
GNU Bayonne: telephony application server of the GNU project

David Sugar <sugar@gnu.org>
http://www.gnu.org/software/bayonne

Abstract

GNU Bayonne is a middle-ware telephony server that can be used to create

and deploy script driven telephony application services. These services in-

teract with users over the public telephone network. Using commodity PC

hardware and CTI cards running under GNU/Linux available from numerous

vendors, GNU Bayonne can be used to create carrier applications like Voice

Mail and calling card systems, as well as enterprise applications such as unified

messaging. It can be used to provide voice response for e-commerce systems

and has been used in this role in various e-gov projects. GNU Bayonne can

also be used to telephony enable existing scripting languages such as perl and

python.

1 Introduction

Even without considering all the various reasons of why

we must have Free Software as part of the telecommuni-

cations infrastructure, it is important to consider what the

goals and platform needs are for a telephony platform.

Historically, telephony services platforms had been the

domain of real-time operating systems. Recent advances

in CTI hardware has made it possible to offload much

of this requirement to hardware making it practical for

even low performance systems running efficient kernels

to provide such services for many concurrent users.

Telephony services are usually housed in phone closets

or other closed and isolated areas. As such, remote

maintainability, and high reliability are both important

platform requirements as well. The ability to integrate

with and use standard networking protocols is also

becoming very important in traditional telephony, and

certainly is a key requirement for next generation

platforms.

So we can summarize; low latency/high performance

kernels, remote manageability without the need for a

desktop environment, high reliability, and open network-

ing protocols. This sounds like an ideal match for a

GNU/Linux system. For these reason we choose to build

telephony services such as GNU Bayonne primarily

under GNU/Linux.

Our goal for GNU Bayonne 1.0 is primarily to make

telephony services as easy to program and deploy as a

web server is today. We choose to make this server easily

programmable through server scripting. We also desired

to have it highly portable, and allow it to integrate with

existing application scripting tools so that one could

leverage not just the core server but the entire platform to

deliver telephony functionality and integrate with other

resources like databases.

GNU Bayonne, as a telephony server, also imposes some

very real and unique design constraints. For example,

we must provide interactive voice response in real-time.

“real-time” in this case may mean what a person might

tolerate, or delay of 1/10th of a second, rather than what

one might measure in milliseconds in other kinds of

real-time applications. However, this still means that

the service cannot block, for, after all, you cannot flow

control people speaking.

Since each vendor of telephony hardware has chosen

to create their own unique and substantial application

library interface, we needed GNU Bayonne to sit above

these and be able to abstract them. Ultimately we choose

to create a driver plug-in architecture to do this. What

this means is that you can get a card and API from

Aculab, for example, write your application in GNU

Bayonne using it, and later choose, say, to use Intel

telephony hardware, and still have your application run,

unmodified. This has never been done in the industry

widely because many of these same telephony hardware

manufacturers like to produce their own middle-ware

solutions that lock users into their products.

2 Supporting Libraries

To create GNU Bayonne we needed a portable founda-

tion written in C++. I wanted to use C++ for several

reasons. First, the highly abstract nature of the driver



interfaces seemed very natural to use class encapsulation

for. Second, I found I personally could write C++ code

faster and more bug free than I could write C code.

Why we choose not to use an existing framework is

also simple to explain. We knew we needed threading,

and socket support, and a few other things. There were

no single framework that did all these things except a

few that were very large and complex which did far

more than we needed. We wanted a small footprint for

Bayonne, and the most adaptable framework that we

found at the time typically added several megabyte of

core image just for the runtime library.

GNU Common C++ (originally APE) was created to

provide a very easy to comprehend and portable class

abstraction for threads, sockets, semaphores, exceptions,

etc. This has since grown into it’s own and is now used

as a foundation of a number of projects as well as being

a part of GNU.

In addition to having portable C++ threading, we needed

a scripting engine. This scripting system had to operate

in conjunction with a non-blocking state-transition call

processing system. It also had to offer immediate call

response, and support several hundred to a thousand

instances running concurrently in one server image.

Many extension languages assume a separate execution

instance (thread or process) for each interpreter instance.

These were unsuitable. Many extension languages

assume expression parsing with non-deterministic run

time. An expression could invoke recursive functions

or entire subprograms for example. Again, since we

wanted not to have a separate execution instance for each

interpreter instance, and have each instance respond to

the leading edge of an event callback from the telephony

driver as it steps through a state machine, none of the

existing common solutions like tcl, perl, guile, etc,

would immediately work for us. Instead, we created a

non-blocking and deterministic scripting engine, GNU

ccScript.

GNU ccScript is unique in several ways. It is step

executed, and is non-blocking. Statements either ex-

ecute and return immediately, or they schedule their

completion for a later time with the executive. A given

”step” is executed, rather than linearly. This allows a

single thread to invoke and manage multiple interpreter

instances. While GNU Bayonne can support interacting

with hundreds of simultaneous telephone callers on

high density carrier scale hardware, we do not require

hundreds of native ”thread” instances running in the

server, and we have a very modest CPU load.

Another way GNU ccScript is unique is in support for

memory loaded scripts. To avoid delay or blocking while

loading scripts, all scripts are loaded and parsed into a

virtual machine structure in memory. When we wish to

change scripts, a brand new virtual machine instance

is created to contain these scripts. Calls currently in

progress continue under the old virtual machine and new

callers are offered the new virtual machine. When the

last old call terminates, the entire old virtual machine

is then disposed of. This allows for 100% uptime even

while services are modified.

Finally, GNU ccScript allows direct class extension of

the script interpreter. This allows one to easily create a

derived dialect specific to a given application, or even

specific to a given GNU Bayonne driver, simply by

deriving it from the core language through standard C++

class extension.

3 TGI support and plug-ins

To be able to create useful applications, it is necessary

to have more than just a scripting language. It requires a

means to be extended so that it can incorporate database

access libraries or other functions that fall outside of the

scope of the scripting language itself. These extensions

should be loaded on demand only when used, and should

be specified at runtime so that new ones can easily be

added without the need to recompile the entire server.

To support scripting extensions we have the ability

to create direct command extensions to the native

GNU Bayonne scripting languages. These command

extensions can be processed through plug-in modules

which can be loaded at runtime, and offer both scripting

language visible interface extensions, and, within the

plug-in, the logic necessary to support the operation be-

ing represented to the scripting system. These are much

more tightly coupled to the internal virtual machine

environment and a well written plug-in could make use

of thread pools or other resources in a very efficient

manner for high port capacity applications.

When writing command extensions, it is necessary to

consider the need for non-blocking operations. GNU

Bayonne uses ccScript principally to assure non-blocking

scripting, and so any plug-in must be written so that if

it must block, it does so by scheduling a state operation

such as ”sleep” and performs potentially blocking

operations in separate threads. This makes it both hard

and complex to correctly create script extensions in this

manner.



While GNU Bayonne’s server scripting can support the

creation of complete telephony applications, it was not

designed to be a general purpose programming language

or to integrate with external libraries the way traditional

languages do. The requirement for non-blocking requires

any module extensions created for GNU Bayonne are

written highly custom. We wanted a more general pur-

pose way to create script extensions that could interact

with databases or other system resources, and we choose

a model essentially similar to how a web server does

this.

The TGI model for GNU Bayonne is very similar to how

CGI works for a web server. In TGI, a separate process is

started, and it is passed information on the phone caller

through environment variables. Environment variables

are used rather than command line arguments to prevent

snooping of transactions that might include things like

credit card information and which might be visible to a

simple “ps” command.

The TGI process is tethered to GNU Bayonne through

stdout and any output the TGI application generates

is used to invoke server commands. These commands

can do things like set return values, such as the result

of a database lookup, or they can do things like invoke

new sessions to perform outbound dialing. A “pool” of

available processes are maintained for TGI gateways so

that it can be treated as a restricted resource, rather than

creating a gateway for each concurrent call session. It

is assumed gateway execution time represents a small

percentage of total call time, so it is efficient to maintain

a small process pool always available for quick TGI

startup and desirable to prevent stampeding if say all the

callers hit a TGI at the exact same moment.

4 Bayonne Architecture

As can be seen, we bring all these elements together

into a GNU Bayonne server, which then executes as a

single core image. The server itself exports a series of

base classes which are then derived in plug-ins. In this

way, the core server itself acts as a “library” as well as

a system image. One advantage of this scheme is that,

unlike a true library, the loaded modules and core server

do not need to be relocatable, since only one instance

is instantiated in a specific form that is not shared over

arbitrary processes.

When the server comes up, it creates gateways and loads

plug-ins. The plug-ins themselves use base classes found

in the server and derived objects that are defined for

Figure 1: Architecture of GNU Bayonne

static storage. This means when the plug-in object is

mapped through dload, it’s constructor is immediately

executed, and the object’s base class found in the server

image registers the object with the rest of GNU Bayonne.

Using this method, plug-ins in effect automatically

register themselves through the server as they are loaded,

rather than through a separate runtime operation.

The server itself also instantiates some objects at startup

even before main() runs. These are typically objects

related to plug-in registration or parsing of the configu-

ration file.

Since GNU Bayonne has to interact with telephone users

over the public telephone network or private branch

exchange, there must be hardware used to interconnect

GNU Bayonne to the telephone network. There are many

vendors that supply this kind of hardware and often as

PC add-on cards. Some of these cards are single line

telephony devices such as the Quicknet LineJack card,

and others might support multiple T1 spans. Some of

these cards have extensive on-board DSP resources and

TDM busses to allow interconnection and switching.

GNU Bayonne tries to abstract the hardware as much as

possible and supports a very broad range of hardware

already. GNU Bayonne offers support for /dev/phone

Linux kernel telephony cards such as the Quicknet Line-

Jack, for multiport analog DSP cards from VoiceTronix

and Dialogic, and digital telephony cards including

CAPI 2.0 (CAPI4Linux) compliant cards, and digital

span cards from Intel/Dialogic and Aculab. We are

always looking to broaden this range of card support.

At present both voice modem and OpenH323 support is

being worked on. Voice modem support will allow one to

use generic low cost voice modems as a GNU Bayonne



telephony resource. The openh323 driver will actually

require no hardware but will enable GNU Bayonne to

be used as an application server for telephone networks

and softswitch equipment built around the h323 protocol

family. At the time of this writing I am not sure if either

or both of these will be completed in time for the 1.0

release.

5 GNU Bayonne and XML Scripting

Some people have chosen to create telephony services

through web scripting, which is an admirable ambition.

To do this, several XML dialects have been created,

but the idea is essentially the same. A query is made,

typically to a web server, which then does some local

processing and spits back a well formed XML document,

which can then be used as a script to interact with the

telephone user. These make use of XML to generate

application logic and control much like a scripting

language, and, perhaps, is an inappropriate use of XML,

which really is designed for document presentation and

inter- exchange rather than as a scripting tool. However,

given the popularity of creating services in this manner,

we do support them in GNU Bayonne.

GNU Bayonne did not choose to be designed with a sin-

gle or specific XML dialect in mind, and as such it uses

a plug-in. The design is implemented by dynamically

transcoding an XML document that has been fetched

into the internal ccScript virtual machine instructions,

and then execute the transcoded script as if it were a

native ccScript application. This allows us to transcode

different XML dialects and run them on GNU Bayonne,

or even support multiple dialects at once.

Since we now learn that several companies are trying

to force through XML voice browsing standards which

they have patent claims in, it seems fortunate that we

neither depend on XML scripting nor are restricted to

a specific dialect at this time. My main concern is if

the W3C will standardize voice browsing itself only

to later find out that the very process of presenting a

document in XML encoded scripting to a telephone user

may turn out to have a submarine patent, rather than just

the specific attempts to patent parts of the existing W3C

voice browsing standard efforts.

6 Current Status

Current plans are to distribute the 1.0 release of GNU

Bayonne during the opening of this year’s LinuxTag,

on June 6th. This release represents several years of

Figure 2: Enterprise Applications

active development and has been standardized in how

it operates and how it is deployed. Even before this

point, and for the past 6 months, active development has

happened on a second generation GNU Bayonne server,

and snapshots of this new server are currently available

for download. Where GNU Bayonne is evolving will be

explained further on.

GNU Bayonne does not exist alone but is part of a larger

meta-project, “GNUCOMM”. The goals of GNUCOMM

is to provide telephony services for both current and

next generation telephone networks using freely licensed

software. These services could be defined as services

that interact with desktop users such as address books

that can dial phones and softphone applications, services

for telephone switching such as the IPSwitch GNU

softswitch project and GNU oSIP proxy registrar, ser-

vices for gateways between current and next generation

telephone networks such as troll and proxies between

firewalled telephone networks such as Ogre, realtime

database transaction systems like preViking Infotel and

BayonneDB, and voice application services such as

those delivered through GNU Bayonne.

7 Enterprise and Carrier Applications

GNU Bayonne 1.0, with the help of other components

being developed as part of GNUCOMM, will enable one

to create scalable enterprise and carrier class applications

under GNU/Linux for the current generation telephone

network.

In our broadest view of enterprise telephony applications,

we can see using GNU Bayonne as a part of an overall

solution. GNU Bayonne must be able to interact with

enterprise data, whether through transaction monitors

such as BayonneDB or through perl scripts executed via



Figure 3: Carrier Applications

TGI. It may need to interact with other services such

as email when delivering voice messages to a unified

mailbox, or the local phone switch through a resource

such as Babylon. We will explain Babylon a bit later.

Our view of GNU Bayonne and telephony application

services are that it is a strategic and integral part of the

commercial enterprise. Proprietary solutions that are

in common use today have often been designed from

the question of how to lock a user into a specific OEM

product family and control what a user or reseller can do

or integrate such products, rather than from the question

of what the enterprise user needs and how to provide

the means to enable it. This has often kept telephony

separate and walled off from the rest of the enterprise.

We do not wish to see it separate but a natural extension,

whether of web services, of contact management, of

customer relations, etc.

When we look at carrier class applications for GNU

Bayonne today, we typically consider applications like

operator assistance systems, prepaid calling platforms,

and service provider voice mail. Each of these has dif-

ferent requirements. What they have in common is that

a front end central office switch might be used, such as

a Lucent Excel or even a full ESS 5 switch. Application

logic and control for voice processing would then be

hosted on one or more racks of GNU Bayonne servers

most likely interconnected with multiple T1 spans. If

database transactions are involved, such as in pre-paid

calling, perhaps we would distribute a BayonneDB

server to provide database connectivity for each rack. A

web server may also exist if there is some web service

component.

Operator assist services are probably the easiest to

understand. Very often a carrier might need to provide

directory assistance or some other form of specialized

assist service. A call will come in from the switching

center to a GNU Bayonne server, which will then decide

what to do with the call. If the caller is from a location

that is known, perhaps the call will be re-routed by

GNU Bayonne through an outgoing span to a local

service center. Online operator assistance might be done

by creating an outgoing session to locate an operator

and then bridge the callers, all on a GNU Bayonne server.

In service provider voice mail one doesn’t have to bridge

calls. Service provider voice mail is typically much

simpler than enterprise voice mail; there is no company

voice directory, there is no forwarding or replying

between voice mailboxes, there may be no external

message notification. All these things make it an easy to

define application on first appearance. What it must be is

reliable, and ideally scalable.

Many applications carriers wish to deploy do not nec-

essary require “carrier grade” Linux to appear before

they can be used. In fact, IDT Corp, a major provider

of prepaid calling in the world today, uses over 500 rack

mounted commodity PC’s running things including a

standard distribution of “RedHat” GNU/Linux to reliably

service over 20 million call minutes per day in their

main switching center. This does not mean there is no

value in the carrier grade kernel work, just that it is not

necessary to create and sell some types of GNU/Linux

voice processing solutions for carriers today. We have

looked at the issues involved in high reliability/carrier

grade enhanced Linux and we intend to address those as

described a little further.

8 The NG Server

Even before GNU Bayonne 1.0 had been finalized, work

had been started by late last year on a successor to GNU

Bayonne. This successor attempts to simplify many of

the architectural choices that were made early on in the

project to make it easier to adept and integrate GNU

Bayonne in new ways.

One of the biggest challenges in the current GNU Bay-

onne server is the creation of telephony card plug-ins.

These often involve the implementation of a complete

state machine for each and every driver, and very often

the code is duplicated. GNU Bayonne “2” solves this

by pushing the state machine into the core server and

making it fully abstract through C++ class extension.

This allows drivers to be simplified, but also enabled us

to build multiple servers from a single code base.

Another key difference in GNU Bayonne “2” is much



more direct support for carrier grade Linux solutions.

In particular, unlike GNU Bayonne, this new server

can take ports in and out of service on a live server,

and this allows for cards to be hot-plugged or hot

swapped. In a carrier grade platform, the kernel will

provide notification of changeover events and applica-

tion services can listen for and respond to these events.

GNU Bayonne is designed to support this concept of

notification for management of resources it is controlling.

Finally, GNU Bayonne “2” is designed from the ground

up to take advantage of XML in various ways. It uses

a custom XML dialect for a configuration language. It

also acts as a web service with both the ability to request

XML content that describe the running state of GNU

Bayonne services and the ability to support XMLRPC.

This fits into our vision for making telephony servers

integrate with web services, represents part of how we

envision the project going forward into the future.

9 Acknowledgments

There are a number of contributors to GNU Bayonne.

These include Matthias Ivers who has provided a lot of

good bug fixes and new scheduler code. Matt Benjamin

has provided a new and improved TGI tokenizer and

worked on Pika outbound dialing code. Wilane Ousmane

helped with the French phrasebook rule sets and French

language audio prompts. Henry Molina helped with

the Spanish phrasebook rule sets and Spanish language

audio prompts. Kai Germanschewski wrote the CAPI 2.0

driver for GNU Bayonne, and David Kerry contributed

the entire Aculab driver tree. Mark Lipscombe worked

extensively on the Dialogic driver tree. There have been

many additional people who have contributed to and

participated in related projects like GNU Common C++

or who have helped in other ways.


