
General
Introduction
Geometrical Representation
Matrices and Vectors

Data Representation
Constants
Units
Data Types >
Entities and Data Blocks >

Structure of TVG 4.2
File Header
File Body of Drawings >
File Body of Libraries >

Data Types
Data Types <

Overview

char
short
long
double
MATRIX (Matrix)
DPOINT (Point Coordinates)
DRECT (Rectangle)
COLORREF (Color Description)
PROPERTY (Properties)
XPROPERTY (Extented Properties)
FONTDEF (Font Description)
TEXT (ANSI Text)
BINARY (Binary Data)

Entities and Data Blocks
Entities and Data Blocks <

Overview

Generic Data Blocks >
Native Data Blocks
Attribute Data Blocks
Standard Data Blocks >

Entity "Object" >
Entity "Instance"
Entity "Block"
Entity "Group"
Entity "Position Number"
Entity "Custom-Defined"
Entity "End of List"

Generic Data Blocks
Entities and Data Blocks <

Generic Data Blocks <
Overview

Base Type "long"
Base Type "double"
Base Type "DPOINT"
Base Type "COLORREF"
Base Type "PROPERTY"
Base Type "XPROPERTY"
Base Type "FONTDEF"
Base Type "TEXT"
Base Type "BINARY"

Standard Data Blocks
Entities and Data Blocks <

Standard Data Blocks <
Overview

Data Block Type 000 (General Point)
Data Block Type 001 (Start-Point)
Data Block Type 002 (End-Point)
Data Block Type 003 (Center-Point)
Data Block Type 004 (Radius Definition Point)
Data Block Type 005 (Angle Definition Point)
Data Block Type 006 (Vector Definition Point)
Data Block Type 007 (First Pivot Point)
Data Block Type 008 (Second Pivot Point)
Data Block Type 009 (Arc End-Point)
Data Block Type 010 (Marking)

Data Block Type 100 (Constant)
Data Block Type 101 (Arc)
Data Block Type 102 (Curve)
Data Block Type 110 (Text)

Data Block Type 220 (Dimension Line)
Data Block Type 225 (Large Dimension)
Data Block Type 230 (Small Dimension)
Data Block Type 235 (Standard Text)
Data Block Type 236 (Frame Text)
Data Block Type 237 (Reference Text)
Data Block Type 242 (Clipping Surface)
Data Block Type 243 (Bitmap Reference)

Data Block Type 999 (End of List)

Entity "Object"
Entities and Data Blocks <

Entity "Object" <
Overview

Object 00 "Line"
Object 01 "Hatching"
Object 05 "Circle"
Object 06 "Circular Arc"
Object 07 "Circular Sector"
Object 08 "Circular Segment"

Object 10 "Zigzag Line"
Object 11 "Spline"
Object 12 "Curve"
Object 13 "Surface"

Object 15 "Ellipse"
Object 16 "Elliptical Arc"
Object 17 "Elliptical Sector"
Object 18 "Elliptical Segment"

Object 20 "Dimension Line Straight"
Object 21 "Dimension Line Curved"
Object 25 "Dimension Distance"
Object 26 "Dimension Radius"
Object 27 "Dimension Diameter"
Object 28 "Dimension Angle"
Object 29 "Dimension Arc Length"
Object 30 "Dimension Coordinate"
Object 31 "Dimension Area"
Object 32 "Dimension Perimeter"

Object 35 "Standard Text"
Object 36 "Frame Text"
Object 37 "Reference Text"

Object 40 "Comment"
Object 41 "Marking"
Object 42 "Clipping Surface"
Object 43 "Bitmap Reference"

Object 45 "Geometry Line"
Object 46 "Geometry Circle"
Object 47 "Geometry Ellipse"

File Body of Drawings
File Body of Drawings <

Overview

Section =DRAWING= (Drawing Information)
Section =TOOLBOX= (Toolbox)
Section =SYMBOL= (Symbol Window)
Section =KEYBOARD= (Keyboard)
Section =DEFAULT= (Defaults)
Section =USER= (Settings)
Section =MODULE= (Plug-In Settings)
Section =PAGE= (Page Format)
Section =COLOR= (Color Definitions)
Section =HATCH= (Hatching Types)
Section =MULTILINE= (Line Sequences)
Section =SYSTEM= (Coordinate Systems)
Section =PEN= (Pens)
Section =LINE= (Line Patterns)
Section =LAYER= (Layers)
Section =WINDOW= (Window Settings)
Section =BITMAP= (Embedded Bitmaps)
Section =BLOCK= (Block Definitions)
Section =OBJECT= (Object)
Section =EXIT= (End of File)

Minimal Drawing

File Body of Libraries
File Body of Libraries <

Overview

Section =LIBRARY= (Library Information)
Section =ATTRIB= (Standard Attributes)
Section =BLOCK= (Block Definitions)
Section =EXIT= (End of File)

Minimal Library
Standard Libraries
Font Libraries

This command or function is (in this form) only available in Version 4.1 or higher of the
TommySoftware® TVG File Format.

This command or function is (in this form) only available in Version 4.2 or higher of the
TommySoftware® TVG File Format.

Introduction (General)
The file format TVG 4.2 has been developed in order to store drawings, libraries and fonts created by
TommySoftware® CAD applications. Its design allows other programs to read the data in such files easily.

In addition to the basic geometrical and logical drawing information, TVG files may contain settings and
default values that will control the behavior of the CAD application after being loaded. Those settings and
default values are very specific and will change frequently, so they should be ignored when reading TVG
4.2 files, and should not be written when creating a new or editing an existing TVG 4.2 file.

Files using the TVG 4.2 format should have a standard extension to be loaded easily by the application.
The standard extension for drawings is *.T4G, the standard extension for libraries and fonts is *.T4L.

In this description of the TVG 4.2 file format, most data types will be defined and explained by simply
stating their notation in the file. Such areas will be displayed in blue, using the font Courier . When
referencing variables or data types, they will be displayed in italic and colored. Data types will appear in
red, variables in violet.

The file format described in this documentation has been designed to be extendable. In addition, it should
allow a good upward- and downward-compatibility to other file formats used by TommySoftware®
products. In order to maintain this high compatibility, it is important that you do not make any
presumptions that are not stated explicitly! If something has to be in a specific order, it will be stated. If
not, the order is free! The same applies to the existence of all other file elements. They are only required
if it is said so.

If, e.g., a data block is described with currently 4 elements, it may have 6 or even 100 elements in the
next version - but the first 4 elements will have the same meaning. In general: any element number stated
may grow in future versions. But it will never get smaller. The same applies to data block sequences. If an
object currently starts with the data block sequence B001, B002, B102, B225 in this order, it will always
start with that data block sequence. But in future versions, other data blocks may follow.

And finally, it applies to the file sections. Even though only a limited number of sections is described in
this documentation, future versions may feature several new sections. Those new sections should be
ignored by programs that do not know them. The only legal assumption about sections is that the first
section of each TVG file will be an information section (like =DRAWING= or =LIBRARY=), showing
which type of data the file contains, and the last section will be =EXIT=. But again - even the number of
file types may grow, i.e. future versions may have additional information sections. In this case, ignore the
complete file, as its content may be completely unknown.

About Compressed Drawings
Some applications using the TVG 4.2 file format offer the option to save "Compressed TVG 4.2
Drawings". Such files are industry-standard ZIP archives that contain a single compressed TVG 4.2
drawing. The drawing is compressed using the TSZIP utility delivered with the application, and can be
extracted manually by means of the TSUNZIP utility. Compressed drawings can directly be opened in the
application.

If you want to edit such a file manually, or if you are using an older release of the application which is not
able to load compressed drawings directly, you will have to extract it using either TSUNZIP (if available)
or using any standard ZIP tool. Please note that compressed drawings may be scrambled using a
password! You will have to know the password to be able to access the drawing data.

Technical Support and Information
The documentation of the TVG 4.2 file format and of the Toso Interface are supplied "as is", and they are
both only available in electronic form and only in English. Developer support, however, is available in
German as well as in English, see TOSOAPI4.HLP - Getting Your Private Owner ID.

For technical support please send an e-mail to "support@tommysoftware.com". If you have any other
questions please send your e-mail to "sales@tommysoftware.com".

On our World Wide Web site (http://www.tommysoftware.com) you can find the latest versions of the
TVG 4.2 file format documentation and of the Toso Interface documentation as well as the latest program
versions and upgrades, a collection of import/export filters and converters, the CAD/DRAW Tutorial, the
CAD/DRAW Tour, additional documentation, utilities, and current information on our products. And
please also try out our special Web offers. Don't miss this opportunity to make the most of the Internet!

North America, Inc. Germany
1843 10th Avenue Selchower Straße 32
San Francisco, CA 94122 D-12049 Berlin
U. S. A. Germany

Phone (415) 566 6118 Phone +49 30 621 5931
Fax (415) 566 6589 Fax +49 30 621 4064

Internet
sales@tommysoftware.com (Sales)
support@tommysoftware.com (Technical Support)
http://www.tommysoftware.com (World Wide Web)

TVG Documentation - Version 4.21e - Copyright 1997 TommySoftware®

Geometrical Representation (General)
A TVG file usually contains a number of objects. These objects are entities that contain the data of a
geometrical representation of a drawing element like a "line" or a "circle". The geometrical data consists
of a number of point coordinates and some additional data. A "line" e.g. is made up of two point
coordinates ("start-point" and "end-point") plus some additional data like line width, line color, layer
number etc.

All point coordinates are defined in a cartesian coordinate system, having its origin in the center of the
page. Its axises increment to the left and upward. The coordinates are always stored in physical
millimeters, i.e. they determine the printed size of the object. A square having a physical side length of 10
mm will always be printed, plotted or exported with a side length of these 10 mm (exception: explicit
scaling of the print-out).

If the user creates a square with a logical side length of 2 meters using a scale of 1:100, the square will
have a physical side length of 20 mm, as it will be printed with that side length of 20 mm.

Each point in the coordinate system is determined by a X- and Y-coordinate, e.g. (0.0,1.0). The valid
physical coordinate area is -1e100 mm to 1e100 mm. No coordinate may ever have the value 1e300 mm,
as this value is defined as "invalid / undefined value" and may cause undefined behavior or even a system
crash.

Angles are always stored in radiant [rad]. Typical values are -pi up to pi, values from -2pi up to 4pi are
allowed.

The maximum page size is 4000 × 4000 mm or approx. 157 × 157 inch. The user may work on an area of
up to 1e100 × 1e100 mm, having its origin in the center of the page. All definition points of the objects
have to lie completely inside this area.

Matrices and Vectors (General)
Most objects are defined by a number of definition points lying in a cartesian coordinate system. Each
definition point consists of two coordinates. If a calculation is made with such a definition point, it should
be interpreted as a position vector relative to the internal origin.

If a calculation is made with the point P, the calculation is meant to be done with the vector [x(P), y(P)],
where x(P) is the X-coordinate of P and y(P) the Y-coordinate of P. A calculation instruction like:

P = P1 + 0.5 × P2

has to be read like:

x(P) = x(P1) + 0.5 × x(P2)
y(P) = y(P1) + 0.5 × y(P2)

Some entities contain matrices that represent transformations to be performed before displaying the entity.
This is especially required when referencing external entities like blocks or characters. For such entities,
the display matrix determines the position, size, rotation and shearing of the referenced entity.

Conjugated matrices, i.e. matrices reflected at their diagonal, will be marked by a 'T' at their upper right
edge.

Operations
If a referenced entity is to be displayed, it has to be multiplied with the display matrix stored in the
referencing entity. Usually, this can be done by simply multiplying all of the entity's definition points with
this display matrix. Such a multiplication is handled like follows:

[x]T [m11 m12 0.0] [x×m11+y×m21+m31]T
[y] × [m21 m22 0.0] = [x×m12+y×m22+m32]
[1.0] [m31 m32 1.0] [1.0]

In complex entities, there might be the need to perform additional adaption of object-specific values like
the arc direction of Object 06 "Circular Arc".

The great advantage of matrices is the fact that all types of transformations can be handled equally as they
can all be stored in the same type of matrix. So, any combination of transformation can be performed by a
single matrix multiplication.

For the most important transformation types, their corresponding matrices will be listed below. If multiple
transformations shall be combined, simply multiply the corresponding matrices and apply the resulting
matrix to the entities. The matrices' multiplication will be easier if, instead of always multiplying two
matrices, the new transformation is applied to an existing matrix. To do so, always start with the identity
matrix (ident[]):

 [1.0 0.0 0.0]
ident[] = [0.0 1.0 0.0]
 [0.0 0.0 1.0]

The following descriptions of transformations do always show the matrices OLD and NEW from the
equation NEW = OLD × transformation-matrix. The transformation matrix itself is not stated as it is not
relevant.

Moving
A movement of vx and vy (move[vx,vy]) leads to the following result:

[m11 m12 0.0] move[vx,vy] [m11 m12 0.0]
[m21 m22 0.0] --------------> [m21 m22 0.0]
[m31 m32 1.0] [m31+vx m32+vy 1.0]

Scaling
A scaling of factor sx and sy (scale[sx,sy]) leads to the following result:

[m11 m12 0.0] scale[sx,sy] [m11×sx m12×sy 0.0]
[m21 m22 0.0] ---------------> [m21×sx m22×sy 0.0]
[m31 m32 1.0] [m31×sx m32×sy 1.0]

Rotating
A rotation of angle ß (rot[ß]) leads to the following result:

[m11 m12 0.0] rot[ß] [m11×cos(ß)-m12×sin(ß) m11×sin(ß)+m12×cos(ß) 0.0]
[m21 m22 0.0] -------> [m21×cos(ß)-m22×sin(ß) m21×sin(ß)+m22×cos(ß) 0.0]
[m31 m32 1.0] [m31×cos(ß)-m32×sin(ß) m31×sin(ß)+m32×cos(ß) 1.0]

Shearing
A horizontal shearing with slope s (hshear[s]) leads to the following result:

[m11 m12 0.0] hshear[s] [m11 m12+m11×s 0.0]
[m21 m22 0.0] ------------> [m21 m22+m21×s 0.0]
[m31 m32 1.0] [m31 m32+m31×s 1.0]

A vertical shearing with slope s (vshear[s]) leads to the following result:

[m11 m12 0.0] vshear[s] [m11+m12×s m12 0.0]
[m21 m22 0.0] ------------> [m21+m22×s m22 0.0]
[m31 m32 1.0] [m31+m32×s m32 1.0]

Reflecting
A reflection along the X-axis (xref[]) leads to the following result:

[m11 m12 0.0] xref[] [m11 -m12 0.0]
[m21 m22 0.0] ---------> [m21 -m22 0.0]
[m31 m32 1.0] [m31 -m32 1.0]

A reflection along the Y-axis (yref[]) leads to the following result:

[m11 m12 0.0] yref[] [-m11 m12 0.0]
[m21 m22 0.0] ---------> [-m21 m22 0.0]
[m31 m32 1.0] [-m31 m32 1.0]

Reflections can also be implemented as a scaling of (-1.0,1.0) or (1.0,-1.0) respectively:

xref[] = scale[1.0,-1.0]

yref[] = scale[-1.0,1.0]

Inverting
In order to invert the effect of the transformations stored in a matrix, this matrix can be inverted directly.
Due to the simplified representation of the 3×3 matrix, this inversion (inv[]) can be done as follows:

det = m11×m22 - m12×m21

[m11 m12 0.0] inv[] [m22/det -m12/det 0.0]
[m21 m22 0.0] --------> [-m21/det m11/det 0.0]
[m31 m32 1.0] [(m21×m32-m22×m31)/det (m12×m31-m11×m32)/det 1.0]

This inversion is obviously only possible if det is nonzero.

Extraction
If a matrix shall be resolved into its basic transformational elements, this can be done by means of the
following calculation steps:

len1 = sqrt(m11×m11+m12×m12)
len2 = sqrt(m21×m21+m22×m22)
det = m11×m22-m12×m21

 ident [] ×
[m11 m12 0.0] scale [len1, abs(det/len2)] ×
[m21 m22 0.0] = hshear[tan(atan2(m22,m21) - atan2(m12,m11))] ×
[m31 m32 1.0] rot [atan2(m12,m11)] ×
 move [m31,m32]

This extraction is obviously only possible if det is nonzero.

Constants (Data Representation)
Numeric and other values will be shown in one of the following ways in this documentation:

86 An integer value in decimal notation.
0x56 The same integer value in hexadecimal notation.

105.6 A floating point value in its normal notation.
1.056e2 The same floating point value in exponential notation.

'A' A single character. Characters may also be shown as a numeric value stating the index of
the character in the ANSI character set. The character 'A', e.g., has the index 65 or 0x41.

"Abcd" A text.

Inside TVG 4.2 files, integer values are always used in decimal notation. Floating point values may either
be used in normal or in exponential notation.

Units (Data Representation)
Most values in the TVG file are depending on a unit. This unit can either be a "length unit" (when used
for scale-dependent values like coordinates), a "line unit" (when used for scale-independent values like
line width or text size) or a "angle unit" (when used for angular values). Even though most of the values
are stored unit-independent (i.e. always in millimeters based on 1:1-scale), they have to be interpreted
unit-dependent.

The following units are available:

Length Units
Micrometer [µm] 0.001 mm 1/1000000 m
Millimeter [mm] 1.0 mm 1/1000 m
Centimeter [cm] 10.0 mm 1/100 m
Decimeter [dm] 100.0 mm 1/10 m
Meter [m] 1000.0 mm 1 m
Kilometer [km] 1000000.0 mm 1000 m

Mil [mil] 0.0254 mm 1/1000 Inch
Inch [inch] 25.4 mm 1 Inch
Foot [foot] 304.8 mm 12 Inch
Yard [yard] 914.4 mm 3 Foot
Mile [mile] 1609344 mm 1760 Yard

Decipoint [dp] 0.0352777777777 mm 1/720 Inch
Point [pt] 0.3527777777777 mm 1/72 Inch
Didot Point [bp] 0.3759398496241 mm 1/2660 m
Cicero [cic] 4.5112781954892 mm 12/2660 m

Line Units
Micrometer [µm] 0.001 mm 1/1000000 m
Millimeter [mm] 1.0 mm 1/1000 mm
Centimeter [cm] 10.0 mm 1/100 mm

Mil [mil] 0.0254 mm 1/1000 Inch
Inch [inch] 25.4 mm 1 Inch

Decipoint [dp] 0.0352777777777 mm 1/720 Inch
Point [pt] 0.3527777777777 mm 1/72 Inch
Didot Point [bp] 0.3759398496241 mm 1/2660 m
Cicero [cic] 4.5112781954892 mm 12/2660 m

Angle Units
Degree [deg] 360.0 = 1 Rotation
New Degree/Gon [gra] 400.0 = 1 Rotation
Radiant [rad] 2pi = 6.283185307179586 = 1 Rotation
Relative [rel] 1.0 = 1 Rotation

Data Types Overview (Data Representation)
TVG 4.2 uses four standard data types similar to data types used in ANSI C - char, short, long and
double. All further data types are based on these four standard data types. To indicate the logical relation
between the data types defined in TVG 4.2 and similar data types in the Toso Interface (see
TOSOAPI4.HLP), they both use the same name even though they are defined in a different manor
(textual representation vs. binary representation).

All data types are displayed in their "natural" form, i.e. numbers in decimal or exponential notation, and
texts as a character string delimited by the character " (Ansi 34). Single values are separated by the
character , (Ansi 44), data blocks, entities and sections are terminated by the character ; (Ansi 59).

Comments may occur between values and their separators. A comment is a character string delimited by
the character | (Ansi 124). Comments may not be placed inside a numeric value or inside a text (of course
the character | may occur inside a text, but it will not be interpreted as a comment delimiter in this case).
Control characters like line-feed, carriage-return, tab, space and all other characters between Ansi 0 and
Ansi 32 are ignored if they do not occur inside a text.

In order to keep the resulting file as small as possible, numeric values may be "empty", i.e. there is no
character between the separators. In this case, the value is defined to be zero. Example:

,,8|Data Type Text|,250|Max. 250 Bytes|,"Hello";
This line contains 5 values and some comments. The data line uses "empty" values and is equal to the
following line:

0,0,8 |Data Type Text|,250 |Max. 250 Bytes|,"Hello";
As comments and spaces are ignored when reading the file, the data line looks to the reading application
as follows:

0,0,8,250,"Hello";

When showing element sequences in the descriptions, some values will be underlined. Those "values" are
only names of placeholders that have to be replaced with an explicit value in the TVG file. For example:

BlockOwner,0,3,1,Coordinates;
In this example, the values BlockOwner and Coordinates are placeholders for explicit values. A detailed
description on those values will follow in the text.

Line-feeds, comments and spaces shown in examples are only a suggestion, they are not required.
Usually, lines in TVG files should not be longer than 80 to 100 characters, as some text editors have
limitations in line length.

Standard Data Types
Standard data types are native ANSI C data types, written to the file using standard printf() format strings.
An example of a suitable format string is shown in the description of each data tpye.

char
short
long
double

Extended Data Types
Extended data types are based on the four standard data types listed above. The order of the elements in
such a data type is equal to the order in the file. Usually, the single values are separated by commas.

MATRIX (Matrix)
DPOINT (Point Coordinates)
DRECT (Rectangle)
COLORREF (Color Description)
PROPERTY (Properties)
XPROPERTY (Extented Properties)
FONTDEF (Font Description)
TEXT (ANSI Text)
BINARY (Binary Data)

char (Standard Data Types)
A char is an unsigned integer value. Its allowed value range is 0 to 255 (8-bit value). A char is directly
written to the file, the according format string is "%c" .

Inside a TVG file, single characters (or non-delimited character strings respectively) do only occur in the
identification at the beginning of the file. Otherwise, characters occur inside delimited character strings
(see TEXT (ANSI Text)). Characters use the complete ANSI character set. Characters from Ansi 0 to Ansi
31 are usually ignored or replaced by spaces.

short (Standard Data Types)
A short is a signed integer value. Its allowed value range is -32766 to 32767 (16-bit value). A short is
written to the file in decimal notation, the according format string is "%d" or "%hd" respectively
(depending on the operating system). Be sure not to produce any useless spaces or leading zeros. Keep the
file compact!

long (Standard Data Types)
A long is a signed integer value. Its allowed value range is -2147483646 to 2147483647 (32-bit value). A
long is written to the file in decimal notation, the according format string is "%d" or "%ld"
respectively (depending on the operating system). Be sure not to produce any useless spaces or leading
zeros. Keep the file compact!

double (Standard Data Types)
A double is a signed floating point value. Its allowed value range is -1e100 to 1e100 (64-bit value). A
double is written to the file either in normal or in exponential notation, the according format string is
"%.13lg" . This ensures the output of at least 13 valid fractional digits and uses the shortest of the two
possible notations (normal or exponential). Be sure not to produce any useless spaces or leading zeros.
Keep the file compact!

MATRIX (Matrix) (Extended Data Types)
The data type MATRIX is used to store a 3 × 3 matrix. Such matrices are used to store a combination of
one or more of the following operations: translation (moving), scaling, rotation, shearing and reflection.
To store all of these operations, a 3 × 3 matrix is required. 3 × 3 matrices use the following representation:

[m11 m12 m13]
[m21 m22 m23]
[m31 m32 m33]

As the application only allows two-dimensional data and therefore only two-dimensional operations, all
resulting matrices have the following, simplified form:

[m11 m12 0.0]
[m21 m22 0.0]
[m31 m32 1.0]

Due to this simplification, only the first two columns of the matrix are stored. The third column is set to
[0.0 0.0 1.0]T implicitly.

 Element Sequence
m11,m12,m21,m22,m31,m32

 Element Description
m11, m12

[double] First line of a 3 × 2 matrix.
m21, m22

[double] Second line of a 3 × 2 matrix.
m31, m32

[double] Third line of a 3 × 2 matrix.

 Example
1.0,0.0,0.0,1.0,0.0,0.0

These six values describe the first two columns of the 3 × 3 identity matrix (see Matrices and Vectors).
The third colum is to be set to [0.0 0.0 1.0]T, so the resulting matrix is:

[1.0 0.0 0.0]
[0.0 1.0 0.0]
[0.0 0.0 1.0]

DPOINT (Point Coordinates) (Extended Data Types)
The data type DPOINT is used to store the coordinates of a point. Each DPOINT consists of a X- and a Y-
coordinate.

 Element Sequence
x,y

 Element Description
x,y

[double] X- and Y-Coordinate of the point. The coordinates are in [mm] relative to the page center.

DRECT (Rectangle) (Extended Data Types)
The data type DRECT is used to store the extents of a rectangular frame. Such frames are usually used to
store the surrounding frames of blocks or characters.

 Element Sequence
x1,y1,x2,y2

 Element Description
x1,y1

[double] X- and Y-Coordinate of the first corner-point of the frame. The coordinates are in [mm]
relative to the page center.

x2,y2
[double] X- and Y-Coordinate of the second corner-point (on the same diagonal as x1,y1) of the
frame. The coordinates are in [mm] relative to the page center.

In most cases, the values in this data type have to be sorted, i.e. x1 <= x2 and y1 <= y2. This speeds up
further calculations with these frames.

COLORREF (Color Description) (Extended Data Types)
The data type COLORREF is used to store a color definition. Color definitions are based on the RGB
color model, i.e. they consist of three components (Red, Green, Blue). These three components are
separated by the character / (Ansi 47). Each component may have values between 0.0 and 1.0 (including).

 Element Sequence
RValue/GValue/BValue

 Element Description
RValue

[double] Red component of the color.
GValue

[double] Green component of the color.
BValue

[double] Blue component of the color.

 Examples
Black 0/0/0 White 1/1/1
Gray 90% 0.1/0.1/0.1 Gray 80% 0.2/0.2/0.2
Gray 70% 0.3/0.3/0.3 Gray 60% 0.4/0.4/0.4
Gray 50% 0.5/0.5/0.5 Gray 40% 0.6/0.6/0.6
Gray 30% 0.7/0.7/0.7 Gray 20% 0.8/0.8/0.8
Gray 10% 0.9/0.9/0.9
Blue 0/0/1 Dark Blue 0/0/0.5
Green 0/1/0 Dark Green 0/0.5/0
Cyan 0/1/1 Dark Cyan 0/0.5/0.5
Red 1/0/0 Dark Red 0.5/0/0
Magenta 1/0/1 Dark Magenta 0.5/0/0.5
Yellow 1/1/0 Dark Yellow 0.5/0.5/0

Please note that values of type double may be empty, i.e. the value // is a correct value, it is equal to
0/0/0 and represents the color black! All fractional values will usually be stated without a leading zero,
i.e. normally, the color "Gray 50%" will be stored as .5/.5/.5 instead of 0.5/0.5/0.5 .

Depending on the accuracy of the creating program, the component values of the examples above might
not be exactly reproduced. If each component is stored in a 8 bit field, the value .5 might be exported
as .498 or .502 . If no exact color match is needed, the program may round these values to 2
fractional digits.

When exporting a color definition, the format string "%.3lg/%.3lg/%.3lg" should be used to
achieve an accuracy that will allow to handle 8 bit components without errors.

PROPERTY (Properties) (Extended Data Types)
The data type PROPERTY is used to store the properties of an object. These properties consist of some
non-geometrical informations that are needed to draw objects. They determine the line width, line color,
line pattern etc.

 Element Sequence
FillMode,FillColor,LineColor,LineWidth,LineType,LineCaps

 Element Description
FillMode

[long] The value FillMode determines, which parts of an object are to be drawn. Following values are
defined:
0x0000 The outline of the object is drawn.
0x0001 The object is filled.
0x0002 The object is filled and its outline is drawn.
0x0003 The object is erased (i.e. filled in background color).
0x0004 The object is erased (i.e. filled in background color) and its outline is drawn.
Some objects do not have a surface (e.g. a line or a circular arc). If such an object is drawn using a
FillMode of 0x0001 or 0x0003, it will be invisible.

FillColor
[COLORREF] Color of the object's surface in RGB notation.

LineColor
[COLORREF] Color of the object's outline in RGB notation.

LineWidth
[double] Width of the object's outline in [mm] between 0.0 and 100.0 (including). A width of 0.0
always results in a line of the minimum width possible on the respective device (one pixel).

LineType
[int] Index of the line pattern used to draw the outline (see Section =LINE= (Line patterns)).

LineCaps
[int] Line cap and line join mode. This value is a bitwise-or combination of two values. The first

one determines the form of line end caps, and can be one of the following values:
0x0000 End caps are round.
0x0100 End caps are square.
0x0200 End caps are flat.
The second one determines the line join mode, and can be one of the following values:
0x0000 Joins are round.
0x1000 Joins are beveled.
0x2000 Joins are mitered when they are within the current limit. If it exceeds this limit, the join is

beveled.
Both values are defined according to the Win32 definitions used in ExtCreatePen() calls.

 Example
2,1/0/0,0/0/0,0.0,0

If, e.g., a circle is drawn with this properties, it will result in a red filled circle, outlined with a minimum-

width solid (Line pattern 0 is predefined by default as solid, see Section =LINE= (Line patterns).) black
line.

XPROPERTY (Extended Properties) (Extended Data Types)
The data type XPROPERTY is used to store the extended properties of an object.

As described in the chapter PROPERTY (Properties), the display of each object is determined by a set of
five properties. This "direct" assignment of properties is only suitable for simple, independent objects.

If objects are combined to blocks (see Entity "Block") problems occur. Each separate object inside the
block may have for example a different outline color. If such a block is referenced multiple times, all
references will use the same outline color for all corresponding objects. Now imagine you want to set the
outline color of just one referenced block to red, without modifying the other references.

The solution is provided by a transmission process. Each instance (i.e. reference) of a block contains its
own extended set of properties, plus the information which of these properties shall be transmitted to the
referenced block's objects. If the instance contains the information "transmit the outline color red to all
objects", all objects of this instance will be drawn with red outlines - without any change in the block's
definition. All other instances will still be drawn in their object's original outline colors.

Such a transmission is valid for all subordinate objects and instances, i.e. usually all objects of an
instance will be modified by transmission. Now imagine a block consisting of several objects, some of
which have to maintain a specific property, some not. For example, some objects have to be only outlined
(as they are lines), some may either be outlined or filled, depending on the intended use of that block. To
achieve this difference, objects themselves have to contain transmission information - saying that they do
not want to receive a special transmitted property, i.e. that this special object property is fixed. In the
preceeding example, the transmission information for those objects that should always be outlined would
be "I do not accept the transmission of a filling mode because this property is fixed".

Both types of transmission information are similar, as for each single property there is one flag saying
either "transmit" or "do not accept transmission" (or in other words: "fix property"). As a result, the data
type used to store the properties and the transmission information is equal for objects, instances, and
blocks, only the interpretation is different.

In entities of type "Instance" or "Block" the transmission flags indicate whether to transmit a specific
property or not. In entities of type "Object" they indicate whether to accept the transmission or not, i.e.
whether to fix a specific property or not.

To store the properties and the transmission information the following structure is used. For further
description of the transmission process itself, see the reference of the application.

 Element Sequence
Flag,Pen,FillMode,FillColor,LineColor,LineWidth,LineType,LineCaps,Layer

 Element Description
Flag

[long] In entities of type "Instance" or "Block", the transmission flags indicate whether to transmit a
specific property or not. This is stored in the value Flag, which is a bitwise OR combination of one or
more of the following values:

#define USE_NULL 0x0000
#define USE_PEN 0x0001
#define USE_FILLMODE 0x0002
#define USE_FILLCOLOR 0x0004
#define USE_LINECOLOR 0x0008
#define USE_LINEWIDTH 0x0010
#define USE_LINETYPE 0x0020
#define USE_LINECAPS 0x0080
#define USE_LAYER 0x0040

The value USE_PEN has the lowest priority, the value USE_LAYER has the highest priority.
Assuming that both a pen index (and consequently the pen's line width) and an explicit line width are
transmitted, the explicit line width (transmitted by setting the USE_LINEWIDTH flag) has a higher
priority than the transmitted pen's line width (transmitted by setting the USE_PEN flag).
In entities of type "Object", the transmission flags indicate whether to accept the transmission or not,
i.e. whether to fix specific properties or not. This is stored in the value Flag, which is a bitwise OR
combination of one or more of the same values as stated above. If one of these flags is set a
transmission of the corresponding property is not accepted, i.e. the property is fixed.

Pen
[long] Index of the pen (see Section =PEN= (Pen)).

FillMode
[long] The value FillMode determines, which parts of an object are to be drawn. Following values are
defined:
0x0000 The outline of the object is drawn.
0x0001 The object is filled.
0x0002 The object is filled and its outline is drawn.
0x0003 The object is erased (i.e. filled in background color).
0x0004 The object is erased (i.e. filled in background color) and its outline is drawn.
Some objects do not have a surface (e.g. a line or a circular arc). If such an object is drawn using a
FillMode of 0x0001 or 0x0003, it will be invisible.

FillColor
[COLORREF] Color of the object's surface in RGB notation.

LineColor
[COLORREF] Color of the object's outline in RGB notation.

LineWidth
[double] Width of the object's outline in [mm] between 0.0 and 100.0 (including). A width of 0.0
always results in a line of the minimum width possible on the respective device (one pixel).

LineType
[int] Index of the line pattern used to draw the outline (see Section =LINE= (Line patterns)).

LineCaps
[int] Line cap and line join mode. This value is a bitwise-or combination of two values. The first

one determines the form of line end caps, and can be one of the following values:
0x0000 End caps are round.
0x0100 End caps are square.
0x0200 End caps are flat.
The second one determines the line join mode, and can be one of the following values:
0x0000 Joins are round.
0x1000 Joins are beveled.
0x2000 Joins are mitered when they are within the current limit. If it exceeds this limit, the join is

beveled.
Both values are defined according to the Win32 definitions used in ExtCreatePen() calls.

Layer

[long] Index of the layer (see Section =LAYER= (Layers)).

 Examples
0,0,2,0/0/1,0/0/0,0.5,1,0,0

An object with this property set is assigned to layer 0 (layer 0 transmits no properties, see Section
=LAYER= (Layers).) and it uses pen 0 (pen 0 transmits no properties, see Section =PEN= (Pen)). There
are no fixed properties. Because layer and pen are equal to 0 the object is drawn with its own properties: a
blue filling and a 0.5 mm wide black line using line pattern 1.

8,1,2,0/0/1,0/0/0,0.5,0,0,100

An object with this property set is assigned to layer 100 and it uses pen 1. Its line color is fixed. So how
this object is drawn also depends on the transmitted properties of layer 100 and pen 1. However a fixed
property is always drawn no matter whether the corresponding layer or pen property is transmitted. A
transmitted layer property has a higher priority (see Section =LAYER= (Layers)) then a transmitted pen
property. Because pen properties have the lowest priority (see Section =PEN= (Pen)) a pen property is
drawn only if the corresponding layer and object property is not transmitted and not fixed respectively.

FONTDEF (Font Description) (Extended Data Types)
The data type FONTDEF is used to store a font's description. In TVG files, three font types are supported:
TrueType, device (esp. PostScript) and internal fonts.

 Element Sequence
Type,Style,Weight,Name

 Element Description
Type

[long] Type of the font. This value determines, if the specified font is an internal font, a TrueType font
or a device font (esp. PostScript). Possible values are:
0x0000 Internal font (e.g. "DINDRAFT").
0x0001 TrueType font (e.g. "Times New Roman")
0x0002 PostScript or device font (e.g. "Palatino")

Style
[long] Style of the font. This value is a bitwise OR combination of several of the following styles:
0x0000 No special style.
0x0001 Italic. If this bit is set the font will be displayed in italic (if possible).
0x0002 Underline. If this bit is set the font will be displayed underlined (if possible).
0x0004 Strikeout. If this bit is set the font will be displayed striked out (if possible). This bit is

ignored at the moment!
0x0100 Symbol font. This bit has to be set if the font is a symbol font (e.g. "Symbol" or

"Wingdings").
For internal fonts, this value should be set to 0x0000, as it has no effect in this case.

Weight
[long] Weight of the font. The weight of the font is defined analogous to the weight definition of
TrueType fonts. Possible values are:
0 Undefined
100 Thin
200 Extra Light
300 Light
400 Regular
500 Medium
600 Semibold
700 Bold
800 Extrabold
900 Black
For internal fonts, this value should be set to 400 (Regular), as it has no effect in this case.

Name
[TEXT64] Name of the font, up to 63 characters. Names of TrueType and PostScript fonts may be up
to 31 characters long.

 Examples
1,1,600,"Arial"

This structure describes the font "Arial Bold Italic", it is a TrueType font. If this font is not available, the
system will try to find a similar font instead.

0,0,400,"DINDRAFT"

This structure describes the font "DINDRAFT", it is an internal font. The values of Style and Weight are
set to their default values 0 and 400, as they have no effect.

TEXT (ANSI Text) (Extended Data Types)
The data type TEXT is used to store texts of variable length. Inside this documentation, a numeric value
will usually be appended to the data types' name, indicating the maximum length allowed, e.g. TEXT64
for a text that may be up to 64 characters long including the terminating null character (0x00). Typical
lengths are 32, 64 und 8000 characters, the maximum length of a text is 32,000 characters.

Texts in TVG 4.2 files do always use the 8-bit ANSI character set. Usually, texts are represented as a
character string delimited by the character " (Ansi 34). To be able to use the character '"' inside of texts,
the standard C text encoding is used: The character " is to be replaced by \" (Ansi 92 34), a single \ (Ansi
92) by \\ (Ansi 92 92). This has to be decoded when reading texts from TVG 4.2 files! The according
format string is "%s" , where the characters " and \ have to be encoded before.

BINARY (Binary Data) (Extended Data Types)
The data type BINARY is used to store binary data of variable length. Inside this documentation, a
numeric value will usually be appended to the data types' name, indicating the maximum length allowed,
e.g. BINARY16 for binary data that may be up to 16 bytes long. The maximum length of binary data is
24,000 bytes.

Binary area uses a simple character encoding. The resulting strings are handled like TEXT data, i.e. the
character sequence is delimited by the character " (Ansi 34).
 Each three bytes are encoded in four characters, using the characters " " (Ansi 32) to "_" (Ansi 95),
where the characters 'A' (Ansi 65) to 'Z' (Ansi 90) are case-independent, i.e they may bereplaced by 'a'
(Ansi 97) to 'z' (Ansi 122). Due to a better readability, the lower-case characters should be preferred.
Together, these four characters encode 24 bits, making 3 bytes. The first character encodes the highest
bits, the fourth character the lowest bits. The string "adm+" decodes to the numeric value 5655391,
resulting in the bytes sequence 56 4b 5f . If the binary string does not include a number of bytes
dividable by three, the encoding assumes the missing one or two bytes to be zero, i.e. a single last byte
5f will be encoded equal to 5f 00 00 , resulting in the string "7p " (two spaces at the end).
Please note that the strings used to encode binary data may contain the characters '"' (Ansi 34) and '\'
(Ansi 92). As a result, those strings must be encoded like standard text strings (see TEXT (ANSI Text)).

Entities and Data Blocks Overview (Data Representation)
An entity consists of a header, determining the entity's type and containing some entity-specific data, and
a sequence of data blocks. Each data block itself consists of a header and a variable data section.

For a description of the different entity header types, see Entity "Object" and the following chapters.

The entity header is followed by data blocks (not to be confused with the entity type "Block" !!!). Data
blocks are the smallest information elements inside entities. Data blocks can either be Generic Data
Blocks that contain simple data types and that will be used in all types of entities or Standard Data Blocks
that contain complex data structures and that will be used only in a few special entities.

Each data block starts with a sequence of three values: The data block owner identification, the data block
identification number and the data block type. The values inside a data block are separated by a comma,
the data block is ended with a semicolon.

The number of values inside a data block is variable. Even if a special data block is currently defined with
a fixed number of values, it may grow in future. If so, new values will be appended to the data block, i.e.
the currently defined values will remain at the same location. As a result, do always read all defined
values of each data block, and then skip until the next semicolon to overread unknown values.

Each entity may contain a variable number of data blocks of different type and length. This data block
sequence is terminated by a data block of type 999. Data blocks of the same type do not always have the
same length. Especially text and binary data varies in length!

If the description of an entity type states a specific data block sequence, this sequence must be maintained
in any case. A general rule is: First all generic and standard data blocks (type 0 to 199), then all native
data block (type 200 to 299), followed by local and global attributes (type 300 to 499), and terminated by
a data block of type 999. If this sequence is not maintained, this can lead to an application crash, as this
sequence is not explicitly tested during file load.

Data blocks of all types use the same element sequence that determines the owner of the data block, the
data block type and the type and number of data values stored in that data block.

 Element Sequence
BlockOwner,BlockType,ElemType,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. For data blocks created by
TommySoftware® (where BlockOwner is 0), the following values are currently defined:
000 see Data Block Type 000 (General Point)

001 see Data Block Type 001 (Start-Point)
002 see Data Block Type 002 (End-Point)
003 see Data Block Type 003 (Center-Point)
004 see Data Block Type 004 (Radius Definition Point)
005 see Data Block Type 005 (Angle Definition Point)
006 see Data Block Type 006 (Vector Definition Point)
007 see Data Block Type 007 (First Pivot Point)
008 see Data Block Type 008 (Second Pivot Point)
009 see Data Block Type 009 (Arc End-Point)
010 see Data Block Type 010 (Marking)

100 see Data Block Type 100 (Constant)
101 see Data Block Type 101 (Arc)
102 see Data Block Type 102 (Curve)
110 see Data Block Type 110 (Text)

220 see Data Block Type 220 (Dimension Line)
225 see Data Block Type 225 (Large Dimension)
230 see Data Block Type 230 (Small Dimension)
235 see Data Block Type 235 (Standard Text)
236 see Data Block Type 236 (Frame Text)
237 see Data Block Type 237 (Reference Text)
242 see Data Block Type 242 (Clipping Surface)
243 see Data Block Type 243 (Bitmap Reference)

300 - 499 see Attribute Data Blocks

999 see Data Block Type 999 (End of List)

For data blocks created by third-party plug-in creators, this value is defined by the plug-in that created
this object. For information about this value see the documentation of the plug-in which should
include a description of all custom-defined data blocks used.
Non-standard data blocks created by third-party vendors should use values between 1000 and 29999
(inclusive), the other values are reserved for direct use by TommySoftware®.

ElemType
[short] Type of the data elements that are stored in this data block. The following data types are
currently defined:
0x0000 Native data block containing a predefined structure, see Native Data Blocks
0x0001 long, see Base Type "long"
0x0002 double, see Base Type "double"
0x0003 DPOINT, see Base Type "DPOINT"
0x0004 COLORREF, see Base Type "COLORREF"
0x0005 PROPERTY, see Base Type "PROPERTY"
0x0006 XPROPERTY, see Base Type "XPROPERTY"
0x0007 FONTDEF, see Base Type "FONTDEF"
0x0008 TEXT, see Base Type "TEXT"
0x0009 BINARY, see Base Type "BINARY"

ElemCount
[short] Number of values that are stored in this data block.
Inside native data blocks (where ElemType is 0), this value is usually ignored and set to 0. The only
exception are Attribute Data Blocks which store the maximum attribute length here.

Data(x)
[???] List of values, separated by commas, ended by a semicolon.

Data Blocks
Generic Data Blocks
Native Data Blocks
Attribute Data Blocks
Standard Data Blocks

Entities
Entity "Object"
Entity "Instance"
Entity "Block"
Entity "Group"
Entity "Position Number"
Entity "Custom-Defined"
Entity "End of List"

Generic Data Blocks Overview (Entities and Data Blocks)
Generic data blocks are simple data blocks that are used to store values of a single, explicitly stated data
type and can be handled without knowledge of their purpose. These data blocks can be used by third-party
plug-ins to store all types of data.

Base Type "long"
Base Type "double"
Base Type "DPOINT"
Base Type "COLORREF"
Base Type "PROPERTY"
Base Type "XPROPERTY"
Base Type "FONTDEF"
Base Type "TEXT"
Base Type "BINARY"

Base Type "long" (Generic Data Blocks)
This data block is used to store a given number of long values.

 Element Sequence
BlockOwner,BlockType,1,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 16000
(inclusive).

Data(x)
[long] List of values, separated by commas, ended by a semicolon.

Base Type "double" (Generic Data Blocks)
This data block is used to store a given number of double values.

 Element Sequence
BlockOwner,BlockType,2,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 8000
(inclusive).

Data(x)
[double] List of values, separated by commas, ended by a semicolon.

Base Type "DPOINT" (Generic Data Blocks)
This data block is used to store a given number of DPOINT values.

 Element Sequence
BlockOwner,BlockType,3,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 4000
(inclusive).

Data(x)
[DPOINT] List of values, separated by commas, ended by a semicolon.

Base Type "COLORREF" (Generic Data Blocks)
This data block is used to store a given number of COLORREF values.

 Element Sequence
BlockOwner,BlockType,4,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 16000
(inclusive).

Data(x)
[COLORREF] List of values, separated by commas, ended by a semicolon.

Base Type "PROPERTY" (Generic Data Blocks)
This data block is used to store a given number of PROPERTY values.

 Element Sequence
BlockOwner,BlockType,5,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 1000
(inclusive).

Data(x)
[PROPERTY] List of values, separated by commas, ended by a semicolon.

Base Type "XPROPERTY" (Generic Data Blocks)
This data block is used to store a given number of XPROPERTY values.

 Element Sequence
BlockOwner,BlockType,6,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 1000
(inclusive).

Data(x)
[XPROPERTY] List of values, separated by commas, ended by a semicolon.

Base Type "FONTDEF" (Generic Data Blocks)
This data block is used to store a given number of FONTDEF values.

 Element Sequence
BlockOwner,BlockType,7,ElemCount,Data(1),...,Data(ElemCount);

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Number of values that are stored in this data block. The value must be between 1 and 1000
(inclusive).

Data(x)
[FONTDEF] List of values, separated by commas, ended by a semicolon.

Base Type "TEXT" (Generic Data Blocks)
This data block is used to store one value of type TEXT.

 Element Sequence
BlockOwner,BlockType,8,ElemCount,Text;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Maximum text length to be stored in this data block. If the value is positive, only the number
bytes actually needed to store the current text will be allocated. This saves memory, but requires a
reorganisation of the data block structure each time the text is altered.
If the value is negative, the amount of bytes given by the absolute of ElemCount will be allocated
statically in memory, allowing a direct modification of the text.
Both types of texts must be supported. The static allocation (negative ElemCount) is currently only
used for texts containg dimension numbers.
The absolute value must be between 1 and 32000 (inclusive).

Text
[TEXT] Character string. The length of the string may be less or equal to ElemCount, including 0.

Base Type "BINARY" (Generic Data Blocks)
This data block is used to store one value of type BINARY.

 Element Sequence
BlockOwner,BlockType,9,ElemCount,Binary;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Maximum length of the binary data in this data block. The number of bytes given by
ElemCount will be allocated statically in memory, allowing a direct modification of the binary data.
The value must be between 1 and 24000 (inclusive).

Binary
[BINARY] Hexadecimal character string. The length of the string may be less or equal to
1.5×ElemCount (since three bytes are always represented by four characters), including 0. The
number of characters in the hexadecimal string must be dividable by four!

Native Data Blocks (Entities and Data Blocks)
Native data blocks are complex data blocks that are used to store native data of the application. Every
native data block has its own structure and must be handled separately. Third-party plug-ins are not
allowed to define their own native data blocks, they have to use Generic Data Blocks instead.

 Element Sequence
BlockOwner,BlockType,0,ElemCount,Data;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value is an internal identification of the data block. This value is used by the plug-in that
created this object. For information about this value see the documentation of the plug-in which
should include a description of all custom-defined objects used.
Data blocks created by third-party vendors should use values between 1000 and 29999 (inclusive), the
other values are reserved for direct use by TommySoftware®.

ElemCount
[short] Usually number of values that are stored in this data block. Inside native data blocks, this
value is usually ignored and set to 0. The only exception are Attribute Data Blocks which store the
maximum attribute length here.

Data
[???] List of values, depending on BlockType. For a list of all native block types used, see Standard
Data Blocks and Attribute Data Blocks.

Attribute Data Blocks (Entities and Data Blocks)
Some entity types can contain explicit attributes. An explicit attribute is a named text containing
information and is assigned to an entity to be processed later on, e.g. to create a parts list or to create any
other kind of statistic.

Explicit attributes can be either "global" or "local". Global attributes can be assigned to block definitions
and are valid for all instances of that block, i.e. they are equal for all instances. Local attributes can be
assigned to block definitions and to instances. Inside a block definition, a local attribute is only a
"recommandation", that means such a local attribute indicates that it could be assigned to any instance of
this very block. Inside the instance local attributes are valid only for this single instance. This can lead to
different values of a local attribute in several instances of the same block.

Both local and global attributes may either be of type "Text" or "Number". Attributes of type "Text" may
contain any text of up to 250 characters in length, whereas attributes of type "Number" must contain a
valid numeric value.

Each entity may contain up to 200 attributes. As attributes are referenced to by their names, these names
have to be unique.

Explicit attributes are stored in Native Data Blocks, using the following data structure:

 Element Sequence
BlockOwner,BlockType,0,ElemCount,Name,Text;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BlockType
[short] This value indicates the type of attribute that is stored in the data block. The following value
are currently defined:
300 Global attribute, containing text
301 Global attribute, containing a number
400 Local attribute, containing text
401 Local attribute, containing a number

ElemCount
[short] Maximum attribute length to be stored in this data block. If the value is positive, only the
number bytes actually needed to store the current attribute will be allocated. This saves memory, but
requires a reorganisation of the data block structure each time the attribute is altered.
If the value is negative, the amount of bytes given by the absolute of ElemCount will be allocated
statically in memory, allowing a direct modification of the attribute.
Both types of attributes must be supported, even though the static allocation (negative ElemCount) is
currently not used.
The absolute value must be between 1 and 32000 (inclusive).

Name
[TEXT32] Name of the attribute, up to 32 bytes.

Text
[TEXT] Attribute to be stored in form of a ANSI text, maximum length according to ElemCount.
Attributes of entities owned by TommySoftware® may not be longer than 250 bytes, i.e. ElemCount
should be set to 250.

Standard Data Blocks (Entities and Data Blocks)
All kinds of data blocks have a unique identification stored in the value BlockType. The application uses
some standard data blocks for building its entities. These standard data blocks include generic as well
native data blocks. Generic data blocks are normally used for general purposes, whereas native data
blocks are used for a few number number of object types.

Data Block Type 000 (General Point)
Data Block Type 001 (Start-Point)
Data Block Type 002 (End-Point)
Data Block Type 003 (Center-Point)
Data Block Type 004 (Radius Definition Point)
Data Block Type 005 (Angle Definition Point)
Data Block Type 006 (Vector Definition Point)
Data Block Type 007 (First Pivot Point)
Data Block Type 008 (Second Pivot Point)
Data Block Type 009 (Arc End-Point)
Data Block Type 010 (Marking)

Data Block Type 100 (Constant)
Data Block Type 101 (Arc)
Data Block Type 102 (Curve)
Data Block Type 110 (Text)

Data Block Type 220 (Dimension Line)
Data Block Type 225 (Large Dimension)
Data Block Type 230 (Small Dimension)
Data Block Type 235 (Standard Text)
Data Block Type 236 (Frame Text)
Data Block Type 237 (Reference Text)
Data Block Type 242 (Clipping Surface)
Data Block Type 243 (Bitmap Reference)

Data Block Type 999 (End of List)

Data Block Type 000 (General Point) (Standard Data Blocks)
A data block of type 000 is used to store the coordinates of a single, general-purpose point. This may be,
e.g., the position of the dimension number.

 Element Sequence
BlockOwner,0,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 001 (Start-Point) (Standard Data Blocks)
A data block of type 001 is used to store the coordinates of a single start-point. This may be, e.g., the
start-point of a line or Bézier curve.

 Element Sequence
BlockOwner,1,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 002 (End-Point) (Standard Data Blocks)
A data block of type 002 is used to store the coordinates of a single end-point. This may be, e.g., the end-
point of a line or a Bézier curve.

 Element Sequence
BlockOwner,2,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 003 (Center-Point) (Standard Data Blocks)
A data block of type 003 is used to store the coordinates of a single center-point. This may be, e.g., the
center of a circle or an ellipse.

 Element Sequence
BlockOwner,3,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 004 (Radius Definition Point) (Standard Data
Blocks)
A data block of type 004 is used to store the coordinates of a single radius definition point. This may be,
e.g., the radius definition of a circle or a curved dimension line.

 Element Sequence
BlockOwner,4,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 005 (Angle Definition Point) (Standard Data Blocks)
A data block of type 005 is used to store the coordinates of a single angle definition point. This may be,
e.g., the start-angle or end-angle of an arc.

 Element Sequence
BlockOwner,5,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 006 (Vector Definition Point) (Standard Data Blocks)
A data block of type 006 is used to store the coordinates of a single vector definition point. This may be,
e.g., the spreading vector of an ellipse.

 Element Sequence
BlockOwner,6,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 007 (First Pivot Point) (Standard Data Blocks)
A data block of type 007 is used to store the coordinates of the first pivot point of a Bézier curve.

 Element Sequence
BlockOwner,7,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 008 (Second Pivot Point) (Standard Data Blocks)
A data block of type 008 is used to store the coordinates of the second pivot point of a Bézier curve.

 Element Sequence
BlockOwner,8,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 009 (Arc End-Point) (Standard Data Blocks)
A data block of type 009 is used to store the coordinates of the end-point of an arc inside a curve.

 Element Sequence
BlockOwner,9,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 010 (Marking) (Standard Data Blocks)
A data block of type 010 is used to store the coordinates of a single marking.

 Element Sequence
BlockOwner,10,3,1,Coordinates;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Coordinates
[DPOINT] Coordinates of the point.

Data Block Type 100 (Constant) (Standard Data Blocks)
A data block of type 100 is used to store a single double, mainly in dimensions.

 Element Sequence
BlockOwner,100,2,1,Constant;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Constant
[double] Constant value.

Data Block Type 101 (Arc) (Standard Data Blocks)
A data block of type 101 is used to store the direction of a circular or ellptical arc.

 Element Sequence
BlockOwner,101,2,1,Orientation;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Orientation
[double] Orientation of the arc. Positive values indicate counter-clockwise direction, negative values
indicate clockwise direction.

Data Block Type 102 (Curve) (Standard Data Blocks)
A data block of type 102 is used to store the direction and the curvature of a circular arc inside a curve.

 Element Sequence
BlockOwner,102,2,1,Orientation,Curvature;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Orientation
[double] Orientation of the arc. Positive values indicate counter-clockwise direction, negative values
indicate clockwise direction.

Curvature
[double] Curvature of the circular arc.

Data Block Type 110 (Text) (Standard Data Blocks)
A data block of type 110 is used to store all kinds of ANSI texts.

 Element Sequence
BlockOwner,110,8,ElemCount,Text;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Text
[TEXT] Text to be stored, consisting of ANSI characters, delimited by the characters " (Ansi 34). The
maximum size of texts is 8,000 characters, inside of dimensions or comments it is 250 characters.
The text may contain variables. Variables are text sections delimited by the character ~ (Ansi 126). A
possible text including a variable is:
Serial Number: ~SerNum~
If such a variable is found inside a text, the program determines whether the text object resides inside
a block. If so, an attribute having the same name as the variable (in this example: SerNum) is
searched. If it does exist, the current value of that attribute is displayed instead of the variable's name.
Supposing the value of the attribute SerNum is "DT3507", the displayed text would be:
Serial Number: DT3507
A text may contain more than one variable. If the attribute of the given name is not found, the text
"(Undefined)" will be display instead of the attribute's value. If the text object is not inside a block,
the text is displayed unmodified.

Data Block Type 220 (Dimension Line) (Standard Data Blocks)
A data block of type 220 is used to store the parameters for dimension lines (straight and curved).

 Element Sequence
BlockOwner,220,0,0,ArrowStartForm,ArrowStartMode,ArrowEndForm,ArrowEndMode;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

ArrowStartForm
[long] The value ArrowStartForm determines the form of the dimension arrow at the start-point of the
dimension line. Possible values are:
0x0000 No dimension arrow.
0x0001 Filled triangular arrow. The triangle has an opening angle of 20° and a side length of 10.0

times the dimension line's width.
0x0002 Non-filled triangular arrow. The triangle has an opening angle of 20° and a side length of

10.0 times the dimension line's width.
0x0003 Open triangular arrow. The triangle has an opening angle of 60° and a side length of 10.0

times the dimension line's width.
0x0004 Diagonal stroke. The stroke has a relative angle of 45° to the dimension line and a length

of 12.0 times the dimension line's width.
0x0005 Filled circle. The filled circle has a radius of 1.5 times the dimenion line's width.
0x0006 Non-filled circle. The filled circle has a radius of 2.5 times the dimenion line's width.

ArrowStartMode
[long] The values ArrowStartMode determines whether the dimension ends at the dimension's start-
point or whether it is extended (which would result in rotated dimension arrows). Possible values are:
0x0000 The dimension line ends at the dimension's start-point, the dimension arrows will not be

rotated.
0x0001 The dimension line is extended, the dimension arrows will be rotated.
0x0002 Automatic length detection. If the dimension is less than 30.0 times the dimension line's

width, the dimension lines will be extended and the dimension arrows will be rotated.
The extension of the dimension depends on the dimension arrow type. For types 0x0001, 0x0002 and
0x0003, it is 30.0 times the dimension line's width, for types 0x0004, 0x0005 and 0x0006, it is 5.0
times the dimension line's width. Type 0x0000 has no extension.

ArrowEndForm
[long] Equivalent to ArrowStartForm, but referring to the end-point.

ArrowEndMode
[long] Equivalent to ArrowStartMode, but referring to the end-point.
The following image shows all types of dimension arrows, once in normal presentation (upper row),
once in rotated presentation with extended dimension line (lower row):

Data Block Type 225 (Large Dimension) (Standard Data Blocks)
A data block of type 225 is used to store the parameters for dimensions that include dimension lines (like
distance, radius, diameter and angle).

 Element Sequence
BlockOwner,225,0,0,TextFont,TextXProperty,
TextSize1,TextSize2,CharDistance,TabDistance,TextMode,
NumAccuracy,NumRefresh,NumCentered,NumTight,NumRotate,
ArrowStartForm,ArrowStartMode,ArrowEndForm,ArrowEndMode,
ExtStartDisplay,ExtEndDisplay,LineDisplay,
LineOrientation,LineType,LineDistMode,LineDistance,LineOffset,
System;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

TextFont
[FONTDEF] Description of the font to be used for the dimension texts (dimension and tolerances).

TextXProperty
[XPROPERTY] Properties for the dimension texts (dimension and tolerances). The properties of the
entity itself are only valid for dimension line and dimension arrow.

TextSize1
[double] Font size of the dimension in mm.

TextSize2
[double] Font size of the tolerances in mm.

CharDistance
[double] The value CharDistance determines the gap between two characters. This gap is stated

relative to the font size. A value of 0.1 at a font size of 10pt will result in a character gap of 1pt. Allowed
values are -10.0 to +10.0. The default value for TrueType and device fonts should be 0.0, for internal
fonts 0.125.

TabDistance
[double] The value TabDistance determines the distance between two tabulators. This distance is

stated relative to the font size. A value of 4.0 at a font size of 5 mm will result in a tabulator distance of 20
mm. Allowed values are -100.0 to 100.0. The default value is 4.0.

TextMode
[long] The value TextMode states the position of the text relative to the insertion point. It can be

one of the following values:

0x0000 The insertion point defines the left end-point of the text's baseline, i.e. the text will be
displayed left-aligned.

0x0001 The insertion point defines the center-point of the text's baseline, i.e. the text will be
displayed centered.

0x0002 The insertion point defines the right end-point of the text's baseline, i.e. the text will be
displayed right-aligned.

NumAccuracy
[long] The value NumAccuracy determines the accuracy of the dimension's display.
If numeric values are displayed as decimal numbers, this value determines the number of fractional
digits. The value may be between 0 (no fractional digit) and 9 (nine fractional digits). Whether
trailing zeros will be displayed or not depends of user-dependent settings in the application.
If numeric values are displayed as fractional numbers, this value determines the maximum power of
two that the denominator will have. The value may be between 0 (no fraction) and 9 (maximum
denominator 512). The resulting fraction will be reduced. If the numeric value is 2.1, the resulting
fraction will be 2 3/32 for a NumAccurary of 6 and 2 51/512 for a NumAccuracy of 9.

NumRefresh
[long] The value NumRefresh determines whether the dimension shall be recalculated after each
modification or not. Possible values are:
0x0000 The dimension will only be recalculated on demand.
0x0001 The dimension will be recalculated after each modification.

NumCentered
[long] The value NumCentered determines whether the dimension number shall always be placed
centered to the dimension line or not. Possible values are:
0x0000 The dimension number can be placed anywhere. In this case, (nx1,ny1) determines the

center of the base line of the dimension number.
0x0001 The dimension number is always placed centered to the dimension line. The resulting

position is the base point of a perpendicular dropped from (nx1,ny1) onto the mid-
perpendicular of the dimension line.
A rotation angle defined by the points (nx1,ny1) and (nx2,ny2) remains unchanged.

If both NumTight and NumCentered are non-zero, first the calculation of NumCentered is executed,
the calculation of NumTight.

NumTight
[long] The value NumTight determines whether the dimension number shall always be placed

tight to the dimension line or not. If so, the distance between the text's base line and the dimension line is
one-quarter of the dimension's font size. Possible values are:

0x0000 The dimension number can be placed anywhere. In this case, (nx1,ny1) determines the
center of the base line of the dimension number.

0x0001 The dimension number is always placed tight to the dimension line. The resulting
position is on the perpendicular dropped from (nx1,ny1) onto the dimension line, having
a distance of one-quarter of the dimension's font size to the dimension line.
A rotation angle defined by the points (nx1,ny1) and (nx2,ny2) remains unchanged.

0x0002 The dimension number is always placed inside the dimension line. The resulting position
is on the perpendicular dropped from (zx1,zy1) onto the dimension line, having a
distance of 40% to the dimension line. The dimension line will be interrupted if this mode
is active!
A rotation angle defined by the points (zx1,zy1) and (zx2,zy2) remains unchanged.

If both NumTight and NumCentered are non-zero, first the calculation of NumCentered is executed,
the calculation of NumTight.

NumRotate

[long] The value NumRotate determines, how the dimension number shall be rotated. Possible values
are:
0x0000 The dimension number is parallel to the dimension line, with an angle of its base line

bewteen -90° and +90°, i.e. the text can either be read from below or from the right.
0x0001 The dimension number is parallel to a line running through the points (nx1,ny1) und

(nx2,ny2).
ArrowStartForm

[long] The value ArrowStartForm determines the form of the dimension arrow at the start-point of the
dimension line. Possible values are:
0x0000 No dimension arrow.
0x0001 Filled triangular arrow. The triangle has an opening angle of 20° and a side length of 10.0

times the dimension line's width.
0x0002 Non-filled triangular arrow. The triangle has an opening angle of 20° and a side length of

10.0 times the dimension line's width.
0x0003 Open triangular arrow. The triangle has an opening angle of 60° and a side length of 10.0

times the dimension line's width.
0x0004 Diagonal stroke. The stroke has a relative angle of 45° to the dimension line and a length

of 12.0 times the dimension line's width.
0x0005 Filled circle. The filled circle has a radius of 1.5 times the dimenion line's width.
0x0006 Non-filled circle. The filled circle has a radius of 2.5 times the dimenion line's width.

ArrowStartMode
[long] The values ArrowStartMode determines whether the dimension ends at the dimension's start-
point or whether it is extended (which would result in rotated dimension arrows). Possible values are:
0x0000 The dimension line ends at the dimension's start-point, the dimension arrows will not be

rotated.
0x0001 The dimension line is extended, the dimension arrows will be rotated.
0x0002 Automatic length detection. If the dimension is less than 30.0 times the dimension line's

width, the dimension lines will be extended and the dimension arrows will be rotated.
The extension of the dimension depends on the dimension arrow type. For types 0x0001, 0x0002 and
0x0003, it is 30.0 times the dimension line's width, for types 0x0004, 0x0005 and 0x0006, it is 5.0
times the dimension line's width. Type 0x0000 has no extension.

ArrowEndForm
[long] Equivalent to ArrowStartForm, but referring to the end-point.

ArrowEndMode
[long] Equivalent to ArrowStartMode, but referring to the end-point.
The following image shows all types of dimension arrows, once in normal presentation (upper row),
once in rotated presentation with extended dimension line (lower row):

ExtStartDisplay
[long] Determines whether the dimension extension line at the start-point of the dimension shall

be drawn or not. Possible values are:
0x0000 The dimension extension line at the start-point will not be drawn.
0x0001 The dimension extension line at the start-point will be drawn.

ExtEndDisplay
[long] Determines whether the dimension extension line at the end-point of the dimension shall be
drawn or not. Possible values are:

0x0000 The dimension extension line at the end-point will not be drawn.
0x0001 The dimension extension line at the end-point will be drawn.

LineDisplay
[long] Determines whether to display dimension line and dimension extension line at all or not.
Possibel values are:
0x0000 The dimension line and optionally the dimension extension lines will not be drawn.
0x0001 The dimension line and optionally the dimension extension lines will be drawn.

LineOrientation,
LineType,
LineDistMode

[long] The usage of these values depends on the object type the data block is defined in. Please refer
to the description of the corresponding object type for detailed information.

LineDistance
[double] This value determines the distance between the dimension line and corresponding object in
mm. It will only be used if LineDistMode is set to a non-zero value.

LineOffset
[double] This value determines the offset between the dimension extension lines and corresponding
object in mm.

System
[long] Index of the coordinate system the dimension shall be based on. If this coordinate system is set
to a distorting display (isometric or dimetric) the dimension will be calculated accordingly.

Data Block Type 230 (Small Dimension) (Standard Data Blocks)

A data block of type 230 is used to store the parameters for dimensions that do not include dimension
lines (like coordinate or perimeter).

 Element Sequence
BlockOwner,230,0,0,TextFont,TextXProperty,
TextSize1,TextSize2,CharDistance,TabDistance,TextMode,
NumAccuracy,NumRefresh,NumRotate,
System;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

TextFont
[FONTDEF] Description of the font to be used for the dimension texts (dimension and tolerances).

TextXProperty
[XPROPERTY] Properties for the dimension texts (dimension and tolerances). The properties of the
entity itself are only valid for dimension line and dimension arrow.

TextSize1
[double] Font size of the dimension in mm.

TextSize2
[double] Font size of the tolerances in mm.

CharDistance
[double] The value CharDistance determines the gap between two characters. This gap is stated

relative to the font size. A value of 0.1 at a font size of 10pt will result in a character gap of 1pt. Allowed
values are -10.0 to +10.0. The default value for TrueType and device fonts should be 0.0, for internal
fonts 0.125.

TabDistance
[double] The value TabDistance determines the distance between two tabulators. This distance is

stated relative to the font size. A value of 4.0 at a font size of 5 mm will result in a tabulator distance of 20
mm. Allowed values are -100.0 to 100.0. The default value is 4.0.

TextMode
[long] The value TextMode states the position of the text relative to the insertion point. It can be

one of the following values:
0x0000 The insertion point defines the left end-point of the text's baseline, i.e. the text will be

displayed left-aligned.
0x0001 The insertion point defines the center-point of the text's baseline, i.e. the text will be

displayed centered.
0x0002 The insertion point defines the right end-point of the text's baseline, i.e. the text will be

displayed right-aligned.
NumAccuracy

[long] The value NumAccuracy determines the accuracy of the dimension's display.
If numeric values are displayed as decimal numbers, this value determines the number of fractional
digits. The value may be between 0 (no fractional digit) and 9 (nine fractional digits). Whether
trailing zeros will be displayed or not depends of user-dependent settings in the application.
If numeric values are displayed as fractional numbers, this value determines the maximum power of
two that the denominator will have. The value may be between 0 (no fraction) and 9 (maximum
denominator 512). The resulting fraction will be reduced. If the numeric value is 2.1, the resulting
fraction will be 2 3/32 for a NumAccurary of 6 and 2 51/512 for a NumAccuracy of 9.

NumRefresh
[long] The value NumRefresh determines whether the dimension shall be recalculated after each
modification or not. Possible values are:
0x0000 The dimension will only be recalculated on demand.
0x0001 The dimension will be recalculated after each modification.

NumRotate
[long] The value NumRotate determines, how the dimension number shall be rotated. Possible values
are:
0x0000 The dimension number is parallel to the dimension line with an angle of its base line

bewteen -90° and +90°, i.e. the text can either be read from below or from the right.
0x0001 The dimension number is parallel to a line running throught the points (nx1,ny1) und

(nx2,ny2).
System

[long] Index of the coordinate system the dimension shall be based on. If this coordinate system is set
to a distorting display (isometric or dimetric), the dimension will be calculated accordingly.

Data Block Type 235 (Standard Text) (Standard Data Blocks)
A data block of type 235 is used to store the parameters for standard texts, i.e. for texts that have an
insertion point, but no surrounding frame.

 Element Sequence
BlockOwner,235,0,0,TextFont,TextXProperty,TextMatrix,
CharDistance,TabDistance,LineDistance,TextMode;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

TextFont
[FONTDEF] Decription of the font to be used for this text.

TextXProperty
[XPROPERTY] Properties of the text. The properties of the entity itself are not used for texts.

TextMatrix
[MATRIX] Display matrix of the text. The text will be multiplied with this matrix before display. The
matrix contains all operations like translation, rotation, scaling and shearing. The font size is coded as
scaling relative to 1 mm.
All transformations apply to the complete text, not to single characters, i.e. a rotation will rotate the
complete text, not the single characters.

CharDistance
[double] The value CharDistance determines the gap between two characters. This gap is stated
relative to the font size. A value of 0.1 at a font size of 10pt will result in a character gap of 1pt.
Allowed values are -10.0 to +10.0. The default value for TrueType and device fonts should be 0.0, for
internal fonts 0.125.

TabDistance
[double] The value TabDistance determines the distance between two tabulators. This distance is
stated relative to the font size. A value of 4.0 at a font size of 5 mm will result in a tabulator distance
of 20 mm. Allowed values are -100.0 to 100.0. The default value is 4.0.

LineDistance
[double] The value LineDistance determines the offset between two lines of text, measured from
baseline to baseline. This offset is stated relative to the font size. A value of 1.2 at a font size of 10pt
will lead to a line offset of 12pt. Allowed values are -100.0 to 100.0. The default value is 1.0.

TextMode
[long] The value TextMode states the position of the text relative to the insertion point. It can be one
of the following values:
0x0000 The insertion point defines the left end-point of the text's baseline, i.e. the text will be

displayed left-aligned.
0x0001 The insertion point defines the center-point of the text's baseline, i.e. the text will be

displayed centered.
0x0002 The insertion point defines the right end-point of the text's baseline, i.e. the text will be

displayed right-aligned.

 Example
0,235,0,0, |BlockType|
1,1,400,"Times New Roman", |TextFont|
64, |TextXProperty.Flag|
0,1,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0,0, | ... |
1, |TextXProperty.Layer|
10.0,0.0,0.0,10.0,7.0,-7.0, |TextMatrix|
0.0,4.0,1.0, |CharDistance,TabDistance,LineDistance|
0; |TextMode|

The text will be displayed using the TrueType font "Times New Roman Italic" with a text size of 10 mm.
It will be non-rotated and is aligned left to the position (7.0,-7.0). The characters will be assigned to layer
1 (TextXProperty.Flag = USE_LAYER, TextXProperty.Layer = 1), they are drawn filled in black.
The character distance will be 0.0 mm (font size 10 mm × 0.0 = 0.0 mm), the tabulator distance will be 40
mm (font size 10 mm × 4.0 = 40 mm) and the line distance 10 mm (font size 10 mm × 1.0 = 10.0 mm).

Data Block Type 236 (Frame Text) (Standard Data Blocks)
A data block of type 236 is used to store the parameters for frame texts, i.e. for texts that have a
surrounding frame, but no insertion point.

 Element Sequence
BlockOwner,236,0,0,TextFont,TextXProperty,TextSize,
CharDistance,TabDistance,LineDistance,TextMode;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

TextFont
[FONTDEF] Decription of the font to be used for this text.

TextXProperty
[XPROPERTY] Properties of the text. The properties of the entity itself are not used for texts.

TextSize
[double] Size of the font. This size is handled differently depending of the font's type. If the font is a
TrueType or device font, this value determines the typographical font size, i.e. the minimum offset
between two lines of texts.
If the font is internal, this value determines the actual character height. Usually, an internal font will
be displayed about 25% larger with the same value of TextSize.

CharDistance
[double] The value CharDistance determines the gap between two characters. This gap is stated
relative to the font size. A value of 0.1 at a font size of 10pt will result in a character gap of 1pt.
Allowed values are -10.0 to +10.0. The default value for TrueType and device fonts should be 0.0, for
internal fonts 0.125.

TabDistance
[double] The value TabDistance determines the distance between two tabulators. This distance is
stated relative to the font size. A value of 4.0 at a font size of 5 mm will result in a tabulator distance
of 20 mm. Allowed values are -100.0 to 100.0. The default value is 4.0.

LineDistance
[double] The value LineDistance determines the offset between two lines of text, measured from
baseline to baseline. This offset is stated relative to the font size. A value of 1.2 at a font size of 10pt
will lead to a line offset of 12pt. Allowed values are -100.0 to 100.0. The default value is 1.0.

TextMode
[long] The value TextMode states the position of the text relative to the surrounding frame. It can be
one of the following values:
0x0000 The text will be displayed left-aligned inside the surrounding frame.
0x0001 The text will be displayed centered inside the surrounding frame.
0x0002 The text will be displayed right-aligned inside the surrounding frame.
0x0003 The text will be displayed justified. The last line of each paragraph and lines containing a

single word will be display left-aligned.
For justification, the word gaps made up by the character Ansi 32 will be enlarged. Word

gaps made up by the character Ansi 160 will not be enlarged, i.e. Ansi 160 is a "fixed
space".

 Example
0,236,0,0, |BlockType|
0,1,400,"TIMES", |TextFont|
64, |TextXProperty.Flag|
0,1,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0,0, | ... |
1, |TextXProperty.Layer|
10.0, |TextSize|
0.05,4.0,1.2, |CharDistance,Tabdistance,LineDistance|
0; |TextMode|

The text will be displayed using the font "TIMES" with a text size of 10 mm. The characters will be
assigned to layer 1 (TextXProperty.Flag = USE_LAYER, TextXProperty.Layer = 1), they are drawn filled
in black.
The character distance will be 0.5 mm (font size 10 mm × 0.05 = 0.5 mm), the tabulator distance will be
40 mm (font size 10 mm × 4.0 = 40 mm) and the line distance 12 mm (font size 10 mm × 1.2 = 12.0 mm).

Data Block Type 237 (Reference Text) (Standard Data Blocks)
A data block of type 237 is used to store the additional parameters for reference texts, i.e. for texts that are
used for numeration, referencing etc.

 Element Sequence
BlockOwner,237,0,0,ArrowForm,ArrowMode,FrameForm,FrameOffset;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

ArrowForm
[long] The value ArrowForm determines the form of the arrow at the start-point (x,y) of the reference
line. Possible values are:
0x0000 No dimension arrow.
0x0001 Filled triangular arrow. The triangle has an opening angle of 20° and a side length of 10.0

times the dimension line's width.
0x0002 Non-filled triangular arrow. The triangle has an opening angle of 20° and a side length of

10.0 times the dimension line's width.
0x0003 Open triangular arrow. The triangle has an opening angle of 60° and a side length of 10.0

times the dimension line's width.
0x0004 Diagonal stroke. The stroke has a relative angle of 45° to the dimension line and a length

of 12.0 times the dimension line's width.
0x0005 Filled circle. The filled circle has a radius of 1.5 times the dimenion line's width.
0x0006 Non-filled circle. The filled circle has a radius of 2.5 times the dimenion line's width.

ArrowMode
[long] The value ArrowMode determines the form of the reference line. Allowed values are:
0x0000 Straight
0x0001 Bend, 45° angle at the arrow's side
0x0002 Bend, 45° angle at the text's side
0x0003 Bend, 90° angle at the arrow's side
0x0004 Bend, 90° angle at the text's side
0x0005 Horizontal
0x0006 Vertical

FrameForm
[long] The value FrameForm determines, which form the surrounding frame of the text shall have.
Allowed values are:
0x0000 Rectangle
0x0001 Rhomb
0x0002 Circle
0x0003 Ellipse

FrameOffset
[double] The value FrameOffset determines the minimum distance between text itself and its
surrounding frame.

 Example
0,237,0,0, |BlockType|
1,1,0,2; |
ArrowForm,ArrowMode,FrameForm,FrameOffset|

The text will be displayed inside a circle, whose radius will be 2 mm larger than the minimum circle
surrounding the text. The reference line will have a bend of 45° at the arrow's end, the arrow will be a
filled triangle.

Data Block Type 242 (Clipping Surface) (Standard Data Blocks)
A data block of type 242 is used to store the parameters for clipping surfaces, i.e. for surface that are used
to clip other objects.

 Element Sequence
BlockOwner,242,0,0,XProperty,
LibraryName,BlockName,DisplayMatrix,IgnoreBlock;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the instance including transmission.

LibraryName
[TEXT64] Name of the library containing the desired block, maximum 63 characters. If the instance
references a block located in the same drawing / library as the instance, set this name to "*".

BlockName
[TEXT64] Name of the block, maximum 63 characters. If the first character is 0x00, this instance is
invalid and will neither be loaded nor stored!
If LibraryName is set to "*", the content of BlockName may have a special form. If the first character
is # (Ansi 35), the block is a special, internally used and handled block (see Entity "Group" and Entity
"Position Number"). The function of this block then depends on the character following the # sign.
Such instances are only allowed inside drawings, not inside libraries!

DisplayMatrix
[MATRIX] Display matrix of the block. All entities stored in the block have to be multiplied with this
matrix before display. It contains translation, rotation, scaling and shearing.

IgnoreBlock
[long] This value determines, how a clipping surface behaves during user interaction. Allowed values
are:
0x0000 The block referenced by the clipping surface will be used during all operations. In this

case, a clipping surface will behave like a surface plus an instance.
0x0001 The block referenced by the clipping surface is ignored during operations like object

selection. This can be used to "hide" the internal structure of the clipping surface from the
user. In this case, a clipping surface will behave like a standard filled surface, i.e. it can
only be identified by clicking onto its outline.

 Example
0,242,0,0, |BlockType|
0,0,0,0/0/0,0/0/0,0.0,0,0, |HeaderType,XProperty|
"*", |LibraryName|
"MyBlock", |BlockName|
1.0,0.0,0.0,1.0,10.0,-7.0, |DisplayMatrix|

0; |IgnoreBlock|

This clipping surface displays the block "MyBlock". The entities of the block will be displayed with their
own properties (XProperty.Flag = USE_NULL). The block will be displayed at the location (10.0,-7.0),
non-rotated and non-scaled. The referenced block will be fully operational.

Data Block Type 243 (Bitmap Reference) (Standard Data Blocks)
A data block of type 243 is used to store the parameters for bitmap references, i.e. for objects that are used
to display bitmap files in the drawing.

 Element Sequence
BlockOwner,243,0,0,BitmapName,
DisplayMatrix;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

BitmapName
[TEXT256] Name of the bitmap to be displayed. If this name starts with the prefix character '#' (Ansi
35), this name is a reference to an internal bitmap listed in the Section =BITMAP= (Embedded
Bitmaps) of this file. Else, it is a file name of a valid Windows-style bitmap file. The maximum size
of such a bitmap is 32,000 by 32,000 pixels, using color depths of 1 bit, 4 bit, 8 bit or 24 bit.

DisplayMatrix
[MATRIX] Display matrix of the bitmap. The position stored in the matrix places the lower left corner
of the bitmap, the scaling and rotation information determines the size and orientation of the display.
The size is relative to the default bitmap resolution stored in the bitmap's header. If the bitmap does
not contain a valid resolution information, its resolution is assumed to be 300 dpi.

 Example
0,243,0,0, |BlockType|
"C:\\BITMAPS\\MYIMAGE.BMP", |BitmapName|
2.0,0.0,0.0,2.0,10.0,-7.0; |DisplayMatrix|

This bitmap referende displays the bitmap C:\BITMAPS\MYIMAGE.BMP. It will be located at (10.0,
7.0) and will be displayed in twice its original size.

Data Block Type 999 (End of List) (Standard Data Blocks)
A data block of type 999 is used to end the list of data blocks inside an entity's data area.

 Element Sequence
BlockOwner,999,0,0;

 Element Description
BlockOwner

[short] This value is a unique identification of the plug-in that created the data block. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

Entity "Object"
This entity represents the smallest display element of drawings. An object may be a line, a circle, a text
etc. It consists of a header, geometrical data and some object-specific data. An entity of type "Object" has
the following structure:

 Element Sequence
UnitOwner,0,XProperty,ObjectType;
-Data Section-

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the object including transmission.

ObjectType
[long] Type of the object. Determines whether this entity contains a line, a circle or another object
type. For a description of all object types see below.

Following is the data section of this entity. This section contains a list of data blocks (see Entities and
Data Blocks). Currently, objects do not contain attributes. This may change in further releases, so be
prepared to find attributes and other data blocks in this section.

 Example
0,0,0,1,0,0/0/0,0/0/0,0.0,0,0,0; |UnitOwner,XProperty,ObjectType|
0,1,2,1,-10.0,7.0; |B001|
0,2,2,1,10.0,-7.0; |B002|
0,999,0,0; |B999|

This entity is an object of type "Line". It represents a line starting at (-10.0, 7.0) and ending at (10.0, -7.0).
This line will be displayed using pen 1 and is assigned to layer 0.

For each object tpye, the following descriptions will list all required data blocks in their correct order. In
addition, the object type's definition will be described. If object-specific data blocks are used, their
specific values will be described, too.

Standard Objects
Standard objects are "simple" objects that can be assembled of lines, circle parts and ellipse parts.

Object 00 "Line"
Object 01 "Hatching"

Object 05 "Circle"
Object 06 "Circular Arc"
Object 07 "Circular Sector"
Object 08 "Circular Segment"
Object 15 "Ellipse"
Object 16 "Elliptical Arc"
Object 17 "Elliptical Sector"
Object 18 "Elliptical Segment"

Extended Objects
Extended objects are more complex than standard objects. Such object cannot directly be handled by
trimming and other modifications. Instead, they will have to be resolved in polylines before. This requires
additional processing time and leads to reduced accuracy.

Object 10 "Zigzag Line"
Object 11 "Spline"
Object 12 "Curve"
Object 13 "Surface"

Object 40 "Comment"
Object 41 "Marking"
Object 42 "Clipping Surface"
Object 43 "Bitmap Reference"

Dimension Objects
Dimension objects are usually used to add dimensions to a drawing. In addition, they can be used to
create simple arrows. Dimensions are very complex and should be handled carefully.

The following image shows the different elements of a distance dimension and their names. These names
are also equally valid for other dimension forms:

Dimensions are always referring to a coordinate system. This coordinate system contains all required
information about the current entities, the scale and the desired number display modes.

Note: The examples shown in this section are mainly not according to DIN rules. Instead, they shall
display all possible forms of dimension available in compact form.

Object 20 "Dimension Line Straight"
Object 21 "Dimension Line Curved"
Object 25 "Dimension Distance"
Object 26 "Dimension Radius"
Object 27 "Dimension Diameter"
Object 28 "Dimension Angle"
Object 29 "Dimension Arc Length"
Object 30 "Dimension Coordinate"
Object 31 "Dimension Area"

Object 32 "Dimension Perimeter"

Text Objects
Text objects are used for the lettering of the drawing and are basically implemented as a multi-instance of
characters.

Object 35 "Standard Text"
Object 36 "Frame Text"
Object 37 "Reference Text"

Geometry Objects
Geometry objects are used to create an auxiliary geometry for easy and fast construction. They are not
relevant for printer or plotter output (except if explicitly activated by the user) and will only be displayed
on the screen. Geometry objects can usually be ignored during file conversion.

Object 45 "Geometry Line"
Object 46 "Geometry Circle"
Object 47 "Geometry Ellipse"

Object 00 "Line"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point
Data Block 002(x2, y2) - End-point

The points (x1,y1) and (x2,y2) determine the start-point and end-point of the line. The line pattern has to
start at the point (x1,y1). When drawing lines to raster devices the final pixel has to be drawn in any case!
In Windows this has to be done explicitly.

A line is an "open" object, i.e. it has a non-closed outline and cannot be filled.

Object 01 "Hatching"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point of a curve

...
Data Block 002(x?, y?) - End-point of a line

...
Data Block 007(x?, y?) - Pivot point 1
Data Block 008(x?, y?) - Pivot point 2
Data Block 002(x?, y?) - End-point of a Bézier curve

...
Data Block 009(x?, y?) - End-point of the circular arc
Data Block 102(Orientation, - Orientation of the circular arc

 Curvature) - Curvature of the circular arc

A hatching is a collection of several curves. A curve starts with a start-point in a data block of type 001
followed by a sequence of curve elements. Three types of curve elements are available:
Line

A line is simply defined by stating its end-point in a data block of type 002. The line is drawn from
the curve's current end-point to the line's end-point. The line's end-point then becomes the curve's
current end-point.

Bézier curve
A Bézier curve is defined by stating two pivot points in data blocks of type 007 and 008, and an end-
point in a data block of type 002. The Bézier curve is drawn from the curve's current end-point
(named 'S') to the Bézier curve's end-point (named 'E'), influenced by the two pivot points (named P1
and P2). The Bézier curve's end-point then becomes the curve's current end-point.
The points P of such a Bézier curve are calculated using the following equation:

P = (1-t)³×S + 3t(1-t)²×P1 + 3t²(1-t)×P2 + t³×E (0<=t<=1)
Circular arc

A circular arc is defined by its end-point in a data block of type 009, and its orientation and curvature
in a data block of type 102. The arc is drawn from the curve's current end-point (named 'S') to the
arc's end-point (named 'E'), influenced by its orientation and curvature. The arc's end-point then
becomes the curve's current end-point.
The value Orientation determines whether to draw the arc in clockwise direction (Orientation < 0) or
in counter-clockwise direction (Orientation >= 0).
The value Curvature determines the radius of the arc in indirect manner. In can be handled in two
ways. In geometrical view, the absolute value of Curvature is 1/(2 tan(ß/2)), where ß is the arc-angle
of the circular arc. The sign of Curvature determines, which of the two possible arcs to use.
In practical use, this definition is not very handy. Instead, Curvature should be used to perform a
simple vector calculation to obtain the arc's defining center-point M:

x(M) = 0.5 * (x(S) + x(E)) - Curvature * (y(E) - y(S))
y(M) = 0.5 * (y(S) + y(E)) + Curvature * (x(E) - y(S))

After calculating the center-point, all points required to draw a standard circular arc are known. The
allowed value range of Curvature is ±1e100.

Each curve ends if either a new curve is started by a new start-point (in a data block of type 001) or the
complete surface is ended (by a data block of type 999). A hatching is an "open" object, i.e. it has a non-
closed outline and cannot be filled.

If a hatching is drawn with a non-solid line pattern, this line pattern has to be continued during each
curve. A hatching may contain up to 1000 nested curves made of up to 2000 data blocks in total.

Object 05 "Circle"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius.

Object 06 "Circular Arc"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius. The points (ax1,ay1) and (ax2,ay2), in relation to the circle's center-point (cx,cy),
determine the start- and end-angle of the arc. If Orientation >= 0, the arc is drawn counter-clockwise from
the start-angle to the end-angle. If Orientation < 0, the arc is drawn clockwise.

A circular arc is an "open" object, i.e. it has a non-closed outline and cannot be filled.

Object 07 "Circular Sector"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius. The points (ax1,ay1) and (ax2,ay2), in relation to the circle's center-point (cx,cy),
determine the start- and end-angle of the sector. If Orientation >= 0, the sector is drawn counter-
clockwise from the start-angle to the end-angle. If Orientation < 0, the sector is drawn clockwise.

Object 08 "Circular Segment"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius. The points (ax1,ay1) and (ax2,ay2), in relation to the circle's center-point (cx,cy),
determine the start- and end-angle of the segment. If Orientation >= 0, the segment is drawn counter-
clockwise from the start-angle to the end-angle. If Orientation < 0, the segment is drawn clockwise.

Object 10 "Zigzag Line"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point
Data Block 002(x2, y2) - End-point
Data Block 100(Distance) - Distance between two indents in mm

The points (x1,y1) and (x2,y2) determine the start-point and end-point of the line. The value Distance
determines the distance between two indents. Each indent has an opening angle of 30°, its total height
(both sides together) is 20 times the line's width.

If a zigzag line is drawn with a non-solid line pattern, this line pattern has to be continued along the
complete line. A zigzag line is an "open" object, i.e. it has a non-closed outline and cannot be filled.

Object 11 "Spline"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point
Data Block 002(x2, y2) - Definition point

...
Data Block 002(x?, y?) - End-point

A spline is a curve that connects a sequence of points with a curved line as "smooth" as possible, i.e. the
connecting line has no sharp bends and a minimum deflection. The theory of splines covers several types
of splines, basically differing in the way that "smoothness" is defined.

The most usual spline form in technical design is a "cubic spline", so this form is used here. Since the
calculation effort for a plain cubic spline is enormous, the application uses an interpolation method that
first calculates a short cubic spline for each point triple, resulting in two different curve segments for each
point-to-point segment. The resulting curve is then calculated as the connection of those two curve
segments.

If a spline is drawn with a non-solid line pattern, this line pattern has to be continued along the complete
spline. A spline may contain up to 2000 data blocks in total. A spline is an "open" object, i.e. it has a non-
closed outline and cannot be filled.

Object 12 "Curve"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point of a curve

...
Data Block 002(x?, y?) - End-point of a line

...
Data Block 007(x?, y?) - Pivot point 1
Data Block 008(x?, y?) - Pivot point 2
Data Block 002(x?, y?) - End-point of a Bézier curve

...
Data Block 009(x?, y?) - End-point of the circular arc
Data Block 102(Orientation, - Orientation of the circular arc

 Curvature) - Curvature of the circular arc

A curve describes a complex object made up of several elements. A curve starts with a start-point in a data
block of type 001 followed by a sequence of curve elements. Three types of curve elements are available:
Line

A line is simply defined by stating its end-point in a data block of type 002. The line is drawn from
the curve's current end-point to the line's end-point. The line's end-point then becomes the curve's
current end-point.

Bézier curve
A Bézier curve is defined by stating two pivot points in data blocks of type 007 and 008, and an end-
point in a data block of type 002. The Bézier curve is drawn from the curve's current end-point
(named 'S') to the Bézier curve's end-point (named 'E'), influenced by the two pivot points (named P1
and P2). The Bézier curve's end-point then becomes the curve's current end-point.
The points P of such a Bézier curve are calculated using the following equation:

P = (1-t)³×S + 3t(1-t)²×P1 + 3t²(1-t)×P2 + t³×E (0<=t<=1)
Circular arc

A circular arc is defined by its end-point in a data block of type 009, and its orientation and curvature
in a data block of type 102. The arc is drawn from the curve's current end-point (named 'S') to the
arc's end-point (named 'E'), influenced by its orientation and curvature. The arc's end-point then
becomes the curve's current end-point.
The value Orientation determines whether to draw the arc in clockwise direction (Orientation < 0) or
in counter-clockwise direction (Orientation >= 0).
The value Curvature determines the radius of the arc in indirect manner. In can be handled in two
ways. In geometrical view, the absolute value of Curvature is 1/(2 tan(ß/2)), where ß is the arc-angle
of the circular arc. The sign of Curvature determines, which of the two possible arcs to use.
In practical use, this definition is not very handy. Instead, Curvature should be used to perform a
simple vector calculation to obtain the arc's defining center-point M:

x(M) = 0.5 * (x(S) + x(E)) - Curvature * (y(E) - y(S))
y(M) = 0.5 * (y(S) + y(E)) + Curvature * (x(E) - x(S))

After calculating the center-point, all points required to draw a standard circular arc are known. The
allowed value range of Curvature is ±1e100.

The curve ends if the complete curve is ended (by a data block of type 999). A curve is an "open" object,
i.e. it has a non-closed outline and cannot be filled.

If a curve is drawn with a non-solid line pattern, this line pattern has to be continued along the complete
curve. A curve may contain up to 2000 data blocks in total.

Object 13 "Surface"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point of a curve

...
Data Block 002(x?, y?) - End-point of a line

...
Data Block 007(x?, y?) - Pivot point 1
Data Block 008(x?, y?) - Pivot point 2
Data Block 002(x?, y?) - End-point of a Bézier curve

...
Data Block 009(x?, y?) - End-point of the circular arc
Data Block 102(Orientation, - Orientation of the circular arc

 Curvature) - Curvature of the circular arc

A surface is a collection of several curves, each defining a closed area. A curve starts with a start-point in
a data block of type 001 followed by a sequence of curve elements. Three types of curve elements are
available:
Line

A line is simply defined by stating its end-point in a data block of type 002. The line is drawn from
the curve's current end-point to the line's end-point. The line's end-point then becomes the curve's
current end-point.

Bézier curve
A Bézier curve is defined by stating two pivot points in data blocks of type 007 and 008, and an end-
point in a data block of type 002. The Bézier curve is drawn from the curve's current end-point
(named 'S') to the Bézier curve's end-point (named 'E'), influenced by the two pivot points (named P1
and P2). The Bézier curve's end-point then becomes the curve's current end-point.
The points P of such a Bézier curve are calculated using the following equation:

P = (1-t)³×S + 3t(1-t)²×P1 + 3t²(1-t)×P2 + t³×E (0<=t<=1)
Circular arc

A circular arc is defined by two data blocks. The first is of type 009 and contains the end-point of the
arc, the second is of type 102 and contains both its orientation and its curvature. The arc is drawn
from the curve's current end-point (named 'S') to the arc's end-point (named 'E'), influenced by its
orientation and curvature. The arc's end-point then becomes the curve's current end-point.
The value Orientation determines whether to draw the arc in clockwise direction (Orientation < 0) or
in counter-clockwise direction (Orientation >= 0).
The value Curvature determines the radius of the arc in indirect manner. In can be handled in two
ways. In geometrical view, the absolute value of Curvature is 1/(2 tan(ß/2)), where ß is the arc-angle
of the circular arc. The sign of Curvature determines, which of the two possible arcs to use.
In practical use, this definition is not very handy. Instead, Curvature should be used to perform a
simple vector calculation to obtain the arc's defining center-point M:

x(M) = 0.5 * (x(S) + x(E)) - Curvature * (y(E) - y(S))
y(M) = 0.5 * (y(S) + y(E)) + Curvature * (x(E) - x(S))

After calculating the center-point, all points required to draw a standard circular arc are known. The
allowed value range of Curvature is ±1e100.

Each curve ends if either a new curve is started by a new start-point (in a data block of type 001) or the
complete surface is ended (by a data block of type 999). Each curve has to be closed, i.e. its start-point

and end-point have to be connected with a line.

If a surface consists of only one curve simply the inside area of that curve will be filled:

If a surface consists of multiple curves they will be filled alternately, i.e. only areas overlapped by an odd
number of curve's insides will be filled. If, e.g., a small round curve lies inside a large one, this small
round curve will be transparent, as its inside in overlapped by two curves (even number!):

If a surface is drawn with a non-solid line pattern, this line pattern has to be continued during each curve.
A surface may contain up to 1000 nested curves made of up to 2000 data blocks in total.

Object 15 "Ellipse"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 006(vx1, vy1) - Vector end-point 1
Data Block 006(vx2, vy2) - Vector end-point 2

The point (cx,cy) determines the ellipse's center-point, the points (vx1,vy1) and (vx2,vy2) are end-points
of vectors that define the ellipse. Having the center-point C and the two vectors V1 and V2 (vector from
the center-point to the respective vector end-point), the points P on such an ellipse are determined by the
following equation:

P = C + V1×sin(ß) + V2×cos(ß) (0 <= ß < 2pi)
The resulting ellipse can be any type of ellipse, rectangular as well as arbitrary.

Object 16 "Elliptical Arc"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 006(vx1, vy1) - Vector end-point 1
Data Block 006(vx2, vy2) - Vector end-point 2
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction

The point (cx,cy) determines the ellipse's center-point, the points (vx1,vy1) and (vx2,vy2) are end-points
of vectors that define the ellipse. The points (ax1,ay1) and (ax2,ay2), in relation to the ellipse's center-
point (cx,cy), determine the start- and end-angle of the arc. If Orientation >= 0, the arc is drawn counter-
clockwise from the start-angle to the end-angle. If Orientation < 0, the arc is drawn clockwise.

An elliptical arc is an "open" object, i.e. it has a non-closed outline and cannot be filled.

Object 17 "Elliptical Sector"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 006(vx1, vy1) - Vector end-point 1
Data Block 006(vx2, vy2) - Vector end-point 2
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction

The point (cx,cy) determines the ellipse's center-point, the points (vx1,vy1) and (vx2,vy2) are end-points
of vectors that define the ellipse. The points (ax1,ay1) and (ax2,ay2), in relation to the ellipse's center-
point (cx,cy), determine the start- and end-angle of the sector. If Orientation >= 0, the sector is drawn
counter-clockwise from the start-angle to the end-angle. If Orientation < 0, the sector is drawn clockwise.

Object 18 "Elliptical Segment"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 006(vx1, vy1) - Vector end-point 1
Data Block 006(vx2, vy2) - Vector end-point 2
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction

The point (cx,cy) determines the ellipse's center-point, the points (vx1,vy1) and (vx2,vy2) are end-points
of vectors that define the ellipse. The points (ax1,ay1) and (ax2,ay2), in relation to the ellipse's center-
point (cx,cy), determine the start- and end-angle of the segment. If Orientation >= 0, the segment is
drawn counter-clockwise from the start-angle to the end-angle. If Orientation < 0, the segment is drawn
clockwise.

Object 20 "Dimension Line Straight"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point
Data Block 002(x2, y2) - End-point
Data Block 220(...) - Dimension line parameters

The points (x1,y1) and (x2,y2) determine the start-point and end-point of the dimension. These points are
always the arrow's end-points, but not necessarily the line's end-points. If the arrows are rotated, the
dimension line will overlap the end-points.

A dimension line is an "open" object, i.e. it has a non-closed outline and cannot be filled. Nevertheless,
the dimension arrows will be filled if required. This is independent from the object's properties!

Object 21 "Dimension Line Curved"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction
Data Block 220(...) - Dimension line parameters

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius. The points (ax1,ay1) and (ax2,ay2), in relation to the circle's center-point (cx,cy),
determine the start- and end-angle of the arc. If Orientation >= 0, the arc is drawn counter-clockwise from
the start-angle to the end-angle. If Orientation < 0, the arc is drawn clockwise.

The two angles determine the arrow's end-points, but not necessarily the line's end-points. If the arrows
are rotated, the dimension line will overlap the given angles.

A dimension line is an "open" object, i.e. it has a non-closed outline and cannot be filled. Nevertheless,
the dimension arrows will be filled if required. This is independent from the object's properties!

Object 25 "Dimension Distance"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point
Data Block 002(x2, y2) - End-point
Data Block 000(dx1, dy1) - First dimension line definition
Data Block 000(dx2, dy2) - Second dimension line definition
Data Block 000(dx3, dy3) - Third dimension line definition
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 110(PreText) - Text in front of number (ElemCount = 250)
Data Block 110(NumText) - Dimension itself (ElemCount = -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 225(...) - Distance dimension parameters

The points (x1,y1) and (x2,y2) determine the distance to be measured. The point (dx1,dy1) determines the
dimension's direction and thus the dimension line's direction. The point (dx2,dy2) defines the distance
between the dimension line and the line to be measured. Finally, the point (dx3,dy3) determined the end-
point of the dimension line if uses a short form. The points (nx1,ny1) and (nx2,ny2) determine the
position and, if applicable, the orientation of the dimension number.

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

The name "Dimension Distance" does not mean that this object can only be used to dimension distances,
but that the reference is given by the distance of two points. As a result, this dimension can also be used to
dimension a diameter or radius in a plain view.

 Specific Usage of Data Block 225
LineOrientation

[long] The value LineOrientation determines the dimension's orientation, i.e. the direction into which
the dimension is to be calculated as well as the dimension line's orientation. This allows e.g. to
dimension a diagonal line vertically or horizontally. Possible values are:
0x0000 The dimension (and thus the dimension line) are parallel to the line stored in the object.
0x0001 The dimension (and thus the dimension line) are parallel to a line passing through the

line's start-point (x1,y1) and the first dimension line definition point (dx1,dy1).
0x0002 Identical to 0x0001. This setting is used inside the application to create a horizontal

dimension. After creating the object, it behaves like with value 0x0001.
0x0003 Identical to 0x0001. This setting is used inside the application to create a vertical

dimension. After creating the object, it behaves like with value 0x0001.
LineType

[long] The value LineType determines whether the dimension line has full size with two arrows or
only a partial length with one arrow. Additionally, it determines whether the dimension extension
lines shall be perpendicular to the dimension line or not. Possible values are:
0x0000 Full-length dimension line with two arrows. The dimension line is placed so that probable

dimension extension lines would be prependicular to it (even if they are not visible).

0x0001 Full-length dimension line with two arrows. The dimension line starts at a line passing
through the points (x2,y2) and (dx2,dy2) and ends at a line parallel to it, passing through
the point (x1,y1).

0x0002 Partial-length dimension line with one arrow. A probable dimension extension line would
be perpendicular to the dimension, starting at the end-point being closer to (dx2,dy2). At
this extension line starts the dimension line, having an arrow and extension line according
to ArrowStartForm, ArrowStartMode and ExtStartDisplay. The dimension line ends at a
line parallel to the dimension extension line, passing through the point (dx3,dy3).

LineDistMode
[long] The value LineDistMode determines how the dimension line's distance to the dimension is
calculated. The distance is always measured perpendicularly to the dimension line, even if it is rotated
(see LineOrientation). Possible values are:
0x0000 The dimension line passes through the point (dx2,dy2).
0x0001 The dimension line has exactly the distance stated in LineDistance to the nearest end of

the dimension. The position of (dx2,dy2) determines on what side it lies.
0x0002 The dimension line's distance to the nearest end of the dimension is a multiple of the

value stated in LineDistance, while being as close as possible to (dx2,dy2).

 Example
0,225,0,0, |BlockType|
0,0,400,"DINLQ", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,0,0,0,1, |Accuracy,Refresh,Centered,Tight,Rotate|
1,0,1,0, |ArrowStart...,ArrowEnd...|
1,1,1, |ExtStart/EndDisplay,LineDisplay|
1,0,0,10.0,0.0, |Orientation,Type,DistMode,Distance|
0; |System|

This distance dimension will be lettered with the font "DINLQ", using pen 1. The main dimension has a
text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number can be placed
anywhere, even be rotated, and it will not be updated automatically.
The dimension and thus the dimension line does not necessarily lie parallel to the dimension. The
dimension line is full-length and its distance to the dimension is arbitrary. Both dimension extension lines
will be visible, they are perpendicular to the dimension line. At both ends of the dimension line, a filled,
unrotated, triangular arrow will be drawn.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows a distance dimension created using the settings described above. The points
(x1,y1) and (x2,y2) define the distance to be dimensioned. The dimension shall be calculated horizontally,
so the first dimension line definition point (dx1,dy1) is placed besides the dimension's start-point (x1,y1).
The dimension line is parallel to a line passing through (dx1,dy1) and (x1,y1), and passes through the
second dimension line definition point (dx2,dy2). It is full-length and has an arrow at each end. As
LineType is set to 0x0000, the dimension extension lines are perpendicular.
The dimension number was placed by setting the point (nx1,ny1) and rotated by 90° by placing the point
(nx2,ny2) above it.

The image above shows another distance dimension. It was created using settings similar to the settings
described above but LineType was set to 0x0002, so the dimension line has only partial length and a
single arrow.
The dimension line starts at the point (dx1,dy1) and ends at the point (dx3,dy3). The dimension number
was placed non-rotated by placing (nx2,ny2) right to (nx1,ny1).

Object 26 "Dimension Radius"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 000(dx1, dy1) - First dimension line definition
Data Block 000(dx2, dy2) - Second dimension line definition
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 110(PreText) - Text in front of number (ElemCount =250)
Data Block 110(NumText) - Dimension itself (ElemCount = -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 225(...) - Radius dimension parameters

The point (cx,cy) is the center-point of the circle element whose radius is to be measured, the point (rx,ry)
determines the radius. The point (dx1,dy1) determines the dimension's direction and thus the dimension
line's direction, the point (dx2,dy2) defines the distance between the dimension line and the radius to be
measured. The points (nx1,ny1) and (nx2,ny2) determine the position and, if applicable, the orientation of
the dimension number.

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

The name "Dimension Radius" does not mean that this object can only be used to dimension a radius, but
that the reference is given by the radius of a circle element.

 Specific Usage of Data Block 225
LineOrientation

[long] The value LineOrientation determines the dimension's orientation, i.e. the direction into which
the dimension is to be calculated as well as the dimension line's orientation. This allows to dimension
a radius in a specific direction. Possible values are:
0x0000 The dimension (and thus the dimension line) are parallel to the radius stored in the object.
0x0001 The dimension (and thus the dimension line) are parallel to a line passing through the

center-point (cx,cy) and the first dimension line definition point (dx1,dy1).
0x0002 Identical to 0x0001. This setting is used inside the application to create a horizontal

dimension. After creating the object, it behaves like with value 0x0001.
0x0003 Identical to 0x0001. This setting is used inside the application to create a vertical

dimension. After creating the object, it behaves like with value 0x0001.
LineType

[long] The value LineType determines whether the dimension line has full size with two arrows or
only a partial length with one arrow. Additionally, it determines whether the dimension extension
lines shall be perpendicular to the dimension line or not. Possible values are:
0x0000 Full-length dimension line with two arrows. The dimension line is placed so that probable

dimension extension lines would be prependicular to it (even if they are not visible). Seen
from the circle's center, it starts at the same side that (dx1,dy1) lies at.

0x0001 Full-length dimension line with two arrows. The dimension line starts at a line passing

through the radius's start-point and (dx2,dy2) and ends at a line parallel to it, passing
through the point (cx,cy). Probable dimension extension lines are not necessarily
perpendicular to the dimension line.

0x0002 Partial-length dimension line with one arrow. A probable dimension extension line would
be perpendicular to the dimension, starting at the radius' end-point being closer to
(dx1,dy1). At this extension line starts the dimension line, having an arrow and extension
line according to ArrowStartForm, ArrowStartMode and ExtStartDisplay. The dimension
line ends at a line parallel to the dimension extension line, passing through the point
(dx2,dy2).

LineDistMode
[long] The value LineDistMode determines how the dimension line's distance to the dimension is
calculated. The distance is always measured perpendicularly to the dimension line, even if it is rotated
(see LineOrientation). Possible values are:
0x0000 The dimension line passes through the point (dx2,dy2).
0x0001 The dimension line has exactly the distance stated in LineDistance to the radius or the

circle. The position of (dx2,dy2) determines on what side it lies.
0x0002 The dimension line's distance to the radius or circle is a multiple of the value stated in

LineDistance, while being as close as possible to (dx2,dy2).

 Example
0,225,0,0, |BlockType|
0,0,400,"DINDRAFT", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,0,0,0,0, |Accuracy,Refresh,Centered,Tight,Rotate|
1,0,1,0, |ArrowStart...,ArrowEnd...|
1,1,1, |
ExtStartDisplay,ExtEndDisplay,LineDisplay|
1,1,0,10.0,0.0, |Orientation,Type,DistMode,Distance|
0; |System|

This radius dimension will be lettered with the font "DINDRAFT", using pen 1. The main dimension has
a text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number can be placed
anywhere, but not rotated, and it will not be updated automatically.
The dimension and thus the dimension line does not necessarily lie parallel to the dimension. The
dimension line is full-length and its distance to the dimension is arbitrary. Both dimension extension lines
will be visible, they are not perpendicular to the dimension line. At both ends of the dimension line, a
filled, unrotated, triangular arrow will be drawn.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows a radius dimension created using the settings described above. The points (cx,cy)
and (rx,ry) define the radius to be dimensioned. The dimension's orientation is determined by the first
dimension line definition point (dx1,dy1).
The dimension line is parallel to a line passing through (dx1,dy1) and (cx,cy), and passes through the
second dimension line definition point (dx2,dy2). It is full-length and has an arrow at each end. As
LineType is set to 0x0001 the dimension extension lines are not perpendicular, so the dimension line starts
exactly at (dx2,dy2).
The dimension number was placed by setting the point (nx1,ny1) and is not rotated because NumRotate is
set to 0x0000. The point (nx2,ny2) is not used. By setting PreText to the text "R " the dimension number
was equipped with a preceeding radius symbol.

The image above shows another radius dimension. It was created using settings similar to the settings
described above but LineType was set to 0x0002, so the dimension line has only partial length and a
single arrow.
The dimension line starts at the right as (dx1,dy1) lies right to the circle's center-point (cx,cy) and ends at
the point (dx2,dy2).
Additionally, NumRotate was set to 0x0001, i.e. the dimension number is rotated. Its position and
orientation is determined by the points (nx1,ny1) and (nx2,ny2). By setting PreText to the text "R " the
dimension number was equipped with a preceeding radius symbol.

Object 27 "Dimension Diameter"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 000(dx1, dy1) - First dimension line definition
Data Block 000(dx2, dy2) - Second dimension line definition
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 110(PreText) - Text in front of number (ElemCount = 250)
Data Block 110(NumText) - Dimension itself (ElemCount= -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 225(...) - Diameter dimension parameters

The point (cx,cy) is the center-point of the circle element whose diameter is to be measured, the point
(rx,ry) determines the radius. The point (dx1,dy1) determines the dimension's direction and thus the
dimension line's direction, the point (dx2,dy2) defines the distance between the dimension line and the
diameter to be measured. The points (nx1,ny1) and (nx2,ny2) determine the position and, if applicable,
the orientation of the dimension number.

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

The name "Dimension Diameter" does not mean that this object can only be used to dimension a
diameter, but that the reference is given by the diameter of a circle element.

 Specific Usage of Data Block 225
LineOrientation

[long] The value LineOrientation determines the dimension's orientation, i.e. the direction into which
the dimension is to be calculated as well as the dimension line's orientation. This allows to dimension
a diameter in a specific direction. Possible values are:
0x0000 The dimension (and thus the dimension line) are parallel to the diameter stored in the

object.
0x0001 The dimension (and thus the dimension line) are parallel to a line passing through the

center-point (cx,cy) and the first dimension line definition point (dx1,dy1).
0x0002 Identical to 0x0001. This setting is used inside the application to create a horizontal

dimension. After creating the object, it behaves like with value 0x0001.
0x0003 Identical to 0x0001. This setting is used inside the application to create a vertical

dimension. After creating the object, it behaves like with value 0x0001.
LineType

[long] The value LineType determines whether the dimension line has full size with two arrows or
only a partial length with one arrow. Additionally, it determines whether the dimension extension
lines shall be perpendicular to the dimension line or not. Possible values are:
0x0000 Full-length dimension line with two arrows. The dimension line is placed so that probable

dimension extension lines would be prependicular to it (even if they are not visible). Seen
from the circle's center, it starts at the same side that (dx1,dy1) lies at.

0x0001 Full-length dimension line with two arrows. The dimension line starts at a line passing
through the diameter's start-point and (dx2,dy2) and ends at a line parallel to it, passing
through the corresponding diameter end-point at the other side of the circle. Probable
dimension extension lines are not necessarily perpendicular to the dimension line.

0x0002 Partial-length dimension line with one arrow. A probable dimension extension line would
be perpendicular to the dimension, starting at the diameter's end-point being closer to
(dx1,dy1). At this extension line starts the dimension line, having an arrow and extension
line according to ArrowStartForm, ArrowStartMode and ExtStartDisplay. The dimension
line ends at a line parallel to the dimension extension line, passing through the point
(dx2,dy2).

LineDistMode
[long] The value LineDistMode determines how the dimension line's distance to the dimension is
calculated. The distance is always measured perpendicularly to the dimension line, even if it is rotated
(see LineOrientation). Possible values are:
0x0000 The dimension line passes through the point (dx2,dy2).
0x0001 The dimension line has exactly the distance stated in LineDistance to the radius or the

circle. The position of (dx2,dy2) determines on what side it lies.
0x0002 The dimension line's distance to the radius or circle is a multiple of the value stated in

LineDistance, while being as close as possible to (dx2,dy2).

 Example
0,225,0,0, |BlockType|
0,0,400,"DINDRAFT", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,0,0,0,0, |Accuracy,Refresh,Centered,Tight,Rotate|
1,0,1,0, |ArrowStart...,ArrowEnd...|
1,1,1, |
ExtStartDisplay,ExtEndDisplay,LineDisplay|
1,1,0,10.0,0.0, |Orientation,Type,DistMode,Distance|
0; |System|

This radius dimension will be lettered with the font "DINDRAFT", using pen 1. The main dimension has
a text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number can be placed
anywhere, but not rotated, and it will not be updated automatically.
The dimension and thus the dimension line does not necessarily lie parallel to the dimension. The
dimension line is full-length and its distance to the dimension is arbitrary. Both dimension extension lines
will be visible, they are not perpendicular to the dimension line. At both ends of the dimension line, a
filled, unrotated, triangular arrow will be drawn.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows a diameter dimension created using the settings described above. The points
(cx,cy) and (rx,ry) define the diameter to be dimensioned. The dimension's orientation is determined by
the first dimension line definition point (dx1,dy1).
The dimension line is parallel to a line passing through (dx1,dy1) and (cx,cy), and passes through the
second dimension line definition point (dx2,dy2). It is full-length and has an arrow at each end. As
LineType is set to 0x0001 the dimension extension lines are not perpendicular, so the dimension line starts
exactly at (dx2,dy2).
The dimension number was placed by setting the point (nx1,ny1) and is not rotated because NumRotate is
set to 0x0000. The point (nx2,ny2) is not used. By setting PreText to the text "Ø" the dimension number
was equipped with a preceeding diameter symbol.

The image above shows another diameter dimension. It was created using settings similar to the settings
described above, but LineType was set to 0x0002, so the dimension line has only partial length and a
single arrow.
The dimension line starts at the right as (dx1,dy1) lies right to the circle's center-point (cx,cy) and ends at
the point (dx2,dy2).
Additionally, NumRotate was set to 0x0001, i.e. the dimension number is rotated. Its position and
orientation is determined by the points (nx1,ny1) and (nx2,ny2). By setting PreText to the text "Ø" the
dimension number was equipped with a preceeding diameter symbol.

Object 28 "Dimension Angle"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point first edge
Data Block 002(x2, y2) - End-point first edge
Data Block 001(x3, y3) - Start-point second edge
Data Block 002(x4, y4) - End-point second edge
Data Block 000(dx2, dy2) - Dimension line definition
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 110(PreText) - Text in front of number (ElemCount = 250)
Data Block 110(NumText) - Dimension itself (ElemCount = -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 225(...) - Angle dimension parameters

The points (x1,y1) and (x2,y2) define the first edge of the angle, the points (x3,y3) and (x4,y4) define the
second edge. The point (dx2,dy2) defines the position of the dimension line, including which partial angle
shall be measured. The dimension line is a circular arc and has its center-point in the virtual (or real)
intersection point of the two edges. The points (nx1,ny1) and (nx2,ny2) determine the position and, if
applicable, the orientation of the dimension number.

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

 Specific Usage of Data Block 225
LineOrientation,
LineType

[long] Unused.
LineDistMode

[long] The value LineDistMode determines how the dimension line's distance to the dimension is
calculated. The distance is always measured relative to the one of the edge's end-points that is farest
away from the virtual (or real) intersection point of the two edges. Possible values are:
0x0000 The dimension line passes through the point (dx2,dy2).
0x0001 The dimension line has exactly the distance stated in LineDistance to the edge's end-

point. The position of (dx2,dy2) determines what partial angle to use.
0x0002 The dimension line's distance is a multiple of the value stated in LineDistance, while

being as close as possible to (dx2,dy2). The position of (dx2,dy2) determines what partial
angle to use.

 Example
0,225,0,0, |BlockType|
0,0,400,"DINLQ", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0, | ... |
0, |TextXProperty.Layer|

5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,1,1,1,0, |Accuracy,Refresh,Centered,Tight,Rotate|
1,0,1,0, |ArrowStart...,ArrowEnd...|
1,1,1, |
ExtStartDisplay,ExtEndDisplay,LineDisplay|
1,1,1,10.0,0.0, |Orientation,Type,DistMode,Distance|
0; |System|

This angle dimension will be lettered with the font "DINLQ", using pen 1. The main dimension has a text
size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number will automatically placed
centered and tight to the dimension line, it will be updated automatically.
The dimension line has a fixed distance of 10 mm to the edge's end-point. Both dimension extension lines
will be visible, they are drawn radially from an edge's end-point to the dimension line. At both ends of the
dimension line, a filled, unrotated, triangular arrow will be drawn.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows an angle dimension created using the settings described above. The points
(x1,y1), (x2,y2), (x3,y3) and (x4,y4) define the two edges of the angle. The dimension line has a distance
of 10 mm to the point (x4,y4).
The dimension number was centered and set tight automatically, so the point (nx1,ny1) is irrelevant. As
the number is not rotated the point (nx2,ny2) is not used.
The orientation of the two edges together with the dimension line definition point (dx1,dy1) determines
which of the possible eight angles is to be measured. As (x2,y2) is above (x1,y1), the dimension starts
above the virtual intersection point. As (x4,y4) is right to (x3,y3), the dimension ends right to the virtual
intersection point. This constellation still allows two angles - one running clockwise from top to right, one
running counter-clockwise. Now the dimension line definition point (dx2,dy2) determines which one to
choose. In this case it is the angle running clockwise, i.e. the smaller angle at the upper right.

The image above shows a similar angle dimension, but the end-points of the first edge are placed vice
versa. As (x2,y2) now lies below (x1,y1), the dimension starts below the virtual intersection point.
According to the dimension line definition point (dx2,dy2), the lower right angle is to be measured.

The image above shows another similar angle dimension but now dimension line definition point
(dx2,dy2) was placed somewhere else, so now the upper left angle is measured.

Note: The two edges of the angle do not have to intersect directly even though they do in all examples
shown here. In any case a "virtual" intersection point is calculated, i.e. the intersection of the edges
extended to endless lines. If both edges are parallel no dimension is displayed!

Object 29 "Dimension Arc Length"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition
Data Block 005(ax1, ay1) - Start-angle definition
Data Block 005(ax2, ay2) - End-angle definition
Data Block 101(Orientation) - Arc direction
Data Block 000(dx2, dy2) - Dimension line definition
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 110(PreText) - Text in front of number (ElemCount = 250)
Data Block 110(NumText) - Dimension itself (ElemCount = -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 225(...) - Arc length dimension parameters

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius. The points (ax1,ay1) and (ax2,ay2), in relation to the circle's center-point (cx,cy),
determine the start- and end-angle of the arc. If Orientation >= 0, the arc is drawn counter-clockwise from
the start-angle to the end-angle. If Orientation < 0, the arc is drawn clockwise.
The point (dx2,dy2) determines the radius of the dimension line. The dimension line is a circular arc and
has the same center-point as the circle element to be measured. The points (nx1,ny1) and (nx2,ny2)
determine the position and, if applicable, the orientation of the dimension number.

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

 Specific Usage of Data Block 225
LineOrientation,
LineType

[long] Unused.
LineDistMode

[long] The value LineDistMode determines how the dimension line's distance to the dimension is
calculated. The distance is the difference of the circle's and the dimension line's radius. Possible
values are:
0x0000 The dimension line passes through the point (dx2,dy2).
0x0001 The dimension line has exactly the distance stated in LineDistance. The position of

(dx2,dy2) determines on what side it lies.
0x0002 The dimension line's distance is a multiple of the value stated in LineDistance, while

being as close as possible to (dx2,dy2).

 Example
0,225,0,0, |BlockType|
0,0,400,"DINDRAFT", |TextFont|

1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,1,1,1,0, |Accuracy,Refresh,Centered,Tight,Rotate|
1,0,1,0, |ArrowStart...,ArrowEnd...|
1,1,1, |
ExtStartDisplay,ExtEndDisplay,LineDisplay|
1,1,0,10.0,0.0, |Orientation,Type,DistMode,Distance|
0; |System|

This arc length dimension will be lettered with the font "DINLQ", using pen 1. The main dimension has a
text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number will automatically
placed centered and tight to the dimension line, it will be updated automatically.
The dimension line has a fixed distance of 10 mm to the circular arc. Both dimension extension lines will
be visible, they are either drawn radially from an edge's end-point to the dimension line or parallel (this
depends on settings in the application). At both ends of the dimension line, a filled, unrotated, triangular
arrow will be drawn.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows an arc length dimension created using the settings described above. The points
(cx,cy), (rx,ry), (ax1,ay1) and (ax2,ay2) define the circluar arc to be measured. The dimension line has a
distance of 10 mm, the point (dx2,dy2) determines its position.
The dimension number was centered and set tight automatically, so the point (nx1,ny1) is irrelevant. As
the number is not rotated the point (nx2,ny2) is not used.

Object 30 "Dimension Coordinate"

 Data Block Sequence
Data Block 000(x1, y1) - Coordinate to be dimensioned
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 110(PreText) - Text in front of coordinates (ElemCount = 250)
Data Block 110(Coord1Text) - X-coordinate (ElemCount = -250)
Data Block 110(MiddleText) - Text between coordinates (ElemCount = 250)
Data Block 110(Coord2Text) - Y-coordinate (ElemCount = -250)
Data Block 110(PostText) - Text behind coordinates (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 230(...) - Coordinate dimension parameters

The point (x1,y1) is the point whose coordinates shall be measured. The points (nx1,ny1) and (nx2,ny2)
determine the position and, if applicable, the orientation of the dimension number.

The following texts make up the dimension texts to be displayed, where PreText, Coord1Text, MiddleText,
Coord2Text and PostText will be connected to one text ("Main dimension text") without separating
characters.

 Example
0,230,0,0, |BlockType|
0,0,400,"DINLQ", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,1,0, |Accuracy,Refresh,Rotate|
0; |System|

This coordinate dimension will be lettered with the font "DINLQ", using pen 1. The main dimension has
a text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number will not be rotated,
but automatically be updated.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows a coordinate dimension created using the settings described above. The point
(x1,y1) defines the coordinate, the point (nx1,ny1) places the dimension number. As the number is not
rotated, the point (nx2,ny2) is not used.

PreText is set to "(" by default, MiddleText is set to "/" and PostText is set to ")".

Object 31 "Dimension Area"

 Data Block Sequence
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 100(Area) - Area in mm²
Data Block 110(PreText) - Text in front of number (ElemCount = 250)
Data Block 110(NumText) - Area as a text (ElemCount = -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 230(...) - Area dimension parameters

The points (nx1,ny1) and (nx2,ny2) determine the position and, if applicable, the orientation of the
dimension number. The area value is explicitly stored in Area, using internal square millimeters. When
updating this dimension, the value stored in Area is written to NumText, considering the current scale and
length unit. The value of Area itself remains unchanged!

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

 Example
0,230,0,0, |BlockType|
0,0,400,"DINDRAFT", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,1,1, |Accuracy,Refresh,Rotate|
0; |System|

This area dimension will be lettered with the font "DINDRAFT", using pen 1. The main dimension has a
text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number is rotated and will
automatically be updated.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows an area dimension created using the settings described above. The points
(nx1,ny1) and (nx2,ny2) place and rotate the dimension number.

PreText is set to "€" (Ansi 128) by default.

Object 32 "Dimension Perimeter"

 Data Block Sequence
Data Block 000(nx1, ny1) - First dimension number definition
Data Block 000(nx2, ny2) - Second dimension number definition
Data Block 100(Perimeter) - Perimeter in mm
Data Block 110(PreText) - Text in front of number (ElemCount = 250)
Data Block 110(NumText) - Perimeter as a text (ElemCount = -250)
Data Block 110(PostText) - Text behind the number (ElemCount = 250)
Data Block 110(Tolerance1) - Upper tolerance (ElemCount = 250)
Data Block 110(Tolerance2) - Lower tolerance (ElemCount = 250)
Data Block 230(...) - Perimeter dimension parameters

The points (nx1,ny1) and (nx2,ny2) determine the position and, if applicable, the orientation of the
dimension number. The perimeter value is explicitly stored in Perimeter, using internal millimeters. When
updating this dimension, the value stored in Perimeter is written to NumText, considering the current scale
and length unit. The value of Perimeter itself remains unchanged!

The following texts make up the dimension texts to be displayed, where PreText, NumText and PostText
will be connected to one text ("Main dimension text") without separating characters.

 Example
0,230,0,0, |BlockType|
0,0,400,"DINDRAFT", |TextFont|
1, |TextXProperty.Flag|
1,0,0.0/0.0/0.0,0.0/0.0/0.0,0.0,0, | ... |
0, |TextXProperty.Layer|
5.0,3.5, |TextSize1,TextSize2|
0,4,1, |CharDistance,TabDistance,TextMode|
2,0,1, |Accuracy,Refresh,Rotate|
0; |System|

This perimeter dimension will be lettered with the font "DINDRAFT", using pen 1. The main dimension
has a text size of 5 mm, the tolerances have a text size of 3.5 mm. The dimension number is rotated and
will not automatically be updated.
The dimension will be calculated according to the settings in the coordinate system "00: *Standard".

The image above shows a perimeter dimension created using the settings described above. The points
(nx1,ny1) and (nx2,ny2) place and rotate the dimension number.

Object 35 "Standard Text"

 Data Block Sequence
Data Block 110(Text) - Text (ElemCount = 8000)
Data Block 235(...) - Standard text parameters

The value Text contains the text to be displayed. Its length may be up to 8000 characters including the
terminating null character (0x00).
In order to achieve a tabulator, use the character ¬ (Ansi 172). For a line feed, use the character ¶ (Ansi
182). All other characters between Ansi 32 and Ansi 255 inclusive will be displayed using the given font.
Characters below Ansi 32 will be ignored.

Object 36 "Frame Text"

 Data Block Sequence
Data Block 000(x1, y1) - Corner-point
Data Block 000(x2, y2) - First edge's end-point
Data Block 000(x3, y3) - Second edge's end-point
Data Block 110(Text) - Text (ElemCount = 8000)
Data Block 236(...) - Frame text parameters

The three points define a parallogramm ("frame") that surrounds the frame text. The point (x1,y1) is the
starting corner of the text, the point (x2,y2) in relation to the first point defines the direction and length of
each text line, and the point (x3,y3) in relation to the first point defines the process direction, i.e. the
direction into which the base line is moved after each line.

The value Text contains the text to be displayed. Its length may be up to 8000 characters including the
terminating null character (0x00).
In order to achieve a tabulator, use the character ¬ (Ansi 172). For a line feed, use the character ¶ (Ansi
182). All other characters between Ansi 32 and Ansi 255 inclusive will be displayed using the given font.
Characters below Ansi 32 will be ignored.

Long lines will be broken either at the characters Ansi 32, - (Ansi 45) or ¬ (Ansi 172). The characters
Ansi 160 and (Ansi 172) will not be used as word-breaks. A single word will newer be broken, even if it
might be larger than the text frame!

Object 37 "Reference Text"

 Data Block Sequence
Data Block 000(x, y) - Reference point
Data Block 110(Text) - Text (ElemCount = 8000)
Data Block 235(...) - Standard text parameters
Data Block 237(...) - Reference text parameters

The value Text contains the text to be displayed. Its length may be up to 8000 characters including the
terminating null character (0x00).
In order to achieve a tabulator, use the character ¬ (Ansi 172). For a line feed, use the character ¶ (Ansi
182). All other characters between Ansi 32 and Ansi 255 inclusive will be displayed using the given font.
Characters below Ansi 32 will be ignored.

Object 40 "Comment"

 Data Block Sequence
Data Block 000(rx, ry) - Reference position
Data Block 000(cx, cy) - Position of the comment's center
Data Block 110(Text) - Comment text (ElemCount = 250)

This object type is used to apply a comment text to any object, area or location inside a drawing. This is
used for information interchange of several engineers working on the same drawing.

The point (rx,ry) is the reference position, i.e. the end-point of the comment's arrow. The point (cx,cy)
determines the comment's center-point, i.e. the center of a rectangular region containing the comment
text. The value Text contains the comment text to be displayed. Its length may be up to 250 characters
including the terminating null character (0x00).

Long lines will be broken either at the characters Ansi 32 or - (Ansi 45). The characters Ansi 160 and ''
Ansi 172 will not be used as word-breaks.

Comments are displayed in a filled rectangle with rounded corners. The exact appearence of comments
(size, color etc.) is determined by the user inside the application.

Object 41 "Marking"

 Data Block Sequence
Data Block 010(x1, y1) - Marking

...
Data Block 010(x?, y?) - Marking

This object type contains a collection of "markings". A marking is used to store and display specific
positions in the drawing. They are especially used during construction and to save positions for further
reference. Markings will usually not be output to printer or clipboard.

A marking object may contain up to 2000 markings in total.

Object 42 "Clipping Surface"

 Data Block Sequence
Data Block 242(...) - Instance information
Data Block 001(x1, y1) - Start-point of a curve

...
Data Block 002(x?, y?) - End-point of a line

...
Data Block 007(x?, y?) - Pivot point 1
Data Block 008(x?, y?) - Pivot point 2
Data Block 002(x?, y?) - End-point of a Bézier curve

...
Data Block 009(x?, y?) - End-point of the circular arc
Data Block 102(Orientation, - Orientation of the circular arc

 Curvature) - Curvature of the circular arc

A clipping surface is a collection of several curves, each defining a closed area. A curve starts with a start-
point in a data block of type 001 followed by a sequence of curve elements. Three types of curve elements
are available:
Line

A line is simply defined by stating its end-point in a data block of type 002. The line is drawn from
the curve's current end-point to the line's end-point. The line's end-point then becomes the curve's
current end-point.

Bézier curve
A Bézier curve is defined by stating two pivot points in data blocks of type 007 and 008, and an end-
point in a data block of type 002. The Bézier curve is drawn from the curve's current end-point
(named 'S') to the Bézier curve's end-point (named 'E'), influenced by the two pivot points (named P1
and P2). The Bézier curve's end-point then becomes the curve's current end-point.
The points P of such a Bézier curve are calculated using the following equation:

P = (1-t)³×S + 3t(1-t)²×P1 + 3t²(1-t)×P2 + t³×E (0<=t<=1)
Circular arc

A circular arc is defined by its end-point in a data block of type 009, and its orientation and curvature
in a data block of type 102. The arc is drawn from the curve's current end-point (named 'S') to the
arc's end-point (named 'E'), influenced by its orientation and curvature. The arc's end-point then
becomes the curve's current end-point.
The value Orientation determines whether to draw the arc in clockwise direction (Orientation < 0) or
in counter-clockwise direction (Orientation >= 0).
The value Curvature determines the radius of the arc in indirect manner. In can be handled in two
ways. In geometrical view, the absolute value of Curvature is 1/(2 tan(ß/2)), where ß is the arc-angle
of the circular arc. The sign of Curvature determines, which of the two possible arcs to use.
In practical use, this definition is not very handy. Instead, Curvature should be used to perform a
simple vector calculation to obtain the arc's defining center-point M:

x(M) = 0.5 * (x(S) + x(E)) - Curvature * (y(E) - y(S))
y(M) = 0.5 * (y(S) + y(E)) + Curvature * (x(E) - y(S))

After calculating the center-point, all points required to draw a standard circular arc are known. The
allowed value range of Curvature is ±1e100.

Each curve ends if either a new curve is started by a new start-point (in a data block of type 001) or the

complete surface is ended (by a data block of type 999). Each curve has to be closed, i.e. its start-point
and end-point have to be connected with a line.

If a surface consists of only one curve simply the inside area of that curve will be filled:

If a surface consists of multiple curves they will be filled alternately, i.e. only areas overlapped by an odd
number of curve's insides will be filled. If, e.g., a small round curve lies inside a large one, this small
round curve will be transparent, as its inside in overlapped by two curves (even number!):

If a surface is drawn with a non-solid line pattern, this line pattern has to be continued during each curve.
A surface may contain up to 1000 nested curves made of up to 2000 data blocks in total.

Object 43 "Bitmap Reference"

 Data Block Sequence
Data Block 243(...) - Bitmap information

A bitmap reference is a reference to a bitmap file featuring a bitmap's filename and a display matrix. The
display matrix determines the location, size and orientation of the bitmap display.

If the bitmap referenced by this object is a monochrome bitmap, the line color and fill color of this objects
are used as the foreground and background color of the bitmap. If the bitmap if a non-monochrome
bitmap, the object's properties have no direct influence in the bitmap's display. Anyway, the layer
information is checked, i.e. bitmap references in invisible layers will not be visible and so on.

Object 45 "Geometry Line"

 Data Block Sequence
Data Block 001(x1, y1) - Start-point
Data Block 002(x2, y2) - End-point

The points (x1,y1) and (x2,y2) determine two points the line is passing through. The line is endless, i.e. it
starts at one end of the coordinate range and ends at the other end. Geometry lines will usually not be
output to printer or clipboard.

A geometry line is an "open" object, i.e. it has a non-closed outline and cannot be filled.

Object 46 "Geometry Circle"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 004(rx, ry) - Radius definition

The point (cx,cy) determines the circle's center-point, the point (rx,ry) is a point on the circle's outline and
thus defines the radius. Geometry circles will usually not be output to printer or clipboard.

Object 47 "Geometry Ellipse"

 Data Block Sequence
Data Block 003(cx, cy) - Center-point
Data Block 006(vx1, vy1) - Vector end-point 1
Data Block 006(vx2, vy2) - Vector end-point 2

The point (cx,cy) determines the ellipse's center-point, the points (vx1,vy1) and (vx2,vy2) are end-points
of vectors that define the ellipse. Having the center-point C and the two vectors V1 and V2 (vector from
the center-point to the respective vector end-point), the points P on such an ellipse are determined by the
following equation:

P = C + V1×sin(ß) + V2×cos(ß) (0 <= ß < 2pi)
The resulting ellipse can be any type of ellipse, rectangular as well as arbitrary. Geometry ellipses will
usually not be output to printer or clipboard.

Entity "Instance"
This entity represents an instance (internal or external reference) of a block. It is used to reference and
display a block definition. An entity of type "Instance" has the following structure:

 Element Sequence
UnitOwner,1,XProperty,
LibraryName,BlockName,DisplayMatrix;
-Data Section-

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the instance including transmission.

LibraryName
[TEXT64] Name of the library containing the desired block, maximum 63 characters. If the instance
references a block located in the same drawing / library as the instance, set this name to "*".

BlockName
[TEXT64] Name of the block, maximum 63 characters. If the first character is 0x00, this instance is
invalid and will neither be loaded nor stored!
If LibraryName is set to "*", the content of BlockName may have a special form. If the first character
is # (Ansi 35), the block is a special, internally used and handled block (see Entity "Group" and Entity
"Position Number"). The function of this block then depends on the character following the # sign.
Such instances are only allowed inside drawings, not inside libraries!

DisplayMatrix
[MATRIX] Display matrix of the block. All entities stored in the block have to be multiplied with this
matrix before display. It contains translation, rotation, scaling and shearing.

Following is the data section of this entity. This section contains a list of data blocks (see Entities and
Data Blocks). Currently, instances do only contain local attributes. This may change in further releases, so
be prepared to find global attributes and other data blocks in this section.

 Examples
0,3,64,0,0,0/0/0,0/0/0,0.0,0,0,1, |HeaderType,XProperty|
"*", |LibraryName|
"Furniture\Living Room\Sideboard", |BlockName|
2.0,0.0,0.0,2.0,0.0,0.0; |DisplayMatrix|
0,400,0,250,"Material","Pine", |B400|
0,999,0,0; |B999|

This instance inserts the block "Furniture\Living Room\Sideboard" that has been introduced in the
chapter Entity "Block". As the block is an internal block of the drawing, and not an external block in a

library, LibraryName is set to "*". The layer index 1 is transmitted to all entities of the block, the block
will be displayed at location (0.0,0.0), scaled by factor 2.0.

The instance has received the local attribute "Material" from the block's definition, its content was
changed from "Oak" to "Pine" either during creation of the instance or later by explicit editing of the user.

0,3,0,0,0,0/0/0,0/0/0,0.0,0,0,0, |HeaderType,XProperty|
"Screws", |LibraryName|
"Cylinder Screws\DIN 912\M8", |BlockName|
-1.0,0.0,0.0,-1.0,10.0,-7.0; |DisplayMatrix|
0,999,0,0; |B999|

This instance inserts the external block "M8" of the library "Screws". It is placed in the subfolder "DIN
912" which is located in the folder "Cylinder Screws". The entities of the block will be displayed with
their own properties (XProperty.Flag = USE_NULL). The block will be displayed at the location (10.0,-
7.0), rotated by 180°. This instance does not own any attribute.

Entity "Block"
This entity represents either an internal (inside a drawing file) or an external (inside a library file) block
definition. Both definitions are handled similar, they both are a named collection of multiple entities,
being referenced by instances (see Entity "Instance").

All entities inside a block are moved in a way that their origin (coordinate (0.0,0.0)) is the desired
"insertion point" of the block. The insertion point is entered by the user when creating a block, it
determines the location he wants to enter later when inserting the block into a drawing.

Blocks are referred to by their names. Such a block name consists of folder names and the block name,
assembled similar to file names. The folder names and the final block names are separated by a back-slash
\ (Ansi 92). Each name element may be up to 63 characters long, the assembled block name may also be
up to 63 characters long. A possible block name would be e.g. "Cylinder Screws\DIN 912\M8". This
name describes a block named "M8", being located in the folder "DIN 912", which is a sub-folder of
"Cylinder Screws".

An entity of type "Block" has the following structure:

 Element Sequence
UnitOwner,2,XProperty,BlockName,BlockRect;
-Data Section-

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the block including transmission (a block does usually not contain any
transmission information unless explicitly enforced by the user).

BlockName
[TEXT64] Name of the block, up to 63 characters. If the first character of the block's name is 0x00,
the block is invalid and will neither be loaded nor saved!
If the first character of the block's name is # (Ansi 35), the block is a special, internally used and
handled block (see Entity "Group" and Entity "Position Number"). The function of this block then
depends on the character following the # sign. Such blocks are only allowed inside drawings, not
inside libraries!

BlockRect
[DRECT] Rectangular frame surrounding the character cell, valid only if the block is a character
inside a font library (see Font Libraries). In this case, (BlockRect.x1 / BlockRect.y1) is the lower left
corner, (BlockRect.x2 / BlockRect.y2) is the upper right corner of the cell.

Following is the data section of this entity. This section contains a list of data blocks (see Entities and
Data Blocks). Currently, blocks do only contain global and local attributes. This may change in further
releases, so be prepared to find other data blocks in this section.

 Example
0,2,0,0,0,0/0/0,0/0/0,0.0,0,0,0, |HeaderType,XProperty|
"Furniture\Living Room\Sideboard", |BlockName|
-10.0,-5.0,10.0,5.0; |BlockRect|
0,301,0,250,"Price","349.00"; |B301|
0,400,0,250,"Material","Oak"; |B400|
0,999,0,0; |B999|

This defines a block named "Sideboard", residing in the sub-folder "Living Room" of the folder
"Furniture". The entities of this block will be displayed unmodified (XProperty.Flag = USE_NULL). The
surrounding rectangle of the block (as calculated by the application when creating this block) is (-10.0, -
5.0, 10.0, 5.0).
The block owns a global numeric attribute named "Price", its value is "135.00", and a local attribute
named "Material" with a predefined value of "Oak".

Behind this entity, a sequence of all entities of the blocks will follow, ended by an entity of type "End of
List".

Entity "Group"
A "group" is not a new entity type, but a special form of the Entity "Block". This block form is indicated
by a special content of the values LibraryName and BlockName:

 Element Sequence
UnitOwner,2,XProperty,BlockName,BlockRect;
-Data Section-

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the block including transmission (a block does usually not contain any
transmission information unless explicitly enforced by the user).

LibraryName
[TEXT64] This value has to be set to "*", i.e. groups can only occur inside drawings, not inside
libraries!

BlockName
[TEXT64] The name of a group block must have the following form:

"#G\ ..." (Ansi 35 71 92 ...)
where "..." is a character sequence that identifies each group unequivocally. Usually, the application
creates group names of the following form:

"#G\sssss-sss-xxxxxxxxxxxxx"
The value "xxxxxxxxxxxxxx" is the current system time in milliseconds plus random digits, "sssss-
sss" is the serial number of the application. This leads to a unique name used to refer to a group.
Anyway, the user will usually have no need to know a group's name, as group are always handled
directly by simply identifying them via mouse clicks.

Important! Groups (like all special blocks whose names start with #) have a special quality that "normal"
blocks do not have: They are aware of all attributes that the entities collected in such a block do own. If a
group contains an instance, the group itself knows all attributes of that instance and all attributes of the
block the instance refers to.
This quality can be used to display attribute values of instances or blocks: Create a text object containing
a variable stating the attribute's name (see Data Block Type 110 (Text) for a description of variables), and
combine this text object together with the instance in a group.

Groups will usually be handled like "normal" blocks, i.e. they will appear in all dialogs used to select or
modify blocks. The user will be able to select such a group from the drawing's local library and insert it
into the drawing. But groups are automatically maintained, i.e. they will be deleted as soon as no instance
of them exists any more. This deletion will take place each time the drawing is loaded or saved.

Entity "Position Number"
A "position number" is not a new entity type, but a special form of the Entity "Block". This block form is
indicated by a special content of the values LibraryName and BlockName:

 Element Sequence
UnitOwner,2,XProperty,BlockName,BlockRect;
-Data Section-

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the block including transmission (a block does usually not contain any
transmission information unless explicitly enforced by the user).

LibraryName
[TEXT64] This value has to be set to "*", i.e. position numbers can only occur inside drawings, not
inside libraries!

BlockName
[TEXT64] The name of a position number block must have the following form:

"#P\ ..." (Ansi 35 80 92 ...)
where "..." is a character sequence that identifies each position number unequivocally. Usually, the
application creates position number names of the following form:

"#P\sssss-sss-xxxxxxxxxxxxx"
The value "xxxxxxxxxxxxxx" is the current system time in milliseconds plus random digits, "sssss-
sss" is the serial number of the application. This leads to a unique name used to refer to a position
number. Anyway, the user will usually have no need to know a position number's name, as position
numbers are always handled directly by simple identifying them via mouse clicks.

Important! Position numbers (like all special blocks whose names start with #) have a special quality
that "normal" blocks do not have: They are aware of all attributes that the entities collected in such a
block do own. If a position number contains an instance, the position number itself knows all attributes of
that instance and all attributes of the block the instance refers to.
This quality can be used to display attribute values of instances or blocks: Create a text object containing
a variable stating the attribute's name (see Data Block Type 110 (Text) for a description of variables), and
combine this text object together with the instance in a position number.

Position numbers will usually be handled like "normal" blocks, i.e. they will appear in all dialogs used to
select or modify blocks. The user will be able to select such a position number from the drawing's local
library and insert it into the drawing. But position numbers are automatically maintained, i.e. they will be
deleted as soon as no instance of them exists any more. This deletion will take place each time the
drawing is loaded or saved.

Entity "Custom-Defined"
This entity represents a user-defines entity, i.e. an entity that was created by an plug-in. Such an entity can
only be displayed and modified if an plug-in is present that knows how to handle such an entity. An entity
of type "Custom-Defined" has the following structure:

 Element Sequence
UnitOwner,9,XProperty,
LibraryName,BlockName,DisplayMatrix,
UserType;
-Data Section-

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

XProperty
[XPROPERTY] Properties of the display instance including transmission.

LibraryName
[TEXT64] Name of the library containing the desired display block, maximum 63 characters. If the
instance references a block located in the same drawing / library as the instance, set this name to "*".

BlockName
[TEXT64] Name of the display block, maximum 63 characters. If the first character is 0x00, this
instance is invalid and will neither be loaded nor stored!
If LibraryName is set to "*", the content of BlockName may have a special form. If the first character
is # (Ansi 35), the block is a special, internally used and handled block (see Entity "Group" and Entity
"Position Number"). The function of this block then depends on the character following the # sign.
Such instances are only allowed inside drawings, not inside libraries!

DisplayMatrix
[MATRIX] Display matrix of the display block. All entities stored in the block have to be multiplied
with this matrix before display. It contains translation, rotation, scaling and shearing.

UserType
[long] Internal identification of the custom-defined object. For detailed information about this
identification, see the documentation of the program or plug-in that created this entity.

Following is the data section of this entity. This section contains a list of data blocks (see Entities and
Data Blocks). Custom-defined objects may contain any types of data blocks.

Entity "End of List"
This entity marks the end of an entity sequence. Such an entity terminates each section containing entities
and each block definition. An entity of type "End of List" has the following structure:

 Element Sequence
UnitOwner,999;

 Element Description
UnitOwner

[short] This value is a unique identification of the plug-in that created the entity. The value 0 is
reserved for use by TommySoftware®, especially for objects and data blocks that are created and
handled directly by the application.
Third-party vendors that plan to implement an plug-in that produces custom-defined objects have to
contact TommySoftware® to receive their unique identification. This service is free of charge.

File Header (Structure of TVG 4.2)
A TVG 4.2 file consists of a standard file header and a sequence of variable sections. The order of the
sections is fixed, but each section may either be empty (i.e. contain only a termination) or not exist at all.

Each section starts and ends with a unique keyword. A keyword is a word delimited by the character =
(Ansi 61). The word itself may be up to 31 characters long and may neither contain the character = (Ansi
61) nor a line feed. Each keyword is followed immediately by a semicolon. All section except =EXIT=
are terminated by the keyword =END= .

The file header consists of a special character sequence, which has to have exactly the form described
below. The character sequence has to start at the first byte of the file, as this character sequence is
checked by directly reading the first 22 bytes of the file and comparing them with the expected
identification! As a result, this identification may not be enclosed in quotes, and it must be handled case
sensitive!

 Element Sequence
TommySoftware TVG 4.20;

The further file content depends on the file's type. Currently, two file types are defined: "Drawing" and
"Library". In future, additional file types might be introduced. So be sure to check whether a file contains
the desired data before trying to access it!

File Body of Drawings Overview (Structure of TVG 4.2)
A TVG 4.2 file containing a drawing starts with the section =DRAWING= , followed by several sections
containing settings, block definitions and drawing data.

Not every of the sections listed below has to exist in a drawing file. If it does exist, it should follow the
order of the sections below (although this order is not definite). Section marked with a * have to exist in
any drawing file at the given position!

Sections
Section =DRAWING= (Drawing Information)*

Section =TOOLBOX= (Toolbox)
Section =SYMBOL= (Symbol Window)
Section =KEYBOARD= (Keyboard)
Section =DEFAULT= (Defaults)
Section =USER= (Settings)
Section =MODULE= (Plug-In Settings)

Section =PAGE= (Page Format)
Section =COLOR= (Color Definitions)
Section =HATCH= (Hatching Types)
Section =MULTILINE= (Line Sequences)
Section =SYSTEM= (Coordinate Systems)
Section =PEN= (Pens)
Section =LINE= (Line Patterns)
Section =LAYER= (Layers)
Section =WINDOW= (Window Settings)
Section =BITMAP= (Embedded Bitmaps)

Section =BLOCK= (Block Definitions)
Section =OBJECT= (Objects)

Section =EXIT= (End of File)*

About Drawings
Minimal Drawing

Section =DRAWING= (Drawing Information)

 Element Sequence
=DRAWING=;
Title,
Theme,
Author1,
Date1,
Author2,
Date2,
Comment;
=END=;

 Element Description
Title

[TEXT64] Title of the drawing. This text usually contains a detailed description of the drawing.
Theme

[TEXT64] Theme of the drawing. This text usually contains a description of the project the drawing
belongs to.

Author1
[TEXT64] Name of the user that created the drawing. This text is initialized when creating a drawing.

Date1
[TEXT64] Date and time when the drawing was created. In the English release, this text might e.g. be
"Tuesday, October 15 1991, 5:15 pm".

Author2
[TEXT64] Name of the user that modified this drawing for the last time. This text is initialized each
time the drawing it saved.

Date2
[TEXT64] Date and time when this drawing was saved for the last time. This time is initialized each
time the drawing is saved.

Comment
[TEXT256] This text contains any further comment on the drawing.

The section =DRAWING= has to exist in every drawing file! If desired, this section may contain only the
title of the drawing, set to "" (empty text). In this case, the value Title will be set to the drawing's file
name.

In any case, empty texts at the end of the section do not have to be stated, if e.g. Comment is empty, the
section can already be ended after Date2, which then has to be followed by a semicolon. When reading
this section, simply read all texts available (by reading until a semicolon is found) and set all other texts
to "".

Section =TOOLBOX= (Toolbox)
The section =TOOLBOX= contains the toolbox window's assignment that was active when the drawing
was saved.

 Element Sequence
=TOOLBOX=;
??? ... ???;
=END=;

The content of the section =TOOLBOX= should be ignored. When creating a new drawing file this section
should not exist.

Section =SYMBOL= (Symbol window)
The section =SYMBOL= contains the symbol window's assignment that was active when the drawing was
saved.

 Element Sequence
=SYMBOL=;
??? ... ???;
=END=;

The content of the section =SYMBOL= should be ignored. When creating a new drawing file this section
should not exist.

Section =KEYBOARD= (Keyboard)
The section =KEYBOARD= contains the keyboard assignment that was active when the drawing was
saved.

 Element Sequence
=KEYBOARD=;
??? ... ???;
=END=;

The content of the section =KEYBOARD= should be ignored. When creating a new drawing file this
section should not exist.

Section =DEFAULT= (Defaults)
The section =DEFAULT= contains the default pens and layers that were active when the drawing was
saved. These default values are used by the application to assign default pens and layers to newly created
objects.

 Element Sequence
=DEFAULT=;
Pens[0], Pens[1], ... ;
Layers[0], Layers[1], ... ;
=END=;

 Element Description
Pens

[long[]] Indices of pens that will automatically be assigned to objects created in some standard
situations. Use the following field indices to access elements of this array:
0x0000 Default pen for dimension lines.
0x0001 Default pen for dimension texts.
0x0002 Default pen for standard, frame and reference texts.
0x0003 Default pen for additional reference text elements (frame and arrow).
0x0004 Default pen for geometry objects.
If any of these indices is -1, there is no default pen defined for this situation, i.e. the object will be
assigned to the currently active pen.

Layers
[long[]] Indices of layers that will automatically be assigned to objects created in some standard
situations. Use the following field indices to access elements of this array:
0x0000 Default layer for markings.
0x0001 Default layer for generated outlines (surfaces).
0x0002 Default layer for dimension lines and texts.
0x0003 Default layer for texts.
0x0004 Default layer for hatchings.
0x0005 Default layer for block instances.
0x0006 Default layer for geometry objects.
0x0007 Default layer for group instances.
If any of these indices is -1, there is no default layer defined for this situation, i.e. the object will be
assigned to the currently active layer.

If the section =DEFAULT= does not exist, assume all default indices to be -1, i.e. no default pen or layer is
defined. The number of indices stored in each array may vary. Do always read as many values as
available and set all other values to -1.

Section =USER= (Settings)
The section =USER= contains all user-dependent settings that were active when the drawing was saved.

 Element Sequence
=USER=;
??? ... ???;
=END=;

The content of the section =USER= should be ignored. When creating a new drawing file this section
should not exist.

Section =MODULE= (Plug-In Settings)
The section =MODULE= contains settings that where stored in the drawing by plug-ins.

 Element Sequence
=MODULE=;
-Entity Sequence-
=END=;

The entity sequence consists of entities of type "Custom-Defined". The sequence of entities is terminated
by an Entity "End of List".

The content of the section =MODULE= should be ignored. When creating a new drawing file this section
should not exist.

Normally, plug-ins will never read or write this section directly, instead they will use procedures of the
Toso Interface to get or to set their private settings. Anyway, plug-ins may directly scan this section for
their private settings if required.

Section =PAGE= (Page Format)
The section =PAGE= contains a description of the page format that was active when the drawing was
saved. This page format can be used as default for display and/or output.

 Element Sequence
=PAGE=;
PageType,PageOrient,PageXSize,PageYSize;
=END=;

 Element Description
PageType

[long] This value determines the page's size. Possible values are:
0x0000 User-defined format, i.e. the values of PageXSize and PageYSize state the page size. In

this case PageOrient should also be 0x0000.
0x0001 DIN A4 210 × 297 mm
0x0002 DIN A3 297 × 420 mm
0x0003 DIN A3.2 297 × 594 mm
0x0004 DIN A3.1 297 × 841 mm
0x0005 DIN A3.0 297 × 1189 mm
0x0006 DIN A2 420 × 594 mm
0x0007 DIN A2.1 420 × 841 mm
0x0008 DIN A2.0 420 × 1189 mm
0x0009 DIN A1 594 × 841 mm
0x000a DIN A1.0 594 × 1189 mm
0x000b DIN A0 841 × 1189 mm
0x000c DIN 2A0 1189 × 1682 mm
0x000d ISO A4×3 297 × 630 mm
0x000e ISO A4×4 297 × 841 mm
0x000f ISO A4×5 297 × 1051 mm
0x0010 ISO A4×6 297 × 1261 mm
0x0011 ISO A3×3 420 × 891 mm
0x0012 ISO A3×4 420 × 1189 mm
0x0013 ISO A2×3 594 × 1261 mm
0x0014 DIN B5 176 × 250 mm
0x0015 DIN B4 250 × 353 mm
0x0016 DIN B3 353 × 500 mm
0x0017 DIN B2 500 × 707 mm
0x0018 DIN B1 707 × 1000 mm
0x0019 DIN B0 1000 × 1414 mm
0x001a DIN C5 162 × 229 mm
0x001b DIN C4 229 × 324 mm
0x001c DIN C3 324 × 458 mm
0x001d DIN C2 458 × 648 mm
0x001e DIN C1 648 × 917 mm
0x001f DIN C0 917 × 1297 mm
0x0020 US Half 5.5 × 8.5 inch
0x0021 ANSI A / US Letter 8.5 × 11.0 inch

0x0022 ANSI B / US Tabloid 11.0 × 17.0 inch
0x0023 ANSI C 17.0 × 22.0 inch
0x0024 ANSI D 22.0 × 34.0 inch
0x0025 ANSI E 34.0 × 44.0 inch
0x0026 US Legal 8.5 × 14.0 inch

PageOrient
[long] This value determines whether the page shall have landscape or portrait orientation. Possible
values are:
0x0000 User-defined format, i.e. the values of PageXSize and PageYSize state the page size. In

this case PageType should also be 0x0000.
0x0001 Portrait
0x0002 Landscape

PageXSize
[double] This value states the page's horizontal size in millimeters. It must be valid even if PageType
states an explicit page format. The valid range is 1.0 to 4000.0 inclusive.

PageYSize
[double] This value states the page's vertical size in millimeters. It must be valid even if PageType
states an explicit page format. The valid range is 1.0 to 4000.0 inclusive.

If the section =PAGE= does not exist, assume either the page format DIN A3 landscape (2,2,420,297) or
US D landscape (22,2,431.8,279.4). If the section does exist, it must contain all of the four values stated
above.

 Example of a Page Format Definition
6,2,594,420; |Type,Orient,XSize,YSize|

This is the definition of a page based on DIN A2 (420 × 594 mm), but in landscape orientation. The
resulting page size is 594 × 420 mm.

Section =COLOR= (Color Definitions)
The section =COLOR= contains up to 500 custom color definitions. Custom color will be displayed in
most color selection dialog windows.

 Element Sequence
=COLOR=;
ColorNum;

 Entry for each Color Definition
ColorName,ColorValue;

 End of Section
=END=;

 Element Description
ColorNum

[long] Number of color definitions to follow. Valid range is 0 to 500 inclusive.
ColorName

[TEXT32] Name of the color, up to 31 characters.
ColorIndex

[COLORREF] RGB definition of the color.

If the section =COLOR= does not exist, assume no custom color to be defined (ColorNum = 0).

Section =HATCH= (Hatching Types)
The section =HATCH= contains up to 100 hatching types.

 Element Sequence
=HATCH=;
HatchNum,HatchActive;

 Entry for each Hatching Type Definition
HatchName,HatchIndex;
HatchLine1Active,HatchLine1,HatchLine1Rotate;
HatchLine2Active,HatchLine2,HatchLine2Rotate;
HatchBlockActive,HatchLibraryName,HatchBlockName,
HatchBlockRotate,HatchBlockScale,
HatchBlockXStep1,HatchBlockXStep2,
HatchBlockYStep1,HatchBlockYStep2,
HatchBlockLineStep1,HatchBlockLineStep2;
HatchRotate,HatchOffset1,HatchOffset2;

 End of Section
=END=;

 Element Description
HatchNum

[long] Number of hatching type definitions to follow. Valid range is 0 to 100 inclusive.
HatchActive

[long] Index of the hatching type that was active when the drawing was saved (referring to
HatchIndex). Valid range is 0 to 100 inclusive. This value is optional and will be set to 0 if not
existing!

HatchName
[TEXT64] Name of the hatching type, up to 63 characters.

HatchIndex
[long] Index of the hatching type (1 to 100). Each index may be assigned to one hatching type only, as
this index is used internally to identify a hatching type.

HatchLine1Active
[BOOL] Determines whether the first line sequence it active or not.

HatchLine1
[int] Index of the first line sequence to be used.

HatchLine1Rotate
[double] Rotation angle of the first line sequence.

HatchLine2Active
[BOOL] Determines whether the second line sequence it active or not.

HatchLine2
[int] Index of the first second sequence to be used.

HatchLine2Rotate
[double] Rotation angle of the second line sequence.

HatchBlockActive
[BOOL] Determines whether a hatching block is to be used.

HatchLibraryName
[TEXT64] Name of the library containing the desired block, maximum 63 characters. If the desired
hatching block is located inside the drawing (i.e. it is an internal block), set this name to "*".

HatchBlockName
[TEXT64] Name of the block or block, maximum 63 characters.

HatchBlockRotate
[double] This value determines the rotation of the hatching block (based on its insertion point).

HatchBlockScale
[double] This value determines the scaling of the hatching block.

HatchBlockXStep1
HatchBlockXStep2

[double] These two values determine the horizontal advance of the block-based hatching.
HatchBlockYStep1
HatchBlockYStep2

[double] These two values determine the vertical advance of the block-based hatching.
HatchBlockLineStep1
HatchBlockLineStep2

[double] These two values determine the horizontal line offset of the block-based hatching.
HatchRotate

[double] This value determines the global rotation of the complete hatching.
HatchOffset1
HatchOffset2

[double] These two values determine the offset of the hatching.

If the section =HATCH= does not exist, assume no hatching type to be defined (HatchNum = 0) and
hatching type 0 to be active.

Section =MULTILINE= (Line Sequences)
The section =MULTILINE= contains up to 50 line sequences.

 Element Sequence
=MULTILINE=;
MultiLineNum;

 Entry for each Line Sequence Definition
MultiLineName,MultiLineIndex;
MultiLineUse[0],MultiLineDistance[0],MultiLineXProperty[0];
 ...
MultiLineUse[7],MultiLineDistance[7],MultiLineXProperty[7];

 End of Section
=END=;

 Element Description
MultiLineNum

[long] Number of hatching type definitions to follow. Valid range is 0 to 50 inclusive.
MultiLineName

[TEXT32] Name of the hatching type, up to 31 characters.
MultiLineIndex

[long] Index of the hatching type (1 to 50). Each index may be assigned to one hatching type only, as
this index is used internally to identify a hatching type.

MultiLineUse[x]
[BOOL] Determines whether the corresponding line is to be used or not.

MultiLineDistance[x]
[double] Determines the distance between this line and the next active line in internal mm. The valid
range is 1e-10 to 1e10 inclusive.

MultiLineXProperty[x]
[XPROPERTY] This set of properties defines single or multiple properties to be transmitted to the
corresponding hatching line.

If the section =MULTILINE= does not exist, assume no hatching type to be defined (MultiLineNum = 0)
and hatching type 0 to be active.

Section =SYSTEM= (Coordinate Systems)
The section =SYSTEM= contains up to 50 coordinate system definitions.

A coordinate system contains a set of several settings that influence the drawing's display and output.
These settings are: scaling, rotation, distortion, origin position, length unit, line unit, angle unit, number
representation, position grid and display grid.

The coordinate system with the index 0 is named "*Standard" and is predefined by default as an
unrotated, unscaled coordinate system with its origin in the page's center. The length and line unit is
[mm], the angle unit is [deg], both grids are initialized with 1 unit, but not active. This coordinate system
is valid throughout all drawings and libraries and does not occur in any TVG 4.2 file.

 Element Sequence
=SYSTEM=;
SystemNum;

 Entry for each Coordinate System Definition
SystemName,SystemIndex,
SystemRotate,SystemScale,SystemOption,
SystemOrgMode,SystemXOrg,SystemYOrg,
SystemLenUnit,SystemLineUnit,SystemAngleUnit,
SystemFraction,SystemAccuracy,
SystemGridMode,SystemXGrid,SystemYGrid,
SystemSnapMode,SystemXSnap,SystemYSnap;

 End of Section
=END=;

 Element Description
SystemNum

[long] Number of coordinate system definitions to follow. Valid range is 0 to 50 inclusive.
SystemName

[TEXT32] Name of the coordinate system, up to 31 characters.
SystemIndex

[long] Index of the coordinate system (1 to 50). Each index may be assigned to one coordinate system
only, as this index is used internally to identify a coordinate system.

SystemRotate
[double] Rotation of the display in [rad]. The rotation is valid for screen display only, not during
output.

SystemScale
[double] Drawing scale (100.0 represents a scale of 100:1, 0.02 represents a scale of 1:50 etc.). Valid
range is 1e-10 to 1e10 inclusive.

SystemOption
[long] Distortion mode of the display. The distortion is valid for screen display only. This option

allows to distort the screen display of a drawing in a way that isometric or dimetric views inside this
drawing will be displayed rectangular, plain and without distortion. By this means, isometric and
dimetric drawings can be produced without having to calculate the exact angles and lengths of lines
and ellipses. For an illustration of the effect of this option, have a close look at the application.
Possible values are:
0x0000 No distortion
0x0001 Left view of an isometric drawing
0x0002 Right view of an isometric drawing
0x0003 Top view of an isometric drawing
0x0004 Left view of an dimetric drawing 1 (-7°)
0x0005 Right view of an dimetric drawing 1 (-7°)
0x0006 Top view of an dimetric drawing 1 (-7°)
0x0007 Left view of an dimetric drawing 2 (+7°)
0x0008 Right view of an dimetric drawing 2 (+7°)
0x0009 Top view of an dimetric drawing 2 (+7°)
This distortion is independent from the grid settings (see SystemGridMode and SystemSnapMode).
Anyway, a distorted view should never be combined with a distorted grid - this will lead to deep
confusion of the user.

SystemOrgMode
[long] Placement of the coordinate system's origin. Possible values are:
0x0000 The origin is located at the position stated in SystemXOrg and SystemYOrg.
0x0001 The origin is located at the upper left page corner.
0x0002 The origin is located at the center of the upper page edge.
0x0003 The origin is located at the upper right page corner.
0x0004 The origin is located at the center of the left page edge.
0x0005 The origin is located at the page's center.
0x0006 The origin is located at the center of the right page edge.
0x0007 The origin is located at the lower left page corner.
0x0008 The origin is located at the center of the lower page edge.
0x0009 The origin is located at the lower right page corner.
Internal drawing coordinates are always relative to the page's center, independent of the origin's
placement!

SystemXOrg
[double] X-coordinate of the origin in millimeters relative to the page's center. It must be valid even if
SystemOrgMode states an explicit origin placement. The valid range is -1e100 to 1e100.

SystemYOrg
[double] Y-coordinate of the origin in millimeters relative to the page's center. It must be valid even if
SystemOrgMode states an explicit origin placement. The valid range is -1e100 to 1e100.

SystemLenUnit
[long] Length unit to be used (see Units). This unit will be used for in- and output of coordinates and
all values that are depending on the drawing's scale (like dimensions, perimeter, area etc.). Possible
values are:
0x0000 [µm]
0x0001 [mm]
0x0002 [cm]
0x0003 [dm]
0x0004 [m]
0x0005 [km]
0x0006 [mil]
0x0007 [inch]
0x0008 [foot]

0x0009 [yard]
0x000a [mile]
0x000b [dp]
0x000c [pt]
0x000d [bp]
0x000e [cic]

SystemLineUnit
[long] Line unit to be used (see Units). This unit will be used for in- and output of values that are not
depending on the drawing's scale (line width, font size etc.). Possible values are:
0x0000 [µm]
0x0001 [mm]
0x0002 [cm]
0x0006 [mil]
0x0007 [inch]
0x000b [dp]
0x000c [pt]
0x000d [bp]
0x000e [cic]

SystemAngleUnit
[long] Angle unit to be used (see Units). This unit will be used for in- and output of angle values.
Possible values are:
0x0000 [deg]
0x0001 [gra]
0x0002 [rad]
0x0003 [rel]

SystemFraction
[long] This value determines how non-integer values will be displayed. It consists of two part, located
in the lower 16bit section (determining the display of length values) and the upper 16bit section
(determining the display of angle values). Both sections may contain one of the following values:
0x0000 The value will be displayed using floating point representation, i.e. with a decimal

separator and following fractional digits, e.g. 10.75. How trailing zeros are handled
depends on user settings in the application.

0x0001 The value will be displayed using a mixed fraction representation, i.e. the integer value
will be followed by a fraction with a power of 2 as denominator, e.g. 10 3/4. The
fraction will be reduced automatically.

0x0002 The value will be split into [foot] and [inch] elements, where the value itself is assumed
to be in [inch]. The [foot] element will always be integer, the [inch] element will use
floating point representation (see 0x0000). A value of 170.75 inch will be displayed as
14'2.75".

0x0003 The value will be split into [foot] and [inch] elements, where the value itself is assumed
to be in [inch]. The [foot] element will always be integer, the [inch] element will use
mixed fraction representation (see 0x0001). A value of 170.75 inch will be displayed as
14'2 3/4".

0x0004 The value will be split into [yard], [foot] and [inch] elements, where the value itself is
assumed to be in [inch]. The [yard] and [foot] elements will always be integer, the [inch]
element will use floating point representation (see 0x0000). A value of 170.75 inch will
be displayed as 4yd2'2.75".

0x0005 The value will be split into [yard], [foot] and [inch] elements, where the value itself is
assumed to be in [inch]. The [yard] and [foot] elements will always be integer, the [inch]
element will use mixed fraction representation (see 0x0001). A value of 170.75 inch will

be displayed as 4yd2'2 3/4".
0x0006 The value will be split into [degree], [minute] and [second] elements, where the value

itself is assumed to be in [degree]. The [degree] and [minute] elements will always be
integer, the [second] element will use floating point representation (see 0x0000). A value
of 37.331 degree will be displayed as 37°19'51.6".

0x0007 The value will be split into [degree], [minute] and [second] elements, where the value
itself is assumed to be in [degree]. The [degree] and [minute] elements will always be
integer, the [second] element will use mixed fraction representation (see 0x0001). A value
of 37.331 degree will be displayed as 37°19'51 5/8".

0x0008 The value will be displayed using floating point representation, i.e. with a decimal
separator and following fractional digits, e.g. 10.75. Values below one will be
multiplied by 100 before display. This setting in mainly used for architectural drawings
based on meters. How trailing zeros are handled depends on user settings in the
application.

Note: Some fraction modes make only sense for length values or coordinates, others only for angle
values. Anyway, all modes are allowed in both cases.

SystemAccuracy
[long] This value determines the accuracy of non-integer value output to the screen. If values are
displayed using floating point representation (SystemFraction = 0x0000, 0x0002, 0x0004, 0x0006 or
0x0008), this value states the maximum number of fractional digits. If values are displayed using
mixed fraction representation (SystemFraction = 0x0001, 0x0003, 0x0005 or 0x0007), this value
states the maximum power of 2 the denominator will have. In both cases, the valid range is 0 to 9
inclusive.

SystemGridMode
[long] Current mode of the display grid. The display grid will be displayed on the screen, it does not
influence the cursor's movement. Possible values are:
0x0000 No grid
0x0001 Cartesian grid
0x0002 Isometric grid
0x0003 Dimetric grid 1 (-7°)
0x0004 Dimetric grid 2 (+7°)

SystemXGrid
SystemYGrid

[double] Distance of two display grid points in X- or Y-direction respectively in the current unit. Valid
range is 0.0 to 1e10 inclusive. If SystemXGrid ans/or SystemYGrid are 0.0 the grid is invalid and will
not be displayed.

SystemSnapMode
[long] Current mode of the position grid. The position grid influences the cursor's movement, it will
not be displayed on the screen. Possible values are:
0x0000 No grid
0x0001 Cartesian grid
0x0002 Isometric grid
0x0003 Dimetric grid 1 (-7°)
0x0004 Dimetric grid 2 (+7°)

SystemXSnap
SystemYSnap

[double] Distance of two position grid points in X- or Y-direction respectively in the current unit.
Valid range is 0.0 to 1e10 inclusive. If either SystemXSnap or SystemYSnap is 0.0, the cursor's
movement will be restricted only in one direction. If both values are 0.0, the grid is invalid and will
have no effect.

If the section =SYSTEM= does not exist, assume no coordinate system to be defined (SystemNum = 0).

 Example of a Coordinate System Definition
"Standard, 1:50, Grid 1 m",1, |Name,Index|
0.0,0.02,0, |Rotate,Scale,Option|
7,0.0,0.0, |OrgMode,XOrg,YOrg|
4,1,0, |LenUnit,LineUnit,AngleUnit|
0,4, |Fraction,Accuracy|
1,1.0,1.0, |GridMode,XGrid,YGrid|
0,1.0,1.0; |SnapMode,XSnap,YSnap|

This is the definition of the coordinate system "Standard, 1:50, Grid 1 m" having the index 1. The origin
is located in the lower left corner of the page, the display will neither be rotated nor distorted. The scale
of the drawing is 1:50. The length unit is [m], the line unit is [mm] and the angle unit is [deg]. Non-
integer values will be displayed in floating-point representation with up to 4 fractional digits.
Display and position grid are both set to one meter in both directions, but only the display grid is
currently active. Please note that the grid point distance is always stated in the current length unit! If this
length unit is changed to [cm], the grid's distances will be one centimeter.

Section =PEN= (Pen)
The section =PEN= contains up to 500 pen definitions.

A pen basically consists of two complete property sets, one for screen display and one for output. These
two property sets provide a large flexibility in property usage.
If, e.g., a drawing is created on top of a black screen background, entities could not be drawn using black
lines or fillings. But later, when printing this drawing, most enities will usually be black. Using pens, this
problem is easy to solve. For each line type and width to use in the drawing, define a pen that has one
"colored" property set for screen display and one "black on white" property set for output.
Another advantage of pen usage is the easy modification of complete entity groups - if all entities used for
outlines have to be widened from 0.25 mm to 0.35 mm, simply edit the pen used for drawing these
entities.

The pen with the index 0 is named "*Standard". It causes the usage of concrete properties instead of pen
properties, i.e. pen 0 does not transmit any properties. In this case, the entities using this pen will be
drawn using the properties stored in their XProperty field - independent of the current properties of pen 0.
By this means, entities can be equipped with properties that are not stored in any pen.

 Element Sequence
=PEN=;
PenNum,PenIdentical,PenActive;
PenZero;

 Entry for each Pen Definition
PenName,PenIndex,
PenIntern,
PenExtern,
PenLayer;

 End of Section
=END=;

 Element Description
PenNum

[long] Number of pen definitions to follow. Valid range is 0 to 500 inclusive.
PenIdentical

[long] Determines whether the two property sets of the pen are used, or only the external set. Possible
values are:
0x0000 The property set PenExtern is used for output, the property set PenIntern is used for

display.
0x0001 The property set PenExtern is used both for display and output.

PenActive
[long] Index of the pen that was active when the drawing was saved (referring to PenIndex). Valid
range is 0 to 500 inclusive. This value is optional and will be set to 0 if not existing!

PenZero
[PROPERTY] Current properties of pen 0.

PenName
[TEXT64] Name of the pen, up to 31 characters.

PenIndex
[long] Index of the pen (1 to 500). Each index may be assigned to one pen only, as this index is used
internally to identify a pen.

PenIntern
[PROPERTY] Property set for screen display.

PenExtern
[PROPERTY] Property set for output (printer, plotter, clipboard, metafile, export etc.).

PenLayer
[int] Index of the layer that is to be activated if this pen is activated. If PenLayer is -1, the current
layer will not be changed. This value is optional. If is does not exist, assume it to be -1.

If the section =PEN= does not exist, assume no pen to be defined (PenNum = 0) and pen 0 to be active. In
this case, PenIdentical should be initialized with 0x0000, pen 0 should be initialized with the following
properties:

0,0/0/0,1/1/1,0.25,0

 Example of a Pen Definition
"Black Type1 0.25mm",1, |Name,Index|
2,0.5/0.5/0.5,1.0/1.0/1.0,0.0,0,0, |Intern|
2,0.0/0.0/0.0,0.0/0.0/0.0,0.25,0,1, |Extern|
1; |Layer|

This is the definition of the pen "Black, Type 1, 0.25mm" having the index 1. When assigning this pen to
an entity, this entity will be output with a black, 0.25 mm wide frame using line pattern 1 and will be
filled in black. On the screen, this entity will be drawn with a white hairline frame and it will be filled in
gray. When selecting this pen in the application, layer 1 will be activated.

Section =LINE= (Line Patterns)
The section =LINE= contains up to 100 line pattern definitions.

A line pattern defines a sequence of "lines" and "holes" creating a periodical line pattern. In addition to
some standard line patterns which are defined that way, this can be used to create custom line patterns. A
line pattern definition does only determine the line-hole-sequence, other properties like line width or color
have to be defined in a pen (see Section =PEN= (Pens)).

The line pattern with the index 0 is named "*Standard" and is predefined by default as a solid line. This
line pattern is valid throughout all drawings and libraries and does not occur in any TVG 4.2 file.

 Element Sequence
=LINE=
LineNum;

 Entry for each Line Pattern Definition
LineName,LineIndex,
LinePairNum,LineMode,LineData[0],LineData[1] ... ;

 End of Section
=END=;

 Element Description
LineNum

[long] Number of line pattern definitions to follow. Valid range is 0 to 100 inclusive.
LineName

[TEXT32] Name of the line pattern, up to 31 characters.
LineIndex

[long] Index of the line pattern (1 to 100). Each index may be assigned to one line pattern only, as this
index is used internally to identify a line pattern.

LinePairNum
[long] Number of pairs of "line" and "hole". Valid range is 0 to 8 pairs inclusive.

LineMode
[long] Definition mode of the line pattern. Possible values are:
0x0000 The partial line's lengths will be stated in 1/100 of the line's width. If the line's width is

less than 0.1 mm, the calculation will be based on a line width of 0.1 mm.
0x0001 The partial line's lengths will be stated in 1/100 mm.

LineData
[long[]] Partial line length pairs. Each line length may be between 100 and 10000 inclusive. The first
value of each pair defines a "line", the second value defines a "hole". This list should contain exactly
two times the number of line length definitions as the value stored in LinePairNum states.

If the section =LINE= does not exist, assume no line pattern to be defined (LineNum = 0).

 Example of a Line Pattern Definition
"Dash-dot-dot narrow DIN 15-G",4, |Name,Index|
3,0, |Num,Mode|
4000,500,500,500,500,500; |Data|

This is the definition of the line pattern "Dash-dot-dot narrow DIN 15-G" having the index 4. It consists
of three pairs of "line" and "hole", defined in 1/100 of the line's width. When drawing a 0.25 mm wide
line using this line pattern, the result would be as follows:

xxxxxxxx x x xxxxxxxx x x xxxxxxxx
 10 5×1.25 10 5×1.25 10 mm

Section =LAYER= (Layers)
The section =LAYER= contains up to 500 layer definitions.

A layer defines a transparency which is used to integrate a special type of entities in the drawing (like
outlines, fillings, hatchings, texts, dimensions etc.) into a "group". They are usually used to maintain a
basic structure throughout the drawing to allow easy selection and manipulation of related entities.
Especially, layers can easily be frozen or hidden by a single command.
Additionally, layers can transmit single or multiple properties to all entities assigned to them. This allows
an easy way to distinguish the entities of different layers. As this transmission can be limited to screen
display, no modification of the entities themselves is necessary.

The layer with the index 0 is named "*Standard" and is predefined by default as a visible, non-frozen
layer that does not transmit any properties. This layer is valid throughout all drawings and libraries and
does not occur in any TVG 4.2 file.

 Element Sequence
=LAYER=;
LayerNum,LayerIdentical,LayerActive;

 Entry for each Layer Definition
LayerName,LayerIndex,
LayerIntern,
LayerExtern,LayerMode;

 End of Section
=END=;

 Element Description
LayerNum

[long] Number of layer definitions to follow. Valid range is 0 to 500 inclusive.
LayerIdentical

[long] Determines whether the two extended property sets of the layer are used, or only the external
set. Possible values are:
0x0000 The extended property set LayerExtern is used for output, the extended property set

LayerIntern is used for display.
0x0001 The extended property set LayerExtern is used both for display and output.

LayerActive
[long] Index of the layer that was active when the drawing was saved (referring to LayerIndex). Valid
range is 0 to 500 inclusive. This value is optional and will be set to 0 if not existing!

LayerName
[TEXT64] Name of the layer, up to 63 characters.

LayerIndex
[long] Index of the layer (1 to 500). Each index may be assigned to one layer only, as this index is
used internally to identify a layer.

LayerIntern
[XPROPERTY] This set of properties defines single or multiple properties to be transmitted to all
entities assigned to this layer during display. This transmission has a higher priority then the pen
transmission, i.e. it will override properties transmitted by the pen. However if an object property is
fixed any transmission will be ignored. A transmission of the layer index will be ignored, of course.
This extended property set will only be used if LayerIdentical is set to 0x0000.

LayerExtern
[XPROPERTY] This set of properties defines single or multiple properties to be transmitted to all
entities assigned to this layer during output. This transmission has a higher priority then the pen
transmission, i.e. it will override properties transmitted by the pen. However if an object property is
fixed any transmission will be ignored. A transmission of the layer index will be ignored, of course.

LayerMode
[long] Determines whether the layer is frozen, displayed and/or idle. The display can separately be set
for screen display and output. LayerMode is a bitwise OR combination of the following values:

#define LAYERMODE_DISPLAY 0x0001
#define LAYERMODE_OUTPUT 0x0002
#define LAYERMODE_FREEZE 0x0004
#define LAYERMODE_IDLE 0x0008
#define LAYERMODE_GRAY 0x0010

If the section =LAYER= does not exist, assume no layer to be defined (LayerNum = 0) and layer 0 to be
active. In this case, LayerIdentical should be initialized with 0x0000.

 Example of a Layer Definition
"Hatchings", 100, |Name,Index|
10, |Intern.Flag|
0,0,1.0/1.0/1.0, | ... |
1.0/0.0/0.0,0.0,0,0, | ... |
0, |Intern.Layer|
0, |Extern.Flag|
0,0,1.0/1.0/1.0, | ... |
0.0/0.0/0.0,0.0,0,0, | ... |
0, |Extern.Layer|
3; |Mode|

This is the definition of the layer "Hatchings" having the index 100. All enitities assigned to this layer will
be displayed framed with a red line. During output (to printer, clipboard etc.) they will keep their own
properties. The entities are visible, will be output and can be modified.

Section =WINDOW= (Window Settings)
The section =WINDOW= contains the settings of the view window and up to 4 drawing windows.

A coordinate system contains a set of several settings that influence the drawing's display and output.
These settings are: scaling, rotation, distortion, origin position, length unit, line unit, angle unit, number
representation, position grid and display grid.

 Element Sequence
=WINDOW=;
WindowNum;

 Entry for each Window Setting
WindowSystem,WindowGrid,WindowSnap,
WindowXCenter,WindowYCenter,WindowZoom;

 End of Section
=END=;

 Element Description
WindowNum

[long] Number of window settings to follow. Valid range is 0 to 5 inclusive. The first window is the
view window, followed by up to 4 drawing windows.

WindowSystem
[long] Index of the coordinate systems that was active in the drawing window when the drawing was
saved (referring to SystemIndex). Valid range is 0 to 50 inclusive.

WindowGrid
[BOOL] Determines whether display grid of the drawing window was active when the drawing was
saved.

WindowSnap
[BOOL] Determines whether position grid of the drawing window was active when the drawing was
saved.

WindowXCenter
WindowYCenter

[double] Coordinates of the center-point of the drawing window in millimeters relative to the page's
center. The valid range is -1e100 to 1e100.

WindowZoom
[double] View size of the drawing window. The valid range is -1e12 to 1e12. This value determines
the zoom factor relative to original size.

If the section =WINDOW= does not exist, all windows will be assigned to the coordinate system 0
"*Standard" without display and position grid, and will display a page overview.

Section =BITMAP= (Embedded Bitmaps)
The section =BITMAP= contains up to 1000 embedded bitmaps.

 Element Sequence
=BITMAP=;
BitmapNum;

 Entry for each Embedded Bitmap
BitmapName,BitmapSize;
BitmapDataSize[0],BitmapData[0];
 ...
BitmapDataSize[n],BitmapData[n];

 End of Section
=END=;

 Element Description
BitmapNum

[long] Number of embedded bitmaps to follow. Valid range is 0 to 1000 inclusive. The effective
maximum number of embedded bitmaps depends on user settings!

BitmapName
[TEXT256] Name of the bitmap (including path), up to 255 characters. The first character of this
name must always be '#' (Ansi 35) and should be followed by 'B ' and either the original file name or
any unique identifier. A valid bitmap name would be #B c:\bitmaps\test.bmp or
#B 05456-324-3578a8be0002 .

BitmapSize
[long] Total size of the bitmap data to follow in bytes. This size must be exactly the sum of all
BitmapDataSize values to follow.

BitmapDataSize[x]
[long] Number of bytes in the following binary data string. Valid range is 1 to 24000 inclusive. We
recommend to split the bitmap data into blocks of at most 144 bytes of data each (resulting in line
lengths below 255 characters). This will allow the user to load the resulting text file into most
standard editors without problems.

BitmapData[x]
[BINARY] Binary string containing the bitmap data. The string may contain up to BitmapDataSize[x]
bytes of data. If it contains less data, the resulting bytes are to be set to zero.

If the section =BITMAP= does not exist, assume no bitmap to be defined (BitmapNum = 0).

 Example of an Embedded Bitmap
"#B E:\\ICONS\\ERASER1.BMP",190;

14,"0dv^ #x";
24,"* \" @ 0 ! \"";
24," \" #___\\";
24,"jjjjjo____^k__jj_____z_y_jk_y/__";
24,"oxi^joy4/_^^jczj_u4?_[\\j&jk_51__";
24,"kzj*jo^5#_^jj*jj_]/7_zj/tjk_w]?_";
24,"jj_jjo_oz_^jk^jj__?u_zjgy*k_]yg_";
24,"jji\\jo_y_/^jj?*j__[/_zjk*jk_____";
8,"jjjjjo____\\";

This is the definition of the bitmap "Eraser1.bmp".

Section =BLOCK= (Block Definitions)
The section =BLOCK= contains block definitions. Inside a drawing file, this section may contain up to
10.000 block definitions, inside a library, it may contain up to 1.000.000 block definitions.

 Element Sequence
=BLOCK=;
-Block Definitions-
=END=;

Each block definition starts with an Entity "Block", determining the name and the properties of the block.
This entity is followed by a sequence of entities of type "Object" and "Instance". The sequence of block
definitions is terminated by an Entity "End of List".

The order of the block definitions is not relevant. Any block reference will not be resolved until all blocks
are loaded. If blocks contain instances, this leads to a nested structure. Be sure not to create loops where
block A contains an instance of block B and block B contains a reference of block A. To avoid a deadlock
due to such loops and to avoid a stack overflow during recursion the maximum nesting depth is limited to
20 levels.

Section =OBJECT= (Objects)
The section =OBJECT= contains up to 2.000.000.000 entities.

 Element Sequence
=OBJECT=;
-Entity Sequence-
=END=;

The entity sequence consists of entities of type "Object" as well as "Instance". These entities are the basic
elements of each drawing. The sequence of entities is terminated by an Entity "End of List".

Section =EXIT= (End of File)
The section =EXIT= does contain no further data. It is used to terminate a TVG 4.2 file. After reading the
semicolon behind =EXIT=, the interpretation of the file is finished. This section is not terminated by an
=END= keyword.

 Element Sequence
=EXIT=;

Minimal Drawing (About Drawings)
The smallest valid TVG 4.2 drawing file has the following form:

 Element Sequence
TommySoftware TVG 4.20;
=DRAWING=;
DrawingTitle;
=END=;
=EXIT=;

File Body of Libraries Overview (Structure of TVG 4.2)
A TVG 4.2 file containing a library starts with the section =LIBRARY=, followed by several sections
containing standard attributes and block definitions.

Not every of the sections listed below has to exist in a drawing file. If it does exist, it should follow the
order of the sections below (although this order is not definite). Section marked with a * have to exist in
any drawing file at the given position!

Sections
Section =LIBRARY= (Library Information)*
Section =ATTRIB= (Standard Attributes)

Section =BLOCK= (Block Definitions)

Section =EXIT= (End of File)*

About Libraries
Minimal Library
Standard Libraries
Font Libraries

Section =LIBRARY= (Library Information)

 Element Sequence
=LIBRARY=;
Title,
Theme,
Author1,
Date1,
Author2,
Date2,
Comment;
=END=

 Element Description
Title

[TEXT64] Title of the library. This text usually contains a detailed description of the library. This title
is used to identify a library, i.e. it has to be unique over all libraries used!

Theme
[TEXT64] Theme of the library. This text usually contains a description of the project the library
belongs to.

Author1
[TEXT64] Name of the user that created the library. This text is initialized when creating a library.

Date1
[TEXT64] Date and time when the library was created. In the English release this text might be, e.g.,
"Tuesday, October 15 1991, 5:15 pm".

Author2
[TEXT64] Name of the user that modified this library for the last time. This text is initialized each
time the library it saved.

Date2
[TEXT64] Date and time when this library was saved for the last time. This time is initialized each
time the library is saved.

Comment
[TEXT256] This text contains any further comment on the library.

The section =LIBRARY= has to exist in every library! If desired, this section may contain only the title of
the library.

In any case, empty texts at the end of the section do not have to be stated, if e.g. Comment is empty, the
section can already be ended after Date2, which then has to be followed by a semicolon. When reading
this section, simply read all texts available (by reading until a semicolon is found) and set all other texts
to "".

Section =ATTRIB= (Standard Attributes)
The section =ATTRIB= contains up to 200 standard attribute definitions. These standard attribute are a
default attribute set to be used when creating a new block in a library.

The use of standard attributes eases the creation of blocks that have a huge number of equal attributes,
like e.g. when creating a furniture library, where each block shall have the attributes "Part No.", "Price"
and "Material". In this case, these three attribute are first defined as standard attributes and then copied to
every created block.

 Element Sequence
=ATTRIB=;
-Data Section-
=END=;

The standard attributes are stored as a sequence of Attribute Data Blocks, terminated by a Data Block
Type 999 (End of List).

Standard attributes do not replace the attributes assigned directly to the blocks. If a standard attribute
named "Price" is defined, this attribute is not automatically defined for all blocks of the library. Instead, it
has to be copied to a block during creation to become "active".

Minimal Library (About Libraries)
The smallest valid TVG 4.2 library file has the following form:

 Element Sequence
TommySoftware TVG 4.20;
=LIBRARY=;
LibraryTitle;
=END=;
=EXIT=;

Standard Libraries (About Libraries)
Standard libraries are used to manage frequently used parts and groups, especially if they shall be used in
several drawings.

A standard library may contain up to 1.000.000 block definitions having a unique name. The blocks
stored in a library will be presented to the user in a hierarchical dialog box, always alphabetically sorted.
So the order of the blocks in the library is not relevant.

Limitations
Block definitions inside libraries may contain instances of either the same library or of other libraries. If
an instance shall refer to a block inside the same library, the instance's LibraryName value must be set to
"*".

As a result, libraries cannot contain instances of internal blocks, i.e. of blocks defined in drawing files.
When trying to create an external block including an internal block's instance, a warning will appear. In
this case, the internal blocks will either have to be resolved or must be transferred into the library.

If a block contains instances, this leads to an nested structure. Be sure not to create loops where block A
contains an instance of block B and block B contains a reference of block A. To avoid a deadlock due to
such loops and to avoid a stack overflow during recursion the maximum nesting depth is limited to 20
levels.

Font Libraries (About Libraries)
Font libraries are used to manage font characters, i.e. to build complete ANSI fonts.

A font library should contain 224 blocks representing the characters 32 to 255 of the ANSI character set.
The name of these blocks has to start with a character number, coded as a 3-digit decimal number with
leading zeros, followed by either a space and additional information or immediately by the name's
termination character.

A possible block name for the block representing the character "Capital A" could be "065 A", where 065
is the character index in the ANSI character set and " A" is additional information for the library's creator.
The order of the blocks in the font library is not relevant.

Limitations
Blocks in a font library have to fulfill some requirements. The first is the size and placement of a
character inside the block:
Character Height

The character height in the library has to be exactly 20 mm. All other font sizes will be generated
from that 20 mm character by scaling.

Insertion Point
The insertion point (i.e. the internal origin of the block) has to be at the character's left edge on the
baseline. If a character shall overlap the previous character (e.g. the capital W), the insertion point has
to be set accordingly.

Surrounding Frame
In a character block, the values BlockRect.x1, BlockRect.y1, BlockRect.x2 and BlockRect.y2 have to
be set in a way that they lie at the lower left and the upper right corner of the character's surrounding
frame. The difference BlockRect.x2 - BlockRect.x1 defines the character's width, i.e. the amount the
drawing position is moved after the output of this character. Usually, BlockRect.x1 should be set to
0.0.

If a font does not include the full ANSI character set (even though it is strongly recommended to
implement the full set), it should contain at least the following characters:

032..126 Standard character corresponding to ASCII / ANSI.
160 The character Ansi 160 is similar to the space Ansi 32, but will not be broken if a word-

break is performed.
173 The character is similar to the minus sign or hyphen respectively - (Ansi 45), but will not

be broken if a word-break is performed.
176 The character ° is used to mark an angle value.
177 The character ± is frequently used in tolerances.
216 The character Ø is used to mark a diameter value.

In addition to standard ANSI characters, a font library should include the following character that is not
defined by ANSI:

128 This character is used to mark an area value. It should be a framed square whose side
length is equal to a non-capital character's height.

Even though font libraries can theoretically contain any types of entities, character blocks should contain
only entities of type "Object". In order to allow fast display of characters, only the following object types
should be used:

Object 00 "Line"
Object 01 "Hatching"
Object 05 "Circle"
Object 06 "Circular Arc"
Object 07 "Circular Sector"
Object 08 "Circular Segment"
Object 12 "Curve"
Object 13 "Surface"
Object 15 "Ellipse"
Object 16 "Elliptical Arc"
Object 17 "Elliptical Sector"
Object 18 "Elliptical Segment"

Instances and attributes inside font libraries will be ignored! All properties of character blocks will be
reset during load time, i.e. their properties will not be maintained!

