IP addresses identify the machines at
each end of the connection, and are used by intermediate machines to
route the packet through the network. Strictly speaking, an IP address
identifies a physical or logical network interface on the machine, which
allows a single machine to have several IP addresses.

The source and destination port numbers are used by the TCP/IP
networking software at each end, to send the packets to the
appropriate program running on the machines. Standard port numbers
are defined for the common network services; for example, an FTP
server expects to receive TCP requests addressed to port 21, and an
HTTP Web server expects to receive TCP requests to port 80.

However, non-standard ports may be used. It is quite possible to put a
Web server on port 21, and access it with an URL of http://server:21/.
Because of this possibility, some firewall systems will examine the
inside details of the protocol data, not just headers, to ensure that only
valid data can flow through.

As an elementary security precaution, port numbers less than 1024
are "privileged" ports. On some systems, such as UNIX, programs are
prevented from listening to these ports, unless they have the
 172

appropriate privileges. On less secure operating systems, a program
can listen on any port, although it may require extra code to be written.
HTTP Web servers, in particular, are often run on non-standard ports
such as 8000 or 8080 to avoid using the privileged standard port 80.

The non-privileged ports of 1024 and above can be used by any
program; when a connection is created, a free port number will be
allocated to the program. For example, a Web browser opening a
connection to a web server might be allocated port 1044 to
communicate with server port 80. But what happens, you may ask, if a
Web browser from another client also gets allocated port 1044? The
two connections are distinguished by looking at all four values (source
IP address, source port, destination IP address, destination port), as
this group of values is guaranteed to be unique by the TCP standards.

11.2.2 How Can Programs Communicate through a Firewall?
Simple packet-filtering firewalls use the source and destination IP
addresses and ports to determine whether packets may pass through
the firewall. Packets going to a Web server on destination port 80, and
the replies on source port 80, may be permitted, while packets to
other port numbers might be rejected by the firewall. This may be
allowed in one direction only and it may be further restricted by only
allowing packets to and from a particular group of Web servers (see
Figure 52).

Figure 52. Asymmetric Firewall Behavior

Internet

Request for
HTTP session
(tcp/80)

Request for
HTTP session
(tcp/80)

Firewall

requests

responses
 173

There may be more than one firewall through which data needs to
pass. Users in a corporate network will often have a firewall between
them and the Internet, in order to protect the entire corporate network.
And at the other end of the connection, the remote server will often
have a firewall to protect it and its networks.

These firewalls may enforce different rules on what types of data are
allowed to flow through, which can have consequences for Java (or
any other) programs. It is not uncommon to find Java-enabled Web
pages that work over a home Internet connection, simply fail to run on
a corporate network.

There are two problem areas: can the Java program be downloaded
from a remote server, and can it create the network connections that it
requires?

The HTTP protocol is normally used for downloading. In order to
understand the restrictions that firewalls put on HTTP, especially with
regard to proxy servers and SOCKS servers (discussed in “Proxy
Servers and SOCKS” on page 181), we describe this protocol in detail
in the next section.

11.3 Detailed Example of TCP/IP Protocol

Let us consider the simple case of a browser requesting a Web page
using HTTP. There are two steps to this: first the browser must
translate a host name (for example, www.ibm.com) into its IP address
(204.146.17.33 in this case). The normal way to do this in the Internet
is to use the domain name service (DNS). The second step is when
the browser sends the HTTP request and receives a page of HTML in
response.
 174

11.3.1 DNS Flow (UDP Example)
DNS uses the UDP protocol at the transport layer, sending application
data to the Domain Name Service (udp/53) port of a nameserver. The
packet header for UDP is shown in Figure 53)

Figure 53. IP V4 and UDP Headers

If the newer IPv6 is used, the header is simpler, but with 128-bit long
addresses, instead of 32-bit.

Now for the actual DNS request. It is a simple request and response
sequence (see Figure 54 and Figure 55).

Figure 54. Client Requests Name Resolution

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

VERS=4 HLEN Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

20
bytes

IP Options (if any) ... Padding (if needed)

IP

8
bytes

UDP
Source Port Destination Port

Length Checksum

Data Bytes (packet payload)

Client Server Packet 1, length 57 bytes

UDP

IP Source address 10.1.1.1 (client)
Destination address 10.1.1.5 (server)

Data

Source port 1048 (dynamically assigned)
Destination port 53 (DNS well-known port)

DNS question:
www.ibm.com, type=A, class=IN

(Browser) (DNS Server)
 175

Figure 55. DNS Name Resolution Response

11.3.2 HTTP Flow (TCP Example)
Now the client can request the URL of
http://www.ibm.com/example1.html, because it knows the real IP
address of www.ibm.com (204.146.17.33). Requests such as this use
TCP at the transport layer, to carry the HTTP application data. HTTP
is a very simple protocol, where the client requests a particular item of
data from the server, and the server returns the item, preceded by a
short descriptive header.

TCP headers are similar to UDP, but have more control fields to
provide a guaranteed1 delivery service:

1. In this context, "guaranteed" means that the data will be delivered, or an error will be returned (eventually).
With UDP, in comparison, data may be discarded without warning.

Packet 2, length 73 bytes

UDP

IP Source address 10.1.1.5
Destination address 10.1.1.1

Data DNS Question:
www.ibm.com, type=A, class=IN
DNS Answers:
www.ibm.com internet
address=204.146.17.33

Source port 53
Destination port 1048

Client Server
(Browser) (DNS Server)
 176

Figure 56. IP V4 and TCP Packet Headers

TCP using IPv6 is similar, with an IPv6 header followed by a TCP
header.

The following data packets are sent:

Figure 57. Web Page Request (1 of 4)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

VERS=4 HLEN Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

20
bytes

IP Options (if any) ... Padding (if needed)

IP

20
bytes

TCP
Source Port Destination Port

Data Bytes (packet payload)

Sequence Number

Acknowledgment Number

Data Reserved U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

offset

Checksum Urgent Pointer

TCP Options (if any) ... Padding (if needed)

Client Server Packet 1, length 44 bytes

TCP

IP Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

Data

Source port 1044 (dynamically assigned)
Destination port 80 (WWW well-known port)
Flags: SYN
Options: Set maximum segment size to 1452 bytes

(None)

(Browser) (Web Server)
 177

Figure 58. Web Page Request (2 of 4)

Client Server Packet 2, length 44 bytes

TCP

IP Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

Data

Source port 80
Destination port 1044
Flags: SYN+ACK
Options: Set maximum segment size to 1452 bytes

(None)

(Browser) (Web Server)

Packet 3, length 40 bytes

TCP

IP Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

Data

Source port 1044
Destination port 80
Flags: ACK

(None)

This completes the opening connection sequence (sometimes called the "three-way-handshake").

Packet 4, length 229 bytes

TCP

IP Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

Data

Source port 1044
Destination port 80
Flags: PUSH+ACK

GET /example1.html HTTP/1.0
Connection: Keep-alive
User-Agent: Mozilla/v3.01 (X11;I;AIX1)
Host: www.ibm.com
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pipeg, */*
<empty line>
 178

Figure 59. Web Page Request (3 of 4)

Client Server
Packet 5, length 388 bytes

TCP

IP Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

Data

Source port 80
Destination port 1044
Flags: PUSH+ACK

HTTP/1.1 200 Document follows
Server: IBM-ICS/4/2/1
Date: Mon, 22 Sep 1997 12:45:27 GMT
Connection: Keep-Alive
Accept-Ranges: bytes
Content-Type: text/html
Content-Length: 116
Last-Modified: Wed, 10 Jul 1996 14:59:23 GMT

<HTML>
<TITLE>Example 1</TITLE>
<H1>Example 1 - HTML only</H1>
 Example 2
</HTML>

(Browser) (Web Server)

Packet 6, length 40 bytes

TCP

IP Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

Data

Source port 80
Destination port 1044
Flags: FIN+ACK

(None)

Packet 7, length 40 bytes

TCP

IP Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

Data

Source port 1044
Destination port 80
Flags: ACK

(None)

The page has been sent. Now the connection is shut down.
 179

Figure 60. Web Page Request (4 of 4)

 • Packets 1, 2 and 3 establish the TCP connection with a "three-way
handshake."

 • Packet 4 contains the HTTP request from the browser; you can see
the GET request itself, together with other data being passed to the
server.

 • Packet 5 contains the reply from the server, with the page data
preceded by page information. You can see this information using
"view document source" and "view document info" from a Web
browser. Larger replies would need to be sent in more than one
packet, and the client would periodically send TCP
acknowledgment packets back to the server. But only a single item
of data is returned, so that the page data, images, applets and
other components are returned separately. Using JAR files, several
items can now be sent in a single TCP connection, which is more
efficient.

 • Packets 6 and 7 close the connection from the server end, and
packets 8 and 9 close it from the client.

Packet 8, length 40 bytes

TCP

IP Source address 10.1.1.1 (client)
Destination address 204.146.17.33 (server)

Data

Source port 1044
Destination port 80
Flags: FIN+ACK

Client Server
(Browser) (Web Server)

Packet 9, length 40 bytes

TCP

IP Source address 204.146.17.33 (server)
Destination address 10.1.1.1 (client)

Data

Source port 80
Destination port 1044
Flags: ACK

(None)

(None)
 180

Although at first sight this seems quite complicated, on closer
inspection it can be seen to be simply sending a request (in readable
ASCII text) and receiving a reply, surrounded by packets to open and
close the TCP connection.

11.4 Proxy Servers and SOCKS

Proxy Servers and SOCKS Gateways are two common approaches
used to provide Internet access through corporate firewalls. The
primary goal is to allow people within the company network the ability
to access the world-wide Internet, but prevent people from outside
from accessing the company internal networks.

Figure 61. Where a Proxy Server Fits

11.4.1 Proxy Servers
A proxy server’s function is to receive a request from a web browser,
to perform that request (possibly after authorization checks), and
return the results to the browser.

What actually happens is that, instead of sending a request directly to
server www.company.com of:

GET /page.html

a browser will send a request to proxy.mycompany.com, asking:

GET http://www.company.com/page.html

InternetFirewall

Proxy Server

Web Server

Proxy
HTTP

HTTP

Secure Network
 181

proxy.mycompany.com will then contact www.company.com with the
request

GET /page.html

There are several advantages to this indirect approach:

 • All external web access can be forced to go through the proxy
server, so creating a single control point. This is achieved by
blocking all HTTP protocol data, except for that from the proxy
server itself.

 • All pages being transferred can be logged, together with the
address of the requesting machine.

 • Requests for certain sites can be restricted or banned.

 • The IP addresses or names of the internal systems never appear
on the Internet, just the address of the proxy server. So attackers
cannot use the addresses to gain information about your internal
system names and network structure.

 • The proxy can be configured as a caching proxy server, and will
save local copies of Web pages retrieved. Subsequent requests will
return the cached copies, thus providing faster access and
reducing the load on the connection to the Internet.

 • Web proxy servers usually support several protocols, including
HTTP, FTP, Gopher, HTTPS (HTTP with SSL), and WAIS.

 • Proxy servers can themselves use the SOCKS protocol to provide
additional security. This does not affect the browser configuration.

The disadvantages are that browser configuration is more complex,
the added data transfers can add an extra delay to page access, and
sometimes proxies impose additional restrictions such as a time-out
on the length of a connection, preventing very large downloads.

11.4.2 What Is SOCKS?
The SOCKS protocol is mentioned several times in this section. It is a
simple but elegant way of allowing users within a corporate firewall to
access almost any TCP service outside the firewall, but without
allowing outsiders to get back inside.

It works through a new TCP protocol, SOCKS, together with a SOCKS
server program running in the firewall system. (SOCKS, incidentally, is
a shortened version of "sockets," the term used for the data structures
which describe a TCP connection.)
 182

Figure 62. A SOCKS Connection

In basic terms, SOCKS is a means of encapsulating any TCP protocol
within the SOCKS protocol. On the client system, within the corporate
network, the data packets to be sent to or from an external system will
be put inside a SOCKS packet and sent to a SOCKS server. For
example, a request for http://server.company.com/page.html would, if
sent directly, be contained in a packet with the following
characteristics:

Destination address: server.company.com
Destination port: 80 (HTTP)
Data: "GET /page.html"

If SOCKS were used, the packet sent would be (effectively):

Destination address: socks_server.mycompany.com
Destination port: TCP 1080 (SOCKS)
Data: Destination address = server.company.com,

Destination port = TCP 80 (HTTP),
Data = "GET /page.html"

When the SOCKS server receives this, it extracts the required
destination address, port and data and sends this packet; naturally, the
source IP address will be that of the SOCKS server itself. The firewall
will have been configured to allow these packets from the SOCKS
server program, so they won’t be blocked. Returning packets will be
sent to the SOCKS server, which will encapsulate them similarly, and
pass on to the original client, which in turn strips off the SOCKS
encapsulation, giving the required data.

(This description is simplified; in reality, requests between the client
and the SOCKS server are in a socket API format, rather than the pure
protocol data as shown above. Details!)

Internet

Firewall

SOCKS
Server

SOCKS request:
http webserverX

webserverX
 183

The advantage of all this is that the firewall can be very simply
configured, to allow any TCP/IP connection on any port, from the
SOCKS server to the non-secure Internet, trusting it to disallow any
connections which are initiated from the Internet.

Figure 63. SOCKS Flexibility

The disadvantage is that the client software must be modified to use
SOCKS. The original approach was to recompile the network client
code with a new SOCKS header file, which translated TCP system
calls (connect, getsockname, bind, accept, listen, select) into new
names (Rconnect, Rgetsockname, Rbind, Raccept, Rlisten, Rselect).
When linked with the libsocks library, these new names will access the
SOCKS version, rather than the standard system version. This,
therefore, creates a new "SOCKSified" version of the client software.

This approach is still used for clients running on UNIX. However, a
new approach has become available for OS/2 and Windows operating
systems, where the dynamically linked libraries which implement the
TCP calls above are replaced by a SOCKSified version, usually
termed a "SOCKSified TCP stack." This SOCKSified stack can then
be used with any client code, without the need to modify the client. It
just requires the SOCKS configuration to be specified, giving the
address of the SOCKS server, and information on whether to use
SOCKS protocol or to make a direct connection.

The SOCKSified stack comes as standard with OS/2 Warp Version 4
(add-on versions have been produced for OS/2 Warp Version 3), or
can be purchased for Windows 95 or Windows NT.

Firewall

SOCKS
Server

SOCKS(HTTP)

SOCKS(FTP)

HTTP

FTP

Internet

Web
server

FTP
server

STOP

STOP
 184

11.4.3 Using Proxy Servers or SOCKS Gateways
We have described three options:

 • Using a proxy server

 • Using a SOCKS gateway with a "SOCKSified" client application

 • Using a SOCKS gateway with a "SOCKSified" TCP/IP stack

Each of these options has its own advantages and disadvantages, for
the company network security manager to evaluate for the company’s
particular environment. But what does the end user need to do to use
these options?

Both Netscape Navigator and Microsoft Internet Explorer Web
browsers have built-in support for both proxy servers and for the
SOCKS protocol. Options are provided to select either a proxy server,
or a SOCKS server (don't select both, or requests will be sent via the
SOCKS server to the proxy server, causing unnecessary network
traffic). But currently, support for SOCKS is limited to specifying the
server name; all page requests will be passed to that server, whether
or not direct access is possible (as in the case of internal Web
servers).

The advantage in using the SOCKSified stack is that it provides better
support for deciding whether to use SOCKS or not, rather than
sending all requests to the SOCKS server (which may overload it), as
well as supporting other clients. This is controlled by a configuration
file, which specifies which range of addresses are internal and can be
handled directly, and which must go through the SOCKS server. Of
course, if you use a SOCKSified stack, you should not enable SOCKS
in the browser configuration. Then again, a SOCKSified stack is not
available for all platforms, so you may be forced to use the browser’s
SOCKS configuration.

The SOCKsified stack approach will also work with Java applets run
from a Web browser, as the normal Java.net classes will use the
underlying TCP protocol stack, so this provides a simple way of
running Java applets through a SOCKS server through a firewall. But if
a SOCKSified stack is not available, you will need to SOCKSify the
library classes yourself, if you have source code, or look for a vendor
who supports SOCKS.
 185

11.5 The Effect of Firewalls on Java

We now consider the effect of firewalls on Java applets, first from the
point of view of loading them, then on the network connections that the
applets themselves may create.

11.5.1 Downloading an Applet Using HTTP
Java applets within a Web page are transferred using HTTP, when the
browser fetches the class files referred to by the <APPLET> tag. So, if
a Web page contains a tag of:

<APPLET code="Example.class" width=300 height=300>
<PARAM NAME=pname VALUE="example1">
</APPLET>

the browser would transfer the Web page itself first, then the file
example.class, then any class files referred to in example.class. Each
HTTP transfer would be performed separately (unless HTTP 1.1 is
used).

JDK 1.1 allows a more efficient transfer, where all the classes are
combined into a compressed Java Archive (JAR) file. In this case the
Web page contains a tag of:

<APPLET archive="example.jar" code="Example.class" width=300
height=300>
</APPLET>

If there are problems finding example.jar, or if an older browser (Java
1.0) is used, the archive option is ignored, and the code option is used
instead as in the previous example.

11.5.2 Stopping Java Downloads with a Firewall
But what effect do firewalls have on the downloading of Java class
files? If the security policy is to allow HTTP traffic to flow through the
firewall, then Java applets and JAR files will simply be treated like any
other component of a Web page, and transferred. On the other hand, if
HTTP is prohibited, then it is going to be very difficult to obtain the
applet class files, unless there is another way of getting them, such as
using FTP. Quite frequently, Web servers using non-standard TCP
ports such as 81, 8000, 8080 may be blocked by the firewall, so if you
are running a Web server, stick to the standard port 80 if you want as
many people as possible to see your Web pages and applets.
 186

Now since Java is transferred using HTTP, the IP and TCP headers
are indistinguishable from any other element of a Web page. Simple
packet filtering based on IP addresses and port numbers will therefore
not be able to block just Java. If you require more selective filtering,
you will need to go one step beyond basic packet filtering and examine
the packet payload: the HTTP data itself. This can be done with a
suitable Web proxy server or an HTTP gateway which scans the data
transferred.

If a Web proxy server is used, a common arrangement is to force all
clients to go through the proxy server (inside the firewall), by
preventing all HTTP access through the firewall, unless it came from
the proxy server itself. If you don’t have an arrangement like this, a
user could bypass the checking by connecting directly.

Figure 64. Forcing Connections through a Proxy

So what can we look for, inside the HTTP packet, to identify a Java
class file? In an ideal world, there would be a standard MIME
(Multipurpose Internet Mail Extensions) data type for Java classes, so
that a Web browser might request:

Accept: application/java, application/jar

and firewalls could quite easily check for these requests and the Web
server "Content-Type:" replies.

However, in practice servers respond with a variety of MIME types,
such as:

InternetFirewall

Proxy Server

Web ServerGO

Proxy
HTTP

HTTP

HTTP

Secure Network

STOP
 187

application/octet-stream (for class files)
www/unknown
text/plain
multipart/x-zip (for JAR files)
application/zip

This means it is necessary to examine the actual data being
transferred, to see if it might be Java bytecode or JAR files. Bytecode
files must start with hexadecimal values "CAFEBABE" in the first four
bytes (see “Java Bytecode” on page 69). This string will also be found
in JAR files, but as a JAR file may be compressed, a scanner has to
work harder to find the signature. Commercial products are available
which can perform this inspection. They usually work as, or with, an
HTTP proxy server, and check all HTTP requests passing through.

Searching for the class file signature in this way is an effective way to
stop Java, but it indiscriminately chops out good code and bad. A more
subtle scanner could extend the principle to other types of "signature".
For example, it would theoretically be possible to filter out any applet
that overrode the stop() method (see “Malicious Applets” on
page 104), by analyzing the bytecode in detail.

Of course, in these restrictive environments, you would also want to
filter out any other types of executable content which are less secure
than Java, such as ActiveX, and maybe JavaScript, .EXE files, and so
on. You would also have to consider other protocols such as FTP,
HTTP or FTP encapsulated in SOCKS, HTTP encapsulated in SSL
(which adds the problem of decoding the type of encrypted data).

We have been focussing on scanning for Java at a single point for the
enterprise: the firewall or proxy server. Recent developments by the
browser manufacturers and by systems management specialists, such
as Tivoli Systems, point to an alternative strategy. They have
developed mechanisms for installing and configuring browsers on
multiple user systems from a single point. This certainly offers cost
savings: a single administrator can be responsible for hundreds of
workstations. However, as a security measure it can only work if it is
backed up by controls and monitors that prevent individual users from
overriding the "official" configuration.

The cleanest solution to the problem of selectively stopping Java is in
the use of signed applets. As certificates become used more
frequently, it will be possible to permit Java bytecode from sites where
 188

you trust the signer (maybe your own company sites), and disallow
other sites.

11.5.3 Java Network Connections through the Firewall
When a Java applet or application wishes to create its own network
connections through a firewall, it faces all the difficulties above, and
also, for applets, the default security manager restriction of only being
able to contact the server it was downloaded from.

There are three approaches that an applet can take:

1. Use the URL classes from the java.net package to request data
from a Web server using HTTP. JDK 1.1 adds a new class to this
package – HttpURLConnection – as a specialization of the
URLConnection class.

2. Use other classes from the java.net package to create socket
connections to a dedicated server application.

3. Use remote object access mechanisms, such as RMI or CORBA.

The first of these is the easiest to implement (look at the never-ending
fortune cookie applet in Figure 18 on page 105 for an example). It is
also likely to be the most reliable, because the JVM passes the URL
request to the normal browser connection routines to process. This
means that, if a proxy is defined, the Java code will automatically use

For the Network Administrator

Should You Allow Java

Leaving aside the question of how to block Java classes at the firewall. You may be
faced with the decision of whether you should allow Java (or any other type of
executable content) to travel through the firewall. If your site has public web
servers, then you would expect that Java code is allowed to be sent to the Internet.
But you might wish to make restrictions on Java code that can be received.

The most permissive policy is to allow Java to be received, and let users make their
own defenses, or trust in the Java security model. More restrictive policies might
only allow Java from trusted Web sites, or not at all. The question that you must ask
is: what data is at risk if I allow this? We have shown that, compared with other
types of executable content, Java applets are very safe, so if you choose to block
applets you should also prevent other downloads. For example, macro viruses
contained in word-processor files are a major problem, but few companies would
prevent employees exchanging such files with customers and suppliers.

Through Your Firewall?
 189

it. However, URL connections suffer from the fact that the server side
of the connection has limited capability; it can only be a simple file
retrieval or a CGI (or similar) program.

For the second approach – socket connection to the server – the
applet will need to choose a port number to connect to, but many will
not be allowed through firewall. Some types of applets have no real
choice as to port number. For example IBM Host-on-Demand is a Java
applet which is a 3270 terminal emulator, hence needs to use the
tn3270 protocol to telnet port 23. It is quite likely that this standard port
would be allowed through the firewall; otherwise, encapsulation of
tn3270 inside the SOCKS protocol may be the only answer.

Other applets need to make a connection to the server, but don't need
any special port. It may be that they can use a non-privileged server
port of 1024 or greater, but often these, too, are blocked by simple
packet filtering firewalls. A flexible approach is to let the applet be
configurable to allow direct connections (if allowed), otherwise to use
the SOCKS protocol to pass through the firewall.

Many HTTP proxy servers implement the Connect Method. This allows
a client to send an HTTP request to the proxy which includes a header
telling it to connect to a specific port on the real target system. The
connect method was originally developed to allow SSL connections to
be handled by a proxy server, but it has since been extended to other
applications. For example, Lotus Notes servers can use it. The
connect method operates in a very similar way to SOCKS and you can
implement Java applet connections with it in much the same way as
you would with SOCKS.

For the Applet Developer

Different Kinds of Sockets

As we have described, SOCKS encapsulates the real data flow in its own TCP/IP
connection. This means that the client code must call the SOCKS library functions
instead of the functions provided by the normal TCP/IP APIs.

As far as we know, these library functions do not exist for Java, but the java.net
package does provide a convenient technique for implementing such things, by
using a specialized SocketFactory class.
 190

Another approach is to disguise the packets in another protocol, most
likely HTTP, as this will have been allowed through the firewall. This
will allow two-way transfer of data between applet and server, but will
require a special type of Web server. The server will need to act as a
normal Web server, to supply the Web pages and applets in the first
place, but must be able to communicate with the applets to process
their disguised network traffic.

11.5.4 RMI Remote Method Invocation
Java’s RMI allows developers to distribute Java objects seamlessly
across the Internet. But RMI needs to be able to cross firewalls too.

The normal approach that RMI uses, in the absence of firewalls, is that
the client applet will attempt to open a direct network connection to the
RMI port (default is port 1099) on the server. The client will send its
request to the server, and receive its reply, over this network
connection.

The designers of RMI have made provision for two firewall scenarios,
both using RMI calls embedded in HTTP requests, under the
reasonable assumption that HTTP will be allowed through the firewall
(as the applet was delivered that way). The RMI server itself will
accept either type of request, and format its reply accordingly. The
client actually sends an HTTP POST request, with the RMI call data
sent as the body of the POST request, and the server returns the
result in the body of an HTTP response.

Figure 65. Proxy Configuration for RMI (1)

Internet
Firewall

Proxy Server

HTTP

Secure Network

RMI Server

Proxy HTTP
(encapsulating RMI)

HTTP (encapsulating RMI)

applet

tcp/1099
 191

In the first scenario, we assume that the proxy server is permitted by
the firewall to connect directly to the remote server’s RMI port (1099).
The client applet will make an HTTP POST request to http://
rmi.server:1099/. This passes across the Internet to the remote server,
where it is found to be an encapsulated RMI call. Therefore the reply is
sent back as an HTML response. In theory this method could also be
used with a SOCKS server, instead of a proxy server, if run by a
SOCKS-enabled browser.

As well as assuming that the firewall on the client passes the RMI port,
this assumes that the remote firewall also accepts incoming requests
directly to the RMI port. But in some organizations, the firewall
manager may be reluctant to permit traffic to additional ports such as
the RMI port. So an alternative configuration is available, in case RMI
data is blocked by either firewall.

Figure 66. Proxy Configuration for RMI (2)

In the second scenario, the proxy server cannot use the RMI port
directly, so the remote Web server (which supplied the applet) has a
cgi-bin program configured, to forward HTTP on the normal port (80)
into HTTP to the RMI server’s port 1099. An example cgi-bin program
is provided in the development kit, and needs to be installed on the
Web server. This cgi-bin program invokes the Java interpreter on the
server, to forward the request to the appropriate RMI server port. It

Internet
Firewall

Proxy Server

Web Server

Secure Network

RMI Server

Proxy HTTP
(encapsulating RMI)

HTTP (encapsulating RMI)

RMIFirewall

tcp/80applet
 192

also copies the standard CGI environment variables to Java
properties.

So, the client code sends a POST request to http://rmi.server/cgi-bin/
java-rmi.cgi?forward=1099. The cgi-bin program passes it on to the
RMI port specified in the ?forward parameter. The reply will be passed
back to the Web server, which adds the HTML header line, and returns
the response to the client. In principle, this would allow the RMI server
to reside on a different system than the remote Web server, in a three-
tier model.

Fortunately, all the work above is performed automatically in the
java.rmi package, so the software developer need not be concerned
about the detailed mechanism. It is only necessary to configure the
RMI server correctly, and to ensure the client uses the automatic
mechanism for encapsulating RMI.

In the current version of RMI, the client stub code checks for the
presence (not value) of system properties proxyHost or
http.proxyHost, in order to decide whether to try using the HTTP
encapsulation. If you are using a Web browser and encapsulated RMI
does not seem to work, try explicitly setting these properties, as the
browser may be using its own proxy HTTP, without setting proxyHost.

All this automatic encapsulation is not free, of course. Encapsulated
RMI calls are at least an order of magnitude slower than direct
requests, and proxy servers may add extra delays to the process as
they receive and forward requests.

For the Network Administrator

What Is Allowed Through

Do you allow your proxy servers access to any TCP/IP port on the Internet? If so,
you may allow your internal users to access risky servers; if not, you may prevent
them from accessing useful services. You can scan the proxy server log files for
non-standard port accesses, to assess the balance of risk.

Your Firewall?
 193

11.6 Summary

We’ve shown how firewalls provide added security to an organization’s
network, at the expense of some restrictions on what client users can
do. Firewalls use a variety of techniques to provide this security,
including packet filtering, proxy servers and SOCKS servers. We’ve
described approaches which can be used with these techniques to
allow secure access through the firewalls.
 194

Chapter 12. Java and SSL

In Chapter 7, “Playing in the Sandbox” on page 97 we discussed the
capabilities for invoking cryptographic functions from within Java code.
We also stepped through a simple transaction, to show the ways that
cryptography can be used in an application.

But, as we concluded at the time, most programmers and application
designers would prefer ready-built cryptographic protocols, rather than
having to create them from the basic elements of encryption and digital
signatures. Secure Socket Layer (SSL) is the most widely used
protocol for implementing cryptography in the Web. In this chapter we
look at how it can be invoked from within Java.

12.1 What Is SSL?

SSL has two security aims:

1. To authenticate the server and (optionally) the client using public-
key signatures.

2. To provide an encrypted connection for the client and server to
exchange messages.

As the name suggests, SSL provides a secure alternative to the
standard TCP/IP sockets protocol. In fact, SSL is not a drop-in
replacement because the application has to specify additional
cryptographic information. Nonetheless, it is not a large step for an
application that uses regular sockets to be converted to SSL. Although
the most common implementation of SSL is for HTTP, several other
application protocols have also been adapted.

SSL is comprised of two protocols: the record protocol and the
handshake protocol. The record protocol defines the way that
messages passed between client and server are encapsulated. At any
point in time it has a set of parameters, known as a cipher suite,
associated with it, which define the cryptographic methods being used.
There are a number of cipher suites defined by the SSL standard, with
names that describe their content. For example, the cipher suite
named SSL_RSA_EXPORT_WITH_RC4_40_MD5 uses:

 • RSA public key encryption for key exchange, using an
export-strength modulus (see “US Export Rules for Encryption” on
page 33)
195

 • RC4 cipher for bulk data encryption, using a 40-bit (export strength)
key

 • MD5 hashing to ensure data integrity

When the SSL record protocol session is first established it has a
default cipher suite of SSL_NULL_WITH_NULL_NULL (no encryption
at all). This is where the SSL handshake protocol comes in. It defines
a series of messages in which the client and server negotiate the type
of connection that they can support, perform authentication, and
generate a bulk encryption key. At the end of the handshake they
exchange ChangeCipherSpec messages, which switches the current
cipher suite of the record protocol to the one that they negotiated (see
Figure 67).

Figure 67. The SSL Handshake for Dummies

"Hello, I can use RSA_EXPORT_WITH_RC4_40_MD5 or
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Hmm, I can do
full-strength

encryption, but this
is an export client. I
don’t do DES, so

that leaves only one
choice...

Hello, let’s use:
RSA_EXPORT_WITH_RC4_40_MD5.
Here’s my certificate.

Random key material

Generate
key

Generate
key

ChangeCipherSpec

Application Data

encrypted with server
public key

Unencrypted

record
protocol for
handshake

Encrypted
record
protocol for
data

}

196 Java Network Security

In the case shown in the diagram, only the server is authenticated, so
the client does not need to provide a certificate. If client authentication
was required, the handshake would be a little longer. The full
specification is at http://home.netscape.com/newsref/std/SSL.html.

12.2 Using SSL from an Applet

The advantage of a protocol such as SSL is that it removes the need
for the application developer to deal with the nuts and bolts of
cryptography. There are two ways in which Java can exploit this
function: by using the SSL support built into the browser, or by using
an SSL class package.

12.2.1 Using SSL URLs with Java
When a Webmaster wants users of a site to enter an SSL connection,
he or she simply codes a hypertext link with a prefix of "https:" in place
of "http:". When the user clicks on the link, the browser automatically
starts the SSL handshake, connecting to the default SSL port on the
server (TCP port 443).

Any relative URL within an SSL page is also retrieved using SSL. For
example, an <APPLET> tag could cause the applet bytecode to be
encrypted as it passes across the network. More importantly, the user
knows that the applet comes from a trustworthy site, because the
authentication process in the SSL handshake will have checked the
certificate of the server. You will recall that the signature on a JAR file
only shows that the creator of the file can be trusted, not the site from
which it came (discussed in Chapter 9, “Java Gets Out of Its Box” on
page 119). By delivering a signed JAR file using SSL you can add the
extra authentication without the Web site having to re-sign the file.

If an applet wants to read or write data to the server, it can use the
URL classes from the java.net package. These allow the applet code
to specify the URL of a Web page or CGI program and to receive the
output from the URL in an I/O stream. We showed an example of doing
this in the NeverEndingFortuneCookie applet in Figure 18 on page
105. If we changed the assignment of fortuneURL in that example to
use an https: prefix, the browser would automatically retrieve the data
using SSL.
Java and SSL 197

12.2.2 SSL Class Packages
Fetching data using the URL technique (above) is a very simple
approach, but it limits the applet because client/server
communications can only exploit the capabilities offered by CGI (or
another, similar, server interface). Even if this is adequate for the
function, it imposes some performance overhead. A direct socket
connection between client and server allows more sophisticated and
responsive applets to be created.

One possibility is to use a package that provides SSL function in a
Java class package. IBM Research in Zurich have created such a
package, called SSLight, based on their comprehensive cryptographic
toolkit for Java. Although this package is for internal IBM use (due in
part to license and export restrictions), it can be used for joint projects
with IBM customers. Alternatively, toolkits are available from other
vendors.

In the SSLight package the context information for the current SSL
connection (in other words, the cipher suite details) is maintained in a
Java class named SSLContext. The package then provides a set of
classes that mirror the java.net socket classes (including SSLSocket,
SSLServerSocket and so on). These behave like their java.net
equivalents, except that the constructor methods also require an
SSLContext among their arguments. This means that it is a relatively
simple matter to modify an application that communicates with sockets
to use the package.

The tricky part is setting up the SSLContext class in the first place. It
requires a key ring which is, conventionally, a file containing a
database of keys and certificates. An SSL client always needs a key
ring, even if client authentication is not in use, because it has to check
the validity of the certificate presented by the server. To perform the
check, the client needs the certificate for the CA that signed the
server’s certificate. The problem with reading a key ring from a file is
that normally it is forbidden by the applet sandbox restrictions.

One solution to this lies in signed applets, but that can lead to further
problems, due to the differences in implementation that we discussed
in Chapter 9, “Java Gets Out of Its Box” on page 119. The SSLight
package provides an innovative alternative, by defining an
SSLightKeyRing interface. This means that a key ring can be sent
imbedded in the Java class files of the applet, thus avoiding the need
for disk I/O. How can the applet know that this key ring (and the CA
198 Java Network Security

certificates inside it) can be trusted? The answer is to send the applet
itself in an SSL URL. The chain of trust from the point of view of the
applet is then:

 • This applet is from a host that is trusted, because the certificate it
sent when downloaded in a URL was signed by an independent,
trusted third party (a CA).

 • Therefore the key ring that the applet includes can also be trusted.

 • Therefore the CA key in the key ring can be trusted, and the applet
can use it to validate the server certificate when the applet starts a
connection with SSLight.

This is not a rigorous chain of trust, but even if the applet does not
have strong authentication for the server, it can still establish an
encrypted session. In other words, privacy of the data is guaranteed,
even if authentication of the server is based on doubtful logic.

12.3 Summary

The history of the World Wide Web is based on pragmatism. For
example, no one would argue that sending uncompressed ASCII text
data on sessions that are set up and torn down for every single
transaction is efficient in any way. However, this is what HTTP does,
and it is very successful. The reason for its success is that it is simple
enough to allow many different systems to interoperate without
problems of differing syntax. The cost of simplicity is in network
overhead and a limited transaction model.

Using cryptography in Java offers a similar dilemma. It is possible to
write secure applications using a toolkit of basic functions. Such an
application can be very sophisticated, but it will also be complex.
Alternatively, using SSL URL connections offers a way to simplify the
application, but at the cost of application function. SSL Java packages,
such as SSLight, provide a middle way, retaining simplicity but
allowing more flexible application design.
Java and SSL 199

200 Java Network Security

Chapter 13. Java and Cryptolopes

As we saw earlier, Java applets may be considered to be assets,
pieces of intellectual property which need to be protected from prying
eyes. We discussed the threat from decompilation attacks and how
you might attempt to foil decompilers.

There is, however, another way in which applets may have value
which must be protected.

Most Java applets you encounter on the Web are available to you free
of charge. Usually the Web page owner uses them to make the page
more attractive or to provide a function he or she wants you to use –
such as an investment planning application intended to help sell you a
mutual fund. Sometimes, however, it is you who want to use the
applet: an applet might be a particularly good game, or a useful
spreadsheet that you want to use. In this case the applet owner may
wish to charge for the use of the applet.

If I am the applet owner, I have three main obstacles to overcome:

1. I would like to send my applet to you in a protected form, such that
nobody – including you – can execute it. In addition, I would like to
send you information about how much I intend to charge you for its
use, what it does and other such information (technically known as
metadata).

2. I must be able to accept some form of payment from you in order to
allow you to use my applet. Ideally, you should be able to pay
different amounts depending on how you wish to use it. For
example, I might charge a single sum for unlimited use, a different
sum for a single use and yet another sum to use the applet for a
specified period of time.

3. I must be able to grant you the usage rights for which you have paid
without allowing you any additional rights and particularly, without
allowing you to give access to your friends (who haven't paid me for
the privilege).

Of course, I could encrypt the applet code and sell you a key which
would allow you to decrypt it and this would meet requirement 1 and
some of requirement 2. It would fall short of requirement 3, however,
since once you have decrypted the applet class files, you would be
free to distribute them among your friends. In addition to this
fundamental flaw, there is something deeply unsatisfying about the
201

payment model. It lacks subtlety and flexibility: you either have the
code and can use it as often as you please, or you don’t.

In fact, the third requirement proves to be the most difficult to satisfy
and it is this requirement which is addressed by IBM’s Cryptolope Live!
product, the latest evolution of Cryptolope technology.

13.1 Cryptolope History

Cryptolopes were first designed (at the IBM laboratory in Falls Church,
Virginia) to address the general issue of charging for intellectual
property on the Web, and on other networks. Like many other Internet
security ideas, they have their roots in cryptography. If you access my
Web page to download some chargeable material (which could be a
magazine article or a detailed weather forecast just as easily as it
could be an applet) and I send the material to you, I shall want to send
a bill later. But how do I know whether you ever received it?

The Internet does not guarantee delivery, far from it, and if you say you
never received it, how am I to know whether you are lying, let alone
prove that you are lying. We can use SSL to authenticate both ends of
the dialogue; that is, you can be sure that the Web page is really mine,
and I can be sure that the browser is really yours. The use of
public-key certificates ensures that. But it does not tell me that the
delivery of the chargeable material happened without problems, and it
does not give me anything that proves that you requested that
particular chargeable material. Cryptolopes can give you both of these
by the simple expedient of sending the material in encrypted form.
When you request a decryption key, you confirm that you have
received the material and that you are willing to pay for it.

Originally, Cryptolopes focused primarily on the delivery and payment
mechanisms for content. Ultimately, whatever the asset, be it a font,
some HTML, an audio or video file or even an entire application, it
needed to be extracted from the protective shell of the Cryptolope and
handed to an application which would render it. This exposed the
asset to the risk of copying.

This sort of problem has affected copyright material for centuries, and
people still manage to make money out of writing books and recording
music. This is because honest citizens and respectable companies
don’t make a habit of massively infringing copyright – they want to
202 Java Network Security

have legal original copies. So does it matter? Well, yes, to some extent
it does.

The difference between a book on paper and a book in HTML is that a
photocopy of the paper book is much less usable than the original; a
copy of an HTML book is identical to the original. A tape copy of a
music CD is less clear than the original; a copy of a digital audio file
isn’t. Digital copies are perfect copies, and with the prevalence of
Internet access, it is possible for a single unscrupulous vendor to
create and sell many perfect copies of an original, all over the world
and even from a server in a country with less restrictive copyright laws.

13.2 Today: Cryptolope Live!

Cryptolope Live! is a major evolution of the original Cryptolope
concept. Whereas early Cryptolopes focused on content commerce,
Cryptolope Live! emphasizes the process of presenting the content,
installing the content, metering the content use and interacting with the
end user. In short, it addresses requirement 3 above.

Cryptolope Live! deals in Cryptolope objects. These are a combination
of content, scripts and extensions. The content (part) is the payload of
a Cryptolope object and may be Java classes, digital audio or any type
of digital content. A Cryptolope object may contain a number of parts
all of which are held in a folder structure, similar to a filing system.
The scripts are a small set of business rules associated with each part
and folder which determine what the Cryptolope object will do in terms
of rendering content, billing the user, metering usage or whatever. The
extensions are pure Java classes which extend the capabilities of the
scripting language when more complex functions are required (see
Figure 68 on page 204).
Java and Cryptolopes 203

Figure 68. Cryptolope Live! Objects

Scripts are written using Cryptolope script, a simple yet powerful
programming language based on ECMAScript, a standard scripting
language defined by the European Computer Manufacturers’
Association and based on JavaScript.

The main component of Cryptolope Live! is the Cryptolope Player. This
is written in Java and runs the Cryptolope objects. There are several
parts to the Cryptolope player as shown in Figure 69 on page 205.

Container Object
• Script
• Attributes
• Extensions

Part
• Script
• Attributes

Part
• Script
• Attributes

Part
• Script
• Attributes

Part
• Script
• Attributes

Folder
• Script
• Attributes

Folder
• Script
• Attributes
204 Java Network Security

Figure 69. Components of the Cryptolope Live! Player

The Cryptolope player first loads the Cryptolope object and validates
its structure. If the Cryptolope object has been digitally signed then the
certificates are presented to the user who reviews this information and
approves it. Finally, the Cryptolope object is authenticated and the
main script is loaded and executed.

The Cryptolope Player implements a Sandbox and security manager,
exactly like the JVM (indeed, it uses a Java security manager class).
Thus, Cryptolope objects are prevented from accessing local storage,
running native code and all of those restrictions which we saw earlier
applied to unsigned applets. If this process seems familiar, then you
should not be surprised. Any resemblance to the Java security
architecture is purely intentional.

The script itself is responsible for implementing business rules which
may require providing payment information for the content prior to
making it available (decrypting the content) to the end user.

Another implementation may simply require authentication of the end
user (for example, via a user ID and password) prior to rendering the
information. The rules may only authorize the end user to view the
content, or they may authorize saving it to a file, or printing it.

The Cryptolope Live! product is delivered with a set of scripts and
extensions that let you write and customize your own information
commerce system for the distribution of, and payment processing for,

Cryptolope Player Extensions

Loader/
Authenticator

External
Interface

Cryptolope
Object Model

Cryptolope
Script
Interpreter

Content
Viewer

Clearing
Center
comms

Remote
Server
Interface

Cryptolope
Java and Cryptolopes 205

digital content. The provided scripts allow your enterprise to build a
Cryptolope object and encrypt one or more documents within it. This
system flow proceeds as follows:

 • You specify if the content can be viewed, printed, or saved to file for
specified prices, and whether the content within the Cryptolope
object ever expires.

 • When an end user receives a Cryptolope object (via the Internet as
a Java applet or to be run as a Java application) the Cryptolope
object is run by the Cryptolope Player.

 • The Cryptolope Player executes the scripts located in the
Cryptolope object and presents to the end user information about
the documents they may select to purchase (for example, an
abstract, authoring information, or a thumbnail diagram of a larger
picture that is encrypted in the object), along with the information
the end user requires to make a purchase decision.

 • When the end user chooses to purchase the content, the script
then presents a dialogue to request credit card payment
information. This information is sent to a clearing center run by your
enterprise or trusted third party. The clearing center works with the
Cryptolope Cashier which can link to third-party payment systems.

 • Upon completion of the credit card transaction, the clearing center
sends the appropriate document key for decrypting the purchased
document content back to the end user's Cryptolope Player. Then
the application decrypts the document and renders the purchased
content in the trusted viewer.

 • After the content is displayed, the end user can elect to print or
save the document if these options have been enabled.

When a Cryptolope object is loaded, the following actions occur:

 • The Cryptolope object itself is evaluated for authenticity based on
the digital signatures it may contain.

 • If the Cryptolope object appears not to have been altered, then the
loader creates the Cryptolope object model, representing the
structure of the object and the elements comprising it.

 • The object model calls the Cryptolope Script interpreter and starts
running the script in the Cryptolope object.

 • The scripts then control the actions of the Cryptolope object on the
end user's system. The scripts can call extensions (Java class files
either internal to the Cryptolope object or external on the user’s
206 Java Network Security

CLASSPATH) or can make available script functions that an
extension can call directly.

Cryptolope Live! also includes the Cryptolope Builder. This is a simple
mechanism for creating Cryptolope objects. In addition to the
development tools, the IBM Cryptolope Live! system includes
subsystems for security-rich content delivery and content commerce.
They are:

1. The IBM Cryptolope Clearing Center, along with extensions for
Cryptolope objects which allow them to connect to and
communicate with the clearing center.

2. The IBM Cryptolope Cashier which is a gateway to a payment
mechanism from the clearing center, allowing for the all important
collection of money!

13.3 Example Applications

Imagine that you have developed the ultimate killer app. Perhaps it is a
Java based streaming video viewer which tunes into an Internet news
channel. You want to sell access to the channel on a pay-per-view
basis.

First you embed your Java class files in a Cryptolope object. Then
you write a simple script which charges the end user in blocks of five
minutes, calls the clearing center, obtains a decryption key, decrypts
the classes and executes them. When the time limit is up, viewing is
interrupted by the script which prompts for more credit for the next
five-minute period.

You now have a totally flexible, secure product which will run
anywhere, either stand-alone or inside a browser. You can give it away
to your customers who will be charged as they use it. If they give
copies to their friends, this is fine since their friends will also be
charged as they use it; thus, now your customers have become a
distribution channel for your software and they even pay you for the
privilege!

13.4 Tomorrow

This is only a first step. In the future, Cryptolope technology may be
tightly integrated into the JVM rather than requiring the layer of
indirection provided by Cryptolope Script. Then Java classes rather
Java and Cryptolopes 207

than whole applications or applets could be distributed on a
pay-per-use basis.

Vendors of class libraries or software components will be able to
distribute their code widely without charging developers who use it and
without having to draw up complex licensing agreements. They will be
able to rest easy, safe in the knowledge that they will be paid in full
each time an end user uses their libraries, regardless of the product
those libraries are embedded in.
208 Java Network Security

Chapter 14. Epilogue

The authors believe that Java provides a powerful tool with which to
create secure computer systems. This security does not depend on
the underlying operating system; indeed, insecure PC operating
systems will benefit, while secure operating systems like MVS and
UNIX will have their security enhanced, using the same portable
software as that on the PC. Java is sufficiently secure to allow other
software to be run safely, even if it came from a dubious source.

This security depends on vigilance by the users, in ensuring that the
software that they must trust does not contain any loopholes, and is
correctly configured. Undoubtedly, Java flaws will continue to emerge
and so continuing vigilance is needed.

The most publicized (and hence quickly fixed) flaws have appeared in
the Java virtual machine. We believe that the next generation of flaws
will appear in situations where Java is working together with other
types of client executable content. For example, it is now very common
to find Web pages that use a bewildering mixture of technologies –
Java, JavaScript, ActiveX, Macromedia Shockwave and other
plug-ins, dynamic HTML, and so on. Each of these works within its
own zone of protection, which may overlap but are not identical. The
wily cracker can take advantage of this fact to bypass the restrictions
of one technology by exploiting another. Fixes for this type of exploit
will probably not appear so quickly, because each component may be
working correctly on its own terms.

Signed content (all types of content, not just Java) offers one solution
to these problems, by guaranteeing the trustworthiness of its source.
But there are dangers here also. Cryptography is not a simple subject
and it is important to mask complexity from the end user. At the time of
writing, the variety of different approaches to signed content reflects
the difficulty of doing this. We hope that a consistent approach will
soon emerge. One area that merits attention is the question of how to
warn the user that some component of a Web page wants to perform
some potentially dangerous function. The problem is that the user

�7KH�JLDQW�UDW�RI�6XPDWUD��D�VWRU\�IRU�ZKLFK�WKH�ZRUOG�LV�QRW�\HW�
SUHSDUHG�����6KHUORFN�+ROPHV��7KH�$GYHQWXUH�RI�WKH�6XVVH[�9DPSLUH

�$��&RQDQ�'R\OH�
209

becomes "click-happy." When confronted by an endless sequence of
dialog boxes warning of one thing or another, it is too easy to just keep
clicking "OK." We need a method that makes it clear that, for example,
a request by a Java applet to read environmental information is
potentially an order of magnitude less dangerous than allowing an
ActiveX control to run.

Java, because of its unique design, offers many safety and security
advantages over alternative approaches. In this book we have
illustrated this fact and, we hope, given you some insight into how to
create secure Java applications, how to protect Java assets, and how
to use Java securely.
210 Java Network Security

Appendix A. Sources of Information about Java Security

This appendix contains information about Internet resources and
interesting Java security sites. It is in two parts: the first covers
companies involved in Java development, and the second contains
sites which are maintained at educational establishments. This section
also contains interesting sites which are maintained by individual
experts within the educational establishments.

The purpose of this appendix is to give you an insight into where we
have obtained some of our information and to give you the opportunity
to look at other resource sites to obtain a view of Java security from
different angles. This also gives you the opportunity to keep on top of
new developments via the Web.

A.1 Companies

There are many companies which maintain Java Security sites; it
would be an impossible task to list them all. For this reason we have
decided to concentrate on the few companies who are at the cutting
edge of the Java phenomenon.

A.1.1 JavaSoft

The main JavaSoft URL is:

 http://www.javasoft.com

This is an excellent Web page and one to keep a regular check on,
because it has many links to various topics related to Java. Many of
these are not directly related to security, but have a bearing on it, for
example, new versions of the JDK and standarization activity. There is
also a page dedicated to security:

http://www.javasoft.com/security

This page contains lots of links to downloads and documentation for
the latest JavaSoft Java security packages. These documents are very
well constructed and easy to follow; however, they assume a high level
of knowledge from the user. As an example of this, there are manual
pages for UNIX commands which are not easy if you are not a UNIX
user.
211

This page also contains links to specifications pages which, in general,
describe various parts of Java specifications such as the Java
cryptographic architecture. The core of this is in three guides linked
from the page: Security API Overview, Java Cryptography Architecture
API Specification and Reference, and How to Integrate Your
Cryptography Algorithms into Java Security.

One especially interesting link is the JDK 1.1 Security Tutorial:

http://java.sun.com/docs/books/tutorial/security1.1/index.html

This tutorial claims, “You will learn the definitions of various
cryptography terms, and see an overview of the Java Security API and
its core classes. You will then learn how to produce "digital signatures"
for data, and how to verify the authenticity of such signatures.” The
author of the tutorial is Mary Daegforde.

The JavaSoft Security page contains a lot besides the items already
mentioned, such as links to FAQs, white papers and other articles.

Finally, you may wish to refer to the JavaSoft archives. These archives
date back to November 96 and contain a massive amount of
information about problems encountered in the development of the
various Java tools since that time.

A.1.2 Sun

The Sun home page URL is:

http://www.sun.com

As the originator and prime mover behind Java, you would expect it to
feature in many parts of the Sun site. So, for example, the Sun news
highlights include many Java-related developments. The URL for the
main page for specifically Java-related issues is:

http://www.sun.com/java

This page has links to a lot of Java-related topics and it also leads you
back to the JavaSoft site.

A.1.3 Microsoft

The Microsoft home page URL is:

http://www.microsoft.com
212 Java Network Security

Although late to join the Java fold, Microsoft now offer a range of
products for developing and running applications written in Java.

The URL of the main page for Java-related issues is:

http://www.microsoft.com/java

This page has links to a lot of Java-related topics such as news, issues
and trends, technical information and the Microsoft SDK for Java.
There are also many related topics, which change frequently, such as
information about bugs found in beta version of products which can be
downloaded from the Microsoft site.

The URL for the main page about Java security is:

http://www.microsoft.com/java/security

This page at first appears to be for a user who knows very little or
nothing at all about Java security, but there are some very good links
to more technical information. We found that a more effective way to
get the required information from the Microsoft site was to use the
internal search function. Searching for Java security produced more
than 50 hits, although a number of them were for material that is only
available to members of the Microsoft Developers Network.

A.1.4 IBM

The IBM home page URL is:

http://www.ibm.com

There are many links from this page, including a fair proportion of
Java-related pages. The URL of the main page for Java information is:

http://www.ibm.com/java

This page has a number of links to various pages but the easiest way
to approach it is to link to the site index page:

http://www.ibm.com/Java/siteindex.html

This page lists all of the Java-related topics on this site in alphabetical
order.
Sources of Information about Java Security 213

A.1.5 Reliable Software Technologies

RST performs research and consultancy in all aspects of the security,
safety, and testability of computer systems. They work closely with
academics, in particular the Princeton Safe Internet Programming
team (see below).

http://www.rstcorp.com

A.2 Universities

There are many universities which maintain Java sites and Java
Security sites; it would be an impossible task to list them all. For this
reason, we have decided to concentrate on the universities who’s
pages we found most useful and informative. There is also a brief list
at the end of this section which contains some other Java sites which
you may find interesting.

A.2.1 Princeton

Princeton University is the leading center for Java security research.
The main Java security page is:

http://www.cs.princeton.edu/sip

This page contains a lot of information and links about Java security.

The purpose of this site is to study the security of widely used Internet
software, especially mobile code systems like Java, ActiveX, and
JavaScript. They try to understand how security breaks down, and to
develop technology to address the underlying causes of security
problems.

This Web site has the following sections: news, people, partners,
research, publications, FAQ and a miscellaneous section. There are
also links to many publications about Java security

A.2.2 Yale

There are a number of Java security sites at Yale, for example:

http://pantheon.yale.edu/~dff/java.html

This site is mainly a collection of links to various Java security sites.

Another Yale site worth visiting is:
214 Java Network Security

http://daffy.cs.yale.edu/java/java_sec/java_sec.html

This site gives a good breakdown of Java security and some good
guidelines for security measures to take.

Finally:

http://pantheon.yale.edu/help/programming/jdk1.1.1/docs/api

This site gives a list of many topics, including some good Java security
papers produced by the university.

A.2.3 Georgia Institute of Technology

This is the home of Mark LaDue, who has written a number of hostile
applets, illustrating the capacity for cycle-stealing attacks in Java. His
page of increasingly vicious attack applets is now hosted by Reliable
Software Technologies Corporation:

http://www.math.gatech.edu/~mladue/HostileApplets.html

The second page of interest is:

http://voreg.cc.gatech.edu/gvu/user_surveys/survey-10-1996/gra
phs/author/Knowledge_Of_Java_Security.html

This page contains some statistics about how many professionals
have Java knowledge all over the world. Well worth a look.

Finally:

http://shannon.math.gatech.edu/~mladue/java_was_1.html

This page is Mark LaDue’s report on how the difference between the
capabilities of Java and bytecode leads to some of the flaws in the
Java virtual machine.

A.2.4 Others

The following pages are from other university sites which have some
good information and links :

A page of information put together by Patricia Evans (a grad student at
the University of Victoria):

http://gulf.uvic.ca/~pevans/java.html
Sources of Information about Java Security 215

David Hopwood, a student at Oxford, discovered some of Java’s flaws
that led to attack applets. His page has good information, though it is
now aging:

 http://ferret.lmh.ox.ac.uk/~david/java/bugs/public.html

A list of Java security resources provided by Steven H. Samorodin of
the UC Davis Security lab:

http://seclab.cs.ucdavis.edu/~samorodi/java/javasec.html

Gene Spafford of Purdue University’s security hotlist entry for Java
security. A bit out of date, but the rest of the list is amazing:

http://www.cs.purdue.edu/homes/spaf/hotlists/csec-body.html#ja
va00

A page at the University of Utah, devoted to Java Security. Includes
pointers to talk slides, and a few pointers to related Web sites.

The URL for this site is:

http://www.cs.utah.edu/~gback/javasec

Compiling Functional Programs to Java Byte-Code, by Gary Meehan
at the University of Warwick:

http://lite.ncstrl.org:3803/Dienst/UI/2.0/Describe/ncstrl.warwick_c
s%2fCS-RR-334?abstract=

A research group at the University of Washington implementing a new
Java security architecture based on factored components for security,
performance, and scalability. See their Security Flaws in Java page:

http://kimera.cs.washington.edu

University of Arizona's Sumatra Project, research on mobile code. See
especially the Java Hall of Shame:

http://www.cs.arizona.edu/sumatra

JAWS (Java Applets With Safety) is an Australian National University
project using theorem-proving technology to analyze safety and
security properties of Java Applets. Java down under:

http://cs.anu.edu.au/people/Tony.Dekker/JAWS.HTML
216 Java Network Security

Appendix B. Signature Formats

Both fields and methods have signatures within the Java class file.
They are a shorthand to describe the type (of a field) and the return
type and parameters (of a method). Signatures are constructed using
characters or strings to represent the various data types. The
signature of a field is simply the character or string representing its
datatype.

The signature of a method is a pair of parentheses enclosing a list of
the characters or strings representing the datatypes of the parameters,
separated by semicolons. The parentheses are followed by the
datatype of the return type of the method.

Table 9 indicates how data types are represented by characters or
strings.

Table 9. Data Type Representations in Method Signatures

Table 10. Examples of Method Signatures

a. The class name here is the full name of the class with ‘/’s in place of ‘.’s

Type Character or String Used in
Signature

long J

byte B

character C

double D

float F

integer I

object reference L<classname>a

short S

boolean Z

array [<datatype>

Signature Type Description

[C char[] An array of character

Ljava/lang/String String A Java string
217

[[java/lang/Object Object[][] A two dimensional array
of objects

()V void methodName() A method taking no
parameters and
returning no value

([Ljava/lang/String;I)I int
methodName(String,
int)

A method taking a String
and an integer value
and returning an integer.

Signature Type Description
218 Java Network Security

Appendix C. The Bytecode Verifier in Detail

The first stage of the bytecode verifier process is the identifying of
bytecode instructions and their arguments. This operation is
completed in two passes. The first pass locates the start of each
instruction and stores it in a table. Having found the start of each
instruction, the verifier makes a second pass, parsing the instructions.
This involves building a structure for each instruction, storing the
instruction and its arguments. These arguments are checked for
validity at this point. Specifically:

 • All arguments to flow-control instructions must cause branches to
the start of a valid instruction.

 • All references to local variables must be legal. That is, an
instruction may not attempt to read or write to a local variable
beyond those that a method declares.

 • All references to the constant pool must be to an entry of the
appropriate type.

 • All opcodes must have the correct number of arguments.

 • Each exception handler must have start and end points at the
beginning of valid instructions with the start point before the end
point. In addition, the offset of the exception handler must be the
start of a valid instruction.

C.1 The Data Flow Analyzer

Having established that the bytecodes are syntactically correct, the
bytecode verifier now has the task of analyzing the runtime behavior of
the code (within the limitations we examined in Chapter 6, “An
Incompleteness Theorem for Bytecode Verifiers” on page 95).

To perform this analysis, the bytecode verifier has to keep track of two
pieces of information for each instruction:

 • The status of the stack prior to executing that instruction in the form
of the number and type of items on the stack.

 • The contents of local variables prior to executing that instruction.
Only the type of each local variable is tracked. The value is
ignored.
219

Where types are concerned, the analyzer does not need to distinguish
between the various normal integer types (byte, short, char) since, as
we discuss in “Java Bytecode” on page 69, they all have the same
internal representation.

The first stage is the initialization of the data flow analyzer:

 • Each instruction is marked as unvisited. That is, the data flow
analyzer has not yet examined that instruction

 • For the first instruction, the stack is marked as empty and the local
variables corresponding to the method’s arguments are initialized
with the appropriate types

 • All other local variables declared as used by the method are
marked as containing illegal values

 • The “changed” bit of the first instruction is set, indicating that the
analyzer should examine this instruction

Finally, the data flow analyzer runs, looping through the following
steps:

1. Find a virtual machine instruction whose “changed” bit is set.

2. If no instruction remains whose “changed” bit is set, the method
has successfully been verified, otherwise turn off the changed bit of
the instruction found and proceed to step 3.

3. Emulate the effect of this instruction on the stack and local
variables:

 • If the instruction uses values from the stack, ensure that there
are sufficient elements on the stack and that the element(s) on
the top of the stack are of the appropriate type.

 • If the instruction pushes values onto the stack, ensure that there
is sufficient room on the stack for the new element(s) and
update the stack status to reflect the pushed values.

 • If the instruction reads a local variable, ensure that the specified
variable contains a value of the appropriate type.

 • If the instruction writes a value to a local variable, change the
type of that variable to reflect that change.

4. Determine the set of all possible instructions which could be
executed next. These are:

 • The next instruction in sequence if the current instruction isn’t
an unconditional goto, a return, or a throw.
220 Java Network Security

 • The target instruction of a conditional or unconditional branch.

 • The first instruction of all exception handlers for this instruction.

5. For each of the possible following instructions, merge the stack and
local variables as they exist after executing the current instruction
with the state prior to executing the following instruction. In the
exception-handler case, change the stack so that it contains a
single object of the exception type indicated by the exception
handler information. Merging proceeds as follows:

 • If the stacks are of different sizes then this is an error. Stop!

 • If the stacks contain exactly the same types, then they are already
merged

 • If the stacks are identical other than having differently typed object
references at corresponding places on the stacks then the merged
stack will have this object reference replaced by an instance of the
first common superclass or common superinterface of the two
types. Such a reference type always exists because the type Object
is a supertype of all class and interface types.

 • If this is the first time the successor instruction has been visited, set
up the stack and local variable values using those calculated in
Step 2 and set the “changed” bit for the successor instruction. If the
instruction has been seen before, merge the stack and local
variable values calculated in Step 2 and Step 3 into the values
already there; set the “change” bit if there is any modification.

6. Go to Step 1.

If the data-flow analyzer runs on the method without reporting any
failures, then the method has been successfully verified by Pass 3 of
the class file verifier.
The Bytecode Verifier in Detail 221

222 Java Network Security

Appendix D. What’s on the CD?

The CD that accompanies this book contains a number of things:

The sample code
All of the samples contained in Chapters 2, 4, 7, and 9 are on the CD
both as source Java and as compiled class files. There is also the
DumpConstantPool application which we used to examine the applet
files in Chapter 4.

The book itself in HTML
The complete book is on the CD in HTML format so that you can read
it using your browser (because "you can’t grep a tree").

Some useful links
There is a table of HTML links to Java and security Web sites which
we found useful while creating the book.

VisualAge for Java Entry
VisualAge for Java is IBM’s award-winning visual application builder
environment. We have included the Entry version for Windows (95 or
NT) on the CD. This has all of the function of the full professional
product, except that it is limited to creating a maximum of 100 new
classes.

NetREXX
REXX is a programming language used widely in IBM mainframe
environments and OS/2. It offers powerful facilities, particularly in the
area of data parsing, but at the same time it is very user-friendly.
NetREXX is a version of REXX that incorporates object-oriented
constructions and which can be used to generate Java source code or
bytecode.

D.1 How to Access the CD

To access the contents of the CD, simply point your Web browser at
file index.htm in the CD root directory and follow the links you find
there.
223

224 Java Network Security

Glossary

3270 Usually any of a family of
block-mode VDUs including the
IBM model 3270

AWT Abstract Windows Toolkit, the Java
package for creating GUIs

CGI Common Gateway Interface, an
interface that allows server-side
executable code to be linked to be
invoked as a URL.

CICS Customer Information Control
System

CERT Computer Emergency Response
Team. An organization that acts as
a clearing house of information
about security problems

CORBA The Common Object Request
Broker Architecture, a standard for
implementing a distributed object
architecture

DES Data Encryption Standard, a bulk
(symmetric key) encryption
algorithm

DMZ De-militarized zone, used here to
indicate the portion of a network
surrounded by firewalls

DNS Domain Name Service

FTP File Transfer Protocol

GET An HTTP command which requests
the server to send data to the client

Gopher An information service providing
linked pages

HOD Host-On-Demand, an IBM 3270
terminal emulator

HTML Hypertext markup language

HTTP HyperText Transfer Protocol

HTTPS HTTP encapsulated in SSL
protocol

ICMP Internet Control Message Protocol
IIOP Internet Inter ORB Protocol, a
specification for the way that ORBs
communicate

IP Internet Protocol

IPv4 Version 4 of Internet Protocol

IPv6 Version 6 of Internet Protocol

JCA Java Cryptography Architecture

JCE Java Cryptography Extensions (the
parts of JCA that cannot be
exported from the US

JVM Java Virtual Machine

KeyPair A matching pair of public and
private keys, used for digital
signatures and public key
encryption

LAN Local Area Network, with typical
bandwith greater than 4 M
bits/second

MD5 A message digest (secure hash)
algorithm from RSA Corp

MIME Multipurpose Internet Mail
Extensions

NetBIOSLAN protocol generally used by
PCs

ORB Object Request Broker, a program
that provides services to enable
the use of distributed objects

PC Personal Computer

POST An HTTP command which sends
client data to the server

RC4 A bulk (symmetric key) encryption
algorithm which allows variable
key sizes

RMI RemoteMethod Invocation, a
technique to allow Java on one
system to access objects on
another

RSA Rivest, Shamir and Adelman
formed the RSA corporation to
 225

market cryptographic software and
algorithms, in particular the public
key encryption mechanism that
also bears their initials.

SHA Secure Hash Architecture

SNA System Network Architecture

SOCKS A protocol used to encapsulate
other TCP protocols

SSL Secure Sockets Layer

TCP/IP Often used as a generic term for
the suite of TCP, IP and related
protocols

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VDU Visual Display Unit

WAIS Wide Area Information Service

WAN Wide Area Network, with typical
bandwith less than 4 M bits/second

WWW World Wide Web, usually refers to
systems using HTTP
 226

Index

Numerics
100% Pure Java 28
3270 152, 190

A
Access control 109
ActiveX 35, 188
applet 4
Applet class loader 84
Applet constructor 65
APPLET tag 84, 197
Applets

with value 201
application 4
Application architecture

three-tier 153
two-tier 153

Application design 151
Assembler for Java 58
Assembly code 56
Attack applets 9, 101
Attack routes 157
Attack types 97, 102
Authentication 109
Authentication with SSL 195

B
BASIC 58
Brute force cipher cracking 106
Bulk encryption 31, 110
Bytecode 4, 16

argumetns to instructions 62
contains type information 72
file signature 188
illegal instructions 88
is object-oriented 70
type prefixes 73
untrusted sources 48

Bytecode hosers 68
impact on JIT 68

Bytecode integrity check 91
Bytecode verifier 8, 91

proof of incompleteness 95
C
C++ 56
CA 112

certificate 117
trusted root key 117

CAFEBABE (class file signature) 90, 188
CAs for SSL 199
Casting, illegal 89
Certificate Authority (see also CA) 112
Certificate hierarchies 112
Certificate information file 123
Certificate interface 116
Certificates for SSL 197
CGI 153, 162, 198

cgi-bin 156
Chain of trust 112
ChangeCipherSpec message 196
Check methods 97

checkConnect 100, 101
checkCreateClassLoader 103
checkRead 127
checkWrite 97

CICS Gateway for Java 154
CICS Internet Gateway 153
Cipher suite 195
Clarke, Arthur C. 97
Class area (in JVM) 50
Class confusion attacks 88
Class file

signature (CAFEBABE) 90
Class file verifier 8, 23, 24, 49, 77, 78

four passes of 89
in detail 86

Class files
contents of 55, 59
relation to object modules 57
transfers in HTTP 186

Class integrity check 90
Class loader

checkCreateClassLoader method 103
defined 48
duties of 79
for RMI 166
interdependence with security manager 101
name space 100

Class loaders 8, 23, 24, 77
how implemented 81
227

loading process 77
multiple instances 82
primordial 48

Classes 17
core Java 49
local filing system 49
trusted 51

ClassLoader 77
ClassLoader class 81
CLASSPATH 102, 207
CLASSPATH environmental variable 80
COBOL 56
Common Gateway Interface (also CGI) 153, 162
Compilation and linking 57
Compilers

for Java 58
in general 56

Compilers for Java 161
computer virus 102
Confidentiality 110
Connect Method 190
Constant pool 62, 92, 103

information contained in 60
Consumer Transaction Framework (CTF) 118
Copyright on the Web 202
CORBA 29, 167, 189
Core classes 79
Core Java 49
Credit card transactions 206
Crema 11, 67
Cross-compilation 75
Cryptography 31, 151

export considerations 114
export controls 117

Cryptolope Live! 202
Cryptolopes 11, 201

and SSL 202
Cryptolope Builder 207
cryptolope objects 203
cryptolope player 205
scripts 205

cycle stealing 10

D
Data integrity 109
Decompilation

attacks 60
how to beat it 67

protecting Java assets 201
Decompilers 61
Demilitarized zone 158, 170
denial of service 10
Denial of service attacks 97
DES 31, 196
Diffie-Hellman 118
Digital Signature Algorithm (DSA) 114
Digital signatures 110
distinguished name 111
Distributed object architectures 164
DLLs 50
DMZ 158
DNS 103, 174

sample flow 175
Domain name service (also DNS) 174
domains of protection vii
Doyle, Conan 55, 77, 109, 119
DSA 33, 114, 116
DSA signature 121
Dynamic linking 17, 58, 60

E
e-mail 107
enablePrivilege method 133
Encryption

symmetric key 106
Encryption with SSL 195
engine classes 32, 113
executable content 3
Export controls on cryptography 33, 117

F
FAQ for security 101
Felten, Edward 41, 102
FieldRef 63
File extensions 55
File integrity check 90
FileRead privilege 133
Filtering Java at a firewall 187
final keyword 105
Firewalls 156, 169

effects on Java 186
filtering out Java 187
jumping the firewall attack 103
packet filtering 170
passing RMI connections 191

FTP 172, 182
228 Java Network Security

G
Garbage collection 50
Garfinkel, Simson 156
generateKeyPair method 115
Gödel, Kurt 95
Gopher 182

H
Hashing 32, 196
Hashing algorithm 111
Heap 50
hierarchy of classes 19
Holmes, Sherlock 5, 55, 77, 109, 119
Hopwood, David 102
HoseMocha 68
Host On Demand 152
HotJava 90

security controls 128
HTML 174
HTTP 195

GET request 180
POST request for RMI 193

HTTP POST request 191
HTTP Web servers 173
https prefix 197
HttpURLConnection 189
Hursley IBM lab 118

I
IBM Host-on-Demand 190
IBM Network Station 159
IBM Research 118, 198
ICAPI 163
IDEA 31
identity.database directive 123
identitydb.obj 122
IIOP 30
Illegal pointers 88
Impersonation 107
Impersonation attacks 97
Incompleteness Theorem for Bytecode Verifiers 95
inheritance 19
init method 105
instantiation 19
Intel 72
InterfaceMethodRef 63
Internet vs Intranet security considerations 155
IP address

destination 172
source 172

IP ports
privileged 172

IPv4 171
IPv6 171, 175
Isaiah 169

J
jar command 119
jar command example 126
JAR files 180, 197
JAR format 119, 130
JAR signing 134
Jasmin 58
Java Archive (JAR) files 186
Java assets

securing 60
Java Cryptography Architecture (see also JCA)
109
Java Cryptography Extensions (see also JCE) 109
Java Runtime Environment 129
Java security model 77
Java Virtual Machine (also JVM) 47
java.* packages 51, 79
java.applet.Applet class 64
java.awt package 161
java.lang.ClassLoader class 81
java.net package 185, 197

URL class 189
java.security.provider class 114
JavaBeans 21, 29
javakey command 122
javap utility 65
JavaScript 188
JavaScript back doors 103
JavaSoft security FAQ 101
JCA 11, 16, 31, 32, 34, 109, 113

engine classes 113
vendor independence 113

JCE 11, 34, 109
export considerations 114

JDBC 16, 30
JDK 4, 16
JDK 1.02 61
JDK 1.1 vii, 28, 31, 33, 39, 109, 124, 161, 189
JDK 1.2 vii, 129, 167

protection domains 103
 229

JIT 22, 48, 52, 68
effect on execution time 53

JRE 129
Jumping the firewall 103
Just In Time compiler (JIT) 52
JVM 4, 16, 47, 60, 75, 102, 163

class area 50
execution engine 51
the heap 50

JVM architecture 81

K
key recovery 34
Key ring files 198
key space 106
Keys

database in browser 198
export strength 196
for authentication 109
generating a key pair with javakey 124
generating key pairs 115
generating key pairs in Java 114
key database 122
key pairs 110
management of 118

Kubrick, Stanley 97

L
Linking

at runtime 58
LiveConnect 103
local classes 24

M
Machine architectures 72
Machine code 56
man in the middle 8, 39
MANIFEST.MF 120
Man-in-the-middle attack 110
McGraw, Gary 41, 102
MD5 33, 113, 114, 196
Message digest 111
Metadata 201
META-INF directory 121, 127
MethodRef 63
Microsoft Internet Explorer, proxy and SOCKS sup-
port 185

MIME 187
Mocha 11, 61, 67
MSAPI 163
Multipurpose Internet Mail Extensions (also MIME)
187
MVS 160

N
Name space 82, 100
NameAndType 63
Naming conventions for packages 80
National Computer Security Association (NCSA)
169
Native methods 28, 48

loader 50
NCs 159
NCSA 169
NetREXX 7, 58
Netscape 103

applet signing extensions 130
Netscape Navigator proxy and SOCKS support
185
netscape.security package 131
Network Computers (also NCs) 159
Network loopholes 103
NeverEndingFortuneCookie applet 197
Non-repudiation 110
NSAPI 163
nuisance applets 10

O
Obfuscation 67
Object serialization 165
Object-oriented

bytecode 70
Object-oriented languages 57
Objects

defined 57
ODBC API 30
Open Systems Interconnection 171
ORBs 29
OS 160
OS/2 160
OS/390 160
OS/40 160
OSI 171
230 Java Network Security

P
packages 20
Packet filtering 170
Passwords 109
PATH environment variable 48
Payment for applets 201
Perl 163
PGP 121
PKCS7 121
Plug-ins 209
PointlessButton 17, 119
Prefixes for bytecodes 73
Primordial class loader 48, 81
Princeton Secure Internet Programming team 102
Principals, cryptographic 114
privacy invasion 10
Privacy invasion attacks 97
private keyword 103
Privilege manager (Netscape) 131
Privilege targets 131
Program headers

for DOS programs 55
protected keyword 103
Protection domains 119, 129
provider architecture 32
Proxy servers 170, 181

advantages of 182
caching 182

proxyHost system properties 193
psyche stealing 10
Public key certificate 111, 114
Public key encryption 32, 110
public keyword 103

R
Random class 116
Random number generators 116
RC4 31, 196
Register-based architecture 72
Release to release binary compatibility 87
Remote Method Invocation (RMI) 164
RemoteException 165
REXX 58
RMI 29, 116, 164, 189, 191

firewall scenarios 191
security of 166

RMI Registry 165
RMIClassLoader 166

RMISecurityManager 166
RSA 32, 117, 121, 195
Runnable interface 105
Runtime integrity check 92

S
Sandbox 4, 26

in Cryptolope player 205
Sandbox restrictions 97, 103, 107, 119, 189
Secure Socket Layer (also SSL) 195
Security manager 9, 23, 26, 93, 97

defined 51
interdependence with class loader 101
restrictions for network connections 152
setSecurityManager method 99

Security model for Java 47
SecurityManager class 79, 97, 130
Self-signed certificates 112, 123
Serialization of objects 165
Server operating system types 160
Server-Side Java 160
Servlets 161, 163
SHA 33, 113
SHA-1 114
Shockwave 209
Signature class 116
Signature directive file 126
Signed applets 34, 39, 119, 188
SMTP 107
SNA 152, 171
Socket

connection to original host 101
Socket class 99, 116
SocketFactory, use for SOCKS connections 190
Sockets protocol 195
SOCKS

example 183
filtering encapsulated data 188
protocol 182
servers 174

SOCKSified client 184
SOCKSified TCP stack 184
Spafford, Gene 156
spoofing 39
SQL 30
SSL 118, 182, 195

and cryptolopes 202
certificates 197
 231

handshake protocol 195
port 197
record protocol 195
use of proxy connect method 190

SSLContext class 198
SSLight 198, 199
Stack overflow/underflow 78, 95
Stack-based architecture 72
stop method 106, 188
Stub objects 164
SUN provider package 116
sun. packages 51
Symmetric key encryption 110
Symmetric key encryption algorithm 106
System modification attacks 9, 97

T
TCP 172

guaranteed delivery 176
three-way handshake 180

TCP/IP protocol
example 174

Threaded Web servers 162
tn3270 190
Transaction model 164
Trojan horse 61, 102
True compilers 161
Trusted classes 51
trusted third party 111
Type confusion 103
Type prefixes (bytecode) 73
Type Safety 72

U
UDP 172
UNIX 160
UNIX user privileges 156
URL class 189
URL object 105
UTF8 63

V
Verification of class files 79
Viruses 61
VisiBroker for Java 30
visual application builders 21

W
WAIS 182
Web of trust 134
Windows NT 160
Write once, run anywhere 160

X
X.509 112, 118

Z
Zurich, IBM Research Lab 118, 198
232 Java Network Security

	Part 1. Introduction to Java and Security
	Chapter 1. An Overview of Java Security
	1.1 What Java Does
	1.2 Java Is Not an Island: Java as a Part of Secur...
	1.2.1 Safety and Security
	1.2.2 Java as an Aid to Security
	1.2.3 Java as a Threat to Security
	1.2.4 Java as Something to Be Secured
	1.2.5 Writing Secure Java
	1.2.6 Staying One Jump Ahead
	1.2.7 The Vigilant Web Site

	Chapter 2. Attack and Defense
	2.1 Java Is Not Just a Language
	2.2 Components of Java
	2.2.1 The Development Environment
	2.2.2 The Execution Process
	2.2.3 Interfaces and Architectures
	2.2.4 Cryptography to the Rescue!
	2.2.5 Signed Applets

	2.3 Attacking the World of Java
	2.3.1 Perils in the Life of an Applet
	2.3.2 Vulnerabilities in Java Applications

	2.4 Summary

	Part 2. Under The Hood
	Chapter 3. The Java Virtual Machine
	3.1 The Java Virtual Machine, Close Up
	3.1.1 The Class Loader
	3.1.2 The Class File Verifier
	3.1.3 The Heap
	3.1.4 The Class Area
	3.1.5 The Native Method Loader
	3.1.6 The Native Method Area
	3.1.7 The Security Manager
	3.1.8 The Execution Engine
	3.1.9 The Trusted Classes
	3.1.10 The Just In Time (JIT) Compiler

	3.2 Summary

	Chapter 4. Class of 1.1
	4.1 The Traditional Development Life Cycle
	4.2 The Java Development Life Cycle
	4.3 The Java Class File Format
	4.3.1 Decompilation Attacks

	4.4 The Constant Pool
	4.4.1 Beating the Decompilation Threat

	4.5 Java Bytecode
	4.5.1 A Bytecode Example

	Chapter 5. The Class Loader and Class File Verifie...
	5.1 Overview of the Java Security Model
	5.2 Class Loaders
	5.2.1 How Class Loaders Are Implemented
	5.2.2 The Class Loading Process
	5.2.3 Why You Might Want to Build Your Own Class L...

	5.3 The Class File Verifier
	5.3.1 The Duties of the Class File Verifier
	5.3.2 The Four Passes of the Class File Verifier

	5.4 Summary

	Chapter 6. An Incompleteness Theorem for Bytecode ...
	Chapter 7. Playing in the Sandbox
	7.1 What the Security Manager Does
	7.2 Operation of the Security Manager
	7.2.1 Class Loader/Security Manager Interdependenc...

	7.3 Attacking the Sandbox
	7.3.1 Types of Attack
	7.3.2 Malicious Applets

	7.4 Summary

	Chapter 8. Cryptography in Java
	8.1 Security Questions, Cryptographic Answers
	8.1.1 Public Key Certificates

	8.2 Introducing JCA: the Provider Concept
	8.2.1 JCE and Export Considerations

	8.3 The Security Classes in Practice
	8.3.1 The Scenario
	8.3.2 What Do We Learn from This?
	8.3.3 IBM Packages for Cryptographic Protocols

	Chapter 9. Java Gets Out of Its Box
	9.1 JAR Files and Applet Signing
	9.1.1 Current Implementations

	9.2 JavaSoft Signed JAR Example
	9.2.1 Creating the Certificate Authority Key Datab...
	9.2.2 Creating the Server Key Database
	9.2.3 Creating and Signing a JAR File

	9.3 Coming Next from JavaSoft: JDK 1.2
	9.3.1 Protection Domains

	9.4 Netscape Signed JAR Example
	9.4.1 Using the netscape.security Package
	9.4.2 Installing Keys and Certificates in Netscape...
	9.4.3 Signing JAR Files with Netscape JAR Packager...

	9.5 Microsoft and Signed Applets
	9.5.1 Two Signed CAB Examples

	9.6 Future Developments

	Part 3. Beyond the Island of Java: Surfing into th...
	Chapter 10. Application Architectures
	10.1 Browser Add-on Applets
	10.2 Networked Architectures
	10.2.1 Two-Tier Architecture
	10.2.2 Three-Tier Architecture
	10.2.3 Network Security

	10.3 Secure Clients and Network Computers
	10.4 Server-Side Java
	10.4.1 The Cost of Server-Side Java
	10.4.2 Servlets

	10.5 Distributed Object Architectures - RMI
	10.5.1 The Security of RMI

	Chapter 11. Firewalls: In and Out of the Net
	11.1 What Is a Firewall?
	11.2 What Does a Firewall Do?
	11.2.1 Inside a TCP/IP Packet
	11.2.2 How Can Programs Communicate through a Fire...

	11.3 Detailed Example of TCP/IP Protocol
	11.3.1 DNS Flow (UDP Example)
	11.3.2 HTTP Flow (TCP Example)

	11.4 Proxy Servers and SOCKS
	11.4.1 Proxy Servers
	11.4.2 What Is SOCKS?
	11.4.3 Using Proxy Servers or SOCKS Gateways

	11.5 The Effect of Firewalls on Java
	11.5.1 Downloading an Applet Using HTTP
	11.5.2 Stopping Java Downloads with a Firewall
	11.5.3 Java Network Connections through the Firewa...
	11.5.4 RMI Remote Method Invocation

	11.6 Summary

	Chapter 12. Java and SSL
	12.1 What Is SSL?
	12.2 Using SSL from an Applet
	12.2.1 Using SSL URLs with Java
	12.2.2 SSL Class Packages

	12.3 Summary

	Chapter 13. Java and Cryptolopes
	13.1 Cryptolope History
	13.2 Today: Cryptolope Live!
	13.3 Example Applications
	13.4 Tomorrow

	Chapter 14. Epilogue
	Appendix A. Sources of Information about Java Secu...
	Appendix B. Signature Formats
	Appendix C. The Bytecode Verifier in Detail
	Appendix D. What’s on the CD?

