
    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

While working through some email a few days back, I read a very nice letter from gentleman in England
who was relating all the various things he and his company was doing with Delphi. It was quite
encouraging to hear about the extent of Delphi's influence around the globe as well as the unique and
inovative things that are being done with it. There are many companies and individuals out there that are
not convinced that Delphi is sufficiently powerful to produce real applications. As all of you know, this is
complete hogwash. It then dawned on me then, that this newsletter would be an excellent forum for
sharing some of these experiences.
As a result, I will prepare a special section in the next newsletter that will do just that. I invite all of you out
there to write me a short email (to the above CompuServe address) detailing any unique or innovative
program or component you have developed using Delphi. I will go through them all and select a number
of them to include in the January issue of UNDU. If this goes over well, I may make it a permanent part of
future issues. A few guidelines however:

1. Please keep your email "concise". Notice I did not say "short". Use enough words to describe the
things you are working on (or have already worked on) but don't run on about unrelated matters.
Keep to the point.

2. Some companies may be sensitive of telling the world about their programming projects or plans.
Please consider this when you send something in, because I would rather not be snagged by the
FBI or CIA for revealing national security leaks (by the way... does anyone know if Delphi has made much of a
show in the Federal Government?).

3. Indicate whether or not you mind having your email address included for reader inquiries.
Whenever I mention things that I am doing in the newsletter, I always get a few requests for
additional information. Including your email address would help readers know where to turn for
additional information.

I look forward to seeing what everyone can put together!
- Robert

UNDU Reader's Choice Awards
Becoming Drag & Drop Friendly with FileManager
Playing Wave Files from Resources
Review of Orpheus and Async Professional
Tips & Tricks
The Component Cookbook
Where To Find UNDU
Index of Past Issues

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Unit File: CHECK1.PAS
unit Check1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls;

type
 TForm1 = class(TForm)
 CheckBox1: TCheckBox;
 CheckBox2: TCheckBox;
 CheckBox3: TCheckBox;
 CheckBox4: TCheckBox;
 CheckBox5: TCheckBox;
 CheckBox6: TCheckBox;
 CheckBox7: TCheckBox;
 CheckBox8: TCheckBox;

Label1: TLabel;
 CheckBox9: TCheckBox;
 CheckBox10: TCheckBox;
 CheckBox11: TCheckBox;
 CheckBox12: TCheckBox;
 CheckBox13: TCheckBox;
 CheckBox14: TCheckBox;
 CheckBox15: TCheckBox;

CheckBox16: TCheckBox;
 Label2: TLabel;

Panel1: TPanel;
 Edit1: TEdit;
 Edit2: TEdit;
 Edit3: TEdit;

Edit4: TEdit;
 Label3: TLabel;
 Label4: TLabel;
 Edit5: TEdit;
 Edit6: TEdit;
 Label5: TLabel;
 Label6: TLabel;
 Label8: TLabel;
 Label9: TLabel;
 Label10: TLabel;
 Label11: TLabel;

procedure FormActivate(Sender: TObject);
procedure UpdateChecks(Sender: TObject);
procedure CheckBox9Click(Sender: TObject);
procedure UpdateEdits(Sender: TObject);

private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

TheNumber : Byte;
TheEdit : Byte;

implementation

{$R *.DFM}

Const
Zero = 1;
One = 2;
Two = 4;
Three = 8;
Four = 16;
Five = 32;
Six = 64;
Seven = 128;

procedure UpdateMimics;
begin

{Sorts the Contents of the Field to the corrent Checkboxes}
{Typically, this code would be attached to a TDataSource OnDataChange

Event}
with Form1 do begin

Checkbox9.Checked := Boolean(TheNumber and Zero);
Checkbox10.Checked := Boolean(TheNumber and One);
Checkbox11.Checked := Boolean(TheNumber and Two);
Checkbox12.Checked := Boolean(TheNumber and Three);
Checkbox13.Checked := Boolean(TheNumber and Four);
Checkbox14.Checked := Boolean(TheNumber and Five);
Checkbox15.Checked := Boolean(TheNumber and Six);
Checkbox16.Checked := Boolean(TheNumber and Seven);

end;
end;

procedure UpdateEditMimics;
begin

with Form1 do begin
{Sorts the Contents of the Field to the corrent EditField}
{Typically, this code would be attached to a TDataSource OnDataChange

Event}
Edit4.Text := IntToStr(TheEdit and 3);
Edit5.Text := IntToStr(TheEdit shr 2 and 3);
Edit6.Text := IntToStr(TheEdit shr 4 and 3);

end;
end;

procedure TForm1.FormActivate(Sender: TObject);
begin

TheNumber := 0;
TheEdit := 0;

end;

procedure TForm1.UpdateChecks(Sender: TObject);
begin

with Sender as TCheckbox do begin
if Checked = True then

TheNumber := TheNumber or Tag
else

TheNumber := TheNumber and not Tag;

Label1.Caption := IntToStr(TheNumber);
UpdateMimics;

end;
end;

procedure TForm1.CheckBox9Click(Sender: TObject);
begin

CheckBox1.SetFocus;

end;

procedure TForm1.UpdateEdits(Sender: TObject);
var
TheValue : Byte;

begin
with Sender as TEdit do begin

if Text = '' then Text := '0';
if StrToInt(Text) > 3 then Text := '0';

TheValue := StrToInt(Text);
TheEdit:= TheEdit and not ((TheEdit shr Tag and 3) shl Tag) or TheValue

shl Tag;
Label4.Caption := IntToStr(TheEdit);
UpdateEditMimics;

end;

end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Tips & Tricks
Keeping Applications Small & Changing Icons at Runtime
Problem with DBImage and the Clipboard
Becoming Drag & Drop Friendly with FileManager
A Little Help With PChar's
Playing Wave Files from Resources

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

DBImage's Cruelest Cut of All
By Gene Fowler - Internet: acorios@cello.gina.calstate.edu

As you know, Database Desktop doesn't allow editing of the BLOB Memo or BLOB Graphic fields. I made
a pair of "hand held calculators" to use as outriggers for DBD: MemoEdit and PictEdit. In PictEdit I use a
DBImage to access the BLOB Graphic field.
All the direct editing you do is with the three Clipboard functions, Copy, Cut, and Paste. I have the setup
buttons above the image, and below it I have [View Clipbrd] and [Full Image Editor]. (The last ought to be
Editors because I have an InputQueryEx box, with a ComboBox in place of the Edit, for BMP paint
program and JPG/GIF converter, etc.).
Anyway, I found that the Cut produced a haywire result. The field and the Clipboard were both cleared,
but no copy was stored on the Clipboard before the field was cleared.
Well, my tool was a "quick and dirty" work-bench tool. I looked at the source code and it looked like it
ought to work (though I have little database experience). So, I made my editing panel explain the need for
care about the Clipboard since it got bombed on a Cut.
I looked at all the bug lists and faq archives around and nobody seemed to be bothered by, or even aware
of, this. Then, I read the Txt for a Borland Patch ...which required a different date-time stamp than my
copy had. It listed this bug as one repaired.
That didn't do me any good. But it gave me the confidence to assume something WAS wrong with that
simple, seemingly clean routine.

 procedure TDBImage.CutToClipboard;
 begin
 if Picture.Graphic <> nil then
 if FDataLink.Edit then
 begin
 CopyToClipboard;
 Picture.Graphic := nil;
 end;
 end;

The "if FDataLink.Edit then" was the ONLY removeable, piece. So, I pulled it out. A not-very-delicate
strategy, but... The CopyToClipboard worked fine, and the image was deleted. The bug seemed swatted.
Then, I shifted records, to have the delete take, and shifted back. Like the proverbial cat, ...my image was
back as though never gone. Ahhhh, the FDataLink.Edit was a function and, obviously now, initiated a
mode change so the deletion could take. It had to go back in. The trick was to place it after the Copy and
before the deletion.

 procedure TDBImage.CutToClipboard;
 begin
 if Picture.Graphic <> nil then
 begin
 CopyToClipboard;
 if FDatalink.edit then
 Picture.Graphic := nil;
 end;
 end;

That did the trick! Please email me at the above address if you have questions...

Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Playing Wave File Resources From Delphi
by Dr. Adrian Bottoms - CIS: 100435,2330

I have recently been writing a Delphi program designed to help students learn the Japanese Hiragana
and Katakana representations of the phonemes. The program initially runs in a training mode by
displaying a bitmap of the kana and saying the kana. It then enters a testing mode where it displays the
bitmap and then, after a delay, says the kana. The student then presses buttons to claim they got it right
or confess that they got it wrong. I plan on releasing this as shareware and would appreciate any
feedback on your interest. I have several ideas for the registered version that add to the basic program.
Such as animated bitmaps that show the correct stroke order for each kana; modules that teach the
numbers and times and dates. Support for other languages would be possible too, for example Thai,
Cyrillics, Morse Code (?) and so on.
The development versions of my program used bitmaps and wave from files residing on the hard disc.
Since there are more than 100 bitmaps for each of hiragana and katakana and half that number of wave
files there is a large number of files to manage. This gives problems with DOS filing systems. Since most
of these files are small they waste a great deal of space by occupying large clusters. This is paticularly
true for those who are fortunate to have large discs. To get around this, and to make it easier to do
configuration management and manage installation I wanted to be able load the BMP and WAV files into
the executable file's resources and display and play them from there. This way I need only ship a single
executable file.
I created a BITMAPS.RC file using a text editor. An extract of it looks like:

AH BITMAP BITMAPS\HIRAGANA\AH.BMP
AK BITMAP BITMAPS\KATAKANA\AK.BMP
BAH BITMAP BITMAPS\HIRAGANA\BAH.BMP
BAK BITMAP BITMAPS\KATAKANA\BAK.BMP
BEH BITMAP BITMAPS\HIRAGANA\BEH.BMP
BEK BITMAP BITMAPS\KATAKANA\BEK.BMP
BIH BITMAP BITMAPS\HIRAGANA\BIH.BMP
BIK BITMAP BITMAPS\KATAKANA\BIK.BMP
BOH BITMAP BITMAPS\HIRAGANA\BOH.BMP

I also created a resource file for the wave files in the same way. An extract of that looks like:
A WAVE WAVES\A.WAV
BA WAVE WAVES\BA.WAV
BE WAVE WAVES\BE.WAV
BI WAVE WAVES\BI.WAV
BO WAVE WAVES\BO.WAV

These were compiled into Windows resource files using the Borland Resource Compiler (BRC) in \
DELPHI\BIN. The resources files were included in the project after the resource file that Delphi manages
itself:

{$R *.DFM}
{$R BITMAPS.RES} { Include bitmap resource file }
{$R WAVES.RES} { Include sound resource file }

As an aside it is important not to mess with Delphi's resource file since any changes you make will be
trashed the next time Delphi writes the resource file. By the way the "*" in *.DFM means the name of this
unit and not all .DFM files as would be the case in a DOS command line for example.
Including these resource files in my KANA.EXE obviously increased the size of the executable but it did
reduce the disc space used by lots of Kb.
Drawing the bitmaps from a resource was straightforward. I was using a TImage component for the

bitmaps from files. The following code was used to load and display them from a resource.

PROCEDURE TMainForm.ShowKana;
 { Show the bitmap image of the kana that's been selected.
 { This is done by loading the image from the resources
 { built into the executable file.
VAR
 KanaName : Array [0..3] OF Char; { Ctring type string }
BEGIN
 StrPCopy (KanaName, StrTrim(KanaList[KNum]) + KanaSet);
 KanaBmp.Handle := LoadBitmap(HInstance, KanaName);
 KanaImage.Picture.Graphic := KanaBmp;
 DeleteObject(KanaBmp.Handle);
 KanaImage.Visible := TRUE;
END; { ShowKana }

KanaBmp is a TBitMap which is created in the FormCreate method and destroyed when the form is
destroyed.
Playing the sounds from a resource took a little more effort. To start with I was using a TMediaPlayer
control to play the .WAV files but could not see any way of getting it to play a wave file from a resource. I
managed to overcome this by making direct calls to the Windows Multimedia API. A side benefit of this
was that I could remove the TMediaPlayer component and save myself a lot of space. I had also had a
problem with the TMediaPlayer. One of the testers for this program did not have a sound card installed.
They were using the Microsoft PC Loudspeaker driver which seemed to work without any problems.
However my program remained mute on this system. Using the method below overcame this problem.
There is some set up code that is executed in the FormCreate method that initialises some pointers and
loads MMSYSTEM.DLL. It goes:

UNIT Main;

{$N+}

INTERFACE
 .
 .
 .
CONST
 { MMSYSTEM.H definitions converted to Pascal }
 SND_SYNC = $0000;
 SND_ASYNC = $0001;
 SND_NODEFAULT = $0002;
 SND_MEMORY = $0004;
 .
 .
 .
VAR
 .
 .
 .
 DLLHandle : THandle;
 PlaySound : Function (lpszSoundName: PChar; uFlags: Word) : Bool;
 .
 .
 .
PROCEDURE TMainForm.FormCreate(Sender: TObject);
 { This procedure is invoked when the main form is created.
 { It initialises everything ready for the student to get started.
BEGIN

 DLLHandle := LoadLibrary('MMSYSTEM.DLL');
 IF DLLhandle < 32 THEN BEGIN
 MessageDlg('Failed to load MMSYSTEM.DLL', mtError, [mbOK] , 0);
 Close; { Blow us away }
 END
 ELSE
 @PlaySound := GetProcAddress(DLLHandle, 'sndPlaySound');
 .
 .
 .
END: { Of Procedure FormCreate }

The procedure which plays the wave file resource is then:

PROCEDURE TMainForm.Say (Name : String) ;
 { Play the "Name" wave resource.
VAR
 Asciz : Array [0..255] OF Char;
 lpRes : PChar;
 hRes : THandle;
 hResInfo : THandle;
BEGIN
 { Find the WAVE resource and play it }
 StrPCopy(Asciz, StrTrim(Name)); { Convert to Ctring }
 hResInfo := FindResource(HInstance, Asciz, 'WAVE');
 IF hResInfo <> 0 THEN BEGIN
 hRes := LoadResource(HInstance, hResInfo);
 IF hRes <> 0 THEN BEGIN
 lpRes := LockResource(hRes);
 PlaySound(lpRes, SND_SYNC OR SND_MEMORY);
 UnlockResource(hRes);
 FreeResource(hRes);
 END; { IF hRes }
 END; { IF hResInfo }
END; { Of Procedure Say }

Notice that the sound is played synchronously (SND_SYNC) so the program waits for the sound playing
to complete beore continuing. I have not found (yet) a way of playing the sound asynchronously and have
the program resynch with the end of playing. It doesn't look very safe to Unlock and Free the resource
while it is still playing!
There is some final clean up code that unloads the MMSYSTEM.DLL:

PROCEDURE TMainForm.FormDestroy(Sender: TObject);
BEGIN
 IF DLLHandle >= 32 THEN FreeLibrary(DLLHandle);
END;

I should confess that I am a bit of a tiro when it comes to Windows programming. If any of you have any
suggestions to make that improve the code I shall be glad to hear them.

Dr. Adrian Bottoms
XDT Computer Consultants
The Old Barn
College Farmhouse
North Road
Cromwell
Nottinghamshire NG23 6JE
UK

Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Index of Past Issues
Below is a complete index of all principle articles in past issues of the Unofficial Newsletter of Delphi
Users. Provided that you have the prior issues in the same directory as this issue, you can click on any of
these hotspots to go directly to that article. To return to the index, you can click on the Back button, or you
can use the History list. Once you jump to one of these issues, you can navigate through the issue as
you would normally, but you will need to go to the History list to get back to this index. There will be an
updated index included in all future issues of UNDU.

Issue #1 - March 15, 1995
What You Can Do
Component Design
Currency Edit Component
Sample Application
The Bug Hunter Report
About The Editor
SpeedBar And The ComponentPalette
Resource Name Case Sensitivity
Lockups While Linking
Saving Files In The Image Editor
File Peek Application

Issue #2 - April 1, 1995
Books On The Way
Making A Splash Screen
Linking Lockup Revisited
Problem With The CurrEdit Component
Return Value of the ExtractFileExt Function
When Things Go Wrong
Zoom Panel Component

Issue #3 - May 1, 1995
Articles
Books
Connecting To Microsoft Access
Cooking Up Components
Copying Records in a Table
CurrEdit Modifications by Bob Osborn
CurrEdit Modifications by Massimo Ottavini
CurrEdit Modifications by Thorsten Suhr
Creating A Floating Palette
What's Hidden In Delphi's About Box?
Modifications To CurrEdit
Periodicals
Progress Bar Bug
Publications Available
Real Type Property Bug
TIni File Example
Tips & Tricks
Unit Ordering Bug
When Things Go Wrong

Issue #4 - May 24, 1995
Cooking Up Components
Food For Thought - Custom Cursors
Why Are Delphi EXE's So Big?
Passing An Event
Publications Available
Running From A CD
Starting Off Minimized
StatusBar Component
TDBGrid Bug
Tips & Tricks
When Things Go Wrong

Issue #5 - June 26, 1995
Connecting To A Database
Cooking Up Components
DateEdit Component
Delphi Power Toolkit
Faster String Loading
Font Viewer
Image Editor Bugs
Internet Addresses
Loading A Bitmap
Object Alignment Bug
Second Helping - Custom Cursors
StrToTime Function Bug
The Aquarium
Tips & Tricks
What's New
When Things Go Wrong

Issue #6 - July 25, 1995
A Call For Standards
Borland Visual Solutions Pack - Review
Changing a Minimized Applications Title
Component Create - Review
Counting Components On A Form
Cooking Up Components
Debug Box Component
Dynamic Connections To A DLL
Finding A Component By Name
Something Completely Unrelated - TVHost
Status Bar Component
The Loaded Method
Tips & Tricks
What's In Print

Issue #7 - August 31, 1995
ChartFX Article
Component Cookbook
Compression Shareware Component
Corrected DebugBox Source
Crystal Reports - Review
DBase On The Fly
Debug Box Article
Faster String Loading

Formula One - Review
Gupta SQL Windows
Header Converter
Light Lib Press Release
Limiting Form Size
OLE Amigos!
Product Announcements
Product Reviews
Sending Messages
Study Group Schedule
The Beginners Corner
Tips & Tricks
Wallpaper
What's In Print

Issue #8 - October 10, 1995
Annotating A Help System
Core Concepts In Delphi
Creating DLL's
Delphi Articles Recently Printed
Delphi Informant Special Offers
Delphi World Tour
Getting A List Of All Running Programs
How To Use Code Examples
Keyboard Macros in the IDE
The Beginners Corner
Tips & Tricks
Using Delphi To Perform QuickSorts

Issue #9 - November 9, 1995
Using Integer Fields to Store Multiple Data Elements in Tables
Core Concepts In Delphi
Delphi Internet Sites
Book Review - Developing Windows Apps Using Delphi
Object Constructors
QSort Component
The Component Cookbook
TSlideBar Component
TCurrEdit Component
The Delphi Magazine
Tips & Tricks
Using Sample Applications

Issue #10 - December 12, 1995 (This Issue)
A Directory Stack Component
A Little Help With PChars
An Extended FileListBox Component
Application Size & Icon Tip
DBImage Discussion
Drag & Drop from File Manager
Modifying the Resource Gauge in TStatusBar
Playing Wave Files from a Resource
Review of Orpheus and ASync Professional
The Component Cookbook

Tips & Tricks
UNDU Readers Choice Awards
Using Integer Fields to Store Multiple Data Elements in Tables
Where To Find UNDU

Return to Front Page

Typically, each issue of the newsletter is posted to three locations. The first is the Borland Delphi forum on
CompuServe (GO DELPHI) in the "Delphi IDE" file section. If you want the issue as soon as it comes out,
then this is the place to look. I also put the issue in the Informant Communications forum (GO 
ICGFORUM) in the "Delphi Demo/Share" file section at the same time. Lastly, I take the original source
material of the issue and package it up and send it off to a gentleman named Aaron Richardson who
maintains the Delphi Source web site (http://www.doit.com/delphi/home.html). He takes these files and
converts them to web pages on the site and also posts the Windows *.HLP files on the sites FTP server. If
you have questions about UNDU in general, you can contact me at 76416,1373 on CompuServe. If you
have questions about his Web version of UNDU, you can contact Aaron at aaron@doit.com.

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Form File: CHECK1.DFM
object Form1: TForm1
 Left = 198
 Top = 101
 Width = 234
 Height = 302
 Caption = 'BitField Demo'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 PixelsPerInch = 96
 OnActivate = FormActivate
 TextHeight = 16
 object Label1: TLabel
 Left = 136
 Top = 8
 Width = 49
 Height = 13
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = [fsBold]
 ParentFont = False
 end
 object Label2: TLabel
 Left = 32
 Top = 8
 Width = 94
 Height = 13
 Caption = 'CheckBox Value'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = [fsBold]
 ParentFont = False
 end
 object Label3: TLabel
 Left = 24
 Top = 248
 Width = 65
 Height = 16
 Caption = 'Edit Value'
 end
 object Label4: TLabel
 Left = 120
 Top = 248
 Width = 4
 Height = 16
 end
 object Panel1: TPanel
 Left = 16
 Top = 24
 Width = 193
 Height = 220
 BevelOuter = bvLowered
 Caption = 'Panel1'
 TabOrder = 16
 object Label5: TLabel
 Left = 64
 Top = 148

 Width = 24
 Height = 13
 Caption = 'Edit1'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label6: TLabel
 Left = 64
 Top = 172
 Width = 24
 Height = 13
 Caption = 'Edit2'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label8: TLabel
 Left = 64
 Top = 196
 Width = 24
 Height = 13
 Caption = 'Edit3'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label9: TLabel
 Left = 152
 Top = 150
 Width = 33
 Height = 13
 Caption = 'Mimic1'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label10: TLabel
 Left = 152
 Top = 172
 Width = 33
 Height = 13
 Caption = 'Mimic2'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Label11: TLabel
 Left = 152
 Top = 194
 Width = 33
 Height = 13
 Caption = 'Mimic3'

 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 end
 object Edit1: TEdit
 Left = 16
 Top = 144
 Width = 41
 Height = 20
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 0
 Text = '0'
 OnExit = UpdateEdits
 end
 object Edit2: TEdit
 Tag = 2
 Left = 16
 Top = 168
 Width = 41
 Height = 20
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 1
 Text = '0'
 OnExit = UpdateEdits
 end
 object Edit3: TEdit
 Tag = 4
 Left = 16
 Top = 192
 Width = 41
 Height = 20
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 2
 Text = '0'
 OnExit = UpdateEdits
 end
 object Edit4: TEdit
 Left = 104
 Top = 144
 Width = 41
 Height = 20
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 3
 Text = '0'
 OnClick = CheckBox9Click

 OnEnter = CheckBox9Click
 end
 object Edit5: TEdit
 Left = 104
 Top = 168
 Width = 41
 Height = 20
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 4
 Text = '0'
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object Edit6: TEdit
 Left = 104
 Top = 192
 Width = 41
 Height = 20
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 5
 Text = '0'
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 end
 object CheckBox1: TCheckBox
 Tag = 1
 Left = 32
 Top = 32
 Width = 97
 Height = 17
 Caption = 'CheckBox1'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 0
 OnClick = UpdateChecks
 end
 object CheckBox2: TCheckBox
 Tag = 2
 Left = 32
 Top = 48
 Width = 97
 Height = 17
 Caption = 'CheckBox2'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 1
 OnClick = UpdateChecks
 end

 object CheckBox3: TCheckBox
 Tag = 4
 Left = 32
 Top = 64
 Width = 97
 Height = 17
 Caption = 'CheckBox3'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 2
 OnClick = UpdateChecks
 end
 object CheckBox4: TCheckBox
 Tag = 8
 Left = 32
 Top = 80
 Width = 97
 Height = 17
 Caption = 'CheckBox4'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 3
 OnClick = UpdateChecks
 end
 object CheckBox5: TCheckBox
 Tag = 16
 Left = 32
 Top = 96
 Width = 97
 Height = 17
 Caption = 'CheckBox5'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 4
 OnClick = UpdateChecks
 end
 object CheckBox6: TCheckBox
 Tag = 32
 Left = 32
 Top = 112
 Width = 97
 Height = 17
 Caption = 'CheckBox6'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 5
 OnClick = UpdateChecks
 end
 object CheckBox7: TCheckBox
 Tag = 64
 Left = 32

 Top = 128
 Width = 97
 Height = 17
 Caption = 'CheckBox7'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 6
 OnClick = UpdateChecks
 end
 object CheckBox8: TCheckBox
 Tag = 128
 Left = 32
 Top = 144
 Width = 97
 Height = 17
 Caption = 'CheckBox8'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 7
 OnClick = UpdateChecks
 end
 object CheckBox9: TCheckBox
 Left = 120
 Top = 32
 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox1'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 8
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox10: TCheckBox
 Left = 120
 Top = 48
 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox2'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 9
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox11: TCheckBox
 Left = 120
 Top = 64
 Width = 81

 Height = 17
 TabStop = False
 Caption = 'MimicBox3'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 10
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox12: TCheckBox
 Left = 120
 Top = 80
 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox4'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 11
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox13: TCheckBox
 Left = 120
 Top = 96
 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox5'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 12
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox14: TCheckBox
 Left = 120
 Top = 112
 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox6'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 13
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox15: TCheckBox
 Left = 120
 Top = 128

 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox7'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 14
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
 object CheckBox16: TCheckBox
 Left = 120
 Top = 144
 Width = 81
 Height = 17
 TabStop = False
 Caption = 'MimicBox8'
 Font.Color = clBlack
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 ParentFont = False
 TabOrder = 15
 OnClick = CheckBox9Click
 OnEnter = CheckBox9Click
 end
end

Return to Article
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

A Directory Stack Class
by Brad Atkinson - CIS: 76144,54

Here's a simple directory stack class I've found useful in an application I am working on. This app is picky
about what the working directory is when performing its operations, and there are several levels of
hierarchy to its directory structure. A DirStack internal to the wrapper class easily keeps things straight,
without any participation by the using application, and without the wrapper class concerning itself with the
current working directory when invoked.

unit DirStack;
interface
Uses Classes, SysUtils;
Type
TDirStack = Class(TStringList)
Public
 Procedure Push(AFullPath : String);
 Function Pop : String;
End;
implementation
{$I+} {I/O errors generate exceptions.}

Var
 PDirStr : PString;
 WorkStr : String;

Procedure TDirStack.Push(AFullPath : String);
Begin
 {Get the current directory.}
 GetDir(0, WorkStr);
 {Change to new directory.}
 ChDir(AFullPath);
 {Push the old dir.}
 Insert(0, WorkStr);
End;
Function TDirStack.Pop : String;
Begin
 Try
 {Get the last dir.}
 ChDir(Strings[0]);
 Finally
 Delete(0);
 End;
End;
end.

Return to Component Cookbook
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Orpheus & Async Professional
Review by Robert Pullan - CIS: 102162,2711

Orpheus
Orpheus was the son of Apollo and the Muse of Music and was said to play the lyre so sweetly that he
charmed beasts, trees and rivers. It is a fitting name for the product from TurboPower.
Orpheus is a compilation of VCL components that should be especially useful to those of use using
Delphi to manage data. Its main focus is data entry and presentation. In all there are 34 components in
the suite. They can be grouped into three basic categories: General, Table-related(think grid) and Data-
aware.
TurboPower has been around and in the component-biz for a while, and it shows. Orpheus seems to be a
descendant of their C/C++ product Data Entry Workshop. Make no doubt about it, while descended from
C/C++, this product is 00% pure Delphi VCL. Without a doubt these and the Asynch Professional for
Delphi components are the most complete products I have seen from any Delphi 3rd-party developer. The
system design is excellent (they are primarily descendants from Delphi and a single Orpheus controls),
documentation is complete and thorough, and they even include help files that can be integrated within
Delphi's own help system !
If there are any 3rd party developers out there reading this, buy Orpheus, if for no better reason that to
see how to package Delphi components the RIGHT way. I'm not talking about fancy packaging - this
comes in a plain unprinted white box with a Dot-Matrix printed mailing label - but a well documented, well
though out product.
Orpheus offers many great general components:

1. a tabbed notebook that can optionally destroy and create windows handles as the page looses or
gains focus ... thereby becoming a very appealing alternative to the Borland TabbedNotebook
component

2. It offers powerful masked edit components, calendars, spinners, a meter, and several other
components.

The heart of the system is its masked edit components. You know those components that let you display
123456 as $123,456 or 1234.56, or "10/05/95" as "Oct 5, 1995". These systems work on simple tedit-type
data, arrays, tables/grids and databases. The ability to mask input/output ranges from preformmatted
simple case-based masking to date and time based formats to programmer-defined, and can make your
application really shine. The controls roughly double the number of properties available to native Delphi
Tedit/Tdbedit controls, including the ever popular "InputRequired" property.
The product also ships with several good instructional programs which demonstrate the use of these
components ... and which are also well documented in the manual. These range from simple address
books to very impressive order entry demos. The source code is also included with this product and is a
lesson in classes and inheritance.
If you haven't guessed, I LIKE this product. If you are working with data, especially where you would like
to limit the opportunities for input error, I am aware of no better product to work with.
Orpheus is available from Delphi Only Tools, Programmers Warehouse and has a suggested retail price
of $199, let your fingers to the walking and you will find the street price to be much lower..

ASYNCH PROFESSIONAL for DELPHI
Asynch Professional for Delphi (APD) is another one of those programs from TurboPower. It too benefits
mightily from the high standards of "packaging" found in Orpheus ... the dot-matrix label is how you can
tell the packages apart.
APD is the first major Delphi component designed to expand design to products with serial

communications capabilities. It too seems to be a descendant of C/C++ products ... which is basically
good. The program is 100% Delphi VCL code.
The user can design everything from simple phone dialers to VERY sophisticated comm packages... It is
clear that several C/C++ components were used by major Comm program developers in their commercial
release products.
The manual starts with a brief explaination of asynchronous communications and how this is handled
under Windows. This is one of the best BASIC explainations of the process I have come accross. I like it
when I buy a component that works well and get the added bonus that I learn something important.
This is a system designed to allow end users to primarily upload (send to host) and download (retrieve
from host) files. Nothing fancy here. The TurboPower BBS has source for a scripting language, can't tell
you whether it works or not, but it does seem promising that this is a product which will expand with time.
The communications system support all of the major communications protocols including: Xmodem,
Ymodem, Zmodem, Kermit, Compuserve B+ and ASCII. APD comes bundled with a wide range of
mainstream modems.
Like Orpheus, APD comes with several neat communications demo programs and source code, and are
also documented in the manual.
APD is available from Delphi Only Tools, Programmers Warehouse and has a suggested retail price of
$179, let your fingers to the walking and you will find the street price to be much lower..

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995
unit Unit1;
interface
uses WinTypes, WinProcs, SysUtils, Classes, Graphics, Forms, Controls, Menus,
 StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ShellAPI;

type
 TForm1 = class(TForm)
 OpenDialog: TOpenDialog;
 ListBox1: TListBox;
 Panel1: TPanel;
 btnOpen: TButton;
 btnExit: TButton;
 btnClear: TButton;
 procedure FormCreate(Sender: TObject);
 procedure FormActivate(Sender: TObject);
 procedure AppMessage(var Msg: Tmsg; var Handled: Boolean);
 procedure btnExitClick(Sender: TObject);
 procedure btnOpenClick(Sender: TObject);
 procedure btnClearClick(Sender: TObject);
 private
 { Private declarations }
 procedure LoadListBox(const fName: string);
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.LoadListBox(const FName: string);
begin
 if not FileExists(FName) then
 MessageDlg(FName + #10 + 'is an invalid file.', mtError, [mbOK] , 0)
 else
 ListBox1.Items.Add(FName);
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 DragAcceptFiles(Form1.Handle, true);
 DragAcceptFiles(Application.Handle, true);
 Application.OnMessage := AppMessage;
end;
procedure TForm1.FormActivate(Sender: TObject);
var
 x : integer;
begin
 Panel1.Caption := 'qty parms: ' + IntToStr(ParamCount);
 if ParamCount > 0 then
 begin
 for x := 1 to ParamCount do
 LoadListBox(ParamStr(x));
 end;
end;

procedure TForm1.AppMessage(var Msg: Tmsg; var Handled: Boolean);
const
 BufferLength : word = 255;
var
 DroppedFilename : string;
 FileIndex : word;
 QtyDroppedFiles : word;
 pDroppedFilename : array [0..255] of Char;
 DroppedFileLength : word;
begin
 if Msg.Message = WM_DROPFILES then
 begin
 FileIndex := $FFFF;
 QtyDroppedFiles := DragQueryFile(Msg.WParam, FileIndex,
 pDroppedFilename, BufferLength);
 Panel1.Caption := 'qty dropped: ' + IntToStr(QtyDroppedFiles);
 for FileIndex := 0 to (QtyDroppedFiles - 1) do
 begin
 DroppedFileLength := DragQueryFile(Msg.WParam, FileIndex,
 pDroppedFilename, BufferLength);
 DroppedFilename := StrPas(pDroppedFilename);
 LoadListBox(DroppedFilename);
 end;
 DragFinish(Msg.WParam);
 Handled := true;
 end;
end;
procedure TForm1.btnOpenClick(Sender: TObject);
var
 x : integer;
 FName : string;
begin
 if OpenDialog.Execute then
 begin
 Panel1.Caption := 'qty selected: ' + IntToStr(OpenDialog.Files.Count);
 for x := 1 to OpenDialog.Files.Count do
 begin
 FName := OpenDialog.Files.Strings[x - 1];
 OpenDialog.HistoryList.Add(FName);
 LoadListBox(FName);
 end;
 end
 else
 Panel1.Caption := 'none selected';
end;
procedure TForm1.btnExitClick(Sender: TObject);
begin
 close;
end;
procedure TForm1.btnClearClick(Sender: TObject);
begin
 Listbox1.Items.Clear;
 Panel1.Caption := '';
end;
end.

Return to Drag & Drop Article
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

The Component Cookbook
by Robert Vivrette

I have received a number of interesting component projects. The first is a brief little snippet of code that
modifies the behavior of the TStatusBar component presented here a few issues back. The second is a
component that implements a directory stack, so that directory names can be pushed to and popped off of
the stack in sequence.
Extending the StatusBar Resource Gauge
Implementing a Directory Stack

Lastly, Mark Summerfield has sent in a interesting modification to the TFileListBox component. Rather
than just showing the file names, it also allows you to see the size, date, time, and even comments
extracted from the first line of the file. A very capable component!

Extending the FileListBox

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995
{---}
{ EXTFILE - Extended FileListbox: shows size, date & time of files }
{ v. 1.00 July, 21 1995 }
{---}
{ Copyright Enrico Lodolo }
{ via F.Bolognese 27/3 - 440129 Bologna - Italy }
{ CIS 100275,1255 - Internet ldlc18k1@bo.nettuno.it }
{---}

{***}
{ Extended to optionally show descriptive text where possible, and titles }
{ embedded in rich text files. }
{ Relaid out. }
{ v 1.02 20/10/95 }
{ Removed .doc file type since the code to extract titles/first lines was }
{ bugged and necessary time/info for fix is not available. }
{ v 1.03 17/11/95 }
{ $Header: Extended FileListBox extfile/001/003$ }
{***}
{ Desc additions copyright © Mark Summerfield 1995 }
{ email: msummerf@fdgroup.co.uk }
{***}

unit ExtFile ;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, FileCtrl ;

type
 TFile = file of Char ;

 TExtFileListBox = class(TFileListBox)
 private
 FShowSize : Boolean ;
 FShowDate : Boolean ;
 FShowTime : Boolean ;
 FShowDesc : Boolean ;
 FShowRTFDesc : Boolean ;
 FShowDescAlways : Boolean ;
 FSizePos : Integer ;
 FDatePos : Integer ;
 FTimePos : Integer ;
 FDescPos : Integer ;
 FNameWd : Integer ;
 FSizeWd : Integer ;
 FDateWd : Integer ;
 FTimeWd : Integer ;
 FDescWd : Integer ;
 procedure SetShowSize(Value : Boolean) ;
 procedure SetShowDate(Value : Boolean) ;
 procedure SetShowTime(Value : Boolean) ;
 procedure SetShowDesc(Value : Boolean) ;
 procedure SetShowRTFDesc(Value : Boolean) ;
 procedure SetShowDescAlways(Value : Boolean) ;
 procedure SetSizePos(Value : Integer) ;
 procedure SetDatePos(Value : Integer) ;
 procedure SetTimePos(Value : Integer) ;
 procedure SetDescPos(Value : Integer) ;

 function GetFileDesc(Filename : string) : string ;
 function GetDescGeneric(var fp : TFile ; var p, q : Integer ; TitleByte :
Word) : string ;
 function GetDescRtf(var fp : TFile ; var p, q : Integer) : string ;
 function IsCharPrintable(c : Char) : boolean ;
 protected
 procedure SetWidths ;
 procedure DrawItem(Index : Integer ; Rect : TRect ; State :
TOwnerDrawState) ; override ;
 public
 constructor Create(AOwner : TComponent) ; override ;
 published
 property ShowSize : Boolean read FShowSize write SetShowSize default True ;
 property ShowDate : Boolean read FShowDate write SetShowDate default True ;
 property ShowTime : Boolean read FShowTime write SetShowTime default True ;
 property ShowDesc : Boolean read FShowDesc write SetShowDesc default True ;
 property ShowRTFDesc : Boolean read FShowRTFDesc write SetShowRTFDesc
default False ;
 property ShowDescAlways : Boolean read FShowDescAlways write
SetShowDescAlways default False ;
 property SizePos : Integer read FSizePos write SetSizePos default -1 ;
 property DatePos : Integer read FDatePos write SetDatePos default -1 ;
 property TimePos : Integer read FTimePos write SetTimePos default -1 ;
 property DescPos : Integer read FDescPos write SetDescPos default -1 ;
 end ;

procedure Register ;

{***}

implementation

const
 DefMaxDescWd = 64 ; {If you change this then change the "FDescWd :=
TextWidth("}
 {line in SetWidths so that the number of 'x's is equal to
DefMaxDescWd.}
 KnownFiles = '.htm.txt.asc.bat.ini.hpj' ;
 {These are generally plain text. If we don't have special}
 {processing we'll just show the first line.}
 SpecialKnownFiles = '.rtf.wps.wri' ;
 {Add to this string if you add specific processing for}
 {other file types in GetFileDesc.}
 {.rtf => Rich Text Format title.}
 {.wps => Works2 first line.}
 {.wri => Write first line.}

{***}

procedure TExtFileListBox.SetShowSize(Value : Boolean) ;
begin
 if Value <> FShowSize then
 begin
 FShowSize := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetShowDate(Value : Boolean) ;
begin
 if Value <> FShowDate then
 begin
 FShowDate := Value ;

 Update ;
 end ;
end ;

procedure TExtFileListBox.SetShowTime(Value : Boolean) ;
begin
 if Value <> FShowTime then
 begin
 FShowTime := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetShowDesc(Value : Boolean) ;
begin
 if Value <> FShowDesc then
 begin
 FShowDesc := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetShowRTFDesc(Value : Boolean) ;
begin
 if Value <> FShowRTFDesc then
 begin
 FShowRTFDesc := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetShowDescAlways(Value : Boolean) ;
begin
 if Value <> FShowDescAlways then
 begin
 FShowDescAlways := Value ;
 Update ;
 end ;
end ;

{***}

procedure TExtFileListBox.SetSizePos(Value : Integer) ;
begin
 if Value <> FSizePos then
 begin
 FSizePos := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetDatePos(Value : Integer) ;
begin
 if Value <> FDatePos then
 begin
 FDatePos := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetTimePos(Value : Integer) ;
begin
 if Value <> FTimePos then

 begin
 FTimePos := Value ;
 Update ;
 end ;
end ;

procedure TExtFileListBox.SetDescPos(Value : Integer) ;
begin
 if Value <> FDescPos then
 begin
 FDescPos := Value ;
 Update ;
 end ;
end ;

{***}
{ Creates the component and sets the defaults }

constructor TExtFileListBox.Create(AOwner : TComponent) ;
begin
 inherited Create(AOwner) ;
 FShowSize := True ;
 FShowDate := True ;
 FShowTime := True ;
 FShowDesc := True ;
 FShowRTFDesc := False ;
 FShowDescAlways := False ;
 FSizePos := -1 ;
 FDatePos := -1 ;
 FTimePos := -1 ;
 FDescPos := -1 ;
end ;

{***}
{ Calculates the max. widths of name, size, date and time }

procedure TExtFileListBox.SetWidths ;
begin
 with Canvas do
 begin
 FNameWd := TextWidth('aaaaaaaa.mmm') ;
 FSizeWd := TextWidth('888888888') ;
 FDateWd := TextWidth('888/88/88') ;
 FTimeWd := TextWidth('888.88.88') ;
 {If you change the following constant, change DefMaxDescWd to match.}
 FDescWd :=
TextWidth('xx') ;
 end ;
end ;

{***}
{ Draws a line of the ListBox }

procedure TExtFileListBox.DrawItem(Index : Integer ; Rect : TRect ; State :
TOwnerDrawState) ;
var
 Bitmap : TBitmap ;
 Offset : Integer ;
 OldAlign : Word ;
 SR : TSearchRec ;
 DT : TDateTime ;

 ThisFile : string ;
begin
 inherited DrawItem(Index, Rect, State) ;
 with Canvas do
 begin
 SetWidths ;
 Offset := Rect.Left + FNameWd ;
 if (FShowGlyphs = True) and (Bitmap <> nil) then
 begin
 Bitmap := TBitmap(Items.Objects[Index]) ;
 Offset := Offset + Bitmap.Width + 6 ;
 end ;
 { Retrieves Size, Date and Time of the current file }
 if Directory[Length(Directory)] = '\' then
 ThisFile := Directory + Items[Index]
 else
 ThisFile := Directory + '\' + Items[Index] ;
 FindFirst(ThisFile, faAnyFile, SR) ;
 DT := FileDateToDateTime(SR.Time) ;
 { Right alignes the text }
 OldAlign := SetTextAlign(Handle, ta_right) ;
 if FShowSize then
 begin
 if FSizePos = -1 then
 Offset := Offset + FSizeWd
 else
 Offset := FSizePos ;
 TextOut(Offset, Rect.Top, IntToStr(SR.Size)) ;
 end ;
 if FShowDate then
 begin
 if FDatePos = -1 then
 Offset := Offset + FDateWd
 else
 Offset := FDatePos ;
 try
 TextOut(Offset, Rect.Top, DateToStr(DT)) ;
 finally
 end ;
 end ;
 if FShowTime then
 begin
 if FTimePos = -1 then
 Offset := Offset + FTimeWd
 else
 Offset := FTimePos ;
 try
 TextOut(Offset, Rect.Top, TimeToStr(DT)) ;
 finally
 end ;
 end ;
 if FShowDesc then
 begin
 SetTextAlign(Handle, ta_left) ;
 if FDescPos = -1 then
 Inc(Offset, 6)
 else
 Offset := FDescPos ;
 try
 TextOut(Offset, Rect.Top, GetFileDesc(ThisFile)) ;
 finally
 end ;
 end ;

 { Sets the text alignment to the original value }
 SetTextAlign(Handle, OldAlign) ;
 end ;
end ;

{***}
{For KnownFiles this function grabs the first 255 chars from the file and }
{tries to extract a meaningful descriptive string from this, or at least }
{extracting the first line. We only read 255 chars, because reading every file}
{in a directory takes time and we don't want the control to be so slow that }
{its unusable.}
{However, in the case of SpecialKnownFiles, we actually search the file for}
{embedded titles. For rich text files this can be *very* slow, because the}
{title can appear quite a way into the file, it isn't at a fixed point as it}
{is with Word 6 and Write files. This is why we can optionally skip descs for}
{rtf files.}
{Basically what it does is extract the first non-blank line of text files,}
{and the <TITLE> string from HTM files, (providing they appear in the first}
{255 chars.}
{In all other cases, if ShowDescAlways is false a blank string is returned}
{with no time-consuming file reading; otherwise the first printable chars}
{are returned, if any.}

function TExtFileListBox.GetFileDesc(Filename : string) : string ;
var
 fp : TFile ;
 s : string ;
 sx : string ;
 temp : string ;
 i, p, q : Integer ;
 ext : string ;
begin
 {Assume we can't find a descriptive string in the chunk we've grabbed.}
 result := '' ;
 p := 0 ;
 q := 0 ;
 if Filename = '' then
 Exit ;
 ext := LowerCase(ExtractFileExt(Filename)) ;
 if (not ShowDescAlways) and
 ((Pos(ext, KnownFiles + SpecialKnownFiles) = 0) or
 ((ext = '.rtf') and (not ShowRTFDesc))) then
 Exit ;
 try
 AssignFile(fp, Filename) ;
 Reset(fp) ;
 s := '' ;
 i := 1 ;
 if (ext = '.rtf') and ShowRTFDesc then
 s := GetDescRtf(fp, p, q)
 else
 if ext = '.wps' then
 s := GetDescGeneric(fp, p, q, 256)
 else
 if ext = '.wri' then
 s := GetDescGeneric(fp, p, q, 128)
 else
 begin
 while (not eof(fp)) and (i < 255) do
 begin
 Read(fp, s[i]) ;
 Inc(s[0]) ;

 Inc(i) ;
 end ;
 end ;
 finally
 CloseFile(fp) ;
 end ;
 if (Pos(ext, SpecialKnownFiles) = 0) or
 ((ext = '.rtf') and (not ShowRTFDesc)) then
 begin
 {For certain file types we can look for specific descriptive
strings...}
 sx := LowerCase(s) ;
 if ext = '.htm' then
 begin
 p := Pos('<title>', sx) ;
 if p <> 0 then
 begin
 Inc(p, 7) ;
 q := Pos('</title', sx) ;
 end
 else
 begin
 p := Pos('<h', sx) ;
 if p <> 0 then
 begin
 temp := Copy(sx, p, 4) ;
 Insert('/', temp, 2) ;
 Inc(p, 4) ;
 q := Pos(temp, sx) ;
 end ;
 end ;
 end ;
 {If you add processing for other file types, add their extensions to
KnownFiles.}
 {No explicit if ext = '.txt', or if ext = '.asc', since the following
default}
 {behaviour does what we want, specifically it just gets the first line
of text,}
 {skipping leading blank lines.}
 {Not a known type of file or no luck with the known types so do our
best anyway.}
 if p <= 0 then
 begin
 p := 1 ;
 while (not IsCharPrintable(sx[p]) and
 (p < 255)) do
 Inc(p) ;
 if p = 255 then
 p := 1 ;
 end ;
 {We found the beginning but not the end.}
 if q <= 0 then
 begin
 q := p + 1 ;
 while (IsCharPrintable(sx[q]) and
 (q < 255) and
 (not (sx[q] in [#13, #10]))) do
 Inc(q) ;
 end ;
 end ;
 {Now populate result.}
 i := q - p ;
 if i > DefMaxDescWd then

 i := DefMaxDescWd ;
 result := Copy(s, p, i) ;
end ;

{***}

function TExtFileListBox.IsCharPrintable(c : Char) : boolean ;
begin
 if IsCharAlphaNumeric(c) or
 (c in [' ', '!', '@', '#', '$', '%', '^', '&', '*', '(', ')', '-', '_',
 '=', '+', '[', '{', ']', '}', '''', '"', ';', ':', '\', '|', '\', '|',
 ',', '<', '.', '>', '/', '?', '~', '`']) then
 result := true
 else
 result := false ;
end ;

{***}

function TExtFileListBox.GetDescGeneric(var fp : TFile ; var p, q : Integer ;
TitleByte : Word) : string ;
var
 c : Char ;
begin
 p := 0 ;
 q := 1 ;
 result := '' ;
 if FileSize(fp) < (TitleByte + 2) then
 begin
 while not eof(fp) do
 begin
 Read(fp, c) ;
 if IsCharPrintable(c) then
 begin
 result[q] := c ;
 result[0] := Char(q) ;
 Inc(q) ;
 end ;
 end ;
 end
 else
 begin
 Seek(fp, TitleByte) ;
 p := 0 ;
 q := 1 ;
 while not eof(fp) do
 begin
 Read(fp, c) ;
 if IsCharPrintable(c) then
 begin
 p := 1 ;
 result[q] := c ;
 Inc(q) ;
 result[0] := Char(q) ;
 end
 else
 if p <> 0 then
 break ;
 end ;
 p := 1 ;
 end ;

end ;

{***}

function TExtFileListBox.GetDescRtf(var fp : TFile ; var p, q : Integer) : string
;
const
 Limit = 8192 ;
 {The Limit is how many bytes we are prepared to read in search of the title.}
 {Because an RTF file's title is not at a fixed position it can occur quite}
 {deep within a file. Clearly then, the further we are prepared to look, the}
 {more likely we are to find the title, and the slower the search will be.}
 {Remember also that not all RTF files have titles, in which case we search}
 {Limit bytes in vain.}
var
 State : Integer ;
 i : integer ;
 c : Char ;
begin
 p := 0 ;
 q := 11 ;
 i := 0 ;
 State := 0 ;
 result := '(untitled)' ;
 while (not eof(fp)) and (i < Limit) and (State <> 8) do
 begin
 Read(fp, c) ;
 Inc(i) ;
 case State of
 0 : if c = '\' then State := 1 ;
 1 : if c = 't' then State := 2 else State := 0 ;
 2 : if c = 'i' then State := 3 else State := 0 ;
 3 : if c = 't' then State := 4 else State := 0 ;
 4 : if c = 'l' then State := 5 else State := 0 ;
 5 : if c = 'e' then State := 6 else State := 0 ;
 6 : if c = ' ' then
 begin
 State := 7 ;
 i := 0 ;
 q := 1 ;
 result := '' ;
 end
 else State := 0 ;
 7 : begin
 if c = '}' then
 State := 8
 else
 begin
 result[q] := c ;
 result[0] := Char(q) ;
 Inc(q) ;
 end ;
 end ;
 end ;
 end ;
end ;

{***}

procedure Register ;

begin

 RegisterComponents('System', [TExtFileListBox]) ;
end ;

end.

Return to Component Cookbook
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

A Little Help With PChar's
by Robert Vivrette - CIS: 76416,1373

A few weeks back, a gentleman named Jean-fabien Connault (CIS:100745,233) wrote me a short letter
indicating a strange behavior in Delphi. Here is the code he sent me:

var
 BufferWinDir: PChar;
 MaxBuf : Integer;
begin
 MaxBuf := 144;
 getMem(bufferWinDir,MaxBuf);
 BufferWinDir := '';
 MessageDlg('*** It''s before GetWindowsDirectory ***', mtInformation, [mbOK], 0);
 GetWindowsDirectory(BufferWinDir,MaxBuf);
 MessageDlg('*** It''s after GetWindowsDirectory ***', mtInformation, [mbOK], 0);
end;

At first glance, I could see nothing wrong with this. However, when the code executed, it did indeed have
very strange behavior. The first MessageDlg call produced a normal dialog box with the appropriate text.
However after executing the GetWindowsDirectory API call, the second MessageDlg call totally flipped
out. It presented a dialog box that completely filled the screen with the OK button occupying about 95% of
the screen real-estate. Clicking on the button made the whole screen appear to "click down" and then the
program ended normally.
After digging through it with the debugger, I realized what the problem was...
The line:

BufferWinDir := '';
was not doing what he thought it was. His intention, of course, was to assign a null string to BufferWinDir.
However, what he was doing here was pointing BufferWinDir to a null somewhere else in memory. Let me
explain a bit:
When you do a GetMem, windows requests a block of memory and returns an address pointing to that
memory. This address is stored in BufferWinDir. Let's presume the address returned is 4807:0F80.
Therefore, BufferWinDir (a pointer to an array of characters) is now the 4-byte value 4807:0F80. When
the compiler gets to the line where you are assigning a null, it says "Create a Null string in memory and
put the address of that Null in BufferWinDir". Let's say the compiler chooses 3DDF:0040 as the location of
the null (which it did in a test I did). By doing this assignment, BufferWinDir now points at this null
character instead of the array of characters previously reserved. Then, when the GetWindowsDirectory
procedure is called, Windows assigns the returned value to the bytes starting at where BufferWinDir is
located. This includes the null character originally pointed to, plus a number of additional bytes that could
be anything. As a result, the characters are writing over memory outside of the allocated space,
destroying other variables or code. In this case, the characters overwrote some element of the DialogBox
object, either Code or the Objects properties.
The correct way to assign a null string (or any other string for that matter) to a pchar is to use StrPCopy
as follows:

StrPCopy(BufferWinDir,'');
This function takes the listed string of characters (in this case a null string) and copies them to the
memory location pointed to by the first parameter. PChars can sometimes be a bit tricky to work with. I
hope this helps a bit!

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Note from the Editor:
Last issue, I ran this article by Steve Griffiths but accidentally forgot to include the source code to his
demonstration program. I am therefore repeating the article in its entirety, with the appropriate links to the
source below. I appologize for any confusion this caused! - Robert

Using Integer Fields to Store Multiple Data Elements in Tables
by Steve Griffiths - CIS: 102523,27

I spend a lot of my time writing state reporting database applications, for example EMS, Fire and Police
incident reports. In the past I was limited to using Foxpro (sorry!) or Paradox. Although I could get the job
done in a reasonable time, I was never happy with the appearance or speed of the finished product. In
addition, adding a 3.5 Meg runtime to a FoxPro app tends to make installation a real pain!.
Delphi has allowed me to become a 'real' programmer again - it is easier to code a Paradox app in Delphi
than it is using Paradox directly, and the resources and components available provide an excellent user
interface. (I use and modify the InfoPower Library a lot.)
One thing that all the state reports have in common is an enormous amount of data - literally hundrds of
fields. In an early iteration of one of the forms, I ended up with three linked master tables - 600 odd fields
before even thinking about the detail tables. Obviously some rethinking was necessary!
The bulk of the fields was taken up with either checkboxes (Yes/No) and limited answers (1 of 10, Yes /
No Maybe). By using Delphi's bit manipulation operators in conjuction with Paradox long (32 bit) Field
types, I am able to store information for 31 Checkboxes, 15 one of four types, or 7 one of fifteen types in a
single field. (The last bit of the field is not used as Paradox integers are signed). Using this technique has
allowed me to fit my master data into a single table.

The Demo
On the left hand side of the form are 8 checkboxes and 3 edit fields. On the right hand side are
corresponding objects that mimic the left hand objects - checking a checkbox on the left will check it's
mate on the right. The edit fields can contain 0 - 3, and again, the partner will update to the same value.
The data for all the checkboxes is contained in an 8 bit integer variable (TheNumber), the value of which
is shown on the top of the form. Similarily, the data for the Edit Fields is contained in another 8 bit integer
(TheEdit), whose value is shown on the bottom.
Checking a checkbox calls the UpDateChecks function, which updates TheNumber. The function in turn
calls the UpdateMimics function which uses TheNumber to determine the status of the mimic checkboxes.
When an EditField is changed the UpdateEdits function is called which updates the value of TheEdit.
UpdateEdits then calls UpdateEditMimics which uses TheEdit to update the mimic EditFields.
When using the code with a table, the code for the UpdateChecks and UpdateEdits functions would be
placed in the Tables BeforePost Event, and the UpdateMimics / UpdateEditMimics Code would go in the
DataSources OnDataChange Event. (In a non-demo situation, the update procedures would refer to the
original objects).
Now, let's see how it works...

Checkboxes
Binary Revisited... A checkbox has a true or false value. This is a logical value that can be treated as 1 bit.
Therefore, as long as we can get at the individual bits of the whole, an 8 bit (unsigned) number can
contain the status of 8 checkboxes.
Unfortunately, Delphi does not appear to allow direct binary representation (if I am missing something tell
me!) so we must use numbers to represent the bit position. Here is the bit representation of an 8 bit
number..

 128 64 32 16 8 4 2 1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

To keep the code short I have placed the number representing the bit value of each of the checkboxes
into the Tag property of each checkbox. Below is the code for UpdateChecks:

procedure TForm1.UpdateChecks(Sender: TObject);
begin
 with Sender as TCheckbox do
 begin
 if Checked = True then
 TheNumber := TheNumber or Tag
 else
 TheNumber := TheNumber and not Tag;
 Label1.Caption := IntToStr(TheNumber);
 UpdateMimics;
 end;
end;

By or-ing TheNumber with the Tag Value of any given checkbox we are garaunteed that the bit value for
that checkbox will be true. Conversly, the and not operator will replace that bit with a false. Below is the
Code for UpdateMimics:

Const {represents the bit number as an integer}
 Zero = 1;
 One = 2;
 Two = 4;
 Three = 8;
 Four = 16;
 Five = 32;
 Six = 64;
 Seven = 128;

procedure UpdateMimics;
begin
 {Sorts the Contents of the Field to the corrent Checkboxes}
 {Typically, this code would be attached to a TDataSource OnDataChange Event}
 with Form1 do
 begin
 Checkbox9.Checked := Boolean(TheNumber and Zero);
 Checkbox10.Checked := Boolean(TheNumber and One);
 Checkbox11.Checked := Boolean(TheNumber and Two);
 Checkbox12.Checked := Boolean(TheNumber and Three);
 Checkbox13.Checked := Boolean(TheNumber and Four);
 Checkbox14.Checked := Boolean(TheNumber and Five);
 Checkbox15.Checked := Boolean(TheNumber and Six);
 Checkbox16.Checked := Boolean(TheNumber and Seven);
 end;
end;

As you can see, there is one entry for each Checkbox. Firstly, the checkbox bit value is and-ed against
the number. The result is cast as a boolean and used to set the checked property of the mimic.

Edit Boxes
This is a little more complex but is explainable. Because our example allow an entry from 0 to 3, we can
establish by looking at bits one and two of the bit representation chart that this range of numbers can be
stored as two bits (3 = 1 + 2) ... Bits 0 and 1.
By using the SHR (Shift Right) and SHL (Shift Left) operators the value of an edit box can be moved to
the bit 0 and 1 positions, compared against the number 3 which represents bits 0 and 1 both being set,
and dealt with from there. In this case, the tag property of each edit field represents the number of bits

that the number must be shifted to reach the bit 0 and bit 1 positions. Here is the code for the UpdateEdits
function:

procedure TForm1.UpdateEdits(Sender: TObject);
var
 TheValue : Byte;
begin
 with Sender as TEdit do
 begin
 if Text = '' then Text := '0';
 if StrToInt(Text) > 3 then Text := '0';
 TheValue := StrToInt(Text);
 TheEdit:= TheEdit and not ((TheEdit shr Tag and 3) shl Tag) or TheValue shl
Tag;
 Label4.Caption := IntToStr(TheEdit);
 UpdateEditMimics;
 end;
end;

The meat of the function is all in one line. Here is how it breaks down:
Firstly the contents of TheEdit are shifted right by Tag positions. This aligns the relevent 2 bits with bits 0
and 1. The result is then and-ed with 3 to return the previous value of only those bits. This value is then
shifted left back to the original position. By using the and not operator the two bits representing the
contents of the edit field are set to 0. The contents of TheValue (the new value of the Edit Field) are
shifted left by tag positions to aligh the bits with there proper place in the number, and the two numbers
are or-ed, which places the value of TheValue into its proper place. Here is the code for
UpdateEditMimics:

procedure UpdateEditMimics;
begin
 with Form1 do
 begin
 {Sorts the Contents of the Field to the corrent EditField}
 {Typically, this code would be attached to a TDataSource OnDataChange Event}
 Edit4.Text := IntToStr(TheEdit and 3);
 Edit5.Text := IntToStr(TheEdit shr 2 and 3);
 Edit6.Text := IntToStr(TheEdit shr 4 and 3);
 end;
end;

As with UpdateMimics, there is 1 line per object. For each EditField, TheEdit is shifted right by the number
of positions necessary to align the data with bits 0 and 1, and then anded with 3 (bits 0 and 1 set) to
ignore the other bits. Both the Update functions can be written more elegantly, but are done this way fror
clarity.
The Editfield range can be changed by assigning more bits per field - 3 bits allows 0 to 8 etc... and
changing the shift values accordingly. To seriously save tablespace with 1 of n choice fields, assign the
itemsindex property of a stringlist to the table instead of the contents.
Feel free to e-mail if you have questions.
Demo Program Form File
Demo Program Unit Source

Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Drag and Drop from FileManager
by Eric Kundl - CIS: 71560,1373

Delphi allows dragging and dropping within the application easy enough, most components have a
dragmode property. But on a small app I was writing I wanted to be able to go into FileManager and drop
a filename on the app and have the app start up with the dropped file...OR... if the app was already
running, to grab a handful of files (in a greedy sort of way) from FileManager and drop the whole truckload
on the apps form. I have seen it done in other apps, how hard could it really be?
After a lot of digging through the Delphi Help I found it was not very hard at all. Here is what I have
discovered.
The ability to drag and drop onto a running app is possible through the Windows API. The Delphi provided
SHELLAPI unit has the 3 functions needed allow drag-drop functionality. They are:

DragAcceptFiles Registers whether a window accepts dropped files
DragQueryFile Retrieves the filename of a dropped file
DragFinish Releases memory allocated for dropping files

There is also a function not specifically needed to accept files:
DragQueryPoint Retrieves the mouse position when a file is dropped

In addition, there is a windows message that your app needs to respond to that is sent when you release
the mouse button while dragging: WM_DROPFILES.
First, add SHELLAPI to the units list of your form. Next, your app needs to tell Windows that the form is
accepting dropped files. The FormCreate Event of your form would need the following code:

procedure TForm1.FormCreate(Sender: TObject);
begin
 DragAcceptFiles(Form1.Handle, true);
 Application.OnMessage := AppMessage;
end;

Here the first line calls the DragAcceptFiles function, passing the Handle of the form, and the boolean true
that sets up drag-drop for the form. The second line allows your App to have its own message handler. In
this case you are going to write a procedure named AppMessage, that will trap a Windows message
before Windows itself processes it. In your case, you want to trap the WM_DROPFILES message.
Note that the DragAcceptFiles function call uses the Handle of the Form. If you want to have your app
accept dropped files when it is minimized, you must add another call to DragAcceptFiles and pass the
applications handle. ie: DragAcceptFiles(Application.Handle, true);
Thats all there is to setting things up. Next you need to write your own message handler, in this case
named AppMessage.
The OnMessage event occurs when your application receives a Windows message. By creating an
OnMessage event handler in your application, you can intercept specific windows messages and handle
them yourself. Any message that you do not handle yourself is dispatched and Windows will handle it.
You need to write this procedure yourself, there is no event on the Object Inspector to click on that will
cause Delphi to create it for you. So you need to create this in the implementation section of the forms
code. And don't forget to add the procedure header to the object definition.
The procedure header would look like:

procedure AppMessage(var Msg: Tmsg; var Handled: Boolean);

Your message handler procedure would look something like this:
procedure TForm1.AppMessage(var Msg: Tmsg; var Handled: Boolean);
const
 BufferLength : word = 255;
var
 DroppedFilename : string;
 FileIndex : word;
 QtyDroppedFiles : word;
 pDroppedFilename : array [0..255] of Char;
 DroppedFileLength : word;
begin
 if Msg.Message = WM_DROPFILES then
 begin
 FileIndex := $FFFF;
 QtyDroppedFiles := DragQueryFile(Msg.WParam, FileIndex,
 pDroppedFilename, BufferLength);
 for FileIndex := 0 to (QtyDroppedFiles - 1) do
 begin
 DroppedFileLength := DragQueryFile(Msg.WParam, FileIndex,
 pDroppedFilename, BufferLength);
 DroppedFilename := StrPas(pDroppedFilename);

 do something with DroppedFilename

 end;
 DragFinish(Msg.WParam);
 Handled := true;
 end;
end;

In this code, only the Msg.Message WM_DROPFILES is intercepted, which occurs when you drop one or
more files from FileManager onto the window (or app, if you included a DragAcceptFiles for the
Application.Handle).
If something is dropped, then you call DragQueryFile to process what was dropped, and before you
leave, call DragFinish to free up memory used and set Handled to true to let Windows know you used the
message yourself.
The Msg.WParam parameter is the Word parameter passed to the application in the wParam parameter
of the WM_DROPFILES message.
The DragQueryFile function has 2 uses, based on the value of the second parameter. If FileIndex is a -1
($FFFF), then it returns the qty of files dropped. If the value of the FileIndex parameter is between zero
and the total number of files dropped, DragQueryFile copies the filename corresponding to that value to
the buffer pointed to by the pDroppedFilename parameter. Note that the FileIndex values are offset from
0, so the first filename is FileIndex = 0 and the last filename is FileIndex = (qty of files dropped) minus 1.
The third parameter is the buffer that filenames will be placed into. Note that it is not a pascal string, but
since we are dealing with the Windows API, is a null terminated string. The fourth parameter is the length
of the filename buffer we are providing.
And that is it. Fairly simple, although it took a number of hours of searching books, and particularly the
Delphi On-Line help. A few things I have noticed:

1. When dropping files, the DroppedFilename is the complete path, not just the filename.ext
2. It is possible to drag and drop just a directory. So if you are expecting filenames, you have to

check for existence yourself.
3. The filenames come in uppercased.

I have included an example program that shows how to get filenames into the app by:
1. dropping filename(s) from filemanager onto the running app, as described above.
2. dropping filename(s) from filemanager onto the minimized apps icon.

3. dropping a filename from filemanager onto the non-running apps filename also in filemanager.
4. running the app and specifying the filenames as parameters on the run command.
5. using the OpenDialog to select filename(s) that are passed in a stringlist.

Anything dragged and dropped is dumped into a listbox.
As a bonus to all this digging, I found that the OpenDialog component allows:

1. selecting more than one file: set the property Options|ofAllowMultiSelect to true.
2. keeping a list of all previously selected files for the user to reselect from: set the property

FileEditStyle to fsComboBox.
3. remembering the path of the last selection, and starting the next selection from this path: set the

property Options|ofNoChangeDir to false.
and what may be a bug: if you select multiple files on the root directory, the filenames have an
extra backslash(?).

So there you have the sum total of a week of my evenings. With just a small amount of code, your apps
can quickly become FileManager friendly.

Drag & Drop Form
Drag & Drop Source

Return to Tips & Tricks
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

UNDU Readers Choice Awards
Because of the simple and elegant nature of creating components in Delphi, there has been a tidalwave
of 3rd party products available on CompuServe and the Internet. It is now getting to the point that so
many new ones appear each day, that I no longer have the time to look through them all. I think this is
unfortunate, because there are a number of great products out there.
In order to rectify this situation, and to help Delphi developers decide which 3rd party tools would best
help them, I am instituting the UNDU Readers Choice Awards. These awards will serve as a simple
rating system of those 3rd Party products that users find the most indispensible.
Please feel free to vote on any Professional/Shareware/Freeware components or other Delphi Add-Ins.
For each product, simply rate them on a scale from 1 to 10. A rating of '1' indicates you have a very low
opinion of the products usablility or capabilities. A rating of 10 would indicate that the product is
indispensible and no Delphi developer should be without it.
To cast your vote, simply send me an email (CompuServe: 76416,1373, or Internet:
RobertV@ix.netcom.com) and list the products that you have had experience with along with the rating (1
to 10) that you would give for each. Please only vote for those products that you have used. All votes will
be kept confidential, and will serve only to provide a ranking system for the products voted on. Feel free to
add any brief comments to your ballot about particular products. When I print the results of the voting, I
may include a few excerpts of these comments for some of the more outstanding products. If you happen
to know where you obtained the product (i.e. on CompuServe, or a particular Web site, or for sale
elsewhere), you may feel free to include this information as well.
I will be maintaining a database of the results and will print updated rankings in all future issues. As a
result, there really is no 'deadline' as such for the ballots, as all new votes will be inserted into this
database. However, please do not send multiple votes for a single product.
Hopefully the information obtained through these awards will help Delphi Developers to best utilize the
available tools currently on the market.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995
object Form1: TForm1
 Left = 192
 Top = 102
 Width = 435
 Height = 300
 Caption = 'ekDrop'
 Font.Color = clWindowText
 Font.Height = -13
 Font.Name = 'System'
 Font.Style = []
 PixelsPerInch = 96
 Position = poDefault
 OnActivate = FormActivate
 OnCreate = FormCreate
 TextHeight = 16
 object ListBox1: TListBox
 Left = 0
 Top = 45
 Width = 427
 Height = 226
 TabStop = False
 Align = alClient
 IntegralHeight = True
 ItemHeight = 16
 TabOrder = 0
 end
 object Panel1: TPanel
 Left = 0
 Top = 0
 Width = 427
 Height = 45
 Align = alTop
 Alignment = taRightJustify
 Caption = 'this is the caption'
 TabOrder = 1
 object btnOpen: TButton
 Left = 4
 Top = 4
 Width = 57
 Height = 33
 Caption = 'Open'
 TabOrder = 0
 OnClick = btnOpenClick
 end
 object btnExit: TButton
 Left = 68
 Top = 4
 Width = 57
 Height = 33
 Caption = 'Exit'
 TabOrder = 1
 OnClick = btnExitClick
 end
 object btnClear: TButton
 Left = 132
 Top = 4
 Width = 57
 Height = 33
 Caption = 'Clear'
 TabOrder = 2
 OnClick = btnClearClick
 end

 end
 object OpenDialog: TOpenDialog
 FileEditStyle = fsComboBox
 Filter = 'All files (*.*)|*.*'
 Options = [ofAllowMultiSelect, ofPathMustExist, ofFileMustExist]
 Title = 'Open Dialog'
 Left = 396
 Top = 4
 end
end

Return to Drag & Drop Article
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Status Bar Resource Gauge Modification
by Jeremy Coleman - INTERNET:jeremy_coleman@signas.dpa.act.gov.au

Robert: I really appreciated your status bar component, and have modified it slightly so that the bar
changes color depending on the amount of available resources (like the Microsoft SysMeter utility).
Modification is as follows:

if ShowResources then
begin
 ResGauge.Progress := GetFreeSystemResources(GFSR_SYSTEMRESOURCES);
 if (60 <= ResGauge.Progress) then
 ResGauge.ForeColor := clLime
 else
 if (30 <= ResGauge.Progress) then
 ResGauge.ForeColor := clYellow
 else
 ResGauge.ForeColor := clRed;
end;

Return to Component Cookbook
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #10 - December 12th, 1995

Delphi Tips - Keeping Application Size to a Minimum & Changing 
Icons at Runtime
by Paul Harding - CIS: 100046,2604

My company uses about half a dozen applications that are written in Delphi, but tends to use them only
one at a time. By gathering together all the .PAS files and all the foms into one project, I've compiled the
whole lot into an executable called "TARGET.EXE" ('cos my firm's name is Target Couriers Ltd). Then,
by passing a parameter on the command line, I can get the project to decide which form to run.
Here is a code snippet that shows how the project decides between two of the forms, one for Vehicle
Volumes and the other is a little utility to test disk drives across the network:

{this lives in the project source...}
if UpperCase(ParamStr(1)) = 'VEHICLEVOLUMES' then
 begin
 Application.Title := 'Veh. Volumes';
 Application.CreateForm(TFrmVolumes, FrmVolumes);
 end;
if UpperCase(ParamStr(1)) = 'DRIVETEST' then
 begin
 Application.Title := 'Drive Test';
 Application.CreateForm(TFrmTestDiskDrives, FrmTestDiskDrives);
 end;
{and at the end of the If..end constructs, is the usual...}
 Application.Run;

When the program runs, (for example: "C:\MYPROGS\TARGET.EXE VehicleVolumes") the application's
icon needs to change. This is done by using "LoadFromFile" to set the application's property "Icon":

if UpperCase(ParamStr(1)) = 'VEHICLEVOLUMES' then
 begin
 Application.Icon.LoadfromFile('C:\myprogs\VehVols.ico');

{rest of code as above.....}
 end;
if UpperCase(ParamStr(1)) = 'DRIVETEST' then
 begin
 Application.Icon.LoadfromFile('C:\myprogs\Drive.ico');

{rest of code as above.....}
 end;

Even though these two examples above are functionally entirely different, by compiling them together
(and indeed the 4 or 5 other programs too) I can make an executable with a size only a little larger than
the size of each separate program (if compiled independantly). This seems quite handy, and is a classic
case of the sum of the parts being far less than the whole!

Return to Tips & Tricks
Return to Front Page

If you'd like to see The Edits, ftp://ftp.coriolis.com/delphi and look for DBDXpand.ZIP. If it is alone, grab it.
If there is also DBDXpnd2.ZIP take that instead because the webmeister hasn't upgraded the main file
from the emergency one. Or grab both and see the bug as well as the fix.

