
 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

by Robert Vivrette - CIS: 76416,1373
The Delphi community continues to grow by leaps and bounds. I consider myself fortunate that I am able
to spend a lot of time working with Delphi and to learn about all of its features. Every day I get the
opportunity to talk with other developers about the benefits of Delphi over other programming languages.
Sometimes I even drag them over to my computer and put on my Delphi "dog and pony" show. It's
amazing the reactions you get from people when you whip together a program in 4 or 5 minutes that it
would have taken hours to do in VB or C.
At work, I recently finished up a set of components that allow access to the various facilities of Banyan
Vines. One is a SetDrive component that adds a drive letter to your computer that is mapped to a
network service. The best part is that, for the user of the component, it requires zero lines of code. You
just drop the component on your program, set a few properties and you're done. Now, when the program
runs, it will connect to the network service, and when it terminates, it disconnects. Very Cool... I will likely
discuss some of the technical aspects of this next issue.
But, enough about me... Let's get on with it!

What's New
Delphi On The Internet
FontViewer Sample Application
Cooking Up Components
Tips & Tricks
When Things Go Wrong

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Cooking Up Components
By Robert Vivrette
I know I promised last issue that I would update the TStatusBar component, but I figured I would take a   
break on that one and get back to it next issue. Hope this does not ruin too many people's day.
The component for this issue is a TDateEdit component. I actually created this component a while ago,
but decided to dust it off a bit and share it with everyone. Essentially, it is a normal TEdit field for inputting
dates. The fancy part is that when you double click on the field, you get a pop-up calendar that you can
navigate through to pick a date. The calendar has arrow buttons allowing you to move a month ahead or
back, and it also responds to arrow keys from the keyboard. If you double click on the banner of the
calendar, it will return you to today's date. Double clicking on a date will select it and dismiss the calendar.
Hitting escape will put away the calendar and leave the contents of the edit field intact.

     

There are properties that control date validation as well as for controlling the placement of the pop-up
calendar. It is smart enough to pop-up completely on the screen even if the date edit control is way off to
one side of the screen.
The calendar grid portion of the popup form uses the TCalendar sample component that came with
Delphi, so make sure that you have not removed it from your system.

TDateEdit Source Code
Calendar Popup Source Code

Calendar Popup Form

Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995
This is the source code for the TDateEdit component. Simply choose the Copy command from the Edit
Menu above and select all the area of source code and copy it to the clipboard. Then save the clipboard
into a file called DATEEDIT.PAS. You will need to perform a similar feature for the source code and form
definition of the DATE2 unit/form as well.

unit DateEdit;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, Menus, StdCtrls, Grids, Date2;

type
 TPlacement = (cpAbove,cpBelow,cpLeft,cpRight,cpOnTop,cpOffsets,cpAuto);

 TDateEdit = class(TCustomEdit)
 private
 FOffsetX : Integer;
 FOffsetY : Integer;
 FPlacement : TPlacement;
 FDateFormat : String;
 FValidateInput : Boolean;
 FRequired: Boolean;
 TestDate: TDateTime;
 procedure CMExit(var Message: TCMExit); message CM_EXIT;
 protected
 procedure DblClick; override;
 procedure KeyPress(var Key: Char); override;
 public
 constructor Create(AOwner: TComponent); override;
 function ValidDate: Boolean;
 function FieldValidated: Boolean;
 published
 property AutoSelect;
 property AutoSize;
 property BorderStyle;
 property Color;
 property Ctl3D;
 property DateFormat: string read FDateFormat write FDateFormat;
 property Enabled;
 property Font;
 property HideSelection;
 property ParentColor;
 property ParentCtl3D;
 property ParentFont;
 property ParentShowHint;
 property OffsetX: Integer read FOffsetX write FOffsetX default 0;
 property OffsetY: Integer read FOffsetY write FOffsetY default 0;
 property Placement: TPlacement read FPlacement write FPlacement default cpOnTop;
 property PopupMenu;
 property ReadOnly;
 property RequiredField: Boolean read FRequired write FRequired default False;
 property ShowHint;
 property TabOrder;
 property Text;
 property ValidateInput: Boolean read FValidateInput write FValidateInput default
True;
 property Visible;
 property OnChange;
 property OnClick;

 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnEnter;
 property OnExit;
 property OnKeyDown;
 property OnKeyPress;
 property OnKeyUp;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 end;

procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Additional', [TDateEdit]);
end;

(*****************
 TDateEdit Object
*****************)

constructor TDateEdit.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FOffsetX := 0;
 FOffsetY := 0;
 FPlacement := cpOnTop;
 FDateFormat := 'mm/dd/yy';
 FValidateInput := True;
 FRequired := False;
end;
procedure TDateEdit.DblClick;
var
 Pt : TPoint;
 Shift : Byte;
begin
 inherited DblClick;
 try
 InitialDate := StrToDate(Text);
 except
 InitialDate := 0;
 end;
 Application.CreateForm(TCalForm,CalForm);
 case FPlacement of
 {Move according to the offsets}
 cpOffsets : Pt := ClientToScreen(Point(OffsetX,OffsetY));
 {Move up the height of the calendar}
 cpAbove : Pt := ClientToScreen(Point(0,-CalForm.Height));
 {Move down the height of the DateEdit control}
 cpBelow : Pt := ClientToScreen(Point(0,Height));
 {Move left the width of the calendar}
 cpLeft : Pt := ClientToScreen(Point(-CalForm.Width,0));
 {Move Right the width of the DateEdit control}
 cpRight : Pt := ClientToScreen(Point(Width,0));
 {Center on top of the DateEdit control}
 cpOnTop : Pt := ClientToScreen(Point(-(CalForm.Width-Width) div 2,

 -(CalForm.Height-Height) div 2));
 cpAuto : Pt := ClientToScreen(Point(0,Height));
 end;
 {If Ctl3D is on, shift it by an additional pixel up and to the left}
 if Ctl3D and (FPlacement <> cpOffsets) then Shift := 1 else Shift := 0;
 {Place the popup}
 CalForm.Left := Pt.X-Shift;
 CalForm.Top := Pt.Y-Shift;
 {Make sure the popup appears on the screen fully}
 if CalForm.Left < 0 then CalForm.Left := 0;
 if CalForm.Top < 0 then CalForm.Top := 0;
 if CalForm.Left + CalForm.Width > Screen.Width then
 CalForm.Left := Screen.Width - CalForm.Width;
 if CalForm.Top + CalForm.Height > Screen.Height then
 CalForm.Top := Screen.Height - CalForm.Height;
 {Show the popup - if exit is normal, assign date value to field}
 if CalForm.ShowModal = mrOK then
 Text := FormatDateTime(FDateFormat,DateSelection);
 {Destroy the popup and release its memory}
 CalForm.Release;
 {Select all the text on exit}
 SelectAll;
end;
function TDateEdit.ValidDate: Boolean;
begin
 try
 TestDate := StrToDate(Text);
 ValidDate := True;
 except
 TestDate := 0.0;
 ValidDate := False;
 end;
end;
function TDateEdit.FieldValidated: Boolean;
begin
 if (Length(Text) < 1) and Not RequiredField then
 begin
 FieldValidated := True;
 exit;
 end;
 if ValidateInput and not ValidDate then
 begin
 MessageDlg('Please enter a valid date.',mtError,[mbOK],0);
 SetFocus;
 FieldValidated := False;
 end
 else
 begin
 Text := FormatDateTime(FDateFormat,TestDate);
 FieldValidated := True;
 end;
end;
procedure TDateEdit.CMExit(var Message: TCMExit);
begin
 if FieldValidated then inherited;
end;
procedure TDateEdit.KeyPress(var Key: Char);
var
 Shift : TDateTime;

begin
 {Validate and select text if enter is pressed}
 if Key = #13 then
 if not FieldValidated then
 Key := #0
 else
 if AutoSelect then SelectAll;
 Shift := 0.0;
 if Key = '+' then Shift := 1.0;
 if Key = '-' then Shift := -1.0;
 {Increment/Decrement day and select text if plus/minus is pressed}
 if Shift <> 0 then
 begin
 try
 TestDate := StrToDate(Text);
 except
 Key := #0;
 end;
 if Key <> #0 then
 begin
 Text := FormatDateTime(FDateFormat,TestDate + Shift);
 if AutoSelect then SelectAll;
 end;
 end;
 if Not (Key in ['0'..'9','/',#8]) then Key := #0;
 inherited KeyPress(Key);
end;
end.

Return to Cooking Up Components
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995
The code listed below is the form definition for the DATE2.DFM file. Simply use the EDIT|COPY
command to copy this code to the clipboard. Then go into the Delphi environment, create a new unit file,
delete all text in it, then paste the code from the clipboard. Now pick "Save File As", change the file type in
the combo box to "Form File (*.DFM)" and make the name of the file as DATE2.DFM.

object CalForm: TCalForm
 Left = 584
 Top = 104
 BorderStyle = bsNone
 Caption = 'CalForm'
 ClientHeight = 124
 ClientWidth = 165
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 KeyPreview = True
 PixelsPerInch = 96
 OnCreate = FormCreate
 OnKeyUp = FormKeyUp
 TextHeight = 16
 object BorderEdge: TShape
 Left = 0
 Top = 0
 Width = 165
 Height = 124
 Brush.Style = bsClear
 end
 object Panel1: TPanel
 Left = 1
 Top = 1
 Width = 163
 Height = 122
 Color = clBtnShadow
 TabOrder = 0
 object Panel2: TPanel
 Left = 4
 Top = 4
 Width = 156
 Height = 20
 BevelInner = bvLowered
 BorderStyle = bsSingle
 Font.Color = clWindowText
 Font.Height = -9
 Font.Name = 'Small Fonts'
 Font.Style = []
 ParentFont = False
 TabOrder = 0
 object PrevMonthBtn: TSpeedButton
 Left = 3
 Top = 3
 Width = 12
 Height = 12
 Glyph.Data = {
 78000000424D78000000000000003E0000002800000008000000080000000100
 0100000000002000FFFF
 FF00FF000000F7000000E7000000C7000000C7000000E7000000F7000000FF00
 00}
 OnClick = PrevMonthBtnClick
 end
 object NextMonthBtn: TSpeedButton

 Left = 138
 Top = 3
 Width = 12
 Height = 12
 Glyph.Data = {
 78000000424D78000000000000003E0000002800000008000000080000000100
 0100000000002000FFFF
 FF00FF330000EFFF0000E7FF0000E3FB0000E3FF0000E7EF0000EF0B0000FF1F
 00}
 OnClick = NextMonthBtnClick
 end
 object MonthYear: TPanel
 Left = 34
 Top = 2
 Width = 87
 Height = 14
 BevelOuter = bvNone
 Caption = 'Month Year'
 Font.Color = clBlue
 Font.Height = -9
 Font.Name = 'Small Fonts'
 Font.Style = [fsBold]
 ParentFont = False
 TabOrder = 0
 OnDblClick = MonthYearDblClick
 end
 end
 object CalGrid: TCalendar
 Left = 4
 Top = 26
 Width = 155
 Height = 92
 Color = clWhite
 Font.Color = clWindowText
 Font.Height = -8
 Font.Name = 'Small Fonts'
 Font.Style = []
 ParentFont = False
 StartOfWeek = 0
 TabOrder = 1
 OnDblClick = CalGridDblClick
 end
 end
end

Return to Cooking Up Components
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

When Things Go Wrong
StrToTime Function
Image Editor Bugs
Object Alignment Bug

Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995
This is the source code for the TDateEdit component. Simply choose the Copy command from the Edit
Menu above and select all the area of source code and copy it to the clipboard. Then save the clipboard
into a file called DATE2.PAS. You will need to perform a similar operation for the form definition for DATE2
as well.

unit Date2;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, Grids, ExtCtrls, Buttons, Calendar;

type
 TCalForm = class(TForm)
 Panel1: TPanel;
 Panel2: TPanel;
 PrevMonthBtn: TSpeedButton;
 NextMonthBtn: TSpeedButton;
 MonthYear: TPanel;
 BorderEdge: TShape;
 CalGrid: TCalendar;
 procedure ShowMonth;
 procedure NextMonthBtnClick(Sender: TObject);
 procedure PrevMonthBtnClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure CalGridDblClick(Sender: TObject);
 procedure MonthYearDblClick(Sender: TObject);
 procedure FormKeyUp(Sender: TObject; var Key: Word;
 Shift: TShiftState);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 CalForm: TCalForm;
 DateSelection : TDateTime;
 InitialDate : TDateTime;

implementation

{$R *.DFM}

(********************)
(* Calendar Wrapper *)
(********************)

procedure TCalForm.ShowMonth;
begin
 MonthYear.Caption := FormatDateTime('mmmm yyyy',CalGrid.CalendarDate);
end;
procedure TCalForm.NextMonthBtnClick(Sender: TObject);
begin
 CalGrid.NextMonth;
 ShowMonth;
end;

procedure TCalForm.PrevMonthBtnClick(Sender: TObject);
begin
 CalGrid.PrevMonth;
 ShowMonth;
end;
procedure TCalForm.FormCreate(Sender: TObject);
begin
 if InitialDate > 0 then
 CalGrid.CalendarDate := InitialDate
 else
 CalGrid.CalendarDate := Now;
 ShowMonth;
end;
procedure TCalForm.CalGridDblClick(Sender: TObject);
begin
 DateSelection := CalGrid.CalendarDate;
 ModalResult := mrOK;
end;
procedure TCalForm.MonthYearDblClick(Sender: TObject);
begin
 CalGrid.CalendarDate := Now;
 ShowMonth;
end;
procedure TCalForm.FormKeyUp(Sender: TObject; var Key: Word;
 Shift: TShiftState);
begin
 case Key of
 VK_RETURN : ModalResult := mrOK;
 VK_ESCAPE : ModalResult := mrCancel;
 VK_TAB : begin
 if Shift = [ssShift] then
 CalGrid.PrevMonth
 else
 CalGrid.NextMonth;
 ShowMonth;
 end;
 VK_ADD : begin
 CalGrid.CalendarDate :=
 CalGrid.CalendarDate + 1.0;
 ShowMonth;
 end;
 VK_SUBTRACT : begin
 CalGrid.CalendarDate :=
 CalGrid.CalendarDate - 1.0;
 ShowMonth;
 end;
 end;
end;
begin
 InitialDate := 0;
 DateSelection := 0;
end.

Return to Cooking Up Components
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Delphi-Related Internet Sites
Delphi sites have been popping up all over the place on the internet and I thought that it was time to start
reporting some of these locations here in the newsletter. In addition, the Unofficial Newsletter of Delphi
Users now has an Internet home as well. Mark Cooke has converted the back issues of the newsletter
into pages on his Web site, and will be doing so with all future issues as well. Mark also has the Help files
themselves available on an ftp server as mentioned below. Here is the pertinant information:

Mark Cooke's Home Page http://www.doit.com/mcooke/
The Delphi Source http://www.doit.com/mcooke/delphi/home.html
The Delphi Newsletter http://www.doit.com/mcooke/delphi/dn0315.htm
FTP Site http://www.doit.com/mcooke/delphi/ftp.htm
Help Files ftp://ftp.doit.com/mcooke/delphi/

In addition, the following are addresses of other internet sites relating to Delphi:

Grumpfish Home Page http://www.teleport.com/~grump
Grumpfish Borland Delphi Support http://www.teleport.com/~grump/delphi.htm
The Aquarium Information Page http://www.teleport.com/~grump/aquarium.htm
The Delphi Aquarium Announcement http://www.teleport.com/~grump/delphiaq.htm
The Delphi WWW Forum http://www.pennant.com/delphi/hn/dconn.html
Coriolis Group Delphi EXplorer http://www.coriolis.com/coriolis/whatsnew/delphi.htm
Anders Ollsen Delphi Corner http://www.it.kth.se/~ao/
Wild Thing Cool Delphi Stuff http://www.teleport.com/~cwhite/wilddelphi.html
Delphi WINSOCK Project http://www.teleport.com/~sig/delphi.html
Bibliography of Delphi Books & Articles http://www.iscinc.com/dugbib.html
Delphi Tech Support Home Page http://loki.borland.com:8080/
CMP Publications http://techweb.cmp.com:80/techweb/docs/list-o-
pubs.html
Delphi Components http://super.sonic.net/ann/delphi/max/
C.I.U.P.K.C. Software Headquarters http://www.webcom.com/~kilgalen/welcome.html
RMC Delphi Page http://sunsite.icm.edu.pl/~robert/delphi//
Borland Delphi Components Page http://www.neosoft.com/~startech/delphi/delphi.htm
Delphi Frequently Asked Questions http://www.mhn.org/delphi.faq
Michael´s Delphi Home-Page

http://linux.rz.fh-hannover.de/~holthoefer/delphi.html

If you have additional Delphi-related internet information, please let me know!

Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Delphi Unleashed
A brief review by Jay J. Garnett - 76317,461
 Title: Delphi Unleashed, 930 pgs.
 Author: Charles Calvert
 Publisher: Sams Publishing
 ISBN #: 0-672-30499-6

We all have experienced the incredible lack of documentation Borland provides with the Delphi
Development Platform.    One of the first things I did was search all the online sources to see what
everyone was using.    I was surprised to find that there were very few books actually available.    Yes,
there were a lot in the book mill, but only a handful had actually made it out the door.
I was fortunate to have come across a reference to Charles Calvert's book, Delphi Unleashed.    Its
original title was to be "Master Delphi" and I knew that's what I wanted to be.    When I called to order the
book, I was told about the name change.    No problem.    It wouldn't hurt for me to become "unleashed".
The book arrived about a week and a half later at a time when I really needed it.    I was working on a
fairly complicated section of code and couldn't find answers to some questions I had.    Delphi Unleashed
to the rescue!
Delphi Unleashed is valid for the whole range of Delphi programmers: beginner to expert.    The chapters
are logically laid out starting with basic concepts and building on it chapter by chapter.
You could probably use this book as your single reference on Delphi.    It covers everything from the
basics of setting the Delphi IDE to creating your own Components.    There are chapters covering stuff
like:

 Delphi IDE
 Eccentricities of Programming for the Windows environment
 Basics of Delphi Programming
 Variable and Types
 Repitition Structures
 Working with Arrays
 Strings and Text Files
 Pointers, Linked Lists and Memory issues
 Programming with the Visual Database Tools
 SQL Language
 OOP Programming Techniques and Topics:
 Encapsulation, Inheritance, Polymorphism
 Using the Delphi Multimedia Tools
 Creating a DLL
 Delphi OLE and DDE
 OWL Integration with Delphi

The book also includes a handy CD-Rom filled with all the books example code. The CD is sub-divided in
chapters corresponding to the book's chapters.    I have used it the CD quite a bit.
I have tried to think of something negative I can say about Delphi Unleashed so as to present a balance
review, but I just couldn't think of anything. This book is an unqualified BUY.

Return to What's New
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Delphi Power Toolkit
 Title: Delphi Power Toolkit, 800 pages, 400 illustrations
 Author: Harold Davis
 Publisher: Ventana Press
 ISBN#: 1-56604-292-5
 Price: $49.95 U.S.
 Available: October

"Delphi is Visual Basic done right."
-- PC Computing

Cutting-Edge Tools & Techniques for Programmers
Delphi is the hot, new, next-generation programming Windows tool that everyone is talking about as the
way to rapidly build applications. This new Power Toolkit helps users master the Delphi Integrated
Development Environment (IDE) and build blazingly fast, stand-alone, compiled programs. Topics
covered include Object Pascal, converting Visual Basic applications, Object-Oriented Programming
(OOP), using the Visual Component Library (VCL), creating Delphi components (DCUs) and run-time
libraries (DLLs), using VBXs with Delphi, making VBXs in Delphi, database development, and multimedia
programming in Delphi.
CD-Rom: All source code from the sample programs in the book plus exciting sample Delphi components
(DCUs) and utilities from third-party vendors.
Online Companion: Free utilites and links to Borland and other developer resources on the Internet.

Return to What's New
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

What's New?
Each month, this column will bring additional information about new things available for Delphi. This
includes books, magazines, and other publications, as well as programming tools and libraries. I am going
to modify my policy a bit about "advertising" as follows: If you would like to briefly mention your
publication/product here in the newsletter, send a short textual description to me, and I will be happy to
include it in the next issue. I will not charge for this service primarily because I am a nice guy and I want
others to hear about all the cool Delphi products that are out there.
As always, I welcome reviews of Delphi publications and tools. However, if you are the author/creator of
such a product and you would like it reviewed, in some detail, please contact me directly.
I am currently looking for reviews of each of the principal Delphi periodicals, namely: Delphi Informant,
The Delphi Magazine, Delphi Developer, and Delphi Developer's Journal. Please contact me if you would
like to review one.

Electronic Newsletter Announcement: Delphi Aquarium
Book Announcement: The Delphi Power Toolkit
Book Review: Delphi Unleashed
Recent Issues: Delphi Informant
Recent Issues: Delphi Developer

Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Tips & Tricks
Faster String Loading
Connecting to a Database
A Second Helping: Loading a Custom Cursor
Loading a Bitmap from a Resource File

Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Font Viewer Application
by Robert Vivrette
A while back, I needed a quick and dirty application that would display all fonts I had available in my
system. I put together a simple application that did just that and thought I would share it.

Font Viewer Source
Font Viewer Form Definition

Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Font Viewer Source
unit Fontunit;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, Buttons, Printers, Slidebar, ExtCtrls;

type
 TForm1 = class(TForm)
 Panel1: TPanel;
 ListBox1: TListBox;
 Panel2: TPanel;
 Memo1: TMemo;
 Panel3: TPanel;
 Label1: TLabel;
 Label2: TLabel;
 ScrollBar1: TScrollBar;
 procedure FormCreate(Sender: TObject);
 procedure ListBox1Click(Sender: TObject);
 procedure ScrollBar1Change(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListBox1.Clear;
 ListBox1.Sorted := True;
 ListBox1.Items := Screen.Fonts;
 ListBox1.ItemIndex := 0;
 Memo1.Clear;
 Memo1.Font.Name := ListBox1.Items[ListBox1.ItemIndex];
 Memo1.Lines.Add('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789~!@#$
%^&*()+');
 Memo1.Lines.Add('');
 Memo1.Lines.Add('This is some sample text so you can see what this font looks like.
'
 +'Some fonts look funny when in all CAPITALS, while some do not.');
 ScrollBar1.Position := Memo1.Font.Size;
end;

procedure TForm1.ListBox1Click(Sender: TObject);
begin
 Memo1.Font.Name := ListBox1.Items[ListBox1.ItemIndex];
end;

procedure TForm1.ScrollBar1Change(Sender: TObject);
begin
 Memo1.Font.Size := ScrollBar1.Position;

 Label2.Caption := IntToStr(ScrollBar1.Position);
end;

end.

Return to Font Viewer Article
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Font Viewer Form Definition
object Form1: TForm1
 Left = 206
 Top = 100
 Width = 431
 Height = 303
 Caption = 'Font Viewer'
 Font.Color = clWindowText
 Font.Height = -12
 Font.Name = 'Arial'
 Font.Style = []
 PixelsPerInch = 96
 OnCreate = FormCreate
 TextHeight = 15
 object Panel1: TPanel
 Left = 0
 Top = 0
 Width = 185
 Height = 276
 Align = alLeft
 BevelInner = bvLowered
 TabOrder = 0
 object ListBox1: TListBox
 Left = 2
 Top = 2
 Width = 181
 Height = 230
 Align = alClient
 ItemHeight = 15
 TabOrder = 0
 OnClick = ListBox1Click
 end
 object Panel3: TPanel
 Left = 2
 Top = 232
 Width = 181
 Height = 42
 Align = alBottom
 TabOrder = 1
 object Label1: TLabel
 Left = 6
 Top = 2
 Width = 26
 Height = 15
 Caption = 'Size:'
 end
 object Label2: TLabel
 Left = 37
 Top = 2
 Width = 34
 Height = 15
 AutoSize = False
 Font.Color = clWindowText
 Font.Height = -12
 Font.Name = 'Arial'
 Font.Style = [fsBold]
 ParentFont = False
 end
 object ScrollBar1: TScrollBar
 Left = 6

 Top = 20
 Width = 170
 Height = 17
 LargeChange = 3
 Max = 24
 Min = 2
 Position = 12
 TabOrder = 0
 OnChange = ScrollBar1Change
 end
 end
 end
 object Panel2: TPanel
 Left = 185
 Top = 0
 Width = 238
 Height = 276
 Align = alClient
 BevelInner = bvLowered
 TabOrder = 1
 object Memo1: TMemo
 Left = 2
 Top = 2
 Width = 234
 Height = 272
 Align = alClient
 TabOrder = 0
 end
 end
end

Return to Font Viewer Article
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Aquarium Publications
The Aquarium Publications are electronic technical journals catering to the specific needs to today's
Windows/DOS database developers. Aquarium editions include CA-Clipper, CA-Visual Objects, and
Borland Delphi.
The trademark of The Aquarium Publications is understandable and usable examples that will enhance
your productivity immediately. We also feature instructive discussions of other relevant topics, and bring
you news of developers conferences, product updates, bug reports. Darren Forcier's patented in-depth
product reviews will keep you up-to-the-minute with detailed information about the latest add-on products
for your favorite development platform.

Who Writes For The Aquarium?
Aquarium Features

Delphi Aquarium
Grumpfish, Inc. is proud to announce our new Delphi edition of the Aquarium Publications! The first issue
is August 1995, and will be distributed free of charge at the Sixth Annual Borland Developers Conference.
Compare Delphi Aquarium to other print-based Delphi publications, which either give you just a couple
dozen pages or are chock full of advertising. Each issue of Delphi Aquarium includes between 40 and 80
pages of solid information with no filler and no ads!
Here are some of the topics we will discuss in our upcoming issues.

 * The Delphi IDE
 * Creating Context Sensitive Help
 * TNotebook/TTabbed Notebook
 * The Borland Database Engine
 * Implementing Drag and Drop
 * Creating Components
 * Making Standard Components Data Aware
 * Implementing Undo
 * TStream and TWriter
 * Delphi for VB/PowerBuilder/CA-Clipper programmers
 * Writing Delphi DLLs
 * Debugging
 * Screen Savers
 * Object Pascal

The regular price for a one-year subscription to Delphi Aquarium will be $159 US. Grumpfish is offering a
special price for Delphi Aquarium charter subscribers -- sign on before June 30, 1995, and pay only $99!
Be on the cutting edge of this exciting new technology with Delphi Aquarium!
To subscribe to any of The Aquarium Publications, contact Mary Gries at Grumpfish, Inc., via voice (800-
367-7613), CompuServe (70673,355), or E-mail (grump@teleport.com).
Since The Aquarium's inception in June 1990, we have gotten many favorable comments from our
subscribers:
Comments From Our Subscribers

Return to What's New
Return to Front Page

Our authors include the following authorities: Joe Booth and Greg Lief (co-authors of the books "Visual
Objects: A Developer's Guide", "Clipper 5.2: A Developer's Guide", and "Network Programming in CA-
Clipper 5.2"), Darren Forcier, Ted Means, Clayton Neff, Mark Lukianchuk, and Ted Blue. All of these
authors have spoken at numerous U.S. and international developers conferences and user groups, and
have a writing style that will entertain and educate you.

Unlike print-based publications, The Aquarium's table of contents is completely additive. The Aquarium
also includes searching facilities (by date, author, and keyword). Combined with the additive table of
contents, you can quickly locate all relevant Aquarium articles without having to dig through a pile of back
issues.
Windows editions of The Aquarium are delivered in the form of Windows Help Files. The Aquarium takes
full advantage of that medium, including numerous hypertext links to articles in the same and previous
issues; pop-up glossary definitions; graphics; screen captures; easy Clipboard access; and much more.
DOS editions of The Aquarium (such as CA-Clipper) lets you view an article and its accompanying source
code at the same time. If you want to test out an example, you can press the Tab key to move to the
source code window and output it to a file. By pressing another key, you can shell out from Aquarium to
DOS, where you can compile, link, and run the sample.

"I subscribe to all the major Clipper-related journals, and The Aquarium educates and entertains me the most" -- C.
G.
"Mere words cannot describe the value I derive from my Aquarium subscription" -- D. W.
"The Aquarium is the best money I have ever spent. It has really kept me up on the latest techniques" -- S. N.
"The Aquarium is indispensable -- I can't imagine working without it" -- B.S.
"Being the only programmer in my shop can be intimidating with no one to turn to. Now I turn to The Aquarium. If my
company dropped its subscription, I would continue my subscription out of my own pocket!" -- S.H.
"The Aquarium is simply superb... it is worth a thousand times what we pay for it" -- H. H.
"The Aquarium is a reference system that no-one should be deprived of. It is a great buy for the beginning to
advanced developer" -- Clipper User Group of Orange County
"The Aquarium's articles present invaluable timely information. Your editorial style is easy to read and presented for
both novice and advanced users" -- B. K.
"The Aquarium is one of the most useful and informative tools I have ever used" -- P. F.
"It gives me great pleasure to read the inspiring and down to earth articles I find in each month's Aquarium." -- F. L.
"I used to subscribe to other Clipper newsletters which frequently disappointed me. For me, The Aquarium is now the
standard by which all technical journals are judged." -- F. D.
"The Aquarium is fun to read and very helpful to my Clipper learning" -- T.T.
"Since I've been reading The Aquarium my programming skills have improved at least tenfold" -- T. H.
"The Aquarium jas been an endless resource for me to draw upon, and both have helped me acquire knowledge not
available from any manuals. Your real life programs and functions are great" -- G. S.
"I subscribe to four other xBase-related publications, and The Aquarium is the most informative. The expertise of your
authors is second to none" -- R. D.
"I used to subscribe to several Clipper publications, and have made the decision to keep only one: The Aquarium." --
K. W.
"If not for The Aquarium, I would never have taken my first timid steps into the world of CA-Clipper 5.0" -- B. K.
"The Aquarium is the best subscription I've ever gotten" -- K. B.
"The Aquarium articles and source code have been lifesavers again and again" -- M. T.

The 'StrToTime' function on-line help says that it raises EConvertError when an invalid time is converted.
This is apparently not correct. No error is raised when converting times like '12:88' or '57:20'. The
EConvertError IS raised when converting invalid dates, however.
This becomes useful for validating dates: rather than checking each individual part of a date for validity,
use StrToDate() and handle the conversion error as the main result of the conversion, throwing away the
actual result:
 try
 StrToDate(Value);
 except
 on EConvertError do MessageDlg('Invalid date',mtError,mbOK,0);
 end;

Reported by Thomas Hill - hillt@sill-emh.army.mil

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Image Editor Bugs
I think Delphi is one of the most stable programming environments available. That's why it disturbs me so
much that Borland included the Image Editor in with it. When it was first released, Image Editor was
riddled with bugs.
Now... I realized that all new software is entitled to a few bugs, so I waited for the patches to come out.
When the first patch was made available through CompuServe and on various web sites, I eagerly
snatched up a copy. I noticed during the patching procedure that IMAGEDIT.EXE was one of the files
patched. "At last!", I thought, "We can now use the Image Editor!"
Sorry... Wishfull thinking... In my opinion, there are now more bugs in the Image Editor than there were to
begin with. Now that this is "post-patch", I feel justified in publicly whining about these bugs. Below is just
my short list:
1. The CTRL-C short cut key does not work while editing an image. It closes the form instead.
2. Double-clicking on the selection tool selects the entire image (as it should). However, the cut, copy,

and paste options are still dimmed in the edit menu and are unavailable.
3. If you select an area of a bitmap and then use the arrow keys to try and move the selected area,

you will only get to move one pixel. After the move, the arrow key shifts the focus away from the
editor so all further arrow keys no longer move the selection.

4. There is some very unusual resizing behavior, particularly when the editing window is maximized,
and the main window is reduced. Scroll bars will get resized over when they should be still visible,
for example.

5. When working in 256 color mode, it is very difficult to reliably make 16 color bitmaps. The color
palette will often remap colors (particularly light and dark grays).

6. If you open an existing DCR file, rename or add a resource in it, and then do a "Save As" to give the
file a different name, the resulting file will be corrupted. When Delphi tries to compile the DCR file
into the component library it will report a "Disk Full" error. You also will not be able to reload the
DCR file into the Image Editor.

7. The File|Open dialog box does not retain its filter settings. The main application window should also
save its size and location in a INI file, so it launches with the same size and location as the last time
you used it. This may seem like a small thing, but it saves countless resizes and moves of the
Image Editor window every time it is launched. It would take the Borland developer of the program
less than 10 minutes to implement this feature. PS: Borland - While you're at it, do the same thing
to Resource Editor (which I suspect the Image Editor was born from, since it is inheriting most of
RE's bugs as well!).

8. About 50% of the time, if you load RES file with cursors in them, the cursors are not present when
you click the CURSORS tab.

9. The flood fill often does not perform correctly. For example: Draw a black line down the right most
column of the image, and then draw a green line horizontally across the middle up against (but not
overwriting) the black line (so the two lines form a "T" on its side). Now select the blue color, and
the flood tool, and click somewhere on the green line. The blue flood will creep part way into the
black line.

10. When you paste (CTRL-V works) the copied image, the colors of the copy sometimes do not match
the original.

Return to When Things Go Wrong
Return to Front Page

Use a temporary StringList to speed up some operations... Instead of this:

ListBox1.Clear;
Ini := tIniFile.Create('C:\R\TEST.INI');
ReadSectionValues('System', ListBox1.Items);
Ini.Free;

Try this...

StrList := tStringList.Create;
ListBox1.Clear;
Ini := tIniFile.Create('C:\R\TEST.INI');
ReadSectionValues('System', StrList);
Ini.Free;
ListBox1.Items.Assign(StrList);
StrList.Free;

In a test case with 630 items, the former aproach took 31 seconds while the latter took just under 5
seconds!! Things get even worse if you use a Memo instead of a ListBox: 54 seconds for direct loading
versus 6.5 seconds using a temporary string list!!
Contributed by Fernando Madruga

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Connecting to a Database in 12 Easy Steps
1. Create a new blank form
2. Add a Table component to the form. This is on the Data Access page of the component palette.
3. Set the DatabaseName field to the directory of where the database resides. Example: c:\delphi
4. Set the TableName property to the actual name of the database file. Example: names.dbf
5. Set the Exclusive property to TRUE if you don't want any other application to access the database

while you are using it.
6. Leave TableType set to ttDefault unless you are using a non-standard extension for the database

file.
7. Place a DataSource component on the form. This is also on the Data Access page of the

component palette.
8. Set its DataSet property to the name of the TTable component you added earlier. If you double click

on the DataSet property, it will select it for you.
9. The DataSource component serves as a middle-man between your database (in this example the

TTable) and any data-aware controls that you place on the form.
10. Place a DBGrid component on the form. This is on the Data Controls page of the component

palette.
11. Set the DataSource property of the DBGrid to the name of the DataSource component you placed

earlier. If you double-click in this field, it will pick it for you.
12. Now go back to the Table component and set its Active property to TRUE. Delphi will immediately

activate the connection, open the database and fill the columns in the DBGrid with the fields of the
database.

Return to Tips & Tricks
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995

Second Helping
A response to "Food For Thought" on May 24
Original Code by Ian Martin. Adapted for clarity By Tim Benham
It is not necessary to go through the bit twiddling shown by Siamak Shams. Sorry Siamak... The key to
loading them is to give them names that are numbers and store them in a *different* resource file as
noted by our editor. The following code will load any number of cursors provided they are named as
ascending numbers starting from crFirst.

Source Code for Loading a Cursor

Return to Tips & Tricks
Return to Front Page

 The Unofficial Newsletter of Delphi Users - Issue #5 - June 26th, 1995
{======================= Project ==============================}
program cursors;
uses
 Forms, Winprocs, Wintypes, Main in 'MAIN.PAS' {MainForm};

{$R *.RES}
{$R Cursor2.res} (* Contains Cursors named '1', '2' '3' *)

type
 XStr = String[14]; (* string with nul terminator *)

const
 crFirst = 1;

Var
 Counter : Integer;
 CursorName : Xstr;
 ACursor : HCursor;

function StrEx(x: Integer): XStr;
(* Creates String from integer plus a null terminator *)
var
 t: XStr;
begin
 Str(x, t);
 StrEx := t + #0;
end;
begin
 (* Create Cursors From resource file *)
 Counter := crFirst;
 Repeat
 CursorName := StrEx(Counter);
 Acursor := LoadCursor(HInstance, @CursorName[1]);
 If ACursor <> 0 Then Screen.Cursors[Counter] := Acursor;
 Inc(Counter);
 Until Acursor = 0; (* keep going until we get a miss *)
 (* Do something *)
 Application.CreateForm(TMainForm, MainForm);
 Application.Run;
end.
{======================= Mainform ==============================}

unit Main;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus;

type
 TMainForm = class(TForm)
 procedure FormCreate(Sender: TObject);
 end;
var
 MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Cursor := 1; (* select first cursor read from resource *)
end;
end.

Return to Second Helping
Return to Front Page

Bitmaps can be easily loaded from a .RES file by using the Windows API call LoadBitmap as follows:

 MyBitmap.Handle := LoadBitmap(HInstance,'BitmapID');

Of course you need to include the RES file in with your program by including the following compiler
directive:

 {$R MYSTUFF.RES}

Place a Panel on a form and set its Align property to alTop. Then run the application. When the form
comes up, shrink the form vertically so that you pass over the bottom edge of the panel you placed. Now,
with the panel partially obscured, drag the right side of the form to the right. The panel should resize, but it
doesn't, apparently because it is partially obscured.

Delphi Developer from Pinnacle Publishing has recently made its debut. Issue #1 is 24 pages and is
packed with useful tips and techniques for the professional Delphi developer.

Issue #1:
1. Building Data-Aware Components
2. Creating an Animation Component
3. Reviews of 4 Delphi Books
4. Tips on Using Images in Database Apps
5. Use of Templates to Speed Development

Subscriptions are normally $149 for 12 monthly issues, but they are offering a special subscription rate of
$99 for a limited time. Code samples are available on their BBS or via CompuServe (PINNACLE).
Contact them at 1800 72nd Avenue South, Suite 217, Kent, WA 98032.

Delphi Informant from Informant Communications just recently shipped its 3rd issue. This monthly
magazine is very professional & polished and provides a wealth of information for Delphi users.

Issue #2:
1. OOP for the Uninitiated
2. The Triumph of Objects
3. Migration from VB to Delphi
4. Delphi Exeception Handling
5. Table and Query Components
6. 3-D Custom Label Component

Issue #3:
1. Tracking Database Events
2. Moving to Local Interbase
3. OnCalcFields in databases
4. Delphi Executable Sizes
5. Cursor management in the Memo Control
6. The .DFM file

Subscriptions to Delphi Informant are $49.95 for 12 monthly issues. Code samples are available on their
BBS or their new CompuServe forum (ICGFORUM). Contact them at (916) 686-6610.

