
Speak Freely for Windows
by John Walker & Brian C. Wiles (brian@speakfreely.org)

WWW Home page: http://www.speakfreely.org/

Speak Freely is a Windows application that allows you to talk (actually send voice, not
typed characters) over a network.    If your network connection isn't fast enough to support
real-time voice data, various forms of compression may allow you, assuming your computer
is fast enough, to converse nonetheless.    To enable secure communications, encryption
with DES, IDEA, and/or a key file is available.    If PGP is installed on your machine, it can be
invoked automatically to exchange IDEA session keys for a given conversation.    Speak
Freely for Windows is compatible with Speak Freely for Unix, and users of the two programs
can intercommunicate.    Users can find one another by communicating with a "Look Who's
Listening" phonebook server.    You can designate a bitmap file to be sent to users who
connect so they can see who they're talking to.    Speak Freely supports Internet RTP
protocol, allowing it to communicate with other Internet voice programs which use that
protocol; in addition, Speak Freely can also communicate with programs which support the
VAT (Visual Audio Tool) protocol.

Introduction
Hardware and software requirements

Connections
Creating a new connection
Setting connection options
Closing a connection
Saving a connection in a file
Opening a connection file

Communicating
Receiving audio
Sending live audio
Sending sound files
Ringing remote users
Testing using local loopback
Multicasting to a group
Broadcasting to multiple sites
Viewing extended status
Monitoring audio levels and spectrum
Voice activated transmission
Communicating with other network audio programs

The answering machine

Show your face

Text chat

Phonebook: Look Who's Listening
Publishing your directory entry
Finding on-line users

Compression modes

Encryption
Why encryption?
Varieties of encryption

PGP key exchange
DES (Data Encryption Standard)
Blowfish encryption
IDEA (International Data Encryption Algorithm)
Key file

Generating and exchanging keys
Legal issues
Patent issues

Command line arguments

Problems, problems
Regular pauses in audio output
Random pauses in audio output
Compression slows down transmission
Debugging: Viewing extended status
Workarounds for driver bugs

Internet resources
Speak Freely Internet mailing lists
Echo servers
Publishing your directory entry
Finding on-line users

Hardware issues
Viewing hardware configuration
Measuring computer performance
8 or 16 bit sampling?
Half- or full-duplex?

Bugs, features, and frequently asked questions

References
Credits
Bookshelf
Speak Freely for Unix
Development log
About the authors

Introduction
Speak Freely is a Microsoft Windows application that allows you, with appropriate hardware
and software, to send and receive audio, in real time, over a computer network.    If you're
connected to the Internet by a sufficiently high-speed link, you can converse with anybody
else similarly connected anywhere on Earth without paying long-distance phone charges.   
Users can find one another, even if they have dial-up connections to the Internet, by
publishing and searching directory entries on a Look Who's Listening server. You can
designate a bitmap file to be sent to users who connect so they can see who they're talking
to.

Speak Freely not only because you aren't running up your phone bill, but also knowing your
conversation is secure from eavesdroppers.    Speak Freely provides three different kinds of
encryption, including the same highly-secure IDEA algorithm PGP uses to encrypt message
bodies.    By using PGP to automatically exchange session keys, you can Speak Freely to
total strangers, over public networks, with greater security than most readily available
telephone scramblers provide.

Speak Freely for Windows is 100% compatible Speak Freely for Unix, currently available for
a variety of Unix workstations.    Windows users can converse, over the Internet, with users
of those Unix machines.    In addition, Speak Freely supports the Internet Real-Time Protocol
(RTP) and the original protocol used by the Lawrence Berkeley Laboratory's Visual Audio
Tool (VAT); by selecting the correct protocol, you can communicate with any other network
voice program which conforms to one of these standards.

Multicasting is implemented, allowing those whose networks support the facility to create
multi-party discussion groups to which users can subscribe and drop at will.    For those
without access to Multicasting, a rudimentary Broadcast capability allows transmission of
an audio feed to multiple hosts on a fast local network.

Hardware and software requirements
In order to use Speak Freely, you need a personal computer with the following hardware
and software:

Microsoft Windows 95 or Windows NT 3.51 or later
Sound input/output card with Windows Multimedia driver
Microphone and speaker(s) compatible with sound card
Network interface with TCP/IP WINSOCK driver

Sending real-time audio over a data network is demanding on every component in the
chain, and the performance required of your computer and network interact in complicated
ways.    For example, if you're communicating exclusively with other people over a high-
speed local network and you aren't worried about eavesdropping, you don't need to enable
either compression or encryption, both of which require a great deal of computation.    For
such an application a 386 machine is perfectly adequate.    If your network link is slower,
you'll have to compress the sound before it's transmitted.    The most effective form of
compression provided by Speak Freely, that used by GSM digital cellular telephones,
reduces the data bandwidth requirement by almost a factor of five but is so
computationally intense it can be done in real time only on a very fast 486 or Pentium
machine.    Encryption also takes time; the three methods available vary in the computation
required.    Compression reduces encryption overhead since there's less to encrypt.

Whether Speak Freely will work effectively for you depends upon your CPU speed, network
bandwidth, load on the network, and the compression and encryption modes you select in a
complicated and subtle manner.    The best way to find out is to try it; if it works, great; if it
doesn't, try again when you next upgrade your computer or network connection.    Speak
Freely provides a built-in performance benchmark to assist you in selecting modes
appropriate for your computer.    You can experiment to determine which settings work best
by connecting to an echo server which returns any sound you send to it after a 10 second
delay.

Creating a new connection
To open a new connection, use the Connection/New... menu item.    The new connection
dialogue box will appear.

To initiate a network connection, enter the name of the host you wish to connect to, either
as an Internet host name (for example, stinky.dwarves.org) or a numeric Internet
address (IP address) such as 123.45.67.89.    Expert users can specify which Internet port
number Speak Freely uses to communicate with the remote machine by appending it to the
host name or IP address, separated by a slash (for example, slimy.dwarves.org/5004).   
Speak Freely's default port number is 2074.

When you press OK, an attempt will be made to establish the connection.    Any errors
which occur in the process will be reported in message boxes.    If the connection is
successfully established, a new connection window appears.    If you select a host to which
a connection is already established, its window will be activated.    Once the connection is
open, you can send live audio or sound files to the other party.

If audio is received from a host to which you don't have an active connection, a temporary
connection is created.    Unless you send audio or a sound file using that connection, it will
be automatically closed after 30 seconds of inactivity.    If you check the Options/Look Who's
Talking menu item, if a new connection is established from a remote host while Speak
Freely is minimised to an icon, it will pop open automatically so you can see who's just
begun to talk to you.

If the person you connect to has provided an image of his or her face, it will appear in the
connection window shortly after you receive the first sound from that user.    Otherwise the
user identity information (if any) published by the remote user is shown.

A new connection is created with default properties: no encryption or debugging selected.   
Use the Options/Connection menu item to select the modes you wish for the new
connection.

For your initial experiments with Speak Freely, you may want to connect to an echo server
which returns any sound you send to it after a 10 second delay.

Setting connection options

When a connection is active, you can use the Options/Connection menu item to display the
Connection Properties dialogue, which allows you to specify encryption keys and debug
modes for the connection.    All of these modes are saved when you save a connection in a
file.

Encryption keys
Note: due to attempts by various governments to restrict the distribution and
use of encryption, Speak Freely is distributed in two versions: with and without
encryption capability.    The non-encryption version (nicknamed "Spook Freely")
can be posted on bulletin boards and on-line services in countries that impose
restrictions on cryptographic software without fear of "imperial involvement".    If
you've obtained a non-encryption version of Speak Freely from such a source,
you can replace it with a fully-functional version including encryption by
downloading the software from the site listed in the Options/Connection dialogue
box of the non-cryptographic version.

To encrypt audio you send and decrypt audio you receive with DES, Blowfish, and/or IDEA,
enter the key in the appropriate box; each key can be as long as 255 characters, perhaps a
key phrase you've exchanged with the other party via PGP, or a "session key" generated
automatically by Options/Create Key.    To encrypt sound with a key given in a binary file,
enter the full pathname of the file or use the Browse button to display an open file dialogue
to select the file.

If PGP is installed on your machine, you can enter the names of one or more users on your
PGP public keyring in the "PGP user name(s)" box.    When you close the Connection Option
dialogue, a random session key will be generated, PGP invoked to encrypt it with the public
keys of the named individuals, and the encrypted session key transmitted.    See "PGP Key
Exchange" for additional information.    The ability to encrypt a session key with more than
one user's public key allows you to transmit securely to multiple subscribers to a multicast.

When you save a connection in a file, encryption keys are not, by default, written to the
file; you must therefore re-enter them every time you reestablish the connection.    If you
check the "Save keys in connection file" box, they will be saved and restored automatically. 
This is very convenient, but consider that anybody who has access to files on your
computer can obtain keys that permit them to listen in on your private conversations.    It's
up to you, based on physical situation of your computer and personal trade-off of
convenience versus security, to decide.

Debugging options
Checking the "Debug" box causes additional information to be displayed in the connection
window when you send and receive sound.    When you send sound from a connection with
debugging enabled, debug information appears in the connection window on the receiving
end as well.    This is generally useful only to developers modifying the Speak Freely
program.

Checking "Loop-back" causes the machine at the other end of the connection to
immediately retransmit every packet of sound it receives back to your computer.    You can
use this to evaluate network performance and select an appropriate compression mode.    In
order to use loop-back effectively, your audio input/output hardware needs to be full-
duplex--able to send and receive sound simultaneously.    Many low-cost PC sound cards
can't do this--whenever you're sending sound, any sound you receive is lost; if you have
such hardware, there's no way to play the looped-back packets as they arrive.

Closing a connection
To close a connection, use the Connection/Close menu item.    A connection can be closed at
any time, even while you're sending or receiving sound (the transmission will be rudely
interrupted).    If additional sound subsequently arrives from the remote host, a new
temporary connection will be automatically opened.

Closing a connection discards any changes you've made to the connection options.    If
you'd like to later reestablish the connection with the same options, save the connection to
a file before closing it.

Saving a connection in a file
The Connection/Save and Connection/Save As... menu items create an .SFX file in which all
the options of the connection are saved.    You can later reestablish the connection with the
same properties by loading the .SFX file with the Connection/Open... menu item.

The first time you save a new connection, use Save As... to specify the name of the .SFX
file.    Subsequently, you can use Save to write changes to the connection options to the
file.

Opening a connection file
The Connection/Open... menu item opens a connection using the destination and
connection options given in an .SFX file previously created by Connection/Save or
Connection/Save As....

If a connection to the host named by the .SFX file is already open, its options are set to
those found in the file.

You can also open a connection by dragging an .SFX file from the File Manager and
dropping it in an open area of Speak Freely's window.    If you make an association between
the .SFX file type and Speak Freely, you can launch Speak Freely by double clicking an
.SFX file in the File Manager.    If a Speak Freely is already running when you double click on
an .SFX file, it will appear as a new connection in the existing Speak Freely window.

If you'd like Speak Freely to start with one or more connections already open, you can
specify their .SFX files on the Speak Freely command line, separated by commas.    Other
applications can initiate Speak Freely connections to remote hosts by writing a minimal
.SFX file containing the host name, then launch Speak Freely with that .SFX file named on
the command line.    To connect to host slimy.dwarves.org, for example, you could use
the following file:

[Host]
Name=slimy.dwarves.org

You can also create connections when Speak Freely is started by specifying the IP address
of the host to which you wish to connect (its numeric Internet address    is given as a
"dotted quad", for example 192.168.14.211; a port number may also be specified,
preceded by a slash).    You can mix IP addresses and .SFX file names on the same
command line.

Receiving sound
As sound packets arrive, they're immediately sent to the audio output device.    If a packet
arrives from a host with which you haven't opened a connection, a new temporary
connection to that host is automatically opened.    If you respond to the host by either
sending live audio or a sound file, the connection becomes permanent.    Otherwise, a
temporary connection is automatically closed if no sound is received from that host for 30
seconds.

If sound arrives while you're sending live audio and your audio hardware is half-duplex,
Speak Freely, by default, simply discards the incoming sound and increments the number
of lost input packets shown in the Extended Status dialogue.    If you check the
Options/Break Input menu item, sound that arrives while you're sending will, instead,
interrupt your transmission, letting you know that the other person wants to say
something.

Network traffic congestion and the fact that packets can travel on a variety of routes
between two sites can lead to random pauses (jitter) in the sound you receive.    To reduce
the severity of the pauses, Speak Freely usually delays playback of the first in a sequence
of sound packets to provide some margin for subsequent packets to arrive, even if slightly
delayed.    This improves the quality of the sound, but at the cost of introducing an
additional delay before you start to hear a transmission from another user.    The
Options/Jitter Compensation menu allows you to select a variety of anti-jitter delays ranging
from none at all to three seconds.    If you're communicating across a local network, "None"
is the best setting.    The default, 1 second, generally gives much better results across
Internet connections than no delay.    If you have severe delay problems, you might want to
try a higher setting.    Lower jitter compensation times are usable when communicating
between sites with high-bandwidth connectivity to the Internet.

If sound arrives simultaneously from more than one host, the packets are interleaved.    This
makes it difficult to understand, but it does permit interrupting a long winded speaker in a
conference call.

Sending live audio
To send live audio to a connected host, move the mouse into its open connection window.   
When you do so, the mouse cursor changes into a button showing a telephone receiver.   
When you press and hold the left mouse button, the cursor changes to an ear and the
legend "Transmitting" appears in the connection window, indicating you're now sending live
audio from your audio input port to that host.

If you double click the left mouse button, live audio output is sent continuously until you
next single click in the connection window.    You can thus double click in multiple
connection windows transmit simultaneously to a number of hosts (assuming your network
is fast enough to handle the additional traffic).    If your sound hardware is full-duplex, this
lets you make "conference calls" where several people make connections to one another
and take turns speaking.    If your network supports it, multicasting may provide a more
efficient way to conduct conference calls than directly transmitting to multiple hosts.

You can also use the space bar to toggle transmission of live audio; if you don't have a
mouse, use Ctrl+Tab to activate the desired connection window, then press the space bar
to begin transmitting.    When you're done, a second press of the space bar ends the
transmission.

After you've gotten familiar with sending in the normal "push to talk" mode, you may want
to try out voice activated mode, which switches between transmit and receive
automatically based on the sound level from your microphone.

Sending sound files
To send a prerecorded sound file to the active connection window, use the Connection/Send
Sound File... menu item or drag the sound file icon from the File Manager and drop it in any
connection window or icon, whether active or not.

Sound files can be in Windows .WAV format, monaural or stereophonic, 8 or 16 bits per
sample, at 8000, 11025, 22050, or 44100 samples per second (if you're making a file
expressly to be sent by Speak Freely, for best sound quality and efficiency select 8000 16
bit monaural samples per second).    For compatibility with Unix and the World-Wide Web,
you can also send files in Sun Audio File or raw Sun Audio formats (.AU files).    Such files
are assumed to be recorded at 8000 8 bit monaural samples per second, using mu-law
encoding.

Ringing a remote user
Sometimes you're trying to establish a connection with a remote user who's running Speak
Freely, but who's accidentally turned the volume down to zero or, as happens on Sun
workstations, diverted output from the speaker to the headphones and forgotten to return
it to the speaker when taking off the 'phones.    Selecting the Connection/Ring menu item
sends the "Ring sound file", the first packet of which will contain a flag which causes the
receiving machine to try to get the user's attention.    Speak Freely, upon receiving such a
packet, sets the output volume to the maximum value if the
Options/Workarounds/Audio/Set Maximum Volume on Ring menu item is checked; a Sun
workstation diverts audio output to the speaker and sets output volume to the default level.

The Ring File can be any file you could send with Connection/Send Sound File....    The first
time you use Ring, a dialogue appears which invites you to designate a sound file as the
Ring file; subsequent Ring requests use that file without prompting you.    You can change
the Ring file at any time with the Options/Ring File Name... menu item.

It is impolite to ring a user without first seeing if a regular hail elicits a response.

Multicasting to a group

Some implementations of Windows Sockets support "IP Multicasting", a facility which allows
the creation of conference groups which individual hosts can join and leave at will.    A
multicast conference is far more efficient than sending duplicate messages to all recipients,
as actual replication of packets is done as close as possible to the actual recipient.    If your
network does not support Multicasting, you may be able to use the Speak Freely's
Broadcast facility to transmit audio to multiple destinations.

If your Windows network software implements IP Multicasting, you can use the
Connection/Multicast Groups dialogue to join and drop multicast conferences.    To join a
conference, enter its name or numeric IP address in the "Add group" edit box and press the
eponymous button.    If the address is a valid multicast address, it will be added to the
"Group memberships" list at the left.    To leave a conference, select its item in the Group
memberships box and click the "Drop Group" button.    If you've joined    a multicast group
and you send sound to it, the sound is normally sent back to your own machine.    If you
don't like this, or if it doesn't make sense because your sound hardware is half-duplex,
uncheck the "Loop back multicasts" button to disable this action.    Some Windows Sockets
implementations don't allow you control over this behaviour; if that's the case, the Loop
back button will be disabled.

You transmit to a multicast group as you would to any other host; create a new connection
or open a connection file to the name or numeric IP address (and port number, if
nonstandard) of the group. You can specify the extent of distribution of your multicast by
entering a number in the "Multicast scope" field of the Options/Connection dialogue.    The
following are guidelines for multicast scope values:

Distribution Multicast scope
Restricted to the same host 0
Restricted to the same subnet 1
Restricted to the same site 32
Restricted to the same region 64
Restricted to the same continent 128
Unrestricted 255

The distribution scopes given above should be taken cum grano salis.    Their meaning
depends entirely upon the implementation of the various intermediate links in the multicast
network.

Note that in order to use multicasting across the Internet (as opposed to solely on your
local area network), your Internet Service Provider must also support multicasting and
grant you access to that capability.    Relatively few commercial Internet Service Providers
support multicasting; if you're at an educational site with good Internet connectivity,
there's a higher probability you'll have access to multicasting.    In any case, consult your
system administrator or service provider's help desk for further information.

Broadcasting to multiple sites
The most efficient way to transmit audio to a group of sites is "IP Multicasting", which
allows the creation of conference groups that individual hosts can join and leave at will.    A
multicast conference is far more efficient than sending duplicate messages to all recipients.
Unfortunately, many networks do not support, or have not enabled Multicasting, and often
setting up Multicast groups requires the involvement of a site's system administrator,
making it difficult to use for informal, ad hoc groups.

Speak Freely's Broadcast facility provides an alternative which requires no special network
configuration.    Without the benefit of Multicasting is it forced, however, to send duplicate
packets to each recipient, which usually works only on fast local networks.    Since many
educational institutions and enterprises have such networks, broadcasting can be an
effective way to transmit classes, seminars, and meetings to multiple destinations within
the organisation.

Broadcasting is activated by checking the Connection/Broadcast menu item.    Audio input is
sent to all currently-open connections and the title bar displays a legend indicating a
broadcast is in progress.    When a broadcast is underway, other hosts can "subscribe" to
the broadcast simply by making a connection to the broadcasting host and sending a short
(say, one second) burst of sound to it.    (The sound is discarded by the broadcasting host
and will not affect the broadcast).    This opens a connection to the new host, which will
then begin to receive the broadcast.    A host can unsubscribe from the broadcast by
sending another short burst of sound.    To prevent rapid toggling between subscribed and
unsubscribed state, at least 10 seconds must elapse between subscribe and unsubscribe
requests, and transmission to a host may continue for up to 10 seconds after it sends an
unsubscribe request.

Toggling broadcasting off immediately ceases the transmission.    Connections established
during the broadcast will time out according to the normal rules unless additional sound is
received from them or sound is explicitly sent to their connection.    During a broadcast,
mouse and keyboard input to connection windows is ignored; all connections remain in
transmit mode, as indicated by the ear icon when the mouse is over a connection window.

Viewing extended status

The Help/Extended Status dialogue shows detailed information about the status of Speak
Freely.    Once displayed, the dialogue remains on the screen until you press the Close
button and is updated in real time as events occur which change the status of Speak Freely. 
The status information is grouped into the following categories.

Network
Items in this box specify the number of sound packets sent to connected hosts and
received from hosts since Speak Freely was launched.    "Samples per packet" gives
the number of original sound samples which can be stored in each 512 byte output
packet, based on the compression modes currently selected.    There are 8000
samples of audio per second; compression allows more original samples to fit in
each packet.    "Packet size" indicates the maximum size datagram packet your
network can transmit; as long as this is more than the WINSOCK requirement of 512
bytes, everything should work fine.    "Sending with:" indicates which socket write
function is being used; to work around errors in certain network drivers, it's
necessary to support both send() and sendto().    In case of trouble it's handy to
know which one we're calling.

Packets lost
This box lets you know how many packets have been lost due to audio hardware or
network bandwidth limitations.    If your audio hardware is half-duplex, you won't be
able to hear incoming sound while you're transmitting unless you check the
Options/Break Input menu item.    The "Input (half-duplex)" field increments every
time a received packet is discarded because it arrived while you were transmitting.   
Input packets can also be lost if the size of the audio output queue exceeds 3/4 of
the size of the message queue obtained from Windows;    see the "Audio" and
"Message queue" sections below for additional details.    The "Output (net busy)"
field increments every time a packet of sound you're attempting to transmit is
discarded because your network connection was too slow to complete sending
earlier packets.    This is an indication you need to use a more efficient compression
mode.

Audio

The current status, sample size, and sampling rate of the audio hardware are given
for both input and output channels.    "Idle" indicates the channel is not in use,
"Active" that it's currently sending or receiving.    The Output channel can also have
modes of "Terminating", indicating shutdown in progress while Speak Freely is
exiting, and "Transition": forced shutdown of output in progress when transmission
is requested and the audio hardware is half-duplex.    When output is in progress, a
number of output packets can be in the transmission queue at once; the "Queue
length" field indicates how many or "Queue empty" if no packets remain to play.   
The next line in the dialogue indicates whether the audio hardware is half- or full-
duplex.    Finally, "Message checks" gives the number of times a check was made to
see if Speak Freely was falling behind due to the selected compression and
encryption modes exceeding the computer's ability to perform them in real time.    If
this number increases rapidly when you're sending, choose less demanding
compression and encryption modes; if it increases rapidly while you're receiving
sound, ask the person who's sending to select modes which don't overload your
computer.    A few message checks are normal; there's a problem only if the number
increments continuously during transmission or reception.

Connection
The number of active connections (whether temporary or permanent) is given,
along with the compression mode currently selected for audio sent to those
connections.

Message queue size
Because Speak Freely can be doing many things at once, it needs to increase the
size of the queue which receives messages from Windows to more than the default
of 8 messages.    When launched, Speak Freely attempts to increase the message
queue to the maximum of 120 messages.    The actual size obtained is shown in this
field.    The maximum number of packets in the audio output queue (see "Audio"
above) is limited to 3/4 of the message queue size.    If this limit is exceeded, the
input packet will be discarded and the Input field in the "Packets lost" box
incremented.

Monitoring audio levels and spectrum

One of the problems most frequently encountered by new users of Speak Freely is correctly
setting audio input and output levels.    If the microphone input level is set to zero, for
example, you may be able to hear others but, when you transmit, all you'll be sending is
silence.    Conversely, if the wave audio output level on your sound card is set to zero, audio
you receive will vanish in silence because the volume control is turned all the way down.

Compounding the difficulty of properly setting audio input and output levels is the fact that
the utilities involved are typically provided by the sound card's manufacturer and specific
to it, and consequently vary from machine to machine.    Even the terminology differs
among vendors, one referring to a "volume control" while another dubbing theirs a
"multimedia mixer".    Marketing....

Speak Freely's Audio Monitor panel displays audio input and output levels in real time,
allowing you to observe what Speak Freely is receiving from your microphone and sending
to your speakers.    In conjunction with your sound card's gain setting utility (whatever it's
called), this should help you set the levels so things work acceptably.

The Audio Monitor panel is displayed by selecting the Help/Audio Monitor menu item.    The
Audio Monitor is a free-floating window and may be positioned anywhere on the screen; it is
not confined to the Speak Freely application frame.    The Envelope frame at the bottom
shows the average energy level of successive packets of 512 audio samples (64
milliseconds each at 8000 samples per second).    The maximum dynamic range of your
audio card is represented by an envelope display which fills the vertical extent of the
frame; if you see this happening, your input level is set too high and the sound card will
"clip" audio, resulting in terrible distortion, especially when using aggressive compression
algorithms such as LPC and LPC-10.    If the envelope remains a single line or barely

changes when you speak into the microphone at a normal level, the input gain is set too
low or, perhaps, your sound card is set for input from a line-in source (such as an audio CD
player) as opposed to the microphone.

The envelope frame shows input from the microphone (in other words, audio you transmit)
in green and output to the speaker (audio you receive) in blue.    If you wish to monitor only
input or output, check the appropriate box in the "Monitor" box to the left.    As audio is
transmitted and received, a white cursor shows the current position in the Envelope
display; when the right of the frame is reached, the cursor returns to the left, overwriting
the earlier envelope.    You can monitor either the average (root-mean-square: RMS) or
maximum (peak) intensity of audio by checking the corresponding item in the "Envelope"
box.    Regardless of the envelope display selected, any packet which contains one or more
samples which were "clipped" due to exceeding the dynamic range of the audio hardware
will be flagged by a red border in the envelope display.    To avoid clipping, reduce audio
input gain or simply hold the microphone further from your mouth.

The Spectrum frame at the top shows the frequency spectrum of audio input and output
(whichever or both, as selected by the "Monitor" box).    The default display is a real-time
monitor similar to that on graphic equalisers; the height of the individual bars represent the
audio energy in each frequency band, with lower frequencies to the left and higher
frequencies to the right.    The spectrum is updated only while audio is being transmitted or
received.    The frequency scale is linear, with 20 Hz at the left at 2 kHz at the right; almost
all of the energy of human speech falls within this frequency band.

When "Voiceprint" is checked in the "Spectrum Display" box, the real-time frequency
display is replaced by a spectrum plot which advances from left to right along with the
envelope.    For each interval in time, the Envelope gives the total instantaneous energy
and the Spectrum its breakdown by frequency.    In this case the vertical axis in the

Spectrum frame ranges from 20 Hz to 2 kHz, with the colour indicating the (logarithmic)
intensity of each of the 128 frequency bands plotted.   

Calculating the spectrum is computationally intense.    (If you're into details, it requires
performing about sixteen 512 point complex fast Fourier transforms per second.)    If your
computer isn't fast enough to do this while simultaneously executing the compression and
encryption modes you've chosen, displaying the Audio Monitor may result in break-ups or
lost audio.    If this happens, check "Disable" in the "Spectrum Display" box to suppress
computation and display of the spectrum; you'll still be able to use the Envelope frame
(which takes negligible overhead to update) to monitor input and output levels.

The Answering Machine

What if somebody calls you with Speak Freely when you're not at the computer?    No
problem!    Enable the built-in answering machine, and everything will be saved for replay
when you return.

The answering machine is initially disabled.    To activate it, bring up the answering machine
dialogue with the Connection/Answering Machine menu item and use the "Browse" button
to specify a message file.    This file should usually be kept on your hard disc; if you keep it
on a RAM drive, all messages will be lost if you reboot the system or experience a power
failure.

After selecting a message file name, check the "Record incoming messages" button and
press "Close"; all subsequent messages will be saved in the message file.    You can review
the messages at any time by opening the Connection/Answering Machine dialogue.    The
Next, Previous, and Replay buttons function in the obvious fashion.    Rewind returns to the
start of the recorded messages.    When you're done replaying messages, press "Erase All"
to delete all the messages on the answering machine and reclaim the disc space used to
store them.    Incoming messages are stored in a .SFM format file specific to Speak Freely
and cannot be played with other audio tools.

If you'd like to send an outgoing greeting message, use Sound Recorder or an equivalent
tool to record the message in a .WAV file, then use the "Browse" button to select it as your
Outgoing Message File.    If the tool you use to record the outgoing message gives you the
choice, it's best to record the message as a monaural (one-channel) file with 8000 16-bit
samples per second.    Speak Freely delays sending the outgoing message until after the
incoming message is recorded so that users with half-duplex audio hardware won't lose the
message, as would occur were it to arrive while they were still sending.    Even so, there's
no guarantee a half-duplex user will receive the message.

The "Clear" buttons allow you to disable the outgoing message and/or incoming message
file.    Clearing the incoming message file completely disables the Answering Machine.

If you would like to save an important message to a .WAV file, click on the "Save Message"
button.    Then browse to the directory where you want to save the message, and type in a
file name to save it to.

Show your face

Speak Freely's Show Your Face mechanism lets people see who they're talking to.    If you'd
like to show people who connect an image of your face (or any other image, for that
matter), create a GIF file or a 256 colour uncompressed Microsoft Windows Device-
Independent Bitmap (.BMP) file containing the image.    The image should not be larger
than 128x128 pixels; otherwise it will take a long time to transfer and may interfere with
the quality of audio while it's being sent.    Use the Options/Show Your Face... dialogue to
specify the bitmap file as "My face image file".    The "Clear" button cancels a previously
selected image file.    If the "Show faces of other users" box is checked in this dialogue, face
images will be retrieved, where available, and shown in the connection window.

When a face image is displayed in a connection window, transmission to the window is
indicated by an arrow ("==>") before the site name in the window title.

If you have trouble getting your face to appear on others' machines, the most likely cause
is that you've made the image file as one of the many incompatible variants of .BMP
format such as:

OS/2 instead of Windows
Monochrome, 16 colour, or 24-bit colour instead of 256 colour
RLE compressed instead of uncompressed

Make sure the image conforms to the format given above, and it should be transmitted with
no difficulty.    The rigid requirements on bitmap file format are imposed in order to make it
easier for other, non-Windows systems, to display them.

All presently known variants of GIF files seem to work OK; since GIF files are compressed
and hence somewhat smaller than the equivalent .BMP file, they're usually the best choice.

Text chat

When you're setting up a connection with somebody and trying to find settings which yield
reliable transmission with the best fidelity, it's nice to have a back-up form of
communication which will work on all but the most unreliable Internet connections.    Speak
Freely's Text Chat feature provides such a back channel.    Use the Options/Text Chat menu
item to display the Text Chat window, which you can position wherever you like on the
screen.    To send a line of text to everybody you're connected to, simply enter the text in
the Input field and type Enter or press the Send button.    The text will move up into the
scrolling transcript area, prefixed by an arrow identifying you as the sender.    When
received by the people you're connected to, your message will appear in their transcript
area prefixed with your name (or E-mail address, or host name, or IP address in descending
order of preference based on the information you've entered in your directory entry).    If
the text chat window isn't already open at the receiving site, it will pop up automatically.

Speak Freely text chat is not intended to be a full-functioned chat client; just an aid in
setting up voice connections.    It's easy to think of lots of features one might add to it, but
all of these and more are available, and have been for years, in purpose-built clients for
protocols such as talk and IRC.    If you're primarily interested in text chat, it's better to use
a program specifically designed for that application, not Speak Freely.

Note further that Speak Freely text chat messages, unlike audio communications, are not
encrypted even if you've enabled one or more forms of encryption.    Don't send any
sensitive information over text chat; wait until you've established a solid audio link and use
voice instead.

Publishing your directory entry

Speak Freely's "Look Who's Listening" facility allows you (at your sole discretion) to publish
a directory entry on a server so other people on the Internet can see you're on line and
willing to accept calls.    If your Internet connection is via a dial-up line (SLIP or PPP
connection) which assigns you as different Internet (IP) address and/or host name each
time you connect, Look Who's Listening allows people to find your address and contact you
any time you're dialed in.

If you'd like to publish your contact information on a Look Who's Listening server, use the
Phonebook/Edit Listing... menu item to display the dialogue box shown above.    Set the
"Server" field to the host name or Internet address of the Unix site that is running the
server.    A list of servers operating at the time this version of Speak Freely was released
appears in the section "Finding on-line users".    The information in your directory entry will
be visible only to users who query the same server on which you've published it.    This
allows private networks to set up an in-house Look Who's Listening server that is not
accessible to everybody on the Internet.

Enter the information you wish to publish in the various "User identification" fields.    The E-
mail address is required; all the other fields may be left blank.    Think carefully before
publishing your telephone number and location; you are potentially disclosing
this information to every user on the Internet.    If you include a telephone number,
please remember to include your international dialing country code and area code.    The
country code for Canada and the United States is 1.

Your E-mail address is the primary means by which others contact you; enter the address
you usually give to individuals who wish to contact you or include, for example, on your

business card.    It needn't have anything to do with the host and network on which you're
running Speak Freely .    For example, if you usually give out your E-mail address at work,
you might specify jetson@sprockets.com even though you connect to the Internet at
home as george@slip3986.terra.ssol.net.

The information you supply will be sent to the named server only if the "List in directory"
box is checked.    If you don't check "List in directory", your identity information will only be
disclosed to people you connect to.

Normally, the server returns all active sites which contain the query string in either the E-
mail address or full name fields.    If you check the "Exact match only" box, only queries
which exactly match your E-mail address will return your contact information.    Further,
checking "Exact match only" excludes your entry from the World-Wide Web document
published by the server listing all currently active sites.    This allows dial-up users to permit
those knowing their E-mail address to contact them while not informing any curious
Internet user that they're on line.    The security-conscious should note that this protection
is provided by the Look Who's Listening server, and assumes the site you contact is running
an unmodified version of the server program which is operating as intended.

Finding on-line users

Speak Freely's "Look Who's Listening" facility allows Speak Freely users to publish their E-
mail and Internet addresses and optional additional information on a server accessible to
other users.    You can query a Look Who's Listening Server with the Phonebook/Search...
menu item.

The "Server" specifies the host name or Internet address of a Unix site running the server
you wish to query.    If you've published your directory entry on a server, the same server is
used as the default for searches.    At the time this version of Speak Freely was released,
servers were running at the following sites:

corona.itre.ncsu.edu United States (North Carolina)
lwl.fourmilab.ch Switzerland

As with everything on the Internet, servers are in a constant state of flux.    For up to date
information on available servers consult the Speak Freely World-Wide Web page
http://www.speakfreely.org/.    It's generally best to publish your directory information
on a nearby server.    Remember that each server is independent; you only see users who
have published their address on that server.    If you want to communicate regularly with
someone, it's best to agree to meet on the same server.

When you first connect to a server, the text box at the bottom left will show the server's
welcome message, if any.    This message usually identifies the server and indicates the
location on the World-Wide Web where it publishes a list of all active Speak Freely users
who have published directory entries there.

To look for an on-line user, enter the user's E-mail address in the "User" box and press
"Search".    If the user did not check "Exact match only" in the Phonebook/Edit Listing...
dialogue and you did not check "Exact match only" in this dialogue box, all entries that
contain the characters you entered in the "User" box within the E-mail address or Full name
fields are returned, up to a limit of 5 to 10 depending on the length of the entries.    The

server is intended to find individual users, not provide a "wild card" list of a large number of
active sites; consult the World-Wide Web document indicated by the server in its welcome
message for a list of all active sites.

Mailing lists
To obtain additional information about Speak Freely, notification of new releases, and to
meet other Speak Freely users to discuss problems and solutions, tips and tricks, and your
experiences with the package, the following Internet mailing lists are available.

Mailing lists at speakfreely.org:
The Speak Freely home site, speakfreely.org, maintains two automated mailing lists for
discussions related to Speak Freely:

Users@speakfreely.org
For general discussions related to Speak Freely.

Development@speakfreely.org
For development (i.e. technical) discussions, usually among people interested in
modifying Speak Freely

To subscribe to either of these lists, send an E-mail to imailserv@speakfreely.org
containing the following text in the message body (not as the Subject) :

subscribe list full name

For example:

subscribe Users John Q. Smith

Original fourmilab.ch mailing lists:
The following mailing lists were established in 1996 on the fourmilab.ch server in
Switzerland and will continue to be maintained during the transition to the lists at
speakfreely.org.    Note that the procedure for subscribing is different for these lists than
those at speakfreely.org.

speak-freely@fourmilab.ch
Unmoderated list for discussion of any topic related to Speak Freely.    Each message
posted to the list is immediately copied to all subscribers.    To subscribe, send an
electronic mail message containing the word "subscribe" in the message body (not as
the Subject) to speak-freely-request@fourmilab.ch.    You can receive the same
information in periodic digest form by subscribing to speak-freely-
digest@fourmilab.ch described below, reducing the number of individual messages
you receive.

speak-freely-digest@fourmilab.ch
Periodic digest of messages sent to speak-freely@fourmilab.ch.    The digest is
updated every several days depending on the amount of traffic received; when traffic
grows to a sufficient volume to warrant it, daily digests will be published.    Subscribing
to speak-freely-digest instead of speak-freely dramatically reduces the number of
individual messages from the mailing list that arrive in your in-box, albeit at the cost of
less timely delivery of information.    To subscribe, send an electronic mail message
containing the word "subscribe" in the message body (not as the Subject) to speak-
freely-digest-request@fourmilab.ch.

Local loopback
Before you try contact other people or test over the network by contacting an echo server, 
it's a good idea to make sure your machine's audio hardware is set up properly.    An easy
way to verify this is Speak Freely's local loopback facility, which allows you to open a
connection to your own machine that does not go over the network.    Sound you transmit is
stored in memory, then replayed shortly after you end the transmission.    You can evaluate
different compression modes and other options, and set your audio input and output levels
optimally for the modes you're using.

To establish a local loopback connection, use the Help/Local Loopback menu item. Once the
connection window appears, try transmitting short sequences of sound (like "Testing: one,
two, three, four.").    If all is well with your audio hardware, about a second after the end of
each transmission you'll hear your voice replayed.    If you don't hear anything, make sure
your speaker is plugged into the right jack on the sound card and that the speaker volume
is turned up.    If you hear only a quiet hiss or hum, see if your microphone is plugged into
the correct jack (a common error is to plug the microphone into a "Line in" jack designed
for higher-level signals than the microphone generates).    If you've checked these things
and still can't hear anything in local loopback, try the suggestions in the list of frequently
asked questions on setting up your audio hardware.

Since local loopback stores audio in memory rather than sending it over the network, the
length of transmission it can store is limited.    For short test messages, this isn't usually a
problem unless your machine has extremely little free memory.    If you're using voice
activation, note that local loopback does not begin replay when silence is detected, but
only when you end the transmission.    The reason for this is that even though nothing is
being sent, voice activation must still "listen" in order to resume transmission as soon as
you resume speaking.    With half-duplex sound hardware, this would prevent the looped-
back sound from being played.    Even with full-duplex hardware, the combination of voice
activation and loopback would lead to an endless series of echoes if sound from the
speaker triggered the microphone.

Echo servers
Setting up Speak Freely usually involves fiddling around with different compression modes,
connection options, and, perhaps, workarounds for bugs in your network and audio drivers. 
Getting everything set right for your machine, network connection, and audio hardware
usually requires testing various modes in real connections.    It's irritating to get lots of
"Hello, can you hear me?" calls which consume 10 or 15 minutes of your time each as a
total stranger asks you to report on various settings on their end.

Echo servers allow you to run tests on your own, 24 hours a day, without disturbing others. 
An echo server is simply a machine running a special copy of Speak Freely for Unix which,
rather than playing audio it receives on the speaker, stores it in memory for 10 seconds
and then sends it back to the machine which sent it, using the same compression and
encryption modes.    Before you experiment with an echo server, you might want to try local
loopback to verify that your sound hardware is working properly before venturing onto the
network.

To run a test, create a new connection to one of the echo servers listed below.    Unless you
deliberately want to experiment with long distance transmission, it's usually best to
connect to a nearby server.    Then select whatever compression and other modes you want
to try and transmit a short (less than 10 second) test message, such as the traditional
"Testing: one, two three, four" and go back to receive mode.    Ten seconds after the start of
your test message, plus however long it takes the network to transmit the sound in both
directions, you'll hear your test message returned by the echo server.    If the audio is
broken up, you may have to select different modes (or it may simply indicate traffic on the
network between you and the server is so congested everything is being delayed).

At the time this version of Speak Freely was released, echo servers were running at the
following sites:

echo.fourmilab.ch Switzerland (see note below)
corona.itre.ncsu.edu United States (North Carolina)
rpcp.mit.edu United States (Massachusetts)

As with everything on the Internet, servers are in a constant state of flux.    For up to date
information on available echo servers consult the Speak Freely World-Wide Web page
<http://www.speakfreely.org>.

The echo.fourmilab.ch server shares a relatively slow connection to the Internet with the
busy Web site www.fourmilab.ch.    As a result, you may get break-ups when testing with
that site purely because the Web traffic has saturated the capacity of the site's Internet
connection.    Other servers may have similar constraints, which often vary with the time of
day and day of the week.

Voice activation

Network capacity (bandwidth) is finite and precious; it's important not to waste it.    Even
though users with full-duplex audio hardware could, in theory, transmit continuously, this
would be irresponsible as it would double the load on the network with no real benefit.
Speak Freely normally operates in "push to talk" mode like a handheld radio; you use the
left mouse button or space bar to flip between sending and receiving; if your audio
hardware is half-duplex, you have to switch modes somehow, since it can't send and
receive simultaneously.

In radio communications, "voice activation" or "VOX" has been used for decades where
convenience or the need for hands-free operation rule out push to talk.    The idea is simple:
monitor the microphone input and transmit only when the user is actually talking.    In
practice, voice activation has a number of subtleties that make implementing it and getting
it to work well quite challenging.    Fortunately, a Speak Freely user who is also an expert
Windows application and driver developer, Dave Hawkes, took on the task of adding voice
activation to Speak Freely and, fortunately for all of us, contributed the feature so we can
benefit from it.

Voice activation can be tricky to set up; it's important to use a good microphone, well
isolated from your speakers, set the input level correctly, and make sure echoes don't
trigger transmission.    Transmissions from Apollo astronauts on the Moon were voice
activated, and if you listen to tapes of them, you'll hear the odd dropped word, echo
feedback, and other inevitable artifacts of voice activation.    Still, it got the job done and
allowed the astronauts to concentrate on what they were doing rather than operating the
radio.    Speak Freely's voice activation can do the same for you.

It's best to become familiar with Speak Freely in push to talk mode; once you've mastered
the basics of establishing connections, setting compression modes, and coping with the
inevitable problems of sending voice over the network, you'll be ready to tackle the
additional complexities of voice activation.

You enable voice activation with the Options/Voice Activation menu item.    The default
setting, "None", disables Voice Activation and selects the usual push to talk mode.    To

enable Voice Activation, check one of the three voice activation speed items, "Fast",
"Medium", or "Slow".    To avoid transmission breakups due to short pauses in speech, voice
activation continues transmitting until a period of silence of a given duration has occurred;
the choices refer to the length of silence that deems a transmission complete.    For most
purposes, "Medium" will work well.

Once you've selected voice activation, you need to adjust the level which causes Speak
Freely to begin transmitting.    This depends on your microphone, input gain setting, and the
amount of background noise, so you have to set the level appropriate for your own
environment.    Use the Options/Voice Activation/Monitor menu item to display the Voice
Activation Monitor dialogue box.    Open a connection (perhaps to one of the echo servers),
and press the space bar to begin transmitting.    The green bar graph at the left shows you,
in real time, the sound level received from the microphone (while you're transmitting to any
connection).    The red line is the level above which voice activation enables transmission.   
You can move this level up and down with respect to the audio input level with the scroll
bar.    Adjust it so it's slightly above the level of the green bar when you're not speaking into
the microphone.    You'll see that when it's adjusted correctly transmission will stop (an X is
drawn through the ear cursor) shortly after you stop speaking and resume (the X
disappears) at your next utterance.

When using voice activated transmission, if your audio hardware is half-duplex, you should
also select the Options/Break Input menu item to allow received sound to interrupt your
transmissions.    Otherwise, the continuous monitoring of the microphone would prevent
your hearing remote users.

Communicating with other network voice programs
Note: sending voice over the Internet is complicated enough even when the
same application is used on both ends.      Speak Freely supports the emerging
standard protocol, RTP, and will eventually transition to using it as the default.   
Since the standard is so new, no program, Speak Freely included, can be
absolutely guaranteed to support it completely correctly.    So unless you are an
experienced Speak Freely user who needs to communicate with users of other
programs which support RTP or VAT protocols, you're well advised to ignore this
section.    As long as you're talking to another Speak Freely user, Speak Freely's
own protocol (selected by default) will give you better performance and more
secure encryption than are available with the standard interchange protocols.   
Further, many of the widely-publicised commercial Internet voice programs have
their own proprietary protocols and do not yet support RTP.    Do not assume you
can communicate with a user of such a program unless its vendor explicitly
certifies it to be RTP compliant.

As voice communication over the Internet moves from the exotic to the everyday,
standards are emerging which allow users of a variety of Internet voice programs to
communicate with one another.    As users demand the ability to speak to one another
regardless of which program they're using, vendors will be forced to conform to these
standards.

Speak Freely supports the Internet Real-Time Transport Protocol (RTP) (RFC 1899) and RTP
Profile for Audio and Video Conferences with Minimal Control (RFC 1890), as issued in
January of 1996.    See the Bookshelf for complete citations of these documents, including
where you can download them on the Internet.    In addition to RTP, Speak Freely also
supports the protocol used by the Lawrence Berkeley Laboratory Visual Audio Tool (VAT), a
widely used Unix conferencing program.    (Starting with Version 4, VAT supports RTP in
addition to its native protocol, so there's no reason to use the more limited VAT protocol
except when communicating with an earlier version of VAT, or a VAT-compatible program
which does not yet support RTP.)

When you receive sound from a remote site, Speak Freely automatically detects the
protocol the user is transmitting and displays this in the connection window (unless a face
image is displayed, but since only Speak Freely's native protocol supports face images, if a
face appears you know you're connected to another copy of Speak Freely).

To transmit to the user of an RTP or VAT compatible application, you must select the
appropriate protocol with the Options/Protocol menu item--Speak Freely does not
automatically transmit in the protocol it's receiving, so if you are establishing a new
connection to a site, you have to choose a protocol that site understands.    (Since Speak
Freely understands all three protocols, you can communicate with Speak Freely users
regardless of which protocol you've chosen.)

Due to design differences in the various protocols, the following restrictions apply when
using RTP and VAT protocols:

Simple and LPC-10 compression modes cannot be selected.    RTP and VAT
protocols do include these form of compression.

The only encryption option available is DES.    The other forms of encryption
provided by Speak Freely are not presently a part of the specification of the other
protocols.

VAT protocol programs do not all use the same transformation of the key string
into the DES key, so DES encryption may or may not work in VAT protocol,
depending on which program you're talking to.    It's best to use RTP protocol if at
all possible.

The DES encryption specified for RTP and VAT protocols includes the initial and
final bit permutations, which most cryptographers believe serve only to deter
software implementations.    They do this quite effectively--DES encryption in RTP
and VAT protocol require a substantially faster CPU to perform in real time than the
permutation-free DES used by Speak Freely's own protocol.

RTP and VAT use smaller packets than Speak Freely.    This, coupled with the
relatively poor real-time response of Windows, may result in "choppier" audio than
with Speak Freely's own protocol.    The stronger the compression mode you've
selected (GSM and LPC are the strongest), the less the small packets will degrade
the audio quality.    A workaround allows you to transmit larger packets in RTP
protocol, but this is not guaranteed to work with all RTP applications.

RTP and VAT encrypt the entire transmitted packet, as opposed to including an in-
the-clear prefix containing control information of no use to an eavesdropper as
Speak Freely does.    This has the consequence that if somebody is sending you
encrypted packets in RTP or VAT protocol, there's no way to determine the identity
of the sender or to discern what protocol they're sending.

Payload Types Supported

The "payload type" of a real-time protocol packet refers to the encoding and compression
modes used to represent the data within it.    All applications are not required to support all
payload types, though support of a minimum subset is encouraged.    Speak Freely supports
all the payload types of VAT protocol and the following RTP payload types, using the
nomenclature of RFC 1890.

DVI4, GSM, L16, LPC, PCMA, PCMU

To transmit in the protocol RTP and VAT refer to as DVI, select ADPCM Compression on the
Options menu.    PCMA is supported on receive only--since PCMU provides equivalent
compression and fidelity and is one of the recommended minimum subset payload types,
there is no need to implement PCMA transmission.

Compression modes
If you're talking to another user on the same high-speed local area network, or you're one
of the lucky few with a high bandwidth connection to the Internet backbone, there's no
need to bother compressing audio.    The data rate of 8000 bytes per second is modest
compared to other Internet applications such as file transfer and accessing graphics-
intensive pages on the World-Wide Web.

The rest of us, faced with a bottleneck of anywhere from 14,400 to 65,536 bits per second
between our machine and the rest of the world, have to find a way to squeeze 8000 bytes
per second into a communications channel with a capacity between 1440 and 6500 bytes
per second.    Speak Freely provides a variety of compression modes, each with different
trade-offs among efficiency of compression, loss of fidelity in the compression process, and
the amount of computation required to compress and decompress.    Speak Freely's built-in
performance benchmark may help you determine which modes are suitable based on the
performance of your computer.

Compression options
Compression is selected by checking one or more of the compression items on the Options
menu.    The chosen compression mode(s) apply to all sound transmitted to open
connections: sound files as well as live audio.    Compression modes cannot be changed
while you're transmitting live audio; click the mouse in each transmitting connection
window to pause transmission, change the compression mode, then click or double click to
resume transmission.

If no compression is selected, Speak Freely requires your network to reliably transmit
8000 characters per second.    If it's slower than that, the person you're talking to will hear
pauses in the sound they receive and sound will be lost.    Most local area networks, unless
extremely heavily loaded, have no difficulty transmitting data at this rate--in fact, most are
capable of speeds on the order of a million characters per second.    It's when you leave
your local network and venture into the worldwide Internet that compression becomes
crucial.    Very few Internet users today have connections faster than 64 kilobits per second,
and many are using dial-up modem lines at 14.4 or 28.8 kilobits per second.

For asynchronous serial communication, the data rate in bytes per second is about one
tenth the speed in bits per second so it's clear that even a 64 Kb line can't transmit
uncompressed sound at 8000 bytes per second.    Speak Freely provides three forms of
compression which can be selected independently or in combination to reduce the data
rate.

"Simple compression" discards every other sample and thereby halves the data rate to
4000 bytes per second, within the capability of a 64 Kb connection.    On the receiving end,
the elided samples are synthesised by averaging adjacent samples.    Simple compression
requires very little CPU time but it substantially degrades sound quality--high frequency
components are lost and weird sampling aliasing can occur.    Still, voice is generally
intelligible and it's certainly better than random pauses and lost sound.

"GSM" compression (the default mode) employs the algorithm GSM (Global System Mobile)
telephones use to reduce the data rate by a factor of almost five with little degradation of
voice-grade audio.    Enabling this option reduces the data rate from 8000 bytes per second
to 1650 bytes per second, which renders a connection by 28.8 Kb modem usable.    The
catch is that GSM encoding is a very complicated process and, if your computer isn't fast
enough, it won't be able to keep up with the audio coming in. (Decoding requires only
about half the computation as encoding.)    To use GSM compression, you'll need a fast 486,

Pentium, or later generation processor.    Thus, a slower network connection increases the
demand on your computer.

"ADPCM" compression uses Adaptive Differential Pulse Code Modulation to halve the data
rate to 4000 bytes per second.    The compression is identical to that accomplished by
Simple compression, but the loss in fidelity is much less; for voice grade audio, it's barely
perceptible.    ADPCM encoding and decoding requires more computation than Simple
compression but enormously less than GSM; if your computer is too slow for GSM and the
compression achieved by ADPCM is adequate for your network link, it's the best choice.

You can combine Simple and either GSM or ADPCM compression.    The CPU requirement is
only slightly greater than for GSM or ADPCM compression alone and the sound quality is
about the same as for Simple compression.    Simple and GSM compression combined yield
a data rate of 800 bytes per second, which a 14.4 Kb network link can handle.    Simple and
ADPCM compression together yield a data rate of 2000 bytes per second, within the
capability of a 28.8 Kb link.

"LPC" compression uses Linear Predictive Coding to reduce the data rate by more than a
factor of 12.    This achieves the greatest degree of compression of any of the available
options but, like GSM, it is extremely computationally intense.    LPC requires many
calculations to be done in floating point; if your machine does not have a math
coprocessor, it will almost certainly be unable to do LPC compression and decompression in
real time.    LPC compression is extremely sensitive to high frequency noise and clipping
caused by setting the audio input level too high.    If you hear frequent bursts of loud static,
try reducing the gain on the microphone or speaking further away from it.    Also, try to
avoid the pops that result from talking directly into the mike; they also create bursts of
noise.    Finally, users with high pitched voices may not be able to use LPC compression at
all: it just loses too much high-frequency information.    If GSM is a cellular phone, think of
LPC as a shortwave radio.    It doesn't always work, you have to be careful to get the best
results, and even in the best of circumstances there will be some noise and distortion.   
But, like shortwave, it lets you communicate (or at least try) when nothing else will work.   
If your network link is so slow that none of the other forms of compression are usable, give
it a try.

"LPC-10" compression uses a different form of Linear Predictive Coding, as specified by
United States Department of Defense Federal Standard 1015 / NATO-STANAG-4198,
republished as Federal Information Processing Standards Publication 137 (FIPS Pub 137).   
LPC-10 compression encodes real-time audio into a 2400 bit per second stream.    Even
accounting for the additional information required to transfer audio packets over the
network, LPC-10 compresses audio to only 346 bytes per second--a factor of more than 26
to 1.    Audio fidelity in LPC-10 compression is less than that of GSM compression, but
entirely adequate for voice-grade communications.    As with the LPC compression mode
described above, try to avoid driving the audio input into clipping with overly-loud signals,
and eliminate hum and background noise which can interfere with the compression
process.    The principal disadvantage of LPC-10 compression is that it is extraordinarily
computationally intense, and does most of its calculations in floating point.    A math
coprocessor (or on-chip floating point unit as found in 486DX and Pentium processors) is
absolutely required to run LPC-10 compression in real time, and slower machines may not
be able to use LPC-10 even if equipped with a math coprocessor.

The extreme degree of compression achieved by LPC-10, encoding audio into much less
bandwidth than the typical Internet link, allows Speak Freely, when LPC-10 compression is
selected, to offer an optional Robust Transmission mode.    By default, Speak Freely
sends a single copy of each sound packet to the site you're connected to.    In Robust
Transmission mode, two, three, or four copies of every sound packet are sent, each

containing a sequence number that allows the recipient to discard duplicate or out-of-
sequence packets.    If the Internet link between you and the person you're talking to is
congested and you're experiencing drop-outs, Robust Transmission mode may substantially
improve the quality of the connection.    You can run 2X (two copies of every packet) on a
link as slow as 9600 baud.    With a 14.4 Kb modem, you can run 2X, 3X, or 4X (although 4X
is close to the capacity of 14.4 line and you may have trouble if other simultaneous traffic
is occurring on the line).    With a 28.8 Kb or faster line, all robust transmission options are
available.    Duplicating packets more than four times does not improve reliability of the
connection and only wastes bandwidth, so replication is limited to four copies.

Only one of the compression modes GSM, ADPCM, LPC, and LPC-10 may be selected at
once.    Choosing any of them turns off a previously-selected mode.

Here's a summary of the various compression options available to you:

Bytes per Kilobits per Need
fast

Sound

Compression second second CPU? fidelity
No
compression

8000 80000 No Best

Simple 4000 40000 No Poor
ADPCM 4000 40000 No Good
Simple +
ADPCM

2000 20000 No Lousy

GSM 1650 16500 Yes Good
Simple + GSM 825 8250 Yes Lousy
LPC 650 6500 Yes Depends
LPC-10 346 3460 Extremely Okay

You can experiment to determine which settings work best by connecting to an echo server
which returns any sound you send to it after a 10 second delay.

Why encryption?
Why bother with encryption?    Privacy!    When you talk over a data network, anybody
connected to your network or with access to any of the links your sound data passes
through on its way to a distant Internet site can potentially eavesdrop on your
conversation.    Encryption, based on a key known only to you and person you're talking to,
protects against interception by third parties.    No encryption scheme can be absolutely
guaranteed to be 100% secure and even if it were, you'd still be at risk if somebody gained
access to your key.    But the encryption offered by Speak Freely, particularly the IDEA
algorithm which is also used by PGP to encrypt message bodies, provides a great deal of
security, indeed better than any generally available digital cellular telephone.

PGP key exchange
If PGP is installed on your computer, Speak Freely will cooperate with it to provide the
convenience of public key encryption.    To encrypt sound to one or more users on your PGP
public keyring, enter enough of their user name(s) to uniquely identify them in the "PGP
user name(s)" field of the Option/Connections dialogue.    When you click OK to close the
dialogue, Speak Freely generates a 128 bit random session key for subsequent
communications, invokes PGP in an MS-DOS window to encrypt it with the public key(s) of
the named user(s), and transmits it to the host or multicast group the connection
addresses.    Sound packets sent subsequently to that connection are IDEA encrypted (the
same algorithm PGP uses for message bodies) using the session key.    The ability to encrypt
a session key with more than one user's public key allows you to transmit securely to
multiple subscribers to a multicast.

When a session key is received from a remote host, PGP is invoked to decrypt it using your
secret key.    If you haven't specified your secret key pass phrase using the PGPPASS
environment variable, you'll have to type the pass phrase in the MS-DOS window in which
PGP is running.    See the discussion of the security risks created by the undeniably
convenient PGPPASS variable in Phil Zimmerman's " The Official PGP User's Guide" cited in
the bookshelf.

Speak Freely invokes PGP via the SFPGP.PIF file in Speak Freely's release directory.    If you'd
like to change the modes used for running PGP (for example, to use full-screen mode
instead of an MS-DOS window), edit this file with the PIF editor and select the modes you
prefer.    If no SFPGP.PIF file is found, Speak Freely attempts to run PGP directly, using
whatever default modes you've set for MS-DOS programs launched by Windows
applications.

The IDEA encryption algorithm used to encrypt audio following a PGP key exchange is
patented and may not be used commercially without a license; see "Patent issues" for
further details.

PGP key exchange and its subsequent IDEA encryption are independent of, and can be used
in conjunction with, the other secret key encryption options provided by Speak Freely.   
There's little to be gained in security and everything to be lost in convenience by
combining secret and public key encryption, but if you want to for some reason, you can.

Since the IDEA encryption performed by PGP key exchange is not specified as a part of the
RTP and VAT protocols, PGP key exchange can be used only when transmitting in Speak
Freely protocol.

DES encryption
If a DES key is specified in the Option/Connections dialogue, it will be is used to encrypt
sound transmitted to that host using a slightly modified version of the Data Encryption
Standard algorithm (the initial and final permutations, which do not contribute to the
security of the algorithm and exist purely to deter software implementations of DES are not
performed).    In order to decrypt sound encoded with DES, the connection on the receiving
machine must specify an identical DES key.    The DES key phrase can be as long as 255
characters.    The actual DES key is created by applying the MD5 algorithm to the given key
phrase, then folding the resulting 128 bit digest into 56 bits with XOR and AND.

Speak Freely will continue to correctly receive unencrypted sound from a given host even if
a DES key is specified for the connection as long as the remote host is transmitting in
Speak Freely protocol. RTP and VAT protocols do not permit this, so you must clear the DES
key for the connection to receive unencrypted RTP and VAT transmissions.

Blowfish encryption
If a Blowfish key is specified in the Option/Connections dialogue, it will be is used to encrypt
sound transmitted to that host with the Blowfish Encryption Algorithm.    In order to decrypt
sound encoded with Blowfish, the connection on the receiving machine specify an identical
Blowfish key.    The Blowfish key phrase can be as long as 255 characters.    The actual
Blowfish key is created by applying the MD5 algorithm to the given key phrase to create
the 128 bit Blowfish key.

Blowfish encryption is much faster and generally considered to be more secure than DES
encryption.    However, Blowfish is newer and has not been formally adopted by
governments or standards organisations.   

Cipher block chaining is used within each sound packet, but not from packet to packet.    If
that were done, loss of a single packet would render the entire rest of the conversation
unintelligible.

Speak Freely will continue to correctly receive unencrypted sound    from a given host even
if a Blowfish key is specified for the connection.

The Blowfish algorithm has been placed in the public domain and may be used in any
manner, commercial or noncommercial, without a license.

Since Blowfish encryption is not specified as a part of the RTP and VAT protocols, it can be
used only when transmitting in Speak Freely protocol.

IDEA encryption
If an IDEA key is specified in the Option/Connections dialogue, it will be is used to encrypt
sound transmitted to that host with the International Data Encryption Algorithm (IDEA).    In
order to decrypt sound encoded with IDEA, the connection on the receiving machine
specify an identical IDEA key.    The IDEA key phrase can be as long as 255 characters.    The
actual IDEA key is created by applying the MD5 algorithm to the given key phrase to create
the 128 bit IDEA key.

IDEA encryption is substantially faster and generally considered to be much more secure
than DES encryption.    However, IDEA is newer, has not been formally adopted by
governments, and is patented, restricting its commercial use.    If your CPU is fast enough,
you can enable any combination of IDEA, DES, and key file encryption.    But since PGP uses
IDEA to transmit message bodies, if you rely on    PGP to exchange keys with other parties,
the fundamental security of your voice link rests upon IDEA alone.

Cipher block chaining is used within each sound packet, but not from packet to packet.    If
that were done, loss of a single packet would render the entire rest of the conversation
unintelligible.

Speak Freely will continue to correctly receive unencrypted sound    from a given host even
if an IDEA key is specified for the connection.

The IDEA encryption algorithm is patented and may not be used commercially without a
license; see "Patent issues" for further details.

Since IDEA encryption is not specified as a part of the RTP and VAT protocols, it can be used
only when transmitting in Speak Freely protocol.

Key file encryption
A key file is a binary file containing essentially random data as long as the individual sound
packets being sent.    Enter the full path name of the file in the "Key file" box of the
Options/Connection dialogue box or use the "Browse" button to pop up a file open dialogue
to select the file.

The file you specify as a key file should be at least 512 bytes long and consist of near-
random (in the sense of incompressible) data.    The "+makerandom=length filename"
option of PGP is an excellent way to generate such a file.    To securely deliver a copy of the
key file to the person you wish to talk to, encrypt it with their public key using PGP and
send it to them, in ASCII armoured form, via electronic mail.

Key file encryption is by far the least demanding on your computer; it requires almost no
additional computation.    The level of security provided, however, is much less than the
other encryption options, and should be viewed as a last resort alternative to transmitting
in the clear if your machine is too slow to use any other form of encryption.

Speak Freely will continue to correctly receive unencrypted sound from a given host even if
a key file is specified for the connection.

Since key file encryption is not specified as a part of the RTP and VAT protocols, it can be
used only when transmitting in Speak Freely protocol.

Key generation, management, and exchange
Unlike PGP, Speak Freely is a conventional secret key cryptographic system.    Why?   
Because the RSA public key cryptosystem is the subject of U.S. Patent 4,405,929 and I have
no desire to thread through the legal maze that PGP had to run in order to become both
legal and freely available.    Rather than replicating the public key functionality of PGP,
Speak Freely cooperates with a copy of PGP installed on your machine, delegating the
public key encryption of a session key to PGP.    If you have PGP installed on your machine,
please turn to the section on PGP key exchange.    Users without access to PGP or who, for
some reason or another, can't execute PGP from within Speak Freely can use the following
technique to generate and exchange session keys.

First of all, make up a key.    You could pick a long nonsense phrase like,

The fribbits seem glinky today, don't you think?

or some gibberish pounding on the keyboard.    (But watch out!    That's often a lot less
random that you might think.    That's how the Russians used to make one-time pads for
spies.    The alternation of left and right hand keystrokes on mechanical typewriters was
clearly evident from captured pads.)

But why go to the trouble when Speak Freely will make up a key for you on the spot?    The
Options/Create Key menu item generates a seed number from the time, date, and a variety
of information about your computer and uses it to initialise a highly-secure IDEA-based
random number generator.    (Commercial users: read the "Patent issues" section before
using this feature.)    The key is displayed in a dialogue box:

Each time you press the "New Key" button, another key is generated, containing 128 bits of
information, the same as an IDEA key and more than twice the 56 bits of a DES key.    The
text of the key is automatically selected and may be copied to the clipboard with Ctrl+C
and pasted into a key field in the Options/Connection dialogue box and an electronic mail
message to the person you want to speak with.    The message might read something like:

Hi!    I'd like to talk to you around 21:00 your time tonight with Speak Freely.    I've
generated a key of:

NHCG-AJHP-ILJN-DHAI-NFEI-CPKO-PINJ-JIAA

for this conversation.    Please paste this key into the IDEA encryption box when
you set up the connection to my machine.    I'm looking forward to chatting with
you!

Encrypt the message with whatever tool you use to protect your electronic mail, and send it
winging its way over the Internet.

When your friend receives the message and decrypts it, she will know the key to use for
your forthcoming conversation.    You can either generate a new random key for each
conversation (as PGP does) or, if you trust the other person (and yourself!) to keep the key
secret, use it for multiple conversations with that individual.

If you use a public key cryptosystem, this technique permits you to exchange keys for
conversations with people you've never previously communicated with in any manner, as
long as you trust their published public keys to actually be theirs.    Of course when you let
Speak Freely generate the key, you're trusting me to not have installed a "back door" that
allows me to know what key you'll get, or to have accidentally introduced a bug which
makes the keys predictable.

Encryption legal issues
Certain governments attempt to restrict the availability, use, and exportation of software
with cryptographic capabilities.    Speak Freely was developed in Switzerland, which has no
such restrictions.    The Blowfish, DES, MD5, and IDEA packages it uses were obtained from
an Internet site in another European country which has no restrictions on cryptographic
software.    If you import this software into a country which restricts cryptographic software,
be sure to comply with whatever laws and regulations apply.    The obligation to obey the
law in your jurisdiction is entirely your own.

If you are concerned about the legal ramifications of using or redistributing software with
encryption capability, a special version of Speak Freely (nicknamed "Spook Freely") with all
cryptographic facilities removed is available.

The IDEA encryption algorithm is patented and may not be used commercially without a
license; see "Patent issues" for further details.

Encryption patent issues
The IDEA[tm] block cipher is patented by Ascom-Tech AG. The Swiss patent number is
PCT/CH91/00117, the European patent number is EP 0 482 154 B1, and the U.S. patent
number is US005214703.    IDEA[tm] is a trademark of Ascom-Tech AG.    There is no license
fee required for noncommercial use.    Commercial users may obtain licensing details from
Dr. Dieter Profos, Ascom-Tech AG, Solothurn Lab, Postfach 151, CH-4502 Solothurn,
Switzerland, Tel +41 65 242 885, Fax +41 65 235 761.

You can use IDEA encryption for noncommercial communications without a license from
Ascom-Tech; commercial use is prohibited without a license.    If you don't want to obtain a
license from Ascom-Tech, use Blowfish, DES, or key file encryption instead.

Command line arguments
If you'd like Speak Freely to start with one or more connections already open, save the
connections in .SFX files, and create a program item (Windows 3.x) or shortcut (Windows
95) which names the saved connections on the Speak Freely command line (target in
Windows 95).    Be sure to specify a complete path name for each connection file, and if
you're specifying more than one connection file, separate them by commas.    If you'd like
Speak Freely to start minimised rather than as an open window, add the "/S" switch to the
command line or choose that mode when editing the properties of the program
item/shortcut.

The following command line, which assumes you've installed Speak Freely in the directory
C:\SPEAKFRE, starts the program minimised with two connections already open.

c:\speakfre\speakfre.exe /s c:\speakfre\alice.sfx,c:\speakfre\bob.sfx

You can also create connections when Speak Freely is started by specifying the IP address
of the host to which you wish to connect (its numeric Internet address    is given as a
"dotted quad", for example 192.168.14.211; a port number may also be specified,
preceded by a slash).    You can mix IP addresses and .SFX file names on the same
command line, for example:

speakfre 192.168.14,211,c:\speakfre\bob.sfx,192.168.191.88/4074

Problems: regular pauses in output
If you hear regular pauses in output you receive, or the person you're talking to reports the
same in audio you send, the most likely causes are:

1. Your network connection isn't fast enough to send real-time audio with the
compression modes you've chosen.    Try additional compression to reduce the
volume of data you're sending.

2. The compression mode you've selected (usually GSM, LPC, or LPC-10) requires
more computation than your computer or the computer of the person you're
talking to) can perform in real time.    Choose a less efficient but faster form of
compression.    The performance benchmark can help determine which
compression modes are within the computing power of your machine.

3. You've chosen encryption mode(s) which require more computation than your
computer can do in real time.    Use fewer or less computationally intense modes
of encryption.    DES is the slowest form of encryption, IDEA (also used by PGP key
exchange) is intermediate in speed.    Key file encryption requires virtually no
computation.    If you've selected multiple encryption modes, the computation
required is the sum of each of the individual modes.    Note that DES encryption is
much more time consuming in RTP and VAT protocols. The performance
benchmark can help determine which encryption modes are within the
computing power of your machine.

4. Your machine may be sufficiently slow that the mechanism Speak Freely uses to
guard against system hangs due to overload is itself creating delays which cause
packets to be lost.    You can disable the system hang protection with the
Options / Workarounds / Network/ Disable Message Loop Insurance menu item,
but it's unwise to do this before you're absolutely sure the compression and
encryption modes you're using don't overload your computer.

You can experiment with various compression and encryption modes without disturbing
other users by connecting to one of the Speak Freely echo servers.

Problems: random pauses in output
Random pauses in output, for example when you've received sound for several minutes
from a given connection, then lose three or four seconds of sound, or just random brief
interruptions in the sound you hear are most probably due to:

1. The network you're communicating over, whether a local network in your office
or the global Internet, is busy and sound packets are being delayed by other
traffic.    Unlike a file transfer which can proceed at any speed, intelligible audio
requires not only adequate bandwidth (data rate) but consistent delivery time.   
The latter condition breaks down as a network approaches saturation.    The only
solution (other than connecting to a faster network) is to reschedule your
conversation for a time when the network is less heavily loaded.    You may be
able to reduce the severity of the pauses in the sound you hear by increasing the
jitter compensation time, which delays playback of a transmission to provide a
margin for delayed packet to arrive.

2. Other tasks running in the background on your computer or that of your
interlocutor may be stealing CPU cycles that Speak Freely needs in order to
compress/decompress or encrypt/decrypt sound in real time.    Terminate the
background tasks.

Problems: compression slows down connection
You've encountered regular pauses when sending or receiving sound and, to cope with the
problem, enabled GSM, LPC, or LPC-10 compression to reduce the data rate.    But the
problem got worse-- more audio was lost with compression than without!    What's going
on?

This indicates that not only isn't your network connection fast enough to transmit audio in
real time, your computer can't compress it into something your network can send quickly
enough to keep up with the audio input.

Short of replacing your computer with a faster machine which can perform compute-
intensive compression in real-time or obtaining a faster connection to the Internet, the only
options are to try ADPCM compression or to see if also enabling both Simple compression
with the Options/Connection menu item works.    By discarding every other sample, Simple
compression halves the amount of data another algorithm must process in a given time
period.

The performance benchmark can help determine which compression modes are within the
computing power of your machine.

Viewing hardware configuration

The configuration of machine's audio input/output hardware is shown in the Help/About
Speak Freely dialogue.    The sample rate, bits per sample, and active/idle status are given
for both input and output channels.    If your machine's sound hardware can't send at the
same time it's receiving (half-duplex), a line so indicating will appear.

More detailed information about configuration and the real time status of Speak Freely is
available in the Help/Extended Status dialogue.

Measuring computer performance

Many of Speak Freely's compression and encryption modes require substantial amounts of
computation.    In order to transmit and receive audio in real time, without regular pauses,
your computer must be fast enough to compress and/or encrypt audio at least as fast as it
arrives from the microphone or across the network.    The performance of machines running
Windows spans an enormous range,    and even machines with identical processor chips
may deliver dramatically different results due to variations in cache size, memory
architecture, and the presence or absence of a floating point unit or coprocessor.    To give
an idea how well suited various compression and encryption modes are to your own
computer, Speak Freely includes a built-in performance measurement (or benchmark)
facility, which evaluates how quickly your computer executes the various compression and
encryption algorithms compared to the requirement for real time audio.

To run the benchmark, display the Help/Performance Benchmark dialogue.    Before the
benchmark has been run, all the fields will be question marks.    To start the benchmark,
press the Run button.    Speak Freely runs each of the algorithms, both in the mode used
when transmitting and that used for reception, for three seconds and fills in items in the
table with a percentage giving the speed at which the algorithm executed compared to the
real time audio rate.    A result of less than 100% indicates your computer cannot perform
that algorithm quickly enough to keep up with audio; any mode showing less than 100%
isn’t suitable for your machine.    A measurement substantially higher than 100% indicates
the mode should be usable.    Note, however, that for successful two-way communication
the modes you select must not only be within the capacity of your own computer but also
that of the person you’re talking to; if one of you has a much faster machine than the
other, you’ll have to negotiate settings suitable for both.

The benchmark takes about a minute to run; progress is indicated by the filling in of fields
in the table every three seconds.    You can stop the benchmark at any time by pressing the
"Stop" button.    Since Windows is, more or less, a multitasking system, other concurrently-
running applications may reduce the performance figures reported by the benchmark by
"stealing" compute cycles from Speak Freely.    To get an idea of how Speak Freely will
actually behave, it's best to run the benchmark with the same background applications
you'll be running when you actually communicate using Speak Freely.    (Since Windows is
not noted for its real-time response, for optimum performance it's best to run Speak Freely
as the only active application.)

When you combine various compression and encryption modes, the performance required
is often not simply the sum of the modes selected.    Compression, for example, reduces the
number of bytes the encryption algorithms must process, and in some cases adding the
overhead of compression may enable you to use an encryption mode your computer isn't
fast enough to apply to uncompressed data.    The performance benchmark can only give
you general guidelines; if you have a fast machine like the 400 MHz Pentium II on which the
sample benchmark at the start of this section was run, any combination of modes will work
fine.    If you want to use a combination of modes that are above but uncomfortably close to
100%, it's best to experiment with local loopback or an echo server determine if your
machine is fast enough to squeak by.

Sampling: 8 vs. 16 bit
For the best sound quality, 16 bit sampling is desirable.    Speak Freely translates 16 bit
Pulse Code Modulation (PCM) samples into an 8 bit logarithmic encoding known as mu-law,
which effectively squeezes 13 bits of audio information into each 8 bit byte.    If your sound
hardware supports 16 bit samples, that mode is automatically chosen.    If, for some reason,
you want to run in 8 bit mode (which sounds worse and doesn't run any faster) you can do
so by checking the Options/Use 8-bit Audio menu item.

If your hardware supports only 8 bit samples, this menu item is automatically checked and
disabled, since you don't have the option of choosing 16 bits.

Half-duplex vs. full-duplex
On a regular telephone, you can talk and listen at the same time: the telephone is a full-
duplex device.    With a portable radio walkie-talkie, on the other hand, as long as you hold
down the "Talk" button, you can't hear anybody else who's trying to talk to you--that's why
radio users say "Over" at the end of a transmission--so the other person knows you've
finished and they can talk now.    The walkie-talkie is half-duplex: it can communicate in
both directions but only one way at a time.    (A radio broadcast station is simplex: you can't
respond to its transmissions at all, except by calling the DJ on the phone.)

Audio hardware on the Sun and Silicon Graphics machines which run Speak Freely for Unix
is full-duplex but, unfortunately, many inexpensive sound boards installed in Windows
machines are half-duplex, intended for "recording" and "playing" like a tape recorder
instead of real-time conversation.

Speak Freely copes with half-duplex audio hardware in the following manner.    When
launched, it immediately attempts to open both audio input and output simultaneously,
input first.    If the output open fails, but then succeeds on a second try after input has been
closed, the hardware is marked half-duplex.    You can see whether Speak Freely detected
your hardware to be half- or full-duplex by displaying the Help/About Speak Freely or
Help/Extended Status dialogue boxes.

If a half-duplex card is installed, pressing the mouse button to send live audio immediately
mutes any sound you're receiving and discards any that arrives while you're talking unless
you've checked the Options/Break Input menu item, in which case arriving sound disrupts
your transmission.    When you release the mouse button, output of sound from other hosts
resumes.    You can send sound files to hosts even while they're transmitting to you but, of
course, if their own hardware is half-duplex they won't hear it.

If your hardware is half-duplex, use the double click feature with great care.    If you
accidentally leave a connection in constant transmission, output will remain muted and
nobody will be able to speak to you.    If an input-output conflict has caused your audio
hardware to be treated as half-duplex, an indication to that effect appears in the
Help/About Speak Freely dialogue box.

Since they all have full-duplex audio, some Unix workstation users of Speak Freely for Unix
transmit continuously.    If you're talking to somebody who does this, consider asking them
to indicate, perhaps by saying "Over", when they're done speaking and expect a response
from you and, ideally, use the push-to-talk mode provided in Speak Freely for Unix when
communicating with you.

Bugs, features, and frequently-asked questions
I have a high-bandwidth connection to the Internet.    Why do I get pauses and lost sound?

Unlike file transfers, transmitting intelligible audio requires not only adequate
bandwidth but consistent delivery time.    If one packet of sound takes a tenth of a
second to arrive, the next two seconds, and the third half a second, not only will be
there an audible pause but they'll be received and played out of order.

Network congestion and moment-to-moment re-routing can cause precisely this
kind of inconsistent delivery time.    If you're using a public network, there's nothing
you can do other than try again later when there may be less traffic.    Remember,
the Internet was never intended to transmit real-time data such as audio; it's a
miracle it works as well as it does.

When I send, nobody can hear me / I can't hear anybody else.
(The following was contributed by John Deters).    For those of you who aren't
particularily familiar with Windows audio hardware but would like to use Speak
Freely, here are some hints that might help get you started.

First, does your sound card play regular Windows sounds?    When you start
Windows, do you hear the "Ta-Da"?    If not, make sure your speakers are plugged in
to the "speaker" or "output" jack coming from your sound card. While you're at it,
make sure your microphone is plugged into the "mic in" jack.    If there is a volume
knob on your sound card, make sure it's turned up.    If your speakers have a power
supply (such as batteries or a power transformer) make sure you have power, such
as fresh batteries or the transformer is plugged into a live outlet.        Make sure your
speakers are turned on.    You may need to refer to your sound card or speaker's
documentation to get it set up correctly.

Some sound cards come with the microphone input not "turned on".    What this
means is that your sound card will not "listen" to your microphone until you tell it to.
Included with your sound card was (probably) a "Mixer" application (if not, there
may be a volume control application in your Accessories group.)    Double click the
Mixer to start it.    With Sound Blaster cards, the mixer appears as columns of sliding
volume knobs.    Your sound card may have come with a different mixer.

If there is a volume control labeled "Microphone", this refers to how much of the
sound from the microphone input will come out through your speakers. For now,
turn it on (by checking the box or whatever) and set the volume to the same level
as the volume control marked "Wave".    If you're not sure, just turn it all the way up
(you can always turn it down later).    Make sure the switch on your microphone is
turned on, and tap on it or talk in it.    Do you hear yourself?    If not, you need to find
the input side of the mixer.

Hunt around for a menu option or button called "Recording Controls".    When you
select it, you'll see a similar looking screen that lists all of the inputs to your system.
Turn the microphone input on by clicking the box, and if there is a "gain", set it to its
maximum setting.    Now, try tapping on the microphone.    You should now hear the
tapping coming from your speakers.    Speak into the microphone, and compare the
level of sound from your voice to that of the other sounds in your system.

You want your voice to come out about the same loudness as the "ta-da", and you
want it to be intelligible.    You may need to adjust the gain downward a bit, or find
the correct place to hold your microphone.    Some microphones need to be held
almost to your lips, while others meant for mounting on your monitor need to be a

foot away from your face before you sound good. Experiment with this for a while
until the sound coming out of your speakers sounds good to you.

Once you have the microphone gain set, you should return to the output side of
your mixer by finding the menu option or button labeled "Volume" or "Output".    It
might have opened a second window called "Recording Control" or "Input" that you
will need to close.    Once you get back there, you will probably want to turn the
microphone OFF by un-checking the box.    This will keep your side of the
conversation off of your speaker, preventing nasty feedback squeals.    When you've
done that, you won't hear anything else from your microphone coming out your
speaker, but you now know that your microphone is set up for recording your voice. 
(Special note to headphone users:    if you use headphones, leave the microphone
ON.    It will help your voice sound better to you, and your conversations will sound
more natural. You might wish to adjust the microphone volume setting.)

For a good test, use the "Sound Recorder" program found in your "Accessories"
group.    You should be able to click on the "Record" dot, say something, click on
stop, then rewind, then the play arrow, and hear yourself.

Once your audio hardware is correctly set up and working to your satisfaction, you
will probably find that Speak Freely now works surprisingly well.    You can use the
local loopback facility to verify correct operation with Speak Freely, then proceed to
experimenting with an echo server.

The Audio Monitor display may help in troubleshooting input and output audio
settings.

I tried to call you and nobody answered.
Tens of    thousands of people have downloaded Speak Freely, and the first thing a
depressingly large percentage of them do is immediately try to call me to "see if it
works".    If I allowed all these calls to interrupt me, development on Speak Freely
(and everything else) would immediately cease.    So while I occasionally accept
calls, until and unless people become more considerate of my time, I mute the
speaker whenever I'm doing serious work.    Use one of the echo servers for testing;
that way you won't bother total strangers with unsolicited calls.

My dial-up Internet connection gives me a different host name and IP address every time I
connect.    How can other people find me when I'm on-line?

Publish your E-mail address on a Look Who's Listening server.    People who wish to
call you can look you up on the server, see if you're currently connected and, if so,
connect to the address for this session.    You can use the same procedure to locate
other users with dial-up connections.    Since your E-mail address is unique and does
not change from session to session, it allows others to find you regardless of how
you are currently connected to the Internet.

Why do I connect to a machine (like furry.zoo.org) instead of a user (like
panda@fuzzy.zoo.org)?

Because the audio hardware belongs to the machine, not the user.    Think of it like a
house with a single telephone; there may be several people living there, but they all
share the same phone number and only one can use the telephone at a time.    Your
host name or IP address is just like a telephone number, and your computer the
telephone.    To find what host name a given user is connected to at the moment,
look up their E-mail address on a Look Who's Listening server.

My machine hangs as soon as I try to transmit.

This is usually the result of failing to set a compression mode appropriate for the
speed of your Internet connection.    What should happen in this case is that sound
that can't be sent in time is just discarded, but some implementations of WINSOCK
seem to hang the machine when a program tries to send data faster than the
network can accept it.    In many cases (assuming you have a fast enough
computer), setting Options/GSM Compression will cure the problem.

Is there / when will there be a Macintosh version?
As soon as somebody makes one.    I have neither the knowledge nor the hardware
to port Speak Freely to the Macintosh myself, but it would be a relatively
straightforward project for a Mac developer experienced in both network and audio
programming, I believe.    The compression and encryption code should be usable
with little or no modification.    The bulk of the work would be in the user interface,
network driver, and audio input/output which, due to great differences between
Windows and the Macintosh, would have to be essentially rewritten.    If you're
interested in making a Mac version of Speak Freely, please get in touch (via the
Speak Freely mailing list) so you can see if anybody else is already working on such
a project.

I don't get it.    I've installed Speak Freely and it runs OK, but nothing happens when I
connect to the IRC server.    What gives?

Speak Freely is a telephone, not a party-line chat program like IRC.    You run a copy
on your machine, the other person runs a copy on theirs, and then you talk to one
another person-to-person--there's no server in the loop nor any need for one.   
Somebody could certainly make a voice chat program, but this isn't it.    If your
network supports multicasting, you can use that facility to organise conference
groups individuals can join and leave at will.    The Phonebook/Search... menu item
permits you to access a Look Who's Listening server to locate other people running
Speak Freely.

Can Speak Freely talk to other network voice program?
Yes, as long as the program supports either Internet Real-Time Protocol (RTP) or the
protocol used by the Lawrence Berkeley Laboratory's Visual Audio Tool (VAT). Speak
Freely automatically detects which protocol a program is sending and displays the
protocol in the connection window.    When transmitting to a user running an RTP or
VAT compatible program, be sure to set Options/Protocol to the protocol that
program requires.    Many commercial Internet voice programs use proprietary
protocols to guarantee users can only talk to others with the same program.    Until
the vendors of these products adopt RTP as a means of communicating with other
voice applications, it will not be possible to communicate with users of such
products.

How can I make sure Speak Freely is always running on my machine?
Put a copy of the Speak Freely icon in your StartUp program group (or whatever it's
called if you're running a non-English edition of Windows).    You'll probably want to
check the "Run Minimized" box so it starts as an icon.    If you check the Look Who's
Talking menu item, the Speak Freely window will automatically pop open whenever
a remote machine makes a connection to yours.    If you'd like to automatically
establish one or more ready-to-use connections, specify the names of the
connection files describing them on the command line, separated by spaces.

Help!    I'm trapped behind a firewall and can't talk to people at other Internet sites.    What
can I do?

Little or nothing, unfortunately.    Speak Freely communicates using Internet UDP
protocol on non-privileged ports 2074 through 2076.    Most firewalls block all non-

privileged (and hence unknown) port number packets, since there's no way to know
they aren't being used by a mole or a Trojan Horse application to transmit sensitive
data to a remote site.    Speak Freely uses a nonprivileged port precisely to avoid the
need for involving your system administrator in installing the program, but if you're
behind a firewall you have no alternative.    If you can persuade your jovial sysadmin
to allow UDP packets on ports 2074 through 2076 to pass both directions through
the firewall, you'll be all set, but the odds of this are extremely slim--I certainly
wouldn't permit it were I your site manager.    Once there's a known port out of your
system, any program, not just Speak Freely, can transmit anything it likes accessible
on your system to any other host on the Internet; if you permit that, why have a
firewall in the first place?    Basically, you'll just have to wait until the demand for
network voice conferencing becomes strong enough at your site that your
administrator installs a secure proxy tool to create a bridge across the firewall that
Speak Freely can cross. In the short term, there's nothing you or I can do to get
across the firewall.    If you do decide to create a bridge across your firewall for
network voice, you should probably also allow packets on ports 5004 and 5005 to
pass--this is the standard port pair for RTP protocol.

Aren't you going to wreck the Internet by clogging it with all this sound traffic?
This is a legitimate concern in regard to video conferencing programs, but not with a
voice-only tool like Speak Freely.    With GSM compression, real-time audio requires a
bandwidth of just 1650 bytes per second.    This is far less than a typical FTP session,
and people regularly make multi-megabyte FTP archives available without fear of
clogging the Internet.    A user accessing one of the many graphics-rich World-Wide
Web sites can easily consume more Internet bandwidth than Speak Freely.    In
addition, the load created by real-time audio is inherently self-limiting.    As a
network link approaches saturation, the consistency of packet delivery time
becomes dramatically worse, while non-real-time applications such as FTP and Web
transfers simply begin to smoothly slow down.    Long before the links between two
sites reach their bandwidth limit, the audio users will have given up in frustration
with break-ups and lost sound, to try again, perhaps, when the network is less busy.

Why do face images go all weird when more than one person is connected at once?
This occurs when your system has a 256 colour display board, and each face has its
own set of 256 colours.    The active connection will be displayed with the correct
colours but other connections must use a default colour table.    If you upgrade your
display adaptor to full-colour, multiple face images will display correctly.

How secure is the encryption?
I've used the best algorithms I know of and applied them in the best ways I could
given the constraints of real-time audio, fallible communication networks, and the
computing power of contemporary personal computers.    But I'm not a professional
cryptographer or cryptanalyst and even if I were, you shouldn't believe something is
secure just because the author claims it to be.    One of the reasons I'm releasing
complete source code for Speak Freely is to permit independent evaluation of the
implementation and application of encryption within the program by experts in the
community.    With time, a consensus will emerge as to the degree of security Speak
Freely provides and how to remedy any perceived weaknesses in future releases.   
Key file encryption is very insecure, but I already warned you about that; it's
intended purely as a last-ditch alternative for users with computers too slow to run
any of the other forms of encryption, yet who prefer any protection, however weak,
to transmitting entirely in the clear.

Why do you use datagram protocol with no end-to-end acknowledgment that would permit
detecting and correcting errors?

Network transmission delays rule out end-to-end acknowledgment.    Audio has to be
delivered in real time to be intelligible.    Waiting for an ack from the other end
would, in many cases, require delaying up to a second before sending the next
packet.    The best we can do is blindly spray packets at the other end in the hope
enough will arrive with sufficiently consistent delivery time to be intelligible.    Over
slow links to distant sites, several packets will be flowing through the network
toward the destination at a given time.    Providing connections with guaranteed
bandwidth and consistent delivery time is one of the main challenges in extending
the Internet to accommodate real time audio and video communication.

I run the Windows debug kernel and I get whatever messages when I do...
I've sweated blood to try to make this thing debug kernel clean, and as of this
writing, with half-duplex audio hardware, attempting to open input while output is
open causes several "GlobalReAlloc failed" and "LocalAlloc failed" messages from
the Kernel, which it presumably handles correctly since no apparent harm is done.   
But, as a battle-weary Windows warrior, I have no illusions that I've "found the last
one".    If you see warnings or errors unrelated to half-duplex output to input
transitions, please announce them to the Speak Freely mailing list and provide as
much information as you can about precisely what you were doing, what
message(s) you got, whether you could reproduce the problem, and which sound
card, network interface, and network (WINSOCK) software you're using.    Thanks in
advance.

Workarounds for driver bugs
One of the special joys of working with Windows is the never-ending challenge of
discovering and working around ratty bugs in crummy drivers.    With Windows late to arrive
with a resounding thud in the worlds of networking and multimedia, Speak Freely finds
itself close to the frontier, as it were, where frequent raids by marauding bands of byte
bandits are the price one pays for the privilege of pioneering.    The defensive programmer
finds himself transcending that time-proven style of software development and becoming
truly paranoid, always looking over his shoulder for the next incoming arrow of misfortune. 
This is, after all, a system on which functions such as GetTextMetrics() can return an error
status.

The Options/Workarounds menu tree allows you to select workarounds for various errors in
audio and network drivers, and variants of Speak Freely, RTP, and VAT protocols which may
allow you to communicate with other Internet voice programs which implement those
protocols in an eccentric manner.    In an ideal world none of these would be needed, but in
an ideal world Windows wouldn't exist.    All workaround settings are remembered from
session to session.    Many workarounds can be selected only when no connections are
active, and some workarounds take effect only when Speak Freely is restarted; a message
box will appear to let you know if this is the case.

Available workarounds are described in the following paragraphs, along with suggestions as
to when enabling them may be necessary.

Audio
Assume Half-duplex

Assumes the sound card is half-duplex without requiring it to fail an output open
while input is open.    Accommodates cards which are actually half-duplex but don't
indicate so by failing when one attempts to open input and output simultaneously. 
Also handles cards which crash the system or application when you try to open
them in full-duplex mode.

Assume 11025 Samples/sec
Assumes the card is capable only of 11025 samples per second mode, not our
preferred 8000 samples per second.    Permits correct operation on cards which
don't fail when opened with a sample rate of 8000 samples per second but which
can't actually run at that rate.

Set Maximum Volume on Ring
If this item is checked, when the first packet of a remote ring request is received,
the output volume is set (if the sound card has that capability) to maximum.    If
other programs on your machine mute the speaker or turn down the volume to a
low level, enabling this item may keep you from missing a call.    But beware: some
sound cards don't correctly handle setting the output volume--I've even
encountered one which mutes the microphone when output volume is changed!   
So if you enable this mode, be sure to run some tests to make sure it's behaving
as intended on your machine.

Network
Always Bind Socket

When a network socket is created for transmitting sound, there's no reason to bind
it to an address, but some network drivers are reputed to fail if a socket isn't
bound.    Checking this menu item binds transmit sockets to persuade such feeble
minded networks to let us use them.

Never Connect Outbound Socket
Don't connect() the output sockets.    This implies we'll always use sendto() to write
to those sockets.    Clears "Use send(), Not sendto()" mode if set.    Some WINSOCK
implementations, notably Microsoft's own in Windows NT and Windows 95,
blatantly diverge from the Berkeley sockets practice of treating connect() on a
datagram socket as merely specifying a default address, not prohibiting
subsequent use of sendto() with an explicit address.    Checking this item disables
the call on connect() entirely, just in case there's some driver which becomes
entirely befuddled if it is used.

Use send(), Not sendto()
Always use send() to write to outbound sockets; don't wait for a sendto() to fail
first.    Accommodates drivers where a sendto() on a connected socket crashes the
application or system.    Clears "Never Connect Outbound Socket" mode if set.    We
normally auto-detect the failure of sendto() on a connected socket and fall back to
send().    This item allows entirely bypassing the sendto() just in case it wreaks
havoc when used on a connected socket.

Multicast TTL Argument Is char
The arguments for the multicast setsockopt() calls IP_MULTICAST_TTL and
IP_MULTICAST_LOOP are documented as type "char" in every Unix Socket
implementation I've seen.    The Windows Sockets 1.1 specification does not
contain these calls, as multicast was not a part of WINSOCK at the time.   
Microsoft's application note on multicast support in Windows NT (and now Windows
95) shows the argument for these two calls as "int" and, sure enough, if you pass a
char the call errors with WSAEFAULT (bad address).    Speak Freely conforms to the
Microsoft specification and passes int arguments to these two calls but, just in case
there's a more Unix-like WINSOCK out there which requires a char argument,
provides you this workaround to use char instead.    Even though we're running on
a little-endian machine, since the length of the argument is passed in the
setsockopt() call, the two cases are distinguishable.

Disable Output Overflow Recovery
Some versions of WINSOCK appear to crash the machine rather than throwing
away UDP packets when the user selects a compression mode which transmits
faster than the outbound network connection can accommodate.    Speak Freely
attempts to detect this and discard packets itself when this situation occurs, since
losing data is better than a hung machine.    The mechanism used to detect and
recover from output overflow ventures into poorly-lit regions of WINSOCK where I
suspect may lurk many bugs in various implementations, given how many of the
easy things so many manage to get wrong.    This workaround turns off output
overflow detection and recovery code for such buggy WINSOCKs, running the risk
of a crash due to output overflow if they are also buggy in that regard.

Disable Message Loop Insurance
If the selected compression and encryption modes (or the modes in packets being
received) exceed the ability of the CPU to process in real time, there's a risk Speak
Freely will hang Windows since sound buffers or packets from the network,
combined with the computing to process them, result in Speak Freely never going
idle and relinquishing control to other applications.    To avoid this, there's a
mechanism in Speak Freely which detects if 350 milliseconds or more have
elapsed since the last opportunity for other applications to run and, if so, explicitly
yields control to any waiting application(s).    On slower machines, the very
mechanism which saves them from hanging may, itself,    cause pauses in sound.   
So, you can disable the message loop check (restoring the potential for a hang), if

necessary, with this workaround.    Don't disable it until you're confident your
machine is working well with the compression and encryption modes you've
settled on.

Get Host Name Synchronously
When you enter a numeric IP address (for example, 127.112.201.14) rather than a
host name, Speak Freely attempts to look up the host name to display it in the
connection window.    It does this the recommended way, with the non-blocking call
WSAAsyncGetHostByAddr.    Unfortunately, this does not work correctly on every
WINSOCK.    The one that comes with Sun Select PC-NFS 5.1, for example, returns
the correct results but plants a time bomb that can explode when you finally exit
Speak Freely.    This workaround uses the blocking call gethostbyaddr() which does
not seem to trigger the bomb.    Not that it works perfectly--it forgets to null
terminate the host string it returns, but that's just ugly, not catastrophic.    If the
WINSOCK identifies itself as PC-NFS, this workaround is enabled by default.

Protocol
No Speak Freely Heartbeat

Disable the periodic Speak Freely protocol heartbeat on the control channel.    This
is primarily intended as a last resort if the (less than 1%) added bandwidth
saturates a close to the edge connection, and also in case the control channel
packets awake something horrid lurking on the next higher port.

Large RTP Protocol Packets
Uses Speak Freely's preferred packet sizes for GSM and LPC compression rather
than those typically sent by RTP programs.    Most RTP programs were developed on
fast workstations with high bandwidth network connectivity.    Speak Freely users
generally have slower machines and network links which benefit from larger
packets.    Try this if the person you're talking to reports halting audio in RTP
protocol.

Disable VAT Protocol Detection
VAT protocol will never be automatically selected as a result of receiving a
message on the control channel which resembles a VAT control message.    Enable
this if you never receive VAT protocol messages and are annoyed at how long it
takes to identify the protocol of encrypted RTP messages.

Disable RTP Protocol Detection
RTP protocol will never be automatically selected as a result of receiving a
message on the control channel which resembles a RTP control message.    Enable
this if you never receive RTP protocol messages and are annoyed at how long it
takes to identify the protocol of encrypted VAT messages.

No Encryption of RTP Control Packets
RTP control packets can, according to the standard, be sent either encrypted or in
the clear.    Most RTP programs I've encountered encrypt their control packets, so
this is the default Speak Freely sends (it accepts both encrypted and clear
packets).    If you set this workaround, control packets are sent in the clear.

Speak Freely for Unix
Speak Freely for Unix is currently available for a variety of Unix workstations.    It allows
network communications compatible with Speak Freely for Windows.    The Unix version
lacks the graphical user interface of the Windows edition, but supports all its compression
and encryption modes.    The Unix edition includes software which allows you to operate
Look Who's Listening and echo servers.

The current version of Speak Freely for Unix is always posted on the web site:

http://www.speakfreely.org/

Credits
Like most free software, Speak Freely exists in large part because I was able to stand on the
shoulders of other authors of generally available software.    The following software
components, either incorporated into Speak Freely or providing a model for how to develop
similar software, tremendously reduced the blood, sweat, toil, and tears, not to mention
man-months required to complete this software.    Any restrictions on the use and
distribution of these software components are noted below.

The GSM compression and decompression code was developed by Jutta Degener and
Carsten Bormann of the Communications and Operating Systems Research Group,
Technische Universität    Berlin: Fax: +49.30.31425156, Phone: +49.30.31424315.    They
note that THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.    Please see
the README and COPYRITE files in the gsm directory of the source code distribution for
further details.

The ADPCM compression and decompression code was developed by Jack Jansen of
the Centre for Mathematics and Computer Science, Amsterdam, The Netherlands. Please
see the README and COPYRITE files in the adpcm directory of the source code
distribution for further details.

The DES encryption code used with Speak Freely protocol was developed by Phil Karn,
KA9Q.    Please see the README file in the des directory of the source code distribution for
further details.

The DES encryption library used for encrypting and decrypting VAT and RTP protocol
packets was developed by Eric Young.    Please see the README and COPYRITE files in the
libdes directory of the source code distribution for further details.

The Blowfish encryption library was also developed by Eric Young.    Please see the
README and COPYRITE files in the blowfish directory of the source code distribution for
further details.    The Blowfish algorithm was invented by Bruce Schneier and placed by him
into the public domain.

The IDEA algorithm was developed by Xuejia Lai and James L. Massey, of ETH Zürich.   
The implementation used in Speak Freely was modified and derived from original C code
developed by Xuejia Lai and optimized for speed by Colin Plumb. The IDEA encryption
algorithm is patented and may not be used commercially without a license; see "Patent
issues" for further details.

The MD5 message-digest algorithm implementation is based on a public domain
version written by Colin Plumb in 1993. The algorithm is due to Ron Rivest.

The experimental Linear Predictive Coding (LPC) compression code was developed by
Ron Frederick of Xerox PARC.

The public domain implementation of U.S.    Federal Standard 1015 LPC-10 compression
algorithm was developed by the United States Department of Defense, National Security
Agency (NSA).    Please see the README and FAQ files in the lpc10 directory of the source
code distribution for additional details.

The Voice Activation code, remote Break-in feature, the ability to open additional
connections by clicking .SFX files while Speak Freely is already running, and a work-
around for Speak Freely hanging the machine when the user has selected
compression and encryption modes which overload the CPU were contributed by Dave

Hawkes, who also discovered an elegant way to get Windows to do most of the work in
jitter compensation.

The initial 32-bit version of Speak Freely for Windows was created by Aleksander
Nemirovsky.

Bookshelf
The following references will help you understand the design, implementation, and use of
Speak Freely.

Allard, J., Keith Moore, and David Treadwell. Plug into Serious Network Programming with
the Windows Sockets API.    Microsoft Systems Journal, Vol 8, No 7, 35, (July 1993).   
Excellent introduction to the Windows Sockets (WINSOCK) API used by Speak Freely
for network communications.    The WORMHOLE sample application presented in this
article provided the model for Speak Freely, in particular suggesting that the Multiple
Document Interface (MDI) was an excellent way to represent multiple simultaneous
connections.

Davis, Ralph.    Windows Network Programming.    Reading (Mass.): Addison-Wesley, 1993.   
Documents the programming interface of a variety of networks, including a network-
independent interface module for each.    The chapter covering the Windows Sockets
(WINSOCK) API is one of the clearest expositions of that facility I've encountered.

Denning, Dorothy E.    Cryptography and Data Security.    Reading (Mass.): Addison-Wesley,
1987.    Thorough technical reference on the design and application of various
methods.    Includes an analysis of the strengths and weaknesses of DES.

Microsoft.    Microsoft Windows Multimedia Programmer's Reference.    Redmond,
Washington: Microsoft Press, 1991.    Documents the Windows Multimedia API,
including the waveInxxx and waveOutxxx functions used to receive and send audio,
and the mmioXxx functions used to read .WAV files.    This book is useful only if you
want to modify the source code of Speak Freely.

Schneier, Bruce. The IDEA Encryption Algorithm.    Dr. Dobb's Journal, 208, 50, (December
1993).    Detailed information on the design, cryptographic security, and
implementation of IDEA, used by both PGP and Speak Freely.    The source code
included in this article was adapted to implement Speak Freely 's IDEA encryption.

Schneier, Bruce. Applied Cryptography (2nd ed.).    New York: Wiley, 1996.    This essential
reference, by the inventor of the Blowfish encryption algorithm, provides extensive
details and on most contemporary encryption algorithms, including assessment of
security and performance.    C source code is included for a variety of algorithms,
including Blowfish, IDEA, and DES.

Schulzrinne. H., R. Frederick, and V. Jacobson.    RTP: A Transport Protocol for Real-Time
Applications.    Internet RFC 1889 (January 1996).    Standards track specification of
RTP, the proposed protocol for all forms of real-time data on the Internet.    This
document is available on the Internet as ftp://ds.internic.net/rfc/rfc1889.txt.

Schulzrinne. H.    RTP Profile for Audio and Video Conferences with Minimal Control.   
Internet RFC 1890 (January 1996).    Specifies audio and video encodings
(compression and encryption modes) used within RTP packets.    Speak Freely's RTP
support conforms to RFCs 1889 and 1890. This document is available on the Internet
as ftp://ds.internic.net/rfc/rfc1890.txt.

Zimmerman, Philip R.    The Official PGP User's Guide.    Cambridge (Mass.): MIT Press, 1995. 
Written by the creator of PGP, this book provides practical information on how to
obtain, install, and use PGP to securely exchange information (including Speak Freely
keys) even with strangers, and discusses the strengths and weaknesses of the DES
and IDEA cryptographic algorithms and the legal issues associated with secure

communication between individuals.

About the authors
John Walker founded Autodesk, Inc. in 1982, was its president through 1986 and chairman
until 1988.

Autodesk (ACAD-NASDAQ), one of the five largest personal computer software companies,
has become a leader in the computer aided design industry; its first product, AutoCAD, is
the de facto worldwide standard for computer aided design and drafting.

John Walker is co-author of AutoCAD and other Autodesk products, including AutoSketch,
AutoShade, and Cellular Automata Laboratory.    He is also author of various public domain
programs including Home Planet, Moontool; Moontool for Windows; Speak Freely for Unix;
CODEGROUP; STEGO; SETTIME; XD; BGET; ATLAST; DICTOOL; PSTAMPR; RANDOM; DIESEL;
SMARTALLOC; and the PBMPLUS utilities ppmforge, pgmcrater, sldtoppm, and ppmtoacad.   
He has been recognised in Scientific American as having created, in 1975, the first (benign)
computer virus.    He was smeared by Wall Street Journal hatchetman G. P. Zachary in a
front-page profile on May 28, 1992, and in reply produced and directed the video Reporter
At Work, offering unique uncut coverage of a high-stakes boardroom confrontation between
an entrepreneur and a reporter sent to ruin him.

Walker's    first book, The Autodesk File, was published in 1989 by New Riders Publishing.    It
chronicles Autodesk's growth from $60,000 pooled by a bunch of programmers to a billion
dollar company in less than eight years.    The fourth edition of The Autodesk File, updated
through the end of 1993, is available on the World-Wide Web at
<http://www.fourmilab.ch/autofile/www/autofile.html>.

His second book, The Hacker's Diet: How To Lose Weight and Hair Through Stress and Poor
Nutrition is also available on the Web:
<http://www.fourmilab.ch/hackdiet/www/hackdiet.html>.

For access to all of Walker's public domain software and writings, visit his home page:
<http://www.fourmilab.ch/>.

If his diet book doesn't make the bestseller list and land him a guest shot with Oprah,
Walker is entirely prepared to complete his manuscript-in-progress: CatSports---How to
Improve Any Game by Replacing the Ball with a Cat.

Fore!

John Walker
Neuchâtel, Switzerland

April, 1996
16,584 lines of original code

Brian C. Wiles is the Chief Technical Officer of Planetlink, Inc. of California, a corporation
that owns an Internet Service Provider and a software development company in California.

He took over the Speak Freely project in April of 1998, two years after John Walker's last
release.    He released his first beta version of 7.0 on October 23, 1998, and has since been
actively enhancing the product into what it is today.

Brian has also enlisted the help of other regular contributors, which will also be mentioned

as their projects are integrated into the official releases.    He wishes to thank John Walker
for all of his hard work and long hours devoted to this project, without which this program
probably would not have happened for a few more years, if ever.

Brian C. Wiles
brian@speakfreely.org

Cameron Park, California, United States of America
December, 1998

436 lines of original code

Development Log
23 August 1995

Initial announcement of Speak Freely Release 5.0.

24 August 1995

Peter Claus Gutman, developer of a very nice encryption library, wrote to suggest his library
might prove useful.    In the source code for the library, I found a clever 80x86 assembly-
language implementation of IDEA, made freely available by its author, who is identified in
the source code only as "Bryan".    Whoever you are, Bryan, great piece of work!    If you, or
somebody who knows who you are, happens to read this, let me know so I can give
complete attribution.
   
I integrated the assembly language loop into IDEA\IDEA.C, modifying it slightly to work with
Microsoft Visual C's inline assembler, so you don't need a separate assembler to take
advantage of the optimised code.    Whether the assembler or original C code is used
depends upon whether USE_ASM is defined, so you can use the original loop for reference or
if, for example, your compiler doesn't support inline assembly code or is incompatible with
the way Microsoft do it.

Enabling the assembly language code increased the speed of IDEA encryption and
decryption on my 486/50 machine from 152,000 bytes per second to 242,000 bytes per
second--well worth the trouble of integrating the code.

30 August 1995

Completed a massive revision to avoid all packet fragmentation and thus work with
WINSOCK drivers such as Trumpet WINSOCK.    The changes were so great and ubiquitous
there's no point in trying to describe them.    In debugging the changes, one of the mysteries
that has been dogging me was finally solved--the random hangs, loss of synchronism, failure
to release resources, etc. etc. etc. were the result of Windows discarding messages to the
main window as a result of overflows of the default 8 message queue.    Speak Freely juggles
a lot of balls in the air at once, and it's very easy to hit this limit.    At initialisation time, we
now try to expand the queue to its maximum size of 120 messages or whatever lower
maximum the system we're running on supports.

Added the "Extended Status" (Propeller Head) dialogue.

Made compression modes global rather than per-connection.    This means compression only
has to be done once, which speeds up party line transmissions.    The change is necessary in
any case so that packet size can be optimised.

1 September 1995

Update release 5.1.

8 September 1995

CreateSocket() in UTILITY.C contained a "defensive bind()" to address zero as a work-around
for some defective WINSOCK implementations.    Unfortunately, this work-around causes
other   
that built into Windows NT to fail.    I made the nugatory bind conditional on a new
Options/Workarounds/Always Bind Socket menu item which is, of course, saved in the .INI

file.

Update release 5.1a.

9 September 1995

Discovered that the reason the socket write was failing on Windows NT and Windows 95 is
that Microsoft's built-in WINSOCK, entirely incompatible with Unix and every other WINSOCK
I have encountered, refuses sendto() once a datagram socket has been connect()ed.    The
sole function of connect() on a datagram socket is to specify a default address so
subsequent writes can be done with send() (or, on Unix, write()), and there is no prohibition
of overriding this default address with a subsequent sendto().    The WINSOCK specification
nowhere mentions such a restriction as a Windows-specific change.    I modified the socket
write code in CONNECT.C and the loop-back socket write in FRAME.C to first try sendto().    If
it fails, send() is then tried and if that works all subsequent socket writes for the rest of the
session are done using send().    This code has been verified to work on both Windows NT
and Windows 95 (first customer shipment edition).    Special thanks to John Deters who both
identified the source of this problem on Windows NT and tested innumerable versions slowly
converging toward the actual fix.

Added an item to the Propeller Head dialogue to indicate whether sendto() or send() is being
used to write to outbound sockets; it's "Sending with" in the "Network" box.

Tested with the WINSOCK implementation included with Sun PC-NFS 5.1.    Works fine.

Update release 5.1b.

10 September 1995

After last week's experience I decided to indulge in some preemptive workarounds for
crummy network and sound card drivers which fail in obvious ways which haven't bitten me
yet.    I expanded the Options/Workarounds menu to include:

Audio
Assume Half-duplex

Assumes the sound card is half-duplex without requiring it to fail an output
open while input is open.    Accommodates cards which are actually half-
duplex but don't indicate this by failing a simultaneous input and output
open.    Also handles cards which crash the system or application when you
try to open them in full-duplex mode.

Assume 11025 Samples/sec
Assumes the card is capable only of 11025 samples per second mode, not
our preferred 8000 samples per second.    Permits correct operation on
cards which don't fail when opened with a sample rate of 8000 samples per
second but which can't actually run at that rate.

Network
Always Bind Socket

As before; bind outbound sockets, even though there's no need to do so.

Never Connect Outbound Socket
Don't connect() the output sockets.    This implies we'll always use sendto()
to write to those sockets.    Clears "Use send(), Not sendto()" mode if set.

Use send(), Not sendto()
Always use send() to write to outbound sockets; don't wait for a sendto() to
fail first.    Accommodates drivers where a sendto() on a connected socket
crashes the application or system.    Clears "Never Connect Outbound
Socket" mode if set.

Multicast TTL Argument Is char
Certain Winsock implementations by a soi-disant "setter of standards"
headquartered east of Seattle, Washington in the United States flagrantly
ignore the long-established convention that Boolean arguments to multicast
setsockopt() calls are of type int.    Their code errors such requests with a
"bad address" fault, and accept them only if the argument is passed as a
character (incompatible with Unix).    This workaround is set if we
empirically discover this to be the case on the system on which we're
running, and can be set by the user to preempt dastardly behaviour by
systems that don't have the courtesy to inform us of their incompatibilities
with contemporary community standards.

All the workaround modes are saved in the SPEAKFRE.INI file and apply to subsequent
executions.    The menu items are disabled when a connection is active.

As suggested by John Deters, I added the ability to automatically open an iconised version of
Speak Freely whenever a new inbound connection is established.    This lets you see the site
that's just started talking to you.    Since some people might find such an unsolicited pop-up
irritating, this only happens if you check the new Options menu item "Look Who's Talking".

Tested under Windows 95 final build.    Works fine when using the standard built-in WINSOCK,
but doesn't resolve host names when Sun PC-NFS is overloaded on top of Windows
networking.    This appears to be a general problem of this configuration; other programs fail
on gethostbyname() in precisely the same way.    When you configure Windows 95, be sure
to install the TCP/IP driver; if you don't you'll get nowhere fast.

12 September 1995

Sending a stereo .WAV file in ADPCM compression mode crashed the Unix speaker program.   
The code in READWAVE.C which calculates the number of bytes of .WAV file needed to fill a
packet was incorrectly assuming the nBlockAlign field was the size of an individual sample,
not the frame of samples for all channels.    Fixed.

Closing a connection while a .WAV file was being sent orphaned the MMIO handle used to
read the file.    Fixed in CONNECT.C.

13 September 1995

Added the ability to drop saved connection (.SFX) files in the MDI frame window and thereby
open (or activate, if already open) connections to the hosts given in the files.    You can drop
multiple connection files in a multiple selection and each will be opened.

CONNECT.C had its own implementation of DragAcceptFiles() which directly twiddled
WS_EX_ACCEPTFILES.    It doesn't any more.

If a connection file is named on the command line when the program is launched, it is
opened once the application is initialised.    This permits making an association between
the .SFX extension and Speak Freely in the File Manager and launching the program for a
given connection by double clicking the connection file.    You can specify multiple connection

files on the command line, space separated.    This allows making a program item icon which
opens a collection of connections, a handy thing to put in your StartUp folder.    (Suggested
by John Gilmore).

John also pointed out that the program wasn't usable without a mouse since the left mouse
button was the only way to push to talk.    I added logic in CONNECT.C that permits the space
bar to be used to toggle push to talk, just as in the Unix mike program.    You can cycle
between open connections with Ctrl+Tab and use the space bar to select any set to which
you wish to transmit.

Mouseless users who push to talk with the space bar don't have the
benefit of the cursor change to indicate which connections are transmitting.    I added a
"Transmitting" status indicator in the connection window which appears whenever live audio
is being sent to the window.

If you make a .WAV sound file with the (nonstandard) sampling rate of 8000 samples per
second, it is now played correctly by READWAVE.C, not forced to the closest standard
sampling rate of 11025 samples per second.    Conversion of stereo .WAV files into mono is
still performed for 8000 sample per second files.    If the user has the ability to make 8000
sample/sec .WAVs, this reduces file size, improves sound quality, and eliminates CPU
overhead when sending such files.    .AU files remain the fastest, since they're already mu-
law encoded.

14 September 1995

Update release 5.1c.

20 September 1995

Began work on answering machine.    Defined structure for data in file, added a new
ANSWER.C module with a function to save a sound buffer in an answer file in that format.

25 September 1995

Modified the new connection dialogue handler to allow numeric IP addresses which can't be
resolved into host names.    If the host name lookup fails, the dotted IP number from
inet_ntoa is used as the host name.

Good ole' Trumpet Winsock returns an error status if gethostname() is called with a buffer
too small to hold the entire name, as opposed to truncating it as Unix does.    I changed the
two calls in CONNECT.C to get the host name in a temporary buffer, then copy as much as
will fit into the sendinghost field of the sound buffer.

Added the ability to set the multicast scope with a new item in the Options/Connection
dialogue.    This item is enabled only if the IP address is a valid multicast group number.

Bad ole' Windows 95 WINSOCK returns a WSAEFAULT error if you pass a single byte
argument for the IP_MULTICAST_TTL setsockopt() call.    This is incompatible with all Unix
documentation I have seen.    Trumpet works correctly with the single byte argument, and
accepts the 2 byte short required by Windows 95.    Given the likelihood there's some other
WINSOCK that requires a one byte argument, in goes another Options/Workaround/Network
item: "Multicast TTL Argument Is char" which does it the Unix way, not as required by
Windows 95.

26 September 1995

Added a new Connection/Multicast Groups dialogue which allows adding and dropping
membership in multicast groups.    Groups can be specified by DNS-resolvable name or by IP
address.    A check box controls multicast loop-back of locally sent packets to groups in which
this host has added membership.    The loopback box is disabled on systems (such as
Windows 95) which do not implement the IP_MULTICAST_LOOP setsockopt() option.

1 October 1995

Discovered the multicast tear-down code in the WM_DESTROY message handler of FRAME.C
wasn't testing for a NULL multiName[], resulting in bad GlobalFree() calls when we failed to
initialise a multicast port.    Fixed.

FRAME.C wasn't killing the main timeout timer at WM_DESTROY.    Fixed.

If the attempt to drop a multicast membership at WM_DESTROY time failed, a message box
was displayed as a child window of the one frame being destroyed.    This is apparently (yet
another of the billions and billgatesillions) undocumented no-no--in any case, if you do it,
you get an "err USER: Attempt to activate destroyed window" at the time the WM_DESTROY
returns.    I changed the parent of the message box in this case to be NULL and it seems to
be happy now.    (In FRAME.C).

Finished implementation of the answering machine, ANSWER.C.    I'll probably be back before
long to make it more message-oriented (select message from a list box of sites and times,
individually delete messages, etc.) but at least it now has basic functionality.

2 October 1995

Added keyboard accelerator (CTRL+T) for answering machine, and a new connection menu
item that lets you toggle whether incoming messages are recorded without having to pop up
the answering machine dialogue.    Fixed a bug in which checking or unchecking the record
incoming messages box in the answering machine dialogue didn't take effect until you
closed the dialogue; now it takes effect immediately.

Added code to overwrite the 16 byte session key exchanged via PGP before closing the file
on disc.    Unfortunately, since we can't transmit and receive the with a pipe, as we do on
Unix, there's still a window while PGP is running during which the session key is visible, but
at least this keeps it from lying around in unallocated disc space for an indeterminate time.

If no answering machine message file was configured, the answering machine dialogue in
ANSWER.C called scanMessageFile anyway.    Unfortunately, that routine didn't test for
answerFile being NULL and proceeded to stomp all over memory.    Fixed in ANSWER.C
scanMessageFile().

Moved all translatable strings and formats from the .C modules into the string table of the
resource file, using the rstring(), rfilter() functions and the Format() macro as intermediaries. 
Strings that aren't to be translated,such as fopen() mode strings, formats that contain only a
field editing code, etc. continue to appear as strings in the source code.    Banishing these
strings to the resource file reclaimed almost 4K of data space, enough to give us some
breathing room should it prove necessary to introduce another static full-size sound buffer
for some reason.

3 October 1995

The enabling and disabling of buttons in the answering machine was befuddling Windows'

dialogue box keyboard accelerator logic.    I added code at the end of a message replay to
restore the input focus to the button last pressed or its logical successor if that button has
become disabled as a result of the message we just completed.

Keyboard accelerators in the answering machine were less than optimally chosen due to
renaming of buttons during its development.    I rationalised them so the most commonly
used buttons have the most obvious keyboard shortcuts.

Pressing the Close button in the answering machine gave a debug kernel "err: window
destroyed in window callback".    Why, I know not.    It uses the standard code for modeless
dialogues right out of Petzold, which identical code works perfectly in the propeller-head
modeless dialogue. Changing the DestroyWindow() to a PostMessage of WM_CLOSE to
ourself made the message go away.    I changed the propeller-head dialogue in DIALOGS.C to
use the same logic.

Several modal dialogues needlessly included the system menu in their title bar.    Eliminated. 
(The modal dialogues such as the answering machine and propeller-head continue to display
the system menu.)

Installed help buttons in all the dialogues, linked to the topic in the help file which describes
the dialogue.

Moved the names of our help file and the base Windows help file into the resource string
table.

I removed the "How to use help" menu item, which has fallen out of fashion.

Changed "Help/Search..." to "Help/Search for Help on..." as used in current Microsoft
applications.

4 October 1995

Completed moving all section and item titles for the main .INI file and saved connection files
to the string table in the resource file.    Whether these should be translated isn't clear: a
normal user won't ever examine these files and translating renders them incompatible
between different language editions.    But the saving in data segment size by elminiating
duplication of the section titles alone justifies the work.

Added two new string constants kS0[1] = "0" and kS1 = "1" to FRAME.C and changed all
references to the explicit constants in profile file I/O to use them.    This eliminates redundant
string constants in the data space.

Found a few string constants I'd missed somehow in READWAVE.C.    Banished.

Fixed the answering machine to update the host name when a definitive name (one not
displayed in parentheses) is seen, replacing any previously displayed name.

Added help butttons to all the file open dialogues, linked to the appropriate topics in the help
file.

Added a pleasant default ring file.    I haven't found a suitable (well-recorded and public
domain) telephone bell, so I decided to pioneer non-irritating notification of an incoming call
with this wind chime derived sound.    The original appeared on the CD-ROM (N° 5)
accompanying "News Windows" N° 26 (octobre 1995) as the file WINDBELL.WAV.    I used
Silicon Graphics' soundfiler to convert this from an 11025 kHz PCM stereo file to an 8 kHz

monaural .AU file for optimal transmission.

Substantial data space was being wasted by repeated constant references to the profile
(.INI) file name.    I moved this string to the string table in the resource file and changed the
code that loads and saves the global configuration to load it once into a string on the stack
and reference that temporary copy in all the [Read|Write]PrivateProfile... calls that follow.

Added a new MAKEBIN.BAT file in the home directory which builds the binary release
archive.    Now that the release includes more than the .EXE and .HLP file, something more
archival than my fallible memory is needed to make sure

5 October 1995

Remade all screen shots for help file, the addition of the help buttons required updating all
the dialogue bitmaps.

Added logic to the invocations of PGP in FRAME.C and DIALOGS.C to first try to use the
SFPGP.PIF file from the Speak Freely release directory (obtained with GetModuleFileName)
and then, if that fails, fall back to call on PGP counting on path search to find it.    Going
through the PIF allows the user to override the default modes for a WinExec call to a DOS
program such as PGP, in particular, to run it in a window, which is much less disruptive of
the user's equanimity than blasting out to a DOS prompt.

6 October 1995

Feature release 5.3.

30 October 1995

All of the Look Who's Listening functionality is working, at least if you don't push it into
reentrancy into Winsock by trying one of the LWL dialogues while sending or receiving
sound.    I'll have to go back and review the appropriate locks to keep from befuddling
Winsock with actual multitasking.    Essentially all the code is in the new module lwl.c.

7 November 1995

Added support for RTP-compatible LPC compression (the Xerox PARC algorithm developed by
Ron Frederick).    This algorithm does a lot of floating point computation (forget it if you don't
have a math coprocessor), and it sometimes mangles sound, especially if you drive the
audio input into clipping or have a high-pitched voice.    But when it works, it achieves better
than 12 to 1 compression, and allows running over 9600 baud lines.    The LPC code is in a
new lpc subdirectory.

13 November 1995

Added a first cut "broadcast" facility to permit transmission of material to multiple hosts
(over a suitably fast, probably local network) without the need to install multicast.    The
facility is relatively crude but should be adequate for uses applications such as broadcasting
meetings across a local network.

The site performing the broadcast simply checks Connection/Broadcast.    Any audio which
arrives while Broadcast is checked is sent to every connected host.    All input events are
ignored in connection windows while a broadcast is in progress, and remotely initiated
connections will not time out during a broadcast.    A user can subscribe to a broadcast from
a given host by initiating a connection to it and sending a short burst of sound (a second's

worth, say).    This opens a connection on the broadcasting host to which the broadcast will
be sent.      A remote host can unsubscribe from the broadcast by sending a similar short
burst of sound any time after 10 seconds into the broadcast; the site's connection on the
broadcasting host will be closed 10 seconds later.    The 10 second delay is to prevent
toggling of the broadcast state due to multiple packets being received from the remote site. 
Whilst broadcasting, the application title indicates "- Broadcasting" and the cursor is always
the ear when over a connection window.    When broadcasting is toggled off, all connection
windows are marked as not being transmitted to and remotely-opened connections resume
the timeout process.

Using short bursts of sound to subscribe and unsubscribe is ugly but it gets the job done.   
Once we have a proper RTP packet exchange delimiting the connection, it can be replaced.

14 November 1995

If somebody is already blasting sound at us when Speak Freely is launched, it got all
befuddled due to packets arriving before initialisation was fully complete.    I changed the
WM_CREATE logic in FRAME.C to not enable input on the socket until initialisation is entirely
done.

16 November 1995

Feature release 5.5

22 November 1995

People seem to get floating divide by zero errors if they try to use LPC compression on
Windows 95.    I added a call to _control87() in the initialisation code to disable all floating
point error interrupts.    This should allow the LPC code to just bumble along with infinities
and NANs like it does on Unix, which doesn't seem to do any harm (my suspicion is that this
happens only when the LPC code is fed dead silence).    This will have no effect anywhere
else, since floating point is used only in the LPC code.

I made GSM compression the default out of the box.    I'm deeply weary of explaining how to
enable GSM compression to hundreds of people a day who can't be bothered to read the
help file.

The Phonebook/Search host didn't default to lwl.fourmilab.ch unless you'd previously made a
directory listing.    Fixed.

The Phonebook/Search box wasn't quite wide enough to hold the longest line of a typical
server message and didn't have a horizontal scroll bar.    This caused perplexed people to
send hundreds of E-mails when they couldn't access the truncated URL the LWL server
published.    I made the box a few characters wider and enable horizontal scrolling.

There was also some ragged logic in the default server for publishing directory entries.   
Fixed to correctly default to lwl.fourmilab.ch.

Update release 5.5a.

28 November 1995

Integrated server-side support for the "show your face" feature.    The new file FACE.C
contains a dialogue that allows the user to designate a 256 colour .BMP file (the format is
verified) as his or her face image and a function invoked from FRAME.C that delivers blocks

of the image as requested by a remote host.    Processing of face image requests occurs
before audio output is acquired (but after creating a connection), so half-duplex systems can
still transfer face images while sending audio.

30 November 1995

Integrated client-side handler for "show your face".    Face data packets are assembled in
FACE.C into an in-memory bitmap in the connection structure.    If a complete bitmap is
available, the WM_PAINT handler in CONNECT.C for the connection window displays the
bitmap instead of the usual status information.    When a bitmap is displayed in the
connection window, transmit state is indicated by preceding the host name with a small
ASCII-art arrow.

After adding hundreds of lines of bullshit Windows code trying to swap the palette
intelligently when two face images are simultaneously displayed on a colour-mapped
display, I decided to exercise that time-proven prerogative of the Windows developer and
just give up. The vast majority of users won't connect to more than one person at a time.    I
fixed it (with even more bullshit code) so that the active window is always shown with the
correct palette and inactive windows with the default palette.    If you this this is easy to fix,
baby, just go and try it before you write me some smart-ass E-mail.    Hint: everything you
read in the Windows API documentation about palettes is a lie or worse when you start to
talk about MDI child windows.    There's a sample application on the Developer CD which
claims to do this, but a glance at it leads me to estimate at least a week to integrate and
test all the crap they went through trying to do what, on any vaguely competently designed
windowing system, should be essentially transparent to the application.    Users of high-
colour and true-colour display boards will be blithely unaware of any problem with multiple
simultaneous face images.

1 December 1995

Mycal reported that messages using simple (2X) compression were played back at twice
normal speed by the answering machine.    Fixed.

Feature release 5.6.

20 December 1995

Added logic in CONNECT.C to set outputSocketBusy if the send() or sendto() returns less than
the number of bytes we attempted to write. The WSAEWOULDBLOCK error status is treated
as a truncated buffer and sets outputSocketBusy.    All of this is disabled if the new
workaround "Disable Output Overflow Recovery" is set just, as always, in case.

When outputSocketBusy is set, we're guaranteed by the Winsock spec that we'll receive a
the FD_WRITE notification we requested in the call on WSAAsyncSelect for the socket.   
Right.    So in the timer, should we discover the socket has become unblocked for output and
the fink didn't tell us, clear outputSocketBusy so things don't hang up.

To avoid output overruns, I changed the logic that responds to face image requests to ignore
requests received while audio output is active.    This should keep face data from pushing an
14.4 modem connection that is barely keeping up with GSM over the edge.    The
transmission of the face will be resumed by the timeout on the receiving end when the audio
transmission is done with no harm done.    I also tweaked the timeouts so they're less likely
to collide with one another.

23 December 1995     

Face bitmap exchange seems to hold the potential for bad medicine when stirred in the pot
with multicasting.    When sending to a multicast port, CONNECT.C now never offers a face to
the subscribers, and face requests received from multicast ports (shouldn't happen, but who
knows: it's Windows!) are ignored and the face retrieval status set to Abandoned.

Strengthened the .BMP file format verification in FACE.C.    We now verify that the bitmap has
one plane and <= 256 colours, as must be the case for any compliant bitmap.

Added more stringent verification of the format of received bitmaps in FACE.C before passing
them on to CONNECT.C to display.    This gives us some protection against rogues who let
bogus bitmaps through, and weird errors in transmission of the the bitmap that corrupt it.

31 December 1996

Added an explicit +armor=off to all invocations of PGP to guarantee the session key is
encrypted in binary mode even if the user has modified the PGP configuration file to make
ASCII armour the default.

16 January 1996

Integrated the VOX, Break-In, VOX GSM compression, and anti-hangup code from Dave
Hawkes.    In the process of testing the integrated version, I made the following (perhaps
temporary) changes:

        * For some reason, the fix that places the read-only data in ULAW.C in the code segment
causes Speak Freely to crash with a GPF on the    first reference to the tables in
CONNECT.C, but only when I compile    in DEBUG mode.    I also needed to include the
definition of the new    tag CONST_DATA    to be able to recompile the ADPCM and LPC
libraries,    which contain references to the ULAW.C tables.    As a stopgap, to get   
things running, I changed the definition of CONST_DATA back to    FAR.    I'll look at this
in more detail when I get a chance and see    if I can't get that data back in the code
segment.

        * The anti-hangup code which calls DefaultMessageLoop() every time a network packet
or wave audio input buffer arrives causes unacceptable break-ups of sound on my
486/50; apparently PeekMessage takes too long even in the normal case.    I modified
MessageLoop() and    DefaultMessageLoop() in NETFONE.C to save the time
(GetTickCount()) of each pass through the message loop and only run the
PeekMessage loop if 10 milliseconds or more (constrained, of course, by the     
fundamental resolution of the timer) have elapsed.    I'm hoping this will run the risk of
the delay only when an actual message loop backlog occurs, which runs the graver risk
of a lock-up.    I've verified that the PeekMessage loop only rarely runs on my machine
(usually when I block the window by moving it or pulling down menus), but since I still
cannot reproduce the actual lock-up, even when I run my machine at 25 MHz, I can't
verify the other side of the equation: whether the lock up is still avoided.
   

        * I changed the "VOX" menu item to "Voice Activation" to avoid jargon which might
befuddle the radio-naïve.
   

        * Changed the title of the "VOX" monitor dialogue to "VOX Monitor".      The dialogue isn't
wide enough to avoid the "VOX" abbreviation,      but adding "Monitor" makes it look a
little less stark.    It might make sense to go to a horizontal meter to justify more room
for a longer title.

Some people would like to be able to launch Speak Freely from another application, pointing
it a given host with various preset options on the connection.    Writing an .SFX file naming
the host and specifying the options, then invoking SPEAKFRE.EXE with the .SFX file on the
command line permits this, but the .SFX file had to specify both the host name and IP
address, forcing the calling application to look up the host name. I modified the
newConnection() code in FRAME.C to automatically look up the IP address if an .SFX file
specifies only a host name.

A typo in the Connection/Save code could have led to nugatory void entries in the .SFX file.   
Fixed.

17 January 1996

Added a visual indication when VOX is squelching transmission.    The ear cursor now
changes to an ear with a big X through it (that's the best I can think of right now, but it's
better than no indication at all).    This makes it a lot easier to evaluate the effect of VOX
speed, especially if you don't have a local machine to run tests.

Figured what was wrong with the ULAW.C data in the code segment trick. Apparently
CONNECT.C and the libraries didn't get recompiled after the definition was changed to
CONST_DATA, and continued to reference the Ulaw tables as FAR (as they must).    I changed
ULAW.C to explicitly place the tables in the code segment, but continue to reference them
with a FAR declaration in ULAW.H.

19 January 1996

As suggested by Enoch Wexler, I added the ability to send and receive Show Your Face
images in GIF as well as BMP format. GIFs offer substantial compression compared to even
the compressed variants of BMP, which reduces the time it takes to transfer a face image
and the likelihood of disrupting audio transmission in the process.    Received GIF files are
converted in-memory to BMP format by the new module GIFTOBMP which is based on the
NETPBM utility GIFTOPNM.    GIFTOPNM is copyright 1990, 1991, 1993, by David Koblas, who
notes:

    Permission to use, copy, modify, and distribute this software      and its documentation for
any purpose and without fee is hereby      granted, provided that the above copyright notice
appear in all      copies and that both that copyright notice and this permission      notice
appear in supporting documentation.    This software is      provided "as is" without express or
implied warranty.
   
GIF file decompression requires substantial storage for the LZW decompression buffers and
colour map tables.    I modified the decompression code to move all large buffers to a
dynamically allocated global storage block to avoid overlow of DGROUP and/or the inclusion
of static storage which would block execution of multiple instances.
   
The face image selection dialogue in FACE.C was modified to allow selection of GIF images
as well as BMP files.

Added a new VOX menu item which calls a new function in VOX.C, vox_reset_parameters() to
restore all the VOX level adjustment parameters to their original defaults.    I also added a
Reset button to the VOX Monitor dialogue which does the same thing.    In the process, I
rearranged the contents of the Monitor dialogue to create enough room to spell out its title.

Added a new workaround that totally disables the DefaultMessageLoop lockup-prevention
mechanism.    While I think my 10 millisecond trigger based on GetTickCount() should be

enough, this provides an escape hatch in case it isn't.

23 January 1996

Based on reports that receiving a Ring message can screw up the sound card (for example,
muting the microphone), I demoted the previous default call on waveOutSetVolume() in
SPEAKER.C which attempts to set maximum output volume when a ring is received to a
Workaround which is off by default, "Set Maximum Volume on Ring".    Only in the world of
Windows would you suppose that something as innocent as a volume control would conceal
sharp edges and booby traps awaiting the unsuspecting developer.

Based on input from Dave Hawkes, I revised the DefaultMessageLoop code once again.    This
time it keeps track of the last time the program potentially yielded control to another
application (by doing a PeekMessage with the PM_NOYIELD and PM_NOREMOVE flags in the
main message loop in NETFONE.C, which seems to return fast enough to avoid pauses, and
saving the GetTickCount() value if there is no message in the queue).    Then, if
DefaultMessageLoop() discovers 350 milliseconds or more have elapsed since the last yield,
flushes the message queue using PeekMessage(), which will allow other applications to gain
control of the CPU.

Dave also pointed out that my pointy-headed code that changes the cursor when VOX
muting occurs changed the cursor even if it was outside the window.    Fixed.

25 January 1996

The workaround that disables the DefaultMessageLoop() insurance did not actually turn off
all traces of the code--the PeekMessage in the main message loop in NETFONE.C still
remained.    Since I'm sure this will cause unspeakable horrors when it triggers some booby
trap Billy-boy has hidden in one of his existing products or is in store for us in the future, I
made sure it's disabled when DefaultMessageLoop() is turned off.

6 February 1996

Made the inclusion of encryption conditional on the tag CRYPTO being defined in NETFONE.H.
If CRYPTO is not defined, the version number in the About dialogue will have a suffix of " (no
crypto)" and the IDEA patent notice will be replaced by an explanation of where to obtain a
version including full encryption.    The "Encryption" box in the Options/Connection dialogue
will contain a more detailed explanation of the no-crypto edition.    The Options/Create Key
menu item is disabled in no-crypto builds.    What's the rationale for this?    Simple: a number
of CD-ROM publishers and sound card manufacturers are interested in distributing Speak
Freely.    But since many will be shipping from the U.S. and other countries which attempt to
restrict the export of "munitions" like Speak Freely they're afraid, and rightly so, that putting
Speak Freely in the box might result in an all-expenses paid extended vacation at Club Fed.   
The non-crypto version allows them to include Speak Freely without such worries.    Once a
user has installed Speak Freely and is ready to start using encryption, they can simply follow
the instructions in the dialogue boxes (and, soon, the help file) and download a full-
encryption version from a site in a country which does not restrict cryptographic software.   
The non-crypto version can also be posted on bulletin board and commercial online services
without risking government-initiated unpleasantness.

Note that undefining CRYPTO does not just block access to encryption and decryption; it
totally removes the code from the program--the encryption libraries are never referenced
and therefore not included by the linker in the executable.    Thus there is no risk of a non-
crypto build being deemed a munition.    The only "cryppish" code that remains is MD5, and
it is widely used (for example, in the export edition of Netscape) in non-encryption roles.    In

non-crypto Speak Freely, the RTP SSRC, timestamp, and packet sequence numbers are
generated directly with MD5 rather than the somewhat more random idearand() used in
crypto builds.    Since we're not going to encrypt the RTP packets anyway, this doesn't
compromise anything.

As the first step in integrating the RTP support code from the Unix version, replaced
RTPACKET.C with the fully-functional one and verified the new rtcp_make_sdes() and
rtcp_make_bye() didn't break LWL support.

Here's where we stand at the end of first day of the campaign to integrate RTP and VAT
support into Speak Freely for Windows.    The two procotol translation modules, RTPACKET.C
and VATPKT.C and all their support files have been included in the program and fixed to
compile without errors or warnings. As noted above, the new RTPACKET.C continues to
generate valid packets for the LWL server.    Sending both VAT and RTP protocol works for all
compression modes, testing with VAT on another machine.    VAT correctly recognises the VAT
ID and RTCP SDES message we send on the control channel.

7 February 1996

Trying to integrate the LIBDES encryption package need for VAT and RTP encryption blew the
data segment, so it's time to run another sweep for excess baryon particles.    Using the
same CONSTANT_DATA trick as in ULAW.H, I moved the large constant tables in LIBDES\
FCRYPT.C and DES\DES.C into the code segment.    Result: still over the brink.

The biggest memory hog, LPC\LPC.C, was unfortunately not so easily fixed, since its four
large floating point analysis vectors are read/write and cannot be hidden in the code
segment.    I integrated a modified version of the LPC.C from NeVoT, in which the state of the
decoder is in a dynamically allocated buffer.    I obtain this buffer with GlobalAlloc, getting it
out of the static data segment.    This of course required FARs all over the place in LPC\LPC.C,
but it did the trick.    This will also allow, if we decide it's worth doing, maintaining a separate
LPC state for each inbound connection.

It was intensely irritating to have to constantly answer E-mail from people who tried to build
Speak Freely from source code but whose Winsocks not only didn't support multicast, their
WINSOCK.H didn't even include the definitions for multicast.    I fixed FRAME.C, DIALOGS.C,
and NETFONE.H to, if IP_MAX_MEMBERSHIPS isn't defined, silently delete multicast from the
build.    If the user's Winsock doesn't define the variables we need to generate the code,
there's no way he's going to be able to use the feature anyway.    The Unix version uses the
same trick to adapt to pre-multicast sockets implementations.

Swept through the program and added the fProtocol flag to all places Speak Freely protocol
packets are generated.    This flag helps receivers distinguish Speak Freely packets from VAT
and RTP messages.

Went a long way toward implementing DES encryption of outbound RTP and VAT packets.    It
pretty much works--I'll make the final round of tests when DES works in both directions and I
can verify correct operation in both directions.

8 February 1996

I modified code in CONNECT.C and FRAME.C to zero the SDES resend timer when the
transmit protocol or encryption key is changed.    This causes an immediate resend of the
SDES/VAT ID in the new mode, which will help the receiver to "sync up" with the change.

I discovered that the clever way I integrated VAT and RTP encryption into sendpkt() in

CONNECT.C had completely screwed up encryption for Speak Freely protocol.    In the process
of fixing this, I cleaned up some of the rather tangled logic in that function.

Added code to the Options/Connection dialogue to disable the fields and captions for IDEA,
PGP, and Key file compression if the protocol is RTP or VAT.    These protocols currently
specify only DES as a standard mode.

Set the "talk spurt" flag for the first packet of a sound file.

Added VAT packet translation to sound file output in CONNECT.C.

Under certain circumstances, sending a sound file to a connection after sending a ring would
just re-send the ring.    Fixed in FRAME.C.

Disabled direct modem connections.    This feature, which fell into the trapdoor called
Windows serial port (8250) support, compounded the incoming E-mail pain due to idiots
confusing direct dial-up modem connections with SLIP/PPP Internet access.    Besides, since
Serial I/O is near the top of the Redmond Kiddies' "API of the Year" list, the time it takes to
debug it on all the ratty drivers out there exceeds the product life cycle. Users who wish to
use Speak Freely as a phone scrambler on direct calls should establish a peer-to-peer TCP/IP
connection and use Speak Freely in network mode.    Since it will probably take Billy's bozos
20 or 30 years to debug Windows to Windows TCP/IP links, the fact that they'll blame their
screwups on other vulnerable applications as well as Speak Freely will deflect a significant
percentage of flames, albeit not to the flamers responsible for the mess in the first place.

9 February 1996

Voice activation didn't work with RTP and VAT protocols because load_vox_type_params() in
VOX.C didn't know about the new packet sizes used by those protocols.    Now it does.   
Independently, LPC and VOX don't seem to be getting along very well together, regardless of
protocol.    I'll have to look into this later on.

Coming to terms with the fact that I'll be chasing "bugs" in this program as long as there are
Kode Kiddies in Redmond, I integrated the hex dump module from the Unix version.    It lets
me dump packets on the debug stream to see where Winsock wants to go today.

Transmission of non-encrypted VAT and RTP packets now seems to be working.    That's not to
say that DES encryption doesn't work, just that I haven't tested it yet.    The initial tests of
bouncing VAT messages off the echo server failed due to byte order dependencies in
VATPKT.C.    These are now fixed; the changes must now be integrated into the Unix stream
to handle little-endian boxes.

10 February 1996

Added code to the WM_DESTROY handler in CONNECT.C to transmit an RTP or VAT BYE
message to indicate the user has closed the connection.    In the process, I added a new
sendSessionControl() function which is used by both this logic and the periodic RTCP/VAT ID
transmission code in the timer.

Discovered that the sockets were getting closed in WM_CLOSE rather than WM_DESTROY,
which kept the BYE transmission from working.    I moved the socket close to after the BYE is
sent in WM_CLOSE.

11 February 1996

Well, I think I finally found out why weird things occasionally happened when you quit Speak
Freely with one or more connection windows open.    This is really getting too depressing to
document, but here we go.    Windows, with its unerring instinct for doing things in the most
idiotic way possible, sends a WM_DESTROY to the application's outer window procedure, and
then later    sends WM_DESTROY to each of the child windows.    Suppose one or more of
those child windows need to do something--send a BYE message, for example--using one of
the resources that get freed by the application's outermost WM_DESTROY?    Blooie.    But
don't think you can get away with just sending WM_DESTROY to each of the child windows:
nopey, nopey, no.    If you try that you fall into the toilet because calling WM_DESTROY
doesn't actually make them go away, and as a result they get destroyed twice and all kinds
of other horrors ensue.    So, once again we are forced into subterfuge by the quintessential
inelegance of Windows.    We dig out of this particular hole by sending a custom
WM_CLEAN_UP_YOUR_ACT message to the child window to tell it we're terminating.    The
child will then do its regular WM_DESTROY cleanup, including releasing the client data
pointer and zeroing the window word to it.    When the actual WM_DESTROY arrives, it will
discover the client data pointer is zero and avoid executing the cleanup twice.

12 February 1996

Integrated the new LWL\LWL.C library from the Unix version, which allows a separate
decoder state for each receiver and contains numerous fixes for subtle coder gotchas such
as dividing by zero if total silence is received. This, of course, ran squarely into one of the
innumerable floating point code generation bugs in Visual C++ 1.5 (they call it "Visual"
because only if you're seeing things would you confuse it for a production compiler for
floating-point intensive code).    After a fine afternoon of trying various compiler options and
workarounds, I found a combination of restructuring of the loop which caused the "Stack
overfl" (a very Redmond kind of error message, don't you think?) and optimisation options
which got around the error.    Until the next "improvement" of the compiler, I'm sure.

Found another pair of missing htons() in the LPC packet handlers in VATPKT.C and
RTPACKET.C, when stuffing the decoded length into the first two bytes of the sound buffer.

Memo to file.    Windows' real-time response is so pitiful that machines which are perfectly
adequate to run Speak Freely protocol in all compression and encryption modes (a 486/50,
for example) can't cope with the smaller packet sizes used by RTP and VAT, particularly on
reception.    If you want to talk to somebody who can only send RTP or VAT, you'd better
make sure you have enough Intel inside to cope with Billy Boy's idea of process switch
latency.

13 February 1996

Integrated a fix to rtpout() in RTPACKET.C from the Unix version.    The packet length for
outbound RTP ADPCM packets was 2 bytes short, which caused "gravelly" speech and
horrible ticking when encryption was enabled.

It's possible for the predicted value in the ADPCM coder (ADPCM/ADPCM_U.C) to exceed the
range of a signed 16 bit linear sample.    Clamping code limits the range when this happens,
but needed to declare the unclamped sample as a long rather than int to work on a 16 bit
architecture.    Fixed.

After many, many hours of painful, unremunerated toil I finally figured out what was causing
the Debug kernel warnings and fatal errors due to bad pointers at the time we call
WSACleanup at application termination time. The essential clue was that it only happens if
one or more connection windows have been created by the receipt of a packet from a
remote site not already connected.    If all connections were created locally it never

happened.    And, of course, this only happened under the Winsock supplied with Sun PC-NFS
5.1--the problem never occurred under any circumstances on other Winsocks I've tried.

I'm sure by now you will be shocked and stunned to learn that Sun NFS 5.1 doesn't correctly
implement the WSAAsyncGetHostByAddr function.    Oh, you can make the call, and you
even get back a valid host name.    But doing so plants a time bomb which will kill you (at
least under the debug kernel) much, much later when you call WSACleanup() right before
exiting the program.    At that time, depending on where the random pointer inside their so-
called WSHELPER points, you get either two invalid global pointer errors or a fatal error due
to an object usage count underflow in the (bogus) global block.    If the
waNetSynchronousGetHostnameAction is set, we eschew the asynchronous request and
make the user wait for a blocking gethostbyaddr() which has the merit, at least, of not
blowing us away at program termination time.

waNetSynchronousGetHostnameAction is set, in turn, based on the workaround
waNetSynchronousGetHostname, which can take on the values 0, 1, and 2.    If 2, the default,
asynchronous host name retrieval is disabled if the Winsock identifies itself in the
szDescription field of the WSAData structure returned by WSAStartup() as "Sun Select PC-
NFS Windows Sockets Implementation".    This automatic selection can be overridden by the
user explicitly checking or unchecking the Options / Workarounds / Network / Get &Host
Name Synchronously menu item. Thereafter, the user's selection will be used regardless of
the identity the Winsock reports.

In the process of adding profile variable support for the above workaround, I observed the
number of workarounds was about to exceed the rstring() cache in the name of the
workarounds section remained.    Since, unlike the developers of Microsoft tools, I do not feed
off human suffering and take joy in setting booby traps, I modified all the profile read and
write code to copy the section name to a stack string variable rather than rely on the pointer
within rstring()'s retrieval area to remain valid while all variables in the section are accessed.

14 February 1996

Integrated the new RTPACKET.C, RTPACKET.H, and DESKEY.C from the Unix version.    These
include the facilities we'll need for parsing SDES packets, recognising BYEs, and creating RTP
keys from key strings compliant with RFC 1890.f

Adjusted packet sizes returned by inputSampleCount() (FRAME.C) for VAT to the maximum
permitted within both the experience base of VAT and the 512 byte guaranteed MTU of
Winsock.

Integrated a fix from the Unix version to guarantee (in our context) that pad bytes added to
VAT and RTP packets are zeroed.

Modified makeVATid() in VATPKT.C to, as VAT does, prefer the user's full name to the E-mail
address if both are available.

Added recognition of RTP and VAT SDES/ID packets in FRAME.C.    The title of the connection
window will now show the user's name, if supplied by the sender.    The changeAudioState()
function in CONNECT.C also uses the user name, if available, in preference to the host name
when it updates the window title to indicate transmit state.

RTP and VAT BYE/DONE packets now cause the receive protocol to be reset to
PROTOCOL_UNKNOWN.    This expedites recognition of a new protocol if the sender switches
on the fly.    Changed in FRAME.C.

Integrated generation of RFC 1890 RTP key and separate old-protocol VAT key.    I've still to
integrate automatic protocol and key sensing.

Added code to encrypt outbound RTP and VAT packets with the appropriate key.    The
inbound side remains to be done.

Nailed another encryption packet size rounding error in CONNECT.C, this time affecting
ADPCM encoded outbound packets in VAT protocol.

15 February 1995

I remembered that there was one more place the PC-NFS 5.1 WSAAsyncGetHostByAddr()
bug could stab us in the back--in the case where the user enters a numeric IP address in the
Connection/New dialogue.    I added a gethostbyaddr() alternative to this call if
waNetSynchronousGetHostnameAction is set.

Finished integrating automatic protocol sensing and key selection for encrypted inbound RTP
and VAT packets.    The logic was a little less tangled than in the Unix version since we
process control and data packets in different callback functions.

Did a non-CRYPTO build to make sure all the RTP and VAT changes didn't break something or
suck in verboten bits.    Sure enough, all of DESKEY.C needed #ifdef CRYPTO, as well as the
encryption code in CONNECT.C's sendSessionControl().    Fixed.

Implemented the guts of the local loopback facility--it works, but tuning and a nice user
interface remain to be done.    Why local loopback?    So users can debug their audio
hardware problems before venturing onto the net, which will be one of the steps in the
"beginner's guide to Speak Freely" I'll get around to writing one of these days. Eventually
there will be a Help menu item which creates a local echo connection, but for the moment
you activate such a connection by making a new connection to "localhost" (or, if your
Winsock doesn't know localhost from Casper the Friendly Ghost, 127.0.0.1).    Any packets
you send are saved in memory until the end of your transmission and then returned, after a
short delay, as if echoed by a remote site. This is, then, an echo server that doesn't use the
network.    Not only does it let users experiment with audio hardware locally, it allows
isolating network-induced problems from those which inhere in the CPU or audio hardware.

16 February 1996

Modified changeAudioState to invalidate the connection window without erasing the
background.    This makes it quicker to repaint the "Transmitting" or blank status when the
audio state changes.

Added support for Speak Freely SDES messages on the control port.    When a Speak Freely
connection is open, RTCP SDES messages with a protocol ID of 1 (the old RTP, used by no
application I know of) are sent on the control port.    These messages allow unambiguous
recognition of Speak Freely protocol, transfer of user information, and disconnect
notification.

The connection window paint code in CONNECT.C now displays the current sending protocol,
user name, and E-mail address of the connected user.    The connection window is resized
depending on the number of lines currently displayed.

17 February 1996

Added the ability to specify a port number for a connection.    This required changes all over

the place:

A port number can now be entered in the Connection/New dialogue after the host
name or IP number, delimited by a slash.

The port number (even if standard) is saved in an .SFX file by Connection/Save / Save
As.

A port number, if specified, is restored when a connection file is loaded.    If no port
number appears in the file, the default of 2074 is used.

The "Connect" button in the Look Who's Listening dialogue now passes both the IP
address and port number, separated by a slash, as the known host argment to
newConnection in FRAME.C, which was modified to recognise that syntax.

FRAME.C now maintains a list of auxiliary receive sockets, asList.    When input arrives,
a new function, findPort() searches the list to identify, from the socket number, which
port the input arrived from.    This is used, if we're creating a new connection based on
the input, to set the port to which we'll respond.

CONNECT.C now uses the "port" field in the connection structure as the port to which
messages are sent rather than the canned value of 2074.

findClientByHost() in FRAME.C now considers two connections identical    only if both
the IP address and port numbers are identical.

When creating a new connection with a nonstandard port number,    CONNECT.C calls
the new function monitorPort() which creates an auxiliary socket    pair for that port.    If
the port is already monitored, the reference count on the auxiliary socket is simply
incremented.

When destroying a connection to a nonstandard port, CONNECT.C decrements the
reference count on the auxiliary socket and if it's zero closes the socket pair.

Note that auxiliary sockets are not bound to a specific host; once a connection is established
with a given port, connections from any host can be remotely initiated on that port.    This
means that if you want to accept connections on a given port as a matter of course, you can
do so simply by opening a dummy connection (to a nonexistent address on your subnet, for
example) with that port.    I'll probably eventually add a separate dialogue that lets you
specify ports to monitor automatically but for the moment this gets the job done.    Most
users will be specifying ports to connect to remote RTP and VAT conferences anyway, not
accepting calls on nonstandard ports.

Guess what?    Sun PC-NFS 5.1 Winsock will not only blow you away if you call
WSAAsyncGetHostByAddr(), the blocking version, gethostbyaddr() has a bug in it as well--it
forgets to null-terminate the host name in the h_name field, so if you retrieve a host with a
name shorter than the last one part of the last host name still sticks out.    Working around
this by zeroing the host name after you retrieve it is a blatant violation of the Winsock spec
which states (section 4.2.1) "The application must never attempt to modify this structure or
to free any of its components.".    I for one, am not going to add my name to the list of
millions who ignore the Winsock spec, so there isn't a damned thing I can do this other than
tell people to get a better Winsock.    Fortunately, it's purely an ugliness that doesn't do any
damage since we're just retrieving the host name to display in the connection window.

Oops!    In Speak Freely protocol, control channel messages aren't supposed to be encrypted

but they were.    Fixed.

What the world needs now, is lots more workarounds, they're the only thing that drive the
bugs to ground....    So, some more anticipatory retaliation: the following are available on the
new Options/Workarounds/Protocol submenu. All are, of course, saved in the .INI file and
otherwise treated as respectable citizens.

No Speak Freely Heartbeat
Disable the periodic Speak Freely protocol heartbeat on the    control channel.    This is
primarily intended as a last resort if the (less than 1%) added bandwidth saturates a
close to the edge connection, and also in case the control channel packets awake
something horrid lurking on the next higher channel.

Large RTP Protocol Packets
Uses Speak Freely's preferred packet sizes for GSM and LPC compression rather than
those typically sent by RTP programs.    Most RTP programs were developed on fast
workstations with high bandwidth network connectivity.    Speak Freely users generally
have slower machines and network links which benefit from larger packets.    Try this if
the person you're talking to reports halting audio in RTP protocol.

Disable VAT Protocol Detection
VAT protocol will never be automatically selected as a result of receiving a message on
the control channel which resembles a VAT control message.    Enable this if you never
receive VAT protocol messages and are annoyed at how long it takes to identify the
protocol of encrypted RTP messages.

Disable RTP Protocol Detection
RTP protocol will never be automatically selected as a result of receiving a message on
the control channel which resembles a RTP control message.    Enable this if you never
receive RTP protocol messages and are annoyed at how long it takes to identify the
protocol of encrypted VAT messages.

No Encryption of RTP Control Packets
RTP control packets can, according to the standard, be sent either encrypted or in the
clear.    Most RTP programs I've encountered encrypt their control packets, so this is the
default Speak Freely sends (it accepts both encrypted and clear packets).    If you set
this workaround, control packets are sent in the clear.

19 February 1996

After further deliberations, I decided not to implement automatic protocol switching to the
protocol received from the active window, although much of the infrastructure to do so is in
place.    The reason is that simply adding the new dimension of multiple protocols has the
potential for inducing further confusion among users who don't understand the distinction
between the compression mode received and that used in transmission.    Trying to explain
all the possible conditions one could get into with automatic protocol switching is probably
futile.    I may eventually put in a warning that pops up if the user tries to transmit to a
connection which has sent us packets in a different protocol than the current transmit
protocol.    Protocol mismatch is never a problem when communicating with other copies of
Speak Freely, since it auto-senses the protocol.    Since initially relatively few users will be
talking to other programs, those cutting-edge users are probably best encouraged to
operate in "manual transmission" mode to avoid confusion.

The gimmick that forces immediate transmission of the identity message on the control
channel (rather than waiting for the next timer interval) wasn't doing so when the protocol is

set to Speak Freely.    Fixed in FRAME.C.

Drat!    When I added the port number criterion to decide whether a connection was already
open, I forgot to handle local loopback.    Fixed.

Added direct pointers from the Help menu to the FAQ and Mailing List sections of the Help
file, and to create local loopback connection directly.

Direct access to local loopback required a tweak in CONNECT.C to not attempt to turn the
loopback IP address into a host name.

20 February 1996

sendSessionControl() in CONNECT.C wasn't incrementing packetsSent for the extended
status dialogue.    Fixed.

loop_sendto() in LOOPBACK.C wasn't returning SOCKET_ERROR and setting the last error
code as it should if it can't allocate the loopback buffer.    Fixed.

To eliminate the choppiness that afflicted local loopback, particularly with the small packets
sent by VAT protocol, I modified loopback replay to adopt a strategy of keeping the output
queue stuffed with packets up to a limit of 10, and refilling the queue to that length every 10
milliseconds (Hah!!    More like when Windows gets around to us.) rather than attempting to
time each packet to a time resolution Windows just can't handle.    (If I used the multimedia
timer, it probably could, but that requires interrupt code call-backs into a DLL and imposes
restrictions on what we can do from the call-back that Speak Freely couldn't live with.)

Naturally, this straightforward approach walked squarely into the jaws of disaster.    The
message loop insurance code was causing the timer code to be re-entered while it was
playing back loopback packets, setting off a spectacular riot of recursion.    I disabled the
message loop insurance for loopback packet playback.    Since we're strictly controlling the
rate of packet arrival from loopback and the length of the stream is limited anyway, we don't
really need the message loop insurance, which is intended to keep packets arriving from the
network from hanging us.

21 February 1996

I added some code to the MM_WIM_DATA message handler in FRAME.C to soften the impact
of the anti-lockup code on outbound audio quality.    If a machine is right on the ragged edge
of being able to compress in real time (a 486/50 sending GSM, for example), occasional
Windows-induced delays will trigger the anti-lockup code and cause a sound packet to be
dropped.    I added code that allows recovery from one re-entry to the message handler by
saving the packet and processing it immediately after the already-underway packet.    Re-
entries while an already saved packet awaits processing continue to discard packets.

The anti-lockup code in MM_WIM_DATA and socketInput did not increment the appropriate
PacketLost counters.    Fixed.

Added an item to the Help menu that points people directly to the echo server topic in the
help file.

Building on Dave Hawkes' insight that the Windows wave audio output pause and restart
could be used to implement a de-jittering replay delay with no buffering logic within Speak
Freely, I implemented a first cut at de-jittering.    Any input packet from the network which
causes us to acquire audio output is considered the start of a "talk spurt".    (Once we've

transitioned to RTP, we can use the packet header bit for this, but we have to get there
somehow.)    When such a packet is received, if the jitterBuf has a nonzero replay delay in
milliseconds, a timer with that expiration is launched to trigger the replay and wave audio
output is paused.    Wave audio output is restarted when the timer expires, or if the number
of packets queued for replay exceeeds half the number of messages in the input queue
(detected in SPEAKER.C).    A new Options/Jitter Compensation menu item allows specifying
the initial delay for a talk spurt.    The longer the delay, the greater the suppression of jitter,
but at the cost of a greater time parallax between the reception of the packet and its being
played on the speaker.

When shutting down audio input, the final partial packet of sound before the shutdown could
be lost.    Fixing this little buglet naturally required massive changes to how audio input is
torn down, since Windows likes to return packets from the queue in any old order at
shutdown time, but imposes on the application a rigid order in which the API must be called. 
The terminateWaveInput() function in FRAME.C now actually does no such thing.    In fact, it
just resets audio input, causing any partial packet and the rest of the input queue to be
returned to the message loop. Code for the MM_WIM_DATA message now processes any
partial packets, padding them if necessary to the length prescribed by the protocol (with the
correct pad depending on whether audio is 8 or 16 bits--gosh this is fun!) and sends any
non-zero-length packets.    If termination is underway, packets are unprepared and released,
and an allocated packet counter decremented.    When that counter goes to zero, wave audio
is finally actually closed.

The above fix of course broke how Options/Break Input manages the transition between
input and output mode for half-duplex audio hardware.    Fixed (I think, pending reports to
the contrary from the field).

22 February 1995

One more tweak to Break Input--if inputPaused is set, the WM_MIM_DATA handler in FRAME.C
now immediately discards any partial packets that are returned during input termination.   
This speeds up the transition to playing the packets arriving from the socket.

26 February 1996

Port numbers greater than 32767 were not accepted in Connection/New due to being
scanned as a signed short rather than unsigned.    Fixed.

The supposedly private bits used by the answering machine to mark the start of a
transmission conflicted with the fProtocol flag bit, resulting in each Speak Freely protocol
packet being considered the start of a separate message by the answering machine.    Fixed.

29 February 1996

Dodging another intracardial dagger from our south-of-the-equator purveyors of what
purport to be WINSOCK drivers introduces another layer of unnecessary and unwarranted
complexity.    The WINSOCK spec allows mutant windsuckers to abort any call that "re-enters"
WINSOCK with a WSAEINPROGRESS call.    Fine: what would you expect from the "vision of
the future is a reboot in the face forever" people?    But could you imagine, even in your
wildest fantasy, that the most innocent of all socket calls, the one which places a socket in
non-blocking mode, could itself    blow off if a so-called blocking call (and many calls so-
deemed have no non-blocking variants) is in progress? So, I turned the code that sends the
heartbeat to the Look Who's Listening server inside out to cope with this crap, and thereby
avoid the dreaded "Operation already in progress" puke-o-rama which, on some WINSOCKs
poisons all future network accesses.    I am sure this will have ugly consequences on other

buggy platforms which will become apparent in the weeks and months to come.

Failure to look up the host name corresponding to an IP address after a connection was
made displayed an error dialogue.    Little did I know that 95% of all Windows 95 users do not
have a valid domain name server configured, and each and every one of them E-mail me
when this message appears.    Warning message deleted; don't keep those cards and letters
coming.

1 March 1996

Integrated the changes to VATPKT.C from the Unix version to recognise IDLIST packets as
valid to to provide, in the future, the ability to include a conference ID in the packets we
send.

Integrated the fixes from the Unix version into FRAME.C to recognise VAT IDLIST (3) packets
and correctly parse the user names therein. This allows us to connect in VAT protocol to CU-
SeeMe reflectors. As part of this change, the user name field (uname) in the connection
structure was made a dynamically allocated buffer to permit long lists of participants in a
conference.

I modified the connection creation logic in controlInput() in FRAME.C to never create a new
VAT protocol connection unless an ID (1) message is received.    This keeps IDLISTS (3) which
rain in from conferences you've just left from re-opening the conference connection.    Also, it
was inelegant to open a connection based on a VAT BYE from the blue.    A remote VAT
connection will be opened only upon the receipt of an unencrypted ID packet.    Note that we
still have a problem with VAT conference Lazarus connections which result from VAT packets
which arrive on the data port and are mistaken for pre-6.0 Speak Freely sound packets--they
won't be played, but they'll still open the connection.    This will go away once we've gotten
everybody on 6.0 and require control port session control unless a special workaround is set
to communicate with older versions.

Added logic in the connection window WM_PAINT handler in CONNECT.C to distinguish a VAT
IDLIST (and one of these days, a multi-party RTCP SDES) from a simple ID and list the users
in the conference one one per line.

After an afternoon of flailing around that sacrified the requisite number of neurons, I finally
figured out a way to handle a user quitting the program while audio output is active which
does not lead to sudden death.    This involves the usual flags, mushy timers, countdowns
and activity tests which Windows requires to do even the simplest things, and is much too
depressing to discuss here.    If you must see it, start at the WM_CLOSE handler in FRAME.C
and follow the trail of slime through the rest of that file.

Echo, voice on demand, and reflector servers all have a tendency to create "Lazarus
connections" which, seconds after you close them, pop back into existence when a packet
comes back from the other end. To prevent this, I added a special anti-Lazarus mechanism in
FRAME.C and CONNECT.C.    When the user closes a connection window, the
WM_CLEAN_UP_YOUR_ACT message handler in CONNECT.C saves the IP address of the host
in a new global Lazarus and sets the timeout counter LazarusLong to LazarusLength (15
seconds as presently configured), which is decremented by the main one-second timer in
FRAME.C.    If a packet arrives from the last connection window to be closed while
LazarusLong has not yet counted down to zero, is it discarded by code in socketInput and
controlInput in FRAME.C before it causes the connection to be reestablished.    This provides
a "decent interval" to allow postmortem packets arriving from the remote host to be
discarded without re-opening the connection window.

To avoid the ignominy of shipping a release containing OutputDebugString diagnostic output,
I added an updated version of the check for debug output in a production build that's used in
Home Planet.    The new version provides a primate-readable description of the error that
points to the offending line and doesn't interfere with compilation of the rest of the file.

2 March 1996

Fixed a place in isHalfDuplex() in FRAME.C where in the case of an error in the process of
determining whether audio is half duplex, the wave format buffer could be freed twice.

For some reason, trying to compile the program on a Pentium with twice as much free RAM
as the 486, the resource compiler dies in the middle of windowsx.h with "Out of far heap".    I
excluded this file from resource compiler builds, and the little pointy head now deigns to
work.

The VAT IDLIST packet parsing in FRAME.C's controlInput() had an off-by-one error when the
name string length was a multiple of 4 and the terminating '\0' fell into the next 4 byte
segment.    Fixed.

One final gratuitous Gatesian gutshot this fine Saturday night--Virtual (if you confuse it for a
real compiler, you're seeing things) C 1.52c generates bad code for the VAT IDLIST packet
parser in controlInput() (FRAME.C) when full optimisation is selected.    (I'm sure, gentle
reader, this will surprise you, having come this far with me down the rathole.)    So, I
#pragma'ed off all optimisation in that function, wishing there were were some way I could
#fragma the "making it all too much" crowd spewing their ghastly gigabytes into an industry
I was once proud to be a part of.

6.0-Alpha 4 prerelease.

3 March 1996

Integrated lots of fixes all over the place for 32 bit compile problems. I made these changes
in a very conservative manner--what the compiler sees when compiling the 16 bit version
should be identical to the code before the fixes were installed.

4 March 1996

People were having so much trouble getting the automatic adaptive VOX to work that I
disabled it and replaced it with a manual set-the-level yourself mechanism.    The VOX
Monitor dialogue now allows you move the red threshold indicator with the scroll bar with
complete freedom, while (if audio input is live) showing the VU meter as before.    Slow,
Medium, and Fast continue to regulate the number of samples of silence which must be seen
before transmission mutes.    There is no need with a manual VOX adjustment for a Reset
facility, so the menu item and button in the monitor dialogue for that function were
removed.    I also disabled VOX GSM compression mode, since I'm afraid explaining its
interaction with manual VOX would only confuse people.    All the code is still there for
adaptive VOX and VOX GSM compression--if you compile with VOX_GSM defined, it will all
come back.

Just as I suspected, the workaround for Trumpet Winsock's WSAEINPROGRESS bugs in
contacting the Look Who's Listening server walked right into the jaws of another flaky
Winsock--this time the one that comes with Windows 95.    You apparently can't count on it to
always notify you when a socket is closed, even if you've requested such notification via
WSAAsyncSelect(). This led to timeout warning messages, attempts to make socket calls on
already-closed sockets, and other horrors.    Throwing up my virtual hands in disgust, I ripped

out all message-based event sequencing of the LWL socket in FRAME.C and replaced it with
timer logic.    This is a crazy way of doing what should be trivial, but it's the only way to
guarantee (to the extent one can ever use that word in conjunction with something
associated with Windows) we won't be nailed by timing windows, lost notifications, or other
flaky behaviour on the part of Winsock.

5 March 1996

Well, that didn't work on a production build under PC-NFS, because a blocking connect (to a
slow-to-respond LWL server) could interfere with data transmission.    So (and I have a very,
very bad feeling about this), I made LWL transmission entirely non-blocking.    When we
receive the FD_CONNECT notification, that triggers the send() and sets the timer to close the
socket 8 seconds later (since we don't dare count on linger mode to work properly).    Wanna
bet we need a timer to back up the FD_CONNECT notification in case Winsock forgets to
send us one?    We'll see.

Added some additional paranoia in LWL.C to make sure no traffic is sent to the LWL server
while a non-blocking transmission is in progress.

6.0-Alpha 5 prerelease.

7 March 1996

It's reported that connecting to a VAT conference with 35 people active causes a "runtime
error 202 at 0001:1E".    I don't have the vaguest idea what is causing this, what the error
number means, or even where the error message is coming from, and I can't reproduce it
since I don't have access to multicast to get on such a conference.    I am not going to let
nonsense like this deny the 6.0 update to tens of thousands of users who will never go near
anything like this.    I just hammered a test in CONNECT.C that limits the number of
participants displayed to 8 and puts an ellipsis at the end of the list if there are more than
that.

Added code to multicastJoin() in FRAME.C to join or drop any auxiliary sockets to the current
multicast list, as well as the default port sockets.

Modified monitorPort in CONNECT.C to call multicastJoin to drop and then reacquire the
multicast memberships whenever a new auxiliary socket is created.

8 March 1996

Once again we see how the poor design of Windows turns what is conceptually an easy task
into a snowdrift, nay polar caps, of tangled and tricky code that one is never really sure will
work everywhere.    This time it's double clicking in the connection window to begin
continuous transmission (which a lot more people will be doing now that we have VOX and
Break Input). Remember back on the 21st of February when I redid the logic of how audio
input is switched off so as dodge various bullets in the multimedia complex?    Well guess
what...ever since then double clicking hasn't worked (I didn't notice this since I generally use
the space bar).    Now, the double click logic in CONNECT.C couldn't have been simpler or
more compliant with the Windows interface guidelines--the second click merely extends the
scope of what the first one does, and does so simply by not switching off input on the button
up event following a double click.    Ahhh, but recall that you can't just turn audio input on
and off like a light switch.    It takes a while for the input buffers to rattle through the
message queue and all the assorted dust to settle.    So when we received the double click
and subsequent button up event, audio input was still in the process of being terminated (as
a result of the first button up event), and that's no time to go and re-open it.

What to do?    Well, here comes another brutal hack necessitated by irrational Microsoft
design.    When we process an WM_LBUTTONUP in CONNECT.C, we no longer close audio
input to the connection.    Instead, we set a timer (does this sound familiar?) running to
expire GetDoubleClickTime() after the button was released.    If we see a
WM_LBUTTONDBLCLK an its subsequent WM_LBUTTONUP before the timer expires, we
revoke the time with KillTimer() and leave audio input active.    If the timer goes off without
our having seen further mouse action, audio input to the connection is shut off at that time
through the expedient of faking a space bar input to the message loop.    This is
spectacularly ugly but it gets the job done.

12 March 1996

I fired up the Large Software Collider for another day of flailing away with Visual C++ 4.0
under Windows 95.    I discovered that the last single remaining piece of non-paranoid code
in RTPACKET.C, the part that innocently stores the 16 bit length into RTCP SDES items, ran
afoul of Visual C++'s talent for invariably making the wrong choice when given the slightest
latitude for doing so.    In this case we had a structure with several bit fields which added up
to 16 bits followed by an unsigned short.    Visual C++ padded the bit fields (which we are
not use anyway, since it would store them in backwards order) to a 32 bit boundary before
generating the short.    I changed the code to use hard-coded byte numbers and casts
everywhere, essentially treating Visual C++ as an assembler, which is approximately its
intellectual level.

Integrated recent fixes from the 16 bit development stream to bring the source streams into
sync.    From now on the 32 bit version on the LSC will be the primary stream, with the 16 bit
version automatically recompiled from the common source.

In the process of being led down the garden path by a bug in BoundsChecker "Compile-Time
Instrumentation" (GlobalFreePtr() in windowsx.h in WIN32 generates bogus bad handle
messages), I cleaned up some code belch in FRAME.C by eliminating the dynamic allocation
and free of the PCMWAVEFORMAT structure in various functions.    The structure is small;
there's no reason not to just put it on the stack and get rid of all the error tests, frees on
various paths, etc. ugly etc.

Simple file I/O is so ubquitous in programs that it was an irresistable target for the Giant Rat
of Redmond.    Now you're supposed to open files using CreateFile function (elegant choice of
name, don't you think), which takes 6 pages to document in the API book.    The old offically
sanctioned way of dealing with file, _lopen(), _lread(), etc., which worked perfectly well, are
still there, but they've gratuitously deleted the definition of READ_WRITE, which was how
you were supposed to specify that mode.    I examined WINDOWS.H for Windows 3.1 and
discovered that OF_READWRITE, the new officially sanctioned name, has the same numerical
value and is defined in 3.1's WINDOWS.H, so I just changed the references in CONNECT.C
and FRAME.C to use that symbol in order to compile on both 16 and 32 bit without an ugly
#ifdef.    This, and removing an incorrect earlier fix which called _sopen (yet another entirely
incompatible way of doing I/O) instead of _lopen, got sound files and ring working on 32 bit.

14 March 1996

The Look Who's Listening dialogues weren't working because they were testing for edit
control notifications using hard-coded Win 3.1 notification codes.    I changed them to use
WM_COMMAND_NOTIFY, which fetches the notification code from the correct place for both
16 and 32 bit builds.    Fixes were needed in both LWL.C and DIALOGS.C.

The handling of the WM_MDIACTIVATE message in COMMAND.C had to be revised due to the

"packing" change in its arguments between Win 16 and 32.    After threading through the lies
and disinformation provided by what purports to be a guide to porting code to 32 bit
Windows (found on the current MSDN CD-ROM), I fixed the code to work correctly on both 16
and 32 bit.

Found and "fixed" (in other words uglified) two more places in RTPACKET.C where the
straightforward code from the RTP standard ran afoul of Visual C++ 4.0's eccentric ideas
about structure alignment (which, as far as I know, no other 32 bit compiler seems to share).

When I disabled modem support, I forgot that CRC.C was used only by the modem and didn't
disable it as well, which wasted a little data segment space.    Fixed.

To avoid future disasters stemming from unwarranted trust in Microsoft compilers, I #ifdef-ed
out the definitions of the RTP and RTCP packet structures in RTP.H, leaving them for
documentation only.    Guess what?    Another bunch of field references popped out in LWL.C
and RTPACKET.C.    Most were harmless (at least on VC 4.0), but the ones that weren't
explained why LWL searches weren't working. So, as far as I can tell, LWL publish and search
are now both working again.

BoundsChecker was nattering about how we terminate the main MDI frame window at exit
time.    I added a handler for WM_NCDESTROY to zero the hwndMDIClient handle so a
(harmless) "bad window handle" is not passed to DefFrameProc() in FRAME.C.

Who you gonna call?    BoundsChecker!!!    Staked a memory leak in the processing of VAT
IDLIST packets in FRAME.C.    If an IDLIST packet was identical to the last displayed, it was
never released.    Fixed.

Memo to file: BoundsChecker will report several memory leaks of buffers allocated by
malloc() by the various libraries.    These are nothing to worry about, as they are allocated on
the local heap and do not leave resources in use after Speak Freely exits.    There is no
reason to complicate the termination code purely to appease BoundsChecker.

15 March 1996

When I made the WAVEFORMAT structures automatic rather than dynamically allocated, I
forgot to delete the error message for allocation failure.    It's gone.

If something blew up in processing at WM_CREATE time, it's possible the WM_DESTROY
handler could try to walk through the MDI windows using a NULL MDI client window handle.   
Fixed.

The WM_CREATE handler, onCreate() in FRAME.C, returned 0 in case of error, not -1 as
specified by the Windows API book.    Heaven knows what you are really supposed to do
since returning 0, the documented value for success, actually terminates the application. So,
I return 1 just like I used to, which has the merit of working.

Under WIN32, our WinMain() function in NETFONE.C is not informed if a copy of Speak Freely
is already executing.    In order to implement the trick of double clicking an .SFX file to open
a connection in an existing copy of Speak Freely, I had to add a FindWindow() call which
searches for a preexisting window with our class name to detect if Speak Freely is already
running.    Because socket ports and audio hardware are non-shared resources, it is not
possible to run more than one copy of Speak Freely at a time.

Connections established on the command line with non-standard ports were not working
because the auxiliary socket must be created after the hwndMDIFrame window creation is

complete.    I moved the command line processing from the main window onCreate() in
FRAME.C back to INIT.C so it's done after the frame window is created and its handle
therefore available.

Added an indication to the title in the About dialogue as to whether this is a 16 or 32 bit
version.

If something screwed up in the process of creating a connection which displayed an alert, it
was possible for the not-yet-initialised connection to receive a timer message which caused
it to try to send a heartbeat with the protocol not yet specified, which referenced a NULL
pointer.    Fixed.

16 March 1996

Transmission of face images to remote hosts was broken in 32 bit because I accidentally
used _lseek instead of _llseek in FACE.C to position the read pointer in the face file.    You can
away with this on Windows 3.1, but not in 32 bit.    Fixed.

Modified the code that paints connection windows in CONNECT.C and the MDI child window
class definition to adopt the "new look" of Windows 95 dialogue boxes.    The old connection
window looked too garish alongside "grey flannel" Windows 95.    This only happens for 32 bit
builds.

Turned off some no-longer-necessary debug mode code from SPEAKER.C which could conflict
with the display of faces and participants in a multi-party conference.

No call to desdone() was made at application termination time, which orphaned several
buffers allocated by desinit().    Since these were local storage allocated by malloc(), no harm
was done, but I added a call to desdone() to get rid of the natters from BoundsChecker.

Discovered that several of the libraries were being explicitly loaded from their home
subdirectories rather than being dynamically selected based on the configuration.    This
explained why DES encryption wasn't working for Speak Freely protocol--the current library
was never loaded!    I fixed the search paths so that the current configuration libraries will
always be used.

Deleted the "Bounds Checker" configurations which led to gnarly ~n ZIP names.    If I decide
to try Bounds Checker compile-time instrumentation again (like, when it really works), I'll use
a portable directory name like BOUNDER.

The code which protects against OutputDebugString()s left in release version ran afoul of
WIN32's defining this as a macro for its own evil purposes.    I added a #undef to get rid of of
any preexisting macro so our version will prevail without warning messages.

17 March 1996

Can you believe it?    If you make an association between a file type and your application and
double click on a long file name like "D:\Connections\Jean-Pascal Bauer.sfx" your application
gets launched with the file name on the command line not quoted!    Blown away is twenty
years of Unix and MS-DOS convention that command line arguments are separated by
spaces.    Thanks, Billy boy.    Okay, we have to handle this somehow, so I changed the
command line parser in INIT.C and FRAME.C to, on 32 bit builds only, use a comma as the
delimiter between multiple connection files on the command line.    I am quite certain that
Murkysoft will add quotes around long file names in a future "upgrade", at which time every
application which programmed around the current idiocy will stop working.    I suppose one

could anticipate this dagger from the future and parse quoted file names in the present, but
I am not going to stoop to speculative defensive programming.

I discovered the reason we were getting (harmless) "Can't open include file messages" when
attempting to re-scan dependencies was the zany way Build/Settings/Resources parses the
list of include directories. I twiddled the list delimiters until it generated a correct command
line to eliminate the natter.

All the help buttons in the dialogues were broken due to the negative ID_HELP (used to avoid
having a different help ID for every dialogue, thank you very much resource compiler) being
widened to an int without sign extension in the WM_COMMAND handler.    I added a cast to
(short) to restore proper sign extension in both 16 and 32 bit builds.

Made a new SF32.HPJ file in the help directory that allows recompilation with the Visual C 4.0
HCW help compiler.

Remade the help file screen shot bitmaps for Windows 95 appearance. These are kept in a
new HELP\BMP32 directory which is searched first by SF32.HPJ.

18 March 1996

Added a new Help/Performance Benchmark dialogue which displays performance of the
various compression and encryption modes as a percentage of the real-time sample rate.   
The goal is to help people decide which modes their computer can handle and to evaluate
different optimisations, compiler code generation options, etc.

Integrated the NSA LPC-10 codec into a new LPC-10 subdirectory and added code to
SPEAKER.C to support decompressing packets received in LPC-10.    Transmission isn't
implemented yet.

19 March 1996

Two references to multicastJoin in CONNECT.C weren't disabled when IP_MAX_MEMBERSHIPS
isn't defined, indicating a brain-dead Winsock that doesn't support multicast.

LPC-10 compression on output is now integrated into CONNECT.C.

Added LPC-10 compression to the performance benchmark.

21 March 1996

Integrated a fix from the Unix version for bad decryption when both a key file and another
encryption mode that requires padding to an 8 byte frame.    Since the padding has been
done before the key file encryption is performed, key file decryption in SPEAKER.C needs to
pad to guarantee the entire frame for subsequent decryption is properly decoded.

Integrated the new (slightly) improved Simple compression module, RATE.C, from the Unix
version.

25 March 1996

Hitting Esc or clicking the "X" button didn't close the Performance Benchmark dialogue
because there wasn't an IDCANCEL case in the dialogue procedure.    Fixed.

Added a Help button to the Benchmark dialogue with appropriate link to the topic in the help

file.

6.1-Alpha 1 prerelease.

3 April 1996

The new simple compression code (RATE.C) broke the answering machine's replay of simple
compressed packets.    For various historical reasons, all poor, simple compression was
handled differently than all other types in SPEAKER.C: simple compressed packets were not
expanded in place as for GSM, LPC, etc., but left compressed when written to the answering
machine and decompressed again when played.    This was fine prior to RATE.C, since no
state information was needed to perform the decompression, but with the new algorithm the
connection data structure must be available to decompress and it is not, of course, around
when one plays back a message from the answering machine.    I modified the simple
decompression code in SPEAKER.C to work like all other forms of compression and expand
the sound buffer in place, then removed the hack from ANSWER.C which allowed the
fComp2X bit to pass through to the answering machine file in answerSave().    (Reported by
Marc de Groot).

Deleted some long-obsolete debugging code in SPEAKER.C, already turned off with #ifdef
OBSOLETE.

A race condition existed in ANSWER.C which could lead to a General Protection Fault from an
access through a null pointer if the answering machine was either popped up or closed while
audio was being received from the network.    There was a possibility that answerSave()
would decide the answering machine dialogue was up because hDlgAnswer was non-NULL,
then try to add the new message to msgTable before the dialogue procedure got a chance to
allocate the table.    I added a test in answerSave() to only consider the answering machine
dialogue up after it has finished its WM_INITDIALOG processing and the message table is
allocated.    (Reported by Marc de Groot.)

Sending with PGP encryption failed when creating the session key temporary file due to an
incompatible change in the GetTempFileName() function in Win32.    Now you have to call
GetTempPath() to find out where to stick the temp file.    The obvious upward-compatible way
to handle the 16 bit Windows API call clearly eluded the "Monkey-C, Monkey-doo" back at the
slug ranch.    (Reported by John Deters).

The same temporary directory diddling had to be done in pgpSetSessionKey() in FRAME.C
handle the New Official Temporary Directory Nomenclature Mechanism.

4 April 1996

Okay, I get it now...the reason the MS-DOS window hangs with the annoying alert box is that
PGP was being run directly rather then through SFPGP.PIF, which is marked "Close on exit".   
The PIF was not being used, in turn, thanks to the fact that under Visual C 4, the program
you're working on is executed from the WinDebug or WinRel (or whatever) directory, not the
project directory where SFPGP.PIF lives.    This shouldn't be a problem in the production
version since the .EXE and .PIF will be in the same archive.    To facilitate testing of the
development version, I copied SFPGP.PIF into both debug and release directories.    Automatic
PGP encryption and decryption of session keys now seems to work OK.

After a day chasing the mysterious floating point error on a 486DX-33 when running the LPC
decompression phase of the benchmark (reported by Bill Oatman), and correlating what was
seen in Speak Freely with the sporadic reports of floating point errors in Home Planet which
appear on 486DX machines as soon as a user installs Windows 95 (even if Home Planet has

been running perfectly on the same machine for years under Windows 3.x), I am now
persuaded there is something wrong in the management of the coprocessor/FPU control
word related to Windows 95, which perhaps manifests itself only on slower (and maybe
therefore earlier step revision) 486DX machines.    Please allow me to explain....    According
to Mushysoft's documentation for all C libraries dating back to Visual C 1, when a program
receives control, all floating point exceptions are masked; in other words the FPU generates
a NaN, Infinity, etc. instead of causing an interrupt.    Here's the statement from the
documentation for the _control87() function in the Visual C 4 online help:

Note The run-time libraries mask all floating-point
 exceptions by default.

Pretty unambiguous, huh?    But if you believe that, then there is no way you can get a
floating point exception interrupt at all, unless you use _control87() to deliberately unmask
one or more exceptions which, I can assure you, I'm not doing.    I did build a version of
Speak Freely which unmasked exceptions and discovered that the exception which popped
out of LPC.C's uncompressing phase was a completely harmless denormalised and/or
underflow where the default (exception masked) behaviour of the FPU is precisely what is
intended.

But this particular folder of the Hex Files now contains a number of unambiguous reports
from a variety of people, affecting two different applications, which contradict the
expectation of no interrupts. Naturally, this problem does not manifest itself on any machine
I have tested on, including a 486DX.    A search of Mickeysoft's product support database for
all the obvious keywords, examination of the known bug list for Visual C++ 4.0, and errata
for the 486 on Intel's Web site came up blank on anything seemingly related to a problem of
this nature.

What to do?    Well, like every other time something completely impossible happens on a
Mangysoft platform, there's little one can do other than pile on defensive workarounds and
add instrumentation to pin down the bug.    In this case, I added a call on _control87() in the
application initialisation code in WinMain() (NETFONE.C) which explicitly masks all floating
point exceptions, even though they're supposed to already be masked when we receive
control.    In addition, I added temporary code, executed when you start the performance
benchmark, which verifies that the FPU is in the correct modes according to the value
returned by _control87(0, 0).    If it isn't, a warning is issued and an attempt made to reset
the modes to all masked.    If this fails to do so, a second warning is issued.    The output from
these debug message boxes should, on a machine which exhibits the failure, point much
more directly at the source of the problem.

August 10, 1997 (Brian Wiles)

Brian C. Wiles took existing Speak Freely source code, and began his modifications.

Added outgoing message to answering machine, a feature that should have been there a
long time ago when the answering machine was added.

Eventually, if I can't find source code out there for a 32-bit video phone, I will be adding that
to Speak Freely.    Maybe we should call it "See Clearly".    I'd love that!    Of course, it's
probably already taken.

November 30, 1997 (Brian Wiles)

I added a conference feature which was sorely lacking in John Walker's version of Speak
Freely.    It allows you to talk to multiple people at the same time without having to use

multicasting.

I took the broadcast idea, and added another mode similar to it.    The main difference is that
it does not close a connection or open a new one when someone sends it a sound packet like
it does for broadcast mode. This allows people to talk to you while you're sending data out to
others at the same time.

Here are the differences between broadcast and normal mode as compared to the new
conference mode, this giving a clearer picture of the shortcomings of each mode and what
conference mode offers:

                Differences from normal mode

                *    Sends to multiple clients at the same time.

                Differences from Broadcast mode

                *    Plays incoming sound.
                *    Won't disconnect clients or subscribe new clients.

I still have to test this with 2 other people, but it works well with 2 echo servers.    In my test
conferencing rpcp.mit.edu and echo.fourmilab.ch, I found GSM compression will work for
about 10 seconds on a 28.8 modem until it overflows the modem, causing a long silence.   
LPC compression works good, except when 2 people are talking at the same time, it has a lot
of pops in the sound playback.    LPC 10 compression works the best, but has lower quality
than GSM compression.

Next, I want to adapt Speak Freely to blend incoming sounds together, much like combining
wave files, so that the sound plays back like a real conference call.

April 25, 1998 (Brian Wiles)

Contacted John Walker, and asked for OK to take over Speak Freely project since it had been
2 years since he last updated it.    He agreed.

April 26, 1998 (Brian Wiles)

Changed About box to Release 7.0 beta 1.

October 3, 1998 (Brian Wiles)

Added Echo Mode to act like echo server.    Also added defines for toggling certain features
such as broadcasting and the new (barely tested) conference and echo modes.

October 23, 1998 (Brian Wiles)
*** 7.0 beta 1 ***

Cleaned up source for beta distribution on web site.    I still need to add file browse dialog for
answering machine outgoing message.

24 October 1998 (John Walker)

In order to reduce confusion among the ICQ crowd, I added the ability to specify one or more
IP addresses and optional ports on the SPEAKFRE command line.    You can mix connection
files and IP addresses, for example:

speakfre echo.sfx,192.168.111.14,192.168.201.133/3074

Connections specified as IP addresses will use the last-saved connection parameters from
the INI file.    In the process of adding this gimmick, I discovered that I'd never gotten around
to replacing the in-line command line processing in INIT.C with a call to the more general
ParseCommandLine in FRAME.C (it never made any difference until the IP number code was
added).    I disabled the obsolete code in INIT.C and replaced it with a call on
ParseCommandLine.

This was the first build with Monkey C 5.0, which naturally generated wrong code for the
LPC10 compression code, with the symptom that it transmitted OK but received only silence.
I changed the optimisation options for release builds to "Default" from "Maximise Speed"
(well, it doesn't say "Maximise Speed while Working Properly", does it?) and that seems to
have worked around this Microsoft compiler bug.

Then it was time to update the log file, whereupon we discover that the version of Weird for
Windows included with Microsoft Orifice 97 generates RTF which the Help Compiler (HCW)
shipped with Monkey C 5.0 cannot read and deems "corrupt".    Well, I'll agree with that as a
general assessment of Microsoft's commitment to compatibility.    So, the log file had to be
updated using Word 95 before the help compiler would digest it.

December 4, 1998 (Brian Wiles)

Fixed a bug where if the answering machine's outgoing message couldn't be opened,
multiple errors would pop up at the rate of once per second without stopping.

Added a check to make sure the outgoing message was only sent once per connection.    This
also had the added effect of fixing the above bug.

Added a browse button and better descriptions for the answering machine outgoing
message.    There is no need to have an outgoing message, but it will be sent if it exists.

December 5, 1998    (Brian Wiles)

Fixed bug in GIF reading code in DoExtension() that would read forever instead of properly
stopping at the end of a GIF89a extension block, causing an illegal operation.    This would
happen for any GIF image that contained things like transparancey information or
comments.    Thus, this problem would occur on a lot (if not most) GIF images used as face
files.    I'm guessing that this will fix a big chunk of the crashes that SF users have reported.

Added better implementation of the SpeakICQ patch for ICQ to use Speak Freely.    The new
function also checks the current path of the Speak Freely executable and prompts the user if
they want to update it.    As long as Mirabilis doesn't change the format they store the
registry keys in, this should eliminate the need for any separate patch or any other user
intervention.

December 6, 1998 (Brian Wiles)
*** 7.0 beta 2 ***

Updated the help file (with Notepad so it wouldn't "corrupt" it) to change the web site
address and fix a couple missing words in the introduction section.

January 25, 1999 (Brian Wiles)
*** 7.0 beta 3 ***

Added user's full name to connection profile in case nickname is blank from ICQ.    This was
suggested by Birger Fricke to fix the "connection profile is invalid" error some ICQ users were
experiencing.

2 March 1999 (John Walker)

Based on sporadic reports that Windows 9x refused to load programs flagged with a native
language other than that of the user's own locale, I modified all the resources to be flagged
"Neutral" so they should work on any locale whatsoever.    Previously, they were flagged as
"French (Switzerland)", not because I requested such a constraint, but because always-
helpful Monkey C took it upon itself to declare that anything produced in that locale must be
restricted to use therein.    Now if Microsoft products only worked within a 100 km radius of
Redmond...but I jest...they don't even work acceptably within their own corporate campus.

Added a new Blowfish subdirectory containing the eponymous encryption toolkit, based on
the SSLeay package.    Blowfish is now a sub-project of the Speakfre workspace, and is
included in the C and Resource include paths and the link library search paths.

Implemented Blowfish encryption mode.    A 16 byte key is generated from the given key
string as for IDEA, and the separate Blowfish key can be saved in the connection file.    As
before, Blowfish can be used in conjunction with any other set of encryption modes (but not
with VAT or RTP protocols, as they do not presently support that form of encryption).    Due to
horrid overlaps in the Options/Connection dialogue, I'll need to hand-edit the .rc file to
restore a rational tab order to the items in it--you can always tell a GUI: it's sticky when you
touch it, and it makes you regret ever going near that tar-baby.

6 March 1999 (John Walker)

Added Blowfish to the benchmark dialogue in bench.c.    In the process I discovered that the
encryption benchmarks were inconsistent in how they accounted for key generation time--
some set the key in the inner loop while other set it only once per run.    This can make a
significant difference for an algorithm like Blowfish where key generation is deliberately slow
and complicated in order to make actual encryption or decryption faster.    Given that in
normal operation Speak Freely only generates a key for a connection one time, when the key
is specified by the Options/Connection dialogue, I decided to standardise the encryption
benchmarks to only generate one key per run.

Cleaned up some gnarly Win16 _fmemset, etc. stuff in bench.c.

Changed some unnecessarily named items in the benchmark dialogue
definition in the resource file to IDC_STATIC.

Deleted unused symbols in resource includes.

Deleted unused handlers for two obsolete menu items in Frame.c.

7 March 1999 (John Walker)

Finished adding text chat support.    Here's how it works.    Text chat occurs in a new
modeless dialogue whose parent is the main MDI frame window, hwndMDIFrame.    The
dialogue procedure and support code is in the new file Chat.c.    The dialogue contains a
multiline read-only text edit box in which the conversation occurs and a single-line input box
where the user can compose lines to be sent.    When the user presses Return in this input
line or presses the Send button to its right, a new WM_CHAT_TEXT_SEND (in the WM_USER

range) is sent to the hwndMDIFrame window (Frame.c), which then iterates over all its child
connection windows and forwards the WM_CHAT_TEXT_SEND message to them.    The
connection windows (Connect.c), in turn, on receiving the WM_CHAT_TEXT_SEND message,
assemble an RTCP APP message of type RTCP_APP_TEXT_CHAT containing the text and call
sendSessionCtrl() to transmit it on the control port.

On the receiving end, controlInput() in Frame.c detects APP messages with a content name
of RTCP_APP_TEXT_CHAT, copies the payload to a newly allocated string buffer, and
chatLog() in Chat.c to display it in the scrolling area.    chatLog() is passed the best available
user identity for the connection from which the chat text arrived, in descending order: user
name, E-mail address, host name, or IP address.    If the text chat dialogue isn't already
displayed, chatLog() launches it, adds the received line to the scrolling area, and releases
the string buffer.

Text chat is supported only when sending in Speak Freely protocol; a warning is displayed if
you try to send chat text when the protocol is set to RTP or VAT.

Moved strings in the ICQ setup in Init.c which may need to be localised to the string table in
the resource file.    Strings which do not require localisation (registry keys, etc.) remain in the
source file.

8 March 1999 (John Walker)

The code in Chat.c which copied text chat received from another site into the transcript area
wasn't properly obtaining the length of the text already there, which could result in text
appearing at other than the end of the transcript.    Fixed.

Commented out the definition of CRYPTO in Netfone.h and added it to the project-specified
includes for Debug and Release builds.    Created a new "No Crypto Release" configuration
which is identical to Release except it does not define Crypto.    The permits maintaining
Spook Freely in its own build directory without the need to modify the header file when it
needs to be updated.    Naturally, this required an hour of manual labour creating new
configurations for each of the libraries included in the non-crypto build and entering rational
settings for each, since Monkey C can always be counted on to default any value to
something idiotic.    Intermediate and output files for non-crypto builds will be found in the
"Nocrypto" directory of each source directory.    Note that none of the subdirectories actually
contains code which depends on the setting of CRYPTO, but I know of now way to re-use the
libraries from a Release build without hammering in explicit path names.

When I tried a non-crypto build I discovered I'd been a bit too aggressive in getting rid of
"unused" resource symbols--I deleted the tags used to disable the crypto-related title strings
in the performance benchmark dialogue (Bench.c).    I put the symbols back, and added
Blowfish to the fields disabled for a non-crypto build.

Release 7.0 beta 4.

10 March 1999 (John Walker)

The code in Frame.c's MM_WIM_DATA handler which attempts to recover from overruns
processing wave input data contained two subtle errors which could be encountered only
when queueing failed and a buffer actually had to be discarded.    The discarded buffer was
not placed back onto the queue for wave input, and after being discarded the code failed to
break from the processing sequence.    If anybody actually encountered this error, they
probably wouldn't notice because its symptom would have been identical to that of the
situation it's intended to handle--break-ups in transmitted audio due to a CPU not fast

enough for the selected compression and encryption modes.    Fixed.

19 March 1999 (John Walker)

Modified Idea/Idea.c to define IDEA32 on WIN32 builds, which got rid of 12 (harmless)
compiler warning messages.    In theory this should speed up IDEA on 32 bit processors, but
according to the benchmark it made little if any difference.

Added prototypes and casts to eliminate all the warning messages when building the Lpc10
directory.    Almost all of the warnings were harmless implicit narrowing in assignments, all of
which are now explicitly cast.

Cleaned up harmless compiler warnings in the LPC directory and removed some Win16 gnarl
which can now be dispensed with.

Cleaned up harmless compiler warnings in the GSM directory. Speak Freely now builds with
any warnings on Monkey C 5.0 with Warning Level 3.    Most of the libraries build with no
warnings at level 4, but since Microsoft's own Windows header files generate hundreds of
warnings at this level, it is impractical to adopt that level for the project as a whole.

Modified InitApplication() in Init.c to use the gimmick whereby you can specify a background
brush colour as a COLOR_xxx + 1 and have RegisterClass create the brush for you.    This
gets rid of a harmless (and incorrect, as a matter of fact) natter from Bounds Checker.   
Besides, it's simpler to do it this way.

Added code to the WM_DESTROY handler in Frame.c to release the LWL and RTP SDES
packets as well as the VAT ID packet.    This isn't really necessary (and wasn't even on Win16,
since the packets in question were allocated with malloc(), which meant they were in local
memory), but it gets rid of three more natters from Bounds Checker.

The WM_DESTROY handler in Frame.c wasn't performing a closesocket() on sCommand and
sControl, the sockets it uses to listen for packets from the network on the data and control
ports.    This didn't do any harm, but it did create a Bounds Checker natter since the first
socket() call allocates a small buffer which isn't released until every open socket has been
closed (the so-called WASCleanup() can't be bothered to clean up this buffer, evidently).    I
added ResetSocket calls for these two sockets, guaranteeing that they're closed and the
buffer released, solely to get rid of the squawk.

At this point, the only remaining Bounds Checker nit is a buffer allocated within the C library
function tzset() which is never released by design.    The only way to get rid of this is to
replace all references to the <time.h> functions with their ugly Win32 equivalents.    I'll pass.

When a local loopback connection was closed, loop_flush() in Loopback.c was called before
the control port Bye message was sent, creating an orphaned buffer (which did no harm, but
irritated Bounds Checker).    I moved the loop_flush() in the WM_CLEAN_UP_YOUR_ACT
message handler in Connect.c so that it has a chance to release the Bye message.

20 March 1999 (John Walker)

Added "Speak Freely: " prefix to the titles of all dialogue boxes in which it will fit.

Made the Modem Settings dialogue and the two "Modem Rant" dialogues conditional on
"MODEM" being defined.    This will keep them from appearing as resources in normal builds. 
I'll rip them out entirely when I get around to liquidating the ill-starred MODEM connection
code.

The code which edited the length of the output queue in the Extended Status (Propeller-
head) dialogue played a perfectly legal but slightly underhanded trick of swapping in a
format with no edit phrase for the queue length when the queue was empty, still including
the queue length argument in the wsprintf() call.    Unfortunately, this apparent discrepancy
was caught by Bounds Checker, with the unfortunate consequence that it popped up an
error box every time the Extended Status dialogue was updated and the output queue was
empty.    All these interruptions got in the way of testing other aspects of the program under
Bounds Checker, so I re-phrased the code in question to appease Bounds Checker.    The
same fix was also required in the MM_WOM_DONE message handler in Frame.c, which
decrements the output queue length and updates the Extended Status dialogue if it is
displayed, and also in Speaker.c which increments the queue length when adding a sound
buffer to it.

21 March 1999 (John Walker)

Added Audio Monitor parameters to the speakfre.ini settings file so they're remembered
from session to session.

Cleaned up some more Win16 legacy gnarl in Frame.c.

22 March 1999 (John Walker)

Ripped out obsolete Win16 MakeProcInstance from Bench.c, Chat.c, Dialogs.c, Face.c,
Frame.c, and Lwl.c.    Changes to references to MakeProcInstance objects required
modifications to Answer.c and Spectral.c as well.

Phonebook/Search in Lwl.c wouldn't submit a blank query when the Return key was pressed
with the query string in focus, but would if the Search button was pressed.    One may now
submit a blank query either way.

Ripped out VOX_GSM code in Dialogs.c.    We're never going to use it, so why go on carrying
it around?

29 March 1999 (John Walker)

Added backing bitmaps to the spectrum and energy envelope displays in Spectral.c.    This
cleans up the paint code and guarantees a fast, complete repaint if the window is exposed
after having been obscured.

Deleted the now-obsolete NETFONE.DEF file.

Removed obsolete VOX_GSM code from Vox.c, Vox.h, Frame.c, and Speaker.c.

Ripped out some more Win16 gnarl in Ulaw.c and Ulaw.h.

Removed Win16 code from Netfone.c, Netfone.h, Speaker.c, Dialogs.c, Connect, and Init.c.

Deleted some disabled and long obsolete code in Lwl.c.

31 March 1999 (John Walker)

Made propeller-head average energy and power spectrum scale display in the Audio Monitor
dialogue conditional on _DEBUG being defined.

Release 7.0 beta 5.

2 April 1999 (John Walker)

As reported by Brian C. Wiles, one of the string table messages for ICQ setup was truncated
because it was longer (108 characters) than the buffer in rstring() in Utility.c to retrieve it.    I
increased the buffer in rstring() to 132 characters.    Also, rstring() incorrectly tested the
result from LoadString as negative when a string is not found (this should never happen, of
course).    I corrected it to use the proper status of zero for a missing string.

3 April 1999 (John Walker)

When displaying audio received from the network, playSound() in Speaker.c was passing the
data to spectrumUpdate() at the most convenient point--when all decryption and
decompression is done, at which time the sound buffer is known to contain 8 bit mu-law
samples.    Unfortunately, due to jitter compensation, delays in computing the FFT, etc. this
can be some time before the sound buffer is actually played, creating a "time parallax"
between the audio one hears and the spectrum and envelope displays.    I modified
playSound() to, when the audio monitor is open and audio from the network is to be
displayed, create a copy of the original sound buffer with a WORD at the beginning giving its
length, and hide a pointer to it at the end of the WAVEHDR for the audio output.    When the
buffer has completed playing, the MM_WOM_DONE message handler in Frame.c passes this
buffer to spectrumUpdate() and then releases.    This does use more memory, but eliminates
the time parallax.    Note that the auxiliary sample buffer is allocated only if actually needed;
a NULL pointer indicates no auxiliary buffer is attached to the WAVEHDR.

The envelope display in Spectral.c didn't account for the one-pixel frame included in its
client rectangle, resulting in the curious flash of the leftmost line in the spectrum as it was
painted and then overwritten by the refresh of the frame.    Fixed.    The same problem was
present in the spectrum display, with less obvious consequences; fixed there also.

I added computation of the maximum energy in a packet to energy() in Spectral.c, and
modified the envelope display so draw a red flag at the edges of the envelope window for
any packet containing a sample which clipped.

Implemented fixes to Lpc/Lpc.c forwarded by Enzo Michelangeli.    These should eliminate
distortion primarily due to overflows in computing parameters.    LPC still doesn't sound
great, but it shouldn't break up so badly.    These fixes haven't yet been integrated in the
Unix version, but interoperate with un-fixed LPC CODECs so there's no problem with Unix or
earlier Windows versions.

Cleaned up some Win16 legacy _fmemxxx calls in Speaker.c, as well as some obsolete _huge
and FAR declarations.

Sending .au format audio files did not update the audio monitor.    This was due to the .au
transmission code foolishly avoiding createSoundBuffer() in the interest of "efficiency" (as if
anything that ends up calling the Windows API could be "efficient").    I ripped out the "roll-
your-own sound buffer" code and added logic to createSoundBuffer() in Connect.c and
spectrumUpdate() in Spectral.c to interpret an align argument of 0 to mean that the sound
buffer already contains mu-law samples at a rate of 8000 per second.

Added radio buttons to the Audio Monitor dialogue to select whether the maximum energy
per packet (handy for setting input gain to avoid clipping) or the RMS average is shown in
the envelope panel.    The clipping indicator is shown regardless of the setting of these
buttons, whose setting is saved in the application .INI file.

4 April 1999 (John Walker)

Cleaned up some obsolete FAR declarations in Netfone.h, Utility.c, Dialogs.c, Loopback.c,
Netfone.c, Rate.c, Xdsub.c.    Netfone.h is now FAR-free.

Converted _fmemxxx calls in Loopback.c to memxxx.

Made declarations of CRC and modem open/close functions in Netfone.h conditional on
MODEM, marking them more clearly for elimination in the future.

Fixed a couple of TRACE_FACE #ifdef/#endif pairs in Face.c which had accidentally been
indented.    This works OK in Monkey C but looks ugly.

Release 7.0 beta 6.

5 April 1999 (John Walker)

RZG reported that the "t" at the end of the "Input" legend in the Text Chat dialogue box was
truncated.    This doesn't happen on my machine, but it's due to Monkey C's moronic default
of sizing static text boxes to the precise size of their content on the machine on which they
are created.    I expanded the boxes containing both the "Input" and "Transcript" legends to
include adequate space for any reasonable font selection.

RZG also observed that since the common OPENFILE dialogue doesn't allow you to enter a
blank file name, there was no way to disable an outgoing answering machine message other
than editing the SPEAKFRE.INI file.    I added "Clear" buttons for both the outgoing and
incoming file names in the Answer.c dialogue handler.

The answering machine displayed only the last two digits of the year when showing the time
and date of a message.    I modified it to use ISO 8601 "yyyy-mm-dd" format.    The format
used is Y10K, etc. compatible.

The "destest" project, not a part of Speak Freely but used to certify the correct operation of
the DES encryption used in Speak Freely (but not RTP and VAT) protocol generated a number
of warning messages at compile time and failed to run because its test data file was not
supplied on the command line.    In addition, if you did manually run the program, it reported
errors because PERMUTATION was not defined when compiling Des.c, which the test data
require.    All fixed.    This has no impact on Speak Freely whatsoever; it's just sweeping out
an odd closet.

Release 7.0 beta 7.

April 18, 1999 (Brian C. Wiles)

Added splash screen before main window is displayed.    It contains a status line at the
bottom in case the program hangs while starting.

April 29, 1999 (Brian C. Wiles)

Started adding toolbar to main window.    The buttons only have text for right now until I
have some decent pictures for them.

May 1, 1999 (Brian C. Wiles)

Changed toolbar to only be enabled by defining TOOLBAR.    The reason for this is because
Monkeysoft's operating system isn't properly passing mouse messages such as
WM_MOUSEMOVE and WM_LBUTTONDOWN to the main MDI parent window.    The messages
are, in fact, posted to the MessageLoop() function, but disappear into Windows after that.   
The only thing I can figure out on that so far is that Windows doesn't, by default, pass mouse
messages to an MDI frame.    After all, why on Earth (or whatever planet the Win32
developers are from) would anyone ever want to do such a thing.    They're thinking is, "If we
don't use that functionality, no one else will either."    This is what makes Windows
programming so much fun!

May 2, 1999 (Brian C. Wiles)
    *** Release 7.0 Beta 8 ***

I finished testing Beta 8 with John Walker to make sure it still works the way it should.

4 May 1999 (John Walker)

The "No Crypto" build failed because "comctl32.lib" was not included in the link, causing the
InitCommonControls() call in Init.c, added to support the toolbar, to be undefined in the link. 
I added comctl32.lib to all configurations of the Speakfre project.

Since the toolbar is currently disabled, to avoid the risk somebody may have a DLL conflict
with the common controls DLL, which is only used when TOOLBAR is defined, I disabled the
call on InitCommonControls() in Init.c when TOOLBAR is not defined.

Fixed FILEVERSION and PRODUCTVERSION in the Version resource to be 7,0,8,0.

May 7, 1999 (Brian C. Wiles)

    Designed a fancy logo for the Splash Screen with a telephone about to plug into the Earth. 
To do this, I gathered the following images:

*    Starfield from John Walker's Terranova Screen Saver
*    Colorized snapshot taken today from GMS-5 Satellite from URL:
          http://rsd.gsfc.nasa.gov/goesg/earth/Weather/GMS-5/jpg/vis/4km/
*    An RJ-45 wall jack.
*    A CAT-5 Ethernet cable with connector on the end.
*    A telephone.

    I then used the GNU Image Manipulation Program (The GIMP) to piece together the images
and create the glowing text.    I don't think it's half bad for someone who's not a graphics
artist.

May 8, 1999 (Brian C. Wiles)

    Finished new logo and added it to the splash screen.    The image is 600x400x256
resolution, designed to be large enough to see on high resolutions while still viewable on a
640x480 (yuck) desktop.

May 9, 1999 (Brian C. Wiles)
    *** Release 7.0 ***

    Fixed ICQ detection bug where SetupICQ() would not update the settings if Speak Freely
was set as any other type of ICQ plugin besides "File", such as "ClientServer" where the
registry value would be "Client Path" instead of "Path".    Thanks to "Hauke D." for exporting

his ICQ registry settings for me.

10 May 1999 (John Walker)

Splash_DlgProc in Dialogs.c generated a Bounds Checker squawk when it tried to set the
IDC_ABOUT_TITLE field in the splash dialogue box, which existed only in the about dialogue
box.    Since the information in the IDC_ABOUT_TITLE is relevant, I added that field to the
splash dialogue box.

June 8, 1999 (Brian C. Wiles)
    *** Release 7.1 beta 1 ***

    Added IP address display to about dialog.    It will display "Unknown" if the user is not
connected to the Internet at the time.

    Fixed the splash dialog problems caused by the splash dialog having the DS_SYSMODAL
attribute.    This would hide initialization errors, thus appearing to lock up.

    Added "Save Message" option to answering machine.    Just hit the button after the desired
message has been played, and choose a .WAV file to write to.

June 9, 1999 (John Walker)

The Sflogo.bmp bitmap supplied with the 7.1 release was in 24 bit per pixel mode which not
only ballooned the size of the Speak Freely executable by more than a factor of two, it would
also fail to display properly on machines with 256 colour displays.    I converted it to a 256
colour bitmap like the one supplied with 7.0 which only inflates Speakfre.exe by a factor of
50%.

The Connection Options dialogue failed to mention Blowfish among the varieties of
encryption available.    Fixed.

