
Beyond Prototype Implementations:

Polymorphi
 Proje
tion Analysis

for Glasgow Haskell

Julian Seward

sewardj@cs.man.ac.uk

Department of Computer Science
Victoria University of Manchester

Oxford Road, Manchester M13 9PL, UK.

Abstract. Building effective abstract interpreters requires careful at-
tention to both theory and engineering issues. The theory of abstract
interpretation is well developed, but the engineering side has fallen be-
hind somewhat, an unfortunate event given that abstract interpretation is
potentially a key technology for declarative language compilation. This
paper shows the thinking behind the design and implementation of a
first-order, polymorphic projection analyser for Haskell, capable of de-
tecting head strictness, and therefore suitable for supporting all known
strictness-related transformations. Development culminated in a success-
ful trial installation in version 0.19 of the Glasgow Haskell Compiler,
and the system has been used to analyse a range of Haskell programs,
including an earlier version of itself, 13000 lines long.

1 Introduction

The past decade has seen a dramatic improvement in the performance of lazy
functional languages, notably Haskell, as implementors have developed ways to
map such languages efficiently onto stock architectures. Nevertheless, they still
run an order of magnitude slower than their imperative counterparts, and, worse,
it looks like the performance improvements are tailing off. Further increases in
performance depend on finding ways to replace copying by update-in-place, and
lazy evaluation by strict evaluation, when possible. A critical element in this is
the semantic analyses which discover when such transformations are valid.

Successful use of strictness and sharing analyses in compilers demands care-
ful consideration of the engineering constraints imposed by separate compilation,
and by the limited computing resources available. Section 2 of this paper exam-
ines such constraints in detail, as a way of generating useful metrics with which
to assess possibilities in the design space. Based on this, we outline in Sec-
tion 3 the design of a polymorphic, backwards strictness analyser for Haskell.
The analyser was installed in Glasgow Haskell 0.19, and shows an unpreceden-
ted price-performance ratio. Section 4 presents the results of this experiment and
concludes. Although our primary concern is strictness analysis of Haskell, these
ideas have wider applicability to all abstract-interpretation based analyses for



functional languages, and should interest those concerned by the seemingly large
gap between the theory and practice of abstract interpretation.

Real, usable analyses differ from prototype implementations in several ways.
The analysis has to run in reasonable time and memory, even when presented with
unreasonable inputs; it should “fit” properly into the existing compiler frame-
work, vis-a-vis separate compilation, and it should do a good job for important
language features, particularly sum-of-products types, polymorphism and higher-
order functions. We shortly examine the consequences of these constraints in some
detail.

The main focus of this paper is on global design tradeoffs. Based on that
discussion, we outline a particularly effective polymorphic projection analyser
for Haskell, and show some results from it. The analyser’s design details are
both interesting and voluminous, but not appropriate here, so references to more
thorough treatments are given throughout – the first port of call is probably the
author’s PhD thesis [Sew94].

Architectural Overview This paper divides semantic analysis systems into
two conceptual parts: an abstract interpreter, which generates recursive equations
over some domains, and a fixpointer, which removes recursion from the equations,
thereby making them useful to compilers. As usual, we require the domains to be
of finite height to guarantee termination of fixpointing, and further restrict them
to be distributive lattices to make fixpointing easier.

Several different schemes for fixpointing have been proposed. The Frontiers
algorithm cleverly exploits monotonicity to build syntactically unique representa-
tions, thus trivialising the detection of fixpoints. Introduced by Clack and Peyton
Jones [PC87], the algorithm has been much tuned over the years [Mar92, Hun91],
and supports higher order fixpointing. A second line of enquiry is that of lazy
fixpointing, where the fixpoint is only computed where needed, on demand. The
precise origins of lazy fixpointing are debatable, but two early presentations
are due to the Cousots [CC78] and to Jones and Mycroft [JM86]. Extensions
to higher-order fixpointing are shown by Ferguson and Hughes [FH93], and by
Rosendahl [Ros93]. The work of Hankin and Le Métayer on “lazy types” [HM94]
is also related.

In this paper we take a third approach: computation of complete fixpoints
by using a term rewrite system to transform semantically equivalent terms to
syntactically identical normal forms. Consel describes a simple rewriter for two-
point lattices used in Yale Haskell [Con91], and the technique was extended to
other lattices in [Sew94], Section 5. Rewrite-based fixpointers cannot, in general,
solve higher-order equations, but, as we shall see, this may not matter much.

Nocker [Noc93] shows a working analyser, based on “abstract reduction”,
where term-rewriting is used to execute the program using some abstract se-
mantics. By comparison, our term-rewriting is used to detect fixpoints, and
there is a clear distinction between the abstract interpretation and fixpointing
activities.

The precise nature of abstract interpretations is determined, naturally, by



the transformation to be supported. One particularly important characterisa-
tion is the lattices to which different types are mapped. In the simplest case,
all non-functional types could be mapped to a two-point lattice, with the points
representing no demand and weak head normal form (WHNF) demand respect-
ively in strictness analysis. For a simple sharing analysis, we might use a 3-
point chain, denoting no references, exactly one reference, and two or more
references. Simple abstractions like these are routinely used in existing Haskell
compilers [Con91, PJ93]. The simplicity of the abstractions makes these analyses
cheap and reliable, so we shall not consider them further.

A more powerful analysis might attempt to give detailed information about
functions dealing with structured types such as lists, trees, or whatever program-
mers care to define. Lattices abstracting such types grow in accordance with the
complexity of those types, so there is no arbitrary cutoff point beyond which
all details are ignored. In other words, there is a possibility of seeing arbitrarily
far “inside” data structures. The downside is that these lattices can and do get
very large, so the analysis becomes expensive. In this sense, semantic analysis is
a particularly intractable problem, because the lattice sizes and thus amount of
effort required can grow exponentially with complexity of types. For example, if
an item of type (Int, Int, Int) is modelled by a 9 point lattice, (2× 2× 2)⊥,
adding just one more Int to the tuple effectively doubles the lattice size, giv-
ing (2 × 2 × 2 × 2)⊥. The costs of higher order semantic analyses are almost
legendary, but even first order analyses can become excessively expensive. Get-
ting reasonable performance sometimes requires “work limiting” – throwing away
detail which abstract interpretation would otherwise pick up.

2 Constraints on viable designs

2.1 Separate Compilation

Curiously enough, separate compilation is the biggest single source of design
constraints. A convenient way to view a multi-module program is as a directed,
rooted, possibly cyclic graph, with arcs reflecting import dependencies, the Main
module at the “top”, and the Haskell Prelude at the bottom1. Compilation of a
module M causes the compiler to read the source text of M and interface files of
modules immediately below M, and emit code and interface files for M. Interface
files are used by the compiler to communicate results of semantic analyses across
module boundaries. In the absence of information about imported entities, there
is always a safe assumption which can be made. This framework imposes several
limitations:

– The interface files ought to be limited to a reasonable size, otherwise the
compiler may spend a lot of time reading them. For example, Glasgow Haskell
0.19’s Prelude interface is about 100k long, and reading it significantly slows
compiler startup for small modules.

1 It is convenient to assume all modules import the Prelude.



– Information only flows upwards, towards Main. For questions of the form
“how is entity X going to be used?”, we also need information flows downward
from Main.

– To compile a module M, it should suffice to read the interfaces for modules
immediately below M. We certainly want to avoid reading all the interfaces
in the downward closure of M: for Main, that could mean reading the entire
set of interfaces.

Mutually recursive modules Existing implementations deal with mutually
recursive modules in two ways. One is to compile all modules in a group to-
gether, a clean solution, as with Yale Haskell’s “compilation units”. The other
is to compile each module in the group separately, until interface files stabilise,
denoting a fixed point. This means that at least one module will have to be
compiled with zero semantic knowledge of the others, with the compiler mak-
ing worst-case assumptions. The upshot of this is that, for semantic analyses
involving fixpointing, the fixpoints being computed may be suboptimal.

2.2 Complete or minimal function graphs?

Fixpointing by minimal function graphs2 (MFGs) builds the minimal set of
argument-result pairs G needed to evaluate the fixpoint at a specific argument
xinit . The initial graph is {(xinit ,⊤)}3. At each iteration, results for all arguments
in the current graph Gn are re-evaluated, giving Gn+1. When an application of
a function to some argument x is encountered, the existing graph Gn is searched
for a corresponding result. If that x is not present, the result is taken as ⊤ and
the pair (x,⊤) is inserted into Gn+1. The process repeats until G stabilises,
whereupon G(xinit ) delivers the required value. As an example, consider:

f :: [2⊥
⊥
→ 2⊥

⊥
]

f x =







⊥ if x = ⊥
lift(lift(0)) ⊓ (lift(⊥) ⊔ (f ⊥)) if x = lift(⊥)

x ⊓ (lift(⊥) ⊔ (f x)) otherwise

Given xinit = lift(⊥), we have G0 = {(lift(⊥),⊤)}. Evaluating (f lift(⊥)) gives
result lift(lift(0)) and a new pair (⊥,⊤), so G1 = {(⊥,⊤), (lift(⊥), lift(lift(0)))}.
Iterating again gives G2 = {(⊥,⊥), (lift(⊥), lift(lift(0)))} and G3 = G2, so
G(xinit ) = lift(lift(0)).

In this example, the required answer was obtained by evaluating f at two
out of its four argument points. When the argument lattices contain thousands
of points, the hope is that only a tiny minority of argument-result pairs need to
be computed.

MFGs achieve “lazy” fixpointing because they make explicit the dependence
between input and output points. Notice how the algorithm is limited to first

2 A function’s graph is no more than a collection of argument-result pairs for it.
3
⊤ if maximal fixpoints are sought, ⊥ for minimal fixpoints.



order functions: higher order fixpointing would require comparing complete func-
tion representations, which is precisely what lazy fixpointing is designed to avoid.
Nevertheless, by extending the notion of dependency between inputs and outputs,
Ferguson and Hughes [FH93] have successfully generalised MFGs to work in the
higher order case, calling them concrete data structures (CDSs), and Rosendahl
reports similar results [Ros93].

Functional types abstract to domains with so many points that lazy fixpoint-
ing can make an enormous difference for higher order analysis. Ferguson and
Hughes give figures for the famous foldr-concat example:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

concat :: [[a]] -> [a]

concat = foldr (++) []

where (++) is the Haskell list-append operator. Using a BHA-style forward ab-
stract interpretation [BHA85] requires building an instance of foldr in the do-
main [4 → 4 → 4] → 4 → 6 → 4. This gives an argument lattice of almost
600,000 points. Computation of the entire function graph takes on the order
of an hour using the frontiers algorithm [FH93], whereas with CDSs computing
just those parts needed to determine the entire fixpoint of concat takes two or
three seconds under similar circumstances. For more complex function spaces the
difference is even greater.

Given such an overwhelming performance advantage, it is tempting to for-
get entirely about any other fixpointing scheme. Yet integration of CDS based
fixpointing proves troublesome when viewed from a wider framework. There are
two as-yet unresolved issues. Firstly, as discussed below, we have a deep desire
to avoid monomorphic analyses of any kind. CDSs as presented so far are purely
monomorphic. Because of the need to closely expose dependencies between sub-
parts of the input and sub-parts of the output, it is not clear how they may be
used in a polymorphic way. For first-order MFG-style fixpointing, polymorph-
ism is not a problem: Kubiak [KHL91] has implemented a polymorphic projection
analyser with MFG fixpointing in the Glasgow Haskell compiler.

A more immediate problem with lazy fixpointing is how to deal with modules.
A crude scheme is to export whatever parts of the abstract function graph have
been aggregated whilst compiling the defining module. If, compiling some other
module, the compiler needs to know the fixpoint at some point for which no
information is available, it is sometimes possible to make a safe estimate using
monotonicity and the information which is available.

For example, having exported G = {(x1, f x1), (x2, f x2)} we may wish to
know (f x3) in the case where x3 ⊑ x1 and x3 ⊑ x2. Since f is monotonic
it follows that f x3 ⊑ f x1 and f x3 ⊑ f x2, and so f x3 ⊑ (f x1 ⊓ f x2).
Provided we are working in a framework where overestimation is safe, this gives
an approximate value for f x3.



Clearly, the bigger the exported G, the better the estimates that can be made
from it. But the whole purpose of MFGs is to keep G as small as possible,
containing perhaps a handful of points out of thousands of candidates. This
militates against making good approximations. Worse, not all the points in G

may be used in making the approximation: in the example above, we are limited
to using points {(y, f y) ∈ G | x3 ⊑ y}.

A second, equally unedifying solution is to export not only G, but the re-
cursive domain equation from whence it came – or even the source text which
begat the equation. Then, when G cannot answer a query, it is extended, in the
manner described above, as required. If the abstract interpretations get large,
dumping them into interface files may not be practical. This scheme also has a
more subtle weakness. A crucial insight is that finding the fixpoint of a domain
equation makes it stand on its own: it no longer references any other equation.
Consider the following three modules defining recursive functions f, g and h with
corresponding equations f#, g# and h#:

module F(f) where { f = ... f ... }

module G(g) where { import F; g = ... g ... f ... }

module H(h) where { import G; h = ... h ... g ... }

Dumping the unsolved domain equations into interface (.hi) files gives:

F.hi: f# = ... f# ...

G.hi: g# = ... g# ... f# ...

H.hi: h# = ... h# ... g# ...

When module H is compiled it may be necessary to extend the function graph
for g#. The trouble is this means reading interface F.hi even though the text of
module H does not directly refer to F: in general, it might be necessary to read all
interfaces in the downward closure of H. Any scheme which exports into interface
files references to functions in other modules suffers the same problem. Merely
inlining references to other equations does not help, as this makes the interfaces
contain everything below them in the hierarchy, and hence very large:

F.hi: f# = ... f# ...

G.hi: g# = letrec f# = ... f# ... in ... g# ... f# ...

H.hi: h# = letrec f# = ... f# ... in

letrec g# = ... g# ... f# ... in ... g# ... h# ...

Because of these difficulties, lazy fixpointing does not seem to fit well in an
environment where separate compilation is the norm.

2.3 Polymorphic or Monomorphic?

Parametric polymorphism is an important element of the type systems of modern
functional languages. Given a parametrically polymorphic function, we could:



– Redo the analysis for each different instantiation of the function. This is
equivalent to expanding out the program into a collection of monomorphic
instances before analysis.

– Analyse the function once, and use polymorphic invariance results to deal
with differently instantiated uses later on.

An oft-quoted disadvantage of the former approach is that polymorphic functions
may be analysed many times, which is wasteful. In the worst case, the number of
instances can be exponential in the length of the program. Nevertheless, such be-
haviour does not appear to occur. Measurements by Mark Jones of six substantial
programs in the nofib suite [Par92] suggest a twofold increase in the number of
binding groups [Jon93]. Further, only simple list-handling functions like map and
foldr have a large number of instances, and such functions are often inlined by
optimising compilers anyway. So monomorphic analysis may not actually involve
much duplication of work. Observe also that since the abstract interpretations of
types often maps many types to the same lattice, monomorphisation on the basis
of lattices causes even less expansion.

More serious is, once again, the interaction of monomorphisation with mod-
ules. For a module M exporting a polymorphic function f, we can either analyse
f at all the instances it will get used at, or we can wait until all modules above M
are compiled and reanalyse f on an as-needed basis. Both schemes are unattract-
ive, the first because it requires a downward (Main to Prelude) pass through the
module graph to establish instantiations, the second because of the need to carry
around f’s source text when compiling modules above M.

Polymorphic analysis circumvents both problems because a single analysis
serves all queries, even those from different modules. Work by Baraki, Hughes
and Launchbury [Bar93, HL92b] (to mention but a few) has established tech-
niques for both forward and backward polymorphic strictness analyses. Back-
ward analyses lend themselves particularly well to such an approach: Section 5
of [Sew94] describes such an analysis in considerable detail. Baraki’s work indic-
ates how some forward analyses may be made polymorphic: [Sew94], Section 3
describes an implementation.

For first order functions, polymorphic techniques give the same results as
monomorphic analysis: they are exact. But in the higher order case, accuracy
may be lost. For backward analyses, which are inherently first-order, this may
be acceptable. For other analyses, the magnitude of this problem has yet to be
quantified.

2.4 Higher or first order?

Higher order fixpointing is difficult because the lattice sizes for function spaces
grow so rapidly. For example, in strictness analysis, an item of type [Int] -> [Int]

might abstract to domain [4 → 4], which has 35 points. Adding a second para-
meter of the same type gives domain [4 → 4 → 4], with 24,696 points, an increase
of over 700 times. The number of points in [4 → 4 → 4 → 4] is certainly very



large. Many functional parameters have types more complicated than this, and
calculating complete fixpoints in their presence is impractical.

Fixpointing by term rewriting sometimes fails in the presence of functional
parameters. In the general case, higher order equations cannot be solved, because
their fixpoints depend on the fixpoints of the functional parameters. The usual
method of rewriting adjacent approximations to normal form fails to detect an
overall fixpoint because subsequent approximations contain some term involving
a functional parameter applied more and more times. This occurs, for example,
in fixpointing forwards abstractions of foldr:

foldr#(n) = \f a xs -> ... f (f ... (f E) ... ) ...

foldr#(n+1) = \f a xs -> ... f (f (f ... (f E) ... ) ) ...

where E is some arbitrary term, and foldr#(n) and foldr#(n+1) denote two
adjacent approximations to the fixpoint. Here, f is a functional parameter being
wrapped more and more times around E, thereby making syntactic detection of
a fixpoint impossible. Of course, if the term rewriter is extremely clever it can
detect that, for some suitably large n, fn = fix f, so it can replace f (fix f) by
fix f and thereby generate normal forms which depend explicitly on f’s fixpoint.
The required pattern matching is tricky – not so simple for doubly recursive
terms – and we need to decide on a suitable n. The value of n depends on the
function space in question – clearly, we need a quick algorithm for giving a
good overestimate of the function space’s height. Nielson and Nielson looked at
this problem [NN92], but their work can give excessively large estimates and is
of limited applicability. A more fundamental problem is polymorphism: in that
case, n varies with the instantiation, so the notion of computing a single value
for it is nonsense.

Nevertheless, for higher order equations which do not depend on the fixpoints
of their functional parameters, term based fixpointing works well and can be
thousands of times cheaper than using frontiers. Such equations can be generated,
for example, from the forwards abstractions of map and filter ([Sew94], Section
4.3.5).

In defence of first order analysis This paper argues against higher order
analyses. When modules are also taken into account, the number of design con-
straints becomes intolerable. Can such a step be justified? Well, taken in a wider
context, maybe. Higher order functions defeat advanced code generation tech-
niques, like arity check avoidance, unboxing and arguments in registers, since
they represent calls to completely unknown functions. Augustsson [Aug93] sug-
gests that calling a known function costs half as much as calling an unknown
one.

The (Haskell) compiler community go to considerable trouble to get rid of
calls to higher order functions. For example:

– Simple non-recursive combinators like (.) and thenS are inlined (in Glasgow
Haskell).



– Prelude functions which pass functional parameters along unchanged, like
map and foldr, are unfolded to form specialised versions (in Yale Haskell).

– Overloaded functions are specialised at their use instances, at least within
single modules (Glasgow and Chalmers). This avoids a great deal of the
higher order machinery which is often associated with implementations of
overloading.

Nelan [Nel91] describes at some length techniques for what he termed firstific-

ation: the automatic removal of higher order functions. Although conversion of
higher-order programs to first-order is, in general, impossible, programmers, by
and large, use higher-orderness in certain idiomatic ways which are amenable to
firstification using Nelan’s machinery. This machinery, combined with aggressive
inlining, can be remarkably effective. Even without using firstification, much of
the optimised code dealt with inside Glasgow Haskell is purely first order.

From a strictness analysis point of view, first order analysis has two major
advantages:

– Fixpointing is easier. The frontiers algorithm runs reasonably quickly for
first order examples ([Sew94], Section 3), and term rewrite based fixpointing
is guaranteed to work. Computing complete function graphs does not look
quite so bad in the first order case, and doing so makes modules easier to
deal with.

– Polymorphic generalisation gives exact results. Monomorphic analysis and
its attendant module-related problems can be avoided entirely.

3 The Derived Design

3.1 Overview

Considering the design constraints, it looks like a first-order, polymorphic ana-
lysis computing complete fixed points might form a plausible basis for a working
system, so this is what has been constructed. Abstract interpretation produces
terms in what can be considered to be an abstract lambda-calculus, and fixpoint-
ing is done with a term-rewrite system which transforms semantically equivalent
terms to syntactically identical normal forms.

The analyser forms part of the Glasgow Haskell compiler, and operates on a
desugared Haskell form loosely referred to as Core. Core allows lambda terms,
applications, literals, local bindings, one-level pattern matching (cases) and con-
structor applications. Type information supplied by previous compiler phases
means the type (and hence the abstract domain) associated with every subex-
pression is known. The Core tree is annotated with the strictness information
computed, making it available to subsequent transformation passes, and to the
interface-printing machinery, so other modules can know about the strictness of
functions in this one.



3.2 The abstract interpretation

Abstract interpretations for strictness analysis have historically been categor-
ised as forward or backward [Hug90], although the appearance of relational ana-
lyses is now blurring that distinction. Backward analyses generate information
about function arguments given knowledge of some property of the application
as a whole. For example, backward strictness analysis of an n-argument function
produces n maps, one for each argument, mapping demand on an application to
demand on each argument. As this implies, the fundamental abstract entities are
points in lattices, where different points denote different demands or “needed-
ness” for some data structure. It is usual to (at least potentially) allow each
different concrete type to have its own lattice of abstract demands, in order that
we can do detailed analyses with data structures.

Although the first strictness analyses were of the forwards type, later de-
velopment suggested backwards analysis might be quicker and give a simpler
treatment of polymorphism, and practical work seems to bear this out ([Sew94],
Section 5). The few papers showing how strictness information can be used to
generate better code [PJ93, Hal93] all either suggest or imply that backwards
information is what is actually useful. Taken together, the case for building a
backwards abstract interpretation seems overwhelming.

Space limitations preclude much discussion of the abstract interpretation.
Suffice it to say that it is fairly conventional: the overall structure is similar to
that presented by John Hughes in [Hug90], although the mechanism for dealing
with data structures, constructors and case terms is different. As with any purely
backward analysis, higher-order analysis is impossible, so we naively assume that
all unknown functions do not demand their arguments at all.

Many backward abstract interpretations go to a great deal of trouble to model
data structures well, thereby inducing considerable complication in the machinery
which deals with data structures – constructor functions and cases. Fortunately,
the presentation can be simplified by the observation that, provided the abstrac-
tion of cases and constructor functions obeys certain constraints, it doesn’t mat-
ter at all what they are. So the backwards abstraction can be specified without
saying anything much about data structures. Subsequent parameterisations of
it produce complete, workable abstract interpretations, and different paramet-
erisations can produce interpretations giving very different levels of detail for
data structures. This modular approach and some parameterisations of it are
developed in [Sew94], Section 5; we outline one such parameterisation shortly.

An important feature of the abstraction is that suitable parameterisations
produce polymorphically invariant interpretations. Polymorphic invariance facil-
itates separate compilation, as discussed in Section 2.3, and it also means the size
of terms generated by (hence, the cost of) abstract interpretation is not related
to the instantiation. This is in marked contrast to, for example, Wadler’s original
non-flat interpretation [Wad87], in which abstraction of case expressions could
generate terms whose sizes grow exponentially with the size of the instantiating
types.

Backwards strictness analyses work, in a sense, by detecting free variables in



expressions. Because most variables do not appear free in most expressions, a
naive analysis will tend to generate many huge terms which trivially reduce to
⊥, the point denoting zero demand. Still, generating these things, then reducing
them, takes effort, and it proves valuable to plant certain key rewrite rules inside
the abstract interpreter itself to sidestep the process – a trivial modification to the
code. Incorporating four of the most popular simple rewrite rules dramatically
cuts the size of generated terms and so expands the range of source functions for
which abstract interpretation can be done in reasonable time.

The Head-Strict Parameterisation Our implementation uses a powerful
parameterisation designed to give detailed results for the vast majority of data
declarations a Haskell programmer could reasonably use. This is in contrast
to the often-limited range of types which other implementations can deal with,
sometimes just lists [HH91], sometimes a fuller range of data declarations where
constructor arguments may be one of the type variables, or a recursive call to the
type, but nothing else ([Sew91], Section 6). The parameterisation is designed to
detect head strictness. We wanted to move away from the prototype stage and
create an analysis which (1) gives useful information for, effectively, any (non-
functionally-typed) code fragment, and (2) generates information to support all
known strictness-related transformations – hence the need for head-strictness.
The result is that the parameterisation is rather complicated, so we will try and
convey the essential ideas with an example.

The parameterisation derives from Burn’s idea of evaluation transformers.
[Sew91] generalised this to work for a wider range of data types, and [Sew94]
further extended it to detect head-strictness. Let us consider lists. Lists abstract
to three collections of points: bottom (B), denoting no evaluation, the set W[a],
denoting evaluation to weak head normal form, and then, if a cons cell is pro-
duced, evaluation of the first element with a, and the set S[a][b], denoting
evaluation of the complete structure of the list, evaluation of the first element
with a and all the rest with b. If we model integers with the two evaluators 0

(no-eval) and 1 (eval), the lattice for [Int] becomes:

S[1][1]

/ \

S[1][0] S[0][1]

/ \ /

W[1] S[0][0]

\ /

W[0]

|

B

For example, W[1] is a head-strict evaluator, evaluating to weak head normal
form, and the head Int too, if possible. S[0][1] mean evaluate the entire list
structure, and all Ints except the first. S (Structure) evaluators maintain the
head/non-head element distinction so that, for example, when a list is known to



be demanded both to W[1] and S[0][1], we know we can demand the list to
S[1][1] (which is W[1]⊔S[0][1]). In other words, this means the head-element
information on a W (WHNF) evaluator is not (necessarily) obliterated when it is
combined with an S evaluator.

The scheme generalises in several directions. Recursive types with more than
one type variable are modelled with the same B/W/S collection of points, with
the W and S points containing multiple parameterising points, rather than just
one and two respectively as with lists. Lattices for non-recursive types omit the
S points, but are otherwise identical. Constructors often have “constant” types
– those not mentioning type variables – for arguments, or have arguments in
which the type variables and recursive instances of the type appear buried inside
arbitrary levels of “intervening” types. Many programs also employ mutually
recursive types. All these cases can be handled, although they make the precise
details of the parameterisation rather complicated. This parameterisation, and
thus the derived interpretation, is polymorphically invariant.

3.3 Fixpointing

Once we regard the output of the abstract interpreter as a term in some “abstract
lambda calculus”, and we know we want to compare such terms for semantic
equality, it seems natural to investigate the possibility of building a semantics-
preserving transformation engine. We give only the barest summary here – for
details, see [Sew94], Section 4. Some important points are:

– Terms are built from a small selection of constructions. Lambdas, variables
and applications introduce and refer to variables, and apply abstract functions
thus formed. “Constructional” terms denoting ⊥, the lifting of some other
term and tupling are used to build values in lifted and product lattices, and
there are a corresponding set of “destructional” terms which test lifted-lattice
points for ⊥, undo liftings, and select components from tuples. Finally, joins
and meets of terms are allowed.

– The terms are strongly-typed, using what amounts to an abstract version
of the Milner-Hindley type system. Well-formed terms must be well-typed,
and must also be monotonic with respect to their free variables. The type
system incorporates a notion of parametric polymorphism. The abstract in-
terpreter exploits this by mapping polymorphism in the source program onto
polymorphism in the abstract terms, which gives polymorphic analysis es-
sentially for free.

– The rewriter proper consists of a scheduling mechanism, which selects re-
dexes and applies rewrite rules to them, and the rewrite rules themselves.
The scheduler determines the reduction order, which has a major bearing on
performance. There are about fifty rules, many with complex side conditions.
Since the rules are coded in Haskell, they can use the full power of Haskell
pattern-matching. The rewriter is complicated somewhat by the need to pro-
pogate and use partial knowledge (ie, is/is not ⊥) of the values of subterms
in order to reach normal form.



Making the rewriter work well Once a normal form has been decided on and
suitable rewrite rules generated, there is still the issue of how the rules are to be
applied. This boils down to a probably-irreconcilable conflict between innermost-
first and outermost-first rewriting. Both strategies work well much of the time,
but both also suffer from pathological interactions between terms emitted by
the abstract interpreter and some of the rewrite rules. In these cases, rewriting
can take a small term and expand it exponentially to a gigantic intermediate
term before employing some other rule to shrink it to another small term. The
effect on performance is disastrous. Getting round this problem requires a hybrid
reduction strategy which tries to avoid known pathological cases. This works well,
although deciding on the split requires a great deal of detailed investigation into
the precise dynamics of the reduction system as applied to realistic workloads.

Watching the rewriter at work revealed another interesting, but, in retrospect,
unsurprising fact: the abstract interpreter’s “vocabulary” of term-combinations
emitted is particularly limited. The same small collection of idioms occurs over
and over again. Some of these idioms are extremely common, but they are also
quite big. Big terms are a performance liability; consistently small terms tend to
give much better performance. That makes it attractive to capture such idioms
in special, new terms, and adjust the rewrite rules accordingly. This should be
done sparingly, since the term rewriter becomes complicated by having to deal
with multiple representations of the same term. Still, capturing just two common
idioms like this has given performance gains very roughly on the order of 25
times for some inputs.

Even with this trickery, the abstract interpreter can sometimes emit terms so
large they swamp the rewriter. In this situation it is helpful to devise a way to
prune terms so the most important information is retained, whilst dramatically
shrinking the term. Of course, defining what information is important and how
safety is preserved depends entirely on the abstract interpretation. For this kind
of strictness analysis, it is safe to replace any term by⊥, since⊥ characterises “no
demand”. The scheme employed prunes terms after a specified depth of nested
W or S constructions has been seen. This depth-based pruning, whilst crude, is
frequently effective, but does not work well for very wide, shallow terms. Further
investigation into cleverer pruning strategies, and their relationship to widening,
could be worthwhile.

3.4 Interfacing the abstract interpreter and fixpointer

All implementation was done in the lazy functional language Haskell. Perform-
ance profiling revealed an important fact: how well the system as a whole works
depends heavily on how much of the abstract interpreter’s output the fixpointer
(hence, the rewriter) needs to see. If the fixpointer is very clever it may ignore
most of the interpreter’s output. But since writing the interpreter in Haskell
makes it demand-driven, cleverness on the fixpointer’s part saves a great deal
of expense in the interpretation itself. It seems safe to say that the performance
results reported below could never have been achieved, nor even approached,



had the interpreter been written in a strict language, SML, for example. Futher
details are available in [Sew94], Section 4.

The comments three paragraphs back regarding idioms and the term rewriter
belie a more fundamental design flaw which limits performance: serious and
extensive sharing losses. The idiom-spotting trick gives big performance speedups
primarily because it avoids duplication of arbitrarily large subterms. Many of the
cases of the abstract interpreter duplicate terms indiscriminately. All this points
to a need for explicit sharing in terms: non-recursive abstract lets. Modifying
the term rewriter to work with lets sounds less than straightforward, so it might
be helpful to borrow key ideas from the call-by-need lambda calculus described
in [AFM+95].

Good performance hinges on generating small terms and keeping them small
throughout their various manglings. Ideally, the size of the abstract interpreter’s
output should be proportional only to the size of the source program. This is
probably unrealistic. Nevertheless, designers of abstract interpretations would
be well advised to strive towards this goal. As an example, Phil Wadler’s ori-
ginal non-flat strictness analysis scheme [Wad87] gave an interpretation of case
expressions which expands exponentially with the size of instantiating types. This
renders it impractical for all but the tiniest programs ([Sew94], Section 5.8). Our
backwards framework is polymorphically invariant, so it avoids that particular
horror, but it still has plenty of potential for optimisation using abstract lets.
The point of this example is that, with a little care, much of the “exponentialness”
can be engineered away, giving substantial performance benefits.

4 Results

4.1 In the small

The technology described above was constructed inside a purpose-built devel-
opment framework. The framework is a quick-and-dirty implementation of the
front part of a compiler for an overloading-free subset of Haskell, designed to
facilitate experimentation. A higher-order removal transformation in the style
of Nelan [Nel91] allows first-order analyses of programs making substantial use
of higher-order functions. All analyses were done monomorphically, to make
comparison with a forward interpretation fairer. For the backwards analyses,
of course, there is no intrinsic reason to use monomorphic analysis. Four inputs
were used:

– avlTree: insertion of items into an AVL tree (44 lines).
– life: Launchbury’s implementation of Conway’s “life” simulation (311 lines).
– fft: Fast fourier transform, from Hartel’s benchmark suite [HL92a] (421

lines).
– ida: Solves the 15-puzzle, also from Hartel’s suite (728 lines).

life, fft and ida are substantial inputs. Quoted sizes are after insertion of
suitable prelude functions. They make substantial use of higher-order functions,



Forwards EvalTrans HeadStrict

Program Time Resid Time Resid Time Resid

avlTree 9.58 1514 0.23 197 0.27 200

life 359.20 11203 2.01 628 2.97 615

fft 28.76 1473 6.38 1473 8.38 1524

ida 920+ 54000+ 9.32 1725 7.70 1734

Table 1. Performance of abstract interpreters (time in seconds, residencies in Kbytes).
Italicised figures indicate peak residencies defined by preprocessing phases, rather than
abstract interpretation or fixpointing. The Forwards analysis of ida did not complete
even in 54 megabytes of heap.

which the firstifier has to work quite hard to remove, and which causes the input to
the abstract interpreter proper to be considerably bigger than the untransformed
sources.

The analyser was written in standard Haskell 1.2, compiled with Glasgow
Haskell 0.19 “-O”, and run on a quiet 64-megabyte Sun Sparc 10/31 running
SunOS 4.1.3. A generational garbage collector was used, and heap sizes were
set to try and keep garbage collection costs below 10%, although for larger res-
idencies this is difficult. Times under sixty seconds are averaged over six runs.
They include the preprocessing times of parsing, desugaring, typechecking, mono-
morphisation and firstification, but in no case do these exceed 20% of the total.
Table 1 shows the results, using three different abstract interpretations:

– HeadStrict: a head strict, backwards interpretation precisely as described
in this paper.

– EvalTrans: another backwards interpretation, formed, as with HeadStrict,
using the generic framework described above, but using a simpler character-
isation of data structures, essentially a generalisation of Geoff Burn’s Evalu-
ation Transformers.

– Forwards: a forwards BHA-style interpreter, with handling of data struc-
tures as described in [Sew91]. The data-structure handling can be considered
in a sense of “equivalent” detail to that of EvalTrans.

Each interpreter was measured with a rewrite-based fixpointer designed specially
for it. The rewriters are very similar, and by using the same kind of optimisations
in each we hope to make the comparison reasonably fair.

These measurements make clear just what an advantage the backwards inter-
pretations have – the EvalTrans analysis of life runs almost two hundred times
faster than the forwards analysis, and in a fraction of the space. The HeadStrict
interpretation is not significantly slower than the EvalTrans version. This comes
as a bit of a surprise, since one might expect it to produce much more detail,
and take correspondingly longer. Inspection of outputs reveals that it doesn’t
always find a great deal more strictness than the EvalTrans analysis. And quite



why the HeadStrict analysis should sometimes be quicker (for ida) is mysterious,
possibly due to the precise details of reduction paths in the term rewriters.

4.2 In the large

After extensive tuning in the development framework, the (polymorphic) Head-
Strict interpreter and its fixpointer were installed in Glasgow Haskell 0.19 to
assess the viability of such strictness analysis “in the large”. Integration added
about 5700 non-blank, non-comment lines of code to an existing total of about
50000. Because the compiler is well designed, integration was remarkably clean,
with the smallest of modifications to existing code. The existing framework for
transmitting pragmatic information between modules was extended to allow full
intermodule analysis; given the arguments presented in Section 2, the experiment
would have been largely worthless had this been omitted.

Compiling Glasgow’s implementation of the Haskell Prelude, plus some other
general-purpose libraries, totalling about 4000 lines, takes some four hours on a
Sun SparcStation IPX, roughly a doubling of the no-analysis time. A heap size
of 24 megabytes proved more than adequate, and, pleasingly, there was no need
to resort to the tree-pruning described in Section 3.3. An earlier version of the
analyser, in its development framework, constituting 13000 lines in 28 modules,
was subsequently compiled. 25 modules went through with no problems, whilst
three required pruning.

By any standards, such experimentation with real compilers and real pro-
grams lends major credibility to the engineering described in this paper. Ob-
servation of the interpreter and fixpointer grappling with non-toy inputs lead to
many refinements, and to the suggestions for further development towards the
end of Section 3.4.

4.3 Conclusions

The abstract interpreter and fixpointing mechanism outlined above have been
developed and tuned by running them over approximately twenty thousand lines
of Haskell source code. Assessing the viability of new schemes only on small ex-
amples or using paper analyses can be misleading. Good engineering requires not
only supporting theory – of which the field shows no shortage – but also extens-
ive quantitative analysis on realistic-sized inputs. The relative lack of effective
implementations of strictness and other semantic analyses for Haskell highlights
the need for further attention to engineering issues in abstract interpretation.

Using these principles, a polymorphic projection analyser for Haskell has been
created. The analyser is effective, robust, reliable, turns in good performances,
and has been used to support research in automatic strictification of Haskell
programs4. It also lays out a design with considerable potential for refinement,
particularly with respect to building more economical abstract interpretations,
and to fixing sharing problems in the fixpointing mechanism. Further development
may yield impressive strictness and sharing analyses for Haskell.

4 Denis Howe, Department of Computing, Imperial College, London.



References

[AFM+95] Zena Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In 22nd Symposium on Principles

of Programming Languages, San Francisco, California, January 1995. ACM
Press.

[Aug93] Lennart Augustsson. Implementing haskell overloading. In Proceedings of

the Functional Programming Languages and Computer Architecture Confer-

ence, Copenhagen, Denmark, June 1993.
[Bar93] Gebreselassie Baraki. Abstract Interpretation of Polymorphic Higher-Order

Functions. PhD thesis, Department of Computer Science, University of
Glasgow, Lilybank Gardens, Glasgow G12 8QQ, UK, February 1993. Also
available as a Glasgow Tech Report FP-93-07.

[BHA85] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analysis
for higher-order functions. In Proceedings of the Workshop on Programs as

Data Objects, pages 42–62, DIKU, Copenhagen, Denmark, 17–19 October
1985. Springer-Verlag LNCS 217.

[CC78] Cousot and Cousot. Static determination of dynamic properties of recursive
procedures. In E.J. Neuhold, editor, Formal Description of Programming

Concepts. North-Holland, 1978.
[Con91] Charles Consel. Fast strictness analysis via symbolic fixpoint iteration. Un-

published. Yale University, Department of Computer Science, September
1991.

[FH93] Alex Ferguson and John Hughes. Fast abstract interpretation using sequen-
tial algorithms. In Proceedings of the Chalmers Programming Methodology

Group Winter Meeting, January 1993. Department of Computer Sciences,
Chalmers University of Technology.

[Hal93] Cordelia V. Hall. Using strictness analysis in practice for data structures.
In John T. O’Donnell and Kevin Hammond, editors, Glasgow Workshop

on Functional Programming, Workshops in Computing, Ayr, Scotland, July
1993. Springer-Verlag.

[HH91] Sebastian Hunt and Chris Hankin. Fixed points and frontiers: a new per-
spective. Journal of Functional Programming, 1(1):91 – 120, January 1991.

[HL92a] Pieter H. Hartel and Koen G. Langendoen. Benchmarking implementations
of lazy functional languages. Technical report, Department of Computer
Systems, Faculty of Mathematics and Computer Science, University of Am-
sterdam, December 1992.

[HL92b] John Hughes and John Launchbury. Projections for polymorphic first-
order strictness analysis. In Mathematical Structures in Computer Science,
volume 2, pages 301–326, 1992.

[HM94] C. L. Hankin and D. Le Métayer. Deriving algorithms from type inference
systems: Application to strictness analysis. In Proceedings of POPL’94,
1994.

[Hug90] John Hughes. Compile-time analysis of functional programs. In David A.
Turner, editor, Research Topics in Functional Programming. Addison-
Wesley Publishing Company, 1990. From the 1987 Year of Programming,
University of Texas, Austin, Texas.

[Hun91] Sebastian Hunt. Abstract Interpretation of Functional Languages: From

Theory to Practice. PhD thesis, Imperial College, University of London,
1991.



[JM86] Neil D. Jones and Alan Mycroft. Data flow analysis of applicative programs
using minimal function graphs: Abridged version. In Thirteenth ACM Sym-

posium on Principles of Programming Languages, St. Petersburg, Florida,
pages 296–306, 1986.

[Jon93] Mark P. Jones. Partial evaluation for dictionary-free overloading. Technical
Report RR-959, Department of Computer Science, Yale University, April
1993.

[KHL91] R. Kubiak, J. Hughes, and J. Launchbury. A prototype implementation of
projection-based first-order polymorphic strictness analysis. In R. Heldal,
editor, Draft Proceedings of Fourth Annual Glasgow Workshop on Func-

tional Programming, pages 322–343, Skye, August 13–15 1991.
[Mar92] Christopher Charles Martin. Algorithms for Finding Fixpoints in Abstract

Interpretation. PhD thesis, Imperial College, University of London, June
1992.

[Nel91] George C. Nelan. Firstification. PhD thesis, Arizona State University, 1991.
[NN92] F. Nielson and H.R. Nielson. Finiteness conditions for fixed point itera-

tion. Technical report, Computer Science Department, Aarhus University,
Denmark, February 1992.

[Noc93] Eric Nocker. Strictness analysis using abstract reduction. In Proceedings of

FPCA93, Copenhagen, Denmark, June 1993.
[Par92] Will Partain. The nofib benchmark suite of haskell programs. In Fifth

Annual Glasgow Workshop on Functional Programming, Ayr, 1992.
[PC87] Simon Peyton Jones and Chris Clack. Finding fixpoints in abstract inter-

pretation. In S. Abramsky and C.L. Hankin, editors, Abstract Interpretation
of Declarative Languages, Computers and Their Applications, chapter 11,
pages 246–265. Ellis Horwood, 1987.

[PJ93] Will Partain and Simon L. Peyton Jones. Measuring the effectiveness of a
simple strictness analyser. In John T. O’Donnell and Kevin Hammond, ed-
itors, Glasgow Workshop on Functional Programming, Workshops in Com-
puting, Ayr, Scotland, July 1993. Springer-Verlag.

[Ros93] Mads Rosendahl. Higher-order chaotic iteration sequences. In PLILP’93,
pages 332–345, Tallinn, Estonia, 1993. Springer-Verlag LNCS714.

[Sew91] Julian Seward. Towards a strictness analyser for haskell: Putting theory
into practice. Master’s thesis, University of Manchester, Department of
Computer Science, 1991. Available as University of Manchester Technical
Report UMCS-92-2-2.

[Sew94] Julian Seward. Abstract Interpretation: A Quantitative Assessment. PhD
thesis, Department of Computer Science, University of Manchester, Oxford
Road, Manchester M13 9PL, UK, October 1994.

[Wad87] P.L. Wadler. Strictness analysis on non-flat domains (by abstract interpret-
ation over finite domains). In S. Abramsky and C.L. Hankin, editors, Ab-
stract Interpretation of Declarative Languages, chapter 12, pages 266–275.
Ellis Horwood Ltd., Chichester, West Sussex, England, 1987.

This article was processed using the LATEX macro package with LLNCS style


