
Miami

Miami ii

COLLABORATORS

TITLE :

Miami

ACTION NAME DATE SIGNATURE

WRITTEN BY October 30, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Miami iii

Contents

1 Miami 1

1.1 Miami.guide . 1

1.2 Miami.guide/NODE_DISCLAIMER . 2

1.3 Miami.guide/NODE_CONDITIONS . 4

1.4 Miami.guide/NODE_REGISTRATION . 5

1.5 Miami.guide/NODE_INTRODUCTION . 6

1.6 Miami.guide/NODE_REQUIREMENTS . 8

1.7 Miami.guide/NODE_INSTALLATION . 8

1.8 Miami.guide/NODE_MIAMIINIT . 9

1.9 Miami.guide/NODE_TOOLTYPES . 10

1.10 Miami.guide/NODE_MENUS . 11

1.11 Miami.guide/NODE_CONFIGURATION . 12

1.12 Miami.guide/NODE_GUI_GENERAL . 13

1.13 Miami.guide/NODE_GUI_GENERAL_REGISTER . 13

1.14 Miami.guide/NODE_GUI_INTERFACE . 14

1.15 Miami.guide/NODE_GUI_INTERFACE_TYPE . 15

1.16 Miami.guide/NODE_GUI_INTERFACE_DEVICE . 16

1.17 Miami.guide/NODE_GUI_INTERFACE_SPEED . 16

1.18 Miami.guide/NODE_GUI_INTERFACE_CD . 17

1.19 Miami.guide/NODE_GUI_INTERFACE_PROTOCOL . 17

1.20 Miami.guide/NODE_GUI_INTERFACE_FLOW . 17

1.21 Miami.guide/NODE_GUI_INTERFACE_EOF . 18

1.22 Miami.guide/NODE_GUI_INTERFACE_SERIAL . 18

1.23 Miami.guide/NODE_GUI_INTERFACE_IP . 19

1.24 Miami.guide/NODE_GUI_INTERFACE_MASK . 19

1.25 Miami.guide/NODE_GUI_INTERFACE_GWAY . 20

1.26 Miami.guide/NODE_GUI_INTERFACE_MULTICASTS . 20

1.27 Miami.guide/NODE_GUI_INTERFACE_MAPPING . 21

1.28 Miami.guide/NODE_GUI_INTERFACE_MTU . 21

1.29 Miami.guide/NODE_GUI_INTERFACE_STP . 22

Miami iv

1.30 Miami.guide/NODE_GUI_INTERFACE_INACTIVITY . 23

1.31 Miami.guide/NODE_GUI_PPP . 23

1.32 Miami.guide/NODE_GUI_PPP_CHAP . 24

1.33 Miami.guide/NODE_GUI_PPP_CALLBACK . 25

1.34 Miami.guide/NODE_GUI_PPP_VJC . 25

1.35 Miami.guide/NODE_GUI_PPP_ACCM . 25

1.36 Miami.guide/NODE_GUI_PPP_QUICK . 26

1.37 Miami.guide/NODE_GUI_PPP_ESCAPE . 26

1.38 Miami.guide/NODE_GUI_PPP_DNSIPCP . 27

1.39 Miami.guide/NODE_GUI_PPP_TERMREQ . 27

1.40 Miami.guide/NODE_GUI_DIALER . 27

1.41 Miami.guide/NODE_GUI_DIALER_SCRIPT . 28

1.42 Miami.guide/NODE_GUI_DIALER_PHONE . 29

1.43 Miami.guide/NODE_GUI_DIALER_MAX . 29

1.44 Miami.guide/NODE_GUI_DIALER_DELAY . 29

1.45 Miami.guide/NODE_GUI_DIALER_RDELAY . 29

1.46 Miami.guide/NODE_GUI_DIALER_TEACH . 30

1.47 Miami.guide/NODE_GUI_DIALER_NAME . 30

1.48 Miami.guide/NODE_GUI_DIALER_CAPTURE . 30

1.49 Miami.guide/NODE_GUI_DATABASE . 30

1.50 Miami.guide/NODE_GUI_DATABASE_PROTOCOLS . 32

1.51 Miami.guide/NODE_GUI_DATABASE_SERVICES . 32

1.52 Miami.guide/NODE_GUI_DATABASE_HOSTS . 33

1.53 Miami.guide/NODE_GUI_DATABASE_NETWORKS . 33

1.54 Miami.guide/NODE_GUI_DATABASE_DOMAINS . 33

1.55 Miami.guide/NODE_GUI_DATABASE_DNSSERVERS . 34

1.56 Miami.guide/NODE_GUI_DATABASE_INETD . 34

1.57 Miami.guide/NODE_GUI_DATABASE_USERS . 35

1.58 Miami.guide/NODE_GUI_DATABASE_GROUPS . 36

1.59 Miami.guide/NODE_GUI_DATABASE_ARP . 36

1.60 Miami.guide/NODE_GUI_DATABASE_SOCKS . 36

1.61 Miami.guide/NODE_GUI_DATABASE_IPFILTER . 38

1.62 Miami.guide/NODE_GUI_TCPIP . 39

1.63 Miami.guide/NODE_GUI_TCPIP_HOSTNAME . 40

1.64 Miami.guide/NODE_GUI_TCPIP_NAME . 40

1.65 Miami.guide/NODE_GUI_TCPIP_ICMP . 40

1.66 Miami.guide/NODE_GUI_TCPIP_BOOTP . 41

1.67 Miami.guide/NODE_GUI_TCPIP_VERIFYDNS . 41

1.68 Miami.guide/NODE_GUI_TCPIP_FAKEIP . 41

Miami v

1.69 Miami.guide/NODE_GUI_TCPIP_TTCP . 42

1.70 Miami.guide/NODE_GUI_TCPIP_ADDDOMAIN . 42

1.71 Miami.guide/NODE_GUI_TCPIP_DOWN . 42

1.72 Miami.guide/NODE_GUI_TCPIP_PING . 43

1.73 Miami.guide/NODE_GUI_TCPIP_GETTIME . 43

1.74 Miami.guide/NODE_GUI_EVENTS . 44

1.75 Miami.guide/NODE_GUI_MODEM . 45

1.76 Miami.guide/NODE_GUI_MODEM_INIT . 45

1.77 Miami.guide/NODE_GUI_MODEM_EXIT . 46

1.78 Miami.guide/NODE_GUI_MODEM_PREFIX . 46

1.79 Miami.guide/NODE_GUI_MODEM_SUFFIX . 46

1.80 Miami.guide/NODE_GUI_MODEM_NULLMODEM . 46

1.81 Miami.guide/NODE_GUI_LOGGING . 47

1.82 Miami.guide/NODE_GUI_LOGGING_CONSOLE . 47

1.83 Miami.guide/NODE_GUI_LOGGING_FILE . 47

1.84 Miami.guide/NODE_GUI_LOGGING_SYSLOG . 48

1.85 Miami.guide/NODE_GUI_LOGGING_PHONE . 48

1.86 Miami.guide/NODE_GUI_LOGGING_PPP . 48

1.87 Miami.guide/NODE_GUI_WINDOWS . 49

1.88 Miami.guide/NODE_GUI_WINDOWS_REQQUIT . 49

1.89 Miami.guide/NODE_GUI_WINDOWS_REQOFFLINE . 50

1.90 Miami.guide/NODE_GUI_WINDOWS_REQERRORS . 50

1.91 Miami.guide/NODE_GUI_WINDOWS_DIALER . 50

1.92 Miami.guide/NODE_GUI_GUI . 50

1.93 Miami.guide/NODE_GUI_GUI_HOTKEY . 51

1.94 Miami.guide/NODE_GUI_GUI_SHOWICON . 51

1.95 Miami.guide/NODE_GUI_GUI_SHOWMENU . 52

1.96 Miami.guide/NODE_GUI_GUI_ONSTARTUP . 52

1.97 Miami.guide/NODE_GUI_GUI_ONLINEICON . 52

1.98 Miami.guide/NODE_GUI_GUI_OFFLINEICON . 52

1.99 Miami.guide/NODE_GUI_GUI_GUI . 52

1.100Miami.guide/NODE_GUI_GUI_SWITCH . 53

1.101Miami.guide/NODE_GUI_SOCKS . 53

1.102Miami.guide/NODE_GUI_SOCKS_ENABLE . 54

1.103Miami.guide/NODE_GUI_SOCKS_SERVER . 54

1.104Miami.guide/NODE_GUI_SOCKS_MAXLOG . 54

1.105Miami.guide/NODE_GUI_SOCKS_AUTH . 54

1.106Miami.guide/NODE_GUI_MISC . 55

1.107Miami.guide/NODE_DIALERLANG . 55

Miami vi

1.108Miami.guide/NODE_AREXX . 57

1.109Miami.guide/NODE_ENVVARS . 58

1.110Miami.guide/NODE_ENVVARS_TZ . 59

1.111Miami.guide/NODE_EXCONFIG . 60

1.112Miami.guide/NODE_EXCONFIG_DIST . 60

1.113Miami.guide/NODE_EXCONFIG_PASSWORDS . 64

1.114Miami.guide/NODE_EXCONFIG_CLIENTS . 65

1.115Miami.guide/NODE_UTILITY . 66

1.116Miami.guide/NODE_UTILITY_ARP . 67

1.117Miami.guide/NODE_UTILITY_FINGER . 67

1.118Miami.guide/NODE_UTILITY_IFCONFIG . 68

1.119Miami.guide/NODE_UTILITY_MAPMBONE . 69

1.120Miami.guide/NODE_UTILITY_MRINFO . 70

1.121Miami.guide/NODE_UTILITY_MROUTED . 70

1.122Miami.guide/NODE_UTILITY_MTRACE . 71

1.123Miami.guide/NODE_UTILITY_NETSTAT . 73

1.124Miami.guide/NODE_UTILITY_PING . 77

1.125Miami.guide/NODE_UTILITY_REMIND . 78

1.126Miami.guide/NODE_UTILITY_RESOLVE . 80

1.127Miami.guide/NODE_UTILITY_ROUTE . 80

1.128Miami.guide/NODE_UTILITY_SYSCTL . 82

1.129Miami.guide/NODE_UTILITY_TCPDUMP . 84

1.130Miami.guide/NODE_UTILITY_TRACEROUTE . 87

1.131Miami.guide/NODE_COMPATIBILITY . 88

1.132Miami.guide/NODE_RESTRICTIONS . 89

1.133Miami.guide/NODE_HISTORY . 90

1.134Miami.guide/NODE_FUTURE . 90

1.135Miami.guide/NODE_SUPPORT . 91

1.136Miami.guide/NODE_ACKNOWLEDGEMENTS . 91

Miami 1 / 92

Chapter 1

Miami

1.1 Miami.guide

Miami

This is the documentation for Miami V3.0, an integrated TCP/IP
system for AmigaOS. Copyright (C) 1996-1998 Nordic Global Inc. All
rights reserved. Program and documentation by Holger Kruse.

Disclaimer
Legal information

Usage / Copying
Usage and copying conditions

Registration
Shareware registration

Introduction
Introduction to Miami

Requirements
Required hardware and software

Installation
How to install Miami

MiamiInit
Quick start using MiamiInit

ToolTypes
ToolTypes for Miami

Menus
Program menus

Configuration
Manual configuration options

Miami 2 / 92

Dialer Command Language
Description of the dialer

ARexx Interface
Supported ARexx commands

Environment variables
Environment variables

Exchanging Settings
How to import/export your settings

Utility Programs
Other programs for Miami

Compatibility
Compatibility issues

Restrictions
Restrictions of the current version

History
History of Miami

The future
The future of Miami

Support
How to get help or updates

Acknowledgements
Acknowledgements

1.2 Miami.guide/NODE_DISCLAIMER

Disclaimer

Miami IS SUPPOSED TO BE A TCP/IP PACKAGE FOR AmigaOS THAT CAN BE USED
TO CONNECT YOUR AMIGA TO THE INTERNET BY MODEM OR THROUGH A NETWORK
DEVICE. EVEN THOUGH EVERY EFFORT HAS BEEN MADE TO MAKE Miami AS
COMPATIBLE TO THE TCP/IP STANDARD AS POSSIBLE, I CANNOT RULE OUT THE
POSSIBILITY THAT Miami HAS BUGS THAT HAVE HARMFUL SIDE EFFECTS ON YOUR
SYSTEM OR ON OTHER MACHINES CONNECTED TO YOUR AMIGA.

I HEREBY REJECT ANY LIABILITY OR RESPONSIBILITY FOR THESE OR ANY OTHER
CONSEQUENCES FROM THE USE OF Miami WHATSOEVER. THIS INCLUDES, BUT IS
NOT LIMITED TO, DAMAGE TO YOUR EQUIPMENT, TO YOUR DATA, TO OTHER
MACHINES YOUR AMIGA IS CONNECTED TO, ANY EQUIPMENT CONNECTED TO THOSE
HOSTS, PERSONAL INJURIES, FINANCIAL LOSS OR ANY OTHER KINDS OF SIDE
EFFECTS.

Miami 3 / 92

Miami IS PROVIDED AS-IS. THIS MEANS I DO NOT GUARANTEE THAT Miami IS
FIT FOR ANY SPECIFIC PURPOSE AND I DO NOT GUARANTEE ANY BUG FIXES,
UPDATES OR HELP DURING ERROR RECOVERY.

Miami is based on the 4.4BSD V.2 TCP/IP networking code, in the
version distributed by Walnut Creek on CD-ROM.

All of the original 4.4BSD code is freely distributable, and has
been contributed by different sources. For details about individual
copyright and disclaimer rules, please refer to the source files, which
are available from different sources, e.g. from the 4.4BSD Lite CD-ROM
available from Walnut Creek.

The following copyright notice applies to the complete original
4.4BSD software package:

Start quote

All of the documentation and software included in the 4.4BSD and
4.4BSD-Lite Releases is copyrighted by The Regents of the University of
California.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software

must display the following acknowledgement: This product includes
software developed by the University of California, Berkeley and its
contributors. 4. Neither the name of the University nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End Quote

Please be advised that this copyright notice does NOT apply to the
Miami package. Miami is NOT freely distributable, unless otherwise
stated. See

Usage / Copying

Miami 4 / 92

for details.

Some of Miami’s GUI modules rely on Magic User Interface (MUI). MUI
is Copyright by Stefan Stuntz.

Some of Miami’s GUI modules require the MUI custom class "Busy.mcc’
by Klaus Melchior. Here is the associated copyright notice:

Begin Quote

Busy.mcc is (c) 1994-1996 by Klaus ’kmel’ Melchior

End Quote

Some of Miami’s GUI modules require gtlayout.library by Olaf Barthel.
Here is the associated copyright notice:

Begin Quote

Copyright © 1993-1996 by Olaf ‘Olsen’ Barthel Freely distributable.

End Quote

Some of Miami’s GUI modules use images based on MagicWB, which have
been copied with permission from the author. Here is the associated
copyright notice. More information is available from the file
‘MagicWB.readme’ in the Miami distribution.

Begin Quote

Copyright © 1992-97, Martin Huttenloher

End Quote

1.3 Miami.guide/NODE_CONDITIONS

Usage / Copying

Miami is shareware. In this case this means that a personalized key
file is required to use the full functionality of Miami.

Users will receive their personalized key file from me after
registering. The key file may not be made available to other users !
Giving the key file to other users or using key files that you did not
receive directly from me for your personal use is considered an act of
software piracy !

Key files are non-transferable and may not be sold or traded to any
other person or organization. They are intended to be used only by the
person who registered.

The Miami binary or the binaries of any of the utility programs may

Miami 5 / 92

not be modified or patched in any way (not even for personal use),
except in ways explicitly approved by me for software updates. Using
patched or modified binaries is considered an act of software piracy !

Miami binaries may only be used for the purpose intended, i.e. to be
executed on Amiga computers by AmigaOS. Reassembling,
reverse-engineering, or translating binaries is expressly prohibited.

The documentation and program texts of Miami are subject to the same
copyright as the program itself. This means neither documentation nor
program texts may be modified or translated in any way.

To avoid any misunderstanding: YOU MAY NOT translate and distribute
Miami program texts or documentation, unless I officially appoint you
as a Miami translator. Unauthorized translations of program texts or
documentation are illegal, violate my copyright, and will be deleted
from public software sites.

If you want to distribute the Miami archive the following conditions
apply:

* The sales price must not be higher than the cost of the empty
disks required for the Miami files plus a nominal copying fee plus
costs for shipping. The total price must not be higher than 10 US$
or 15 DM or the equivalent in any other currency.

* If the Miami archive is to be distributed as part of a CD-ROM
collection of public domain and/or shareware programs, then the
retail price of the CD-ROM may not exceed 20 US$, 30 DM or the
equivalent in any other currency.

* All parts of the program and the documentation must be complete.
The distribution of single parts or incomplete subsets of the
original distribution is not allowed. The distribution of
keyfiles is not allowed.

* Miami or parts of it may usually not be sold in combination with
or as part of commercial software. Separate licensing conditions
for commercial resale are available from kruse@nordicglobal.com
upon request. However, unless and until you receive my explicit
written approval, do not assume that you may distribute Miami or
parts of it in combination or as part of commercial software.

* Program and documentation may not be changed in any way.
Exception (this means: acceptable) is the use of archivers such as
LHA as long as it remains possible to retrieve the original
program/data.

1.4 Miami.guide/NODE_REGISTRATION

Registration

If you often use Miami, need any of the features disabled in the

Miami 6 / 92

demo version, or want to stay connected for more than one hour at a
time, I suggest you register Miami.

To register please run the program MiamiRegister. It explains the
registration procedure in detail, and allows you to register
interactively.

Please contact me at kruse@nordicglobal.com if for some reason you
cannot run the registration program MiamiRegister.

The registration fee is US$ 35 for a standard, ‘full’ Miami license.
Registered users of ppp.device receive a discount when upgrading to
Miami. The details are explained by MiamiRegister.

Special offers for group licensing (10 users or more at a time),
license prepayment and commercial redistribution are also available.
Please contact kruse@nordicglobal.com for more details.

Users who already registered Miami 2.x will need new keyfiles for
Miami 3.0. The upgrade policy is:

* If you obtained your Miami keyfiles after June 15th, 1997, then the
upgrade to Miami 3.0 is free.

* If you obtained your Miami keyfiles before June 15th, 1997, then
you will need an upgrade code to upgrade your keyfiles. Upgrade
codes are available from Nordic Global Inc. (for US$ 12.00) and
from some registration sites.

To upgrade your keyfiles please run MiamiRegister. The program will
offer you upgrade options and will also tell you whether there is an
upgrade charge for you.

1.5 Miami.guide/NODE_INTRODUCTION

Introduction

Miami is an integrated TCP/IP system for AmigaOS, that allows you to
access the Internet or a local-area network by modem or by some other
network device (e.g. Ethernet) in a very easy way.

Miami is based on the latest version (4.4BSD V2) of the official BSD
networking code, plus some of the extensions made by third parties
(such as FreeBSD T/TCP and Path MTU discovery code). This means Miami
contains a "true" and complete TCP/IP stack, not just an emulation that
only supports parts of the TCP/IP standard.

The application programmers’ interface of Miami is compatible with
that of AmiTCP 4.x (bsdsocket.library), i.e. most of the programs
written and compiled for AmiTCP 4.x will work with Miami without any
modification and without recompiling.

In addition, Miami has a built-in dialer that can be used both in

Miami 7 / 92

script-driven and interactive mode, an implementation of the (C)SLIP
and PPP protocols, an interface to SANA-II drivers, a graphical user
interface for program control and configuration, a client for SOCKS
proxy servers and many other features.

Miami also has a built-in implementation of inetd, the "Internet
super-server", with several built-in services including "fingerd" and
"identd", a built-in implementation of TCP:, the AmigaDOS stream
handler for TCP/IP, and a built-in implementation of usergroup.library,
the interface to manage users and user groups.

Unlike other general-purpose protocol stacks Miami has very extensive
support for modem-based dial-up connections to access the Internet.
The configuration process is made as simple as possible: most of the
configuration parameters are determined automatically by Miami. Miami
also supports preconfigured settings that can be distributed by
Internet providers. Miami can also be used with a non-modem connection,
e.g. an Ethernet interface, an Arcnet interface, or a cable modem.

Miami supports several different GUI modules for its configuration.
When controlling Miami (going online or offline, or changing settings
for instance) a GUI module has to be loaded. Once Miami is online it is
possible to unload the GUI module in order to save memory. You can
reload the GUI module at any time if you want to make any changes to
your setup.

Miami currently supports the following GUI modules:

MUI
This module requires MUI (Magic User Interface) 3.8 or higher, and
generates a user interface in the typical MUI style.

MUIMWB
This module is identical to the ‘MUI’ module, except that it also
uses images in some places, not just text, and was more
elaborately designed. It requires MUI 3.8 or higher, and a screen
with at least 8 colors using the MagicWB color palette.

GTLayout
This module generates a GadTools-based user interface, and
requires Olaf Barthel’s gtlayout.library version 40 or higher. It
does not require MUI.

The recommended GUI module is ‘MUI’ or (for deep screens) ‘MUIMWB’.
The GTLayout module can be used as well, but some of the functions of
the MUI module are not accessible through it (e.g. drag&drop sorting of
database entries).

Before starting Miami you should have a look at
MiamiInit
.

MiamiInit is a program that for most users automatically configures
Miami to your needs, including dial script, authentication, IP address,
DNS servers, netmask and all other configuration variables.

After running MiamiInit you should run Miami, import the
configuration, save the new settings, and connect to your provider.

Miami 8 / 92

1.6 Miami.guide/NODE_REQUIREMENTS

Requirements

To use Miami you need:

* an Amiga running OS 2.04 or higher

* MUI 3.8 or higher if you want to use one of the MUI modules, or
alternatively gtlayout.library V40 or higher for the GTLayout
module.

You will also need some hardware for networking and a machine to
connect to. This could for instance be:

* a modem connected to your Amiga and to a phone line. The modem
should be at least roughly Hayes-compatible. Most contemporary
modems are. Plus a SLIP or PPP account with an Internet provider.
If you only have a shell account you can use Miami as well, but
then you need to install Slirp or TIA at your provider first. In
this case you should ask your provider whether you are allowed to
do this, and how and where you can get Slirp or TIA.

* an Ethernet board, a cable modem, and a SLIP/PPP account as
described above.

* an Ethernet board connecting your machine to a local area network.

Note that Miami does not require ppp.device, appp.device,
amippp.device or (rh)(c)slip.device. The protocols PPP and (C)SLIP are
built into Miami, in versions more efficient and more advanced than
those currently available in SANA-II devices.

1.7 Miami.guide/NODE_INSTALLATION

Installation

Miami is packaged in the following archives:

Miami30main.lha
The main archive. Everyone needs this.

Miami30-000.lha
The 68000/010 version of Miami. You need this if your Amiga has a
68000 or 68010 CPU.

Miami 9 / 92

Miami30-020.lha
The 68020+ version of Miami. You need this if your Amiga has a
68020, 68030, 68040 or 68060 CPU.

Miami30-MUI.lha
The MUI module for Miami. You need this if you want to use Miami
together with MUI >=3.8.

Miami30-GTL.lha
The GTLayout module for Miami. You need this if you want to use
Miami together with gtlayout.library V40 or higher.

Everybody needs to download the main archive, one of the two CPU
archives (000 or 020), and at least one of the two GUI module archives.
You may install more than one GUI module, if you like.

Download all archives, unarchive them into the same (temporary)
directory, and then execute the Installer script in that directory to
install Miami. The Installer script can be used for a new installation
or for updates.

All files are copied from the installation directory to a single
target directory, and no system files or system directories are
touched, with one exception:

The Installer script asks you whether you want to create a "Miami:"
assign, and then adds the required statements to your user-startup
file. Doing this is required. If you skip this step during the
installation then you must manually create the assign before starting
Miami. Otherwise Miami will not work properly.

1.8 Miami.guide/NODE_MIAMIINIT

MiamiInit

MiamiInit is a utility program that tries to determine all
configuration parameters for Miami that are required for a serial
connection (SLIP or PPP) or a SANA-II connection (Ethernet, Arcnet
etc.), and then saves a configuration file that can later be used by
Miami.

The first thing you should do to configure Miami after installation
is to run MiamiInit, and go through the dialog. In the process
MiamiInit connects to your network provider, determines all required
parameters, and saves them at the end.

MiamiInit only supports the most common setups at the moment. Very
unusual cases such as data formats other than 8N1, non-Hayes-compliant
modems or 3-wire modem cables are not supported. If you have any such
unusual setup you need to configure Miami manually instead of running
MiamiInit.

Note that depending on the configuration of your network MiamiInit

Miami 10 / 92

might not be able to find all information entirely by itself. It is not
an error if MiamiInit asks you for things like IP addresses or netmask
during the configuration. This just means that there is no server on
the network which provides this kind of information to MiamiInitSANA2.
In this case you need to ask your Internet provider or network
administrator for the missing information.

Generally, if you are setting up a very small local network, that
just consists of Amigas and PCs, then you will usually have to enter
most of the information yourself. On the other hand if you are
connecting to the Internet or to an existing corporate network which
has been set up to configure new machines then MiamiInit can often find
most or all of the information from a server.

1.9 Miami.guide/NODE_TOOLTYPES

ToolTypes

Miami supports the following ToolTypes when started from Workbench
(or arguments when started from the Shell):

PACKETDEBUG
Initiates packet-level debugging mode. If you specify
"PACKETDEBUG=10" or "PACKETDEBUG=20" then Miami creates a file
"Miami.debug" with a hex dump of all sent and received packets.
You should only use this during debugging, not during normal
operation, because these logs grow very quickly and consume a lot
of CPU time. A value of 10 logs packet payloads only. A value of
20 also logs raw packet data (for PPP/SLIP).

DONTCONNECT
If you have configured Miami to automatically connect to your
Internet provider whenever you start Miami, then you can use this
ToolType to override that behavior, giving you a chance to change
some settings before you connect.

SETTINGS
Any project icon needs to have a "SETTINGS" ToolType so Miami
recognizes it as a settings file. From the Shell you can use the
argument "SETTINGS=filename" to specify the settings file to load.

IMPORTMIAMIINIT
The argument "IMPORTMIAMIINIT=filename" tells Miami to import a
settings file from MiamiInit.

IMPORTASCII
The argument "IMPORTASCII=filename" tells Miami to import an ASCII
settings file (distribution format).

SAVESETTINGS
The argument "SAVESETTINGS" tells Miami to save the settings as
default. This argument is most useful when combined with
"IMPORTMIAMIINIT" or "IMPORTASCII" to import a foreign settings

Miami 11 / 92

file and convert it to a Miami settings file.

AREXX
The argument "AREXX=filename" tells Miami to execute the specified
ARexx script upon startup.

GUI
The argument "GUI=name" tells Miami which GUI engine to use for
the user interface. This overrides any user interface choise in the
settings file.

DO NOT attempt to use undocumented ToolTypes ! Such ToolTypes usually
do not do what you expect them to do, and might reduce the compatibility
or performance of Miami.

1.10 Miami.guide/NODE_MENUS

Menus

Description of all menu items:

Project/About...
Show information about Miami.

Project/About MUI...
Show information about MUI (Magic User Interface). This menu item
is only available when using one of the MUI user interface modules.

Project/Iconify
Iconify all windows of Miami. Note that for some interface modules
(e.g. GTLayout) this is identical to ‘Project/Kill GUI’.

Project/Kill GUI
Iconify all windows of Miami and unload the GUI module from memory.

Project/Offline without hangup
Go offline without hanging up the modem line first.

Project/Quit without hangup...
Leave Miami without hanging up the modem line first.

Project/Quit...
Leave Miami.

Settings/Load...
Load a settings file.

Settings/Save
Save the current settings into the current settings file.

Settings/Save as...
Save the current settings into a new settings file.

Miami 12 / 92

Settings/Save as default
Save the current settings as the default for Miami.

Settings/Create icon
Create a project icon for each settings file saved.

Settings/Import from distribution...
Import a settings file from Miami’s distribution (ASCII) format.

Settings/Export from distribution...
Export the settings into a file in Miami’s distribution (ASCII)
format.

Settings/Import from MiamiInit V2...
Import a settings file from MiamiInit version 2. This function is
obsolete. You should use MiamiInit version 3 and the import
function ‘Settings/Import from MiamiInit V3...’ instead.

Settings/Import from MiamiInitSANA2 V2...
Import a settings file from MiamiInitSANA2 version 2. This
function is obsolete. You should use MiamiInit version 3 and the
import function ‘Settings/Import from MiamiInit V3...’ instead.

Settings/Import from MiamiInit V3...
Import a settings file from MiamiInit version 3.

Settings/MUI Settings...
Open the MUI configuration window. This menu item is only
available when using one of the MUI user interface modules.

1.11 Miami.guide/NODE_CONFIGURATION

Configuration

The configuration of Miami is done completely through the graphical
user interface. There are no configuration files or environment
variables to edit.

Description of the graphical user interface:

General
The ‘General’ page

Interface
The ‘Interface’ page

PPP
The ‘PPP’ page

Dialer
The ‘Dialer’ page

Miami 13 / 92

Database
The ‘Database’ page

TCP/IP
The ‘TCP/IP’ page

Events
The ‘Events’ page

Modem
The ‘Modem’ page

Logging
The ‘Logging’ page

Windows
The ‘Windows’ page

GUI
The ‘GUI’ page

Socks
The ‘Socks’ page

Misc
Other GUI elements

1.12 Miami.guide/NODE_GUI_GENERAL

General
=======

Not much here, except for the official Miami logo and a gadget to
start the Miami registration program.

With some GUI modules (e.g. MUI) this page is selected by clicking
on "General" in the Listview. With other GUI modules the Miami main
window always shows the contents of the "General" page, and other pages
pop up in subwindows.

Register
The ‘Register’ gadget

1.13 Miami.guide/NODE_GUI_GENERAL_REGISTER

Miami 14 / 92

Register

This gadget starts the program MiamiRegister, allowing you to order
a Miami license code, register Miami or upgrade your registration.
MiamiRegister has to be in the same directory as Miami, or in the
standard Shell path.

1.14 Miami.guide/NODE_GUI_INTERFACE

Interface
=========

Interface type
The ‘Interface type’ gadget

Device / Unit
The ‘Device’ and ‘Unit’ gadgets

Speed
The ‘Speed’ gadget

Use CD
The ‘CD’ gadget

Protocol
The ‘Protocol’ gadget

Flow control
The ‘Flow control’ gadget

EOF mode
The ‘EOF mode’ gadget

Serial mode
The ‘Serial mode’ gadget

IP type / address
The ‘IP’ gadgets

Netmask type / address
The ‘Netmask’ gadgets

Gateway type / address
The ‘Gateway’ gadgets

Multicasts
The ‘Multicasts’ gadget

Mapping
The ‘Mapping’ gadget

Miami 15 / 92

MTU
The ‘MTU’ gadget

SANA-II parameters
The ‘SANA-II parameters’ gadget

Inactivity
The ‘Inactivity’ gadgets

1.15 Miami.guide/NODE_GUI_INTERFACE_TYPE

Interface type

This gadget selects the type of interface you want to use. The exact
layout of the ‘Interface’ page depends on the type you choose, i.e. only
those gadgets that are applicable for the type of interface you chose
are shown.

Available types:

builtin serial (PPP/CSLIP)
The standard built-in implementation of PPP or (C)SLIP, running on
top of Miami own serial driver for the Amiga’s built-in serial
port. This interface type can be used with the Amiga’s built-in
serial port only, and does not require additional drivers. Usually
using this interface type provides better performance than using
the type ‘serial driver’ with serial.device (or a replacement
device).

serial driver (PPP/CSLIP/IP)
The standard built-in implementation of PPP or (C)SLIP, running on
top of any serial.device-compatible device. This interface type
does not require a SANA-II driver.

SANA-II point-to-point
A SANA-II driver for a device that connects exactly two machines,
like SLIP, PPP or PLIP.

SANA-II Ethernet
A SANA-II driver for an Ethernet device, like the A2065 board, the
Hydra board or the Ariadne board.

SANA-II standard "old" Arcnet
A SANA-II driver for an Arcnet board, like the A2060 board. This
setting uses the standard "old" RFC1051 Arcnet encapsulation,
which is more popular on Amiga networks than the "new" RFC1201
encapsulation. Use the "old" encapsulation when you need to
connect your Amiga to AmiTCP/IP, Inet-225 or NetBSD 1.1.

SANA-II "new" Arcnet
A SANA-II driver for an Arcnet board, like the A2060 board. This

Miami 16 / 92

setting uses the "new" RFC1201 encapsulation. It does not
interoperate with AmiTCP/IP or NetBSD 1.1, but you might need this
"new" standard if you want to connect your machine to other
platforms such as Windows 95.

SANA-II other bus/ring
A SANA-II driver for a bus or ring device other than Ethernet or
Arcnet. Choose this setting if your hardware can connect more than
two machines, but is neither Ethernet-compatible nor
Arcnet-compatible.

1.16 Miami.guide/NODE_GUI_INTERFACE_DEVICE

Device / Unit

For serial interfaces:
Enter the device name and unit number of the serial port to which
your modem is connected. For the built-in Amiga serial port use
‘serial.device’ ‘0’ or ‘artser.device’ ‘0’. You should not use
‘8n1.device’ at this time though, because of bugs in the device.
Some users have also reported problems with ‘BaudBandit.device’
and ‘v34serial.device’.

For serial boards use the driver that comes with the board, e.g.
‘gvpser.device’, with the correct unit number.

For SANA-II interfaces:
Enter the device name and unit number of your SANA-II hardware.
The unit number is 0 in most cases.

1.17 Miami.guide/NODE_GUI_INTERFACE_SPEED

Speed

(This option is available for serial devices only.)

Speed of your serial port. For the internal serial port you should
use 19200, 38400 or (if you have a fast CPU and a graphics board)
57600. For serial boards you might even be able to use 115200 or 230400.

Do not use 31250. This speed is reserved for MIDI only and usually
does not work with modems.

Do not use 14400, 28800 or 33600 either. Your modem might be able to
connect to the other modem at these speeds, but it does probably not
support these speeds on its serial port.

Miami 17 / 92

1.18 Miami.guide/NODE_GUI_INTERFACE_CD

Use CD

(This option is available for serial devices only.)

If "Use CD" is activated then Miami uses the "Carrier Detect" line
of your modem to determine if your modem is already connected to the
other side or not.

This can be useful if you reset your Amiga without dropping the line,
so you can restart Miami and reconnect to your provider without
redialing.

This option can only be used if your modem has been configured to
correctly set the "Carrier Detect" line according to the line state.

Some modems have factory default settings that always set the
"Carrier Detect" line to high, even if the modem is not connected. If
this is true for your modem then you either have to change the modem
settings in your modem init string (usually "AT&C1") and then save the
modem settings to NV-RAM from a terminal program (usually "AT&W"), or
switch off the "Use CD" option.

If you are using the null-modem settings (configured on the "Modem"
page) then this gadget gets a different meaning:

* If the gadget is activated then the dial script is not executed at
all.

* If the gadget is deactivated then the dial script is executed,
except that Miami does not dial a number, i.e. the "ATDT..."
command is skipped, and the list of phone numbers is meaningless.

1.19 Miami.guide/NODE_GUI_INTERFACE_PROTOCOL

Protocol

(This option is available for serial devices only.)

The protocol your Internet provider uses. Currently supported are
SLIP/CSLIP and PPP.

1.20 Miami.guide/NODE_GUI_INTERFACE_FLOW

Flow control

Miami 18 / 92

(This option is available for serial devices using external serial
drivers only. The builtin serial driver always uses RTS/CTS.)

Miami supports two types of flow control: hardware handshaking
(RTS/CTS) and software handshaking (Xon/Xoff). By default hardware
handshaking is used, and it is strongly recommended that you do not
change this.

If you cannot use hardware handshaking (usually because of a
defective modem, cable or serial port) you should switch to software
handshaking. However make sure that you change your modem init string
(in the dialer window) appropriately. Also, software handshaking is
only possible with PPP, not with SLIP/CSLIP.

1.21 Miami.guide/NODE_GUI_INTERFACE_EOF

EOF mode

(This option is available for serial devices using external serial
drivers only. The builtin serial driver always has EOF-mode enabled.)

There are two ways for Miami to detect the end of incoming packets:
The more efficient one (using less CPU time) uses the EOF_MODE flag.
However this is only possible if the serial driver you use supports
EOF-mode. Many third-party drivers do not.

Usually you should leave this switch in the "auto" setting to let
Miami use the default setting. If you positively know whether your
driver supports EOF-mode or not then you can manually override the
default setting by choosing "on" or "off".

1.22 Miami.guide/NODE_GUI_INTERFACE_SERIAL

Serial mode

(This option is available for serial devices using external serial
drivers only. The builtin serial driver always uses 8N1.)

The settings for the number of data bits and parity used during
dialing. For 99% of all providers the correct settings are 8N1. Very
few providers (e.g. some dial-in points for Compuserve) might require
7E1 or 7O1.

Please note that these settings only apply during dialing and login.
The (C)SLIP/PPP protocol phases always use 8N1, regardless of the
setting you specified here. It is completely impossible to use PPP or
(C)SLIP across a 7-bit line - with any implementation actually. This is
not a limitation in Miami.

Miami 19 / 92

1.23 Miami.guide/NODE_GUI_INTERFACE_IP

IP type / address

Internet providers usually offer two types of Internet connections:
those with a static IP address permanently assigned to your Amiga, or
(more popular) those where your Amiga receives a dynamic IP address
each time you connect.

For serial interfaces:
If your Amiga has a fixed IP address choose "static" and enter the
IP address your provider told you. If your provider assigns you a
dynamic IP address for each connection choose "dynamic", and Miami
determines the IP address automatically when you connect.

If you use TIA or Slirp you have to choose "static" and enter the
pseudo IP address that TIA or Slirp assign to your Amiga. Please
see the TIA/Slirp docs for more information about this.

For SANA-II point-to-point interfaces:
If your machine has a fixed address then choose "static" and enter
the IP address. If the address is assigned by a local BootP/DHCP
server then choose "DHCP". If the SANA-II device determines the
dynamic address by itself (e.g. ppp.device) then choose "SANA-II’.

For SANA-II bus/ring interfaces:
If your machine has a fixed address then choose "static" and enter
the IP address. If the address is assigned by a local BootP/DHCP
server then choose "DHCP". If the address is assigned by a local
RArp server then choose "RArp".

1.24 Miami.guide/NODE_GUI_INTERFACE_MASK

Netmask type / address

(This option is available for SANA-II bus/ring devices only.)

Your netmask needs to be configured correctly so that Miami knows how
many machines are in your local network. There are three ways of setting
the netmask:

static
Ask your network administrator for the correct netmask and enter
it.

DHCP
Miami tries to get the correct netmask from a local BootP/DHCP

Miami 20 / 92

server.

ICMP
Miami tries to get the correct netmask from a local server that
supports ICMP netmask discovery.

1.25 Miami.guide/NODE_GUI_INTERFACE_GWAY

Gateway type / address

(This option is available for SANA-II bus/ring devices only.)

Your default gateway needs to be configured correctly so that Miami
knows where to send packets that are not intended for a machine on your
local network. There are three ways of setting the gateway:

static
Ask your network administrator for the correct gateway and enter
it.

DHCP
Miami tries to get the correct gateway from a local BootP/DHCP
server.

ICMP
Miami tries to get the correct gateway from a local server that
supports ICMP router discovery.

1.26 Miami.guide/NODE_GUI_INTERFACE_MULTICASTS

Multicasts

(This option is available in the registered version only.)

Miami support Level-2 multicasting, i.e. both sending, and receiving
multicast messages.

If you want to use applications that need support multicasting (none
are available yet), you might have to enable Multicasts in Miami. The
possible settings are:

disabled
Multicasts are disabled.

send as broadcasts
Multicasts are sent as link-level broadcasts (or for
point-to-point devices: as ordinary packets).

Miami 21 / 92

send as multicasts
Multicasts are sent as link-level multicasts. This option is only
available for Ethernet boards.

Note: Multicasts should only be enabled for an interface if you
receive your multicast feed directly from this interface. If you get
your multicast feed through a tunnel using MiamiMRouteD then you
usually need to disable multicasts on Miami’s interface, because
MiamiMRouteD handles multicasting by itself.

1.27 Miami.guide/NODE_GUI_INTERFACE_MAPPING

Mapping

(This option is available for SANA-II Arcnet devices only.)

Arcnet supports two different standards to map IP addresses to
hardware addresses:

Arp
Arp (Address resolution protocol) is used. This is the recommended
default, and is also what AmiTCP/IP uses.

direct
The least-significant 8 bits of the IP address are mapped to the
hardware address. This is what NetBSD 1.1 uses.

If you have at least one NetBSD 1.1 machine in your Arcnet network
then you can make life easier for you by choosing "direct" mapping
instead of creating manual Arp entries on all machines.

In all other cases you should choose "Arp" on all machines. Newer
("current") versions of NetBSD 1.2 and higher support Arp for Arcnet.
If you are using one of these newer NetBSD versions then please select
"Arp" mapping in Miami.

1.28 Miami.guide/NODE_GUI_INTERFACE_MTU

MTU

(This option is available for serial devices only. The MTU value for
SANA-II devices is set through

SANA-II parameters
.)

Maximum Transfer Unit, i.e. the size of the largest packet
transferred at a time.

Miami 22 / 92

Recommended values are:

* for modem speeds up to 19200 bps: MTU=296

* for modem speeds higher than 19200 bps: MTU=552

Please note that changing the MTU value in the configuration window
does not necessarily mean that the maximum packet size is actually
changed to this value:

(C)SLIP does not have any means to negotiate MTU, i.e. the MTU value
configured here only affects the size of outgoing packets, not the size
of incoming packets.

PPP has configuration options to negotiate the MTU. Miami always
tries to negotiate the MTU you specified here, but the other side might
disagree and force a different MTU value, in which case Miami might
have to use the value suggested by the other side for one or both
directions.

Also note: For PPP the MTU value is not critical, i.e. your
connection will still work if the MTU value you selected is higher or
lower than the optimum value. However for (C)SLIP you must make sure
that your MTU value is not higher than the MTU value at your Internet
provider.

1.29 Miami.guide/NODE_GUI_INTERFACE_STP

SANA-II parameters

(This option is available for SANA-II devices only.)

The gadget "SANA-II parameters" pops up a window with SANA-II link
level settings for the device. These settings include

* The hardware address of the device, with an option to override it.
(For bus/ring devices only.) Hardware addresses are specified as a
sequence of bytes in hexadecimal notation, separated by ‘:’, e.g.
‘01:23:45:67:89:ab’.

* The link-level packet types for IP, Arp and RArp packets. (RArp
is not available with Arcnet, and neither Arp nor RArp are
available with point-to-point devices.)

* The MTU for the device.

* The number of IORequests used for IP and Arp packets. (Arp is not
available with point-to-point devices.)

In most cases you should initialize all of these values to default
values by clicking on "Query device" (only while Miami is offline).
However you can manually override all values if necessary, e.g. if you

Miami 23 / 92

are using a new hardware type for which Miami does not know the correct
default settings.

1.30 Miami.guide/NODE_GUI_INTERFACE_INACTIVITY

Inactivity

Some Internet providers hang up the line if there is no activity on
the line for a while to prevent users from occupying lines that are not
really used.

The "Inactivity" gadgets allow you to configure Miami to simulate
line activity even if you are not really using the line, so your
provider does not hang up.

The gadget on the left sets the type of activity: PPP ping or ICMP
ping. PPP ping consumes less bandwidth, but only works with PPP, not
with (C)SLIP, and does not have an effect with all providers. ICMP ping
takes up slightly more bandwidth, but works with both PPP and (C)SLIP,
and should have an effect with all providers.

If you use (C)SLIP then choose ICMP ping. Otherwise first try PPP
ping, and if your provider still hangs up try ICMP ping.

The gadget on the right sets the number of minutes between successive
pings. You need to experiment with that. Common values are 9 or 14, to
prevent hangups after 10 or 15 minutes.

Note: You need to check with your Internet provider first if he
allows the use of this type of activity simulator. Some providers have
policies that do not allow it, and by using such a simulator you might
be violating their regulations. I will not be responsible or liable for
any consequences resulting from the improper use of this activity
simulator.

Note: There are many reasons why a modem might hang up. One is an
inactivity timeout at your Internet provider, which should be prevented
by this function. However modems sometimes also hang up the line
because of line noise. There is no way to prevent this in software.

This function only allows you to prevent hangups at times of
inactivity. Some users want to do the opposite: enforce hangups at
times of inactivity, to save on telephone costs. The tool

MiamiRemind
allows you to do that.

1.31 Miami.guide/NODE_GUI_PPP

Miami 24 / 92

PPP
===

PAP / CHAP password
The ‘PAP/CHAP’ gadgets

Callback
The ‘Callback’ gadgets

VJC
The ‘VJC’ gadget

ACCM
The ‘ACCM’ gadget

Quick Reconnect
The ‘Quick Reconnect’ gadget

Escape
The ‘Escape’ gadget

Get DNS from IPCP
The ‘Get DNS from IPCP’ gadget

TermReq before hangup
The ‘TermReq before hangup’ gadget

1.32 Miami.guide/NODE_GUI_PPP_CHAP

PAP / CHAP password

PAP and CHAP are protocols used by PPP to send login id and password
to the PPP server.

Most of the time the login id and password used for PAP or CHAP are
identical to the ones you used in your dial script. In this case choose
"Same as in dialer".

If your provider requires a PAP/CHAP login id or password different
from the one you chose in the dialer, then do not select "Same as in
dialer", but instead type in your PAP/CHAP login id and password
manually.

Registered users who have installed MiamiSSL 1.2 or higher can enable
‘Allow MS-CHAP’. This improves compatibility with some misconfigured
Windows-NT PPP servers. If this option is disabled then Miami falls
back to using PAP when the server requests MS-CHAP.

Miami 25 / 92

1.33 Miami.guide/NODE_GUI_PPP_CALLBACK

Callback

(This function is available in the registered version only.)

PPP supports callback (‘dialback’) according to the CBCP protocol. If
your provider is configured for it, then you can negotiate with your
provider to call you back in order to save on telephone costs.

Depending on the configuration at your provider you either need to
choose ‘CBCP fixed’, in which case your provider calls you back to a
predefined phone number, or ‘CBCP variable’, in which case your
provider calls you back to the phone number you enter in the gadget
below.

‘Min delay’ is the delay you ask the provider to wait before calling
you back. This should be large enough to allow your modem to hang up
the line and reinitialize itself.

‘Max delay’ is the maximum delay you want Miami to wait for a
callback before giving up.

1.34 Miami.guide/NODE_GUI_PPP_VJC

VJC

Van Jacobsen Compression is a technique to save bandwidth by
compressing the headers of TCP packets. Usually this option should be
switched on, meaning that PPP will automatically try to negotiate VJC,
and use it if the other side agrees.

However some old, buggy PPP servers do not support VJC properly, so
you might have to switch VJC off for them.

VJC does not interact with your modem’s data compression in any way,
i.e. you should not switch VJC off just because your modem supports
MNP-5 or V.42bis. VJC can be used independently of MNP-5 or V.42bis.

1.35 Miami.guide/NODE_GUI_PPP_ACCM

ACCM

The PPP protocol supports a list of control characters that are
"escaped" during transmission, i.e. replaced by a two-byte sequence.
This list is called ACCM (Asynchronous Control Character Mask).

Miami 26 / 92

The purpose of this list is to make PPP more robust across lines
that are not completely 8-bit transparent, and to avoid any
interference of the PPP protocol with software modem flow control.

The default is to only escape characters 17 and 19 (Xon/Xoff), so PPP
can be used across a link with software flow control. If you are running
PPP through a telnet link you might have to escape more characters. Each
character you escape reduces the performance of PPP by about 0.8%.

To change the ACCM settings either enter the 32-bit mask value
directly in heaxdecimal digits, or click on the popup gadgets to toggle
each control character individually.

1.36 Miami.guide/NODE_GUI_PPP_QUICK

Quick Reconnect

Usually Miami allows you to reconnect to your provider (without
dialing again) when the modem is still connected, e.g. after resetting
your Amiga, but only if the "Use CD" gadget is switched on on the
"Interface" page.

However even then with PPP some providers do not allow reconnection
(and renegotiation of PPP), and instead hang up the line when you try
to reconnect.

"Quick Reconnect" usually helps in this case: If "Quick Reconnect"
is activated (by either setting it to "RAM" or to "file") then Miami
does not attempt to renegotiate PPP, but bypasses the renegotiation and
fetches all PPP parameters from an area of RAM that has been set up to
survive a reboot (for the "RAM" setting) or from a file on harddisk
(for the "file" setting). In most cases this allows you to reconnect to
your provider after rebooting your Amiga.

Please note: If you use the "file" setting and your Amiga crashes
(for whatever reason, e.g. caused by a run-away commodity or patch)
while Miami is writing the reconnect-file to harddisk, then it is
possible that your harddisk gets invalidated or damaged in some way,
caused by some bugs and other shortcomings in the Amiga filesystem.

It is therefore safer to use "RAM", because then Miami does not have
to create a harddisk file. However the "RAM" setting only works if you
do not reboot at all, or after a soft- (warm-) reboot. If your machine
crashes very badly or if you have to cold-reboot (destroying resident
modules) then the old PPP parameters will be gone and the "RAM" setting
does not cause a proper reconnect.

1.37 Miami.guide/NODE_GUI_PPP_ESCAPE

Miami 27 / 92

Escape

PPP can negotiate that characters in the range of 0-31 and 128-159
are escaped. This is configured in the ACCM.

However there are situations when you might have to escape some
additional characters, e.g. 0xFF across rlogin connections.

In this case enter the 2-digit hex codes (separated by spaces) into
the "Escape" gadget, and Miami will escape those characters when sending
PPP packets.

Note that, contrary to the ACCM definition, this only works in one
direction: when sending data. If the channel back from the server to
Miami also requires character escaping, then you have to configure the
PPP server accordingly as well.

1.38 Miami.guide/NODE_GUI_PPP_DNSIPCP

Get DNS from IPCP

This switch is "on" by default. This means that Miami tries to use
IPCP extensions for automatic DNS discovery to find DNS servers.

Unfortunately some broken PPP servers neither support this option,
nor reject it properly, but simply violate the protocol. If you
experience problems completing the link level PPP protocol with your
Internet provider then you might have to disable this option.

1.39 Miami.guide/NODE_GUI_PPP_TERMREQ

TermReq before Hangup

This option should normally be switched on. In this case Miami sends
an LCP-TermReq message to your provider when you want to hang up the
line. This usually has the effect that your provider hangs up the modem
first, causing your modem to hang up more quickly.

However some PPP servers do not support LCP-TermReqs properly. If
you notice that hanging up the line takes very long then try disabling
this option and see if hangups are quicker this way.

1.40 Miami.guide/NODE_GUI_DIALER

Miami 28 / 92

Dialer
======

Dial script
The ‘Dial script’ listview

Phone numbers
The ‘Phone numbers’ listview

Max Repeat
The ‘Max Repeat’ gadget

Repeat Delay
The ‘Repeat Delay’ gadget

Redial Delay
The ‘Redial Delay’ gadget

Teach
The ‘Teach’ gadget

Login ID / Password
The ‘Login ID’ / ‘Password’ gadgets

Capture
The ‘Capture’ gadgets

1.41 Miami.guide/NODE_GUI_DIALER_SCRIPT

Dial script

The listview gadget in the top area of the "Dial script" group
contains the dial script. You can change entries by clicking on them
and editing them in the string gadget below.

The gadgets at the bottom are used to add and remove entries from
the dial script.

For more information about the language used by the dialer please see

Dialer Command Language
.

The listview has a context menu associated with it, i.e. if you
press the right mouse button over the listview a menu pops up allowing
you to import/export the dial script from/to an ASCII text file.

Miami 29 / 92

1.42 Miami.guide/NODE_GUI_DIALER_PHONE

Phone numbers

The "Phone numbers" group works similarly to the "Dial script" group,
but has two additional gadgets: "Enable" and "Disable". Enabled phone
numbers have a ">>" symbol next to them. Only enabled phone numbers will
be used during dialing.

In the demo version only up to three phone numbers are supported. In
the registered version there is no such limit.

1.43 Miami.guide/NODE_GUI_DIALER_MAX

Max Repeat

If no connection can be established with any of the listed phone
numbers, then Miami waits for the time specified in

Repeat Delay
, and

then tries again, restarting with the first phone number. However the
maximum number of retries is limited by the number specified in the
"Max Repeat" gadget. After that Miami just gives up and aborts dialing.

1.44 Miami.guide/NODE_GUI_DIALER_DELAY

Repeat Delay

If no connection can be established with any of the listed phone
number, then Miami waits for the time specified in the "Repeat Delay"
gadget and then tries again, restarting with the first phone number.

1.45 Miami.guide/NODE_GUI_DIALER_RDELAY

Redial Delay

This value specifies the delay between successive dial attempts (for
different phone numbers). Usually you want this value to be zero, i.e.
have Miami dial one number immediately after the first number was busy.

However some European modems require minimum delays between

Miami 30 / 92

successive dial attempts. If you have one of these modems then you need
to set the "Redial Delay" to a value large enough for your modem.

1.46 Miami.guide/NODE_GUI_DIALER_TEACH

Teach

The "Teach" gadget starts the Miami dialer in interactive mode (i.e.
without executing a dial script), records all text send by the user or
received from the modem, and then tries to create a proper dial script
from that.

Most of the time MiamiInit is used to create a dial script, not
"Teach", but if your provider changes the login procedure it might be
more convenient for you to only create a new dial script (using
"Teach") instead of running MiamiInit all over again.

1.47 Miami.guide/NODE_GUI_DIALER_NAME

Login ID / Password

The login id and password used in the dial script. If "Same as in
dialer" is enabled in the PPP window then these values are also used
for PAP/CHAP.

1.48 Miami.guide/NODE_GUI_DIALER_CAPTURE

Capture

If you activate the "Capture" checkmark gadget and enter a file name
in the corresponding string gadget, then the dialer will save all data
received from the modem during dialing (i.e. a complete dial log) to a
file.

1.49 Miami.guide/NODE_GUI_DATABASE

Database
========

The "Database" page is the equivalent of the files in the "db"

Miami 31 / 92

directory for other TCP/IP protocol stacks, i.e. it allows you to
configure most of the TCP settings on your system, which daemons to
run, a list of users and other things.

The cycle gadget on top of the listview is used to switch between
different parts of the database. For each part of the database you see
a listview and a set of string gadgets to modify the current entry.

Using the context menu of the database listview gadget you can
import/export each part of the database from/to ASCII text files. This
allows you to continue to use your old AmiTCP/AS-225 db/#? files with
Miami.

In the registered version you can also sort sections of a database,
import/export from/to the Clipboard, and merge the database with ASCII
files.

With the MUI user interface modules you can rearrange entries of the
database by dragging them off the side of the listview and then moving
them back into the listview at their intended position. Please see the
MUI documentation for more information on drag-sorting listviews.

Each entry in the database can be individually enabled or disabled.
Enabled entries are indicated by a ‘>>’ marker to the left of the
entry. You can enable or disable entries by double-clicking on them
(with most GUI modules), or by selecting an entry and then clicking on
‘Enable’ or ‘Disable’.

Each entry in the database can be marked as "temporary" by clicking
on the "Temp" gadget. This has the effect that this entry is not saved
to disk when you save the settings, and that it is - in some cases -
deleted when reconnecting. This can be useful if some of the entries
(e.g. dynamically obtained DNS server addresses) should not be used for
the next connection.

By default Miami marks all dynamically obtained DNS server addresses
and your dynamic hostname as temporary.

Parts of the database:

Protocols
The ‘protocols’ part

Services
The ‘services’ part

Hosts
The ‘hosts’ part

Networks
The ‘networks’ part

Domains
The ‘domains’ part

Miami 32 / 92

DNS servers
The ‘DNS servers’ part

InetD
The ‘InetD’ part

users
The ‘users’ part

groups
The ‘groups’ part

Arp
The ‘Arp’ part

Socks
The ‘Socks’ part

IP filter
The ‘IP filter’ part

1.50 Miami.guide/NODE_GUI_DATABASE_PROTOCOLS

Protocols

List of all supported protocols (relative to IP), consisting of a
protocol name, a protocol ID, and an optional list of aliases. The
table corresponds to the "etc/protocols" or "db/protocols" file in
other protocol stacks.

This table hardly ever has to be changed. You should never remove
one of the default entries from this table.

1.51 Miami.guide/NODE_GUI_DATABASE_SERVICES

Services

List of all supported services (TCP or UDP), consisting of a service
name, a service ID, a protocol name, and an optional list of aliases.
The table corresponds to the "etc/services" or "db/services" file in
other protocol stacks.

Some application programs might require changes (usually additions)
to this list. However you should never remove one of the default
entries from this table.

In particular: removing one entry from this table is not the proper

Miami 33 / 92

way of disabling its function in InetD. If you want to disable a server
in InetD then remove it from the "InetD" table, or disable it in the
"InetD" table, but do not remove it from the "services" table.
Otherwise you might get spurious errors from other applications later.

1.52 Miami.guide/NODE_GUI_DATABASE_HOSTS

Hosts

List of all host names (and corresponding IP addresses), consisting
of an IP address, a host name, and an optional list of aliases. The
table corresponds to the "etc/hosts" or "db/hosts" file in other
protocol stacks.

Miami automatically adds a mapping for "localhost" and for the host
name of your Amiga to this list. Other mappings can be added manually
to make name->IP translations faster. However you should only add
mappings for names that are under your personal control. Never add
mappings for hosts elsewhere on the Interent, because otherwise you
would be unable to contact those hosts when they are renumbered.

1.53 Miami.guide/NODE_GUI_DATABASE_NETWORKS

Networks

List of all networks, consisting of a network name, a network ID, and
an optional list of aliases. The table corresponds to the
"etc/networks" or "db/networks" file in other protocol stacks.

This table is hardly used any more, and only implemented for
backwards compatibility with very old software and some diagnostic
software.

1.54 Miami.guide/NODE_GUI_DATABASE_DOMAINS

Domains

List of all local domains, specified by just the domain name. The
table corresponds to the "etc/domains" or "db/domains" file in other
protocol stacks.

This table is not strictly needed by TCP/IP, but adds some
convenience for the user: it allows you to abbreviate host names by
specifying just the machine name (without the domain) whenever

Miami 34 / 92

referring to a host.

Example:

Assume a local machine on your network is named ex1.foo.edu, and you
access this machine frequently. If you add foo.edu to the list of
domains, then you can access machine ex1.foo.edu by just typing ex1.

Note that abbreviating host names this way only works for names
looked up through DNS, not for names looked up through the "Hosts"
table. This means if you for instance add a domain "foo.edu", have a
host "ex1.foo.edu" at 10.0.0.1 and want to be able to access that host
by just typing "ex1", then you need to add an alias "ex1" for the host
in the "Hosts" table as well (i.e. make the "Hosts" table entry
"10.0.0.1 ex1.foo.edu ex1").

1.55 Miami.guide/NODE_GUI_DATABASE_DNSSERVERS

DNS servers

List of DNS servers, specified by just the IP address of the server.

DNS servers are used to map logical host names to their IP address.
You should have at least one DNS server listed in this table at all
times, preferably a DNS server close to or at your provider.

If Miami finds any DNS servers by itself when connecting it
automatically adds them to this list and marks them as "temporary".

1.56 Miami.guide/NODE_GUI_DATABASE_INETD

InetD

List of daemons started by the built-in InetD consisting of a
service name (corresponding to an entry in the "services" table), a
socket type ("dgram" or "stream"), a wait mode ("wait", "nowait" or
"dos"), the owner (usually "root" for AmigaOS), the server’s file name,
the server’s process name, and a list of arguments to be sent to the
server. The table corresponds to the "etc/inetd.conf" or
"db/inetd.conf" file in other protocol stacks.

The InetD built-in to Miami supports many built-in services:
"daytime", "time", "echo", "discard", "chargen", "finger" and "auth".
"auth" is really the same as "identd".

Daemons for other (external) services can be automatically started
by InetD by adding an appropriate line to this table. If you would like
to install external daemons (e.g. ftpd or telnetd) please check their

Miami 35 / 92

documentation for the correct format of the "InetD" entry they require.

For security reasons it is recommended that you disable the "echo",
"discard" and "chargen" services, because they can be abused for
denial-or-service attacks.

1.57 Miami.guide/NODE_GUI_DATABASE_USERS

Users

List of users in the system, consisting of a user name, a password,
a user ID, a group ID (index into the "groups" table), a real name, a
home directory, and a command to be used to start a shell through
telnet. The table corresponds to the "etc/passwd" or "db/passwd" file
in other protocol stacks.

You usually only need a single entry in this file (for yourself),
unless you want to run daemons like ftpd/telnetd that allow other users
to connect to your Amiga.

Passwords are stored in an encrypted format and are not displayed in
the listview. The password column shows

‘-’
if no password is associated with a user, i.e. if login is possible
without a password.

‘*’
if no login is possible to this account.

a centered ‘x’
if a valid password is associated with this user.

The procedure to enter passwords differs depending on the GUI module
you use. For MUI and some other modules click on the "Password" popup
gadget to change the password. A string requester pops up then. For
other module you need to enter the new password directly in the string
gadget.

If you leave the string gadget empty then no password will be
associated with the user (shown as ‘-’). If you enter just the single
character ‘*’ then logins will be inhibited (shown as ‘*’). In all
other cases the text you type will be used as the password (shown as a
centered ‘x’).

Note: When you import this file from AmiTCP the passwords are not
preserved, i.e. the passwords for all users are set to empty and have
to be entered again manually. This is because the password encryption
algorithm used by AmiTCP cannot be used by Miami for legal reasons. For
more information on this please check

Passwords
.

Miami 36 / 92

1.58 Miami.guide/NODE_GUI_DATABASE_GROUPS

Groups

List of groups in the system, consisting of a group name, a group ID
and an optional user list. The table corresponds to the "etc/group" or
"db/group" file in other protocol stacks.

You usually only need a single entry in this file (for yourself),
unless you want to run daemons like ftpd/telnetd that allow other users
to connect to your Amiga.

1.59 Miami.guide/NODE_GUI_DATABASE_ARP

Arp

List of manual Arp entries in the system, consisting of an IP address
and a hardware address. The hardware address has to be specified in the
usual colon-hex notation (e.g. ‘01:23:45’). The table corresponds to
the "etc/ethers" or "db/ethers" file in other protocol stacks.

Arp is only used with bus/ring-type SANA-II devices, and you only
need to add Arp entries manually if one of the other machines on the
local network does not support Arp.

1.60 Miami.guide/NODE_GUI_DATABASE_SOCKS

Socks

List of SOCKS configuration entries in the system, consisting of a
protocol type, a command, a list of hosts, a list of ports, and a list
of proxies. The table defines which proxy (SOCKS) server, if any, is
supposed to be contacted, as a function of the host and port to connect
to.

Most users do not have to make any changes in this table. If you do
not use SOCKS at all then just ignore this table. If you do use SOCKS
then in most cases it is sufficient to leave this table empty, and only
configure a SOCKS server in

Socks
. You only need to make changes in

this table if you want Miami to contact different SOCKS servers for
different hosts or ports, or if you have a complicated local network

Miami 37 / 92

(with multiple subnets) inside of the SOCKS firewall.

Each entry in this table defines a filter for a connection or bind
attempt, and a list of proxy servers that are supposed to be contacted
for connections matched by the filter. For each connection or bind
attempt the table is scanned from beginning to end, and the first match
is used, i.e. the order of entries in this table is significant. The
format of each entry is as follows:

Type
This defines the type of connection to be used, if this filter
entry matches. Valid values are ‘socks4’ for a SOCKS V4 connection,
‘socks5’ for a SOCKS V5 connection and ‘noproxy’ for a direct
connection, without SOCKS.

Command
This field is part of the filter, and can be a comma-separated list
of letters, with no white space in between. Each letter indicates
one type of request: ‘c’: connect. ‘b’: bind. ‘u’: UDP. ‘p’: ping.
‘t’: traceroute. ‘-’: any request.

Hosts
This field is part of the filter, and can be a host definition, as
follows: ‘hostip/mask’: matches a range of target hosts by IP
address and netmask, e.g. ‘1.2.3.4/255.255.0.0’. ‘-’: matches all
hosts. ‘n1’: equivalent to ‘n1.0.0.0/255.0.0.0’. ‘n1.n2’:
equivalent to ‘n1.n2.0.0/255.255.0.0’. ‘n1.n2.n3’: equivalent to
‘n1.n2.n3.0/255.255.255.0’. ‘.domain.name’: matches all hosts
ending in ‘.domain.name’. ‘a.host.name’: matches exactly the host
‘a.host.name’.

Ports
This field is part of the filter, and can be a port definition, as
follows: ‘-’: matches all ports. ‘name’: matches the named
service, e.g. ‘ftp’. ‘number’: matches the given port number,
e.g. ‘80’. ‘[100,1000]’: matches ports 100 through 1000.
‘(100,1000)’: matches ports 101-999. ‘(100,1000]’: matches ports
101-1000.

Proxies
This defines which proxy servers to contact for requests that
match this filter. It can be a comma-separated list of server
entries. Each server entry has to be specified by hostname or IP
address, optionally followed by a colon and the port number of the
proxy server.

This table is only functional if ‘SOCKS’ is enabled in
Socks
. For

requests not matched by this table the default behavior is to contact
the SOCKS server/port defined in

Socks
using SOCKS5.

Miami 38 / 92

1.61 Miami.guide/NODE_GUI_DATABASE_IPFILTER

IP filter

(This function is only available in the registered version.)

This table allows you to filter out some of the IP packets arriving
at the local interface, or to create system log entries if some
specific packets arrive. This allows you to implement a very
rudimentary firewall, or to be notified when someone tries to break
into your machine.

The table consists of a sequence of rules. Each packet that arrives
is checked against each of the rules, from top to bottom. The first
rule that applies to the packet dictates whether the packet is filtered
out, and whether a log entry for this packet is generated for this
packet. Rules further below in the table are not checked.

Each entry in the table consists of the following parts:

* A protocol, i.e. ‘tcp’, ‘udp’ or ‘*’ meaning ‘any protocol’.

* A service, i.e. a name that appears in the ‘services’ table, ‘*’
meaning ‘any port’ or ‘$’ meaning ‘any service port’, i.e. any
port not in the range from 1024-5000). It is also possible to
specify a range of services here, using the ‘/’ as the delimiter
between the first and last service, e.g. ‘1/80’ is the range from
port 1 to port 80.

* An IP address, refering to the source IP address of the packet.

* A netmask, defining the range of IP addresses

* Two parameters that define the action: you can allow or disallow
access (’y’ or ’n’), and create or inhibit a log entry (’y’ or
’n’).

Note that log entries are only created for ‘tcp’ services, not for
‘udp’ services.

Here is an example of a useful start configuration for the IP filter:

* * 127.0.0.1 (empty mask) y n
tcp auth *.*.*.* (empty mask) y n

* $ *.*.*.* (empty mask) y y

What this does is:

The first line ensures that any packet sent locally (i.e. from your
Amiga to yourself) is allowed without logging.

The second line also allows incoming ‘auth’ requests without logging.
This is useful because ‘auth’ (‘identd’) requests are issued by so many
httpd, ftpd and ircd servers that you probably do not want to be
bothered with a log entry for each request.

Miami 39 / 92

The third line allows all remaining external requests, but generates
a log entry, telling you that someone is trying to access your machine.
It is important that the service is specified as ‘$’, not ‘*’. That’s
because ftp uses reverse-connects (from the server to the client)
during upload and download. If you specified the service as ‘*’ then
you would also get a log entry each time you download or upload a file
from/to an ftp server.

All remaining packets (i.e. packets from the outside sent to a port
between 1024 and 5000) use the implied default rule, which is to allow
the packet and not to generate a log entry.

1.62 Miami.guide/NODE_GUI_TCPIP

TCP/IP
======

Host name
The ‘Host name’ group

Real / User name
The ‘Real name’ and ‘User name’ ←↩

gadgets

Use ICMP
The ‘Use ICMP’ gadget

Use DHCP
The ‘Use DHCP’ gadget

Verify DNS servers
The ‘Verify DNS servers’ gadget

Fake IP
The ‘Fake IP’ gadget

T/TCP
The ‘T/TCP’ gadget

Auto-add domain
The ‘Auto-add domain’ gadget

Down when offline
The ‘Down when offline’ gadget

Ping flood protection
The ‘Ping flood protection’ gadget

Get time
The ‘Get time’ gadgets

Miami 40 / 92

1.63 Miami.guide/NODE_GUI_TCPIP_HOSTNAME

Host name

In most cases you should switch the gadget "dynamic" on. In this case
Miami automatically determines your Amiga’s host name through reverse
DNS lookup whenever you connect.

However some providers do not support reverse DNS lookup, or assign
a static host name to their users that is not listed in the DNS. In
this case switch "dynamic" off and enter your host name manually.

1.64 Miami.guide/NODE_GUI_TCPIP_NAME

Real / User name

In these gadgets you should enter your real name (e.g. "Joe Smith"),
and the user name on your Amiga (e.g. "jsmith").

Although you could theoretically use any names here it is good
practice to use "real" names, not some phantasy names.

Some programs look up user information based on your user name. To
make these programs behave properly you should ensure that there is an
entry in the "Users" part on the "Database" page that corresponds to
the user name entered here.

1.65 Miami.guide/NODE_GUI_TCPIP_ICMP

Use ICMP

If this gadget is switched on then Miami uses ICMP "ping" messages
to verify the correctness of IP addresses, DNS servers etc.

This gadget should usually be switched on, because it provides
additional protection from incorrect configuration.

However if you are connecting through some TCP emulator such as TIA
then you might have to switch this gadget off, because not all TCP
emulators support ICMP.

Miami 41 / 92

1.66 Miami.guide/NODE_GUI_TCPIP_BOOTP

Use DHCP

If your provider uses dynamic IP addresses then there are different
techniques for Miami to find the correct (dynamic) IP address.

For PPP lines this is usually handled has part of the PPP protocol.
(C)SLIP does not have such an option though, so for (C)SLIP a protocol
called "DHCP" (or its predecessor "BootP") is sometimes used.
Alternatively the IP address can sometimes be determined from the dial
log.

If you used MiamiInit to configure the line then you can just leave
this switch at its default setting. If you configured Miami manually
then you should first switch "DHCP" on, and then later try again with
"DHCP" switched off, and see if this still works.

If Miami can find your IP addresses without DHCP then you should
switch "DHCP" off, because it can make the connection establishment
phase quicker.

1.67 Miami.guide/NODE_GUI_TCPIP_VERIFYDNS

Verify DNS servers

Usually Miami tries to verify the correctness of the IP addresses of
all DNS servers. However this can cause problems with some Internet
providers if their DNS servers have a bad connectivity or do not
respond to requests immediately after connection establishment.

If you deactivate the "Verify DNS servers" gadget then Miami skips
the DNS verification step when going online.

1.68 Miami.guide/NODE_GUI_TCPIP_FAKEIP

Fake IP

If you are connected to the Internet through a TCP emulator such as
TIA or Slirp, and this emulator does not assign you a "real" IP address,
but a fake address, then you need to activate this switch.

It tells Miami to obtain your host name by resolving the remote IP
address, not your local ("fake") IP address.

Miami 42 / 92

1.69 Miami.guide/NODE_GUI_TCPIP_TTCP

T/TCP

(This option is available in the registered version only.)

T/TCP (TCP for Transactions) is an extension to TCP that can
significantly increase the speed of some types of applications, in
particular of web browsers, if the browser and the server both support
T/TCP.

Registered users should usually enable this option to make use of the
speed advantage. However a few PPP servers have problems with the
extended TCP packets generated by T/TCP, so if Miami stops working
after enabling T/TCP you might have to disable this option - or switch
providers.

1.70 Miami.guide/NODE_GUI_TCPIP_ADDDOMAIN

Auto-add domain

If this gadget is activated then Miami will automatically add your
host name’s domain (i.e. everything after the first ’.’) to Miami’s
"domain" database.

This is not strictly required for Miami or for any software, but it
can be convenient if you want to use abbreviated host names. Please see

The ‘Database’ page
for more details on the meaning of the "domain"

database.

1.71 Miami.guide/NODE_GUI_TCPIP_DOWN

Down when offline

(This option is available in the registered version only.)

In the unregistered version Miami always disconnects all active TCP
sessions when the interface goes offline. In the registered version
Miami keeps TCP sessions alive in such a situation. This has the
advantage that you might be able to reconnect quickly and to continue
to use your TCP session.

The drawback of keeping TCP sessions alive when the interface goes
offline is that applications cannot detect whether Miami is online or

Miami 43 / 92

offline, i.e. their connection attempts would just time out when Miami
is offline, but not generate any other error message.

If you don’t like this behavior and would prefer Miami to generate
proper errors when the interface is offline then enable this option.

1.72 Miami.guide/NODE_GUI_TCPIP_PING

Ping flood protection

(This option is available in the registered version only.)

Miami has a simple heuristic to reduce the effects of
denial-of-service attacks resulting from ping flooding:

If this option is enabled and a user tries to ping-flood your
machine (either by sending very large pings or by sending pings very
quickly), Miami generates a log entry informing you about the attempt,
and stops generating ping responses to that user for a while, until the
user has stopped flooding you for some time.

Note that there is no way for you to prevent the user from flooding
you, i.e. to stop him from wasting your modem bandwidth. All Miami can
do in response to ping flooding is to stop sending responses and to
tell you about it (so you can reconnect to a different modem port). It
is not possible for Miami to prevent that user from wasting your modem
bandwidth. That would only be possible by installing a filter at your
Internet provider.

1.73 Miami.guide/NODE_GUI_TCPIP_GETTIME

Get time

If your Amiga is not equipped with a battery-powered real-time clock
then you should activate the "Get time" switch, and enter the name or
IP address of a server that supports the "time" service in the string
gadget. If you are unsure which name to enter just try any "major"
machine run by your provider, e.g. the machine you use for e-mail or
news.

If you use this feature you need to make sure that your "ENV:TZ"
variable is set correctly, i.e. usually to something like "EST5", or to
"EST4EDT" during daylight savings time. This is important, because the
server transmits the time in GMT (UTC) format, and Miami needs to
adjust it to your local time zone. Please see

Time zone information
for

more details.

Miami 44 / 92

Note: Do not use this function if your Amiga has a battery-backed
clock, because in this case it is possible that setting the time will
cause your Amiga’s time to be changed backwards. This can confuse
programs which use GetSysTime() for calculations, and can cause crashes
and other problems.

1.74 Miami.guide/NODE_GUI_EVENTS

Events
======

Miami allows you to react in various ways to events such as offline,
online etc., by executing an ARexx or Shell script, iconifying the
Miami window etc.

The specific events Miami can react to are:

Start
program start.

End
program end.

active Offline
going offline caused by the user, e.g. by clicking on the
"Offline" gadget or by an ARexx "OFFLINE" command.

passive Offline
going offline caused by the modem or the provider hanging up.

Online
going online, i.e. successfully connecting to the Internet
provider and starting up all required protocols.

failed Online attempt
an attempt to go online that failed for some reason, e.g. because
all phone lines were busy, and the maximum number of retries was
reached.

Miami can react in the following ways. Not each of these options
makes sense for each event, so only a subset of these options is
actually available in each case:

ARexx
Start an ARexx script

Shell
Start an AmigaDOS shell script

Hide GUI
iconify the Miami window

Miami 45 / 92

Kill GUI
iconify the Miami window and unload the GUI module

auto-online
try to go online (dial) automatically

beep
flash the display or beep, as defined in system preferences

show
deiconify the Miami window

In the evaluation version of Miami the options "ARexx" and "Shell"
are not available, and "auto-online" is not available in response to a
"passive offline" event.

The gadget "Console name" allows you define the input/output stream
that ARexx and Shell scripts use. It should be something like
"CON:1/1/400/100/title".

1.75 Miami.guide/NODE_GUI_MODEM

Modem
=====

Init String
The ‘Init String’ gadget

Exit String
The ‘Exit String’ gadget

Dial prefix
The ‘Dial prefix’ gadget

Dial suffix
The ‘Dial suffix’ gadget

Null modem
The ‘Null modem’ gadget

1.76 Miami.guide/NODE_GUI_MODEM_INIT

Init String

The initialization string for your modem, usually set by MiamiInit.

Miami 46 / 92

1.77 Miami.guide/NODE_GUI_MODEM_EXIT

Exit String

The string sent to your modem when Miami quits. Most users do not
need this, but it can be useful if multiple programs share the modem
port, and your modem needs to be reset to default settings before Miami
exits.

1.78 Miami.guide/NODE_GUI_MODEM_PREFIX

Dial prefix

The command your modem uses for dialing, i.e. the string prepended to
the phone number. This is usually "ATDT" or "ATDP".

1.79 Miami.guide/NODE_GUI_MODEM_SUFFIX

Dial suffix

The string that needs to be appended to your phone number to complete
the dial command. This is usually "\r".

1.80 Miami.guide/NODE_GUI_MODEM_NULLMODEM

Null modem

Miami usually assumes that you have a modem connected to your serial
port. If your Amiga is directly connected to another computer using a
null-modem cable, then you need to activate this gadget. It prevents
any modem commands ("AT commands") from being sent, and Miami will not
wait for any responses such as "OK" or "CONNECT".

With "null-modem" activated the meaning of the "Use CD" gadget on
the "Interface" page changes:

* If your machine is connected to a computer that requires a login
sequence to establish the SLIP/PPP link, then you should
deactivate the "Use CD" gadget. Miami then uses the dial script
specified in the "Dialer" window, but without dialing a number
first. This option is most useful when connecting to a Unix or
Linux box that runs a getty with login/password check on its

Miami 47 / 92

serial port.

* If your machine is connected to a computer that runs its serial
port in dedicated SLIP/PPP mode (e.g. another Amiga running
Miami), then you should activate the "Use CD" gadget. Miami will
then completely bypass any dial script and immediately proceed
with the protocol negotiation.

1.81 Miami.guide/NODE_GUI_LOGGING

Logging
=======

Console
The ‘Console’ gadget

File
The ‘File’ gadget

Use syslog.library
The ‘Use syslog.library’ gadget

Phone log
The ‘Phone log’ gadgets

PPP log
The ‘PPP log’ gadgets

1.82 Miami.guide/NODE_GUI_LOGGING_CONSOLE

Console

In this gadget you can specify the AmigaDOS stream name of the
console window that Miami uses for system log messages. This file is
kept open after the first system message has occured, so you should use
the "CON:" modifiers "/AUTO/CLOSE" to be able to close the window
without losing old system messages.

1.83 Miami.guide/NODE_GUI_LOGGING_FILE

File

Miami 48 / 92

In this gadget you can specify the AmigaDOS file name of the file
where Miami stores system log messages. If the file already exists then
Miami appends to this file, i.e. old file contents are not deleted.

1.84 Miami.guide/NODE_GUI_LOGGING_SYSLOG

Use syslog.library

If you enable this gadget then Miami tries to access syslog.library
for its system log. syslog.library is part of the SysLog package by
Petri Nordlund.

1.85 Miami.guide/NODE_GUI_LOGGING_PHONE

Phone log

Miami can log any online and offline events in order to assist in
phone bill management.

The two "Phonebill" gadgets let you enable phone logging and specify
the name of a file to which Miami appends billing records.

At the moment only ASCII format is supported, with records as
follows:

Online: 27.07.1996 17:48:11 (5551234)
Passive offline: 27.07.1996 17:48:11
Active offline: 27.07.1996 17:48:11
Reconnect: 27.07.1996 17:48:11

The "Online" record contains the phone number that was dialed in
"()". "Reconnect" occurs when Miami goes online without actually
dialing, e.g. after rebooting the Amiga.

The difference between "passive" and "active" offline is that an
"active" offline is voluntary, i.e. the result of an "OFFLINE" ARexx
command, someone clicking on the "Offline" gadget etc. A "passive"
offline is the result of your modem hanging up or your Internet
provider disconnecting you.

1.86 Miami.guide/NODE_GUI_LOGGING_PPP

PPP log

Miami 49 / 92

(This option is available in the registered version only.)

The PPP log gadget allows you to specify a file name where Miami logs
the connection establishment phase of PPP. Data is logged in human-
readable form, i.e. not as a hex dump. Only the connection establishment
phase is logged, i.e. until the LCP and IPCP state machines have
reached the ‘Open’ state. After that logging stops.

The primary purpose of the PPP log is to help track down
compatibility problems at the PPP level, and to help optimize PPP
options for a particular PPP server.

1.87 Miami.guide/NODE_GUI_WINDOWS

Windows
=======

Quit requester
The ‘Quit requester’ gadgets

Offline requester
The ‘Offline requester’ gadget

Error requester
The ‘Error requester’ gadget

Dialer
The ‘Dialer’ gadgets

1.88 Miami.guide/NODE_GUI_WINDOWS_REQQUIT

Quit requester

You can configure when Miami shall display a ‘Quit requester’:

* always

* when programs that use Miami are still running.

* when Miami is online

or combinations of the above.

Miami 50 / 92

1.89 Miami.guide/NODE_GUI_WINDOWS_REQOFFLINE

Offline requester

If you activate this checkmark then Miami asks you before going
offline.

1.90 Miami.guide/NODE_GUI_WINDOWS_REQERRORS

Error requester

Normally Miami displays an error requester if any problems occur
during dialing or while configuring the link. If you disable this
checkmark then such errors are silently ignored, and Miami does not
display an error requester.

1.91 Miami.guide/NODE_GUI_WINDOWS_DIALER

Dialer

The standard dialer window has three parts: a help text at the top,
several buttons in the middle, and a dialog window at the bottom. With
the three "Dialer" checkmarks you can enable or disable each of these
three parts.

If you disable the dialog window then the dialer will display a
single line of text only, that contains the dialer command currently
being executed.

The "Activate windows" gadget tells Miami whether you want Miami to
activate dial windows and error requesters when they pop up.

1.92 Miami.guide/NODE_GUI_GUI

GUI
===

This page defines the user interface settings for Miami, i.e.
hotkeys, iconification, icons and the user interface engine to be used.

Important: Always specify user interface settings on this page, not
in any other preferences program. Even if you use MUI then do not use
the iconify and hotkey functions in MUI preferences for Miami. These

Miami 51 / 92

functions do not work with Miami, because Miami handles iconification
by itself, without MUI.

Hotkey
The ‘Hotkey’ gadget

Show icon
The ‘Show icon’ gadget

Show menu
The ‘Show menu’ gadget

No GUI on startup
The ‘No GUI on startup’ gadget

Online icon
The ‘Online icon’ gadget

Offline icon
The ‘Offline icon’ gadget

GUI engine
The ‘GUI engine’ gadget

Switch
The ‘Switch’ gadget

1.93 Miami.guide/NODE_GUI_GUI_HOTKEY

Hotkey

This string gadget specifies the Commodities hot key to iconify or
deiconify the Miami user interface. Standard Commodities syntax is used
to define the hot key, e.g. ‘ctrl alt m’ defines the hot key to be the
key ‘m’, pressed together with the ‘ctrl’ key and either ‘alt’ key.
‘ctrl alt m’ is also the default.

1.94 Miami.guide/NODE_GUI_GUI_SHOWICON

Show icon

If this gadget is checked then an AppIcon is displayed on the
Workbench screen when Miami is iconified.

Miami 52 / 92

1.95 Miami.guide/NODE_GUI_GUI_SHOWMENU

Show menu

If this gadget is checked then a ‘Miami’ entry in the Workbench
‘Tools’ menu is created when Miami is iconified.

1.96 Miami.guide/NODE_GUI_GUI_ONSTARTUP

No GUI on startup

If this gadget is checked then Miami does not load the user
interface module on startup, and does not open its window. This feature
is most useful if you combine it with ‘automatic online on startup’.
See

Events
for more information on this.

1.97 Miami.guide/NODE_GUI_GUI_ONLINEICON

Online icon

This gadget lets you specify an icon (‘.info’ file) that Miami uses
as the AppIcon whenever Miami is online. The default (empty gadget) is
to use a built-in image.

1.98 Miami.guide/NODE_GUI_GUI_OFFLINEICON

Offline icon

This gadget lets you specify an icon (‘.info’ file) that Miami uses
as the AppIcon whenever Miami is offline. The default (empty gadget) is
to use a built-in image.

1.99 Miami.guide/NODE_GUI_GUI_GUI

Miami 53 / 92

GUI engine

This gadget lets you choose one of several installed GUI engines.
Your choice is remembered by Miami and stored in the settings file (if
you save settings afterwards), but Miami does not immediately switch to
the new GUI engine. To do that click on

Switch
.

1.100 Miami.guide/NODE_GUI_GUI_SWITCH

Switch

Clicking on this gadget causes Miami to switch to the selected GUI
engine. (What really happens is: Miami iconifies, removes the current
GUI module, loads the new GUI module, and then deiconifies with the new
GUI module.)

1.101 Miami.guide/NODE_GUI_SOCKS

Socks
=====

This page lets you configure SOCKS client support in Miami. If you
have never heard about SOCKS then you probably don’t need it. SOCKS is
a proxy system to allow sites within a firewall to make connections to
machines outside of the firewall.

Miami’s SOCKS implementation allows Amiga TCP/IP clients to connect
"through" firewalls transparently, without special support in the
clients. If your network provider uses a SOCKS firewall then ask them
for the IP address of the SOCKS server, and for the SOCKS username and
password (if the SOCKS server is password-protected), and configure
Miami for SOCKS on this page.

The settings on this page are default settings for your setup. You
can configure the SOCKS settings in more detail in

Database/Socks
.

Enable SOCKS
The ‘Enable SOCKS’ gadget

Default SOCKS Server

Miami 54 / 92

The ‘Default SOCKS server’ gadgets

Maximum Syslog level
The ‘Maximum Syslog level’ gadget

Authentication
The ‘Authentication’ gadgets

1.102 Miami.guide/NODE_GUI_SOCKS_ENABLE

Enable SOCKS

If this gadget is enabled then Miami uses SOCKS to connect to any
machine not directly reachable through any interface. You also need to
configure the SOCKS server IP address, port and, with some SOCKS
servers, authentication.

1.103 Miami.guide/NODE_GUI_SOCKS_SERVER

Default SOCKS server

These gadgets define the IP address and port number of the default
SOCKS server in your network. The port number for SOCKS is usually 1080.

1.104 Miami.guide/NODE_GUI_SOCKS_MAXLOG

Maximum Syslog level

This gadget defines how many diagnostic messages you want to receive
from the SOCKS wrapper. You should usually keep this gadget at "none"
or "error". Higher settings are useful to get additional diagnostic
messages during debugging.

1.105 Miami.guide/NODE_GUI_SOCKS_AUTH

Authentication

These gadgets specify the authentication data sent to the SOCKS

Miami 55 / 92

server. The following authentication methods are possible:

none
No authentication data is sent. This only works with SOCKS servers
that do not require authentication.

same as in dialer
Miami sends the username/password combination you defined in the
dialer to the SOCKS server.

username/password
Miami sends the username/password combination specified in the
gadgets below to the SOCKS server.

1.106 Miami.guide/NODE_GUI_MISC

Misc
====

There are three more gadgets in Miami that are not described in any
of the previous sections:

* "Online": Causes Miami to start dialing and try to go online.

* "Offline": Causes Miami to hang up the line and go offline.

* A listview gadget or a set of buttons on the left side of the
Miami window, that is used to select one of the configuration
pages.

1.107 Miami.guide/NODE_DIALERLANG

Dialer Command Language

The following commands are supported by the dialer:

ABORT "text1","text2",...
Specify a list of texts that cause Miami to completely abort
dialing, e.g. "NO DIALTONE" from the modem.

ASKPASSWORD
Pop up a requester asking the user for the password.

DELAY secs
Wait for the specified number of seconds.

DIALNEXT "text1","text2",...
Specify a list of texts that cause Miami to hang up the phone and
dial the next number, e.g. "BUSY" from the modem.

Miami 56 / 92

PARSEPASSWORD "endchar"
Parses all characters from the modem up to, but not including
<endchar>, and replaces the current password by this text. This
command can be useful for one-time password systems that send the
password for the next session during login.

REDIAL "text1","text2",...
Specify a list of texts that cause Miami to hang up the phone and
redial the current number, e.g. "BUSY" from the modem.

SAVECONFIG
Save the current configuration (settings) to disk. This command is
usually used after PARSEPASSWORD to save the settings containing
the new password.

SEND "text"
Send <text> to the modem. A linefeed/carriage return is not
automatically appended. Miami recognizes the following standard
control sequences: \",\\,\r,\n. In addition "\u" and "\p"
are supported to send the current login id (user id) or password,
respectively.

SENDBREAK
Send a serial port "break" signal. This is used by some terminal
servers to switch to command mode.

SENDPAD "text",padding
Send <text> to the modem, padded with spaces up to a total length
of <padding>. Example: ‘SENDPAD "abc",5’ would send "abc ".

SENDPASSWORD
Send the current password, followed by a "\r".

SENDUSERID
Send the current user id (login id), followed by a "\r".

TIMEOUT secs
Specify the amount of time to wait for a text during WAIT or
WAITPPP before giving up.

WAIT "text"
Wait for "text" to be received from the modem.

WAITCONNECT
Wait for a CONNECT message and the following text (usually the
connection speed) to be received from the modem. This is identical
to ‘WAIT "CONNECT"’, except that Miami copies anything following
the ‘CONNECT’ message on the same line to an internal buffer, and
later displays it in the status area. With many modems this allows
you to see the speed at which your modem connected.

WAITPPP
Wait for the server to switch to PPP mode.

With the commands "ABORT", "DIAL" and "DIALNEXT" you can specify the
keyword "TIMEOUT" (without the quotes), instead of a text in quotes,

Miami 57 / 92

e.g.
ABORT "NO CARRIER",TIMEOUT

This means that Miami will abort the dial script when a timeout
occurs. Other options are to dial the current number again, or to dial
the next number when a timeout occurs.

1.108 Miami.guide/NODE_AREXX

ARexx Interface

The name of the Miami ARexx port is "MIAMI.1". At the moment Miami
supports all of the standard ARexx commands for MUI applications
("QUIT", "HIDE", "DEACTIVATE", "SHOW", "ACTIVATE", "INFO", "HELP") plus
the following additional commands:

CHANGEDB
Tells Miami to re-read the file "ENVARC:MiamiChangeDB" to update
the settings. Please see

Client settings
for more details how to

use this feature.

GETCONNECT
Returns the connection string that followed the ‘CONNECT’ message
from the modem. Usually this string contains an indication of the
connection speed.

GETCONNECTTIME
Returns the number of seconds since Miami received the ‘CONNECT’
message from the modem.

GETONLINETIME
Returns the number of seconds Miami has been online in the ‘result’
variable.

GETSETTINGSNAME
Returns the file name of the current settings file in the result
variable.

ISONLINE
Checks if Miami is online and sets the error code ("RC")
accordingly. 1 means: Miami is online. 0 means: Miami is offline.

KILLGUI
Iconifies Miami’s windows and unloads the current GUI module.

LOADSETTINGS file/a
Loads the specified settings file.

OFFLINE
Hang up and go offline. Same as clicking on the "Offline" gadget.

Miami 58 / 92

ONLINE
Attempt to go online. Same as clicking on the "Online" gadget.

QUITFORCE
Using the "QUIT" command from an ARexx script is the safest way to
quit Miami, because Miami only attempts to go offline and quit if
no other ARexx scripts are still running, to avoid deadlocks. The
disadvantage of this is that there may be timing problems if your
ARexx control is complex, involves multiple ARexx scripts (in
particular scripts for earlier events), and one or more scripts
are still running when the "QUIT" command is issued: Miami would
then refuse to quit, even though it might be safe to wait and quit
later. In that case try the "QUITFORCE" command: it forces Miami to
wait until all ARexx scripts have completed, and then quit.
Warning: this command will lock up Miami if one of the pending
ARexx scripts never returns, e.g. because of an inifite loop or a
recursive call, so it is potentially dangerous if your ARexx
scripts are buggy.

1.109 Miami.guide/NODE_ENVVARS

Environment variables

Time zone information
Time zone information

Users usually do not need to set any environment variables in order
to use Miami. Nevertheless here is a list of all variables Miami uses,
in case you want to make manual changes:

DOMAIN, DOMAINNAME
These variables are set automatically by Miami, whenever Miami
goes online. They are set to your current domain (i.e. to the part
of your host name which follows the first ".").

HOME
This variable is set automatically by Miami, whenever Miami goes
online. It is set to the home directory configured in
Database/Users, for the user you selected on the TCP/IP page.

HOST, HOSTNAME
These variables are set automatically by Miami, whenever Miami
goes online. They are set to your configured host name (for static
host names), or to the host name corresponding to your IP address,
found by Miami through reverse DNS lookup. If no host name was
found then these variables are set to your IP address.

MagicWB
If no user interface is specified (by the user, in the settings
file, or in "ENV:MIAMI/GUI") then Miami falls back to using either

Miami 59 / 92

"MUI" or "MUIMWB" as the default GUI. "MUIMWB" is used if the
"MagicWB" variable exists, indicating that MagicWB has been
installed.

REALNAME
This variable is set automatically by Miami, whenever Miami goes
online. It is set to the real name configured on the TCP/IP page.

SOCKETCONFIG
This variable is set automatically by Miami, whenever Miami goes
online. It is required by the freeware "socket.library" emulation
library (for I-Net-225-compatible software), and is set in a way
that allows that library to work properly.

TZ
This variable is read by Miami to find your current time zone. It
should be set correctly before installing Miami. Please see

Time zone information
for more on this.

USERNAME
This variable is set automatically by Miami, whenever Miami goes
online. It is set to the user name configured on the TCP/IP page.

MIAMI/GUI
This variable should contain the name of your default GUI engine
(e.g. ‘MUI’, ‘MUIMWB’ or ‘GTLayout’). It is set automatically
during installation.

MIAMI/SSLLIB
This variable is only needed when you use MiamiSSL, and is set
automatically during the installation of MiamiSSL. It should
contain the name of your SSL encryption library, i.e. either
‘Miami:Libs/miamisslintl.library’ or
‘Miami:Libs/miamisslusa.library’.

1.110 Miami.guide/NODE_ENVVARS_TZ

Time zone information

The environment variable TZ has to be set as follows:

Outside of daylight savings time (i.e. during winter):

EST5

where EST is the name of your time zone, and 5 is the *negative*
time difference to UTC (i.e. if you are 2 hours east of UTC then the
value has to be -2, not 2). In Europe, Asia and Australia that number
is usually 0 or negative, in America it is positive. See below for
examples.

Miami 60 / 92

During daylight savings time (i.e. during summer):

EST4EDT

EST, 4: meaning the same as above. EDT is the name of your time zone
during daylight savings time. Also make sure that you adjust the number
(4 in the example) by one hour as required by your local daylight
savings time conventions.

The name of the time zone does not really matter in either case. It
is important that the number is right, though, and that the number
starts *exactly* at the fourth character position.

It is NOT correct to put some RFC-compliant time string into ENV:TZ,
i.e. something like "EST", "EST (-0500)" or "-0500" will NOT work.

Some examples:

winter summer

US west coast PST8 PST7PDT
US east coast EST5 EST4EDT
Britain WET0 WET-1WEDT
most of western
Europe MET-1 MET-2MEDT

1.111 Miami.guide/NODE_EXCONFIG

Exchanging Settings

The Miami settings are saved in an IFF file in a format that is
currently intentionally undocumented. However Miami allows you to
import and export settings in a variety of ways:

Distribution format
Importing/exporting settings for ←↩

distribution

Exchanging passwords
Exchanging password files

Client settings
Custom settings for some clients

1.112 Miami.guide/NODE_EXCONFIG_DIST

Miami 61 / 92

Distribution format
===================

Miami allows you to export settings into an ASCII format that is
suitable for distribution, e.g. to upload it to Aminet, or to give it
to other users who have accounts with the same Internet provider. It
can also be used by Internet providers to preconfigure complete Miami
settings for new user.

The ASCII file format contains a header, followed by a variable
number of parameters.

When exporting files Miami only includes those parameters that are
related to the provider, but not those that are related to the
individual user’s system setup or that are security-relevant in any
way. This means you can safely export your settings and give the file
to other user, without compromising sensitive information like
passwords.

When importing files Miami does support user-related information like
passwords though, so providers can write Installer scripts which ask the
user for his login id and password, and which then create an ASCII
settings file for Miami that contains all information required by Miami.

To get an idea how the ASCII file looks just export your current
settings to ASCII. The general format is

* a 2-line header. Each line starts with a "$" sign. Do not modify
this header.

* a variable number of lines starting with a ";". These lines are
comments and can be edited freely.

* a variable number of lines that specify parameters.

Most parameters are specified in a single line. These lines look like
this:

PARAMETER=value

Some parameters (e.g. the dial script) require several lines. In this
case the format is as follows:

PARAMETER=%
first value
second value
third value
%

This means a single "%" indicates a multi-line parameter, and another
"%" as the only character on a line indicates the end of the list of
values.

The order of parameters within the file is arbitrary. You should not
make any assumptions that Miami stores parameters in a specific order.

Miami 62 / 92

List of supported parameters: A (m) indicates a multi-line
parameter. A (i) indicates that the parameter is only imported, but
never exported. A (r) indicates that this feature is only available in
the registered version, and ignored in the unregistered version.
"(m)", "(i)" and "(r)" are not actually part of the ASCII file.

Values indicated as "A / B" means that the value is a single
character, either "A" or "B".

DEVNAME= (i)
devicename

UNIT= (i)
device unit number

BAUD= (i)
serial port speed

PROTOCOL=
P / S (ppp or slip)

FLOWCONTROL= (i)
H / S (hardware (RTS/CTS) or software (Xon/Xoff) handshaking)

EOFMODE= (i)
Y / N / A (yes / no / auto)

SERMODE=
8N1 / 7E1 / 7O1

MTU=
integer

IPTYPE=
D / S (dynamic or static)

IP=
1.2.3.4

CD= (i)
Y / N (Use CD)

BOOTP=
Y / N (Use BootP)

INACTIVITY=
N / I / P (inactivity type: none, ICMP, PPP)

INACTIVITYDELAY=
minutes

PAPNAME= (i)
username

PAPPWD= (i)
password

Miami 63 / 92

PAPSAME=
Y / N

CALLBACKTYPE= (r)
NONE / CBCPFIXED / CBCPVARIABLE

CALLBACKPHONE= (i) (r)
phone_number

CALLBACKMINDELAY= (r)
integer

CALLBACKMAXDELAY= (r)
integer

ACCM=
000a0000

VJC=
Y / N

QUICKRECONNECT=
Y / N

TERMREQ=
Y / N

DIALNAME= (i)
login id

DIALPWD= (i)
password

INITSTRING= (i)
modem_init_string

DIALPREFIX= (i)
dial_prefix

DIALSUFFIX= (i)
dial_suffix

DIALSCRIPT= (m)
dial_script

DIALNUMBERS= (i)(m)
phone_numbers

DIALMAXREPEAT=
maxrepeat

DIALREPEATDELAY=
repeatdelay

DIALREDIALDELAY=
redialdelay

Miami 64 / 92

HOSTDYNAMIC=
Y / N (host name dynamic: yes / no)

HOSTNAME= (i)
hostname

REALNAME= (i)
real_name

USERNAME= (i)
user_name

DOICMP=
Y / N

FAKEIP=
Y / N

TTCP= (r)
Y / N

DBHOSTS= (m)
host_database

DBNETWORKS= (m)
network_database

DBDOMAINS= (m)
domain_database

DBDNSSERVERS= (m)
dns_servers_database

1.113 Miami.guide/NODE_EXCONFIG_PASSWORDS

Exchanging passwords
====================

Miami allows you to freely import and export all files from the
Unix/AmiTCP db directories, with one exception: the passwd file can be
imported, but the passwords are cleared in the process, and thus have
to be reentered manually in Miami.

The reason for this is: AmiTCP (at least up to version 4.3) uses the
DES algorithm for password encryption. DES is a cryptographically
strong encryption algorithm that is subject to US export restrictions.
A program implementing DES may not be exported from the US without an
individual permit, and the US government currently does not issue such
permits.

The result is that any kind of export of AmiTCP from the US is
illegal. This includes downloading the AmiTCP archive from an ftp
server in the US to a computer outside of the US. For this reason
AmiTCP may not be uploaded to all Aminet sites, severely restricting

Miami 65 / 92

the availability of AmiTCP.

For Miami things would have been even worse: since I am developing
Miami within the US (not in Finland like NSDi) I would not have been
allowed to send Miami to anybody outside of the US, regardless of the
way I distribute it. I therefore decided not to use DES in Miami, but
to use a different encryption algorithm that is not subject to US export
restrictions.

Miami uses an iterated version of MD5 for password encryption. This
algorithm is cryptographically strong, i.e. not known to be breakable
except by exhaustive search, just like DES. However since MD5 is, unlike
DES, a one-way algorithm, it cannot be decrypted and therefore is not
subject to US export restrictions.

This means it is completely legal to import and export Miami to and
from the US, to upload Miami to Aminet sites and other ftp sites, and
to use Miami in the US and other countries (unless some country forbids
the use of MD5).

I am sorry for the problems this may cause for users who have to
maintain multiple and/or large password files, but I do not see any
other way of handling this situation.

1.114 Miami.guide/NODE_EXCONFIG_CLIENTS

Custom client settings
======================

Some TCP/IP clients such as AmiTalk require changes to the settings
database that most protocol stacks store in the "db" directory. Usually
entries have to be added to the "services" or "inetd.conf" file.

With Miami you can make the appropriate changes directly through the
graphical user interface, i.e. just select the "Database" page, the
correct section (e.g. "services"), and add the entries you need.

In some situations it can be more convenient to automatize this
process, e.g. to have the Installer script of a TCP/IP client make the
required changes by itself, without bothering the user. With Miami this
works as follows:

* You first need to append a line to the file "ENVARC:MiamiChangeDB"
that looks as follows:

ADD services ntalk 518/udp
or

ADD inetd ntalk dgram udp wait root Servers:talkd (talkd)
Whenever Miami is started it automatically reads the contents of
this file (if it exists), updates the settings, and saves the
resulting settings.

* If Miami is running when the client is installed and you want Miami
to update its settings immediately you should send the "CHANGEDB"
ARexx command to Miami after modifying the above file.

Miami 66 / 92

You can add entries to any of Miami’s database tables this way.
However for security reasons only those tables which are commonly used
by clients (‘inetd’ and ‘services’) are directly changed by Miami. If
applications try to change any other table (e.g. the sensitive ‘users’
table), then Miami shows a requester, asking the user for confirmation,
after receiving the "CHANGEDB" command.

To summarize: In your Installer scripts you should have statements
as follows to automatically configure Miami for your client:

echo >>ENVARC:MiamiChangeDB "ADD services ntalk 518/udp"
rx "address MIAMI.1;CHANGEDB"

If Miami is running it updates the settings immediately. Otherwise
Miami picks up the changes the next time it is started.

1.115 Miami.guide/NODE_UTILITY

Utility Programs

MiamiArp
MiamiArp

MiamiFinger
MiamiFinger

MiamiIfConfig
MiamiIfConfig

MiamiMapMBone
MiamiMapMBone

MiamiMRInfo
MiamiMRInfo

MiamiMRouteD
MiamiMRouteD

MiamiMTrace
MiamiMTrace

MiamiNetStat
MiamiNetStat

MiamiPing
MiamiPing

MiamiRemind
MiamiRemind

Miami 67 / 92

MiamiResolve
MiamiResolve

MiamiRoute
MiamiRoute

MiamiSysCtl
MiamiSysCtl

MiamiTCPDump
MiamiTCPDump

MiamiTraceRoute
MiamiTraceRoute

1.116 Miami.guide/NODE_UTILITY_ARP

MiamiArp
========

Address resolution display and control

Usage:

arp hostname
Display current Arp entry for <hostname>

arp [-n] -a
Display all of the current Arp entries. If "-n" is specified then
all entries are listed numerically instead of symbolically.

arp -d hostname
Delete arp entry for <hostname>

arp -s hostname hw_addr [temp] [pub]
Create an Arp entry for <hostname> with the hardware address
<hw_addr>. The entry is permanent unless the word "temp" is given.
If the word "pub" is given then this system will act as an Arp
server for the specified host.

arp -f filename
Read and execute commands from the file <filename>.

1.117 Miami.guide/NODE_UTILITY_FINGER

MiamiFinger
===========

MiamiFinger displays information about the system users.

Miami 68 / 92

Usage: MiamiFinger [-l] [user][@machinename]

Options are:

-l
Show the long output format (for remote machines: send the "/W"
modifier to the remote finger daemon).

If no machine name is specified then "localhost" is assumed.

If a user is specified then information about this user is displayed.
Otherwise some default information for the fingerd connecting to is
displayed. In many cases this is some general system information and/or
a list of users currently logged on.

This implementation of MiamiFinger supports T/TCP for faster finger
lookups.

1.118 Miami.guide/NODE_UTILITY_IFCONFIG

MiamiIfConfig
=============

Configure network interface parameters

Note: most of the options of MiamiIfConfig should not be used with
Miami at this time, because Miami usually already sets all values
correctly. Do not play around with this program. You should really know
what you are doing before trying to change any interface options.

About the only useful options are "up" and "down" to temporarily
mark the interface as unavailable. Note that this does not cause the
modem to hang up. Other than that you should probably only use
MiamiIfConfig to examine interface settings, not to change them.

Usage: MiamiIfConfig interface [alias | -alias] [af [address
[dest_addr]] [up] [down] [netmask mask]] [metric n] [arp | -arp]
[broadcast address] [link0 | -link0] [link1 | -link1] [link2 | -link2]

interface
Currently either "lo0" or "mi0"

alias/-alias
Consider the specified address an alias for the existing address,
i.e. do not overwrite an existing address.

af
Address family: only "inet" is supported at this time.

address
A protocol-level address. For the address family "inet" this is an
IP address in dot-notation (e.g. 123.45.67.89).

Miami 69 / 92

dest_addr
The protocol-level destination address. This is only used for
point-to-point devices.

up/down
Mark the interface as up or down.

netmask
Change the netmask for this interface.

metric
Change the metric (priority) for this interface. This has no
effect for a single-interface stack like Miami.

arp/-arp
Enable/disable Arp for this interface. This option should not be
used with Miami. Use the Miami GUI instead to choose the type of
address resolution.

broadcast
Set the broadcast address for this interface.

linkx/-linkx
Set or reset link-level flags 0, 1 or 2. These flags are not
currently used by Miami.

1.119 Miami.guide/NODE_UTILITY_MAPMBONE

MiamiMapMBone
=============

Multicast connection mapper

Usage: MiamiMapMBone [-d debug_level] [-f] [-g] [-r retry_count] [-t
timeout_count] [starting_router]

MiamiMapMbone attempts to display all multicast routers that are
reachable from the specified multicast starting_router. If not
specified on the command line, the default multicast starting_router is
the localhost.

The options have the following meaning:

-d debug_level
Sets the debug level. When the debug level is greater than the
default value of 0, addition debugging messages are printed.

-f
Sets flooding option. Flooding allows the recursive search of
neighboring multicast routers and is enable by default when
starting_router is not used.

-g
Sets graphing in GraphEd format.

Miami 70 / 92

-n
Disables the DNS lookup for the multicast routers names.

-r retry_count
Sets the neighbor query retry limit. Default is 1 retry.

-t timeout_count
Sets the number of seconds to wait for a neighbor query reply
before retrying. Default timeout is 2 seconds.

1.120 Miami.guide/NODE_UTILITY_MRINFO

MiamiMRInfo
===========

Displays configuration info from a multicast router.

Usage: MiamiMRInfo [-d debug_level] [-r retry_count] [-t
timeout_count] [multicast_router]

MiamiMRInfo attempts to display the configuration information from
the specified multicast router. If no router is specified then
localhost is used.

The options have the following meaning:

-d debug_level
Sets the debug level. When the debug level is greater than the
default value of 0, addition debugging messages are printed.

-r retry_count
Sets the neighbor query retry limit. Default is 3 retries.

-t timeout_count
Sets the number of seconds to wait for a neighbor query reply
before retrying. Default timeout is 4 seconds.

1.121 Miami.guide/NODE_UTILITY_MROUTED

MiamiMRouteD
============

IP Multicast Routing Daemon

Usage: MiamiMRouteD [-p] [-c config_file] [-d debug_level]

MiamiMRouteD is a program you might have to run in the background
("run MiamiMRouteD") to receive or forward multicast feeds. Please see
below for a more detailed explanation.

Miami 71 / 92

The options have the following meaning:

-p
Start MiamiMRouteD in non-pruning mode. This option should only be
used for testing.

-c config_file
Specify which config file to use. The default config file is
"Miami:MiamiMRouteD.config".

-d debug_level
Specify the debug level. The default is 0 (no debug info).

MiamiMRouteD is a very complex and powerful program that allows you
to receive and forward multicast feeds. It is configured through a
separate configuration file, the format of which is partially described
below. However since Miami supports only a single interface, only few
features of MiamiMRouteD can reasonably be used with Miami, only few
users probably need to use it at all.

The two most common configurations are:

* You are receiving your multicast feed direcly from a broadcast- or
multicast-capable interface such as Ethernet or Arcnet. In this
case DO NOT run MiamiMRouteD. Instead enable multicasting in
Miami, on the "Interface" page.

* You are receiving your multicast feed through an IP tunnel,
possibly via PPP from your provider. In this case disable
multicasting in Miami for your PPP/SLIP interface, configure
MiamiMRouteD for a tunnel to your provider (see below), and run
MiamiMRouteD after starting Miami.

The configuration file for MiamiMRouteD is a standard ASCII text
file. Each line can contain one command. The only command of interest
at the moment is the "tunnel" command, which allows you to configure an
IP tunnel to send and receive multicasts to/from. The important part of
the syntax is:

tunnel <local-addr> <remote-addr>

For <local-addr> you can specify an IP address or an interface name
(for Miami always "mi0"). <remote-addr> is the IP address of the host
on the other side of the multicast tunnel, e.g.

tunnel mi0 1.2.3.4

establishes a multicast tunnel to the host 1.2.3.4.

1.122 Miami.guide/NODE_UTILITY_MTRACE

MiamiMTrace
===========

Miami 72 / 92

Print multicast path from a source to a receiver

Usage: MiamiMTrace [-g gateway] [-i if_addr] [-l] [-M] [-m max_hops]
[-n] [-p] [-q nqueries] [-r resp_dest] [-s] [-S stat_int] [-t ttl] [-v]
[-w waittime] source [receiver] [group]

MiamiMTrace is a utility very similar to MiamiTraceRoute, but for
multicast addresses, not unicast addresses. Please see

MiamiTraceRoute
for more information on TraceRoute. "group" specifies the ←↩

multicast IP
address to use. "source" and "receiver" are unicast IP address
specifiying the start and end point in the multicast path to trace. If
"group" is not specified then 224.2.0.1 is used. If "receiver" is not
specified then localhost is assumed.

The options have the following meaning:

-g gateway
Send the trace query via unicast directly to the specified
multicast router rather than multicasting the query. This must be
the last-hop router on the path from the intended source to the
receiver.

-i if_addr
Use the specified address as the local interface address (on a
multi-homed host) for sending the trace query and as the default
for the receiver and the response destination.

-l
Loop indefinitely printing packet rate and loss statistics for the
multicast path every 10 seconds (also see ‘-S stat_int’).

-M
Always send the response using multicast rather than attempting
unicast first.

-m max_hops
Set the maximum number of hops that will be traced from the
receiver back toward the source. The default is 32 hops (infinity
for the DVMRP routing protocol).

-n
Print hop addresses numerically rather than symbolically and
numerically (saves a nameserver address-to-name lookup for each
router found on the path).

-q nqueries
Set the maximum number of query attempts for any hop. The default
is 3.

-p
Listen passively for multicast responses from traces initiated by
others. This works best when run on a multicast router.

-r resp_dest

Miami 73 / 92

Send the trace response to the specified host rather than to the
host on which MiamiMTrace is being run, or to a multicast address
other than the one registered for this purpose (224.0.1.32).

-s
Print a short form output including only the multicast path and not
the packet rate and loss statistics.

-S stat_int
Change the interval between statistics gathering traces to the
specified number of seconds (default 10 seconds).

-t ttl
Set the ttl (time-to-live, or number of hops) for multicast trace
queries and responses. The default is 64, except for local
queries to the "all routers" multicast group which use ttl 1.

-v
Verbose mode; show hop times on the initial trace and statistics
display.

-w waittime
Set the time to wait for a trace response to the specified number
of seconds.

1.123 Miami.guide/NODE_UTILITY_NETSTAT

MiamiNetStat
============

MiamiNetStat is a tool to display configuration parameters and
statistics. It is almost identical in functionality to the version of
"netstat" that is included with 4.4BSD, but has some additional
functions to display link-level statistics.

* MiamiNetStat [-AaDnN] [-f address_family]

* MiamiNetStat [-dimnNrs] [-f address_family]

* MiamiNetStat [-dnN] [-] [-I interface]

* MiamiNetStat [-s] [-] [-L interface]

* MiamiNetStat [-s] [-g]

* MiamiNetStat [-p protocol]

The MiamiNetStat command symbolically displays the contents of
various network-related data structures. There are a number of output
formats, depending on the options for the information presented.

The first form of the command displays a list of active sockets for
each protocol.

Miami 74 / 92

The second form presents the contents of one of the other network
data structures according to the option selected.

Using the third form MiamiNetStat will display information regarding
packet traffic on the specified network interface.

The fourth form displays link-level configuration information or
(with the "-s" flag) link-level statistics for the specified network
interface.

The fifth form displays information about virtual interfaces (for
multicasting) and multicast routing statistics.

The sixth form displays statistics about the named protocol.

The options have the following meaning:

-A
With the default display, show the address of any protocol control
blocks associated with sockets; used for debugging.

-a
With the default display, show the state of all sockets; normally
sockets used by server processes are not shown.

-d
With an interface display (option i or I), show the number of
dropped packets.

-D
With the default display, show the total number of transfered bytes
for each active TCP connection.

-f address_family
Limit statistics or address control block reports to those of the
specified address family. Only the address family "inet" is
currently recongized.

-g
Display the virtual interface table and multicast routing table.
Together with the option ‘-s’ this option displays multicast
routing statistics. Both of these options are only meaningful when
MiamiMRouteD is running.

-I interface
Show information about the specified interface.

-i
Show the state of interfaces which have been configured.

-m
Show statistics recorded by the memory management routines (the
network manages a private pool of memory buffers).

-n
Show network addresses as numbers (normally MiamiNetstat interprets

Miami 75 / 92

addresses and attempts to display them symbolically). This option
may be used with any of the display formats.

-N
Only show a network address symbolically if the symbolic name is
available without a prior DNS lookup. Otherwise show the network
address as a number. This option may be used with any of the
display formats.

-p protocol
Show statistics about the specified protocol, which is either a
well-known name for a protocol or an alias for it. A null response
typically means that there are no interesting numbers to report.
The program will complain if the protocol is unknown or if there
is no statistics routine for it.

-r
Show the routing tables. When "-s" is also present, show routing
statistics instead.

-s
Show per-protocol statistics. If this option is repeated, counters
with a value of zero are suppressed.

The default display, for active sockets, shows the local and remote
addresses, send and receive queue sizes (in bytes), protocol, and the
internal state of the protocol. Address formats are of the form
"host.port" or "network.port" if a socket’s address specifies a network
but no specific host address. When known the host and network addresses
are displayed symbolically according to the "hosts" and "networks"
databases. If a symbolic name for an address is unknown, or if the "-n"
option is specified, the address is printed numerically, according to
the address family.

The interface display provides a table of cumulative statistics
regarding packets transferred, errors, and collisions. The network
addresses of the interface and the maximum transmission unit ("mtu")
are also displayed.

The routing table display indicates the available routes and their
status. Each route consists of a destination host or network and a
gateway to use in forwarding packets. The flags field shows a
collection of information about the route stored as binary choices.

1
RTF_PROTO1 Protocol specific routing flag #1 (currently unused).

2
RTF_PROTO2 Protocol specific routing flag #2 (currently unused).

3
RTF_PROTO3 Protocol specific routing flag #3 (meaning for TCP:
route is timing out).

C
RTF_CLONING Generate new routes on use.

Miami 76 / 92

D
RTF_DYNAMIC Created dynamically (by redirect).

G
RTF_GATEWAY Destination requires forwarding by intermediary.

H
RTF_HOST Host entry (net otherwise).

L
RTF_LLINFO Valid protocol to link address translation.

M
RTF_MODIFIED Modified dynamically (by redirect).

P
RTF_PRCLONING Clone routes for use by protocols.

R
RTF_REJECT Host or net unreachable.

S
RTF_STATIC Manually added.

U
RTF_UP Route usable.

W
RTF_WASCLONED Route was created by cloning another route.

X
RTF_XRESOLVE External daemon translates proto to link address.

Direct routes are created for each interface attached to the local
host; the gateway field for such entries shows the address of the
outgoing interface. The refcnt field gives the current number of active
uses of the route. Connection oriented protocols normally hold on to a
single route for the duration of a connection while connectionless
protocols obtain a route while sending to the same destination. The use
field provides a count of the number of packets sent using that route.
The interface entry indicates the network interface utilized for the
route.

With the option "-L" MiamiNetStat displays link-level configuration
information, such as the current state of the IPCP or LCP subprotocols
of PPP, for the specified interface.

With the option combination "-sL" MiamiNetstat displays link-level
statistics, including information about different types of packets, and
checksum errors, for the specified interface.

Currently Miami only supports two interfaces:

lo0
The local loopback interface

mi0

Miami 77 / 92

The PPP/(C)SLIP interface using the interface driver built into
Miami, or the current SANA-II interface.

1.124 Miami.guide/NODE_UTILITY_PING

MiamiPing
=========

Send packets to network hosts and listen for their response.

Usage: MiamiPing [-Rdfnqrv] [-c count] [-i wait] [-l preload] [-p
pattern] [-s packetsize] hostname

Options:

-c count
Stop after sending and receiving <count> packets.

-d
Set the SO_DEBUG option on the socket being used.

-f
Flood ping. Outputs packets as fast as they come back, or one
hundred times per second, whichever is more. For every ping sent a
period "." is printed, while for every ping received a backspace
is printed. This provides a rapid display of how many packets are
being dropped. Note: Abusing this option for denial-of-service
attacks is illegal.

-i wait
Wait <wait> seconds between sending each packet. The default is to
wait for one second between each packet. This option is
incompatible with "-f".

-l preload
Sends <preload> packets as fast as possible before falling into
the normal mode of behavior.

-n
Numeric output only.

-p pattern
You may specify up to 16 "pad" bytes to fill out the packet you
send. This is useful for diagnosing data-dependent problems in a
network. For example,"-p ff" will cause the sent packet to be
filled with all ones.

-q
Quiet output. Nothing is displayed except the summary lines at
startup time and when finished.

-R
Record route. Includes the RECORD_ROUTE option in ping packets and
displays the route buffer on returned packets. Note that the IP

Miami 78 / 92

header is only large enough for nine such routes. Many hosts
ignore or discard this option.

-r
Bypass the normal routing tables and send directly to a host on an
attached network. If the host is not on a directly-attached
network, an error is returned. This option can be used to ping a
local host through an interface that has no route through it
(e.g., after the interface was dropped by routed).

-s packetsize
Specifies the number of data bytes to be sent. The default is 56,
which translates into 64 ICMP data bytes when combined with the 8
bytes of ICMP header data.

-v
Verbose output. ICMP packets other than ping response packets
that are received are listed.

1.125 Miami.guide/NODE_UTILITY_REMIND

MiamiRemind
===========

Some users consider the automatic warning and disconnect after 30/60
minutes in the Miami demo version a useful feature, to save
telephone/ISP costs.

MiamiRemind is a tool that introduces this kind of functionality in
the registered version of Miami, but in addition to the simple
warning/disconnect it offers several other useful features:

* The number of warnings, plus the interval between subsequent
warnings can be freely configured.

* It is possible to disconnect after a certain amount of time, to
only display a finite number of warnings (without disconnecting)
or to keep displaying warnings at regular intervals.

* In addition to fixed time intervals it is possible to show
warnings after a certain amount of *inactivity* on the link. Both
types of warnings (warnings after fixed amounts of time and
warnings after inactivity) can be enabled at the same time.

* Using the inactivity timer directly with the "disconnect" option
provides the functionality of a "disconnect on inactivity" option,
something many users have requested for Miami in the past.

The term "inactivity" is difficult to define for a TCP/IP
connection. The default definition used by MiamiRemind is "lack of TCP
traffic". With this definition MiamiRemind requires extremely little
overhead and memory.

For users who need more sophisticated definitions of "inactivity",

Miami 79 / 92

MiamiRemind provides an expression parser and compiler identical to the
one in MiamiTCPDump, i.e. you can e.g. use expressions like

"(tcp[13] & 3 != 0) or udp"

The above expression would consider all TCP SYN packets, all TCP FIN
packets, and all UDP packets "activity". All other packets are not
considered.

The expression parser/compiler requires miamibpf.library and
miamipcap.library, and thus introduces slightly higher memory and cpu
overhead than the hardcoded "TCP traffic" definition.

Usage: MiamiRemind [-f fixed_timer_spec]
[-i inactivity_timer_spec]
[-p pcap_spec]

Option "-f" defines the parameters for the fixed timer, i.e. the
timer that starts when MiamiRemind is started, without considering
activity on the link. The default is to disable the fixed timer.

Option "-i" defines the parameters for the inactivity timer. This
timer is reset to zero whenever a packet is transmitted or received
that is considered "activity" on the link. The default is to disable
the inactivity timer.

Option "-p" defines the inactivity expression, in MiamiPCap format
(see the example above). The expression should be enclosed in double
quotes ("). If this parameter is specified then MiamiRemind uses
miamipcap.library and miamibpf.library to parse, compile and evaluate
the expression. Otherwise the hardcoded definition "TCP traffic" is
used, and both libraries are not needed.

"timer_spec" (for options "-f" and "-i") is a string that consists
of numbers representing time intervals (measured in minutes), separated
by commas (",").

Each time interval in the string represents the delay between
subsequent events.

"event" usually refers to a warning requester. However it is also
possible to prefix numbers with the letter "D", to indicate that
MiamiRemind should disconnect the line at the next event, or with the
letter "L", to indicate that MiamiRemind should loop, i.e. use the next
time interval repeatedly, to define a sequence of events.

Examples:

MiamiRemind -f 30,D30
This is identical in behavior to the demo version of Miami, i.e.
show a warning after 30 minutes, and disconnect after another
thirty minutes.

MiamiRemind -f 30,20,L10
Display a warning after 30 minutes, then again after 20 minutes,
and from then on every 10 minutes (loop). Never disconnect the
line.

Miami 80 / 92

MiamiRemind -f 60,60 -i L10
Display a warning after 60 minutes and another one after another
60 minutes. After that disable the fixed timer. Also show a
warning whenever there have been multiples of 10 minutes of
inactivity (lack of TCP traffic) on the link.

MiamiRemind -i D30
Disconnect the link after 30 minutes of inactivity (lack of TCP
traffic).

MiamiRemind -i D20 -p "tcp or udp"
Disconnect the link after 20 minutes of inactivity. "inactivity"
refers to TCP or UDP traffic.

MiamiRemind automatically quits when the interface goes offline
(regardless of the reason), when Miami tries to quit, when the program
receives a Ctrl-C signal, or when both timers are disabled.

The easiest way to use MiamiRemind is to start it directly from
Miami whenever Miami goes online, i.e. as "run >nil: Miami:MiamiRemind
[options]" in a Shell script launched from Miami (configured in
Events->Online).

1.126 Miami.guide/NODE_UTILITY_RESOLVE

MiamiResolve
============

Resolve a host name to an IP address or an IP address to a host name.

Usage:

MiamiResolve ip_address
Resolve the ip address, and display the associated host name and
all ip addresses.

MiamiResolve host_name
Resolve the host name, and display the associated host name and
all ip addresses.

MiamiResolve -s port_number
Resolve the port number, and display all associated service names
and the port number.

MiamiResolve -s service_name
Resolve the service name, and display all associated service names
and the port number.

1.127 Miami.guide/NODE_UTILITY_ROUTE

Miami 81 / 92

MiamiRoute
==========

Manually manipulate the routing tables.

Usage: MiamiRoute [-nqv] command modifiers args

Options:

-n
Bypasses attempts to print host and network names symbolically
when reporting actions. (The process of translating between
symbolic names and numerical equivalents can be quite time
consuming, and may require correct operation of the network; thus
it may be expedient to forgo this, especially when attempting to
repair networking operations),

-q
Suppress all output.

-v
(verbose) Print additional details.

Commands:

add
Add a route

flush
Remove all routes. Be very careful when using this command. It
also removes some of Miami’s standard routes. Unless you repair
this manually afterwards you will have to restart Miami to resume
normal operation.

delete
Delete a specific route

change
Change aspects of a route (such as its gateway).

get
Lookup and display the route for a destination.

monitor
Continuously report any changes to the routing information base,
routing lookup misses, or suspected network partitionings. Note:
without an implementation of "routed" this command is not very
useful.

The MiamiRoute command is usually not needed with a single-interface
protocol stack like Miami, and very complex and difficult to use. For
a complete discussion please see the BSD docs for the "route" command.

About the only useful application of the "MiamiRoute" command at the
moment is to examine routes to hosts, e.g. to find out about round trip
times or path MTU values. To do this use the syntax:

Miami 82 / 92

MiamiRoute get hostname

To examine the complete routing table use the command "MiamiNetStat
-r", not MiamiRoute.

1.128 Miami.guide/NODE_UTILITY_SYSCTL

MiamiSysCtl
===========

MiamiSysCtl lets you examine and change some of Miami’s internal
variables.

Usage:

MiamiSysCtl [-n] variable
Examine the value of a variable.

MiamiSysCtl [-n] -w variable=value
Change the value of a variable.

MiamiSysCtl [-n] -a
Show a list of all variables.

MiamiSysCtl [-n] -A
Show a list of all variables, plus additional information for
domains not accessible through MiamiSysCtl.

Options:

-n
Show numerical output only.

Explanation of all variables:

net.inet.ip.forwarding/redirect
These options have no meaning on a single-interface stack like
Miami.

net.inet.ip.ttl
Controls the default ttl (time-to-live) for packets Miami sends.
Should be at the default of 64.

net.inet.ip.rtexpire/rtminexpire/rtmaxcache
Controls the timing and size for route cloning. You should not
change these values.

net.inet.op.sourceroute
Controls the behavior for packets that contain an IP source route.
This option is only important for routers.

net.inet.op.pathmtudisc
Specifies whether Path MTU Discovery is enabled (0/1). The default

Miami 83 / 92

is to enable it, but are connected through old, buggy routers and
have problems with TCP traffic then try disabling this option.

net.inet.icmp.maskrepl
Controls whether Miami sends the netmask in response to ICMP mask
queries. If the netmask is configured correctly and you enable
this option, then any other machine on the local network running
MiamiInitSANA2 or Miami will be able to automatically find the
correct netmask from ICMP.

net.inet.tcp.rfc1323
Enables RFC1323 TCP extensions. These extensions collide with
PPP/SLIP-VJC, so they should only be enabled for bus interfaces,
not for point-to-point interfaces.

net.inet.tcp.rfc1644
Enables T/TCP.

net.inet.tcp.mssdflt
Sets the default maximum segment size for TCP. Usually this number
should not be changed.

net.inet.tcp.rttdflt
This option controls TCP’s retransmission timing and should not be
changed.

net.inet.tcp.keepidle/keepintvl
These options control TCP’s keep-alive timer and should not be
changed.

net.inet.tcp.sendspace/recvspace
These options define the default TCP send/recv window size, and
should usually not be changed.

net.inet.udp.bulkftp
Reserved for future use. Currently non-functional. Do not touch.

net.inet.udp.checksum
Enables UDP checksums for all outbound packets. This option should
always be enabled.

net.inet.udp.maxdgram/recvspace
These options control UDP packet thresholds and should not be
changed.

dns.cache.size
Controls the size of Miami’s built-in DNS cache.

dns.cache.flush
Settings this option to 1 flushes Miami’s built-in DNS cache.

inetd.retrytime/toomany/cntintvl/maxbuiltin
These options control InetD’s built-in SYN flood protection. If
you are running a very busy web server you might want to adjust
these parameters (in particular "toomany") so clients do not get
spurious error messages if your machine is overloaded.

Miami 84 / 92

dns.cache.enabled
Enables or disables Miami’s built-in DNS cache. The default value
is 2, i.e. all host entries are cached. If this variable is set to
1 then only host entries with a single IP address are cached, so
interferences with round-robin IP address shuffling are avoided.
If this variable is set to 0 then Miami’s DNS cache is completely
disabled. You should only disable the cache if you have a very fast
connection to a local DNS server.

dns.cache.split
This variable is usually 0, indicating that Miami uses a unified
DNS cache for forward and reverse lookups. If you set this variable
to 1 then Miami uses separate forward and reverse DNS caches. This
makes diagnostic output (e.g. from MiamiNetStat) slower, but
guarantees ‘correct’ reverse resolution of all IP addresses (using
PTR lookups).

inetd.retrytime
Defines the delay after which InetD retries to bind to a socket if
it failed to do so the first time.

inetd.toomany
Defines the maximum number of connections InetD will accept within
a given time interval.

inetd.cntintvl
Defines the time interval corresponding to inetd.toomany.

inetd.maxbuiltin
Defines the maximum number of built-in servers spawned by InetD.

inetd.processpri
Defines the process priority for servers launched by InetD. The
default is -5. You should raise this value if you are running any
CPU-intensive background processes (e.g. the RC5 challenge
client). Otherwise your servers will never get any CPU time.

socket.maxqlen
This option defines the length of the socket connection queue for
a listen()-parameter of 5. The default is 7, but if you are
connected to a very fast network and have sufficient memory you
might want to increase this value to reduce the effects of SYN
flood attacks.

1.129 Miami.guide/NODE_UTILITY_TCPDUMP

MiamiTCPDump
============

MiamiTCPDump allows you to dump traffic on a network after filtering
it.

Usage: MiamiTCPDump [-adflnNOqStvx] [-c count] [-F file] [-i
interface] [-r file] [-s snaplen] [-T type] [-w file] [expression]

Miami 85 / 92

Options:

-A
Used in combination with ‘-x’: prints packets in ASCII in addition
to a hex dump.

-a
Attempt to convert network and broadcast addresses to names.

-c count
Exit after receiving <count> packets.

-d
Dump the compiled packet-matching code in a human-readable form to
standard output and stop.

-dd
Dump the compiled packet-matching code as a program fragment.

-ddd
Dump the compiled packet-matching code as decimal numbers
(preceded with a count).

-f
Print "foreign" internet addresses numerically rather than
symbolically.

-F file
Use <file> as input for the filter expression. An additional
expression given on the command line is ignored.

-i interface
Listen on <interface> (currently "lo0" or "mi0"). If unspecified,
MiamiTCPDump searches the system interface list for the lowest
numbered, configured up interface (excluding loopback). Ties are
broken by choosing the earliest match. Currently the result of
this search is always "mi0".

-l
Make stdout line buffered. Useful if you want to see the data
while capturing it.

-n
Don’t convert addresses (i.e., host addresses, port numbers, etc.)
to names.

-N
Don’t print domain name qualification of host names. E.g., if you
give this flag then MiamiTCPDump will print "nic" instead of
"nic.ddn.mil".

-O
Do not run the packet-matching code optimizer. This is useful only
if you suspect a bug in the optimizer.

-q

Miami 86 / 92

Quick (quiet?) output. Print less protocol information so output
lines are shorter.

-s snaplen
Snarf <snaplen> bytes of data from each packet rather than the
default of 68. 68 bytes is adequate for IP, ICMP, TCP and UDP but
may truncate protocol information from name server and NFS packets
(see below). Packets truncated because of a limited snapshot are
indicated in the output with "[proto]", where <proto> is the name
of the protocol level at which the truncation has occurred. Note
that taking larger snapshots both increases the amount of time it
takes to process packets and, effectively, decreases the amount of
packet buffering. This may cause packets to be lost. You should
limit <snaplen> to the smallest number that will capture the
protocol information you’re interested in.

-S
Print absolute, rather than relative, TCP sequence numbers.

-T type
Force packets selected by <expression> to be interpreted the
specified <type>. Currently known types are

* rpc (Remote Procedure Call)

* rtp (Real-Time Applications protocol)

* rtcp (Real-Time Applications control protocol),

* vat (Visual Audio Tool),

* wb (distributed White Board).

-t
Don’t print a timestamp on each dump line.

-tt
Print an unformatted timestamp on each dump line.

-v
(Slightly more) verbose output. For example, the time to live and
type of service information in an IP packet is printed.

-vv
Even more verbose output. For example, additional fields are
printed from NFS reply packets.

-w file
Write the raw packets to <file> rather than parsing and printing
them out. They can later be printed with the "-r" option.
Standard output is used if <file> is "-".

-x
Print each packet (minus its link level header) in hex. The
smaller of the entire packet or <snaplen> bytes will be printed.

<expression> selects which packets will be dumped. If no
<expression> is given, all packets on the net will be dumped.

Miami 87 / 92

Otherwise, only packets for which <expression> is ‘true’ will be dumped.

The syntax for <expression> is extremely comprehensive and beyond
the scope of this documenation. For a complete description of the
syntax and of the details of the output format please have a look at
the documentation for the freely distributable BSD version of
"tcpdump". Here are some examples for valid expressions:

"host sundown"
To print all packets arriving at or departing from "sundown".

"host helios and (hot or ace)"
To print traffic between "helios" and either "hot" or "ace".

"ip host ace and not helios"
To print all IP packets between "ace" and any host except "helios".

"tcp[13] & 3 != 0"
To print the start and end packets (SYN and FIN) of each TCP
conversation.

"icmp[0] != 8 and icmp[0]!= 0"
To print all ICMP packets that are not echo requests/replies
(i.e., not ping packets).

1.130 Miami.guide/NODE_UTILITY_TRACEROUTE

MiamiTraceRoute
===============

Print the route packets take to a network host.

Usage: MiamiTraceRoute [-m max_ttl] [-n] [-p port] [-q nqueries]
[-r] [-s src_addr] [-t tos] [-v] [-w waittime] host [packetsize]

Options:

-m max_ttl
Set the max time-to-live (max number of hops) used in outgoing
probe packets. The default is 30 hops.

-n
Print hop addresses numerically rather than symbolically and
numerically (saves a nameserver address-to-name lookup for each
gateway found on the path).

-p port
Set the base UDP port number used in probes (default is 33434).
MiamiTraceRoute hopes that nothing is listening on UDP ports base
<port>+nhops-1 at the destination host (so an ICMP PORT_UNREACHABLE
message will be returned to terminate the route tracing). If
something is listening on a port in the default range, this option
can be used to pick an unused port range.

Miami 88 / 92

-q nqueries
Set the number of probes per "ttl" to <nqueries> (default is three
probes).

-r
Bypass the normal routing tables and send directly to a host on an
attached network. If the host is not on a directly-attached
network, an error is returned.

-s src_addr
Use the following IP address (which must be given as an IP number,
not a hostname) as the source address in outgoing probe packets.
On hosts with more than one IP address, this option can be used to
force the source address to be something other than the IP address
of the interface the probe packet is sent on. If the IP address
is not one of this machine’s interface addresses, an error is
returned and nothing is sent.

-t tos
Set the type-of-service in probe packets to the following value
(default zero). The value must be a decimal integer in the range 0
to 255. This option can be used to see if different
types-of-service result in different paths.

-v
Verbose output. Received ICMP packets other than TIME_EXCEEDED
and UNREACHABLE are listed.

-w
Set the time (in seconds) to wait for a response to a probe
(default 3 sec.).

1.131 Miami.guide/NODE_COMPATIBILITY

Compatibility

So far Miami has worked with all AmiTCP clients and servers it has
been tested with, with one exception:

The AmiTCP 4.x version of "telnet" does not normally work with Miami.
This is because that version of "telnet" uses some non-documented
features of "TCP:" that cannot be emulated by Miami.

There are two solutions to this:

* Use a different version of telnet, e.g. "AmTelnet", a nice
MUI-based graphical telnet client available from www.vapor.com,
the telnet version available from Aminet in comm/tcp, a terminal
program together with telser.device, or "napsaterm" in telnet-mode.

* Install the version of "inet-handler" that comes with AmiTCP
4.0demo, create an appropriate mountlist entry for "TCP:", and type
"mount TCP:" before starting Miami. "telnet" will then use the

Miami 89 / 92

AmiTCP version of "TCP:" (still accessing the Miami TCP/IP stack,
of course) instead of the version of "TCP:" built in to Miami.

1.132 Miami.guide/NODE_RESTRICTIONS

Restrictions

The demo version has the following limitations:

* After 60 minutes the modem hangs up the line. SANA-II connections
are interrupted after 30 minutes.

* It is not possible to keep TCP connections alive when the modem
hangs up.

* The "Events" options "auto-online after passive offline" and
launching ARexx or Shell scripts are not available.

* The number of phone numbers in the dialer is limited to three.

* Phone logging is disabled.

* The GUI customization options are disabled.

* Multicasting and T/TCP are not functional.

* The IP filter is not available.

* Ping flood protection is not available.

* The sorting, merging and Clipboard import/export functions on the
Database are not available.

* PPP Callback is not available.

* The packet monitoring callback (for external packet monitors like
MiamiTCPDump) is not functional.

* System log events cannot be exported to syslog.library.

* The utility programs MiamiIfConfig, MiamiRemind, MiamiRoute,
MiamiSysCtl, MiamiTCPDump, all multicasting tools, and the
libraries miamibpf.library and miamipcap.library cannot be used.

* MS-CHAP support is not available.

The GTLayout GUI module has a few restrictions compared to the MUI
version:

* Drag&drop sorting in Listviews is not available.

* With current versions of gtlayout.library (<=43.6) the layout in
some windows dos not look very nice: there seems to be some

Miami 90 / 92

unwanted vertical space near the bottom of the window. This is
apparently a bug in gtlayout.library, and will hopefully be fixed
in a future library version.

1.133 Miami.guide/NODE_HISTORY

History

Version 3.0
release version

* Too many changes to list here. Many parts of the program have
been rewritten from scratch. Keyfiles V3 are required now.

Version 2.1p
intermediate release version

* Last official release version before 3.0. Mostly bug fixes and
minor changes since earlier versions.

1.134 Miami.guide/NODE_FUTURE

The future

My more immediate plans for the next Miami versions include

* A new API to handle automatic online/offline transitions controlled
by clients.

* A completely new API ("ANDI") for much easier, protocol-independent
access to TCP/IP functions from applications.

ISDN is another big issue. External ISDN terminal adapters are
already completely supported. So is the ISDN-Master board in most
modes, except in "synchronous PPP in HDLC mode". That mode requires new
drivers and a new API, but people are working on it...

The only really major (intentional) limitation of Miami is that it
is restricted to a single interface. A follow-up protocol stack "Miami
Deluxe" is planned for later in 1998. Currently my plans for Miami
Deluxe include support for PPP dial-in connections, multiple interfaces
and probably many other functions useful for routers, such as Socks
daemon support, IP masquerading and firewall functions.

There will be a discount for registered users of Miami towards a
registration of Miami Deluxe.

Miami 91 / 92

1.135 Miami.guide/NODE_SUPPORT

Support

There are several ways to get technical support, updates etc.:

email
kruse@nordicglobal.com

snail mail
Nordic Global Inc.
Attn: Holger Kruse
PO Box 780248
Orlando FL 32878-0248
USA

WWW
http://www.nordicglobal.com/Miami.html

mailing lists
send "SUBSCRIBE miami-talk-ml" or "SUBSCRIBE miami-announce-ml" in
the body of a mail to "Majordomo@nordicglobal.com".

1.136 Miami.guide/NODE_ACKNOWLEDGEMENTS

Acknowledgements

My sincere thanks go to

* the early alpha and beta testers Karl Bellve, Mike Fitzgerald,
Adam Hough, Daniel Saxer, Stefan Stuntz and Oliver Wagner.

* Karl Bellve and Daniel Saxer for their great support efforts.

* NSDi for the first publically available TCP/IP protocol suite for
AmigaOS and its very usable API.

* James Cooper, Steve Krueger and Doug Walker for the SAS/C
development system and their great support.

* Stefan Stuntz for his nice graphical user interface package MUI.

* Klaus Melchior for his MUI custom class "Busy.mcc".

* Robert Reiswig for loaning me some important computer equipment.

* the University of California for their successful continued work on
the excellent BSD networking code.

* Reinhard Spisser and Sebastiano Vigna for their Amiga port of
"makeinfo".

Miami 92 / 92

* Paul Trauth, the winner of the Miami logo contest, for his nice
collection of images.

* John Pszeniczny for his nice variations of the "Miami" logo.

* Martin Huttenloher and Stefan Stuntz for their permission to use
MagicWB images in Miami.

* Roman Patzner for new icon designs.

* Olaf Barthel for gtlayout.library.

* all users who decide to register Miami.

	Miami
	Miami.guide
	Miami.guide/NODE_DISCLAIMER
	Miami.guide/NODE_CONDITIONS
	Miami.guide/NODE_REGISTRATION
	Miami.guide/NODE_INTRODUCTION
	Miami.guide/NODE_REQUIREMENTS
	Miami.guide/NODE_INSTALLATION
	Miami.guide/NODE_MIAMIINIT
	Miami.guide/NODE_TOOLTYPES
	Miami.guide/NODE_MENUS
	Miami.guide/NODE_CONFIGURATION
	Miami.guide/NODE_GUI_GENERAL
	Miami.guide/NODE_GUI_GENERAL_REGISTER
	Miami.guide/NODE_GUI_INTERFACE
	Miami.guide/NODE_GUI_INTERFACE_TYPE
	Miami.guide/NODE_GUI_INTERFACE_DEVICE
	Miami.guide/NODE_GUI_INTERFACE_SPEED
	Miami.guide/NODE_GUI_INTERFACE_CD
	Miami.guide/NODE_GUI_INTERFACE_PROTOCOL
	Miami.guide/NODE_GUI_INTERFACE_FLOW
	Miami.guide/NODE_GUI_INTERFACE_EOF
	Miami.guide/NODE_GUI_INTERFACE_SERIAL
	Miami.guide/NODE_GUI_INTERFACE_IP
	Miami.guide/NODE_GUI_INTERFACE_MASK
	Miami.guide/NODE_GUI_INTERFACE_GWAY
	Miami.guide/NODE_GUI_INTERFACE_MULTICASTS
	Miami.guide/NODE_GUI_INTERFACE_MAPPING
	Miami.guide/NODE_GUI_INTERFACE_MTU
	Miami.guide/NODE_GUI_INTERFACE_STP
	Miami.guide/NODE_GUI_INTERFACE_INACTIVITY
	Miami.guide/NODE_GUI_PPP
	Miami.guide/NODE_GUI_PPP_CHAP
	Miami.guide/NODE_GUI_PPP_CALLBACK
	Miami.guide/NODE_GUI_PPP_VJC
	Miami.guide/NODE_GUI_PPP_ACCM
	Miami.guide/NODE_GUI_PPP_QUICK
	Miami.guide/NODE_GUI_PPP_ESCAPE
	Miami.guide/NODE_GUI_PPP_DNSIPCP
	Miami.guide/NODE_GUI_PPP_TERMREQ
	Miami.guide/NODE_GUI_DIALER
	Miami.guide/NODE_GUI_DIALER_SCRIPT
	Miami.guide/NODE_GUI_DIALER_PHONE
	Miami.guide/NODE_GUI_DIALER_MAX
	Miami.guide/NODE_GUI_DIALER_DELAY
	Miami.guide/NODE_GUI_DIALER_RDELAY
	Miami.guide/NODE_GUI_DIALER_TEACH
	Miami.guide/NODE_GUI_DIALER_NAME
	Miami.guide/NODE_GUI_DIALER_CAPTURE
	Miami.guide/NODE_GUI_DATABASE
	Miami.guide/NODE_GUI_DATABASE_PROTOCOLS
	Miami.guide/NODE_GUI_DATABASE_SERVICES
	Miami.guide/NODE_GUI_DATABASE_HOSTS
	Miami.guide/NODE_GUI_DATABASE_NETWORKS
	Miami.guide/NODE_GUI_DATABASE_DOMAINS
	Miami.guide/NODE_GUI_DATABASE_DNSSERVERS
	Miami.guide/NODE_GUI_DATABASE_INETD
	Miami.guide/NODE_GUI_DATABASE_USERS
	Miami.guide/NODE_GUI_DATABASE_GROUPS
	Miami.guide/NODE_GUI_DATABASE_ARP
	Miami.guide/NODE_GUI_DATABASE_SOCKS
	Miami.guide/NODE_GUI_DATABASE_IPFILTER
	Miami.guide/NODE_GUI_TCPIP
	Miami.guide/NODE_GUI_TCPIP_HOSTNAME
	Miami.guide/NODE_GUI_TCPIP_NAME
	Miami.guide/NODE_GUI_TCPIP_ICMP
	Miami.guide/NODE_GUI_TCPIP_BOOTP
	Miami.guide/NODE_GUI_TCPIP_VERIFYDNS
	Miami.guide/NODE_GUI_TCPIP_FAKEIP
	Miami.guide/NODE_GUI_TCPIP_TTCP
	Miami.guide/NODE_GUI_TCPIP_ADDDOMAIN
	Miami.guide/NODE_GUI_TCPIP_DOWN
	Miami.guide/NODE_GUI_TCPIP_PING
	Miami.guide/NODE_GUI_TCPIP_GETTIME
	Miami.guide/NODE_GUI_EVENTS
	Miami.guide/NODE_GUI_MODEM
	Miami.guide/NODE_GUI_MODEM_INIT
	Miami.guide/NODE_GUI_MODEM_EXIT
	Miami.guide/NODE_GUI_MODEM_PREFIX
	Miami.guide/NODE_GUI_MODEM_SUFFIX
	Miami.guide/NODE_GUI_MODEM_NULLMODEM
	Miami.guide/NODE_GUI_LOGGING
	Miami.guide/NODE_GUI_LOGGING_CONSOLE
	Miami.guide/NODE_GUI_LOGGING_FILE
	Miami.guide/NODE_GUI_LOGGING_SYSLOG
	Miami.guide/NODE_GUI_LOGGING_PHONE
	Miami.guide/NODE_GUI_LOGGING_PPP
	Miami.guide/NODE_GUI_WINDOWS
	Miami.guide/NODE_GUI_WINDOWS_REQQUIT
	Miami.guide/NODE_GUI_WINDOWS_REQOFFLINE
	Miami.guide/NODE_GUI_WINDOWS_REQERRORS
	Miami.guide/NODE_GUI_WINDOWS_DIALER
	Miami.guide/NODE_GUI_GUI
	Miami.guide/NODE_GUI_GUI_HOTKEY
	Miami.guide/NODE_GUI_GUI_SHOWICON
	Miami.guide/NODE_GUI_GUI_SHOWMENU
	Miami.guide/NODE_GUI_GUI_ONSTARTUP
	Miami.guide/NODE_GUI_GUI_ONLINEICON
	Miami.guide/NODE_GUI_GUI_OFFLINEICON
	Miami.guide/NODE_GUI_GUI_GUI
	Miami.guide/NODE_GUI_GUI_SWITCH
	Miami.guide/NODE_GUI_SOCKS
	Miami.guide/NODE_GUI_SOCKS_ENABLE
	Miami.guide/NODE_GUI_SOCKS_SERVER
	Miami.guide/NODE_GUI_SOCKS_MAXLOG
	Miami.guide/NODE_GUI_SOCKS_AUTH
	Miami.guide/NODE_GUI_MISC
	Miami.guide/NODE_DIALERLANG
	Miami.guide/NODE_AREXX
	Miami.guide/NODE_ENVVARS
	Miami.guide/NODE_ENVVARS_TZ
	Miami.guide/NODE_EXCONFIG
	Miami.guide/NODE_EXCONFIG_DIST
	Miami.guide/NODE_EXCONFIG_PASSWORDS
	Miami.guide/NODE_EXCONFIG_CLIENTS
	Miami.guide/NODE_UTILITY
	Miami.guide/NODE_UTILITY_ARP
	Miami.guide/NODE_UTILITY_FINGER
	Miami.guide/NODE_UTILITY_IFCONFIG
	Miami.guide/NODE_UTILITY_MAPMBONE
	Miami.guide/NODE_UTILITY_MRINFO
	Miami.guide/NODE_UTILITY_MROUTED
	Miami.guide/NODE_UTILITY_MTRACE
	Miami.guide/NODE_UTILITY_NETSTAT
	Miami.guide/NODE_UTILITY_PING
	Miami.guide/NODE_UTILITY_REMIND
	Miami.guide/NODE_UTILITY_RESOLVE
	Miami.guide/NODE_UTILITY_ROUTE
	Miami.guide/NODE_UTILITY_SYSCTL
	Miami.guide/NODE_UTILITY_TCPDUMP
	Miami.guide/NODE_UTILITY_TRACEROUTE
	Miami.guide/NODE_COMPATIBILITY
	Miami.guide/NODE_RESTRICTIONS
	Miami.guide/NODE_HISTORY
	Miami.guide/NODE_FUTURE
	Miami.guide/NODE_SUPPORT
	Miami.guide/NODE_ACKNOWLEDGEMENTS

