
Analysis of the X Protool for Seurity Conerns

Draft Version 2

David P. Wiggins

X Consortium, In.

May 10, 1996

Abstrat

This paper attempts to list all instanes of ertain types of seurity

problems in the X Protool. Issues with authorization are not addressed.

We assume that a maliious lient has already sueeded in onneting,

and try to assess what harm it an then do. We propose modi�ations to

the semantis of the X Protool to redue these risks.



Copyright



1996 X Consortium, In. All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-

ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-

ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OF OR OTHER DEALINGS IN THE SOFT-

WARE.

Exept as ontained in this notie, the name of the X Consortium shall not be

used in advertising or otherwise to promote the sale, use or other dealings in

this Software without prior written authorization from the X Consortium.

2



1 De�nition of Threats

We analyze the X protool for the following threats.

Theft ours when a lient gains aess to information owned by another lient

without expliit permission from that other lient. For this analysis, we

take a broad view of ownership: any information that exists in the server

due to the ations of a lient is onsidered owned by that lient. Further-

more, the lient that has input fous owns keyboard events, and the lient

that owns the window that the pointer is in owns mouse events. This view

may reveal ertain instanes of \theft" that we don't are to stop, but we

think it is better to identify all potential andidates up front and ull the

list later than to do a partial analysis now and plan on reanalyzing for

remaining holes later.

Denial of servie ours when a lient auses another lient or the user to

lose the ability to perform some operation.

Spoo�ng ours when a lient attempts to mimi another lient with the hope

that the user will interat with it as if it really were the mimiked lient.

A wide variety of requests may be used in a spoo�ng attak; we will only

point out a few likely andidates.

Destrution ours when a lient auses another lient to lose information in

a way that the lient or user is likely to notie. (This does not ount

expeted forms of destrution, e.g., exposures.)

Alteration ours when a lient auses another lient to lose information in a

way that the lient or user is unlikely to notie. e.g., hanging one pixel

in a drawable.

The line between alteration and destrution is subjetive. Seurity literature

does often distinguish between them, though not always expliitly. Alteration

is often onsidered more insidious beause its e�ets may not be realized until

long after it has ourred. In the intervening time, eah time the altered data

is used, it an ause more damage.

2 General seurity onerns and remedies

The following setions disuss seurity problems intrinsi to the X Protool. A

statement of eah problem is usually followed by potential remedies. A few

words here about possible remedies will help frame the spei� ones desribed

below.

3



If a lient attempts a threatening operation, the server may take one of the

following ations, listed roughly in order of severity:

1. Exeute the request normally. This is the right hoie when we deide that

a partilar threat is not serious enough to worry about.

2. Exeute the request in some modi�ed form, e.g., substitute di�erent values

for some of the request �elds, or edit the reply.

3. Arrange to ask the user what to do, given some subset of the other hoies

in this list. This must be used sparingly beause of the performane impat.

4. Treat the request as a no-op. If the lient will probably not notie, or if it

seems likely that the intent was benign, this is a good hoie.

5. Send a protool error to the lient. If the lient will be onfused enough by

the other options that it will probably rash or beome useless anyway, or if it

seems likely that the intent was maliious, this is a good hoie.

6. Kill the lient. This might be the right ation if there is no doubt that the

lient is hostile.

In most ases we present the one option that seems most appropriate to ounter

the threat, taking into aount the seriousness of the threat, the implementation

diÆulty, and the impat on appliations. Our initial bias is to err on the side

of stronger seurity, with the aompanying tighter restritions. As we unover

important operations and appliations that the new restritions interfere with,

we an apply seletive loosening to allow the desired funtionality.

In some ases we will suggest returning an Aess error where the X protool

does not expliitly allow one. These new Aess errors arise when a lient an

only perform a (non-empty) subset of the de�ned operations on a resoure. The

disallowed operations ause Aess errors. The resioure at issue is usually a

root window.

2.1 Aess to Server Resoures

The X protool allows lients to manipulate resoures (objets) belonging to

other lients or to the server. Any request that spei�es a resoure ID is vulner-

able to some of the above threats. Suh requests also provide a way for a lient

to guess resoure IDs of other lients. A lient an make eduated guesses for

possible resoure IDs, and if the request sueeds, it knows it has determined a

valid resoure ID. We all this \resoure ID guessing" in the list below.

One likely defense against these problems is to have the server send an appro-

priate protool error to deny the existene of any resoure spei�ed by a lient

that doesn't belong to that lient. A variation on this poliy lets ooperating

4



groups of lients aess eah other's resoures, but not those of other groups.

The Broadway projet will initially use a less general form of this idea by having

two groups, trusted and untrusted. Trusted lients an do everything that X

lients an do today. They will be proteted from untrusted lients in ways de-

sribed below. Untrusted lients will not be proteted from eah other. Though

this will be the initial design, we need to make sure there is a growth path to

multiple (more than two) groups.

Most of the time, appliations never aess server resoures that aren't their

own, so the impat of disallowing suh aesses should be minimal. There are

a few notable exeptions, most of whih will be disussed under the relevant

protool requests. They are: ICCCM seletion transfer, Motif drag and drop,

and server-global resoures like the root window and default olormap. Another

major exeption is the window manager, whih routinely manipulates windows

of other appliations. The solution for window managers is to always run them

as trusted appliations.

The implementation diÆulty of limiting aess to resoures should not be

large. All resoure aesses eventually funnel down to one of two funtions

in dix/resoure.: LookupIDByType() and LookupIDByClass(). A few lines of

heking at the top of these funtions will form the heart of this defense. There

is a small problem beause these funtions are not told whih lient is doing

the lookup, but that an be solved either by adding a lient parameter (proba-

bly as a new funtion to preserve ompatibility), or by using the server global

requestingClient.

ISSUE: are we really going to be able to get away with hiding trusted resoures,

or will things like Motif drag and drop fore us to expose them? (Either way,

the operations that untrusted lients an do to trusted resoures will have to

be limited.) Is there something in Xt or the ICCCM that breaks if you hide

resoures?

2.2 Denial of Servie

2.2.1 Memory Exhaustion

Any request that auses the server to onsume resoures (partiularly memory)

an be used in a denial of servie attak. A lient an use suh requests repeat-

edly until the server runs out of memory. When that happens, the server will

either rash or be fored to send Allo errors. The most obvious andidates are

resoure reation requests, e.g., CreatePixmap, but in reality a large perent-

age of requests ause memory alloation, if only temporarily, depending on the

server implementation. For this reason, the list of requests subjet to this form

of denial of servie will be neessarily inomplete.

5



To address this form of denial of servie, the server ould set per-lient quotas

on memory onsumption. When the limit is surpassed, the server ould return

Allo errors. The appliation impat is minimal as long as the appliation stays

within quota. The implementation diÆulty is another story.

Coneptually, it seems easy: simply have a way to set the limit, and on every

memory (de)alloation operation, update the lient's urrent usage, and return

an error if the lient is over the limit. The �rst problem is something we've

already touhed on: the alloator funtions aren't told whih lient the allo-

ation belongs to. Unlike resoure lookups, alloations are done in too many

plaes to onsider a new interfae that passes the lient, so using the global

requestingClient is pratially mandatory.

The problems run deeper. The logial thing for the alloator to do if the

lient is over its limit is to return NULL, indiating alloation failure. Un-

fortunately, there are many plaes in the server that will reat badly if this

happens. Most of these plaes, but not all, are \proteted" by setting the

global variable Must have memory to True around the deliate ode. We ould

help the problem by skipping the limit hek if Must have memory is True. The

best solution would be to bullet-proof the server against alloation failures, but

that is beyond the sope of Broadway. Another onsideration is that the ad-

ditional heking may have a measurable performane impat, sine the server

does frequent alloations.

A third problem is that there is no portable way to determine the size of a

hunk of alloated memory given just a pointer to the hunk, and that's all you

have inside Xreallo() and Xfree(). The server ould ompensate by reording

the sizes itself somewhere, but that would be wasteful of memory, sine the

mallo implementation also must be reording blok sizes. On top of that,

the redundant bookkeeping would hurt performane. One solution is to use a

ustom mallo that has the needed support, but that too seems beyond the

sope of Broadway.

Considering all of this, we think it is advisable to defer solving the memory

exhaustion problem to a future release. Keep this in mind when you see quotas

mentioned as a defense in the list below.

2.2.2 CPU Monopolization

Another general way that a lient an ause denial of servie is to ood the server

with requests. The server will spend a large perentage of its time serviing

those requests, possibly starving other lients and ertainly hurting performane.

Every request an be used for ooding, so we will not bother to list ooding

on every request. A variation on this attak is to ood the server with new

onnetion attempts.

6



To redue the e�etiveness of ooding, the server ould use a di�erent sheduling

algorithm that throttles lients that are monopolizing the server, or it ould

simply favor trusted lients over untrusted ones. Appliations annot depend

on a partiular sheduling algorithm anyway, so hanging it should not a�et

them. The Synhronization extension spei�es a way to set lient priorities,

and a simple priority sheduler already exists in the server to support it, so this

should be simple to add.

3 Seurity onerns with spei� window attributes

3.1 Bakground-pixmap

Clients an use windows with the bakground-pixmap attribute set to None

(hereafter \bakground none windows") to obtain images of other windows. A

bakground none window never paints its own bakground, so whatever hap-

pened to be on the sreen when the window was mapped an be read from

the bakground none window with GetImage. This may well ontain data from

other windows. The CreateWindow and ChangeWindowAttributes requests an

set the bakground-pixmap attribute set to None, and many window operations

an ause data from other windows to be left in a bakground none window,

inluding ReparentWindow, MapWindow, MapSubwindows, Con�gureWindow,

and CirulateWindow.

Bakground none windows an also be used to ause apparent alteration. A

lient an reate a window with bakground none and draw to it. The drawing

will appear to the user to be in the windows below the bakground none window.

To remedy these problems, the server ould substitute a well-de�ned bakground

when a lient spei�es None. Ideally the substituted bakground would look

di�erent enough from other windows that the user wouldn't be onfused. A

tile depiting some appropriate international symbol might be reasonable. We

believe that there are few appliations that atually rely on bakground none

semantis, and those that do will be easy for the user to identify beause of the

distintive tile. Implementation should not be a problem either. Lukily, the

window bakground annot be retrieved through the X protool, so we won't

have to maintain any illusions about its value.

ISSUE: Some vendors have extensions to let you query the window bakground.

Do we need to aomodate that?

ISSUE: Will this lead to unaeptable appliation breakage? Could the server

be smarter, only painting with the well-de�ned bakground when the window

atually ontains bits from trusted windows?

7



3.2 ParentRelative and CopyFromParent

Several window attributes an take on speial values that ause them to refer-

ene (ParentRelative) or opy (CopyFromParent) the same attribute from the

window's parent. This �ts our de�nition of theft. The window attributes are

lass, bakground-pixmap, border-pixmap, and olormap. All of these an be

set with CreateWindow; all but lass an be set with ChangeWindowAttributes.

These forms of theft aren't partiularly serious, so sending an error doesn't

seem appropriate. Substitution of di�erent attribute values seems to be the only

reasonable option, and even that is likely to ause trouble for lients. Untrusted

lients are already going to be prevented from reating windows that are hildren

of trusted lients (see CreateWindow below). We reommend that nothing more

be done to ounter this threat.

3.3 Override-rediret

Windows with the override-rediret bit set to True are generally ignored by the

window manager. A lient an map an override-rediret window that overs

most or all of the sreen, ausing denial of servie sine other appliations won't

be visible.

To prevent this, the server ould prevent more than a ertain perentage (on-

�gurable) the of sreen area from being overed by override-rediret windows of

untrusted lients.

Override-rediret windows also make some spoo�ng attaks easier sine the

lient an more arefully ontrol the presentation of the window to mimi an-

other lient. Defenses against spoo�ng will be given under MapWindow.

4 Seurity onerns with spei� requests

To redue the spae needed to disuss 120 requests, most of the following setions

use a stylized format. A threat is given, followed by an imperative statement.

The implied subjet is an untrusted lient, and the objet is usually a trusted

lient. Following that, another statement starting with \Defense:" reommends

a ountermeasure for the preeding threat(s).

Resoures owned by the server, suh as the root window and the default ol-

ormap, are onsidered to be owned by a trusted lient.

8



4.1 CreateWindow

Alteration: reate a window as a hild of another lient's window, altering its

list of hildren.

Defense: send Window error. Speifying the root window as the parent will

have to be allowed, though.

Theft: reate an InputOnly window or a window with bakground none on top

of other lients' windows, selet for keyboard/mouse input on that window, and

steal the input. The input an be resent using SendEvent or an input synthesis

extension so that the snooped appliation ontinues to funtion, though this

won't work onviningly with the bakground none ase beause the drawing

will be lipped.

Defense: send an error if a top-level InputOnly window is reated (or repar-

ented to the root). Countermeasures for bakground none and SendEvent are

disussed elsewhere.

ISSUE: The Motif drag and drop protool reates and maps suh a window (at

�100,�100, size 10x10) to \ahe frequently needed data on window properties

to redue roundtrip server requests." Proposed solution: we ould only send an

error if the window is visible, whih would require heking in, MapWindow,

Con�gureWindow, and ReparentWindow.

Theft: resoure ID guessing (parent, bakground-pixmap, border-pixmap, ol-

ormap, and ursor).

Defense: send Window, Pixmap, Colormap, or Cursor error.

Denial of servie: reate windows until the server runs out of memory.

Defense: quotas.

Also see setion 3.

4.2 ChangeWindowAttributes

Alteration: hange the attributes of another lient's window.

Theft: selet for events on another lient's window.

Defense for both of the above: send Window error.

ISSUE: The Motif drop protool states that \the initiator should selet for

DestroyNotify on the destination window suh that it is aware of a potential re-

eiver rash." This will be a problem if the initiator is an untrusted window and

the destination is trusted. Can the server, perhaps with the help of the seurity

manager, reognize that a drop is in progress and allow the DestroyNotify event

9



seletion in this limited ase?

ISSUE: The Motif pre-register drag protool probably requires the initiator to

selet for Enter/LeaveNotify on all top-level windows. Same problem as the

previous issue.

Theft: resoure ID guessing (bakground-pixmap, border-pixmap, olormap,

and ursor).

Defense: send Pixmap, Colormap, or Cursor error.

Also see setion 3.

4.3 GetWindowAttributes

Theft: get the attributes of another lient's window.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

4.4 DestroyWindow, DestroySubwindows

Destrution: destroy another lient's window.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

4.5 ChangeSaveSet

Alteration: ause another lient's windows to be reparented to the root when

this lient disonnets (only if the other lient's windows are subwindows of this

lient's windows).

Defense: proess the request normally. The trusted lient gives away some of

its protetion by reating a subwindow of an untrusted window.

Theft: resoure ID guessing (window).

Defense: send Window error.

4.6 MapWindow

Spoo�ng: map a window that is designed to resemble a window of another lient.

Additional requests will probably be needed to omplete the illusion.

10



Defense:

We onsider spoo�ng to be a signi�ant danger only if the user is onvined

to interat with the spoof window. The defense enters on providing enough

information to enable the user to know where keyboard, mouse, and extension

devie input is going. To aomplish this, the server will ooperate with the

seurity manager, an external proess. The server will provide the following

failities to the seurity manager:

1. A way to reate a single window that is unobsurable by any window of

any other lient, trusted or untrusted. It needs to be unobsurable so that it is

spoof-proof.

ISSUE: is a weaker form of unobsurability better? Should the window be

obsurable by trusted windows, for example?

ISSUE: does unobsurable mean that it is a hild of the root that is always on

top in the staking order?

2. A way to determine if a given window ID belongs to an untrusted lient.

The seurity manager will need to selet for the existing events FousIn, Fo-

usOut, EnterNotify, LeaveNotify, DevieFousIn, and DevieFousOut on all

windows to trak what window(s) the user's input is going to. Using the above

server failities, it an reliably display the trusted/untrusted status of all lients

urrently reeiving input.

ISSUE: is it too muh to ask the seurity manager to selet for all these events

on every window? Do we need to provide new events that you selet for *on the

devie* that tell where the devie is foused?

None of this should have any appliation impat.

The unobsurable window may be triky to implement. There is already some

mahinery in the server to make an unobsurable window for the sreen saver,

whih may help but may also get in the way now that we have to deal with two

unobsurable windows.

4.7 Window Operations

Spei�ally, ReparentWindow, MapWindow, MapSubwindows, UnmapWindow,

UnmapSubwindows, Con�gureWindow, and CirulateWindow.

Alteration: manipulate another lient's window.

Theft: resoure ID guessing (window, sibling).

Defense for both of the above: send a Window error unless it is a root window,

in whih ase we should send an Aess error.

11



4.8 GetGeometry

Theft: get the geometry of another lient's drawable.

Theft: resoure ID guessing (drawable).

Defense for both of the above: send Drawable error. However, root windows

will be allowed.

4.9 QueryTree

Theft: resoure ID guessing (window).

Defense: send Window error.

Theft: disover window IDs that belong to other lients.

Defense: For the hild windows, ensor the reply by removing window IDs that

belong to trusted lients. Allow the root window to be returned. For the parent

window, if it belongs to a trusted lient, return the losest anestor window that

belongs to an untrusted lient, or if suh a window does not exist, return the

root window for the parent window.

ISSUE: will some appliations be onfused if we �lter out the window manager

frame window(s), or other windows between the queried window and the root

window?

ISSUE: the Motif drag protool (both preregister and dynami) needs to be able

to loate other top-level windows for potential drop sites. See also setion 2.1.

4.10 InternAtom

Theft: disover atom values of atoms interned by other lients. This lets you

determine if a spei� set of atoms has been interned, whih may lead to other

inferenes.

Defense: This is a minor form of theft. Bloking it will interfere with many types

of inter-lient ommuniation. We propose to do nothing about this threat.

Denial of servie: intern atoms until the server runs out of memory.

Defense: quotas.

12



4.11 GetAtomName

Theft: disover atom names of atoms interned by other lients. This lets you

determine if a spei� set of atoms has been interned, whih may lead to other

inferenes.

Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.12 ChangeProperty

Alteration: hange a property on another lient's window or one that was stored

by another lient.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

ISSUE: Seletion transfer requires the seletion owner to hange a property on

the requestor's window. Does the seurity manager get us out of this? Does the

server notie the property name and window passed in ConvertSeletion and

temporarily allow that window property to be written?

ISSUE: should ertain root window properties be writable?

Denial of servie: store additional property data until the server runs out of

memory.

Defense: quotas.

4.13 DeleteProperty

Destrution: delete a property stored by another lient.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

4.14 GetProperty

Theft: get a property stored by another lient.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

13



ISSUE: should ertain root window properties be readable? Proposed answer:

yes, some on�gurable list. Do those properties need to be polyinstantiated?

ISSUE: Motif drag and drop needs to be able to read the following proper-

ties: WM STATE to identify top-level windows, MOTIF DRAG WINDOW

on the root window, MOTIF DRAG TARGETS on the window given in the

MOTIF DRAG WINDOW property, and MOTIF DRAG RECEIVER INFO

on windows with drop sites. Additionally, some properties are needed that do

not have �xed names.

4.15 RotateProperties

Alteration: rotate properties stored by another lient.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

4.16 ListProperties

Theft: list properties stored by another lient.

Theft: resoure ID guessing (window).

Defense for both of the above: send Window error.

ISSUE: should ertain root window properties be listable?

4.17 SetSeletionOwner

Theft: Steal ownership of a seletion.

Denial of servie: do this repeatedly so that no other lient an own the seletion.

Defense for both of the above: have a on�gurable list of seletions that un-

trusted lients an own. For other seletions, treat this request as a no-op.

ISSUE: how does the seurity manager get involved here? Is it the one that has

the on�gurable list of seletions instead of the server?

Theft: resoure ID guessing (window).

Defense: send Window error.

14



4.18 GetSeletionOwner

Theft: disover the ID of another lient's window via the owner �eld of the

reply.

Defense: if the seletion is on the on�gurable list mentioned above, return the

root window ID, else return None.

ISSUE: how does the seurity manager get involved here?

4.19 ConvertSeletion

Theft: this initiates a seletion transfer (see the ICCCM) whih sends the se-

letion ontents from the seletion owner, whih may be another lient, to the

requesting lient.

Defense: sine in many ases ConvertSeletion is done in diret response to user

interation, it is probably best not to fore it to fail, either silently or with an

error. The server should rely on the seurity manager to assist in handling the

seletion transfer.

Theft: resoure ID guessing (requestor).

Defense: send Window error.

4.20 SendEvent

A lient an use SendEvent to ause events of any type to be sent to windows

of other lients. Similarly, a lient ould SendEvent to one of its own windows

with propogate set to True and arrange for the event to be propogated up to

a window it does not own. Clients an detet events generated by SendEvent,

but we annot assume that they will.

Defense: ignore this request unless the event being sent is a ClientMessage event,

whih should be sent normally so that seletion transfer, Motif drag and drop,

and ertain input methods have a hane at working.

ISSUE: does allowing all ClientMessages open up too big a hole?

Theft: resoure ID guessing (window).

Defense: send Window error.

4.21 Keyboard and Pointer Grabs

Spei�ally, GrabKeyboard, GrabPointer, GrabKey, and GrabButton.

15



Denial of servie/Theft: take over the keyboard and pointer. This ould be

viewed as denial of servie sine it prevents other lients from getting keyboard

or mouse input, or it ould be viewed as theft sine the user input may not have

been intended for the grabbing lient.

Defense: provide a way to break grabs via some keystroke ombination, and

have a status area that shows whih lient is getting input. (See MapWindow.)

Theft: resoure ID guessing (grab-window, on�ne-to, ursor).

Defense: send Window or Cursor error.

4.22 ChangeAtivePointerGrab

Theft: resoure ID guessing (ursor).

Defense: send Cursor error.

4.23 GrabServer

Denial of servie: a lient an grab the server and not let go, loking out all

other lients.

Defense: provide a way to break grabs via some keystroke ombination.

4.24 QueryPointer

Theft: A lient an steal pointer motion and position, button input, modi�er

key state, and possibly a window of another lient with this request.

Defense: if the querying lient doesn't have the pointer grabbed, and the pointer

is not in one of its windows, the information an be zeroed.

Theft: resoure ID guessing (window).

Defense: send Window error.

4.25 GetMotionEvents

Theft: steal pointer motion input that went to other lients.

Defense: ideally, the server would return only pointer input that was not de-

livered to any trusted lient. The implementation e�ort to do that probably

outweighs the marginal bene�ts. Instead, we will always return an empty list

of motion events to untrusted lients.

16



Theft: resoure ID guessing (window).

Defense: send Window error.

4.26 TranslateCoordinates

Theft: disover information about other lients' windows: position, sreen, and

possibly the ID of one of their subwindows.

Defense: send an error if sr-window or dst-window do not belong to the re-

questing lient.

Theft: resoure ID guessing (sr-window, dst-window).

Defense: send Window error.

4.27 WarpPointer

A lient an ause pointer motion to our in another lient's window.

Denial of servie: repeated pointer warping prevents the user from using the

mouse normally.

Defense for both of the above: if the querying lient doesn't have the pointer

grabbed, and the pointer is not in one of its windows, treat the request as a

no-op.

Theft: resoure ID guessing (sr-window, dst-window).

Defense: send Window error.

4.28 SetInputFous

Theft: a lient an use this request to make one of its own windows have the

input fous (keyboard fous). The user may be unaware that keystrokes are

now going to a di�erent window.

Denial of servie: repeatedly setting input fous prevents normal use of the

keyboard.

Defense for both of the above: only allow untrusted lients to SetInputFous if

input fous is urrently held by another untrusted lient.

ISSUE: this will break lients using the Globally Ative Input model desribed

in setion 4.1.7 of the ICCCM.

Theft: resoure ID guessing (fous).

17



Defense: send Window error.

4.29 GetInputFous

Theft: the reply may ontain the ID of another lient's window.

Defense: return a fous window of None if a trusted lient urrently has the

input fous.

4.30 QueryKeymap

Theft: poll the keyboard with this to see whih keys are being pressed.

Defense: zero the returned bit vetor if a trusted lient urrently has the input

fous.

4.31 Font Requests

Spei�ally, OpenFont, QueryFont, ListFonts, ListFontsWithInfo, and Query-

TextExtents.

Theft: disover font name, glyph, and metri information about fonts that were

provided by another lient (by setting the font path). Whether it is theft to

retrieve information about fonts from the server's initial font path depends on

whether or not you believe those fonts, by their existene in the initial font path,

are intended to be globally aessible by all lients.

Defense:

Maintain two separate font paths, one for trusted lients and one for untrusted

lients. They are both initialized to the default font path at server reset. Subse-

quently, hanges to one do not a�et the other. Sine untrusted lients will not

see font path elements added by trusted lients, they will not be able to aess

any fonts provided by those font path elements.

Theft: resoure ID guessing (font) (QueryFont and QueryTextExtents only).

Defense: send Font error.

Denial of servie: open fonts until the server runs out of memory (OpenFont

only).

Defense: quotas.

18



4.32 CloseFont

Destrution: lose another lient's font.

Defense: send Font error.

4.33 SetFontPath

Denial of servie: hange the font path so that other lients annot �nd their

fonts.

Alteration: hange the font path so that other lients get di�erent fonts than

they expeted.

Defense for both of the above: separate font paths for trusted and untrusted

lients, as desribed in the Font Requests setion.

ISSUE: the printing projet onsidered per-lient font paths and onluded that

it was very diÆult to do. We should look at this aspet of the print server design

to see if we an reuse the same sheme. We should also try to reonstrut what

was so diÆult about this; it doesn't seem that hard on the surfae.

4.34 GetFontPath

Theft: retrieve font path elements that were set by other lients.

Use knowledge from font path elements to mount other attaks, e.g., attak a

font server found in the font path.

Defense for both of the above: separate font paths for trusted and untrusted

lients, as desribed in the Font Requests setion.

4.35 CreatePixmap

Theft: resoure ID guessing (drawable).

Defense: send Drawable error.

Denial of servie: reate pixmaps until the server runs out of memory.

Defense: quotas.

4.36 FreePixmap

Destrution: destroy another lient's pixmap.

19



Defense: send Pixmap error.

4.37 CreateGC

Theft: resoure ID guessing (drawable, tile, stipple, font, lip-mask).

Defense: send Drawable, Pixmap, or Font error.

Denial of servie: reate GCs until the server runs out of memory.

Defense: quotas.

4.38 CopyGC

Theft: opy GC values of another lient's GC.

Alteration: opy GC values to another lient's GC.

Defense for both of the above: send GC error.

4.39 ChangeGC, SetDashes, SetClipRetangles

Alteration: hange values of another lient's GC.

Theft: resoure ID guessing (g, tile, stipple, font, lip-mask) (last four for

ChangeGC only).

Defense for both of the above: send GC error.

4.40 FreeGC

Destrution: destroy another lient's GC.

Defense: send GC error.

4.41 Drawing Requests

Spei�ally, ClearArea, CopyArea, CopyPlane, PolyPoint, PolyLine, PolySeg-

ment, PolyRetangle, PolyAr, FillPoly, PolyFillRetangle, PolyFillAr, PutIm-

age, PolyText8, PolyText16, ImageText8, and ImageText16.

Alteration: draw to another lient's drawable.

Theft: resoure ID guessing: ClearArea - window; CopyArea, CopyPlane - sr-

drawable, dst-drawable, g; all others - drawable, g.

20



Defense for both of the above: send appropriate error.

ISSUE: The Motif preregister drag protool requires lients to draw into win-

dows of other lients for drag-over/under e�ets.

Spoo�ng: draw to a window to make it resemble a window of another lient.

Defense: see MapWindow.

4.42 GetImage

Theft: get the image of another lient's drawable.

Theft: resoure ID guessing (drawable).

Defense: send Drawable error.

Theft: get the image of your own window, whih may ontain piees of other

overlapping windows.

Defense: ensor returned images by blotting out areas that ontain data from

trusted windows.

4.43 CreateColormap

Theft: resoure ID guessing (window).

Defense: send Colormap error.

Denial of servie: reate olormaps with this request until the server runs out

of memory.

Defense: quotas.

4.44 FreeColormap

Destrution: destroy another lient's olormap.

Defense: send Colormap error.

4.45 CopyColormapAndFree

Theft: resoure ID guessing (sr-map).

Defense: send Colormap error. However, default olormaps will be allowed.

21



ISSUE: must untrusted appliations be allowed to use standard olormaps?

(Same issue for ListInstalledColormaps, Color Alloation Requests, FreeColors,

StoreColors, StoreNamedColor, QueryColors, and LookupColor.)

Denial of servie: reate olormaps with this request until the server runs out

of memory.

Defense: quotas.

4.46 InstallColormap, UninstallColormap

Theft: resoure ID guessing.

Defense: send Colormap error.

Denial of servie: (un)install any olormap, potentially preventing windows from

displaying orret olors.

Defense: treat this request as a no-op. Setion 4.1.8 of the ICCCM states that

(un)installing olormaps is the responsibility of the window manager alone.

ISSUE: the ICCCM also allows lients to do olormap installs if the lient has

the pointer grabbed. Do we need to allow that too?

4.47 ListInstalledColormaps

Theft: resoure ID guessing (window).

Defense: send Colormap error.

Theft: disover the resoure ID of another lient's olormap from the reply.

Defense: remove the returned olormap IDs; only let through default olormaps

and olormaps of untrusted lients.

4.48 Color Alloation Requests

Spei�ally, AlloColor, AlloNamedColor, AlloColorCells, and AlloColor-

Planes.

Alteration/Denial of servie: alloate olors in another lient's olormap. It is

denial of servie if the owning lient's olor alloations fail beause there are no

ells available. Otherwise it is just alteration.

Theft: resoure ID guessing (map).

Defense for both of the above: send Colormap error. However, default olormaps

22



will be allowed.

4.49 FreeColors

Theft: resoure ID guessing (map).

Defense: send Colormap error. However, default olormaps will be allowed.

4.50 StoreColors, StoreNamedColor

Alteration: hange the olors in another lient's olormap.

Theft: resoure ID guessing (map).

Defense for both of the above: send Colormap error. However, default olormaps

will be allowed.

4.51 QueryColors, LookupColor

Theft: retrieve information about the olors in another lient's olormap.

Theft: resoure ID guessing (map).

Defense for both of the above: send Colormap error. However, default olormaps

will be allowed.

4.52 CreateCursor, CreateGlyphCursor

Theft: resoure ID guessing (soure, mask or soure-font, mask-font).

Defense: send Pixmap or Font error. However, the default font will be allowed.

Denial of servie: reate ursors until the server runs out of memory.

Defense: quotas.

4.53 FreeCursor

Destrution: free another lient's ursor.

Defense: send Cursor error.

23



4.54 ReolorCursor

Alteration: reolor another lient's ursor.

Theft: resoure ID guessing (ursor).

Defense for both of the above: send Cursor error.

4.55 QueryBestSize

Theft: resoure ID guessing (drawable).

Defense: send Drawable error.

4.56 ListExtensions, QueryExtension

Determine the extensions supported by the server, and use the list to hoose

extension-spei� attaks to attempt.

Defense: extensions will have a way to tell the server whether it is safe for

untrusted lients to use them. These requests will only return information

about extensions that laim to be safe.

4.57 Keyboard on�guration requests

Spei�ally, ChangeKeyboardControl, ChangeKeyboardMapping, and SetMod-

i�erMapping.

Alteration: hange the keyboard parameters that were established by another

lient.

Denial of servie: with ChangeKeyboardControl, disable auto-repeat, key lik,

or the bell. With ChangeKeyboardMapping or SetModi�erMapping, hange the

key mappings so that the keyboard is diÆult or impossible to use.

Defense for both of the above: treat these requests as a no-op.

4.58 Keyboard query requests

Spei�ally, GetKeyboardControl, GetKeyboardMapping, and GetModi�erMap-

ping.

Theft: get keyboard information that was established by another lient.

24



Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.59 ChangePointerControl, SetPointerMapping

Alteration: hange the pointer parameters that were established by another

lient.

Denial of servie: set the pointer parameters so that the pointer is diÆult or

impossible to use.

Defense for both of the above: treat these requests as a no-op.

4.60 GetPointerControl, GetPointerMapping

Theft: get pointer parameters that were established by another lient.

Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.61 SetSreenSaver

Alteration: hange the sreen saver parameters that were established by another

lient.

Denial of servie: set the sreen saver parameters so that the sreen saver is

always on or always o�.

Defense for both of the above: treat these requests as a no-op.

4.62 GetSreenSaver

Theft: get sreen saver parameters that were established by another lient.

Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.63 ForeSreenSaver

Denial of servie: repeatedly ativate the sreen saver so that the user annot

see the sreen as it would look when the sreen saver is o�.

Denial of servie: repeatedly reset the sreen saver, preventing it from ativating.

25



Defense for both of the above: treat these requests as a no-op.

4.64 ChangeHost

Most servers already have some restritions on whih lients an use this request,

so whether the following list applies is implementation dependent.

Denial of servie: remove a host from the list, preventing lients from onneting

from that host.

Add a host to the list. Clients from that host may then launh other attaks of

any type.

Defense for both of the above: return Aess error.

4.65 ListHosts

Theft: steal host identities and possibly even user identities that are allowed to

onnet.

Launh attaks of any type against the stolen host/user identities.

Defense for both of the above: return only untrusted hosts.

4.66 SetAessControl

Most servers already have some restritions on whih lients an use this request,

so whether the following list applies is implementation dependent.

Alteration: hange the aess ontrol value established by some other lient.

Disable aess ontrol, allowing lients to onnet who would normally not be

able to onnet. Those lients may then launh other attaks of any type.

Defense for both of the above: return Aess error.

4.67 SetCloseDownMode

Denial of servie: set the lose-down mode to RetainPermanent or RetainTem-

porary, then disonnet. The server annot reuse the resoure-id-base of the

disonneted lient, or the memory used by the retained resoures, unless an-

other lient issues an appropriate KillClient to anel the retainment. The server

has a limited number of resoure-id-bases, and when they are exhausted, it will

be unable to aept new lient onnetions.

26



Defense: treat this request as a no-op.

4.68 KillClient

Destrution/Denial of servie: kill another urrently onneted lient.

Destrution: kill a lient that has terminated with lose-down mode of Retain-

Temporary or RetainPermanent, destroying all its retained resoures.

Destrution: speify AllTemporary as the resoure, destroying all resoures of

lients that have terminated with lose-down mode RetainTemporary.

Defense for all of the above: return Value error.

4.69 Clean Requests

Other than denial of servie aused by ooding, these requests have no known

seurity onerns: AllowEvents, UngrabPointer, UngrabButton, UngrabKey-

board, UngrabKey, UngrabServer, NoOperation, and Bell.

5 Events

The only threat posed by events is theft. Seleting for events on another lient's

resoures is always theft. We restrit further analysis by assuming that the

lient only selets for events on its own resoures, then asking whether the

events provide information about other lients.

5.1 KeymapNotify

Theft: the state of the keyboard an be seen when the lient does not have the

input fous. This is possible beause a KeymapNotify is sent to a window after

every EnterNotify even if the window does not have input fous.

Defense: zero the returned bit vetor if a trusted lient urrently has the input

fous.

5.2 Expose

Theft: disover where other lients' windows overlap your own. For instane,

map a full-sreen window, lower it, then raise it. The resulting exposes tell you

where other windows are.

27



Defense: about the only thing you ould do here is fore baking store to be used

on untrusted windows, but that would probably use too muh server memory.

We propose to do nothing about this threat.

5.3 GraphisExposure

Theft: disover where other lients' windows overlap your own. For instane,

use CopyArea to opy the entire window's area exatly on top of itself. The

resulting GraphisExposures tell you where the window was obsured.

Defense: see Expose above. We propose to do nothing about this threat.

5.4 VisibilityNotify

Theft: this event provides rude positional information about other lients,

though the reeiver annot tell whih other lients.

Defense: The information ontent of this event is very low. We propose to do

nothing about this threat.

5.5 ReparentNotify

Theft: the parent windowmay belong to some other lient (probably the window

manager).

Defense: If the parent window belongs to a trusted lient, return the losest

anestor window that belongs to an untrusted lient, or if suh a window does

not exist, return the root window for the parent window.

ISSUE: what is the appliation impat?

5.6 Con�gureNotify

Theft: the above-sibling window may belong to some other lient.

Defense: return None for the above-sibling window if it belongs to a trusted

lient.

ISSUE: what is the appliation impat?

5.7 Con�gureRequest

Theft: the sibling window may belong to some other lient.

28



Defense: return None for the sibling window if it belongs to a trusted lient.

ISSUE: what is the appliation impat?

5.8 SeletionClear

Theft: the owner window may belong to some other lient.

Defense: return None for the owner window if it belongs to a trusted lient.

5.9 SeletionRequest

Theft: the requestor window may belong to some other lient.

Defense: Bloking this event or ensoring the window would prevent seletion

transfers from untrusted lients to trusted lients from working. We propose to

do nothing in the server about this threat. The seurity manager may redue

the exposure of trusted window IDs by beoming the owner of all seletions.

5.10 MappingNotify

Theft: disover keyboard, pointer, or modi�er mapping information set by an-

other lient.

Defense: Any tampering with this event will ause lients to have an inonsistent

view of the keyboard or pointer button on�guration, whih is likely to onfuse

the user. We propose to do nothing about this threat.

6 Errors

There appear to be no threats related to prootol errors.

7 Future Work

The next steps are resolve the items marked ISSUE and to deide if the defenses

proposed are reasonable. Disussion on the seurity�x.org mailing list, proto-

typing, and/or starting the implementation should help answer these questions.

29



8 Referenes

Bellore, \Framework Generi Requirements for X Window System Seurity,"

Tehnial Advisory FA-STS-001324, Issue 1, August 1992.

Dardailler, Daniel, \Motif Drag And Drop Protool," unpublished design notes.

Kahn, Brian L., \Safe Use of X WINDOW SYSTEM protool Aross a Fire-

wall", unpublished draft, The MITRE Corporation, 1995.

Rosenthal, David S. H., \LINX - a Less INseure X server," Sun Mirosystems,

29th April 1989.

Rosenthal, David and Marks, Stuart W., \Inter-Client Communiation Conven-

tions Manual Version 2.0," ftp://ftp.x.org/pub/R6.1/x/do/hardopy/ICCCM/im.PS.Z

Sheier, Robert W., \XWindow System Protool," ftp://ftp.x.org/pub/R6.1/x/do/hardopy/XProtool/proto.PS.Z

Treese, G. Win�eld and Wolman, Ale, \X Through the Firewall, and Other

Appliation Relays," Digital Equipment Corporation Cambridge Researh Lab,

Tehnial Report Series, CRL 93/10, May 3, 1993.

30


