
Topic Not Related
There are no topics associated with this jump.

Date and Time Example
This example uses a CommandButton Click event to update the Caption of a Label by choosing the
value of two CheckBoxes.

The following controls and corresponding property values should be set:

· Add CheckBox1
· Set Caption = "Show Date"
· Set Value = 0

· Add CheckBox2
· Set Caption = "Show Time"
· Set Value = 0

· Add Label1
· Set Caption = "Date and time displayed here"
· Set TextAlign = Center
· Set BorderStyle = Single

· Add CommandButton1
· Set Caption = "Display"

For the CommandButton1 Click event, add the following code:
Dim result
If CheckBox1.Value = True Then
 If CheckBox2.Value = True Then
 result = Date() & Chr(32) & Time()
 Else
 result = Date()
 End If
Else
 If CheckBox2.Value = True Then
 result = Time()
 Else
 result = "Date and time displayed here"
 End If
End If

Label1.Caption = result

Form Information Example
This example uses OptionButtons to change the background color. of an HTML Layout and a
CommandButton to display the width and height of the HTML Layout in a dialog box.

The following controls and corresponding property values should be set:

· Add OptionButton1
· Set Caption = "Red"
· Set Value = 0

· Add OptionButton2
· Set Caption = "Green"
· Set Value = 0

· Add OptionButton3
· Set Caption = "Blue"
· Set Value = 0

· Add CommandButton1
· Set Caption = "Size"

For the following events, add the corresponding code:

· For the OptionButton1 Click event:
Form.BackColor = RGB(255,0,0)

· For the OptionButton2 Click event:
Form.BackColor = RGB(0,255,0)

· For the Optionbutton3 Click event:
Form.BackColor = RGB(0,0,255)

· For the CommandButton1 Click event:
MsgBox("HTML Layout width = " & Form.Width & chr(13) & chr(10) & _
"HTML Layoutheight = " & Form.Height)

Adding Links via Colored Labels Example
This example uses Labels to provide links to other sites rather than underlined hypertext links. This
text describes the process for adding one Label. This example could be extended to also use images
and hot spots.

The following control and corresponding property values should be set:

· Add Label1
· Select a background color and foreground color. Set Caption (for example "Microsoft").

For the Label1 MouseDown event, add the following code:
Window.location.href = "http://www.microsoft.com"

Hello World Example
This example uses a CommandButton Click event to display the message "Hello World" in a dialog
box.

The following control and corresponding property value should be set:

· Add CommandButton1
· Set Caption = "Push"

For the CommandButton1 Click event, add the following code:
MsgBox("Hello, World!")

Hide/Show Controls Example
This example demonstrates a method of hiding and showing CommandButtons on an HTML Layout.

The following controls and corresponding property values should be set:

· Add CommandButton1
· Set Caption = "Show the other button"

· Add CommandButton2
· Set Caption = "Bring back the first button"

For the following events, add the corresponding code:

· For the CommandButton1 Click event:
CommandButton2.Visible = True
CommandButton1.Visible = False

· For the CommandButton2 Click event:
CommandButton1.Visible = True
CommandButton2.Visible = False

Add/Remove Items from a ListBox Example
This example demonstrates a method for interactively updating a ListBox.

The following controls and corresponding property values should be set:

· Add CommandButton1
· Set Caption = "Add Item"

· Add CommandButton2
· Set Caption = "Remove Item"

· Add ListBox1
For the following events, add the corresponding code:

· For the CommandButton1 Click event:
Dim NewItem
NewItem = InputBox("Enter new item to add to list box","Add item")
NewItem = Trim(NewItem)
If Len(NewItem) > 0 Then
ListBox1.AddItem(NewItem)

End If
· For the CommandButton2 Click event

If ListBox1.ListIndex >= 0 Then
ListBox1.RemoveItem(ListBox1.ListIndex)
ListBox1.SetFocus

Else
MsgBox("No item selected!")

End If

Mouse Tracking Example
This example uses the MouseMove event for tracking mouse movement and updates a Label based
on the mouse position.

The following controls and corresponding property values should be set:

· Add Label1
· Set Caption = "Number One"
· Set BorderStyle = "Single"

· Add Label2
· Set Caption = "Number Two"
· Set BorderStyle = "Single"

· Add CommandButton1
· Set Caption = "Button 1"

· Add Label3
· Set Caption = ""
· Set ID = "lblDisplay"
· Set BorderStyle = "Single"
· Set TextAlign = "Center"

For the following events, add the corresponding code:

· For Label1 MouseDown event:
lblDisplay.Caption = "Mouse down number one"

· For Label1 MouseMove event:
lblDisplay.Caption = "Mouse moving over number one"

· For Label2 MouseDown event:
lblDisplay.Caption = "Mouse down number two"

· For Label2 MouseMove event:
lblDisplay.Caption = "Mouse moving over number two"

· For lblDisplay_MouseMove event:
lblDisplay.Caption = "Mouse moving over display label"

· For CommandButton1 MouseMove event:
lblDisplay.Caption = "Mouse moving over command button"

SpinButton Control Updating a Label Example
This example demonstrates dynamically updating the updating the Caption of a Label with a
SpinButton.

The following controls and corresponding property values should be set:

· Add SpinButton1
· Add Label1

· Set Caption = ""
· Set BorderStyle = "Single"
· Set TextAlign = "Center"

· For the SpinButton1 event, add the following code:
Label1.Caption = SpinButton1.Value

AfterUpdate Event
See Also                  Example                  Applies To                 

Occurs after data in a control is changed through the user interface.

Syntax
Private Sub object_AfterUpdate()
The AfterUpdate event syntax has these parts:

Part Description
object Required. A valid object.

Remarks
This event cannot be canceled. If you want to cancel the update (to restore the previous value of the
control), use the BeforeUpdate event and set the Cancel argument to True.

The AfterUpdate event occurs after the BeforeUpdate event and before the Exit event for the current
control and before the Enter event for the next control in the tab order.

BeforeDragOver Event
See Also                  Example                  Applies To                 

Occurs when a drag-and-drop operation is in progress.

Syntax
For TabStrip

Private Sub object_BeforeDragOver(index As Long, ByVal Cancel As
MSForms.ReturnBoolean, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single,
ByVal DragState As fmDragState, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As
fmShiftState)

For other controls
Private Sub object_BeforeDragOver(ByVal Cancel As MSForms.ReturnBoolean, ByVal Data
As DataObject, ByVal X As Single, ByVal Y As Single, ByVal DragState As fmDragState,
ByVal Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDragOver event syntax has these parts:

Part Description
object Required. A valid object name.
Cancel Required. Event status. False indicates that the control

should handle the event (default). True indicates the
application should handle the event.

ctrl Required. The control being dragged over.
Data Required. Data that is dragged in a drag-and-drop operation.

The data is packaged in a DataObject.
X, Y Required. The horizontal and vertical coordinates of the

control’s position. Both coordinates are measured in points.
X is measured from the left edge of the control; Y is
measured from the top of the control.

DragState Required. Transition state of the data being dragged.
X, Y Required. The horizontal and vertical coordinates of the

control’s position. Both coordinates are measured in points.
X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Operations supported by the drop source.
Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings
The settings for DragState are:

Constant Value Description
fmDragStateEnter 0 Mouse pointer is within range of a target.
fmDragStateLeave 1 Mouse pointer is outside the range of a

target.
fmDragStateOver 2 Mouse pointer is at a new position, but

remains within range of the same target.

The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.

fmDropEffectCopy 1 Copies the drop source to the
drop target.

fmDropEffectMove 2 Moves the drop source to the drop
target.

fmDropEffectCopyOrMove 3 Copies or moves the drop source
to the drop target.

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
Use this event to monitor the mouse pointer as it enters, leaves, or rests directly over a valid target.
When a drag-and-drop operation is in progress, the system initiates this event when the user moves
the mouse, or presses or releases the mouse buttons. The mouse pointer position determines the
target object that receives this event. You can determine the state of the mouse pointer by examining
the DragState argument.

When a control handles this event, you can use the Effect argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, the drop source supports a copy
(fmDropEffectCopy), move (fmDropEffectMove), or a cancel (fmDropEffectNone) operation.

When Effect is set to fmDropEffectCopy, the drop source supports a copy or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectMove, the drop source supports a move or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectNone. the drop source supports a cancel operation.

Most controls do not support drag-and-drop while Cancel is False, which is the default setting. This
means the control rejects attempts to drag or drop anything on the control, and the control does not
initiate the BeforeDropOrPaste event. The TextBox and ComboBox controls are exceptions to this;
these controls support drag-and-drop operations even when Cancel is False.

BeforeDropOrPaste Event
See Also                  Example                  Applies To                 

Occurs when the user is about to drop or paste data onto an object.

Syntax
For TabStrip

Private Sub object_BeforeDropOrPaste(index As Long, ByVal Cancel As
MSForms.ReturnBoolean, ByVal Action As fmAction, ByVal Data As DataObject, ByVal X As
Single, ByVal Y As Single, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As
fmShiftState)

For other controls
Private Sub object_BeforeDropOrPaste(ByVal Cancel As MSForms.ReturnBoolean, ByVal
Action As fmAction, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single, ByVal
Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDropOrPaste event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the control that the drop or paste

operation will affect.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application should
handle the event.

ctrl Required. The target control.
Action Required. Indicates the result, based on the current keyboard

settings, of the pending drag-and-drop operation.
Data Required. Data that is dragged in a drag-and-drop operation. The

data is packaged in a DataObject.
X, Y Required. The horizontal and vertical position of the mouse

pointer when the drop occurs. Both coordinates are measured in
points. X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Effect of the drag-and-drop operation on the target
control.

Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings
The settings for Action are:

Constant Value Description
fmActionPaste 2 Pastes the selected object into the drop

target.
fmActionDragDrop 3 Indicates the user has dragged the object

from its source to the drop target and
dropped it on the drop target.

The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.

fmDropEffectCopy 1 Copies the drop source to the drop
target.

fmDropEffectMove 2 Moves the drop source to the drop
target.

fmDropEffectCopyOrMove 3 Copies or moves the drop source to
the drop target.

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
For a TabStrip, VBScript initiates this event when it transfers a data object to the control.

For other controls, the system initiates this event immediately prior to the drop or paste operation.

When a control handles this event, you can update the Action argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, you can assign Action to
fmDropEffectNone, fmDropEffectCopy, or fmDropEffectMove. When Effect is set to
fmDropEffectCopy or fmDropEffectMove, you can reassign Action to fmDropEffectNone. You
cannot reassign Action when Effect is set to fmDropEffectNone.

BeforeUpdate Event
See Also                  Example                  Applies To                 

Occurs before data in a control is changed.

Syntax
Private Sub object_BeforeUpdate(Cancel As MSForms.ReturnBoolean)
The BeforeUpdate event syntax has these parts:

Part Description
object Required. A valid object.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True cancels the update and
indicates the application should handle the event.

Remarks
This event occurs before the AfterUpdate and Exit events for the control (and before the Enter event
for the next control that receives the focus).

If you set the Cancel argument to True, the focus remains on the control and neither the AfterUpdate
event nor the Exit event occurs.

Change Event
See Also                  Example                  Applies To                 

Occurs when the Value property changes.

Syntax
Private Sub object_Change()
The Change event syntax has these parts:

Part Description
object Required. A valid object.

Settings
The Change event occurs when the setting of the Value property changes, regardless of whether the
change results from execution of code or a user action in the interface.

Here are some examples of actions that change the Value property:

· Clicking a CheckBox, OptionButton, or ToggleButton.
· Entering or selecting a new text value for a ComboBox, ListBox, or TextBox.
· Selecting a different tab on a TabStrip.
· Moving the scroll box in a ScrollBar.
· Clicking the Up Arrow or Down Arrow on a SpinButton.

Remarks
The Change event procedure can synchronize or coordinate data displayed among controls. For
example, you can use the Change event procedure of a ScrollBar to update the contents of a
TextBox that displays the value of the ScrollBar. Or you can use a Change event procedure to
display data and formulas in a work area and results in another area.

Note    In some cases, the Click event may also occur when the Value property changes. However,
using the Change event is the preferred technique for detecting a new value for a property.

Click Event
See Also                  Example                  Applies To                 

Occurs in one of two cases:

· The user clicks a control with the mouse.
· The user selects a specific value for a control with more than one possible value.

Syntax
For all controls

Private Sub object_Click()
The Click event syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Of the two cases where the Click event occurs, the first case applies to the CommandButton,
Image, Label, ScrollBar, and SpinButton. The second case applies to the CheckBox, ComboBox,
ListBox, TabStrip, TextBox, and ToggleButton.

The following are examples of actions that initiate the Click event:

· Clicking a blank area of an HTML Layout or a disabled control (other than a list box) on the HTML
Layout.

· Clicking a CommandButton. If the command button doesn't already have the focus, the Enter
event occurs before the Click event.

· Pressing the SPACEBAR when a CommandButton has the focus.
· Clicking a control with the left mouse button (left-clicking).
· Pressing a control's accelerator key.
When the Click event results from clicking a control, the sequence of events leading to the Click event
is:

1. MouseDown
1. MouseUp
2. Click

For some controls, the Click event occurs when the Value property changes. However, using the
Change event is the preferred technique for detecting a new value for a property. The following are
examples of actions that initiate the Click event due to assigning a new value to a control:

· Clicking a CheckBox or ToggleButton, pressing the SPACEBAR when one of these controls has the
focus, pressing the accelerator key for one of these controls, or changing the value of the control in
code.

· Changing the value of an OptionButton to True. Setting one OptionButton in a group to True
sets all other buttons in the group to False, but the Click event occurs only for the button whose
value changes to True.

· Selecting a value for a ComboBox or ListBox so that it unquestionably matches an item in the
control’s drop-down list. For example, if a list is not sorted, the first match for characters typed in
the edit region may not be the only match in the list, so choosing such a value does not initiate the
Click event. In a sorted list, you can use entry-matching to ensure that a selected value is a unique
match for text the user types.

The Click event is not initiated when Value is set to Null.
Note    Left-clicking changes the value of a control, thus it initiates the Click event. Right-clicking does

not change the value of the control, so it does not initiate the Click event.

DblClick Event
See Also                  Example                  Applies To                 

Occurs when the user points to an object and then clicks a mouse button twice.

Syntax
For TabStrip

Private Sub object_DblClick(index As Long, Cancel As MSForms.ReturnBoolean)
For other controls

Private Sub object_DblClick(Cancel As MSForms.ReturnBoolean)
The DblClick event syntax has these parts:

Part Description
object Required. A valid object.
index Required. The position of a Tab object within a Tabs collection.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application should
handle the event.

Remarks
For this event to occur, the two clicks must occur within the time span specified by the system's
double-click speed setting.

For controls that support Click, the following sequence of events leads to the DblClick event:

1. MouseDown
1. MouseUp
2. Click
3. DblClick

If a control, such as TextBox, does not support Click, Click is omitted from the order of events leading
to the DblClick event.

If the return value of Cancel is True when the user clicks twice, the control ignores the second click.
This is useful if the second click reverses the effect of the first, such as double-clicking a toggle
button. The Cancel argument allows your HTML Layout to ignore the second click, so clicking or
double-clicking the button has the same effect.

DropButtonClick Event
See Also                  Example                  Applies To

Occurs whenever the drop-down list appears or disappears.

Syntax
Private Sub object_DropButtonClick()
The DropButtonClick event syntax has these parts:

Part Description
object Required. A valid object.

Remarks
You can initiate the DropButtonClick event through code or by taking certain actions in the user
interface.

In code, calling the DropDown method initiates the DropButtonClick event.

In the user interface, any of the following actions initiates the event:

· Clicking the drop-down button on the control.
· Pressing F4.

Any of the above actions, in code or in the interface, cause the drop-down box to appear on the
control. The system initiates the DropButtonClick event when the drop-down box goes away.

Enter, Exit Events
See Also                  Example                  Applies To

Enter occurs before a control actually receives the focus from a control on the same HTML Layout.
Exit occurs immediately before a control loses the focus to another control on the same HTML Layout.

Syntax
Private Sub object_Enter()
Private Sub object_Exit(Cancel As MSForms.ReturnBoolean)
The Enter and Exit event syntaxes have these parts:

Part Description
object Required. A valid object name.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application should
handle the event and the focus should remain on the current
control.

Remarks
The Enter and Exit events are similar to the GotFocus and LostFocus events in VBScript. Unlike
GotFocus and LostFocus, the Enter and Exit events don't occur when an HTML Layout receives or
loses the focus.

For example, suppose you select the check box that initiates the Enter event. If you then select
another control in the same HTML Layout, the Exit event will be initiated for the check box (because
the focus is moving to a different object in the same HTML Layout) and the Enter event will occur for
the second control on the HTML Layout.

Because the Enter event occurs before the focus moves to a particular control, you can use an Enter
event procedure to display instructions. For example, you could use an event procedure to display a
small HTML Layout or message box identifying the type of data the control typically contains.

Note    To prevent the control from losing focus, assign True to the Cancel argument of the Exit event.

Error Event
See Also                  Example                  Applies To

Occurs when a control detects an error and cannot return the error information to a calling program.

Syntax
Private Sub object_Error(ByVal Number As Integer, Description As MSForms.ReturnString,
ByVal SCode As SCode, ByVal Source As String, ByVal HelpFile As String, ByVal HelpContext
As Long, CancelDisplay As MSForms.ReturnBoolean)

The Error event syntax has these parts:

Part Description
object Required. A valid object name.
Number Required. Specifies a unique value that the control uses

to identify the error.
Description Required. A textual description of the error.
SCode Required. Specifies the OLE status code for the error.

The low-order 16 bits specify a value that is identical to
the Number argument.

Source Required. The string that identifies the control that
initiated the event.

HelpFile Required. Specifies a fully qualified path name for the
Help file that describes the error.

HelpContext Required. Specifies the context ID of the Help file topic
that contains a description of the error.

CancelDisplay Required. Specifies whether to display the error string in a
message box.

Remarks
The code written for the Error event determines how the control responds to the error condition.

The ability to handle error conditions varies from one application to another. The Error event is
initiated when an error occurs that the application is not equipped to handle.

KeyDown, KeyUp Events
See Also                  Example                  Applies To

Occur in sequence when a user presses and releases a key. KeyDown occurs when the user presses
a key. KeyUp occurs when the user releases a key.

Syntax
Private Sub object_KeyDown(KeyCode As MSForms.ReturnInteger, ByVal Shift As

fmShiftState)
Private Sub object_KeyUp(KeyCode As Integer, ByVal Shift As fmShiftState)
The KeyDown and KeyUp event syntaxes have these parts:

Part Description
object Required. A valid object name.
KeyCode Required. An integer that represents the key code of the key

that was pressed or released.
Shift Required. The state of SHIFT, CTRL, and ALT.

Settings
The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
The KeyDown event occurs when the user presses a key on a running HTML Layout while that HTML
Layout, or a control on it, has the focus. The KeyDown and KeyPress events alternate repeatedly until
the user releases the key, at which time the KeyUp event occurs. The HTML Layout, or a control with
the focus, receives all keystrokes. An HTML Layout can have the focus only if it has no controls or all
its visible controls are disabled.

The KeyDown and KeyUp events are typically used to recognize or distinguish between:

· Extended character keys, such as function keys.
· Navigation keys, such as HOME, END, PAGEUP, PAGEDOWN, UP ARROW, DOWN ARROW, RIGHT ARROW,

LEFT ARROW, and TAB.
· Combinations of keys and standard keyboard modifiers (SHIFT, CTRL, or ALT).

· The numeric keypad and keyboard number keys.

The KeyDown and KeyUp events do not occur under the following circumstances:

· The user presses enter on an ActiveX Layout with a command button whose Default property is
set to True.

· The user presses ESC on an ActiveX Layout with a command button whose Cancel property is set
to True.

The KeyDown and KeyPress events occur when you press or send an ANSI key. The KeyUp event
occurs after any event for a control caused by pressing or sending the key. If a keystroke causes the
focus to move from one control to another control, the KeyDown event occurs for the first control,
while the KeyPress and KeyUp events occur for the second control.

The sequence of keyboard-related events is:

1. KeyDown
1. KeyPress
2. KeyUp

Note    The KeyDown and KeyUp events apply only to HTML Layouts and controls on an HTML
Layout. To interpret ANSI characters or to find out the ANSI character corresponding to the key
pressed, use the KeyPress event.

KeyPress Event
See Also                  Example                  Applies To

Occurs when the user presses an ANSI key.

Syntax
Private Sub object_KeyPress(KeyANSI As MSForms.ReturnInteger)
The KeyPress event syntax has these parts:

Part Description
object Required. A valid object.
KeyANSI Required. An integer value that represents a standard

numeric ANSI key code.

Remarks
The KeyPress event occurs when the user presses a key that produces a typeable character (an
ANSI key) on a running HTML Layout while the HTML Layout, or a control on it, has the focus. The
event can occur either before or after the key is released.

A KeyPress event can occur when any of the following keys are pressed:

· Any printable keyboard character.
· CTRL combined with a character from the standard alphabet.
· CTRL combined with any special character.
· BACKSPACE.
· ESC.

A KeyPress event does not occur under the following conditions:

· Pressing TAB.
· Pressing ENTER.

· Pressing an arrow key.
· When a keystroke causes the focus to move from one control to another.

Note      BACKSPACE is part of the ANSI Character Set, but DELETE is not. Deleting a character in a
control using BACKSPACE causes a KeyPress event; deleting a character using DELETE doesn't.

When a user holds down a key that produces an ANSI keycode, the KeyDown and KeyPress events
alternate repeatedly. When the user releases the key, the KeyUp event occurs. The HTML Layout, or
control with the focus, receives all keystrokes. An HTML Layout can have the focus only if it has no
controls, or if all of its visible controls are disabled.

The default action for the KeyPress event is to process the event code that corresponds to the key
that was pressed. KeyANSI indicates the ANSI character that corresponds to the pressed key or key
combination. The KeyPress event interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

To respond to the physical state of the keyboard, or to handle keystrokes not recognized by the
KeyPress event, such as function keys, navigation keys, and any combinations of these with
keyboard modifiers (ALT, SHIFT, or CTRL), use the KeyDown and KeyUp event procedures.

The sequence of keyboard-related events is:

1. KeyDown
1. KeyPress
2. KeyUp

MouseDown, MouseUp Events
See Also                  Example                  Applies To

Occur when the user clicks a mouse button. MouseDown occurs when the user presses the mouse
button; MouseUp occurs when the user releases the mouse button.

Syntax
For TabStrip

Private Sub object_MouseDown(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseDown(ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(ByVal Button As fmButton, ByVal Shift As fmShiftState, ByVal X
As Single, ByVal Y As Single)

The MouseDown and MouseUp event syntaxes have these parts:

Part Description
object Required. A valid object.
index Required. The index of the tab in a TabStrip with the specified

event.
Button Required. An integer value that identifies which mouse button

caused the event.
Shift Required. The state of SHIFT, CTRL, and ALT.
X, Y Required. The horizontal or vertical position, in points, from the

left or top edge of the HTML Layout.

Settings
The settings for Button are:

Constant Value Description
fmButtonLeft 1 The left button was pressed.
fmButtonRight 2 The right button was pressed.
fmButtonMiddle 4 The middle button was pressed.

The settings for Shift are:

Value Description
1 SHIFT was pressed.
2 CTRL was pressed.
3 SHIFT and CTRL were pressed.
4 ALT was pressed.
5 ALT and SHIFT were pressed.
6 ALT and CTRL were pressed.
7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description
fmShiftMask 1 Mask to detect SHIFT.
fmCtrlMask 2 Mask to detect CTRL.
fmAltMask 4 Mask to detect ALT.

Remarks
For a TabStrip, the index argument identifies the tab that the user clicked. An index of –1 indicates
the user did not click a tab. For example, if there are no tabs in the upper-right corner of the control,
clicking in the upper-right corner sets the index to –1.

For an HTML Layout, the user can generate MouseDown and MouseUp events by pressing and
releasing a mouse button in a blank area, record selector, or scroll bar on the HTML Layout.

The sequence of mouse-related events is:

1. MouseDown
1. MouseUp
2. Click
3. DblClick
4. MouseUp

MouseDown or MouseUp event procedures specify actions that occur when a mouse button is
pressed or released. MouseDown and MouseUp events enable you to distinguish between the left,
right, and middle mouse buttons. You can also write code for mouse-keyboard combinations that use
the SHIFT, CTRL, and ALT keyboard modifiers.

If a mouse button is pressed while the pointer is over an HTML Layout or control, that object will
"capture" the mouse and receive all mouse events up to and including the last MouseUp event. This
implies that the X, Y mouse-pointer coordinates returned by a mouse event may not always be within
the boundaries of the object that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse will receive all
successive mouse events until all buttons are released.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseDown or MouseUp
event occurred. For example, if both CTRL and ALT are pressed, the value of Shift will be 6.

MouseMove Event
See Also                  Example                  Applies To

Occurs when the user moves the mouse.

Syntax
For TabStrip

Private Sub object_MouseMove(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseMove(ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

The MouseMove event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the tab in a TabStrip associated with

this event.
Button Required. An integer value that identifies the state of the mouse

buttons.
Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

X, Y Required. The horizontal or vertical position, measured in
points, from the left or top edge of the control.

Settings
The index argument specifies which tab was clicked over. A –1 designates that the user did not click
any of the tabs.

The settings for Button are:

Value Description
0 No button is pressed.
1 The left button is pressed.
2 The right button is pressed.
3 The right and left buttons are pressed.
4 The middle button is pressed.
5 The middle and left buttons are pressed.
6 The middle and right buttons are pressed.
7 All three buttons are pressed.

The settings for Shift are:

Value Description
1 SHIFT was pressed.
2 CTRL was pressed.
3 SHIFT and CTRL were pressed.
4 ALT was pressed.
5 ALT and SHIFT were pressed.
6 ALT and CTRL were pressed.
7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description
fmShiftMask 1 Mask to detect SHIFT.
fmCtrlMask 2 Mask to detect CTRL.
fmAltMask 4 Mask to detect ALT.

Remarks
The MouseMove event applies to HTML Layouts, controls on an HTML Layout, and labels.

MouseMove events are generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

Moving an HTML Layout can also generate a MouseMove event even if the mouse is stationary.
MouseMove events are generated when the HTML Layout moves underneath the pointer. If an event
procedure moves an HTML Layout in response to a MouseMove event, the event can continually
generate (cascade) MouseMove events.

If two controls are very close together, and you move the mouse pointer quickly over the space
between them, the MouseMove event might not occur for that space. In such cases, you might need
to respond to the MouseMove event in both controls.

You can use the value returned in the Button argument to identify the state of the mouse buttons.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseMove event
occurred. For example, if both CTRL and ALT are pressed, the value of Shift will be 6.

Note    You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.

Scroll Event
See Also                  Example                  Applies To

Occurs when the scroll box is repositioned.

Syntax
For ScrollBar

Private Sub object_Scroll()
The Scroll event syntax has these parts:

Part Description
object Required. A valid object name.

Settings
The settings for ActionX and ActionY are:

Constant Value Description
fmScrollActionNoChange 0 No change occurred.
FmScrollActionLineUp 1 A small distance up on a vertical

scroll bar; a small distance to the
left on a horizontal scroll bar.
Movement is equivalent to
pressing the up or left arrow
keys on the keyboard to move
the scroll bar.

FmScrollActionLineDown 2 A small distance down on a
vertical scroll bar; a small
distance to the right on a
horizontal scroll bar. Movement
is equivalent to pressing the
down or right arrow keys on the
keyboard to move the scroll bar.

FmScrollActionPageUp 3 One page up on a vertical scroll
bar; one page to the left on a
horizontal scroll bar. Movement
is equivalent to pressing PAGE UP
on the keyboard to move the
scroll bar.

FmScrollActionPageDown 4 One page down on a vertical
scroll bar; one page to the right
on a horizontal scroll bar.
Movement is equivalent to
pressing PAGE DOWN on the
keyboard to move the scroll bar.

FmScrollActionBegin 5 The top of a vertical scroll bar;
the left end of a horizontal scroll
bar.

FmScrollActionEnd 6 The bottom of a vertical scroll
bar; the right end of a horizontal
scroll bar.

FmScrollActionPropertyChange 8 The value of either the ScrollTop
or the ScrollLeft property

changed. The direction and amount
of movement depend on which
property was changed and on the
new property value.

fmScrollActionControlRequest 9 A control asked its container to
scroll. The amount of movement
depends on the specific control
and container involved.

fmScrollActionFocusRequest 10 The user moved to a different
control. The amount of
movement depends on the
placement of the selected
control, and generally has the
effect of moving the selected
control so it is completely visible
to the user.

Remarks
The Scroll events associated with an ActiveX Layout return the following arguments: ActionX,
ActionY, ActualX, and ActualY. ActionX and ActionY identify the action that occurred. ActualX and
ActualY identify the distance the scroll box traveled.

The default action is to calculate the new position of the scroll box and then scroll to that position.

You can initiate a Scroll event by issuing a Scroll method for an ActiveX Layout. Users can generate
Scroll events by moving the scroll box.

The Scroll event associated with the stand-alone ScrollBar indicates that the user moved the scroll
box in either direction. This event is not initiated when the value of the ScrollBar changes by code or
when the user clicks on parts of the ScrollBar other than the scroll box.

SpinDown, SpinUp Events
See Also                  Example                  Applies To

SpinDown occurs when the user clicks the lower or left spin-button arrow. SpinUp occurs when the
user clicks the upper or right spin-button arrow.

Syntax
Private Sub object_SpinDown()
Private Sub object_SpinUp()
The SpinDown and SpinUp event syntaxes have these parts:

Part Description
object Required. A valid object.

Remarks
The SpinDown event decreases the Value property. The SpinUp event increases the Value property.

CheckBox Control
See Also                  Example                  Properties                  Methods                  Events

Displays the selection state of an item.

Remarks
Use a CheckBox to give the user a choice between two values such as Yes/No, True/False, or
On/Off. When the user selects a CheckBox, it will display a special mark (such as an X) and its
current setting will be Yes, True, or On; if the user does not select the CheckBox, it will be empty and
its setting will be No, False, or Off. Depending on the value of the TripleState property, a CheckBox
can also have a Null value.

A disabled CheckBox shows the current value, but is dimmed and does not allow changes to the
value from the user interface.

You can also group check boxes so that a user can select one or more of a group of related items.
For example, you can create an order form that contains a list of available items, with a CheckBox
preceding each item. The user can select a particular item or items by checking the corresponding
CheckBox.

The default property of a CheckBox is the Value property. The initial value of the Value property is
set to False.

The default event of a CheckBox is the Click event.

Note    The ListBox also lets you put a check mark by selected options. Depending on your
application, you may be able to use the ListBox instead of using a group of CheckBox controls.

ComboBox Control
See Also                  Example                  Properties                  Methods                  Events

Combines the features of a ListBox and a TextBox. The user can enter a new value, as with a
TextBox, or the user can select an existing value, as with a ListBox.

Remarks
The list in a ComboBox control consists of rows of text. Each row can have one or more columns,
which can appear with or without headings. Some applications do not support column headings,
others provide only limited support.

The default property of a ComboBox is the Value property.

The default event of a ComboBox is the Change event.

Note    If you want more than a single line of the list to appear at all times, you might want to use a
ListBox instead of a ComboBox. If you want to use a ComboBox and limit values to those in the
list, you can set the Style property of the ComboBox so the control looks like a drop-down list box.

CommandButton Control
See Also                  Example                  Properties                  Methods                  Events

Starts, ends, or interrupts an action or series of actions.

Remarks
The event procedure assigned to the CommandButton's Click event determines what the
CommandButton does. For example, you can create a CommandButton control that jumps to
another HTML page. You can also display text, a picture, or both on a CommandButton.

The default property of a CommandButton is the Value property.

The default event for a CommandButton is the Click event.

Label Control
See Also                  Example                  Properties                  Methods                  Events

Displays descriptive text.

Remarks
A Label control on an HTML Layout displays descriptive text such as titles, captions, pictures, or brief
instructions. For example, labels for an address book might include a Label for a name, street, or city.
A Label control doesn't change as you move from record to record.

The default property for a Label is the Caption property.

The default event for a Label is the Click event.

ListBox Control
See Also                  Example                  Properties                  Methods                  Events

Displays a list of values and lets you select one or more entries from the list.

Remarks
The ListBox control can either appear as a list or as a group of OptionButton controls, or
CheckBox controls.

The default property for a ListBox is the Value property.

The default event for a ListBox is the Click event.

You can't drop text into a drop-down ListBox.

Note      ListBox is a windowed control. Therefore you cannot position it behind a windowless control
in the z-order. For example, you cannot position a ListBox behind a CommandButton. However, you
can position the z-order of ListBox relative to other ListBox controls.

OptionButton Control
See Also                  Example                  Properties                  Methods                  Events

Shows the selection status of one item in a group of choices.

Remarks
Use an OptionButton control to show whether a single item in a group is selected.

If the user selects the OptionButton, the current setting will be Yes, True, or On; if the user does not
select the OptionButton, the setting will be No, False, or Off. For example, an OptionButton in an
inventory-tracking application might show whether an item is discontinued. A disabled OptionButton
is dimmed and does not show a value.

Depending on the value of the TripleState property, an OptionButton can also have a Null value.

You can also group OptionButtons so that a user can select one or more of a group of related items.
For example, you can create an order form with a list of available items, with an OptionButton
preceding each item. The user can select a particular item by checking the corresponding
OptionButton.

The default property for an OptionButton is the Value property. The initial value of the Value property
is set to False.

The default event for an OptionButton is the Click event.

ScrollBar Control
See Also                  Example                  Properties                  Methods                  Events

Returns or sets the value of another control based on the position of the scroll box.

Remarks
A ScrollBar is a stand-alone control you can place on an HTML Layout. It is visually like the scroll bar
you see in certain objects such as a ListBox or the drop-down portion of a ComboBox. However,
unlike the scroll bars in these examples, the stand-alone ScrollBar control is not an integral part of
any other control.

To use the ScrollBar to set or read the value of another control, you must write code for the
ScrollBar’s events and methods. For example, to use the ScrollBar to update the value of a
TextBox, you can write code that reads the Value property of the ScrollBar and then sets the Value
property of the TextBox.

The default property for a ScrollBar is the Value property.

The default event for a ScrollBar is the Change event.

Note    To create a horizontal or vertical ScrollBar, drag the sizing handles of the ScrollBar
horizontally or vertically on the HTML Layout.

SpinButton Control
See Also                  Example                  Properties                  Methods                  Events

Increases and decreases numbers.

Remarks
Clicking a SpinButton changes only the value of the SpinButton. You can write code that uses the
SpinButton control to update the displayed value of another control. For example, you can use a
SpinButton to change the month, the day, or the year shown on a date. You can also use a
SpinButton control to scroll through a range of values or a list of items, or to change the value
displayed in a text box.

To display a value updated by a SpinButton, you must assign the value of the SpinButton to the
displayed portion of a control, such as the Caption property of a Label or the Text property of a
TextBox. To create a horizontal or vertical SpinButton, drag the sizing handles of the SpinButton
horizontally or vertically on the HTML Layout.

The default property for a SpinButton is the Value property.

The default event for a SpinButton is the Change event.

TabStrip Control
See Also                  Example                  Properties                  Methods                  Events

Presents a set of related controls as a visual group.

Remarks
You can use a TabStrip control to view different sets of information for related controls.

For example, the controls might represent information about a daily schedule for a group of
individuals, with each set of information corresponding to a different individual in the group. Set the
title of each tab to show one individual's name. Then, you can write code that, when you click a tab,
updates the controls to show information about the person identified on the tab.

Note    The TabStrip is implemented as a container of a Tabs collection, which in turn contains a
group of Tab objects.

The default property for a TabStrip is the SelectedItem property.

The default event for a TabStrip is the Change event.

TextBox Control
See Also                  Example                  Properties                  Methods                  Events

Displays information from a user.

Remarks
A TextBox is the control most commonly used to display information entered by a user.

Formatting applied to any piece of text in a TextBox control will affect all text in the control. For
example, if you change the font or point size of any character in the control, the change will affect all
characters in the control.

The default property for a TextBox is the Value property.

The default event for a TextBox is the Change event.

ToggleButton Control
See Also                  Example                  Properties                  Methods                  Events

Shows the selection state of an item.

Remarks
Use a ToggleButton control to show whether an item is selected. If the user selects the
ToggleButton, the current setting will be Yes, True, or On; if the user does not select the
ToggleButton, the setting will be No, False, or Off. A disabled ToggleButton shows a value, but is
dimmed and does not allow changes from the user interface.

You can also group ToggleButtons so that a user can select one or more of a group of related items.
For example, you can create an order form with a list of available items, with a ToggleButton
preceding each item. The user can select a particular item by selecting the appropriate
ToggleButton.

The default property of a ToggleButton is the Value property. The initial value of the Value property
is set to False.

The default event of a ToggleButton is the Click event.

Font Object
See Also                  Example                  Applies To                  Properties                  Methods                  Events

Defines the characteristics of the text used by a control or HTML Layout.

Remarks
Each control and HTML Layout has its own Font object to let you set its text characteristics
independently of the characteristics defined for other controls and HTML Layouts. Use font properties
to specify the font name, to set bold or underlined text, or to adjust the size of the text.

Note    The font properties of your HTML Layout or container determine the default font attributes of
controls you put on the HTML Layout.
The default property for the Font object is the Name property. If the Name property contains a null
string, the Font object will use the default system font.

Tab Object
See Also                  Example                  Properties                  Methods                  Events

A Tab is an individual member of a Tabs collection.

Remarks
Visually, a Tab object appears as a rectangle protruding from a larger rectangular area or as a button
adjacent to a rectangular area.

In contrast to an HTML Layout, a Tab object does not contain any controls. Controls that appear
within the region bounded by a TabStrip are contained on the HTML Layout, as is the TabStrip.

Each Tab object has its own set of properties, but has no methods or events. You must use events
from the appropriate TabStrip to initiate processing of an individual Tab.

Each Tab has a unique name and index value within the collection. You can reference a Tab by either
its name or its index value. The index of the first Tab is 0; the index of the second Tab is 1, and so on.
When two Tab objects have the same name, you must reference each Tab by its index value.
References to the name in code will access only the first Tab that uses the name.

Tabs Collection
See Also                  Example                  Applies To                  Properties                  Methods                  Events

A Tabs collection includes all Tabs of a TabStrip.

Remarks
Each Tabs collection provides the features to manage the number of tabs in the collection and to
identify the tab that is currently in use.

The default value of the Tabs collection identifies the current Tab of a collection.

A Tab object has a unique name and index value within a Tabs collection. You can reference a Tab
either by its name or its index value. The index value reflects the ordinal position of the Tab within the
collection. The index of the first Tab in a collection is 0; the index of the second Tab is 1, and so on.

Object Model for ActiveX Control Pad
See Also

The ActiveX Control Pad object model includes the following types of objects:

· Controls
· Objects (within collections)

Each element of the ActiveX Control Pad object model has some combination of properties, events,
and methods that you can use to make your application work the way you want it to.

ActiveX Control Pad has two collections:

Controls collection—contains all the controls on a form.

Tabs collection—contains all the Tab objects in a TabStrip. Each TabStrip has its own distinct Tabs
collection.

Accelerator Property
See Also                  Example                  Applies To

Sets or retrieves the accelerator key for a control.

Syntax
object.Accelerator [= String]

The Accelerator property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The character to use as the accelerator key.

Remarks
To designate an accelerator key, enter a single character for the Accelerator property. You can set
Accelerator in the control's Properties window or in code. If the value of this property contains more
than one character, the first character in the string becomes the value of Accelerator.
When an accelerator key is used, there is no visual feedback (other than focus) to indicate that the
control initiated the Click event. For example, if the accelerator key applies to a CommandButton,
the user will not see the button pressed in the interface. The button receives the focus, however,
when the user presses the accelerator key.

If the accelerator applies to a Label, then the control following the Label in the tab order, rather than
the Label itself, will receive the focus.

Alignment Property
See Also                  Example                  Applies To

Specifies the position of a control relative to its caption.

Syntax
object.Alignment [= fmAlignment]

The Alignment property syntax has these parts:

Part Description
object Required. A valid object.
fmAlignment Optional. Caption position.

Settings
The settings for fmAlignment are:

Constant Value Description
fmAlignmentLeft 0 Places the caption to the left of the

control.
fmAlignmentRight 1 Places the caption    to the right of the

control (default).

Remarks
The caption text for a control is left-aligned.

Note      Although the Alignment property exists on the ToggleButton, the property is disabled. You
cannot set or return a value for this property on the ToggleButton.

AutoSize Property
See Also                  Example                  Applies To

Specifies whether an object automatically resizes to display its entire contents.

Syntax
object.AutoSize [= Boolean]

The AutoSize property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control is resized.

Settings
The settings for Boolean are:

Value Description
True Automatically resizes the control to display its entire

contents.
False Keeps the size of the control constant. Contents are

cropped when they exceed the area of the control
(default).

Remarks
For controls with captions, the AutoSize property specifies whether the control automatically adjusts
to display the entire caption.

For controls without captions, this property specifies whether the control automatically adjusts to
display the information stored in the control. In a ComboBox, for example, setting AutoSize to True
automatically sets the width of the display area to match the length of the current text.

For a single-line text box, setting AutoSize to True automatically sets the width of the display area to
the length of the text in the text box.

For a multiline text box that contains no text, setting AutoSize to True automatically displays the text
as a column. The width of the text column is set to accommodate the widest letter of that font size.
The height of the text column is set to display the entire text of the TextBox.

For a multiline text box that contains text, setting AutoSize to True automatically enlarges the
TextBox vertically to display the entire text. The width of the TextBox does not change.

Note      If you manually change the size of a control while AutoSize is True, the manual change will
override the size previously set by AutoSize.

AutoTab Property
See Also                  Example                  Applies To

Specifies whether an automatic tab occurs when a user enters the maximum allowable number of
characters into a TextBox or the text box portion of a ComboBox.

Syntax
object.AutoTab [= Boolean]

The AutoTab property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether an automatic tab occurs.

Settings
The settings for Boolean are:

Value Description
True Tab occurs.
False Tab does not occur (default).

Remarks
The MaxLength property specifies the maximum number of characters allowed in a TextBox or the
text box portion of a ComboBox.

You can specify the AutoTab property for a TextBox or ComboBox on an HTML Layout for which
you usually enter a set number of characters. Once a user enters the maximum number of
characters, the focus automatically moves to the next control in the tab order. For example, if a
TextBox displays inventory stock numbers that are always five characters long, you can use
MaxLength to specify the maximum number of characters to enter into the TextBox and AutoTab to
automatically tab to the next control after the user enters five characters.

When the AtuoTab property is True, the TabKeyBehavior property is not in effect.

Support for AutoTab varies from one application to another. Not all containers support this property.

AutoWordSelect Property
See Also                  Example                  Applies To

Specifies whether a word or a character is the basic unit used to extend a selection.

Syntax
object.AutoWordSelect [= Boolean]

The AutoWordSelect property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies the basic unit used to extend a selection.

Settings
The settings for Boolean are:

Value Description
True Uses a word as the basic unit (default).
False Uses a character as the basic unit.

Remarks
The AutoWordSelect property specifies how the selection extends or contracts in the edit region of a
TextBox or ComboBox.

If the user places the insertion point in the middle of a word and then extends the selection while
AutoWordSelect is True, the selection will include the entire word.

BackColor Property
See Also                  Example                  Applies To

Specifies the background color of the object.

Syntax
object.BackColor [= Long]

The BackColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the

background color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from 0 to 255. For example, you can specify teal blue as the integer value 4966415 or as
red, green, and blue color components 15, 200, 75.

Remarks
You can see the background color of an object only if the BackStyle property is set to
fmBackStyleOpaque.

BackStyle Property
See Also                  Example                  Applies To

Returns or sets the background style for an object.

Syntax
object.BackStyle [= fmBackStyle]

The BackStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmBackStyle Optional. Specifies the control background.

Settings
The settings for fmBackStyle are:

Constant Value Description
fmBackStyleTransparent 0 The background is transparent.
fmBackStyleOpaque 1 The background is opaque

(default).

Remarks
The BackStyle property determines whether a control is transparent. If BackStyle is
fmBackStyleOpaque, the control is not transparent and you cannot see anything behind the control
on an HTML Layout. If BackStyle is fmBackStyleTransparent, you can see through the control and
look at anything on the HTML Layout located behind the control.

Note      The BackStyle property does not affect the transparency of bitmaps. You must use a picture
editor to make a bitmap transparent. Not all controls support transparent bitmaps.

Bold, Italic, Size, StrikeThrough, Underline, Weight Properties
See Also                  Example                  Applies To

Specifies the visual attributes of text on a displayed or printed HTML Layout.

Syntax
object.Bold [= Boolean]
object.Italic [= Boolean]
object.Size [= Currency]
object.StrikeThrough [= Boolean]
object.Underline [= Boolean]
object.Weight [= Integer]

The Bold, Italic, Size, StrikeThrough, Underline, and Weight property syntaxes have these parts:

Part Description
object Required. A valid object name.
Boolean Optional. Specifies the font style.
Currency Optional. A number indicating the font size.
Integer Optional. Specifies the font style.

The settings for Boolean are:

Value Description
True The text has the specified attribute (that is bold, italic,

size, strikethrough or underline marks, or weight).
False The text does not have the specified attribute

(default).

The Weight property accepts values from 0 to 1000. A value of zero allows the system to pick the
most appropriate weight. A value from 1 to 1000 indicates a specific weight, where 1 represents the
lightest type and 1000 represents the darkest type.

Remarks
These properties define the visual characteristics of text. The Bold property determines whether text
is normal or bold. The Italic property determines whether text is normal or italic. The Size property
determines the height, in points, of displayed text. The Underline property determines whether text is
underlined. The StrikeThrough property determines whether the text appears with strikethrough
marks. The Weight property determines the darkness of the type.

There may be a difference between how a font appears on screen and how it looks printed,
depending on your computer and printer. If you select a font that your system can't display with the
specified attribute or that isn't installed, Windows substitutes a similar font. The substitute font will be
as similar as possible to the font originally requested.

Changing the value of Bold also changes the value of Weight. Setting Bold to True sets Weight to
700; setting Bold to False sets Weight to 400. Conversely, setting Weight to anything over 550 sets
Bold to True; setting Weight to 550 or less sets Bold to False.

The default point size is determined by the operating system.

BorderColor Property
See Also                  Example                  Applies To

Specifies the color of a control’s border.

Syntax
object.BorderColor [= Long]

The BorderColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the border

color of a control.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from 0 to 255. For example, you can specify teal blue as the integer value 4966415 or as
RGB color component values 15, 200, 75.

Remarks
To use the BorderColor property, the BorderStyle property must be set to a value other than
fmBorderStyleNone.

BorderStyle uses BorderColor to define the border colors. The SpecialEffect property uses system
colors exclusively to define its border colors. For Windows operating systems, system color settings
are part of the Control Panel and are found in the Appearance tab of the Display folder. In Windows
NT 3.51, system color settings are stored in the Color folder of the Control Panel.

BorderStyle Property
See Also                Example                  Applies To

Specifies the type of border used by a control.

Syntax
object.BorderStyle [= fmBorderStyle]

The BorderStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmBorderStyle Optional. Specifies the border style.

Settings
The settings for fmBorderStyle are:

Constant Value Description
fmBorderStyleNone 0 The control has no visible border line.
fmBorderStyleSingle 1 The control has a single-line border

(default).

The default value for a ComboBox, Label, ListBox or TextBox is 0 (None). The default value for an
Image is 1 (Single).

Remarks
You can use either BorderStyle or SpecialEffect to specify the border for a control, but not both. If
you specify a value other than zero for one of these properties, the system sets the value of the other
property to zero. For example, if you set BorderStyle to fmBorderStyleSingle, the system sets
SpecialEffect to zero (Flat). If you specify a value other than zero for SpecialEffect, the system sets
BorderStyle to zero.

BorderStyle uses BorderColor to define the colors of its borders.

BoundColumn Property
See Also                  Example                  Applies To

Identifies the source of data in a multicolumn ComboBox or ListBox.

Syntax
object.BoundColumn [= Variant]

The BoundColumn property syntax has these parts:

Part Description
 object Required. A valid object.
Variant Optional. Indicates how the BoundColumn value is selected.

Settings
The settings for Variant are:

Value Description
0 Assigns the value of the ListIndex property to the control.
1 or greater Assigns the value from the specified column to the control.

Columns are numbered from 1 when using this property
(default).

Remarks
When the user chooses a row in a multicolumn ListBox or ComboBox, the BoundColumn property
identifies which item from that row to store as the value of the control. For example, if each row
contains 8 items and BoundColumn is 3, the system stores the information in the third column of the
currently-selected row as the value of the object.

You can display one set of data to users but store different, associated values for the object by using
the BoundColumn and the TextColumn properties. TextColumn identifies the column of data
displayed in a ComboBox or ListBox; BoundColumn identifies the column of associated data
values stored for the control. For example, you could set up a multicolumn ListBox that contains the
names of holidays in one column and dates for the holidays in a second column. To present the
holiday names to users, specify the first column as the TextColumn. To store the dates of the
holidays, specify the second column as the BoundColumn.

The ListIndex value retrieves the number of the selected row. For example, if you want to know the
row of the selected item, set BoundColumn to 0 to assign the number of the selected row as the
value of the control. Be sure to retrieve a current value, rather than relying on a previously saved
value, if you are referencing a list whose contents might change.

The Column, List, and ListIndex properties all use zero-based numbering. That is, the value of the
first item (column or row) is zero; the value of the second item is one, and so on. This means that if
BoundColumn is set to 3, you could access the value stored in that column using the expression
Column(2).

BoundValue Property
See Also                  Example                  Applies To

Contains the value of a control when that control receives the focus.

Syntax
object.BoundValue [= Variant]

The BoundValue property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The current state or content of the control.

Settings
Control Description
CheckBox An integer value indicating whether the item is

selected:
Null Indicates the item is in a null state, neither
selected nor cleared.
–1 True. Indicates the item is selected.
0 False. Indicates the item is cleared.

OptionButton Same as CheckBox.
ToggleButton Same as CheckBox.
ScrollBar An integer between the values specified for the Max

and Min properties.
SpinButton Same as ScrollBar.
ComboBox, ListBox The value in the BoundColumn of the currently

selected rows.
CommandButton Always False.
MultiPage An integer indicating the currently active page.

Zero (0) indicates the first page. The maximum value
is one less than the number of pages.

TextBox The text in the edit region.

Remarks
BoundValue applies to the control that has the focus.

The contents of the BoundValue and Value properties are identical most of the time. When the user
edits a control so that its value changes, the contents of BoundValue and Value are different until the
change is final.

Several things occur when the user changes the value of a control. For example, if a user changes
the text in a TextBox, the following events occur:

1. The Change event is initiated. At this time the Value property contains the new text and
BoundValue contains the previous text.

2. The BeforeUpdate event is initiated.
3. The AfterUpdate event is initiated. The values for BoundValue and Value are once again

identical, containing the new text.

BoundValue cannot be used with a multi-select list box.

CanPaste Property
See Also                  Example                  Applies To

Specifies whether the Clipboard contains data that the object supports.

Syntax
object.CanPaste
The CanPaste property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The CanPaste property return values are:

Value Description
True The object underneath the mouse pointer can

receive information pasted from the Clipboard
(default).

False The object underneath the mouse pointer cannot
receive information pasted from the Clipboard.

Remarks
If the Clipboard data is in a format that the current target object does not support, the CanPaste
property will be False. For example, if you try to paste a bitmap into an object that only supports text,
CanPaste will be False.

Caption Property
See Also                  Example                  Applies To

Descriptive text that appears on an object to identify or describe it.

Syntax
object.Caption [= String]

The Caption property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression that evaluates to the

text displayed as the caption.

Settings
The default setting for a control is a unique name based on the type of control. For example,
CommandButton1 is the default caption for the first command button in an HTML Layout.

Remarks
The text identifies or describes the object with which it is associated. For buttons and labels, the
Caption property specifies the text that appears in the control. For Tab objects, it specifies the text
that appears on the tab.

If a control's caption is too long, the caption is truncated. If an HTML Layout's caption is too long for
the title bar, the title is displayed with an ellipsis.

The ForeColor property of the control determines the color of the text in the caption.

Tip      If a control has both the Caption and AutoSize properties, setting AutoSize to True
automatically adjusts the size of the control to frame the entire caption.

ClientHeight, ClientLeft, ClientTop, ClientWidth Properties
See Also                  Example                  Applies To

Define the dimensions and location of the display area of a TabStrip.

Syntax
object.ClientHeight [=Single]
object.ClientLeft [=Single]
object.ClientTop [=Single]
object.ClientWidth [=Single]

The ClientHeight, ClientLeft, ClientTop, and ClientWidth property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. For ClientHeight and ClientWidth,

specifies the height or width, in points, of the display
area. For ClientLeft and ClientTop, specifies the
distance, in points, from the top or left edge of the
TabStrip’s container.

Remarks
At run time, ClientLeft, ClientTop, ClientHeight, and ClientWidth automatically store the
coordinates and dimensions of the TabStrip's internal area, which is shared by objects in the
TabStrip.

Column Property
See Also                  Example                  Applies To

Specifies one or more items in a ListBox or ComboBox.

Syntax
object.Column(column, row) [= Variant]

The Column property syntax has these parts:

Part Description
object Required. A valid object.
column Optional. An integer with a range from 0 to one

less than the total number of columns.
row Optional. An integer with a range from 0 to one

less than the total number of rows.
Variant Optional. Specifies a single value, a column of

values, or a two-dimensional array to load into a
ListBox or ComboBox.

Settings
If you specify both the column and row values, Column reads or writes a specific item.

If you specify only the column value, the Column property reads or writes the specified column in the
current row of the object. For example, MyListBox.Column (3) reads or writes the third column in
MyListBox.

The Column property returns a Variant from the cursor. When a built-in cursor provides the value for
Variant (such as when using the AddItem method), the value is a string. When an external cursor
provides the value for Variant, formatting associated with the data is not included in the Variant.

Remarks
You can use Column to assign the contents of a combo box or list box to another control, such as a
text box.

If the user makes no selection when you refer to a column in a combo box or list box, the Column
setting will be Null. You can check for this condition by using the IsNull function.

You can also use the Column property to copy an entire two-dimensional array of values to a control.
This syntax lets you quickly load a list of choices rather than individually loading each element of the
list using AddItem.

Note      When copying data from a two-dimensional array, Column transposes the contents of the
array in the control so the contents of ListBox1.Column(X, Y) is the same as MyArray(Y, X). You can
also use List to copy an array without transposing it.

ColumnCount Property
See Also                  Example                  Applies To

Specifies the number of columns to display in a list box or combo box.

Syntax
object.ColumnCount [= Long]

The ColumnCount property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. Specifies the number of columns to

display.

Remarks
If you set the ColumnCount property for a list box to 3 on an employee form, one column can list last
names, another can list first names, and the third can list employee ID numbers.

Setting ColumnCount to 0 displays zero columns, and setting it to -1 displays all the available
columns. There is a 10-column limit (0 to 9).

You can use the ColumnWidths property to set the width of the columns displayed in the control.

ColumnHeads Property
See Also                  Example                  Applies To

Displays a single row of column headings for list boxes, combo boxes, and objects that accept
column headings.

Syntax
object.ColumnHeads [= Boolean]

The ColumnHeads property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the column headings

are displayed.

Settings
The settings for Boolean are:

Value Description
True Display column headings.
False Do not display column headings (default).

Headings in combo boxes appear only when the list drops down.

Remarks
When the system uses the first row of data items as column headings, they can't be selected.

ColumnWidths Property
See Also                  Example                  Applies To

Specifies the width of each column in a multicolumn combo box or list box.

Syntax
object.ColumnWidths [= String]

The ColumnWidths property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. Sets the column width in points. A setting

of –1 or blank results in a calculated width. A width
of 0 hides a column. To specify a different unit of
measurement, include the unit of measure. A value
greater than 0 explicitly specifies the width of the
column.

Settings
To separate column entries, use semicolons (;) as list separators. Or use the list separator specified in
the Regional Settings section of the Windows Control Panel.

Any or all of the ColumnWidths property settings can be blank. You can create a blank setting by
typing a list separator without a preceding value.

If you specify a –1 in the property page, the displayed value in the property page will be a blank.

To calculate column widths when ColumnWidths is blank or –1, the width of the control is divided
equally among all columns of the list. If the sum of the specified column widths exceeds the width of
the control, the list will be left-aligned within the control and one or more of the rightmost columns will
not be displayed. Users can scroll the list using the horizontal scroll bar to display the rightmost
columns.

The minimum calculated column width is 72 points (1 inch). To produce columns narrower than this,
you must specify the width explicitly.

Unless specified otherwise, column widths are measured in points. To specify another unit of
measure, include the units as part of the values. The following examples specify column widths in
several units of measure and describe how the various settings would fit in a three-column list box
that is 4 inches wide.

Setting Effect
90;72;90 The first column is 90 points (1.25 inch); the

second column is 72 points (1 inch); the third
column is 90 points.

6 cm;0;6 cm The first column is 6 centimeters; the second
column is hidden; the third column is 6
centimeters. Because part of the third column is
visible, a horizontal scroll bar appears.

1.5 in;0;2.5 in The first column is 1.5 inches, the second column
is hidden, and the third column is 2.5 inches.

2 in;;2 in The first column is 2 inches, the second column is
1 inch (default), and the third column is 2 inches.
Because only half of the third column is visible, a
horizontal scroll bar appears.

(Blank) All three columns are the same width (1.33
inches).

Remarks
In a combo box, the system displays the column designated by the TextColumn property in the text
box portion of the control.

Count Property
See Also                  Example                  Applies To

Returns the number of objects in a collection.

Syntax
object.Count
The Count property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The Count property is read-only.

Note      The index value for the first page or tab of a collection is 0, the value for the second page or
tab is 1, and so on.

CurLine Property
See Also                  Example                  Applies To

Specifies the current line of a control.

Syntax
object.CurLine [= Long]

The CurLine property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. Specifies the current line of a control.

Remarks
The current line of a control is the line that contains the insertion point. The number of the first line is
zero.

The CurLine property is valid when the control has the focus.

CurTargetX Property
See Also                  Example                  Applies To

Retrieves the preferred horizontal position of the insertion point in a multiline TextBox or ComboBox.

Syntax
object.CurTargetX
The CurTargetX property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The CurTargetX property retrieves the preferred position, measured in himetric units. A himetric is
0.0001 meter.

Remarks
The target position is relative to the left edge of the control. If the length of a line is less than the value
of the CurTargetX property, you can place the insertion point at the end of the line. The value of
CurTargetX changes when the user sets the insertion point or when the CurX property is set.
CurTargetX is read-only.

The return value is valid when the object has focus.

You can use CurTargetX and CurX to move the insertion point as the user scrolls through the
contents of a multiline TextBox or ComboBox. When the user moves the insertion point to another
line of text by scrolling the content of the object, CurTargetX specifies the preferred position for the
insertion point. CurX is set to this value if the line of text is longer than the value of CurTargetX.
Otherwise, CurX is set to the end of the line of text.

CurX Property
See Also                  Example                  Applies To

Specifies the current horizontal position of the insertion point in a multiline TextBox or ComboBox.

Syntax
object.CurX [= Long]

The CurX property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. Indicates the current position, measured

in himetrics. A himetric is 0.0001 meter.

Remarks
The CurX property applies to a multiline TextBox or ComboBox. The return value is valid when the
object has the focus.

You can use CurTargetX and CurX to position the insertion point as the user scrolls through the
contents of a multiline TextBox or ComboBox. When the user moves the insertion point to another
line of text by scrolling the content of the object, CurTargetX specifies the preferred position for the
insertion point. CurX is set to this value if the line of text is longer than the value of CurTargetX.
Otherwise, CurX is set to the end of the line of text.

Delay Property
See Also                  Example                  Applies To

Specifies the delay for the SpinUp, SpinDown, and Change events on a SpinButton or ScrollBar.

Syntax
object.Delay [= Long]

The Delay property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. The delay, in milliseconds, between

events.

Remarks
The Delay property affects the amount of time between consecutive SpinUp, SpinDown, and Change
events generated when the user clicks and holds down a button on a SpinButton or ScrollBar. The
first event occurs immediately. The delay to the second occurrence of the event is five times the value
of the specified Delay property. This initial lag makes it easy to generate a single event rather than a
stream of events.

After the initial lag, the interval between events is the value specified for the Delay property

The default value of Delay is 50 milliseconds. This means the object initiates the first event after 250
milliseconds (5 times the specified value) and initiates each subsequent event after 50 milliseconds.

DragBehavior Property
See Also                  Example                  Applies To

Specifies whether the system enables the drag-and-drop feature for a TextBox or ComboBox.

Syntax
object.DragBehavior [= fmDragBehavior]

The DragBehavior property syntax has these parts:

Part Description
object Required. A valid object.
fmDragBehavior Optional. Specifies whether the drag-and-drop

feature is enabled.

Settings
The settings for fmDragBehavior are:

Constant Value Description
fmDragBehaviorDisabled 0 Does not allow a drag-and-drop

action (default).
              
fmDragBehaviorEnabled

1 Allows a drag-and-drop action.

Remarks
If the DragBehavior property is enabled, dragging in a text box or combo box will start a drag-and-
drop operation on the selected text. If DragBehavior is disabled, dragging in a text box or combo box
will select text.

The drop-down portion of a ComboBox does not support drag-and-drop processes, nor does it
support selection of list items within the text.

DragBehavior has no effect on a ComboBox whose Style property is set to fmStyleDropDownList.
Note      You can combine the effects of the EnterFieldBehavior property and the DragBehavior
property to create a large number of text box styles.

DropButtonStyle Property
See Also                  Example                  Applies To

Specifies the symbol displayed on the drop button in a ComboBox.

Syntax
object.DropButtonStyle [= fmDropButtonStyle]

The DropButtonStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmDropButtonStyle Optional. The appearance of the drop button.

Settings
The settings for fmDropButtonStyle are:

Constant Value Description
fmDropButtonStylePlain 0 Displays a plain button, with no

symbol.
fmDropButtonStyleArrow 1 Displays a down arrow (default).
fmDropButtonStyleEllipsis 2 Displays an ellipsis ().
fmDropButtonStyleReduce 3 Displays a horizontal line like an

underscore character.

Remarks
The recommended setting for showing items in a list is fmDropButtonStyleArrow. If you want to use
the drop button in another way, such as to display a dialog box, specify fmDropButtonStyleEllipsis,
fmDropButtonStylePlain, or fmDropButtonStyleReduce and trap the DropButtonClick event.

Enabled Property
See Also                  Example                  Applies To

Specifies whether a control can receive the focus and respond to user-generated events.

Syntax
object.Enabled [= Boolean]

The Enabled property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the object can respond

to user-generated events.

Settings
The settings for Boolean are:

Value Description
True The control can receive the focus and respond to

user-generated events, and is accessible through
code (default).

False The user cannot interact with the control by using
the mouse, keystrokes, accelerators, or hot keys.
The control is generally still accessible through
code.

Remarks
Use the Enabled property to enable and disable controls. A disabled control appears dimmed, while
an enabled control does not. Also, if a control displays a bitmap, the bitmap is dimmed whenever the
control is dimmed. If Enabled is False for an Image, the control will not initiate events but it will also
not appear dimmed.

The Enabled and Locked properties work together to achieve the following effects:

· If Enabled and Locked are both True, the control can receive focus and it will appear normally
(not dimmed) in the HTML Layout. The user can copy, but not edit, data in the control.

· If Enabled is True and Locked is False, the control can receive focus and it will appear normally in
the HTML Layout. The user can copy and edit data in the control.

· If Enabled is False and Locked is True, the control cannot receive focus and it will appear
dimmed in the HTML Layout. The user can neither copy nor edit data in the control.

· If Enabled and Locked are both False, the control cannot receive focus and it will appear dimmed
in the HTML Layout. The user can neither copy nor edit data in the control.

You can combine the settings of the Enabled and the TabStop properties to prevent the user from
selecting a command button with TAB, while still allowing the user to click the button. Setting TabStop
to False means the command button will not appear in the tab order. However, if Enabled is True,
then the user can still click the command button, as long as TakeFocusOnClick is set to True.

When the user tabs into an enabled TabStrip, the first page or tab in the control receives the focus. If
the first page or tab of a TabStrip is disabled, the first enabled page or tab of that control will receive
the focus. If all pages or tabs of a or TabStrip are disabled, the control will be disabled and will not be
able to receive the focus.

EnterFieldBehavior Property
See Also                  Example                  Applies To

Specifies the selection behavior when entering a TextBox or ComboBox.

Syntax
object.EnterFieldBehavior [= fmEnterFieldBehavior]

The EnterFieldBehavior property syntax has these parts:

Part Description
object Required. A valid object.
fmEnterFieldBehavior Optional. The desired selection behavior.

Settings
The settings for fmEnterFieldBehavior are:

Constant Value Description
fmEnterFieldBehaviorSelectAll 0 Selects the entire

contents of the edit region
when entering the control
(default).

fmEnterFieldBehaviorRecallSelection 1 Leaves the selection
unchanged. Visually, this
uses the selection that
was in effect the last time
the control was active.

Remarks
The EnterFieldBehavior property controls the way text is selected when the user tabs to the control,
not when the control receives focus as a result of the SetFocus method. Following SetFocus, the
contents of the control are not selected and the insertion point appears after the last character in the
control’s edit region.

EnterKeyBehavior Property
See Also                  Example                  Applies To

Defines the effect of pressing ENTER in a TextBox.

Syntax
object.EnterKeyBehavior [= Boolean]

The EnterKeyBehavior property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies the effect of pressing ENTER.

Settings
The settings for Boolean are:

Value Description
True Pressing ENTER creates a new line.
False Pressing ENTER moves the focus to the next object

in the tab order (default).

Remarks
The EnterKeyBehavior and MultiLine properties are closely related. The values described above
only apply if MultiLine is True. If MultiLine is False, pressing ENTER will always move the focus to
the next control in the tab order, regardless of the value of the EnterKeyBehavior property.

The effect of pressing CTRL+ENTER also depends on the value of MultiLine. If MultiLine is True,
pressing CTRL+ENTER will create a new line regardless of the value of EnterKeyBehavior. If
MultiLine is False, pressing CTRL+ENTER will have no effect.

ForeColor Property
See Also                  Example                  Applies To

Specifies the foreground color of an object.

Syntax
object.ForeColor [= Long]

The ForeColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the

foreground color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from 0 to 255. For example, you can specify teal blue as the integer value 4966415 or as
red, green, and blue color components 15, 200, 75.

Remarks
Use the ForeColor property for controls on HTML Layouts to make them easy to read or to convey a
special meaning. For example, if a text box reports the number of units in stock, you can change the
color of the text when the value falls below the reorder level.

For a ScrollBar or SpinButton, the ForeColor property sets the color of the arrows. For a Font
object, the ForeColor property determines the color of the text.

GroupName Property
See Also                  Example                  Applies To

Creates a group of mutually exclusive OptionButton controls.

Syntax
object.GroupName [= String]

The GroupName syntax has these parts:

Part Description
object Required. A valid OptionButton.
String Optional. The name of the group that includes the

OptionButton. Use the same setting for all buttons in the
group. The default setting is an empty string.

Remarks
You can create buttons with transparent backgrounds, which can improve the visual appearance of
your HTML Layout.

Clicking one button in a group sets all other buttons in the same group to False. All option buttons
with the same GroupName within a single container are mutually exclusive. You can use the same
group name in two containers, but doing so creates two groups (one in each container) rather than
one group that includes both containers.

Height, Width Properties
See Also                  Example                  Applies To

The height or width, in points, of an object.

Syntax
object.Height [= Single]
object.Width [= Single]

The Height and Width property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. A numeric expression specifying the

dimensions of an object.

Remarks
The Height and Width properties are automatically updated when you move or size a control. If you
change the size of a control, the Height or Width property will store the new height or width. If you
specify a setting for the Left or Top property that is less than zero, that value will be used to calculate
the height or width of the control, but a portion of the control will not be visible on the HTML Layout.

If you move a control from one part of an HTML Layout to another, the setting of Height or Width will
change only if you size the control as you move it. The settings of the control’s Left and Top
properties will change to reflect the control’s new position relative to the edges of the HTML Layout
that contains it.

The value assigned to Height or Width must be greater than or equal to zero. For most systems, the
recommended range of values is from 0 to +32,767. Higher values may also work depending on your
system configuration.

HideSelection Property
See Also                  Example                  Applies To

Specifies whether selected text remains highlighted when a control does not have the focus.

Syntax
object.HideSelection [= Boolean]

The HideSelection property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the selected text

remains highlighted even when the control does
not have the focus.

Settings
The settings for Boolean are:

Value Description
True Selected text is not highlighted unless the control

has the focus (default).
False Selected text always appears highlighted.

Remarks
You can use the HideSelection property to maintain highlighted text when another HTML Layout or a
dialog box receives the focus, such as in a spell-checking procedure.

ID Property
See Also                  Example                  Applies To

Specifies the name of a control or an object, or the name of a font to associate with a Font object.

Syntax
For Font

Font.ID [= String]
For all other controls and objects

object.ID [= String]

The ID property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The name you want to assign to the font

or control.

Settings
Guidelines for assigning a string to the ID property, such as the maximum length of the name, vary
from one application to another.

Remarks
For objects, the default value of ID consists of the object's class name followed by an integer. For
example, the default name for the first TextBox you place on an HTML Layout is TextBox1. The
default name for the second TextBox is TextBox2.

You can set the ID property for a control from the control's Properties window or, for controls added at
run time, by using program statements. If you add a control at design time, you cannot modify its ID
property at run time.

Each control added to an HTML Layout at design time must have a unique name.

For Font objects, the ID property identifies a particular typeface to use in the text portion of a control,
object, or HTML Layout. The font's appearance on screen and in print may differ, depending on your
computer and printer. If you select a font that your system can't display or that isn't installed, Windows
will substitute a similar font.

IMEMode Property
See Also                  Example                  Applies To

Specifies the default run time mode of the Input Method Editor (IME) for a control. This property
applies only to applications written for the Far East and is ignored in other applications.

Syntax
object.IMEMode [= fmIMEMode]

The IMEMode property syntax has these parts:

Part Description
object Required. A valid object.
fmIMEMode Optional. The mode of the Input Method Editor

(IME).

Settings
The settings for fmIMEMode are:

Constant Value Description
fmIMEModeNoControl 0 Does not control IME (default).
fmIMEModeOn 1 IME on.
fmIMEModeOff 2 IME off. English mode.
fmIMEModeDisable 3 IME off. User can't turn on IME by

keyboard.
fmIMEModeHiragana 4 IME on with Full-width Hiragana

mode.
FmIMEModeKatakana 5 IME on with Full-width Katakana

mode.
FmIMEModeKatakanaHalf 6 IME on with Half-width Katakana

mode.
FmIMEModeAlphaFull 7 IME on with Full-width Alphanumeric

mode.
FmIMEModeAlpha 8 IME on with Half-width

Alphanumeric mode.
FmIMEModeHangulFull 9 IME on with Full-width Hangul

mode.
FmIMEModeHangul 10 IME on with Half-width Hangul

mode.

The fmIMEModeNoControl setting indicates that the mode of the IME does not change when the
control receives focus at run time. For any other value, the mode of the IME is set to the value
specified by the IMEMode property when the control receives focus at run time.

Remarks
There are two ways to set the mode of the IME. One is through the IME toolbar. The other is with a
control’s IMEMode property, which sets or returns the current mode of the IME. This property allows
dynamic control of the IME through code.

The following example explains how IMEMode interacts with the IME toolbar. Assume that you have
designed an HTML Layout with TextBox1 and CheckBox1. You have set TextBox1.IMEMode to 0, and
you have set CheckBox1.IMEMode to 1. While in design mode you have used the IME toolbar to put

the IME in mode 2.

When you run the HTML Layout, the IME begins in mode 2. If you click TextBox1, the IME mode does
not change because IMEMode for this control is 0. If you click CheckBox1, the IME will change to
mode 1, because IMEMode for this control is 1. If you click again on TextBox1, the IME will remain in
mode 1 (IMEMode is 0, so the IME retains its last setting).

However, you can override IMEMode. For example, assume you click CheckBox1 and the IME enters
mode 1, as defined by IMEMode for the CheckBox. If you then use the IME toolbar to put the IME in
mode 3, then the IME will be set to mode 3 when you click the control. This does not change the
value of the property, it overrides the property until the next time you run the HTML Layout.

Every control makes a copy of the IME state in effect when that control receives focus. When it loses
focus, it restores this saved state. This saving and restoring occurs without regard to the IMEMode
property value of the control.

Controls, such as command buttons, that do not allow typing will disable the IME while they have
focus.

Each change that a user makes to the IME while a control has focus immediately updates that
control's IMEMode property, if it has one.

All controls will accept setting all IME modes without error, but when a mode is not "native" to a locale
it will not be listed in property sheets in that locale, and it will have the same effect as a native mode.
For example, the fmIMEModeHangul setting acts like the fmIMEModeHiragana setting if used in
Japan.

All modes are native except:

In Japan, the Hangul modes are not native. Using them has the same effect as using Hiragana.

In Korea, the Hiragana and Katakana modes are not native. Using them has the same effect as
Hangul or HangulFull, as appropriate.

In China, the Hiragana, Katakana, Hangul, and Alpha modes are not native. Using them has the same
effect as On.

Everywhere else, the only native mode is NoControl. All other modes have the effect of NoControl.

Index Property
See Also                  Example                  Applies To

The position of a Tab object within a Tabs collection.

Syntax
object.Index [= Integer]

The Index property syntax has these parts:

Part Description
object Required. A valid object.
Integer Optional. The index of the currently selected Tab

object.

Remarks
The Index property specifies the order in which tabs appear. Changing the value of Index visually
changes the order of Tabs on a TabStrip. The index value for the first page or tab is 0; the index
value of the second page or tab is 1, and so on.

In a TabStrip, the Index property refers to the tab only.

IntegralHeight Property
See Also                  Example                  Applies To

Indicates whether a ListBox or TextBox displays full lines or partial lines of text in a list.

Syntax
object.IntegralHeight [= Boolean]

The IntegralHeight property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the list displays partial

lines of text.

Settings
The settings for Boolean are:

Value Description
True The list resizes itself to display only complete items

(default).
False The list does not resize itself even if the item is too

tall to display completely.

Remarks
The IntegralHeight property relates to the height of the list, just as the AutoSize property relates to
the width of the list.

If IntegralHeight is True, the list box will be automatically resized when necessary to show full rows.
If False, the list will remain a fixed size; if items are taller than the available space in the list, the entire
item will not be shown.

LargeChange Property
See Also                  Example                  Applies To

Specifies the amount of movement that occurs when the user clicks between the scroll box and scroll
arrow.

Syntax
object.LargeChange [= Long]

The LargeChange property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer that specifies the amount of

change to the Value property.

Remarks
The LargeChange property applies only to the ScrollBar. It does not apply to the scrollbars in other
controls such as a TextBox or a drop-down ComboBox.

The value of LargeChange is the amount by which the ScrollBar’s Value property changes when
the user clicks the area between the scroll box and scroll arrow. The direction of the movement is
always toward the place where the user clicks. For example, in a horizontal ScrollBar, clicking to the
left of the scroll box moves the scroll box to the left. In a vertical ScrollBar, clicking above the scroll
box moves the scroll box up.

LargeChange does not have units. Any integer is a valid setting for LargeChange. The
recommended range of values is from –32,767 to +32,767, and the value must be between the values
of the Max and Min properties of the ScrollBar.

Left, Top Properties
See Also                  Example                  Applies To

The distance between a control and the left or top edge of the HTML Layout that contains it.

Syntax
object.Left [= Single]
object.Top [= Single]

The Left and Top property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. A numeric expression specifying the

coordinates of an object.

Settings
Setting the Left or Top property to zero places the control's edge at the left or top edge of its
container.

Remarks
For most systems, the recommended range of values for Left and Top is from -32,767 to +32,767.
Other values may also work depending on your system configuration. For a ComboBox, values of
Left and Top apply to the text portion of the control, not to the list portion. When you move or size a
control, its new Left setting is automatically entered in the Properties window. When you print an
HTML Layout, the control's horizontal or vertical location is determined by its Left or Top setting.

LineCount Property
See Also                  Example                  Applies To

Returns the number of text lines in a TextBox or ComboBox.

Syntax
object.LineCount
The LineCount property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The LineCount property is read-only.

Note      A ComboBox will have only one line.

List Property
See Also                  Example                  Applies To

Returns or sets the list entries of a ListBox or ComboBox.

Syntax
object.List(row, column) [= Variant]

The List property syntax has these parts:

Part Description
object Required. A valid object.
Row Required. An integer with a range from 0 to one

less than the number of entries in the list.
Column Required. An integer with a range from 0 to one

less than the number of columns.
Variant Optional. The contents of the specified entry in

the ListBox or ComboBox.

Settings
Row and column numbering begins with 0 (zero). That is, the row number of the first row in the list is
0; the column number of the first column is also 0. The number of the second row or column is 1, and
so on.

Remarks
The List property works with the ListCount and ListIndex properties. Use List in code to access list
items. A list is a variant array; each item in the list has a row number and a column number.

Initially, ComboBox and ListBox contain an empty list.

Note      To specify items you want to display in a ComboBox or ListBox, use the AddItem method.
To remove items, use the RemoveItem method.

You can also use List to copy an entire two-dimensional array of values to a control. This lets you
quickly load a list of choices rather than using AddItem to individually load each element of the list.

ListCount Property
See Also                  Example                  Applies To

Returns the number of list entries in a control.

Syntax
object.ListCount
The ListCount property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The ListCount property is read-only. ListCount is the number of rows over which you can scroll.
ListRows is the maximum to display at once. ListCount is always one greater than the largest value
for the ListIndex property, because index numbers begin with 0 and the count of items begins with 1.
If no item is selected, ListCount is 0 and ListIndex is –1.

ListIndex Property
See Also                  Example                  Applies To

Identifies the currently selected item in a ListBox or ComboBox.

Syntax
object.ListIndex [= Variant]

The ListIndex property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The currently selected item in the control.

Remarks
The ListIndex property contains an index of the selected row in a list. Values of ListIndex range from
–1 to one less than the total number of rows in a list (that is, ListCount – 1). When no rows are
selected, ListIndex returns –1. When the user selects a row in a ListBox or ComboBox, the system
sets the ListIndex value. The ListIndex value of the first row in a list is 0; the value of the second row
is 1, and so on.

Note      If you use the MultiSelect property to create a ListBox that allows multiple selections, the
Selected property of the ListBox (rather than the ListIndex property) identifies the selected rows.
The Selected property is an array with the same number of values as the number of rows in the
ListBox. For each row in the list box, Selected is True if the row is selected and False if it is not. In a
ListBox that allows multiple selections, ListIndex returns the index of the row that has focus,
regardless of whether that row is currently selected.

ListRows Property
See Also                  Example                  Applies To

Specifies the maximum number of rows to display in the list before displaying a vertical scroll bar.

Syntax
object.ListRows [= Long]

The ListRows property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer indicating the maximum

number of rows. The default value is 8.

Remarks
If the number of items in the list exceeds the value of the ListRows property, a scroll bar will appear
at the right edge of the list box portion of the combo box.

ListStyle Property
See Also                  Example                  Applies To

Specifies the visual appearance of the list in a ListBox or ComboBox.

Syntax
object.ListStyle [= fmListStyle]

The ListStyle property syntax has these parts:

Part Description
 object Required. A valid object.
fmListStyle Optional. The visual style of the list.

Settings
The settings for fmListStyle are:

Constant Value Description
fmListStylePlain 0 Looks like a regular list box, with the

background of items highlighted.
fmListStyleOption 1 Shows option buttons, or check boxes for

a multiselect list (default). When the user
selects an item from the group, the option
button associated with that item is
selected and the option buttons for the
other items in the group are cleared.

Remarks
The ListStyle property lets you change the visual presentation of a ListBox or ComboBox. By
specifying a setting other than fmListStylePlain, you can present the contents of either control as a
group of individual items, with each item including a visual cue to indicate whether it is selected.

If the control supports a single selection (the MultiSelect property is set to fmMultiSelectSingle), the
user can press one button in the group. If the control supports multiselect, the user can press two or
more buttons in the group.

ListWidth Property
See Also                  Example                  Applies To

Specifies the width of the list in a ComboBox.

Syntax
object.ListWidth [= Variant]

The ListWidth property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The width of the list. A value of zero

makes the list as wide as the ComboBox. The
default value is to make the list as wide as the text
portion of the control.

Remarks
If you want to display a multicolumn list, enter a value that will make the list box wide enough to fit all
the columns.

Tip      When designing combo boxes, be sure to leave enough space to display your data and for a
vertical scroll bar.

Locked Property
See Also                  Example                  Applies To

Specifies whether a control can be edited.

Syntax
object.Locked [= Boolean]

The Locked property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control can be

edited.

Settings
The settings for Boolean are:

Value Description
True You can't edit the value.
False You can edit the value (default).

Remarks
When a control is locked and enabled, it can still initiate events and can still receive the focus.

MatchEntry Property
See Also                  Example                  Applies To

Returns or sets a value indicating how a ListBox or ComboBox searches its list as the user types.

Syntax
object.MatchEntry [= fmMatchEntry]

The MatchEntry property syntax has these parts:

Part Description
object Required. A valid object.
fmMatchEntry Optional. The rule used to match entries in the list.

Settings
The settings for fmMatchEntry are:

Constant Value Description
fmMatchEntryFirstLetter 0 Basic matching. The control searches

for the next entry that starts with the
character entered. Repeatedly typing
the same letter cycles through all
entries beginning with that letter.

fmMatchEntryComplete 1 Extended matching. As each
character is typed, the control
searches for an entry matching all
characters entered (default).

fmMatchEntryNone 2 No matching.

Remarks
The MatchEntry property searches entries from the TextColumn property of a ListBox or
ComboBox.

The control searches the column identified by TextColumn for an entry that matches the user's typed
entry. Upon finding a match, the row containing the match is selected, the contents of the column are
displayed, and the contents of its BoundColumn property become the value of the control. If the
match is unambiguous, finding the match initiates the Click event.

The control initiates the Click event as soon as the user types a sequence of characters that match
exactly one entry in the list. As the user types, the entry is compared with the current row in the list
and with the next row in the list. When the entry matches only the current row, the match is
unambiguous.

In ActiveX Control Pad, this is true regardless of whether the list is sorted. This means the control
finds the first occurrence that matches the entry, based on the order of items in the list. For example,
entering either “abc” or “bc” will initiate the Click event for the following list:
abcde
bcdef
abcxyz
bchij
Note      In either case, the matched entry is not unique; however, it is sufficiently different from the
adjacent entry that the control interprets the match as unambiguous and initiates the Click event.

MatchFound Property
See Also                  Example                  Applies To

Indicates whether the text that a user has typed into a ComboBox control matches any of the entries
in the list.

Syntax
object.MatchFound
The MatchFound property syntax has these parts:

Part Description
object Required. A valid object.

Return Values
The MatchFound property return values are:

Value Description
True The contents of the Value property matches one of

the records in the list.
False The contents of the Value property does not match

any of the records in the list (default).

Remarks
The MatchFound property is read-only. It is not applicable when the MatchEntry property is set to
fmMatchEntryNone.

MatchRequired Property
See Also                  Example                  Applies To

Specifies whether a value entered in the text portion of a ComboBox must match an entry in the
existing list portion of the control. The user can enter non-matching values, but may not leave the
control until a matching value is entered.

Syntax
object.MatchRequired [= Boolean]

The MatchRequired property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the text entered must

match an existing item in the list.

Settings
The settings for Boolean are:

Value Description
True The text entered must match an existing list entry.
False The text entered can be different from all existing

list entries (default).

Remarks
If the MatchRequired property is True, the user cannot exit the ComboBox until the text entered
matches an entry in the existing list. MatchRequired maintains the integrity of the list by requiring the
user to select an existing entry.

Note      Not all containers enforce this property.

Max, Min Properties
See Also                  Example                  Applies To

Specify the maximum and minimum acceptable values for the Value property of a ScrollBar or
SpinButton.

Syntax
object.Max [= Long]
object.Min [= Long]

The Max and Min property syntaxes have these parts:

Part Description
object Required. A valid object.
Long Optional. A numeric expression specifying the

maximum or minimum Value property setting.

Remarks
Clicking a SpinButton or moving the scroll box in a ScrollBar changes the Value property of the
control.

The value for the Max property corresponds to the lowest position of a vertical ScrollBar or the
rightmost position of a horizontal ScrollBar. The value for the Min property corresponds to the
highest position of a vertical ScrollBar or the leftmost position of a horizontal ScrollBar.
Any integer is an acceptable setting for this property. The recommended range of values is from –
32,767 to +32,767. The default value is 1.

Note      Min and Max refer to locations, not to relative values, on the ScrollBar. That is, the value of
Max could be less than the value of Min. If this is the case, moving toward the Max (bottom) position
means decreasing Value; moving toward the Min (top) position means increasing Value.

MaxLength Property
See Also                  Example                  Applies To

Specifies the maximum number of characters a user can enter in a TextBox or ComboBox.

Syntax
object.MaxLength [= Long]

The MaxLength property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer indicating the allowable

number of characters.

Remarks
Setting the MaxLength property to 0 indicates there is no limit other than that created by memory
constraints.

MouseIcon Property
See Also                  Example                  Applies To

Assigns a custom icon to an object.

Syntax
object.MouseIcon = LoadPicture(pathname)
The MouseIcon property syntax has these parts:

Part Description
object Required. A valid object.
pathname Required. A string expression specifying the path

and filename of the file containing the custom icon.

Remarks
The MouseIcon property is valid when the MousePointer property is set to 99. The mouse icon of an
object is the image that appears when the user moves the mouse across that object.

To assign an image for the mouse pointer, you can either assign a picture to the MouseIcon property
or load a picture from a file using the LoadPicture function.

MousePointer Property
See Also                  Example                  Applies To

Specifies the type of pointer displayed when the user positions the mouse over a particular object.

Syntax
object.MousePointer [= fmMousePointer]

The MousePointer property syntax has these parts:

Part Description
object Required. A valid object.
fmMousePointer Optional. The shape you want for the mouse

pointer.

Settings
The settings for fmMousePointer are:

Constant Value Description
fmMousePointerDefault 0 Standard pointer. The image is

determined by the object (default).
fmMousePointerArrow 1 Arrow.
fmMousePointerCross 2 Cross-hair pointer.
fmMousePointerIBeam 3 I-beam.
fmMousePointerSizeNESW 6 Double arrow pointing northeast

and southwest.
fmMousePointerSizeNS 7 Double arrow pointing north and

south.
fmMousePointerSizeNWSE 8 Double arrow pointing northwest

and southeast.
fmMousePointerSizeWE 9 Double arrow pointing west and

east.
fmMousePointerUpArrow 10 Up arrow.
fmMousePointerHourglass 11 Hourglass.
fmMousePointerNoDrop 12 "Not" symbol (circle with a diagonal

line) on top of the object being
dragged. Indicates an invalid drop
target.

fmMousePointerAppStarting 13 Arrow with an hourglass.
fmMousePointerHelp 14 Arrow with a question mark.
fmMousePointerSizeAll 15 Size all cursor (arrows pointing

north, south, east, and west).
fmMousePointerCustom 99 Uses the icon specified by the

MouseIcon property.

Remarks
Use the MousePointer property when you want to indicate changes in functionality as the mouse
pointer passes over controls on an HTML Layout. For example, the hourglass setting (11) is useful to
indicate that the user must wait for a process or operation to finish.

Some icons vary depending on system settings, such as the icons associated with desktop themes.

MultiLine Property
See Also                  Example                  Applies To

Specifies whether a control can accept and display multiple lines of text.

Syntax
object.MultiLine [= Boolean]

The MultiLine property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control supports

more than one line of text.

Settings
The settings for Boolean are:

Value Description
True The text is displayed across multiple lines (default).
False The text is not displayed across multiple lines.

Remarks
A multiline TextBox allows absolute line breaks and adjusts its quantity of lines to accommodate the
amount of text it holds. A multiline control can have vertical scroll bars.

A single-line TextBox doesn’t allow absolute line breaks and doesn’t use vertical scroll bars.

Single-line controls ignore the value of the WordWrap property.

Note      If you change MultiLine to False in a multiline TextBox, all the characters in the TextBox will
be combined into one line, including non-printing characters (such as carriage returns and new-lines).

MultiRow Property
See Also                  Example                  Applies To

Specifies whether the control has more than one row of tabs.

Syntax
object.MultiRow [= Boolean]

The MultiRow property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control has more

than one row of tabs.

Settings
The settings for Boolean are:

Value Description
True Allows more than one row of tabs.
False Restricts tabs to a single row (default).

Remarks
The width and number of tabs determine the number of rows. Changing the control's size also
changes the number of rows. This allows the developer to resize the control and ensure that tabs
wrap to fit the control. If the MultiRow property is False, then truncation will occur if the width of the
tabs exceeds the width of the control.

If MultiRow is False and tabs are truncated, there will be a small scroll bar on the TabStrip to allow
scrolling to the other tabs or pages.

MultiSelect Property
See Also                  Example                  Applies To

Indicates whether the object permits multiple selections.

Syntax
object.MultiSelect [= fmMultiSelect]

The MultiSelect property syntax has these parts:

Part Description
object Required. A valid object.
fmMultiSelect Optional. The selection mode that the control uses.

Settings
The settings for fmMultiSelect are:

Constant Value Description
fmMultiSelectSingle 0 Only one item can be selected

(default).
fmMultiSelectMulti 1 Pressing the SPACEBAR or clicking

selects or deselects an item in the list.
fmMultiSelectExtended 2 Pressing SHIFT and clicking the mouse,

or pressing SHIFT and one of the arrow
keys, extends the selection from the
previously selected item to the current
item. Pressing CTRL and clicking the
mouse selects or deselects an item.

Remarks
When the MultiSelect property is set to Extended or Simple, you must use the list box's Selected
property to determine the selected items. Also, the Value property of the control is always Null.
The ListIndex property returns the index of the row with the keyboard focus.

Orientation Property
See Also                  Example                  Applies To

Specifies whether the SpinButton or ScrollBar is oriented vertically or horizontally.

Syntax
object.Orientation [= fmOrientation]

The Orientation property syntax has these parts:

Part Description
object Required. A valid object.
fmOrientation Optional. Orientation of the control.

Settings
The settings for fmOrientation are:

Constant Value Description
fmOrientationAuto –1 Automatically determines the

orientation based upon the
dimensions of the control (default).

fmOrientationVertical     0 Control is rendered vertically.
fmOrientationHorizontal     1 Control is rendered horizontally.

Remarks
If you specify automatic orientation, the height and width of the control determine whether the
SpinButton or ScrollBar will appear horizontally or vertically. For example, if the control is wider than
it is tall, the SpinButton or ScrollBar will appear horizontally; if the control is taller (WebBrowser
Object)than it is wide, the SpinButton or ScrollBar will appear vertically.

PasswordChar Property
See Also                  Example                  Applies To

Specifies whether placeholder characters are displayed instead of the characters actually entered in a
TextBox.

Syntax
object.PasswordChar [= String]

The PasswordChar property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression specifying the

placeholder character.

Remarks
You can use the PasswordChar property to protect sensitive information, such as passwords or
security codes. The value of PasswordChar is the character that appears in a control instead of the
actual characters that the user types. If you don't specify a character, the control will display the
characters that the user types.

Picture Property
See Also                  Example                  Applies To

Specifies the bitmap to display on an object.

Syntax
object.Picture = LoadPicture(pathname)
The Picture property syntax has these parts:

Part Description
object Required. A valid object.
pathname Required. The full path to a picture file.

Remarks
While designing an HTML Layout, you can use the control’s property page to assign a bitmap to the
Picture property. While running an HTML Layout, you must use the LoadPicture function to assign a
bitmap to Picture.

To remove a picture that is assigned to a control, click the value of the Picture property in the
property page and then press DELETE. Pressing BACKSPACE will not remove the picture.

Note      For controls with captions, use the PicturePosition property to specify where to display the
picture on the object.

Transparent pictures sometimes have a hazy appearance. If you do not like this appearance, display
the picture on an Image control. Image controls support opaque images.

PictureAlignment Property
See Also                  Example                  Applies To

Specifies the location of a background picture.

Syntax
object.PictureAlignment [= fmPictureAlignment]

The PictureAlignment property syntax has these parts:

Part Description
object Required. A valid object.
fmPictureAlignment Optional. The position where the picture aligns with

the control.

Settings
The settings for fmPictureAlignment are:

Constant Value Description
fmPictureAlignmentTopLeft 0 The top-left corner.
fmPictureAlignmentTopRight 1 The top-right corner.
fmPictureAlignmentCenter 2 The center.
fmPictureAlignmentBottomLeft 3 The bottom-left corner.
fmPictureAlignmentBottomRight 4 The bottom-right corner.

Remarks
The PictureAlignment property identifies which corner of the picture is the same as the
corresponding corner of the control or container where the picture is used.

For example, setting PictureAlignment to fmPictureAlignmentTopLeft means that the top-left
corner of the picture coincides with the top-left corner of the control or container. Setting
PictureAlignment to fmPictureAlignmentCenter positions the picture in the middle, relative to the
height as well as the width of the control or container.

If you tile an image on a control or container, the setting of PIctureAlignment will affect the tiling
pattern. For example, if PictureAlignment is set to fmPictureAlignmentUpperLeft, the first copy of
the image will be placed in the upper-left corner of the control or container and additional copies will
be tiled from left to right across each row. If PictureAlignment is fmPictureAlignmentCenter, the
first copy of the image will be placed at the center of the control or container, additional copies will be
placed to the left and right to complete the row, and additional rows will be added to fill the control or
container.

Note      Setting the PictureSizeMode property to fmSizeModeStretch overrides PictureAlignment.
When PictureSizeMode is set to fmSizeModeStretch, the picture fills the entire control or container.

PicturePosition Property
See Also                  Example                  Applies To

Specifies the location of the picture relative to its caption.

Syntax
object.PicturePosition [= fmPicturePosition]

The PicturePosition property syntax has these parts:

Part Description
object Required. A valid object.
fmPicturePosition Optional. How the picture aligns with its container.

Settings
The settings for fmPicturePosition are:

Constant Value Description
fmPicturePositionLeftTop 0 The picture appears to the left

of the caption. The caption is
aligned with the top of the
picture.

fmPicturePositionLeftCenter 1 The picture appears to the left
of the caption. The caption is
centered relative to the picture.

fmPicturePositionLeftBottom 2 The picture appears to the left
of the caption. The caption is
aligned with the bottom of the
picture.

fmPicturePositionRightTop 3 The picture appears to the right
of the caption. The caption is
aligned with the top of the
picture.

fmPicturePositionRightCenter 4 The picture appears to the right
of the caption. The caption is
centered relative to the picture.

fmPicturePositionRightBottom 5 The picture appears to the right
of the caption. The caption is
aligned with the bottom of the
picture.

fmPicturePositionAboveLeft 6 The picture appears above the
caption. The caption is aligned
with the left edge of the picture.

fmPicturePositionAboveCenter 7 The picture appears above the
caption. The caption is
centered below the picture
(default).

fmPicturePositionAboveRight 8 The picture appears above the
caption. The caption is aligned
with the right edge of the
picture.

fmPicturePositionBelowLeft 9 The picture appears below the

caption. The caption is aligned
with the left edge of the picture.

fmPicturePositionBelowCenter 10 The picture appears below the
caption. The caption is
centered above the picture.

fmPicturePositionBelowRight 11 The picture appears below the
caption. The caption is aligned
with the right edge of the
picture.

fmPicturePositionCenter 12 The picture appears in the
center of the control. The
caption is centered horizontally
and vertically on top of the
picture.

Remarks
The picture and the caption, as a unit, are centered on the control. If no caption exists, the picture’s
location will be relative to the center of the control.

This property is ignored if the Picture property does not specify a picture.

PictureSizeMode Property
See Also                  Example                  Applies To

Specifies how to display the background picture on a control, HTML Layout, or HTML page.

Syntax
object.PictureSizeMode [= fmPictureSizeMode]

The PictureSizeMode property syntax has these parts:

Part Description
object Required. A valid object.
fmPictureSizeMode Optional. The action to take if the picture and the

HTML Layout or HTML page that contains it are
not the same size.

Settings
The settings for fmPictureSizeMode are:

Constant Value Description
fmPictureSizeModeClip 0 Crops any part of the picture that is

larger than the HTML Layout or
HTML page (default).

fmPictureSizeModeStretch 1 Stretches the picture to fill the
HTML Layout or HTML page. This
setting distorts the picture in either
the horizontal or vertical direction.

fmPictureSizeModeZoom 3 Enlarges the picture, but does not
distort the picture in either the
horizontal or vertical direction.

Remarks
The fmPictureSizeModeClip setting indicates you want to show the picture in its original size and
scale. If the HTML Layout or HTML page is smaller than the picture, this setting will show only the part
of the picture that fits within the HTML Layout or HTML page.

The fmPictureSizeModeStretch and fmPictureSizeModeZoom settings both enlarge the image, but
fmPictureSizeModeStretch causes distortion. The fmPictureSizeModeStretch setting enlarges the
image horizontally and vertically until the image reaches the corresponding edges of the container or
control. The fmPictureSizeModeZoom setting enlarges the image until it reaches either the
horizontal or vertical edges of the container or control. If the image reaches the horizontal edges first,
any remaining distance to the vertical edges will remain blank. If it reaches the vertical edges first,
any remaining distance to the horizontal edges will remain blank.

PictureTiling Property
See Also                  Example                  Applies To

Lets you tile a picture in an image control.

Syntax
object.PictureTiling [= Boolean]

The PictureTiling property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether a picture is repeated

across a background.

Settings
The settings for Boolean are:

Value Description
True The picture is tiled across the background.
False The picture is not tiled across the background

(default).

Remarks
You can tile an image on an HTML Layout by drawing the Image the same size as the HTML Layout.

The tiling pattern depends on the current setting of the PictureAlignment and PictureSizeMode
properties. For example, if PictureAlignment is set to fmPictureAlignmentTopLeft, the tiling pattern
will start at the upper-left, repeating the picture across and down the height of the Image. If
PictureSizeMode is set to fmPictureSizeModeClip, the tiling pattern will crop the last tile if it doesn't
completely fit within the Image.

ProportionalThumb Property
See Also                  Example                  Applies To

Specifies whether the size of the scroll box is proportional to the scrolling region or fixed.

Syntax
object.ProportionalThumb [= Boolean]

The ProportionalThumb property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the scroll box is

proportional or fixed.

Settings
The settings for Boolean are:

Value Description
True The scroll box is proportional in size to the scrolling

region (default).
False The scroll box is a fixed size.

Remarks
The size of a proportional scroll box graphically represents the percentage of the object that is visible
in the window. For example, if 75 percent of an object is visible, the scroll box will cover three-fourths
of the scrolling region in the scroll bar.

If the scroll box is a fixed size, the system will determine its size based on the height and width of the
scroll bar.

ScrollBars Property
See Also                  Example                  Applies To

Specifies whether a control, form, or page has vertical scroll bars, horizontal scroll bars, or both.

Syntax
object.ScrollBars [= fmScrollBars]

The ScrollBars property syntax has these parts:

Part Description
object Required. A valid object.
fmScrollBars Optional. Where scroll bars should be displayed.

Settings
The settings for fmScrollBars are:

Constant Value Description
fmScrollBarsNone 0 Displays no scroll bars (default).
fmScrollBarsHorizontal 1 Displays a horizontal scroll bar.
fmScrollBarsVertical 2 Displays a vertical scroll bar.
fmScrollBarsBoth 3 Displays both a horizontal and a vertical

scroll bar.

Remarks
If the KeepScrollBarsVisible property is True, any scroll bar on a form or page will always be visible,
regardless of whether the object's contents fit within the its borders.

If visible, a scroll bar constrains its scroll box to the visible region of the scroll bar. It also modifies the
scroll position as needed to keep the entire scroll bar visible. The range of a scroll bar changes when
the value of the ScrollBars property changes, the scroll size changes, or the visible size changes.

If a scroll bar is not visible, then you can set its scroll position to any value. Negative values, and
values greater than the scroll size, are both valid.

For a single-line control, you can display a horizontal scroll bar by using the ScrollBars and
AutoSize properties. Scroll bars are hidden or displayed according to the following rules:

1. When ScrollBars is set to fmScrollBrsNone, no scroll bar is displayed.
2. When ScrollBars is set to fmScrollBarsHorizontal or fmScrollBarsBoth, the control displays a

horizontal scroll bar if the text is longer than the edit region and if the control has enough room to
include the scroll bar underneath its edit region.

3. When AutoSize is True, the control enlarges itself to accommodate the addition of a scroll bar
unless the control is at or near its maximum size.

For a multiline TextBox, you can display scroll bars by using the ScrollBars, WordWrap, and
AutoSize properties. Scroll bars are hidden or displayed according to the following rules:

1. When ScrollBars is set to fmScrollBarsNone, no scroll bar is displayed.
2. When ScrollBars is set to fmScrollBarsVertical or fmScrollBarsBoth, the control displays a

vertical scroll bar if the text is longer than the edit region and if the control has enough room to
include the scroll bar at the right edge of its edit region.

3. When WordWrap is True, the multiline control will not display a horizontal scroll bar. Most multiline
controls do not use a horizontal scroll bar.

4. A multiline control can display a horizontal scroll bar if the following conditions occur

simultaneously:

· The edit region contains a word that is longer than the edit region’s width.
· The control has enabled horizontal scroll bars.
· The control has enough room to include the scroll bar under the edit region.
· The WordWrap property is set to False.

Selected Property
See Also                  Example                  Applies To

Returns or sets the selection state of items in a ListBox.

Syntax
object.Selected(index) [= Boolean]

The Selected property syntax has these parts:

Part Description
object Required. A valid object.
Index Required. An integer with a range from 0 to one

less than the number of items in the list.
Boolean Optional. Specifies whether an item is selected.

Settings
The settings for Boolean are:

Value Description
True The item is selected.
False The item is not selected.

Remarks
The Selected property is useful when users can make multiple selections. You can use this property
to determine the selected rows in a multiselect list box. You can also use this property to select or
deselect rows in a list from code.

The default value of this property is based on the current selection state of the ListBox.

For single-selection list boxes, the Value or ListIndex properties are recommended for getting and
setting the selection. In this case, ListIndex returns the index of the selected item. However, in a
multiple selection, ListIndex returns the index of the row contained within the focus rectangle,
regardless of whether the row is actually selected.

When a list box control's MultiSelect property is set to None, only one row can have its Selected
property set to True.

Entering a value that is out of range for the index does not generate an error message, but it also
does not set a property for any item in the list.

SelectedItem Property
See Also                  Example                  Applies To

Returns or sets the currently selected Tab object.

Syntax
object.SelectedItem
The SelectedItem property syntax has these parts:

Part Description
object Required. A valid TabStrip.

Remarks
Use the SelectedItem property to programmatically control the currently selected Tab object. For
example, you can use SelectedItem to assign values to properties of a Tab object.

SelectionMargin Property
See Also                  Example                  Applies To

Specifies whether the user can select a line of text by clicking in the region to the left of the text.

Syntax
object.SelectionMargin [= Boolean]

The SelectionMargin property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether clicking in the margin

selects a line of text.

Settings
The settings for Boolean are:

Value Description
True Clicking in margin causes selection of text (default).
False Clicking in margin does not cause selection of text.

Remarks
When the SelectionMargin property is True, the selection margin occupies a thin strip along the left
edge of a control’s edit region. When set to False, the entire edit region can store text.

If the SelectionMargin property is set to True when a control is printed, the selection margin will also
be printed.

SelLength Property
See Also                  Example                  Applies To

Specifies the number of characters selected in a text box or the text portion of a combo box.

Syntax
object.SelLength [= Long]

The SelLength property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A numeric expression specifying the number of

characters selected. For SelLength and SelStart, the valid
range of settings is 0 to the total number of characters in the
edit area of a ComboBox or TextBox.

Remarks
The SelLength property is always valid, even when the control does not have focus. Setting
SelLength to a value less than zero creates an error. Attempting to set SelLength to a value greater
than the number of characters available in a control results in a value equal to the number of
characters in the control.

Note      Changing the value of the SelStart property cancels any existing selection in the control,
places an insertion point in the text, and sets the SelLength property to zero.

The default value, zero, means that no text is currently selected.

SelStart Property
See Also                  Example                  Applies To

Indicates the starting point of selected text, or the insertion point if no text is selected.

Syntax
object.SelStart [= Long]

The SelStart property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A numeric expression specifying the starting point of

text selected. For SelLength and SelStart, the valid range of
settings is 0 to the total number of characters in the edit area
of a ComboBox or TextBox. The default value is 0.

Remarks
The SelStart property is always valid, even when the control does not have focus. Setting SelStart to
a value less than zero creates an error. Attempting to set SelStart to a value greater than the number
of characters available in a control results in a value equal to the number of characters in the control.

Changing the value of SelStart cancels any existing selection in the control, places an insertion point
in the text, and sets the SelLength property to zero.

SelText Property
See Also                  Example                  Applies To

Returns or sets the selected text of a control.

Syntax
object.SelText [= String]

The SelText property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression containing the selected text.

Remarks
If no characters are selected in the edit region of the control, the SelText property returns a zero-
length string. This property is valid regardless of whether the control has the focus.

ShowDropButtonWhen Property
See Also                  Example                  Applies To

Specifies when to show the drop-down button for a ComboBox or TextBox.

Syntax
object.ShowDropButtonWhen [= fmShowDropButtonWhen]

The ShowDropButtonWhen property syntax has these parts:

Part Description
object Required. A valid object.
fmShowDropButtonWhen Optional. The circumstances under which the

drop-down button will be visible.

Settings
The settings for fmShowDropButtonWhen are:

Constant Value Description
fmShowDropButtonWhenNever 0 Do not show the drop-down

button under any
circumstances.

FmShowDropButtonWhenFocus 1 Show the drop-down button
when the control has the
focus.

FmShowDropButtonWhenAlways 2 Always show the drop-down
button.

For a ComboBox, the default value is fmShowDropButtonWhenAlways; for a TextBox, the default
value is fmShowDropButtonWhenNever.

SmallChange Property
See Also                  Example                  Applies To

Specifies the amount of movement that occurs when the user clicks either scroll arrow in a ScrollBar
or SpinButton.

Syntax
object.SmallChange [= Long]

The SmallChange property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. An integer that specifies the amount of change to

the Value property.

Remarks
The SmallChange property does not have units.

Any integer is an acceptable setting for this property. The recommended range of values is from –
32,767 to +32,767. The default value is 1.

SpecialEffect Property
See Also                  Example                  Applies To

Specifies the visual appearance of an object.

Syntax
For CheckBox, OptionButton, ToggleButton

object.SpecialEffect [= fmButtonEffect]
For other controls

object.SpecialEffect [= fmSpecialEffect]

The SpecialEffect property syntax has these parts:

Part Description
object Required. A valid object.
fmButtonEffect Optional. The desired visual appearance for a CheckBox,

OptionButton, or ToggleButton.
fmSpecialEffect Optional. The desired visual appearance of an object

other than a CheckBox, OptionButton, or
ToggleButton.

Settings
The settings for fmSpecialEffect are:

Constant Value Description
fmSpecialEffectFlat 0 Object appears flat, distinguished from

the surrounding form by a border, a
change of color, or both. Default for
Image and Label, valid for all controls.

fmSpecialEffectRaised 1 Object has a highlight on the top and
left and a shadow on the bottom and
right. Not valid for check boxes or
option buttons.

fmSpecialEffectSunken 2 Object has a shadow on the top and left
and a highlight on the bottom and right.
The control and its border appear to be
carved into the form that contains them.
Default for CheckBox and
OptionButton, valid for all controls
(default).

fmSpecialEffectEtched 3 Border appears to be carved around
the edge of the control. Not valid for
check boxes or option buttons.

fmSpecialEffectBump 6 Object has a ridge on the bottom and
right and appears flat on the top and
left. Not valid for check boxes or option
buttons.

For a Frame, the default value is Sunken.

Note that only Flat and Sunken (0 and 2) are acceptable values for CheckBox, OptionButton, and
ToggleButton. All values listed are acceptable for other controls.

Remarks

You can use either the SpecialEffect or the BorderStyle property to specify the edging for a control,
but not both. If you specify a value other than zero for one of these properties, the system sets the
value of the other property to zero. For example, if you set SpecialEffect to fmSpecialEffectRaised,
the system sets BorderStyle to zero (fmBorderStyleNone).

For a Frame, BorderStyle is ignored if SpecialEffect is fmSpecialEffectFlat.
SpecialEffect uses the system colors to define its borders.

Note      Although the SpecialEffect property exists on the ToggleButton, the property is disabled.
You cannot set or return a value for this property on the ToggleButton.

Style Property
See Also                  Example                  Applies To

For ComboBox, specifies how the user can choose or set the control’s value. For TabStrip, identifies
the style of the tabs on the control.

Syntax
For ComboBox

object.Style [= fmStyle]
For TabStrip

object.Style [= fmTabStyle]

The Style property syntax has these parts:

Part Description
object Required. A valid object.
fmStyle Optional. Specifies how a user sets the value of a

ComboBox.
fmTabStyle Optional. Specifies the tab style in a TabStrip.

Settings
The settings for fmStyle are:

Constant Value Description
fmStyleDropDownCombo 0 The ComboBox behaves as a

drop-down combo box. The user
can type a value in the edit region
or select a value from the drop-
down list (default).

fmStyleDropDownList 2 The ComboBox behaves as a list
box. The user must choose a value
from the list.

The settings for fmTabStyle are:

Constant Value Description
fmTabStyleTabs 0 Displays tabs on the tab bar

(default).
fmTabStyleButtons 1 Displays buttons on the tab bar.
fmTabStyleNone 2 Does not display the tab bar.

TabFixedHeight, TabFixedWidth Properties
See Also                  Example                  Applies To

Sets or returns the fixed height or width of the tabs in points.

Syntax
object.TabFixedHeight [= Single]
object.TabFixedWidth [= Single]

The TabFixedHeight and TabFixedWidth property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. The number of points of the height or width of the tabs

on a TabStrip.

Settings
If the value is zero, tab widths will be automatically adjusted so that each tab is wide enough to
accommodate its contents and each row of tabs spans the width of the control.

If the value is greater than zero, all tabs will have an identical width as specified by this property.

Remarks
The minimum size is 4 points.

TabIndex Property
See Also                  Example                  Applies To

Specifies the position of a single object in the HTML Layout's tab order.

Syntax
object.TabIndex [= Integer]

The TabIndex property syntax has these parts:

Part Description
object Required. A valid object.
Integer Optional. An integer from 0 to one less than the number of

controls on the HTML Layout that have a TabIndex property.
Assigning a TabIndex value of less than 0 generates an error. If
you assign a TabIndex value greater than the largest index
value, the system resets the value to the maximum allowable
value.

Remarks
The index value of the first object in the tab order is zero.

TabKeyBehavior Property
See Also                  Example                  Applies To

Determines whether tabs are allowed in the edit region.

Syntax
object.TabKeyBehavior [= Boolean]

The TabKeyBehavior property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. The effect of pressing TAB.

Settings
The settings for Boolean are:

Value Description
True Pressing TAB inserts a tab character in the edit region.
False Pressing TAB moves the focus to the next object in the tab

order (default).

Remarks
The TabKeyBehavior and MultiLine properties are closely related. The values described above only
apply if MultiLine is True. If MultiLine is False, pressing TAB will always move the focus to the next
control in the tab order regardless of the value of TabKeyBehavior.
The effect of pressing CTRL+TAB also depends on the value of the MultiLine property. If MultiLine is
True, pressing CTRL+TAB will create a new line regardless of the value of TabKeyBehavior. If
MultiLine is False, pressing CTRL+TAB will have no effect.

TabOrientation Property
See Also                  Example                  Applies To

Specifies the location of the tabs on a TabStrip.

Syntax
object.TabOrientation [= fmTabOrientation]

The TabOrientation property syntax has these parts:

Part Description
object Required. A valid object.
fmTabOrientation Optional. Where the tabs will appear.

Settings
The settings for fmTabOrientation are:

Constant Value Description
fmTabOrientationTop 0 The tabs appear at the top of the

control (default).
fmTabOrientationBottom 1 The tabs appear at the bottom of the

control.
fmTabOrientationLeft 2 The tabs appear at the left side of the

control.
fmTabOrientationRight 3 The tabs appear at the right side of

the control.

Remarks
If you use TrueType fonts, the text rotates when the TabOrientation property is set to
fmTabOrientationLeft or fmTabOrientationRight. If you use bitmapped fonts, the text does not
rotate.

TabStop Property
See Also                  Example                  Applies To

Indicates whether an object can receive focus when the user tabs to it.

Syntax
object.TabStop [= Boolean]

The TabStop property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the object is a tab stop.

Settings
The settings for Boolean are:

Value Description
True Designates the object as a tab stop (default).
 False Bypasses the object when the user is tabbing, although the

object still holds its place in the actual tab order, as determined
by the TabIndex property.

Remarks
The TabStop property can be set only at design time.

Text Property
See Also                  Example                  Applies To

Returns or sets the text in a TextBox or the edit area of ComboBox. Changes the selected row of a
ListBox.

Syntax
object.Text [= String]

The Text property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. A string expression specifying text. The default

value is a zero-length string (“”).

Remarks
For a TextBox, any value you assign to the Text property is also assigned to the Value property.

For a ComboBox, you can use Text to update the value of the control. If the value of Text matches
an existing list entry, the value of the ListIndex property (the index of the current row) will be set to
the row that matches Text. If the value of Text does not match a row, ListIndex will be set to –1.

For a ListBox, the value of the Text property must match an existing list entry. Specifying a value that
does not match an existing list entry causes an error.

You cannot use the Text property to change the value of an entry in a ComboBox or ListBox; use
the Column or List property for this purpose.

The ForeColor property determines the color of the text.

TextAlign Property
See Also                  Example                  Applies To

Specifies how text is aligned in a control.

Syntax
object.TextAlign [= fmTextAlign]

The TextAlign property syntax has these parts:

Part Description
object Required. A valid object.
fmTextAlign Optional. How text is aligned in the control.

Settings
The settings for fmTextAlign are:

Constant Value Description
fmTextAlignLeft 1 Aligns the first character of displayed text

with the left edge of the control's display or
edit area (default).

fmTextAlignCenter 2 Centers the text in the control's display or
edit area.

fmTextAlignRight 3 Aligns the last character of displayed text
with the right edge of the control's display
or edit area.

Remarks
For a ComboBox, the TextAlign property affects only the edit region. The TextAlign property has no
effect on the alignment of text in the list. For stand-alone labels, TextAlign determines the alignment
of the label's caption.

TextColumn Property
See Also                  Example                  Applies To

Identifies the column in a ComboBox or ListBox to display to the user.

Syntax
object.TextColumn [= Variant]

The TextColumn property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The column to be displayed.

Settings
Values for the TextColumn property range from –1 to the number of columns in the list. The
TextColumn value for the first column is 1, the value of the second column is 2, and so on. Setting
TextColumn to 0 displays the ListIndex values. Setting TextColumn to –1 displays the first column
that has a ColumnWidths value greater than 0.

Remarks
When the user selects a row from a ComboBox or ListBox, the column referenced by TextColumn
is stored in the Text property. For example, you could set up a multicolumn ListBox that contains the
names of holidays in one column and dates for the holidays in a second column. To present the
holiday names to users, specify the first column as the TextColumn. To store the dates of the
holidays, specify the second column as the BoundColumn.

When the Text property of a ComboBox changes (such as when a user types an entry into the
control), the new text is compared to the column of data specified by TextColumn.

TextLength Property
See Also                  Example                  Applies To

Returns the length, in characters, of text in the edit region of a TextBox or ComboBox.

Syntax
object.TextLength
The TextLength property syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The TextLength property is read-only. For a multiline TextBox, TextLength includes LF (line feed)
and CR (carriage return) characters.

TopIndex Property
See Also                  Example                  Applies To

Sets and returns the item that appears in the topmost position in the list.

Syntax
object.TopIndex [= Variant]

The TopIndex property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The number of the list item that is displayed in the

topmost position. The default is 0, or the first item in the list.

Settings
Returns the value –1 if the list is empty or not displayed.

TripleState Property
See Also                  Example                  Applies To

Determines whether a user can specify, from the user interface, the Null state for a CheckBox or
ToggleButton.

Syntax
object.TripleState [= Boolean]

The TripleState property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control supports the Null state.

Settings
The settings for Boolean are:

Value Description
True The button clicks through three states.
 False The button supports True and False only (default).

Remarks
Although the TripleState property exists on the OptionButton, the property is disabled. Regardless
of the value of TripleState, you cannot set the control to Null through the user interface.

When the TripleState property is True, a user can choose from the values of Null, True, and False.
The null value is displayed as a shaded button.

When TripleState is False, the user can choose either True or False.

A control set to Null does not initiate the Click event.

Regardless of the property setting, the Null value can always be assigned programmatically to a
CheckBox or ToggleButton, causing that control to appear shaded.

Value Property
See Also                  Example                  Applies To

Specifies the state or content of a given control.

Syntax
object.Value [= Variant]

The Value property syntax has these parts:

Part Description
object Required. A valid object.
Variant Optional. The state or content of the control.

Settings
Control Description
CheckBox An integer value indicating whether the item is

selected:
Null      Indicates the item is in a null state, neither
selected nor cleared.
–1      True. Indicates the item is selected.
    0      False. Indicates the item is cleared.

OptionButton Same as CheckBox.
ToggleButton Same as CheckBox.
ScrollBar An integer between the values specified for the

Max and Min properties.
SpinButton Same as ScrollBar.
ComboBox, ListBox The value in the BoundColumn of the currently

selected rows.
CommandButton Always False.
TextBox The text in the edit region.

Remarks
For a CommandButton, setting the Value property to True in a procedure initiates the button’s Click
event.

For a ComboBox, changing the contents of Value does not change the value of BoundColumn. To
add or delete entries in a ComboBox, you can use the AddItem or RemoveItem method.

The Value property cannot be used with a multiselect list box.

Visible Property
See Also                  Example                  Applies To

Specifies whether a control is visible or hidden.

Syntax
object.Visible [= Boolean]

The Visible property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the object is visible or hidden.

Settings
The settings for Boolean are:

Value Description
True Object is visible (default).
False Object is hidden.

Remarks
To hide an object at startup, set the Visible property to False at design time. Setting this property in
code enables you to hide and later redisplay a control at run time in response to a particular event.

All controls are visible at design time.

WordWrap Property
See Also                  Example                  Applies To

Indicates whether the contents of a control automatically wrap at the end of a line.

Syntax
object.WordWrap [= Boolean]

The WordWrap property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control expands to fit the text.

Settings
The settings for Boolean are:

Value Description
True The text wraps (default).
False The text does not wrap.

Remarks
For controls that support the MultiLine property as well as the WordWrap property, WordWrap is
ignored when MultiLine is False.

Add Method
See Also                  Example                  Applies To

Adds or inserts a Tab in a TabStrip, or adds a control by its programmatic identifier (ProgID) to an
HTML Layout.

Syntax
For TabStrip

Set Object = object.Add([Name [,    Caption [,    index]]])
For other controls

Set Control = object.Add(ProgID [,    Name [,    Visible]])
The Add method syntax has these parts:

Part Description
object Required. A valid object name.
Name Optional. Specifies the name of the object being added. If a

name is not specified, the system will generate a default
name based on the rules of the application where the HTML
Layout is used.

Caption Optional. Specifies the caption to appear on a tab or a control.
If a caption is not specified, the system will generate a default
caption based on the rules of the application where the HTML
Layout is used.

index Optional. Identifies the position of a tab within a Tabs collection.
If an index is not specified, the system will append the tab to the
end of the Tabs collection and will assign the appropriate index
value.

ProgID Required. Programmatic identifier. A text string with no spaces
that identifies an object class. The standard syntax of a
ProgID is <Vendor>.<Component>.<Version>. A ProgID is
mapped to a class identifier (CLSID).

Visible Optional. True if the object is visible (default). False if the
object is hidden.

Settings
· ProgID values for individual controls are: The user presses enter on a form with a command button

whose Default property is set to True.
· The user presses ESC on a form with a command button whose Cancel property is set to True.
· The user presses enter on a form with a command button whose Default property is set to True.
· The user presses ESC on a form with a command button whose Cancel property is set to True.

Control ProgID value
CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1

Remarks
For a TabStrip, the Add method returns a Tab object. The index value for the first Tab of a collection
is 0. The value for the second Tab is 1, and so on.

For the Controls collection of an object, the Add method returns a control corresponding to the
specified ProgID.

The following syntax will return the Text property of a control added at design time:
userform1.thebox.text
If you add a control at run time, you must use the exclamation syntax to reference properties of that
control. For example, to return the Text property of a control added at run time, use the following
syntax:
userform1!thebox.text
Note    You can change a control's ID property at run time only if you added that control at run time
with the Add method.

AddItem Method
See Also                  Example                  Applies To

For a single-column list box or combo box, adds an item to the list. For a multicolumn list box or
combo box, adds a row to the list.

Syntax
Variant = object.AddItem([item [,    varIndex]])
The AddItem method syntax has these parts:

Part Description
object Required. A valid object.
item Optional. Specifies the item or row to add. The number of the

first item or row is 0; the number of the second item or row is 1,
and so on.

varIndex Optional. Integer specifying the position within the object
where the new item or row is placed.

Remarks
If you supply a valid value for varIndex, the AddItem method will place the item or row at that position
within the list. If you omit varIndex, the method will add the item or row at the end of the list.

The value of varIndex must not be greater than the value of the ListCount property.

For a multicolumn ListBox or ComboBox, AddItem inserts an entire row; that is, it inserts an item for
each column of the control. To assign values to an item beyond the first column, use the List or
Column property and specify the row and column of the item.

If the control is bound to data, the AddItem method will fail.

Note    You can add more than one row at a time to a ComboBox or ListBox by using List.

Clear Method
See Also                  Example                  Applies To

Removes all objects from an object or collection.

Syntax
object.Clear
The Clear method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
For a TabStrip, the Clear method deletes individual tabs.

For a ListBox or ComboBox, Clear removes all entries in the list.

For a Controls collection, Clear deletes controls that were created at run time with the Add method.
Using Clear on controls created at design time causes an error.

If the control is bound to data, the Clear method will fail.

Copy Method
See Also                  Example                  Applies To

Copies the contents of an object to the Clipboard.

Syntax
object.Copy
The Copy method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The original content remains on the object.

The actual content that is copied depends on the object. For example, On a TextBox or ComboBox,
the Copy method copies the currently selected text.

Using Copy for an HTML Layout copies the currently active control.

Cut Method
See Also                  Example                  Applies To

Removes selected information from an object and transfers it to the Clipboard.

Syntax
object.Cut
The Cut method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
For a ComboBox or TextBox, the Cut method removes currently selected text in the control to the
Clipboard. This method does not require that the control have the focus.

On an HTML Layout, Cut removes currently selected controls to the Clipboard. This method only
removes controls created at run time.

DropDown Method
See Also                  Example                  Applies To

Displays the list portion of a ComboBox.

Syntax
object.DropDown

The DropDown method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Use the DropDown method to open the list in a combo box.

GetFormat Method
See Also                  Example                  Applies To

Returns an integer value indicating whether a specific format is on the DataObject.

Syntax
Boolean = object.GetFormat([format])
The GetFormat method syntax has these parts:

Part Description
object Required. A valid object.
format Optional. An integer or string specifying the data format to use

when pasting the Clipboard contents.

Settings
The settings for format are:

Constant Value Description
fmCFText 1 Text format.

Remarks
The GetFormat method searches for a format in the current list of formats on the DataObject. If the
format is on the DataObject, GetFormat will return 1; if not, GetFormat will return 0.

The DataObject currently supports only text formats.

GetFromClipboard, GetText Methods
See Also                  Example                  Applies To

GetFromClipboard moves data from the Clipboard to a DataObject. GetText retrieves a text string
from the Clipboard using a specified format.

Syntax
String = object.GetFromClipboard([format])
String = object.GetText([format])
The GetText method syntax has these parts:

Part Description
object Required. A valid object name.
format Optional. An integer specifying the data format to use when

pasting the Clipboard contents.

Settings
The settings for format are:

Constant Value Description
fmCFText 1 Text format.

Remarks
The DataObject and the Clipboard support multiple formats, but only support one data item of a given
format. For example, the DataObject might include one text item, but it cannot include two text items
of the type fmCFText.
If the DataObject contains data in the same format as new data, the new data will replace the
existing data in the DataObject. If the new data is in a new format, the new data and the new format   
will both be added to the DataObject.
If no format is specified, the GetText method will return the string associated with the standard text
format.

Item Method
See Also                  Example                  Applies To

Returns a member of a collection, either by position or by name.

Syntax
Set Object = object.Item(collectionindex)
The Item method syntax has these parts:

Part Description
object Required. A valid object.
collectionindex Required. A member's position, or index, within a

collection.

Settings
The collectionindex can be either a string or an integer. If it is a string, it must be a valid member
name. If it is an integer, the minimum value is 0 and the maximum value is one less than the number
of items in the collection.

Remarks
If an invalid index or name is specified, an error occurs.

Move Method
See Also                  Example                  Applies To

Moves an HTML Layout or control, or moves all the controls in the Controls collection.

Syntax
object.Move([Left [,    Top [,    Width [,    Height]]]])
The Move method syntax has these parts:

Part Description
object Required. A valid object name.
Left Optional. Single-precision value, in points, indicating the

horizontal coordinate for the left edge of the object.
Top Optional. Single-precision value, in points, that specifies the

vertical coordinate for the top edge of the object.
Width Optional. Single-precision value, in points, indicating the width

of the object.
Height Optional. Single-precision value, in points, indicating the height

of the object.

Settings
The maximum and minimum values for the Left, Top, Width, Height, X, and Y arguments vary from
one application to another.

Remarks
For an HTML Layout or control, you can move a selection to a specific location relative to the edges
of the HTML Layout that contains the selection.

You can use named arguments, or you can enter the arguments by position. If you use named
arguments, you can list the arguments in any order. If not, you must enter the arguments in the order
shown, using commas to indicate the relative position of arguments you do not specify. Any
unspecified arguments remain unchanged.

Paste Method
See Also                  Example                  Applies To

Transfers the contents of the Clipboard to an object.

Syntax
object.Paste
The Paste method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Data pasted into a ComboBox or TextBox is treated as text.

When the Paste method is used with an HTML Layout, you can paste any object onto the HTML
Layout.

PutInClipboard Method
See Also                  Example                  Applies To

Moves data from a DataObject to the Clipboard.

Syntax
object.PutInClipboard
The PutInClipboard method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
The DataObject and the Clipboard both support multiple formats, but they support only one data item
of a given format.

For example, the DataObject might include one text item stored using the Clipboard format. If the
Clipboard contains data in the same format as new data, the new data will replace the existing data
on the Clipboard. If the new data is in a new format, the new data and the new format will both be
added to the Clipboard.

Remove Method
See Also                  Example                  Applies To

Removes a member from a collection; or, removes a control from an HTML Layout.

Syntax
object.Remove(collectionindex)
The Remove method syntax has these parts:

Part Description
object Required. A valid object.
collectionindex Required. A member's position, or index, within a

collection. Numeric as well as string values are
acceptable. If the value is a number, the minimum value
is zero, and the maximum value is one less than the
number of members in the collection. If the value is a
string, it must correspond to a valid member name.

Remarks
This method deletes any control that was added at run time. However, attempting to delete a control
that was added at design time will result in an error.

RemoveItem Method
See Also                  Example                  Applies To

Removes a row from the list in a list box or combo box.

Syntax
Boolean = object.RemoveItem(index)
The RemoveItem method syntax has these parts:

Part Description
object Required. A valid object.
index Required. Specifies the row to delete. The number of the first

row is 0; the number of the second row is 1, and so on.

SetFocus Method
See Also                  Example                  Applies To

Moves the focus to this instance of an object.

Syntax
object.SetFocus
The SetFocus method syntax has these parts:

Part Description
object Required. A valid object.

Remarks
If setting the focus fails, the focus will revert to the previous object and an error will be generated.

By default, setting the focus to a control does not activate the control's window or place it on top of
other controls.

SetText Method
See Also                  Example                  Applies To

Copies a text string to the Clipboard using a specified format.

Syntax
object.SetText(StoreData [,    format])
The SetText method syntax has these parts:

Part Description
object Required. A valid object.
StoreData Required. Defines the data to store on the Clipboard.
format Optional. An integer or string specifying the data format to

use when pasting the Clipboard contents.

Settings
The settings for format are:

Constant Value Description
fmCFText 1 Text format.

Remarks
The Clipboard stores data according to its format. When the user supplies a string, the Clipboard
saves the text under the specified format.

If no format is specified, the SetText method assigns the standard text format to the text string. If a
new format is specified, the Clipboard registers the new format with the system.

StartDrag Method
See Also                  Example                  Applies To

Initiates a drag-and-drop operation for a DataObject.

Syntax
fmDropEffect=Object.StartDrag([Effect as fmDropEffect])

The StartDrag method syntax has these parts:

Part Description
Object Required. A valid object.
Effect Optional. Effect of the drop operation on the target control.

Settings
The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.
fmDropEffectCopy 1 Copies the drop source to the

drop target.
fmDropEffectMove 2 Moves the drop source to the

drop target.
fmDropEffectCopyOrMove 3 Copies or moves the drop

source to the drop target.

Remarks
The drag action starts at the current mouse pointer position with the current keyboard state and ends
when the user releases the mouse button. The effect of the drag-and-drop operation depends on the
effect chosen for the drop target.

For example, a control’s MouseMove event might include the StartDrag method. When the user
clicks the control and moves the mouse, the mouse pointer changes to indicate whether Effect is valid
for the drop target.

ZOrder Method
See Also                  Example                  Applies To

Places the object at the front or back of the z-order.

Syntax
object.ZOrder([zPosition])
The ZOrder method syntax has these parts:

Part Description
object Required. A valid object.
zPosition Optional. A control's position, front or back, in the container's

z-order.

Settings
The settings for zPosition are:

Constant Value Description
fmTop 0 Places the control at the front of the z-order.

The control appears on top of other controls
(default).

fmBottom 1 Places the control at the back of the z-order.
The control appears underneath other
controls.

Remarks
The z-order determines how windows and controls are stacked when they are presented to the user.
Items at the back of the z-order are overlaid by closer items; items at the front of the z-order appear to
be on top of items at the back. When the zPosition argument is omitted, the object is brought to the
front.

In design time, the Bring to Front or Send to Back commands set the z-order. Bring to Front is
equivalent to using the ZOrder method and putting the object at the front of the z-order. Send to
Back is equivalent to using ZOrder and putting the object at the back of the z-order.

This method does not affect the content or sequence of the controls in the Controls collection.

Note    You can’t Undo or Redo layering commands such as Send to Back or Bring to Front. For
example, if you select an object and click Move Backward on the shortcut menu, you won’t be able
to Undo or redo that action.

ANSI character set
American National Standards Institute (ANSI) 8-bit character set used by Microsoft Windows to
represent up to 256 characters (0–255) using your keyboard. The first 128 characters (0–127)
correspond to the letters and symbols on a standard U.S. keyboard. The second 128 characters
(128–255) represent special characters, such as letters in international alphabets, accents, currency
symbols, and fractions.

array
A set of sequentially indexed elements having the same intrinsic data type. Each element of an array
has a unique identifying index number. Changes made to one element of an array do not affect the
other elements.

class
The formal definition of an object. The class acts as the template from which an instance of an object
is created at run time. The class defines the properties of the object and the methods used to control
the object's behavior.

container
An object that can contain other objects.

module
A set of declarations followed by procedures.

named arguments
An argument that has a name that is predefined in the object library. Instead of providing a value for
each argument in a specified order expected by the syntax, you can use named arguments to assign
values in any order. For example, suppose a method accepts three arguments:

DoSomeThing namedarg1, namedarg2, namedarg3

By assigning values to named arguments, you can use the following statement:
DoSomeThing namedarg3 := 4, namedarg2 := 5, namedarg1 := 20
Note that the arguments don't need to appear in their normal positional order.

Null
A value indicating that a variable contains no valid data. Null is the result of an explicit assignment of
Null to a variable or any operation between expressions that contains Null.

point
In typography, a point is 1/72 inch. The size of a font is usually expressed in points.

project
A set of modules.

tab order
The order in which the focus moves from one field or object to the next as you press TAB or SHIFT+TAB.

accelerator key
A single character used as a shortcut for selecting an object. Pressing the ALT key followed by the
accelerator key gives focus to the object and initiates one or more events associated with the object.
The specific event or events initiated varies from one object to another. If code is associated with an
event, it will be processed when the event is initiated. Also called keyboard accelerator, shortcut key,
keyboard shortcut.

background color
The color of the client region of an empty window or display screen, on which all drawing and color
display takes place.

class identifier (CLSID)
A unique identifier (UUID) that identifies an object. An object registers its CLSID in the system
registration database so the object can be loaded and programmed by other applications.

clear
To change a setting to "off" or remove a value.

client region
The portion of a window where an application displays output such as text or graphics.

collection
An object that contains a set of related objects. An object's position in the collection can change
whenever a change occurs in the collection; therefore, the position of any specific object in the
collection may vary.

context ID
A unique number or string that corresponds to a specific object in an application. Context IDs are
used to create links between the application and corresponding Help topics.

control group
A set of controls that are conceptually or logically related. Controls that are conceptually related are
usually viewed together but do not necessarily affect each other. Controls that are logically related
affect each other. For example, setting one button in a group of option buttons will set the value of all
other buttons in the group to False.

control tip
A brief phrase that describes a control, a Page, or a Tab. The control tip appears when the user
briefly holds the mouse pointer over a control without clicking. A control tip is similar to a ToolTip.
ActiveX Control Pad provides ToolTips to developers at design time, while developers provide control
tips to end-users at run time.

cursor
A piece of software that returns rows of data to the application. A cursor on a result set indicates the
current position in the result set.

cycle
To move through a group of objects in a defined order.

data format
The structure or appearance of a unit of data, such as a file, a database record, a cell in a
spreadsheet, or text in a word-processing document.

dominant control
A reference for the Align command and Make Same Size command on the Format menu. When
aligning controls, the selected controls align to the dominant control. When sizing controls, the
selected controls are assigned the dimensions of the dominant control.

The dominant control is indicated by white sizing handles. The sizing handles of the other selected
controls are black.

drop source
The selected text or object that is dragged in a drag-and-drop operation.

focus
The ability to receive mouse clicks or keyboard input at any one time. In Microsoft Windows, only one
window, HTML Layout, or control can have this ability at a time. The object that "has the focus" is
usually indicated by a highlighted caption or title bar. The focus can be set by the user or by the
application.

foreground color
The color that is currently selected for drawing or displaying text on screen. In monochrome displays,
the foreground color is the color of a bitmap or other graphic.

grid block
The space between two adjacent grid points.

Input Method Editor (IME)
An application that translates what you type into characters of a DBCS language, such as Japanese
or Chinese. As the user types, the IME displays possible equivalents. The user selects the most
appropriate entry.

inherited property
A property that has acquired the characteristics of another class.

keyboard state
A return value that identifies which keys are pressed and whether the keyboard modifiers SHIFT, CTRL,
and ALT are pressed.

OLE container control
A Visual Basic control that is used to link and embed objects from other applications in a Visual Basic
application.

OLE object
An object in an application that can be linked or embedded.

OLE status code
The error number portion of a data structure that returns information for error conditions. The data
structure is defined by Object Linking and Embedding.

placeholder
A character that masks or hides another character for security reasons. For example, when a user
types a password, an asterisk is displayed on the screen to take the place of each character typed.

property page
A grouping of properties presented as a tabbed page of a Properties Window.

RGB
A color value system used to describe colors as a mixture of red (R), green (G), and blue (B). The
color is defined as a set of three integers (R,G,B) where each integer ranges from 0–255. A value of 0
indicates a total absence of a color component. A value of 255 indicates the highest intensity of a
color component.

SendKeys statement
Sends one or more keystrokes to the active window as if typed at the keyboard.

single-precision value
Single (single-precision floating-point) variables are stored as IEEE 32-bit (4-byte) floating-point
numbers, ranging in value from -3.402823E38 to -1.401298E-45 for negative values and from
1.401298E-45 to 3.402823E38 for positive values. The type-declaration character for Single is !.

system colors
Colors defined by the operating system for a specific type of monitor and video adapter. Each color is
associated with a specific part of the user interface, such as a window title or a menu.

target
An object onto which the user drops the object being dragged.

transparent
Describes the background of the object if the background is not visible. Instead of the background,
you see whatever is behind the object, such as an image or picture used as a backdrop in your
application. Use the BackStyle property to make the background transparent.

z-order
The visual layering of controls on an HTML Layout along the z-axis (depth). The z-order determines
which controls are in front of other controls.

