
Be More Rational: Open Source
Memory Profiling and Performance

Tuning
Matthias Kalle Dalheimer

Copyright © 2003 Matthias Kalle Dalheimer

Table of Contents
Open Source Memory Profiling and Performance Tuning. 1

Motivation . 1
Fixing Memory Corruption Problems . 1
Profiling . 4

Summary . 5

Open Source Memory Profiling and Perfor-
mance Tuning
Motivation
Tool support for programmers has come a long way, from the first mnemonic assemblers (and text editors even!)
via high-level language compilers, debuggers, cross-referencers to today’s complex IDEs and reverse engineering
systems.

In general, programmers can choose as many of these tools as they want (or can afford); there are numerous
programmers who deliberately or for want of knowledge of more advanced tools use nothing but a text editor and
a compiler. But there are two types of problems in software that are close to impossible to fix without advanced
tool support:

• Memory corruption problems

• Performance problems

We will look into how open source tools can help you fix these problems in your software.

Fixing Memory Corruption Problems
Memory corruption problems are among those types of software problems that are most difficult to fix, but the
right tools can make this ugly and painstaking task simpler and more efficient.

As an example, take the following faulty C++ code snippet:

class MyClass
{
public:

MyClass();
~MyClass();

// ... more methods

1

private:
MyOtherClass* pOtherClass;
// more instance variables

}

MyClass::MyClass()
{

pOtherClass = new MyOtherClass();
// more initialization

}

MyClass::~MyClass()
{

delete pOtherClass;
// more destruction

}

This looks innocent enough, but as soon as you get assignments or copy construction into the picture, hell will
break lose:

void myFunc()
{

MyClass myClass;
MyClass myClass2 = myClass;
// more stuff...

}

What happens here is that on exit frommyFunc() , the destructors of bothmyClass and myClass2 will be
invoked, but since both contain a pointer to the sameMyOtherClass object, this object will be destroyed once
(the reason for this being that the compiler will generate a bitwise assignment operator if you fail to provide one;
see any good C++ book about this problem which is often called thePointer Aliasing Problem).

Why is this such a bad problem? If you get a crash, you can fire up the debugger and just find the place where it
crashed, can’t you?

No, you can’t. The problem is that these memory corruptions usually do not lead to a crash immediately, but
rather a lot (computer-wise) later, when the stack trace will look completely different. Often, the crashes occur
when a (typically completely unrelated object) is allocated.

So how do you find those errors? Careful code inspection can achieve that, of course, but we all know how difficult
it is to spot errors in your own code. Static automated code inspection tools (that operate on the source code) can
do a lot, but these types of defecs can be fairly hidden and therefore would likely not be uncovered.

This is where runtime memory profiling tools come into play. These control your application while it runs and
log all memory allocations and accesses. Therefore, it can immediately inform you if a faulty memory operation
takes place and log the location in your program where it occurs, even if there is no crash (yet).

Apparently, tools like this are immensely helpful, but also very difficult to write. They have therefore in the past
mostly been limited to very expensive closed source tools. Here are some of the tools together with the technology
they use:

2

Rational Purify Rational Purify uses a patented technique called "Object Code Insertion" which
works by changing the executable and library files on-the-fly. The memory audit
code is inserted directly into these files, and the "instrumented" libraries are then
cached for later use. This means that the executables and libraries need to be
reinstrumented after each change to the code, which is time-consuming, but not very
cumbersome, since Purify detects this automatically and will perform the necessary
instrumentations in a "make-like" fashion.

Purify is fairly thorough at detecting memory problems and also comes with a very
good viewer that makes it a lot easier to sift through the generated reports (which
can be very lenghty).

Purify’s central drawback (besides the high price tag) is platform availability; only
the Windows version is really maintained; there are versions for commercial Unix
systems that seem to be stuck with very old versions. No Linux version.

Insure++ Insure++ by Parasoft works by replacing the preprocessing stage with a special
preprocessor that inserts additional calls to Insure++’s memory audit functions. This
has the drawback that upon code changes, the code needs to be both recompiled and
relinked with Insure++ which is both time-consuming and cumbersome. Unlike
with Purify, you cannot run Insure++ on applications to which you don’t have the
source code, and to get a full coverage, you need the source code all libraries
involved (Insure++ ships with replacements for standard libraries that already
contain the instrumentation). This scheme also makes Insure++ fairly fragile to
system changes and updates.

Insure++ is very expensive as well, but available on a large number of platforms,
including Linux/Intel.

Replacement libraries that replacemalloc() andfree() . There are a number of libraries (both open source
and proprietary) that replace the memory allocation/deallocation callsmalloc()

andfree() with versions of their own that contain additional tracking and house-
keeping. By using theLD_PRELOADmechanism, it is ensured that these implemen-
tations are used instead of the standard ones.

While these libraries can detect "double deletes" (like in the example above), they
cannot detect other types of memory problems, like accessing the tenth element in
an array of five elements.

Overloadingoperator new andoperator delete C++ allows to overload the two standard operators
operator new andoperator delete with versions of your own. There are tools
that do just this, and the overloaded versions of course contain additional tracking
and housekeeping. The disadvantage of this is that inclusion of the header file with
the overloaded version is necessary in each and everywhere source file, so it is an
intrusive technique that requires you to change your code first. Also, like with the
malloc() /free() replacement, this technique can only detect a certain type of
memory errors.

Valgrind Valgrind by Julian Seward is a fairly new addition to this list, and has quickly
become the memory debugging tool of choice for many open source developers.
Valgrind is open source itself and has a comparable functionality to the expensive
proprietary tools. Valgrind works by implementing a virtual machine in which the
application is run. This virtual machine tracks all memory accesses and can thus
notify you about memory corruption problems on the spot.

The big advantage of this technique is that you can run applications under Valgrind’s
control at any time, without any preparation. We will have more to say about
Valgrind below.

3

Valgrind

As already mentioned, Valgrind is an excellent tool for debugging memory corruption problems. You simply
prependvalgrind to the application command line, and your application will run as usual (albeit a lot slower).

Here is an example of Valgrind output:

==22173== Memcheck, a.k.a. Valgrind, a memory error detector for x86-linux.
==22173== Copyright (C) 2002, and GNU GPL’d, by Julian Seward.
==22173== Using valgrind-1.9.3, a program instrumentation system for x86-linux.
==22173== Copyright (C) 2000-2002, and GNU GPL’d, by Julian Seward.
==22173== Estimated CPU clock rate is 502 MHz
==22173== For more details, rerun with: -v
==22173==
==22173== Invalid free() / delete / delete[]
==22173== at 0x4016898F: free ←↩
(/home/kalle/valgrind-1.9.3/coregrind/vg_clientfuncs.c:182)
==22173== by 0x80484BB: main ←↩
(/home/kalle/valgrind-1.9.3/memcheck/tests/doublefree.c:10)
==22173== by 0x402439EC: __libc_start_main (in /lib/libc.so.6)
==22173== by 0x80483B0: (within ←↩
/home/kalle/valgrind-1.9.3/memcheck/tests/doublefree)
==22173== Address 0x40F53024 is 0 bytes inside a block of size 177 free’d
==22173== at 0x4016898F: free ←↩
(/home/kalle/valgrind-1.9.3/coregrind/vg_clientfuncs.c:182)
==22173== by 0x80484BB: main ←↩
(/home/kalle/valgrind-1.9.3/memcheck/tests/doublefree.c:10)
==22173== by 0x402439EC: __libc_start_main (in /lib/libc.so.6)
==22173== by 0x80483B0: (within ←↩
/home/kalle/valgrind-1.9.3/memcheck/tests/doublefree)
==22173==
==22173== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
==22173== malloc/free: in use at exit: 0 bytes in 0 blocks.
==22173== malloc/free: 1 allocs, 2 frees, 177 bytes allocated.
==22173== For a detailed leak analysis, rerun with: --leak-check=yes
==22173== For counts of detected errors, rerun with: -v

This comes from a "double delete" error, only thatfree() was used here instead ofoperator delete . Together
with the stack trace information including the filenames and line numbers, this makes it fairly simple to find the
trouble spot.

However, Valgrind output rarely is as simple and obvious as in this case. Often, it is many hundreds or thousands
of lines long, including a number of "false positives". These often stem from third-party libraries like X11 that you
cannot or do not want to debug. For this, there are so-called suppressions, however, configuring those suppressions
is very difficult at this time. This is one of the areas where the proprietary tools still have an advantage. However,
open source developers (including the author) are already working on remedies to this problem.

Profiling
The other software development task that is difficult to do without software tools is optimizing an application.
Actually, it is usually not so difficult to take any arbitrary piece of code from your application and make it run
faster; the problem is how to find the spots that actually need optimization - the so-called inner loops - so that you
do not spend time optimizing code that is rarely executed or simply not a performance bottleneck at all. This task
is calledprofiling. In profiling, you want to find out which functions or methods are called most often and which
have the longest runtime (and particularly of course which functions or methods are called oftenandhave a long
runtime).

In Linux development,gprof is the traditional profiling command. However, gprof’s output is neither very
comprehensive nor very easy to understand. Probably the best profiler on the market is Rational Quantify which

4

employs the same code-instrumenting technique as Rational Purify mentioned above, and which also has a very
good viewer, but suffers from the same problems (price tag and platform availability) as Purify.

Again, Valgrind comes to the rescue. Because of the virtual machine technique, Valgrind can actually be used
for more than just finding memory problems. An additional module, a so-calledskin, calledcachegrindtracks
the number and duration of all function and method calls and thus gives you valuable data about where the
performance bottleneck in your code are.

While Valgrind provides more data than gprof, it would only be a small improvement if it was not for
KCacheGrind, a KDE frontend to cachegrind. This provides very simple navigation to the collected data and
makes it really easy to locate the performance bottlenecks.

Summary
With the advent of Valgrind and its various skins like cachegrind, high-quality tools for memory debugging and
profiling are now available to the open-source community. Frontends like KCacheGrind make these tools more
accessible for software developers.

5

