
Analysis of the X Proto
ol for Se
urity Con
erns

Draft Version 2

David P. Wiggins

X Consortium, In
.

May 10, 1996

Abstra
t

This paper attempts to list all instan
es of 
ertain types of se
urity

problems in the X Proto
ol. Issues with authorization are not addressed.

We assume that a mali
ious 
lient has already su

eeded in 
onne
ting,

and try to assess what harm it 
an then do. We propose modi�
ations to

the semanti
s of the X Proto
ol to redu
e these risks.



Copyright





1996 X Consortium, In
. All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-

ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-

ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OF OR OTHER DEALINGS IN THE SOFT-

WARE.

Ex
ept as 
ontained in this noti
e, the name of the X Consortium shall not be

used in advertising or otherwise to promote the sale, use or other dealings in

this Software without prior written authorization from the X Consortium.

2



1 De�nition of Threats

We analyze the X proto
ol for the following threats.

Theft o

urs when a 
lient gains a

ess to information owned by another 
lient

without expli
it permission from that other 
lient. For this analysis, we

take a broad view of ownership: any information that exists in the server

due to the a
tions of a 
lient is 
onsidered owned by that 
lient. Further-

more, the 
lient that has input fo
us owns keyboard events, and the 
lient

that owns the window that the pointer is in owns mouse events. This view

may reveal 
ertain instan
es of \theft" that we don't 
are to stop, but we

think it is better to identify all potential 
andidates up front and 
ull the

list later than to do a partial analysis now and plan on reanalyzing for

remaining holes later.

Denial of servi
e o

urs when a 
lient 
auses another 
lient or the user to

lose the ability to perform some operation.

Spoo�ng o

urs when a 
lient attempts to mimi
 another 
lient with the hope

that the user will intera
t with it as if it really were the mimi
ked 
lient.

A wide variety of requests may be used in a spoo�ng atta
k; we will only

point out a few likely 
andidates.

Destru
tion o

urs when a 
lient 
auses another 
lient to lose information in

a way that the 
lient or user is likely to noti
e. (This does not 
ount

expe
ted forms of destru
tion, e.g., exposures.)

Alteration o

urs when a 
lient 
auses another 
lient to lose information in a

way that the 
lient or user is unlikely to noti
e. e.g., 
hanging one pixel

in a drawable.

The line between alteration and destru
tion is subje
tive. Se
urity literature

does often distinguish between them, though not always expli
itly. Alteration

is often 
onsidered more insidious be
ause its e�e
ts may not be realized until

long after it has o

urred. In the intervening time, ea
h time the altered data

is used, it 
an 
ause more damage.

2 General se
urity 
on
erns and remedies

The following se
tions dis
uss se
urity problems intrinsi
 to the X Proto
ol. A

statement of ea
h problem is usually followed by potential remedies. A few

words here about possible remedies will help frame the spe
i�
 ones des
ribed

below.

3



If a 
lient attempts a threatening operation, the server may take one of the

following a
tions, listed roughly in order of severity:

1. Exe
ute the request normally. This is the right 
hoi
e when we de
ide that

a parti
lar threat is not serious enough to worry about.

2. Exe
ute the request in some modi�ed form, e.g., substitute di�erent values

for some of the request �elds, or edit the reply.

3. Arrange to ask the user what to do, given some subset of the other 
hoi
es

in this list. This must be used sparingly be
ause of the performan
e impa
t.

4. Treat the request as a no-op. If the 
lient will probably not noti
e, or if it

seems likely that the intent was benign, this is a good 
hoi
e.

5. Send a proto
ol error to the 
lient. If the 
lient will be 
onfused enough by

the other options that it will probably 
rash or be
ome useless anyway, or if it

seems likely that the intent was mali
ious, this is a good 
hoi
e.

6. Kill the 
lient. This might be the right a
tion if there is no doubt that the


lient is hostile.

In most 
ases we present the one option that seems most appropriate to 
ounter

the threat, taking into a

ount the seriousness of the threat, the implementation

diÆ
ulty, and the impa
t on appli
ations. Our initial bias is to err on the side

of stronger se
urity, with the a

ompanying tighter restri
tions. As we un
over

important operations and appli
ations that the new restri
tions interfere with,

we 
an apply sele
tive loosening to allow the desired fun
tionality.

In some 
ases we will suggest returning an A

ess error where the X proto
ol

does not expli
itly allow one. These new A

ess errors arise when a 
lient 
an

only perform a (non-empty) subset of the de�ned operations on a resour
e. The

disallowed operations 
ause A

ess errors. The resiour
e at issue is usually a

root window.

2.1 A

ess to Server Resour
es

The X proto
ol allows 
lients to manipulate resour
es (obje
ts) belonging to

other 
lients or to the server. Any request that spe
i�es a resour
e ID is vulner-

able to some of the above threats. Su
h requests also provide a way for a 
lient

to guess resour
e IDs of other 
lients. A 
lient 
an make edu
ated guesses for

possible resour
e IDs, and if the request su

eeds, it knows it has determined a

valid resour
e ID. We 
all this \resour
e ID guessing" in the list below.

One likely defense against these problems is to have the server send an appro-

priate proto
ol error to deny the existen
e of any resour
e spe
i�ed by a 
lient

that doesn't belong to that 
lient. A variation on this poli
y lets 
ooperating

4



groups of 
lients a

ess ea
h other's resour
es, but not those of other groups.

The Broadway proje
t will initially use a less general form of this idea by having

two groups, trusted and untrusted. Trusted 
lients 
an do everything that X


lients 
an do today. They will be prote
ted from untrusted 
lients in ways de-

s
ribed below. Untrusted 
lients will not be prote
ted from ea
h other. Though

this will be the initial design, we need to make sure there is a growth path to

multiple (more than two) groups.

Most of the time, appli
ations never a

ess server resour
es that aren't their

own, so the impa
t of disallowing su
h a

esses should be minimal. There are

a few notable ex
eptions, most of whi
h will be dis
ussed under the relevant

proto
ol requests. They are: ICCCM sele
tion transfer, Motif drag and drop,

and server-global resour
es like the root window and default 
olormap. Another

major ex
eption is the window manager, whi
h routinely manipulates windows

of other appli
ations. The solution for window managers is to always run them

as trusted appli
ations.

The implementation diÆ
ulty of limiting a

ess to resour
es should not be

large. All resour
e a

esses eventually funnel down to one of two fun
tions

in dix/resour
e.
: LookupIDByType() and LookupIDByClass(). A few lines of


he
king at the top of these fun
tions will form the heart of this defense. There

is a small problem be
ause these fun
tions are not told whi
h 
lient is doing

the lookup, but that 
an be solved either by adding a 
lient parameter (proba-

bly as a new fun
tion to preserve 
ompatibility), or by using the server global

requestingClient.

ISSUE: are we really going to be able to get away with hiding trusted resour
es,

or will things like Motif drag and drop for
e us to expose them? (Either way,

the operations that untrusted 
lients 
an do to trusted resour
es will have to

be limited.) Is there something in Xt or the ICCCM that breaks if you hide

resour
es?

2.2 Denial of Servi
e

2.2.1 Memory Exhaustion

Any request that 
auses the server to 
onsume resour
es (parti
ularly memory)


an be used in a denial of servi
e atta
k. A 
lient 
an use su
h requests repeat-

edly until the server runs out of memory. When that happens, the server will

either 
rash or be for
ed to send Allo
 errors. The most obvious 
andidates are

resour
e 
reation requests, e.g., CreatePixmap, but in reality a large per
ent-

age of requests 
ause memory allo
ation, if only temporarily, depending on the

server implementation. For this reason, the list of requests subje
t to this form

of denial of servi
e will be ne
essarily in
omplete.

5



To address this form of denial of servi
e, the server 
ould set per-
lient quotas

on memory 
onsumption. When the limit is surpassed, the server 
ould return

Allo
 errors. The appli
ation impa
t is minimal as long as the appli
ation stays

within quota. The implementation diÆ
ulty is another story.

Con
eptually, it seems easy: simply have a way to set the limit, and on every

memory (de)allo
ation operation, update the 
lient's 
urrent usage, and return

an error if the 
lient is over the limit. The �rst problem is something we've

already tou
hed on: the allo
ator fun
tions aren't told whi
h 
lient the allo-


ation belongs to. Unlike resour
e lookups, allo
ations are done in too many

pla
es to 
onsider a new interfa
e that passes the 
lient, so using the global

requestingClient is pra
ti
ally mandatory.

The problems run deeper. The logi
al thing for the allo
ator to do if the


lient is over its limit is to return NULL, indi
ating allo
ation failure. Un-

fortunately, there are many pla
es in the server that will rea
t badly if this

happens. Most of these pla
es, but not all, are \prote
ted" by setting the

global variable Must have memory to True around the deli
ate 
ode. We 
ould

help the problem by skipping the limit 
he
k if Must have memory is True. The

best solution would be to bullet-proof the server against allo
ation failures, but

that is beyond the s
ope of Broadway. Another 
onsideration is that the ad-

ditional 
he
king may have a measurable performan
e impa
t, sin
e the server

does frequent allo
ations.

A third problem is that there is no portable way to determine the size of a


hunk of allo
ated memory given just a pointer to the 
hunk, and that's all you

have inside Xreallo
() and Xfree(). The server 
ould 
ompensate by re
ording

the sizes itself somewhere, but that would be wasteful of memory, sin
e the

mallo
 implementation also must be re
ording blo
k sizes. On top of that,

the redundant bookkeeping would hurt performan
e. One solution is to use a


ustom mallo
 that has the needed support, but that too seems beyond the

s
ope of Broadway.

Considering all of this, we think it is advisable to defer solving the memory

exhaustion problem to a future release. Keep this in mind when you see quotas

mentioned as a defense in the list below.

2.2.2 CPU Monopolization

Another general way that a 
lient 
an 
ause denial of servi
e is to 
ood the server

with requests. The server will spend a large per
entage of its time servi
ing

those requests, possibly starving other 
lients and 
ertainly hurting performan
e.

Every request 
an be used for 
ooding, so we will not bother to list 
ooding

on every request. A variation on this atta
k is to 
ood the server with new


onne
tion attempts.

6



To redu
e the e�e
tiveness of 
ooding, the server 
ould use a di�erent s
heduling

algorithm that throttles 
lients that are monopolizing the server, or it 
ould

simply favor trusted 
lients over untrusted ones. Appli
ations 
annot depend

on a parti
ular s
heduling algorithm anyway, so 
hanging it should not a�e
t

them. The Syn
hronization extension spe
i�es a way to set 
lient priorities,

and a simple priority s
heduler already exists in the server to support it, so this

should be simple to add.

3 Se
urity 
on
erns with spe
i�
 window attributes

3.1 Ba
kground-pixmap

Clients 
an use windows with the ba
kground-pixmap attribute set to None

(hereafter \ba
kground none windows") to obtain images of other windows. A

ba
kground none window never paints its own ba
kground, so whatever hap-

pened to be on the s
reen when the window was mapped 
an be read from

the ba
kground none window with GetImage. This may well 
ontain data from

other windows. The CreateWindow and ChangeWindowAttributes requests 
an

set the ba
kground-pixmap attribute set to None, and many window operations


an 
ause data from other windows to be left in a ba
kground none window,

in
luding ReparentWindow, MapWindow, MapSubwindows, Con�gureWindow,

and Cir
ulateWindow.

Ba
kground none windows 
an also be used to 
ause apparent alteration. A


lient 
an 
reate a window with ba
kground none and draw to it. The drawing

will appear to the user to be in the windows below the ba
kground none window.

To remedy these problems, the server 
ould substitute a well-de�ned ba
kground

when a 
lient spe
i�es None. Ideally the substituted ba
kground would look

di�erent enough from other windows that the user wouldn't be 
onfused. A

tile depi
ting some appropriate international symbol might be reasonable. We

believe that there are few appli
ations that a
tually rely on ba
kground none

semanti
s, and those that do will be easy for the user to identify be
ause of the

distin
tive tile. Implementation should not be a problem either. Lu
kily, the

window ba
kground 
annot be retrieved through the X proto
ol, so we won't

have to maintain any illusions about its value.

ISSUE: Some vendors have extensions to let you query the window ba
kground.

Do we need to a

omodate that?

ISSUE: Will this lead to una

eptable appli
ation breakage? Could the server

be smarter, only painting with the well-de�ned ba
kground when the window

a
tually 
ontains bits from trusted windows?

7



3.2 ParentRelative and CopyFromParent

Several window attributes 
an take on spe
ial values that 
ause them to refer-

en
e (ParentRelative) or 
opy (CopyFromParent) the same attribute from the

window's parent. This �ts our de�nition of theft. The window attributes are


lass, ba
kground-pixmap, border-pixmap, and 
olormap. All of these 
an be

set with CreateWindow; all but 
lass 
an be set with ChangeWindowAttributes.

These forms of theft aren't parti
ularly serious, so sending an error doesn't

seem appropriate. Substitution of di�erent attribute values seems to be the only

reasonable option, and even that is likely to 
ause trouble for 
lients. Untrusted


lients are already going to be prevented from 
reating windows that are 
hildren

of trusted 
lients (see CreateWindow below). We re
ommend that nothing more

be done to 
ounter this threat.

3.3 Override-redire
t

Windows with the override-redire
t bit set to True are generally ignored by the

window manager. A 
lient 
an map an override-redire
t window that 
overs

most or all of the s
reen, 
ausing denial of servi
e sin
e other appli
ations won't

be visible.

To prevent this, the server 
ould prevent more than a 
ertain per
entage (
on-

�gurable) the of s
reen area from being 
overed by override-redire
t windows of

untrusted 
lients.

Override-redire
t windows also make some spoo�ng atta
ks easier sin
e the


lient 
an more 
arefully 
ontrol the presentation of the window to mimi
 an-

other 
lient. Defenses against spoo�ng will be given under MapWindow.

4 Se
urity 
on
erns with spe
i�
 requests

To redu
e the spa
e needed to dis
uss 120 requests, most of the following se
tions

use a stylized format. A threat is given, followed by an imperative statement.

The implied subje
t is an untrusted 
lient, and the obje
t is usually a trusted


lient. Following that, another statement starting with \Defense:" re
ommends

a 
ountermeasure for the pre
eding threat(s).

Resour
es owned by the server, su
h as the root window and the default 
ol-

ormap, are 
onsidered to be owned by a trusted 
lient.

8



4.1 CreateWindow

Alteration: 
reate a window as a 
hild of another 
lient's window, altering its

list of 
hildren.

Defense: send Window error. Spe
ifying the root window as the parent will

have to be allowed, though.

Theft: 
reate an InputOnly window or a window with ba
kground none on top

of other 
lients' windows, sele
t for keyboard/mouse input on that window, and

steal the input. The input 
an be resent using SendEvent or an input synthesis

extension so that the snooped appli
ation 
ontinues to fun
tion, though this

won't work 
onvin
ingly with the ba
kground none 
ase be
ause the drawing

will be 
lipped.

Defense: send an error if a top-level InputOnly window is 
reated (or repar-

ented to the root). Countermeasures for ba
kground none and SendEvent are

dis
ussed elsewhere.

ISSUE: The Motif drag and drop proto
ol 
reates and maps su
h a window (at

�100,�100, size 10x10) to \
a
he frequently needed data on window properties

to redu
e roundtrip server requests." Proposed solution: we 
ould only send an

error if the window is visible, whi
h would require 
he
king in, MapWindow,

Con�gureWindow, and ReparentWindow.

Theft: resour
e ID guessing (parent, ba
kground-pixmap, border-pixmap, 
ol-

ormap, and 
ursor).

Defense: send Window, Pixmap, Colormap, or Cursor error.

Denial of servi
e: 
reate windows until the server runs out of memory.

Defense: quotas.

Also see se
tion 3.

4.2 ChangeWindowAttributes

Alteration: 
hange the attributes of another 
lient's window.

Theft: sele
t for events on another 
lient's window.

Defense for both of the above: send Window error.

ISSUE: The Motif drop proto
ol states that \the initiator should sele
t for

DestroyNotify on the destination window su
h that it is aware of a potential re-


eiver 
rash." This will be a problem if the initiator is an untrusted window and

the destination is trusted. Can the server, perhaps with the help of the se
urity

manager, re
ognize that a drop is in progress and allow the DestroyNotify event

9



sele
tion in this limited 
ase?

ISSUE: The Motif pre-register drag proto
ol probably requires the initiator to

sele
t for Enter/LeaveNotify on all top-level windows. Same problem as the

previous issue.

Theft: resour
e ID guessing (ba
kground-pixmap, border-pixmap, 
olormap,

and 
ursor).

Defense: send Pixmap, Colormap, or Cursor error.

Also see se
tion 3.

4.3 GetWindowAttributes

Theft: get the attributes of another 
lient's window.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

4.4 DestroyWindow, DestroySubwindows

Destru
tion: destroy another 
lient's window.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

4.5 ChangeSaveSet

Alteration: 
ause another 
lient's windows to be reparented to the root when

this 
lient dis
onne
ts (only if the other 
lient's windows are subwindows of this


lient's windows).

Defense: pro
ess the request normally. The trusted 
lient gives away some of

its prote
tion by 
reating a subwindow of an untrusted window.

Theft: resour
e ID guessing (window).

Defense: send Window error.

4.6 MapWindow

Spoo�ng: map a window that is designed to resemble a window of another 
lient.

Additional requests will probably be needed to 
omplete the illusion.

10



Defense:

We 
onsider spoo�ng to be a signi�
ant danger only if the user is 
onvin
ed

to intera
t with the spoof window. The defense 
enters on providing enough

information to enable the user to know where keyboard, mouse, and extension

devi
e input is going. To a

omplish this, the server will 
ooperate with the

se
urity manager, an external pro
ess. The server will provide the following

fa
ilities to the se
urity manager:

1. A way to 
reate a single window that is unobs
urable by any window of

any other 
lient, trusted or untrusted. It needs to be unobs
urable so that it is

spoof-proof.

ISSUE: is a weaker form of unobs
urability better? Should the window be

obs
urable by trusted windows, for example?

ISSUE: does unobs
urable mean that it is a 
hild of the root that is always on

top in the sta
king order?

2. A way to determine if a given window ID belongs to an untrusted 
lient.

The se
urity manager will need to sele
t for the existing events Fo
usIn, Fo-


usOut, EnterNotify, LeaveNotify, Devi
eFo
usIn, and Devi
eFo
usOut on all

windows to tra
k what window(s) the user's input is going to. Using the above

server fa
ilities, it 
an reliably display the trusted/untrusted status of all 
lients


urrently re
eiving input.

ISSUE: is it too mu
h to ask the se
urity manager to sele
t for all these events

on every window? Do we need to provide new events that you sele
t for *on the

devi
e* that tell where the devi
e is fo
used?

None of this should have any appli
ation impa
t.

The unobs
urable window may be tri
ky to implement. There is already some

ma
hinery in the server to make an unobs
urable window for the s
reen saver,

whi
h may help but may also get in the way now that we have to deal with two

unobs
urable windows.

4.7 Window Operations

Spe
i�
ally, ReparentWindow, MapWindow, MapSubwindows, UnmapWindow,

UnmapSubwindows, Con�gureWindow, and Cir
ulateWindow.

Alteration: manipulate another 
lient's window.

Theft: resour
e ID guessing (window, sibling).

Defense for both of the above: send a Window error unless it is a root window,

in whi
h 
ase we should send an A

ess error.

11



4.8 GetGeometry

Theft: get the geometry of another 
lient's drawable.

Theft: resour
e ID guessing (drawable).

Defense for both of the above: send Drawable error. However, root windows

will be allowed.

4.9 QueryTree

Theft: resour
e ID guessing (window).

Defense: send Window error.

Theft: dis
over window IDs that belong to other 
lients.

Defense: For the 
hild windows, 
ensor the reply by removing window IDs that

belong to trusted 
lients. Allow the root window to be returned. For the parent

window, if it belongs to a trusted 
lient, return the 
losest an
estor window that

belongs to an untrusted 
lient, or if su
h a window does not exist, return the

root window for the parent window.

ISSUE: will some appli
ations be 
onfused if we �lter out the window manager

frame window(s), or other windows between the queried window and the root

window?

ISSUE: the Motif drag proto
ol (both preregister and dynami
) needs to be able

to lo
ate other top-level windows for potential drop sites. See also se
tion 2.1.

4.10 InternAtom

Theft: dis
over atom values of atoms interned by other 
lients. This lets you

determine if a spe
i�
 set of atoms has been interned, whi
h may lead to other

inferen
es.

Defense: This is a minor form of theft. Blo
king it will interfere with many types

of inter-
lient 
ommuni
ation. We propose to do nothing about this threat.

Denial of servi
e: intern atoms until the server runs out of memory.

Defense: quotas.

12



4.11 GetAtomName

Theft: dis
over atom names of atoms interned by other 
lients. This lets you

determine if a spe
i�
 set of atoms has been interned, whi
h may lead to other

inferen
es.

Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.12 ChangeProperty

Alteration: 
hange a property on another 
lient's window or one that was stored

by another 
lient.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

ISSUE: Sele
tion transfer requires the sele
tion owner to 
hange a property on

the requestor's window. Does the se
urity manager get us out of this? Does the

server noti
e the property name and window passed in ConvertSele
tion and

temporarily allow that window property to be written?

ISSUE: should 
ertain root window properties be writable?

Denial of servi
e: store additional property data until the server runs out of

memory.

Defense: quotas.

4.13 DeleteProperty

Destru
tion: delete a property stored by another 
lient.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

4.14 GetProperty

Theft: get a property stored by another 
lient.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

13



ISSUE: should 
ertain root window properties be readable? Proposed answer:

yes, some 
on�gurable list. Do those properties need to be polyinstantiated?

ISSUE: Motif drag and drop needs to be able to read the following proper-

ties: WM STATE to identify top-level windows, MOTIF DRAG WINDOW

on the root window, MOTIF DRAG TARGETS on the window given in the

MOTIF DRAG WINDOW property, and MOTIF DRAG RECEIVER INFO

on windows with drop sites. Additionally, some properties are needed that do

not have �xed names.

4.15 RotateProperties

Alteration: rotate properties stored by another 
lient.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

4.16 ListProperties

Theft: list properties stored by another 
lient.

Theft: resour
e ID guessing (window).

Defense for both of the above: send Window error.

ISSUE: should 
ertain root window properties be listable?

4.17 SetSele
tionOwner

Theft: Steal ownership of a sele
tion.

Denial of servi
e: do this repeatedly so that no other 
lient 
an own the sele
tion.

Defense for both of the above: have a 
on�gurable list of sele
tions that un-

trusted 
lients 
an own. For other sele
tions, treat this request as a no-op.

ISSUE: how does the se
urity manager get involved here? Is it the one that has

the 
on�gurable list of sele
tions instead of the server?

Theft: resour
e ID guessing (window).

Defense: send Window error.

14



4.18 GetSele
tionOwner

Theft: dis
over the ID of another 
lient's window via the owner �eld of the

reply.

Defense: if the sele
tion is on the 
on�gurable list mentioned above, return the

root window ID, else return None.

ISSUE: how does the se
urity manager get involved here?

4.19 ConvertSele
tion

Theft: this initiates a sele
tion transfer (see the ICCCM) whi
h sends the se-

le
tion 
ontents from the sele
tion owner, whi
h may be another 
lient, to the

requesting 
lient.

Defense: sin
e in many 
ases ConvertSele
tion is done in dire
t response to user

intera
tion, it is probably best not to for
e it to fail, either silently or with an

error. The server should rely on the se
urity manager to assist in handling the

sele
tion transfer.

Theft: resour
e ID guessing (requestor).

Defense: send Window error.

4.20 SendEvent

A 
lient 
an use SendEvent to 
ause events of any type to be sent to windows

of other 
lients. Similarly, a 
lient 
ould SendEvent to one of its own windows

with propogate set to True and arrange for the event to be propogated up to

a window it does not own. Clients 
an dete
t events generated by SendEvent,

but we 
annot assume that they will.

Defense: ignore this request unless the event being sent is a ClientMessage event,

whi
h should be sent normally so that sele
tion transfer, Motif drag and drop,

and 
ertain input methods have a 
han
e at working.

ISSUE: does allowing all ClientMessages open up too big a hole?

Theft: resour
e ID guessing (window).

Defense: send Window error.

4.21 Keyboard and Pointer Grabs

Spe
i�
ally, GrabKeyboard, GrabPointer, GrabKey, and GrabButton.

15



Denial of servi
e/Theft: take over the keyboard and pointer. This 
ould be

viewed as denial of servi
e sin
e it prevents other 
lients from getting keyboard

or mouse input, or it 
ould be viewed as theft sin
e the user input may not have

been intended for the grabbing 
lient.

Defense: provide a way to break grabs via some keystroke 
ombination, and

have a status area that shows whi
h 
lient is getting input. (See MapWindow.)

Theft: resour
e ID guessing (grab-window, 
on�ne-to, 
ursor).

Defense: send Window or Cursor error.

4.22 ChangeA
tivePointerGrab

Theft: resour
e ID guessing (
ursor).

Defense: send Cursor error.

4.23 GrabServer

Denial of servi
e: a 
lient 
an grab the server and not let go, lo
king out all

other 
lients.

Defense: provide a way to break grabs via some keystroke 
ombination.

4.24 QueryPointer

Theft: A 
lient 
an steal pointer motion and position, button input, modi�er

key state, and possibly a window of another 
lient with this request.

Defense: if the querying 
lient doesn't have the pointer grabbed, and the pointer

is not in one of its windows, the information 
an be zeroed.

Theft: resour
e ID guessing (window).

Defense: send Window error.

4.25 GetMotionEvents

Theft: steal pointer motion input that went to other 
lients.

Defense: ideally, the server would return only pointer input that was not de-

livered to any trusted 
lient. The implementation e�ort to do that probably

outweighs the marginal bene�ts. Instead, we will always return an empty list

of motion events to untrusted 
lients.

16



Theft: resour
e ID guessing (window).

Defense: send Window error.

4.26 TranslateCoordinates

Theft: dis
over information about other 
lients' windows: position, s
reen, and

possibly the ID of one of their subwindows.

Defense: send an error if sr
-window or dst-window do not belong to the re-

questing 
lient.

Theft: resour
e ID guessing (sr
-window, dst-window).

Defense: send Window error.

4.27 WarpPointer

A 
lient 
an 
ause pointer motion to o

ur in another 
lient's window.

Denial of servi
e: repeated pointer warping prevents the user from using the

mouse normally.

Defense for both of the above: if the querying 
lient doesn't have the pointer

grabbed, and the pointer is not in one of its windows, treat the request as a

no-op.

Theft: resour
e ID guessing (sr
-window, dst-window).

Defense: send Window error.

4.28 SetInputFo
us

Theft: a 
lient 
an use this request to make one of its own windows have the

input fo
us (keyboard fo
us). The user may be unaware that keystrokes are

now going to a di�erent window.

Denial of servi
e: repeatedly setting input fo
us prevents normal use of the

keyboard.

Defense for both of the above: only allow untrusted 
lients to SetInputFo
us if

input fo
us is 
urrently held by another untrusted 
lient.

ISSUE: this will break 
lients using the Globally A
tive Input model des
ribed

in se
tion 4.1.7 of the ICCCM.

Theft: resour
e ID guessing (fo
us).

17



Defense: send Window error.

4.29 GetInputFo
us

Theft: the reply may 
ontain the ID of another 
lient's window.

Defense: return a fo
us window of None if a trusted 
lient 
urrently has the

input fo
us.

4.30 QueryKeymap

Theft: poll the keyboard with this to see whi
h keys are being pressed.

Defense: zero the returned bit ve
tor if a trusted 
lient 
urrently has the input

fo
us.

4.31 Font Requests

Spe
i�
ally, OpenFont, QueryFont, ListFonts, ListFontsWithInfo, and Query-

TextExtents.

Theft: dis
over font name, glyph, and metri
 information about fonts that were

provided by another 
lient (by setting the font path). Whether it is theft to

retrieve information about fonts from the server's initial font path depends on

whether or not you believe those fonts, by their existen
e in the initial font path,

are intended to be globally a

essible by all 
lients.

Defense:

Maintain two separate font paths, one for trusted 
lients and one for untrusted


lients. They are both initialized to the default font path at server reset. Subse-

quently, 
hanges to one do not a�e
t the other. Sin
e untrusted 
lients will not

see font path elements added by trusted 
lients, they will not be able to a

ess

any fonts provided by those font path elements.

Theft: resour
e ID guessing (font) (QueryFont and QueryTextExtents only).

Defense: send Font error.

Denial of servi
e: open fonts until the server runs out of memory (OpenFont

only).

Defense: quotas.

18



4.32 CloseFont

Destru
tion: 
lose another 
lient's font.

Defense: send Font error.

4.33 SetFontPath

Denial of servi
e: 
hange the font path so that other 
lients 
annot �nd their

fonts.

Alteration: 
hange the font path so that other 
lients get di�erent fonts than

they expe
ted.

Defense for both of the above: separate font paths for trusted and untrusted


lients, as des
ribed in the Font Requests se
tion.

ISSUE: the printing proje
t 
onsidered per-
lient font paths and 
on
luded that

it was very diÆ
ult to do. We should look at this aspe
t of the print server design

to see if we 
an reuse the same s
heme. We should also try to re
onstru
t what

was so diÆ
ult about this; it doesn't seem that hard on the surfa
e.

4.34 GetFontPath

Theft: retrieve font path elements that were set by other 
lients.

Use knowledge from font path elements to mount other atta
ks, e.g., atta
k a

font server found in the font path.

Defense for both of the above: separate font paths for trusted and untrusted


lients, as des
ribed in the Font Requests se
tion.

4.35 CreatePixmap

Theft: resour
e ID guessing (drawable).

Defense: send Drawable error.

Denial of servi
e: 
reate pixmaps until the server runs out of memory.

Defense: quotas.

4.36 FreePixmap

Destru
tion: destroy another 
lient's pixmap.

19



Defense: send Pixmap error.

4.37 CreateGC

Theft: resour
e ID guessing (drawable, tile, stipple, font, 
lip-mask).

Defense: send Drawable, Pixmap, or Font error.

Denial of servi
e: 
reate GCs until the server runs out of memory.

Defense: quotas.

4.38 CopyGC

Theft: 
opy GC values of another 
lient's GC.

Alteration: 
opy GC values to another 
lient's GC.

Defense for both of the above: send GC error.

4.39 ChangeGC, SetDashes, SetClipRe
tangles

Alteration: 
hange values of another 
lient's GC.

Theft: resour
e ID guessing (g
, tile, stipple, font, 
lip-mask) (last four for

ChangeGC only).

Defense for both of the above: send GC error.

4.40 FreeGC

Destru
tion: destroy another 
lient's GC.

Defense: send GC error.

4.41 Drawing Requests

Spe
i�
ally, ClearArea, CopyArea, CopyPlane, PolyPoint, PolyLine, PolySeg-

ment, PolyRe
tangle, PolyAr
, FillPoly, PolyFillRe
tangle, PolyFillAr
, PutIm-

age, PolyText8, PolyText16, ImageText8, and ImageText16.

Alteration: draw to another 
lient's drawable.

Theft: resour
e ID guessing: ClearArea - window; CopyArea, CopyPlane - sr
-

drawable, dst-drawable, g
; all others - drawable, g
.

20



Defense for both of the above: send appropriate error.

ISSUE: The Motif preregister drag proto
ol requires 
lients to draw into win-

dows of other 
lients for drag-over/under e�e
ts.

Spoo�ng: draw to a window to make it resemble a window of another 
lient.

Defense: see MapWindow.

4.42 GetImage

Theft: get the image of another 
lient's drawable.

Theft: resour
e ID guessing (drawable).

Defense: send Drawable error.

Theft: get the image of your own window, whi
h may 
ontain pie
es of other

overlapping windows.

Defense: 
ensor returned images by blotting out areas that 
ontain data from

trusted windows.

4.43 CreateColormap

Theft: resour
e ID guessing (window).

Defense: send Colormap error.

Denial of servi
e: 
reate 
olormaps with this request until the server runs out

of memory.

Defense: quotas.

4.44 FreeColormap

Destru
tion: destroy another 
lient's 
olormap.

Defense: send Colormap error.

4.45 CopyColormapAndFree

Theft: resour
e ID guessing (sr
-map).

Defense: send Colormap error. However, default 
olormaps will be allowed.

21



ISSUE: must untrusted appli
ations be allowed to use standard 
olormaps?

(Same issue for ListInstalledColormaps, Color Allo
ation Requests, FreeColors,

StoreColors, StoreNamedColor, QueryColors, and LookupColor.)

Denial of servi
e: 
reate 
olormaps with this request until the server runs out

of memory.

Defense: quotas.

4.46 InstallColormap, UninstallColormap

Theft: resour
e ID guessing.

Defense: send Colormap error.

Denial of servi
e: (un)install any 
olormap, potentially preventing windows from

displaying 
orre
t 
olors.

Defense: treat this request as a no-op. Se
tion 4.1.8 of the ICCCM states that

(un)installing 
olormaps is the responsibility of the window manager alone.

ISSUE: the ICCCM also allows 
lients to do 
olormap installs if the 
lient has

the pointer grabbed. Do we need to allow that too?

4.47 ListInstalledColormaps

Theft: resour
e ID guessing (window).

Defense: send Colormap error.

Theft: dis
over the resour
e ID of another 
lient's 
olormap from the reply.

Defense: remove the returned 
olormap IDs; only let through default 
olormaps

and 
olormaps of untrusted 
lients.

4.48 Color Allo
ation Requests

Spe
i�
ally, Allo
Color, Allo
NamedColor, Allo
ColorCells, and Allo
Color-

Planes.

Alteration/Denial of servi
e: allo
ate 
olors in another 
lient's 
olormap. It is

denial of servi
e if the owning 
lient's 
olor allo
ations fail be
ause there are no


ells available. Otherwise it is just alteration.

Theft: resour
e ID guessing (
map).

Defense for both of the above: send Colormap error. However, default 
olormaps

22



will be allowed.

4.49 FreeColors

Theft: resour
e ID guessing (
map).

Defense: send Colormap error. However, default 
olormaps will be allowed.

4.50 StoreColors, StoreNamedColor

Alteration: 
hange the 
olors in another 
lient's 
olormap.

Theft: resour
e ID guessing (
map).

Defense for both of the above: send Colormap error. However, default 
olormaps

will be allowed.

4.51 QueryColors, LookupColor

Theft: retrieve information about the 
olors in another 
lient's 
olormap.

Theft: resour
e ID guessing (
map).

Defense for both of the above: send Colormap error. However, default 
olormaps

will be allowed.

4.52 CreateCursor, CreateGlyphCursor

Theft: resour
e ID guessing (sour
e, mask or sour
e-font, mask-font).

Defense: send Pixmap or Font error. However, the default font will be allowed.

Denial of servi
e: 
reate 
ursors until the server runs out of memory.

Defense: quotas.

4.53 FreeCursor

Destru
tion: free another 
lient's 
ursor.

Defense: send Cursor error.

23



4.54 Re
olorCursor

Alteration: re
olor another 
lient's 
ursor.

Theft: resour
e ID guessing (
ursor).

Defense for both of the above: send Cursor error.

4.55 QueryBestSize

Theft: resour
e ID guessing (drawable).

Defense: send Drawable error.

4.56 ListExtensions, QueryExtension

Determine the extensions supported by the server, and use the list to 
hoose

extension-spe
i�
 atta
ks to attempt.

Defense: extensions will have a way to tell the server whether it is safe for

untrusted 
lients to use them. These requests will only return information

about extensions that 
laim to be safe.

4.57 Keyboard 
on�guration requests

Spe
i�
ally, ChangeKeyboardControl, ChangeKeyboardMapping, and SetMod-

i�erMapping.

Alteration: 
hange the keyboard parameters that were established by another


lient.

Denial of servi
e: with ChangeKeyboardControl, disable auto-repeat, key 
li
k,

or the bell. With ChangeKeyboardMapping or SetModi�erMapping, 
hange the

key mappings so that the keyboard is diÆ
ult or impossible to use.

Defense for both of the above: treat these requests as a no-op.

4.58 Keyboard query requests

Spe
i�
ally, GetKeyboardControl, GetKeyboardMapping, and GetModi�erMap-

ping.

Theft: get keyboard information that was established by another 
lient.

24



Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.59 ChangePointerControl, SetPointerMapping

Alteration: 
hange the pointer parameters that were established by another


lient.

Denial of servi
e: set the pointer parameters so that the pointer is diÆ
ult or

impossible to use.

Defense for both of the above: treat these requests as a no-op.

4.60 GetPointerControl, GetPointerMapping

Theft: get pointer parameters that were established by another 
lient.

Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.61 SetS
reenSaver

Alteration: 
hange the s
reen saver parameters that were established by another


lient.

Denial of servi
e: set the s
reen saver parameters so that the s
reen saver is

always on or always o�.

Defense for both of the above: treat these requests as a no-op.

4.62 GetS
reenSaver

Theft: get s
reen saver parameters that were established by another 
lient.

Defense: This is a minor form of theft. We propose to do nothing about this

threat.

4.63 For
eS
reenSaver

Denial of servi
e: repeatedly a
tivate the s
reen saver so that the user 
annot

see the s
reen as it would look when the s
reen saver is o�.

Denial of servi
e: repeatedly reset the s
reen saver, preventing it from a
tivating.

25



Defense for both of the above: treat these requests as a no-op.

4.64 ChangeHost

Most servers already have some restri
tions on whi
h 
lients 
an use this request,

so whether the following list applies is implementation dependent.

Denial of servi
e: remove a host from the list, preventing 
lients from 
onne
ting

from that host.

Add a host to the list. Clients from that host may then laun
h other atta
ks of

any type.

Defense for both of the above: return A

ess error.

4.65 ListHosts

Theft: steal host identities and possibly even user identities that are allowed to


onne
t.

Laun
h atta
ks of any type against the stolen host/user identities.

Defense for both of the above: return only untrusted hosts.

4.66 SetA

essControl

Most servers already have some restri
tions on whi
h 
lients 
an use this request,

so whether the following list applies is implementation dependent.

Alteration: 
hange the a

ess 
ontrol value established by some other 
lient.

Disable a

ess 
ontrol, allowing 
lients to 
onne
t who would normally not be

able to 
onne
t. Those 
lients may then laun
h other atta
ks of any type.

Defense for both of the above: return A

ess error.

4.67 SetCloseDownMode

Denial of servi
e: set the 
lose-down mode to RetainPermanent or RetainTem-

porary, then dis
onne
t. The server 
annot reuse the resour
e-id-base of the

dis
onne
ted 
lient, or the memory used by the retained resour
es, unless an-

other 
lient issues an appropriate KillClient to 
an
el the retainment. The server

has a limited number of resour
e-id-bases, and when they are exhausted, it will

be unable to a

ept new 
lient 
onne
tions.

26



Defense: treat this request as a no-op.

4.68 KillClient

Destru
tion/Denial of servi
e: kill another 
urrently 
onne
ted 
lient.

Destru
tion: kill a 
lient that has terminated with 
lose-down mode of Retain-

Temporary or RetainPermanent, destroying all its retained resour
es.

Destru
tion: spe
ify AllTemporary as the resour
e, destroying all resour
es of


lients that have terminated with 
lose-down mode RetainTemporary.

Defense for all of the above: return Value error.

4.69 Clean Requests

Other than denial of servi
e 
aused by 
ooding, these requests have no known

se
urity 
on
erns: AllowEvents, UngrabPointer, UngrabButton, UngrabKey-

board, UngrabKey, UngrabServer, NoOperation, and Bell.

5 Events

The only threat posed by events is theft. Sele
ting for events on another 
lient's

resour
es is always theft. We restri
t further analysis by assuming that the


lient only sele
ts for events on its own resour
es, then asking whether the

events provide information about other 
lients.

5.1 KeymapNotify

Theft: the state of the keyboard 
an be seen when the 
lient does not have the

input fo
us. This is possible be
ause a KeymapNotify is sent to a window after

every EnterNotify even if the window does not have input fo
us.

Defense: zero the returned bit ve
tor if a trusted 
lient 
urrently has the input

fo
us.

5.2 Expose

Theft: dis
over where other 
lients' windows overlap your own. For instan
e,

map a full-s
reen window, lower it, then raise it. The resulting exposes tell you

where other windows are.

27



Defense: about the only thing you 
ould do here is for
e ba
king store to be used

on untrusted windows, but that would probably use too mu
h server memory.

We propose to do nothing about this threat.

5.3 Graphi
sExposure

Theft: dis
over where other 
lients' windows overlap your own. For instan
e,

use CopyArea to 
opy the entire window's area exa
tly on top of itself. The

resulting Graphi
sExposures tell you where the window was obs
ured.

Defense: see Expose above. We propose to do nothing about this threat.

5.4 VisibilityNotify

Theft: this event provides 
rude positional information about other 
lients,

though the re
eiver 
annot tell whi
h other 
lients.

Defense: The information 
ontent of this event is very low. We propose to do

nothing about this threat.

5.5 ReparentNotify

Theft: the parent windowmay belong to some other 
lient (probably the window

manager).

Defense: If the parent window belongs to a trusted 
lient, return the 
losest

an
estor window that belongs to an untrusted 
lient, or if su
h a window does

not exist, return the root window for the parent window.

ISSUE: what is the appli
ation impa
t?

5.6 Con�gureNotify

Theft: the above-sibling window may belong to some other 
lient.

Defense: return None for the above-sibling window if it belongs to a trusted


lient.

ISSUE: what is the appli
ation impa
t?

5.7 Con�gureRequest

Theft: the sibling window may belong to some other 
lient.

28



Defense: return None for the sibling window if it belongs to a trusted 
lient.

ISSUE: what is the appli
ation impa
t?

5.8 Sele
tionClear

Theft: the owner window may belong to some other 
lient.

Defense: return None for the owner window if it belongs to a trusted 
lient.

5.9 Sele
tionRequest

Theft: the requestor window may belong to some other 
lient.

Defense: Blo
king this event or 
ensoring the window would prevent sele
tion

transfers from untrusted 
lients to trusted 
lients from working. We propose to

do nothing in the server about this threat. The se
urity manager may redu
e

the exposure of trusted window IDs by be
oming the owner of all sele
tions.

5.10 MappingNotify

Theft: dis
over keyboard, pointer, or modi�er mapping information set by an-

other 
lient.

Defense: Any tampering with this event will 
ause 
lients to have an in
onsistent

view of the keyboard or pointer button 
on�guration, whi
h is likely to 
onfuse

the user. We propose to do nothing about this threat.

6 Errors

There appear to be no threats related to pro
otol errors.

7 Future Work

The next steps are resolve the items marked ISSUE and to de
ide if the defenses

proposed are reasonable. Dis
ussion on the se
urity�x.org mailing list, proto-

typing, and/or starting the implementation should help answer these questions.

29



8 Referen
es

Bell
ore, \Framework Generi
 Requirements for X Window System Se
urity,"

Te
hni
al Advisory FA-STS-001324, Issue 1, August 1992.

Dardailler, Daniel, \Motif Drag And Drop Proto
ol," unpublished design notes.

Kahn, Brian L., \Safe Use of X WINDOW SYSTEM proto
ol A
ross a Fire-

wall", unpublished draft, The MITRE Corporation, 1995.

Rosenthal, David S. H., \LINX - a Less INse
ure X server," Sun Mi
rosystems,

29th April 1989.

Rosenthal, David and Marks, Stuart W., \Inter-Client Communi
ation Conven-

tions Manual Version 2.0," ftp://ftp.x.org/pub/R6.1/x
/do
/hard
opy/ICCCM/i


m.PS.Z

S
hei
er, Robert W., \XWindow System Proto
ol," ftp://ftp.x.org/pub/R6.1/x
/do
/hard
opy/XProto
ol/proto.PS.Z

Treese, G. Win�eld and Wolman, Ale
, \X Through the Firewall, and Other

Appli
ation Relays," Digital Equipment Corporation Cambridge Resear
h Lab,

Te
hni
al Report Series, CRL 93/10, May 3, 1993.

30


