
Issue #3 - May 1st, 1995
Robert Vivrette - CIS: 76416,1373

Welcome back! First, I want to apologize over the delay in getting this third issue of UNDU to you. A 2-
week publication schedule is a little more than I can handle, so it looks like it will be more like 3-4 weeks
at this point.
I want to thank those of you who have contributed material to me for this issue. For space & size reasons,
I have not included everything I have received for this latest issue, but rest assured more will be coming!
I would like to toss up a few article ideas to see if I can catch anyone's interest. If you would like to write
on any of the following topics, please contact me:

1. Review/Discussion of ReportSmith
2. Discussion/Examples of Database operations
3. Delphi Book/Magazine Reviews

Please do think about contributing. Even small little code snippets would make a good addition to the
newsletter.

Publications Available
Cooking Up Components
Connecting to MS Access
Tips & Tricks
When Things Go Wrong

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Publications Available
There has been a lot of activity in the bookstores and on the newstands lately with regards to Delphi.
Each month, I will bring you a list of the currently available books and periodicals as well as an idea of
their content and presumed experience level. I will also highlight articles about Delphi that appear in
various other programming periodicals.

Books
Periodicals
Articles

Return To Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Books Currently Available
Delphi Programming For Dummies
Delphi By Example
Instant Delphi Programming
Teach Yourself Delphi

Books On The Way
Delphi Developers Guide
Delphi How-To
Delphi Nuts & Bolts
Delphi Programmer Explorer
Developing Client/Server Applications With Delphi
Developing Windows Applications Using Delphi
Master Delphi
Mastering Delphi
Software Engineering With Delphi
Teach Yourself Delphi in 21 Days
Using Delphi, Special Edition

I define "Currently Available" as meaning "in the stores". If you notice any incorrect or incomplete
information listed here, please feel free to contact me. I will be updating this list each month. I am
currently looking for individuals who would like to write reviews of any Delphi-related books. Please
contact me if you would like to help!

Publications Available
Return To Front Page

Title: Delphi Nuts & Bolts
Author: Gary Cornell & Troy Strain
Level: Intermediate/Experienced
Publisher: Osborne-McGraw Hill
ISBN #: 0-07-882136-3
Available: May, 1995
List Price: $24.95
Summary: A 330 page book designed for anyone with some programming experience. Covers the

features of Delphi, but assumes you don't need your hand held. If you are an experienced
programmer and want a fast introduction to Delphi, this book is for you.

Title: Teach Yourself Delphi in 21 Days
Author: Andrew J. Wozniewicz
Level: Beginner/Intermediate
Publisher: Sams Publishing
ISBN #: 0-672-30470-8
Available: In Production
List Price: $29.99
Summary: Introduces Delphi to the beginning programmer and includes question-and-answer section at

end of each less to test readers progress as they learn. Emphasis on Object Pascal.

Title: Instant Delphi Programming
Author: Dave Jewell
Level: Intermediate
Publisher: Wrox Press
ISBN #: 1-874416-57-5
List Price: $19.95
Summary: Instant Delphi is the fast-paced tutorial guide for the programmer who wants to get up to

speed on the Delphi product as quickly as possible.

Title: Using Delphi, Special Edition
Author: Jon Matcho & David Faulkner
Level: ???
Publisher: Que
ISBN #: 1-56529-823-3
List Price: $29.99
Summary: This 3-part tutorial on the most important Delphi features covers how to install the product

and develop applications using Delphi's visual tools, explores the Windows application
development process, and deals with some advanced programming topics.

Title: Delphi Programming For Dummies
Author: Neil Rubenking
Level: Beginner
Publisher: IDG
ISBN #: 1-56884-200-7
List Price: $19.99
Summary: It may be Greek to you now, but not for long! Delphi Programming For Dummies is your ticket

to writing Windows applications with Borland's new product, Delphi. This fun, results-oriented
book jumps right into creating working programs by collecting and connecting Delphi's
powerful components. You'll find out what you need to know about how your programs work;
previous programming experience is not necessary!

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Periodicals Currently Available
Delphi Informant

Periodicals On The Way
Delphi Developer

I am currently looking for individuals who would like to write reviews of any Delphi-related periodicals.
Please contact me if you would like to help!

Publications Available
Return To Front Page

Periodical: Delphi Informant
Publisher: Informant Communications Group
Issue Cost: $4.95 US, $5.95 Canada, £7.50 UK
Subscription: 1 Year/12 Issue - $49.95 US, $54.95 Canada, £79.95 UK
Latest Issue: Volume 1, Number 1
Contact: Circulation Department, Delphi Informant, 10519 E. Stockton Blvd. Suite 142, Elk Grove,

CA 95624-9704. (916) 686-6610
Summary: Delphi Informant is the Complete Monthly Guide to Delphi Development. It features in-

depth discussion of pressing technical topics facing the Delphi programmer. Each issue is
packed with the latest development techniques including database development, object-
oriented programming, client/server programming, component building, Windows
development, news from the Delphi community, third-party product releases, product
reviews, book reviews, Delphi user group information, and development with third-party
tools.
To receive one year of the Delphi Informant for US$49.95, call Informant Communications
Group at (800) 88INFORMANT (800-884-6367) or outside the US call (916) 686-6610.
Delphi Informant is also available in stores such as Barnes and Nobel, B Dalton
Bookseller, Tower Books, CompUSA, Computer City, and Waldenbooks. Code listings
may be downloaded from the Informant Communications Group BBS at (916) 686-4740.

Premiere Issue

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Cooking Up Components
Hello. My name is Robert. And I am a componentaholic. (Hi Robert!!!)
That's right folks. I'm hooked on components, and you'll never get me to go back. Over the last month I
have been having a ball creating every sort of component you can imagine. When I am not designing a
component at work for some of the Delphi applications we are writing here, I am designing some for
myself at home. Component design is one of the most rewarding aspects of Delphi. The ability to create a
windows control and then to have it become an integral part of the same language that created it is
phenomenal.
The component for this issue is called TImageTransform. It provides the ability to transform one bitmap
into another using various visual effects such as wipes and fades. Currently, I have only implemented a
few of the simpler effects, but I will be presenting others later on that you can add to this component. Also,
if you like this component and come up with your own transformation effect, send it to me and I will
include it in a future issue.
The component illustrates a few interesting aspects of Windows/Delphi programming. First, it overrides
some basic behaviors of the stock graphic components to provide flicker-free motion on the screen.
Second, it illustrates the use of custom event handlers.
Using the component is very simple. There are 2 "Picture" fields in the object inspector. First assign a
bitmap to each of these properties. Ideally, they should both be the same size and color depth, to
minimize any potential visual side-effects. Second, choose a Transform type from those provided. And
lastly, when you want the images to switch, simply call the objects "Transform" method. The speed of the
transformation and the number of steps the transformation is broken down into, is adjustable by means of
the "Interval" and "Steps" properties.

TImageTransform Component Source Code
Modifications to the CurrEdit component

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Articles
I have been doing quite a bit of hunting for Delphi-related articles. I have managed to catch a few, but no
doubt I have missed many more. If you have seen an article that discusses Delphi issues and I have not
mentioned it here, please let me know and I will pick it up!

Game Developer , April/May 1995
PC Techniques , Feb/Mar 1995
PC Techniques , April/May 1995
Software Development , April 1995
Windows Tech Journal , March 1995
Delphi Informant , Volume 1, Number 1

Publications Available
Return To Front Page

Game Developer Magazine
In the April/May 1995 issue, Larry O'Brien devoted his editor's column to a discussion of Delphi entitled
"Delphi is the Answer". He made some very favorable comments and discussed Delphi's impact for
Windows game developers. Some excerpts:
"Normally, I make it a rule not to recommend any programming language"... "I am going to break that rule
to recommend Borland's Delphi".
"For Windows developers and for Windows game developers especially, Delphi is so far ahead of the
competition, it's embarrassing."
"I'll make a bold prediction - the most successful Windows game of 1996 will be written entirely in Delphi."

Title: Delphi Programmer Explorer
Author: by J. Duntemann/J. Mischel/D. Taylor
Level: ???
Publisher: Coriolis Group
ISBN #: 1-883577-25-X
List Price: $39.99
Summary: A new type of tutorial: Theory and practice alternate in short chapters, with the emphasis on

creating useful software starting on the very first page.

Title: Mastering Delphi
Author: Marco Cantu
Level: ???
Publisher: Sybex
ISBN #: 0-7821-1739-2
List Price: $29.99
Summary: Introduces programmers to Delphi's features and techniques, including secrets of the

environment, the programming language, the custom components and Windows
programming in general.

Title: Delphi Developer's Guide
Author: by Xavier Pacheco/Steve Teixeira
Level: Intermediate/Advanced
Publisher: Sams Publishing
ISBN #: 0-672-30704-9
List Price: $45.00
Summary: Intermediate to advanced guide to developing applications using Delphi.

Title: Delphi How-To
Author: by Gary Frerking
Level: ???
Publisher: Waite Group Press
ISBN #: 1-57169-019-0
List Price: $34.95
Summary: Presents large collection of programming problems and their solutions in standard, easy-to-

use reference format, including unique solutions that use VBX controls and easy ways to
build multimedia projects with Delphi.

Title: Developing Windows Applications Using Delphi
Author: by Paul Penrod
Level: ???
Publisher: John Wiley
ISBN #: 0-471-11017-5
List Price: $29.95
Summary: This introduction for traditional C programmers who want to make the transition to rapid

application development also provides detailed instructions for building sophisticated
Windows applications and for creating graphical interfaces.

Title: Master Delphi
Author: by Charlie Calvert
Level: ???
Publisher: Sams Publishing
ISBN #: 0-672-30499-6
List Price: $45.00
Summary: Comprehensive tutorial/reference for intermediate programming with Delphi.

Title: Teach Yourself Delphi
Author: Devra Hall
Level: Beginner
Publisher: MIS Press
ISBN #: 1-55828-390-0
List Price: $27.95
Summary: Here is a complete, self-guided tour to the new development environment from Borland,

encompassing all the features of the language and all the tools, tricks, and advantages of
Delphi. No programming experience necessary.

Title: Delphi by Example
Author: by Blake Watson
Level: Beginner
Publisher: Que
ISBN #: 1-56529-757-1
List Price: $29.99
Summary: Aimed at the beginning programmer who has no prior experience with other languages or

development products, this book presents basic concepts of programming along with a clear
explanation of the key development tools that are part of Delphi.

Title: Developing Client/Server Applications with Delphi
Author: Vince Killen and Bill Todd
Level: ???
Publisher: Sams Publishing
ISBN #:
List Price:
Summary: Walks the reader through the development process of creating real-world C/S applications,

explaining in detail what the thought processes must be even before any code is written.

Title: Software Engineering with Delphi
Author: Edward C. Webber, J. Neal Ford, and Christopher R. Webber
Level:
Publisher: Prentice Hall Professional, Trade & Reference
ISBN #:
List Price:
Summary: A guide to developing client/server applications with an emphasis on Delphi's object-oriented

tools.

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Copying Table Records
Contributed by Alec Bergamini - 75664,1224

If you like useful code snipits here's one that's real sweet. It copies a single record from one table to
another table (both tables have the same structure). It only works if the TFields for each table are exactly
the same. The user should be aware of the restricitions on the assign method prior to using this. I wrote it
after searching in vain for a method to copy a single record. BatchMove is cool but does nothing on the
record level. This procedure is nice because cause it is generic and doesn't requre knowledge of the
tables record structures. It copies the current record in the source table to the destination table. It even
handles blobs.

Procedure CopyRecord(const SourceTable, DestTable : TTable);
var
 I : Word;
begin
 DestTable.Append;
 For I := 0 to SourceTable.FieldCount - 1 do
 DestTable.Fields[I].Assign(SourceTable.Fields[I]);
 DestTable.Post;
end;

Tips & Tricks
Return to Front Page

PC Techniques Magazine
The Apr/May 1995 issue of PC Techniques presents another article by Ray Konopka titled "Reusability -
Delphi Style". It gives a good overview of developing an application in Delphi as well as the creation of a
custom component that will display icons in a list box. The application developed uses the TIconListBox
component to create an icon viewer utility. If you have a lot of icons lying around on your hard disk (like
me), this can be a pretty handy little utility. Gives some good insights into Delphi programming as well.
The same issue also includes an article on communications using Delphi and presents a TComm
component for doing serial communications.

Software Development Magazine
The April 1995 issue of Software Development magazine carried an article on code reusability entitled
"Delphi's Code Reuse Infrastructure". It gives a very good discussion of the benefits and implementation
of code reuse principles. With regard to Delphi, it covers how Components, Form Templates, and Project
Templates bring different aspects of reusability to a corporate developer.

Windows Tech Magazine
The March 1995 issue of Windows Tech Journal had an article titled "Self-Constructing Objects" by Blake
Watson. It also discusses component design but illustrates its use by means of a component that bridges
the gap between the older Pascal Records and typed files into Delphi's more object oriented structures.
Blake is also the author of Delphi By Example.

PC Techniques Magazine
The Feb/Mar 1995 issue of PC Techniques presents an article titled "Creating Delphi Components" by
Ray Konopka. It discusses the basics of component design by using the example of a Traffic light graphic
control. A very simple control, but the article is clear and well illustrated and serves as a good starting
point for developers learning about graphic custom components.

Delphi Informant Magazine
For those of you who have not already obtained a copy of the premier of Delphi Informant, I will give a
brief overview of its contents.
"Visual Programming" provides a brief visual tour of the Delphi IDE discussing the various features such
as the Component Palette, Object Inspector, Code editor, and more.
"The Way of Delphi" illustrates the fundamentals of component design and begins with a sample
component. A very good tutorial for users who have not yet stepped into component creation.
"DataSource1" demonstrates a number of Delphi's capabilities including modifying a Query component at
run-time, sharing an event handler among multiple components, and creating a dynamic tabbed interface
to filter database information.
"Sights & Sounds" discusses the creation of a simple Audio CD player application. Very good introduction
to the Media Player component as well as connections to the Windows API.
"Delphi C/S" presents a discussion of Delphi Client/Server capabilities covering issues such as ODBC,
the BDE, and the Delphi Database Form Expert.
"DBNavigator" discusses Delphi's database features covering topics including InterBase, Paradox for
Windows, and dBase for Windows, as well as the BDE.
"From The Palette" introduces the basics of Component design, including property and method basics
and the proper use of class directives.
"At Your Fingertips" is a "tips & tricks" column devoted to help programmers quickly get up to speed on
Delphi and Object Pascal. This issue's column includes: Implementing a status bar, locating values in a
table, and filtering records in a DBGrid.
"API Calls" provides a very good discussion of dynamically calling DLL functions from within Delphi.

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

TImageTranform Component Source Code
unit Transfrm;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Consts, Forms, Dialogs, ExtCtrls, Menus;

type
 TTransType = (ttWipeLeft,ttWipeRight,ttWipeUp,ttWipeDown,
 ttTurnLeft,ttTurnRight,ttTurnUp,ttTurnDown,
 ttWipeDownRight,ttWipeDownLeft,ttWipeUpRight,ttWipeUpLeft);
 TImageTransform = class(TGraphicControl)
 private
 FPicture1 : TPicture;
 FPicture2 : TPicture;
 FAutoSize : Boolean;
 FTimer : TTimer;
 FInterval : Integer;
 FImageShown : Byte;
 FSteps : Integer;
 FType : TTransType;
 StepNum : Integer;
 FOnFinished : TNotifyEvent;
 procedure PictureChanged(Sender: TObject);
 procedure SetAutoSize(Value: Boolean);
 procedure SetPicture1(Value: TPicture);
 procedure SetPicture2(Value: TPicture);
 procedure SetImageShown(Value: Byte);
 procedure SetInterval(Value: Integer);
 procedure SetSteps(Value: Integer);
 procedure SetType(Value: TTransType);
 protected
 function GetPalette: HPALETTE; override;
 procedure Paint; override;
 procedure TimerTick(Sender: TObject);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure Transform;
 published
 property AutoSize: Boolean read FAutoSize write SetAutoSize default False;
 property DragCursor;
 property DragMode;
 property Enabled;
 property ImageShown: Byte read FImageShown write SetImageShown default 1;
 property Interval : Integer read FInterval write SetInterval default 1;
 property ParentShowHint;
 property Picture1: TPicture read FPicture1 write SetPicture1;
 property Picture2: TPicture read FPicture2 write SetPicture2;
 property PopupMenu;
 property ShowHint;
 property Steps: Integer read FSteps write FSteps default 10;
 property TransformType: TTransType read FType write SetType default ttWipeLeft;
 property Visible;
 property OnClick;
 property OnDblClick;
 property OnDragDrop;
 property OnDragOver;

 property OnEndDrag;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 property OnFinished: TNotifyEvent read FOnFinished write FOnFinished;
 end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('Additional', [TImageTransform]);
end;

constructor TImageTransform.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FImageShown := 1;
 FPicture1 := TPicture.Create;
 FPicture1.OnChange := PictureChanged;
 FPicture2 := TPicture.Create;
 FPicture2.OnChange := PictureChanged;
 FTimer := TTimer.Create(Self);
 FTimer.OnTimer := TimerTick;
 FTimer.Enabled := False;
 FInterval := 1;
 FType := ttWipeLeft;
 FSteps := 10;
 Height := 105;
 Width := 105;
end;

destructor TImageTransform.Destroy;
begin
 FPicture1.Free;
 FPicture2.Free;
 FTimer.Free;
 inherited Destroy;
end;

function TImageTransform.GetPalette: HPALETTE;
begin
 Result := 0;
 if FPicture1.Graphic is TBitmap then
 Result := TBitmap(FPicture1.Graphic).Palette;
end;

procedure TImageTransform.SetAutoSize(Value: Boolean);
begin
 FAutoSize := Value;
 PictureChanged(Self);
end;

procedure TImageTransform.SetPicture1(Value: TPicture);
begin
 FPicture1.Assign(Value);
end;

procedure TImageTransform.SetPicture2(Value: TPicture);
begin
 FPicture2.Assign(Value);

end;

procedure TImageTransform.SetImageShown(Value: Byte);
begin
 If Value in [1,2] then
 begin
 FImageShown := Value;
 Invalidate;
 end;
end;

procedure TImageTransform.SetInterval(Value: Integer);
begin
 FInterval := Value;
 if Value > 1000 then FInterval := 1000;
 if Value < 1 then FInterval := 1;
 {Reset the timer interval}
 if FTimer <> Nil then FTimer.Interval := FInterval;
end;

procedure TImageTransform.SetSteps(Value: Integer);
begin
 FSteps := Value;
end;

procedure TImageTransform.SetType(Value: TTransType);
begin
 FType := Value;
end;

procedure TImageTransform.PictureChanged(Sender: TObject);
begin
 if AutoSize and (Picture1.Width > 0) and (Picture1.Height > 0) then
 SetBounds(Left, Top, Picture1.Width, Picture1.Height);
 if (Picture1.Graphic is TBitmap) and (Picture1.Width = Width) and (Picture1.Height =
Height) then
 ControlStyle := ControlStyle + [csOpaque]
 else
 ControlStyle := ControlStyle - [csOpaque];
 Invalidate;
end;

procedure TImageTransform.Transform;
begin
 StepNum := 0;
 {Turn on the timer}
 if FTimer <> Nil then
 begin
 FTimer.Interval := 1;
 FTimer.Enabled := True;
 end;
end;

procedure TImageTransform.TimerTick;
begin
 if FTimer <> Nil then FTimer.Interval := FInterval;
 Inc(StepNum);
 Paint;
 {Turn off the timer if we have reached the end.}
 if FTimer <> Nil then
 if FTimer.Enabled then
 if StepNum >= Steps then
 begin

 FTimer.Enabled := False;
 If ImageShown = 1 then ImageShown := 2 Else ImageShown := 1;
 if Assigned(FOnFinished) then FOnFinished(Self);
 end;
end;

procedure TImageTransform.Paint;
var
 PctDone : Real;
 PctLeft : Real;
 DestRect : TRect;
 SrcRect : TRect;
 ShowCurrentImage : Boolean;
 TempCanvas : TCanvas;
begin
 with inherited Canvas do
 begin
 {Draw border if in design mode}
 if csDesigning in ComponentState then
 begin
 Pen.Style := psDash;
 Brush.Style := bsClear;
 Rectangle(0, 0, Width, Height);
 end;
 {Are we not animated, or on first paint of transformation?}
 ShowCurrentImage := False;
 if FTimer <> Nil then
 if not FTimer.Enabled then ShowCurrentImage := True;
 if StepNum < 1 then ShowCurrentImage := True;
 if ShowCurrentImage then
 begin
 if ImageShown = 1 then
 Draw(0,0, Picture1.Graphic)
 else
 Draw(0,0, Picture2.Graphic);
 exit;
 end;
 {Calculate percentage done and percentage left}
 if FSteps > 0 then PctDone := (StepNum/FSteps) else PctDone := 0.0;
 PctLeft := 1-PctDone;
 if PctDone > 0.0 then
 case TransformType of
 ttWipeLeft : if ImageShown = 1 then
 Draw(Round(Picture1.Width*PctLeft),0,Picture2.Graphic)
 else
 Draw(Round(Picture1.Width*PctLeft),0,Picture1.Graphic);
 ttWipeRight : if ImageShown = 1 then
 Draw(-Round(Picture1.Width*PctLeft),0,Picture2.Graphic)
 else
 Draw(-Round(Picture1.Width*PctLeft),0,Picture1.Graphic);
 ttWipeUp : if ImageShown = 1 then
 Draw(0,Round(Picture1.Height*PctLeft),Picture2.Graphic)
 else
 Draw(0,Round(Picture1.Height*PctLeft),Picture1.Graphic);
 ttWipeDown : if ImageShown = 1 then
 Draw(0,-Round(Picture1.Height*PctLeft),Picture2.Graphic)
 else
 Draw(0,-Round(Picture1.Height*PctLeft),Picture1.Graphic);
 ttTurnLeft : begin
 with Picture1 do
 DestRect := Rect(Round(Width*PctLeft),0,
 Round(Width*PctLeft)+
 Round(Width*PctDone),Height);

 if ImageShown = 1 then
 StretchDraw(DestRect,Picture2.Graphic)
 else
 StretchDraw(DestRect,Picture1.Graphic);
 end;
 ttTurnRight : begin
 with Picture1 do
 DestRect := Rect(0,0,Round(Width*PctDone),Height);
 if ImageShown = 1 then
 StretchDraw(DestRect,Picture2.Graphic)
 else
 StretchDraw(DestRect,Picture1.Graphic);
 end;
 ttTurnUp : begin
 with Picture1 do
 DestRect := Rect(0,Round(Height*PctLeft),
 Width,Round(Height*PctLeft)+
 Round(Height*PctDone));
 if ImageShown = 1 then
 StretchDraw(DestRect,Picture2.Graphic)
 else
 StretchDraw(DestRect,Picture1.Graphic);
 end;
 ttTurnDown : begin
 with Picture1 do
 DestRect := Rect(0,0,Width,Round(Height*PctDone));
 if ImageShown = 1 then
 StretchDraw(DestRect,Picture2.Graphic)
 else
 StretchDraw(DestRect,Picture1.Graphic);
 end;
 ttWipeDownRight : if ImageShown = 1 then
 Draw(-Round(Picture1.Width*PctLeft),-
Round(Picture1.Height*PctLeft),Picture2.Graphic)
 else
 Draw(-Round(Picture1.Width*PctLeft),-
Round(Picture1.Height*PctLeft),Picture1.Graphic);
 ttWipeDownLeft : if ImageShown = 1 then
 Draw(Round(Picture1.Width*PctLeft),-
Round(Picture1.Height*PctLeft),Picture2.Graphic)
 else
 Draw(Round(Picture1.Width*PctLeft),-
Round(Picture1.Height*PctLeft),Picture1.Graphic);
 ttWipeUpRight : if ImageShown = 1 then
 Draw(-
Round(Picture1.Width*PctLeft),Round(Picture1.Height*PctLeft),Picture2.Graphic)
 else
 Draw(-
Round(Picture1.Width*PctLeft),Round(Picture1.Height*PctLeft),Picture1.Graphic);
 ttWipeUpLeft : if ImageShown = 1 then

Draw(Round(Picture1.Width*PctLeft),Round(Picture1.Height*PctLeft),Picture2.Graphic)
 else

Draw(Round(Picture1.Width*PctLeft),Round(Picture1.Height*PctLeft),Picture1.Graphic);
 end;
 end;
end;

end.

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Modifications to CurrEdit
In Issue #1 of this newsletter, I presented a CurrencyEdit field that allowed formatted display and editing
of numbers. Since then I have received a few suggestions for ways of improving CurrEdit, so I thought I
would pass them on. The original CurrEdit was presented in Issue #1 of this newsletter.

Modifications by Massimo Ottavini
Modifications by Thorsten Suhr
Modifications by Bob Osborn

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

CurrEdit Modifications
Contributed by Massimo Ottavini (South Africa)    - CIS 100100,1620

I made the following enhancements to the CurrEdit component to correct an exception condition, and to
allow backspacing.

procedure TCurrencyEdit.UnFormatText;
var
 TmpText : String;
 Tmp : Byte;
 IsNeg : Boolean;
begin
 IsNeg := (Pos('-',Text) > 0) or (Pos('(',Text) > 0);
 TmpText := '';
 For Tmp := 1 to Length(Text) do
 if Text[Tmp] in ['0'..'9','.'] then
 TmpText := TmpText + Text[Tmp];
 try
 If TmpText='' Then TmpText := '0.00'; (*** Note 1 ***)
 FieldValue := StrToFloat(TmpText);
 if IsNeg then FieldValue := -FieldValue;
 except
 MessageBeep(mb_IconAsterisk);
 end;
end;
procedure TCurrencyEdit.KeyPress(var Key: Char);
begin
 if Not (Key in ['0'..'9','.','-',#8]) Then Key := #0; (*** Note 2 ***)
 inherited KeyPress(Key);
end;

(*** Note 1 ***)
 If the field is blank an exception is raised by StrToFloat

(*** Note 2 ***)
 I could not backspace numbers entered, so just added the #8

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Connecting to an MS Access database
Contributed by David Kebler - dgkeb@aol.com

Here is a description of what you need to do get a connection to an MS ACCESS database table. This
description is my first attempt so bear with me!
1.    ACCESS maintains a security system for its tables which you need to look at first. Open ACCESS and
load you MDB file.    Go to the security menu.    There are two default users (Admin and Guest) choose
one or the other and then check all the boxes at the bottom that have to do with security access. You may
set up a new user/password if you want but make sure it has all the access privileges. Save your
ACCESS DATABASE.
2.    Go to the ODBC administrator in the control panel.    Click the Drivers button and make sure that there
is a driver called MS ACCESS 2.0 for Microsoft Office.    If not, you need to install MS Office on your
machine, or get a copy of the driver from someone.
3.    If you have never used the ODBC Admin before you might want to delete all the existing data sources
as they are just samples anyway. Next, choose Add.    In this dialog box choose the MS ACCESS 2.0
driver.    In the next dialog box create a data source name (keep it simple).    Under user name put ADMIN
or any other user you created with full privileges in step 1.    Now click the Select Database button and
choose the same MS ACCESS database you modified in step 1.    You have now created a source. Close
the ODBC administrator Box.
4.    You now need to fire up the Borland BDE Configuration Utility that came with Delphi. From the Drivers
sheet click on New ODBC Driver. Go to the drop down list box for Default ODBC Driver and choose the
MS ACCESS 2.0 for MS office driver.    Now go to the default data source and choose the source you
created in the ODBC Administrator.    Now for the SQL link Driver, enter in a name (I suggest the same
name as the default database source name). Click OK and you will see your new driver name as
ODBC_"your source name".    Go to the Alias page and click on New Alias. From the Alias Type drop
down box choose the ODBC_"your source name" you just created.    Under New Alias name enter a
name.    Once again, I suggest you use the same source name as created in step 3.    Choose OK. You
are now ready to access your MS ACCESS source.
5.    Go to the Database Desktop. Choose ALIAS under the file menu and hit the New button.    For
DRIVER TYPE choose the driver you created in BDE    (ODBC_"your source name").    Now enter a name
in the database alias box. Enter in your user name you gave full privileges to in the MS ACCESS file
(probably "Admin"). Hit the connect button and you should connect to the database.    If you connected, hit
the disconnect button. Click on the OK button and answer yes to the question about Saving the Alias.
Now choose OPEN/TABLE. Go to the drop down box for Drive/Alias and choose the alias you created in
the BDE Config Utility will appear in the list.    Enter the appropriate user and password you have already
defined.    You should now see a list of your ACCESS tables. Double click on one and DBD should open it.
6.    In Delphi drag a TDatabase component onto your form.    Set its AliasName to your source (which will
be in the drop down box). Enter a database name in the DatabaseName property.    Do not choose the
same name here (try an abbreviation).    Under DriverName choose your ODBC_"your source name".   
Now drag and drop a TTable control to the form. Set its database name to your new abbreviated name
made in the TDatabase control.    Now drag on a TDBsource component and Edit Fields etc to view your
data tables.    Of course you don't necessarily need the TDatabase component as you can access this
directly from the TTable.    Try checking out the DBrowser that came with Delphi. I loaded the BDETable
unit that comes with Delphi into the library and reused the DBOpen unit of the DBrowser program to
create a way for users to open any alias. When you are in design mode though you will need to set the
TDatabase alias and the connected property to True to have access to the table structure.    Before
running it turn Connected to False, let the DBOpen form set the alias name, and have your code set the
TDatabase.Connected property to True.    This works great and is a great template for starting any project.
It makes more sense to users too who are familiar with having to "open" a file when starting a program.

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Unit Ordering Bug
Contributed by Hallvard Vassbotn - INTERNET:hallvard@falcon.no

The compiler seems to be a bit picky about unit order in the uses-statement. There as been many people
in comp.lang.pascal reporting that they get compile errors like:

 WinCrt, MyObj;
 ^Error 85: ";" expected.

With some experimentation I've found that moving WinCrt so that it becomes the last unit solves the
problem. The reason seems to be that WinCrt checks the presence of VCL by checking some signature
bytes and using a windows handle if it finds it. The signature and data are stored at fixed addresses in the
beginning of DSeg. I think that Borland hardcoded the compiler to force the WinCrt unit be loaded after
any other units to make sure the signature is written by VCL units (Controls, actually) prior to being
checked by WinCrt.
For example, if you use the application expert to create a CRT application and then add a new unit,
Delphi will automatically generate the following code:

unit Unit1;
interface
implementation
end.
program CrtApp;
uses
 WinCrt,
 Unit1 in 'UNIT1.PAS';
begin
 Writeln('Delphi');
end.

However, the program will not compile, saying that it expects a semicolon (;). The solution is to move the
WinCrt unit as the last unit in the uses clause:

program CrtApp;
uses
 Unit1 in 'UNIT1.PAS',
 WinCrt;
begin
 Writeln('Delphi');
end.

Then it compiles fine.

When Things Go Wrong
Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

"Real" Type Property Bug
Contributed by Hallvard Vassbotn - INTERNET:hallvard@falcon.no

Although the documentation (the Delphi Object Language Guide downloaded from Borlands CIS and FTP
sites) states that published properties cannot be of the real type (Pascal specific floating point type), the
compiler doesn't complain and compiles it fine. However, if you try to use the Object Inspector on such a
component, it will generally give you a GPF.
This can be tested by installing and adding this component to a form. Delphi will GPF with an invalid op-
code message. Generally it will lock up the computer really good, so be sure to save all work before trying
this.

unit Realcmp;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;

type
 TRealComp = class(TComponent)
 private
 FRealProp : real;
 protected
 public
 published
 property RealProp: real read FReadProp write FReadProp;
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TRealComp]);
end;
end.

So, beware that the compiler will allow this behavior even though the documentation says not to do it.

When Things Go Wrong
Return To Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

When Things Go Wrong
If you have any bugs, documentation errors, or unexplained behaviors in Delphi, please forward them to
me and I will include them in the next issue of the newsletter.

Unit Ordering Bug
"Real" Type Properties
Progress Bar Bug

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Tips & Tricks
Do you have a programming technique that you are particularly proud of? Have you discovered a neat
trick with Delphi? Here's the place for it!

Copying Table Records
Stuff Hidden in Delphi's About Box
INI File Example
Floating Palette Behavior

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Hidden In Delphi's About Box
Did you know that you have strange things lurking in your Delphi About Box? Try these!

<alt> A-N-D Picture of Anders Hejlsberg /w a wink
(The BIG Cheese of Delphi..so to speak)

<alt> T-E-A-M A list of those responsible for this fine product
<alt> D-E-V-E-L-O-P-E-R-S A list of the R&D folks specifically

There does seem to be some occasions where the first key-combination (A-N-D) does not seem to work,
but I have not figured out why yet. If you know of other hidden surprises in the About Box, please let me
know!

Tips & Tricks
Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

CurrEdit Modifications
Contributed by Thorsten Suhr - CIS: 100275,2736

After adding the CurrEdit component into the VCL and testing it with a sample form, I ran into a problem. I
entered a number and received a floating point exception error. I examined the source-code and quickly
discovered, that the decimal-separator had been hard-coded. Since I am in Germany, the decimal-
separator is different. Delphi has several constants, which allow easy handling of international language
support. It gets those pieces of information from the WIN.INI File and the Unit SYSUTILS contains these
constants. So I altered the source to exchange the "." with the constant 'DecimalSeparator" and it works
fine.

procedure TCurrencyEdit.UnFormatText;
var
 TmpText : String;
 Tmp : Byte;
 IsNeg : Boolean;
begin
 IsNeg := (Pos('-',Text) > 0) or (Pos('(',Text) > 0);
 TmpText := '';
 For Tmp := 1 to Length(Text) do
 if Text[Tmp] in ['0'..'9',DecimalSeparator] then
 TmpText := TmpText + Text[Tmp];
 try
 FieldValue := StrToFloat(TmpText);
 if IsNeg then FieldValue := -FieldValue;
 except
 MessageBeep(mb_IconAsterisk);
 end;
end;
procedure TCurrencyEdit.KeyPress(var Key: Char);
begin
 if Not (Key in ['0'..'9',DecimalSeparator,'-']) Then Key := #0;
 inherited KeyPress(Key);
end;

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

CurrEdit Modifications
Contributed by Bob Osborn - 100033,326

 If you haven't already changed the unit, may I humbly offer you my modifications to the KeyDown method
as suggestions.    This isn't foolproof (a determined user can still paste invalid characters) and not very
well tested way beyond bedtime, but for what it's worth ..   

procedure TCurrencyEdit.KeyPress(var Key: Char);
 {I've added a field <FDecimalPlaces: Word> for my use.}
var
 S: String;
begin
 inherited KeyPress(Key);
 if (not (Key in [Char(vk_Back),'0'..'9','.','-'])) {Allow backspace

to edit}
 or ((Key = '.') and (FDecimalPlaces = 0)) {Integers}

 or ((Key = '.') and (Pos('.', Text) <> 0)) {too many decimal
points}

 then
 begin
 Key := #0;

 Exit;
 end;

 if Key <> Char(vk_Back) then
 begin
 {S is a model of Text if we accept the keystroke. Use SelStart and
 SelLength to find the cursor (insert) position.}
 S := Copy(Text, 1, SelStart) + Key +
 Copy(Text, SelStart + SelLength + 1, Length(Text));
 if ((Pos('.', S) > 0)

 and (Length(S) - Pos('.', S) > FDecimalPlaces)) {too many
decimal places}

 or ((Key = '-') and (Pos('-', Text) <> 0)) {only one
minus...}

 or (Pos('-', S) > 1) {... and only
at beginning}

 then begin
 Key := #0;
 end;
 end;
end;

Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

INI File Example
Contributed by Norman McIntosh - 72164,203

Here is a way to allow user's to specify colors in an INI file. The INI file should have a section that looks
like the following :

[COLORS]
Act=Green
CTS=Yellow
DNS=Red
Sld=Grey
Exp=Blue
Wth=Purple
Current=Aqua

The first thing to do is define some constants that will make the code easier to maintain. Also, define the
variables that will hold the color results.

const
 INI_FILE = 'AFB.INI';
 COLOR_SECTION = 'COLORS';
 ACTIVE_COLOR = 'ACT';
 SOLD_COLOR = 'SLD';
var
 ActiveStatus, SoldStatus : TColor;

Now define the "procedure" that will read the INI file and set the variables based on the values in the INI
file.    Notice that the WhatColor function gets passed a default. This is used if the INI file is not present,
the Section name is not present, or the Value is not present in the INI file. The WhatColor function will call
the "ReadString" function to get the value from the Ini file. Make sure it is UpCase'd and then determine
the color specified. If we can't determine the color, default to Black.

procedure GetColors;
begin
 ActiveStatus := WhatColor(ACTIVE_COLOR,'Green');
 SoldStatus := WhatColor(SOLD_COLOR,'Gray');
end;

function WhatColor(name, Default: String) : TColor;
var
 val : String;
 myIni: TIniFile;
begin
 myIni := TIniFile.Create(INI_FILE);
 val := UpperCase(myIni.ReadString(COLOR_SECTION,name,default));
 myIni.Free;
 if val = 'MAROON' then WhatColor := clMaroon else
 if val = 'GREEN' then WhatColor := clGreen else
 if val = 'OLIVE' then WhatColor := clOlive else
 if val = 'NAVY' then WhatColor := clNavy else
 if val = 'PURPLE' then WhatColor := clPurple else
 if val = 'TEAL' then WhatColor := clTeal else
 if val = 'GRAY' then WhatColor := clGray else
 if val = 'SILVER' then WhatColor := clSilver else
 if val = 'RED' then WhatColor := clRed else
 if val = 'LIME' then WhatColor := clLime else
 if val = 'YELLOW' then WhatColor := clYellow else
 if val = 'BLUE' then WhatColor := clBlue else

 if val = 'FUCHSIA' then WhatColor := clFuchsia else
 if val = 'AQUA' then WhatColor := clAqua else
 if val = 'WHITE' then WhatColor := clWhite else
 WhatColor := clBlack;
end;

The last thing you must do is make sure that your "uses" section has the IniFiles declared. I am sure you
can think of other applications to use this sort of routine with. Have fun.

Tips & Tricks
Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Progress Bar Bug
Contributed by Ernst Genaehr - 100315,3574

In the "Samples" Section you find a "Gauge" component which works fine except for very high values.
Here's how to reproduce the error:

1. Create a New Project (Just a plain form) and drag a Gauge Component onto it.
2. Set the MaxValue value to 99,000,000 in the Object Inspector.
3. Set the Progress value to 40,000,000.
4. Watch the Progress bar: it shows -2%. Neat huh?

The values are just examples. You can try other high values to get the same effect. Here's how to correct
the problem (the source file is GAUGES.PAS in the directory DELPHI\SOURCE\SAMPLES):

Just change line 90 (function SolveForY) from:
else SolveForY := Trunc((X*100) / Z);

to:
else SolveForY := Trunc(X / Z * 100);

This should improve things... Of course you will need to recompile the Component Library.

Editors Note: Granted this is a pretty obscure bug, but Ernst is correct in that the division should have
been done first to prevent the variable overflow.

When Things Go Wrong
Return to Front Page

The Unofficial Newsletter of Delphi Users - Issue #3 - May 1st, 1995

Floating Palette
You can create a floating palette with proper behavior by doing

 Style := Style or ws_Overlapped;
 WndParent := Form1.Handle;

in the component's CreateParams method.

Tips & Tricks
Return to Front Page

