
Expression Calculator 2.1 Multithread Help
About the Expression Calculator

Multithread Support / What's new / FAQ
User's guide for the Expression Calculator

Mathematical Repository

 

(The Expression Calculator is dedicated to the genious of a swiss guy, Leonhard Euler)

(c) Daniel Doubrovkine
Stolen Technologies Inc. - University of Geneva

MCMXCVI - All Rights Reserved
e-mail welcome: dblock@infomaniak.ch / doubrov5@cui.unige.ch

http://www.infomaniak.ch/~dblock/express.htm



About the Expression Calculator
Expression Calculator is a powerful mathematical expressions evaluator. It is full 32 bit 
object oriented and is designed for Windows NT and Windows 95.

Expression Calculator 2.0 has been developped with (c) Borland Delphi 2.0 under Windows 
NT (TM).
          
Disclaimer: this software is absolutely free for any kind of use. You may not modify, sell or 
abuse of it without a total unforced conscent of the author. You are encouraged by all means
to distribute this software. Though the Expression Calculator has been diligently tested to 
provide absoulutely correct evaluation results, I will still not be responsible for eventual 
errors caused directly or indirectly by the Expression Calculator itself, any kind of misuse, 
bugs in processors (looks familiar) or any external influence by any kind of life or artificial 
intelligence form. The author of this software will not be held responsible for any sort of 
consequences caused by a false calculation of the Expression Calculator, including space 
shuttle explosions and political crisis. (Okay, this is just a disclaimer, please don't be afraid to use this 
program...). 

The Expression Calculator has not been ripped from anywhere, all meterial used has been 
listed below. The Expression Calculator includes uninherited TreeView32 (v.1.2) & 
MathCalc32 (v.2.1) ( TThread ) multithread objects (c)    Daniel Doubrovkine (1996). 
Expression Calcualtor calculates a huge number of mathematical expressions with a 
satisfactory precision of between 10 and 20 decimals. Expression Calculator has a true 
multithread capability due to it's rigourous object oriented style and it's powerfull calculation
thread generator. This means you can calculate as many expressions as you like at the same
time and launch any other calculation before a previous task is finished.

For bugs, problems, money, decent and serious proposals, please contact (best by e-mail):

Daniel Doubrovkine
11, chemin de la Clairière

1207 Geneva
Switzerland

tél & fax: 41 (0) 22 735 69 47
e-mail: dblock@infomaniak.ch / doubrov5@cui.unige.ch

Any kind of notes or support welcome!

Material used for writing this cool calculator: N. Wirth (Federal Politechnic Institute of Zürich...the guy who has
written the bases of modern Pascal) - "Algorithms+Data Structures=Programs", R. Sedgewick (University of

Princeton) - "Algorithms in C language" (even though the Expression Calculator has been written in Object Pascal),
E.Hairer G. Wanner (University of Geneva) - "Analysis by it's History" (gee, my math course, really excellent book),

some other books i've checked as well as my algebra course. There's also some code from the S.W.A.G Pascal
support team.



Expression Calculator User's Guide
The general idea of the Expression Calculator is that you can write any valid mathematical 
expression and the program will calculate it for you. You must distinguish several parts of 
the Expression Calculator:

- parameters

when launching the Expression Calculator you can specify parameters at the 
command line:
small : initialize the Expression Calculator small
medium : initialize the Expression Calculator medium
any other parameter will be ignored and the Expression Calculator will be initialized 
in the scientific mode

- the Result Grid

The Result Grid provides a history for calculation. Clicking with the left button of the 
mouse on a cell will copy it's operational command to the input box for reevaluation. 
In order to insure maximum precision, the result is not taken, but will be reconsidered
entirely. Clicking with the right button on a running task will pop a menu that allows 
to abort, suspend and resume a task or all tasks. The size of this grid is virtually 
infinite.

- the Input Box

The Input Box is used to enter an expression. You max enter any natural expressions 
the Expression Calculator understands. Check the repository for the complete list. 
The Expression Calculator is of    course parenthesis and mathematical order aware. 
Try entering 2+2 and pressing enter, the result should be somewhere around 4.

- the Result Panel

The Result Panel shows the latest result of an operation. It contains a rounded to two 
decimals result as well almost untruncated value. It also contains indicators for the 
calculation modes, Radient and Degree for the moment. The Result Panel has two 
arrows to wrap and unwrap the Expression Calculator from a scientific to a less 
scientific view.

- the Modes Panel

The Modes Panel allows to know at any moment the number of tasks running as well 
as to switch between the RADient and the DEGree mode. The Mode Panel contains a 
button (right arrow) for rarely used but useful and powerful functions. By switching 
between the DEG/RAD (decimal modes), HEXadecimal, BINary and OCTal mode 
results and valid input will change consequently.

- the Functions' Panel

Divided in two parts, the Functions Panel contains operational flags for inverse, 
hyperbolic and negative functions:
ARC: inverse functions flag (SIN becomes ARCSIN)
HYP: hyperbolic functions flag (SIN becomes SINH, with the ARC enabled, SIN 
becomes ARCSINH)



NOT: inverse logical operations, XOR becomes XNOR, etc.

ABORT: prompts for aborting all running tasks
ABOUT: shows the about Expression Calculator Window

By pressing any other function button, the corresponding operation will be inserted at
the cursor position of the Input Box. Check the repository for the complete list of 
functions.

- the Operations' Panel

Same as Functions Panel, this later contains the simple operations you may want to 
perform, as well as the variable support:

STO: store a single character variable (prompts a window with available variables)
RCL: restore a single character variable (prompts a window with available variables)
ANS: the last calculated expression
EXP: *10^expression
OFF: quit the expression calculator (you will be prompted if tasks running)
AC: clear all operations (you will be prompted if tasks running)
C: clear the current input
DEL: delete the actual input character



Mathematical Repository
This repository contains all the functions the Expression Calculator can perform with their 
mathematical description.

+ (plus)
- (minus)
* (product)
/ (division)
% (percentage)
¦ (integer division)
^ (power)
! (factor)
\ (root)
abs
and
arccos
arccosh
arccot
arccoth
arccsc
arccsch
arcsec
arcsech
arcsin
arcsinh
arctan
arctanh
average
beta
binom
ceil
cos
cosh
cot
coth
csc
csch
e
exp
fib (fibonacci)
floor
frac
gamma (Euler's Gamma)
gcd (greatest common divisor)
genmers
int
lcm (least common multiple)
ln
log
logn
m (modula)
max
mersienne



mersiennegen
mersgen
min
nand
new
nor
not
or
perfect
phi (eInd)
Pi, E
prime
primec
primen
random
round
sec
sech
shl
shr
sin
sinh
sqr
sqrt
tan
tanh
trunc
xnor
xor



+
description: simple addition
syntax: x + y
domain: + : (R x R) -> R
example: 2 + 2 = 4



-
description: simple substraction
syntax: x - y
domain: - : (R x R) -> R
example: 2 - 8 = -6



*
description: simple product
syntax: x * y
domain: * : (R x R) -> R
example: 2 * 2 = 4 



/
description: simple division
syntax: x / y
domain: / : (R x R*) -> R*
example: 2 / -2 = -1



m
description: modula division
syntax: x m y | x,y legal expressions, y <> 0
domain: m: (R x R) -> Z
example: 4 m 2 = 0
notes: errors will occur if combined to a variable like pm2 will be understood as a 

function and an error reported, you should put p in parenthesis to avoid this 
error, example: (p)m2=0 if p=4. Non integer values are truncated before the 
modula division.



%
description: left percentage of right expression
syntax: x % y
domain: % : (R x R) -> Z
example: 4%2=0.08
notes: percentage    is calculated sign independent, then multiplied by both signs.



¦
description: integer division
syntax: x ¦ y
domain: ¦ : (R x R*) -> R
example: 4.1¦ 2 = 2
notes: first makes the division, then truncates the value



^
description: power, elevates a number into a power
syntax: x ^ y
domain: ^ : (R x R) -> R
example: 4 ^ 3 = 64



!
description: factor
syntax: x !
domain: ! : R \ { Z- } -> R
example: - 2.1! = 9.71
notes: uses Euler's Gamma function method for huge or non integer positive or 

negative numbers:
Step of 0.01 is used for the integral and infinity replaced by 100 which is 
definetely more than enough. 
0! = 1 by definition

 



\
description: root 
syntax: x \ y
domain: \ : R* -> R

and a pair root cannot be calculated for a negative number
example: 3 \ 8 = 2
notes: x \ y = y^(1 / x)



xor
description: bitwise xor
syntax: x xor y
domain: xor: (Z (trunc(R)) x Z (trunc(R))) -> Z
example: 2 xor 4 = 6
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is xored:
0 0 0
0 1 1
1 0 1
1 1 0



xnor
description: bitwise xnor
syntax: x xnor y
domain: xnor: (Z (trunc(R)) x Z (trunc(R))) -> Z
example: 2 xnor 4 = -8
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is xnored:
0 0 1
0 1 0
1 0 0
1 1 1



and
description: bitwise and
syntax: x and y

x & y
domain: and: (Z (trunc(R)) x Z (trunc(R))) -> Z
example: 3 and 9 = 1
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is anded:
0 0 0
0 1 0
1 0 0
1 1 1



nand
description: nand
syntax: x nand y
domain: nand: Z (trunc(R)) x Z (trunc(R))) -> Z
example: 3 nand 9 = 1
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is nanded:
0 0 1
0 1 1
1 0 1
1 1 0



or
description: or
syntax: x or y
domain: or: (Z (trunc(R)) x Z (trunc(R))) -> Z
example: 2 or 4 = 6
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is ored:
0 0 0
0 1 1
1 0 1
1 1 1



nor
description: nor
syntax: x nor y
domain: nor: (Z (trunc(R)) x Z (trunc(R))) -> Z
example: 2 nor 4 = -7
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is nored:
0 0 1
0 1 0
1 0 0
1 1 0



Not
description: bitwise Not
syntax: Not ( x )
domain: Not: Z (trunc(R)) -> Z
example: Not ( 1 ) = 2
notes: if the values of expressions for x and y are not integer, they are truncated

each bit is inversed:
0 1
1 0



Lcm
description: Least Common Multiple between up to as many arguments as wanted
syntax: Lcm (x , ... , y)
domain: Lcm: (Z x Z) -> Z
example: Lcm (14,4) =28
notes: Lcm (x,y):=(u div gcd(u,v))*v)

ppcm does the same thing and stands for "le Plus Petit Commun Multiple"



Gcd
description: Greatest Common Divisor between up to as many arguments as wanted
syntax: Gcd (x , ... , y)
domain: Gcd: (Z x Z) -> Z
example: Gcd (3213,24) =3
notes: there's a very simple algorithm to find the greatest common divisor between 

two integers:

    t: of x,y type;
while x <> 0) do begin

t::=x-trunc(x/y)*y; {t::=x mod y}
x:=y;
y:=t;
end;

gcd := x;

pgcd does the same thing and stands for "le Plus Grand Commun Diviseur"



Fib
description: Fibonacci integers
syntax: Fib(x)
domain: Fib : N -> N
example: Fib ( 56 ) = 2.258e11
notes: Fibonacci is defined this way:

Fib (x < 2) := x
Fib (x) := Fib(x-1) + Fib(x-2)
The current function uses a super fast iterative matrix method and is able to 
calculate Fibonacci numbers up to fib(2^14).



Gamma
description: Euler's Gamma functions
syntax: Gamma (x, step)
domain: Gamma : (R \ {integer negative numbers} x R) -> R
example: Gamma (0.5) = Sqrt (pi) = 1.77
notes:

 
The function has been extended by Euler to negative values with the help of 

 .
 By the way, Gamma (1/5) = Sqrt(Pi). Thus, this function diverges for integer negative 
values. 
Check the factorial and Euler's beta functions for a concrete use of the gamma function.



shl
description: bitwise shift left
syntax: Shl (x , y) 
domain: Shl : (Z x Z) -> Z
example: Shl (2,1) = 4
notes: shifts the values of x left of y positions, same as multiplying by 2^y



shr
description: bitwise shift right
syntax: Shr (x , y) 
domain: Shr : (Z x Z) -> Z
example: Shr (2,1) = 1
notes: shifts the values of x right of y positions, same as dividing by 2^y



Min
description: chooses the smallest value between up to as many arguments as wanted
syntax: Min (x , ... , y)
domain: Min : (R x R) -> R
example: Min (1,2) = 1



Max
description: chooses the biggest value between up to as many arguments as wanted
syntax: Max (x , ... , y)
domain: Max : (R x R) -> R
example: Max (1,2,234) = 234



Phi
Ind

description: Euler's indicator
syntax: Phi ( x ) or eInd ( x ) 
domain: Phi : Z -> N
example: Phi ( 12 ) = 4
notes: Euler's indicator is the number of prime numbers to the integer argument. Phi 

( x ) = Phi ( -x ).
Phi(x): Zm -> Z1*Z2...Zm is a isomorphism, meaning that the decomposition 
of any number into a product of prime numbers is unique. Euler has 
demonstrated this theoreme and added that Phi ( x ) = x * (1-1/p1)*...*(1-
1/pn), where p1...pn are prime number from the decomposition of x, taken 
once. Thus 12=2^2*3 and Phi (12) = 12 * (1-1/2) * (1-1/3) which is always an 
integer value and is equal to 4. Thus, there are 4 primes inferiour and to 12.



Frac
description: fractionary part of a number
syntax: Frac ( x )
domain: Frac : R -> Z
example: Frac (1.345) = 0.35
notes: Frac ( x ) = x - Trunc ( x )



Abs
description: absolute value of a number
syntax: Abs ( x ) 
domain: Abs : R -> R
example: Abs ( -2 ) = 2



Int
description: integer part of the number
syntax: Int ( x )
domain: Int : R -> R
example: Int (2.1) = 2



Round
description: rounds a number to the closest integer
syntax: Round ( x ) 
domain: Round : R -> Z
example: Round (-2.1) = -2



Trunc
description: truncates the number to an integer
syntax: Trunc ( x )
domain: Trunc : R -> Z
example: Trunc (2.1) = 2



Log
description: 10 based logarithm of it's argument
syntax: Log ( x )
domain: Log : R+ -> R
example: Log (10^45) = 45



Logn
description: calculates any based logarithm
syntax: Logn (base, x)
domain: Logn : (R+, R+) -> R
example: Logn (2,8) = 3



Exp
description: exponential of the argument
syntax: Exp ( x )
domain: Exp : R -> R
example: Exp (3) = 20.09
notes: raises E (2.72...) in the power of x



Ln
description: natural logorithm of the argument
syntax: Ln ( x ) 
domain: Ln : R+ -> R
example: Ln (E) = 1



Ceil
description: calculates the ceiling of the argument
syntax: Ceil ( x )
domain: Ceil : R -> R
example: Ceil (2.1) = 3

Ceil (-2.1) = -2



Floor
description: calculates the floor of the argument
syntax: Floor ( x )
domain: Floor : R -> R
example: Floor (2.1) = 2

Floor ( -2.1) = -3



Sqrt
description: square root of an argument
syntax: Sqrt ( x )
domain: Sqrt : R \ {R-} -> R \ {R-}
example: Sqrt (4) = 2



Sqr
description: raises the argument to it's second power
syntax: Sqr ( x ) 
domain: Sqr : R -> R
example: Sqr (2) = 4



Random
description: returns a random number <= to the argument
syntax: Random ( x ) 
domain: Random : R+ -> R \ {R-}
example: Random ( 8 ) = 4



New
description: new will prompt for redefining all the variables inside of the expression
syntax: New ( expression )
notes: "new" alone will delete all the variables currently in memory



Sin
description: sine of the argument
syntax: Sin ( x )
notes: check the calculator mode before you perform any trignonometric calculation

90° = pi / 2 = 100 grad



Cos
description: cosine of the argument
syntax: Cos ( x )
notes: check the calculator mode before you perform any trignonometric calculation

90° = pi / 2 = 100 grad



Tan
description: tangent of the argument
syntax: Tan ( x )
notes: check the calculator mode before you perform any trignonometric calculation

90° = pi / 2 = 100 grad



Cot
description: cotangent of the argument
syntax: Cotan ( x )
notes: check the calculator mode before you perform any trignonometric calculation

90° = pi / 2 = 100 grad



Sinh
description: hyperbolic sine of the argument
syntax: Sinh ( x )



Cosh
description: hyperbolic cosine of the argument
syntax: Cosh ( x )



Tanh
description: hyperbolic tangent of the argument
syntax: Tanh ( x )



Cotanh
description: hyperbolic cotangent of the argument
syntax: Cotanh ( x )



Arcsin
description: inverse sine of the argument
syntax: Arcsinh ( x )
notes: check the calculator mode before you perform any trignonometric calculation



Arccos
description: inverse cosine of the argument
syntax: Arccos ( x )
notes: check the calculator mode before you perform any trignonometric calculation



Arctan
description: inverse tangent of the argument
syntax: Arctan ( x )
notes: check the calculator mode before you perform any trignonometric calculation



Arccot
description: inverse cotangent of the argument
syntax: Arccot ( x )
notes: check the calculator mode before you perform any trignonometric calculation



Arcsinh
description: inverse hyperbolic sine of the argument
syntax: Arcsinh ( x )



Arccosh
description: inverse hyperbolic cosine of the argument
syntax: Arccosh ( x )



Arctanh
description: inverse hyperbolic tangent of the argument
syntax: Arctanh ( x )



Arccoth
description: inverse hyperbolic cotangent of the argument
syntax: Arccoth ( x )



Sec
description: secant of the argument
syntax: Sec ( x )
notes: Sec ( x ) = 1/ Cos ( x )



Csc
description: cosecant of the argument
syntax: Csc ( x )
notes: Csc ( x ) = 1/Sin ( x )



Sech
description: hyperbolic secant of the argument
syntax: Sech ( x )
notes: Sech ( x ) = 1/ Cosh ( x )



Csch
description: hyperbolic cosecant of the argument
syntax: Csch ( x )
notes: Csch ( x ) = 1/ Sinh ( x )



Arcsec
description: inverse secant of the argument
syntax: Arcsec ( x )
notes: Arcsec ( x ) = Arccos (1/ x)



Arccsc
description: inverse cosecant of the argument
syntax: Arccsc ( x )
notes: Arccsc ( x ) = Arcsin (1/ x)



Arcsech
description: inverse hyperbolic secant of the argument
syntax: Arcsech ( x )
notes: Arcsech ( x ) = Arccosh (1/ x)



Arccsch
description: inverse hyperbolic cosecant of the argument
syntax: Arccsch ( x )
notes: Arccsch ( x ) = Arcsinh (1/ x)



Prime
description: latest prime number <= argument
syntax: Prime ( x )
domain: Prime : R -> N
example: Prime (86) = 83
notes: The routine of prime numbers calculation constructs a primes table while 

calculating higer prime numbers. It thus uses a powerful method to provide 
and immediate result if the prime number has already been calculated.
Use primec to get the number of primes inferiour to a value.
Use primen to get the nth prime.



e
description: raises a number into a 10 power
syntax: x e y
domain: e : R -> R
example: 3e4 = 30000



E, Pi
E = 2.71... ln(E)=1 - Euler's number: 1+1+1/2!+1/3!+1/4!+...

Pi = 3.14... - perimeter of half of the unit circle



Mersienne
description: finds the closest mersienne number inferior to the parameter (and < 2^32)
syntax: Mersienne ( x )    
domain: Mersienne : [3,2^32] -> (3,7,31,127,8191,131071,524287,2147483647)
example: Mersienne (145) = 127
notes: when 2^n-1 is prime it is said to be a Mersenne prime. 

M(p) = 2^p-1 
P(p) = 2^(p-1)(2^p-1) is by the way a perfect number!
(taken from http://www.utm.edu/research/primes, a much bigger table of Mersienne, Prime and 
perfect numbers can be found there...)



MersienneGen
description: finds the closest mersienne generator inferior to the parameter (and < 32)
syntax: MersienneGen ( x )    
domain: Mersienne : [2,32] -> (2,3,5,7,13,17,19,31)
example: MersienneGen (8) = 7



MersGen
description: finds the mersienne number for a mersienne generator
syntax: MersGen ( x )    
domain: x must be a mersienne generator



GenMers
description: finds the mersienne generator for a mersienne number
syntax: GenMers ( x )    
domain: x must be a mersienne number



Perfect
description: finds the closest inferior perfect number to the parameter
syntax: Perfect ( x )
domain: Perfect : R+ -> ()
example: Perfect (1231) = 496
notes: a positive integer n is called a perfect number if it is equal to the sum of all 

of its positive divisors, excluding n itself. 
6, 6=3*2*1=3+2+1
28, 28=14*7*4*2*1=14+7+4+2+1
there is a direct relation to the mersienne primes M(n) := (2^n-1):
- k is an even perfect number if and only if it has the form 2^(n-1)*(2^n-1). 
- if 2^n-1 is prime, then so is n. 
Finally, it is not known whether or not there is an odd perfect number, but if 
there is one it is big! 
(taken from http://www.utm.edu/research/primes)



Multithread Expression Calculator - what's new / frequently asked
questions?

What's new?

 version 2.0 of the Expression Calculator has been rewritten using a powerful native 
multithread support of 32 bit systems such as Windows NT and ... well, still a _multithread_ 
support ... Windows 95.

the version 2.01 has a faster prime generation algorithm, speeding up 2.5 time approx the 
previous versions' calculations and eating 3 times less memory

(version 2.02)
 

- the following functions will now accept up to 255 parameters: max, min, gcd, lcm
- max, - min, - gcd, - lcm, - gamma & - logn will now work correctly as their _positive_ 
versions
- added average function

(version 2.03/2.04/2.05/2.06)

- faster calculation interrupt routine using native Win NT / 95 thread support instead of 
pseudo single task interrupt requests (you may now interrupt more than one calculation thread at the 
same time...you'll really see the difference in the Expression Calculator response with a slow machine)
- added suspend and resume threads routine (right button pops up the menu on the result 
grid)
- added command line parameters for startup (small, medium)
- added system information at the initialization and to the about box, providing 
processor(s), operating system, computer name and memory information
- added the help speed button
- added sleep delay at mutithread primes generator at second instance, speeds up main 
primes generator thread dramatically as prime threads are added

(version 2.1)

- corrected a severe bug in the prime generator
- corrected a bug in functions accepting more than 2 parameters, up to as many 
arguments as wanted can be specified for average, max, min , gcd & lcm.
- added primeC, primeN
- added Euler's beta function
- added Binomial function
 

For curious individuals (FAQ):

What is an object?

An object type is a data structure that contains a fixed number of components. Each 
component is either a field (which contains data of a particular type), a method, which 
performs an operation on the object; or a property. An object type can inherit components 
from another object type. The inheriting object is a descendant and the object inherited from
is an ancestor. More than one instance of an object is possible, thus each time a calculation 
was performed with the Expressions Calculator 1.x, a new calculation object was created, 
the calculation executed inside the object and the result output by the object itself as the job
was finished. The object is then cleared by the EXEcute routine that has created it.



What is a thread?

A thread is a very particular object. It is a separate task under a multitasking environment 
that supports it (Windows NT for example). Native multithreading consist of giving an 
adequate time to every thread running depending on the thread's priority. Unlike under 
Windows 3.x which gave the hand to an application and waited until the later gave it back, 
Windows NT, OS/2, Unix systems, and in some way Windows 95, destribute this time and 
take back the hand whenever the operating system wants it. The Expression Calculator 
takes complete advantage of this technique! This allows an    optimal use of the CPU.

Okay, what about the Expression Calculator?

Without the threads the Expression Calculator was always waiting for the object to finish the 
calculation. By executing another operation, before the previous one finished, the Expression
Calculator was reentering the same execution routine again, thus dramatically slowing the 
calculations running and eating lot's of memory for nothing. Thus it was practically 
impossible to cancel an operation on the bottom of this execution (the first run), since it was 
running at probably 5% of it's normal speed and came back to it's normal state only after all 
the tasks on top were finished.

Multithreading solves the problem completely. Every time the user asks for a new calculation
to be done, the Expression Calculator creates a new calculation thread instance giving it the 
necessary parameters such as the input string and the calculation mode, as well as the 
target for the output result. The execution routine which generated the thread terminates 
before the thread has actually even started to work. The thread exists separately and is 
protected by the operating system. It performs the calculation at it's maximum speed 
affecting very little the GUI performance, but using the CPU at 100%. The thread itself will 
output the result as it is finished and will destroy itself after all jobs have been done. Threads
communicate with the Expression Calculator through private pipes, without affecting the 
performance in any way. You must still know that every thread initialized slows down all the 
others already running. Each thread will receive a similar portion of time from the CPU. 
There's one exception, while generating prime numbers with requests from more than one 
thread, there is only the working thread that is taking CPU time, those waiting for the result 
to complete loop eating very little CPU time by "sleeping" a certain ammount of CPU cycles, 
giving maximum time possible to the working task. Virtually an infinite number of threads 
can be created and any of the threads very easilly cancelled.

What part of the Expression Calculator is a true thread?

Every window (form) under Windows NT/95 is a thread. The calculation thread generator 
(when you press the EXE button) is a thread itself, so you never wait for it to finish. The 
calculation routine is a fully independent 32 bit thread.

And finally. what is really the speed difference?

8 times faster for prime numbers calculation with the same algorithm for example... Any 
arguments against multithreading?



Average
description: finds the average number between up to as many arguments as wanted
syntax: Average (x,...,y)    
domain: Average: R -> R
example: Average(1,2) = 1.5



Beta
description: computes Euler's Beta function
syntax: Beta(a,b,dt)
notes: check the gamma function for more details:

 



PrimeC
description: returns the number of primes inferiour to it's argument
syntax: Primec(x)
domain: R\{R-}    -> N
notes: 1 is considered as a prime and the argument itself is included in the count if it 

is a prime number. Check the prime.  primen and phi functions.Check the 
prime and the primen functions.



PrimeN
description: returns the nth prime
syntax: PrimeN(n)
domain: N    -> N
notes: 1 is considered as a prime, so primen(1) will return 1 and not 2! Check the 

prime.  primec and phi functions.



Binom
description: binomial coefficients
syntax: Binom(n,j)
domain: R -> R (with restrictions of Gamma function)
notes: Binom(n,j):=n! / ( j! (n-j)! )




