
 About
Auto Components Library (32-bit)

RSD software
e-mail: rsd@.tibc.tula.ru
INTERNET : HTTP:\\WWW.RSD.PP.RU
fax: +7 0872 770183

Now we distribute it in two versions:
Auto Components Library Client/Server, 25 components + Auto Form Expert - 120 USA dollars;
Auto Components Library Desktop, 13 components    - 49 USA dollars.

For more information see Contacting information

It will be work properly FOREVER. We decided to remove ALL PROTECTION from our library so you can test and even
use it, but it doesn't mean that Auto Components Library is free.

The components of the Auto Components Library can be divided into four groups:
Data Access components
Visual Filter ComponentsLibrary
Data Controls
Additional Components

For information about registration Auto Components Library see Registration Orders.

CONSTRUCT YOUR APPLICATION WITHOUT ANY LINE OF CODE.

Any comments and BUG reports are welcome.
Copyright: RSD software.

See    manual.doc and history.txt for more information.

Authors:
1.Andrey Telnov and Roman Eremin - idea of creating the current project (Auto Visual Library 32)
2.Andrey Telnov - programming
3.Roman Eremin and Dmitry Rogov - internal testing
4.Dmitry Rogov and Ura Sergeev - creating of the help system
5 Dmitry Rogov - creating Auto32 Expert
6.Ura Sergeev - technical support

Especial thanks for testing and suggestion to Theo Pistorius, M.D. Nazca Software (South Africa).

Registration Orders
For technical support or comments about this program, you may contact us at:
RSD software
e-mail: rsd@.tibc.tula.ru
INTERNET : HTTP:\\WWW.RSD.PP.RU
fax: +7 0872 770183

For your convenience we have contracted another company, NorthStar Solutions, to process any orders you may
wish to place with your Visa, MasterCard, or Discover card.    Please be sure to mention you would like to order:
Product #1418 - Auto Components Library Client/Server (auto32), $ 120.00
Product #1420 - Auto Components Library Client/Server Update(auto32), $ 90.00
Product #1466 - Auto Components Library Desktop (auto32d), $ 49.00;

INTERNET ORDERS
Visit NorthStar Solutions at
http://nstarsolutions.com/898.htm
and fill out their online order form--fast, easy and secure!

PHONED ORDERS
Calls are taken 10 am - 8 pm, EST, Monday thru Saturday.
1-800-699-6395 (From the U.S. only.)
1-803-699-6395

FAXED ORDERS
Available 24 hours.
1-803-699-5465

E-MAILED ORDERS
CompuServe: starmail
America Online: starmail
Internet: starmail@compuserve.com

MAILED ORDERS
You may register with a check or money order.   
Make them payable to "NorthStar Solutions" and send them to:     
PO Box 25262, Columbia, SC    29224

Please provide (or be prepared to provide) the following information:
* The program you are registering:
Product #1418 - Auto Components Library Client/Server (auto32), $ 120.00
Product #1420 - Auto Components Library Client/Server Update(auto32), $ 90.00
Product #1466 - Auto Components Library Desktop (auto32d), $ 49.00;
* Your mailing address.
* Your Visa, MasterCard, or Discover # and its expiration date (if using credit card).
* Your E-Mail address (so NorthStar Solutions can send you an E-Mail confirming your order and so We can contact
you easily with any important follow-up information, upgrade announcements, etc.).

You may wish to add the above information (or a convenient link to it) to any reminder screens, web pages, etc.    Note that a visually
attractive registration screen can better convey your information.    The MAILED ORDERS section may also change if you plan to
have all non-credit card orders sent to you directly.

Data Access components:
    TAutoTable

    TAutoQuery

    TAutoFind

TMacro (object)
TMacros (object)

Visual Filter Components Library.

TAutoFilter (object)

    TCheckBoxFilter

    TComboBoxFilter

    TDateFilter

    TLookupComboFilter

    TLookupListFilter

    TEasyFilter

    TFilterLink

    TListBoxFilter

    TMaskEditFilter

    TRadioGroupFilter

    TReferenceFilter

Data Controls.
    TAutoDBGrid

    TAutoDBDateEdit

    TDBReference

    TReference

Additional Components.
    TAutoDateEdit

    TReferencePanel

The main features
Macro in Data Access Components
Visual Filter Components
Sorted TAutoDBGrid component
From TDBComboBox to TDBReference

Macro in Data Access Components
Traditionally in applying TTable and TQuery components we often have to change Filter and SQL properties in run-
time which leads to error appearing and waste our time. For those error not appear so often and make this
properties more convenient in applying we have created the TMacro object. That object is similar to TParam object
but first of all the Filter property can also use the TMacro object and secondly    this object has only two published
properties: Name and Text. Before using the property where the TMacros object was declared, It    copies it Text
property into the place where it was used.
For example: We have the next filter property - ‘profit < &Summa’, where ‘summa’ is the macros name which has
Text property assign to ‘1000’. When the component begins to apply the Filter property its value will be change to -
‘profit < 1000’.

Visual Filter Components
See also
If you use    the parameters of a dynamic SQL statement or the macros in applying AutoData Access Components
you have to change Value or Text property in run-time. As usual the changing Values of this properties is the result
of changing some property of Delphi controls. User changes the properties of Delphi controls and your application
has to Refresh DataSet with new values of TParam or TMacro properties. Using the Visual Filter Components you can
create links between Macros or Params properties of the DataSet    from one side and Controls from other in design
time.
The Visual filter components library consists of TAutoFilter object, TFilterLink component and the set of components
which have at least one property of the TAutoFilter type.
The TFilterLink component create relation between the AutoFilter object and the macro or the param object of the
DataSet. On changing the Text property of the TAutoFilter, TFilterLink assign its value to the macro or param object
and if DataSet is open and AutoRefresh property of TFilterLink assigns to True (it is a default value) the TFilterLink
reopens or refreshes BDE filter of the DataSet.
For example: You need to create ability for users to fetch all the records from the table EMPLOYEE (Delphi
DBDEMOS) where the salary is more then ‘MinSalary’ and user may change the value ‘MinSalary’ in your application
by typing the necessary value .

Assign the filter property of DataSet to ‘Salary>&MinSalary’ or added to the SQL statement ‘...Salary>:MinSalary...’
(or using macro ‘...Salary>&MinSalary...’)

Drop TFilterLink and TMaskEditFilter to the form

Assign TFilterLink properties:
1. DataSet to our DataSet
2. Filter to MaskEditFilter
3. Macros or Param to ‘MinSalary’

It doesn’t take a lot of time, because to assign all of this properties we just need select the necessary values from
the drop down lists. Now on changing text of the MaskEditFilter controls our Dataset will be refreshed.
Notes:

If the filter component has more then one    properties of TAutoFilter type (for example TDBReference has two such
properties: AutoFilter and SQLOrderFilter) you have to assign the FilterName property to the necessary Value.

If the macro, linking to the TFilterLink components, is used only in the Filter property of DataSet then the TFilterLink
refreshes only BDE filter without being reopen.

See also
Data Access components
Visual Filter Components
Data Controls
Additional Components

Sorted TAutoDBGrid component
TAutoDBGrid (see the picture) is inherited from TDBGrid and has two new features:
1. Ability to sort TDBGrid columns
2. Ability to perform incremental search on the current selected column by hot key.

3. Ability to change color and font of the rows
4. Ability to view memo and graphic fields

1. Ability to sort TDBGrid columns
There are three type of the column sorted order: Ascsedent, Descendent, None
 (TSortedOrder = (gsNone, gsAsc, gsDesc)). There are three possibilities to make your column sorted:

1. add the ‘+’ (for ascsedent) or ‘-‘ (for descendent) character to the beginning of the Tcolumn DisplayText
property
2. press Ctrl and Click by the left mouse button to the column Title in Design time
3. call procedure SetSortedOrder(ACol : Integer; ASortedOrder : TSortedOrder) in run-time.

The TAutoDBGrid behavior is depends on the type of linked DataSet.
1. If DataSet is Table then TAutoDBGrid allows    to make columns sorted if the linked fields    indexed.
TAutoDBGrid sortes columns by changing the Value of the IndexName property.
2. If DataSet is TAutoQuery then you have to create    the ordering macros for the SQL property and link it
to the AutoFilter property of TAutoDBGrid by filter link component (TFilterLink).

For example: the SQL statement is :
‘Select name, fullname, birth_date From Customer Order by &OrderField’. ‘SQLOrder’ is the macro name. Drop
TFilterLink component to the form and assigns its properties:

a) DataSet to AutoQuery
b) Filter to AutoDBGrid
c) Macros to ‘OrderField’
3. If DataSet is TQuery you have to change the SQL properties at run time on onSortChange Event.

For example:
procedure TForm1.AutoDBGrid1SortChange(Sender: TObject);
begin

Query1.Close;
Query1.SQL[Query1.SQL.Count - 1] := ‘Order by ’
+ AutoDBGrid1.AutoFilter.Text;
Query1.Open;

end;
Note: You can’t make the sorted    calculated fields.

2. Ability to perform incremental search on the current selected column by hot key.
To show the find dialog just press hot key at run-time or call Find method:
For example:
procedure TForm1.Button1Click(Sender: TObject);
begin
    AutoDBGrid1.Find;
end;
Note: By default the hot key is VK_F7, but you can change it to another by assign const ‘acDBGridHotKey’ to your
own hot key (unit aconst.pas).
3. Ability to change Color and Font of the rows.
Now you can change the Color and Fonts of the rows. Use the OnDrawFieldCellEvent event.
For example:
If the field ‘profit’ is less then zero then the the background color of the cell with that value would be red.
procedure TMainForm.AutoDBGrid1DrawFieldCellEvent(Sender: TObject;
    Field: TField; var Color: TColor; var Font: TFont);
begin
    if(Field = AutoQuery1.FindField('profit'))
    and      (AutoQuery1.FindField(‘profit ').AsInteger < 0) then
    Color := clRed;

end;
4. Ability to view Memo and Graphic fields.
Now you can view Memo or Graphic fields in AutoDBGrid. Set AutoOptions property to [adgViewImage,
adgViewMemo] and resize the row heights.

From TDBLookupCombo(Box) to TDBReference
TDBReference is our first Component. Its first edition was written almost two years ago. Its third edition is included
in this version.
The history of the creation of the TDBReference.
We worked under the    project for one enterprise in my city in spring 1995. One of the main task of that project was
to make the work with documents and dictionaries faster and more convenient. After only two weeks of testing our
source we noticed that it took about forty seconds to create the simple document and more then half the time was
spent on searching the necessary record in TDBLookupCombo. At that time some DataSets,    already had
RecordCount equal to 100 - 300 records    and it took from two to five second    only to fetched them, inspite of our
having limited the fetched records by date and so on. On the one hand we had to decrease    the number of the
fetched records from the other hand the users sometimes    knew the KeyValue and wanted to type it instead    of
searching it in the LookupCombo.
To carry out that task we decided to create our own component which would have the follow abilities:
1. type the KeyValue in EditBox and search for the    necessary record in the all Table (By executing the SQL, which
should fetch only one record)
2. show whether the typed Value is right or not (For example: show the firstname and lastname of the employee by
typing his id)
3. show the form with DBGrids, with a strongly limited Dataset
4. add the controls to the bottom panel of the lookup form
5. allows editing on the fly
6. searching the necessary Value in    the columns of the DBGrid on the fly
After the such component had been created we had killed the most of TDBLookupCombo and replace them with
TDBReference. Since then we use TDBLookupCombo(Box) only if    we know that the number of Records in the table
will not more then 200 - 300 otherwise we apply TDBReference.

    Installation for Delphi 2.x
a. If you have unregistered version
a.1. Copy the files from the \LIB.D20    to your Delphi Lib directory if you have Delphi 2.0
a.2. Copy the files from the \LIB.D21    to your Delphi Lib directory if you have Delphi 2.01
b. If you have registered version
Copy the files from the \LIB.D2    to your Delphi Lib directory
2. Run Delphi and select the OPTIONS pull-down menu.    Then choose the
 item INSTALL COMPONENTS...
3. Click on the ADD button.    A dialog box will pop up.    Click on the BROWSE button.
4. A standard file selection dialog will pop up.    Select the directory that
contains the above mentioned files.    In the "List Files of Type" drop-down
select *.DCU (*.PAS for registered users) files.
5. You should install (autoreg.dcu ((autoreg.pas for registered users).
Now click OK in the Install Components dialog box.    Delphi's VCL will now recompiles.

    Installation for Delphi 3.0
1. Run Delphi and select the COMPONENTS pull-down menu.   
Then choose the item Install Packages...
2. Click on the ADD button.    A dialog box will pop up.    Click on the BROWSE button.
3. A standard file selection dialog will pop up.    Select \LIB.D3\auto32.dpl
4. Copy the DB files from \Data directory to \Delphi 3.0\Demos\Data

    Installation for C++ Builder 1.0
1. Copy the files from the \LIB.CB or (\LIB.D2 for registered users) to
your C++ Builder Lib directory \LIB
2. Run CBuilder and select the OPTIONS pull-down menu.    Then choose the
item INSTALL COMPONENTS...
3. Click on the ADD button.    A dialog box will pop up.    Click on the BROWSE button.
4. A standard file selection dialog will pop up.    Select the directory
that contains the above mentioned files.    In the "List Files of Type" drop-down
select *.OBJ (*.PAS for registered users) files.
5. You should install (autoreg.obj (autoreg.pas for registered users).
Now click OK in the Install Components dialog box.      VCL will now recompiles.

Installation help files.
1. Copy \help\autohelp.hlp, \help\ autohelp.kwf to \delhi\help\
2. Quit Delphi (C++ Builder) if it is running
3. Make a backup copy of \delphi\bin\delphi.hdx
4. Run the helpInst application from \delphi\help\tools
5. Open \delphi\bin\delphi.hdx
6. Select the Keywords|Add file menu option and select dbtree_v.kwf from \delphi\help
7. Select file|Save
8. Quit HelpInst
9. Run Delphi(C++ Builder). If the error 'the autohelp.hlp file not found' appears point Delphi
to the delphi\help\autohelp.hlp.
The Auto Components Library help are now merged into    help system.

    TAutoTable component
Properties  Methods

Unit AutoDB
TAutoTable component is inherited from TTable    Component.
In addition at run time, an application can supply macros values for dynamic queries and BDE filters with the
Macros property and the MacroByName method.

    TAutoStoredProc component (Client/Server suite only)
Properties  Methods

Unit AutoDB
TAutoStoredProc component is inherited from TStoredProc    Component.
In addition at run time, an application can supply macros values for dynamic queries and BDE filters with the
Macros property and the MacroByName method.

Properties
property    Macros
property    MacrosFreeze
property MacroCount

Methods
method    MacroByName

Macros property
Applies to
TAutoQuery, TAutoTable, TAutoStoredProc
Declaration
property Macros [Index: Word]:TMacros;
When you enter a query or a filter our components creates a Macros array for the macros of a dynamic SQL
statement or a BDE filter. Macros is a zero-based array of TMacro objects with an element for each macros in the
query or in the filter; that is, the first parameter is Macro[0], the second Macro[1], and so on. The number of
parameters is specified by MacroCount. Read-only and run-time only.
Note: Use the MacroByName method instead of Macros to avoid dependencies on the order of the macrosses.

Example
For example, suppose a TAutoTable component named AutoTable1 has the following statement for its Filter property:
 ‘Population > &Population And continent = &continent’
An application could use Macros to specify the values of the macros as follows:
AutoTable1.Macros[0].Text := '10000000';
AutoTable1.Macros[1].Text := 'South America';
These statements would bind the macros '10000000' to the &Population macro, 'South America' to the &continent
macro.

MacroCount property

Applies to

TAutoQuery, TAutoTable, TAutoStoredProc

Declaration
property MacroCount: Word;

Description
Run-time and read-only. The MacroCount property specifies how many entries the AutoTable    (or the TAutoQuery)
has in its Macros array, that is, how many macrosses the AutoTable (or the AutoQuery) has. Adding a new item to
Macros will automatically increase the value; removing an item will automatically decrease the value.

Example
procedure TForm1.Button1Click(Sender: TObject);
begin
ShowMessage(‘The count of the AutoQuery1 macros is: ’ + IntToStr(AutoQuery1.MacroCount));
end;

MacroByName method.

Applies to

TAutoQuery, TAutoTable, TAutoStoredProc

Declaration
function MacroByName(const Value: string): TMacro;

Description
The MacroByName method returns the element of the Macros property whose Name property matches Value. Use it
to assign values to macros in a BDE filter or in a dynamic query by name.

Example
AutoQuery1.MacroByName('SQLOrder').Text := 'name';

MacrosFreeze property

Applies to

TAutoQuery, TAutoTable, TAutoStoredProc

Declaration
MacrosFreeze : TMacrosFreeze

Description
Assign MacrosFreeze to mfDesigning or mfAlways    if you don't want    to change Macros value by Filter components
at design time or every time. (mfAlways, mfDesigning, mfNever).
mfAlways - Filter Components can always change the Text property of the Macros;
mfDesigning - Filter Components can’t change the Text property of the Macros at design time;
mfNever- Filter Components can’t change the Text property of the Macros.

    TAutoQuery Component (Client/Server suite only)
Properties  Methods

Unit AutoDB
TAutoQuery component is inherited from TQuery Component.
In addition at run time, an application can supply macros values for dynamic queries and BDE filters with the
Macros property and the MacroByName method.

    TAutoFind Component (Client/Server suite only)
Properties  Methods

Unit AutoFind

Description
The TAutoFind component    is an indirect descendent of TComponent. It is used to search for data of the one field in
a DataBase table or query by showing the find dialog form (see the picture)
You link the TAutoFind with a DataSet when you set the value of the DataSet property and with the DataSet Field
setting the value of the DataField property.
Set property Active to True to begin the search. At run-time, call method execute to begin the search. If the value
from the list is chosen the DataSet cursor will be moved to the ‘marked’ position.

 Properties
property Active;
property DataSet;
property DataField;

 Methods
method Execute;

Active property.

Applies to TAutoFind

Declaration
property Active : Boolean;

Description
Set the Active property to True to begin to Search. If the DataSet, which TAutoFind is linked, is in Browse state and
the property DataField is assigned right the search will begin.

Example
AutoFind1.DataSet := Query1;
AutoFind1.DataField := ‘country’;
AutoFind1.Active := True;

DataSet property.

Applies to TAutoFind

Declaration
property DataSet : TDataSet;

Description
Setting the value of the DataSet property you link the TAutoFind with a DataSet.

Example
AutoFind1.DataSet := Query1;

DataField property.

Applies to TAutoFind

Declaration
property DataField: string;

Description
The DataField property identifies the field from which the TAutoFind component displays data in its searching
dialog . The field has to be owned in the DataSet which the TAutoFind component is linked.

Execute method.

Applies to TAutoFind

Declaration
procedure Execute;

Description
Call execute method to begin searching for. If the DataSet, which TAutoFind is linked, is in Browse state and the
property DataField is assigned right the search will begin.

Example
AutoFind1.DataSet := Query1;
AutoFind1.DataField := ‘country’;
AutoFind1.Execute;

TMacro object
Properties  Methods

unit AutoDB

Description
The TMacro object holds information about a macro of a TAutoQuery or TAutoTable. In addition to the macro text,
TMacro stores the name.
You generally do not need to create a TMacro explicitly, since TAutoQuery or TAutoTable will create it as an element
of its TMacros property as needed. All you have to do is assign texts to the macros by assigning its text property.
The TMacro object is a direct descendent of TObject. In addition to these properties and methods, this object also
has the methods that apply to all objects.

 Properties
property Name;
property Text;

 Methods
method Assign;

Name property of TMacro object

Applies to TMacro

Declaration
property Name: string;

Description
The Name property is the name of the macro

Example
The following code changes the name of the &SQLOrder macro to 'Order':
 MacroByName(‘SQLOrder’).Name := 'Order';.

Text property of TMacro object

Applies to TMacro

Declaration
property Text : String;

Description
The Text property is the Text of the macro

Example
The following code changes the text of the &SQLOrder macro:
 MacroByName(‘SQLOrder’).Name := 'name';.

Assign method of TMacro object

Applies to TMacro

Declaration
procedure Assign(Macro: TMacro);

Description
The Assign method transfers all of the data contained in the Macro parameter to the TMacro object that calls it.

TMacros object
Properties  Methods

unit AutoDB

Description
The TMacros object holds the macrosses for a TAutoQuery or TAutoTable and provides the methods to create and
access those macros. Each parameter is a TMacro object.
Use the Items property to access individual macros. Call CreateMacro to create a new macros. Call AddMacro to add
a new macro or RemoveMacro to take one out of the set. Call Clear to delete all macros. Use the MacroByName
method to find a macro with a particular name.
The TMacros object is a direct descendent of TPersistent. In addition to these properties and methods, this object
also has the methods that apply to all objects.

Properties
property Items;
property MacroText;

Methods
method Assign;
method AssignValues;
method AddMacro;
method RemoveMacro;
method CreateMacro;
method Count;
method Clear;
method MacroByNames;

Items property

Applies to TMacros

Declaration
property Items[Index: Word]: TMacro; default;

Description
Run-time only. The Items array property holds the macros (TMacro objects). Use this property when you want to
work with the entire set. Index identifies the index in the range 0..Count - 1. While you can use Items to reference a
particular macro by its index, the MacroByName method is recommended to avoid depending on the order of the
parameters.

Example
AutoQuery1.Macros.Items[0].Text := ‘name’;
(Or AutoQuery1.Macros[0].Text := ‘name’; is the same)

MacroText property

Applies to TMacros

Declaration
property MacroText[const MacroName: string]: String;

Description
Run-time only. Use this property when you want to assign or get the Text property of the Macro. MacroName is the
Name of the Macro.

Example
AutoQuery1.Macros.MacroText['SQLOrder'] :=    'name';

AddMacro method

Applies to TMacro

Declaration
procedure AddMacro(Value: TMacro);

Description
AddMacro adds Value as a new parameter to the Items property.

Assign method

Applies to TMacros

Declaration
procedure Assign(Source: TPersistent);

Description
If Source is another TMacros object, Assign discards any current parameter information and replaces it with the
information from Source. Use this method to save and restore a set of macros information or copy another object's
information.

Example
var SavedMacros: TMacros;
...
{ Initialize SavedMacros }
SavedMacros := TMacros.Create;
try
    { Save the macros for AutoTable1 }
    SavedMacros.Assign(AutoTable1. Macros);
{ Do something with AutoTable1}
...
{ Restore the macros to AutoTable1}
AutoTable1. Macros.Assign(SavedMacros);
finally
    SavedMacros.Free;
end;

AssignValues method

Applies to TMacros

Declaration
procedure AssignValues(Value: TMacros);

Description
For each entry in Items, the AssignValues method attempts to find a macros with the same Name property in Value.
The Text property of Macro    from the Value parameter is assigned to the Items entry. Entries in Items for which no
match is found are left unchanged.

Example
AutoQuery2.Macros.Assign(AutoQuery1. Macros);

Clear method

Applies to TMacros

Declaration
procedure Clear;

Description
The Clear method deletes all macros information from Items.

Example
AutoQuery2.Macros.Clear;

Count method

Applies to TMacros

Declaration
function Count: Integer;

Description
The Count method returns the number of entries in Items.

Example
for I := 0 to AutoTable1.Macrosses.Count - 1 do
 AutoTable1.Macross[I].Text := IntToStr(I);

CreateMacro method

Applies to TMacros

Declaration
function CreateMacro(const MacroName: string): TMacro;

Description
The CreateMacro method attempts to create a new entry in Items, using the MacroName parameter.

MacroByName method

Applies to TMacros

Declaration
function MacroByName(const Value: string): TMacro;

Description
The MacroByName method finds a macros with the name passed in Value. If a match is found, MacroByName
returns the macro. Otherwise, returns Nil. Use this method rather than a direct reference to the Items property if
you need to get a specific macro to avoid depending on the order of the entries.

Example
The following code changes the text of the &SQLOrder macro:
 MacroByName(‘SQLOrder’).Name := 'name';.

RemoveMacro method

Applies to TMacros

Declaration
procedure RemoveMacro(Value: TMacro);

Description
RemoveMacro removes Value from the Items property.

    TAutoFilter object
Properties  Methods  Events

Unit afilter

Description
TAutoFilter object is the basic object in Visual Filter Component Library. This object is used to create the Filter
Components.
The Owner property    identifies the owner component of the object. This component has to assign the Value
properties and can change the Name property. The Name property is not stored. Its default value is ‘Auto’. If the
AutoFilter is linked with a param (or a macros) of a DataSet, then a value of a param property (or a Text of a macros
property) is assigned to the Text property of the AutoFilter. The Text property is equal to    TextBefore + Value +
TextAfter.
Link the autofilter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.
The TAutoFilter object is a direct descendent of TPersistent. In addition to these properties and methods, this object
also has the methods that apply to all objects.

See also
TFilterLink

 Properties
property Name;
property Text;
property TextAfter;
property TextBefore;
property Value;

 Methods
method Create;
method Destroy;

 Events
event OnBeforeChange;
event OnAfterChange;

Name property

Applies to TAutoFilter

Declaration
Name : String;

Description
The Name property contains the name of the AutoFilter as referenced by the filter link components. By default, It
assign to ‘Auto’. You may change it to suit your needs.

Example
      AutoFilter.Name := ‘SQLOrder’;

Text property

Applies to TAutoFilter

Declaration
property Text : String;

Description
If the AutoFilter is linked with a param (or a macros) of a DataSet, then a value of a param property (or a Text of a
macros property) is assigned to the Text property of the AutoFilter. The Text property is equal to    TextBefore + Value
+ TextAfter. You never have to change the Text property directly.

TextAfter property

Applies to TAutoFilter

Declaration
property TextAfter : String;

Description
In changing the TextAfter property changes the Text property is also changed. The Text property    is equal to   
TextBefore + Value + TextAfter.

Example
MaskEditFilter1.AutoFilter.TextAfter := ‘ Desc’;

TextBefore property

Applies to TAutoFilter

Declaration
property TextBefore : String;

Description
In changing the TextBefore property changes the Text property is also changed. The Text property    is equal to   
TextBefore + Value + TextAfter.

Example
MaskEditFilter1.AutoFilter.TextBefore := ‘Order by ’;

Value property

Applies to TAutoFilter

Declaration
property Value: String;

Description
In changing the Value property changes the Text property is also changed. The Text property    is equal to   
TextBefore + Value + TextAfter.

Example
MaskEditFilter1.AutoFilter.Value := ‘last_name’;

Create method

Applies to TAutoFilter

Declaration
constructor Create(AOwner : TComponent);

Description
The Create method constructs, initializes a new autofilter object and assigns its Owner property to AOwner

Example
FAutoFilter := TAutoFilter.Create(self);

Destroy method

Applies to TAutoFilter

Declaration
destructor Destroy;

Description
The Destroy method destroys and disposes of an autofilter object instance.

Example
if(FAutoFilter <> Nil) then
    FAutoFilter.Destroy;

OnAfterChange event

Applies to TAutoFilter

Declaration
OnAfterChange: TNotifyEvent;

Description
The OnAfterChange event specifies which event handler should execute when the Text property has been changed.

OnBeforeChange event

Applies to TAutoFilter

Declaration
OnBeforeChange: TNotifyEvent;

Description
The OnBeforeChange event specifies which event handler should execute before the Text property is changed.

    TCheckBoxFilter component (Client/Server suite only)
Properties   Events

unit filtcomp

Description
The TCheckBoxFilter component is a direct descendent of TCheckBox.
The ValueChecked property assigns itself to the Value of the AutoFilter property if the Checked property is True.
The ValueUnChecked property assigns itself to the Value of the AutoFilter property if the Checked property is False.
Link the autofilter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter
property ValueChecked
property ValueUnChecked

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

AutoFilter property
Applies to TCheckBoxFilter,TReferenceFilter, TRadioGroupFilter,    TComboBoxFilter,    TDateFilter,
TLookupComboFilter, TLookupListFilter, TEasyFilter, TFilterLink, TListBoxFilter, TMaskEditFilter, TAutoDBGrid

Declaration
property AutoFilter : TAutoFilter

Description
The AutoFilter property is the instance of the owned auto filter object.

Example
CheckBoxFilter1.AutoFilter.TextBefore := ‘Order by ’;

ValueChecked property

Applies to TCheckBoxFilter

Declaration
property ValueChecked : String;

Description
The ValueChecked property assigns itself to the Value of the AutoFilter property if the Checked property is True

Example
CheckBoxFilter1.ValueChecked := ‘T’;

ValueUnChecked property

Applies to TCheckBoxFilter

Declaration
property ValueUnChecked : String;

Description
The ValueUnChecked property assigns itself to the Value of the AutoFilter property if the Checked property is False.

Example
CheckBoxFilter1.ValueUnChecked := ‘F’;

OnAfterFilterChange event
Applies to TCheckBoxFilter,TReferenceFilter, TRadioGroupFilter,    TComboBoxFilter,    TDateFilter,
TLookupComboFilter, TLookupListFilter, TEasyFilter, TListBoxFilter, TMaskEditFilter

Declaration
OnAfterFilterChange: TNotifyEvent;

Description
The OnAfterFilterChange event specifies which event handler should execute when the Text property of the owned
auto filter object has been changed.

Example
procedure TForm1.CheckBoxFilter1AfterFilterChange(Sender: TObject);
begin
      ShowMessage('You have change the checked property of the    CheckBoxFilter1');
end;

OnBeforeFilterChange event
Applies to TCheckBoxFilter,TReferenceFilter, TRadioGroupFilter,    TComboBoxFilter,    TDateFilter,
TLookupComboFilter, TLookupListFilter, TEasyFilter, TListBoxFilter, TMaskEditFilter

Declaration
OnBeforeFilterChange: TNotifyEvent;

Description
The OnBeforeFilterChange event specifies which event handler should execute before the Text property of the
owned auto filter object is changed.

Example
procedure TForm1.CheckBoxFilter1BeforeFilterChange(Sender: TObject);
begin
    ShowMessage('You have change the checked property of the    CheckBoxFilter1');
end;

    TComboBoxFilter component (Client/Server suite only)
Properties  Events

unit filtcomp

Description
The TComboBoxFilter component is a direct descendent of TComboBox.
The selected item in the combo box    assigns its Value to the Value of the AutoFilter property. If you want to assign
to the Value of the AutoFilter property the different value from the Value of Items you have to assign to the Item the
string with such pattern : ‘<Display text> ,    <Assigned Value>’.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter
property Items

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

Items property
Applies to TComboBoxFilter, TLookupComboFilter, TLookupListFilter, TListBoxFilter,TRadioGroupFilter

Declaration

property Items: TStrings;

Description
The selected item in the combo box    assign its Value to the Value of the AutoFilter property. If you want to assign to
the Value of the AutoFilter property the different value from the Display value of Items you have to assign to the
Item the string with such pattern : ‘<Display text> ,    <Assigned Value>’.

Example
Assign the array of Item the such texts:
ComboBoxFilter1.Items.Add(‘All countries’, 0);
ComboBoxFilter1.Items.Add(‘The population is more then 5000000’, 5000000);
ComboBoxFilter1.Items.Add(‘The population is more then 50000000’, 50000000);
ComboBoxFilter1.Items.Add(‘The population is more then 100000000’, 100000000);
The Value of the auto filter object will be assign to: ‘0’, ‘5000000’, ‘50000000’, ‘100000000’.

    TDateFilter component
Properties  Events

unit filtcomp

Description
The TDateFilter component is a direct descendent of TAutoDateEdit.
The Date property assign itself to the Value of the AutoFilter property.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

    TLookupComboFilter component
Properties  Events

unit filtcomp

Description
TLookupComboFilter lets you provide the user with a convenient drop-down list filter of lookup items that require
data from DataSet.
Set KeyField to the field you want copied into Value property AutoFilter object. Set ListField to display a field other
than KeyField in the combo box.
Set items property if you want to display and assign the strings which there are not in the DataSet. Items always
appear at the top    of the dropdown listbox and they are not a scrollable. If you want to assign to the Value of the
AutoFilter property the different value from the Value of Items you have to assign to the Item the string with such
pattern : ‘<Display text> ,<Assigned Value>’.
The selected item in the lookup list box    assign its Value to the Value of the AutoFilter property.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.
In addition to these properties and methods, this component also has the properties and methods that apply to all
components.

 Properties
property AutoFilter
property Items
property ItemsColor
property ItemsAligment

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

property ItemsColor

Applies to TLookupComboFilter,    TLookupListFilter

Declaration
ItemsColor : TColor

Description
The ItemsColor    is the background on which the Items are appear. Default Value of the ItemsColor is clBtnFace.

property ItemsAligment

Applies to TLookupComboFilter,    TLookupListFilter

Declaration
ItemsAligment : TAligment

Description

The ItemsAlignment property specifies how text is aligned within the component.
These are the possible values:

Value Meaning
taLeftJustify Align text to the left side of the control
taCenter Center text horizontally in the control
taRightJustify Align text to the right side of the control

    TLookupListFilter component (Client/Server suite only)
Properties  Events

unit filtcomp

Description
TLookupListFilter lets you provide the user with a convenient list box filter of lookup items that require data from
DataSet.
Set KeyField to the field you want copied into Value property AutoFilter object. Set ListField to display a field other
than KeyField in the combo box.
Set items property if you want to display and assign the strings which there are not in the DataSet. Items always
appear at the top    of the dropdown listbox and they are not a scrollable. If you want to assign to the Value of the
AutoFilter property the different value from the Value of Items you have to assign to the Item the string with such
pattern : ‘<Display text> ,<Assigned Value>’.
The selected item in the lookup list box    assign its Value to the Value of the AutoFilter property.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.
In addition to these properties and methods, this component also has the properties and methods that apply to all
components.

 Properties
property AutoFilter
property Items
property ItemsColor
property ItemsAligment

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

 TEasyFilter component (Client/Server suite only)
Properties  Events

unit filtcomp

Description
The TEasyFilter component is a direct descendent of TComponent.
The Value property assign itself to the Value of the AutoFilter property.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter
property Value;

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

Value property

Applies to TEasyFilter

Declaration
property Value : String;

Description
The Value property assign itself to the Value of the AutoFilter property.

Example
CheckBoxFilter1.Value := ‘1000’;

 TFilterLink component
Properties  Methods

unit afilter

Description
The TFilterLink component is a direct descendent of TComponent.
The TFilterLink is the auto filter link component.
The filter link component links the auto filter object with a DataSet. You have to determine at least the DataSet,   
the Filter and the Param (or the Macros) properties of the TFilterLink component. If the filter component has more
the one auto filter object the FilterName property also has to be assigned.
If the AutoRefresh property is True on Changing the Text property of the linked auto filter the linked Dataset will be
reopened or its BDE filter will be refreshed.

 Properties
property AutoFilter
property AutoRefresh
property DataSet
property Filter
property FilterName
property Macros
property Param

 Methods
method RefreshDataSet

AutoRefresh property

Applies to TFilterLink

Declaration
property AutoRefresh : Boolean;   

Description
If the AutoRefresh property is True on Changing the Text property of the linked auto filter the linked Dataset will be
reopen or its BDE filter will be refreshed.

Example
FilterLink1.AutoRefresh := True;

DataSet property

Applies to TFilterLink

Declaration
property DataSet : TDataSet;

Description
The DataSet property is the instance of the linked DataSet component.

Example
    ShowMessage(‘The filter ‘ + FilterLink1.AutoFilter.Name +

‘ is linked with DataSet ’ + FilterLink1.DataSet.Name);

Filter property

Applies to TFilterLink

Declaration
property Filter: TComponent;

Description
The Filter property is the instance of the linked filter component.

Example
FilterLink1.Filter := EasyFilter1;

FilterName property

Applies to TFilterLink

Declaration
property FilterName : String;

Description
If the filter component has more the one auto filter object the FilterName property has been assigned.

Example
FilterLink1.Filter := ReferenceFilter1;
FilterLink1.FilterName := ‘SQLOrder’;

Macro property

Applies to TFilterLink

Declaration
property Macro : String;

Description
The Macro property is name of the macro object. The Text property of this macros object is assigned to the Text
property of the linked autofilter object.

Example
FilterLink1.Macro := AutoTable1.Macros[0].Name;

Param property

Applies to TFilterLink

Declaration
property Param: String;

Description
The Param property is name of the param object. The value property of this Param object is assigned to the Text
property of the linked autofilter object.

Example
FilterLink1.Param := AutoTable1.Param[0].Name;

RefreshDataSet method

Applies to TFilterLink

Declaration
procedure RefreshDataSet;

Description
RefreshDataSet method reopens or refreshes BDE filter linked DataSet.

Example
FilterLink2.RefreshDataSet;

    TListBoxFilter component (Client/Server suite only)
Properties  Events

unit filtcomp

Description
The TListBoxFilter component is a direct descendent of TListComboBox.
The selected item in the combo box    assign its Value to the Value of the AutoFilter property. If you want to assign to
the Value of the AutoFilter property the different value from the Value of Items you have to assign to the Item the
string with such pattern : ‘<Display text> ,    <Assigned Value>’.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter
property Items

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

 TMaskEditFilter component (Client/Server suite only)
Properties                                    Events

unit filtcomp

Description
The TMaskEditFilter component is a direct descendent of TMaskEditFilter.
The Text property assign itself to the Value of the AutoFilter property.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

    TRadioGroupFilter component (Client/Server suite only)
Properties                                      Events

unit filtcomp

Description
The TRadioGroupFilter component is a direct descendent of TRadioGroup.
The selected item in the combo box    assign its Value to the Value of the AutoFilter property. If you want to assign to
the Value of the AutoFilter property the different value from the Value of Items you have to assign to the Item the
string with such pattern : ‘<Display text> ,    <Assigned Value>’.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AutoFilter
property Items

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

    TReferenceFilter component
Properties  Events

unit filtcomp

Description
The TReferenceFilter component is a direct descendent of TReference.
If ReferenceState is rsInvalided than ErrorValue property    assigns to the Value of the AutoFilter property.
If ReferenceState is rsNulled than NullValue property    assigns to the Value of the AutoFilter property.
If ReferenceState is rsValided then the Value of the AutoFilter property is assigned by the Value of the Field
specifying the AssignField property. If AssignField is not defined the AutoFilter property is assigned by the Value of
the Field specifying the KeyField property.
Link the auto filter object with a DataSet by specifying the filter link component (TFilterLink). You have to determine
at least the DataSet,    the Filter and the Param (or the Macros) properties of the TFilterLink component.

 Properties
property AssignField
property AutoFilter

 Events
event OnAfterFilterChange
event OnBeforeFilterChange

AssignField property

Applies to TReferenceFilter

Declaration
AssignField : String;

Description
If ReferenceState is rsValided then the Value of the AutoFilter property is assigned by the Value of the Field
specifying the AssignField property. If AssignField doesn’t define the AutoFilter property is assigned by the Value of
the Field specifying the KeyField property.

Example
ReferenceFilter1.AssignFiled := ‘employee_id’;

    TAutoDBGrid component
Properties  Methods  Events

unit adbgrid

Description
The TAutoDBGrid component is a direct descendent of TDBGrid and has two new features:
1. Ability to sort TDBGrid columns
2. Ability to execute search of the current selected column by hot key.
3. Ability to change color and font of the rows
4. Ability to view memo and graphic fields

1. Ability to sort TDBGrid columns
There are three type of the column sorted order: Ascsedent, Descendent, None
 (TSortedOrder = (gsNone, gsAsc, gsDesc)). There are three possibilities to make your column sorted:

1. add the ‘+’ (for ascsedent) or ‘-‘ (for descendent) character to the beginning of the Tcolumn DisplayText
property
2. press Ctrl and Click by the left mouse button to the column Title in Design time
3. call procedure SetSortedOrder(ACol : Integer; ASortedOrder : TSortedOrder) in run-time.

The TAutoDBGrid behavior is depends on the type of linked DataSet.
1. If DataSet is Table then TAutoDBGrid allows    to make columns sorted if the linked fields    indexed.
TAutoDBGrid sortes columns by changing the Value of the IndexName property.
2. If DataSet is TAutoQuery then you have to create    the ordering macros for the SQL property and link it
to the AutoFilter property of TAutoDBGrid by filter link component (TFilterLink).

For example: the SQL statement is :
‘Select name, fullname, birth_date From Customer Order by &OrderField’. ‘SQLOrder’ is the macro name. Drop
TFilterLink component to the form and assigns its properties:

a) DataSet to AutoQuery
b) Filter to AutoDBGrid
c) Macros to ‘OrderField’
3. If DataSet is TQuery you have to change the SQL properties at run time on onSortChange Event.

For example:
procedure TForm1.AutoDBGrid1SortChange(Sender: TObject);
begin

Query1.Close;
Query1.SQL[Query1.SQL.Count - 1] := ‘Order by ’
+ AutoDBGrid1.AutoFilter.Text;
Query1.Open;

end;
Note: You can’t make the sorted    calculated fields.

2. Ability to perform incremental search on the current selected column by hot key.
To show the find dialog just press hot key at run-time or call Find method:
For example:
procedure TForm1.Button1Click(Sender: TObject);
begin
    AutoDBGrid1.Find;
end;
Note: By default the hot key is VK_F7, but you can change it to another by assign const ‘acDBGridHotKey’ to your
own hot key (unit aconst.pas).
3. Ability to change Color and Font of the rows.
Now you can change the Color and Fonts of the rows. Use the OnDrawFieldCellEvent event.
For example:
If the field ‘profit’ is less then zero then the the background color of the cell with that value would be red.
procedure TMainForm.AutoDBGrid1DrawFieldCellEvent(Sender: TObject;
    Field: TField; var Color: TColor; var Font: TFont);
begin
    if(Field = AutoQuery1.FindField('profit'))
    and      (AutoQuery1.FindField(‘profit ').AsInteger < 0) then
    Color := clRed;
end;
4. Ability to view Memo and Graphic fields.
Now you can view Memo or Graphic fields in AutoDBGrid. Set AutoOptions property to [adgViewImage,
adgViewMemo] and resize the row heights.

 Properties
property AutoFilter
property CurrentSortColumn

 Methods
method Find
method GetSortedOrder
method SetSortedOrder

 Events
event OnSortChange

CurrentSortColumn property

Applies to TAutoDBGrid

Declaration
property CurrentSortColumn : smallest;

Description
The CurrentSortColumn property is the number of the column which is currently sorted. If the AutoDBGrid is not
sorted the CurrentSortColumn is -1.

Example
 if(AutoDBGrid1.CurrentSortColumn > 0) then
    ShowMessage(‘AutoDBGrid1 is sorted by ’ + AutoDBGrid1.Columns[AutoDBGrid1.CurrentSortColumn].FieldName);

Find method

Applies to TAutoDBGrid

Declaration
procedure Find;

Description
Call method Find to show the find dialog with the list of Values of the selected Column.

GetSortedOrder method

Applies to TAutoDBGrid

Declaration
function GetSortedOrder(ACol : Integer) : TSortedOrder;

Description
Method GetSortedOrder return the type of the column sorted order. ACol is the number of the column.
(TSortedOrder = (gsNone, gsAsc, gsDesc)).

SetSortedOrder method

Applies to TAutoDBGrid

Declaration
procedure SetSortedOrder(ACol : Integer; ASortedOrder : TSortedOrder);

Description
Method SetSortedOrder set the new type of the column sorted order. ACol is the number of the column.
ASortedOrder is the new sortedorder type.
(TSortedOrder = (gsNone, gsAsc, gsDesc)).

OnSortChange event

Applies to TAutoDBGrid
Declaration
property OnSortChange : TNotifyEvent;

Description
The OnSortChange event specifies which event handler should execute when the CurrentSortCoulumn property has
been changed.

    TAutoDBDateEdit component
Properties

Unit aDatEdit

Description
The TAutoDBDateEdit component is a direct descendent of TDBEdit.
The TAutoDBDateEdit control has the bitbutton. On the onclick event of the bitbutton the date setting dialog form
will be shown. The name of the months and days    are fetched from the LOCALE_SMONTHNAME and
LOCALE_SDAYNAME system locale entries.

 You can see the date setting dialog form for Russian Windows 95.
The Date property is the date showing on the edit box.
If the IsDateNow property is True and    the Date property is Nil then the current date is assigned to the Date
property.
   

 Properties
property Date
property IsDateNow

Date property

Applies to TAutoDBDateEdit , TAutoDateEdit

Declaration
property Date: TDateTime;

Description
The Date property is the date showing on the edit box.

IsDateNow property

Applies to TAutoDBDateEdit,TAutoDateEdit

Declaration
property IsDateNow : Boolean;

Description
If the IsDateNow property is True and    the Date property is Nil then the current date is assigned to the Date
property.

    TDBReference component
Properties Methods Events

unit adbgrid

Description
The TDBReference component is a direct descendent of TReference.
The TReference is inherited from TWinControl.
The TDBReference is more powerful then TDBLookupComboBox.
The TDBReference component    has the follow abilities:

1.type the KeyValue in EditBox and search for the    necessary record in the all Table (By executing the
2.SQL, which should fetch only one record)
3.show whether the typed Value is right or not (For example: show the firstname and lastname of the
employee by typing his id)
4.show the form with DBGrids, with a strongly limited Dataset
5.add the controls to the bottom panel of the lookup form
6.editing on the fly
7. perform searching the necessary Value in    the columns of the DBGrid on the fly

Set the DataSource property to the data source that will receive the user's selection. Set the DataField to either the
field to receive the user's selection or a lookup field.
Set the ListSource property to the data source of the table holding the lookup items.
Set KeyField to the field you want to type in the Edit Box. Set AssingField to the field you want it to be copied into
DataField. If AssingField is Nil then KeyField will be copied into DataField. Set Columns to display fields in the popup
form.
If ReferenceState is rsInvalided than ErrorValue property will be copied into DataField.
If ReferenceState is rsNulled than NullValue property will be copied into DataField.
Set the VisibleText property to True to show the Reference Text. Set PatternText to display text of the Reference Text.
To display the value of the Field use ‘&’ character (‘&fieldname’).
Set the ReferencePanel property to display the ReferencePanel control on the bottom of the PopUp Form.
Set the UseQuery    property to True to execute a query on changing the reference Edit Box. The SQL statement is
automatically created. This Query try to fetch only one record searching for the entered Text in the Table (the
TableName    property is name of that Table) in AssignField or KeyField field. It’s very useful for the remote DataBase
especially if there are a lot of records in the table. If the UseQuery    property is False the searching is executed in
the DataSet linking with ListSource.

 Properties
AlignText Font State
AssignField FontText SQLOrderFilter
CanUseQuery Glyph TableName
Columns KeyField Text
CurrentSortColumn ListSource TextOnError
DataField NumGlyphs UseQuery
DataSource Options VisibleText
EditWidth PatternText WinHeight
ErrorValue ReferencePanel WinWidth

 Methods
ChangeTextByPattern GetQuery
FindByKeyField GotoKeyFieldValue
FindByKeyFieldInList RefreshText

 Events
OnChange

AlignText property

Applies to TDBReference

Declaration
property AlignText : TAlignReferenceText;

Description
TAlignReferenceText = (rtLeft, rtRight);
The AlignText property determines    where the reference edit is allocated
(rtLeft is the default Value)

Example
DDreference1.AlignText := rtRight;

AssignField property

Applies to TDBReference

Declaration
property AssignField : String

Description
The AssingField property is the field which you want it to be copied into DataField. If AssingField is Nil then KeyField
will be copied into DataField.

Example
DDreference1.AssignField := ‘id’

CanUseQuery property

Applies to TDBReference

Declaration
CanUseQuery : Boolean;

Description
Run-time and read only. If the UseQuery property is True and the Query is executed without errors the CanUseQuery
property assigns True otherwise assigns False and the searching makes in the DataSet linking with the ListSource
property.

Columns property

Applies to TDBReference

Declaration
property Columns : TDBGridColumns

Description
The Columns property is the columns of the AutoDBGrid which use in the pop up form.

CurrentSortColumn    property

Applies to TDBReference

Declaration
property CurrentSortColumn : integer

Description
The CurrentSortColumn property is the CurrentSortColumn property of the AutoDBGrid which use in the pop up
form.

Example
DBReference1.CurrentSortColumn := 2;

DataField property

Applies to TDBReference

Declaration
property DataField: string;

Description
The DataField property identifies the field from which the reference edit box.

DataSource property

Applies to TDBReference

Declaration
property DataSource: TDataSource;

Description
The DataSource property determines where the component obtains the data to display. Specify the data source
component that identifies the DataSet the data is found in.

EditWidth property

Applies to TDBReference

Declaration
property EditWidth : Integer

Description
The EditWidth property is the width of the reference edit box

Example
DBReference1.EditWidth := 75;

ErrorValue property

Applies to TDBReference

Declaration
property ErrorValue : String

Description
If ReferenceState is rsInvalided then ErrorValue property will be copied into DataField.

Example
DBReference1.ErrorValue := ‘unknown’;

Font property

Applies to TDBReference

Declaration
property Font: TFont;

Description
The Font property is a font object of the reference edit box.

FontText property

Applies to TDBReference

Declaration
property FontText: TFont;

Description
The FontText property is a font object of the reference Text.

Glyph property

Applies to TDBReference

Declaration
property Glyph: TBitmap;

Description
The Glyph property is a glyph object of the reference BitButton.

KeyField property

Applies to TDBReference

Declaration
property KeyField    : String

Description
The KeyField property is the field which you want to type in the Edit Box. If AssingField is Nil then KeyField will be
copied into DataField.

Example
DBReference.KeyField := ‘last_name’

ListSource property

Applies to TDBReference

Declaration
property ListSource : TDataSource

NumGlyphs property

Applies to TDBReference

Declaration
property NumGlyphs: Integer;

Description
The NumGlyphs property is a numglyphs property of the reference BitButton.

Options property

Applies to TDBReference

Declaration
property Options : TDBGridOptions

Description
The Options property is the Options property of the AutoDBGrid which use in the pop up form.

PatternText property

Applies to TDBReference

Declaration
property PatternText : String

Description
The PatternText    property is the pattern of    the reference text. To display the value of the Field use ‘&’ character
(‘&fieldname’). The PatternText property applies if the State is rsValided.
See also TextOnError.

Example
DBReference1.ParttenText := ‘&capital is the capital of &country’
‘capital’ and ‘country’ is the field name.

ReferencePanel property

Applies to TDBReference

Declaration
property ReferencePanel : TReferencePanel

Description
The ReferencePanel property is the instance to the ReferencePanel control. The ReferencePanel control display on
the bottom of the PopUp form. You can throw Delphi or Filter controls on it and they appear on the Popup form.

Example
DBReference1.ReferencePanel := ReferencePanel1;

SQLOrderFilter property

Applies to TDBReference

Declaration
property SQLOrderFilter: TAutoFilter

Description
The SQLOrderFilter property is the instance of the auto filter object of the AutoDBGrid which use in the pop up form.

State property

Applies to TDBReference

Declaration
State : TReferenceState;

Description
Run-time and read only. The State property specifies the current state of the reference. The possible values are
those of the TReferenceState type:
· rsInvalided when the text entered into the reference edit box is invalidated
· rsNulled when there is no text in the reference edit box
· rsValided when the text entered into the reference edit box is typed right

TableName property

Applies to TDBReference

Declaration
property TableName : TFileName

Description
The TableName property is used if the UseQuery property is True. The reference query will try to fetch the record
from the table which name is TableName.

Example
DBReference1.TableName := ‘EMPLOYEE’;

Text property

Applies to TDBReference

Declaration
property Text : String

Description
The Text property determines the text that appears within an reference edit box control.

Example
DBReference1.Text := ‘num_123’;

TextOnError property

Applies to TDBReference

Declaration
property TextOnError : String

Description
The TextOnError property display its text in the reference text. The TextOnError property applies if the State is
rsInvalided. The default Value is ‘Invalidate’
See also PatternText.

Example
DBReference1.TextOnError := ‘There is not the employee with the such KeyValue’;

UseQuery property

Applies to TDBReference

Declaration
property UseQuery : Boolean

Description
If the UseQuery    property is    True then on changing the reference Text, instead of searching for the entered Text in
the DataSet linked with the ListSource,    the query is executed to search the record in the hole Table. The SQL
statement is automatically created. This Query try to fetch only one record searching for the entered Text in the
Table (the TableName    property is name of that Table) in AssignField or the KeyField field. It’s very useful for the
remote DataBase especially if there are a lot of records in the table. If the UseQuery    property is False the
searching is made in the DataSet linking with ListSource. If the Query is executed without errors the CanUseQuery
property is assigned True otherwise it is assigned False and the search is made in the DataSet.

Example
DBReference1.UseQuery := True;

VisibleText property

Applies to TDBReference

Declaration
property VisibleText : Boolean

Description
If the VisibleText property is True the reference Text displays.

Example
DBReference1.VisibleText := True;

WinHeight property

Applies to TDBReference

Declaration
property WinHeight : Integer

Description
The WinHeight property is the Height of the PopUp Form. You can change its Value in the Component Editor in
design time.

Example
DBReference1.WinHeight := 200;

WinWidth property

Applies to TDBReference

Declaration
property WinWidth : Integer

Description
The WinWidth property is the Width of the PopUp Form. You can change its Value in the Component Editor in design
time.

Example
DBReference1. WinWidth := 300;

ChangeTextByPattern method

Applies to TDBReference

Declaration
function ChangeTextByPattern(St : String) : String

Description
If the State property is Validated the result is the text where the St parameter is your Pattern Text

Example
St := ChangeTextByPattern(‘&capital is capital of &country’);
Where the &capital and &country is the name of the fields. The possible result is:
Moscow is capital of Russia.

GetQuery method

Applies to TDBReference

Declaration
function GetQuery : TQuery

Description
Return the reference query. If the UseQuery property is False the result will be Nil.

Example
if(DBReference1.GetQuery <> Nil) And Not (DBReference1.GetQuery.EOF) then begin
    ShowMessage(‘The Value of the KeyField of the reference query is: ’ +
DBReference1.GetQuery.FindField(‘KeyField’).AsString);
end;

FindByKeyField method

Applies to TDBReference

Declaration
function FindByKeyField(V : Variant) : Boolean

Description
FindByKeyField method    searches for the V parameter in the KeyField of the DataSet linking with the ListSource
property (by calling the FindByKeyFieldInList method) or tries to execute the reference query at first if the UseQuery
property is True. The method returns True if the record is found otherwise it returns False.

Example
if (DBReference1.FindByKeyField(varString (Edit1.Text))) then begin
    ...
end;

FindByKeyFieldInList method

Applies to TDBReference

Declaration
function FindByKeyFieldInList(V : Variant) : Boolean

Description
FindByKeyFieldInList method    searches for the V parameter in the KeyField of the DataSet linking with the
ListSource property. The method returns True if the record is found otherwise it returns False.

Example
if (DBReference1.FindByKeyFieldInList(varString (Edit1.Text))) then begin
    ...
end;

GotoKeyFieldValue method

Applies to TDBReference

Declaration
procedure GotoKeyFieldValue;

Description
Use the GotoKeyFieldValue method to synchronize the positions of the reference Query and the DataSet linking with
the ListSourse property.

Example
if (DBReference1.State = rsValidated) then
    DBReference1.GotoKeyFieldValue;

RefreshText property

Applies to TDBReference

Declaration
procedure RefreshText;

Description
Update the reference text.

Example
DBReference1. RefreshText;

OnChange event

Applies to TDBReference

Declaration
property OnChange : TNotifyEvent;

Description
The OnChange event is activated when the text of the reference edit box or the Value of the AssignField of the
TDBReference is changed.

Example
procedure TForm1.Reference1Change(Sender: TObject);
begin
    ShowMessage('The text    of the reference edit box is changed');
end;

    TReference component

unit adbgrid

Description
The TReference component is a direct descendent of TWinControl.
The TReference is a very similar to the TDBReference but TReference doesn’t have the DataField, DataSource and
AssignField properties.
See TDBReference for more information.

    TAutoDateEdit component
Properties

Unit aDatEdit

Description
The TAutoDateEdit component is a direct descendent of TEdit.
The TAutoDateEdit control has the bitbutton. On the onclick event of the bitbutton the date setting dialog form will
be shown. The name of the months and days    are fetched from the LOCALE_SMONTHNAME and LOCALE_SDAYNAME
system locale entries.
The Date property is the date showing on the edit box.
If the IsDateNow property is True and    the Date property is Nil then the current date is assigned to the Date
property.
See also TAutoDBDateEdit.   

 Additional properties
property Date
property IsDateNow

    TReferencePanel component (Client/Server suite only)
Properties

unit refer

Description
The TAutoDateEdit component is a direct descendent of TWinControl.
Only the reference controls use the ReferencePanel component. The    ReferencePanel control displays on the
bottom of the PopUp Form. You can place on it a Delphi or Filter controls.
To change the State property use the Component Editor.

 Additional properties
property Style;

Style property

Applies to TReferencePanel

Declaration
property Style : TReferencePanelStyle;

Description
The State property specifies the style of the reference panel. There is the Component Editor for changing this
property.
The possible values are those of the TReferencePanelStyle type:
1.bpComponent when the reference panel is shown on your like form the not control component.
2.bpStandart when the reference panel is shown on your form like all other controls.

Contacting Info
e-mail: rsd@tibc.tula.ru
INTERNET : HTTP:\\WWW.RSD.PP.RU
fax: +7 0872 770183

Authors:
1.Andrey Telnov and Roman Eremin - idea of creating the current project (Auto Components Library 32)
2.Andrey Telnov - programming
3.Roman Eremin and Dmitry Rogov - internal testing
4.Dmitry Rogov and Ura Sergeev - creating of the help system
5 Dmitry Rogov - creating Auto32 Expert
6.Ura Sergeev - technical support

Especial thanks for testing and suggestion to Theo Pistorius, M.D. Nazca Software (South Africa).

