
RAS Round-up From the IBM 
Linux Technology Centre

IBM Linux Technology Centre

Richard J. Moore C.Eng, MIEE, 
MIEEE, BSc

richardj_moore@uk.ibm.com

10th May 2002 (v6) 

LinuxTag 2002
Karlsruhe

lt-330588670

Topics
1. Dynamic Probes
2. Kernel Hooks (GKHI)
3. Linux Event Logging for the Enterprise
4. Flexible Dump
5. System Trace
6. Community Adoption
7. Miscellaneous
8. What's Next
9. The Team - Contacts



Dynamic Probes (DProbes)

1.1 Dynamic Probes - What is it?

Low-level Universal Debugger
Operates in extreme conditions
Kernel/User, Interrupt/Task, Code/Data
For Service/Support Engineers on Production Systems
Monitors Low-level System Resources
Dynamic & Fully Automated
Trigger/Enabler for:
KDB, 
LKCD,
LTT,
evlog, 
Core Dump, 
Syslog, etc



1.2 Dynamic Probes - Where Used?

Service/Support Engineer's Facility
Live Systems
Non-recreatable Problems
No source modification required
Timing Sensitive Problems

Developer's Tool
Alternative to temporary printk/printf
Application, Driver, Kernel etc.
Timing Sensitive Problems

Test Tool
Fault Injection

1.3 Dynamic Probes - Mechanics

Global Breakpoint Probes
In-core code modification
Track by Inode-Offset
Avoid COW page privatization using physical address
Unlimited Concurrent Probes

Global Watchpoint Probes
Uses Debug Registers
Track by Virtual Address

Pre-probe Script Driven Probe Handler
RPN assembler language interpreter
HLL C-like Compiler



Kernel Hooks (GKHI)

2.1 Kernel Hooks - What are they?

Code locations where added function may be inserted

Supplement or replace standard function - subclassing

Function may not be known at build or run time

Function may load later therefore simple call cannot be used

Kernel has a particular need to implement hooks

Used by DProbes



2.2 Why not Patch?

Inconvenient
Multiple patches may require manual rework

Inflexible
Cannot select additional functions at run-time

Code Bloat
Additional functions always present
Obscures the prime function

2.3 Basic Requirements

Multiple hooks to co-exist within a module

Shared use of a hook by multiple exits

Sole use of a hook by a specific exit

Minimal impact to performance when a hook is unused

Exit must be able to operate as if inserted:
Have access to local variables
Terminate the function

Group of exits able to insert atomically

Need a Managed Interface



2.4 The Managed Interface

For Hooked Code:
A HOOK macro - indicate the hook location
hook_initialise - allows use of the hook
hook_terminate - disallows use of the hook

For Hook Exits:
hook_register - identifies exit routine and priority
hook_arm - activates group of exits
hook_disarm - deactivate group of exits
hook_deregister - removes exit from interface

Linux Event Logging
for the

Enterprise
(evlog)



3.1 evlog - What is it?

Comprehensive Logging Capability
Complies with draft POSIX SRASS standard
POSIX APIs
Structured Event Records
Optionally Captures Syslog and Klog messages
Logs Binary and Text Messages
User and Kernel Space
Task, Init & Interrupt Time
Event Notification - Automation, System Management
Event Filtering
Log Management
After-the-fact Formatting

3.2 evlog - Where Used

Device Driver Hardening
Automated Recovery
On-line Diagnostic Action
System Management

Instrumentation Schemes
Wrapper macros
Ease of Implementation



Flexible Dump

4.1 Flexible Dump - What is it?

Goals for a Comprehensive System Dump 
Non-disruptive - Snapshot Capable
System and (multiple) User Context Visibility
Minimal System Dependence
Stand-alone Capable
Customisable Dumping - Virtual & Physical Memory 
Ranges, Objects, Processor Resources etc.
Multiple triggers: Exception Kernel/User, API, NMI/KBD 
Interrupt
Access to Swapped Data
Dump Space/Repository Management
Programmable formatter
SMP Capable
Support for Alternative Dump Devices (Telco)



4.1 Flexible Dump - Where is it?

Contributions to LKCD
Snapshot Dump - DProbes interface
Non-disruptive
Custom Dump Objects
Minimal System Dependence
SMP fixes + multiple CPU status saving

Working with LKCD Community

System Trace



5.1 System Trace - What is it?

Generic Trace Recording Mechanism

Community contributions to:
Linux Trace Toolkit (Opersys)
Dynamic Trace - DProbes interface
Formatting exit for RAW trace data

Supporting Similar efforts in:
Linux Kernel State Trace (LKST) - Hitachi

Community Adoption



6.1 Adoption Initiatives

Establishing a RAS Community - OLS RAS BoFs

Minimise Fragmentation - Maximise Contribution

Canvassing Distributors

POSIX

Instrumentation - standards, aids, implementation

Porting & Currency

7 Miscellaneous

KDB
Complex Breakpoints - DProbes Interface
Two Patches Accepted

Kernel
Debug Register Allocation Patch (Dprobes/KDB/gdb)



8 What's Next?

Log/Trace Instrumentation of Kernel and Device Drivers
We need participation from the Community

DProbes ports for IA64 and zSeries
Turbo Linux release of RAS Utilities
Sampler Probe type for Profiling
DProbes HLL Compiler
Dump User Contexts
KDB User Contexts
Mission Critical mcore Integration with LKCD
On-line Diagnostics Framework
First Failure System Technology
Performance Co-Pilot
RAS Community BOF at OLS

9 The Team - Contacts

End of Presentation

India:

Suparna Bhattacharya
S. Vamsikrishna
Subodh Soni
Bharata B. Rao

USA:

Larry Kessler
James Keniston
Haren Myneni
Hien Q Nguyen
Mike Sullivan
Michael Mason
Thomas Zanussi
Daniel Stekloff
David Oleszkiewicz
Tom Hanrahan (Manager)

Mailing List: systemras-developers@lists.sourceforge.net
Web Page: http://systemras.sourceforge.net/
Richard J Moore: richardj_moore@uk.ibm.com

UK:

Richard J Moore (Architect)



Trademarks

IBM, zSeries and S/390 are trademarks of the International Business Machines 
Corporation in the United States and other countries.

IA32 and IA64 are abbreviations Pentium 32-bit and Itanium 64-bit architectures of the 
Intel Corporation.


