
RealiBench
RealiMation 3D Benchmarking Program

As Used by Ziff-Davis!

Description
This benchmark program allows any database to be used. It generates successive frames with a
fixed time delta, which guarantees that the exact same picture will be generated
each time. You can be sure that, no matter what the speed of your cards are, each one will be
drawing exactly the same number, size, and shape polygons. (See later on for a full
description of the benchmark accuracy). You can vary the length of the test by setting the number
of frames the test loops over (see below).

The benchmarking program exe is in the RealiMation BIN directory, and is called "bench.exe".
The source code is provided to users of the VSG Developer Edition of RealiMation.

The RealiBench is used by Ziff-Davis for their new generation of 3D benchmarks wth which to
compare graphics systems. The December 1996 edition of PC Magazine contains a detailed look
at the benchmark.

Usage
Run BENCH.EXE from the Realimation\bin directory (or copy it somewhere where all the relevent
DLL's are).

The program expects as its argument a configuration file. This means that you can set up multiple
config files to test different scenarios.
E.g.
 bench bench.ini
 bench d3d320.ini
 bench d3d640.ini
will all run different tests, based on the contents of the INI file.

The initialisation file has the following entries, as shown by the sample below. Just like ordinary
Windows INI files, a semicolon at the beginning of a line acts as a comment.

[Data]
Results = result.txt
;RealiBase = d:\realibases\misc\eggtimer2.rbs
RealiBase = d:\realibases\newdemo\helisim2.rbs
Driver = rgdd3d4
Frames = 500
Hres = 640
Vres = 480

[Settings]
bFog = 1
bBilinear = 1
bMipMapping = 1
bTrilinear = 0
bPerspective = 1
bTextures = 1

Description of each entry:
1. Results

 This is a string that specifies a file that the results are written to. Note that results are appended
to any others already in the file. The results print out the RealiBase used, the driver used,
resolution, settings, etc. Run it to see! If you do not supply a file, then the results will go to the
DOS screen.

2. RealiBase
 This is the filename of the RealiBase to be used in the benchmark.

3. Driver
 This is the display driver DLL that is used, minus the ".DLL" extension. You may need the fully
qualified pathname if not in the local directory or on the search path.

4. Frames
 Lets you change the number of frames over which the test runs. See notes above.

5. Hres & Vres
 Specifies the 3D view resolution

6. bFog
 If 1, then fog attribute is turned on. The fogging just uses the parameter as set up in the
RealiBase, so you can edit using the STE if you like.

7. bBilinear
 If 1, enables bilinear interpolation of all textures

8. bMipMapping
 If 1, enables mip mapping of all textures

9. bTrilinear
 If 1, enables trilinear mipmapping of all textures. NOTE: Unlikely to be implemented on most
Direct3D devices, so you will probably not see any difference.

10. bPerspective
 If 1, turns on perspective correction of all textures.

11. bTextures
 If 1, turns on display of all textures.

Advice
Set up a number of different ini files, so you can have one, say, for the eggtimer with textures on,
fog off, and 200x200 res. You can have another INI file that uses HELISIM2.RBS, with 640x480,
and lasts for 5000 frames. You can then just run the benchmark program with different INI files on
the command line. We have supplied a sample file BENCH.INI that you can use straight away.

If you want a database that does intense lighting, try LIGHTCUBE1.RBS or LIGHTCUBE2.RBS.
The various fountain RealiBases might help too. All of these are in the NEWDEMO or
SAMPLES41 directory on the CD. Don't forget that since you have the STE, you can make your
own specialsed databases.

Why the Benchmark is accurate
Here is a description of the time values and how the benchmark used them...

Motion in RealiMation is parameterised by time, so that you can specify that an object is at

position P1 at time t=0, and position P2 at time t=10. By convention, time is in seconds. The
RealiMation system interpolates the motion between these P1 and P2 over the time interval.

By default, RealiMation applications will normally generate the time value to feed into the motion
interpolator from the computer's realtime clock. So, no matter how fast your card actually
generates each picture, the object will ALWAYS be at P2 after 10 seconds of real time. The only
difference between a fast graphics display and a slow one, is that the fast
display will show smoother movement.

Another way of looking at it is that graphics card X might take, say, 1 second to generate each
frame. So, over the 10 second animation, the system will render a total of 10 frames. Graphics
card Y, however, may be fast enough to render each frame on 0.5 seconds. So, over the 10
motion interval, it will generate 20 frames. In both these two cases, the object will still move from
P1 to P2 over 10 seconds (real elapsed time), but the faster card Y will show
smoother movement.

This is not good for benchmarking, since you need to guarantee that each card is being asked to
draw exactly the same polygons, in the same location, size, lighting etc, each frame. The solution
is, instead of feeding the time from a real clock, the benchmark program generates each frame
with a known time value. Typically, it will add a fixed delta to the existing time. In code terms, you
can see the difference as follows:
Using RealTime Clock:
 float tStart = RMClock (); // RMClock returns current system time in seconds
 for (i = 0; i < nFrames; i++)
 {
 RTSetViewTime (ViewID, RMClock() - tStart); // Set the time value for the view
 RTDisplayView (ViewID); // Generate the polygons
 RTSwapPage (ChannelID); // Show the polygons on the display surface
 }

Using a fixed time delta instead, however, the main loop goes to:
 float t = 0.0F; // RMClock returns current system time in seconds
 float tDelta = 0.1; // Time delta is 1/10th second
 for (i = 0; i < nFrames; i++)
 {
 RTSetViewTime (ViewID, t); // Set the time value for the view
 RTDisplayView (ViewID); // Generate the polygons
 RTSwapPage (ChannelID); // Show the polygons on the display surface
 t += tDelta; // Increment time delta
 }

The upshot of this is that on each occasion the program is run, the SAME time values are used
for the same displayed frames, no matter how long they took in "real" time. This makes your
benchmark behave the same with all types of graphics card.

Why can't I have Interaction with the Benchmark while running?
The problem with this approach is that it breaks the guaranteed consistency between runs as
explained above.

