
Direct3D Immediate
Mode
[This is preliminary documentation and subject to change.]

Direct3D® Immediate Mode application programming interface (API) is part of the
three-dimensional (3-D) graphics component of DirectX®. The information on
Direct3D Immediate Mode is organized into the following topics:

· About Direct3D Immediate Mode
· Why Use Direct3D Immediate Mode?
· Getting Started with Immediate Mode
· Direct3D Immediate Mode Architecture
· Direct3D Immediate Mode Essentials
· Direct3D Immediate Mode Tutorials
· Direct3D Immediate Mode Reference
· Direct3D Immediate Mode Samples

About Direct3D Immediate
Mode

[This is preliminary documentation and subject to change.]

Direct3D is designed to enable world-class game and interactive three-dimensional
(3-D) graphics on a computer running Microsoft® Windows®. Its mission is to
provide device-dependent access to 3-D video-display hardware in a device-
independent manner. Simply put, Direct3D is a drawing interface for 3-D hardware.

You can use Direct3D in either of two modes: Immediate Mode or Retained Mode.
Retained Mode is a high-level 3-D application programming interface (API) for
programmers who require rapid development or who want the help of Retained
Mode's built-in support for hierarchies and animation.

Microsoft developed the Direct3D Immediate Mode as a low-level 3-D API.
Immediate Mode is ideal for developers who need to port games and other high-
performance multimedia applications to the Microsoft Windows operating system.
Immediate Mode is a device-independent way for applications to communicate with
accelerator hardware at a low level. Direct3D Retained Mode is built on top of
Immediate Mode.

These are some of the advanced features of Direct3D:

in.doc – page 2

· Switchable depth buffering (using z-buffers or w-buffers)
· Flat and Gouraud shading
· Multiple lights and light types
· Full material and texture support, including mipmapping
· Robust software emulation drivers
· Transformation and clipping
· Hardware independence
· Full support on Windows NT/Windows 2000
· Support for the Intel MMX architecture

Developers who use Immediate Mode instead of Retained Mode are typically
experienced in high-performance programming issues, and may also be experienced
in 3-D graphics. Your best source of information about Immediate Mode is probably
the sample code included with this SDK; it illustrates how to put Direct3D
Immediate Mode to work in real-world applications.

Why Use Direct3D Immediate
Mode?

[This is preliminary documentation and subject to change.]

The world management of Immediate Mode is based on vertices, polygons, and
commands that control them. It allows immediate access to the transformation,
lighting, and rasterization 3-D graphics pipeline. If hardware isn't present to
accelerate rendering, Direct3D offers applications a choice of software emulation
drivers. Developers with existing 3-D applications and developers who need to
achieve maximum performance by maintaining the thinnest possible layer between
their application and the hardware should use Immediate Mode instead of Retained
Mode.

There are two ways to use Immediate Mode: you can use the DrawPrimitive methods
or you can work with execute buffers (display lists). Most developers who have
never worked with Immediate Mode before will use the DrawPrimitive methods.
Developers who already have an investment in code that uses execute buffers will
probably continue to work with them. Neither technique is faster than the other —
which you choose will depend on the needs of your application and your preferred
programming style. For more information about these two ways to work with
Immediate Mode, see The DrawPrimitive Methods and Execute Buffers.

Immediate Mode allows a low-overhead connection to 3-D hardware. This low-
overhead connection comes at a price; you must provide explicit calls for
transformations and lighting, you must provide all the necessary matrices, and you
must determine what kind of hardware is present and what its capabilities are.

in.doc – page 3

Getting Started with
Immediate Mode

[This is preliminary documentation and subject to change.]

The following sections describe some of the technical concepts you need to
understand before you write programs that incorporate 3-D graphics. This is not a
discussion of broad architectural details, nor is it an in-depth analysis of specific
Direct3D components. For information about these topics, see Direct3D Immediate
Mode Architecture and Direct3D Immediate Mode Essentials.

If you are already experienced in producing 3-D graphics, simply scan the following
sections for information that is unique to Direct3D.

Information in this section is divided into the following groups:

· 3-D Coordinate Systems and Geometry
· Matrices and Transformations

3-D Coordinate Systems and
Geometry

[This is preliminary documentation and subject to change.]

Programming Direct3D applications requires a working familiarity of 3-D geometric
principles. This section introduces the most important geometric concepts needed for
creating 3-D scenes in the following sections:

· 3-D Coordinate Systems
· 3-D Primitives
· Triangle Rasterization Rules
· Shading

The discussions in these topics are intended to provide you with a simple, high-level,
understanding of the basic concepts employed by a Direct3D application. For a list
of sources for much more detailed information about these topics, see Further
Reading.

3-D Coordinate Systems
[This is preliminary documentation and subject to change.]

Typically 3-D graphics applications use two types of Cartesian coordinate systems:
left-handed and right-handed. In both coordinate systems, the positive x-axis points
to the right and the positive y-axis points up. You can remember which direction the
positive z-axis points by pointing the fingers of either your left or right hand in the

in.doc – page 4

positive x-direction and curling them into the positive y-direction. The direction your
thumb points, either toward or away from you, is the direction the positive z-axis
points for that coordinate system.

Y

Z

X Z

X

Y

Direct3D uses a left-handed coordinate system. If you are porting an application that
relies on right-handedness, you can do so by making two simple changes to the data
passed to Direct3D.

· Flip the order of triangle vertices so that the system traverses them clockwise
from the front. In other words, if the vertices are v0, v1, v2, pass them to
Direct3D as v0, v2, v1.

· Use the view matrix to scale world space by -1 in the z-direction. To do this, flip
the sign of the _31, _32, _33, and _34 member of the D3DMATRIX structure
that you use for your view matrix. (Likewise, Visual Basic applications can
perform this operation on the corresponding members of the D3DMATRIX
type.)

It is important to note that there are a wide variety of other coordinate systems used
in 3-D software. Left- and right-handed coordinates are the most common. However,
it is not unusual for 3-D modeling programs to use a coordinate system in which the
y-axis points toward or away from the viewer, and the z-axis points up. In this case,
right-handedness is defined as any positive axis (x, y, or z) pointing toward the
viewer. Left-handedness is defined as any positive axis (x, y, or z) pointing away
from the viewer. If you are porting a left-handed modeling application where the z-
axis points up, then in addition to the previous steps you need to do a rotation on all
of the vertex data.

The essential operations performed on objects defined in a 3-D coordinate system are
translate, rotate, and scale. You can combine these basic transformations to create a
transform matrix. For details, see 3-D Transformations.

Remember that when you combine these operations, the results are not commutative
—the order in which you multiply matrices is important.

in.doc – page 5

3-D Primitives
[This is preliminary documentation and subject to change.]

A 3-D primitive is a collection of vertices that form a single 3-D entity. The simplest
primitive is a collection of points in a 3-D coordinate system, which is called a point
list in Direct3D.

Often, 3-D primitives are polygons. A polygon in Direct3D is a closed 3-D figure
delineated by at least three vertices. The simplest polygon is a triangle. Direct3D
uses triangles to compose most of its polygons because all three of the vertices in a
triangle are guaranteed to be coplanar. Rendering non-planar vertices is inefficient.
You can composite triangles together to form large, complex polygons and meshes.

The following illustration shows a cube. Two triangles form each face of the cube.
The entire set of triangles taken together forms one cubic primitive. You can apply
textures and materials to the surfaces of primitives to make them appear to be a
single solid form. For details, see Materials and Textures.

You can also use triangles to create primitives whose surfaces appear to be smooth
curves. The following illustration shows how a sphere can be simulated with
triangles. After a material is applied, it looks curved when it is rendered. This is
especially true if using Gouraud shading. For details, see Gouraud Shading

in.doc – page 6

Triangle Rasterization Rules
[This is preliminary documentation and subject to change.]

Often the points specified for vertices do not precisely match the pixels on the
screen. When this happens, Direct3D applies triangle rasterization rules to decide
which pixels apply to a given triangle.

Direct3D uses a top-left filling convention for filling geometry. This is the same
convention that is used for rectangles in GDI and OpenGL. In Direct3D the center of
the pixel is the point at which decisions are made. If the center is inside a triangle,
the pixel is part of the triangle. Pixel centers are at integer coordinates.

This description of triangle-rasterization rules used by Direct3D does not necessarily
apply to all available hardware. Your testing may uncover minor variations in the
implementation of these rules.

The following illustration shows a rectangle whose upper-left corner is at (0, 0) and
whose lower-right corner is at (5, 5). This rectangle fills 25 pixels, just as you would
expect. The width of the rectangle is defined as right minus left. The height is
defined as bottom minus top.

in.doc – page 7

0 1 2 3

0

1

2

3

4

5

4 5

In the top-left filling convention, the word "top" refers to the vertical location of
horizontal spans, and the word "left" refers to the horizontal location of pixels within
a span. An edge cannot be a top edge unless it is horizontal—in the general case,
most triangles will have only left and right edges.

0 1 2 3 4 5

0

1

2

3

4

5

Top edge

Right edge

The top-left filling convention determines the action taken by Direct3D when a
triangle passes through the center of a pixel. The following illustration shows two
triangles, one at (0, 0), (5, 0), and (5, 5), and the other at (0, 5), (0, 0), and (5, 5).
The first triangle in this case gets 15 pixels, whereas the second gets only 10,
because the shared edge is the left edge of the first triangle.

in.doc – page 8

0 1 2 3

0

1

2

3

4

5

4 5

If, for example, you define a rectangle with its upper-left corner at (0.5, 0.5) and its
lower-right corner at (2.5, 4.5), the center point of this rectangle would be at (1.5,
2.5). When the Direct3D rasterizer tessellates this rectangle, the center of each pixel
would be unambiguously inside each of the four triangles, and the top-left filling
convention would not be needed. The following drawing illustrates this. The pixels
in the rectangle are labeled according to the triangle in which Direct3D includes
them.

in.doc – page 9

0 1 2 3

0

1

2

3

4

5

B

L

L

T T

R

R

B

If you move the rectangle in the previous example so that its upper-left corner is at
(1.0, 1.0), its lower-right corner at (3.0, 5.0), and its center point at (2.0, 3.0),
Direct3D applies the top-left filling convention. Most of the pixels in this rectangle
would straddle the border between two or more triangles, as the next illustration
shows.

in.doc – page 10

0 1 2 3

0

1

2

3

4

5

BL

L

L

T T

T

R

Right triangle gets this pixel
because it is a left pixel for
that triangle.

Notice that for both rectangles, the same pixels are affected.

0 1 2 3

0

1

2

3

4

5

(0.5, 0.5)-(2.5, 4.5)
0 1 2 3

0

1

2

3

4

5

(1.0, 1.0)-(3.0, 5.0)

Shading
[This is preliminary documentation and subject to change.]

in.doc – page 11

This section describes techniques used in Direct3D to control the shading of 3-D
polygons.

· Shade Modes
· Comparing Shading Modes
· Setting the Shade Mode
· Face and Vertex Normal Vectors
· Triangle Interpolants

Shade Modes
[This is preliminary documentation and subject to change.]

The shading mode used to render a polygon has a profound effect on its appearance.
Shading modes determine the intensity of color and lighting at any point on a
polygon's face. Direct3D currently supports two shading modes:

· Flat Shading
· Gouraud Shading

Flat Shading
[This is preliminary documentation and subject to change.]

In the flat shade mode, the Direct3D rendering pipeline renders a polygon using the
color of the polygon's material at its first vertex as the color for the entire polygon.
3-D objects that are rendered with flat shading have visibly sharp edges between
polygons if they aren't coplanar.

The following figure shows a teapot rendered with flat shading. The outline of each
polygon is clearly visible. Flat shading is computationally the least expensive form
of shading.

Gouraud Shading
[This is preliminary documentation and subject to change.]

When Direct3D renders a polygon using Gouraud shading, it computes a color for
each vertex by using the vertex normal and lighting parameters. Then, it interpolates
the color across the face of the polygons (See Face and Vertex Normal Vectors). The
interpolation is done linearly. For example, if the red component of the color of
vertex 1 is 0.8 and the red component of vertex 2 is 0.4, utilizing the Gouraud shade
mode and the RGB color model, the Direct3D lighting module would assign a red
component of 0.6 to the pixel at the midpoint of the line between these vertices.

in.doc – page 12

The following figure demonstrates Gouraud shading. This teapot is composed of
many flat, triangular polygons. However, Gouraud shading makes the surface of the
object appear curved and smooth.

The Gouraud shade mode can also be used to display objects with sharp edges. For
details, see Face and Vertex Normal Vectors.

Comparing Shading Modes
[This is preliminary documentation and subject to change.]

In the flat shade mode, the following pyramid would be displayed with a sharp edge
between adjoining faces. In the Gouraud shade mode, however, shading values
would be interpolated across the edge, and the final appearance would be of a curved
surface.

The Gouraud shade mode lights flat surfaces more realistically than the flat shade
mode. A face in the flat shade mode is a uniform color, but Gouraud shading allows
light to fall across a face correctly. This effect is particularly obvious if there is a
nearby point source.

Gouraud shading smoothes out the sharp edges between polygons that are visible
with flat shading. However, it can result in Mach bands, which are bands of color or
light that are not smoothly blended across adjacent polygons. Your application can
reduce the appearance of Mach bands by increasing the number of polygons in an
object, increasing screen resolution, or by increasing the color depth of the
application.

in.doc – page 13

Gouraud shading can miss some details. One example is the case shown by the
following illustration, in which a spotlight is completely contained within a
polygonal face.

In this case, the Gouraud shade mode, which interpolates between vertices, would
miss the spotlight altogether; the face would be rendered as though the spotlight did
not exist.

Setting the Shade Mode
[This is preliminary documentation and subject to change.]

[C++]
Direct3D allows one shade mode to be selected at a time. By default, Gouraud
shading is selected. In C++, the shade mode can be changed by calling the
IDirect3DDevice3::SetRenderState method. The dwRenderStateType parameter
should be set to D3DRENDERSTATE_SHADEMODE. The dwRenderState
parameter must be set to a member of the D3DSHADEMODE enumeration. The
following sample code fragments illustrate how the current shade mode of a
Direct3D application can be set to flat or Gouraud shading mode.

// Set to flat shading.
// This code fragment assumes that lpDev3 is a valid pointer to
// an IDirect3DDevice3 interface.
hr = lpDev3->SetRenderState(D3DRENDERSTATE_SHADEMODE, D3DSHADE_FLAT);
if(FAILED(hr))
{
 // Code to handle the error goes here.
}

// Set to Gouraud shading (this is the default for Direct3D).
hr = lpDev3->SetRenderState(D3DRENDERSTATE_SHADEMODE,
 D3DSHADE_GOURAUD);
if(FAILED(hr))
{
 // Code to handle the error goes here.
}

in.doc – page 14

[Visual Basic]
Direct3D allows one shade mode to be selected at a time. By default, Gouraud
shading is selected. In Visual Basic, the shade mode can be changed by calling the
Direct3DDevice3.SetRenderState method. The state parameter should be set to
D3DRENDERSTATE_SHADEMODE. The renderstate parameter must be set to a
member of the CONST_D3DSHADEMODE enumeration. The following code
fragment illustrates how the current shade mode of a Direct3D application can be set
to flat or Gouraud shading mode.

' Set to flat shading.
' This code fragment assumes that Dev3 is a valid reference to
' a Direct3DDevice3 object.
On Local Error Resume Next
Call Dev3.SetRenderState(D3DRENDERSTATE_SHADEMODE, _
 D3DSHADE_FLAT)

' Check for an error.
If Err.Number <> DD_OK Then
 ' Handle the error.
End If

' Set to Gouraud shading (this is the default for Direct3D).
Call Dev3.SetRenderState(D3DRENDERSTATE_SHADEMODE, _
 D3DSHADE_GOURAUD)

If Err.Number <> DD_OK Then
 ' Handle the error.
End If

Face and Vertex Normal Vectors
[This is preliminary documentation and subject to change.]

Each face in a mesh has a perpendicular normal vector. The vector's direction is
determined by the order in which the vertices are defined and by whether the
coordinate system is right- or left-handed. The face normal points away from the
front side of the face. In Direct3D, only the front side of a face is visible. A front
face is one in which vertices are defined in clockwise order.

in.doc – page 15

Vertex 3

Vertex 1 Front face of polygon

Normal vectorVertex 2

Any face that is not a front face is a back face. Direct3D does not always render back
faces, therefore back faces are said to be culled. (You can change the culling mode
to render back faces, if so desired. See Culling State for more information.)

Direct3D applications do not need to specify face normals; the system calculates
them automatically when they are needed. The system uses face normals in the flat
shade mode. In Gouraud shade mode, Direct3D uses the vertex normal. It also uses
the vertex normal for controlling lighting and texturing effects.

[C++]
Direct3D applications written in C++ typically use the D3DVERTEX structure for
their vertices. The members of the D3DVERTEX structure describe the position and
orientation of the vertex. The orientation is indicated by a vertex normal vector. The
following code fragment demonstrates how vertex values, including the vertex
normal, can be set. The normal vectors are pointing toward the viewport, which is at
the origin of the world coordinate system. The vertex positions in this example are
specified in world coordinates.

D3DVERTEX lpVertices[3];

// A vertex can be specified one structure member at a time.
lpVertices[0].x = 0;
lpVertices[0].y = 5;

in.doc – page 16

lpVertices[0].z = 5;
lpVertices[0].nx = 0; // X component of the normal vector.
lpVertices[0].ny = 0; // Y component of the normal vector.
lpVertices[0].nz = -1; // Points the normal back at the origin.
lpVertices[0].tu = 0; // Only used if a texture is being used.
lpVertices[0].tv = 0; // Only used if a texture is being used.

// Vertices can also by specified on one line of code for each vertex
// by using some of the D3DOVERLOADS macros.
lpVertices[1] = D3DVERTEX(D3DVECTOR(-5,-5,5),D3DVECTOR(0,0,-1),0,0);
lpVertices[2] = D3DVERTEX(D3DVECTOR(5,-5,5),D3DVECTOR(0,0,-1),0,0);

[Visual Basic]
Direct3D applications written in Visual Basic typically use the D3DVERTEX type
for their vertices. The members of the D3DVERTEX type describe the position and
orientation of the vertex. The orientation is indicated by a vertex normal vector. The
following code fragment demonstrates how vertex values, including the vertex
normal, can be set. The normal vectors are pointing toward the viewport, which is at
the origin of the world coordinate system. The vertex positions in this example are
specified in world coordinates.

D3DVERTEX Vertices(3)

' A vertex can be specified one structure member at a time.
Vertices(0).x = 0
Vertices(0).y = 5
Vertices(0).z = 5
Vertices(0).nx = 0 ' X component of the normal vector.
Vertices(0).ny = 0 ' Y component of the normal vector.
Vertices(0).nz = -1 ' Points the normal back at the origin.
Vertices(0).tu = 0 ' Only used if a texture is being used.
Vertices(0).tv = 0 ' Only used if a texture is being used.

When applying Gouraud shading to a polygon, Direct3D uses the vertex normals to
calculate the angle between the light source and the surface. It calculates the color
and intensity values for the vertices and interpolates them for every point across all
of the primitive's surfaces. Direct3D calculates the light intensity value by using the
angle. The greater the angle, the less light is shining on the surface.

If you are creating an object that is flat, then the vertex normals should be set to
point perpendicular to the surface. The following illustration demonstrates this. A
flat surface composed of two triangles is defined. The vertex normals all point
perpendicular to the surface.

in.doc – page 17

It is more likely, however, that your object is made up of triangle strips, and that the
triangles are not coplanar. One simple way to get smooth shading across all of the
triangles in the strip is to first calculate the surface normal vector for each polygonal
face with which the vertex is associated. The vertex normal can be set to make an
equal angle with each of the surface normals. Note, however, that this method may
not be efficient enough for complex primitives.

This method is illustrated by the following figure, which shows two surfaces, S1 and
S2 seen edge-on from above. The normal vectors for S1 and S2 are shown in blue.
The vertex normal vector is shown in red. The angle that the vertex normal vector
makes with the surface normal of S1 is the same as the angle between the vertex
normal and the surface normal of S2. When these two surfaces are lit and shaded
with Gouraud shading, the result will be a smoothly-shaded, smoothly-rounded edge
between them.

in.doc – page 18

Ns 1

Ns 2

Nv

S2

S1

If the vertex normal leans toward one of the faces with which it is associated, it
causes the light intensity to increase or decrease for points on that surface, depending
on the angle it makes with the light source. An example is shown in the following
figure. Again, these surfaces are seen edge-on. The vertex normal leans toward S1,
causing it to have a smaller angle with the light source than it would if the vertex
normal had equal angles with the surface normals.

in.doc – page 19

Ns 1
Ns 2

Nv

S2

S1

Light source

You can use the Gouraud shade mode to display some of the objects in a 3-D scene
with sharp edges. If you are using execute buffers, your application needs to
duplicate the vertex normal vectors at any intersection of faces where a sharp edge
was required, as shown in the following illustration.

in.doc – page 20

Sharp edge

[C++]
If you are using the IDirect3DDevice3::DrawPrimitive or
IDirect3DDevice3::DrawIndexedPrimitive methods to render your scene, you
must define the object with sharp edges as a triangle list, rather than a triangle strip.
When you define an object as a triangle strip, Direct3D treats it as a single polygon
composed of multiple triangular faces. Gouraud shading is applied both across each
face of the polygon and between adjacent faces. The result is an object that is
smoothly shaded from face to face. Since a triangle list is a polygon composed of a
series of disjoint triangular faces, Direct3D applies Gouraud shading across each
face of the polygon. However it is not applied from face to face. If two or more
triangles of a triangle list are adjacent, they appear to have a sharp edge between
them.

[Visual Basic]
If you are using the Direct3DDevice3.DrawPrimitive or
Direct3DDevice3.DrawIndexedPrimitive methods to render your scene, you must
define the object with sharp edges as a triangle list, rather than a triangle strip. When
you define an object as a triangle strip, Direct3D treats it as a single polygon
composed of multiple triangular faces. Gouraud shading is applied both across each
face of the polygon and between adjacent faces. The result is an object that is
smoothly shaded from face to face. Since a triangle list is a polygon composed of a
series of disjoint triangular faces, Direct3D applies Gouraud shading across each
face of the polygon. However it is not applied from face to face. If two or more
triangles of a triangle list are adjacent, they appear to have a sharp edge between
them.

Another alternative is to change to flat shading mode when rendering objects with
sharp edges. This is computationally the most efficient method, but it may result in
objects in the scene that are not rendered as realistically as the objects that are
Gouraud-shaded.

in.doc – page 21

Triangle Interpolants
[This is preliminary documentation and subject to change.]

The system interpolates the characteristics of a triangle's vertices across the triangle
when it renders a face. These are the triangle interpolants:

· Color
· Specular
· Alpha

All of the triangle interpolants are modified by the current shade mode:

Flat No interpolation is done. Instead, the color of the first vertex in the
triangle is applied across the entire face.

Gouraud Linear interpolation is performed between all three vertices.

The color and specular interpolants are treated differently, depending on the color
model. In the RGB color model, the system uses the red, green, and blue color
components in the interpolation. In the monochromatic or "ramp" model, the system
uses only the blue component of the vertex color.

The alpha component of a color is treated as a separate interpolant because device
drivers can implement transparency in two different ways: by using texture blending
or by using stippling.

A C++ application uses the dwShadeCaps member of the D3DPRIMCAPS
structure to determine what forms of interpolation the current device driver supports.
Similarly, a Visual Basic application accesses this information through the
lShadeCaps member of the D3DPRIMCAPS type.

Matrices and Transformations
[This is preliminary documentation and subject to change.]

You use matrices in Direct3D to define world, view, and projection transformations.
If you haven't programmed for 3-D graphics before, this section will help you
familiarize yourself with the key concepts you need to understand in order to get
started. If you have prior experience in 3-D programming, you can skip this section,
or you could skim the following topics to refresh your memory:

· Matrices
· 3-D Transformations

Matrices
[This is preliminary documentation and subject to change.]

in.doc – page 22

Although you needn’t be an expert in linear algebra to work with matrices, you
should have a passing acquaintance with them. For a refresher in a few of the basics,
see 3-D Transformations.

Matrices in Direct3D are represented by a 44 homogenous matrix, defined by the
D3DMATRIX structure in C++, and by the D3DMATRIX type in Visual Basic.

[C++]
The D3D_OVERLOADS implementation of the D3DMATRIX structure
(D3DMATRIX (D3D_OVERLOADS)) implements a parentheses ("()") operator.
This operator offers convenient access to values in the matrix for C++ programmers.
Instead of having to refer to the structure members by name, C++ programmers can
refer to them by row and column number, and simply index these numbers as
needed. These indices are zero-based, so for example the element in the third row,
second column would be M(2, 1). To use the D3D_OVERLOADS operators, you
must define D3D_OVERLOADS before including the D3dtypes.h header file.

Also, the D3dutil.cpp source file provides helper functions for creating and
concatenating matrices. Feel free to use these functions as they are, or use them as a
basis to write your own matrix manipulation functions.

Execute buffer notes
When working with execute buffers, matrices appear to you only as handles.
These handles (defined by the D3DMATRIXHANDLE type) are used in the
D3DOP_MATRIXLOAD and D3DOP_MATRIXMULTIPLY execute buffer
opcodes.
You can create a Direct3D matrix by calling the
IDirect3DDevice::CreateMatrix method. You can set the contents of a matrix
by calling the IDirect3DDevice::SetMatrix method.

[C++,Visual Basic]

3-D Transformations
[This is preliminary documentation and subject to change.]

Direct3D uses matrices to perform 3-D transformations. This section explains how
matrices create 3-D transformations, describes some common uses for
transformations, and details how you can combine matrices to produce a single
matrix that encompasses multiple transformations. Information is divided into the
following categories:

· About 3-D Transformations
· Translation
· Rotation
· Scaling
· Matrix Concatenation

in.doc – page 23

For more information about transformations in Direct3D Immediate Mode, see The
Geometry Pipeline.

About 3-D Transformations
[This is preliminary documentation and subject to change.]

In programs that work with 3-D graphics, you can use geometrical transformations
to:

· Express the location of an object relative to another object.
· Rotate and size objects.
· Change viewing positions, directions, and perspectives.

You can transform any point into another point by using a 44 matrix. In the
following example, a matrix is used to reinterpret the point (x, y, z), producing the
new point (x', y', z'):

 x y z x y z

M M M M
M M M M
M M M M
M M M M

' ' '1 1

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

You perform the following operations on (x, y, z) and the matrix to produce the point
(x', y', z'):

x x M y M z M M

y x M y M z M M

z x M y M z M M

'

'

'

11 21 31 41

12 22 32 42

13 23 33 43

1

1

1

The most common transformations are translation, rotation, and scaling. You can
combine the matrices that produce these effects into a single matrix to calculate
several transformations at once. For example, you can build a single matrix to
translate and rotate a series of points. For more information, see Matrix
Concatenation.

Matrices are written in row-column order. A matrix that evenly scales vertices along
each axis (known as uniform scaling) is represented by the following matrix (using
mathematical notation):

in.doc – page 24

s
s

s

0 0 0
0 0 0
0 0 0
0 0 0 1

[C++]
In C++, Direct3D Immediate Mode declares matrices as a two dimensional array,
using the D3DMATRIX structure. The following example shows how you would
initialize a D3DMATRIX structure to act as a uniform scaling matrix:

D3DMATRIX scale = {
 D3DVAL(s), 0, 0, 0,
 0, D3DVAL(s), 0, 0,
 0, 0, D3DVAL(s), 0,
 0, 0, 0, D3DVAL(1)
};

[Visual Basic]
In Visual Basic, Direct3D Immediate Mode uses matrices declared as a two
dimensional array, using the D3DMATRIX type. The following example shows how
you would initialize a variable of type D3DMATRIX to act as a uniform scaling
matrix:

 Dim ScaleMatrix As D3DMATRIX

 ' In this example, s is a variable of type Single.
 With ScaleMatrix
 .rc11 = s
 .rc22 = s
 .rc33 = s
 .rc44 = 1
 End With

Translation
[This is preliminary documentation and subject to change.]

The following transformation translates the point (x, y, z) to a new point (x', y', z'):

in.doc – page 25

 x y z x y z

T T Tx y z

' ' '1 1

1 0 0 0
0 1 0 0
0 0 1 0

1

You can create a translation matrix by hand in C++, or by using the Translate helper
function in the D3dutil.cpp file that is included with this SDK. The following
example shows the source code for the Translate function:

[C++]
D3DMATRIX Translate(const float dx, const float dy, const float dz)
{
 D3DMATRIX ret = IdentityMatrix();
 ret(3, 0) = dx;
 ret(3, 1) = dy;
 ret(3, 2) = dz;
 return ret;
} // end of Translate()

[Visual Basic]
In Visual Basic can create a translation matrix by hand, or you can use the
TranslateMatrix helper subroutine in the Math.bas file that is included with this
SDK. The following example shows the source code for the TranslateMatrix
subroutine:

Sub TranslateMatrix(m As D3DMATRIX, v As D3DVECTOR)
 Call IdentityMatrix(m)
 m.rc41 = v.x
 m.rc42 = v.y
 m.rc43 = v.z
End Sub

Rotation
[This is preliminary documentation and subject to change.]

The transformations described here are for left-handed coordinate systems, and so
may be different from transformation matrices you have seen elsewhere. For more
information, see 3-D Coordinate Systems.

The following transformation rotates the point (x, y, z) around the x-axis, producing
a new point (x', y', z')

in.doc – page 26

 x y z x y z' ' '
cos sin
sin cos

1 1

1 0 0 0
0 0
0 0
0 0 0 1

The following transformation rotates the point around the y-axis:

 x y z x y z' ' '

cos sin

sin cos
1 1

0 0
0 0 0

0
0 0 0 1

The following transformation rotates the point around the z-axis:

 x y z x y z' ' '

cos sin
sin cos

1 1

0 0
0 0

0 0 1 0
0 0 0 1

Note that in these example matrices, the Greek letter theta () stands for the angle of
rotation, specified in radians. Angles are measured clockwise when looking along
the rotation axis toward the origin.

[C++]
In a C++ application, you can use the RotateX, RotateY, and RotateZ helper
functions in the D3dutil.cpp file to create rotation matrices. (The D3dutil.cpp file is
included with this SDK.) The following is the sample code for the RotateX helper
function:

D3DMATRIX RotateX(const float rads)
{
 float cosine, sine;

 cosine = cos(rads);
 sine = sin(rads);
 D3DMATRIX ret = IdentityMatrix();
 ret(1,1) = cosine;
 ret(2,2) = cosine;
 ret(1,2) = -sine;
 ret(2,1) = sine;
 return ret;
} // end of RotateX()

in.doc – page 27

[Visual Basic]
Visual Basic application can use the RotateXMatrix, RotateYMatrix, and
RotateZMatrix helper subroutines in the Math.bas file to create rotation matrices.
(The Math.bas file is included with this SDK.) The following is the sample code for
the RotateXMatrix helper subroutine:

Sub RotateXMatrix(ret As D3DMATRIX, rads As Single)
 Dim cosine As Single
 Dim sine As Single
 cosine = Cos(rads)
 sine = Sin(rads)

 Call IdentityMatrix(ret)

 ret.rc22 = cosine
 ret.rc33 = cosine
 ret.rc23 = -sine
 ret.rc32 = sine
End Sub

Scaling
[This is preliminary documentation and subject to change.]

The following transformation scales the point (x, y, z) by arbitrary values in the x-,
y-, and z-directions to a new point (x', y', z'):

 x y z x y z

s
s

s

x

y

z

' ' '1 1

0 0 0
0 0 0
0 0 0
0 0 0 1

Matrix Concatenation
[This is preliminary documentation and subject to change.]

One of the primary advantages of using matrices is that you can combine the effects
of two or more matrices by multiplying them. This means that, to rotate a model and
then translate it to some location, you don't need to apply two matrices. Instead, you
multiply the rotation and translation matrices to produce a composite matrix that
contains the whole of their effects. This process often called matrix concatenation,
and can be written with the following formula:

in.doc – page 28

C M M M Mn n 1 2 1

In this formula, C is the composite matrix being created, and M1 through Mn are the
individual transformations that matrix C will contain. In most cases, you'll only
concatenate two or three matrices, but there is no limit.

(C++ applications can use the D3dmath.cpp source file that is included with the
DirectX SDK contains the D3DMath_MatrixMultiply helper function to perform
matrix multiplication. Visual Basic applications can use the MatrixMult subroutine
from the Math.bas file that is included with this SDK)

Notice the order in which the matrix multiplication is performed—the order you use
is crucial. The preceding formula reflects the right-to-left rule of matrix
concatenation. That is, the visible effects of the matrices you use to create a
composite matrix occur in right-to-left order. Let's use a typical world transformation
matrix as an example. Imagine you were creating the world transformation matrix
for a stereotypical "flying saucer." You would probably want to spin the UFO around
its center (the y-axis of model space) and translate it to someplace in your scene. To
accomplish this effect, you should first create a translation matrix, then multiply it
by a rotation matrix, as in the following formula:

W T Rw y

In this formula, Tw is a translation to some position in world coordinates, and Ry is a
matrix for rotation about the y-axis.

The order in which you multiply the matrices is important because, unlike
multiplying two scalar values, matrix multiplication is not commutative. Multiplying
the translate and rotate matrices in the opposite order would have the visual effect of
translating the UFO to its world space position, then rotating it around the world
origin.

No matter what type of matrix you're trying to create, keep the right-to-left rule in
mind to ensure that you achieve the expected effects.

Direct3D Immediate Mode
Architecture

[This is preliminary documentation and subject to change.]

This section provides high-level information about the organization of the Direct3D®

Immediate Mode documentation. Information is divided into the following groups:

· Architectural Overview of Immediate Mode
· Immediate Mode Object Types
· Immediate Mode COM Interfaces
· DrawPrimitive Methods and Execute Buffers

in.doc – page 29

Architectural Overview of
Immediate Mode

[This is preliminary documentation and subject to change.]

Direct3D applications communicate with graphics hardware in a similar fashion,
whether they use Retained Mode or Immediate Mode. They may or may not take
advantage of software emulation before interacting with the HAL. Since Direct3D is
an interface to a DirectDraw® object, the HAL is referred to as the
DirectDraw/Direct3D HAL.

Win32 Application

Hardware

 DirectDraw/Direct3D HAL

Direct3D
Retained Mode

DirectDraw/Direct3D Immediate Mode
 Software
 Emulation

Direct3D is tightly integrated with the DirectDraw component of DirectX®.
DirectDraw surfaces are used as rendering targets (front and back surfaces) and as z-
buffers. The Direct3D COM interface is actually an interface to a DirectDraw object.

Immediate Mode Object Types
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode is made up of a series of objects. When programming
with C++, you work directly with these objects to manipulate your virtual world and
build a Direct3D application. A Visual Basic application ultimately accesses these
objects as well, although DirectX for Visual Basic exposes a slightly different object
model.

[C++]
DirectDraw Object

A DirectDraw object provides the functionality of Direct3D; IDirect3D,
IDirect3D2 and IDirect3D3 are interfaces to a DirectDraw object. Since a
DirectDraw object represents the display device, and the display device
implements many of the most important features of Direct3D, it makes sense
that the abilities of Direct3D are incorporated into DirectDraw. You create a

in.doc – page 30

DirectDraw object by calling the DirectDrawCreate function. For more
information, see the Direct3D Interfaces.

DirectDrawSurface Object
A DirectDrawSurface object that was created as a texture map contains the
bitmap(s) that your Direct3D application will use as textures. You can retrieve
the IDirect3DTexture2 interface for the surface by calling the
IUnknown::QueryInterface method, specifying the IID_IDirect3DTexture2
reference identifier.
For more information, see Textures.

Direct3DDevice Object
A Direct3DDevice object encapsulates and stores the rendering state for an
Immediate Mode application; it can be thought of as a rendering target for
Direct3D. Prior to DirectX 5.0, Direct3D devices were interfaces to
DirectDrawSurface objects. DirectX 5.0 introduced a new device-object model,
in which a Direct3DDevice object is entirely separate from DirectDraw surfaces.
This new object supports the IDirect3DDevice3 interface.
You can call the IDirect3D3::CreateDevice method to create a Direct3DDevice
object and retrieve an IDirect3DDevice3 interface. (Notice that you do not call
QueryInterface to retrieve IDirect3DDevice3.) If necessary, you can retrieve
an IDirect3DDevice interface by calling the
IDirect3DDevice3::QueryInterface method.
For more information, see and Direct3D Devices.

Direct3DMaterial Object
A Direct3DMaterial object describes the illumination properties of a visible
element in a three-dimensional scene. You can create a Direct3DMaterial object
by calling the IDirect3D3::CreateMaterial method. You can use the
IDirect3DMaterial3 interface to get and set materials and to retrieve material
handles.
For more information, see Materials.

Direct3DViewport Object
A Direct3DViewport object defines the rectangle into which a three-dimensional
scene is projected. You can create an IDirect3DViewport3 interface by calling
the IDirect3D3::CreateViewport method. For more information, see Viewports
and Clipping.

Direct3DLight Object
A Direct3DLight object describes the characteristics of a light in your
application. You can use the IDirect3DLight interface to get and set lights. You
can create an IDirect3DLight interface by calling the IDirect3D3::CreateLight
method.
For more information, see Lights.

Direct3DVertexBuffer Object
A Direct3DVertexBuffer object is a memory buffer that contains vertices to be
rendered with the vertex-buffer rendering methods offered in the
IDirect3DDevice3 interface. Vertex buffers are not to be confused with execute
buffers. A vertex buffer contains only vertex data to be processed by a

in.doc – page 31

Direct3DDevice object, and offers features that you can use to improve
performance during rendering.
For additional information, see Vertex Buffers.

Direct3DExecuteBuffer Object
A Direct3DExecuteBuffer object is a buffer full of vertices and instructions
about how to handle them. Prior to DirectX 5.0, Immediate Mode programming
was done exclusively by using Direct3DExecuteBuffer objects. The introduction
of the DrawPrimitive methods in DirectX 5.0, however, has made it unnecessary
for most applications to work with execute buffers.
For more information about execute buffers, see Execute Buffers.

[Visual Basic]
DirectX for Visual Basic exposes the following classes for Direct3D Immediate
Mode programming:

DirectX7 Class
The DirectX7 class defines the object that is used to create all other component-
level objects like the Direct3D3 or DirectDraw4 object.

DirectDraw4 Class
The DirectDraw4 class represents the display device, spawns the Direct3D3
class, and creates the texture and rendering target surfaces used for rendering.
You create an object of the DirectDraw4 class by calling the
DirectX7.DirectDrawCreate method.

DirectDrawSurface4 Class
The DirectDrawSurface4 class represents memory that is used to contain image
data for display, texturing, or as a rendering target for a Direct3D device. Call
the DirectDraw4.CreateSurface method to create an empty surface, or call the
DirectDraw4.CreateSurfaceFromFile method to create a surface and load it
with image data from a bitmap file.

Direct3D3 Class
The Direct3D3 class defines an object that provides the functionality of
Direct3D, used to create and manipulate the objects you will need to render a
scene. You create an object of the Direct3D3 class by calling the
DirectDraw4.GetDirect3D method.

Direct3DDevice3 Class
The Direct3DDevice3 class defines an object that encapsulates and stores the
rendering state for an Immediate Mode application written in Visual Basic. You
create an object of this class by calling the Direct3D3.CreateDevice method.

Direct3DEnumDevices Class
The Direct3DEnumDevices class defines an object that can enumerate the
rendering devices present on a system. You create an object of the
Direct3DEnumDevices class by calling the Direct3D3.GetDevicesEnum
method.

Direct3DEnumPixelFormats Class

in.doc – page 32

The Direct3DEnumPixelFormats class defines an object that can enumerate
the pixel formats supported for a given device on a system. To create an object
of the Direct3DEnumPixelFormats class, call the
Direct3D3.GetEnumZBufferFormats or
Direct3DDevice3.GetTextureFormatsEnum methods.

Direct3DLight Class
The Direct3DLight class defines an object that describes the characteristics of a
light in a 3-D scene application. You can create lights by calling the
Direct3D3.CreateLight method.
For more information, see Lights

Direct3DMaterial3 Class
The Direct3DMaterial3 class defines an object that describes the illumination
properties of a visible element in a three-dimensional scene, called a material.
You can create a material by calling the Direct3D3.CreateMaterial method.
For more information, see Materials.

Direct3DTexture2 Class
The Direct3DTexture2 class defines a DirectDraw surface object that contains
image data to be rendered onto the faces of geometry. The
DirectDrawSurface4.GetTexture method creates a texture class for a surface
that was created with the DDSCAPS_TEXTURE capability flag.
For more information, see Textures.

Direct3DVertexBuffer Class
The Direct3DVertexBuffer class defines an object that acts as a memory buffer
for vertices. Vertices in a vertex buffer can be rendered with the vertex-buffer
rendering methods offered in the Direct3DDevice3 class. Call the
Direct3D3.CreateVertexBuffer method to create a vertex buffer.
For additional information, see Vertex Buffers.

Direct3DViewport3 Class
The Direct3DViewport3 class defines an object that describes the rectangle into
which a three-dimensional scene is projected. You can create a viewport by
calling the Direct3D3.CreateViewport method.
For more information, see Viewports and Clipping.

Immediate Mode COM Interfaces
[This is preliminary documentation and subject to change.]

[Visual Basic]

Note
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does not expose COM interfaces.

in.doc – page 33

[C++]
The Direct3D Immediate Mode API consists primarily of the following COM
interfaces:

IDirect3D3 Root interface, used to obtain other interfaces
IDirect3DDevice 3D Device for execute-buffer based

programming
IDirect3DDevice3 3D Device for DrawPrimitive-based

programming
IDirect3DLight Interface used to work with lights
IDirect3DMaterial3 Surface-material interface
IDirect3DTexture2 Texture-map interface
IDirect3DVertexBuffer Interface used to work with vertex buffers.
IDirect3DViewport3 Interface to define the viewport's characteristics.
IDirect3DExecuteBuffer Interface for working with execute buffers

For backward compatibility with previous versions of DirectX, all former interface
versions are still supported in DirectX 6.0.

DrawPrimitive Methods and
Execute Buffers

[This is preliminary documentation and subject to change.]

[Visual Basic]

Note
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does use execute buffer rendering.

[C++]
DirectX 5.0 introduced a radically new way to use Direct3D Immediate Mode.
Previously, you had to fill and execute the execute buffers to accomplish any task.
Now, you can use the DrawPrimitive methods, which allow you to draw primitives
directly.

The IDirect3DDevice interface supports execute buffers. The IDirect3DDevice3
interface supports the DrawPrimitive methods. Despite the names of these interfaces,
IDirect3DDevice3 is not a COM iteration of the IDirect3DDevice interface.
Although there is some overlap in the functionality of the interfaces, they are
separate implementations. This means that you cannot call
IDirect3DDevice::QueryInterface to retrieve an IDirect3DDevice3 interface. You
must call the IDirect3D3::CreateDevice method, instead.

in.doc – page 34

For more information about working with execute buffers, see Using Execute
Buffers.

For more information about the DrawPrimitive methods, see Rendering. For more
information about device objects, see Direct3D Devices.

Direct3D Immediate Mode
Essentials

[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode consists of a relatively small number of API elements
that create objects, fill them with data, and link them together. The API is based on
the COM model. The Immediate Mode API are a very thin layer over the Direct3D
drivers.

This section provides technical information about the components Direct3D
Immediate Mode. Information is divided into the following groups.

· Immediate Mode Changes for DirectX 7.0
· Direct3D and DirectDraw
· Direct3D Devices
· The Geometry Pipeline
· Lighting and Materials
· Vertex Formats
· Textures
· Depth Buffers
· Stencil Buffers
· Vertex Buffers
· Common Techniques and Special Effects
· GUIDs
· Performance Optimization
· Troubleshooting

Immediate Mode Changes for
DirectX 7.0

[This is preliminary documentation and subject to change.]

DirectX 7.0 is backward compatible with all prior versions of DirectX. Direct3D—
like all of DirectX 7.0—now supports Visual Basic applications. Direct3D for

in.doc – page 35

DirectX 7.0 incorporates new functionality to improve performance, increase ease-
of-use, and exploit new hardware features.

Direct3D and DirectDraw
[This is preliminary documentation and subject to change.]

This section describes the close relation between Direct3D and DirectDraw. It offers
information on the following topics:

· The DirectDraw Object and Direct3D
· Direct3D Interfaces
· Accessing Direct3D
· Creating Objects Subordinate to Direct3D
· DirectDraw Cooperative Levels and FPU Precision

The DirectDraw Object and Direct3D
[This is preliminary documentation and subject to change.]

Direct3D is implemented through COM objects and interfaces. Applications written
in C++ directly access these interfaces and objects, while Visual Basic application
interact with a layer of code — visible as the DirectX for Visual Basic Classes —
that marshals data from Visual Basic to the DirectX runtimes. The C++ specific
information in this topic describes important relationships that exist between
DirectDraw and Direct3D. The discussion is followed by details about how similar
relationships exist between the classes exposed by DirectX for Visual Basic.

[C++]
The Direct3D interfaces are actually interfaces to the DirectDraw object. DirectDraw
presents programmers with a single, unified object that encapsulates both the
DirectDraw and Direct3D states. The DirectDraw object is the first object your
application creates (by calling DirectDrawCreate) and the last object your
application releases. Since the DirectDraw object represents the display device, and
the display device implements many of the most important features of Direct3D, it
makes sense that the abilities of Direct3D are incorporated into DirectDraw.

The important implication of this is that the lifetime of the Direct3D driver state is
the same as that of the DirectDraw object. Releasing the Direct3D interface does not
destroy the Direct3D driver state. That state is not destroyed until all references to
that object — whether they are DirectDraw or Direct3D references — have been
released. Therefore, if you release a Direct3D interface while holding a reference to
a DirectDraw driver interface, and then query the Direct3D interface again, the
Direct3D state will be preserved.

in.doc – page 36

The DirectDraw object contains three Direct3D interfaces: IDirect3D, IDirect3D2,
and IDirect3D3. The IDirect3D and IDirect3D2 interfaces are obsolete and are
provided for backward compatibility. New applications should use the IDirect3D3
interface to create other Direct3D objects such as viewports, lights, textures, and
materials. For details, see Direct3D Interfaces.

[Visual Basic]
Although the DirectDraw and Direct3D share much of the same code — if fact, deep
down, they're the same root object — DirectX for Visual Basic exposes them
according to how you will use them: as functionally separate classes. DirectX for
Visual Basic uses the DirectDraw4 and Direct3D3 classes from which your
application can create objects. The underlying relationship (as described in the C++
portion of this topic) between DirectDraw and Direct3D is apparent even from
within Visual Basic. Notice that the global DirectX7 class contains a method to
create a DirectDraw4 object, but no equivalent method for Direct3D. Rather, the
DirectDraw4 class defines a method to "retrieve" the Direct3D3 class, called
DirectDraw4.GetDirect3D. This because these two classes actually refer to the
same object within DirectX!

Note that the GetDirect3D method does not actually create a new object. Rather, the
method creates a new class that exposes the Direct3D-related features offered by the
DirectDraw object that created it.

The DirectDraw4 class provides the two dimensional features for a display device,
while the Direct3D3 class offers the 3-D features for the device. You use the
DirectDraw4 class to create the surfaces that the Direct3D class will use for
rendering targets, depth buffers, and textures. The Direct3D class is then used to
create the subordinate objects that Direct3D requires, such as viewports, lights, and
materials.

Direct3D Interfaces
[This is preliminary documentation and subject to change.]

[Visual Basic]

Note
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does not directly expose COM interfaces to
applications.

[C++]
The functionality of Direct3D objects is accessed by C++ applications through the
interfaces IDirect3D, IDirect3D2 and IDirect3D3. This section presents
information on all three of these interfaces.

IDirect3D Interface

in.doc – page 37

The IDirect3D interface supports the use of execute buffers. It is provided for
compatibility with existing code. New applications should use the IDirect3D3
interface (see Direct3D Interfaces).
If your application uses execute buffers, it must obtain a pointer to the
IDirect3D interface from a DirectDraw object using the QueryInterface
method.

IDirect3D2 Interface
A more straightforward style of Direct3D programming was introduced with the
IDirect3D2 interface. This programming style is based on rendering primitives
with a single call rather than rendering through an execute buffer. Devices
exposed two methods for this new rendering style,
IDirect3DDevice2::DrawPrimitive and
IDirect3DDevice2::DrawIndexedPrimitive methods; these methods are
supported in the most recent device interface, IDirect3DDevice3.
Applications get a pointer to the IDirect3D2 interface from a DirectDraw object
using the QueryInterface method.
The IDirect3D2 interface is the starting point for creating other Direct3D
Immediate Mode interfaces. Using it, your application can find and enumerate
the types of Direct3D devices supported by a particular DirectDraw object. It
also has methods needed to create other Direct3D Immediate Mode objects, such
as viewports, materials and lights.
One of the most important differences between IDirect3D2 and its predecessor,
IDirect3D, is that IDirect3D2 implements an IDirect3D2::CreateDevice
method. This method creates a Direct3D device that supports the DrawPrimitive
methods. For more information about the devices created by the
IDirect3D2::CreateDevice method, see Direct3D Devices.
Note also that You cannot use new features that the IDirect3DDevice2 interface
offers with IDirect3DDevice interface pointers. If your application calls the
QueryInterface method on a DirectDraw surface and retrieves an
IDirect3DDevice, it cannot access the features supported by later device
interfaces. In addition, it cannot call the QueryInterface method on a device
object created in this way to retrieve an IDirect3DDevice2 interface.

IDirect3D3 Interface
Like the IDirect3D2 interface, the IDirect3D3 interface supports the
DrawPrimitive style of Direct3D programming. In addition, the IDirect3D3
interface extends the functionality of the DrawPrimitive-style programming by
introducing the IDirect3DDevice3 interface. This new interface supports
flexible vertex formats, vertex buffers, and new texturing capabilities. For
additional information, see Vertex Formats, Textures, Vertex Buffers and
Rendering.
Applications obtain a pointer to the IDirect3D3 interface from a DirectDraw
object using the QueryInterface method. For details, see Accessing Direct3D.

in.doc – page 38

Accessing Direct3D
[This is preliminary documentation and subject to change.]

[C++]
When a Direct3D application written in C++ starts up, it must obtain a pointer to an
IDirect3D3 interface to access Direct3D functionality. Use the following steps to
obtain a pointer to the IDirect3D3 interface:

Û To obtain a pointer to the IDirect3D3 interface
1. Call DirectDrawCreate to create a DirectDraw device.
2. Call the IUnknown::QueryInterface method to get a pointer to an IDirect3D3

interface.

The following diagram illustrates these steps:

IDirect3D3
DirectDraw

Object
QueryInterface

The following code fragment demonstrates how to query for an IDirect3D3
interface:

LPDIRECTDRAW lpDD; // IDirectDraw Interface
LPDIRECT3D3 lpD3D; // IDirect3D3 Interface

// Get an IDirectDraw interface.
// Use the current display driver.
hResult = DirectDrawCreate (NULL, &lpDD, NULL);
if (FAILED (hResult))
{
 // Code to handle an error goes here.
}

// Get D3D interface
hResult =
 lpDD->QueryInterface (IID_IDirect3D3, (void **)&lpD3D);
if (FAILED (hResult))
{
 // Code to handle the error goes here.
}

[Visual Basic]

in.doc – page 39

When a Direct3D application written in Visual Basic begins, it must obtain a
reference to the Direct3D3 class to access Direct3D functionality. Use the following
steps to obtain such a reference:

Û To obtain a reference to the Direct3D3 class
1. Call DirectX7.DirectDrawCreate to create a DirectDraw4 class object.
2. Call DirectDraw4.GetDirect3D method to retrieve the DirectDraw object's

reference to the Direct3D3 class.

The following diagram illustrates these steps:

Direct3D3 ObjectDirectDraw4 GetDirect3D

The following code fragment demonstrates how to retrieve the Direct3D3 class from
a DirectDraw4 class object:

' Retrieve a reference to the Direct3D3 class.
'
' For this example, dx is a valid reference to the DirectX7 class.
On Local Error Resume Next
Dim ddraw As DirectDraw4
Dim d3d As Direct3D3

' Create a default DirectDraw4 object.
Set ddraw = dx.DirectDrawCreate("")
If (Err.Number <> DD_OK) Then
 ' Handle error.
End If

' Retrieve the Direct3D3 reference from the DirectDraw4 object.
Set d3d = ddraw.GetDirect3D
If (Err.Number <> DD_OK) Then
 ' Handle error.
End If

Creating Objects Subordinate to
Direct3D

[This is preliminary documentation and subject to change.]

[C++]

in.doc – page 40

Applications written in C++ use the IDirect3D3 interface to create Direct3D
devices, viewports, lights, materials, and textures. Textures under the IDirect3D2
interface were manipulated using texture handles. The IDirect3D3 interface
significantly extends the texturing capabilities of Direct3D. To accommodate these
changes, the IDirect3D3 interface no longer utilizes texture handles. Instead, it
makes use of texture interfaces. For more information, see Textures.

Direct3D creates devices by invoking the IDirect3D3::CreateDevice method. For
details, see Direct3D Devices.

The IDirect3D3::CreateViewport method is called when creating viewports. For
more information, see Viewports and Clipping.

Lights and materials are created through calls to the IDirect3D3::CreateLight and
IDirect3D3::CreateMaterial methods respectively. For more information, see
Lighting and Materials.

[Visual Basic]
Applications written in Visual Basic use the methods of the Direct3D3 class to
create Direct3D devices, viewports, lights, and materials.

Direct3D creates devices by invoking the Direct3D3.CreateDevice method. For
details, see Direct3D Devices.

The Direct3D3.CreateViewport method is called when creating viewports. For
more information, see Viewports and Clipping.

Lights and materials are created through calls to the Direct3D3.CreateLight and
Direct3D3.CreateMaterial methods respectively. For more information, see
Lighting and Materials.

DirectDraw Cooperative Levels and
FPU Precision

[This is preliminary documentation and subject to change.]

[Visual Basic]

Note
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does not support the DDSCL_FPUSETUP flag.

[C++]
Direct3D always uses single-precision floating point calculations to increase the
performance of rendering a 3-D scene. By default, Direct3D checks the precision
state of the FPU (usually it's set for double precision), sets it to single precision,
performs the necessary operations, then sets the FPU back to double precision before

in.doc – page 41

returning control to the calling application. This process is repeated for each
rendering cycle.

You can improve the performance of Direct3D by including the
DDSCL_FPUSETUP cooperative level flag when setting the DirectDraw cooperative
level. Basically, this flag informs the system that your application does not rely on
the FPU being set to double-precision. When you use DDSCL_FPUSETUP,
Direct3D sets the FPU to single precision once, reinstating double-precision FPU
calculations only when Direct3D is shut down, saving considerable performance
overhead by eliminating the process of setting and resetting the FPU for each
rendering cycle.

Obviously, if you set DDSCL_FPUSETUP, your application will be subject to the
limitations of single-precision floating point values. As a result, this cooperative
level setting should only be used when single-precision floating point values are
acceptable for your application. If you require some double-precision floating point
calculations, you can manually set the FPU precision mode to double as needed, but
you must reset it to single precision before calling any Direct3D method. Failing to
reset the FPU to single-precision mode when DDSCL_FPUSETUP will result in
degraded performance.

Floating-point precision is thread specific, so when developing multi-threaded
applications, be careful to check the FPU precision state to ensure that it is set and
reset as appropriate for each thread.

Important
Loading some dynamic link libraries (DLLs) at runtime can cause the FPU to be
reset to double-precision mode. Some compilers, such as Microsoft Visual C++,
set the default DLL entry point to _DllMainCrtStartup, a function that the
compiler supplies to initialize the C/C++ runtime components. This function
also sets the FPU precision mode to double precision. If an application sets the
DDSCL_FPUSETUP cooperative level, then loads a DLL, Direct3D will not
detect that the FPU has been reset, and performance will suffer.
If your application loads DLLs at runtime, it should check and reset the FPU
precision mode immediately after the LoadLibrary Win32 function returns, and
before calling any Direct3D functions. You can reset the precision mode
explicitly or by calling the IDirectDraw4::SetCooperativeLevel method again,
including the DDSCL_FPUSETUP flag. Using SetCooperativeLevel to set the
FPU precision mode can also cause DirectDraw surfaces to be lost.
(You can explicitly set the entry point for DLLs you compile by using the
/ENTRY: linker switch, but if you do, the C/C++ runtime will not be initialized
automatically.)

The following is a sample source file for a console application that checks and sets
the FPU precision setting by using in-line assembly language:

#include <windows.h>
#include <math.h>

in.doc – page 42

// This function evaluates whether the floating-point
// control word is set to single precision/round to nearest/
// exceptions disabled. If these conditions don't hold, the
// function changes the control word to set them and returns
// TRUE, putting the old control word value in the passback
// location pointed to by pwOldCW.
BOOL MungeFPCW(WORD *pwOldCW)
{
 BOOL ret = FALSE;
 WORD wTemp, wSave;

 __asm fstcw wSave
 if (wSave & 0x300 || // Not single mode
 0x3f != (wSave & 0x3f) || // Exceptions enabled
 wSave & 0xC00) // Not round to nearest mode
 {
 __asm
 {
 mov ax, wSave
 and ax, not 300h ;; single mode
 or ax, 3fh ;; disable all exceptions
 and ax, not 0xC00 ;; round to nearest mode
 mov wTemp, ax
 fldcw wTemp
 }
 ret = TRUE;
 }
 *pwOldCW = wSave;
 return ret;
}

void RestoreFPCW(WORD wSave)
{
 __asm fldcw wSave
}

void __cdecl main()
{
 WORD wOldCW;
 BOOL bChangedFPCW = MungeFPCW(&wOldCW);
 // Do something with control word as set by MungeFPCW.
 if (bChangedFPCW)
 RestoreFPCW(wOldCW);
}

in.doc – page 43

Direct3D Devices
[This is preliminary documentation and subject to change.]

This section provides an overview of the purpose for and uses of Direct3D devices.
The overview is divided the following topics:

· What Is a Direct3D Device?
· Direct3D Device Types
· Device Interfaces
· Using Devices
· Emulation Modes
· AGP Surfaces and Direct3D Devices
· Execute Buffers

What Is a Direct3D Device?
[This is preliminary documentation and subject to change.]

A Direct3D device is the rendering component of Direct3D. It encapsulates and
stores the rendering state. In addition, a Direct3D device performs transformations
and lighting operations, and rasterizes an image to a DirectDraw surface.
Architecturally, Direct3D devices contain a transformation module, a lighting
module, and a rasterizing module, as the following illustration shows.

Direct3D Device Architecture

Transform
Module

Lighting
Module Rasterizer

Direct3D enables applications that utilize custom transformation and lighting models
to bypass the Direct3D device's transformation and lighting modules. For details, see
Vertex Formats.

[C++]
In C++, Direct3D Immediate Mode devices support three device interfaces:
IDirect3DDevice, IDirect3DDevice2, and IDirect3DDevice3. The
IDirect3DDevice interface provides methods used for programming with execute
buffers. However, this is a form of Direct3D development that is provided primarily
for backward compatibility. The IDirect3DDevice2 interface introduced the
DrawPrimitive methods of Direct3D programming. The IDirect3DDevice3 extends
the DrawPrimitive functionality. The DrawPrimitive methods represent the preferred
rendering approach. The interfaces share a few common methods that are useful in

in.doc – page 44

either programming style, and these methods are provided by all three interfaces for
your convenience. For more information about the two rendering approaches, see
Rendering.

Prior to the introduction of the IDirect3DDevice2 interface in DirectX 5.0, Direct3D
devices were interfaces to DirectDrawSurface objects. The IDirect3DDevice2
interface implements a device-object model in which a Direct3DDevice object is
entirely separate from DirectDraw surfaces. The IDirect3DDevice3 interface uses
and extends the same device-object model. Because they are separated from
DirectDraw surfaces and have independent lifetimes, Direct3D device objects can
use different DirectDraw surfaces as render targets at different times, if the
application requires it. For information about rendering targets, see
IDirect3DDevice3::SetRenderTarget.

[Visual Basic]
In DirectX for Visual Basic, you access Direct3D Immediate Mode devices through
the Direct3DDevice3 class. The Direct3DDevice3 class supports the DrawPrimitive
family of scene-rendering methods. The Direct3DDevice3 object can use different
DirectDraw surfaces as render targets at different times, if the application requires it.
For information about rendering targets, see Direct3DDevice3.SetRenderTarget.

Direct3D Device Types
[This is preliminary documentation and subject to change.]

This section introduces Direct3D devices, and presents information for each type of
device. The following topics are discussed:

· About Device Types
· HAL Device
· RGB Device
· Reference Rasterizer
· Legacy Device Types

About Device Types
[This is preliminary documentation and subject to change.]

Direct3D currently supports three types of Direct3D devices: the HAL device, a
software-emulated RGB device, and the reference rasterizer. The first two types of
devices can be used for shipping applications, and the reference rasterizer is
supported for feature testing.

[C++]

Note

in.doc – page 45

Previous releases of DirectX exposed additional device types–the MMX and
Ramp devices — that are now obsolete. These are still available to C++
applications that target older versions of Direct3D, but are not supported through
the latest interfaces. For more information, see Legacy Device Types.

The Direct3D device that an application creates must correspond to the capabilities
of the hardware on which the application is running. Direct3D provides rendering
capabilities either by accessing 3-D hardware that is installed in the computer, or by
emulating the capabilities of 3-D hardware in software. Therefore, Direct3D
provides devices for both hardware access and for software emulation.

Hardware-accelerated devices give better performance than software-emulated
devices. In most cases, your application will target machines that have hardware
acceleration of some kind, and fall back on software emulation to accommodate
lower-end computers.

With the exception of the reference rasterizer, software devices do not always
support the same features as a hardware device. For example, software devices do
not support assigning a texture to more than one texture stage at a time. Applications
should always query for device capabilities to determine which features are
supported.

[C++,Visual Basic]

HAL Device
[This is preliminary documentation and subject to change.]

If the computer on which your application is running is equipped with a display
adapter that supports Direct3D, your application should use it for 3-D operations.
Direct3D HAL devices implement all or part of the transformation, lighting, and
rasterizing modules in hardware.

Applications do not access 3-D cards directly. They call Direct3D functions and
methods. Direct3D access the hardware through the hardware abstraction layer
(HAL). If the computer your application is running on supports the HAL, it will gain
the best performance using a HAL device.

[C++]
To create a HAL device from C++, call the IDirect3D3::CreateDevice method and
pass the IID_IDirect3DHALDevice value as the first parameter. For details, see
Creating a Direct3D Device.

[Visual Basic]
To create a HAL device from Visual Basic, call the Direct3D3.CreateDevice, and
pass the "IID_IDirect3DHALDevice" string constant as the first parameter. For
details, see Creating a Direct3D Device.

in.doc – page 46

Note
Unlike the software-emulation RGB device, hardware devices cannot render to
8-bit render target surfaces.

RGB Device
[This is preliminary documentation and subject to change.]

If the user's computer provides no special hardware acceleration for 3-D operations,
your application may emulate 3-D hardware in software. RGB devices emulate the
functions of color 3-D hardware in software. Because an RGB device is software-
emulated, it runs more slowly than a HAL device, but RGB devices will take
advantage of any special instructions supported by the user's CPU to increase
performance. Supported instruction sets include the AMD 3D-Now! instruction set
on some AMD processors, and the MMX instruction set supported by many Intel
processors. Supported instruction sets include the AMD 3D-Now! instruction set on
some AMD processors, and the MMX instruction set supported by many Intel
processors. Direct3D utilizes the 3D-Now! instruction set to accelerate
transformation and lighting operations, and the MMX instruction set to accelerate
rasterization.

For more information, see Emulation Modes.

[C++]
Applications written in C++ create an RGB device with the
IDirect3D3::CreateDevice method. Pass the value IID_IDirect3DRGBDevice as the
first parameter. For additional information on creating Direct3D devices, see
Creating a Direct3D Device.

[Visual Basic]
Applications written in Visual Basic create an RGB device with the
Direct3D3.CreateDevice method. Pass the "IID_IDirect3DRGBDevice" string
constant as the first parameter. For additional information on creating Direct3D
devices, see Creating a Direct3D Device.

Reference Rasterizer
[This is preliminary documentation and subject to change.]

Direct3D supports an additional device type called the reference rasterizer. Unlike an
RGB device, the reference rasterizer supports every Direct3D feature. Because these
features are implemented for accuracy in favor of speed, and are implemented in
software, the results aren't very fast. The reference rasterizer does make use of
special CPU instructions whenever it can, but it is not intended for retail
applications. You should only use the reference rasterizer for feature testing or
demonstration purposes.

in.doc – page 47

The reference rasterizer is not normally enumerated by Direct3D; you must set the
EnumReference named value in the HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Direct3D\Drivers registry key to a nonzero DWORD value to enable its
enumeration.

[C++]
Applications written in C++ create a reference device with the
IDirect3D3::CreateDevice function. Pass the value IID_IDirect3DRefDevice as the
first parameter. For additional information on creating Direct3D devices, see
Creating a Direct3D Device.

[Visual Basic]
Visual Basic applications create a reference device with the
Direct3D3.CreateDevice function. Pass the "IID_IDirect3DRefDevice" string
constant as the first parameter. For additional information on creating Direct3D
devices, see Creating a Direct3D Device.

Legacy Device Types
[This is preliminary documentation and subject to change.]

[Visual Basic]

Note
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does not support the device types discussed here.

[C++]
Previous releases of DirectX supported two additional types of device, called the
MMX device and the Ramp device. These devices are superseded in the current
version of DirectX, but can still be accessed through legacy interfaces.

MMX Device
MMX is a special instruction set that some microprocessors support which provides
increased performance for multimedia and 3-D processing. Direct3D uses MMX
support, if it is installed, to increase rendering speed.

MMX devices are not hardware-accelerated devices like HAL devices. The
transformation, lighting, and rasterizing modules are completely implemented in
software. However, MMX devices provide much better performance than other types
of software-emulated Direct3D devices.

If your application uses the IDirect3D2 interface, it must explicitly create an MMX
device. However, beginning with the IDirect3D3 interface, MMX and RGB devices
implement exactly the same feature set (see RGB Device). If an application attempts

in.doc – page 48

to create an RGB device and the microprocessor supports MMX technology,
Direct3D will automatically create an MMX device.

Your application creates an MMX device by invoking the
IDirect3D3::CreateDevice method and passing the value
IID_IDirect3DMMXDevice in the first parameter. For additional information on
creating Direct3D devices, see Creating a Direct3D Device. If the application
explicitly requests that an MMX device is created and the user's computer does not
support MMX technology, CreateDevice will fail.

Ramp Device
You cannot create a Direct3D ramp device by using the IDirect3D3 interface, nor
can you query an existing ramp device for the IDirect3DDevice3 interface. In short,
ramp devices do not support any multiple texture blending options. For emulation of
these features use the MMX or RGB software emulation devices.

A ramp device is a software-emulated device that provides monochrome lighting.
Applications can select it when the user's computer does not have sufficient
processing power to support any other types of Direct3D devices. For details, see
Emulation Modes.

Ramp devices are provided primarily for backward compatibility with legacy
applications. In general, computers that do not have sufficient processing power to
support RGB devices are not suited to 3-D applications.

An application creates a ramp device by invoking the IDirect3D2::CreateDevice
method and passing the value IID_IDirect3DRampDevice as the first parameter. For
additional information on creating Direct3D devices, see Creating a Direct3D
Device.

Device Interfaces
[This is preliminary documentation and subject to change.]

[Visual Basic]

Note
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does not use COM interfaces, nor does it support
rendering with execute-buffers.

[C++]
Applications written in C++, use a device interface to manipulate a Direct3DDevice
object's rendering states, lighting states, and to perform rendering operations.
Although devices support three iterations of the device interface (IDirect3DDevice,
IDirect3DDevice2, and IDirect3DDevice3), it is unlikely that your applications will
need to use more than one of them at a time. Which interface you use should be

in.doc – page 49

determined by the rendering approach — the DrawPrimitive methods or execute
buffers — your application is going to use. The following paragraphs provide
additional information about these interfaces and the rendering approaches they
represent:

Execute buffers
The IDirect3DDevice interface supports rendering through execute buffers; the
original method of Direct3D programming. This interface is supported mostly for
backward compatibility, as the DrawPrimitive rendering architecture is easier to use.
It is recommended that you use the IDirect3DDevice3 interface for developing new
applications, unless your application specifically targets versions of DirectX prior to
DirectX 5.0.

All Direct3D device types support the IDirect3DDevice interface.

DrawPrimitive rendering
The two most recent iterations of the device interface, IDirect3DDevice3 and
IDirect3DDevice2, support the DrawPrimitive family of rendering methods in favor
of rendering with execute buffers. The DrawPrimitive methods greatly simplify the
process of preparing and rendering vertices to the render target surface, and are
widely considered the preferred rendering approach.

If your application uses the DrawPrimitive methods, there is little reason to use
anything but the newest version of the device interface (in fact, this documentation
provides information only for the most recent version). Direct3D, in compliance with
COM standards for backward compatibility, supports all interface versions, but it is
recommended that you use the most recent version to take advantage of any new
features and performance enhancements.

The IDirect3DDevice2 interface, created for DirectX 5.0, introduced the
DrawPrimitive rendering architecture. DrawPrimitive-based rendering methods are
simpler to use than execute buffers and provide a more direct style of Direct3D
programming. For details, see Rendering. All Direct3D device types support the
IDirect3DDevice2 interface.

Like the IDirect3DDevice2 interface, the IDirect3DDevice3 interface provides
support for the DrawPrimitive methods. In conjunction with the IDirect3D3
interface, it also sports an enhanced feature set which includes multiple texture
blending, vertex buffers, and enhancements to the 3-D geometry rendering pipeline.
The IDirect3DDevice3 interface furnishes the same methods that the
IDirect3DDevice2 interface did. However, it adds new render states to the
IDirect3DDevice3::SetRenderState method to support multiple texture blending.

All Direct3D device types support the IDirect3DDevice3 interface.

in.doc – page 50

Using Devices
[This is preliminary documentation and subject to change.]

This section provides information about using Direct3D devices in a Direct3D
Immediate Mode application. Information is divided into the following topics:

· Enumerating Direct3D Devices
· Creating a Direct3D Device
· Setting Transformations
· Rendering
· Lighting States

Enumerating Direct3D Devices
[This is preliminary documentation and subject to change.]

Applications can query the hardware they run on to detect which types of Direct3D
devices it supports. This section contains information on two primary tasks involved
in enumerating Direct3D Devices. Information is organized into the following
topics:

· Starting Device Enumeration
· Selecting an Enumerated Device

Starting Device Enumeration
[This is preliminary documentation and subject to change.]

[C++]
A C++ application begins device enumeration by calling the
IDirect3D3::EnumDevices method, which enumerates all of the Direct3D devices
that the hardware supports. Direct3D invokes the D3DEnumDevicesCallback
function to select the device that will be used. The D3DEnumDevicesCallback
function is supplied by you in your application. Note that because this callback
function is supplied by your application, its name can be anything you want.

The following code fragment illustrates the process of enumerating Direct3D
devices. In this example, the device enumeration callback function is named
EnumDeviceCallback. The code passes a pointer to EnumDeviceCallback to the
IDirect3D3::EnumDevices method, which in turn calls EnumDeviceCallback for
each device being enumerated, then returns. The callback can stop the enumeration
before all devices have been enumerated by returning D3DENUMRET_CANCEL.

// In this code fragment, the variable lpd3d contains a valid
// pointer to the IDirect3D3 interface that the application obtained
// prior to executing this code.

BOOL fDeviceFound = FALSE;

in.doc – page 51

hRes = lpd3d->EnumDevices(EnumDeviceCallback, &fDeviceFound);
if (FAILED(hRes))
{
 // Code to handle the error goes here.
}

if (!fDeviceFound)
{
 // Code to handle the error goes here.
}

[Visual Basic]
A Visual Basic application begins device enumeration by retrieving a reference to
the Direct3DEnumDevices class by calling the Direct3D3.GetDevicesEnum
method. The Direct3DEnumDevices class defines methods that retrieve the number
of enumerated devices and information about each device.

The following code fragment illustrates the process of retreiving the
Direct3DEnumDevices class:

' In this example, the d3d variable is a valid reference to a
' Direct3D3 class.
Dim d3dEnum As Direct3DEnumDevices

' Retrieve the enumerator class.
Set d3dEnum = d3d.GetDevicesEnum

Selecting An Enumerated Device
[This is preliminary documentation and subject to change.]

[C++]
In C++, Direct3D invokes the D3DEnumDevicesCallback function provided by the
caller for each Direct3D device installed on the system. When it is called, its first
parameter is a globally unique ID (GUID) for the device that is being enumerated.
The value of the GUID will be IID_IDirect3DHALDevice,
IID_IDirect3DMMXDevice, IID_IDirect3DRGBDevice, or
IID_IDirect3DRampDevice. The D3DEnumDevicesCallback function selects the
device that is most appropriate for your application based on this information.

The second and third parameters to the D3DEnumDevicesCallback function are text
strings containing the name and user-friendly description of the device.

The fourth parameter is a pointer to a D3DDEVICEDESC structure containing
information about the hardware capabilities of the device. Even if the device being
enumerated is a HAL device, the particular hardware may not support all of the
capabilities that the Direct3D API allows.

in.doc – page 52

The fifth parameter to the D3DEnumDevicesCallback function contains a pointer to
a D3DDEVICEDESC structure that describes the software-emulated capabilities of
the computer on which your application is running. This information is relevant
when you are using a software-emulated device (MMX, RGB, or RAMP device).

The last parameter is a programmer-defined value. Your application passes this
value to the IDirect3D3::EnumDevices method. It in turn passes this value to the
D3DEnumDevicesCallback function.

The following code fragment illustrates how to create a D3DEnumDevicesCallback
function. In this example, the application-supplied callback function is named
EnumDeviceCallback. The EnumDeviceCallback function uses the following
algorithm to choose an appropriate Direct3D device:

1. Discard any devices which don't match the current display depth.
2. Discard any devices which can't do Gouraud-shaded triangles.
3. If a hardware device is found which matches points 1 and 2, use it. However, if

the application is running in debug mode, it will not use the hardware device.

The code for the EnumDeviceCallback function is shown in the following example:

// This function is written with the assumption that the following
// global variables are declared in the program.
// DWORD dwDeviceBitDepth = 0;
// GUID guidDevice;
// char szDeviceName[MAX_DEVICE_NAME];
// char szDeviceDesc[MAX_DEVICE_DESC];
// D3DDEVICEDESC d3dHWDeviceDesc;
// D3DDEVICEDESC d3dSWDeviceDesc;

static HRESULT WINAPI
EnumDeviceCallback(LPGUID lpGUID,
 LPSTR lpszDeviceDesc,
 LPSTR lpszDeviceName,
 LPD3DDEVICEDESC lpd3dHWDeviceDesc,
 LPD3DDEVICEDESC lpd3dSWDeviceDesc,
 LPVOID lpUserArg)
{
 BOOL fIsHardware;
 LPD3DDEVICEDESC lpd3dDeviceDesc;

 // If there is no hardware support the color model is zero.

 fIsHardware = (lpd3dHWDeviceDesc->dcmColorModel != 0);
 lpd3dDeviceDesc = (fIsHardware ? lpd3dHWDeviceDesc :
 lpd3dSWDeviceDesc);

 // Does the device render at the depth we want?

in.doc – page 53

 if ((lpd3dDeviceDesc->dwDeviceRenderBitDepth & dwDeviceBitDepth)
 == 0)
 {
 // If not, skip this device.

 return D3DENUMRET_OK;
 }

 // The device must support Gouraud-shaded triangles.

 if (D3DCOLOR_MONO == lpd3dDeviceDesc->dcmColorModel)
 {
 if (!(lpd3dDeviceDesc->dpcTriCaps.dwShadeCaps &
 D3DPSHADECAPS_COLORGOURAUDMONO))
 {
 // No Gouraud shading. Skip this device.

 return D3DENUMRET_OK;
 }
 }
 else
 {
 if (!(lpd3dDeviceDesc->dpcTriCaps.dwShadeCaps &
 D3DPSHADECAPS_COLORGOURAUDRGB))
 {
 // No Gouraud shading. Skip this device.

 return D3DENUMRET_OK;
 }
 }

 //
 // This is a device we are interested in. Save the details.
 //
 *lpUserArg = TRUE;
 CopyMemory(&guidDevice, lpGUID, sizeof(GUID));
 strcpy(szDeviceDesc, lpszDeviceDesc);
 strcpy(szDeviceName, lpszDeviceName);
 CopyMemory(&d3dHWDeviceDesc, lpd3dHWDeviceDesc,
 sizeof(D3DDEVICEDESC));
 CopyMemory(&d3dSWDeviceDesc, lpd3dSWDeviceDesc,
 sizeof(D3DDEVICEDESC));

 // If this is a hardware device, we have found
 // what we are looking for.
 if (fIsHardware)

in.doc – page 54

 return D3DENUMRET_CANCEL;

 // Otherwise, keep looking.

 return D3DENUMRET_OK;
}

[Visual Basic]
In Visual Basic, the Direct3DEnumDevices class enumerates the Direct3D devices
installed on the system. You retrieve information about each device by querying the
class, identifying devices enumerated within the class by their index. The first device
is at index 1, the second is at 2, and so on. The Direct3DEnumDevices.GetCount
method reports the number of enumerated devices, and therefore the highest
allowable index value.

Call the Direct3DEnumDevices.GetGuid method retrieves the globally-unique ID
(GUID) for an enumerated device as a text string. The string differs from one device
to another.

Call the Direct3DEnumDevices.GetName and
Direct3DEnumDevices.GetDescription methods to retrieve text strings that contain
the name and user-friendly description of the device.

Call the Direct3DEnumDevices.GetHWDesc and
Direct3DEnumDevices.GetHELDesc methods to retrieve a description of the
hardware and software capabilities for the device, in the form of the
D3DDEVICEDESC type. Even if the device being enumerated is a hardware
device, the particular hardware may not support all of the capabilities that the
Direct3D API allows.

The following code fragment illustrates how to create write a function that calls the
methods of the Direct3DEnumDevices class to determine device capabilities. In this
example, the application-defined function uses the following algorithm to choose an
appropriate Direct3D device:

1. Discard any devices which don't match the current display depth.
2. Discard any devices which can't do Gouraud-shaded triangles.
3. If a hardware device is found which matches points 1 and 2, use it.

Private Sub EnumerateDevices(d3denum As Direct3DEnumDevices)
' For this example, the following global variables are assumed to be defined:
 ' g_lDeviceBitDepth is the desired bit depth (combination of
CONST_DDBITDEPTHFLAGS constants).
 ' g_HELDeviceDesc will contain the D3DDEVICEDESC for software device
capabilities.
 ' g_HWDeviceDesc will contain the D3DDEVICEDESC for hardware device
capabilities.
 ' g_strDeviceGUID will contain the GUID string for the device.

in.doc – page 55

 ' g_strDeviceDescription will contain the string for the device description text.
 ' g_strDeviceName will contain the string for the device name.

 ' Local variables used to enumerate devices.
 Dim iDevice As Integer
 Dim HWDevDesc As D3DDEVICEDESC, SWDevDesc As D3DDEVICEDESC
 Dim bIsHardware As Boolean

 ' Begin enumerating the devices
 For iDevice = 1 To d3denum.GetCount
 Dim checkDesc As D3DDEVICEDESC
 Call d3denum.GetHWDesc(iDevice, HWDevDesc)
 Call d3denum.GetHELDesc(iDevice, SWDevDesc)

 ' If there is no hardware support for this device, the color model is zero.
 bIsHardware = (HWDevDesc.lColorModel <> 0)
 If bIsHardware = True Then
 checkDesc = HWDevDesc
 Else
 checkDesc = SWDevDesc
 End If

 ' Does the device render at the depth we want? If not, stop
 ' checking and get the next device.
 If checkDesc.lDeviceRenderBitDepth And Not g_lDeviceBitDepth Then
 GoTo NEXT_DEVICE
 End If

 ' The device must support Gouraud-shaded triangles.
 If checkDesc.lColorModel = D3DCOLOR_MONO Then
 If (Not checkDesc.dpcTriCaps.lShadeCaps And
D3DPSHADECAPS_COLORGOURAUDMONO) Then
 ' No Gouraud shading in MONO mode. Skip this device.
 GoTo NEXT_DEVICE
 End If
 ElseIf (Not checkDesc.dpcTriCaps.lShadeCaps And
D3DPSHADECAPS_COLORGOURAUDRGB) Then
 ' No Gouraud shading in RGB mode. Skip this device.
 GoTo NEXT_DEVICE
 End If

 '
 ' By the time we get here, we know that this is a device we
 ' are interested in. Place the results in the global variables.
 '
 g_strDeviceGUID = d3denum.GetGuid(iDevice)

in.doc – page 56

 g_strDeviceDescription = d3denum.GetDescription(iDevice)
 g_strDeviceName = d3denum.GetName(iDevice)
 g_SWDeviceDesc = SWDevDesc
 g_HWDeviceDesc = HWDevDesc

 ' If this current device happens to be hardware accelerated,
 ' we have found what we are looking for.
 If bIsHardware = True Then Exit For

 ' Otherwise, keep looking.
NEXT_DEVICE:
 Next iDevice
End Sub ' EnumerateDevices

Creating a Direct3D Device
[This is preliminary documentation and subject to change.]

[C++]
To create a Direct3D device in a C++ application, your application must first
initialize the DirectDraw object in the normal manner and obtain a pointer to the
IDirect3D3 interface. For details, see Accessing Direct3D. It must then call the
IDirect3D3::CreateDevice method to create a Direct3D device. This method will
pass a pointer to the IDirect3DDevice3 interface your application.

The following figure illustrates the process for creating a Direct3D device in C++.
Such a device would support the DrawPrimitive methods. For information about
creating a device for use with execute-buffer rendering, see Creating a Device for
Execute Buffers.

DirectDraw
Object IDirect3D3QueryInterface

IDirect3D3::CreateDevice

IDirect3DDevice3

This code fragment illustrates this process:

LPDIRECTDRAW lpDD; // DirectDraw Interface
LPDIRECT3D3 lpD3D; // Direct3D3 Interface
LPDIRECTDRAWSURFACE4 lpddsRender; // Rendering surface
LPDIRECT3DDEVICE3 lpd3dDevice; // D3D Device

in.doc – page 57

// Create DirectDraw interface.
// Use the current display driver.
hResult = DirectDrawCreate (NULL, &lpDD, NULL);
if (FAILED (hResult))
{
 // Code to handle the error goes here.
}

// Get an IDirect3D3 interface
hResult =
 lpDD->QueryInterface (IID_IDirect3D3, (void **)&lpD3D);
if (FAILED (hResult))
{
 // Code to handle the error goes here.
}

//
// Code for the following tasks is omitted for clarity.
//
// Applications will need to set the cooperative level at this point.
// Full-screen applications will probably need to set the display
// mode.
// The primary surface should be created here.
// The rendering surface must be created at this point. It is
// assumed in this code fragment that, once created, the rendering
// surface is pointed to by the variable lpddsRender.
// If a z-buffer is being used, it should be created here.
// Direct3D device enumeration can be done at this point.

hResult = lpD3D->CreateDevice (IID_IDirect3DHALDevice,
 lpddsRender,
 &lpd3dDevice,
 NULL);

The preceding sample invokes the IDirect3D3::CreateDevice method to create the
Direct3D device. In the case of this sample, a Direct3D HAL device is created if the
call is successful.

Note that the target DirectDraw rendering surface that your application creates must
be created for use as a Direct3D rendering target. To do this, it must pass a
DDSURFACEDESC2 structure to the IDirectDraw4::CreateSurface method. The
DDSURFACEDESC2 structure has a member called ddsCaps, which is a structure
of type DDSCAPS. The DDSCAPS structure contains a member named dwCaps,
which must be set to DDSCAPS_3DDEVICE when IDirectDraw4::CreateSurface
is invoked.

in.doc – page 58

The render target surface you use must be created in display memory (with the
DDSCAPS_VIDEOMEMORY flag) when it will be use with a hardware-accelerated
rendering device, and in system memory (using the DDSCAPS_SYSTEMMEMORY
flag) otherwise.

Note
Some popular hardware devices require that the render target and depth buffer
surfaces use the same bit depth. On such hardware, if your application uses a 16-
bit render target surface, the attached depth buffer must also be 16-bits. For a
32-bit render target surface, the depth buffer must be 32-bits, of which 8-bits can
be used for stencil buffering (if needed).
If the hardware upon which your application is running has this requirement, and
your application fails to meet it, any attempts to create a rendering device that
uses the non-compliant surfaces will fail. You can use the DirectDraw method,
IDirectDraw4::GetDeviceIdentifier to track hardware that imposes this
limitation.

[Visual Basic]
To create a Direct3D device, your application must first initialize the DirectDraw
object in the normal manner and obtain a reference to the Direct3D3 class. For
details, see Accessing Direct3D. It must then call the Direct3D3.CreateDevice
method to create a Direct3D device. The method returns a reference to a
Direct3DDevice3 class object.

The following figure illustrates the process for creating a Direct3D device from a
Visual Basic application:

DirectDraw4 Direct3D3GetDirect3D

Direct3D3.CreateDevice

Direct3DDevice3

This code fragment illustrates this process:

' For this example, the g_dx variable is contains a valid
' reference to a DirectX7 object.
Private Sub Test()
 On Local Error Resume Next

 Dim ddraw As DirectDraw4 ' DirectDraw4 class
 Dim d3d As Direct3D3 ' Direct3D3 class
 Dim ddsRender As DirectDrawSurface4 ' Rendering surface

in.doc – page 59

 Dim d3dDev As Direct3DDevice3 ' Direct3D Device

 ' Create DirectDraw4 object.
 ' Use the current display driver.
 Set ddraw = g_dx.DirectDrawCreate("")
 If Err.Number <> DD_OK Then
 ' Code to handle the error goes here.
 End If

 ' Get a Direct3D3 object
 Set d3d = ddraw.GetDirect3D
 If Err.Number <> DD_OK Then
 ' Code to handle the error goes here.
 End If

 '
 ' Code for the following tasks is omitted for clarity.
 '
 ' + Applications will need to set the cooperative level at this point.
 ' + Full-screen applications will probably need to set the display
 ' mode.
 ' + The primary surface should be created here.
 ' + The rendering surface must be created at this point. It is
 ' assumed in this code fragment that, once created, the rendering
 ' surface is referred to by the variable ddsRender.
 ' + If a depth-buffer is being used, it should be created here.
 ' + Direct3D device enumeration can be done at this point.

 Set d3dDev = d3d.CreateDevice("IID_IDirect3DHALDevice", ddsRender)
End Sub

The preceding sample invokes the Direct3D3.CreateDevice method to create the
Direct3D device. In the case of this sample, a Direct3D HAL device is created if the
call is successful.

Note that the target DirectDraw rendering surface that your application creates must
be created for use as a Direct3D rendering target. To do this, it must pass a
DDSURFACEDESC2 variable to the DirectDraw4.CreateSurface method. The
DDSURFACEDESC2 type has a member called ddsCaps, which is of type
DDSCAPS2. The DDSCAPS type contains a member named lCaps, which must be
set to DDSCAPS_3DDEVICE when DirectDraw4.CreateSurface is invoked.

The render target surface you use must be created in display memory (with the
DDSCAPS_VIDEOMEMORY flag) when it will be use with a hardware-accelerated
rendering device, and in system memory (using the DDSCAPS_SYSTEMMEMORY
flag) otherwise.

in.doc – page 60

Note
Some popular hardware devices require that the render target and depth buffer
surfaces use the same bit depth. On such hardware, if your application uses a 16-
bit render target surface, the attached depth buffer must also be 16-bits. For a
32-bit render target surface, the depth buffer must be 32-bits, of which 8-bits can
be used for stencil buffering (if needed).
If the hardware upon which your application is running has this requirement, and
your application fails to meet it, any attempts to create a rendering device that
uses the non-compliant surfaces will fail.

Setting Transformations
[This is preliminary documentation and subject to change.]

[C++]
In C++, transformations are applied by using the IDirect3DDevice3::SetTransform
method. For example, you could use code like this to set the view transformation:

 HRESULT hr
 D3DMATRIX view;

 // Fill in the view matrix.

 hr = lpDev->SetTransform(D3DTRANSFORMSTATE_VIEW, &view);

 if(FAILED(hr)){
 // Code to handle the error goes here.
 }

There are three possible settings for the first parameter in a call to
IDirect3DDevice3::SetTransform: D3DTRANSFORMSTATE_WORLD,
D3DTRANSFORMSTATE_VIEW, and D3DTRANSFORMSTATE_PROJECTION.
These transformation states are defined in the D3DTRANSFORMSTATETYPE
enumerated type.

[Visual Basic]
In Visual Basic, transformations are applied by using the
Direct3DDevice3.SetTransform method. For example, you could use code like this
to set the view transformation:

 On Local Error Resume Next
 Dim view As D3DMATRIX

 ' Fill in the view matrix.
 Call d3dDev.SetTransform(D3DTRANSFORMSTATE_VIEW, view)

in.doc – page 61

 If Err.Number <> DD_OK Then
 ' Code to handle the error goes here.
 End If

There are three possible settings for the first parameter in a call to
Direct3DDevice3.SetTransform: D3DTRANSFORMSTATE_WORLD,
D3DTRANSFORMSTATE_VIEW, and D3DTRANSFORMSTATE_PROJECTION.
These transformation states are defined in the
CONST_D3DTRANSFORMSTATETYPE enumeration.

Rendering
[This is preliminary documentation and subject to change.]

Most Direct3D applications will use the DrawPrimitive family of methods to render
a 3-D scene. The DrawPrimitive architecture is recommended over the legacy
execute-buffer rendering model. As a result, the following topics present a
DrawPrimitive-centered discussion about rendering:

· About Rendering
· Beginning and Ending a Scene
· Clearing Surfaces
· Rendering Primitives
· Primitive Types
· Render States

Although most applications will use the DrawPrimitive family of rendering methods,
Direct3D still supports the use of execute buffers. For more information about
rendering with execute buffers, see Execute Buffers. Note that execute buffers are
not supported by DirectX for Visual Basic.

About Rendering
[This is preliminary documentation and subject to change.]

[C++]
Direct3D device interfaces later than the first device interface (IDirect3DDevice)
support the DrawPrimitive rendering architecture. The DrawPrimitive family of
methods—introduced in DirectX 5.0 with the IDirect3DDevice2 interface, and
extended by IDirect3DDevice3—can render different types of primitives such as
points, lines, or collections of triangles. (Primitives are discussed in detail in
Primitive Types.)

You can group vertices for a primitive in two basic ways:

· In an array that includes all vertices for the primitive, in order.

in.doc – page 62

· In an unordered array of vertices, accompanied by an ordered array of values,
where each value is the index of a vertex in the unordered array. Primitives of
this type are sometimes referred to as "indexed primitives."

The DrawPrimitive architecture makes it possible to render groups of vertices that
define a primitive in a single call, or to render the vertices that comprise a primitive
one-by-one. For more information, see Rendering Primitives.

[C++,Visual Basic]

Beginning and Ending a Scene
[This is preliminary documentation and subject to change.]

[C++]
Applications written in C++ notify Direct3D that scene rendering is about to begin
by calling the IDirect3DDevice3::BeginScene method. BeginScene causes the
system to check its internal data structures, the availability and validity of rendering
surfaces, and sets an internal flag to signal that a scene is in progress. After you
begin a scene, you can call the various rendering methods to render the primitives or
individual vertices that make up the objects in the scene. Attempts to call rendering
methods when a scene is not in progress will fail, returning
D3DERR_SCENE_NOT_IN_SCENE. For more information about the rendering
methods, see Rendering Primitives.

After you complete the scene, call the IDirect3DDevice3::EndScene method. The
EndScene method clears an internal flag that signals when a scene is in progress,
flushes cached data, and verifies the integrity of the rendering surfaces.

All rendering methods must be bracketed by calls to the BeginScene and EndScene
methods. If surfaces are lost, or if internal errors occur, the scene methods return
error values. You must call EndScene for each time you call the BeginScene
method, even if BeginScene fails. For example, some simple scene code might look
like this:

HRESULT hr;

if(SUCCEEDED(lpDevice->BeginScene()))
{
 // Render primitives only if the scene
 // started successfully.
}

// Always close the scene, even if BeginScene fails.
hr = lpDevice->EndScene();
if(FAILED(hr))
 return hr;

in.doc – page 63

You cannot embed scenes; that is, you must complete rendering a scene before you
can begin another one. Calling IDirect3DDevice3::EndScene when
IDirect3DDevice3::BeginScene has not been called will return the
D3DERR_SCENE_NOT_IN_SCENE error value. Likewise, calling BeginScene
when a previous scene has not been completed (with the EndScene method) results
in the D3DERR_SCENE_IN_SCENE error.

You should not attempt to call GDI functions on DirectDraw surfaces, such as the
render target or textures, while a scene is being rendered (between BeginScene and
EndScene calls). Attempts to do so can prevent the results of the GDI operations
from being visible. If your application uses GDI functions, make sure that all GDI
calls are made outside of the scene functions.

[Visual Basic]
Visual Basic applications notify Direct3D that scene rendering is about to begin by
calling the Direct3DDevice3.BeginScene method. BeginScene causes the system to
check its internal data structures, the availability and validity of rendering surfaces,
and sets an internal flag to signal that a scene is in progress. After you begin a scene,
you can call the various rendering methods to render the primitives or individual
vertices that make up the objects in the scene. Attempts to call rendering methods
when a scene is not in progress will fail, raising the
D3DERR_SCENE_NOT_IN_SCENE error. For more information about the
rendering methods, see Rendering Primitives.

After you complete the scene, call the Direct3DDevice3.EndScene method. The
EndScene method clears an internal flag that signals when a scene is in progress,
flushes cached data, and verifies the integrity of the rendering surfaces.

All rendering methods must be bracketed by calls to the BeginScene and EndScene
methods. If surfaces are lost, or if internal errors occur, the scene methods return
error values. You must call EndScene for each time you call the BeginScene
method, even if BeginScene fails. For example, some simple scene code might look
like this:

On Local Error Resume Next

Call d3dDev.BeginScene
If Err.Number = DD_OK Then
 ' Render primitives only if the scene
 ' started successfully.
End If

' Always close the scene, even if BeginScene fails.
Call d3dDev.EndScene
If Err.Number <> DD_OK Then
 ' Code to handle error goes here.
End If

in.doc – page 64

You cannot embed scenes; that is, you must complete rendering a scene before you
can begin another one. Calling Direct3DDevice3.EndScene when
Direct3DDevice3.BeginScene has not been called will raise a
D3DERR_SCENE_NOT_IN_SCENE error. Likewise, calling BeginScene when a
previous scene has not been completed (with the EndScene method) results in the
D3DERR_SCENE_IN_SCENE error.

You should not attempt to call GDI functions on DirectDraw surfaces, such as the
render target or textures, while a scene is being rendered (between BeginScene and
EndScene calls). Attempts to do so can prevent the results of the GDI operations
from being visible. If your application uses GDI functions, make sure that all GDI
calls are made outside of the scene functions.

Clearing Surfaces
[This is preliminary documentation and subject to change.]

Before rendering objects in a scene, you should clear the viewport on the render
target surface (or a subset of the viewport). Clearing the viewport causes the system
to set the desired portion of the render target surface and any attached depth or
stencil buffers to a desired state. This resets the areas of the surface that will be
rendered again and resets the corresponding areas of the depth and stencil buffers, if
any are in use. Clearing a render target surface can set the desired region to a default
color or texture. For depth and stencil buffers, this can set a depth or stencil value.

[C++]
The IDirect3DViewport3 interface offers the IDirect3DViewport3::Clear and
IDirect3DViewport3::Clear2 methods to clear the viewport. For more information
about using these methods, see Clearing a Viewport in the Viewports and Clipping
section.

[Visual Basic]
The Direct3DViewport3 Visual Basic class offers the Direct3DViewport3.Clear
and Direct3DViewport3.Clear2 methods to clear the viewport. For more
information about using these methods, see Clearing a Viewport in the Viewports
and Clipping section.

Optimization note:
Applications that render scenes covering the entire area of the render target
surface can improve performance by clearing the attached depth and stencil
buffer surfaces (if any) instead of the render target. In this case, clearing the
depth buffer causes Direct3D to rewrite the render target on the next rendered
frame, making an explicit clear operation on the render target redundant.
However, if your application renders only to a portion of the render target
surface, explicit clear operations are required.

in.doc – page 65

Rendering Primitives
[This is preliminary documentation and subject to change.]

The following topics introduce the DrawPrimitive rendering methods and provides
information about using them in your application:

· The DrawPrimitive Methods
· Rendering Strided Vertices

The DrawPrimitive Methods
[This is preliminary documentation and subject to change.]

[C++]
Direct3D offers several methods to render primitives and indexed primitives in a
single call or as individual vertices. All rendering methods in the IDirect3DDevice3
interface accept a combination of flexible vertex format flags that describe the vertex
type your application uses; these flags also determine which parts of the geometry
pipeline the system will apply. (This differs from the version of the methods in the
IDirect3DDevice2, which accept only the concrete vertex formats identified by
members of the D3DPRIMITIVETYPE enumeration.) For more information about
these descriptors, see Vertex Formats.

The DrawPrimitive family of rendering methods can be subdivided according to the
style of primitive (non-indexed or indexed) a given method is capable of rendering.
The system offers methods for both primitive styles, specified as groups of vertices
or one vertex at a time. The following paragraphs reflect this subdivision:

Non-indexed and Indexed Primitive Methods
IDirect3DDevice3::DrawPrimitive,
IDirect3DDevice3::DrawPrimitiveStrided, and
IDirect3DDevice3::DrawPrimitiveVB render groups of non-indexed vertices,
strided vertices, and non-indexed vertices contained within vertex buffers.
The IDirect3DDevice3::DrawIndexedPrimitive,
IDirect3DDevice3::DrawIndexedPrimitiveStrided, and
IDirect3DDevice3::DrawIndexedPrimitiveVB methods render vertex groups
by indexing into a provided array of vertices, strided vertices, or by indexing
into vertices within a vertex buffer.

Non-indexed and Indexed Vertex Methods
The IDirect3DDevice3::Begin method informs the system that you are
beginning a sequence of vertices, and you can render the vertices with
subsequent calls to IDirect3DDevice3::Vertex. When you are done with a
sequence of vertices, you must call the IDirect3DDevice3::End method.
Similar to the non-indexed vertex rendering methods, the system offers the
IDirect3DDevice3::BeginIndexed method to begin rendering vertices by their
index, followed by calls to IDirect3DDevice3::Index for each vertex. (Just like
non-indexed vertices, you finish the vertex sequence by calling
IDirect3DDevice3::End.)

in.doc – page 66

When you render a primitive, the associated methods accept parameters that describe
the type of primitive being rendered (such as a triangle strip, a triangle list, or
another primitive type), the vertex format, rendering behavior flags, and vertex
information. These flags and their effects are documented in the references for the
rendering methods.

Note that the number of vertices you need to provide for the methods depends on the
type of primitive you are rendering. For instance, if you're rendering a line list, you
must provide at least two vertices to define a single line, and the total number must
be an even value. Likewise for a triangle list, you must include at least three
vertices, with the total evenly divisible by three. For information about vertex counts
for other types of primitives, see Primitive Types and D3DPRIMITIVETYPE.

Vertex buffers, and the methods to render from them, provide performance and ease-
of-use enhancements that improve upon rendering vertices from your own data
structures. For more information, see Vertex Buffers.

[Visual Basic]
Direct3D offers Visual Basic applications several methods to render primitives and
indexed primitives in a single call or as individual vertices. All rendering methods in
the Direct3DDevice3 class accept a combination of flexible vertex format flags that
describe the vertex type your application uses; these flags also determine which parts
of the geometry pipeline the system will apply. For more information about these
descriptors, see Vertex Formats.

The DrawPrimitive family of rendering methods can be subdivided according to the
style of primitive (non-indexed or indexed) a given method is capable of rendering.
The system offers methods for both primitive styles, specified as groups of vertices
or one vertex at a time. The following paragraphs reflect this subdivision:

Non-indexed and Indexed Primitive Methods
Direct3DDevice3.DrawPrimitive and Direct3DDevice3.DrawPrimitiveVB
render groups of non-indexed vertices alone or contained within vertex buffers.
The Direct3DDevice3.DrawIndexedPrimitive and
Direct3DDevice3.DrawIndexedPrimitiveVB methods render vertex groups by
indexing into a provided array of vertices or by indexing vertices within a vertex
buffer.

Non-indexed and Indexed Vertex Methods
The Direct3DDevice3.Begin method informs the system that you are beginning
a sequence of vertices, and you can render the vertices with subsequent calls to
Direct3DDevice3.Vertex. When you are done with a sequence of vertices, you
must call the Direct3DDevice3.End method.
Similar to the non-indexed vertex rendering methods, the system offers the
Direct3DDevice3.BeginIndexed method to begin rendering vertices by their
index, followed by calls to Direct3DDevice3.Index for each vertex. (Just like
non-indexed vertices, you finish the vertex sequence by calling
IDirect3DDevice3::End.)

in.doc – page 67

When you render a primitive, the associated methods accept parameters that describe
the type of primitive being rendered (such as a triangle strip, a triangle list, or
another primitive type), the vertex format, rendering behavior flags, and vertex
information. These flags and their effects are documented in the references for the
rendering methods.

Note that the number of vertices you need to provide for the methods depends on the
type of primitive you are rendering. For instance, if you're rendering a line list, you
must provide at least two vertices to define a single line, and the total number must
be an even value. Likewise for a triangle list, you must include at least three
vertices, with the total evenly divisible by three. For information about vertex counts
for other types of primitives, see Primitive Types and
CONST_D3DPRIMITIVETYPE.

Vertex buffers, and the methods to render from them, provide performance and ease-
of-use enhancements that improve upon rendering vertices from your own data
structures. For more information, see Vertex Buffers.

Note:
DirectX for Visual Basic does not support rendering strided vertices.

Rendering Strided Vertices
[This is preliminary documentation and subject to change.]

[Visual Basic]

Note:
The information in this topic applies only to applications written in C++.
DirectX for Visual Basic does not support rendering with strided vertices.

[C++]
Because of the indirection provided by strided vertices—detailed in the Strided
Vertex Format section—applications must take care to set up the vertices properly.
Often, developers forget to include a vertex component in the associated
D3DDRAWPRIMITIVESTRIDEDDATA structures. This oversight doesn't
necessarily cause the rendering methods to fail, but can result in "missing" geometry
that is difficult to troubleshoot.

The following code shows one way that you might set up and render strided vertices:

//---
// A custom vertex format that includes XYZ, a
// diffuse color & two sets of texture coords.
//---
struct MTVERTEX
{
 FLOAT x, y, z;
 DWORD dwColor;

in.doc – page 68

 FLOAT tuBase, tvBase;
 FLOAT tuLightMap, tvLightMap;
};

// Make an array of custom vertices.
MTVERTEX g_avVertices[36];
// Fill the array.
// (vertex at index 0)
// .
// .
// .
// (vertex at index 35)

// Construct strided vertices vertex using the array of
// custom vertices already defined.
D3DDRAWPRIMITIVESTRIDEDDATA g_StridedData;

// Assign the addresses of the various interleaved components
// to their corresponding strided members.
g_StridedData.position.lpvData = &g_avWallVertices[24].x;
g_StridedData.diffuse.lpvData = &g_avWallVertices[24].dwColor;
g_StridedData.textureCoords[0].lpvData = &g_avWallVertices[24].tuBase;
g_StridedData.textureCoords[1].lpvData = &g_avWallVertices[24].tuLightMap;
g_StridedData.position.dwStride = sizeof(MTVERTEX);
g_StridedData.diffuse.dwStride = sizeof(MTVERTEX);
g_StridedData.textureCoords[0].dwStride = sizeof(MTVERTEX);
g_StridedData.textureCoords[1].dwStride = sizeof(MTVERTEX);

// Render the vertices with multiple texture blending (Modulate).
g_pd3dDevice->SetTextureStageState(1, D3DTSS_COLOROP,
D3DTOP_MODULATE);
g_pd3dDevice->SetTexture(0, g_BaseTextureMap);
g_pd3dDevice->SetTexture(1, g_LightMap);
g_pd3dDevice->DrawPrimitiveStrided(D3DPT_TRIANGLELIST,
 D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX2,
 &g_StridedData, 12, NULL);

Primitive Types
[This is preliminary documentation and subject to change.]

Direct3D can create and manipulate the following types of primitives:

· Point Lists
· Line Lists
· Line Strips

in.doc – page 69

· Triangle Lists
· Triangle Strips
· Triangle Fans

[C++]
You render all of these primitive types from a C++ application with the
IDirect3DDevice3::DrawPrimitive or IDirect3DDevice3::DrawIndexedPrimitive
methods. For more information, see Rendering.

[Visual Basic]
A Visual Basic application renders these primitive types by calling the
Direct3DDevice3.DrawPrimitive or Direct3DDevice3.DrawIndexedPrimitive
methods. For more information, see Rendering.

Point Lists
[This is preliminary documentation and subject to change.]

A point list is a collection of vertices that are rendered as isolated points. Your
application can use them in 3-D scenes for star fields, or dotted lines on the surface
of a polygon. Applications create a point list by filling an array of vertices.

[C++]
The following C++ code fragment illustrates the process of constructing a point list:

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(0,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(10,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(15,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(20,5,0),D3DVECTOR(0,0,-1),0,0);

Render the point list using the IDirect3DDevice3::DrawPrimitive method. The
following code fragment illustrates the use of IDirect3DDevice3::DrawPrimitive
for drawing the point list in the preceding example. All calls to
IDirect3DDevice3::DrawPrimitive must occur between
IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid
// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3->DrawPrimitive(D3DPT_POINTLIST,
 D3DFVF_VERTEX,

in.doc – page 70

 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

[Visual Basic]
An application written in Visual Basiccreates a point list by filling an array of
vertices, as in the following code fragment:

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(0,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(10,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(15,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(20,5,0),D3DVECTOR(0,0,-1),0,0);

Render the point list using the IDirect3DDevice3::DrawPrimitive method. The
following code fragment illustrates the use of IDirect3DDevice3::DrawPrimitive
for drawing the point list in the preceding example. All calls to
IDirect3DDevice3::DrawPrimitive must occur between
IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid
// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3->DrawPrimitive(D3DPT_POINTLIST,
 D3DFVF_VERTEX,
 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

The following illustration shows the resulting points.

0,5,0 10,5,0

5,-5,0

20,5,0

15,-5,0-5,-5,0

in.doc – page 71

Your application can apply materials and textures to a point list. The colors in the
material or texture only appear at the points drawn, and not anywhere between the
points.

Line Lists
[This is preliminary documentation and subject to change.]

A line list is a list of isolated, straight line segments. Line lists are useful for such
tasks as adding sleet or heavy rain to a 3-D scene.

Create a line list by filling an array of vertices, as in the following code fragment.
The number of vertices in a line list must be greater than or equal to two, and it must
be even.

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(0,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(10,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(15,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(20,5,0),D3DVECTOR(0,0,-1),0,0);

Render the line list using the IDirect3DDevice3::DrawPrimitive method. The
following code fragment illustrates the use of IDirect3DDevice3::DrawPrimitive
for drawing the line list in the preceding example. Remember that all calls to
IDirect3DDevice3::DrawPrimitive must occur between
IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid
// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3 ->DrawPrimitive(D3DPT_LINELIST,
 D3DFVF_VERTEX,
 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

The following illustration shows the resulting lines.

in.doc – page 72

-5,-5,0

0,5,0

5,-5,0

10,5,0

15,-5,0

20,5,0

You can apply materials and textures to a line list. The colors in the material or
texture only appear along the lines drawn, not at any point in between the lines.

Line Strips
[This is preliminary documentation and subject to change.]

A line strip is a primitive that is composed of connected line segments. Your
application can use line strips for creating polygons that are not closed. A closed
polygon is a polygon whose last vertex is connected to its first vertex by a line
segment. If your application makes polygons based on line strips, the vertices are not
guaranteed to be coplanar.

You create a line strip by filling an array of vertices, as in the following code
fragment:

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(0,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(10,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(15,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(20,5,0),D3DVECTOR(0,0,-1),0,0);

Render the line list using the IDirect3DDevice3::DrawPrimitive method. The
following code fragment illustrates the use of IDirect3DDevice3::DrawPrimitive
for drawing the line strip in the preceding example. Remember that all calls to
IDirect3DDevice3::DrawPrimitive must occur between
IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid
// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3 ->DrawPrimitive(D3DPT_LINESTRIP,
 D3DFVF_VERTEX,
 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

in.doc – page 73

The following illustration shows the line strip that the previous code produces.

0,5,0

5,-5,0

10,5,0

15,-5,0

20,5,0

-5,-5,0

Triangle Lists
[This is preliminary documentation and subject to change.]

A triangle list is a list of isolated triangles. They may or may not be near each other.
A triangle list must have at least three vertices. The total number of vertices must be
divisible by three.

Use triangle lists when you want to create an object that is composed of disjoint
pieces. For instance, one way to create a force field wall in a 3-D game is to specify
a large list of small, unconnected triangles. Then apply a material or texture to the
triangle list that emits light. Each triangle in the wall appears to glow. The scene
behind the wall becomes partially visible through the gaps between the triangles, as
players might expect when looking at a force field.

Triangle lists are also useful for creating primitives that have sharp edges and are
shaded with Gouraud shading. See Face and Vertex Normal Vectors.

Create a triangle list by filling an array of vertices, as in the following code
fragment:

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(0,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(10,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(15,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(20,5,0),D3DVECTOR(0,0,-1),0,0);

Render a triangle list using the IDirect3DDevice3::DrawPrimitive method. The
following code fragment illustrates the use of IDirect3DDevice3::DrawPrimitive
for drawing the triangle list in the preceding example. Remember that all calls to
IDirect3DDevice3::DrawPrimitive must occur between
IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid

in.doc – page 74

// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3 ->DrawPrimitive(D3DPT_TRIANGLELIST,
 D3DFVF_VERTEX,
 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

The following illustration depicts the resulting triangles.

0,5,0

5,-5,0

10,5,0

15,-5,0

20,5,0

-5,-5,0

Triangle Strips
[This is preliminary documentation and subject to change.]

A triangle strip is a series of connected triangles. Because the triangles are
connected, the application does not need to repeatedly specify all three vertices for
each triangle. For example, you only need seven vertices to define the following
triangle strip.

v3

v2 v4

v5

v6

v7

v1

The system uses vertices v1, v2, and v3 to draw the first triangle, v2, v4, and v3 to
draw the second triangle, v3, v4, and v5 to draw the third, v4, v6, and v5 to draw the
fourth, and so on. Notice that the vertices of the second and fourth triangles are out
of order; this is required to make sure that all of the triangles are drawn in a
clockwise orientation.

Most objects in 3-D scenes are composed of triangle strips. This is because triangle
strips can be used to specify complex objects in a way that makes efficient use of
memory and processing time. Triangle strips are also much easier to use than the
D3DTRIANGLE structure that is used in conjunction with execute buffers.

in.doc – page 75

Create a triangle strip by filling an array of vertices, as in the following code
fragment:

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(0,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(10,5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(15,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(20,5,0),D3DVECTOR(0,0,-1),0,0);

Your application can then render the triangle strip using the
IDirect3DDevice3::DrawPrimitive method. The following code fragment
illustrates the use of IDirect3DDevice3::DrawPrimitive for drawing the triangle
strip in the preceding example. Remember that all calls to
IDirect3DDevice3::DrawPrimitive must occur between
IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid
// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3 ->DrawPrimitive(D3DPT_TRIANGLESTRIP,
 D3DFVF_VERTEX,
 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

The following illustration shows the resulting triangle strip.

5,-5,0 15,-5,0

20,5,010,5,00,5,0

-5,-5,0

Triangle Fans
[This is preliminary documentation and subject to change.]

A triangle fan is similar to a triangle strip, except that all of the triangles share one
vertex, as shown in the following illustration.

in.doc – page 76

v1

v2

v3

v4

v5

v6

v7

The system uses vertices v2, v3, and v1 to draw the first triangle, v3, v4, and v1 to
draw the second triangle, v4, v5, and v1 to draw the third triangle, and so on. (When
flat shading is enabled, the system shades the triangle with the color from its first
vertex.)

Your application can create a triangle fan by filling an array of vertices, as shown in
the following code fragment:

const DWORD TOTAL_VERTS=6;
D3DVERTEX lpVerts[TOTAL_VERTS];

lpVerts[0] = D3DVERTEX(D3DVECTOR(0,0,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[1] = D3DVERTEX(D3DVECTOR(-5,-5,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[2] = D3DVERTEX(D3DVECTOR(-3,7,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[3] = D3DVERTEX(D3DVECTOR(0,10,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[4] = D3DVERTEX(D3DVECTOR(3,7,0),D3DVECTOR(0,0,-1),0,0);
lpVerts[5] = D3DVERTEX(D3DVECTOR(5,5,0),D3DVECTOR(0,0,-1),0,0);

It can then render the triangle fan using the IDirect3DDevice3::DrawPrimitive
method. The following code fragment illustrates the use of
IDirect3DDevice3::DrawPrimitive for drawing the triangle fan in the preceding
example. Remember that all calls to IDirect3DDevice3::DrawPrimitive must occur
between IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene.

HRESULT hResult;
// This code fragment assumes that lpDirect3DDevice3 is a valid
// pointer to an IDirect3DDevice3 interface.
hResult =
 lpDirect3DDevice3->DrawPrimitive(D3DPT_TRIANGLEFAN,
 D3DFVF_VERTEX,

in.doc – page 77

 lpVerts,
 TOTAL_VERTS,
 D3DDP_WAIT);

This illustration depicts the resulting triangle fan.

5,5,0

3,7,0

0,10,0

-3,7,0

-5,5,0

Render States
[This is preliminary documentation and subject to change.]

This section introduces the concept of render states, contrasting them to texture stage
states, and discusses the various render states in detail. Information in this section is
organized into the following topics:

· About Render States
· Current Texture
· Antialiasing States
· Texture Addressing State
· Texture Wrapping State
· Texture Borders
· Texture Perspective State
· Texture Filtering State
· Outline and Fill States
· Shading State
· Fog State
· Alpha States

in.doc – page 78

· Texture Blending State
· Culling State
· Depth Buffering State
· Ramp State
· Subpixel Correction State
· Plane Masking State
· Color Keying State
· Render Command Batching State
· Stencil Buffer State

Note that the discussions in the topics listed here present techniques for controlling
the rendering states when using the IDirect3DDevice3 interface, which supports the
DrawPrimitive methods. When using execute buffers under the IDirect3DDevice
interface, the rendering states are controlled using the D3DOP_STATERENDER
opcode.

About Render States
[This is preliminary documentation and subject to change.]

Device render states control the behavior of the Direct3D device's rasterization
module. By altering the attributes of the rendering state, what type of shading is
used, fog attributes, and many other rasterizer operations.

Applications control the other characteristics of the rendering state by invoking the
IDirect3DDevice3::SetRenderState method. The D3DRENDERSTATETYPE
enumerated type specifies all of the possible rendering states. Your application
passes a value from the D3DRENDERSTATETYPE enumeration as the first
parameter to the IDirect3DDevice3::SetRenderState method.

Render states also can control the style of texturing and how texture filtering is done.
For DirectX 6.0 and later, all texture-related render states are superseded by
corresponding features offered by the IDirect3DDevice3::SetTextureStageState
method. The superseded render states still work, but are mapped to affect the
corresponding state in the first texture stage (stage 0). For best performance,
applications should use the features in the SetTextureStageState method if favor of
the legacy render states. The following list shows the superseded render states and
lists the corresponding states offered in the new texturing model:

D3DRENDERSTATE_TEXTUREADDRESS
Superseded by the D3DTSS_ADDRESS, D3DTSS_ADDRESSU,
D3DTSS_ADDRESSV texture stage states for stage 0.

D3DRENDERSTATE_BORDERCOLOR
Superseded by the D3DTSS_BORDERCOLOR texture stage state for stage 0.

D3DRENDERSTATE_TEXTUREMAG
Superseded by the D3DTSS_MAGFILTER texture stage state for stage 0.

D3DRENDERSTATE_TEXTUREMIN

in.doc – page 79

Superseded by the D3DTSS_MINFILTER texture stage state for stage 0.
Mipmap minification filtering is superseded by D3DTSS_MIPFILTER.

D3DRENDERSTATE_TEXTUREMAPBLEND
Superseded by the D3DTSS_COLOROP and D3DTSS_ALPHAOP texture stage
states for stage 0.

Current Texture
[This is preliminary documentation and subject to change.]

By default, Direct3D does not apply any textures to primitives being rendered. When
your application selects a texture as the current texture, it instructs the Direct3D
device to apply the texture to all primitives that are rendered from that time until the
current texture is changed again. If each primitive in a 3-D scene has its own texture,
the texture must be set before each primitive is rendered.

The IDirect3D2 interface required the use of texture handles. With the IDirect3D3
interface, textures are created as individual objects. An application accesses the
functionality of textures through the IDirect3DTexture2 interface. For information
on obtaining a pointer to an IDirect3DTexture2 interface, see Obtaining a Texture
Interface Pointer. Your application can use a texture interface pointer to assign up to
eight current textures. For more information, see Assigning the Current Textures.

If your application uses texture handles, it must pass the value
D3DRENDERSTATE_TEXTUREHANDLE as the first parameter to
IDirect3DDevice3::SetRenderState. The second parameter is the handle to the
texture.

Applications can disable texturing by passing NULL as the second parameter to the
IDirect3DDevice3::SetRenderState method.

Antialiasing States
[This is preliminary documentation and subject to change.]

Antialiasing is a method of making lines and edges appear smoother on the screen.
Direct3D supports two ways to perform antialiasing, called edge antialiasing and
full-scene antialiasing. For details about these techniques, see Antialiasing in the
Common Techniques and Special Effects section.

By default, Direct3D default doesn't perform antialiasing. The
D3DRENDERSTATE_ANTIALIAS render state can be set to one of the members of
the D3DANTIALIASMODE to enable full-scene antialiasing. (The default value,
D3DANTIALIAS_NONE disables full-scene antialiasing.)

To enable edge-antialiasing (which requires a second rendering pass), set the
D3DRENDERSTATE_EDGEANTIALIAS render sate to TRUE. To disable it, set
D3DRENDERSTATE_EDGEANTIALIAS to FALSE.

Texture Addressing State
[This is preliminary documentation and subject to change.]

The U and V texture addressing states, set through the
D3DRENDERSTATE_TEXTUREADDRESS,

in.doc – page 80

D3DRENDERSTATE_TEXTUREADDRESSU, and
D3DRENDERSTATE_TEXTUREADDRESSV render states, have been superseded
by the texture addressing features offered by the IDirect3DDevice3 interface.
However, applications that use the IDirect3DDevice2 interface can still work with
texture addressing modes as before.

Both approaches to texture addressing modes are discussed in Setting and Retrieving
Texture Addressing Modes.

Texture Wrapping State
[This is preliminary documentation and subject to change.]

The U and V wrapping render states D3DRENDERSTATE_WRAPU and
D3DRENDERSTATE_WRAPV have been superseded by the
D3DRENDERSTATE_WRAP0 through D3DRENDERSTATE_WRAP7
renderstates.

These new render states enable and disable U and V wrapping for various textures in
the device's multitexture cascade. Set these render states to a combination of the
D3DWRAP_U and D3DWRAP_V flags to enable wrapping in the corresponding
direction, or omit use a value of zero to disable wrapping. Texture wrapping is
disabled in all directions for all texture stages by default. For a conceptual overview,
see Texture Wrapping.

Note
Although D3DRENDERSTATE_WRAPU and D3DRENDERSTATE_WRAPV
are superseded, the IDirect3DDevice3 interface still recognizes them. These
older render states, when passed to the IDirect3DDevice3::SetRenderState
affect U and V texture wrapping for the first texture stage (stage 0).

Texture Borders
[This is preliminary documentation and subject to change.]

The texture border color state has been superseded by the
D3DTSS_BORDERCOLOR texture stage state supported by the
IDirect3DDevice3::SetTextureStageState method. If your application uses
IDirect3DDevice3 interface, you should use SetTextureStageState to change the
border color for each texture stage.

Applications that still use the legacy IDirect3DDevice2 interface can work with
texture border colors as before. In this case, set or retrieve the texture border color
textures by passing the D3DRENDERSTATE_BORDERCOLOR enumerated value
as the first parameter to IDirect3DDevice2::SetRenderState. The second parameter
is the RGBA border color.

For more information, see About the Border Color Texture Address Mode.

Texture Perspective State
[This is preliminary documentation and subject to change.]

in.doc – page 81

Applications can apply perspective correction to textures to make them fit properly
onto primitives that diminish in size as they get farther away from the viewer. See
D3DRENDERSTATE_TEXTUREPERSPECTIVE.

The following code fragment illustrates the process of enabling texture perspective
correction:

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// a Direct3DDevice3.

// Enable texture perspective.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_TEXTUREPERSPECTIVE,
 TRUE);

For the IDirect3DDevice3 interface, the default value is TRUE to enable perspective
correct texture mapping. For earlier interfaces, the default is FALSE. Note that many
3-D adapters apply texture perspective correction unconditionally. Perspective
correction must be enabled to use w-based fog, and w-buffers. For more information,
see Eye-relative vs. Z-Based Depth in the Fog section, and Enabling Depth
Buffering in the Depth Buffers section.

Texture Filtering State
[This is preliminary documentation and subject to change.]

How your application sets texture filtering states depends largely on which version
of the Direct3D device interface it uses. If your application uses the
IDirect3DDevice3 interface, the render states discussed here are effectively
superseded by the texture filtering options offered by the
IDirect3DDevice3::SetTextureStageState method. For a conceptual overview and
more information on using SetTextureStageState for texture filtering, see Texture
Filtering.

Note
Although the render states discussed here are superseded by texture stage states,
the IDirect3DDevice3::SetRenderState (as opposed to the IDirect3DDevice2
version) does not fail if you attempt to use them. Rather, the system maps the
effects of these render states to the first stage in the multi-texture cascade, stage
0. Applications should not mix the legacy render states with their corresponding
texture stage states, as unpredictable results can occur.

If your application is using the legacy IDirect3DDevice2 interface, you set texture
filtering states through the IDirect3DDevice2::SetRenderState method. Direct3D
supports nearest point sampling, bilinear filtering, anisotropic texture filtering, and
mipmap filtering. The filtering method is selected using the
D3DTEXTUREFILTER enumerated type.

When an application magnifies a texture, it can use Direct3D devices to select a
texture filtering method by passing the D3DRENDERSTATE_TEXTUREMAG
enumerated value as the first parameter to the IDirect3DDevice2::SetRenderState
method. It must pass one of the enumerated values in the D3DTEXTUREFILTER

in.doc – page 82

enumerated type as the second parameter. To select the filtering method used when
the texture is being made smaller, set the first parameter of the
IDirect3DDevice2::SetRenderState method to
D3DRENDERSTATE_TEXTUREMIN. Set the second parameter to one of the
enumerated values in the D3DTEXTUREFILTER enumerated type. When
applications use software-emulated devices, they should use the same filtering
methods for both D3DRENDERSTATE_TEXTUREMAG and
D3DRENDERSTATE_TEXTUREMIN. Performance degradation will occur if they
are not the same. Direct3D hardware devices (HAL and MMX) do not have this
performance limitation.

Anisotropic filtering is disabled when the D3DRENDERSTATE_TEXTUREMAG
state is set to D3DFILTER_NEAREST. Anisotropic filtering is only enabled when
the D3DRENDERSTATE_TEXTUREMAG state is set to D3DFILTER_LINEAR.
For the filter controlled by the D3DRENDERSTATE_TEXTUREMIN enumerated
value, anisotropy is enabled when its state is set to D3DFILTER_LINEAR,
D3DFILTER_MIPLINEAR, or D3DFILTER_LINEARMIPLINEAR.

Applications that use anisotropic texture filtering should set the degree of filtering to
a value that is appropriate for their use. Anisotropic filtering is disabled when it is set
to 1, and enabled by setting it to a value greater than 1. See Anisotropic Texture
Filtering. and D3DRENDERSTATE_ANISOTROPY.

When using mipmap filtering, your application can select either mipmap near-point
sampling or linear mipmap filtering. Mipmap near-point sampling selects the
mipmap texture that most closely approximates the resolution of the final output
texture, then uses nearest point sampling to obtain the color information. Linear
mipmap filtering selects a color from the two closest mipmaps, then linearly
interpolates color data between them. See Texture Filtering With Mipmaps and
D3DTEXTUREFILTER.

Applications can perform special filtering effects by controlling the mipmap level of
detail (LOD) bias. A positive bias on a mipmap texture results in a sharper, but more
aliased image. A negative bias causes a texture image to appear blurred. See
D3DRENDERSTATE_MIPMAPLODBIAS.

Outline and Fill States
[This is preliminary documentation and subject to change.]

Primitives that have no textures are rendered with the color specified by their
material, or with the colors specified for the vertices, if any. The method used to fill
them can be selected with the D3DFILLMODE enumerated type. See
D3DRENDERSTATE_FILLMODE.

Direct3D uses the standard Windows ROP2 binary raster operations when it fills a
primitive. The default value is R2_COPYPEN, which sets the pixel to the current
pen color. For details, see GetROP2 and SetROP2 in the Platform SDK
documentation. Although most applications will not need to change the default
value, your application can change the raster fill operation by using the
D3DRENDERSTATE_ROP2 enumerated value.

in.doc – page 83

If you want your applications to enable dithering, it must pass the
D3DRENDERSTATE_DITHERENABLE enumerated value as the first parameter to
IDirect3DDevice3::SetRenderState. It must set the second parameter to TRUE to
enable dithering, and FALSE to disable it.

A stippled fill pattern can be used if stippling is enabled. See
D3DRENDERSTATE_STIPPLEENABLE. A 32x32 stipple pattern is specified
using the enumerated values D3DRENDERSTATE_STIPPLEPATTERN00 through
D3DRENDERSTATE_STIPPLEPATTERN31. Each of these enumerated values
corresponds to one line of the stipple pattern. For example, to set the first line of the
stipple pattern, pass D3DRENDERSTATE_STIPPLEPATTERN00 as the first
parameter to IDirect3DDevice3::SetRenderState. Pass the hexadecimal value of
the stipple pattern as the second parameter.

At times, drawing the last pixel in a line can cause unsightly overlap with
surrounding primitives. This can be controlled using the
D3DRENDERSTATE_LASTPIXEL enumerated value. However, this setting should
not be altered without some forethought. Under some conditions, suppressing the
rendering of the last pixel can cause unsightly gaps between primitives.

By default, Direct3D devices use a solid outline for primitives. The outline pattern
can be changed using the D3DLINEPATTERN structure. See
D3DRENDERSTATE_LINEPATTERN.

Shading State
[This is preliminary documentation and subject to change.]

Direct3D supports both flat and Gouraud shading. The default is Gouraud shading.
To control the current shade mode, your application uses the D3DSHADEMODE
enumerated type. See D3DRENDERSTATE_SHADEMODE.

The following code fragment demonstrates the process of setting the shading state to
flat shading mode:

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// a Direct3DDevice3.

// Set the shading state.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_SHADEMODE,
 D3DSHADE_FLAT);

Fog State

[This is preliminary documentation and subject to change.]

Fog effects can give a 3-D scene greater realism. Fog effects can be used for more
than simulating fog. They can also be used to decrease the clarity of a scene with
distance. This mirrors what happens in the real world. As objects get more distant
from the viewer, their detail becomes less distinct. For more information about using
fog in your application, see Fog.

in.doc – page 84

The current Direct3D device enables and disables fog blending, controls fog color,
and manipulates some fog parameters. You can enable fog by setting the
D3DRENDERSTATE_FOGENABLE render state to TRUE. The fog color can be
set to any D3DCOLOR value (the alpha component of the fog color is ignored). See
D3DRENDERSTATE_FOGCOLOR.

For general information about using fog, see Fog, in the Common Techniques and
Special Effects section.

Alpha States
[This is preliminary documentation and subject to change.]

The alpha value of a color controls its transparency. Enabling alpha blending allows
colors, materials, and textures on a surface to be blended with transparency onto
another surface. For more information, see Alpha Texture Blending and Multipass
Texture Blending.

Alpha blending render states
Applications must use the D3DRENDERSTATE_ALPHABLENDENABLE
enumerated value to enable alpha transparency blending. The Direct3D API allows
many types of alpha blending. However, it is important to note the user's 3-D
hardware may not support all of the blending states allowed by Direct3D.

The type of alpha blending that is done depends on the
D3DRENDERSTATE_SRCBLEND and D3DRENDERSTATE_DESTBLEND
render states. Source and destination blend states are used in pairs. The following
code fragment demonstrates how the source blend state is set to
D3DBLEND_SRCCOLOR and the destination blend state is set to
D3DBLEND_INVSRCCOLOR.

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// an IDirect3DDevice3 interface.

// Set the source blend state.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_SRCBLEND,
 D3DBLEND_SRCCOLOR);

// Set the destination blend state.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_DESTBLEND,
 D3DBLEND_INVSRCCOLOR);

As a result of the calls in the preceding code fragment, Direct3D performs a linear
blend between the source color (the color of the primitive being rendered at the
current location) and the destination color (the color at the current location in the
frame buffer). This gives an appearance similar to tinted glass. Some of the color of
the destination object seems to be transmitted through the source object. The rest of
it appears to be absorbed.

in.doc – page 85

Altering the source and destination blend states can give the appearance of emissive
objects in a foggy or dusty atmosphere. For instance, if your application models
flames, force fields, plasma beams, or similarly radiant objects in a foggy
environment, set the source and destination blend states to D3DBLEND_ONE.

Another application of alpha blending is controlling the lighting in a 3-D scene, also
called light mapping. Setting the source blend state to D3DBLEND_ZERO and the
destination blend state to D3DBLEND_SRCALPHA darkens a scene according to
the source alpha information. The source primitive is used as a light map that scales
the contents of the frame buffer to darken it when appropriate. This produces
monochrome light mapping.

Color light mapping can be achieved by setting the source alpha blending state to
D3DBLEND_ZERO and the destination blend state to D3DBLEND_SRCCOLOR.

Direct3D devices provide alpha value stippling if it is supported by the display
hardware. See D3DRENDERSTATE_STIPPLEDALPHA. If your application creates
an RGB or ramp software emulation device, Direct3D ignores this enumerated value.

Alpha-testing render states
Applications can use alpha testing to control when pixels are written to the render
target surface. By using the D3DRENDERSTATE_ALPHATESTENABLE
enumerated value, your application sets the current Direct3D device so that it tests
each pixel according to an alpha test function. If the test succeeds, the pixel is
written to the surface. If it doesn't, Direct3D ignores it. Select the alpha test function
with the D3DRENDERSTATE_ALPHAFUNC enumerated value. Your application
can set a reference alpha value for all pixels to be compared against by using the
D3DRENDERSTATE_ALPHAREF render state.

The most common use for alpha testing is to improve performance when rasterizing
objects that are nearly transparent. If the color data being rasterized is more opaque
than the color already at a given pixel (D3DPCMPCAPS_GREATEREQUAL) then
the pixel is written, otherwise the rasterizer ignores the pixel altogether, saving the
processing required to blend the two colors. The following example checks to see if
a given comparison function is supported and, if so, it sets the comparison function
parameters required to improve performance during rendering.

// This example assumes that pd3dDeviceDesc is a
// D3DDEVICEDESC structure that was filled with a
// previous call to IDirect3DDevice3::GetCaps.
if (pd3dDeviceDesc->dpcTriCaps.dwAlphaCmpCaps &
D3DPCMPCAPS_GREATEREQUAL)
{
 dev->SetRenderState(D3DRENDERSTATE_ALPHAREF, (DWORD)0x00000001);
 dev->SetRenderState(D3dRENDERSTATE_ALPHATESTENABLE, TRUE);
 dev->SetRenderState(D3DRS_ALPHACMP, D3DCMP_GREATEREQUAL);
}

in.doc – page 86

// If the comparison isn't supported, render anyway.
// The only drawback is no performance gain.

Not all hardware supports all alpha testing features. You can check the device
capabilities by calling the IDirect3DDevice3::GetCaps method. After retrieving the
device capabilities, check the dwAlphaCmpCaps member of the D3DPRIMCAPS
structure (contained by the associated D3DDEVICEDESC structure) for the desired
comparison function. If the dwAlphaCmpCaps member contains only the
D3DPCMPCAPS_ALWAYS capability or only the D3DPCMPCAPS_NEVER
capability, the driver does not support alpha tests at all.

Texture Blending State
[This is preliminary documentation and subject to change.]

Your application can control the mode that is used to blend textures onto the surfaces
of primitives. Applications that use texture handles set the texture blending state by
invoking the IDirect3DDevice3::SetRenderState method and passing the
enumerated value D3DRENDERSTATE_TEXTUREMAPBLEND as the first
parameter. Pass a value from the D3DTEXTUREBLEND enumerated type as the
second parameter.

Applications that use texture interface pointers set the texture blending state in the
blending stages associated with the set of current textures. For more information, see
Multiple Texture Blending.

Culling State
[This is preliminary documentation and subject to change.]

As Direct3D renders primitives, it culls those primitives that are facing away from
the viewer. The culling mode of HAL and MMX devices can be set using the
D3DCULL enumerated type. See D3DRENDERSTATE_CULLMODE. By default,
Direct3D culls back faces with counterclockwise vertices.

The following code sample illustrates the processor setting the culling mode to cull
back faces with clockwise vertices.

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// an IDirect3DDevice3 interface.

// Set the culling state.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_CULLMODE,
 D3DCULL_CW);

Depth Buffering State

[This is preliminary documentation and subject to change.]

Depth buffering is a method of removing hidden lines and surfaces. For a conceptual
overview, see What are Depth Buffers?. By default, Direct3D does not use depth
buffering. You can update the depth buffering state with the

in.doc – page 87

D3DRENDERSTATE_ZENABLE render state, using one of the members of the
D3DZBUFFERTYPE enumeration to specify the new state value.

If, for some reason, your application needs to prevent Direct3D from writing to the
depth buffer, it can use the D3DRENDERSTATE_ZWRITEENABLE enumerated
value, specifying FALSE as the second parameter for the call to
IDirect3DDevice3::SetRenderState.

The following code fragment shows how the depth buffer state is set to enable z-
buffering:

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// a Direct3DDevice3.

// Enable z-buffering.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_ZENABLE,
 D3DZB_TRUE); // D3DZB_TRUE is the same as TRUE

Your application can also use the members of the D3DCMPFUNC enumerated type
to select the comparison function that Direct3D uses when performing depth
buffering. See D3DRENDERSTATE_ZFUNC.

Z-biasing is a method of displaying one surface in front of another even if their depth
values are the same. You can use this technique for a variety of effects. A common
example is rendering shadows on walls. Both the shadow and the wall have the same
depth value. However, you want your application to show the shadow on the wall.
Giving a z-bias to the shadow makes Direct3D display them properly (see
D3DRENDERSTATE_ZBIAS).

Ramp State
[This is preliminary documentation and subject to change.]

The D3DRENDERSTATE_MONOENABLE render state is not currently used.
Ramp lighting is automatically enabled when an application uses a ramp device. For
more information, see Legacy Device Types.

Subpixel Correction State
[This is preliminary documentation and subject to change.]

The D3DRENDERSTATE_SUBPIXEL render state is not used, and the system
ignores it.

Plane Masking State
[This is preliminary documentation and subject to change.]

Special effects can be achieved by using bit masks on the color channels. For
instance, a scene with a strong, flashing red light can be simulated by selectively
masking the blue and green channels so that they are darker, and the red channel so
that it is brighter. Your program can turn the effect on and off alternately for
intervals to simulate flashing.

in.doc – page 88

To set the plane mask, call the IDirect3DDevice3::SetRenderState method with the
first parameter set to D3DRENDERSTATE_PLANEMASK and the second set to the
desired plane mask.

Note
The D3DRENDERSTATE_PLANEMASK render state is not supported by the
software rasterizers, and is often ignored by hardware drivers. To disable writes
to the color buffer by using alpha blending, set
D3DRENDERSTATE_SRCBLEND to D3DBLEND_ZERO and
D3DRENDERSTATE_DESTBLEND to D3DBLEND_ONE.

Color Keying State
[This is preliminary documentation and subject to change.]

Setting a color key instructs Direct3D to treat the key color as transparent. When
Direct3D applies a texture that was created with the DDSD_CKSRCBLT flag to a
primitive, all texels that match the key color are not rendered on the primitive. Note
that any textures that were not created with the DDSD_CKSRCBLT flag will not
display color-key effects, even if they contain the color key.

Set color keys with the IDirectDrawSurface4::SetColorKey method for the surface
that will be using the color key (in this case, the render target surface). However,
color keying can be toggled on and off by calling the
IDirect3DDevice3::SetRenderState method. Set the first parameter to
D3DRENDERSTATE_COLORKEYENABLE. Your application should set the
second parameter to TRUE to enable color keying and FALSE to disable it. The
default is FALSE.

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// a Direct3DDevice3.

// Disable color keying.
lpD3DDevice3->SetRenderState(D3DRENDERSTATE_COLORKEYENABLE,
 FALSE);

Render Command Batching State

[This is preliminary documentation and subject to change.]

By default, calls to IDirect3DDevice2::DrawPrimitive and
IDirect3DDevice2::DrawIndexedPrimitive within a scene are batched. That is,
they are buffered together and passed to the Direct3D device driver in one call.
Changes in rendering states within the scene are also buffered. The buffer contents
are passed to the device driver when the buffer is full or when the
IDirect3DDevice2::EndScene method is invoked. This technique improves
performance.

However, if an application makes change to the scene that are not changes to the
rendering state, they may occur out of order with relation to the source code. For
instance, if the contents of a texture are altered between calls to

in.doc – page 89

IDirect3DDevice2::DrawPrimitive or IDirect3DDevice2::DrawIndexedPrimitive,
both primitives may be drawn with the new texture contents. Your application can
resolve this problem by flushing the batching buffer before it makes scene changes
that are not alterations of the rendering state.

An application flushes the batching buffer by calling
IDirect3DDevice2::SetRenderState and passing the enumerated value
D3DRENDERSTATE_FLUSHBATCH as the first parameter. The second parameter
should be zero.

Note
This render state is only useful to applications that render with texture handles
(using the IDirect3DDevice2 interface). Batched primitives are implicitly
flushed when rendering with the IDirect3DDevice3 interface, as well as when
rendering with execute buffers.

Stencil Buffer State
[This is preliminary documentation and subject to change.]

Applications use the stencil buffer to determine whether or not a pixel is written to
the rendering target surface. For details, see Stencil Buffers.

Enable or disable stenciling by calling the IDirect3DDevice3::SetRenderState
method. Pass D3DRENDERSTATE_STENCILENABLE as the value of the first
parameter. Set the value of the second parameter to TRUE or FALSE to enable or
disable it respectively.

Set the comparison function that Direct3D uses to perform the stencil test by
invoking the IDirect3DDevice3::SetRenderState method. Set the value of the first
parameter to D3DRENDERSTATE_STENCILFUNC. Pass a member of the
D3DCMPFUNC enumerated type as the value of the second parameter.

The stencil reference value is the value in the stencil buffer that the stencil function
uses for its test. By default, the stencil reference value is zero. Your application can
set it by calling the IDirect3DDevice3::SetRenderState method. Pass
D3DRENDERSTATE_STENCILREF as the value of the first parameter. Set the
value of the second parameter to the new reference value.

Before Direct3D module performs the stencil test for any pixel, it does a bitwise
AND of the stencil reference value and a stencil mask value. The result is then
compared against the contents of the stencil buffer using the stencil comparison
function. Your application can set the stencil mask. Use the
IDirect3DDevice3::SetRenderState method, and pass
D3DRENDERSTATE_STENCILMASK as the value of the first parameter. Set the
value of the second parameter to the new stencil mask.

To set the action that Direct3D takes when the stencil test fails, invoke the
IDirect3DDevice3::SetRenderState method and pass
D3DRENDERSTATE_STENCILFAIL as the first parameter. The second parameter
must be a member of the D3DSTENCILOP enumerated type.

in.doc – page 90

Your application can also control how Direct3D responds when the stencil test
passes but the z-buffer test fails. Call the IDirect3DDevice3::SetRenderState
method and pass D3DRENDERSTATE_STENCILZFAIL as the first parameter and
use a member of the D3DSTENCILOP enumerated type for the second parameter.

In addition, your program can control what Direct3D does when both the stencil test
and the z-buffer test pass. Use the IDirect3DDevice3::SetRenderState method and
pass D3DRENDERSTATE_STENCILPASS as the first parameter. Again, the
second parameter must be a member of the D3DSTENCILOP enumerated type.

Lighting States
[This is preliminary documentation and subject to change.]

In addition to the states discussed in Render States, Direct3D devices also control
lighting states. When lighting states need to be changed, they are changed through
the device interface. Therefore, your application can apply a particular rendering or
lighting state to either a single primitive or a group of primitives.

The characteristics of the device lighting state are controlled by the
IDirect3DDevice3::SetLightState method. All of the possible lighting states are
specified by the D3DLIGHTSTATETYPE enumerated type, a member of which is
passed as the first parameter to IDirect3DDevice3::SetLightState. The attributes of
the lighting state are:

· Vertex Color Lighting
· Ambient Lighting
· Ramp Mode Lighting
· Vertex Fog Parameter States
· Material State

Vertex Color Lighting
[This is preliminary documentation and subject to change.]

Vertices of type D3DVERTEX, D3DLVERTEX, and D3DTLVERTEX cannot
contain both color and normal information. Because the default shading mode is
Gouraud shading, which depends on both vertex color and normal information,
Direct3D did not use vertex color in the lighting calculations.

With the introduction of the flexible vertex format, vertices may contain both vertex
color and vertex normal information. By default, Direct3D uses this information
when it calculates lighting. If you want your application to disable the use of vertex
color lighting information, invoke the IDirect3DDevice3::SetLightState method
and pass D3DLIGHTSTATE_COLORVERTEX as the first parameter. Set the
second parameter to FALSE to disable vertex color lighting, or TRUE to enable it.

If D3DLIGHTSTATE_COLORVERTEX is set to TRUE and a diffuse vertex color
is present, the output alpha is equal to the diffuse alpha for the vertex. Otherwise,

in.doc – page 91

output alpha is equal to the alpha component of diffuse material, clamped to the
range [0, 255].

Ambient Lighting
[This is preliminary documentation and subject to change.]

Ambient light is the surrounding light that comes from all directions. Your
application sets the color of the ambient lighting by invoking the
IDirect3DDevice3::SetLightState method and passing the enumerated value
D3DLIGHTSTATE_AMBIENT as the first parameter. The second parameter is a
color in RGBA format. The default is zero.

// This code fragment assumes that lpD3DDevice3 is a valid pointer to
// a Direct3DDevice3.

// Set the ambient light.
D3DCOLOR d3dclrAmbientLightColor = D3DRGBA(1.0f,1.0f,1.0f,1.0f);
lpD3DDevice3->SetLightState(D3DLIGHTSTATE_AMBIENT,
 d3dclrAmbientLightColor);

Ambient light levels should not be confused with direct light. For more information,
see Direct Light vs. Ambient Light.

Ramp Mode Lighting
[This is preliminary documentation and subject to change.]

The D3DLIGHTSTATE_COLORMODEL light state is not used. Your application
implicitly chooses the color model it uses when it creates a rendering device.

Vertex Fog Parameter States
[This is preliminary documentation and subject to change.]

Because vertex fog is applied during lighting, you control several vertex fog
parameters through the lighting interface. For general information about using vertex
fog, see Vertex Fog, in the Common Techniques and Special Effects section.

The D3DLIGHTSTATE_FOGMODE, D3DLIGHTSTATE_FOGSTART,
D3DLIGHTSTATE_FOGEND, and D3DLIGHTSTATE_FOGDENSITY lighting
states control vertex fog parameters.

Material State
[This is preliminary documentation and subject to change.]

The D3DLIGHTSTATE_MATERIAL lighting state controls the current rendering
material. By default, no material is selected. You can set a new rendering material
by calling the IDirect3DDevice3::SetLightState method, passing
D3DLIGHTSTATE_MATERIAL in the first parameter and the material handle for
the material to be used as the second parameter. To deselect materials, set the second

in.doc – page 92

parameter to NULL. When no material is selected, the Direct3D lighting engine is
disabled.

For more information, see Materials.

Emulation Modes
[This is preliminary documentation and subject to change.]

Direct3D furnishes three devices that emulate 3-D hardware in software, MMX,
RGB, and ramp devices. For details, see RGB Device and Legacy Device Types.
Because these devices perform software emulation, they render more slowly than 3-
D hardware. However, if the user's computer has no 3-D hardware support, these
software-emulated modes may be sufficient for your application.

MMX and RGB modes provides the full range of capabilities offered by the
Direct3D transformation and lighting modules. In these modes, your application can
use 8-, 16-, 24-, or 32-bit textures.

Ramp mode utilizes the full range of the transformation module but does not support
colored lighting. A ramp mode device uses the Direct3D lighting module for
monochrome gray-scale lighting only. Therefore, lights in ramp mode have intensity
but no color. The gray-scale value is stored in the blue component of the light color.

Colored materials and textures can be used in ramp mode. Direct3D uses the
material or texture color as its base color. If white light (full intensity light) is
shining on the material or texture, the base color is used. However, if the light
strength is less than full intensity, Direct3D mixes gray or black into the color of the
material or texture. If your application uses textures in ramp mode, it must set the
D3DLIGHTSTATE_MATERIAL member of the D3DLIGHTSTATETYPE
enumerated type. Only 8-bit textures can be used in ramp mode. For details, see
Materials and Ramp Mode Lighting.

To control the number of color values available for a material or texture in ramp
mode, your application must set the dwRampSize member of the D3DMATERIAL
structure when it creates its materials. Direct3D uses the material and texture color
as the base color. The value in the dwRampSize member determines how many
gradients of the base color are available, depending on the brightness of the light.
Direct3D creates a color palette with the number of entries (1-based) specified in the
dwRampSize member. Since the maximum possible number of palette entries is less
than 256 (256 minus the reserved colors that Windows uses), your application should
specify the minimum number of gray-scale values required for the application.

For best results, make the ramp size for most or all of your application's materials
the same value. When Direct3D runs out of palette entries, it searches through the
existing materials to find the closest color match. Only materials with the same ramp
size can be considered a match.

in.doc – page 93

AGP Surfaces and Direct3D Devices
[This is preliminary documentation and subject to change.]

Using textures in 3-D applications can greatly enhance the appearance of realism in
3-D images. Memory for storing textures never seems as abundant as developers
would like. DirectDraw and Direct3D support the Accelerated Graphics Port (AGP)
architecture. The AGP architecture gives computers the ability to create DirectDraw
surfaces in applications' memory spaces. This significantly extends the amount of
memory available for storing textures.

Only the Direct3D HAL device supports the use of the AGP architecture. For more
information on the use of the AGP architecture, see Using Non-local Video Memory
Surfaces.

Execute Buffers
[This is preliminary documentation and subject to change.]

This section provides an introduction to execute buffers. The following topics are
discussed:

· About Execute Buffers
· Creating a Device for Execute Buffers
· Using Execute Buffers
· Triangle Flags
· Clip Tests on Execution
· Direct3D Execute-Buffer Tutorial

About Execute Buffers
[This is preliminary documentation and subject to change.]

In the past, all programming with Direct3D Immediate Mode was done using
execute buffers. Now that the DrawPrimitive methods have been introduced,
however, most new Immediate Mode programs will not use execute buffers or the
IDirect3DExecuteBuffer interface. For more information about the DrawPrimitive
methods, see The DrawPrimitive Methods.

Execute buffers are similar to the display lists you may be familiar with if you have
experience with OpenGL programming. Execute buffers contain a vertex list
followed by an instruction stream. The instruction stream consists of operation
codes, or opcodes, and the data that modifies those opcodes. Each execute buffer is
bound to a single Direct3D device.

You can create an IDirect3DExecuteBuffer interface by calling the
IDirect3DDevice::CreateExecuteBuffer method.

lpD3DDevice->CreateExecuteBuffer(

in.doc – page 94

 lpDesc, // Address of a DIRECT3DEXECUTEBUFFERDESC structure
 lplpDirect3DExecuteBuffer, // Address to contain a pointer to the
 // Direct3DExecuteBuffer object
 pUnkOuter); // NULL

Execute-buffers reside on a device list. You can use the
IDirect3DDevice::CreateExecuteBuffer method to allocate space for the actual
buffer, which may be on the hardware device.

The buffer is filled with two contiguous arrays of vertices and opcodes by using the
following calls to the IDirect3DExecuteBuffer::Lock,
IDirect3DExecuteBuffer::Unlock, and IDirect3DExecuteBuffer::SetExecuteData
methods:

lpD3DExBuf->Lock(
 lpDesc);. // Address of a DIRECT3DEXECUTEBUFFERDESC structure
// .
// . Store contents through the supplied address
// .
lpD3DExBuf->Unlock();
lpD3DExBuf->SetExecuteData(
 lpData); // Address of a D3DEXECUTEDATA structure

The last call in the preceding example is to the
IDirect3DExecuteBuffer::SetExecuteData method. This method notifies Direct3D
where the two parts of the buffer reside relative to the address that was returned by
the call to the IDirect3DExecuteBuffer::Lock method.

You can use the IDirect3DExecuteBuffer interface to get and set execute data, and
to lock, unlock, optimize, and validate the execute buffer.

Creating a Device for Execute Buffers
[This is preliminary documentation and subject to change.]

To use execute buffer methods, your application must first initialize DirectDraw in
the normal manner and obtain a pointer to the IDirect3D3 interface. For details, see
Accessing Direct3D. Your application should create a surface that includes the
DDSCAPS_3DDEVICE capability. For information on creating surfaces, see
Creating Surfaces. It must then call the IUnknown::QueryInterface method for that
surface to obtain a pointer to an IDirect3DDevice interface. Use the
IDirect3DDevice::CreateExecuteBuffer to create an execute buffer and obtain a
pointer to an IDirect3DExecuteBuffer interface. The following figure illustrates this
process.

in.doc – page 95

DirectDraw
Object

IDirect3DDevice

IDirectDraw::CreateSurface

DirectDraw
Surface Object

QueryInterface

Using Execute Buffers
[This is preliminary documentation and subject to change.]

As was pointed out earlier, there are two ways to use Immediate Mode: you can use
the DrawPrimitive methods or you can work with execute buffers (display lists).
Most developers who have never worked with Immediate Mode before will use the
DrawPrimitive methods. Developers who already have an investment in code that
uses execute buffers will probably continue to work with them. For more information
about the DrawPrimitive methods, see The DrawPrimitive Methods.

Execute buffers are complex to understand and fill and are difficult to debug. On the
other hand, they allow you to maximize performance. Since communicating with the
driver is slow, it makes sense to perform the communication in batches—that is, by
using execute buffers.

This section of the documentation describes the contents of execute buffers and how
to use them.

· Execute-Buffer Architecture
· Execute-Buffer Contents
· Creating an Execute Buffer
· Locking the Execute Buffer
· Filling the Execute Buffer
· Unlocking the Execute Buffer
· Executing the Execute Buffer
· States and State Overrides

Execute-Buffer Architecture
[This is preliminary documentation and subject to change.]

Execute buffers are processed first by the transformation module. This module runs
through the vertex list, generating transformed vertices by using the state
information set up for the transformation module. Clipping can be enabled,

in.doc – page 96

generating additional clipping information by using the viewport parameters to clip
against. The whole buffer can be rejected here if none of the vertices is visible. Then
the vertices are processed by the lighting module, which adds color to them
according to the lighting instructions in the execute buffer. Finally, the rasterization
module parses the instruction stream, rendering primitives by using the generated
vertex information.

When an application calls the IDirect3DDevice::Execute method, the system
determines whether the vertex list needs to be transformed or transformed and lit.
After these operations have been completed, the instruction list is parsed and
rendered.

There are really two execute buffers: one for the application and one for the driver.
The application data buffer is filled in by the application. It holds geometry (such as
vertices and triangles) and state information (the transformation, lighting, and
rasterization state) This information persists until the application explicitly changes
it. The driver data buffer, on the other hand, holds the output of the transformation
and lighting modules (that is, it holds transformed and lit geometry) and hands the
data off to the rasterization module. There is only one of these "TL buffers" per
driver. The following diagram shows the relationship of these data buffers:

Application
Data

Buffer

Application
Data

Buffer

Transform
Module

HEL/HAL

Rasterization
Module

HEL/HAL

Lighting
Module

HEL/HAL

Driver
Data

Buffer

DirectDraw
Surface

Direct3D
API

You can disable the lighting module or both the lighting and transformation when
you are working with execute buffers. This changes the way the vertex list is
interpreted, allowing the user to supply pretransformed or prelit vertices only for the
rasterization phase of the rendering pipeline. Note that only one vertex type can be
used in each execute buffer. For more information about vertex types, see Vertex
Formats.

In addition to execute buffers and state changes, Direct3D accepts a third calling
mechanism. Either of the transformation or lighting modules can be called directly.
This functionality is useful when rasterization is not required, such as when using the
transformation module for bounding-box tests.

Execute-Buffer Contents
[This is preliminary documentation and subject to change.]

in.doc – page 97

Execute buffers contain a list of vertices followed by stream of instructions about
how to use those vertices. (All of these are DWORD-aligned.) This section contains
information about working with vertices and instructions in an execute buffer. The
following topics are discussed.

· Execute Buffer Format
· Execute Buffer Vertices
· Execute Buffer Instructions

Execute Buffer Format
[This is preliminary documentation and subject to change.]

The following illustration shows the format of execute buffers. Note that all data in
an execute buffer must be DWORD-aligned.

Vertex
list Opcode Data Data . . . Opcode Data Data

The instruction stream consists of operation codes, or opcodes, and the data that is
operated on by those opcodes. The opcodes define how the vertex list should be lit
and rendered. Direct3D opcodes are listed in the D3DOPCODE enumerated type.
The D3DINSTRUCTION structure describes instructions in an execute buffer; it
contains an opcode, the size of each instruction data unit, and a count of the relevant
data units that follow.

One of the most common instructions is a triangle list (D3DOP_TRIANGLE), which
is simply a list of triangle primitives that reference vertices in the vertex list.
Because all the primitives in the instruction stream reference vertices in the vertex
list only, it is easy for the transformation module to reject a whole buffer of
primitives if its vertices are outside the viewing frustum.

Execute Buffer Vertices
[This is preliminary documentation and subject to change.]

Each execute buffer contains a vertex list followed by an instruction stream. The
instruction stream defines how the vertex list should be rendered; it is based on
indices into the vertex list.

Although you can choose to use transformed and lit vertices (D3DTLVERTEX),
vertices that have only been lit (D3DLVERTEX), or vertices that have been neither
transformed nor lit (D3DVERTEX), you can have only one of each type of vertex in
a single Direct3DExecuteBuffer object. Some execute buffers are used only to
change the state of one or more of the modules in the graphics pipeline; these
execute buffers do not have vertices.

in.doc – page 98

Process Vertices

Vertex 3

Vertex 2

Vertex 1

Vertex 0

State 0

State 1

Triangle 0

Triangle 1

Exit

Vertices

Instructions

0

3

1

2

For more information about the handling of vertices in execute buffers, see Vertex
Formats.

Execute Buffer Instructions
[This is preliminary documentation and subject to change.]

The vertex data in an execute buffer is followed by an instruction stream. Each
instruction is represented by:

· An instruction header
· Opcode
· Byte size
· Number of times this opcode is to be repeated
· Byte offset to first instruction

Execute buffer instructions are commands to the driver. Each instruction is identified
by an operation code (opcode). All execute data is prefixed by an instruction header.
Data accompanies each iteration of each opcode. Each opcode can have multiple
arguments, including multiple triangles or multiple state changes. There are only a
few main instruction types, as discussed in the following paragraphs:

Drawing Instructions

The most important of the drawing instructions defines a triangle. In a triangle,
vertices are zero-based indices into the vertex list that begins the execute buffer. For
more information about triangles, see Triangles.

Other important drawing instructions include line-drawing instructions (D3DLINE)
and line-drawing instructions (D3DPOINT).

State-change Instructions

The system stores the state of each of the modules in the graphics pipeline until the
state is overridden by an instruction in an execute buffer.

Transformation state World, view and projection matrices
Light state Surface material, fog, ambient lighting

in.doc – page 99

Render state Texture, antialiasing, z-buffering, and so on

Flow-control Instructions

The flow-control instructions allow you to branch on an instruction or to jump to a
new position in the execute buffer, skipping or repeating instructions as necessary.
This means that you can use the flow-control instructions as a kind of programming
language.

The last flow-control instruction in an execute buffer must be D3DOP_EXIT.

Other Instructions

Some other execute-buffer instructions do not fall neatly into the other categories.
These include:

Texturing Download a texture to the device
Matrices Download or multiply a matrix
Span, SetState Advanced control for primitives and rendering states.

Creating an Execute Buffer
[This is preliminary documentation and subject to change.]

The tricky thing about creating an execute buffer is figuring out how much memory
to allocate for it. There are two basic strategies for determining the correct size:

· Add the sizes of the vertices, opcodes, and data you will be putting into the
buffer.

· Allocate a buffer of an arbitrary size and fill it from both ends, putting the
vertices at the beginning and the opcodes at the end. When the buffer is nearly
full, execute it and allocate another.

The hardware determines the size of the execute buffer. You can retrieve this size by
calling the IDirect3DDevice2::GetCaps method and examining the
dwMaxBufferSize member of the D3DDEVICEDESC structure. Typically, 64 KB
is a good size for execute buffers when you are using a software driver, because this
size makes the best use of the secondary cache. When your application can take
advantage of hardware acceleration, however, it should use smaller execute buffers
to take advantage of the primary cache.

After filling in D3DEXECUTEBUFFERDESC structure describing your execute
buffer, you can call the IDirect3DDevice::CreateExecuteBuffer to create it.

For an example of calculating the size of the execute buffer and creating it, see
Creating the Scene, in the Direct3D Execute-Buffer Tutorial.

Locking the Execute Buffer
[This is preliminary documentation and subject to change.]

in.doc – page 100

You must lock execute buffers before you can modify them. This action prevents the
driver from modifying the buffer while you are working with it.

To lock a buffer, call the IDirect3DExecuteBuffer::Lock method. This method
takes a single parameter; a pointer to a D3DEXECUTEBUFFERDESC structure
which, on return, specifies the actual location of the execute buffer's memory.

When working with execute buffers you need to manage three pointers: the execute
buffer's start address (retrieved by IDirect3DExecuteBuffer::Lock), the instruction
start address, and your current position in the buffer. You use these three pointers to
compute vertex offsets, instruction offsets, and the overall size of the execute buffer.
After you have finished filling the execute buffer, you use these pointers to describe
the buffer to the driver; for more information, see Unlocking the Execute Buffer.

Filling the Execute Buffer
[This is preliminary documentation and subject to change.]

After you have finished filling your execute buffer, it contains the vertices describing
your model and a series of instructions about how the vertices should be interpreted.
The following sections describe filling an execute buffer:

· Selecting the Vertex Type
· Triangles
· Processing Vertices
· Finishing the Instructions

You can streamline the task of filling execute buffers by taking advantage of the
helper macros that ship with the samples in the DirectX SDK. The D3dmacs.h
header file in the Misc directory of the samples contains many useful macros that
will simplify your work. In particular, the macros PUTD3DINSTRUCTION and
VERTEX_DATA are useful for filling execute buffers.

For an example of filling an execute buffer, see Filling the Execute Buffer, in the
Direct3D Execute-Buffer Tutorial.

Selecting the Vertex Type
[This is preliminary documentation and subject to change.]

Applications may use all or part of the Direct3D rendering pipeline. The type of
vertex that you use in your program determines how much of the rendering pipeline
is used. For details, see Vertex Formats.

Triangles
[This is preliminary documentation and subject to change.]

You use the D3DOP_TRIANGLE opcode to insert a triangle into an execute buffer.
In a triangle, vertices are zero-based indices into the vertex list that begins the
execute buffer. Triangles are described by the D3DTRIANGLE structure.

in.doc – page 101

Triangles are the only geometry type that can be processed by the rasterization
module. The screen coordinates range from (0, 0) for the top left of the device
(screen or window) to (width – 1, height – 1) for the bottom right of the device. The
depth values range from zero at the front of the viewing frustum to one at the back.
Rasterization is performed so that if two triangles that share two vertices are
rendered, no pixel along the line joining the shared vertices is rendered twice. The
rasterizer culls back facing triangles by determining the winding order of the three
vertices of the triangle. Only those triangles whose vertices are traversed in a
clockwise orientation are rendered.

You should be sure that your triangle data is aligned on QWORD (8-byte)
boundaries. The OP_NOP helper macro in D3dmacs.h can help you with this
alignment task. Note that if you use this macro, you must always bracket it with
opening and closing braces.

Processing Vertices
[This is preliminary documentation and subject to change.]

After filling in the vertices in your execute buffer, you typically use the
D3DOP_PROCESSVERTICES opcode to set the lighting and transformations for the
vertices.

The D3DPROCESSVERTICES structure describes how the vertices should be
processed. The dwFlags member of this structure specifies the type of vertex you are
using in your execute buffer. If you are using D3DTLVERTEX vertices, you should
specify D3DPROCESSVERTICES_COPY for dwFlags. For D3DLVERTEX,
specify D3DPROCESSVERTICES_TRANSFORM. For D3DVERTEX, specify
D3DPROCESSVERTICES_TRANSFORMLIGHT.

Finishing the Instructions
[This is preliminary documentation and subject to change.]

The last opcode in your list of instructions should be D3DOP_EXIT. This opcode
simply signals that the system can stop processing the data.

Unlocking the Execute Buffer
[This is preliminary documentation and subject to change.]

When you have finished filling the execute buffer, you must unlock it. This alerts the
driver that it can work with the buffer. You can unlock the buffer by calling the
IDirect3DExecuteBuffer::Unlock method.

When the execute buffer has been unlocked, call the
IDirect3DExecuteBuffer::SetExecuteData method to give the driver some
important details about the buffer. This method takes a pointer to a
D3DEXECUTEDATA structure. Among the information you provide in this
structure are the offsets of the vertices and instructions, which you have been
tracking ever since locking the buffer, as described in Locking the Execute Buffer.

in.doc – page 102

Executing the Execute Buffer
[This is preliminary documentation and subject to change.]

Executing an execute buffer is a simple matter of calling the
IDirect3DDevice::Execute method with pointers to the execute buffer and to the
viewport describing the rendering target. You should always check the return value
from this method to verify that it was successful.

The dwFlags parameter of IDirect3DDevice::Execute specifies whether the vertices
you supply should be clipped. You should specify D3DEXECUTE_UNCLIPPED if
all primitives in the buffer are contained within the viewport and
D3DEXECUTE_CLIPPED otherwise.

When you have executed an execute buffer, you can delete it. This is done simply by
calling the IDirect3DExecuteBuffer::Release method. You could also use the
RELEASE macro in D3dmacs.h, if you prefer.

States and State Overrides
[This is preliminary documentation and subject to change.]

Direct3D interprets the data in execute buffers according to the current state settings.
Applications set up these states before instructing the system to render data. The
D3DSTATE structure contains three enumerated types that expose this architecture:
D3DTRANSFORMSTATETYPE, which sets the state of the transform module;
D3DLIGHTSTATETYPE, for the lighting module; and
D3DRENDERSTATETYPE, for the rasterization module.

Each state includes a Boolean value that is essentially a read-only flag. If this flag is
set to TRUE, no further state changes are allowed.

Applications can override the read-only state of a module by using the
D3DSTATE_OVERRIDE macro. This mechanism allows an application to reuse an
execute buffer, changing its behavior by changing the system's state. Direct3D
Retained Mode uses state overrides to accomplish some tasks that otherwise would
require completely rebuilding an execute buffer. For example, the Retained Mode
API uses state overrides to replace the material of a mesh with the material of a
frame.

An application might use the D3DSTATE_OVERRIDE macro to lock and unlock
the Gouraud shade mode, as shown in the following example. (The shade-mode
render state is defined by the D3DRENDERSTATE_SHADEMODE member of the
D3DRENDERSTATETYPE enumerated type.)

OP_STATE_RENDER(2, lpBuffer);
STATE_DATA(D3DRENDERSTATE_SHADEMODE, D3DSHADE_GOURAUD, lpBuffer);
STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), TRUE,
lpBuffer);

The OP_STATE_RENDER macro implicitly uses the D3DOP_STATERENDER
opcode, one of the members of the D3DOPCODE enumerated type.

in.doc – page 103

D3DSHADE_GOURAUD is one of the members of the D3DSHADEMODE
enumerated type.

After executing the execute buffer, the application could use the
D3DSTATE_OVERRIDE macro again, to allow the shade mode to be changed:

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), FALSE,
lpBuffer);

The OP_STATE_RENDER and STATE_DATA macros are defined in the
D3dmacs.h header file in the Misc directory of the DirectX SDK sample.

Triangle Flags
[This is preliminary documentation and subject to change.]

When rendering with execute buffers, the wFlags member of the D3DTRIANGLE
structure includes flags that allow the system to reuse vertices when building triangle
strips and fans. Effective use of these flags allows some hardware to run much faster
than it would otherwise.

Applications can use these flags in two ways as acceleration hints to the driver.

D3DTRIFLAG_STARTFLAT(len)
If the current triangle is culled, the driver can also cull the number of subsequent
triangles given by len in the strip or fan.

D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN
The driver needs to reload only one new vertex from the triangle and it can
reuse the other two vertices from the last triangle that was rendered.

The best possible performance occurs when an application uses both the
D3DTRIFLAG_STARTFLAT flag and the D3DTRIFLAG_ODD and
D3DTRIFLAG_EVEN flags.

Because some drivers might not check the D3DTRIFLAG_STARTFLAT flag,
applications must be careful when using it. An application using a driver that doesn't
check this flag might not render polygons that should have been rendered.

Applications must use the D3DTRIFLAG_START flag before using the
D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN flags. D3DTRIFLAG_START
causes the driver to reload all three vertices. All triangles following the
D3DTRIFLAG_START flag can use the D3DTRIFLAG_ODD and
D3DTRIFLAG_EVEN flags indefinitely, providing the triangles share edges.

The debugging version of this SDK validates the D3DTRIFLAG_ODD and
D3DTRIFLAG_EVEN flags.

Clip Tests on Execution
[This is preliminary documentation and subject to change.]

in.doc – page 104

Applications that use execute buffers can use the IDirect3DDevice::Execute method
to render primitives with or without automatic clipping. Using this method without
clipping is always faster than setting the clipping flags because clipping tests during
either the transformation or rasterization stages slow the process. If your application
does not use automatic clipping, however, it must ensure that all of the rendering
data is wholly within the viewing frustum. The best way to ensure this is to use
simple bounding volumes for the models and transform these first. You can use the
results of this first transformation to decide whether to wholly reject the data because
all the data is outside the frustum, whether to use the no-clipping version of the
IDirect3DDevice::Execute method because all the data is within the frustum, or
whether to use the clipping flags because the data is partially within the frustum. In
Immediate Mode it is possible to set up this sort of functionality within one execute
buffer by using the flags in the D3DSTATUS structure and the
D3DOP_BRANCHFORWARD member of the D3DOPCODE enumerated type to
skip geometry when a bounding volume is outside the frustum. Direct3D Retained
Mode automatically uses these features to speed up its use of execute buffers.

Direct3D Execute-Buffer Tutorial
[This is preliminary documentation and subject to change.]

To create a Direct3D Immediate-Mode application based on execute buffers, you
create DirectDraw and Direct3D objects, set render states, fill execute buffers, and
execute those buffers.

This section includes a simple Immediate-Mode application that draws a single,
rotating, Gouraud-shaded triangle. The triangle is drawn in a window whose size is
fixed. For code clarity, we have chosen not to address a number of issues in this
sample. For example, full-screen operation, resizing the window, and texture
mapping are not included. Furthermore, we have not included some optimizations
when their inclusion would have made the code more obscure. Code comments
highlight the places in which we did not implement a common optimization.

· Definitions, Prototypes, and Globals
· Enumerating Direct3D Devices
· Creating Objects and Interfaces
· Creating the Scene
· Filling the Execute Buffer
· Animating the Scene
· Rendering Using an Execute Buffer
· Working with Matrices
· Restoring and Redrawing
· Releasing Objects
· Error Checking
· Converting Bit Depths

in.doc – page 105

· Main Window Procedure
· WinMain Function

Definitions, Prototypes, and Globals
[This is preliminary documentation and subject to change.]

This section contains the definitions, function prototypes, global variables, constants,
and other structural underpinnings for the Imsample.c code sample.

· Header and Includes
· Constants in Imsample.c
· Macros in Imsample.c
· Global Variables
· Function Prototypes

Header and Includes
[This is preliminary documentation and subject to change.]

/***
 *
 * File : imsample.c
 *
 * Author : Colin D. C. McCartney
 *
 * Date : 1/7/97
 *
 * Version : V1.1
 *
 **/

/***
 *
 * Include files
 *
 **/

#define INITGUID
#include <windows.h>
#include <math.h>
#include <assert.h>
#include <ddraw.h>
#include <d3d.h>

#include "resource.h"

in.doc – page 106

Constants in Imsample.c
[This is preliminary documentation and subject to change.]

// Class name for this application's window class.

#define WINDOW_CLASSNAME "D3DSample1Class"

// Title for the application's window.

#define WINDOW_TITLE "D3D Sample 1"

// String to be displayed when the application is paused.

#define PAUSED_STRING "Paused"

// Half height of the view window.

#define HALF_HEIGHT D3DVAL(0.5)

// Front and back clipping planes.

#define FRONT_CLIP D3DVAL(1.0)
#define BACK_CLIP D3DVAL(1000.0)

// Fixed window size.

#define WINDOW_WIDTH 320
#define WINDOW_HEIGHT 200

// Maximum length of the chosen device name and description of the
// chosen Direct3D device.

#define MAX_DEVICE_NAME 256
#define MAX_DEVICE_DESC 256

// Amount to rotate per frame.

#define M_PI 3.14159265359
#define M_2PI 6.28318530718
#define ROTATE_ANGLE_DELTA (M_2PI / 300.0)

// Execute buffer contents

#define NUM_VERTICES 3
#define NUM_INSTRUCTIONS 6

in.doc – page 107

#define NUM_STATES 7
#define NUM_PROCESSVERTICES 1
#define NUM_TRIANGLES 1

Macros in Imsample.c

[This is preliminary documentation and subject to change.]

// Extract the error code from an HRESULT

#define CODEFROMHRESULT(hRes) ((hRes) & 0x0000FFFF)

#ifdef _DEBUG
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif

// Used to keep the compiler from issuing warnings about any unused
// parameters.

#define USE_PARAM(x) (x) = (x)

Global Variables

[This is preliminary documentation and subject to change.]

// Application instance handle (set in WinMain).

static HINSTANCE hAppInstance = NULL;

// Running in debug mode?

static BOOL fDebug = FALSE;

// Is the application active?

static BOOL fActive = TRUE;

// Has the application been suspended?

static BOOL fSuspended = FALSE;

// DirectDraw interfaces

static LPDIRECTDRAW lpdd = NULL;
static LPDIRECTDRAWSURFACE lpddPrimary = NULL;
static LPDIRECTDRAWSURFACE lpddDevice = NULL;

in.doc – page 108

static LPDIRECTDRAWSURFACE lpddZBuffer = NULL;
static LPDIRECTDRAWPALETTE lpddPalette = NULL;

// Direct3D interfaces

static LPDIRECT3D lpd3d = NULL;
static LPDIRECT3DDEVICE lpd3dDevice = NULL;
static LPDIRECT3DMATERIAL lpd3dMaterial = NULL;
static LPDIRECT3DMATERIAL lpd3dBackgroundMaterial = NULL;
static LPDIRECT3DVIEWPORT lpd3dViewport = NULL;
static LPDIRECT3DLIGHT lpd3dLight = NULL;
static LPDIRECT3DEXECUTEBUFFER lpd3dExecuteBuffer = NULL;

// Direct3D handles

static D3DMATRIXHANDLE hd3dWorldMatrix = 0;
static D3DMATRIXHANDLE hd3dViewMatrix = 0;
static D3DMATRIXHANDLE hd3dProjMatrix = 0;
static D3DMATERIALHANDLE hd3dSurfaceMaterial = 0;
static D3DMATERIALHANDLE hd3dBackgroundMaterial = 0;

// Globals used for selecting the Direct3D device. They are
// globals because this makes it easy for the enumeration callback
// function to read and write from them.

static BOOL fDeviceFound = FALSE;
static DWORD dwDeviceBitDepth = 0;
static GUID guidDevice;
static char szDeviceName[MAX_DEVICE_NAME];
static char szDeviceDesc[MAX_DEVICE_DESC];
static D3DDEVICEDESC d3dHWDeviceDesc;
static D3DDEVICEDESC d3dSWDeviceDesc;

// The screen coordinates of the client area of the window. This
// rectangle defines the destination into which we blit to update
// the client area of the window with the results of the 3-D rendering.

static RECT rDstRect;

// This rectangle defines the portion of the rendering target surface
// into which we render. The top-left coordinates of this rectangle
// are always zero; the right and bottom coordinates give the size of
// the viewport.

static RECT rSrcRect;

in.doc – page 109

// Angle of rotation of the world matrix.

static double dAngleOfRotation = 0.0;

// Predefined transformations.

static D3DMATRIX d3dWorldMatrix =
{
 D3DVAL(1.0), D3DVAL(0.0), D3DVAL(0.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(1.0), D3DVAL(0.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(0.0), D3DVAL(1.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(0.0), D3DVAL(0.0), D3DVAL(1.0)
};

static D3DMATRIX d3dViewMatrix =
{
 D3DVAL(1.0), D3DVAL(0.0), D3DVAL(0.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(1.0), D3DVAL(0.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(0.0), D3DVAL(1.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(0.0), D3DVAL(5.0), D3DVAL(1.0)
};

static D3DMATRIX d3dProjMatrix =
{
 D3DVAL(2.0), D3DVAL(0.0), D3DVAL(0.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(2.0), D3DVAL(0.0), D3DVAL(0.0),
 D3DVAL(0.0), D3DVAL(0.0), D3DVAL(1.0), D3DVAL(1.0),
 D3DVAL(0.0), D3DVAL(0.0), D3DVAL(-1.0), D3DVAL(0.0)
};

Function Prototypes

[This is preliminary documentation and subject to change.]

static void ReportError(HWND hwnd, int nMessage,
 HRESULT hRes);
static void FatalError(HWND hwnd, int nMessage, HRESULT hRes);

static DWORD BitDepthToFlags(DWORD dwBitDepth);
static DWORD FlagsToBitDepth(DWORD dwFlags);

static void SetPerspectiveProjection(LPD3DMATRIX lpd3dMatrix,
 double dHalfHeight,
 double dFrontClipping,
 double dBackClipping);
static void SetRotationAboutY(LPD3DMATRIX lpd3dMatrix,
 double dAngleOfRotation);

in.doc – page 110

static HRESULT CreateDirect3D(HWND hwnd);
static HRESULT ReleaseDirect3D(void);

static HRESULT CreatePrimary(HWND hwnd);
static HRESULT RestorePrimary(void);
static HRESULT ReleasePrimary(void);

static HRESULT WINAPI EnumDeviceCallback(LPGUID lpGUID,
 LPSTR lpszDeviceDesc,
 LPSTR lpszDeviceName,
 LPD3DDEVICEDESC lpd3dHWDeviceDesc,
 LPD3DDEVICEDESC lpd3dSWDeviceDesc,
 LPVOID lpUserArg);
static HRESULT ChooseDevice(void);

static HRESULT CreateDevice(DWORD dwWidth, DWORD dwHeight);
static HRESULT RestoreDevice(void);
static HRESULT ReleaseDevice(void);

static LRESULT RestoreSurfaces(void);

static HRESULT FillExecuteBuffer(void);
static HRESULT CreateScene(void);
static HRESULT ReleaseScene(void);
static HRESULT AnimateScene(void);

static HRESULT UpdateViewport(void);

static HRESULT RenderScene(void);
static HRESULT DoFrame(void);
static void PaintSuspended(HWND hwnd, HDC hdc);

static LRESULT OnMove(HWND hwnd, int x, int y);
static LRESULT OnSize(HWND hwnd, int w, int h);
static LRESULT OnPaint(HWND hwnd, HDC hdc, LPPAINTSTRUCT lpps);
static LRESULT OnIdle(HWND hwnd);

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg,
 WPARAM wParam, LPARAM lParam);
int PASCAL WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpszCommandLine, int cmdShow);

in.doc – page 111

Enumerating Direct3D Devices
[This is preliminary documentation and subject to change.]

The first thing a Direct3D application should do is enumerate the available Direct3D
device drivers. The most important API element in this job is
IDirect3D2::EnumDevices.

This section contains the ChooseDevice function that selects among the available
Direct3D devices and the EnumDeviceCallback function that implements the
selection mechanism.

· Enumeration Callback Function
· Enumeration Function

This sample application does not demonstrate the enumeration of display modes,
which you will need to do if your application supports full-screen rendering modes.
To enumerate the display modes, call the IDirectDraw2::EnumDisplayModes
method.

Enumeration Callback Function
[This is preliminary documentation and subject to change.]

The EnumDeviceCallback function is invoked for each Direct3D device installed on
the system. For each device we retrieve its identifying GUID, a name and
description, a description of its hardware and software capabilities, and an unused
user argument.

The EnumDeviceCallback function uses the following algorithm to choose an
appropriate Direct3D device:

1 Discard any devices which don't match the current display depth.
2 Discard any devices which can't do Gouraud-shaded triangles.
3 If a hardware device is found which matches points one and two, use it.

However, if we are running in debug mode we will skip hardware.
4 Otherwise favor Mono/Ramp mode software renderers over RGB ones; until

MMX is widespread, Mono will be faster.

This callback function is invoked by the ChooseDevice enumeration function, which
is described in Enumeration Function.

Note that the first parameter passed to this callback function, lpGUID, is NULL for
the primary device. All other devices should have a non-NULL pointer. You should
consider saving the actual GUID for the device you choose, not the pointer to the
GUID, in case the pointer is accidentally corrupted.

static HRESULT WINAPI
EnumDeviceCallback(LPGUID lpGUID,
 LPSTR lpszDeviceDesc,
 LPSTR lpszDeviceName,
 LPD3DDEVICEDESC lpd3dHWDeviceDesc,

in.doc – page 112

 LPD3DDEVICEDESC lpd3dSWDeviceDesc,
 LPVOID lpUserArg)
{
 BOOL fIsHardware;
 LPD3DDEVICEDESC lpd3dDeviceDesc;

 // Call the USE_PARAM macro on the unused parameter to
 // avoid compiler warnings.

 USE_PARAM(lpUserArg);

 // If there is no hardware support the color model is zero.

 fIsHardware = (0 != lpd3dHWDeviceDesc->dcmColorModel);
 lpd3dDeviceDesc = (fIsHardware ? lpd3dHWDeviceDesc :
 lpd3dSWDeviceDesc);

 // If we are in debug mode and this is a hardware device,
 // skip it.

 if (fDebug && fIsHardware)
 return D3DENUMRET_OK;

 // Does the device render at the depth we want?

 if (0 == (lpd3dDeviceDesc->dwDeviceRenderBitDepth &
 dwDeviceBitDepth))
 {
 // If not, skip this device.

 return D3DENUMRET_OK;
 }

 // The device must support Gouraud-shaded triangles.

 if (D3DCOLOR_MONO == lpd3dDeviceDesc->dcmColorModel)
 {
 if (!(lpd3dDeviceDesc->dpcTriCaps.dwShadeCaps &
 D3DPSHADECAPS_COLORGOURAUDMONO))
 {
 // No Gouraud shading. Skip this device.

 return D3DENUMRET_OK;
 }
 }
 else

in.doc – page 113

 {
 if (!(lpd3dDeviceDesc->dpcTriCaps.dwShadeCaps &
 D3DPSHADECAPS_COLORGOURAUDRGB))
 {
 // No Gouraud shading. Skip this device.

 return D3DENUMRET_OK;
 }
 }

 if (!fIsHardware && fDeviceFound &&
 (D3DCOLOR_RGB == lpd3dDeviceDesc->dcmColorModel))
 {
 // If this is software RGB and we already have found
 // a software monochromatic renderer, we are not
 // interested. Skip this device.

 return D3DENUMRET_OK;
 }

 // This is a device we are interested in. Save the details.

 fDeviceFound = TRUE;
 CopyMemory(&guidDevice, lpGUID, sizeof(GUID));
 strcpy(szDeviceDesc, lpszDeviceDesc);
 strcpy(szDeviceName, lpszDeviceName);
 CopyMemory(&d3dHWDeviceDesc, lpd3dHWDeviceDesc,
 sizeof(D3DDEVICEDESC));
 CopyMemory(&d3dSWDeviceDesc, lpd3dSWDeviceDesc,
 sizeof(D3DDEVICEDESC));

 // If this is a hardware device, we have found
 // what we are looking for.

 if (fIsHardware)
 return D3DENUMRET_CANCEL;

 // Otherwise, keep looking.

 return D3DENUMRET_OK;
}

Enumeration Function

[This is preliminary documentation and subject to change.]

in.doc – page 114

The ChooseDevice function invokes the EnumDeviceCallback function , which is
described in Enumeration Callback Function.

static HRESULT
ChooseDevice(void)
{
 DDSURFACEDESC ddsd;
 HRESULT hRes;

 ASSERT(NULL != lpd3d);
 ASSERT(NULL != lpddPrimary);

 // Since we are running in a window, we will not be changing the
 // screen depth; therefore, the pixel format of the rendering
 // target must match the pixel format of the current primary
 // surface. This means that we need to determine the pixel
 // format of the primary surface.

 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 hRes = lpddPrimary->lpVtbl->GetSurfaceDesc(lpddPrimary, &ddsd);
 if (FAILED(hRes))
 return hRes;

 dwDeviceBitDepth =
 BitDepthToFlags(ddsd.ddpfPixelFormat.dwRGBBitCount);

 // Enumerate the devices and pick one.

 fDeviceFound = FALSE;
 hRes = lpd3d->lpVtbl->EnumDevices(lpd3d, EnumDeviceCallback,
 &fDeviceFound);
 if (FAILED(hRes))
 return hRes;

 if (!fDeviceFound)
 {
 // No suitable device was found. We cannot allow
 // device-creation to continue.

 return DDERR_NOTFOUND;
 }

 return DD_OK;
}

in.doc – page 115

Creating Objects and Interfaces
[This is preliminary documentation and subject to change.]

This section contains functions that create the primary DirectDraw surface, a
DirectDrawClipper object, a Direct3D object, and a Direct3DDevice.

· Creating the Primary Surface and Clipper Object
· Creating the Direct3D Object
· Creating the Direct3D Device

Creating the Primary Surface and Clipper Object
[This is preliminary documentation and subject to change.]

The CreatePrimary function creates the primary surface (representing the desktop)
and creates and attaches a clipper object. If necessary, this function also creates a
palette.

static HRESULT
CreatePrimary(HWND hwnd)
{
 HRESULT hRes;
 DDSURFACEDESC ddsd;
 LPDIRECTDRAWCLIPPER lpddClipper;
 HDC hdc;
 int i;
 PALETTEENTRY peColorTable[256];

 ASSERT(NULL != hwnd);
 ASSERT(NULL != lpdd);
 ASSERT(NULL == lpddPrimary);
 ASSERT(NULL == lpddPalette);

 // Create the primary surface.

 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
 hRes = lpdd->lpVtbl->CreateSurface(lpdd, &ddsd, &lpddPrimary, NULL);
 if (FAILED(hRes))
 return hRes;

 // Create the clipper. We bind the application's window to the
 // clipper and attach it to the primary. This ensures that when we
 // blit from the rendering surface to the primary we don't write
 // outside the visible region of the window.

in.doc – page 116

 hRes = DirectDrawCreateClipper(0, &lpddClipper, NULL);
 if (FAILED(hRes))
 return hRes;
 hRes = lpddClipper->lpVtbl->SetHWnd(lpddClipper, 0, hwnd);
 if (FAILED(hRes))
 {
 lpddClipper->lpVtbl->Release(lpddClipper);
 return hRes;
 }
 hRes = lpddPrimary->lpVtbl->SetClipper(lpddPrimary, lpddClipper);
 if (FAILED(hRes))
 {
 lpddClipper->lpVtbl->Release(lpddClipper);
 return hRes;
 }

 // We release the clipper interface after attaching it to the
 // surface because we don't need to use it again. The surface
 // holds a reference to the clipper when it has been attached.
 // The clipper will therefore be released automatically when the
 // surface is released.

 lpddClipper->lpVtbl->Release(lpddClipper);

 // If the primary surface is palettized, the device will be, too.
 // (The device surface must have the same pixel format as the
 // current primary surface if we want to double buffer with
 // DirectDraw.) Therefore, if the primary surface is palettized we
 // need to create a palette and attach it to the primary surface
 // (and to the device surface when we create it).

 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 hRes = lpddPrimary->lpVtbl->GetSurfaceDesc(lpddPrimary, &ddsd);
 if (FAILED(hRes))
 return hRes;
 if (ddsd.ddpfPixelFormat.dwFlags & DDPF_PALETTEINDEXED8)
 {
 // Initializing the palette correctly is essential. Since we are
 // running in a window, we must not change the top ten and bottom
 // ten static colors. Therefore, we copy them from the system
 // palette and mark them as read only (D3DPAL_READONLY). The middle
 // 236 entries are free for use by Direct3D so we mark them free
 // (D3DPAL_FREE).

 // NOTE: In order that the palette entries are correctly

in.doc – page 117

 // allocated it is essential that the free entries are
 // also marked reserved to GDI (PC_RESERVED).

 // NOTE: We don't need to specify the palette caps flag
 // DDPCAPS_INITIALIZE. This flag is obsolete. CreatePalette
 // must be given a valid palette-entry array and always
 // initializes from it.

 hdc = GetDC(NULL);
 GetSystemPaletteEntries(hdc, 0, 256, peColorTable);
 ReleaseDC(NULL, hdc);

 for (i = 0; i < 10; i++)
 peColorTable[i].peFlags = D3DPAL_READONLY;
 for (i = 10; i < 246; i++)
 peColorTable[i].peFlags = D3DPAL_FREE | PC_RESERVED;
 for (i = 246; i < 256; i++)
 peColorTable[i].peFlags = D3DPAL_READONLY;
 hRes = lpdd->lpVtbl->CreatePalette(lpdd,
 DDPCAPS_8BIT, peColorTable, &lpddPalette, NULL);

 if (FAILED(hRes))
 return hRes;

 hRes = lpddPrimary->lpVtbl->SetPalette(lpddPrimary,
 lpddPalette);
 return hRes;
 }

 return DD_OK;
}

Creating the Direct3D Object

[This is preliminary documentation and subject to change.]

The CreateDirect3D function creates the DirectDraw (Direct3D) driver objects and
retrieves the COM interfaces for communicating with these objects. This function
calls three crucial API elements: DirectDrawCreate, to create the DirectDraw
object, IDirectDraw::SetCooperativeLevel, to determine whether the application
will run in full-screen or windowed mode, and IDirectDraw::QueryInterface, to
retrieve a pointer to the Direct3D interface.

static HRESULT
CreateDirect3D(HWND hwnd)
{
 HRESULT hRes;

in.doc – page 118

 ASSERT(NULL == lpdd);
 ASSERT(NULL == lpd3d);

 // Create the DirectDraw/3D driver object and get the DirectDraw
 // interface to that object.

 hRes = DirectDrawCreate(NULL, &lpdd, NULL);
 if (FAILED(hRes))
 return hRes;

 // Since we are running in a window, set the cooperative level to
 // normal. Also, to ensure that the palette is realized correctly,
 // we need to pass the window handle of the main window.

 hRes = lpdd->lpVtbl->SetCooperativeLevel(lpdd, hwnd, DDSCL_NORMAL);
 if (FAILED(hRes))
 return hRes;

 // Retrieve the Direct3D interface to the DirectDraw/3D driver
 // object.

 hRes = lpdd->lpVtbl->QueryInterface(lpdd, &IID_IDirect3D, &lpd3d);
 if (FAILED(hRes))
 return hRes;

 return DD_OK;
}

Creating the Direct3D Device

[This is preliminary documentation and subject to change.]

The CreateDevice function creates an instance of the Direct3D device we chose
earlier, using the specified width and height.

This function handles all aspects of the device creation, including choosing the
surface-memory type, creating the device surface, creating the z-buffer (if
necessary), and attaching the palette (if required). If you create a z-buffer, you must
do so before creating an IDirect3DDevice interface.

static HRESULT
CreateDevice(DWORD dwWidth, DWORD dwHeight)
{
 LPD3DDEVICEDESC lpd3dDeviceDesc;
 DWORD dwDeviceMemType;
 DWORD dwZBufferMemType;
 DDSURFACEDESC ddsd;
 HRESULT hRes;

in.doc – page 119

 DWORD dwZBufferBitDepth;

 ASSERT(NULL != lpdd);
 ASSERT(NULL != lpd3d);
 ASSERT(NULL != lpddPrimary);
 ASSERT(NULL == lpddDevice);
 ASSERT(NULL == lpd3dDevice);

 // Determine the kind of memory (system or video) from which the
 // device surface should be allocated.

 if (0 != d3dHWDeviceDesc.dcmColorModel)
 {
 lpd3dDeviceDesc = &d3dHWDeviceDesc;

 // Device has a hardware rasterizer. Currently this means that
 // the device surface must be in video memory.

 dwDeviceMemType = DDSCAPS_VIDEOMEMORY;
 dwZBufferMemType = DDSCAPS_VIDEOMEMORY;
 }
 else
 {
 lpd3dDeviceDesc = &d3dSWDeviceDesc;

 // Device has a software rasterizer. We will let DirectDraw
 // decide where the device surface resides unless we are
 // running in debug mode, in which case we will force it into
 // system memory. For a software rasterizer the z-buffer should
 // always go into system memory. A z-buffer in video memory will
 // seriously degrade the application's performance.

 dwDeviceMemType = (fDebug ? DDSCAPS_SYSTEMMEMORY : 0);
 dwZBufferMemType = DDSCAPS_SYSTEMMEMORY;
 }

 // Create the device surface. The pixel format will be identical
 // to that of the primary surface, so we don't have to explicitly
 // specify it. We do need to explicitly specify the size, memory
 // type and capabilities of the surface.

 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT;
 ddsd.dwWidth = dwWidth;
 ddsd.dwHeight = dwHeight;

in.doc – page 120

 ddsd.ddsCaps.dwCaps = DDSCAPS_3DDEVICE | DDSCAPS_OFFSCREENPLAIN |
 dwDeviceMemType;
 hRes = lpdd->lpVtbl->CreateSurface(lpdd, &ddsd, &lpddDevice, NULL);
 if (FAILED(hRes))
 return hRes;

 // If we have created a palette, we have already determined that
 // the primary surface (and hence the device surface) is palettized.
 // Therefore, we should attach the palette to the device surface.
 // (The palette is already attached to the primary surface.)

 if (NULL != lpddPalette)
 {
 hRes = lpddDevice->lpVtbl->SetPalette(lpddDevice, lpddPalette);
 if (FAILED(hRes))
 return hRes;
 }

 // We now determine whether or not we need a z-buffer and, if
 // so, its bit depth.

 if (0 != lpd3dDeviceDesc->dwDeviceZBufferBitDepth)
 {
 // The device supports z-buffering. Determine the depth. We
 // select the lowest supported z-buffer depth to save memory.
 // (Accuracy is not too important for this sample.)

 dwZBufferBitDepth =
 FlagsToBitDepth(lpd3dDeviceDesc->dwDeviceZBufferBitDepth);

 // Create the z-buffer.

 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS |
 DDSD_WIDTH |
 DDSD_HEIGHT |
 DDSD_ZBUFFERBITDEPTH;
 ddsd.ddsCaps.dwCaps = DDSCAPS_ZBUFFER | dwZBufferMemType;
 ddsd.dwWidth = dwWidth;
 ddsd.dwHeight = dwHeight;
 ddsd.dwZBufferBitDepth = dwZBufferBitDepth;
 hRes = lpdd->lpVtbl->CreateSurface(lpdd, &ddsd, &lpddZBuffer,
 NULL);
 if (FAILED(hRes))
 return hRes;

in.doc – page 121

 // Attach it to the rendering target.

 hRes = lpddDevice->lpVtbl->AddAttachedSurface(lpddDevice,
 lpddZBuffer);
 if (FAILED(hRes))
 return hRes;
 }

 // Now all the elements are in place: the device surface is in the
 // correct memory type; a z-buffer has been attached with the
 // correct depth and memory type; and a palette has been attached,
 // if necessary. Now we can query for the Direct3D device we chose
 // earlier.

 hRes = lpddDevice->lpVtbl->QueryInterface(lpddDevice,
 &guidDevice, &lpd3dDevice);
 if (FAILED(hRes))
 return hRes;

 return DD_OK;
}

Creating the Scene
[This is preliminary documentation and subject to change.]

The CreateScene function creates the elements making up the 3-D scene. In this
sample, the scene consists of a single light, the viewport, the background and surface
materials, the three transformation matrices, and the execute buffer holding the state
changes and drawing primitives.

static HRESULT
CreateScene(void)
{
 HRESULT hRes;
 D3DMATERIAL d3dMaterial;
 D3DLIGHT d3dLight;
 DWORD dwVertexSize;
 DWORD dwInstructionSize;
 DWORD dwExecuteBufferSize;
 D3DEXECUTEBUFFERDESC d3dExecuteBufferDesc;
 D3DEXECUTEDATA d3dExecuteData;

 ASSERT(NULL != lpd3d);
 ASSERT(NULL != lpd3dDevice);
 ASSERT(NULL == lpd3dViewport);

in.doc – page 122

 ASSERT(NULL == lpd3dMaterial);
 ASSERT(NULL == lpd3dBackgroundMaterial);
 ASSERT(NULL == lpd3dExecuteBuffer);
 ASSERT(NULL == lpd3dLight);
 ASSERT(0 == hd3dWorldMatrix);
 ASSERT(0 == hd3dViewMatrix);
 ASSERT(0 == hd3dProjMatrix);

 // Create the light.

 hRes = lpd3d->lpVtbl->CreateLight(lpd3d, &lpd3dLight, NULL);
 if (FAILED(hRes))
 return hRes;

 ZeroMemory(&d3dLight, sizeof(d3dLight));
 d3dLight.dwSize = sizeof(d3dLight);
 d3dLight.dltType = D3DLIGHT_POINT;
 d3dLight.dcvColor.dvR = D3DVAL(1.0);
 d3dLight.dcvColor.dvG = D3DVAL(1.0);
 d3dLight.dcvColor.dvB = D3DVAL(1.0);
 d3dLight.dcvColor.dvA = D3DVAL(1.0);
 d3dLight.dvPosition.dvX = D3DVAL(1.0);
 d3dLight.dvPosition.dvY = D3DVAL(-1.0);
 d3dLight.dvPosition.dvZ = D3DVAL(-1.0);
 d3dLight.dvAttenuation0 = D3DVAL(1.0);
 d3dLight.dvAttenuation1 = D3DVAL(0.1);
 d3dLight.dvAttenuation2 = D3DVAL(0.0);
 hRes = lpd3dLight->lpVtbl->SetLight(lpd3dLight, &d3dLight);
 if (FAILED(hRes))
 return hRes;

 // Create the background material.

 hRes = lpd3d->lpVtbl->CreateMaterial(lpd3d,
 &lpd3dBackgroundMaterial, NULL);
 if (FAILED(hRes))
 return hRes;

 ZeroMemory(&d3dMaterial, sizeof(d3dMaterial));
 d3dMaterial.dwSize = sizeof(d3dMaterial);
 d3dMaterial.dcvDiffuse.r = D3DVAL(0.0);
 d3dMaterial.dcvDiffuse.g = D3DVAL(0.0);
 d3dMaterial.dcvDiffuse.b = D3DVAL(0.0);
 d3dMaterial.dcvAmbient.r = D3DVAL(0.0);
 d3dMaterial.dcvAmbient.g = D3DVAL(0.0);
 d3dMaterial.dcvAmbient.b = D3DVAL(0.0);

in.doc – page 123

 d3dMaterial.dcvSpecular.r = D3DVAL(0.0);
 d3dMaterial.dcvSpecular.g = D3DVAL(0.0);
 d3dMaterial.dcvSpecular.b = D3DVAL(0.0);
 d3dMaterial.dvPower = D3DVAL(0.0);

 // Since this is the background material, we don't want a ramp to be
 // allocated. (We will not be smooth-shading the background.)

 d3dMaterial.dwRampSize = 1;

 hRes = lpd3dBackgroundMaterial->lpVtbl->SetMaterial
 (lpd3dBackgroundMaterial, &d3dMaterial);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dBackgroundMaterial->lpVtbl->GetHandle
 (lpd3dBackgroundMaterial, lpd3dDevice, &hd3dBackgroundMaterial);
 if (FAILED(hRes))
 return hRes;

 // Create the viewport.
 // The viewport parameters are set in the UpdateViewport function,
 // which is called in response to WM_SIZE.

 hRes = lpd3d->lpVtbl->CreateViewport(lpd3d, &lpd3dViewport, NULL);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dDevice->lpVtbl->AddViewport(lpd3dDevice, lpd3dViewport);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dViewport->lpVtbl->SetBackground(lpd3dViewport,
 hd3dBackgroundMaterial);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dViewport->lpVtbl->AddLight(lpd3dViewport, lpd3dLight);
 if (FAILED(hRes))
 return hRes;

 // Create the matrices.

 hRes = lpd3dDevice->lpVtbl->CreateMatrix(lpd3dDevice,
 &hd3dWorldMatrix);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dDevice->lpVtbl->SetMatrix(lpd3dDevice, hd3dWorldMatrix,
 &d3dWorldMatrix);
 if (FAILED(hRes))

in.doc – page 124

 return hRes;
 hRes = lpd3dDevice->lpVtbl->CreateMatrix(lpd3dDevice,
 &hd3dViewMatrix);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dDevice->lpVtbl->SetMatrix(lpd3dDevice, hd3dViewMatrix,
 &d3dViewMatrix);
 if (FAILED(hRes))
 return hRes;
 hRes = lpd3dDevice->lpVtbl->CreateMatrix(lpd3dDevice,
 &hd3dProjMatrix);
 if (FAILED(hRes))
 return hRes;
 SetPerspectiveProjection(&d3dProjMatrix, HALF_HEIGHT, FRONT_CLIP,
 BACK_CLIP);
 hRes = lpd3dDevice->lpVtbl->SetMatrix(lpd3dDevice, hd3dProjMatrix,
 &d3dProjMatrix);
 if (FAILED(hRes))
 return hRes;

 // Create the surface material.

 hRes = lpd3d->lpVtbl->CreateMaterial(lpd3d, &lpd3dMaterial, NULL);
 if (FAILED(hRes))
 return hRes;
 ZeroMemory(&d3dMaterial, sizeof(d3dMaterial));
 d3dMaterial.dwSize = sizeof(d3dMaterial);

 // Base green with white specular.

 d3dMaterial.dcvDiffuse.r = D3DVAL(0.0);
 d3dMaterial.dcvDiffuse.g = D3DVAL(1.0);
 d3dMaterial.dcvDiffuse.b = D3DVAL(0.0);
 d3dMaterial.dcvAmbient.r = D3DVAL(0.0);
 d3dMaterial.dcvAmbient.g = D3DVAL(0.4);
 d3dMaterial.dcvAmbient.b = D3DVAL(0.0);
 d3dMaterial.dcvSpecular.r = D3DVAL(1.0);
 d3dMaterial.dcvSpecular.g = D3DVAL(1.0);
 d3dMaterial.dcvSpecular.b = D3DVAL(1.0);
 d3dMaterial.dvPower = D3DVAL(20.0);
 d3dMaterial.dwRampSize = 16;

 hRes = lpd3dMaterial->lpVtbl->SetMaterial(lpd3dMaterial,
 &d3dMaterial);
 if (FAILED(hRes))
 return hRes;

in.doc – page 125

 hRes = lpd3dMaterial->lpVtbl->GetHandle(lpd3dMaterial, lpd3dDevice,
 &hd3dSurfaceMaterial);
 if (FAILED(hRes))
 return hRes;

 // Build the execute buffer.

 dwVertexSize = (NUM_VERTICES * sizeof(D3DVERTEX));
 dwInstructionSize = (NUM_INSTRUCTIONS * sizeof(D3DINSTRUCTION)) +
 (NUM_STATES * sizeof(D3DSTATE)) +
 (NUM_PROCESSVERTICES *
 sizeof(D3DPROCESSVERTICES)) +
 (NUM_TRIANGLES * sizeof(D3DTRIANGLE));
 dwExecuteBufferSize = dwVertexSize + dwInstructionSize;
 ZeroMemory(&d3dExecuteBufferDesc, sizeof(d3dExecuteBufferDesc));
 d3dExecuteBufferDesc.dwSize = sizeof(d3dExecuteBufferDesc);
 d3dExecuteBufferDesc.dwFlags = D3DDEB_BUFSIZE;
 d3dExecuteBufferDesc.dwBufferSize = dwExecuteBufferSize;
 hRes = lpd3dDevice->lpVtbl->CreateExecuteBuffer(lpd3dDevice,
 &d3dExecuteBufferDesc, &lpd3dExecuteBuffer, NULL);
 if (FAILED(hRes))
 return hRes;

 // Fill the execute buffer with the required vertices, state
 // instructions and drawing primitives.

 hRes = FillExecuteBuffer();
 if (FAILED(hRes))
 return hRes;

 // Set the execute data so Direct3D knows how many vertices are in
 // the buffer and where the instructions start.

 ZeroMemory(&d3dExecuteData, sizeof(d3dExecuteData));
 d3dExecuteData.dwSize = sizeof(d3dExecuteData);
 d3dExecuteData.dwVertexCount = NUM_VERTICES;
 d3dExecuteData.dwInstructionOffset = dwVertexSize;
 d3dExecuteData.dwInstructionLength = dwInstructionSize;
 hRes = lpd3dExecuteBuffer->lpVtbl->SetExecuteData
 (lpd3dExecuteBuffer, &d3dExecuteData);
 if (FAILED(hRes))
 return hRes;

 return DD_OK;
}

in.doc – page 126

Filling the Execute Buffer
[This is preliminary documentation and subject to change.]

The FillExecuteBuffer sample function fills the single execute buffer used in this
sample with all the vertices, transformations, light and render states, and drawing
primitives necessary to draw our triangle.

The method shown here is not the most efficient way of organizing the execute
buffer. For best performance you should minimize state changes. In this sample we
submit the execute buffer for each frame in the animation loop and no state in the
buffer is modified. The only thing we modify is the world matrix (its contents—not
its handle). Therefore, it would be more efficient to extract all the static state
instructions into a separate execute buffer which we would issue once only at startup
and, from then on, simply execute a second execute buffer with vertices and
triangles.

However, because this sample is more concerned with clarity than performance, it
uses only one execute buffer and resubmits it in its entirety for each frame.

static HRESULT
FillExecuteBuffer(void)
{
 HRESULT hRes;
 D3DEXECUTEBUFFERDESC d3dExeBufDesc;
 LPD3DVERTEX lpVertex;
 LPD3DINSTRUCTION lpInstruction;
 LPD3DPROCESSVERTICES lpProcessVertices;
 LPD3DTRIANGLE lpTriangle;
 LPD3DSTATE lpState;

 ASSERT(NULL != lpd3dExecuteBuffer);
 ASSERT(0 != hd3dSurfaceMaterial);
 ASSERT(0 != hd3dWorldMatrix);
 ASSERT(0 != hd3dViewMatrix);
 ASSERT(0 != hd3dProjMatrix);

 // Lock the execute buffer.

 ZeroMemory(&d3dExeBufDesc, sizeof(d3dExeBufDesc));
 d3dExeBufDesc.dwSize = sizeof(d3dExeBufDesc);
 hRes = lpd3dExecuteBuffer->lpVtbl->Lock(lpd3dExecuteBuffer,
 &d3dExeBufDesc);
 if (FAILED(hRes))
 return hRes;

 // For purposes of illustration, we fill the execute buffer by

in.doc – page 127

 // casting a pointer to the execute buffer to the appropriate data
 // structures.

 lpVertex = (LPD3DVERTEX)d3dExeBufDesc.lpData;

 // First vertex.

 lpVertex->dvX = D3DVAL(0.0); // Position in model coordinates
 lpVertex->dvY = D3DVAL(1.0);
 lpVertex->dvZ = D3DVAL(0.0);
 lpVertex->dvNX = D3DVAL(0.0); // Normalized illumination normal
 lpVertex->dvNY = D3DVAL(0.0);
 lpVertex->dvNZ = D3DVAL(-1.0);
 lpVertex->dvTU = D3DVAL(0.0); // Texture coordinates (not used)
 lpVertex->dvTV = D3DVAL(1.0);
 lpVertex++;

 // Second vertex.

 lpVertex->dvX = D3DVAL(1.0); // Position in model coordinates
 lpVertex->dvY = D3DVAL(-1.0);
 lpVertex->dvZ = D3DVAL(0.0);
 lpVertex->dvNX = D3DVAL(0.0); // Normalized illumination normal
 lpVertex->dvNY = D3DVAL(0.0);
 lpVertex->dvNZ = D3DVAL(-1.0);
 lpVertex->dvTU = D3DVAL(1.0); // Texture coordinates (not used)
 lpVertex->dvTV = D3DVAL(1.0);
 lpVertex++;

 // Third vertex.

 lpVertex->dvX = D3DVAL(-1.0); // Position in model coordinates
 lpVertex->dvY = D3DVAL(-1.0);
 lpVertex->dvZ = D3DVAL(0.0);
 lpVertex->dvNX = D3DVAL(0.0); // Normalized illumination normal
 lpVertex->dvNY = D3DVAL(0.0);
 lpVertex->dvNZ = D3DVAL(-1.0);
 lpVertex->dvTU = D3DVAL(1.0); // Texture coordinates (not used)
 lpVertex->dvTV = D3DVAL(0.0);
 lpVertex++;

 // Transform state - world, view and projection.

 lpInstruction = (LPD3DINSTRUCTION)lpVertex;
 lpInstruction->bOpcode = D3DOP_STATETRANSFORM;
 lpInstruction->bSize = sizeof(D3DSTATE);

in.doc – page 128

 lpInstruction->wCount = 3U;
 lpInstruction++;
 lpState = (LPD3DSTATE)lpInstruction;
 lpState->dtstTransformStateType = D3DTRANSFORMSTATE_WORLD;
 lpState->dwArg[0] = hd3dWorldMatrix;
 lpState++;
 lpState->dtstTransformStateType = D3DTRANSFORMSTATE_VIEW;
 lpState->dwArg[0] = hd3dViewMatrix;
 lpState++;
 lpState->dtstTransformStateType = D3DTRANSFORMSTATE_PROJECTION;
 lpState->dwArg[0] = hd3dProjMatrix;
 lpState++;

 // Lighting state.

 lpInstruction = (LPD3DINSTRUCTION)lpState;
 lpInstruction->bOpcode = D3DOP_STATELIGHT;
 lpInstruction->bSize = sizeof(D3DSTATE);
 lpInstruction->wCount = 2U;
 lpInstruction++;
 lpState = (LPD3DSTATE)lpInstruction;
 lpState->dlstLightStateType = D3DLIGHTSTATE_MATERIAL;
 lpState->dwArg[0] = hd3dSurfaceMaterial;
 lpState++;
 lpState->dlstLightStateType = D3DLIGHTSTATE_AMBIENT;
 lpState->dwArg[0] = RGBA_MAKE(128, 128, 128, 128);
 lpState++;

 // Render state.

 lpInstruction = (LPD3DINSTRUCTION)lpState;
 lpInstruction->bOpcode = D3DOP_STATERENDER;
 lpInstruction->bSize = sizeof(D3DSTATE);
 lpInstruction->wCount = 3U;
 lpInstruction++;
 lpState = (LPD3DSTATE)lpInstruction;
 lpState->drstRenderStateType = D3DRENDERSTATE_FILLMODE;
 lpState->dwArg[0] = D3DFILL_SOLID;
 lpState++;
 lpState->drstRenderStateType = D3DRENDERSTATE_SHADEMODE;
 lpState->dwArg[0] = D3DSHADE_GOURAUD;
 lpState++;
 lpState->drstRenderStateType = D3DRENDERSTATE_DITHERENABLE;
 lpState->dwArg[0] = TRUE;
 lpState++;

in.doc – page 129

 // The D3DOP_PROCESSVERTICES instruction tells the driver what to
 // do with the vertices in the buffer. In this sample we want
 // Direct3D to perform the entire pipeline on our behalf, so
 // the instruction is D3DPROCESSVERTICES_TRANSFORMLIGHT.

 lpInstruction = (LPD3DINSTRUCTION)lpState;
 lpInstruction->bOpcode = D3DOP_PROCESSVERTICES;
 lpInstruction->bSize = sizeof(D3DPROCESSVERTICES);
 lpInstruction->wCount = 1U;
 lpInstruction++;
 lpProcessVertices = (LPD3DPROCESSVERTICES)lpInstruction;
 lpProcessVertices->dwFlags = D3DPROCESSVERTICES_TRANSFORMLIGHT;
 lpProcessVertices->wStart = 0U; // First source vertex
 lpProcessVertices->wDest = 0U;
 lpProcessVertices->dwCount = NUM_VERTICES; // Number of vertices
 lpProcessVertices->dwReserved = 0;
 lpProcessVertices++;

 // Draw the triangle.

 lpInstruction = (LPD3DINSTRUCTION)lpProcessVertices;
 lpInstruction->bOpcode = D3DOP_TRIANGLE;
 lpInstruction->bSize = sizeof(D3DTRIANGLE);
 lpInstruction->wCount = 1U;
 lpInstruction++;
 lpTriangle = (LPD3DTRIANGLE)lpInstruction;
 lpTriangle->wV1 = 0U;
 lpTriangle->wV2 = 1U;
 lpTriangle->wV3 = 2U;
 lpTriangle->wFlags = D3DTRIFLAG_EDGEENABLETRIANGLE;
 lpTriangle++;

 // Stop execution of the buffer.

 lpInstruction = (LPD3DINSTRUCTION)lpTriangle;
 lpInstruction->bOpcode = D3DOP_EXIT;
 lpInstruction->bSize = 0;
 lpInstruction->wCount = 0U;

 // Unlock the execute buffer.

 lpd3dExecuteBuffer->lpVtbl->Unlock(lpd3dExecuteBuffer);

 return DD_OK;
}

in.doc – page 130

Animating the Scene
[This is preliminary documentation and subject to change.]

The animation in this sample is simply a rotation about the y-axis. All we need to do
is build a rotation matrix and set the world matrix to that new rotation matrix.

We don't need to modify the execute buffer in any way to perform this rotation. We
simply set the matrix and resubmit the execute buffer.

static HRESULT
AnimateScene(void)
{
 HRESULT hRes;

 ASSERT(NULL != lpd3dDevice);
 ASSERT(0 != hd3dWorldMatrix);

 // We rotate the triangle by setting the world transform to a
 // rotation matrix.

 SetRotationAboutY(&d3dWorldMatrix, dAngleOfRotation);
 dAngleOfRotation += ROTATE_ANGLE_DELTA;
 hRes = lpd3dDevice->lpVtbl->SetMatrix(lpd3dDevice,
 hd3dWorldMatrix, &d3dWorldMatrix);
 if (FAILED(hRes))
 return hRes;

 return DD_OK;
}

Rendering Using an Execute Buffer
[This is preliminary documentation and subject to change.]

This section contains functions that render the entire scene and render a single frame.

· Rendering the Scene
· Rendering a Single Frame

Rendering the Scene
[This is preliminary documentation and subject to change.]

The RenderScene function renders the 3-D scene, just as you might suspect. The
fundamental task performed by this function is submitting the single execute buffer
used by this sample. However, the function also clears the back and z-buffers and
demarcates the start and end of the scene (which in this case is a single execute).

in.doc – page 131

When you clear the back and z-buffers, it's safe to specify the z-buffer clear flag
even if we don't have an attached z-buffer. Direct3D will simply discard the flag if
no z-buffer is being used.

For maximum efficiency we only want to clear those regions of the device surface
and z-buffer which we actually rendered to in the last frame. This is the purpose of
the array of rectangles and count passed to this function. It is possible to query
Direct3D for the regions of the device surface that were rendered to by that execute.
The application can then accumulate those rectangles and clear only those regions.
However this is a very simple sample and so, for simplicity, we will just clear the
entire device surface and z-buffer. You should probably implement a more efficient
clearing mechanism in your application.

The RenderScene function must be called once and once only for every frame of
animation. If you have multiple execute buffers comprising a single frame you must
have one call to the IDirect3DDevice::BeginScene method before submitting those
execute buffers. If you have more than one device being rendered in a single frame,
(for example, a rear-view mirror in a racing game), call the
IDirect3DDevice::BeginScene and IDirect3DDevice::EndScene methods once for
each device.

When the RenderScene function returns DD_OK, the scene will have been rendered
and the device surface will hold the contents of the rendering.

static HRESULT
RenderScene(void)
{
 HRESULT hRes;
 D3DRECT d3dRect;

 ASSERT(NULL != lpd3dViewport);
 ASSERT(NULL != lpd3dDevice);
 ASSERT(NULL != lpd3dExecuteBuffer);

 // Clear both back and z-buffer.

 d3dRect.lX1 = rSrcRect.left;
 d3dRect.lX2 = rSrcRect.right;
 d3dRect.lY1 = rSrcRect.top;
 d3dRect.lY2 = rSrcRect.bottom;
 hRes = lpd3dViewport->lpVtbl->Clear(lpd3dViewport, 1, &d3dRect,
 D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER);
 if (FAILED(hRes))
 return hRes;

 // Start the scene.

 hRes = lpd3dDevice->lpVtbl->BeginScene(lpd3dDevice);

in.doc – page 132

 if (FAILED(hRes))
 return hRes;

 // Submit the execute buffer.

 // We want Direct3D to clip the data on our behalf so we specify
 // D3DEXECUTE_CLIPPED.

 hRes = lpd3dDevice->lpVtbl->Execute(lpd3dDevice, lpd3dExecuteBuffer,
 lpd3dViewport, D3DEXECUTE_CLIPPED);
 if (FAILED(hRes))
 {
 lpd3dDevice->lpVtbl->EndScene(lpd3dDevice);
 return hRes;
 }

 // End the scene.

 hRes = lpd3dDevice->lpVtbl->EndScene(lpd3dDevice);
 if (FAILED(hRes))
 return hRes;

 return DD_OK;
}

Rendering a Single Frame

[This is preliminary documentation and subject to change.]

The DoFrame function renders and shows a single frame. This involves rendering the
scene and blitting the result to the client area of the application window on the
primary surface.

This function handles lost surfaces by attempting to restore the application's surfaces
and then retrying the rendering. It is called by the OnMove function (discussed in
Redrawing on Window Movement), the OnSize function (discussed in Redrawing on
Window Resizing), and the OnPaint function (discussed in Repainting the Client
Area).

static HRESULT
DoFrame(void)
{
 HRESULT hRes;

 // We keeping trying until we succeed or we fail for a reason
 // other than DDERR_SURFACELOST.

 while (TRUE)

in.doc – page 133

 {
 hRes = RenderScene();
 if (SUCCEEDED(hRes))
 {
 hRes = lpddPrimary->lpVtbl->Blt(lpddPrimary, &rDstRect,
 lpddDevice, &rSrcRect, DDBLT_WAIT, NULL);
 if (SUCCEEDED(hRes)) // If it worked.
 return hRes;
 }
 while (DDERR_SURFACELOST == hRes) // Restore lost surfaces
 hRes = RestoreSurfaces();
 if (FAILED(hRes)) // handle other failure cases
 return hRes;
 }
}

Working with Matrices
[This is preliminary documentation and subject to change.]

This section contains two functions that work with matrices: the
SetPerspectiveProjection function, which sets a given matrix to the appropriate
values for the front and back clipping plane, and the SetRotationAboutY function,
which sets a matrix to a rotation about the y-axis.

· Setting the Perspective Transformation
· Setting a Rotation Transformation

Setting the Perspective Transformation
[This is preliminary documentation and subject to change.]

The SetPerspectiveProjection function sets the given matrix to a perspective
transform for the given half-height and front- and back-clipping planes. This
function is called as part of the CreateScene function, documented in Creating the
Scene.

static void
SetPerspectiveProjection(LPD3DMATRIX lpd3dMatrix,
 double dHalfHeight,
 double dFrontClipping,
 double dBackClipping)
{
 double dTmp1;
 double dTmp2;

 ASSERT(NULL != lpd3dMatrix);

 dTmp1 = dHalfHeight / dFrontClipping;

in.doc – page 134

 dTmp2 = dBackClipping / (dBackClipping - dFrontClipping);

 lpd3dMatrix->_11 = D3DVAL(2.0);
 lpd3dMatrix->_12 = D3DVAL(0.0);
 lpd3dMatrix->_13 = D3DVAL(0.0);
 lpd3dMatrix->_14 = D3DVAL(0.0);
 lpd3dMatrix->_21 = D3DVAL(0.0);
 lpd3dMatrix->_22 = D3DVAL(2.0);
 lpd3dMatrix->_23 = D3DVAL(0.0);
 lpd3dMatrix->_24 = D3DVAL(0.0);
 lpd3dMatrix->_31 = D3DVAL(0.0);
 lpd3dMatrix->_32 = D3DVAL(0.0);
 lpd3dMatrix->_33 = D3DVAL(dTmp1 * dTmp2);
 lpd3dMatrix->_34 = D3DVAL(dTmp1);
 lpd3dMatrix->_41 = D3DVAL(0.0);
 lpd3dMatrix->_42 = D3DVAL(0.0);
 lpd3dMatrix->_43 = D3DVAL(-dHalfHeight * dTmp2);
 lpd3dMatrix->_44 = D3DVAL(0.0);
}

Setting a Rotation Transformation

[This is preliminary documentation and subject to change.]

The SetRotationAboutY function sets the given matrix to a rotation about the y-axis,
using the specified number of radians. This function is called as part of the
AnimateScene function, documented in Animating the Scene.

static void
SetRotationAboutY(LPD3DMATRIX lpd3dMatrix, double dAngleOfRotation)
{
 D3DVALUE dvCos;
 D3DVALUE dvSin;

 ASSERT(NULL != lpd3dMatrix);

 dvCos = D3DVAL(cos(dAngleOfRotation));
 dvSin = D3DVAL(sin(dAngleOfRotation));

 lpd3dMatrix->_11 = dvCos;
 lpd3dMatrix->_12 = D3DVAL(0.0);
 lpd3dMatrix->_13 = -dvSin;
 lpd3dMatrix->_14 = D3DVAL(0.0);
 lpd3dMatrix->_21 = D3DVAL(0.0);
 lpd3dMatrix->_22 = D3DVAL(1.0);
 lpd3dMatrix->_23 = D3DVAL(0.0);
 lpd3dMatrix->_24 = D3DVAL(0.0);
 lpd3dMatrix->_31 = dvSin;

in.doc – page 135

 lpd3dMatrix->_32 = D3DVAL(0.0);
 lpd3dMatrix->_33 = dvCos;
 lpd3dMatrix->_34 = D3DVAL(0.0);
 lpd3dMatrix->_41 = D3DVAL(0.0);
 lpd3dMatrix->_42 = D3DVAL(0.0);
 lpd3dMatrix->_43 = D3DVAL(0.0);
 lpd3dMatrix->_44 = D3DVAL(1.0);
}

Restoring and Redrawing
[This is preliminary documentation and subject to change.]

This section contains functions that restore objects and surfaces that may have been
lost while the application is running.

· Restoring the Direct3D Device
· Restoring the Primary Surface
· Restoring All Surfaces
· Redrawing on Window Movement
· Redrawing on Window Resizing
· Repainting the Client Area
· Updating the Viewport

Restoring the Direct3D Device
[This is preliminary documentation and subject to change.]

The RestoreDevice function restores lost video memory for the device surface and z-
buffer.

static HRESULT
RestoreDevice(void)
{
 HRESULT hRes;

 if (NULL != lpddZBuffer)
 {
 hRes = lpddZBuffer->lpVtbl->Restore(lpddZBuffer);
 if (FAILED(hRes))
 return hRes;
 }

 if (NULL != lpddDevice)
 {
 hRes = lpddDevice->lpVtbl->Restore(lpddDevice);
 if (FAILED(hRes))
 return hRes;

in.doc – page 136

 }

 return DD_OK;
}

Restoring the Primary Surface

[This is preliminary documentation and subject to change.]

The RestorePrimary function attempts to restore the video memory allocated for the
primary surface. This function will be invoked by a DirectX function returning
DDERR_SURFACELOST due to a mode switch or full-screen DOS box invalidating
video memory.

static HRESULT
RestorePrimary(void)
{
 ASSERT(NULL != lpddPrimary);

 return lpddPrimary->lpVtbl->Restore(lpddPrimary);
}

Restoring All Surfaces

[This is preliminary documentation and subject to change.]

The RestoreSurfaces function attempts to restore all the surfaces used by the
application.

static LRESULT
RestoreSurfaces(void)
{
 HRESULT hRes;

 hRes = RestorePrimary();
 if (FAILED(hRes))
 return hRes;

 hRes = RestoreDevice();
 if (FAILED(hRes))
 return hRes;

 return DD_OK;
}

Redrawing on Window Movement

[This is preliminary documentation and subject to change.]

static LRESULT
OnMove(HWND hwnd, int x, int y)

in.doc – page 137

{
 int xDelta;
 int yDelta;
 HRESULT hRes;

 // No action if the device has not yet been created or if we are
 // suspended.

 if ((NULL != lpd3dDevice) && !fSuspended)
 {
 // Update the destination rectangle for the new client position.

 xDelta = x - rDstRect.left;
 yDelta = y - rDstRect.top;

 rDstRect.left += xDelta;
 rDstRect.top += yDelta;
 rDstRect.right += xDelta;
 rDstRect.bottom += yDelta;

 // Repaint the client area.

 hRes = DoFrame();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_RENDERSCENE, hRes);
 return 0L;
 }
 }

 return 0L;
}

Redrawing on Window Resizing

[This is preliminary documentation and subject to change.]

static LRESULT
OnSize(HWND hwnd, int w, int h)
{
 HRESULT hRes;
 DDSURFACEDESC ddsd;

 // Nothing to do if we are suspended.

 if (!fSuspended)
 {

in.doc – page 138

 // Update the source and destination rectangles (used by the
 // blit that shows the rendering in the client area).

 rDstRect.right = rDstRect.left + w;
 rDstRect.bottom = rDstRect.top + h;
 rSrcRect.right = w;
 rSrcRect.bottom = h;

 if (NULL != lpd3dDevice)
 {
 // Although we already have a device, we need to be sure it
 // is big enough for the new window client size.

 // Because the window in this sample has a fixed size, it
 // should never be necessary to handle this case. This code
 // will be useful when we make the application resizable.

 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 hRes = lpddDevice->lpVtbl->GetSurfaceDesc(lpddDevice,
 &ddsd);
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_DEVICESIZE, hRes);
 return 0L;
 }

 if ((w > (int)ddsd.dwWidth) || (h > (int)ddsd.dwHeight))
 {
 // The device is too small. We need to shut it down
 // and rebuild it.

 // Execute buffers are bound to devices, so when
 // we release the device we must release the execute
 // buffer.

 ReleaseScene();
 ReleaseDevice();
 }
 }

 if (NULL == lpd3dDevice)
 {
 // No Direct3D device yet. This is either because this is
 // the first time through the loop or because we discarded
 // the existing device because it was not big enough for the

in.doc – page 139

 // new window client size.

 hRes = CreateDevice((DWORD)w, (DWORD)h);
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_CREATEDEVICE, hRes);
 return 0L;
 }
 hRes = CreateScene();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_BUILDSCENE, hRes);
 return 0L;
 }
 }

 hRes = UpdateViewport();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_UPDATEVIEWPORT, hRes);
 return 0L;
 }

 // Render at the new size and show the results in the window's
 // client area.

 hRes = DoFrame();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_RENDERSCENE, hRes);
 return 0L;
 }
 }

 return 0L;
}

Repainting the Client Area

[This is preliminary documentation and subject to change.]

The OnPaint function repaints the client area, when required. Notice that it calls the
DoFrame function to do much of the work, even though DoFrame re-renders the
scene as well as blitting the result to the primary surface. Although the re-rendering
is not necessary, for this simple sample this inefficiency does not matter. In your
application, you should re-render only when the scene changes.

For more information about the DoFrame function, see Rendering a Single Frame.

in.doc – page 140

static LRESULT
OnPaint(HWND hwnd, HDC hdc, LPPAINTSTRUCT lpps)
{
 HRESULT hRes;

 USE_PARAM(lpps);

 if (fActive && !fSuspended && (NULL != lpd3dDevice))
 {
 hRes = DoFrame();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_RENDERSCENE, hRes);
 return 0L;
 }
 }
 else
 {
 // Show the suspended image if we are not active or suspended or
 // if we have not yet created the device.

 PaintSuspended(hwnd, hdc);
 }

 return 0L;
}

Updating the Viewport

[This is preliminary documentation and subject to change.]

The UpdateViewport function updates the viewport in response to a change in
window size. This ensures that we render at a resolution that matches the client area
of the target window.

static HRESULT
UpdateViewport(void)
{
 D3DVIEWPORT d3dViewport;

 ASSERT(NULL != lpd3dViewport);

 ZeroMemory(&d3dViewport, sizeof(d3dViewport));
 d3dViewport.dwSize = sizeof(d3dViewport);
 d3dViewport.dwX = 0;
 d3dViewport.dwY = 0;
 d3dViewport.dwWidth = (DWORD)rSrcRect.right;
 d3dViewport.dwHeight = (DWORD)rSrcRect.bottom;

in.doc – page 141

 d3dViewport.dvScaleX = D3DVAL((float)d3dViewport.dwWidth / 2.0);
 d3dViewport.dvScaleY = D3DVAL((float)d3dViewport.dwHeight / 2.0);
 d3dViewport.dvMaxX = D3DVAL(1.0);
 d3dViewport.dvMaxY = D3DVAL(1.0);
 return lpd3dViewport->lpVtbl->SetViewport(lpd3dViewport,
 &d3dViewport);
}

Releasing Objects
[This is preliminary documentation and subject to change.]

This section contains functions that release objects when they are no longer needed.

· Releasing the Direct3D Object
· Releasing the Direct3D Device
· Releasing the Primary Surface
· Releasing the Objects in the Scene

Releasing the Direct3D Object
[This is preliminary documentation and subject to change.]

The ReleaseDirect3D function releases the DirectDraw (Direct3D) driver object.

static HRESULT
ReleaseDirect3D(void)
{
 if (NULL != lpd3d)
 {
 lpd3d->lpVtbl->Release(lpd3d);
 lpd3d = NULL;
 }
 if (NULL != lpdd)
 {
 lpdd->lpVtbl->Release(lpdd);
 lpdd = NULL;
 }

 return DD_OK;
}

Releasing the Direct3D Device

[This is preliminary documentation and subject to change.]

The ReleaseDevice function releases the Direct3D device and its associated surfaces.

static HRESULT
ReleaseDevice(void)

in.doc – page 142

{
 if (NULL != lpd3dDevice)
 {
 lpd3dDevice->lpVtbl->Release(lpd3dDevice);
 lpd3dDevice = NULL;
 }
 if (NULL != lpddZBuffer)
 {
 lpddZBuffer->lpVtbl->Release(lpddZBuffer);
 lpddZBuffer = NULL;
 }
 if (NULL != lpddDevice)
 {
 lpddDevice->lpVtbl->Release(lpddDevice);
 lpddDevice = NULL;
 }

 return DD_OK;
}

Releasing the Primary Surface

[This is preliminary documentation and subject to change.]

The ReleasePrimary function releases the primary surface and its attached clipper
and palette.

static HRESULT
ReleasePrimary(void)
{
 if (NULL != lpddPalette)
 {
 lpddPalette->lpVtbl->Release(lpddPalette);
 lpddPalette = NULL;
 }
 if (NULL != lpddPrimary)
 {
 lpddPrimary->lpVtbl->Release(lpddPrimary);
 lpddPrimary = NULL;
 }

 return DD_OK;
}

Releasing the Objects in the Scene

[This is preliminary documentation and subject to change.]

The ReleaseScene function releases all the objects making up the 3-D scene.

in.doc – page 143

static HRESULT
ReleaseScene(void)
{
 if (NULL != lpd3dExecuteBuffer)
 {
 lpd3dExecuteBuffer->lpVtbl->Release(lpd3dExecuteBuffer);
 lpd3dExecuteBuffer = NULL;
 }
 if (NULL != lpd3dBackgroundMaterial)
 {
 lpd3dBackgroundMaterial->
 lpVtbl->Release(lpd3dBackgroundMaterial);
 lpd3dBackgroundMaterial = NULL;
 }
 if (NULL != lpd3dMaterial)
 {
 lpd3dMaterial->lpVtbl->Release(lpd3dMaterial);
 lpd3dMaterial = NULL;
 }
 if (0 != hd3dWorldMatrix)
 {
 lpd3dDevice->lpVtbl->DeleteMatrix(lpd3dDevice, hd3dWorldMatrix);
 hd3dWorldMatrix = 0;
 }
 if (0 != hd3dViewMatrix)
 {
 lpd3dDevice->lpVtbl->DeleteMatrix(lpd3dDevice, hd3dViewMatrix);
 hd3dViewMatrix = 0;
 }
 if (0 != hd3dProjMatrix)
 {
 lpd3dDevice->lpVtbl->DeleteMatrix(lpd3dDevice, hd3dProjMatrix);
 hd3dProjMatrix = 0;
 }
 if (NULL != lpd3dLight)
 {
 lpd3dLight->lpVtbl->Release(lpd3dLight);
 lpd3dLight = NULL;
 }
 if (NULL != lpd3dViewport)
 {
 lpd3dViewport->lpVtbl->Release(lpd3dViewport);
 lpd3dViewport = NULL;
 }

 return DD_OK;

in.doc – page 144

}

Error Checking
[This is preliminary documentation and subject to change.]

This section contains functions that help you check for and report errors.

· Checking for Active Status
· Reporting Standard Errors
· Reporting Fatal Errors
· Displaying a Notification String

Checking for Active Status
[This is preliminary documentation and subject to change.]

static LRESULT
OnIdle(HWND hwnd)
{
 HRESULT hRes;

 // Only animate if we are the foreground app, we aren't suspended,
 // and we have completed initialization.

 if (fActive && !fSuspended && (NULL != lpd3dDevice))
 {
 hRes = AnimateScene();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_ANIMATESCENE, hRes);
 return 0L;
 }

 hRes = DoFrame();
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_RENDERSCENE, hRes);
 return 0L;
 }
 }

 return 0L;
}

Reporting Standard Errors

[This is preliminary documentation and subject to change.]

in.doc – page 145

The ReportError function displays a message box to report an error.

static void
ReportError(HWND hwnd, int nMessage, HRESULT hRes)
{
 HDC hdc;
 char szBuffer[256];
 char szMessage[128];
 char szError[128];
 int nStrID;

 // Turn the animation loop off.

 fSuspended = TRUE;

 // Get the high level error message.

 LoadString(hAppInstance, nMessage, szMessage, sizeof(szMessage));

 // We issue sensible error messages for common run time errors. For
 // errors which are internal or coding errors we simply issue an
 // error number (they should never occur).

 switch (hRes)
 {
 case DDERR_EXCEPTION: nStrID = IDS_ERR_EXCEPTION; break;
 case DDERR_GENERIC: nStrID = IDS_ERR_GENERIC; break;
 case DDERR_OUTOFMEMORY: nStrID = IDS_ERR_OUTOFMEMORY; break;
 case DDERR_OUTOFVIDEOMEMORY: nStrID = IDS_ERR_OUTOFVIDEOMEMORY;
break;
 case DDERR_SURFACEBUSY: nStrID = IDS_ERR_SURFACEBUSY; break;
 case DDERR_SURFACELOST: nStrID = IDS_ERR_SURFACELOST; break;
 case DDERR_WRONGMODE: nStrID = IDS_ERR_WRONGMODE; break;
 default: nStrID = IDS_ERR_INTERNALERROR; break;
 }
 LoadString(hAppInstance, nStrID, szError, sizeof(szError));

 // Show the "paused" display.

 hdc = GetDC(hwnd);
 PaintSuspended(hwnd, hdc);
 ReleaseDC(hwnd, hdc);

 // Convert the error code into a string.

 wsprintf(szBuffer, "%s\n%s (Error #%d)", szMessage, szError,

in.doc – page 146

 CODEFROMHRESULT(hRes));
 MessageBox(hwnd, szBuffer, WINDOW_TITLE, MB_OK | MB_APPLMODAL);
 fSuspended = FALSE;
}

Reporting Fatal Errors

[This is preliminary documentation and subject to change.]

The FatalError function displays a message box to report an error message and then
destroys the window. The function does not perform any clean-up; this is done when
the application receives the WM_DESTROY message sent by the DestroyWindow
function.

static void
FatalError(HWND hwnd, int nMessage, HRESULT hRes)
{
 ReportError(hwnd, nMessage, hRes);
 fSuspended = TRUE;

 DestroyWindow(hwnd);
}

Displaying a Notification String

[This is preliminary documentation and subject to change.]

The PaintSuspended function draws a notification string in the client area whenever
the application is suspended—for example, when it is in the background or is
handling an error.

static void
PaintSuspended(HWND hwnd, HDC hdc)
{
 HPEN hOldPen;
 HBRUSH hOldBrush;
 COLORREF crOldTextColor;
 int oldMode;
 int x;
 int y;
 SIZE size;
 RECT rect;
 int nStrLen;

 // Black background.

 hOldPen = SelectObject(hdc, GetStockObject(NULL_PEN));
 hOldBrush = SelectObject(hdc, GetStockObject(BLACK_BRUSH));

 // White text.

in.doc – page 147

 oldMode = SetBkMode(hdc, TRANSPARENT);
 crOldTextColor = SetTextColor(hdc, RGB(255, 255, 255));

 GetClientRect(hwnd, &rect);

 // Clear the client area.

 Rectangle(hdc, rect.left, rect.top, rect.right + 1, rect.bottom + 1);

 // Draw the string centered in the client area.

 nStrLen = strlen(PAUSED_STRING);
 GetTextExtentPoint32(hdc, PAUSED_STRING, nStrLen, &size);
 x = (rect.right - size.cx) / 2;
 y = (rect.bottom - size.cy) / 2;
 TextOut(hdc, x, y, PAUSED_STRING, nStrLen);

 SetTextColor(hdc, crOldTextColor);
 SetBkMode(hdc, oldMode);

 SelectObject(hdc, hOldBrush);
 SelectObject(hdc, hOldPen);
}

Converting Bit Depths
[This is preliminary documentation and subject to change.]

This section contains functions that convert bit depths into flags and vice versa.

· Converting a Bit Depth into a Flag
· Converting a Flag into a Bit Depth

Converting a Bit Depth into a Flag
[This is preliminary documentation and subject to change.]

The BitDepthToFlags function is used by the ChooseDevice enumeration function to
convert a bit depth into the appropriate DirectDraw bit depth flag. For more
information, see Enumeration Function

static DWORD
BitDepthToFlags(DWORD dwBitDepth)
{
 switch (dwBitDepth)
 {
 case 1: return DDBD_1;
 case 2: return DDBD_2;

in.doc – page 148

 case 4: return DDBD_4;
 case 8: return DDBD_8;
 case 16: return DDBD_16;
 case 24: return DDBD_24;
 case 32: return DDBD_32;
 default: return 0;
 }
}

Converting a Flag into a Bit Depth

[This is preliminary documentation and subject to change.]

The FlagsToBitDepth function is used by the CreateDevice function to convert bit-
depth flags to an actual bit count. It selects the smallest bit count in the mask if more
than one flag is present. For more information, see Creating the Direct3D Device.

static DWORD
FlagsToBitDepth(DWORD dwFlags)
{
 if (dwFlags & DDBD_1)
 return 1;
 else if (dwFlags & DDBD_2)
 return 2;
 else if (dwFlags & DDBD_4)
 return 4;
 else if (dwFlags & DDBD_8)
 return 8;
 else if (dwFlags & DDBD_16)
 return 16;
 else if (dwFlags & DDBD_24)
 return 24;
 else if (dwFlags & DDBD_32)
 return 32;
 else
 return 0;
}

Main Window Procedure
[This is preliminary documentation and subject to change.]

LRESULT CALLBACK
WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
 HDC hdc;
 PAINTSTRUCT ps;
 LRESULT lResult;

in.doc – page 149

 HRESULT hRes;
 char szBuffer[128];

 switch (msg)
 {
 case WM_CREATE:
 hRes = CreateDirect3D(hwnd);
 if (FAILED(hRes))
 {
 ReportError(hwnd, IDS_ERRMSG_CREATEDEVICE, hRes);
 ReleaseDirect3D();
 return -1L;
 }

 hRes = CreatePrimary(hwnd);
 if (FAILED(hRes))
 {
 ReportError(hwnd, IDS_ERRMSG_INITSCREEN, hRes);
 ReleasePrimary();
 ReleaseDirect3D();
 return -1L;
 }

 hRes = ChooseDevice();
 if (FAILED(hRes))
 {
 ReportError(hwnd, IDS_ERRMSG_NODEVICE, hRes);
 ReleasePrimary();
 ReleaseDirect3D();
 return -1L;
 }

 // Update the title to show the name of the chosen device.

 wsprintf(szBuffer, "%s: %s", WINDOW_TITLE, szDeviceName);
 SetWindowText(hwnd, szBuffer);

 return 0L;

 case WM_MOVE:
 return OnMove(hwnd, (int)LOWORD(lParam),
 (int)HIWORD(lParam));

 case WM_SIZE:
 return OnSize(hwnd, (int)LOWORD(lParam),
 (int)HIWORD(lParam));

in.doc – page 150

 case WM_ERASEBKGND:
 // Our rendering fills the entire viewport so we won't bother
 // erasing the background.

 return 1L;

 case WM_PAINT:
 hdc = BeginPaint(hwnd, &ps);

 lResult = OnPaint(hwnd, hdc, &ps);

 EndPaint(hwnd, &ps);
 return lResult;

 case WM_ACTIVATEAPP:
 fActive = (BOOL)wParam;
 if (fActive && !fSuspended && (NULL != lpddPalette))
 {
 // Realizing the palette using DirectDraw is different
 // from GDI. To realize the palette we call SetPalette
 // each time our application is activated.

 // NOTE: DirectDraw recognizes that the new palette
 // is the same as the old one and so does not increase
 // the reference count of the palette.

 hRes = lpddPrimary->lpVtbl->SetPalette(lpddPrimary,
 lpddPalette);
 if (FAILED(hRes))
 {
 FatalError(hwnd, IDS_ERRMSG_REALIZEPALETTE, hRes);
 return 0L;
 }

 }
 else
 {
 // If we have been deactived, invalidate to show
 // the suspended display.

 InvalidateRect(hwnd, NULL, FALSE);
 }
 return 0L;

 case WM_KEYUP:

in.doc – page 151

 // We use the escape key as a quick way of
 // getting out of the application.

 if (VK_ESCAPE == (int)wParam)
 {
 DestroyWindow(hwnd);
 return 0L;
 }
 break;

 case WM_CLOSE:
 DestroyWindow(hwnd);
 return 0L;

 case WM_DESTROY:
 // All cleanup is done here when terminating normally or
 // shutting down due to an error.

 ReleaseScene();
 ReleaseDevice();
 ReleasePrimary();
 ReleaseDirect3D();

 PostQuitMessage(0);
 return 0L;
 }

 return DefWindowProc(hwnd, msg, wParam, lParam);
}

WinMain Function
[This is preliminary documentation and subject to change.]

int PASCAL
WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpszCommandLine,
 int cmdShow)
{
 WNDCLASS wndClass;
 HWND hwnd;
 MSG msg;

 USE_PARAM(hPrevInstance);

in.doc – page 152

 // Record the instance handle.

 hAppInstance = hInstance;

 // Very simple command-line processing. We only have one
 // option - debug - so we will just assume that if anything was
 // specified on the command line the user wants debug mode.
 // (In debug mode there is no hardware and all surfaces are
 // explicitly in system memory.)

 if (0 != *lpszCommandLine)
 fDebug = TRUE;

 // Register the window class.

 wndClass.style = 0;
 wndClass.lpfnWndProc = WndProc;
 wndClass.cbClsExtra = 0;
 wndClass.cbWndExtra = 0;
 wndClass.hInstance = hInstance;
 wndClass.hIcon = LoadIcon(hAppInstance,
 MAKEINTRESOURCE(IDI_APPICON));
 wndClass.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndClass.hbrBackground = GetStockObject(WHITE_BRUSH);
 wndClass.lpszMenuName = NULL;
 wndClass.lpszClassName = WINDOW_CLASSNAME;

 RegisterClass(&wndClass);

 // Create the main window of the instance.

 hwnd = CreateWindow(WINDOW_CLASSNAME,
 WINDOW_TITLE,
 WS_OVERLAPPED | WS_SYSMENU,
 CW_USEDEFAULT, CW_USEDEFAULT,
 WINDOW_WIDTH, WINDOW_HEIGHT,
 NULL,
 NULL,
 hInstance,
 NULL);

 ShowWindow(hwnd, cmdShow);
 UpdateWindow(hwnd);

 // The main message dispatch loop.

in.doc – page 153

 // NOTE: For simplicity we handle the message loop with a
 // simple PeekMessage scheme. This might not be the best
 // mechanism for a real application (a separate render worker
 // thread might be better).

 while (TRUE)
 {
 if (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE))
 {
 // Message pending. If it's QUIT then exit the message
 // loop. Otherwise, process the message.

 if (WM_QUIT == msg.message)
 {
 break;
 }
 else
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 else
 {
 // Animate the scene.

 OnIdle(hwnd);
 }
 }

 return msg.wParam;
}

The Geometry Pipeline
[This is preliminary documentation and subject to change.]

When you design a 3-D application, you define the world in any units you find
convenient, from microns to parsecs. Your application passes a description of that
world to Direct3D. This description includes the sizes and relative positions of all of
the objects in your world and the position and orientation of the viewer. Direct3D
transforms this description into a series of pixels on the screen. This process—the
transformation of the geometry you supply into a two-dimensional image—is the
geometry pipeline, sometimes called the transformation pipeline.

in.doc – page 154

This section provides a Direct3D-centered approach to discussing the geometry
pipeline. The following topics introduce key concepts and make parallels from those
concepts to their counterparts in the Direct3D API:

· Overview of the Pipeline
· The World Transformation
· The View Transformation
· The Projection Transformation
· Viewports and Clipping
· The Rasterizer

Overview of the Pipeline
[This is preliminary documentation and subject to change.]

The part of Direct3D that pushes geometry through the geometry pipeline is the
transformation engine. It locates the model and viewer in the world, projects vertices
for display on the screen, and clips vertices to the viewport. (The transformation
engine also performs lighting computations to determine diffuse and specular
components at each vertex. For more information, see Lighting and Materials.)

The geometry pipeline takes vertices as input. The transformation engine applies
three transformations to the vertices (the world, view, and projection
transformations), clips the result, and passes everything on to the rasterizer. The
sequence of steps looks like this:

World
Transformation

View
Transformation

Projection
Transformation

Rasterizer

Clipping

Transformation Pipeline

Vertices

At the head of the pipeline, no transformations have been applied, so all of a model's
vertices are declared relative to a local coordinate system (this is a local origin and
an orientation). This orientation of coordinates is often referred to as model space,
and individual coordinates are called model coordinates.

The first stage of the geometry pipeline transforms a model's vertices from their
local coordinate system to a coordinate system that is used by all the objects in a

in.doc – page 155

scene. The process of reorienting the vertices is called the world transformation. This
new orientation is commonly referred to as world space, and each vertex in world
space is declared using world coordinates. This transformation is discussed in The
World Transformation.

In the next stage, the vertices that describe your 3-D world are oriented with respect
to a camera. That is, your application chooses a point-of-view for the scene, and
world space coordinates are relocated and rotated around the camera's view, turning
world space into camera space. This is the view transformation. For more
information, see The View Transformation.

The next stage is the projection transformation. In this part of the pipeline, objects
are usually scaled with relation to their distance from the viewer in order to give the
illusion of depth to a scene; close objects are made to appear larger than distant
objects, and so on. This transformation is discussed in The Projection
Transformation. For simplicity, this documentation refers to the space in which
vertices exist after the projection transformation as projection space. (Some graphics
books might refer to projection space as "post-perspective homogeneous space.")
Note that not all projection transformations scale the size of objects in a scene. A
projection such as this is sometimes called an affine or orthogonal projection.

In the final part of the pipeline, any vertices that will not be visible on the screen are
removed, so that the rasterizer doesn’t take the time to calculate the colors and
shading for something that will never be seen. This process is called clipping, and is
discussed in Viewports and Clipping. After clipping, the remaining vertices are
scaled according to the viewport parameters and converted into screen coordinates.
The resulting vertices—seen on the screen when the scene is rasterized—exist in
screen space.

The World Transformation
[This is preliminary documentation and subject to change.]

The discussion of the world transformation introduces basic concepts and provides
details on how to set up a world transformation matrix in a Direct3D application.
This information is organized into the following topics:

· What Is the World Transformation?
· Setting Up a World Matrix

What Is the World Transformation?
[This is preliminary documentation and subject to change.]

The world transformation changes coordinates from model space, where vertices are
defined relative to a model's local origin, to world space, where vertices are defined
relative to an origin common to all of the objects in a scene. In essence, the world
transformation places a model into the world; hence its name. The following
illustration provides a graphical representation of the relationship between the world
coordinate system and a model's local coordinate system:

in.doc – page 156

+X

+Y

+Z

World coordinates

+Y
+Z

+X

Local coordinates

The world transformation can include any combination of translations, rotations, and
scalings. For a discussion of the mathematics of transformations, see 3-D
Transformations.

Setting Up a World Matrix
[This is preliminary documentation and subject to change.]

Like any other transformation, you create the world transformation by concatenating
a series of transformation matrices into a single matrix that contains the sum total of
their effects. In the simplest case, when a model is at the world origin and its local
coordinate axes are oriented the same as world space, the world matrix is the identity
matrix. More commonly, the world matrix is a combination of a translation into
world space, and possibly one or more rotations to "turn" the model as needed.

The following example, from a fictitious 3-D model class, uses the helper functions
in the D3dutil.cpp and D3dmath.cpp files (included with the DirectX SDK) to create
a world matrix that includes three rotations to orient a model and a translation to
relocate it relative to its position in world space.

/*
 * For the purposes of this example, the following variables
 * assumed to be valid and initialized.
 *
 * The m_vPos variable is a D3DVECTOR that contains the model's
 * location in world coordinates.
 *
 * The m_fPitch, m_fYaw, and m_fRoll variables are D3DVALUEs that
 * contain the model's orientation in terms of pitch, yaw, and roll
 * angles (in radians).
 */

D3DMATRIX C3DModel::MakeWorldMatrix(void)
{
 D3DMATRIX matWorld, // World matrix being constructed.

in.doc – page 157

 matTemp, // Temp matrix for rotations.
 matRot; // Final rotation matrix (applied to matWorld).

 // Using the right-to-left order of matrix concatenation,
 // apply the translation to the object's world position
 // before applying the rotations.
 D3DUtil_SetTranslateMatrix(matWorld, m_vPos);
 D3DUtil_SetIdentityMatrix(matRot);

 //
 // Now, apply the orientation variables into the
 // world matrix
 //
 if(m_fPitch || m_fYaw || m_fRoll)
 {
 // Produce and combine the rotation matrices.
 D3DUtil_SetRotateXMatrix(matTemp, m_fPitch); // pitch
 D3DMath_MatrixMultiply(matRot,matRot,matTemp);
 D3DUtil_SetRotateYMatrix(matTemp, m_fYaw); // yaw
 D3DMath_MatrixMultiply(matRot,matRot,matTemp);
 D3DUtil_SetRotateZMatrix(matTemp, m_fRoll); // roll
 D3DMath_MatrixMultiply(matRot,matRot,matTemp);

 // Apply the rotation matrices to complete the world matrix.
 D3DMath_MatrixMultiply(matWorld, matWorld, matRot);
 }
 return (matWorld);
}

After you prepare the world transformation matrix, call the
IDirect3DDevice3::SetTransform method to set it, specifying the
D3DTRANSFORMSTATE_WORLD flag in the first parameter. For more
information, see Setting Transformations.

Performance Optimization
Direct3D uses the world and view matrices that you set through
IDirect3DDevice3::SetTransform to configure several of its internal data
structures. Each time you set a new world or view matrix, the system
recalculates the associated internal structures. Setting these matrices frequently
—for example, thousands of times per frame—is computationally expensive.
You can minimize the number of required calculations by concatenating your
world and view matrices into a proverbial "world-view" matrix that you set as
the world matrix, then set the view matrix to the identity. Keep cached copies of
individual world and view matrices that you can modify, concatenate, and reset
the world matrix as needed. (For clarity, Direct3D samples rarely employ this
optimization.)

in.doc – page 158

The View Transformation
[This is preliminary documentation and subject to change.]

This section introduces the basic concepts of the view transformation and provides
details on how you can set up a view transformation matrix in a Direct3D
application. This information is organized into the following topics:

· What Is the View Transformation?
· Setting Up a View Matrix

What Is the View Transformation?
[This is preliminary documentation and subject to change.]

The view transformation locates the viewer in world space, transforming vertices
into camera space. In camera space, the camera (or "viewer") is at the origin, looking
in the positive z-direction. (Recall that Direct3D uses a left-handed coordinate
system, so z is positive into a scene.) The view matrix relocates the objects in the
world around a camera's position (the origin of camera space) and orientation.

There are many ways to create a view matrix. In all cases, the camera has some
logical position and orientation in world space that is used as a starting point to
create a view matrix that will be applied to the models in a scene. The view matrix
translates and rotates objects to place them in camera space, where the camera is at
the origin. One way to create a view matrix is to combine a translation matrix with
rotation matrices for each axis. In this approach, the following general matrix
formula applies:

V T R R Rz y x

In this formula, V is the view matrix being created, T is a translation matrix that
repositions objects in the world, and Rx through Rz are rotation matrices that rotate
objects along the x-, y-, and z-axis. The translation and rotation matrices are based
on the camera's logical position and orientation in world space. So, if the camera's
logical position in the world <10,20,100>, the aim of the translation matrix is to
move objects -10 units along the x-axis, -20 units along the y-axis, and -100 along
the z-axis. The rotation matrices in the formula are based on the camera's
orientation, in terms of how the much the axes of camera space are rotated out of
alignment with world space. For example, if the camera mentioned earlier is
pointing straight down, its z-axis is 90 degrees (pi/2 radians) out of alignment with
the z-axis of world space, as shown in the following illustration.

in.doc – page 159

Y w

Z w

X w

Z c

Y c

X c

The rotation matrices apply rotations of equal, but opposite, magnitude to the models
in the scene. The view matrix for this camera would include a rotation of -90 degrees
around the x-axis. The rotation matrix is combined with the translation matrix to
create a view matrix that adjusts the position and orientation of the objects in the
scene so that their top is facing toward the camera, giving the appearance that the
camera is above the model.

Another approach involves creating the composite view matrix directly. (The
D3DUTIL_SetViewMatrix helper function in the D3dutil.cpp source file uses this
technique). This approach uses the camera's world space position and a "look-at
point" within the scene to derive vectors that describe the orientation of the camera
space coordinate axes. The camera position is subtracted from the look-at point to
produce a vector for the camera's direction vector (vector n). Then the cross product
of the vector n and the y-axis of world space is taken and normalized to produce a
"right" vector (vector u). Next, the cross product of the vectors u and n is taken to
determine an "up" vector (vector v). The right (u), up (v), and view-direction (n)
vectors describe the orientation of the coordinate axes for camera space in terms of
world space. The x, y, and z translation factors are computed by taking the negative
of the dot product between the camera position and the u, v, and n vectors.

These values are put into the following matrix to produce the view matrix:

u v n
u v n
u v n
u c v c n c

x x x

y y y

z z z

0
0
0
1

In this matrix, u, v, and n are the up, right and view-direction vectors, and c is the
camera's world space position. This matrix contains all the elements needed to
translate and rotate vertices from world space to camera space. After creating this
matrix, you can also apply a matrix for rotation around the z-axis to allow the
camera to roll.

For information on implementing this technique, see Setting Up a View Matrix.

in.doc – page 160

Setting Up a View Matrix
[This is preliminary documentation and subject to change.]

The D3DUtil_SetViewMatrix helper function, from the D3dutil.cpp source file that
is included with this SDK, creates a view matrix based on the camera location and a
look-at point passed to it. It uses the Magnitude, CrossProduct, and DotProduct
D3D_OVERLOADS helper functions.

HRESULT D3DUtil_SetViewMatrix(D3DMATRIX& mat, D3DVECTOR& vFrom,
 D3DVECTOR& vAt, D3DVECTOR& vWorldUp)
{
 // Get the z basis vector, which points straight ahead. This is the
 // difference from the eyepoint to the lookat point.
 D3DVECTOR vView = vAt - vFrom;

 FLOAT fLength = Magnitude(vView);
 if(fLength < 1e-6f)
 return E_INVALIDARG;

 // Normalize the z basis vector
 vView /= fLength;

 // Get the dot product, and calculate the projection of the z basis
 // vector onto the up vector. The projection is the y basis vector.
 FLOAT fDotProduct = DotProduct(vWorldUp, vView);

 D3DVECTOR vUp = vWorldUp - fDotProduct * vView;

 // If this vector has near-zero length because the input specified a
 // bogus up vector, let's try a default up vector
 if(1e-6f > (fLength = Magnitude(vUp)))
 {
 vUp = D3DVECTOR(0.0f, 1.0f, 0.0f) - vView.y * vView;

 // If we still have near-zero length, resort to a different axis.
 if(1e-6f > (fLength = Magnitude(vUp)))
 {
 vUp = D3DVECTOR(0.0f, 0.0f, 1.0f) - vView.z * vView;

 if(1e-6f > (fLength = Magnitude(vUp)))
 return E_INVALIDARG;
 }
 }

 // Normalize the y basis vector
 vUp /= fLength;

in.doc – page 161

 // The x basis vector is found simply with the cross product of the y
 // and z basis vectors
 D3DVECTOR vRight = CrossProduct(vUp, vView);

 // Start building the matrix. The first three rows contains the basis
 // vectors used to rotate the view to point at the lookat point
 D3DUtil_SetIdentityMatrix(mat);
 mat._11 = vRight.x; mat._12 = vUp.x; mat._13 = vView.x;
 mat._21 = vRight.y; mat._22 = vUp.y; mat._23 = vView.y;
 mat._31 = vRight.z; mat._32 = vUp.z; mat._33 = vView.z;

 // Do the translation values (rotations are still about the eyepoint)
 mat._41 = - DotProduct(vFrom, vRight);
 mat._42 = - DotProduct(vFrom, vUp);
 mat._43 = - DotProduct(vFrom, vView);

 return S_OK;
}

As with the world transformation, you call the IDirect3DDevice3::SetTransform
method to set the view transformation, specifying the
D3DTRANSFORMSTATE_VIEW flag in the first parameter. See Setting
Transformations, for more information.

Performance Optimization
Direct3D uses the world and view matrices that you set through
IDirect3DDevice3::SetTransform to configure several of its internal data
structures. Each time you set a new world or view matrix, the system
recalculates the associated internal structures. Setting these matrices frequently
— for example, 20000 times per frame — is computationally expensive. You
can minimize the number of required calculations by concatenating your world
and view matrices into a proverbial "world-view" matrix that you set as the
world matrix, then set the view matrix to the identity. Keep cached copies of
individual world and view matrices that you can modify, concatenate, and reset
the world matrix as needed. (For clarity, Direct3D samples rarely employ this
optimization.)

The Projection Transformation
[This is preliminary documentation and subject to change.]

You can think of the projection transformation as controlling the camera's internals;
it is analogous to choosing a lens for the camera. This is the most complicated of the
three transformation types. This discussion of the projection transformation is
organized into the following topics:

in.doc – page 162

· The Viewing Frustum
· What Is the Projection Transformation?
· Setting Up a Projection Matrix
· A "W-Friendly" Projection Matrix

The Viewing Frustum
[This is preliminary documentation and subject to change.]

A viewing frustum is 3-D volume in a scene positioned relative to the viewport's
camera. The shape of the volume affects how models are projected from camera
space onto the screen. The most common type of projection, a perspective
projection, is responsible for making objects near the camera appear bigger than
objects in the distance. For perspective viewing, the viewing frustum can be
visualized as a pyramid, with the camera positioned at the tip. This pyramid is
intersected by a front and back clipping plane. The volume within the pyramid
between the front and back clipping planes is the viewing frustum. Objects are
visible only when they are in this volume.

Front Clipping
Plane

Back Clipping
Plane

Viewing Frustum

If you imagine that you are standing in a dark room and looking out through a square
window, you are visualizing a viewing frustum. In this analogy, the near-clipping
plane is the window, and the back clipping plane is whatever finally interrupts your
view—the skyscraper across the street, the mountains in the distance, or nothing at
all. You can see everything inside the truncated pyramid that starts at the window
and ends with whatever interrupts your view, and you can see nothing else.

The viewing frustum is defined by fov (field of view) and by the distances of the
front and back clipping planes, specified in z-coordinates.

in.doc – page 163

Camera position

fov/2

Z front

Z

Y D

Z back

In this illustration, the variable D is the distance from the camera to the origin of the
space that was defined in the last part of the geometry pipeline—the viewing
transformation. This is the space around which you arrange the limits of your
viewing frustum. For information about how this D variable is used to build the
projection matrix, see What Is the Projection Transformation?

What Is the Projection Transformation?
[This is preliminary documentation and subject to change.]

The projection matrix is typically a scale and perspective projection. The projection
transformation converts the viewing frustum into a cuboid shape. Because the near
end of the viewing frustum is smaller than the far end, this has the effect of
expanding objects that are near to the camera; this is how perspective is applied to
the scene.

In The Viewing Frustum, the distance between the camera required by the projection
transformation and the origin of the space defined by the viewing transformation is
defined as D. A beginning for a matrix defining the perspective projection might use
this D variable like this:

1 0 0 0
0 1 0 0
0 0 1 1

0 0 0 1
D

The viewing matrix puts the camera at the origin of the scene. Since the projection
matrix needs to have the camera at (0, 0, -D), it translates the vector by -D in the z-
direction, by using the following matrix:

in.doc – page 164

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

D

Multiplying these two matrices gives the following composite matrix:

1 0 0 0
0 1 0 0
0 0 1 1

0 0 0
D

D

The following illustration shows how the perspective transformation converts a
viewing frustum into a new coordinate space. Notice that the frustum becomes
cuboid and also that the origin moves from the upper-right corner of the scene to the
center.

X

Y

(-1,-1,0)

Z

(1,1,1)

X

Y Z

Camera position

Viewing
frustum

In the perspective transformation, the limits of the x- and y-directions are -1 and 1.
The limits of the z-direction are 0 for the front plane and 1 for the back plane.

This matrix translates and scales objects based on a specified distance from the
camera to the near clipping plane, but it doesn't consider the field-of-view (fov), and
the z-values that it produces for objects in the distance can be nearly identical,
making depth comparisons difficult. The following matrix addresses these issues,
and adjusts vertices to account for the aspect ratio of the viewport, making it a good
choice for the perspective projection:

w
h

Q 1
QZ n

0 0 0
0 0 0
0 0
0 0 0

in.doc – page 165

In this matrix, Zn is the z-value of the near clipping plane. The variables w, h, and Q
have the following meanings (noting that fovw and fovh represent the viewport's
horizontal and vertical fields-of-view, in radians):

w fov

h fov

Q
Z

Z Z

w

h

f

f n

cot

cot

2

2

For your application, using field-of-view angles to define the x and y scaling
coefficients might not be as convenient as using the viewport's horizontal and
vertical dimensions (in camera space). As the math works-out, the following two
formulas for w and h use the viewport's dimensions, and are equivalent to the
preceding formulas:

w
Z

V

h
Z

V

n

w

n

h

2

2

In these formulas, Zn represents the position of the near clipping plane, and the Vw
and Vh variables represent the width and height of the viewport, in camera space.
The two dimensions correspond directly to the dwWidth and dwHeight members of
the D3DVIEWPORT2 structure.

Whatever formula you decide to use, it's important that you set Zn to as large a value
as you can, as z-values extremely close to the camera don't vary by much, making
depth comparisons using 16-bit z-buffers tricky. In Direct3D, the (3,4) element of
the projection matrix cannot be a negative number.

As with the world and view transformations, you call the
IDirect3DDevice3::SetTransform method to set the projection transformation; for
more information, see Setting Transformations.

Setting Up a Projection Matrix
[This is preliminary documentation and subject to change.]

The following ProjectionMatrix sample function takes four input parameters that
set the front and back clipping planes, as well as the horizontal and vertical field of
view angles. (This code parallels the approach discussed in What Is the Projection
Transformation?.) The fields-of-view should be less than pi radians.

D3DMATRIX

in.doc – page 166

ProjectionMatrix(const float near_plane,
 // distance to near clipping plane
 const float far_plane,
 // distance to far clipping plane
 const float fov_horiz,
 // horizontal field of view angle, in radians
 const float fov_vert)
 // vertical field of view angle, in radians
{
 float h, w, Q;

 w = (float)cot(fov_horiz*0.5);
 h = (float)cot(fov_vert*0.5);
 Q = far_plane/(far_plane - near_plane);

 D3DMATRIX ret = ZeroMatrix();
 ret(0, 0) = w;
 ret(1, 1) = h;
 ret(2, 2) = Q;
 ret(3, 2) = -Q*near_plane;
 ret(2, 3) = 1;
 return ret;
} // end of ProjectionMatrix()

When you have created the matrix, you need set it in a call to the
IDirect3DDevice3::SetTransform method, specifying
D3DTRANSFORMSTATE_PROJECTION in the first parameter. For details, see
Setting Transformations.

A W-Friendly Projection Matrix
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode can utilize the W component of a vertex that has been
transformed by the world, view, and projection matrices to perform depth-based
calculations in depth-buffer or fog effects. Computations such as these require that
your projection matrix normalize W to be equivalent to world-space Z. In short, if
your projection matrix includes a (3,4) coefficient that is not 1, you must scale all
the coefficients by the inverse of the (3,4) coefficient to make a proper matrix. If you
don't provide a compliant matrix, fog effects and depth buffering will not be applied
correctly. (The projection matrix recommended in What Is the Projection
Transformation? is compliant with w-based calculations.)

The following illustration shows a non-compliant projection matrix, and the same
matrix scaled so that eye-relative fog will be enabled.

in.doc – page 167

Non-compliant Compliant

a 0 0 0

0 00b
0 ec0

0 0d0

 d

e0 0 0

c
e0 0 1

a
e 0 0 0

e
b0 0 0

In the preceding matrices, all variables are assumed to be nonzero. For more
information about eye-relative fog, see Eye-Relative vs. Z-based Depth. For
information about w-based depth buffering, see What Are Depth Buffers?

Note
Direct3D uses the currently set projection matrix in its w-based depth
calculations. As a result, applications must set a compliant projection matrix to
receive the desired w-based features, even if they do not use the Direct3D
transformation pipeline.

Viewports and Clipping
[This is preliminary documentation and subject to change.]

This section discusses the last stage of the geometry pipeline: clipping. The
discussion is organized into the following topics:

· What Is a Viewport?
· Clipping Volumes
· Viewport Scaling
· Using Viewports

Direct3D implements clipping by way of a COM object representing a viewport's
functionality and exposing interfaces to allow you to manipulate the object. The
IDirect3DViewport3 interface is the newest interface to the viewport object.

What Is a Viewport?
[This is preliminary documentation and subject to change.]

Conceptually, a viewport is a 2-D rectangle into which a three dimensional scene is
projected. (In Direct3D, the rectangle exists as coordinates within a DirectDraw
surface that the system uses as a rendering target.) The projection transformation
converts vertices into the coordinate system used for the viewport.

You use a viewport in Direct3D to specify the following features in your application:

· The screen-space viewport to which the rendering will be confined.
· The background material. The viewport can be cleared to this material color.

in.doc – page 168

· The background depth buffer used to initialize the z-buffer before rendering the
scene.

· The post-transformation clip volume, the contents of which will be mapped into
the viewport. (This is also known as the "window" in a "window-to-viewport
transformation," in standard computer-graphics terminology.)

The clipping volume is the area that defines the part of your scene that will appear
on the render target surface. If the viewport you choose is small enough so that parts
of your scene will not be visible, you should clip the parts that will be off of the
screen so that the system will avoid the overhead of rendering those parts of the
scene. For more information, see Clipping Volumes.

Clipping Volumes
[This is preliminary documentation and subject to change.]

The following topics discuss the role and effects of the viewport clipping volume, as
well as some considerations that might apply to you, depending on the type of
vertices your application uses:

· About Clipping Volumes
· Considerations for Various Vertex Types

About Clipping Volumes
[This is preliminary documentation and subject to change.]

You define a clipping volume inside the coordinate system of the viewport. The best
way to define a clipping volume in Direct3D is by using the D3DVIEWPORT2
structure—the structure that is specified by the methods in IDirect3DViewport3.
(Another way is by using the D3DVIEWPORT structure. The D3DVIEWPORT2
structure enables a better clip-volume definition than D3DVIEWPORT and is
recommended for all DirectX 5.0 and newer applications.)

The dvClipX, dvClipY, dvClipWidth, and dvClipHeight members of the
D3DVIEWPORT2 structure specify the region inside of which vertices will be
visible. This region corresponds to the destination rectangle, specified by the dwX,
dwY, dwWidth, and dwHeight members of D3DVIEWPORT2.

Direct3D uses the values you set in the D3DVIEWPORT2 structure to construct a
matrix that it internally applies to all vertices before performing clipping tests. The
matrix looks like this:

in.doc – page 169

2
0 0 0

0
2

0 0

0 0
1

0

1 2 1 2 1

C

C

Z Z
C
C

C
C

Z
Z Z

w

h

x

w

y

h

max min

min

max min

In the preceding matrix all variables are taken directly from the D3DVIEWPORT2
structure: Cx and Cy are the values in the dvClipX and dvClipY members, Cw and Ch
are values in dvClipWidth and dvClipHeight, and the Zmin and Zmax variables are
values taken from the dvMinZ and dvMaxZ members. The matrix effectively scales
vertices according to the proportions of the clipping volume you define and
translates them to position them around the volume's origin.

The values produced by the clipping matrix are tested by using the following
formulas, and any vertices that fail the tests are clipped:

W X W
W Y
W Z W

c c c

c c

c c c

W c

In the preceding formulas, Xc, Yc, Zc, and Wc represent the vertex coordinates after
the clipping matrix is applied.

In most cases, you will define a clipping volume that extends from -1.0 to 1.0 in the
x- and y-directions, and 0.0 to 1.0 in the z-direction, and doesn't scale vertices. The
significant D3DVIEWPORT2 structure settings for such a volume are as follows:

dvClipX = -1.0;
dvClipY = 1.0;
dvClipWidth = 2.0;
dvClipHeight = 2.0;
dvMinZ = 0.0;
dvMaxZ = 1.0;

It is important that neither dvClipWidth nor dvClipHeight be zero. Also, dvMinZ
cannot equal dvMaxZ.

This clipping volume corresponds to the destination rectangle, as shown in the
following illustration.

in.doc – page 170

X

Y

(-1,-1,0)

Z

(1,1,1) dwX/dwY

dwWidth

dwHeight

DirectDraw
surface

The values you specify for the dwX, dwY, dwWidth, and dwHeight members of the
D3DVIEWPORT2 structure are screen coordinates relative to the upper-left corner
of the render target surface.

Considerations for Various Vertex Types
[This is preliminary documentation and subject to change.]

If you are using D3DVERTEX or D3DLVERTEX vertices—that is, if Direct3D is
performing the transformations—you might want to set the last six members of this
structure as follows:

 dvClipX = -1.0f;
 dvClipY = 1.0f;
 dvClipWidth = 2.0f;
 dvClipHeight = 2.0f;
 dvMinZ = 0.0f;
 dvMaxZ = 1.0f;

Note that setting the viewport values as shown in the preceding example doesn't
account for the viewport aspect ratio. Although it's not uncommon to use viewport
parameters for aspect ratio scaling, the projection matrix is a more accurate, more
flexible, and cleaner platform for the task. For more information about accounting
for the viewport aspect ratio in the projection matrix, see What Is the Projection
Transformation?

If you are using D3DTLVERTEX vertices — that is, if your application is
calculating the transformations and lighting — you can set up the clip space however
is best for your application. If the x- and y-coordinates in your data already match
pixels, you could set the last six members of D3DVIEWPORT2 as follows:

 dvClipX = 0;
 dvClipY = 0;
 dvClipWidth = dwWidth;
 dvClipHeight = dwHeight;
 dvMinZ = 0.0f;

in.doc – page 171

 dvMaxZ = 1.0f;

You can use the rectangle defined by the dwX, dwY, dwWidth, and dwHeight
members of the D3DVIEWPORT2 structure to clip your geometry. Although the
clipping members (their names begin with "dvClip") in D3DVIEWPORT2 are
ignored when you use D3DTLVERTEX vertices, the system still validates them, so
you must provide reasonable values for them. If you don’t need this clipping, you
can specify D3DDP_DONOTCLIP in your calls to
IDirect3DDevice3::DrawPrimitive or IDirect3DDevice3::DrawIndexedPrimitive.

Viewport Scaling
[This is preliminary documentation and subject to change.]

The dimensions used in the dwX, dwY, dwWidth, and dwHeight members of the
D3DVIEWPORT2 structure for a viewport define the location and dimensions of
the viewport on the render target surface. These values are in screen coordinates,
relative to the upper-left corner of the surface.

Direct3D uses the viewport location and dimensions to scale the vertices to fit a
rendered scene into the appropriate location on the target surface. Internally,
Direct3D inserts these values into a matrix that is applied to each vertex:

dwWidth
dwHeight

dwX dwHeight dwY

0 0 0
0 0 0
0 0 1 0

0 1

This matrix simply scales vertices according to the viewport dimensions and
translates them to the appropriate location on the render target surface. (The matrix
also "flips" the y-coordinate to reflect a screen origin at the top-left corner with y
increasing downward.) After this matrix is applied, vertices are still homogeneous —
that is, they still exist as [x,y,z,w] vertices — and they must be converted to non-
homogeneous coordinates before being sent to the rasterizer. This is performed by
way of simple division, as discussed in The Rasterizer.

Using Viewports
[This is preliminary documentation and subject to change.]

This section provides details about creating, working with, and deleting viewports.
Information is divided into the following topics:

· Preparing to Use a Viewport
· Creating a Viewport
· Adding a Viewport to a Device
· Setting the Viewport Clipping Volume

in.doc – page 172

· Deleting a Viewport
· Clearing a Viewport
· Manually Transforming Vertices

Preparing to Use a Viewport
[This is preliminary documentation and subject to change.]

Û To set up a viewport in Direct3D
1. Create a viewport object.

Creating the viewport causes Direct3D to allocate internal data structures that
contain the viewport's properties. For more information, see Creating a
Viewport.

2. Add the viewport to a device.
This creates an association between a viewport and a device; the device adds the
viewport to an internal list of viewports. You can switch the current viewport by
calling the IDirect3DDevice3::NextViewport method for that device. For more
information about this step, see Adding a Viewport to a Device.

3. Set the viewport properties.
After adding the viewport to a device, you can set its properties. The viewport
properties control how Direct3D clips objects from a scene and determine the
aspect ratio of the scene rendered to the target surface.

When you're finished working with the viewport, you can delete it from the device's
viewport list. For more information, see Deleting a Viewport.

Creating a Viewport
[This is preliminary documentation and subject to change.]

Call the IDirect3D3::CreateViewport method to create the viewport object. For this
you need a valid LPDIRECT3D3 pointer, shown in the following example as
lpD3D2:

 HRESULT hr;

 hr = lpD3D3->CreateViewport(&lpD3DViewport3, NULL);

 if(FAILED(hr))
 return hr;
 else
 {
 // Add the viewport to a device.
 }

After creating a viewport, you can add it to an existing device. For more
information, see Adding a Viewport to a Device.

in.doc – page 173

Adding a Viewport to a Device
[This is preliminary documentation and subject to change.]

After creating a viewport, you can call the IDirect3DDevice3::AddViewport
method to add it to the device's viewport list. The following example shows what
this call might look like:

 HRESULT hr;

 // lpD3DDevice3 is a valid pointer to a Direct3D
 // device object.
 hr = lpD3DDevice3->AddViewport(lpD3DViewport3);

 if(FAILED(hr))
 return hr;
 else
 {
 // Set the viewport properties.
 }

Once you've added the viewport to the device, you can set the viewport clipping
volume. For more information, see Setting the Viewport Clipping Volume.

Setting the Viewport Clipping Volume
[This is preliminary documentation and subject to change.]

After you add a viewport to a device, you can set the viewport's clipping volume. To
do this, you initialize and set clipping values for the clipping volume and for the
render target surface. Viewports are commonly set up to render to the full surface
and to compensate for the aspect ratio. You could use the following settings for the
members of the D3DVIEWPORT2 structure to achieve this:

 memset(&viewData, 0, sizeof(D3DVIEWPORT2));
 viewData.dwSize = sizeof(D3DVIEWPORT2);
 viewData.dwX = 0;
 viewData.dwY = 0;
 viewData.dwWidth = width;
 viewData.dwHeight = height;
 viewData.dvClipX = -1.0f;
 viewData.dvClipY = 1.0;
 viewData.dvClipWidth = 2.0f;
 viewData.dvClipHeight = 2.0f;
 viewData.dvMinZ = 0.0f; // This must be different than dvMaxZ
 viewData.dvMaxZ = 1.0f; // This must be different than dvMinZ

in.doc – page 174

After setting values in the D3DVIEWPORT2 structure, you apply the structure to
the viewport object by calling its IDirect3DViewport3::SetViewport2 method. The
following examples shows what this call might look like:

 HRESULT hr;

 hr = lpD3DViewport3->SetViewport2(&viewData);
 if(FAILED(hr))
 return hr;

If the call succeeds, you have a working viewport. If you need to make changes to
the viewport values, simply update the values in the D3DVIEWPORT2 structure
and call SetViewport2 again.

The IDirect3DViewport3 interface has two ways of specifying a viewport clipping
volume. For more information, see Clipping Volumes.

Deleting a Viewport
[This is preliminary documentation and subject to change.]

When you no longer need to use a viewport with a given device, first delete any
lights and materials associated with it and then remove it from the device's viewport
list by calling the IDirect3DDevice3::DeleteViewport method. DeleteViewport
accepts the address of an IDirect3DViewport3 interface as its only parameter. (If
you're using execute buffers, you will be calling the
IDirect3DDevice::DeleteViewport method, which accepts the address of an
IDirect3DViewport interface.)

Deleting a viewport only removes it from a device's viewport list; it doesn't free the
resources allocated for the viewport object itself. To completely get rid of a
viewport, you must release it by calling its IUnknown::Release method.

Clearing a Viewport
[This is preliminary documentation and subject to change.]

Clearing a viewport resets the contents of the viewport rectangle on the render target
surface as well as the rectangle in the depth and stencil buffer surfaces (if specified).
Typically, you will clear the viewport before rendering a new frame to ensure that
graphics and other data is ready to accept new rendered objects without displaying
artifacts.

The IDirect3DViewport3 interface offers the IDirect3DViewport3::Clear and
IDirect3DViewport3::Clear2 methods that provide various ways to clear the
viewport. Both of the clearing methods accept one or more rectangles that define the
area or areas on the surfaces being cleared. In cases where the scene being rendered
includes motion throughout the entire viewport rectangle — in a first-person
perspective game, perhaps — you might want to clear the entire viewport each
frame. In this situation, you would set the dwCount parameter to 1, and the lpRects
parameter to the address of a single rectangle that covers the entire viewport area.

in.doc – page 175

Note
DirectX 5.0 allowed background materials to have associated textures, making it
possible to clear the viewport to a texture, rather than a simple color. This
feature was little used, and not particularly efficient. Interfaces added for
DirectX 6.0 do not accept texture handles, meaning that you can no longer clear
the viewport to a texture. Rather, applications must now draw backgrounds
manually. As a result, there is rarely a need to clear the viewport on the render
target surface. So long as your application clears the depth buffer, all pixels on
the render target surface will be overwritten anyway.

In some situations, you might only be rendering to small portions of the render target
and depth buffer surfaces. The clear methods also allow you to clear multiple areas
of your surfaces in a single call. Do this by setting the dwCount parameter to the
number of rectangles you want cleared, and specify the address of the first rectangle
in an array of rectangles in the lpRects parameter.

The clearing methods have differing features and behavior. The
IDirect3DViewport3::Clear method can clear the viewport using the color of the
background material if you specify the D3DCLEAR_TARGET flag in the dwFlags
parameter, and it can clear the z-buffer to the "deepest" value (1.0) if you include the
D3DCLEAR_ZBUFFER flag. The method requires that you set a background
material by calling the IDirect3DViewport3::SetBackground method. The Clear
method is incapable of clearing stencil buffers.

The IDirect3DViewport3::Clear2 method was introduced to provide more
flexibility and ease-of-use than the Clear method, and to provide support for
clearing stencil bits within a depth buffer. Clear2 accepts the same two flags in the
dwFlags parameter as its ancestor, but with slightly different results, and it adds one
new flag to support stencils. If you include the D3DCLEAR_TARGET flag, the
method clears the viewport using an arbitrary RGBA color that you provide in the
dwColor parameter (not the material color). If you include the
D3DCLEAR_ZBUFFER flag, the method clears the depth buffer to an arbitrary
depth you specify in dvZ: 0.0 is the closest distance, and 1.0 is the farthest. Including
the new D3DCLEAR_STENCIL flag causes the method to reset the stencil bits to
the value you provide in the dwStencil parameter. You can use integers that range
from 0 to 2n-1, where n is the stencil buffer bit depth.

Manually Transforming Vertices
[This is preliminary documentation and subject to change.]

You can use three different kinds of vertices in your Direct3D application. Read
Vertex Formats for more details on the vertex formats:

Untransformed, unlit vertices
Vertices that your application doesn’t light or transform. Applications that
neither transform nor light vertices before rendering a scene can use
D3DVERTEX vertices (or an equivalent flexible vertex format). Although you
specify lighting parameters and transformation matrices, Direct3D does the
math.

in.doc – page 176

Untransformed, lit vertices
Vertices that your application lights but does not transform. Applications that
use customized lighting effects might use D3DLVERTEX vertices (or an
equivalent flexible vertex format).

Transformed, lit, vertices
Vertices that your application both lights and transforms. Applications that
transform and light vertices on their own might use D3DTLVERTEX vertices
(or an equivalent flexible vertex format). These vertices skip the transformations
in the geometry pipeline altogether but they can be clipped by the system if
needed. If your application clips vertices itself, you can get the best performance
by specifying the D3DDP_DONOTCLIP flag when calling a rendering method.
If you want Direct3D to clip vertices, omit the D3DDP_DONOTCLIP flag. Note
that if you request Direct3D clipping on transformed and lit vertices, the system
back-transforms them to camera space for clipping, then transforms them back
to screen space, incurring processing overhead.

Direct3D includes two ways to change from simple to complex vertex types: the
TransformVertices method that has been available since Direct3D was created, and
vertex buffers, introduced in DirectX 6.0. The latter is the most efficient method, as
vertex buffers are optimized to exploit processor specific features.

Using TransformVertices

You can use the IDirect3DViewport3::TransformVertices method to transform
either the D3DVERTEX and D3DLVERTEX vertex types into screen coordinates,
which are represented by D3DTLVERTEX vertices.

TransformVertices uses the current matrix (that you set with a call to the
IDirect3DDevice3::SetTransform method) to perform the transformation. You
might call TransformVertices if you want to transform but not necessarily render a
set of vertices; for example, you might provide two vertices that define the opposite
corners of a bounding box. If both vertices are clipped, you could forgo any further
processing for that model.

The TransformVertices does not perform lighting. If you pass D3DVERTEX
vertices, the resulting D3DTLVERTEX vertices will not have valid diffuse and
specular components. Likewise, if you pass D3DLVERTEX vertices, the diffuse and
specular components you provide with each vertex will be unchanged after
TransformVertices returns.

Although managing the transformations yourself can be faster than calling the
IDirect3DViewport3::TransformVertices method, implementing your own
transformation engine can be time consuming, and TransformVertices is reasonably
fast. If you need more control over the geometry pipeline than you get when using
D3DVERTEX or D3DLVERTEX vertices, but you don’t want to develop your own
transformation engine, calling TransformVertices is a good compromise.

Note
Applications often use TransformVertices to perform visibility checking,
because the call returns clipping information in the associated

in.doc – page 177

D3DTRANSFORMDATA structure. Although accurate, visibility checking is
best performed by calling the IDirect3DDevice3::ComputeSphereVisibility
method, which was specially designed and optimized for this purpose.

Using Vertex Buffers

Vertex buffers are objects used to efficiently contain and process batches of vertices
for rapid rendering. Vertex buffers offer the
IDirect3DVertexBuffer::ProcessVertices method to perform vertex
transformations for you; this is usually much faster than the TransformVertices
method. The ProcessVertices method accepts only untransformed vertices, and can
optionally light and clip vertices as well. Lighting is performed at the time you call
ProcessVertices, but clipping is actually performed at render time.

After processing the vertices, you can use special rendering methods to render the
vertices, or you can access them directly by locking the vertex buffer memory. For
more information about using vertex buffers, see Vertex Buffers.

The Rasterizer
[This is preliminary documentation and subject to change.]

After passing through the Direct3D geometry pipeline, vertices have been
transformed, clipped, and scaled to fit in the viewport render-target surface, making
them almost ready to be sent to the rasterizer to be painted on the screen. However,
the vertices are still homogeneous, and the rasterizer expects to receive vertices in
terms of their x-, y-, and z-locations, as well as the reciprocal-of-homogeneous-w
(RHW). Direct3D converts the homogeneous vertices to non-homogeneous vertices
by dividing the x-, y-, and z-coordinates by the w-coordinate, and produces an RHW
value by inverting the w-coordinate, as in the following formulas:

X x
w

Y y
w

Z z
w

RHW w

s

s

s

 1

The resulting values are passed to the rasterizer for display. The rasterizer uses the x-
and y-coordinates as the screen coordinates for the vertex, and uses the z-coordinate
for depth comparisons in the depth buffer, when z-buffering is enabled. The RHW
value is used in multiple ways: for calculating fog, for performing perspective-
correct texture mapping, and for w-buffering (an alternate form of depth buffering).

in.doc – page 178

Lighting and Materials
[This is preliminary documentation and subject to change.]

This section describes illumination in Direct3D Immediate Mode scenes, using
ambient light, light objects, and materials. The following topics are discussed:

· Introduction to Lighting and Materials
Describes, in general terms, the roles of lights and materials in a Direct3D
Immediate Mode scene.

· The Direct3D Light Model vs. Nature
Describes the Direct3D illumination model in more detail, and contrasts it from
the behavior of light in the natural world.

· Color Values for Lights and Materials
Describes the RGBA color values used with both lights and materials in
Direct3D Immediate Mode.

· Direct Light vs. Ambient Light
Compares and contrasts the roles of true light sources and ambient light levels.

· Enabling and Disabling the Lighting Engine
Describes how to enable or disable the Direct3D lighting engine.

· Lights
Describes Direct3D light objects and provides information on how to use them
in a scene.

· Materials
Describes materials in Direct3D Immediate Mode and provides information
about how to use them in a scene.

· The Mathematics of Direct3D Lighting
Provides details about the math behind the Direct3D light model.

Introduction to Lighting and Materials
[This is preliminary documentation and subject to change.]

When lighting is enabled, as Direct3D rasterizes a scene in the final stage of
rendering, it determines the color of each rendered pixel based on a combination of
the current material color (and the texels in an associated texture map), the diffuse
and specular colors at the vertex, if specified, as well as the color and intensity of
light produced by light objects in the scene or the scene's ambient light level. When
you use Direct3D lighting and materials, you are allowing Direct3D to handle the
details of illumination for you, but advanced users can perform lighting on their own
if necessary.

How you work with lighting and materials makes a huge difference in the
appearance of the rendered scene. Materials define how light reflects off of a

in.doc – page 179

surface. Direct light and ambient light levels define the light that is being reflected.
You must use materials to render a scene if you are letting Direct3D handle lighting.
Lights are not actually required to render a scene, but you'll be hard pressed to see
much in a scene rendered without light. At best, rendering an unlit scene will result
in a silhouette of the objects in the scene—not enough detail for most purposes.

The Direct3D Light Model vs. Nature
[This is preliminary documentation and subject to change.]

In nature, when light is emitted from a source, it reflects off hundreds (if not
thousands or millions) of objects before reaching the viewer's eye. Each time it
reflects, parts of the light are absorbed by a surface, parts are scattered in random
directions, and the rest goes on to another surface or to the viewer. This process
continues until the light attenuates to nothing or a viewer perceives the light — but,
who knows how many times the light will bounce? It could be once, a hundred
times, or millions of times.

Obviously, the calculations required to perfectly simulate the natural behavior of
light are, by far, too time consuming to be used for real-time 3-D graphics.
Therefore, with the interest of speed in mind, the Direct3D light model approximates
the way light works in the natural world. Direct3D describes light in terms of red,
green, and blue components that combine to create a final color. For more
information, see Color Values for Lights and Materials. In Direct3D, when light
reflects off a surface, the light color interacts mathematically with the surface itself
to create the color eventually drawn to the screen. For specific information about the
algorithms Direct3D uses, see The Mathematics of Direct3D Lighting.

The Direct3D Immediate Mode light model generalizes light into two types: ambient
light and direct light. Each has different attributes, and each interacts with the
material of a surface in different ways. Ambient light is light that has been scattered
so much that its direction and source are indeterminate: it maintains a low-level of
intensity everywhere. The indirect lighting used by photographers is a good example
of ambient light. Ambient light in Direct3D, as in nature, has no real direction or
source, only a color and intensity. In fact, the ambient light level is completely
independent of any objects in a scene that generate light. Ambient light does not
contribute to specular reflection.

Direct light is the light generated by an object in a scene; it always has color and
intensity, and travels in a specified direction. Direct light interacts with the material
of a surface to create specular highlights, and its direction is used as a factor in
shading algorithms, including Gouraud shading. When direct light is reflected, it
does not contribute to the ambient light level in a scene. The objects in a scene that
generate direct light (referred to as "lights" or "light objects") have different
characteristics that affect how they illuminate a scene. For more information, see
Lights.

Additionally, a polygon's material has properties that affect how that polygon
reflects the light it receives. You set a single reflectance trait that describes how the

in.doc – page 180

material reflects ambient light, and you set individual traits to determine the
material's specular and diffuse reflectance. For more information, see Materials.

Color Values for Lights and Materials
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode describes color in terms the four components (red, green,
blue, and alpha) that combine to make a final color. The D3DCOLORVALUE
structure is defined to contain values for each component. Each member is a floating
point value that typically ranges from 0.0 to 1.0, inclusive. Although both lights and
materials use the same structure to describe color, the values within the structure are
used a little differently by each.

Color values for light objects represent the amount of a particular light component it
emits. Lights don't use an alpha component, so you only need to think about the red,
green, and blue components of the color. You can visualize the three components as
the red, green, and blue lenses on a projection television. Each lens might be off (a
0.0 value in the appropriate D3DCOLORVALUE structure member), it might be as
bright as possible (a 1.0 value), or some level in between. The colors coming from
each lens combine to make the light's final color. A combination like R: 1.0, G: 1.0,
B: 1.0 creates a white light, where R: 0.0, G: 0.0, B: 0.0 results in a light that doesn't
emit light at all. You can make a light that emits only one component, resulting in a
purely red, green, or blue light, or, the light could use combinations to emit colors
like yellow or purple. You can even set negative values color component values to
create a "dark light" that actually removes light from a scene. Or, you might set the
components to some value larger than 1.0 to create an extremely bright light.

With materials, on the other hand, color values represent how much of a given light
component is reflected by a surface that uses that material. A material whose color
components are R: 1.0, G: 1.0, B: 1.0, A: 1.0 will reflect all the light that comes its
way. Likewise, a material with R: 0.0, G: 1.0, B: 0.0, A: 1.0 will reflect all of the
green light that is directed at it. Materials have multiple reflectance values to create
various types of effects; for more information, see Material Properties.

Color values for ambient light are different than those used for light objects and
materials. For more information, see Direct Light vs. Ambient Light.

Direct Light vs. Ambient Light
[This is preliminary documentation and subject to change.]

Although both direct and ambient light illuminate objects in a scene, they are
independent of one another, they have very different effects, and they require that
you work with them in completely different ways.

Direct light is just that: direct. Direct light always has direction and color, it is
always emitted by an object within a scene, and it is a factor for shading algorithms,
such as Gouraud shading. Different types of light objects emit direct light in
different ways, creating special attenuation effects. You create lights by calling the

in.doc – page 181

IDirect3D3::CreateLight method, set their properties with the
IDirect3DLight::SetLight method, and add them to a scene by calling the
IDirect3DViewport3::AddLight method.

Ambient light is effectively everywhere in a scene. You can think of it as a general
level of light that fills an entire scene, regardless of the objects and their locations
within that scene. Ambient light, being everywhere, has no position or direction,
only color and intensity. Additionally, ambient light is not factored-in for shading
algorithms. If you're using the DrawPrimitive architecture to do your rendering, you
set the ambient light level with a single call to the
IDirect3DDevice3::SetLightState method, specifying
D3DLIGHTSTATE_AMBIENT as the dwLightStateType parameter, and the desired
RGBA color as the dwLightState parameter. If you're using execute buffers, you
must include the D3DOP_STATELIGHT opcode in the execute buffer, as well as the
D3DLIGHTSTATE_AMBIENT flag and color value in the accompanying
D3DSTATE structure.

Color values for ambient light are interpreted the same way for both the
DrawPrimitive and execute buffer architectures. Ambient light color takes the form
of an RGBA value, where each component is an integer value from 0 to 255. (This is
unlike most color values in Direct3D Immediate Mode. For more information, see
Color Values for Lights and Materials.) You can use the RGBA_MAKE macro to
generate RGBA values from integers. The red, green, and blue components combine
to make the final color of the ambient light. The alpha component controls the
transparency of the color. In ramp emulation, ambient light doesn't have color, so the
alpha component is used for brightness. When using hardware acceleration or RGB
emulation, the alpha component is ignored.

Enabling and Disabling the Lighting
Engine

[This is preliminary documentation and subject to change.]

Direct3D normally performs lighting calculations on any vertices that contain a
vertex normal. However, you can disable lighting for vertices that include normals
by using the D3DDP_DONOTLIGHT flag when you call DrawPrimitive-based
rendering methods.

If your application uses vertex buffers, include or omit the D3DVOP_LIGHT flag
when calling the IDirect3DVertexBuffer::ProcessVertices method to enable or
disable lighting for that vertex buffer.

If the rendering device does not have a material assigned to it, the Direct3D lighting
engine is disabled.

Lights
[This is preliminary documentation and subject to change.]

in.doc – page 182

Lights are used to illuminate objects in a scene. This section describes lights and
how they are used in Direct3D Immediate Mode. The following topics are discussed:

· Introduction to Light Objects
· Light Properties
· Using Lights

Introduction to Light Objects
[This is preliminary documentation and subject to change.]

Direct3D employs four types of lights: point lights, spotlights, directional lights, and
parallel-point lights. You choose the type of light you want when you set the light
properties after creating a light object. The illumination properties and the resulting
computational overhead varies with each type of light. The following light types,
supported in Direct3D, are discussed:

· Point lights
· Spotlights
· Directional lights
· Parallel-point lights

Do not confuse light objects with the concept of an ambient light level. For more
information, see Direct Light vs. Ambient Light, Light Properties and Using Lights.

Point Lights
[This is preliminary documentation and subject to change.]

Point lights have color and position within a scene, but no single direction. They
give off light equally in all directions, as shown in the following illustration.

A light bulb would be a good example of a point light. Point lights are affected by
attenuation and range, and illuminate a mesh on a vertex-by-vertex basis. During
lighting, Direct3D uses the point light's position in world space and the coordinates
of the vertex being lit to derive a vector for the direction of the light, and the
distance that the light has traveled. Both of these are used (along with the vertex
normal) to calculate the contribution of the light to the illumination of the surface.

in.doc – page 183

Spotlights
[This is preliminary documentation and subject to change.]

Spotlights have color, position, and direction in which they emit light. Light emitted
from a spotlight is made up of a bright inner cone, and a larger outer cone, with the
light intensity diminishing between the two, as shown in the following illustration,
along with the related members from the D3DLIGHT2 structure.

Inner Cone (dvTheta) Outer Cone (dvPhi)

Spotlights are affected by falloff, attenuation, and range. These factors, as well as the
distance light travels to each vertex, are figured in while computing lighting effects
for objects in a scene. Computing all these effects for each vertex makes spotlights
the most computationally expensive of all lights in Direct3D Immediate Mode.

Directional Lights
[This is preliminary documentation and subject to change.]

Directional lights have only color and direction, not position. They give off parallel
light, meaning that all light generated by it travels through scene in the same
direction. You can imagine a directional light as a light source at near infinite
distance, such as the sun. Directional lights are not affected by attenuation or range,
so the direction and color you specify are the only factors considered when Direct3D
calculates vertex colors. Because of the small number of illumination factors, these
are the least computationally intensive lights to use.

Parallel-Point lights
[This is preliminary documentation and subject to change.]

in.doc – page 184

Parallel-point lights have only color and position. They create lighting effects similar
to point lights but with less overhead, at the cost of some accuracy. As a result,
parallel-point lights are often a good choice when extremely accurate specular
highlights are not critical. Direct3D illuminates a mesh with a parallel-point light in
a manner similar to a point light, but uses a shortcut to increase performance. The
shortcut taken is in establishing a single direction for the light hitting all vertices in a
mesh, rather than calculating a new direction for each vertex like a point light. (The
direction that is used is the vector from the light’s position to the origin of the mesh.)
Because the light has the same direction for all vertices, it is considered parallel,
hence the name. Like directional lights, parallel-point lights are not affected by
range or attenuation.

Light Properties
[This is preliminary documentation and subject to change.]

Light properties describe a light object's type and color. Depending on the type of
light being used, a light can have properties for attenuation and range, or for
spotlight effects. But, not all types of lights will use all properties. Direct3D
Immediate Mode uses the D3DLIGHT2 structure to carry information about light
properties for all types of lights. This section contains information for all light
properties. Information is divided into the following groups:

· Light Type
· Light Color
· Light Position, Range and Attenuation
· Light Direction
· Spotlight Properties

Light properties affect how a light object illuminates objects in a scene. For more
information, see Using Lights, Setting Light Properties, and The Mathematics of
Direct3D Lighting.

Light Type
[This is preliminary documentation and subject to change.]

The light type property defines which type of Direct3D light object you're using. The
light type is set by using a value from the D3DLIGHTTYPE enumeration in the
dltType member of the light's D3DLIGHT2 structure. There are four types of lights
in Direct3D Immediate Mode — point lights, spot lights, directional lights, and
parallel-point lights. Each type illuminates objects in a scene differently, with
varying levels of computational overhead. For general information about how each
type of light works, see Introduction to Light Objects.

Light Color
[This is preliminary documentation and subject to change.]

in.doc – page 185

The color property in the dcvColor member of the D3DLIGHT2 structure is an
RGBA color that defines the color of light that a light object emits. The most
common color is white (R:1.0 G:1.0 B:1.0), but you can create colors as needed to
achieve the desired effect. For example, you could use red light for a fireplace, or
you could use green light for a traffic signal set to "Go."

Generally, you set the light color components to values between 0.0 and 1.0,
inclusive, but this isn't a requirement. For example, you might set all the components
to 2.0, creating a light that was "brighter than white." This type of setting can be
especially useful when you use attenuation settings other than constant.

Note that although Direct3D uses RGBA values for lights, the alpha color
component is not used. For more information, see Color Values for Lights and
Materials.

Light Position, Range and Attenuation
[This is preliminary documentation and subject to change.]

The position, range, and attenuation properties are used to define a light's location in
world space, and how the light it emits behaves over distance. Like all light
properties, these are carried within a light's D3DLIGHT2 structure.

Position

Light position is described using a D3DVECTOR structure in the dvPosition
member of the D3DLIGHT2 structure. The x-, y-, and z-coordinates are assumed to
be in world space. Directional lights are the only type of light that don't use the
position property.

Range

A light's range property determines the distance, in world space, at which meshes in
a scene no longer receive light emitted by that object. The dvRange member
contains a floating-point value that represents the light's maximum range, in world
space. Most applications set the range to the maximum possible value,
D3DLIGHT_RANGE_MAX, which is defined in D3d.h. Directional and parallel-
point lights don't use the range property.

Attenuation

Attenuation controls how a light's intensity decreases toward the maximum distance
specified by the range property. Light attenuation is represented by three
D3DLIGHT2 structure members: dvAttenuation0, dvAttenuation1, and
dvAttenuation2. These members contain floating point values typically ranging
from 0.0 to 1.0, controlling a light's constant, linear, and quadratic attenuation. Many
applications set the dvAttenuation1 member to 1.0 and the others to 0.0, resulting in
light intensity that attenuates evenly over distance — from maximum intensity at the
source, to zero intensity at the light's range. You can combine attenuation values to
get more complex attenuation effects. Or, you might set them to values outside of
the normal range to create even stranger attenuation effects; negative attenuation
values make a light that gets brighter over distance. For more information about the

in.doc – page 186

mathematical model that Direct3D uses to calculate attenuation, see Light
Attenuation Over Distance. Like the range property, directional and parallel-point
lights don't use the attenuation property.

Light Direction
[This is preliminary documentation and subject to change.]

A light's direction property determines the direction that the light emitted by the
object travels, in world space. Direction is only used by directional and spotlights,
and is described with a D3DVECTOR structure in the dvDirection member of the
light's D3DLIGHT2 structure. Direction vectors are described as distances from a
logical origin, regardless of the light's position within a scene. Therefore, a spotlight
that points straight into a scene (along the positive z-axis) would have a direction
vector of <0,0,1> no matter where its position is defined to be. Similarly, you could
simulate sunlight shining directly down on a scene by using a directional light whose
direction is <0,-1,0>. Obviously, you don't have to create lights that shine along the
coordinate axes; you can mix and match values to create lights that shine at more
interesting angles.

Note
Although you don't need to normalize a light's direction vector, always be sure
that it has magnitude. In other words, don't use a <0,0,0> direction vector.

Spotlight Properties
[This is preliminary documentation and subject to change.]

The D3DLIGHT2 structure contains three members that are used only by spotlights.
These members (dvFalloff, dvTheta, and dvPhi) control how large or small a
spotlight object's inner and outer cones are, and how light decreases between them.
For general information about these characteristics, see Spotlights.

The dvTheta value is the radian angle of the spotlight's inner cone and the dvPhi
value is the angle for the outer cone of light. The dvFalloff value controls how light
intensity decreases between the outer edge of the inner cone and in the inner edge of
the outer cone. Most applications will set dvFalloff to 1.0 to create falloff that
occurs evenly between the two cones, but you can set other values as needed. For
more information about the mathematical model used by Direct3D for calculating
falloff, see Spotlight Falloff Model.

The following illustration shows the relationship between the values for these
members, and how they can affect a spotlight's inner and outer cones of light.

in.doc – page 187

Outer Cone

dvPhi

dvTheta

Inner Cone

Using Lights
[This is preliminary documentation and subject to change.]

This section provides information about using Lights in a Direct3D Immediate Mode
application. Information is divided into the following topics.

· Preparing to Use a Light
· Creating a Light
· Setting Light Properties
· Adding a Light to a Viewport
· Deleting a Light
· Retrieving Light Properties

Preparing to Use a Light
[This is preliminary documentation and subject to change.]

The following steps are required, in order, to create and prepare a light for use in a
scene. Note that these steps assume that you have already initialized the Direct3D
sub-system and created a viewport.

Û To prepare a light for use in a scene
1. Create a light object.

in.doc – page 188

Creating a light causes Direct3D to allocate internal data structures that will
contain information about the light. For more information, see Creating a Light.

2. Set the light properties.
By setting the light properties, you are choosing the type of light you will use,
and how Direct3D will calculate lighting effects generated by that object. For
more information, see Setting Light Properties.

3. Add the light to a viewport.
The final step in preparing a light is to add it to the light list for a rendering
viewport. For more information, see Adding a Light to a Viewport.

Creating a Light
[This is preliminary documentation and subject to change.]

The following illustration shows a common creation path of a light in Direct3D.

DirectDraw
Object IDirect3D3QueryInterface

IDirect3D3::CreateLight

IDirect3DLight

You create a light object by calling the IDirect3D3::CreateLight method. The first
parameter is the address of a variable that will contain a valid IDirect3DLight
interface pointer if the call succeeds. The method's second parameter is intended to
be used in COM aggregation — because aggregation is not implemented, this
parameter must be set to NULL. The following example shows what the code to
make this call might look like:

 /*
 * For the purposes of this example, the g_lpD3D3 variable is the
 * address of an IDirect3D3 interface exposed by a Direct3D
 * object.
 */
 LPDIRECT3DLIGHT g_lpD3DLight;
 HRESULT hr;

 hr = g_lpD3D3->CreateLight (&g_lpD3DLight, NULL);
 if (SUCCEEDED(hr))
 {
 // Set the light properties.
 }
 else
 return hr;

in.doc – page 189

Before you can use the light object, you must set its properties. For more
information, see Setting Light Properties.

Setting Light Properties
[This is preliminary documentation and subject to change.]

After you create a light object, you must set the light's properties by preparing a
D3DLIGHT2 structure and then calling the IDirect3DLight::SetLight method. The
SetLight method accepts the address of a prepared D3DLIGHT2 structure as its
only parameter. You can call SetLight with new information as needed to update the
light's illumination properties.

The following code sets up properties for a white point light that doesn't attenuate
over distance, then calls the SetLight method to put the properties into effect:

 /*
 * For the purposes of this example, the g_lpD3DLight variable
 * is a valid pointer to an IDirect3D3 interface.
 */
 D3DLIGHT2 g_light;
 HRESULT hr;

 // Initialize the structure.
 ZeroMemory(&g_light, sizeof(D3DLIGHT2));
 g_light.dwSize = sizeof(D3DLIGHT2); // MUST set the size!

 // Set up for a white point light.
 g_light.dltType = D3DLIGHT_POINT;
 g_light.dcvColor.r = 1.0f;
 g_light.dcvColor.g = 1.0f;
 g_light.dcvColor.b = 1.0f;

 // Position it high in the scene, and behind the viewer.
 // (Remember, these coordinates are in world space, so
 // the "viewer" could be anywhere in world space, too.
 // For the purposes of this example, assume the viewer
 // is at the origin of world space.)
 g_light.dvPosition.x = 0.0f;
 g_light.dvPosition.y = 1000.0f;
 g_light.dvPosition.z = -100.0f;

 // Don't attenuate.
 g_light.dvAttenuation0 = 1.0f;
 g_light.dvRange = D3DLIGHT_RANGE_MAX;

 // Make the light active light.

in.doc – page 190

 g_light.dwFlags = D3DLIGHT_ACTIVE;

 // Set the property info for this light.
 // We have to cast the LPD3DLIGHT2 to be
 // an LPD3DLIGHT in order to compile.
 //
 // (See the following note for details.)
 hr = g_lpD3DLight->SetLight((LPD3DLIGHT)&g_light);
 if (SUCCEEDED(hr))
 {
 // Add the light to the viewport.
 }
 else
 return hr;

Note
The IDirect3DLight::SetLight method checks the dwSize member of the
structure specified in the lpLight parameter to determine whether you are using a
D3DLIGHT2 or D3DLIGHT structure. The two structures are interpreted
differently. The D3DLIGHT2 structure supersedes the D3DLIGHT structure,
using the newer structure will provide the most reliable lighting. For backward
compatibility, the SetLight method's parameter list is unchanged. As a result,
you must cast the address of the D3DLIGHT2 structure you provide to the
LPD3DLIGHT data type to avoid compiler errors.

(You can update a light's properties by a subsequent call to SetLight at any time,
you need not add the light to the viewport each time.)

After choosing the light type by setting its properties, you can add the light to a
viewport to complete the process of preparing a light for rendering. For more
information, see Adding a Light to a Viewport.

Adding a Light to a Viewport
[This is preliminary documentation and subject to change.]

After you've created a light and set its properties, you can add it to a viewport by
calling the viewport's IDirect3DViewport3::AddLight method. The AddLight
method causes the viewport to add the light to a list of light objects it considers when
rendering a scene. When you call AddLight, you specify the IDirect3DLight
interface pointer that was returned when you initially created the light object by
calling IDirect3D3::CreateLight, as shown in the following code fragment:

 /*
 * For this example, the g_lpD3DLight variable is a pointer to
 * the IDirect3DLight interface of a light object whose
 * illumination properties have been set, and the lpViewport3
 * variable is a valid IDirect3DViewport3 interface.

in.doc – page 191

 */
 HRESULT hr;

 hr = lpViewport3->AddLight (g_lpD3DLight);
 if (FAILED (hr))
 return hr;

Deleting a Light
[This is preliminary documentation and subject to change.]

When you no longer need to use a light, you can delete it from a viewport by calling
the viewport's IDirect3DViewport3::DeleteLight method. The method accepts a
pointer to the IDirect3DLight interface of the light you want to remove.

The DeleteLight method only removes the light object from the list that the
viewport uses when rendering a scene, it does not deallocate the light object. If you
want to deallocate the light object, you must call the light object's
IUnknown::Release method.

Retrieving Light Properties
[This is preliminary documentation and subject to change.]

You can retrieve the properties of an existing light object by calling its
IDirect3DLight::GetLight method. When calling the GetLight method, you should
pass the address of a D3DLIGHT2 structure cast as the LPD3DLIGHT data type,
rather than the address of a D3DLIGHT structure. By passing the address of a
D3DLIGHT2 structure, you ensure that there is enough memory available to accept
the property information that the method copies to the provided structure from its
internal data members. As with all structures in DirectX, always make sure to
initialize the structure's dwSize member to the size of the structure, in bytes, before
using it.

Materials
[This is preliminary documentation and subject to change.]

This section describes materials and how they are used in Direct3D Immediate Mode
applications. The following topics are discussed:

· What are Materials?
· Material Properties
· Using Materials

What are Materials?
[This is preliminary documentation and subject to change.]

in.doc – page 192

Materials describe how polygons reflect light or appear to emit light in a 3-D scene.
Essentially, a material is a set of properties that tell Direct3D the following things
about the polygons it is rendering:

· How they reflect ambient and diffuse light
· What their specular highlights look like
· Whether or not the polygons appear to emit light

Direct3D Immediate Mode uses the D3DMATERIAL structure to describe material
properties. For more information, see Material Properties.

Material Properties
[This is preliminary documentation and subject to change.]

Material properties detail a material's diffuse reflection, ambient reflection, light
emission, and specular highlighting characteristics. Direct3D uses the
D3DMATERIAL structure to carry all material property information, as well as
information used only for ramp emulation (an associated texture handle and the ramp
palette size). Material properties affect the colors Direct3D uses to rasterize
polygons that use the material. With the exception of the specular property, each of
the properties is described as an RGBA color that represents how much of the red,
green, and blue parts of a given type of light it reflects, and an alpha blending factor
(the alpha component of the RGBA color). The material's specular property is
described in two parts: color and power. For more information, see Color Values for
Lights and Materials.

Diffuse and Ambient Reflection

The dcvDiffuse and dcvAmbient members of the D3DMATERIAL structure
describe how a material reflects the ambient and diffuse light in a scene. Because
most scenes contain much more diffuse light than ambient light, diffuse reflection
plays the largest part in determining color. Additionally, because diffuse light is
directional, the angle of incidence for diffuse light affects the overall intensity of the
reflection. Diffuse reflection is greatest when the light strikes a vertex parallel to the
vertex normal. As the angle increases, the effect of diffuse reflection diminishes. The
amount of light reflected is the cosine of the angle between the incoming light and
the vertex normal, as shown here.

N

incident light

amount of reflected light = cos

Ambient reflection, like ambient light, is nondirectional. Ambient reflection has a
lesser impact on the apparent color of a rendered object, but it does affect the overall

in.doc – page 193

color, and is most noticeable when little or no diffuse light reflects off the material.
A material's ambient reflection is affected by the ambient light set for a scene by
calling the IDirect3DDevice3::SetLightState method with the
D3DLIGHTSTATE_AMBIENT flag.

Diffuse and ambient reflection work together to determine the perceived color of an
object, and are usually identical values. For example, to render a blue crystalline
object, you would create a material that reflected only the blue component of diffuse
and ambient light. When placed in a room with a white light, the crystal appears to
be blue. However, in a room that has only red light, the same crystal would appear to
be black, because its material doesn't reflect red light.

Emission

Materials can be used to make a rendered object appear to be self-luminous. The
dcvEmissive member of the D3DMATERIAL structure is used to describe the color
and transparency of the emitted light. Emission affects an object's color and can, for
example, make a dark material brighter and take on part of the emitted color.

You can use a material's emissive property to add the illusion that an object is
emitting light, without incurring the computational overhead of adding a light to the
scene. In the case of the blue crystal, the emissive property could be handy if you
wanted to make the crystal appear to light up, but not actually cast light on other
objects in the scene. Remember, materials with emissive properties don't actually
emit light that can be reflected by other objects in a scene. To achieve this effect,
you would need to place an additional light within the scene.

Specular Reflection

Specular reflection creates highlights on objects, making them appear shiny. The
D3DMATERIAL structure contains two members that describe the specular
highlight color as well as the material's overall shininess. You establish the color of
the specular highlights by setting the dcvSpecular member to the desired RGBA
color — the most common colors are white or light gray. The values you set in the
dvPower member control how sharp the specular effects are.

Specular highlights can create dramatic effects. Drawing again on the blue crystal
analogy: a larger dvPower value will create sharper specular highlights, making the
crystal appear to be quite shiny. Smaller values increase the area of the effect,
creating a dull reflection that might make the crystal look frosty. To make an object
truly matte, set the dvPower member to zero, and the color in dcvSpecular to black.
Experiment with different levels of reflection to produce a realistic appearance for
your needs. The following illustration shows two identical models, the one on the
left uses a specular reflection power of 10; the model on the right has no specular
reflection:

in.doc – page 194

Associated Textures

When using ramp emulation, textures are assigned to materials by setting the
texture's handle to the hTexture member in the D3DMATERIAL structure. You
can set this member to NULL if you won't be using ramp emulation, or if no texture
is associated with the material.

You can retrieve the texture handle by calling the IDirect3DTexture2::GetHandle
method. For more information, see Textures.

Ramp Emulation Properties

The dwRampSize member provides information about how the material should be
drawn when Direct3D uses the ramp emulation shade model for shading (as opposed
to RGB emulation, or hardware acceleration). Specifically, this member is an integer
value that tells Direct3D how many palette entries it should create when it renders
shaded polygons. For most materials, you should set this value to a reasonable
number of shades; 16 is a common value. Direct3D automatically determines the
shades it uses based on the material color and number of shades you specify.

It is recommended that you use the same ramp size for all of your materials. If
Direct3D runs out of palette entries when adding a new material it tries to pick the
closest material already in the palette. In order to get a match, the materials must
have the same ramp size. By using the same size for all materials you have a better
chance of getting a good color match, providing more attractive results.

Note
A material that you will use solely as a background in a viewport should have a
dwRampSize value of 1. This is because backgrounds are never shaded,
regardless of the shade mode you set. Providing additional ramp shades for a
background material doesn't provide any advantages, and effectively wastes
memory.

Using Materials
[This is preliminary documentation and subject to change.]

‹Materials are required for rendering in Direct3D Immediate Mode. › This section
contains information about using Materials in a Direct3D application. Information is
divided into the following topics:

in.doc – page 195

· Preparing to Use a Material
· Creating a Material
· Setting Material Properties
· Retrieving Material Handles
· Selecting a Material for Rendering
· Retrieving Material Properties

Preparing to Use a Material
[This is preliminary documentation and subject to change.]

The following steps are required, in order, to create and prepare a material for
rendering.

Û To prepare a material for rendering
1. Create a material object.

When you create a material object, Direct3D allocates internal data structures
that will contain information about the material. For more information, see
Creating a Material.

2. Set the material properties.
By setting material properties, you define how the material will reflect light in a
scene, and how material colors will be used when Direct3D is using ramp
emulation. For more information, see Setting Material Properties.

3. Retrieve the material handle.
Retrieving the material object's handle creates an association between the
material and a Direct3D device. For more information, see Retrieving Material
Handles.

4. Select the material.
Selecting the material causes Direct3D to rasterize polygons with that material's
reflection properties, and is the final step you must take to prepare the material
for rendering. For more information, see Selecting a Material for Rendering.

Creating a Material
[This is preliminary documentation and subject to change.]

The following illustration shows a common creation path of a material in Direct3D.

in.doc – page 196

DirectDraw
Object IDirect3D3QueryInterface

IDirect3D3::CreateMaterial

IDirect3DMaterial2

You create a material by calling the IDirect3D3::CreateMaterial method. The first
parameter is the address of the variable that will contain a valid
IDirect3DMaterial3 interface pointer if the call succeeds. The method's second
parameter is unused and should be set to NULL. The following example shows how
this call can be made:

 //
 // The g_lpD3D variable is a global variable that
 // contains a pointer to an IDirect3D3 interface.
 //

 LPDIRECT3DMATERIAL3 lpMat3;
 HRESULT hr;

 hr = g_lpD3D->CreateMaterial(&lpMat3, NULL);
 if(SUCCEEDED(hr))
 {
 // Set the material properties.
 }

Before using the material, you must set its properties. For more information, see
Setting Material Properties.

Setting Material Properties
[This is preliminary documentation and subject to change.]

After creating a material object, you must set its properties before you can use it
during rendering. Setting the material's properties involves preparing a
D3DMATERIAL structure and then calling the IDirect3DMaterial3::SetMaterial
method.

To prepare the D3DMATERIAL structure for use, set the property information in
the structure to create the desired effect during rendering. The following code
fragment sets up the D3DMATERIAL structure for a purple material, with sharp
white specular highlights, and a 16 color ramp (which Direct3D only uses for ramp
emulation):

 D3DMATERIAL mat;

in.doc – page 197

 // Initialize the structure for use.
 ZeroMemory(&mat, sizeof(D3DMATERIAL));
 mat.dwSize = sizeof(D3DMATERIAL); // This is REQUIRED.

 // Set the RGBA for diffuse reflection.
 mat.dcvDiffuse.r = (D3DVALUE)0.5;
 mat.dcvDiffuse.g = (D3DVALUE)0.0;
 mat.dcvDiffuse.b = (D3DVALUE)0.5;
 mat.dcvDiffuse.a = (D3DVALUE)1.0;

 // Set the RGBA for ambient reflection.
 mat.dcvAmbient.r = (D3DVALUE)0.5;
 mat.dcvAmbient.g = (D3DVALUE)0.0;
 mat.dcvAmbient.b = (D3DVALUE)0.5;
 mat.dcvAmbient.a = (D3DVALUE)1.0;

 // Set the color and sharpness of specular highlights.
 mat.dcvSpecular.r = (D3DVALUE)1.0;
 mat.dcvSpecular.g = (D3DVALUE)1.0;
 mat.dcvSpecular.b = (D3DVALUE)1.0;
 mat.dcvSpecular.a = (D3DVALUE)1.0;
 mat.dvPower = (float)50.0;

 // Use a 16 entry color ramp, in case
 // we're using ramp emulation.
 mat.dwRampSize = 16;

After preparing the D3DMATERIAL structure, complete setting material properties
by calling the IDirect3DMaterial3::SetMaterial method of the desired material
object. This method accepts the address of a prepared D3DMATERIAL structure as
its only parameter. You can call SetMaterial with new information as needed to
update the material's illumination properties.

Once you successfully set a material's properties, you can retrieve its material
handle, which you need to select the material during rendering. For more
information, see Retrieving Material Handles.

Retrieving Material Handles
[This is preliminary documentation and subject to change.]

After setting a material object's properties, you can retrieve its material handle by
calling the IDirect3DMaterial3::GetHandle method. Direct3D Immediate Mode
uses the D3DMATERIALHANDLE data type to declare material handle variables.

By retrieving the material handle, you are effectively creating an association
between the material and a particular Direct3D device. The material handle

in.doc – page 198

represents that association — the handle you retrieve can only be used with that
device. To use the material with another device, you must retrieve another handle
specific to that device.

The GetHandle method accepts two parameters: the address of an
IDirect3DDevice3 interface, and the address of a variable that will contain the
resulting material handle after the call returns. Upon retrieving the material's handle,
you can use it during rendering as often as you need. For more information, see
Selecting a Material for Rendering.

Selecting a Material for Rendering
[This is preliminary documentation and subject to change.]

After you've created a material object, set its properties, and retrieved its handle,
you're ready to render. You select the material into a Direct3D device by calling the
device's IDirect3DDevice3::SetLightState method with the appropriate flags. The
SetLightState method is a multi-purpose method; when calling the method to select
the rendering material, set the first parameter to D3DLIGHTSTATE_MATERIAL,
and set the second parameter to the handle of the material you want to use. The
following code shows what this call commonly looks like

 //
 // For this example, hMat is a variable of type D3DMATERIALHANDLE that has
 // been set to a valid material handle. The lpDev3 variable is a pointer
 // to the IDirect3DDevice3 interface of the device that will use the material.
 //
 HRESULT hr;

 // Set the current material.
 hr = lpDev3->SetLightState(D3DLIGHTSTATE_MATERIAL, hMat);
 if(FAILED(hr))
 {
 REPORTERR(hr);
 return hr;
 }

Note
A Direct3D device can render with only one material at a time. After setting the
current material, Direct3D will use that material for all polygons until another
material is selected. You can change the currently used material at any time.

Retrieving Material Properties
[This is preliminary documentation and subject to change.]

You retrieve a material object's properties by calling the object's
IDirect3DMaterial3::GetMaterial method. Unlike using the
IDirect3DMaterial3::SetMaterial method, GetMaterial doesn't require much

in.doc – page 199

preparation. Before the call, initialize a D3DMATERIAL structure's members to
zero and set the dwSize member to the size of the structure, in bytes. The
GetMaterial method accepts the address of an initialized D3DMATERIAL
structure, and fills the provided structure with information describing the current
material properties before returning.

The Mathematics of Direct3D Lighting
[This is preliminary documentation and subject to change.]

Direct3D models illumination by estimating how light behaves in nature. The
Direct3D light model keeps track of light color, the direction and distance that light
travels, the position of the viewer, and the characteristics of materials to compute
two color components for each vertex in a face.

Note
All computations are made in model space by transforming the light's position
and direction, along with the camera position to model space using the inverse
of the world matrix, then backtransformed. Direct3D uses these color
components to compute the color it draws while rasterizing the pixels of a face.
As a result, if the world or view matrices introduce non-uniform scaling, the
resultant lighting could be inaccurate.

This section presents a technical look at the formulas that Direct3D uses to come up
with diffuse and specular components. By understanding Direct3D's approach, you
will be better equipped to decide if the Direct3D light model suits your needs. The
Direct3D light model was designed to be accurate, efficient, and easy to use.
However, if the formulas used by Direct3D don't suit your needs, you can implement
your own light model, bypassing the Direct3D lighting module altogether.

· Light Attenuation Over Distance
· Reflectance Model
· Spotlight Falloff Model

Light Attenuation Over Distance
[This is preliminary documentation and subject to change.]

Direct3D uses the following formula to normalize the distance from a light source to
a vertex into a value from 0.0 to 1.0, inclusive:

D
R D

R
n

In the preceding formula, Dn is the normalized distance, R is the light's range, and D
is the distance, in world space, from the light source to the vertex being lit. (When D
is greater than R, the system assumes that no light reaches the vertex, and it moves to

in.doc – page 200

the next vertex to be lit.) A normalized distance is 1.0 at the light's source, and 0.0 at
the light's range.

With the normalized distance in hand, Direct3D then applies the following formula
to calculate light attenuation over distance for point lights and spotlights (directional
and parallel point lights don't attenuate over distance):

A dvAttenuation D dvAttenuation D dvAttenuationn n 0 1 22

In this attenuation formula, A is the calculated total attenuation and Dn is the
normalized distance from the light source to the vertex. The dvAttenuation0,
dvAttenuation1, and dvAttenuation2 values are the light's constant, linear, and
quadratic attenuation factors as specified by the members of a light object's
D3DLIGHT2 structure. (Not surprisingly, the corresponding structure members are
dvAttenuation0, dvAttenuation1, and dvAttenuation2. In most cases, these
attenuation factors are between 0.0 and 1.0, inclusive.)

The constant, linear and quadratic attenuation factors act as coefficients in the
formula — you can produce a wide variety of attenuation curves by making simple
adjustments to them. Most applications will set the linear attenuation factor to 1.0
and set the remaining factors to 0.0 to produce a light that steadily falls off over
distance. Similarly, you could apply a constant attenuation factor of 1.0 by itself to
make a light that doesn't attenuate (but will still be limited by range). The following
illustration shows the three most common attenuation curves.

n
(Max Range)

Full
Intensity

Complete
Attenuation Distance0

(At source)

1.0 linear attenuation only
1.0 constant attenuation only

1.0 quadratic attenuation only

Note that using only quadratic attenuation often results in harsh transition between
light and dark over distance. Each of the curves uses only one of the attenuation
factors, but you are free to mix these values to create different attenuation effects.

The attenuation formula used by Direct3D computes an attenuation value that
typically ranges from 1.0 at the light source to 0.0 at the maximum range of the
light. (The result of the formula isn't normalized to fit between 0.0 and 1.0;

in.doc – page 201

attenuation outside that range is still considered valid, but will result in harsh or
unpredictable lighting). The attenuation value is multiplied into the red, green and
blue components of the light's color to scale the light's intensity as a factor of the
distance light travels to a vertex. After computing the light attenuation, Direct3D
also considers spotlight effects (if applicable), the angle that the light reflects from a
surface, as well as the reflectance of the material that the vertex uses to come up
with the diffuse and specular components for that vertex. For more information, see
Spotlight Falloff Model and Reflectance Model.

Reflectance Model
[This is preliminary documentation and subject to change.]

After adjusting the light intensity for any attenuation effects, Direct3D computes
how much of the remaining light reflects from a vertex given the angle of the vertex
normal and the direction of the incident light. (Direct3D skips to this step for
directional and parallel point lights, because they don't attenuate over distance.)

The system considers two reflection types, diffuse and specular, and uses a different
formula to determine how much light is reflected for each. After figuring out the
amounts of light reflected, Direct3D applies these new values to the diffuse and
specular reflectance properties of the material for the vertex being lit. The resulting
color values are the diffuse and specular components that the rasterizer uses to
produce Gouraud shading and specular highlighting.

This section provides information on the methods that the system uses for calculating
reflectance. Information is divided according to the type of reflectance being
calculated:

· Diffuse Reflection Model
· Specular Reflection Model

Diffuse Reflection Model
[This is preliminary documentation and subject to change.]

Direct3D uses the following formula to compute diffuse reflection factors:

R D Nd ·

In this formula, Rd is the diffuse reflectance factor, D is the direction that the light
travels to the vertex, and N is the vertex normal. Vectors D and N are normalized
vectors. The light's direction vector is reversed by multiplying it by -1 to create the
proper association between the direction vector and the vertex normal. This formula
produces values that range from -1.0 to 1.0, which are clamped to the range of 0.0 to
1.0 and used to scale the intensity of the light reflecting from the vertex.

After the diffuse reflection formula is applied, the light has been scaled appropriately
for attenuation over distance, spotlight effects, and diffuse reflection. The scaled
light is then applied to the diffuse reflectance property of the material that the vertex
uses and ambient reflection is considered to determine the diffuse component at that

in.doc – page 202

vertex. The formula that combines ambient and diffuse reflection to create the
diffuse component for the vertex looks like this:

D I M M A R Cv a a e d d

In the preceding formula, Dv is the diffuse component being calculated for the
vertex, Ia is the ambient light level in the scene, Ma is the material's ambient
reflection property, and the Me variable is the emissive property for the material. The
A variable is the attenuated light at the vertex (see Light Attenuation Over Distance)
and Rd is the diffuse reflectance factor. The Cd variable can be one of two possible
colors, the one used depends on the state of the system and the format of the vertex
at the time. If the D3DLIGHTSTATE_COLORVERTEX light state is enabled (and
diffuse color is present in the vertex), the system uses the diffuse vertex color in Cd.
Otherwise, the system uses the diffuse material color for Cd. If a diffuse vertex color
is present, the output alpha is equal to the diffuse alpha for the vertex. Otherwise,
output alpha is equal to the alpha component of diffuse material, clamped to the
range [0, 255].

After applying this formula, Dv is the diffuse color component for the vertex being
lit.

For more information, see Specular Reflection Model, Spotlight Falloff Model.

Specular Reflection Model
[This is preliminary documentation and subject to change.]

Modeling specular reflection requires that the system not only know the direction
that light is traveling, but also the direction to the viewer's eye. Direct3D uses the
inverses of the view- and world-transformation matrices to get this information. The
system uses a simplified version of the Phong specular-reflection model, which
employs a "halfway vector" that exists midway between the vector to the light source
and the vector to the eye to approximate the intensity of specular reflection.

Following the simplified Phong model, Direct3D determines the halfway vector by
subtracting the vector to the light source from the vector to the eye. Once it has
found the halfway vector, the system uses the following formula to compute specular
reflection:

 R N Hs
p ·

In the preceding formula, Rs is the specular reflectance, N in the vertex normal, H is
the halfway vector, and p is the specular reflection power of the material that the
vertex uses (as specified by the dvPower member of the material's
D3DMATERIAL structure). The N and H vectors are normalized.

Like the diffuse reflectance formula, this formula produces values that range from -
1.0 to 1.0, which are clamped to the range of 0.0 to 1.0 and used to scale the light
reflecting from the vertex. Also similar to the diffuse reflection model, the remaining
light is applied to the specular reflectance property of the vertex's material to derive
the specular component at that vertex, as shown in the following formula:

in.doc – page 203

S A R Mv s s

In the preceding formula, Sv is the specular color being computed, A is the attenuated
light at the vertex, and the Rs variable is the previously calculated specular
reflectance. The Cs variable can be one of two possible colors, the one used depends
on the state of the system and the format of the vertex at the time. If the
D3DLIGHTSTATE_COLORVERTEX light state is enabled (and specular color is
present in the vertex), the system uses the specular vertex color in Cs. Otherwise, the
system uses the diffuse material color for Cs.

For more information, see Diffuse Reflection Model.

Spotlight Falloff Model
[This is preliminary documentation and subject to change.]

Spotlights emit a cone of light that has two parts: a bright inner cone and an outer
cone. Light is brightest within the inner cone and isn't present outside the outer cone,
with light intensity attenuating between the two areas. This type of attenuation is
commonly referred to as falloff.

How much the light a vertex receives is based on the vertex's location within the
inner or outer cones. Direct3D computes the dot product of the spotlight's direction
vector (L) and the vector from the vertex to the light (D). This value is equal to the
cosine of the angle between the two vectors, and serves as a indicator of the vertex's
position that can be compared to the light's cone angles to determine where the
vertex might lie in the inner or outer cones. The following illustration provides a
graphical representation of the association between these two vectors:

S

L

V

D

= spot-light
= spot-light direction vector
= vertex being lit
= direction to light vector
= angle between vectors

S
L
V
D

Cos = -L D

Next, the system compares this value to the cosine of the spot light's inner and outer
cone angles. In the light's D3DLIGHT2 structure, the dvTheta and dvPhi members
represent the total cone angles for the inner and outer cones. Because the attenuation
occurs as the vertex becomes more distant from the center of illumination, rather
than across the total cone angle, Direct3D halves these cone angles before
calculating their cosines.

If the dot product of vectors L and D is less than or equal to the cosine of the outer
cone angle, the vertex lies beyond the outer cone, and receives no light. If the dot

in.doc – page 204

product of L and D is greater than the cosine of the inner cone angle, then the vertex
is within the inner cone, and receives the maximum amount of light (still considering
attenuation over distance). If the vertex is somewhere between the two regions,
Direct3D calculates falloff for the vertex by using the following formula:

I
Cos Cos
Cos Cos

f

p

In the formula, If is light intensity (after falloff) for the vertex being lit, is the
angle between vectors L and D, is half of the outer cone angle, is half of the
inner cone angle, and p is the spot light's falloff property (dvFalloff in the
D3DLIGHT2 structure). This formula generates a value between 0.0 and 1.0 that
scales the light's intensity at the vertex to account for falloff. Attenuation as a factor
of the vertex's distance from the light is also applied. The p value corresponds to the
dvFalloff member of the D3DLIGHT2 structure and controls the shape of the falloff
curve. The following illustration shows how different dvFalloff values can affect the
falloff curve:

Falloff = 5.0

Falloff = .2

Falloff = 1.0

No illumination
at outer cone

Full illumination
at edge of
inner cone

Light Intensity

Distance

The effect of various dvFalloff values on the actual lighting is subtle, and a small
performance penalty is incurred by shaping the falloff curve with dvFalloff values
other than 1.0. For these reasons, most people will set this value to 1.0.

For more information, see Light Attenuation Over Distance.

Vertex Formats
[This is preliminary documentation and subject to change.]

This section describes the concepts you need to understand to specify vertices in
Direct3D, and provides information about the various formats your application can
use to declare vertices. The following topics are discussed:

in.doc – page 205

· About Vertex Formats
· Untransformed and Unlit Vertices
· Untransformed and Lit Vertices
· Transformed and Lit Vertices
· Strided Vertex Format

Note
Prior to DirectX 6.0, applications were required to use one of three vertex types
— D3DVERTEX, D3DLVERTEX, and D3DTLVERTEX — depending on
which parts of the Direct3D geometry pipeline were being used. With the
introduction of more flexible vertex formats in DirectX 6.0, you can declare
vertices in many more ways than before, but you can still use the predefined
structures to describe untransformed and unlit vertices, untransformed but lit
vertices, and vertices that are both transformed and lit. For more information,
read the topics for each type of vertex in this section thoroughly.

About Vertex Formats
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode applications can define model vertices in several
different ways. Support for flexible vertex definitions (also known as "flexible vertex
formats") makes it possible for your application to use only the vertex components it
needs, eliminating those components that aren't used. By using only the needed
vertex components, your application can conserve memory and minimize the
processing bandwidth required to render models.

You describe how your vertices are formatted by using a combination of flexible
vertex format flags. Each of the rendering methods of IDirect3DDevice3 accepts a
combination of these flags, and uses them to determine how to render primitives.
Basically, these flags tell the system which vertex components — position, normal,
colors, and the number of texture coordinates — your application uses and,
indirectly, which parts of the rendering pipeline you want Direct3D to apply to them.
In addition, the presence or absence of a particular vertex format flag communicates
to the system which vertex component fields are present in memory, and which
you've omitted.

Note
The behavior is slightly different if your application uses the
IDirect3DDevice3::DrawPrimitiveStrided or
IDirect3DDevice3::DrawIndexedPrimitiveStrided methods. For more
information, see Strided Vertex Format.

One significant requirement that the system places on how you format your vertices
is on the order in which the data appears. The following illustration depicts the
required order for all possible vertex components in memory, and their associated
data types.

in.doc – page 206

rhw (float)

diffuse RGBA
(DWORD)

specular RGBA
(DWORD)

U coordinate (float)
V coordinate (float)

U coordinate (float)
V coordinate (float)

Set 1

Set 8

normal x (float)

normal z (float)
normal y (float)

x-coordinate (float)

z-coordinate (float)
y-coordinate (float)

Position
(untransformed or transformed x,y,z)

Vertex Normal
(untransformed vertices only)

Specular Color

Texture Coordinate Set 1

Texture Coordinate Set 8

Diffuse Color

RHW
(transformed vertices only)

No real application will use every single component — the RHW (reciprocal
homogenous W) and vertex normal fields are mutually exclusive–nor will most
applications try to use all eight sets of texture coordinates, but the flexibility is there.
There are several restrictions on which flags you can use with other flags. These are
mostly common-sense. For example, you can't use the D3DFVF_XYZ and
D3DFVF_XYZRHW flags together, as this would indicate that your application is
describing a vertex's position with both untransformed and transformed vertices. For
more information, take a look at the description for each of the flags in Flexible
Vertex Format Flags.

Untransformed and Unlit Vertices
[This is preliminary documentation and subject to change.]

The presence of the D3DFVF_XYZ and D3DFVF_NORMAL flags in the vertex
description that you pass to rendering methods identifies the untransformed and unlit
vertex type. By using untransformed and unlit vertices, your application effectively
requests that Direct3D perform all transformation and lighting operations using its
internal algorithms. (If you want, you can pass D3DDP_DONOTLIGHT to the
rendering methods to disable Direct3D's lighting engine for the primitives being
rendered.)

Most applications use this vertex type, as it frees them from implementing their own
transformation and lighting engines. However, because the system is making

in.doc – page 207

calculations for you, it requires that you provide a certain amount of information
with each vertex:

· You are required to specify vertices in untransformed model coordinates (a
model coordinate vertex is positioned relative to a local origin for the model, not
for the world). The system then applies world, view, and projection
transformations to the model coordinates to position them within your scene,
and determine their final locations on the screen.

· You should include a vertex normal. Omitting the vertex normal is like telling
Direct3D that you've lit the vertices already (see Untransformed and Lit
Vertices). The system uses the vertex normal, along with the current material, in
its lighting calculations. For details, see Face and Vertex Normal Vectors, and
Lighting and Materials.

Other than these requirements, you have the flexibility to use (or disregard) the other
vertex components. For example, if you want to include a diffuse or specular color
with your untransformed vertices, you can. (This wasn't possible before DirectX 6.0).
These color components can "tint" the material color at each vertex, making it
possible to achieve shading effects that are much more subtle and flexible than
lighting calculations that use only the material color. Untransformed, unlit vertices
can also include up to eight sets of texture coordinates.

Applications can still use the legacy D3DVERTEX structure for vertices. In fact, the
d3dtypes.h header file defines a shortcut macro to identify this vertex format:

#define D3DFVF_VERTEX (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1)

If the D3DVERTEX structure doesn't suit your application's needs, feel free to
define your own. Remember which vertex components your application needs, and
make sure they appear in the required order by declaring a properly ordered
structure. The following code declares a valid vertex format structure that includes a
position, a vertex normal, a diffuse color, and two sets of texture coordinates:

//
// The vertex format description for this vertex
// would be: (D3DFVF_XYZ | D3DFVF_NORMAL |
// D3DFVF_DIFFUSE | D3DFVF_TEX2)
//
typedef struct _UNLITVERTEX {
 float x, y, z; // position

 float nx, ny, nz; // normal

 DWORD dwDiffuseRGBA; // diffuse color

 float tu1, // texture coordinates
 tv1;

in.doc – page 208

 float tu2,
 tv2;
} UNLITVERTEX, *LPUNLITVERTEX;

The vertex description for the preceding structure would be a combination of the
D3DFVF_XYZ, D3DFVF_NORMAL, D3DFVF_DIFFUSE, and D3DFVF_TEX2
flexible vertex format flags. The rendering methods, such as
IDirect3DDevice3::DrawPrimitive, accept the address of a vertex array as a void
pointer, so remember to cast your vertex array pointer to the LPVOID data type
when you call the rendering methods.

For more information, see About Vertex Formats.

Untransformed and Lit Vertices
[This is preliminary documentation and subject to change.]

If you include the D3DFVF_XYZ flag, but not the D3DFVF_NORMAL flag, in the
vertex format description you use with the Direct3D rendering methods, you are
identifying your vertices as untransformed, but already lit. (For information about
other dependencies and exclusions, see Flexible Vertex Format Flags.)

By using untransformed and lit vertices, your application requests that Direct3D not
perform any lighting calculations on your vertices, but it should still transform them
using the previously set world, view, and projection matrices. Because the system
isn't doing lighting calculations, it doesn't need a vertex normal. The system uses the
diffuse and specular components at each vertex for shading. These colors might be
arbitrary, or they might be computed using your own lighting formulas. If you don't
include a diffuse or specular component, the system uses the default colors. The
default diffuse color is 0xFFFFFFFF, and the default specular color is 0x00000000.

Like the other vertex types, other than including a position and some amount of
color information, you are free to include or disregard the texture coordinate sets in
the unlit vertex format.

Applications can still use the legacy D3DLVERTEX structure for vertices. The
d3dtypes.h header file defines the following helper macro that you can use to
describe the D3DLVERTEX structure's format:

#define D3DFVF_LVERTEX (D3DFVF_XYZ | D3DFVF_RESERVED1 | D3DFVF_DIFFUSE
| \
 D3DFVF_SPECULAR | D3DFVF_TEX1)

Note that the helper macro includes the D3DFVF_RESERVED1 flag, indicating to
the system that you're using the D3DLVERTEX structure, which includes the
dwReserved member. This is required when using D3DLVERTEX because vertex
formats don't usually include reserved fields; the D3DFVF_RESERVED1 flag
informs the system that there is an unused DWORD between the vertex's position
and diffuse color vertex components.

in.doc – page 209

If the D3DLVERTEX structure doesn't include all the fields your application needs,
you can define another structure. Make sure that your vertex components appear in
the required order, declaring a new structure accordingly. The following code
declares a valid untransformed and lit vertex, with diffuse and specular vertex colors,
and three sets of texture coordinates:

//
// The vertex format description for this vertex
// would be: (D3DFVF_XYZ | D3DFVF_DIFFUSE |
// D3DFVF_SPECULAR | D3DFVF_TEX3)
//
typedef struct _LITVERTEX {
 float x, y, z; // position

 DWORD dwDiffuseRGBA; // diffuse color

 DWORD dwSpecularRGBA; // specular color

 float tu1, // texture coordinates
 tv1;

 float tu2,
 tv2;

 float tu3,
 tv3;
} LITVERTEX, *LPLITVERTEX;

The vertex description for the preceding structure would be a combination of the
D3DFVF_XYZ, D3DFVF_DIFFUSE, D3DFVF_SPECULAR, and D3DFVF_TEX3
flexible vertex format flags. The rendering methods, such as
IDirect3DDevice3::DrawPrimitive, accept the address of a vertex array as a void
pointer, so remember to cast your vertex array pointer to the LPVOID data type
when you call the rendering methods.

For more information, see About Vertex Formats.

Transformed and Lit Vertices
[This is preliminary documentation and subject to change.]

If you include the D3DFVF_XYZRHW flag in your vertex format description, you
are telling the system that your application uses transformed and lit vertices. This
means that Direct3D doesn't transform your vertices with the world, view, or
projection matrices, nor does it perform any lighting calculations; it assumes that
your application has already taken care of these steps. (This fact makes transformed
and lit vertices common when porting existing 3-D applications to Direct3D

in.doc – page 210

Immediate Mode.) In short, Direct3D does not modify transformed and lit vertices at
all; it passes them directly to the driver to be rasterized.

The vertex format flags associated with untransformed vertices and lighting
(D3DFVF_XYZ and D3DFVF_NORMAL) are not allowed if D3DFVF_XYZRHW
is present. For more about flag dependencies and exclusions, see Flexible Vertex
Format Flags.

The system requires that the vertex position you specify be already transformed. The
x and y values must be in screen coordinates, and z must be the depth value of the
pixel to be used in the z-buffer. Z values can range from 0.0 to 1.0, where 0.0 is the
closest possible position to the viewer, and 1.0 is the farthest position still visible
within the viewing area. Immediately following the position, transformed and lit
vertices must include an RHW value (reciprocal of homogeneous W) value. RHW is
the reciprocal of the W coordinate from the homogeneous point (x,y,z,w) at which
the vertex exists in projection space. (This value often works out to be the distance
from the eyepoint to the vertex, taken along the z-axis.)

Other than the position and RHW requirements, this vertex format is similar to an
untransformed and lit vertex. To recap:

· The system doesn't do any lighting calculations with this format, so it doesn't
need a vertex normal.

· You can specify a diffuse or specular color. If you don't, the system uses
0xFFFFFFFF and 0x00000000 for these components, respectively.

· You can use up to eight sets of texture coordinates, or none at all.

Applications can still use the legacy D3DTLVERTEX structure for transformed and
lit vertices. The d3dtypes.h header file defines the following helper macro that you
can use to describe the vertex format declared by the D3DTLVERTEX structure:

#define D3DFVF_TLVERTEX (D3DFVF_XYZRHW | D3DFVF_DIFFUSE |
D3DFVF_SPECULAR | \
 D3DFVF_TEX1)

It's possible that the D3DTLVERTEX structure doesn't include the fields you need.
If this is the case, define another structure that does, but make sure that the vertex
components are ordered properly. The following code declares a valid transformed
and lit vertex, with diffuse and specular vertex colors, and one set of texture
coordinates:

//
// The vertex format description for this vertex
// would be: (D3DFVF_XYZRHW | D3DFVF_DIFFUSE |
// D3DFVF_SPECULAR | D3DFVF_TEX1)
//
typedef struct _TRANSLITVERTEX {
 float x, y; // screen position

in.doc – page 211

 float z; // Z-buffer depth

 float rhw; // reciprocal homogeneous W

 DWORD dwDiffuseRGBA; // diffuse color

 DWORD dwSpecularRGBA; // specular color

 float tu1, // texture coordinates
 tv1;
} TRANSLITVERTEX, *LPTRANSLITVERTEX;

The vertex description for the preceding structure would be a combination of the
D3DFVF_XYZRHW, D3DFVF_DIFFUSE, D3DFVF_SPECULAR, and
D3DFVF_TEX1 flexible vertex format flags. The rendering methods, such as
IDirect3DDevice3::DrawPrimitive, accept the address of a vertex array as a void
pointer, so remember to cast your vertex array pointer to the LPVOID data type
when you call the rendering methods.

For more information, see About Vertex Formats.

Strided Vertex Format
[This is preliminary documentation and subject to change.]

The strided vertex format contains fields to represent untransformed vertices, lit or
unlit, for the IDirect3DDevice3::DrawPrimitiveStrided and
IDirect3DDevice3::DrawIndexedPrimitiveStrided methods. You cannot use the
strided vertex format for transformed vertices. Unlike a "normal" vertex, which is a
structure that physically contains all the necessary vertex components, a "strided"
vertex is a structure that contains pointers to the vertex components rather than the
components themselves.

This indirection is accomplished through the
D3DDRAWPRIMITIVESTRIDEDDATA structure that is accepted by the
DrawPrimitiveStrided and DrawIndexedPrimitiveStrided methods. You describe
strided vertices using the same combinations of flexible vertex format flags as a non-
strided vertex. However, unlike non-strided vertices, the flags you use do not
indicate the presence of a given field in memory
(D3DDRAWPRIMITIVESTRIDEDDATA includes them all), they indicate which
the structure members that your application uses. The restrictions for these flags are
identical to non-strided vertices, for details, see Flexible Vertex Format Flags.

The D3DDRAWPRIMITIVESTRIDEDDATA structure contains 12
D3DDP_PTRSTRIDE structures, one structure each for the position, normal,
diffuse color, specular color, and texture coordinate sets for the vertices. Each
D3DDP_PTRSTRIDE structure contains a pointer to an array of data, and the stride
of that array. These 12 structures provide the indirection that allows your application

in.doc – page 212

to arrange vertex components however it needs. For instance, you might use distinct
arrays for every vertex component, as shown in the following illustration.

sizeof(float)*3

x 1 ,y 1 ,z 1

x 2 ,y 2 ,z 2

x n ,y n ,z n

Position
lpvData

dwStride

RGBA 1

RGBA 2

RGBA n

Diffuse

lpvData
dwStride sizeof(DWORD)

RGBA 1

RGBA 2

RGBA n

Specular

lpvData
dwStride sizeof(DWORD)

Texture[n]

nx 1 ,ny 1 ,nz 1

nx 2 ,ny 2 ,nz 2

nx n ,ny n ,nz n

sizeof(float)*3

Normal

lpvData
dwStride

tu 1 ,tv 1

tu 2 ,tv 2

tu n ,tv n

sizeof(float)*2
lpvData

dwStride

The lpvData member of the corresponding D3DDP_PTRSTRIDE structures
contains the address of a buffer that contains an array of vertex components. Each
element in each array represents a component for one vertex, which is made up of
some number of floats (for position, normal, and texture coordinates) or an RGBA
value (for diffuse and specular colors). There is one entry within each array for every
vertex to be rendered. The dwStride member of D3DDP_PTRSTRIDE should be
set to the memory stride, in bytes, from one entry in the array to the next. The
following table describes the components and the corresponding strides for each.

Component Stride

untransformed position 3 floats (x,y,z)
vertex normal 3 floats (nx,ny,nz)
diffuse color 1 DWORD (RGBA)
specular color 1 DWORD (RGBA)
texture coordinate set 2 floats (u,v)

Some developers might choose to include some or all vertex components in an
interleaved array. The strided vertex format makes doing this very simple. If your

in.doc – page 213

application interleaves the vertex position and normal components, for example, you
could visualize the memory layout and corresponding settings in
D3DDP_PTRSTRIDE structures as follows:

sizeof(float)*6

Position
lpvData

dwStride sizeof(float)*6

Normal

lpvData
dwStride

sizeof(float)*6

x 1 ,y 1 ,z 1

x 2 ,y 2 ,z 2

x n ,y n ,z n

nx 1 ,ny 1 ,nz 1

nx 2 ,ny 2 ,nz 2

nx n ,ny n ,nz n

In this case, the lpvData members of the D3DDP_PTRSTRIDE structures point to
two locations within the same buffer, and the strides are set to the combined width of
the interleaved components. Of course, you aren't limited to any particular
interleaving scheme. So long as you set the data pointers and their strides correctly,
any interleaving scheme will work.

Textures
[This is preliminary documentation and subject to change.]

Textures are a powerful tool in the quest for realism in computer-generated 3-D
images. Direct3D supports an extensive texturing feature set, providing developers
with easy access to advanced texturing techniques. This section discusses the
purposes and uses of textures in Direct3D. The information is presented in the
following topics:

· Basic Texturing Concepts
· Texture Handles
· Texture Interfaces
· Texture Filtering
· Texture Wrapping
· Texture Blending
· Texture Compression
· Automatic Texture Management
· Hardware Considerations for Texturing

in.doc – page 214

If you are familiar with what textures are and how they are used, you may want to
skip the Basic Texturing Concepts section. It is important to note, however, that
Direct3D now uses texture interfaces to access many of its most powerful texturing
features. Therefore, you may want to look over the section entitled Texture
Interfaces.

Basic Texturing Concepts
[This is preliminary documentation and subject to change.]

This section presents the most fundamental concepts required for an understanding
of texturing in Direct3D. The information in this section is presented in the
following topics:

· What Is a Texture?
· Texture Coordinates
· Texture Addressing Modes
· Texture Handles and Texture Interfaces
· Palettized Textures

What Is a Texture?
[This is preliminary documentation and subject to change.]

Early computer-generated 3-D images, although generally advanced for their time,
tended to have a shiny plastic look. They lacked the types of markings that give 3-D
objects realistic visual complexity such as scuffs, cracks, fingerprints, and smudges.
In recent years, textures have gained popularity among developers as a tool for
enhancing the realism of computer-generated 3-D images.

At its most basic, a texture is simply a bitmap of pixel colors. In this sense, the word
texture has a specific definition when used in the context of computer graphics. In
the normal semantics associated with the word texture, we refer both to the patterns
of color on an object and its roughness or smoothness. Direct3D textures don't add
"bumpiness" to an object. Rather, the textures, or patterns of colors, just give it the
appearance of bumpiness.

Because Direct3D textures are simply bitmaps, any bitmap can be applied to a
Direct3D primitive. For instance, applications can create and manipulate objects that
appear to have a wood grain pattern in them. Grass, dirt, and rocks can be applied to
a set of 3-D primitives that form a hill. The result is a very realistic-looking hillside.
Texturing can also be used to create effects such as signs along a roadside, rock
strata in a cliff, or the appearance of marble on a floor.

In addition, Direct3D supports more advanced texturing techniques such as texture
blending (with or without transparency) and light mapping. Information on these
techniques is presented in Texture Blending and Light Mapping With Textures.

in.doc – page 215

If your application creates a HAL device, an MMX device, or an RGB device (see
Direct3D Device Types), it can use 8-, 16-, 24-, or 32-bit textures. Legacy
applications that use the monochromatic (or ramp) device must use 8-bit textures.

Texture Coordinates
[This is preliminary documentation and subject to change.]

Textures, like most bitmaps, are a two dimensional array of color values. The
individual color values are called texture elements, or texels. Each texel has a unique
address in the texture. The address can be thought of as a column and row number,
which are labeled U and V respectively.

Texture coordinates are in texture space. That is, they are relative to the location
(0,0) in the texture. When a texture is applied to a primitive in 3-D space, its texel
addresses must be mapped into object coordinates. They must then be translated into
screen coordinates, or pixel locations.

Direct3D maps texels in texture space directly to pixels in screen space, skipping the
intermediate step for greater efficiency. This mapping process is actually an inverse
mapping. That is, for each pixel in screen space, the corresponding texel position in
texture space is calculated. The texture color at or around that point is sampled. The
sampling process is called texture filtering. For more information, see Texture
Filtering.

Each texel in a texture can be specified by its texel coordinate. However, in order to
map texels onto primitives, Direct3D requires a uniform address range for all texels
in all textures. Therefore, it uses a generic addressing scheme in which all texel
addresses are in the range of 0.0 to 1.0 inclusive. Direct3D programs specify texture
coordinates in terms of U,V values, much like 2-D Cartesian coordinates are
specified in terms of x,y coordinates.

A result of this is that identical texture addresses can map to different texel
coordinates in different textures. In the following illustration, the texture address
being used is (0.5,1.0). However, because the textures are different sizes, the texture
address maps to different texels. Texture 1, on the left, is 5x5. The texture address
(0.5,1.0) maps to texel (2,4). Texture 2, on the right, is 7x7. The texture address
(0.5,1.0) maps to texel (3,6).

in.doc – page 216

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)(0,4) (1,4) (2,4) (3,4) (4,4)

Texture 1

Texture 2

Texture Address (0.5,1.0) Texture Address (0.5,1.0)

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

A simplified version of the texel mapping process is shown in the following diagram.

Primitive
Surface

Pixel

Texture

For this example, we are idealizing a pixel, shown at the left of the illustration, into a
square of color. The addresses of the four corners of the pixel are mapped onto the 3-
D primitive in object space. The shape of the pixel is often distorted because of the
shape of the primitive in 3-D space and because of the viewing angle. The corners of
the surface area on the primitive that correspond the corners of the pixel are then

in.doc – page 217

mapped into texture space. The mapping process distorts the pixel's shape again,
which is common. The final color value of the pixel is computed from the texels in
the region to which the pixel maps. You determine the method that Direct3D uses to
arrive at the pixel color when you set the texture filtering method. For more
information, see Texture Filtering.

Your application can assign texture coordinates directly to vertices. For details, see
D3DVERTEX. This capability gives you control over which portion of a texture is
mapped onto a primitive. For instance, suppose you create a rectangular primitive
that is exactly the same size as the texture in the following illustration. In this
example, you want your application to map the whole texture onto the whole wall.
The texture coordinates your application would assign to the vertices of the primitive
are (0.0,0.0), (1.0,0.0), (1.0,1.0), and (0.0,1.0).

Let's say you decide to decrease the height of the wall by one-half. You can either
distort the texture to fit onto the smaller wall, or you can assign texture coordinates
that will cause Direct3D to use the bottom half of the texture.

If you decide to distort or scale the texture to fit the smaller wall, the texture filtering
method that you use will influence the quality of the image. For more information,
see Texture Filtering.

If, instead, you decide to assign texture coordinates to make Direct3D use the bottom
half of the texture for the smaller wall, the texture coordinates your application
would assign to the vertices of the primitive in this example are (0.0,0.0), (1.0,0.0),
(1.0,0.5), and (0.0,0.5). Direct3D will apply the bottom half of the texture to the
wall.

in.doc – page 218

It is possible for texture coordinates of a vertex to be greater than 1.0. When you
assign texture coordinates to a vertex that are not in the range of 0.0 to 1.0 inclusive,
you should also set the texture addressing mode. For further information, see Texture
Addressing Modes.

Texture Addressing Modes
[This is preliminary documentation and subject to change.]

This section describes the purpose and use of Direct3D texture addressing modes. It
is organized into the following topics:

· What Are Texture Addressing Modes?
· About the Wrap Texture Address Mode
· About the Mirror Texture Address Mode
· About the Clamp Texture Address Mode
· About the Border Color Texture Address Mode
· Setting and Retrieving Texture Addressing Modes
· Texture Addressing Modes and Texture Wrapping

What Are Texture Addressing Modes?
[This is preliminary documentation and subject to change.]

Your Direct3D application can assign texture coordinates to any vertex of any
primitive. For details, see Texture Coordinates. Typically, the U and V texture
coordinates that you assign to a vertex will be in the range of 0.0 to 1.0 inclusive.
However, by assigning texture coordinates outside that range, you can create certain
special texturing effects.

You control what Direct3D does with texture coordinates that are outside the [0.0,
1.0] range by setting the texture addressing mode. For instance, you can have your
application set the texture addressing mode such that a texture is tiled across a
primitive. The following topics contain additional details:

· About the Wrap Texture Address Mode
· About the Mirror Texture Address Mode
· About the Clamp Texture Address Mode
· About the Border Color Texture Address Mode

About the Wrap Texture Address Mode
[This is preliminary documentation and subject to change.]

The "wrap" texture address mode, identified by the D3DTADDRESS_WRAP
member of the D3DTEXTUREADDRESS enumerated type, makes Direct3D repeat
the texture on every integer junction. Suppose, for example, your program creates a
square primitive and specifies texture coordinates of (0.0,0.0), (0.0,3.0), (3.0,3.0),

in.doc – page 219

and (3.0,0.0). Setting the texture addressing mode to D3DTADDRESS_WRAP will
result in the texture being applied three times in both the U and V directions. This is
illustrated in the following figure.

The effects of this texture address mode are similar to, but distinct from, those of the
"mirror" mode. For more information, see About the Mirror Texture Address Mode.

About the Mirror Texture Address Mode
[This is preliminary documentation and subject to change.]

The "mirror" texture address mode, identified by the D3DTADDRESS_MIRROR
member of the D3DTEXTUREADDRESS enumerated type, causes Direct3D will
mirror the texture at every integer boundary. Suppose, for example, your program
creates a square primitive and specifies texture coordinates of (0.0,0.0), (0.0,3.0),
(3.0,3.0), and (3.0,0.0). Setting the texture addressing mode to
D3DTADDRESS_MIRROR will result in the texture being applied three times in
both the U and V directions. Every other row and column that it is applied to will be
a mirror image of the preceding row or column. This is illustrated in the following
figure.

in.doc – page 220

The effects of this texture address mode are similar to, but distinct from, those of the
"wrap" mode. For more information, see About the Wrap Texture Address Mode.

About the Clamp Texture Address Mode
[This is preliminary documentation and subject to change.]

The "clamp" texture address mode, identified by the D3DTADDRESS_CLAMP
member of the D3DTEXTUREADDRESS enumerated type, causes Direct3D to
clamp your texture coordinates to the [0.0, 1.0] range. That is, it will apply the
texture once, then "smear" the color of edge pixels. For instance, suppose that your
program creates a square primitive and assigns texture coordinates of (0.0,0.0),
(0.0,3.0), (3.0,3.0), and (3.0,0.0) to the primitive's vertices. Setting the texture
addressing mode to D3DTADDRESS_CLAMP will result in the texture being
applied once. The pixel colors at the top of the columns and the end of the rows are
extended to the top and right of the primitive respectively. This is illustrated in the
following figure:

in.doc – page 221

Clamped texture applied to primitiveTexture

About the Border Color Texture Address Mode
[This is preliminary documentation and subject to change.]

The "border color" texture address mode, identified by the
D3DTADDRESS_BORDER member of the D3DTEXTUREADDRESS enumerated
type, causes Direct3D to use an arbitrary color, known as the border color, for any
texture coordinates outside the range of 0.0 through 1.0, inclusive.

This is shown in the next illustration in which the application specified that the
texture be applied to the primitive using a red border.

Texture with red border applied to primitiveTexture

How your application sets the border color depends on what version of the Direct3D
device interface it uses. If your application uses the IDirect3DDevice3 interface, set
the border color by calling IDirect3DDevice3::SetTextureStageState. Set the first
parameter for the call to the desired texture stage identifier, the second parameter to

in.doc – page 222

the D3DTSS_BORDERCOLOR stage state value, and the third parameter to the new
RGBA border color.

If your application stills uses the legacy IDirect3DDevice2 interface, you can set the
border color by calling IDirect3DDevice2::SetRenderState method, specifying the
D3DRENDERSTATE_BORDERCOLOR render state value and the new RGBA
border color as parameters.

Note
The IDirect3DDevice3::SetRenderState method (as opposed to the
IDirect3DDevice2 version) still recognizes the
D3DRENDERSTATE_BORDERCOLOR render state, even though it has been
superseded. Instead of failing this legacy render state, the IDirect3DDevice3
implementation maps the effect of this render state to the first texture stage
(stage 0). Applications should not mix the legacy render states with their
corresponding texture stage states, as unpredictable results can occur.

Setting and Retrieving Texture Addressing Modes
[This is preliminary documentation and subject to change.]

How your application sets and retrieves texture addressing modes depends largely on
which version of the Direct3D device interface it uses. When performing multiple
texture blending by way of the IDirect3DDevice3 interface, you can set texture
addressing modes for individual texture stages by calling the
IDirect3DDevice3::SetTextureStageState method. Specify the desired texture stage
identifier in the first parameter. Set the second parameter to D3DTSS_ADDRESS to
change both the U and V texture addressing modes simultaneously, or use the
D3DTSS_ADDRESSU or D3DTSS_ADDRESSV values to update the U or V
addressing modes individually. The third parameter you pass to
SetTextureStageState determines which mode is being set; this can be any one of
the members of the D3DTEXTUREADDRESS enumerated type. To retrieve the
current texture address mode for a given texture stage, call
IDirect3DDevice3::GetTextureStageState, using the D3DTSS_ADDRESS,
D3DTSS_ADDRESSU, or D3DTSS_ADDRESSV members of the
D3DTEXTURESTAGESTATETYPE enumeration to identify about which address
mode you want information.

If your application uses the IDirect3DDevice2 interface, you set texture addressing
modes by calling the IDirect3DDevice2::SetRenderState method, using the
D3DRENDERSTATE_TEXTUREADDRESS render state to simultaneously set U
and V texture addressing. You can set U and V addressing individually with the
D3DRENDERSTATE_TEXTUREADDRESSU or
D3DRENDERSTATE_TEXTUREADDRESSV render states. Like their newer
SetTextureStageState counterparts, these render states also use the values from
D3DTEXTUREADDRESS enumerated type.

Note

in.doc – page 223

The IDirect3DDevice3::SetRenderState method (as opposed to the
IDirect3DDevice2 version) still recognizes the
D3DRENDERSTATE_TEXTUREADDRESS,
D3DRENDERSTATE_TEXTUREADDRESSU,
D3DRENDERSTATE_TEXTUREADDRESSV render states, even though they
have been superseded. Instead of failing these legacy render states, the
IDirect3DDevice3 implementation maps their effects to the first texture stage
(stage 0). Applications should not mix the legacy render states with their
corresponding texture stage states, as unpredictable results can occur.

Texture Addressing Modes and Texture Wrapping
[This is preliminary documentation and subject to change.]

Direct3D enables applications to perform texture wrapping. It is important to note
that setting the texture addressing mode to D3DTADDRESS_WRAP is not the same
as performing texture wrapping. Setting the texture addressing mode to
D3DTADDRESS_WRAP results in multiple copies of the source texture being
applied to the current primitive, and enabling texture wrapping changes how the
system rasterizes textured polygons. For details, see Texture Wrapping.

Enabling texture wrapping effectively makes texture coordinates outside the [0.0,
1.0] range invalid, and the behavior for rasterizing such "delinquent" texture
coordinates is undefined in this case. When texture wrapping is enabled, texture
addressing modes are not used. Take care that your application does not specify
texture coordinates lower than 0.0 or higher than 1.0 when texture wrapping is
enabled.

Texture Handles and Texture Interfaces
[This is preliminary documentation and subject to change.]

Direct3D provides two methods of manipulating and controlling textures, texture
handles and texture interfaces. Texture handles are obsolete. They were used in
applications that utilized the IDirect3D and IDirect3D2 interfaces. For details, see
Texture Handles.

With the introduction of the IDirect3D3 interface, you now create and use textures
through texture interface pointers. Obtain a texture interface pointer by querying the
DirectDrawSurface object for the IDirect3DTexture2 interface by calling the
surface's IUnknown::QueryInterface method (use the IID_IDirect3DTexture2
reference identifier).

With the advent of texture interfaces in Direct3D, powerful new texturing features
are also realized. Texture interfaces support the blending of up to eight textures onto
a primitive at once. New texture blending operations have been also added. For
details, see Texture Interfaces.

in.doc – page 224

Palettized Textures
[This is preliminary documentation and subject to change.]

Direct3D devices can support texturing from texture surfaces that use attached
palettes. These types of textures are sometimes called "palettized textures." A
palettized texture is a DirectDrawSurface object, created with the
DDSCAPS_TEXTURE capability, that uses one of the
DDPF_PALETTEINDEXEDn pixel formats (where n is 1, 2, 4, or 8). These
capabilities are included in the DDSURFACEDESC2 structure that you use to
create a texture (and the DDPIXELFORMAT structure that the description
contains). Like all palettized surfaces, instead of a color, each pixel is an index into a
table of values held within an attached DirectDrawPalette object. For more
information about creating and using palettized surfaces, see Surfaces and Palettes in
the DirectDraw documentation. As you should always do when checking texture-
related device capabilities, be sure to verify the supported texture pixel formats by
calling the IDirect3DDevice3::EnumTextureFormats method.

Û To prepare a palettized texture
1. Check DirectDraw and Direct3D capabilities as described in this section.
2. Create a surface of the desired dimensions that includes the

DDSCAPS_TEXTURE capability and uses one of the
DDPF_PALETTEINDEXEDn pixel formats.

3. Create and initialize a DirectDrawPalette object. For more information, see
Palettes in the DirectDraw documentation. (To use an alpha-only palettized
texture, include the DDPCAPS_ALPHA capability when you create the palette.
See the reference for IDirectDraw4::CreatePalette for more information.)

4. Attach the palette to the surface by calling the
IDirectDrawSurface4::SetPalette method for the texture surface.

Note
If you create a palettized texture surface, but neglect to attach a palette, your
application will cause an access violation within Direct3D Immediate Mode
during rendering.

The palettes you use with palettized textures need not be limited to color data. In
some cases, devices support texture palettes that also contain alpha information. If
so, DirectDraw will expose the DDPCAPS_ALPHA palette capability flag when you
call the IDirectDraw4::GetCaps method—the flag is found in the dwPalCaps
member of the associated DDCAPS structure. If the rendering device can perform
texturing from alpha-capable palettized textures, it will expose the
D3DPTEXTURECAPS_ALPHAPALETTE capability when you call
IDirect3DDevice3::GetCaps. (The D3DPTEXTURECAPS_ALPHAPALETTE flag
can be found in the two D3DPRIMCAPS structures contained by the
D3DDEVICEDESC structure you pass with the call.)

in.doc – page 225

Texture Handles
[This is preliminary documentation and subject to change.]

Texture handles are primarily provided for backward compatibility. New
applications should use texture interface pointers. See Texture Interfaces.

The IDirect3D and IDirect3D2 interfaces are used when programming with
Direct3D texture handles. A Direct3D texture is a DirectDraw surface. You can use a
DirectDraw surface as a texture map by calling the
IDirectDrawSurface4::QueryInterface method to retrieve an IDirect3DTexture2
interface. Use the IDirect3DTexture2 interface to load textures, retrieve handles,
and track changes to palettes.

A texture map created with the IDirect3DTexture2 interface must be associated
with a 3-D device. A texture handle identifies the coupling of a texture map and a
device. A given texture can be associated with more than one device. When your
application calls the IDirect3DTexture2::GetHandle method to associate a texture
with a device, Direct3D validates it to ensure that the device supports the specified
type of texture format and dimensions. The GetHandle method returns the texture
handle if this validation succeeds. Your application can then use texture handles as
parameters to render states. For details, see Render States.

Applications can use handles obtained using IDirect3DTexture or
IDirect3DTexture2 for a given device interface interchangeably.

The IDirect3DTexture2 interface eliminates some unimplemented methods from
the IDirect3DTexture interface.

This section presents information on creating and rendering with texture handles in
the topics listed hereafter:

· Creating a Texture Handle
· Rendering with Texture Handles

Creating a Texture Handle
[This is preliminary documentation and subject to change.]

The following example demonstrates how to create an IDirect3DTexture2 interface.
It also illustrates the process of obtaining a texture handle by calling the
IDirect3DTexture2::GetHandle method. It then loads the texture using the
IDirect3DTexture2::Load method. Note that the DirectDraw surface you query
must have the DDSCAPS_TEXTURE capability to support a Direct3D texture. See
Creating Surfaces and DDSCAPS.

// This code fragment assumes that lpDDS is a valid pointer to
// a DirectDraw surface, and that lpD3DDevice is a valid pointer to
// an IDirect3DDevice3 interface.

LPDIRECT3DTEXTURE2 lpD3DTexture2;

in.doc – page 226

D3DTEXTUREHANDLE d3dhTextureHandle;

// Get the texture interface pointer.
lpDDS->QueryInterface(IID_IDirect3DTexture2,
 &lpD3DTexture2);

// Associate the texture with a device.
lpD3DTexture2->GetHandle(lpD3DDevice,
 d3dhTextureHandle);

// Load the texture.
lpD3DTexture2->Load(lpD3DTexture2);

Rendering with Texture Handles
[This is preliminary documentation and subject to change.]

After your program creates a texture handle and loads a bitmap onto the texture's
surface, it may use the texture for rendering. Texture handles can be used to set the
texture-related rendering states whether your application utilizes the DrawPrimitive
methods or execute buffers. If it uses the DrawPrimitive methods, all rendering states
are set by invoking the IDirect3DDevice3::SetRenderState method. Pass the
texture-related rendering state as the first parameter. The second parameter must be
the texture's handle.

When an application sets a texture as the current texture, Direct3D applies it to all
primitives that it renders with the DrawPrimitive methods. For further information,
see Current Texture.

Your application controls the mapping of texture coordinates to screen coordinates
by setting the texture-addressing rendering state. See Texture Addressing State.

On some 3-D hardware, applications can also enable or disable perspective
correction. Many 3-D cards apply texture perspective correction unconditionally.
Direct3D perspective correction is enabled by default. See Texture Perspective State.

Direct3D sports a powerful set of texture filtering capabilities. For further
information, see Texture Filtering and Texture Filtering State.

When it applies a texture to a primitive's surface, your application can blend the
texture's texel colors with the current color of a primitive. It can only blend one
texture at a time if it uses texture handles. See Texture Blending State.

Applications that render with execute buffers use texture handles. Invoke the
IDirect3DDevice3::SetRenderState method and pass the
D3DRENDERSTATE_TEXTUREHANDLE render state (part of the
D3DRENDERSTATETYPE enumerated type) as the value of the first parameter.
Set the texture handle as the second parameter.

in.doc – page 227

Texture Interfaces
[This is preliminary documentation and subject to change.]

Applications that create an IDirect3D3 interface can take advantage of the new
texturing features in Direct3D. Using IDirect3DTexture2 interface pointers, rather
than texture handles, Direct3D can now perform multiple texturing if the user's
hardware supports it. For more information, see Multiple Texture Blending.

This section presents information on creating and rendering with texture interface
pointers in the following topics:

· Obtaining a Texture Interface Pointer
· Rendering with Texture Interface Pointers

Obtaining a Texture Interface Pointer
[This is preliminary documentation and subject to change.]

Textures under the IDirect3D3 interface are DirectDraw surfaces, just as textures are
when programming with texture handles. Therefore, the first step in obtaining a
texture interface pointer is to create a DirectDraw surface with the
DDSCAPS_TEXTURE capability set. See Creating Surfaces , DDSCAPS, and
DDSCAPS2.

Once the surface is created, your application can retrieve a pointer to its texture
interface. To do so, simply query the surface for its IDirect3DTexture2 interface.

The following code fragment illustrates the process of creating a texture from an
existing DirectDrawSurface object's interface. It also demonstrates how to load a
texture.

// This code fragment assumes that lpDDS is a valid pointer to
// a DirectDraw surface that was created with the DDSCAPS_TEXTURE
// surface capability, and that lpD3D3 is a valid pointer to
// an IDirect3D3 interface.

LPDIRECT3DTEXTURE2 lpD3DTexture2;

// Get the texture interface.
lpDDS->QueryInterface(IID_IDirect3DTexture2, (void**)&lpD3DTexture2);

// Load the texture.
lpD3DTexture2->Load(lpD3DTexture2);

Note
Loading a texture with the IDirect3DTexture2::Load method allocates the
memory for the texture. Once this is done, a bitmap may be loaded from a
resource or a file onto the surface associated with the texture by using

in.doc – page 228

DirectDraw blitting methods. (In the event that blitting isn't supported, you can
access the surface memory directly by using the DirectDraw
IDirectDrawSurface4::Lock and IDirectDrawSurface4::Unlock methods.)

Rendering with Texture Interface Pointers
[This is preliminary documentation and subject to change.]

As part of the multitexturing functionality of that was introduced in the
IDirect3DDevice3 interface, Direct3D supports texture stages. Each texture stage
contains a texture and operations that can be performed on the texture. The textures
in the texture stages form the set of current textures. For more information, see
Multiple Texture Blending. The state of each texture is encapsulated in its texture
stage. Therefore, the state of each texture must be set with the
IDirect3DDevice3::SetTextureStageState method. Pass the stage number (0-7) as
the value of the first parameter. Set the value of the second parameter to a member
of the member of the D3DTEXTURESTAGESTATETYPE enumerated type. The
final parameter is the state value for the particular texture state.

Using texture interface pointers, your application can render a blend of up to eight
textures. Set the current textures by invoking the IDirect3DDevice3::SetTexture
method. Direct3D will blend all current textures onto the primitives that it renders.

Your application can set the texture wrapping state for the current textures by calling
the IDirect3DDevice3::SetRenderState method. Pass a value from
D3DRENDERSTATE_WRAP0 through D3DRENDERSTATE_WRAP7 as the
value of the first parameter, and use a combination of the D3DWRAP_U or
D3DWRAP_V flags to enable wrapping in the u or v directions.

Your application can also set the texture perspective and texture filtering states. See
Texture Perspective State, Texture Filtering, and Texture Filtering State.

Texture Filtering
[This is preliminary documentation and subject to change.]

When Direct3D renders a primitive, it maps the 3-D primitive onto a 2-D screen. If
the primitive has a texture, Direct3D must use that texture to produce a color for
each pixel in the primitive's 2-D rendered image. For every pixel in the primitive's
on-screen image, it must obtain a color value from the texture. This process is called
texture filtering.

When a texture filter operation is performed, the texture being used is typically also
being magnified or minified. In other words, it is being mapped onto a primitive
image that is larger or smaller than itself. Magnification of a texture can result in
many pixels being mapped to one texel. The result can be a chunky appearance.
Minification of a texture often means that a single pixel is mapped to many texels.
The resulting image can be blurry or aliased. To resolve these problems, some
blending of the texel colors must be performed to arrive at a color for the pixel.

in.doc – page 229

Direct3D simplifies the complex process of texture filtering. It provides developers
with three types of texture filtering — linear filtering, anisotropic filtering, and
mipmap filtering. If you select no texture filtering, Direct3D utilizes a technique
called nearest point sampling.

Each type of texture filtering has advantages and disadvantages. For instance, linear
texture filtering can produce jagged edges or a chunky appearance in the final image.
However, it is a computationally low-overhead method of texture filtering. On the
other hand, filtering with mipmaps usually produces the best results, especially when
combined with anisotropic filtering. However it requires the most memory of the
techniques that Direct3D supports.

If your application uses texture handles, it should set the current texture filtering
method by invoking the IDirect3DDevice3::SetRenderState method. The first
parameter must be either D3DRENDERSTATE_TEXTUREMAG or
D3DRENDERSTATE_TEXTUREMIN. It must pass a member of the
D3DTEXTUREFILTER enumerated type as the value of the second parameter. See
Texture Filtering State.

Applications that use texture interface pointers should set the current texture filtering
method by calling the IDirect3DDevice3::SetTextureStageState method. Set the
value of the first parameter to the integer index number (0-7) of the texture for which
you are selecting a texture filtering method. Pass either D3DTSS_MAGFILTER,
D3DTSS_MINFILTER, or D3DTSS_MIPFILTER as the value of the second
parameter. Set the third parameter to a member of the
D3DTEXTUREMAGFILTER, D3DTEXTUREMINFILTER, or
D3DTEXTUREMIPFILTER enumerated types respectively.

This section presents the texture filtering methods that Direct3D supports. It is
organized into the following topics:

· Nearest Point Sampling
· Linear Texture Filtering
· Anisotropic Texture Filtering
· Texture Filtering With Mipmaps

Nearest Point Sampling
[This is preliminary documentation and subject to change.]

Applications are not required to use texture filtering. Direct3D can be set so that it
computes the texel address, which often does not evaluate to integers, and simply
copies the color of the texel with the closest integer address. This process is called
nearest point sampling. This can be a fast and efficient way to process textures if the
size of the texture is similar to the size of the primitive's image on the screen. If not,
the texture will need to be magnified or minified. The result can be a chunky,
aliased, or blurred image.

Your application can select nearest point sampling by calling the
IDirect3DDevice3::SetTextureStageState method. Set the value of the first

in.doc – page 230

parameter to the integer index number (0-7) of the texture for which you are
selecting a texture filtering method. Pass D3DTEXTUREMAGFILTER as the
value of the second parameter if you are setting the magnification filter. Pass
D3DTEXTUREMIPFILTER as the value of the second parameter if you are setting
the minification filter. Pass D3DTEXTUREMIPFILTER as the value of the second
parameter if you are setting the mipmapping filter. Set the third parameter to
D3DTFG_POINT if you are setting the magnification filter, D3DTFN_POINT if you
are setting the minification filter, or D3DTFP_POINT if you are setting the mipmap
filter. For more information, see Texture Filtering State.

You should use nearest point sampling carefully, as it can sometimes cause graphic
artifacts when the texture is sampled at the boundary between two texels. This
boundary is the position along the texture (u or v) at which the sampled texel
transitions from one texel to the next. When point sampling is used, the system
chooses one sample texel or the other, and the result can change abruptly from one
texel to the next texel as the boundary is crossed. This effect can appear as undesired
graphic artifacts in the displayed texture. (When linear filtering is used, the resulting
texel is computed from both adjacent texels and smoothly blends between them as
the texture index moves through the boundary.)

This effect can be seen when mapping a very small texture onto a very large
polygon: an operation often called "magnification." For example, when using a
texture that looks like a checkerboard, nearest point sampling results in a larger
checkerboard that shows distinct edges. By contrast, linear texture filtering results in
an image where the checkerboard colors vary smoothly across the polygon.

In most cases, applications can receive the best results by avoiding nearest point
sample wherever possible. The majority of hardware today is optimized for linear
filtering, so your application should not suffer degraded performance. If the effect
you desire absolutely requires the use of the nearest point sampling—such as when
using textures to display readable text characters—then your application should be
extremely careful to avoid sampling at the texel boundaries, which might result in
undesired effects. The following screen capture shows what these artifacts can look
like:

in.doc – page 231

Notice that the two squares in the top-right of the group appear different that their
neighbors. To avoid graphic artifacts like these, you should start by understanding
Direct3D texture sampling rules for nearest-point filtering. Direct3D maps a
floating-point texture coordinate ranging from [0.0, 1.0] (0.0 to 1.0, inclusive) to an
integer texel space value ranging from [0.5, n 0.5], where n is the number of texels
in a given dimension on the texture. The resulting texture index is rounded to the
nearest integer. This mapping can introduce sampling inaccuracies at texel
boundaries.

For a simple example, imagine an application that renders polygons with the
D3DTADDRESS_WRAP texture addressing mode. Using the mapping employed by
Direct3D, the u texture index maps as follows for a texture with a width of 4 texels:

Texel Addresses

Texels

Texture coordinates

2 3 0 1 2 3 0 1

0.0 1.0

Notice that the texture coordinates — 0.0 and 1.0 — for this illustration are exactly
at the boundary between texels. Using the method by which Direct3D maps values,
the texture coordinates range from [0.5, 4 0.5], where 4 is the width of the texture.
For this case, the sampled texel will be the 0th texel for a texture index of 1.0.
However, if the texture coordinate was only slightly less than 1.0, the sampled texel
would be the nth texel instead of the 0th texel.

The implication of this is that magnifying a small texture using texture coordinates
of exactly 0.0 and 1.0 with nearest-point filtering on a screen-space aligned triangle
will result in pixels for which the texture map is sampled at the boundary between
texels. Any inaccuracies in the computation of texture coordinates, however small,
will result in artifacts along the areas in the rendered image which correspond to the
texel edges of the texture map.

Performing this mapping of floating point texture coordinates to integer texels with
perfect accuracy is difficult, computationally expensive, and generally not necessary.
Most hardware implementations use an iterative approach for computing texture
coordinates at each pixel location within a triangle. Iterative approaches tend to hide
these inaccuracies somewhat because the errors are accumulated evenly during
iteration.

The Direct3D reference rasterizer uses a direct-evaluation approach for computing
texture indices at each pixel location. Direct evaluation differs from the iterative
approach in that any inaccuracy in the operation exhibits a more random error
distribution. The result of this is that the sampling errors occurring at the boundaries
can be more noticeable since the reference rasterizer does not perform this operation
with perfect accuracy (which is, again, difficult and very expensive with floating
point texture coordinates).

in.doc – page 232

The best approach is to use nearest-point filtering only when necessary. When you
must use it, it is recommended that you offset texture coordinates slightly from the
boundary positions to avoid artifacts.

Linear Texture Filtering
[This is preliminary documentation and subject to change.]

Direct3D uses a form of linear texture filtering called bilinear filtering. Like nearest
point sampling, bilinear texture filtering first computes a texel address, which is
usually not an integer address. Just as in nearest point sampling, if then finds the
texel whose integer address is closest the computed address. In addition, the
Direct3D rendering module will compute a weighted average of the texels that are
immediately above, below, to the left of, and to the right of the nearest sample point.

Select bilinear texture filtering by invoking the
IDirect3DDevice3::SetTextureStageState method. Set the value of the first
parameter to the integer index number (0-7) of the texture for which you are
selecting a texture filtering method. Pass D3DTEXTUREMAGFILTER as the
value of the second parameter if you are setting the magnification filter. Pass
D3DTEXTUREMIPFILTER as the value of the second parameter if you are setting
the minification filter. Pass D3DTEXTUREMIPFILTER as the value of the second
parameter if you are setting the mipmapping filter. Set the third parameter to
D3DTFG_LINEAR if you are setting the magnification filter, D3DTFN_LINEAR if
you are setting the minification filter, or D3DTFP_LINEAR if you are setting the
mipmap filter. For more information, see Texture Filtering State.

Anisotropic Texture Filtering
[This is preliminary documentation and subject to change.]

Anisotropy is the distortion visible in the texels of a 3-D object whose surface is
oriented at an angle with respect to the plane of the screen. When a pixel from an
anisotropic primitive is mapped into texels, its shape is distorted. Direct3D measures
the anisotropy of a pixel as the elongation (length divided by width) of a screen pixel
that is inverse-mapped into texture space.

Anisotropic texture filtering can be used in conjunction with linear texture filtering
or mipmap texture filtering to improve rendering results. Your application enables
anisotropic texture filtering by calling the
IDirect3DDevice3::SetTextureStageState method. Set the value of the first
parameter to the integer index number (0-7) of the texture for which you are
selecting a texture filtering method. Pass D3DTEXTUREMAGFILTER as the
value of the second parameter if you are setting the magnification filter. Pass
D3DTEXTUREMINFILTER as the value of the second parameter if you are
setting the minification filter. Set the third parameter to D3DTFG_ANISOTROPIC if
you are setting the magnification filter, or D3DTFN_ANISOTROPIC if you are
setting the minification filter. For more information, see Texture Filtering State.

in.doc – page 233

Your program must also set the degree of anisotropy to a value greater than zero and
less than one. Do this by calling the IDirect3DDevice3::SetTextureStageState
method. Set the value of the first parameter to the integer index number (0-7) of the
texture for which you are setting the degree of isotropy. Pass
D3DTSS_MAXANISOTROPY as the value of the second parameter. The final
parameter should be the degree of isotropy.

Disable isotropic filtering by setting the degree of isotropy to one (any value larger
than one enables it). Check the D3DPRASTERCAPS_ANISOTROPY flag in the
D3DPRIMCAPS structure to determine the possible range of values for the degree
of anisotropy.

Texture Filtering With Mipmaps
[This is preliminary documentation and subject to change.]

Mipmap textures are used in 3-D scenes to decrease the time required for rendering a
scene. They also improve the scene's realism. However, they often require large
amounts of memory.

This section presents the fundamentals of using mipmap textures in 3-D scenes in the
following topics:

· What Is a Mipmap?
· Creating a Set of Mipmaps
· Selecting and Displaying a Mipmap

What Is a Mipmap?
[This is preliminary documentation and subject to change.]

A mipmap is a sequence of textures, each of which is a progressively lower
resolution representation of the same image. The height and width of each image, or
level, in the mipmap is a power of two smaller than the previous level. Mipmaps do
not have to be square.

A high-resolution mipmap image is used for objects that are close to the viewer.
Lower-resolution images are used as the object moves farther away. Mipmapping
improves the quality of rendered textures at the expense of using more memory.

Direct3D represents mipmaps as a chain of attached surfaces. The highest resolution
texture is at the head of the chain and has, as an attachment, the next level of the
mipmap. That level has, in turn, an attachment that is the next level in the mipmap,
and so on down to the lowest resolution level of the mipmap.

The following set of illustrations shows an example. The set of bitmap textures
represents a sign on the side of a container in a 3-D, first-person game. When created
as a mipmap, the highest-resolution texture is first in the set. Each succeeding
texture in the mipmap set is a power of 2 smaller in height and width. In this case,
the maximum-resolution mipmap is 256 pixels by 256 pixels. The next, texture is
128x128. The last texture in the chain is 64x64.

in.doc – page 234

This sign would have a maximum distance from which it is visible. If the player
begins far away from the sign, the game would display the smallest texture in the
mipmap chain, which in this case the 64x64 texture.

As the player moves the point of view closer to the sign, progressively higher-
resolution textures in the mipmap chain are used.

The highest-resolution texture is used when the user's point of view is at the
minimum allowable distance from the sign.

This is a computationally lower-overhead way of simulating perspective effects for
textures. Rather than render a single texture to many resolutions, it is faster to use
multiple textures at varying resolutions.

Direct3D is able to assess which texture in a mipmap set is the closest resolution to
the desired output and map pixels into its texel space. If the resolution of the final
image is between the resolutions of the textures in the mipmap set, Direct3D can
examine texels in both of the mipmaps and blend their color values together.

If you want your application to use mipmaps, it must build a set of mipmaps. For
details, see Creating a Set of Mipmaps. If your program uses texture handles, it must
then select the mipmap set as the current texture. For more information, see Current
Texture. If it uses texture interface pointers, it must select the mipmap set as the first

in.doc – page 235

texture in the set of current textures. For more information, see Multiple Texture
Blending.

Next, your program must set the filtering method that Direct3D uses to sample
texels. The fastest method of mipmap filtering is to have Direct3D select the nearest
texel. Use the D3DTFP_POINT enumerated value to select this. Direct3D can
produce better filtering results if your application uses the D3DTFP_LINEAR
enumerated value. This will select the nearest mipmap, then compute a weighted
average of the texels surrounding the location in the texture to which the current
pixel maps.

Creating a Set of Mipmaps
[This is preliminary documentation and subject to change.]

To create a surface representing a single level of a mipmap, specify the
DDSCAPS_MIPMAP and DDSCAPS_COMPLEX flags in the DDSURFACEDESC
structure passed to the IDirectDraw4::CreateSurface method. Because all mipmaps
are also textures, the DDSCAPS_TEXTURE flag must also be specified.

It is possible to create each level manually and build the chain by using the
IDirectDrawSurface4::AddAttachedSurface method. However, this is not
recommended. Many 3-D hardware vendors optimize their drivers for the
IDirectDraw4::CreateSurface method. Applications that build mipmap chains with
calls to IDirectDrawSurface4::AddAttachedSurface may find that mipmapping is
not as fast.

The following example demonstrates how your application can use the
IDirectDraw4::CreateSurface method to build a chain of five mipmap levels of
sizes 256256, 128128, 6464, 3232, and 1616:

// This code fragment assumes that the variable lpDD is a
// valid pointer to a DirectDraw interface.

DDSURFACEDESC ddsd;
LPDIRECTDRAWSURFACE4 lpDDMipMap;
ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_MIPMAPCOUNT;
ddsd.dwMipMapCount = 5;
ddsd.ddsCaps.dwCaps = DDSCAPS_TEXTURE |
 DDSCAPS_MIPMAP | DDSCAPS_COMPLEX;
ddsd.dwWidth = 256UL;
ddsd.dwHeight = 256UL;

ddres = lpDD->CreateSurface(&ddsd, &lpDDMipMap);
if (FAILED(ddres))
.
.
.

in.doc – page 236

You can omit the number of mipmap levels, in which case the
IDirectDraw4::CreateSurface method will create a chain of surfaces, each a power
of two smaller than the previous one, down to the smallest possible size. It is also
possible to omit the width and height, in which case IDirectDraw4::CreateSurface
will create the number of levels you specify, with a minimum level size of 11.

Note
Each surface in a mipmap chain has dimensions that are one-half that of the
previous surface in the chain. If the top-level mipmap has dimensions of
256128, the dimensions of the second-level mipmap are 12864, the third-
level is 6432, and so on down to 21. If you explicitly specify dimensions in
the dwWidth and dwHeight members, you should be aware of some
restrictions. Namely, you cannot request a number of mipmap levels in
dwMipMapCount that would cause either the width or height of any mipmap in
the chain to be smaller than 1. Take the very simple case of a 42 top-level
mipmap surface: the maximum value allowed for dwMipMapCount here is 2:
the top-level dimensions are 42, and the dimensions for the second level 21.
A value larger than 2 in dwMipMapCount would result in a fractional value in
the height of the second-level mipmap, and is therefore disallowed.

After your application creates the mipmap surfaces, it needs to associate the surface
with a texture. If you are using texture handles, use the procedures outlined in
Creating a Texture Handle. If you are using texture interface pointers, see Obtaining
a Texture Interface Pointer.

Selecting and Displaying a Mipmap
[This is preliminary documentation and subject to change.]

If your program uses texture handles, it must assign the handle of the mipmap
texture as the current texture. For details, see Current Texture.

If your application uses texture interface pointers, it must set the mipmap texture set
as the first texture in the list of current textures. For more information, see Multiple
Texture Blending.

After your application selects the mipmap texture set, it must assign values from the
D3DTEXTUREFILTER enumerated type to the
D3DRENDERSTATE_TEXTUREMAG and D3DRENDERSTATE_TEXTUREMIN
render states. Direct3D will then automatically perform mipmap texture filtering.

Your application can also manually traverse a chain of mipmap surfaces by using the
IDirectDrawSurface4::GetAttachedSurface method and specifying the
DDSCAPS_MIPMAP and DDSCAPS_TEXTURE flags in the DDSCAPS structure.
The following example traverses a mipmap chain from highest to lowest resolutions:

LPDIRECTDRAWSURFACE lpDDLevel, lpDDNextLevel;
DDSCAPS ddsCaps;
HRESULT ddres;

in.doc – page 237

lpDDLevel = lpDDMipMap;
lpDDLevel->AddRef();
ddsCaps.dwCaps = DDSCAPS_TEXTURE | DDSCAPS_MIPMAP;
ddres = DD_OK;
while (ddres == DD_OK)
{
 // Process this level.
 .
 .
 .
 ddres = lpDDLevel->GetAttachedSurface(
 &ddsCaps, &lpDDNextLevel);
 lpDDLevel->Release();
 lpDDLevel = lpDDNextLevel;
}
if ((ddres != DD_OK) && (ddres != DDERR_NOTFOUND))
{
 // Code to handle the error goes here
}
.
.
.

Applications need to manually traverse a mipmap chain to load bitmap data into
each surface in the chain. This is typically the only reason to traverse the chain.

Direct3D explicitly stores the number of levels in a mipmap chain. When an
application obtains the surface description of a mipmap (by calling the
IDirectDrawSurface4::Lock or IDirectDrawSurface4::GetSurfaceDesc method),
the dwMipMapCount member of the DDSURFACEDESC structure contains the
number of levels in the mipmap, including the top level. For levels other than the top
level in the mipmap, the dwMipMapCount member specifies the number of levels
from that mipmap to the smallest mipmap in the chain.

Texture Wrapping
[This is preliminary documentation and subject to change.]

This section presents information on wrapping textures around 3-D primitives. The
discussion is divided into the following topics:

· What is Texture Wrapping?
· Using Texture Wrapping

Note

in.doc – page 238

Texture wrapping should not be confused with the similarly named texture
addressing modes. For more information, see Texture Addressing Modes and
Texture Wrapping and Texture Addressing Modes.

What is Texture Wrapping?
[This is preliminary documentation and subject to change.]

Texture wrapping, in short, changes the basic way in which Direct3D rasterizes
textured polygons using the texture coordinates specified for each vertex. (Don't
confuse texture wrapping with the "wrap" texture addressing mode. For more
information, see Texture Addressing Modes and Texture Wrapping.) While
rasterizing a polygon, the system interpolates between the texture coordinates at each
of the polygon's vertices to determine the texels that should be used for every pixel
of the polygon. Normally, the system treats the texture as a 2-D plane, interpolating
new texels by taking the shortest route from point A within a texture to point B. If
point A represents the U, V position (0.8, 0.1), and point B is at (0.1,0.1), the line of
interpolation would look like:

(0.0,0.0)

(1.0,1.0)(0.0,1.0)

A (0.8,0.7)

B (0.1,0.1)

Note that the shortest distance between A and B in the preceding illustration runs
roughly through the middle of the texture. Enabling U or V texture coordinate
wrapping changes how Direct3D perceives the shortest route between texture
coordinates in the U and V directions. By definition, texture wrapping causes the
rasterizer to take the shortest route between texture coordinate sets, assuming that
0.0 and 1.0 are coincident. The last bit is the tricky part: you can imagine that
enabling texture wrapping in one direction causes the system to treat a texture as
though it were "wrapped" around a cylinder. For example, take the following
illustration:

in.doc – page 239

(1.0,0.0)
or

 (0.0, 0.0)

B (0.1,0.1)

A (0.8,0.7)

The preceding diagram shows how wrapping in the U direction affects the way the
system interpolates texture coordinates. Using the same points we used in the
example for "normal", or non-wrapped, textures, you can see that the shortest route
between points A and B is no longer across the middle of the texture; it's now across
the border where 0.0 and 1.0 exist together. Wrapping in the V direction is similar,
only it "wraps" the texture around a cylinder that is lying on its side. Wrapping in
both the U and V directions is a little more complex. In this situation, you might
envision the texture as a torus, or doughnut.

The most common practical application for texture wrapping is to perform
environment mapping. Usually, an object textured with an environment map appears
very reflective, showing a mirrored image of the object's surroundings in the scene.
For the sake of this discussion, picture a room with four walls, each one painted with
a letter R, G, B, Y and the corresponding colors: red, green, blue, and yellow. The
environment map for such a simple room might look like:

in.doc – page 240

Imagine that the room's ceiling is held up by a perfectly reflective, four sided, pillar.
Mapping the environment map texture to the pillar is pretty simple — making it look
as though it's reflecting the letters and colors as they appear on the walls isn't as
easy. The following diagram shows a wire frame of the pillar with the applicable
texture coordinates listed near the top vertices (the "seam" where wrapping will cross
the edges of the texture is shown with a dotted line):

(0.375,0.0) (0.625,0.0)

(0.175,0.0) (0.857,0.0)

in.doc – page 241

With wrapping enabled in the U direction, the textured pillar shows the colors and
symbols from the environment map appropriately and, at the "seam" in the front of
the texture, the rasterizer properly chooses the shortest route between the texture
coordinates, assuming that U coordinates 0.0 and 1.0 share the same location. The
textured pillar would look something like the following:

(0.375,0.0)

(0.175,0.0)

(0.625,0.0)

(0.857,0.0)

If texture wrapping wasn't enabled, the rasterizer would not interpolate in the
direction needed to generate a believable, reflected, image. Rather, the area at the
front of the pillar would contain a horizontally compressed version of the texels
between U coordinates 0.175 and 0.875, as they pass through the center of the
texture. The effect would be ruined.

Using Texture Wrapping
[This is preliminary documentation and subject to change.]

The process of enabling texture wrapping differs across versions the Direct3D device
interfaces. If your application uses the IDirect3DDevice3 interface, you enable
texture wrapping for texture coordinate sets used by vertices, not for the texture
stages themselves. In this case, call the IDirect3DDevice3::SetRenderState method
to enable texture wrapping, passing one of the D3DRENDERSTATE_WRAP0
through D3DRENDERSTATE_WRAP7 enumerated values as the first parameter to
identify which texture coordinate set will receive wrapping. Specify the
D3DWRAP_U and D3DWRAP_V flags in the second parameter to enable texture
wrapping in the corresponding direction, or combine the two to enable wrapping in
both directions. If you omit one or both of the flags, texture wrapping in the

in.doc – page 242

corresponding direction is disabled. To disable texture wrapping for a particular set
of texture coordinates, set the value for the corresponding render state to 0.

If your application uses the legacy IDirect3DDevice2 or IDirect3DDevice
interfaces, you still enable texture wrapping by calling the SetRenderState method;
however, these interface versions do not support D3DRENDERSTATE_WRAP0
through D3DRENDERSTATE_WRAP7. Instead, use the
D3DRENDERSTATE_WRAPU or D3DRENDERSTATE_WRAPV value in the first
parameter. Specify TRUE as in the second parameter to enable wrapping, or FALSE
to disable it.

Note
The IDirect3DDevice3 interface does recognize the legacy
D3DRENDERSTATE_WRAPU and D3DRENDERSTATE_WRAPV render
states, even though they were superseded by D3DRENDERSTATE_WRAP0
through D3DRENDERSTATE_WRAP7. These older render states, when passed
to the IDirect3DDevice3 version of SetRenderState, affect U and V texture
wrapping for the first set of texture coordinates.

Texture Blending
[This is preliminary documentation and subject to change.]

Direct3D can produce transparency effects by blending a texture with a primitive's
color. It can also blend multiple textures onto a primitive. This section presents
information on how texture blending is done. It is divided into the following topics:

· Alpha Texture Blending
· Multipass Texture Blending
· Multiple Texture Blending
· Light Mapping With Textures

If you want your application to use texture blending, the program should first check
to see if the user's hardware supports it. The relevant information is found in the
dwTextureCaps member of the D3DPRIMCAPS structure. For details on how to
query the user's hardware for texture blending capabilities, see
IDirect3DDevice3::GetCaps and D3DDEVICEDESC.

Alpha Texture Blending
[This is preliminary documentation and subject to change.]

When Direct3D renders a primitive, it generates a color for the primitive based on
the primitive's material and lighting information. For details, see Lighting and
Materials. If an application enables texture blending, Direct3D must then blend the
texel colors of one or more textures with the primitive's current colors. Direct3D
uses the following formula to determine the final color for each pixel in the
primitive's image.

in.doc – page 243

FinalColor = TexelColor * SourceBlendFactor +
PixelColor * DestBlendFactor

In the preceding formula, FinalColor is the pixel color that is output to the target
rendering surface. TexelColor stands for the color of the texel that corresponds to the
current pixel. For details on how Direct3D maps pixels to texels, see Texture
Filtering. SourceBlendFactor is a calculated value that Direct3D uses to determine
the percentage of the texel color to apply to the final color. PixelColor is the color of
the current pixel in the primitive's image. DestBlendFactor represents the percentage
of the current pixel's color that will be used in the final color. The values of
SourceBlendFactor and DestBlendFactor range from 0.0 or 1.0 inclusive.

As you can see from the preceding formula, a texture is not rendered as transparent
at all if the SourceBlendFactor is 1.0 and the DestBlendFactor is 0.0. It is completely
transparent if the SourceBlendFactor is 0.0 and the DestBlendFactor is 1.0. If an
application sets these factors to any other values, the resulting texture will be
blended with some degree of transparency.

Every texel in a texture has a red, a green, and a blue color value. By default,
Direct3D uses the alpha values of texels as the SourceBlendFactor. Therefore,
applications can control the transparency of textures by setting the alpha values in
their textures.

Your application can control the blending factors with the
D3DRENDERSTATE_SRCBLEND and D3DRENDERSTATE_DESTBLEND
enumerated values. Invoke the IDirect3DDevice3::SetRenderState method and
pass either D3DRENDERSTATE_SRCBLEND or
D3DRENDERSTATE_DESTBLEND as the value of the first parameter. The second
parameter must be a member of the D3DBLEND enumerated type.

Multipass Texture Blending
[This is preliminary documentation and subject to change.]

Direct3D applications can achieve numerous special effects by applying many
textures onto a primitive in more than one pass. The common term for this is
multipass texture blending. A typical use for multipass texture blending is to apply
shadows to primitives in addition to whatever textures they might normally have. For
more information, see Light Mapping With Textures.

All Direct3D device interfaces support multipass texture blending. Beginning with
the IDirect3DDevice3 interface, DirectX is also able to apply multiple textures to
primitives in a single pass, if the user's hardware supports it. For details, see Multiple
Texture Blending.

If your user's hardware does not support multiple texture blending, your application
can use multipass texture blending to achieve the same visual effects. However, it
will not be able to sustain the frame rates that are possible when using multiple
texture blending.

in.doc – page 244

Applications enable multipass texture blending by invoking the
IDirect3DDevice3::SetRenderState method, and passing the enumerated value
D3DRENDERSTATE_ALPHABLENDENABLE as the value of the first parameter.
Pass TRUE as the value of the second parameter to enable texture blending, or
FALSE to disable it.

Once texture blending is enabled, your application should set the source and
destination blending factors based on the effect you want to achieve. For more
information on the source and destination blending factors, see Alpha Texture
Blending. Applications control the source blending factors by calling the
IDirect3DDevice3::SetRenderState and passing it the enumerated value
D3DRENDERSTATE_SRCBLEND as the value of the first parameter. Your
program can set the destination blending factor by passing
D3DRENDERSTATE_DESTBLEND as the value of the first parameter to
IDirect3DDevice3::SetRenderState. In either case, the second parameter must be a
member of the D3DBLEND enumerated type.

Applications set the blending operation by passing
D3DRENDERSTATE_TEXTUREMAPBLEND as the value of the first parameter in
a call to IDirect3DDevice3::SetRenderState. The second parameter must be a
member of the D3DTEXTUREBLEND enumerated type.

On each pass, your application must set the current texture. Its texel colors will be
blended with the existing pixel colors in the frame buffer. For information on setting
the current texture, see Current Texture.

Multiple Texture Blending
[This is preliminary documentation and subject to change.]

With the introduction of the IDirect3D3 and IDirect3DDevice3 interfaces, Direct3D
can now blend as many as eight textures onto primitives in a single pass. The use of
multiple texture blending can profoundly increase the frame rate of Direct3D
applications. Applications employ multiple texture blending to apply textures,
shadows, specular lighting, diffuse lighting, and other special effects in a single pass.

To blend multiple textures, applications assign textures into the set of current
textures, and then create blending stages. The topics in the following list present
information on how these steps are accomplished:

· Texture Stages and the Texture Blending Cascade
· Texture Blending Operations and Arguments
· Assigning the Current Textures
· Creating Blending Stages
· Legacy Blending Modes and Texture Stages

Texture Stages and the Texture Blending Cascade
[This is preliminary documentation and subject to change.]

in.doc – page 245

Direct3D supports single-pass multiple texture blending through the use of "texture
stages." A texture stage takes two arguments and performs a blending operation on
them, passing the result on for further processing or for rasterization. You could
visualize a texture stage as shown in the following figure.

Arg1 Arg2

Op

Blended Output

As the preceding illustration shows, texture stages blend two arguments by using a
specified operator. Common operations include simple modulation or addition of the
color or alpha components of the arguments, but more than two dozen operations are
currently supported. The arguments for a stage can be an associated texture, the
iterated color or alpha (iterated during Gouraud shading), arbitrary color and alpha,
or the result from the previous texture stage. For more information, see Texture
Blending Operations and Arguments.

Note
Direct3D distinguishes color blending from alpha blending. Applications set
blending operations and arguments for color and alpha individually, and the
results of those settings are independent of one another.

The combination of arguments and operations used by multiple blending stages
define a simple flow-based blending language. The results from one stage flow down
to another stage, and then from that stage to the next, and so on. The idea that results
flow from stage to stage to eventually be rasterized on a polygon is often called the
"texture blending cascade." The following illustration shows how individual texture
stages make up the texture blending cascade.

in.doc – page 246

Polygon

Stage N

Stage 0

Blending
Stages

1 through N-1

Each stage in a device has a zero-based index. Direct3D for DirectX 6.0 allows up to
eight blending stages, although you should always check device capabilities to
determine how many stages the current hardware supports. The first blending stage is
at index 0, the second is at 1, and so on up to index 7. The system blends stages in
increasing order of index.

Use only the number of stages you need; the unused blending stages are disabled by
default. So, if your application only uses the first two stages, it need only set
operations and arguments for stage 0 and 1, leaving the remaining stages alone. The
system blends the two stages, and ignores the disabled stages.

Optimization Note
If your application varies the number of stages it uses for different situations —
such as four stages for some objects, and only two for others — you don't need
to explicitly disable all previously used stages. If you disable the color operation
for the first unused stage, all stages with a higher index will not be applied. You
can disable texture mapping altogether by setting the color operation for the first
texture stage (stage 0).

Texture Blending Operations and Arguments
[This is preliminary documentation and subject to change.]

Applications associate a blending stage with each texture in the set of current
textures. As mentioned in Texture Stages and the Texture Blending Cascade,
Direct3D evaluates each blending stage in order, beginning with the first texture in
the set and ending with the eighth.

in.doc – page 247

Direct3D applies the information from each texture in the set of current textures to
the blending stage that is associated with it. Applications control what information
from a given texture stage is used by calling
IDirect3DDevice3::SetTextureStageState. You can set separate operations for the
color and alpha channels independently, and each operation uses two arguments.
Specify color channel operations by using the D3DTSS_COLOROP stage state, and
D3DTSS_ALPHAOP for alpha operations–both use values from the
D3DTEXTUREOP enumerated type.

Texture blending arguments use the D3DTSS_COLORARG1,
D3DTSS_COLORARG2, D3DTSS_ALPHARG1, and D3DTSS_ALPHARG2
members of the D3DTEXTURESTAGESTATETYPE enumerated type. The
corresponding argument values are identified using texture argument flags.

Note
You can disable a texture stage — and any subsequent texture blending stages in
the cascade — by setting the color operation for that stage to
D3DTOP_DISABLE. Disabling the color operation effectively disables the
alpha operation as well.

Assigning the Current Textures
[This is preliminary documentation and subject to change.]

Direct3D maintains a list of up to eight current textures. It blends these textures onto
all of the primitive it renders. Only textures created as texture interface pointers can
be used in the set of current textures.

Applications call the IDirect3DDevice3::SetTexture method to assign textures into
the set of current textures. The first parameter must be from the a number in the
range of 0-7 inclusive. Pass the texture interface pointer as the second parameter.

The following code fragment demonstrates how a texture can be assigned into the set
of current textures:

// This code fragment assumes that the variable lpd3dDev is a valid
// pointer to an IDirect3D3 interface and lpd3dTexture is a valid
// pointer to an IDirect3DTexture2 interface.

// Set the third texture.
lpd3dDev->SetTexture(2, lpd3dTexture);

Note
Software devices do not support assigning a texture to more than one texture
stage at a time.

Creating Blending Stages
[This is preliminary documentation and subject to change.]

in.doc – page 248

A blending stage is a set of texture operations, together with their arguments, that
define how textures are blended. When making a blending stage, applications invoke
the IDirect3DDevice3::SetTextureStageState function. The first call specifies the
operation that will be performed. Two additional invocations define the arguments to
which the operation will be applied. The following code fragment illustrates the
creation of a blending stage:

// This example assumes that lpD3DDev is a valid pointer to an
// IDirect3DDevice3 interface.

// Set the operation for the 1st texture.
lpD3DDev->SetTextureStageState(0,D3DTSS_COLOROP,D3DTOP_ADD);

// Set arg1 for the texture operation.
lpD3DDev->SetTextureStageState(0, // First texture
 D3DTSS_COLORARG1, // Set color arg 1
 D3DTA_TEXTURE); // Color arg 1 value

// Set arg2 for the texture operation.
lpD3DDev->SetTextureStageState(0, // First texture
 D3DTSS_COLORARG2, // Set color arg 2
 D3DTA_DIFFUSE); // Color arg 2 value

Texel data in textures contain color and alpha values. Programs can define separate
operations for both color and alpha values in a single blending stage. Each operation
(color and alpha) has its own arguments. For details, see
D3DTEXTURESTAGESTATETYPE.

Although not part of the Direct3D API, the following macros can also be inserted
into your program to abbreviate the code required for creating texture blending
stage.

#define SetTextureColorStage(dev, i, arg1, op, arg2) \
 dev->SetTextureStageState(i, D3DTSS_COLOROP, op); \
 dev->SetTextureStageState(i, D3DTSS_COLORARG1, arg1); \
 dev->SetTextureStageState(i, D3DTSS_COLORARG2, arg2);

#define SetTextureAlphaStage(dev, i, arg1, op, arg2) \
 dev->SetTextureStageState(i, D3DTSS_ALPHAOP, op); \
 dev->SetTextureStageState(i, D3DTSS_ALPHARG1, arg1); \
 dev->SetTextureStageState(i D3DTSS_ALPHARG2, arg2);

Legacy Blending Modes and Texture Stages
[This is preliminary documentation and subject to change.]

Although Direct3D still supports the texture blending render state,
D3DRENDERSTATE_TEXTUREMAPBLEND, the blending modes it offers should

in.doc – page 249

not be used in combination with texture stage based texture blending, as the results
can be unpredictable. However, you can "build" your own equivalents to the legacy
blending modes by using texture stages.

This list shows the legacy blending modes (identified by the members of the
D3DTEXTUREBLEND enumerated type), followed by a short example that sets up
the same blend by way of texture stage states. (For all examples, the g_lpDev
variable is assumed to be a valid pointer to an IDirect3DDevice3 interface):

D3DTBLEND_ADD
g_lpDev->SetTextureStageState(0, COLOROP, D3DTOP_ADD);
g_lpDev->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
g_lpDev->SetTextureStageState(0, COLORARG2, D3DTA_DIFFUSE);

g_lpDev->SetTextureStageState(0, ALPHAOP, D3DTOP_SELECTARG2);
g_lpDev->SetTextureStageState(0, ALPHAARG2, D3DTA_DIFFUSE);

D3DTBLEND_COPY and D3DTBLEND_DECAL
g_lpDev->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);
g_lpDev->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);

g_lpDev->SetTextureStageState(0, ALPHAOP, D3DTOP_SELECTARG1);
g_lpDev->SetTextureStageState(0, ALPHAARG2, D3DTA_TEXTURE);

D3DTBLEND_DECALALPHA
g_lpDev->SetTextureStageState(0, COLOROP, D3DTOP_BLENDTEXTUREALPHA);
g_lpDev->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
g_lpDev->SetTextureStageState(0, COLORARG2, D3DTA_DIFFUSE);

g_lpDev->SetTextureStageState(0, ALPHAOP, D3DTOP_SELECTARG2);
g_lpDev->SetTextureStageState(0, ALPHAARG2, D3DTA_DIFFUSE);

D3DTBLEND_MODULATE
g_lpDev->SetTextureStageState(0, COLOROP, D3DTOP_MODULATE);
g_lpDev->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
g_lpDev->SetTextureStageState(0, COLORARG2, D3DTA_DIFFUSE);

if (the_texture_has_an_alpha_channel)
{
 g_lpDev->SetTextureStageState(0, ALPHAOP, D3DTOP_SELECTARG1);
 g_lpDev->SetTextureStageState(0, ALPHAARG1, D3DTA_TEXTURE);
}
else
{
 g_lpDev->SetTextureStageState(0, ALPHAOP, D3DTOP_SELECTARG2);
 g_lpDev->SetTextureStageState(0, ALPHAARG2, D3DTA_DIFFUSE);
}

in.doc – page 250

D3DTBLEND_MODULATEALPHA
g_lpDev->SetTextureStageState(0, COLOROP, D3DTOP_MODULATE);
g_lpDev->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
g_lpDev->SetTextureStageState(0, COLORARG2, D3DTA_DIFFUSE);

g_lpDev->SetTextureStageState(0, ALPHAOP, D3DTOP_MODULATE);
g_lpDev->SetTextureStageState(0, ALPHAARG1, D3DTA_TEXTURE);
g_lpDev->SetTextureStageState(0, ALPHAARG2, D3DTA_DIFFUSE);

D3DTBLEND_DECALMASK and D3DTBLEND_MODULATEMASK
Not supported in DirectX 6.0.

Light Mapping With Textures
[This is preliminary documentation and subject to change.]

For an application to realistically render a 3-D scene, it must take into account the
effect that light sources have on the appearance of the scene. Although techniques
such as flat and Gouraud shading are valuable tools in this respect, they can be
insufficient for your needs. Direct3D supports multipass and multiple texture
blending. These capabilities enable your application to render scenes whose
appearance is much more realistic than scenes rendered with shading techniques
alone. By applying one or more light maps, your application can map areas of light
and shadow onto its primitives.

A light map is a texture or group of textures that contain information about lighting
in a 3-D scene. You can store the lighting information in the alpha values of the light
map, in the color values, or in both.

If you implement light mapping using multipass texture blending, your program
should render the light map onto its primitives on the first pass. It should use a
second pass to render the base texture. The exception to this is specular light
mapping. In that case, render the base texture first, then add the light map.

Multiple texture blending enables your application to render both the light map and
the base texture in one pass. If your user's hardware provides for multiple texture
blending, your application should take advantage of it when performing light
mapping. It will significantly improve your application's performance.

Using light maps, a Direct3D application can achieve a variety of lighting effects
when it renders primitives. It can not only map monochrome and colored lights in a
scene, it can add details such as specular highlights and diffuse lighting.

Information on using Direct3D texture blending to perform light mapping is
presented in the following topics:

· Monochrome Light Maps
· Color Light Maps
· Specular Light Maps
· Diffuse Light Maps

in.doc – page 251

Monochrome Light Maps
[This is preliminary documentation and subject to change.]

Some older 3-D accelerator boards do not support texture blending using the alpha
value of the destination pixel (see Alpha Texture Blending). These adapters also
generally do not support multiple texture blending. If your application is running on
an adapter such as this, it can use multipass texture blending to perform
monochrome light mapping.

To perform monochrome light mapping, an application stores the lighting
information in the alpha data of its light map textures. The program uses the texture
filtering capabilities of Direct3D to perform a mapping from each pixel in the
primitive's image to a corresponding texel in the light map. It sets the source
blending factor to the alpha value of the corresponding texel.

The following code fragment illustrates how an application can use a texture as a
monochrome light map:

// This example assumes that lpD3DDev is a valid pointer to an
// IDirect3DDevice3 interface and that lptexLightMap is a valid
// pointer to a texture that contains monochrome light map data.

// Set the light map texture as the current texture.
lpD3DDev->SetTexture(0,lptexLightMap);

// Set the color operation.
lpD3DDev->SetTextureStageState(0,D3DTSS_COLOROP,
 D3DTOP_SELECTARG1);

// Set argument 1 to the color operation.
lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG1,
 D3DTA_TEXTURE | D3DTA_ALPHAREPLICATE);

Since display adapters that do not support destination alpha blending usually do not
support multiple texture blending, this example sets the light map as the first texture,
which is available on all 3-D accelerator cards. The sample code sets the color
operation for the texture's blending stage to blend the texture data with the
primitive's existing color. It then selects the first texture and the primitive's existing
color as the input data.

Color Light Maps
[This is preliminary documentation and subject to change.]

Your application will usually render 3-D scenes more realistically if it uses colored
light maps. A colored light map uses the RGB data in the light map for its lighting
information. The following code fragment demonstrates light mapping with RGB
color data:

in.doc – page 252

// This example assumes that lpD3DDev is a valid pointer to an
// IDirect3DDevice3 interface and that lptexLightMap is a valid
// pointer to a texture that contains RGB light map data.

// Set the light map texture as the 1st texture.
lpD3DDev->SetTexture(0, lptexLightMap);

lpD3DDev->SetTextureStageState(0,D3DTSS_COLOROP,
 D3DTOP_MODULATE);

lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG1,
 D3DTA_TEXTURE);

lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG2,
 D3DTA_DIFFUSE);

This sample sets the light map as the first texture. It then sets state of the first
blending stage to modulate the incoming texture data. It uses the first texture and the
current color of the primitive as the arguments to the modulate operation.

Specular Light Maps
[This is preliminary documentation and subject to change.]

When illuminated by a point light source, shiny surfaces, such as metal or color light
maps, your Direct3D applications can apply specular light maps to primitives.

To perform specular light mapping, first modulate the specular light map with the
primitive's existing texture. Then add the monochrome or RGB light map. The
following code fragment illustrates this process:

// This example assumes that lpD3DDev is a valid pointer to an
// IDirect3DDevice3 interface.
// lptexBaseTexture is a valid pointer to a texture.
// lptexSpecLightMap is a valid pointer to a texture that contains RGB
// specular light map data.
// lptexLightMap is a valid pointer to a texture that contains RGB
// light map data.

// Set the base texture.
lpD3DDev->SetTexture(0,lptexBaseTexture);

// Set the base texture operation and args
lpD3DDev->SetTextureStageState(0,D3DTSS_COLOROP,
 D3DTOP_MODULATE);
lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG1, D3DTA_TEXTURE);
lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG2, D3DTA_DIFFUSE);

in.doc – page 253

// Set the specular light map.
lpD3DDev->SetTexture(1,lptexSpecLightMap);

// Set the specular light map operation and args
lpD3DDev->SetTextureStageState(1,D3DTSS_COLOROP,
 D3DTOP_MODULATE);
lpD3DDev->SetTextureStageState(1,D3DTSS_COLORARG1, D3DTA_TEXTURE);
lpD3DDev->SetTextureStageState(1,D3DTSS_COLORARG2, D3DTA_CURRENT);

// Set the RGB light map.
lpD3DDev->SetTexture(2,lptexLightMap);

// Set the RGB light map operation and args
lpD3DDev->SetTextureStageState(2,D3DTSS_COLOROP, D3DTOP_ADD);
lpD3DDev->SetTextureStageState(2,D3DTSS_COLORARG1, D3DTA_TEXTURE);
lpD3DDev->SetTextureStageState(2,D3DTSS_COLORARG2, D3DTA_CURRENT);

Diffuse Light Maps
[This is preliminary documentation and subject to change.]

When illuminated by a point light source, matte surfaces display diffuse light
reflection. The brightness of diffuse light depends on the distance from the light
source and the angle between the surface normal and the light source direction
vector.

Your application can simulate diffuse lighting with texture light maps. Do this by
adding the diffuse light map to the base texture, as shown in the following code
fragment:

// This example assumes that lpD3DDev is a valid pointer to an
// IDirect3DDevice3 interface.
// lptexBaseTexture is a valid pointer to a texture.
// lptexDiffuseLightMap is a valid pointer to a texture that contains
// RGB diffuse light map data.

// Set the base texture.
lpD3DDev->SetTexture(0,lptexBaseTexture);

// Set the base texture operation and args
lpD3DDev->SetTextureStageState(0,D3DTSS_COLOROP,
 D3DTOP_MODULATE);
lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG1, D3DTA_TEXTURE);
lpD3DDev->SetTextureStageState(0,D3DTSS_COLORARG2, D3DTA_DIFFUSE);

// Set the diffuse light map.
lpD3DDev->SetTexture(1,lptexDiffuseLightMap);

in.doc – page 254

// Set the blend stage.
lpD3DDev->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_ADD);
lpD3DDev->SetTextureStageState(1, D3DTSS_COLORARG1, D3DTA_TEXTURE);
lpD3DDev->SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);

Texture Compression
[This is preliminary documentation and subject to change.]

DirectDraw provides services to compress surfaces that will be used for texturing 3-
D models. For information on creating and manipulating the data in a compressed
texture surface, see Compressed Texture Surfaces in the DirectDraw documentation.

Once your application creates a rendering device, it can determine if the device
supports texturing from compressed texture surfaces by calling the
IDirect3DDevice3::EnumTextureFormats method. The method calls the
D3DEnumPixelFormatsCallback callback function that you provide for each pixel
format that the device supports for texture maps. If any of the enumerated pixel
formats use the DXT1, DXT2, DXT3, DXT4, or DXT5 four character codes
(FOURCCs), the device can texture directly from a compressed texture surface that
uses that format. If so, you can use compressed texture surfaces directly with
Direct3D by calling the IDirect3DDevice3::SetTexture method. If the device
doesn't support texturing from compressed texture surfaces, you can still store
texture data in a compressed format surface, but you must convert any compressed
textures to a supported format before they can be used for texturing. The DirectDraw
blit methods, IDirectDrawSurface4::Blt and IDirectDrawSurface4::BltFast,
automatically perform conversion of compressed formats to standard RGBA formats.
To minimize loss of information, try to pick a destination pixel format that closely
matches the compressed format. For instance, ARGB:1555 would be a good
destination format for DXT1, but ARGB:4444 would be a better choice for DXT3
since DXT3 contains four bits of alpha information.

Automatic Texture Management
[This is preliminary documentation and subject to change.]

Texture management, in short, is the process of determining which textures are
needed for rendering at a given time, and ensuring that those textures are loaded into
video memory. Like any algorithm, texture management schemes vary in
complexity, but any approach to texture management involves the following key
tasks:

· Tracking the amount of available texture memory.
· Calculating which textures are currently needed for rendering, and which aren't.
· Determining which of the existing texture surfaces can be reloaded with another

texture image, and which surfaces should be destroyed and replaced with new
texture surfaces.

in.doc – page 255

Previously, Direct3D applications were responsible for managing textures on their
own. Direct3D Immediate Mode for DirectX 6.0 introduces system supported texture
management, where Direct3D efficiently and intelligently performs texture
management, ensuring that textures are loaded for optimal performance. (Texture
surfaces that Direct3D manages are casually referred to as "managed textures.")

You request automatic texture management for textures when you create them. To
get a managed texture, simply create a texture surface that also includes the
DDSCAPS2_TEXTUREMANAGE flag in the dwCaps2 member of the associated
DDSCAPS2 structure. Note that you are not allowed to specify where you want the
texture created–you can't use the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY flags when creating a managed texture. After
creating the managed texture, you can call the IDirect3DDevice3::SetTexture
method to set it to a stage in the rendering device's texture cascade.

Direct3D automatically downloads textures into video memory as needed. (The
system might cache managed textures in local or non-local video memory,
depending on the availability of non-local video memory or other factors. Where
your managed textures are cached is not communicated to your application, nor is
this knowledge required to take advantage of automatic texture management.) If
your application uses more textures than can fit in video memory, Direct3D will
evict older textures from video memory to make room for the new textures. If you
use an evicted texture again, the system uses the original system memory texture
surface to reload the texture in the video memory cache. Reloading the texture is a
minor, but obviously necessary, performance hit to the application.

You can dynamically modify the original system memory copy of the texture by
blitting or locking the texture surface. When the system detects a "dirty" surface —
after a blit is completed, or when the surface is unlocked — the texture manager
automatically updates the video memory copy of the texture. The performance hit
incurred is similar to reloading an evicted texture.

When entering a new level in a game, your application may need to flush all
managed textures from video memory. You can explicitly request that all managed
textures be evicted by calling the IDirect3D3::EvictManagedTextures method.
When you call this method, Direct3D destroys any cached local and non-local video
memory textures, but leaves the original system memory copies untouched.

Note
You cannot retrieve a texture handle for a managed texture by calling the
IDirect3DTexture2::GetHandle method.

Hardware Considerations for Texturing
[This is preliminary documentation and subject to change.]

Current hardware does not necessarily implement all of the functionality that the
Direct3D interface enables. Your program must test user's hardware and adjust its
rendering strategies accordingly.

in.doc – page 256

Many 3-D accelerator cards do not support diffuse iterated values as arguments to
blending units. However, your program can introduce iterated color data when it
performs texture blending.

Some 3-D hardware may not have a blending stage associated with the first texture.
On these adapters, your application will need to perform blending in the second and
third texture stages in the set of current textures.

Due to limitations in much of today's hardware, few display adapters can perform
trilinear mipmap interpolation through the multiple texture blending interface
offered by IDirect3DDevice3. Specifically, there is little support for setting the
D3DTSS_MIPFILTER texture stage state to D3DTFP_LINEAR. Your application
can use multipass texture blending to achieve the same effects, or degrade to the
D3DTFP_POINT mipmap filter mode, which is widely supported.

Depth Buffers
[This is preliminary documentation and subject to change.]

This section presents information on using depth buffers for hidden line and hidden
surface removal. It is organized into the following topics:

· What Are Depth Buffers?
· Using Depth Buffers

The Direct3D Immediate Mode tutorials provide additional information about using
depth buffers. See Tutorial 2: Adding a Depth Buffer for details.

What Are Depth Buffers?
[This is preliminary documentation and subject to change.]

A depth buffer, often called a z-buffer or a w-buffer, is a DirectDraw surface that
stores depth information to be used by Direct3D. When Direct3D renders a 3-D
scene to a target surface, it can use the memory in an attached depth buffer surface
as a workspace to determine how the pixels of rasterized polygons occlude one
another. Direct3D uses an off-screen DirectDraw surface as the target to which final
color values are written. The depth buffer surface that is attached to the render target
surface is used to store depth information which tells Direct3D how "deep" each
visible pixel is in the scene.

When a 3-D scene is rasterized with depth buffering enabled, each point on the
rendering surface is tested. The values in the depth buffer can be a point's z
coordinate or its homogeneous w coordinate — from the point's (x,y,z,w) location in
projection space. A depth buffer that uses z values is often called a "z-buffer," and
one that uses w values called a "w-buffer." Each type of depth buffer has its
advantages and disadvantages, which are discussed later.

At the beginning of the test, the depth value in the depth buffer is set to the largest
possible value for the scene. The color value on the rendering surface is set to either

in.doc – page 257

the background color value, or the color value of the background texture at that
point. Each polygon in the scene is tested to see if it intersects with the current
coordinate (x,y) on the rendering surface. If it does, the depth value (which will be
the z coordinate in a z-buffer, and the w coordinate in a w-buffer) at the current point
is tested to see if it is smaller than the depth value already stored in the depth buffer.
If the depth of the polygon value is smaller, it is stored in the depth buffer and the
color value from the polygon is written to the current point on the rendering surface.
If the depth value of the polygon at that point is larger, the next polygon in the list is
tested. This process is shown in the following illustration.

The color value is stored
in the rendering surface.

The depth value
is stored in the
depth-buffer.

Rendering su
rface

Y

XDepth

Depth-buffer (same dimensions as the rendering surface)

Note
Although most applications don't use this feature, you can change the
comparison Direct3D uses to determine which values will be placed in the depth
buffer and subsequently the render target surface. To do so, change the value for
the D3DRENDERSTATE_ZFUNC render state.

Nearly all 3-D accelerators on the market support z-buffering, making z-buffers the
most common type of depth buffer today. However ubiquitous, z-buffers do have
their drawbacks. Due to the mathematics involved, the generated z values in a z-
buffer tend not to be distributed evenly across the z-buffer range (typically 0.0 to
1.0, inclusive). Specifically, the ratio between the far and near clipping planes
strongly affects how unevenly z values are distributed. Using a far-plane distance to
near-plane distance ratio of 100, 90% of the depth buffer range is spent on the first
10% of the scene depth range. Typical applications for entertainment or visual

in.doc – page 258

simulations with exterior scenes often require far plane/near plane ratios of anywhere
between 1000 to 10000. At a ratio of 1000, 98% of the range is spent on the 1st 2%
of the depth range, and the distribution gets worse with higher ratios. This can cause
hidden surface artifacts in distant objects, especially when using 16-bit depth buffers
(the most commonly supported bit-depth).

A w-based depth buffer, on the other hand, is often more evenly distributed between
the near and far clip planes than z-buffer. The key benefit is that the ratio of
distances for the far and near clipping planes is no longer an issue. This allows
applications to support large maximum ranges, while still getting relatively accurate
depth buffering close to the eye point. A w-based depth buffer isn't perfect, and can
sometimes exhibit hidden surface artifacts for near objects. Another drawback to the
w-buffered approach is related to hardware support: w-buffering isn't supported as
widely in hardware as z-buffering.

The DirectDraw HEL can create depth buffers for use by Direct3D or other 3-D–
rendering software. The HEL supports 16-bit depth buffers. The DirectDraw device
driver for a 3-D accelerator can permit the creation of depth buffers in display
memory by exposing the DDSCAPS_ZBUFFER flag. You can query for the
supported depth buffer bit-depths by calling the
IDirect3D3::EnumZBufferFormats method.

Whenever a z-buffer surface is created, your application should maintain a pointer to
the z-buffer until it shuts the Direct3D system down. Your program should release
the z-buffer surface just before it releases the rendering surface.

Z-buffering requires overhead during rendering. Various techniques can be used to
optimized rendering when using z-buffers. For details, see Z-Buffer Performance.

Note
The actual interpretation of a depth value is specific to the 3-D renderer.

Using Depth Buffers
[This is preliminary documentation and subject to change.]

The following topics discuss common usage scenarios for depth buffers:

· Querying for Depth Buffer Support
· Creating a Depth Buffer
· Enabling Depth Buffering
· Clearing Depth Buffers
· Changing Depth Buffer Write Access
· Changing Depth Buffer Comparison Functions
· Using Z-Bias

in.doc – page 259

For a conceptual overview and an introduction to depth buffering, see What Are
Depth Buffers?. For more information about using depth-buffers in your
applications, see Tutorial 2: Adding a Depth Buffer.

Querying for Depth Buffer Support
[This is preliminary documentation and subject to change.]

As with any feature, don't assume that the driver your application uses supports
depth buffering; you should always check the driver's capabilities. Although most
driver support z-based depth buffering, not all will be able to provide support to w-
based depth buffering. (For general information about depth buffering, see What Are
Depth Buffers?) Drivers do not fail if you attempt to enable an unsupported scheme,
falling-back on another depth buffering method instead, or sometimes disabling
depth buffering altogether, which can result in rendered scenes that show major
depth sorting artifacts.

You can check for general support for depth buffers by querying the DirectDraw for
the display device your application uses before you create a Direct3D device. If the
DirectDraw object reports that it supports depth buffering, any hardware devices you
create from this DirectDraw object will support z-buffering (but you don't yet know
if the driver supports w-buffering).

Û To query for general depth buffering support
1. Call the IDirectDraw4::GetCaps method of the DirectDraw object for the

display device your application uses, passing initialized DDCAPS structures as
parameters. After the call, the DDCAPS structures contain information about
DirectDraw's hardware and emulation capabilities.

2. Examine the ddsCaps member of the structure you passed as the first parameter.
If this member–a DDSCAPS2 structure–includes the DDSCAPS_ZBUFFER
flag, the driver supports depth buffering through z-buffers.

Once you know that the driver supports z-buffers, you can verify w-buffer support.
Although z-buffers are supported for all software rasterizers, w-buffers are only
supported by the reference rasterizer, which is hardly suited for use by real-world
applications. No matter what type of device your application uses, you should verify
support for w-buffers before you attempt to enable w-based depth buffering.

Û To determine support for w-buffers
1. After creating your device (HAL or emulated), call the

IDirect3DDevice3::GetCaps method, passing initialized D3DDEVICEDESC
structures in both parameters.

2. After the call, the dpcTriCaps and dpcLineCaps members (D3DPRIMCAPS
structures) contain information about the driver's support for rendering
primitives.

3. If the dwRasterCaps member of these structures contains the
D3DPRASTERCAPS_WBUFFER flag, then the driver supports w-based depth
buffering for that primitive type.

in.doc – page 260

Creating a Depth Buffer
[This is preliminary documentation and subject to change.]

You usually create a depth buffer during your application's startup sequence, before
creating a Direct3D device object for rendering. Use the following steps to create
and attach a depth buffer surface to the render target surface:

Û To create a depth buffer
1. Call the IDirect3D3::EnumZBufferFormats method to determine the depth-

buffer pixel formats that the device supports.
2. Prepare a DDSURFACEDESC2 structure that describes a DirectDraw surface

that matches the render target surface's dimensions, includes the
DDSCAPS_ZBUFFER capability flag, and uses a supported depth-buffer pixel
format (retrieved in Step 1).

3. Create the surface in video memory or system memory, depending on what type
of rendering device your application will use. (See note.)

4. Attach the depth buffer surface to the rendering surface using the
IDirectDrawSurface4::AddAttachedSurface method.

After creating the depth buffer surface and attaching it to the render target surface,
call the IDirect3D3::CreateDevice method to create a rendering device that uses the
render target surface and its depth buffer.

Create the depth buffer in video memory — with the DDSCAPS_VIDEOMEMORY
surface capability — when your application uses a hardware driver (HAL device),
and in system memory — the DDSCAPS_SYSTEMMEMORY surface capability —
when using software emulation drivers (the MMX or RGB devices). Failing to create
a depth buffer in the appropriate type of memory will cause the CreateDevice
method to fail.

Note
Some popular hardware devices require that the render target and depth buffer
surfaces use the same bit depth. On such hardware, if your application uses a 16-
bit render target surface, the attached depth buffer must also be 16-bits. For a
32-bit render target surface, the depth buffer must be 32-bits, of which 8-bits can
be used for stencil buffering (if needed).
If the hardware upon which your application is running has this requirement, and
your application fails to meet it, any attempts to create a rendering device that
uses the non-compliant surfaces will fail. You can use the DirectDraw method,
IDirectDraw4::GetDeviceIdentifier to track hardware that imposes this
limitation.

Enabling Depth Buffering
[This is preliminary documentation and subject to change.]

in.doc – page 261

After you create a depth buffer (as described in Creating a Depth Buffer), enabling
depth buffering is as simple as calling the IDirect3DDevice3::SetRenderState
method. Set the D3DRENDERSTATE_ZENABLE render state to enable depth-
buffering. Use the D3DZB_TRUE value (or TRUE) to enable z-buffering,
D3DZB_USEW to enable w-buffering, or D3DZB_FALSE (or FALSE) to disable
depth buffering.

Note
To use w-buffering, your application must set a compliant projection matrix
even if it doesn't use the Direct3D transformation pipeline, and perspective-
correct texture mapping must be enabled. For information about providing an
appropriate projection matrix, see A W-Friendly Projection Matrix. (The
projection matrix discussed in What Is the Projection Transformation? is
compliant.) To enable perspective-correct texture mapping, set the
D3DRENDERSTATE_TEXTUREPERSPECTIVE render state to TRUE. For
DirectX 6.0 and later, this is the default value.

Clearing Depth Buffers
[This is preliminary documentation and subject to change.]

You should clear the depth buffer each time you render a new frame. You can
explicitly clear the depth buffer through Direct3D by using the
IDirect3DViewport3::Clear and IDirect3DViewport3::Clear2 methods. The
Clear method always uses the "deepest" value, but Clear2 allows you to specify an
arbitrary depth value.

You can also use DirectDraw to clear a depth buffer. Call the depth buffer surface's
IDirectDrawSurface4::Blt method to clear it. The DDBLT_DEPTHFILL flag
indicates that the blit is being used to a clear depth buffer. When this flag is
specified, the DDBLTFX structure passed to the IDirectDrawSurface4::Blt method
should be initialized and have its dwFillDepth member set to the required depth.

If the DirectDraw device driver for a 3-D accelerator is designed to provide support
for depth buffer clearing in hardware, it will report the DDCAPS_BLTDEPTHFILL
flag and should handle DDBLT_DEPTHFILL blits. The destination surface of a
depth-fill blit must be a depth buffer surface.

Changing Depth Buffer Write Access
[This is preliminary documentation and subject to change.]

By default, the Direct3D system is allowed to write to the depth buffer. Most
applications will leave writing to the depth buffer enabled, but there are some special
effects that can be achieved by not allowing the Direct3D system to write to the
depth buffer.

You can disable depth buffer writes by calling the
IDirect3DDevice3::SetRenderState method with the dwRenderStateType parameter

in.doc – page 262

set to D3DRENDERSTATE_ZWRITEENABLE and the dwRenderState parameter
should be set to 0.

Changing Depth Buffer Comparison Functions
[This is preliminary documentation and subject to change.]

By default, when depth testing performed on a rendering surface, the Direct3D
system updates the render target surface if the corresponding depth value (z or w) for
each point is less than the value already in the depth buffer. You can change how the
system performs comparisons on depth values by calling the
IDirect3DDevice3::SetRenderState method with the dwRenderStateType parameter
set to D3DRENDERSTATE_ZFUNC. The dwRenderState parameter should be set
to one of the values in the D3DCMPFUNC enumeration.

Using Z-Bias
[This is preliminary documentation and subject to change.]

Polygons that are coplanar in your 3-D space can be made to appear as if they are
not coplanar by adding a z-bias to each one. This is a technique commonly used to
ensure that shadows in a scene are displayed properly. For instance, a shadow on a
wall will likely have the same depth value as the wall does. If you render the wall
first, then the shadow, the shadow might not be visible, or depth artifacts may be
visible. You could reverse the order in which you render the coplanar objects in
hopes of reversing the effect, but it depth artifacts are still likely.

You can help ensure that coplanar polygons are rendered properly by adding a bias
to the z-values that the system uses when rendering the sets of coplanar polygons. To
add a z-bias to a set of polygons, call the IDirect3DDevice3::SetRenderState
method just before rendering them, setting the dwRenderStateType parameter to
D3DRENDERSTATE_ZBIAS, and the dwRenderState parameter to a value between
0-16 inclusive. A higher z-bias value will increase the likelihood that the polygons
you render will be visible when displayed with other, coplanar, polygons.

Stencil Buffers
[This is preliminary documentation and subject to change.]

This section presents a discussion of the purpose and use stencil buffers. It is divided
into the following topics"

· What is a Stencil Buffer?
· How the Stencil Buffer Works
· Customizing the Stencil Buffer

in.doc – page 263

What is a Stencil Buffer?
[This is preliminary documentation and subject to change.]

The stencil buffer enables or disables drawing to the rendering target surface on a
pixel-by-pixel basis. At its most fundamental level, it enables applications to mask
off sections of the rendered image so that it is not displayed. Applications often use
stencil buffers for special effects such as dissolves, decaling, and outlining. For
details, see Stencil Buffer Techniques.

Stencil buffer information is embedded in the z-buffer data. Your application can
test the user's hardware to see if it supports stencil buffers by invoking the
IDirect3D3::EnumZBufferFormats method. To obtain information about the
particular format of the z-buffer data, call the
IDirectDrawSurface4::GetPixelFormat method, which passes a
DDPIXELFORMAT structure to your application. The relevant information is in
the dwZBufferBitDepth, dwStencilBitDepth, dwZBitMask, and
dwStencilBitMask members.

How the Stencil Buffer Works
[This is preliminary documentation and subject to change.]

Direct3D performs a test on the contents of the stencil buffer on a pixel-by-pixel
basis. For each pixel in the target surface, it performs a test using the corresponding
value in the stencil buffer, a stencil reference value, and a stencil mask value. If the
test passes, Direct3D performs an action. The test is performed using the following
steps:

1. Bitwise AND the stencil reference value with the stencil mask.
2. Bitwise AND the stencil buffer value for the current pixel with the stencil mask.
3. Compare the result of step 1 to the result of step 2 using the comparison

function.

Written in pseudocode, these steps would look like this:

(StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask)

Where StencilBufferValue is the contents of the stencil buffer for the current pixel.
This pseudocode uses the & symbol to represent the bitwise AND operation.
StencilMask represents the value of the stencil mask, and StencilRef represents the
stencil reference value. CompFunc is the comparison function.

The current pixel is written to the target surface if the stencil test passes, and ignored
otherwise. The default comparison behavior is to write the pixel no matter how each
of the bitwise operations turn-out (D3DCMP_ALWAYS). You can change this
behavior by changing the value of the D3DRENDERSTATE_STENCILFUNC
render state, passing one of the members of the D3DCMPFUNC enumerated type to
identify the desired comparison function.

in.doc – page 264

Customizing the Stencil Buffer
[This is preliminary documentation and subject to change.]

Your application can customize the operation of the stencil buffer. It can set the
comparison function, the stencil mask, and the stencil reference value. it can also
control the action that Direct3D takes when the stencil test passes or fails. For more
information, see Stencil Buffer State.

Vertex Buffers
[This is preliminary documentation and subject to change.]

This section introduces the concepts necessary to understand and use vertex buffers
in a Direct3D application. Information is divided into the following sections:

· What Are Vertex Buffers?
· Vertex Buffer Descriptions
· Vertex Buffers and Device Types
· Using Vertex Buffers

What Are Vertex Buffers?
[This is preliminary documentation and subject to change.]

Vertex buffers, represented by the IDirect3DVertexBuffer interface, are simply
memory buffers that contain vertex data. Vertex buffers can contain any vertex type
— transformed or untransformed, lit or unlit — that can be rendered through the use
of the vertex buffer rendering methods in the IDirect3DDevice3 interface. You can
process the vertices in a vertex buffer to perform operations such as transformation,
lighting, or generating clipping flags. (Transformation is always performed.)

The flexibility of vertex buffers make them ideal staging points for reusing
transformed geometry. You could create a single vertex buffer, transform, light, and
clip the vertices in it, and render the model in the scene as many times as you need
without retransforming it, even with interleaved render state changes. This can be
very useful when rendering models that use multiple textures: the geometry is only
transformed once, and then portions of it can be rendered as needed, interleaved with
the required texture changes. Render state changes made after vertices are processed
take effect the next time the vertices are processed. For more information, see
Processing Vertices.

You can optimize geometry in vertex buffers to get maximum performance for
vertex operations and rendering. See Optimizing a Vertex Buffer for details.

Note
Internally, vertex buffers use DirectDrawSurface objects for their memory
management services. As a result, the semantics for accessing vertex buffer

in.doc – page 265

memory are similar to those of DirectDrawSurface objects. In fact, the
IDirect3DVertexBuffer::Lock method accepts the same flags as the
IDirectDrawSurface4::Lock method. For more information, see Accessing
Vertex Buffer Memory.

Vertex Buffer Descriptions
[This is preliminary documentation and subject to change.]

A vertex buffer is described in terms of its capabilities: if it can only exist in system
memory, if it is only to be used for write operations, the type and number of vertices
it can contain, and whether or not it has been optimized since it was created. All
these traits are held within a D3DVERTEXBUFFERDESC structure.

Vertex buffer descriptions tell the system how to create a vertex buffer or tell your
application how an existing buffer was created (and if it has been optimized since
being created). You must specify a complete description to create a new vertex
buffer, and you provide an empty description structure for the system to fill with the
capabilities of a previously created vertex buffer. For more information about these
tasks, see Creating a Vertex Buffer and Retrieving Vertex Buffer Descriptions.

The dwSize member, common to most DirectX structures, is used for identify
structure versions and must be set to the structure size before the structure can be
used with any methods. The dwCaps structure member contains general capability
flags. The D3DVBCAPS_SYSTEMMEMORY flag indicates that the system should
create (or already has created) the vertex buffer in system memory. Create an
explicit system memory vertex buffer if your application uses a software rendering
device; otherwise, it is best to let the system determine the best location by omitting
the flag. For more information about explicit system memory vertex buffers, see
Vertex Buffers and Device Types.

The presence of the D3DVBCAPS_WRITEONLY flag in dwCaps hints to the
system that the vertex buffer memory is used only for write operations. This frees the
driver to place the vertex data in the best possible memory location it can to enable
fast processing and rendering. Reading from a vertex buffer that uses this flag can
result in very slow memory access times. If the D3DVBCAPS_WRITEONLY flag
isn't used, the driver is less likely to put the data in a location inefficient for read
operations, sacrificing some processing and rendering speed. If no flags are
specified, it is assumed that applications will perform read and write operations on
the data within the vertex buffer.

Note
The D3DVBCAPS_OPTIMIZED flag is not used during vertex buffer creation.
The system sets this capability when it optimizes a vertex buffer.

The final two D3DVERTEXBUFFERDESC structure members describe other
capabilities. The dwFVF member contains a combination of flexible vertex format
flags that identify the type of vertices that the buffer can contain. Vertex buffer

in.doc – page 266

capacity is measured by the total number of vertices it can contain, given in the
dwNumVertices member.

Vertex Buffers and Device Types
[This is preliminary documentation and subject to change.]

A Direct3D software rendering device can only be used with explicit system-
memory vertex buffers. To create a vertex buffer in system memory, include the
D3DVBDESC_SYSTEMMEMORY flag in the description structure that you
provide to the IDirect3D3::CreateVertexBuffer method.

If your application uses a hardware accelerated device, it's best to omit the
D3DVBDESC_SYSTEMMEMORY flag. This allows the system to place the vertex
buffer in memory for best performance, but hardware devices can work with vertex
buffers regardless of their location.

Using Vertex Buffers
[This is preliminary documentation and subject to change.]

The following topics discuss common tasks that applications will perform when
working with vertex buffers:

· Creating a Vertex Buffer
· Accessing Vertex Buffer Memory
· Processing Vertices
· Optimizing a Vertex Buffer
· Rendering From a Vertex Buffer
· Retrieving Vertex Buffer Descriptions

Creating a Vertex Buffer
[This is preliminary documentation and subject to change.]

The following figure illustrates the steps necessary to create a single vertex buffer.

DirectDraw
Object IDirect3D3QueryInterface

IDirect3D3::CreateVertexBuffer

IDirect3DVertexBuffer

in.doc – page 267

You create a vertex buffer object by calling the IDirect3D3::CreateVertexBuffer
method, which accepts four parameters. The first parameter is the address of a
D3DVERTEXBUFFERDESC structure that describes the desired vertex format,
buffer size, and general capabilities. These capabilities are detailed in Vertex Buffer
Descriptions. Normally, the system automatically determines the best memory
location (system or display memory) for the vertex buffer. However, software
devices can only be used with explicit system-memory vertex buffers. For more
information, see Vertex Buffers and Device Types.

The second parameter that CreateVertexBuffer accepts is the address of a variable
that will be filled with a pointer to the new IDirect3DVertexBuffer interface of the
vertex buffer object if the call succeeds. The third parameter determines if the vertex
buffer will be capable of containing clipping information — in the form of clip flags
— for vertices that exist outside the viewing area. Set this to 0 to create a "clipping-
capable" vertex buffer, or include the D3DDP_DONOTCLIP flag to create a vertex
buffer that cannot contain clip flags. The D3DDP_DONOTCLIP flag is only applied
if you also indicate that the vertex buffer will contain transformed vertices (the
D3DFVF_XYZRHW flag is included in the dwFVF member of the description
structure). The CreateVertexBuffer method ignores the D3DDP_DONOTCLIP flag
if you indicate that the buffer will contain untransformed vertices (the
D3DFVF_XYZ flag). Clipping flags occupy additional memory, making a clipping-
capable vertex buffer slightly larger than a vertex buffer incapable of containing
clipping flags. Because these resources are allocated when the vertex buffer is
created, you must request a clipping-capable vertex buffer ahead of time.

Note
Creating a vertex buffer that can contain clip flags does not necessarily mean
that you must request that clip flags be generated during vertex processing or
applied during rendering. Each vertex buffer rendering method accepts the
D3DDP_DONOTCLIP flag to bypass clipping during rendering, and the
IDirect3DVertexBuffer::ProcessVertices method accepts the D3DVOP_CLIP
flag, which can be omitted to prevent the system from generating clip flags
while it processes vertices.
There is no way to produce clip flags for a vertex buffer that was created
without support for them. Attempts to use the
IDirect3DVertexBuffer::ProcessVertices method to do this will fail in debug
builds, returning D3DERR_INVALIDVERTEXFORMAT. Rendering methods
will ignore clipping requests when rendering from a transformed vertex buffer
that does not contain clip flags.

The last parameter that CreateVertexBuffer accepts is provided for future
compatibility with COM aggregation features. Currently, aggregation isn't supported,
so this parameter must be set to NULL.

The following example shows what creating a vertex buffer might look like in code:

 /*
 * For the purposes of this example, the g_lpD3D variable is the
 * address of an IDirect3D3 interface exposed by a Direct3D

in.doc – page 268

 * object, and the fIsAHardwareDevice variable is a BOOL variable
 * that is assumed to be set during application initialization.
 */

 D3DVERTEXBUFFERDESC vbdesc;
 ZeroMemory(&vbdesc, sizeof(D3DVERTEXBUFFERDESC));
 vbdesc.dwSize = sizeof(D3DVERTEXBUFFERDESC);
 vbdesc.dwCaps = 0L;
 vbdesc.dwFVF = D3DFVF_VERTEX;
 vbdesc.dwNumVertices = NUM_FLAG_VERTICES;

 // If this isn't a hardware device, make sure the
 // vertex buffer uses system memory.
 if(!fIsAHardwareDevice)
 vbdesc.dwCaps |= D3DVBCAPS_SYSTEMMEMORY;

 // Create a clipping-capable vertex buffer.
 if(FAILED(g_lpD3D->CreateVertexBuffer(&vbdesc,
 &g_pvbVertexBuffer, 0L,
 NULL)))
 return E_FAIL;

Accessing Vertex Buffer Memory
[This is preliminary documentation and subject to change.]

Vertex buffer objects enable applications to directly access the memory allocated for
vertex data. You can retrieve a pointer to vertex buffer memory by calling the
IDirect3DVertexBuffer::Lock method, then access the memory as needed to fill the
buffer with new vertex data, or to read any data it already contains.

The IDirect3DVertexBuffer::Lock method accepts three parameters. The first,
dwFlags, tells the system how the memory should be locked, and can be used to hint
how the application will be accessing the data within the buffer. (You can hint for
read-only or write-only access, which allows the driver to lock the memory to
provide the best performance given the requested access type. These hints are not
required, but can improve performance for memory access in some situations.)
Because vertex buffers use DirectDrawSurface objects to contain vertex data, the
flags that IDirect3DVertexBuffer::Lock accepts are identical to those accepted by
the IDirectDrawSurface4::Lock method, with identical results.

The second parameter accepted by the Lock method, lplpData, is the address of an
LPVOID variable that will contain a valid pointer to the vertex buffer memory if the
call succeeds. The last parameter, lpdwSize, is the address of a variable that will
contain the size, measured in bytes, of the buffer at lplpData after the call returns.
You can set lpdwSize to NULL if your application doesn't need information about
the buffer size.

in.doc – page 269

Performance Notes
Use the DDLOCK_READONLY flag if your application will only be reading
from the vertex buffer memory. Including this flag enables Direct3D to optimize
its internal procedures to improve efficiency, given that access to the memory
will be read-only. Although it is possible to write to memory locked with the
DDLOCK_READONLY flag, doing so can produce unexpected results. In
addition, attempting to read from a vertex buffer that was created with the
D3DVBCAPS_WRITEONLY flag can be extremely slow, even if you lock the
buffer for read-only access.

The vertex buffer memory itself is a simple array of vertices, specified in flexible
vertex format. If your application is uses the legacy vertex structures,
D3DVERTEX, D3DLVERTEX, and D3DTLVERTEX, the stride is simply the size
of the structure, in bytes. If you are using a vertex format different from the legacy
formats, use the stride of whatever vertex format structure you define. You can
calculate the stride of each vertex at run time by examining the flexible vertex
format flags contained within the vertex buffer description. The following table
shows the size for each vertex component.

Vertex Format Flag Size

D3DFVF_DIFFUSE sizeof(DWORD)
D3DFVF_NORMAL sizeof(float) 3
D3DFVF_SPECULAR sizeof(DWORD)
D3DFVF_TEXn sizeof(float) 2 n
D3DFVF_XYZ sizeof(float) 3
D3DFVF_XYZRHW sizeof(float) 4

The number of texture coordinates present in the vertex format is described by the
D3DFVF_TEXn flags (where n is a value from 0 to 8). Because each set of texture
coordinates in the vertex format occupies the space of two float variables, multiply
the number of texture coordinate sets by the size of one set of texture coordinates to
calculate the memory required for that number of texture coordinates.

Use the total vertex stride to increment and decrement the memory pointer as needed
to access particular vertices.

Processing Vertices
[This is preliminary documentation and subject to change.]

Processing the vertices in a vertex buffer applies the current transformation matrices
for the device, and can optionally apply vertex operations such as lighting,
generating clip flags, and updating extents. The IDirect3DVertexBuffer interface
exposes the IDirect3DVertexBuffer::ProcessVertices method to process vertices.

You process vertices from a source vertex buffer into a destination vertex buffer by
calling the ProcessVertices method of the destination vertex buffer, not the source
buffer. The method accepts seven parameters that describe the operations to be

in.doc – page 270

performed, the location of the source vertex buffer's IDirect3DVertexBuffer
interface, the rendering device that will perform the vertex operations, and the
location and quantity of vertices that the method targets. After the call, the
destination buffer contains the processed vertex data, and the source buffer is
unchanged.

When preparing to process vertices, set the first parameter, dwVertexOp, to indicate
the vertex operations you want to perform. You must include the
D3DVOP_TRANSFORM flag, or the method will fail, but the remaining operations
are optional. You can include any combination of optional flags to light the vertices,
generate clip flags, and update extents during vertex processing.

The second and third parameters, dwDestIndex and dwCount, reflect the index within
the destination buffer at which the vertices will be placed and the total number of
vertices that should be processed and placed in the destination buffer. The fourth
parameter, lpSrcBuffer, should be set to the address of the IDirect3DVertexBuffer
of the vertex buffer object that contains the source vertices. The dwSrcIndex
specifies the index at which the method should start processing vertices. (The total
number of source vertices to be processed is implied from the dwCount parameter.)
Set the lpD3DDevice parameter to the address of the IDirect3DDevice3 interface for
the rendering device that process the vertices. The final parameter is reserved for
future use, and must be set to 0.

Take care to create vertex buffers that use compatible vertex formats. At the least,
the source buffer should contain untransformed vertices (using the D3DFVF_XYZ
flag in the vertex format of the buffer description), and the destination buffer should
contain transformed vertices (using the D3DFVF_XYZRHW flag). Any lighting or
clipping services require that the source and destination vertex formats contain the
appropriate fields. For instance, don't request lighting on vertices when the vertex
format doesn't include a vertex normal. Likewise, you can't request that the system
produce clip flags for a destination vertex buffer that was created without clipping
capabilities. Attempts to perform operations on incompatible buffers will fail in
debug builds.

You cannot process vertices when the source or destination vertex buffers are locked.

Optimizing a Vertex Buffer
[This is preliminary documentation and subject to change.]

Optimizing a vertex buffer causes the system to modify the contents of the buffer for
better performance when processing or rendering vertices. Exactly how vertices are
optimized is platform-specific and subject to change. Consequently, you cannot lock
or otherwise access the contents of an optimized vertex buffer.

Call the IDirect3DVertexBuffer::Optimize method to optimize a vertex buffer.
Optimizing a vertex buffer improves performance of vertex operations and
rendering. The IDirect3DVertexBuffer::Optimize method accepts two parameters,
only one of which is used. Set the lpD3DDevice parameter to the address of the

in.doc – page 271

device for which the vertices will be optimized, and set the last parameter to 0.
Locked vertex buffers cannot be optimized until they are unlocked.

You can improve performance by keeping vertices in optimized format. However,
optimized vertex buffers should be used only for static geometry, because once a
vertex buffer is optimized, you can't lock it to change the optimized contents. After
you optimize a vertex buffer, it can only be used with the
IDirect3DVertexBuffer::ProcessVertices method and the vertex buffer rendering
methods.

Rendering From a Vertex Buffer
[This is preliminary documentation and subject to change.]

As introduced in Rendering, the IDirect3DDevice3 interface includes methods to
render primitives from a vertex buffer. These methods work very much like other
rendering methods in IDirect3DDevice3, but employ slightly different parameters to
accommodate vertex buffer objects.

The following topics introduce common rendering situations, and discuss specific
issues related to calling the vertex buffer rendering methods:

· About Vertex Buffer Rendering
· Calling Vertex Buffer Rendering Methods

About Vertex Buffer Rendering
[This is preliminary documentation and subject to change.]

There are two common situations in which your application will render vertices from
a vertex buffer. At the most basic level, the two situations break down according to
the type of vertex that is in the vertex buffer at "render time," but indirectly, the
procedure your application uses also determines when vertex and rendering
operations occur. The following diagram illustrates the process of rendering from an
untransformed vertex buffer.

IDirect3D3::CreateVertexBuffer
(Untransformed)

IDirect3DDevice3::DrawIndexedPrimitiveVB
(Uses untransformed vertices)

IDirect3DDevice3::DrawPrimitiveVB
(Uses untransformed vertices)

Lock buffer, fill with data, and
unlock.

As shown in the preceding illustration, the IDirect3DDevice3::DrawPrimitiveVB
and IDirect3DDevice3::DrawIndexedPrimitiveVB methods are capable of
rendering from a non-transformed vertex buffer. In this case, the system performs
vertex and rendering operations each time you call a rendering method. For DirectX

in.doc – page 272

6.0, using this approach isn't likely to provide improved performance over traditional
DrawPrimitive rendering methods, but it might be more convenient in some
situations. You can optimize performance by reusing transformed vertex data when
you can, as shown in the following illustration.

IDirect3D3::CreateVertexBuffer
(Untransformed)

IDirect3DDevice3::DrawIndexedPrimitiveVB
(Uses transformed vertices)

IDirect3DDevice3::DrawPrimitiveVB
(Uses transformed vertices)

Lock buffer, fill with data, and
unlock.

IDirect3D3::CreateVertexBuffer
(Transformed)

IDirect3DVertexBuffer::Process Vertices
(Transforms vertices and transfers them into the

transformed vertex buffer)

In this case, your application creates two vertex buffers: one for untransformed
geometry, and another for transformed geometry. The second buffer receives
transformed vertex data when the IDirect3DVertexBuffer::ProcessVertices is
called. The ProcessVertices method reads the vertices in the source buffer, performs
the requested vertex operations on them, and places the results in the destination
buffer. You can call the same rendering methods for transformed vertices that you
would to render untransformed vertices. However, unlike untransformed vertices,
Direct3D automatically detects that the data in the vertex buffer is transformed,
sending it be rasterized right away. The performance overhead is kept to a minimum
by eliminating unnecessary transformations.

You can optimize vertex buffer contents to increase performance even more. For
more information, see Optimizing a Vertex Buffer.

Calling Vertex Buffer Rendering Methods
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawPrimitiveVB method corresponds to the
IDirect3DDevice3::DrawPrimitive method. Like its relative, the
DrawPrimitiveVB method assumes that vertices appear in sequential order within
the vertex buffer.

The DrawPrimitiveVB method accepts five parameters. Set the d3dptPrimitiveType
parameter to indicate the type of primitive being rendered by using one the members
of the D3DPRIMITIVETYPE enumerated type. Specify the address of the vertex
buffer that contains the vertices in the second parameter, lpd3dVertexBuffer, then set
values in the dwStartVertex and dwNumVertices parameters to reflect the first vertex
and the total number of vertices that will be rendered. You don't need to render all
the vertices that the vertex buffer contains, but you must use the appropriate number

in.doc – page 273

of vertices for that primitive type (as documented in the reference information for
D3DPRIMITIVETYPE). The last parameter, dwFlags, determines the rendering
behavior. These flags are identical to those used with other rendering methods. You
can set flags to enable lighting and clipping, or to update the viewport extents during
rendering.

The IDirect3DDevice3::DrawIndexedPrimitiveVB method renders primitives by
indexing the vertices within a vertex buffer. The first two parameters are identical to
those of the DrawPrimitiveVB method. The third parameter, lpwIndices, should be
set to the address of an ordered array of WORD indices that the method will use to
access the vertices to be rendered, and the fourth parameter, dwIndexCount, should
be set to the number of index values that the array contains. The dwFlags parameter
is identical to its counterpart in the DrawPrimitiveVB method.

You cannot request that vertex buffer rendering methods perform lighting if the
format of the vertices within the buffer does not contain a vertex normal. Nor can
you request that the rendering methods clip vertices when rendering from a
transformed vertex buffer created with the D3DDP_DONOTCLIP flag. (This is
allowed for untransformed vertex buffers, as the system will create a clipping-
capable version at render time.) Attempts to request unavailable services will not
cause the method to fail in debug builds, but the services will not be applied.

A software device, as opposed to a hardware-accelerated device, can only render
from vertex buffers that were created with the D3DVBCAPS_SYSTEMMEMORY
flag. For more information, see Vertex Buffers and Device Types.

Retrieving Vertex Buffer Descriptions
[This is preliminary documentation and subject to change.]

Applications often need to retrieve information about existing vertex buffers at run
time. Direct3D makes this possible through the
IDirect3DVertexBuffer::GetVertexBufferDesc method. Call this method using the
IDirect3DVertexBuffer interface of any vertex buffer to retrieve its current
description.

The GetVertexBufferDesc accepts only one parameter: the address of a properly
initialized D3DVERTEXBUFFERDESC structure. To initialize the structure, set
the dwSize member to the structure size, in bytes, and set the remaining members to
0. After the method returns, the structure will contain information about the vertex
buffer capabilities, the vertex format in the buffer, and the total number of vertices
that it can contain.

Note
Optimizing a vertex buffer sets the D3DVBCAPS_OPTIMIZED capability flag
in the dwFlags member of the D3DVERTEXBUFFERDESC structure. If this
flag is set, the vertex buffer cannot be locked, and its contents are not made
available to anything but rendering methods and the
IDirect3DVertexBuffer::ProcessVertices method.

in.doc – page 274

For general information, see Vertex Buffer Descriptions.

Common Techniques and Special
Effects

[This is preliminary documentation and subject to change.]

Direct3D provides a powerful set of tools that can be used to increase the realistic
appearance of a 3-D scene. This section presents information on some common
special effects that can be produced with Direct3D. The range of possible effects is
by no means limited to those presented here. The discussion in this section is
organized into the following topics:

· Fog
· Billboarding
· Clouds, Smoke, and Vapor Trails
· Texture Blending Techniques
· Fire, Flares, Explosions, and More
· Motion Blur
· Stencil Buffer Techniques
· Colored Lights
· Antialiasing

Fog
[This is preliminary documentation and subject to change.]

The following topics introduce fog and present information about using various fog
features in Direct3D applications:

· Introduction to Fog
· Fog Formulas
 · Fog Blending
· Fog Color
· Range-Based Fog
· Pixel Fog
· Vertex Fog

Introduction to Fog
[This is preliminary documentation and subject to change.]

Adding fog to a 3-D scene can enhance realism, provide ambience or set a mood,
and obscure artifacts sometimes caused when distant geometry comes into view.

in.doc – page 275

Direct3D Immediate Mode supports two fog models, pixel fog and vertex fog, each
with its own features and programming interface.

Essentially, fog is implemented by blending the color of objects in a scene with a
chosen fog color based on the depth of an object in a scene, or its distance from the
viewpoint. As objects grow more distant, their original color blends more and more
into the chosen fog color, creating the illusion that the object is being increasingly
obscured by tiny particles floating in the scene — fog. The following screen capture
shows a scene rendered without fog, and a similar scene rendered with fog enabled.

In the preceding figure, the scene on the left has a clear horizon, beyond which no
scenery is visible, even though it would be visible in the real world. The scene on the
right obscures the horizon by using a fog color identical to the background color,
making polygons appear to fade into the distance. By combining discrete fog effects
with creative scene design you can add mood and soften the color of objects in a
scene.

Direct3D provides applications with two ways to add fog to a scene, pixel fog and
vertex fog, named according to how the fog effects are applied. For details, see Pixel
Fog and Vertex Fog.

Fog Formulas
[This is preliminary documentation and subject to change.]

Applications can control how fog affects the color of objects in a scene by changing
how Direct3D computes fog effects over distance. The D3DFOGMODE
enumerated type contains members that identify the three fog formulas. All formulas
calculate a fog factor as a function of distance, given parameters that your
application sets. How distance itself is computed varies on the projection matrix or if
range-based fog is enabled. For more information, see Eye-Relative vs. Z-Based
Depth and Range-Based Fog.

D3DFOG_LINEAR

f
end d

end start

In the linear formula, start is the distance at which fog effects begin, end is the
distance at which fog effects no longer increase, and d represents depth (or distance
from the viewpoint) within a scene. Values for d increase as objects become more
distant. The linear formula is supported for both pixel fog and vertex fog, but the
exponential formulas are currently only supported when using pixel fog:

D3DFOG_EXP

f d density
1
e

D3DFOG_EXP2

in.doc – page 276

f d density
1

2e()

In the preceding two exponential formulas, e is the base of natural logarithms
(approximately 2.71828), density is an arbitrary fog density that can range from 0.0
to 1.0, and d is depth (or distance from the viewpoint) within a scene.

Note
The system stores the fog factor in the alpha component of the specular color for
a vertex. If your application performs its own transformation and lighting, you
can insert fog factor values manually, to be applied by the system during
rendering.

The following illustration graphs these formulas, using common values as in the
formula parameters.

100%

0%

Distance

Amount
of
original
color

(0.0) (1.0)

Near
plane

Far
plane

X

Y D3DFOG_LINEAR

D3DFOG_EXP2, density = .33

D3DFOG_EXP2, density = .66

D3DFOG_EXP, density = .66

D3DFOG_EXP, density = .33

When Direct3D calculates fog effects, it uses the fog factor from one of the
preceding equations in a blending formula, shown here:

 C C Ci f f f1

This formula effectively scales the color of the current polygon Ci by the fog factor f,
and adds the product to the fog color Cf scaled by the bitwise inverse of the fog
factor. The resulting color value is a blend of the fog color and the original color, as
a factor of distance. The formula applies to all devices supported in DirectX 6.0. For
the legacy ramp device, the fog factor scales the diffuse and specular color
components, clamped to the range of 0.0 and 1.0, inclusive. The fog factor typically
starts at 1.0 for the near plane and decreases to 0.0 at the far plane.

Fog Blending
[This is preliminary documentation and subject to change.]

in.doc – page 277

Fog blending refers to the application of the fog factor to the fog and object colors to
produce the final color that appears in a scene, as discussed in the Fog Formulas
topic. The D3DRENDERSTATE_FOGENABLE render state controls fog blending.
Set this render state to TRUE to enable fog blending (the default is FALSE), as in
the following example code:

//
// For this example, g_lpDevice is a valid pointer
// to an IDirect3DDevice3 interface.
HRESULT hr;
hr = g_lpDevice->SetRenderState(
 D3DRENDERSTATE_FOGENABLE,
 TRUE);
if FAILED(hr)
 return hr;

You must enable fog blending for both pixel fog and vertex fog. For information
about using these types of fog, see Pixel Fog and Vertex Fog.

Fog Color
[This is preliminary documentation and subject to change.]

Fog color for both pixel and vertex fog is set through the
D3DRENDERSTATE_FOGCOLOR render state. The render state values can be any
RGB color, specified as an RGBA color (the alpha component is ignored).

The following example sets the fog color to white:

/* For this example, the g_lpD3DDevice variable is
 * a valid pointer to an IDirect3DDevice3 interface.
 */
HRESULT hr;

hr = pd3dDevice->SetRenderState(
 D3DRENDERSTATE_FOGCOLOR,
 0x00FFFFFF); // Highest 8 bits aren't used.

if(FAILED(hr))
 return hr;

Range-Based Fog
[This is preliminary documentation and subject to change.]

Sometimes, using fog can introduce graphic artifacts that cause objects to be blended
with the fog color in non-intuitive ways. For example, imagine a scene in which
there are two visible objects, one distant enough to be affected by fog, and the other
near enough to be unaffected. If the viewing area rotates in place, the apparent fog

in.doc – page 278

effects can change, even if the objects are stationary. The following illustration
shows a top-down view of such a situation.

viewpoint viewpoint

AfterBefore

Object 1
(now in fog area)

Object 1
(not in fog area)

Object 2
(still in fog area)Object 2

(in fog area)

Range-based fog is another, more accurate, way to determine the fog effects. In
range-based fog, Direct3D uses the actual distance from the viewpoint to a vertex for
its fog calculations, increasing the effects of fog as the distance between the two
points increases, rather than the depth of the vertex within in the scene, thereby
avoiding rotational artifacts.

If the current device supports range-based fog, it will set the
D3DPRASTERCAPS_FOGRANGE capability flag in the dwRasterCaps member of
the D3DPRIMCAPS structure when you call the IDirect3DDevice3::GetCaps
method. To enable range-based fog, set the
D3DRENDERSTATE_RANGEFOGENABLE render state to TRUE.

Range-based fog is computed by Direct3D during transformation and lighting. As
discussed in About Vertex Fog, applications that don't use the Direct3D
transformation and lighting engine must also perform their own vertex fog
calculations. In this case, provide the range-based fog factor in the alpha component
of the specular component for each vertex.

Note
No hardware currently exists that supports per-pixel range-based fog. As a
result, Direct3D performs range-based fog only when using vertex fog with the
Direct3D transformation and lighting engine. If your application performs its
own transformation and lighting it must perform its own fog calculations, range-
based or otherwise.

Pixel Fog
[This is preliminary documentation and subject to change.]

This section introduces the concept of pixel fog and provides information about
using it in Direct3D applications. Information is divided into the following topics:

in.doc – page 279

· About Pixel Fog
· Eye-Relative vs. Z-Based Depth
· Pixel Fog Parameters
· Using Pixel Fog

About Pixel Fog
[This is preliminary documentation and subject to change.]

Pixel fog gets its name from the fact that it is calculated on a per-pixel basis in the
device driver. (This is unlike vertex fog, in which Direct3D computes fog effects
when it performs transformation and lighting.) Pixel fog is sometimes called "table
fog" because some drivers use a precalculated look-up table to determine the fog
factor (using the depth of each pixel) to be applied in blending computations. Pixel
fog can be applied using any of the fog formulas identified by members of the
D3DFOGMODE enumerated type. Pixel-fog formula implementations are driver-
specific, and if a driver doesn't support a complex fog formula, it should degrade to a
less complex formula.

Note
As discussed in Range-Based Fog, pixel fog does not support range-based fog
calculations.

Eye-Relative vs. Z-based Depth
[This is preliminary documentation and subject to change.]

To alleviate fog-related graphic artifacts caused by uneven distribution of z-values
within a depth buffer, most hardware devices use eye-relative depth instead of z-
based depth values for pixel fog. Eye-relative depth is essentially the w element from
a homogenous coordinate set. (Direct3D takes the reciprocal of the RHW element
from a device space coordinate set to reproduce true w.) If a device supports eye-
relative fog, it sets the D3DPRASTERCAPS_WFOG flag in the dwRasterCaps
member of the D3DPRIMCAPS when you call IDirect3DDevice3::GetCaps
method. (The D3DDEVICEDESC structure you pass to GetCaps contains multiple
D3DPRIMCAPS structures that describe capabilities for various types of
primitives.)

Note
With the exception of the reference rasterizer, software devices always use z to
calculate pixel fog effects.

When eye-relative fog is supported, the system will automatically use eye-relative
depth in favor of z-based depth if the provided projection matrix produces z-values
in world space that are equivalent to w-values in device space. (You set the
projection matrix by calling the IDirect3DDevice3::SetTransform method, using
the D3DTRANSFORMSTATE_PROJECTION value and passing a D3DMATRIX
structure that represents the desired matrix.) If the projection matrix isn't compliant

in.doc – page 280

with this requirement, fog effects will not be applied properly. For details about
producing a compliant matrix, see A W-Friendly Projection Matrix. (The perspective
projection matrix provided in What Is the Projection Transformation? produces a
compliant projection matrix.)

Usage Notes
To use eye-relative fog, perspective-correct texture mapping must be enabled.
To enable perspective-correct texture mapping, set the
D3DRENDERSTATE_TEXTUREPERSPECTIVE render state to TRUE. For
DirectX 6.0 and later, this is the default value.
Direct3D uses the currently set projection matrix in its w-based depth
calculations. As a result, applications must set a compliant projection matrix to
receive the desired w-based features, even if they do not use the Direct3D
transformation pipeline.
Direct3D checks the fourth column of the projection matrix, and if the
coefficients are [0,0,0,1] (for an affine projection) the system will use z-based
depth values for fog. In this case, you must also specify the start and end
distances for linear fog effects in device space, which ranges from 0.0 at the
nearest point to the user, and 1.0 at the farthest point.

Pixel Fog Parameters
[This is preliminary documentation and subject to change.]

All parameters for pixel fog are controlled through device render states. Pixel fog
supports all of the formulas introduced in Fog Formulas. Choose the formula you
want the system to use by setting the D3DRENDERSTATE_FOGTABLEMODE to
the desired member from the D3DFOGMODE enumerated type.

When using the linear fog formula, you set the starting and ending distances through
the D3DRENDERSTATE_FOGTABLESTART and
D3DRENDERSTATE_FOGTABLEEND render states. These distances are in world-
space units except when using a software device, in which case distances are in
device space, which ranges from 0.0 at the nearest visible point to 1.0 at the farthest
visible point.

The D3DRENDERSTATE_FOGTABLEDENSITY render state controls the fog
density applied when an exponential fog formula is enabled. Fog density is a
essentially weighting factor, ranging from 0.0 to 1.0 (inclusive), that scales the
distance value in the exponent.

As discussed in Fog Color, the D3DRENDERSTATE_FOGCOLOR render state
controls what color the system uses for fog blending.

Using Pixel Fog
[This is preliminary documentation and subject to change.]

Use the following steps to enable pixel fog in your application:

Û To enable pixel fog

in.doc – page 281

1. Enable fog blending by setting the D3DRENDERSTATE_FOGENABLE render
state to TRUE.

2. Set the desired fog color in the D3DRENDERSTATE_FOGCOLOR render
state.

3. Choose the fog formula you want to use by setting the
D3DRENDERSTATE_FOGTABLEMODE render state to the corresponding
member of the D3DFOGMODE enumerated type.

4. Set the fog parameters as desired for the selected fog mode in the associated
render states. This includes the start and end distances for linear fog, and fog
density for exponential fog mode.

The following example shows what these steps might look like in code:

// For brevity, error values in this example are not checked
// after each call. A real-world application should check
// these values appropriately.
//
// For the purposes of this example, g_lpDevice is a valid
// pointer to an IDirect3DDevice3 interface.
void SetupPixelFog(DWORD dwColor, DWORD dwMode)
{
 float fStart = 0.5f, // for linear mode
 fEnd = 0.8f,
 fDensity = 0.66; // for exponential modes

 // Enable fog blending.
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGENABLE, TRUE);

 // Set the fog color.
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGCOLOR, dwColor);

 // Set fog parameters.
 if(D3DFOG_LINEAR == dwMode)
 {
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGTABLEMODE, dwMode);
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGTABLESTART, *(DWORD
*)(&fStart));
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGTABLEEND, *(DWORD *)
(&fEnd));
 }
 else
 {
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGTABLEMODE, dwMode);
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGTABLEDENSITY,
*(DWORD *)(&fDensity));
 }

in.doc – page 282

}

Note
Some fog parameters are required as floating-point values, even though the
IDirect3DDevice3::SetRenderState method only accepts DWORD values in
the second parameter. The preceding example provides the floating-point values
to SetRenderState without data translation by casting the addresses of the
floating-point variables as DWORD pointers, then dereferencing them.

Vertex Fog
[This is preliminary documentation and subject to change.]

This section introduces vertex fog and provides details about using it in Direct3D
applications. Information is divided into the following topics:

· About Vertex Fog
· Vertex Fog Parameters
· Using Vertex Fog

About Vertex Fog
[This is preliminary documentation and subject to change.]

When the system performs vertex fogging, it applies fog calculations at each vertex
in a polygon, then interpolates the results across the face of the polygon during
rasterization. Unlike pixel fog, vertex fog only supports the linear fog formula
(D3DFOG_LINEAR). Because vertex fog effects are computed by the Direct3D
lighting and transformation engine, most vertex fog parameters are exposed in the
device lighting states set through the IDirect3DDevice3::SetLightState method. For
more information, see Vertex Fog Parameters.

If your applications doesn't use Direct3D for transformation and lighting, it must
perform fog calculations on its own. In this case, your application can place the fog
factor it computes in the alpha component of the specular color for each vertex. You
are free to use whatever formulas you desire — range-based or otherwise. Direct3D
uses the supplied fog factor to interpolate across the face of each polygon.
Applications that do not use Direct3D transformation and lighting need not set vertex
fog parameters through light states, but must still enable fog and set the fog color
through the associated render states. For more information, see Vertex Fog
Parameters.

Vertex Fog Parameters
[This is preliminary documentation and subject to change.]

Vertex fog parameters related to the chosen fog formula are controlled by setting
specific device lighting states (not render states) with the

in.doc – page 283

IDirect3DDevice3::SetLightState method. Currently, the only supported formula
for vertex fog is the linear formula, which you can choose by setting the
D3DLIGHTSTATE_FOGMODE lighting state to D3DFOG_LINEAR. Set the
starting and ending distances for linear fog through the
D3DLIGHTSTATE_FOGSTART and D3DLIGHTSTATE_FOGEND lighting states.
All distances are in world space.

Note
Although exponential fog formulas are not currently supported for vertex fog,
the D3DLIGHTSTATETYPE enumerated type used with the SetLightState
method contains a D3DLIGHTSTATE_FOGDENSITY member. This member
is not currently used, and is included to allow for future expansion.

The color that the system uses for fog blending is controlled through the
D3DRENDERSTATE_FOGCOLOR device render state. For more information, see
Fog Color and Fog Blending.

Applications that perform their own transformation and lighting must also perform
their own vertex fog calculations, and as such they probably wouldn't use light states
at all. As a result, such an application need only enable fog blending and set the fog
color through the associated render states, as described in Fog Blending and Fog
Color.

Using Vertex Fog
[This is preliminary documentation and subject to change.]

Use the following steps to enable vertex fog in your application:

Û To enable vertex fog
1. Enable fog blending by setting D3DRENDERSTATE_FOGENABLE to TRUE.
2. Set the fog color in the D3DRENDERSTATE_FOGCOLOR render state.
3. Choose the desired fog formula by setting the D3DLIGHTSTATE_FOGMODE

lighting state to a member of the D3DFOGMODE enumerated type. (Currently,
only D3DFOG_LINEAR is supported for vertex fog.)

4. Set the fog parameters as desired for the selected fog formula in the associated
lighting states. Do not use the fog parameter related render states — those are
used only for pixel fog.

The following example shows what these steps might look like in code:

// For brevity, error values in this example are not checked
// after each call. A real-world application should check
// these values appropriately.
//
// For the purposes of this example, g_lpDevice is a valid
// pointer to an IDirect3DDevice3 interface.
void SetupVertexFog(DWORD dwColor, BOOL fUseRange)
{

in.doc – page 284

 float fStart = 0.5f, // linear fog distances
 fEnd = 0.8f;

 // Enable fog blending.
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGENABLE, TRUE);

 // Set the fog color.
 g_lpDevice->SetRenderState(D3DRENDERSTATE_FOGCOLOR, dwColor);

 // Set fog parameters.
 //
 // REMEMBER: Vertex fog formula parameters are connected
 // to the lighting states, not render states.
 g_lpDevice->SetLightState(D3DLIGHTSTATE_FOGMODE, D3DFOG_LINEAR);
 g_lpDevice->SetLightState(D3DLIGHTSTATE_FOGSTART, *(DWORD *)(&fStart));
 g_lpDevice->SetLightState(D3DLIGHTSTATE_FOGEND, *(DWORD *)(&fEnd));

 // Enable range-based fog if desired (only supported for vertex fog).
 // For this example, it is assumed that fUseRange is set to non-zero
 // only if the driver exposes the D3DPRASTERCAPS_FOGRANGE capability.
 //
 // Note: this is slightly more performance intensive
 // than non-range-based fog.
 if(fUseRange)
 g_lpDevice->SetRenderState(
 D3DRENDERSTATE_RANGEFOGENABLE,
 TRUE);
}

Note
Some fog parameters are required as floating-point values, even though the
IDirect3DDevice3::SetRenderState and IDirect3DDevice3::SetLightState
methods only accept DWORD values in the second parameter. The preceding
example successfully provides the floating-point values to these methods
without data translation by casting the addresses of the floating-point variables
as DWORD pointers, then dereferencing them.

Billboarding
[This is preliminary documentation and subject to change.]

When creating 3-D scenes, applications can sometimes gain performance advantages
by rendering 2-D objects in a way that makes them appear to be 3-D objects. This is
the basic idea behind the technique of billboarding.

in.doc – page 285

A billboard in the normal sense of the word is a sign along a roadway. Direct3D
applications can easily create and render this type of billboard by defining a
rectangular solid and applying a texture to it. Billboarding in the more specialized
sense of 3-D graphics is an extension of this. The goal is to make 2-D objects appear
to be 3-D. The technique is to apply a texture containing the object's image to a
rectangular primitive. The primitive is rotated so that it always faces the viewer. It
doesn't matter if the object's image is not rectangular. Portions of the billboard can
be made transparent, so the parts of the billboard image that you don't want seen are
not visible.

Many games employ billboarding for their animated sprites. For instance, when the
player is moving through a 3-D maze, he or she may see weapons or rewards that
can be picked up. These are typically 2-D images textured onto a rectangular
primitive. Billboarding is often used in games to render images of trees and bushes.

When an image is applied to a billboard, the rectangular primitive must first be
rotated so that the resulting image faces the viewer. Your application must then
translate it into position. The program can then apply a texture to the primitive.

Billboarding works best for symmetrical objects, especially objects that are
symmetrical around the vertical axis. It also requires that the altitude of the
viewpoint doesn't increase too much. If the user is allowed to view the billboarded
from above, it will become readily apparent that the object is 2-D rather than 3-D.

Clouds, Smoke, and Vapor Trails
[This is preliminary documentation and subject to change.]

Clouds, smoke, and vapor trails can all be created by an extension of the billboarding
technique (see Billboarding). By rotating the billboard around two axes instead of
one, your application can enable the viewer to look at a billboard from any angle.
Typically, your application will rotate the billboard around the horizontal and
vertical axes.

To make a simple cloud, your application can rotate a rectangular primitive around
one or two axes so that it faces the viewer. A cloud-like texture can then be applied
to the primitive with transparency. For details on applying transparent textures to
primitives, see Texture Blending. The cloud can be animated by applying a series of
textures over time.

Applications can created more complex clouds by forming them from a group of
primitives. The each part of the cloud is a rectangular primitive. The primitives can
be moved independently over time to give the appearance of a dynamic mist. This
concept is illustrated in the following figure.

in.doc – page 286

The appearance of smoke is displayed in a manner similar to clouds. It typically
requires multiple billboards, like complex clouds. Smoke usually billows and rises
over time, so the billboards that make up the smoke plume need to be moved
accordingly. More billboards may need to be added as the plume rises and disperses.

A vapor trail is just a smoke plume that doesn't rise. However, like a smoke plume, it
does disperse over time. The figure below illustrates the technique of using
billboards to simulate a vapor trail.

Texture Blending Techniques
[This is preliminary documentation and subject to change.]

The power of texture blending as tool for producing realism in a 3-D scene goes
beyond adding finishes and light maps to primitives. In fact, it is fair to say that not
even cutting-edge researchers have yet discovered all of the possibilities that the
current texture blending features offer. There are, however, common special effects
that are widely used in 3-D applications. Direct3D applications provides copious
support these techniques.

This section provides an overview of common uses of texture blending to produce
special effects in a 3-D scene or enhance its appearance of realism. The information
is divided into the following topics:

· Bump Mapping

in.doc – page 287

· Detail Texture Mapping

Bump Mapping
[This is preliminary documentation and subject to change.]

Texture blending enables applications to create the appearance of a complex texture
on a primitive. This works well for smooth surfaces. For instance, your application
can use the texture blending feature of Direct3D to apply a smooth wood grain finish
onto a tabletop in a scene.

However, texture blending alone is insufficient to model rough surfaces such as the
bark of a tree. Fortunately, the Direct3D enables applications to easily use a
technique called bump mapping. A Bump map is a texture that stores depth
information. That is, it stores the values indicating the high and low spots on a
surface.

Your application applies the bump map to the texture using blending stages. Set the
texture blending operation of the blending stage containing the bump map to
D3DTOP_BUMPENVMAP or D3DTOP_BUMPENVMAPLUMINANCE. For more
information, see D3DTEXTUREOP and Creating Blending Stages.

Detail Texture Mapping
[This is preliminary documentation and subject to change.]

Through multitexturing or multipass rendering, Direct3D enables your application to
apply detail textures to primitives. Use detail textures to apply scuff marks, bumps,
and other surface attributes that give the appearance of realism. You may want to use
mipmaps for applying detail textures. See Texture Filtering With Mipmaps.

Detail textures can also be used as depth cues. For instance, suppose your application
simulates landing a helicopter. As the helicopter approaches the ground, it is not
unusual for the ground textures to be magnified so much that they begin to look
fuzzy. In this situation, the user would have difficulty distinguishing the distance to
the ground. Adding a detail texture that resembles gravel as the user approaches the
ground helps the user derive sufficient depth cues to pilot the helicopter properly.

If the viewer is far from the primitive, you probably don't want the details shown. Be
aware, that a primitive may appear brighter when your application does not apply the
detail texture. One way to compensate is by applying a light map texture to darken
the primitive.

Fire, Flares, Explosions, and More
[This is preliminary documentation and subject to change.]

Applications can use Direct3D to simulate natural phenomena involving energy
releases. For instance, a program can generate the appearance of fire by applying
flame-like textures to a set of billboards. This is especially effective if the program

in.doc – page 288

uses a sequence of fire textures to animate the flames on each billboard in the fire.
Varying the speed of the animation playback from billboard to billboard increases
the appearance of real flames. The semblance of intermingled 3-D flames can be
achieved by layering the billboards, and the textures on the billboards.

Flares and flashes can be simulated by applying successively brighter light maps to
all primitives in a scene. Although this is a computationally high-overhead
technique, it allows your program to simulate a localized flare or flash. That is, the
portion of the scene where the flare or flash originates can be brightened first.

Another technique is to position a billboard in front of the viewport so that the entire
viewport is covered. The program applies successively whiter textures to the
billboard and decreases the transparency over time. The entire scene will fade to
white as time passes. This is a low overhead method of creating a flare. However,
using this technique, it can be difficult to generate the appearance of a bright flash
from a single point light source.

Explosions can be displayed in a 3-D scene procedures like those used for fire,
flashes, and flares. For instance, your program might use a billboard to display a
shock wave an rising plume of smoke when the explosion occurs. At the same time,
your application can use a set of billboards to simulate flames. In addition, it can
position a single billboard in front of the viewport to add a flare of light to the entire
scene.

Energy beams can be simulated using billboards. Your application can also display
them using primitives that are defined as line lists or line strips. For details, see Line
Lists and Line Strips.

Your application can create force fields using billboards or primitives defined as
triangle lists. To create a force field from triangle lists, define a set of disjoint
triangles in a triangle list equally spaced over the region covered by the force field.
The gaps between the triangles will allow the viewer to see the scene behind the
triangles, as you might expect when looking at a force field. Apply a texture to the
triangle list that gives the triangles the appearance of glowing with energy. For
further information, see Triangle Lists and Current Texture.

Motion Blur
[This is preliminary documentation and subject to change.]

The perceived speed of an object in a 3-D scene can be enhanced by blurring the
object, and by leaving a blurred trail of object images behind the object. Direct3D
applications can accomplish this by rendering the object multiple times per frame.

Recall that Direct3D applications typically render scenes into an off-screen buffer.
The contents of the buffer are displayed on the screen when the application calls the
IDirectDrawSurface4::Flip method. Your Direct3D program can render the object
multiple times into a scene before it displays the frame on the screen.

Programmatically, your application makes multiple calls to a DrawPrimitive method,
repeatedly passing the same 3-D object. Before each call, the position of the object is

in.doc – page 289

updated slightly, producing a series of blurred object images on the target rendering
surface. If the object has one or more textures, your application can enhance the
motion blur effect by rendering the first image of the object with all of its textures
nearly transparent. Each time the object is rendered, the transparency of the object's
texture is decreased. When your program renders the object in its final position, it
should render the object's textures without transparency. The exception is if you're
adding motion blur to another effect that requires texture transparency. In any case,
the initial image of the object in the frame should be the most transparent. The final
image should be the least transparent.

After your application renders the series of object images onto the target rendering
surface and renders the rest of the scene, it should call the
IDirectDrawSurface4::Flip method to display the frame on the screen.

If your program is simulating the effect of the user moving through a scene at high
speed, it can add motion blur to the entire scene. In this case, your application would
render the entire scene multiple times per frame. Each time the scene is rendered,
your program must move the viewpoint slightly. If your scene is highly complex,
your user may see a visible performance degradation as acceleration is increased
because of the increasing number of scene renderings per frame.

Stencil Buffer Techniques
[This is preliminary documentation and subject to change.]

Applications use the stencil buffer to mask pixels in an image. The mask controls
whether or not the pixel is drawn. For more information on the stencil buffer, see
Stencil Buffers.

Direct3D applications can achieve a wide range of special effects with the stencil
buffer. Some of the more common effects are listed below. This list is by no means
exhaustive.

· Dissolves, Fades, and Swipes
· Decaling
· Compositing
· Outlines and Silhouettes

Dissolves, Fades, and Swipes
[This is preliminary documentation and subject to change.]

Applications are increasingly employing special effects that are commonly used in
movies and video, such as dissolves, swipes, and fades.

In a dissolve, one image is gradually replaced by another in a smooth sequence of
frames. Although Direct3D provides methods of using multiple texture blending to
achieve the same effect, applications that use the stencil buffer for dissolves can
utilize the texture blending capabilities for other effects while they do a dissolve.

in.doc – page 290

When your application performs a dissolve, it must render two different images. It
uses the stencil buffer to control which pixels from each image are drawn to the
rendering target surface. You can define a series of stencil masks and copy them into
the stencil buffer on successive frames. Alternately, you can define a base stencil
mask for the first frame and alter it incrementally.

At the beginning of the dissolve, your application sets the stencil function and stencil
mask such that most of the pixels from the starting image pass the test. Most of the
pixels of the ending image should fail the stencil test. On successive frames, the
stencil mask is updated so that fewer and fewer of the pixels in the starting image
pass the test. As the frames progress, fewer and fewer of the pixels in the ending
image fail the test. In this manner, your application can perform a dissolve using any
arbitrary dissolve pattern.

Fading in or fading out is just a special case of dissolving. When fading in, the
stencil buffer is used to dissolve from a black (or white) image to a rendering of a 3-
D scene. Fading out is the opposite, your application starts with a rendering of a 3-D
scene and dissolves to black (or white). The fade can be done using any arbitrary
pattern you want to employ.

Direct3D applications use a similar technique for swipes. When an application
performs, for instance, a left-to-right swipe. The ending image appears to gradually
slide on top of the starting image from left to right. just as in doing a dissolve, you
must define a series of stencil masks that are loaded into the stencil buffer on
successive frames, or successively modify the starting stencil mask. The stencil
masks are used to disable the writing of pixels from the starting image and enable
the writing of pixels from the ending image.

A swipe is somewhat more complex than a dissolve in that your application must
read pixels from the ending image in the reverse order of the swipe. That is, if the
swipe is moving left to right, your application must read pixels from the ending
image from right to left.

Decaling
[This is preliminary documentation and subject to change.]

Direct3D applications use the technique of decaling to control which pixels from a
particular primitive image are drawn to the rendering target surface. Programs apply
decals to the images of primitives to enable co-planar polygons to be rendered
correctly.

For instance, when applying tire marks and yellow lines to a roadway, the markings
should appear directly on top of the road. However, the z values of the markings and
the road are the same. Therefore, the depth buffer might not produce a clean
separation between the two. Some pixels in the back primitive may be rendered on
top of the front primitive and visa versa. The resulting image appears to shimmer
from frame to frame. This effect is called "Z Fighting" or "flimmering".

in.doc – page 291

To solve this problem, use a stencil to mask out the section of the back primitive
where the decal will appear. Turn off z-buffering and render the image of the front
primitive into the masked-off area of the render target surface.

Although multiple texture blending can be used to solve this problem, doing so
limits the number of other special effects that your application can produce. Using
the stencil buffer to apply decals frees up texture blending stages for other effects.

Compositing
[This is preliminary documentation and subject to change.]

Your application can use the stencil buffer to composite 2-D or 3-D images onto a 3-
D scene. A mask in the stencil buffer is used to occlude an area of the rendering
target surface. Stored 2-D information, such as text or bitmaps, can then be written
to the occluded area. Alternately, your application can render additional 3-D
primitives to the stencil-masked region of the rendering target surface. It can even
render an entire scene.

Games often composite multiple 3-D scenes together. For instance, driving games
typically display a rear-view mirror. The mirror contains the view of the 3-D scene
behind the driver. It is essentially a second 3-D scene composited together with the
driver's forward view.

Outlines and Silhouettes
[This is preliminary documentation and subject to change.]

The stencil buffer can be used for more abstract effects, such as outlining and
silhouetting.

If your program applies a stencil mask to the image of a primitive that is the same
shape, but slightly smaller than the primitive, the resulting image will only contain
the primitive's outline. It can then fill the stencil-masked area of the image with a
solid color, giving the primitive an embossed look.

If the stencil mask is the same size and shape as the primitive you are rendering, the
resulting image will contain a "hole" where the primitive should be. Your program
can then fill the "hole" with black to produce a silhouette of the primitive.

Colored Lights
[This is preliminary documentation and subject to change.]

The dcvColor member of the D3DLIGHT2 structure specifies a
D3DCOLORVALUE structure. The colors defined by this structure are RGBA
values that generally range from zero to one, with zero being black. Although you
will usually want the light color to fall within this range, you can use values outside
the range for special effects. For example, you could create a strong light that washes
out a scene by setting the color to large values. You could also set the color to
negative values to create a dark light, which actually removes light from a scene.

in.doc – page 292

Dark lights are useful for forcing dramatic shadows in scenes and other special
effects.

When you use the ramp (monochromatic) lighting mode, the ambient light is built
into the ramp, so you can't make your scene any darker than the current ambient
light level. Also, remember that colored lights in RGB mode are converted into a
gray-scale shade in ramp mode; a red light that looks good in RGB mode will be a
dim white light in ramp mode.

Antialiasing
[This is preliminary documentation and subject to change.]

Antialiasing is a technique you can use to reduce the appearance of "jaggies" — the
stair-step pixels used to draw any line that isn't exactly horizontal or vertical. In
three-dimensional scenes, this artifact is most noticeable on the boundaries between
polygons of different colors. Antialiasing effectively blends the pixels at these
boundaries to produce a more natural look to the scene.

Direct3D supports two antialiasing techniques: edge antialiasing and full-surface
antialiasing. Which technique is best for your application depends on your
requirements for performance and visual fidelity.

· Edge antialiasing
· Full-scene antialiasing

Edge Antialiasing
[This is preliminary documentation and subject to change.]

In edge antialiasing, you render a scene, then re-render the convex silhouettes of the
objects to be antialiased with lines. The system redraws those edges, blurring them to
reduce artifacts.

If a device supports edge antialiasing, it exposes the
D3DPRASTERCAPS_ANTIALIASEDGES capability flag in the D3DPRIMCAPS
structure (filled by calling the IDirect3DDevice3::GetCaps method). If it does, set
the D3DRENDERSTATE_EDGEANTIALIAS flag to TRUE, then redraw only the
edges in the scene, using IDirect3DDevice3::DrawPrimitive and either the
D3DPT_LINESTRIP or D3DPT_LINELIST primitive type. The behavior of edge
antialiasing is undefined for primitives other than lines, so make sure to disable the
feature by setting D3DRENDERSTATE_EDGEANTIALIAS to FALSE when
antialiasing is complete.

Redrawing every edge in your scene can work without introducing major artifacts,
but it can be computationally expensive. In addition, it can be difficult to determine
which edges should be antialiased. The most important edges to redraw are those
between areas of very different color (for example, silhouette edges) or boundaries
between very different materials. Antialiasing the edge between two polygons of
roughly the same color will have no effect, yet is still computationally expensive.

in.doc – page 293

For these reasons, full-scene antialiasing is often preferred, given that the current
hardware supports it. For more information, see Full-scene Antialiasing.

Full-scene Antialiasing
[This is preliminary documentation and subject to change.]

Full-scene antialiasing refers to blurring the edges of each polygon in the scene as it
is rasterized in a single pass — no second pass is required. Note that full-scene
antialiasing, when supported, only affects triangles and groups of triangles; lines
cannot be antialiased by using Direct3D services.

On some hardware, full-scene antialiasing can be applied only when the application
renders the polygons sorted from back to front. To find out whether this is true for
the current device, retrieve the device capabilities by calling
IDirect3DDevice3::GetCaps method. After the call, check the dwRasterCaps
member of the associated D3DPRIMCAPS structures. If the device requires back to
front rendering for antialiasing, it exposes the
D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT capability flag in
dwRasterCaps. If the device can perform antialiasing without regard to polygon
order, it will expose the D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT
flag. Of course, the absence of both flags indicates that the device cannot perform
full-scene antialiasing at all.

After finding out whether or not you need to sort the polygons, set the
D3DRENDERSTATE_ANTIALIAS render state to
D3DANTIALIAS_SORTDEPENDENT or
D3DANTIALIAS_SORTINDEPENDENT and draw the scene.

When you no longer need full-scene antialiasing, disable it by setting
D3DRENDERSTATE_ANTIALIAS to D3DANTIALIAS_NONE.

GUIDs
[This is preliminary documentation and subject to change.]

Direct3D uses globally unique identifiers, or GUIDs, to identify parts of the
interface. When you use the QueryInterface method to determine whether an object
supports an interface, you identify the interface you're interested in by using its
GUID.

To use GUIDs successfully in your application, you must either define INITGUID
prior to all other include and define statements, or you must link to the Dxguid.lib
library. You should define INITGUID in only one of your source modules.

Note that you use GUIDs differently depending on whether your application is
written in C or C++. In C, you pass a pointer to the GUID (&IID_IDirect3D, for
example), but in C++, you pass a reference to it (simply IID_IDirect3D).

in.doc – page 294

Performance Optimization
[This is preliminary documentation and subject to change.]

Every developer who creates real-time applications that use 3-D graphics is
concerned about performance optimization. This section provides you with
guidelines about getting the best performance from your code.

You can use the guidelines in the following sections for any Direct3D application:

· Databases and Culling
· Batching Primitives
· Lighting Tips
· Texture Size
· General Performance Tips
· Ramp Performance Notes
· Z-buffer Performance

Databases and Culling
[This is preliminary documentation and subject to change.]

Building a reliable database of the objects in your world is the key to excellent
performance in Direct3D — it is more important than improvements to rasterization
or hardware.

You should maintain the lowest polygon count you can possibly manage. Design for
a low polygon count, building low-poly models from the start, and add polygons if
you feel that you can do so without sacrificing performance later in the development
process. Try to keep the total number of polygons in the neighborhood of 2500.
Remember, "the fastest polygons are the ones you don't draw."

Batching Primitives
[This is preliminary documentation and subject to change.]

To get the best rendering performance during execution, you should try to work with
primitives in batches and keep the number of render-state changes as low as possible.
For example, if you have an object with two textures, group the triangles that use the
first texture and follow them with the necessary render state to change the texture,
then group all the triangles that use the second texture. The simplest hardware
support for Direct3D is called with batches of render states and batches of primitives
through the hardware abstraction layer (HAL). The more effectively the instructions
are batched, the fewer HAL calls are performed during execution.

in.doc – page 295

Lighting Tips
[This is preliminary documentation and subject to change.]

Since lights add a per-vertex cost to each rendered frame, you can achieve
significant performance improvements by being careful about how you use them in
your application. Most of the following tips derive from the maxim, "the fastest code
is code that is never called."

· Use as few lights as possible. If you just need to bring up the overall level of
lighting, use the ambient light instead of adding a new light. (It's much cheaper.)

· Directional lights are cheaper than point lights or spotlights. For directional
lights, the direction to the light is fixed and doesn't need to be calculated on a
per-vertex basis.

· Spotlights can be cheaper than point lights, because the area outside of the cone
of light is calculated quickly. Whether or not they are cheaper depends on how
much of your scene is lit by the spotlight.

· Use the range parameter to limit your lights to only the parts of the scene you
need to illuminate. All the light types exit fairly early when they are out of
range.

· Specular highlights almost double the cost of a light — use them only when you
must. Use the D3DLIGHT_NO_SPECULAR flag in the D3DLIGHT2 structure
as often as reasonable. When defining materials you must set the specular power
value to zero to turn off specular highlights for that material — simply setting
the specular color to 0,0,0 is not enough.

Texture Size
[This is preliminary documentation and subject to change.]

Texture-mapping performance is heavily dependent on the speed of memory. There
are a number of ways to maximize the cache performance of your application's
textures.

· Keep the textures small; the smaller the textures are, the better chance they have
of being maintained in the main CPU's secondary cache.

· Do not change the textures on a per-primitive basis. Try to keep polygons
grouped in order of the textures they use.

· Use square textures whenever possible. Textures whose dimensions are
256256 are the fastest. If your application uses four 128128 textures, for
example, try to ensure that they use the same palette and place them all into one
256256 texture. This technique also reduces the amount of texture swapping.
Of course, you should not use 256256 textures unless your application requires
that much texturing because, as already mentioned, textures should be kept as
small as possible.

in.doc – page 296

General Performance Tips
[This is preliminary documentation and subject to change.]

You can follow a few general guidelines to increase the performance of your
application.

· Only clear when you must.
· Minimize state changes.
· Use perspective correction only if you must.
· If you can use smaller textures, do so.
· Gracefully degrade special effects that require a disproportionate share of

system resources.
· Constantly test your application's performance.
· Ensure that your application runs well both with hardware acceleration and

software emulation.

Ramp Performance Notes
[This is preliminary documentation and subject to change.]

Direct3D applications can use either the ramp software emulation driver (for the
monochromatic color model) or the RGB software emulation driver. The
performance notes in the following sections apply to the ramp driver:

· Ramp Textures
· Copy Texture-blending Mode
· Ramp Performance Tips

Note
The ramp software emulation driver is obsolete, and not supported in DirectX
6.0 and later. You cannot create a Direct3D ramp device by using the
IDirect3D3 interface, nor can you query an existing ramp device for the
IDirect3DDevice3 interface. In short, ramp devices do not support any multiple
texture blending options. The notes in this section apply only to using the ramp
device with the IDirect3D2, IDirect3DDevice2 or earlier interfaces.

Ramp Textures
[This is preliminary documentation and subject to change.]

Applications that use the ramp driver should be conservative with the number of
texture colors they require. Each color used in a monochromatic texture requires its
own lookup table during rendering. If your application uses hundreds of colors in a
scene during rendering, the system must use hundreds of lookup tables, which do not
cache well. Also, try to share palettes between textures whenever possible. Ideally,

in.doc – page 297

all of your application's textures will fit into one palette, even when you are using a
ramp driver with depths greater than 8-bit color.

Copy Texture-blending Mode
[This is preliminary documentation and subject to change.]

Applications that use the ramp driver can sometimes improve performance by using
the D3DTBLEND_COPY texture-blending mode from the D3DTEXTUREBLEND
enumerated type. This mode is an optimization for software rasterization; for
applications using a HAL, it is equivalent to the D3DTBLEND_DECAL texture-
blending mode.

Copy mode is the simplest form of rasterization and hence the fastest. When copy
mode rasterization is used, no lighting or shading is performed on the texture. The
bytes from the texture are copied directly to the screen and mapped onto polygons
using the texture coordinates in each vertex. Hence, when using copy mode, your
application's textures must use the same pixel format as the primary surface. They
must also use the same palette as the primary surface.

If your application uses the monochromatic model with 8-bit color and no lighting,
performance can improve if you use copy mode. If your application uses 16-bit
color, however, copy mode is not quite as fast as using modulated textures; for 16-bit
color, textures are twice the size as in the 8-bit case, and the extra burden on the
cache makes performance slightly worse than using an 8-bit lit texture.

Copy mode implements only two rasterization options, z-buffering and chromakey
transparency. The fastest mode is to simply map the texels to the polygons, with no
transparency and no z-buffering. Enabling chromakey transparency accelerates the
rasterization of invisible pixels because only the texture read is performed, but
visible pixels will incur a slight performance degradation because of the chromakey
test.

Enabling z-buffering incurs the largest performance degradation for 8 bit copy mode.
When z-buffering is enabled, a 16 bit value has to be read and conditionally written
per pixel. Even so, enabling z-buffering for copy mode can be faster than disabling it
if the average overdraw goes over two and the scene is rendered in front-to-back
polygon order.

If your scene has overdraw of less than 2 (which is very likely) you should not use z-
buffering in copy mode. The only exception to this rule is if the scene complexity is
very high. For example, if you have more than about 1500 rendered polygons in the
scene, the sort overhead begins to get high. In that case, it may be worth considering
a z-buffer again.

Direct3D is fastest when all it needs to draw is one long triangle instruction. Render
state changes just get in the way of this; the longer the average triangle instruction,
the better the triangle throughput. Therefore, peak sorting performance can be
achieved when all the textures for a given scene are contained in only one texture
map or texture page. Although this adds the restriction that no texture coordinate can

in.doc – page 298

be larger than 1.0, it has the performance benefit of completely avoiding texture
state changes.

For normal simple scenes use one texture, one material, and sort the triangles. Use z-
buffering only when the scene becomes complex.

Ramp Performance Tips
[This is preliminary documentation and subject to change.]

Applications should use the following techniques to achieve the best possible
performance when using the monochromatic (ramp) driver:

· Share the same palette among all textures.
· Keep the number of colors in the palette as low as possible — 64 or fewer is

best.
· Keep the ramp size in materials at 16 or less.
· Make all materials the same (except the texture handle) — allow the textures to

specify the coloring. For example, make all the materials white and keep their
specular power the same. Many applications do not need more than two
materials in a scene: one with a specular power for shiny objects, and one
without for matte objects.

· Keep textures as small as possible.
· Fit multiple small textures into a single texture that is 256256 pixels.
· Render small triangles by using the Gouraud shade mode, and render large

triangles by using the flat shade mode.

Developers who must use more than one palette can optimize their code by using
one palette as a master palette and ensuring that the other palettes contain a subset of
the colors in the master palette.

Z-Buffer Performance
[This is preliminary documentation and subject to change.]

Applications can increase performance when using z-buffering and texturing by
ensuring that scenes are rendered from front to back. Textured z-buffered primitives
are pretested against the z-buffer on a scan line basis. If a scan line is hidden by a
previously rendered polygon, the system rejects it quickly and efficiently. Z-
buffering can improve performance, but the technique is most useful when a scene
includes a great deal of overdraw. Overdraw is the average number of times a screen
pixel is written to. Overdraw is difficult to calculate exactly, but you can often make
a close approximation. If the overdraw averages less than 2, you can achieve the best
performance by turning z-buffering off, and rendering the scene from back-to-front.

You can also improve the performance of your application by z-testing primitives;
that is, by testing a given list of primitives against the z-buffer. If you render the
bounding box of a complex object using z-visibility testing, you can easily discover

in.doc – page 299

whether the object is completely hidden. If it is hidden, you can avoid even starting
to render the object. For example, imagine that the camera is in a room full of 3-D
objects. Adjoining this room is a second room full of 3-D objects. The rooms are
connected by an open door. If you render the first room and then draw the doorway
to the second room using a z-test polygon, you may discover that the doorway is
hidden by one of the objects in the first room and that you don't need to render
anything at all in the second room.

On faster personal computers, software rendering to system memory is often faster
than rendering to video memory, although it has the disadvantage of not being able
to use double buffering or hardware-accelerated clear operations. If your application
can render to either system or video memory, and if you include a routine that tests
which is faster, you can take advantage of the best approach on the current system.
The Direct3D sample code in this SDK demonstrates this strategy. It is necessary to
implement both methods because there is no other way to test the speed. Speeds can
vary enormously from computer to computer, depending on the main-memory
architecture and the type of graphics adapter being used.

Troubleshooting
[This is preliminary documentation and subject to change.]

This section lists common categories of problems that you may encounter when
writing Direct3D programs, and what you should do to prevent them.

· Device Creation
· Nothing Visible
· Debugging
· Borland Floating-Point Initialization
· Parameter Validation
· Miscellaneous

Device Creation
[This is preliminary documentation and subject to change.]

If your application fails during device creation, check for the following common
errors:

· You must specify DDSCAPS_3DDEVICE when you create the DirectDraw
surface.

· If you're using a palettized device, you must attach the palette.
· If you're using a z-buffer, you must attach it to the rendering target.
· Make sure you check the device capabilities, particularly the render depths.
· Check whether you are using system or video memory.
· Ensure that the registry has not been corrupted.

in.doc – page 300

Nothing Visible
[This is preliminary documentation and subject to change.]

If your application runs but nothing is visible, check for the following common
errors:

· Ensure that your triangles are not degenerate.
· Make sure that your index lists are internally consistent — that you don't have

entries like 1, 2, 2 (which are silently dropped).
· Ensure that your triangles are not being culled.
· Make sure that your transformations are internally consistent.
· Check the viewport to be sure it will allow your triangles to be seen.
· Check the description of the execute buffer.

Debugging
[This is preliminary documentation and subject to change.]

Debugging a Direct3D application can be challenging. In addition to checking all the
return values (a particularly important piece of advice in Direct3D programming,
which is so dependent on very different hardware implementations), try the
following techniques:

· Switch to debug DLLs.
· Force a software-only device, turning off hardware acceleration even when it is

available.
· Force surfaces into system memory.
· Create an option to run in a window, so that you can use an integrated debugger.

The second and third options in the preceding list can help you avoid the Win16 lock
which can otherwise cause your debugger to hang.

Also, try adding the following entries to WIN.INI:

[Direct3D]
debug=3
[DirectDraw]
debug=3

Borland Floating-Point Initialization
[This is preliminary documentation and subject to change.]

in.doc – page 301

Compilers from the Borland company report floating-point exceptions in a manner
that is incompatible with Direct3D. To solve this problem, you should include a
_matherr() exception handler like the following:

// Borland floating point initialization
#include <math.h>
#include <float.h>

void initfp(void)
{
 // disable floating point exceptions
 _control87(MCW_EM,MCW_EM);
}

int _matherr(struct _exception *e)
{
 e; // dummy reference to catch the warning
 return 1; // error has been handled
}

Parameter Validation
[This is preliminary documentation and subject to change.]

For performance reasons, the debug version of the Direct3D Immediate Mode
runtime performs more parameter validation than the retail version, which
sometimes performs no validation at all. This allows applications to perform robust
debugging with the slower debug runtime component before using the faster retail
version for performance tuning and final release.

Although several Direct3D Immediate Mode methods impose limits on the values
that they can accept, these limits are often only checked and enforced by the debug
version of the Direct3D Immediate Mode runtime. Applications must conform to
these limits, or unpredictable (and highly undesirable) results can occur when
running on the retail version of Direct3D. For example, the
IDirect3DDevice3::DrawPrimitive method accepts a parameter (dwVertexCount)
that indicates the number of vertices that the method will render. The method can
only accept values between 0 and 65,535 (0x0000 and 0xFFFF). In the debug version
of Direct3D, if you pass 65,536 (one more than the limit), the method will fail
gracefully, printing an error message to the error log, and returning an error value to
your application. Conversely, if your application makes the same error when it is
running with the retail version of the runtime, behavior is undefined. For
performance reasons, the method does not validate the parameters, resulting in
unpredictable and completely situational behavior when they are not valid. In some
cases the call might work, and in other cases it might cause a memory fault in
Direct3D. If an invalid call consistently works with a particular hardware

in.doc – page 302

configuration and DirectX version, there is no guarantee that it will continue to
function on other hardware or with future releases of DirectX.

If your application encounters unexplained failures when running with the retail
Direct3D Immediate Mode runtime, test against the debug version and look closely
for cases where your application passes invalid parameters.

Miscellaneous
[This is preliminary documentation and subject to change.]

The following tips can help you uncover common miscellaneous errors:

· Check the memory type (system or video) for your textures.
· Verify that the current hardware can do texturing.
· Make sure that you can restore any lost surfaces.
· Always specify D3DLIGHTSTATE_MATERIAL, even in RGB mode, because

it is always necessary in monochromatic mode.

Direct3D Immediate Mode
Tutorials

[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each providing step-by-step instructions
for implementing the basics of Direct3D® Immediate Mode in a C/C++ or Visual
Basic application. The tutorials are written parallel to a set of sample files that are
provided with this SDK in the \Samples\Multimedia\D3DIM\Tutorials directory,
following their code path and providing explanations along the way. Readers are
encouraged to follow along in the sample code as they move through these tutorials.

· Direct3D Immediate Mode C/C++ Tutorials
· Direct3D Immediate Mode Visual Basic Tutorials

Direct3D Immediate Mode C/C++
Tutorials

[This is preliminary documentation and subject to change.]

The tutorials in this section show how to use Direct3D for common tasks by dividing
those tasks into required steps. In some cases, steps are organized into substeps for
clarity. The following tutorials are presented here:

in.doc – page 303

· Tutorial 1: Rendering a Single Triangle
· Tutorial 2: Adding a Depth Buffer

Note
The sample files in these tutorials are written in C++. If you are using a C
compiler, you must make the appropriate changes to the files for them to
successfully compile. At the very least, you need to add the vtable and this
pointers to the interface methods.
Some comments in the included sample code might differ from the source files
in the SDK. Changes are made for brevity only, and are limited to comments to
avoid changing the behavior of the code.

Tutorial 1: Rendering a Single Triangle
[This is preliminary documentation and subject to change.]

To use Direct3D, you first create an application window, then create and initialize
DirectDraw® and Direct3D-related objects. You use the COM interfaces that these
objects implement to manipulate them and to create the subordinate objects required
to render a scene. The Triangle sample project upon which this tutorial is based
illustrates these tasks by rendering the simplest possible scene: a single triangle. The
Triangle sample uses the following steps to set up Direct3D, render a scene, and
eventually shut down:

· Step 1: Create a Window
· Step 2: Initialize System Objects
· Step 3: Initialize the Scene
· Step 4: Monitor System Messages
· Step 5: Render and Display the Scene
· Step 6: Shut Down

In addition to these steps, Triangle performs some standard tasks common to
windowed applications. Although these tasks aren't difficult, the Triangle sample
(and all other windowed samples) performs the following tasks as the needed:

· Handle Window Movement
· Handle Window Resizing

Step 1: Create a Window
[This is preliminary documentation and subject to change.]

The first thing any Windows application must do when it is executed is create an
application window to display a user interface. Keeping with this, when Triangle
begins execution at its WinMain function, it uses the following code to perform
window initialization:

in.doc – page 304

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR strCmdLine, INT)
{
 // Register the window class
 WNDCLASS wndClass = { CS_HREDRAW | CS_VREDRAW, WndProc, 0, 0, hInst,
 LoadIcon(hInst, MAKEINTRESOURCE(IDI_MAIN_ICON)),
 LoadCursor(NULL, IDC_ARROW),
 (HBRUSH)GetStockObject(WHITE_BRUSH), NULL,
 TEXT("Render Window") };
 RegisterClass(&wndClass);

 // Create our main window
 HWND hWnd = CreateWindow(TEXT("Render Window"),
 TEXT("D3D Tutorial: Drawing One Triangle"),
 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT,
 CW_USEDEFAULT, 300, 300, 0L, 0L, hInst, 0L);
 ShowWindow(hWnd, SW_SHOWNORMAL);
 UpdateWindow(hWnd);

The preceding code is standard Windows programming, covered here mostly for
thoroughness. The sample starts by defining and registering a window class called
"Render Window." The window class is defined to redraw on size events, to use an
application-provided icon as a resource, and to have a white background. After the
class is registered, the code creates a basic top-level window that uses the registered
class, with a client area of 300 pixels wide by 300 pixels tall, and has no menu or
child windows. The sample uses the WS_OVERLAPPEDWINDOW window style to
create a window that includes minimize, maximize, and close boxes common to
windowed applications. (If the sample were to run in full-screen mode, the preferred
window style is WS_EX_TOPMOST.) Once the window is created, the code calls
standard Win32® functions to show and update the window.

With the application window ready, you can begin setting up the essential DirectX®
objects, which is the topic of Step 2: Initialize System Objects.

Step 2: Initialize System Objects
[This is preliminary documentation and subject to change.]

After you create an application window, you can begin initializing the primary
DirectX objects whose services you will draw on to render the scene. For a Direct3D
application, this means creating and configuring DirectDraw, rendering surfaces, a
rendering device, and a viewport. For clarity, the Triangle sample separates system
object initialization code from the code for initializing the scene. As a result,
geometry, application-specific data structures, and lesser Direct3D objects like
materials are initialized with the scene. This isn't a requirement, but it makes for
simpler code.

The Triangle sample performs system initialization in the Initialize3DEnvironment
application-defined function, called from WinMain after the window is created.

in.doc – page 305

Although preparing these objects isn't complex, the code is a little too lengthy to
discuss in one place. As a result, the steps taken by the Initialize3DEnvironment
function are presented in the following substeps:

· Step 2.1: Initialize DirectDraw
· Step 2.2: Set Up DirectDraw Surfaces
· Step 2.3: Initialize Direct3D
· Step 2.4: Prepare the Viewport

Note
The Triangle sample code performs initialization by calling methods from
within the WinMain function, immediately after the application window is
created, rather than in response to system creation messages such as
WM_CREATE. It does this to avoid relying on system message ordering, which
can differ across platforms.

Step 2.1: Initialize DirectDraw
[This is preliminary documentation and subject to change.]

After creating the application window, the first object you will create is the
DirectDraw object, which is required to set your application's cooperative level, and
to create the surfaces for display and for use as the render target of a rendering
device.

The Triangle sample starts performing initialization by creating a DirectDraw object
and setting the application's cooperative level, as shown in the following code:

HRESULT Initialize3DEnvironment(HWND hWnd)
{
 HRESULT hr;

 // Create a DirectDraw object.
 hr = DirectDrawCreate(NULL, &g_pDD1, NULL);
 if(FAILED(hr))
 return hr;

 // Get a ptr to an IDirectDraw4 interface. This interface to DirectDraw
 // represents the DX6 version of the API.
 hr = g_pDD1->QueryInterface(IID_IDirectDraw4, (VOID**)&g_pDD4);
 if(FAILED(hr))
 return hr;

The preceding code creates a DirectDraw object by calling the DirectDrawCreate
DirectDraw global function. It passes NULL in the first parameter to request that the
function create a DirectDraw object for the active display driver. For hardware that
doesn't support GDI, such as 3-D only hardware, you should explicitly specify the
globally unique identifier (GUID) of the desired driver in the first parameter. These

in.doc – page 306

GUIDs are normally obtained through enumeration. The second parameter is the
address of a global variable that DirectDrawCreate fills with the address of the
IDirectDraw interface for the DirectDraw object, and the last parameter is set to
NULL to indicate that the new object will not be used with COM aggregation
features. If the DirectDraw object is created successfully, the code queries for the
latest iteration of the DirectDraw interface, IDirectDraw4.

The sample continues by setting the application's cooperative level, as follows:

 hr = g_pDD4->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
 if(FAILED(hr))
 return hr;

The sample sets the cooperative level by calling the
IDirectDraw4::SetCooperativeLevel method. Setting the cooperative level
effectively tells the system whether or not the application will render in full-screen
mode or in a window. (Note that some hardware cannot render into a window. You
can detect such hardware by checking for the absence of the
DDCAPS2_CANRENDERWINDOWED capability flag when you call
IDirectDraw4::GetCaps.) The code requests windowed cooperative level, also
called the "normal" cooperative level, by including the DDSCL_NORMAL in the
second parameter it passes to SetCooperativeLevel. The SetCooperativeLevel
method can fail if another application already controls owns full-screen, exclusive
mode.

Note
You can include the DDSCL_FPUSETUP cooperative level flag to increase
performance. For more information about this cooperative level flag, see
DirectDraw Cooperative Levels and FPU Precision. For general information, see
Cooperative Levels in the DirectDraw documentation.

Once you create the DirectDraw object and set the cooperative level, you're ready to
prepare the surfaces that will be used to contain and display a rendered scene. The
Triangle sample does this as discussed in Step 2.2: Set Up DirectDraw Surfaces.

Step 2.2: Set Up DirectDraw Surfaces
[This is preliminary documentation and subject to change.]

After you create a DirectDraw object and set the cooperative level, you can create
the surfaces that your application will use to render and display a scene. Exactly how
you create your surfaces depends largely on whether or not your application will run
in a window or in full-screen mode.

Full-screen Application Note
Applications that will run in full-screen mode can create surfaces as shown in
the preceding code examples. More often, these applications should take
advantage of page-flipping, a feature only available in full-screen, exclusive
mode. In this case, instead of explicitly creating two surfaces, you can create a

in.doc – page 307

flipping chain of surfaces with a single call. For more information, see Creating
Complex Surfaces and Flipping Chains.

The Triangle sample, designed to run in a window, starts by creating a primary
surface, which represents the display:

 // Prepare a surface description for the primary surface.
 DDSURFACEDESC2 ddsd;
 ZeroMemory(&ddsd, sizeof(DDSURFACEDESC2));
 ddsd.dwSize = sizeof(DDSURFACEDESC2);
 ddsd.dwFlags = DDSD_CAPS;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

 // Create the primary surface.
 hr = g_pDD4->CreateSurface(&ddsd, &g_pddsPrimary, NULL);
 if(FAILED(hr))
 return hr;

The description for the primary surface doesn't contain information about dimensions
or pixel format, as these traits are assumed to be the same as the display mode. If the
current display mode is 800x600, 16-bit color, DirectDraw ensures that the primary
surface matches. After creating the primary surface, you can create the render target
surface. In the case of Triangle, this is a separate off-screen surface created as
follows:

 ddsd.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS;
 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | DDSCAPS_3DDEVICE;

 // Set the dimensions of the back buffer. Note that if our window changes
 // size, we need to destroy this surface and create a new one.
 GetClientRect(hWnd, &g_rcScreenRect);
 GetClientRect(hWnd, &g_rcViewportRect);
 ClientToScreen(hWnd, (POINT*)&g_rcScreenRect.left);
 ClientToScreen(hWnd, (POINT*)&g_rcScreenRect.right);
 ddsd.dwWidth = g_rcScreenRect.right - g_rcScreenRect.left;
 ddsd.dwHeight = g_rcScreenRect.bottom - g_rcScreenRect.top;

 // Create the back buffer. The most likely reason for failure is running
 // out of video memory. (A more sophisticated app should handle this.)
 hr = g_pDD4->CreateSurface(&ddsd, &g_pddsBackBuffer, NULL);
 if(FAILED(hr))
 return hr;

The preceding code creates an off-screen surface that is equal to the dimensions of
the program window. There is no need to create a larger surface, because the
dimensions of the window dictate what is visible to the user. (This code also
initializes two global variables that are later used to set up the viewport and track the
application window size and position.) As the preceding excerpt shows, you must

in.doc – page 308

include the DDSCAPS_3DDEVICE capability for any surface that will be used as a
render target. This capability causes the system to allocate additional internal data
structures that are used only for 3-D rendering. As when creating the primary
surface, the pixel format for the off-screen surface is assumed to be the same as the
display mode when it isn't provided in the surface description.

Note
Applications that will use a depth buffer should create one and attach it to the
render target surface at this point. For simplicity, this tutorial doesn't employ a
depth buffer, but they are covered in Tutorial 2: Adding a Depth Buffer and in
Depth Buffers.

After creating the primary and render target surface, you can create and attach a
DirectDrawClipper object to the display surface. Using a clipper frees you from
attempting to handle cases when the window is partially obscured by other windows,
or when the window is partially outside the display area. Clippers aren't needed for
applications that run in full-screen mode. The Triangle sample uses the following
code to create a clipper and associate it with the display window:

 LPDIRECTDRAWCLIPPER pcClipper;

 // Create the clipper.
 hr = g_pDD4->CreateClipper(0, &pcClipper, NULL);
 if(FAILED(hr))
 return hr;

 // Assign it to the window handle, then set
 // the clipper to the desired surface.
 pcClipper->SetHWnd(0, hWnd);
 g_pddsPrimary->SetClipper(pcClipper);
 pcClipper->Release();

Having created the basic DirectDraw objects, you can move on to setting up the
essential Direct3D objects that will render the scene. The Triangle sample performs
this task in Step 2.3: Initialize Direct3D.

Step 2.3: Initialize Direct3D
[This is preliminary documentation and subject to change.]

After you create the surfaces your application will need to render and display a
scene, you can begin initializing Direct3D objects by retrieving a pointer to the
IDirect3D3 interface for the DirectDraw object, which is used to create all the
objects you'll need to render a scene. Note that this interface is exposed by the
DirectDraw object, and represents a separate set of features, not a separate object.
You retrieve the IDirect3D3 interface by calling the IUnknown::QueryInterface
method of the DirectDraw object. The following code from Triangle performs this
task:

in.doc – page 309

 // Query DirectDraw for access to Direct3D
 g_pDD4->QueryInterface(IID_IDirect3D3, (VOID**)&g_pD3D);
 if(FAILED(hr))
 return hr;

After retrieving a pointer to the IDirect3D3 interface, you can create a rendering
device by calling the IDirect3D3::CreateDevice method. The CreateDevice
method accepts the globally unique identifier (GUID) of the desired device, the
address of the IDirectDrawSurface4 interface for the surface that the device will
render to, and the address of a variable that the method will set to an
IDirect3DDevice3 interface pointer if the device object is created successfully.
Although the tutorial uses hard-coded GUID values, a real application should
enumerate devices to get a GUID. For information about device enumeration, see
Enumerating Direct3D Devices.

(The Triangle sample checks the display mode prior to creating the device. If the
display is set to a palettized mode, it exits. Attempting to create a device for a
palettized surface that doesn't have an associated palette will cause the
CreateDevice method to fail. This is done for simplicity. A real-world application
should create a render target surface and attach a palette, or require that the user set
their display mode to 16-bit color or higher.)

The following code, taken from Triangle, checks the display mode, and creates a
rendering device:

 // Check the display mode, and
 ddsd.dwSize = sizeof(DDSURFACEDESC2);
 g_pDD4->GetDisplayMode(&ddsd);
 if(ddsd.ddpfPixelFormat.dwRGBBitCount <= 8)
 return DDERR_INVALIDMODE;

 // The GUID here is hardcoded. In a real-world application
 // this should be retrieved by enumerating devices.
 hr = g_pD3D->CreateDevice(IID_IDirect3DHALDevice,
 g_pddsBackBuffer,
 &g_pd3dDevice, NULL);
 if(FAILED(hr))
 {
 // If the hardware GUID doesn't work, try a software device.
 hr = g_pD3D->CreateDevice(IID_IDirect3DRGBDevice,
 g_pddsBackBuffer,
 &g_pd3dDevice, NULL);
 if(FAILED(hr))
 return hr;
 }

The IDirect3D3::CreateDevice method can fail for many reasons. The most likely
cause is when the primary display device doesn't support 3-D features. Another

in.doc – page 310

possibility is if the display hardware cannot render in the current display mode.
These possibilities should be checked during device enumeration. To keep the code
simple, Triangle attempts to create a software rendering device if the hardware
device cannot be created.

Note
Even though the CreateDevice method accepts a pointer to a
DirectDrawSurface object, a rendering device is not a surface. Rather, it is a
discrete COM object that uses a surface to contain graphics for a rendered scene.

After the device is created, you can create a viewport object and assign it to the
device, as described in Step 2.4: Prepare the Viewport.

Step 2.4: Prepare the Viewport
[This is preliminary documentation and subject to change.]

After you create a rendering device, you can create a viewport object and assign it to
the device. In short, the viewport determines how the geometry in a 3-D scene is
clipped and then represented in the 2-D space of a display screen. (For a conceptual
overview about viewports, see Viewports and Clipping.)

Setting up a viewport is a straight-forward process that starts with preparing the
viewport parameters in a D3DVIEWPORT2 structure. The Triangle sample sets the
viewport parameters to the dimensions of the render target surface, with a standard
3-D clipping region that exists from -1.0 to 1.0 in x, from 1.0 to -1.0 in y, and from
0.0 to 1.0 in z:

 // Set up the viewport data parameters
 D3DVIEWPORT2 vdData;
 ZeroMemory(&vdData, sizeof(D3DVIEWPORT2));

 // Always set the structure size!
 vdData.dwSize = sizeof(D3DVIEWPORT2);
 vdData.dwWidth = g_rcScreenRect.right - g_rcScreenRect.left;
 vdData.dwHeight = g_rcScreenRect.bottom - g_rcScreenRect.top;
 vdData.dvClipX = -1.0f;
 vdData.dvClipWidth = 2.0f;
 vdData.dvClipY = 1.0f;
 vdData.dvClipHeight = 2.0f;
 vdData.dvMaxZ = 1.0f;

Once the viewport parameter structure is ready, Triangle creates the viewport and
assigns it to the rendering device. Note that it doesn't actually apply the parameters
until after the viewport is assigned to the device. This is a requirement.

 // Create the viewport.
 hr = g_pD3D->CreateViewport(&g_pvViewport, NULL);
 if(FAILED(hr))

in.doc – page 311

 return hr;

 // Associate the viewport with the device.
 g_pd3dDevice->AddViewport(g_pvViewport);

 // Set the parameters for the new viewport.
 g_pvViewport->SetViewport2(&vdData);

Assigning the viewport to the device merely adds it to an internal list of viewports
for the device, it doesn't actually select the viewport to be used during rendering.
The following code selects the viewport:

 // Set the current viewport for the device
 g_pd3dDevice->SetCurrentViewport(g_pvViewport);

Now that the basic DirectX objects have been created, you can start preparing the
subordinate objects required to render scene, which is the topic of Step 3: Initialize
the Scene.

Step 3: Initialize the Scene
[This is preliminary documentation and subject to change.]

After creating the primary Direct3D-related objects—a DirectDraw object, a
rendering device, and a viewport—you can begin initializing the scene by setting up
geometry, preparing materials, and configuring the transformation matrices your
application will use. The Triangle sample uses an application-defined function,
App_InitDeviceObjects, to perform the following steps that initialize the scene:

· Step 3.1: Prepare Geometry
· Step 3.2: Set Up Material and Initial Lighting States
· Step 3.3: Prepare and Set Transformation Matrices

Step 3.1: Prepare Geometry
[This is preliminary documentation and subject to change.]

After you create the primary system objects used with DirectDraw and Direct3D,
you can begin initializing the scene. The Triangle sample takes this opportunity to
initialize geometry by defining vertices in an array of D3DVERTEX structure.
Technically, you aren't required to set up the geometry at this time—you can do it
anytime prior to calling rendering methods:

HRESULT App_InitDeviceObjects(LPDIRECT3DDEVICE3 pd3dDevice,
 LPDIRECT3DVIEWPORT3 pvViewport)
{
 // Data for the geometry of the triangle. Note that this tutorial only
 // uses ambient lighting, so the vertices' normals are not actually used.
 D3DVECTOR p1(0.0f, 3.0f, 0.0f);

in.doc – page 312

 D3DVECTOR p2(3.0f,-3.0f, 0.0f);
 D3DVECTOR p3(-3.0f,-3.0f, 0.0f);
 D3DVECTOR vNormal(0.0f, 0.0f, 1.0f);

 // Initialize the 3 vertices for the front of the triangle
 g_pvTriangleVertices[0] = D3DVERTEX(p1, vNormal, 0, 0);
 g_pvTriangleVertices[1] = D3DVERTEX(p2, vNormal, 0, 0);
 g_pvTriangleVertices[2] = D3DVERTEX(p3, vNormal, 0, 0);

 // Initialize the 3 vertices for the back of the triangle
 g_pvTriangleVertices[3] = D3DVERTEX(p1, -vNormal, 0, 0);
 g_pvTriangleVertices[4] = D3DVERTEX(p3, -vNormal, 0, 0);
 g_pvTriangleVertices[5] = D3DVERTEX(p2, -vNormal, 0, 0);

The preceding code fragment defines three points in 3-D space that define a triangle
that sits upright in the z=0 plane. After defining the geometry to be displayed, the
Triangle sample prepares material and lighting parameters in Step 3.2: Set Up
Material and Initial Lighting States.

Step 3.2: Set Up Material and Initial Lighting States
[This is preliminary documentation and subject to change.]

After you create the basic 3-D rendering objects (a DirectDraw object, a rendering
device, and a viewport), you've got almost all you need to render a simple scene. The
next thing to do is to create and configure a material and set some initial lighting
states. These can all be changed later if needed. For an introduction to these
concepts, see Lighting and Materials.

The Triangle sample starts by retrieving the IDirect3D3 interface pointer for the
rendering device by calling the IDirect3DDevice3::GetDirect3D method (a pointer
to the rendering device, and one to the viewport are passed to the
App_InitDeviceObjects function from which this code is taken). Then, it creates a
material object and sets material parameters, as shown here:

 // Create the material object.
 if(FAILED(pD3D->CreateMaterial(&g_pmtrlObjectMtrl, NULL)))
 return E_FAIL;

 // Set properties for ambient reflectance.
 D3DMATERIAL mtrl;
 D3DMATERIALHANDLE hmtrl;
 ZeroMemory(&mtrl, sizeof(D3DMATERIAL));

 // Always set the structure size!
 mtrl.dwSize = sizeof(D3DMATERIAL);
 mtrl.dcvAmbient.r = 1.0f;
 mtrl.dcvAmbient.g = 1.0f;

in.doc – page 313

 mtrl.dcvAmbient.b = 0.0f;

 // Commit the properties to the material.
 g_pmtrlObjectMtrl->SetMaterial(&mtrl);

The preceding code creates a material object, represented by the
IDirect3DMaterial3 interface, by calling the IDirect3D3::CreateMaterial object.
The new interface is assigned to an application-defined global variable,
g_pmtrlObjectMtrl. When created, a new material has no properties and cannot be
used in rendering. The code prepares material properties in a D3DMATERIAL
structure to describe a material that will reflect the red and green components of
ambient light, making it appear yellow in the scene. (This tutorial only uses ambient
light, so it only sets an ambient reflectance property. A real-world application would
use direct light as well as ambient light, and should set therefore set diffuse and
specular reflectance properties as well.) After preparing the material properties, the
code applies them to the material object by calling the
IDirect3DMaterial3::SetMaterial method.

Note
When using textures, the object material is usually omitted or colored white.

After setting the material properties, you can retrieve the material handle that is used
to select it for rendering. You retrieve a material handle by calling the
IDirect3DMaterial3::GetHandle method. Once you have the material handle, you
can select the current material by calling the IDirect3DDevice3::SetLightState
method, passing the D3DLIGHTSTATE_MATERIAL enumerated value in the first
parameter and the material handle in the second parameter. The Triangle sample
does this with the following code:

 // Bind the material to the device.
 g_pmtrlObjectMtrl->GetHandle(pd3dDevice, &hmtrl);

 // Select the current material.
 pd3dDevice->SetLightState(D3DLIGHTSTATE_MATERIAL, hmtrl);

After the current material is selected, all polygons will be rendered using this
material. However, before anything in the scene will be visible you need to provide
some light. The code in Triangle sets an ambient light level by calling the
IDirect3DDevice3::SetLightState method to set the
D3DLIGHTSTATE_AMBIENT light state for white ambient light:

 // Set up white ambient light.
 pd3dDevice->SetLightState(D3DLIGHTSTATE_AMBIENT, 0xffffffff);

Now that the geometry, material, and initial lighting parameters are set, the sample
moves on to setting up the transformation matrices. This is covered in Step 3.3:
Prepare and Set Transformation Matrices.

in.doc – page 314

Step 3.3: Prepare and Set Transformation Matrices
[This is preliminary documentation and subject to change.]

Another step in setting up a simple scene involved setting the world, view, and
projection matrices. The system applies these matrices to geometry to place it in the
scene, adjust for the camera's location and orientation, and scale vertex data to make
distant objects appear smaller than near objects. (For a conceptual overview, see The
Geometry Pipeline.)

The Triangle sample starts by creating an identity matrix in a D3DMATRIX
structure, then it manipulates the matrix to produce the desired transformations.
Once a matrix is ready, the code assigns it to the device by calling the
IDirect3DDevice3::SetTransform method with the
D3DTRANSFORMSTATE_WORLD, D3DTRANSFORMSTATE_VIEW, or
D3DTRANSFORMSTATE_PROJECTION values:

 // Start by setting up an identity matrix.
 D3DMATRIX mat;
 mat._11 = mat._22 = mat._33 = mat._44 = 1.0f;
 mat._12 = mat._13 = mat._14 = mat._41 = 0.0f;
 mat._21 = mat._23 = mat._24 = mat._42 = 0.0f;
 mat._31 = mat._32 = mat._34 = mat._43 = 0.0f;

 // The world matrix controls the position and orientation
 // of the polygons in world space. We'll use it later to
 // spin the triangle.
 D3DMATRIX matWorld = mat;
 pd3dDevice->SetTransform(D3DTRANSFORMSTATE_WORLD, &matWorld);

 // The view matrix defines the position and orientation of
 // the camera. Here, we are just moving it back along the z-
 // axis by 10 units.
 D3DMATRIX matView = mat;
 matView._43 = 10.0f;
 pd3dDevice->SetTransform(D3DTRANSFORMSTATE_VIEW, &matView);

 // The projection matrix defines how the 3-D scene is "projected"
 // onto the 2-D render target surface. For more information,
 // see "What Is the Projection Transformation?"

 // Set up a very simple projection that scales x and y
 // by 2, and translates z by -1.0.
 D3DMATRIX matProj = mat;
 matProj._11 = 2.0f;
 matProj._22 = 2.0f;
 matProj._34 = 1.0f;
 matProj._43 = -1.0f;

in.doc – page 315

 matProj._44 = 0.0f;
 pd3dDevice->SetTransform(D3DTRANSFORMSTATE_PROJECTION, &matProj);

After setting the transformations, Triangle is done setting up the scene. The
App_InitDeviceObjects application-defined function returns S_OK to the caller, the
Initialize3DEnvironment application-defined function. The Initialize3DEnvironment
function then returns that value to WinMain, which moves on to process system
messages, as discussed in Step 4: Monitor System Messages.

Step 4: Monitor System Messages
[This is preliminary documentation and subject to change.]

After you've created the application window, created the DirectX objects, then
initialized the scene, you're ready to render the scene. In most cases Windows
applications monitor system messages in their message loop, and render frames
whenever no messages are in queue. The Triangle sample is no different; it uses the
following code for its message loop:

 BOOL bGotMsg;
 MSG msg;
 PeekMessage(&msg, NULL, 0U, 0U, PM_NOREMOVE);
 g_bReady = TRUE;

 while(WM_QUIT != msg.message)
 {
 // Use PeekMessage() if the app is active, so we can use idle time to
 // render the scene. Else, use GetMessage() to avoid eating CPU time.
 if(g_bActive)
 bGotMsg = PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE);
 else
 bGotMsg = GetMessage(&msg, NULL, 0U, 0U);

 if(bGotMsg)
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 else
 {
 // Render a frame during idle time (no messages are waiting)
 if(g_bActive && g_bReady)
 Render3DEnvironment();
 }
 }

in.doc – page 316

This code uses a global flag variable, g_bActive, to keep track of when it's active,
and another variable, g_bReady, to indicate that all system objects are ready to
render a scene. The application sets g_bActive to FALSE whenever the window isn't
visible, and it sets the g_bReady variable to FALSE whenever it needs to recreate the
objects used to render the scene. (The latter situation is covered in Handle Window
Resizing.)

If the application is active, it checks the message queue to see if there are any
pending messages. If there are messages in queue, the code dispatches them like any
other Windows application. Otherwise, it calls the Render3DEnvironment
application-defined function to render a frame of the scene, which is the topic of
Step 5: Render and Display the Scene.

Step 5: Render and Display the Scene
[This is preliminary documentation and subject to change.]

Whenever your application isn't processing system messages, it can render a frame
of a scene. The Triangle sample renders the scene in the Render3DEnvironment
application-defined function called from WinMain whenever the message queue is
empty. The Render3DEnvironment function subdivides the task into three substeps:

· Step 5.1: Update the Scene
· Step 5.2: Render the Scene
· Step 5.3: Update the Display

Step 5.1: Update the Scene
[This is preliminary documentation and subject to change.]

Immediately after it is called, the Render3DEnvironment application-defined
function in the Triangle sample calls App_FrameMove (another application-defined
function). The App_FrameMove function simply updates the world matrix that
Direct3D applies to the geometry to reflect a rotation around the y-axis based on an
internal count value, passed to the function in the fTimeKey parameter. Because the
rotation is applied once per frame, the end result looks like the model is rotating in
place.

HRESULT App_FrameMove(LPDIRECT3DDEVICE3 pd3dDevice, FLOAT fTimeKey)
{
 // For this simple tutorial, we are rotating the triangle about the y-axis.
 // To do this, just set up a 4x4 matrix defining the rotation, and set it
 // as the new world transform.
 D3DMATRIX matSpin;
 matSpin._11 = matSpin._22 = matSpin._33 = matSpin._44 = 1.0f;
 matSpin._12 = matSpin._13 = matSpin._14 = matSpin._41 = 0.0f;
 matSpin._21 = matSpin._23 = matSpin._24 = matSpin._42 = 0.0f;
 matSpin._32 = matSpin._32 = matSpin._34 = matSpin._43 = 0.0f;

in.doc – page 317

 matSpin._11 = (FLOAT)cos(fTimeKey);
 matSpin._33 = (FLOAT)cos(fTimeKey);
 matSpin._13 = (FLOAT)sin(fTimeKey);
 matSpin._31 = (FLOAT)sin(fTimeKey);

 pd3dDevice->SetTransform(D3DTRANSFORMSTATE_WORLD, &matSpin);

 return S_OK;
}

In the real world, of course, your applications will do much more than apply a single
rotation on a single model. (For more information rotation matrices, see Rotation in
the 3-D Transformations section.)

After you update the geometry in the scene, you can render it to the render target
surface, as the Triangle sample does in Step 5.2: Render the Scene.

Step 5.2: Render the Scene
[This is preliminary documentation and subject to change.]

Once the geometry has been updated to reflect the desired animation, you can render
the scene. The Triangle sample takes a typical approach: the App_Render
application-defined function called from the sample's Render3DEnvironment
function starts by clearing the viewport:

HRESULT App_Render(LPDIRECT3DDEVICE3 pd3dDevice,
 LPDIRECT3DVIEWPORT3 pvViewport,
 D3DRECT* prcViewportRect)
{
 // Clear the viewport to a blue color.
 pvViewport->Clear2(1UL, prcViewportRect, D3DCLEAR_TARGET, 0x000000ff,
 0L, 0L);

The preceding code calls the IDirect3DViewport3::Clear2 method to clear the
viewport. The first two methods that the Clear2 method accepts are the address of
an array of rectangles that describe the areas on the render target surface to be
cleared, and a value that informs the method how many rectangles from the array
should be cleared. In most cases, you'll use a single rectangle that covers the entire
render target. The third parameter determines the method's behavior. It can clear a
render-target surface, an associated depth buffer, the stencil buffer, or any
combination of the three. Because this tutorial doesn't use a depth buffer,
D3DCLEAR_TARGET is the only flag used. The last three parameters are set to
reflect clearing values for the render target, depth buffer, and stencil buffer. The
Triangle sample sets the clear color for the render target surface to blue. Because the
remaining parameters aren't used in this tutorial, the code just sets them to zero. The
Clear2 method will ignores them when the corresponding flag isn't present.

in.doc – page 318

After clearing the viewport, the Triangle sample informs Direct3D that rendering
will begin, renders the scene, then signals that rendering is complete, as shown here:

 // Begin the scene.
 if(FAILED(pd3dDevice->BeginScene()))
 return E_FAIL;

 // Draw the triangle using a DrawPrimitive() call.
 pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, D3DFVF_VERTEX,
 g_pvTriangleVertices, 6, NULL);

 // End the scene.
 pd3dDevice->EndScene();

 return S_OK;
}

The IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene methods
signal to the system when rendering is beginning or is complete. You can only call
rendering methods between calls to these methods. Even if rendering methods fail,
you should call EndScene before calling BeginScene again.

After rendering the scene to the off-screen render target, you can update the user's
display. The tutorial sample performs this in Step 5.3: Update the Display.

Step 5.3: Update the Display
[This is preliminary documentation and subject to change.]

Once a scene has been rendered to the render-target surface, you can show the results
on screen. A windowed application usually does this by blitting the content of the
render-target surface to the primary surface, and a full-screen application that
employs page-flipping would simply flip the surfaces in the flipping chain. The
Triangle sample uses the former method because it runs in a window, using the
following code:

HRESULT ShowFrame()
{
 // The g_pddsPrimary variable will be NULL when
 // the application is in the middle of recreating
 // DirectDraw objects.
 if(NULL == g_pddsPrimary)
 return E_FAIL;

 // We are in windowed mode, so perform a blit from the backbuffer to the
 // correct position on the primary surface
 return g_pddsPrimary->Blt(&g_rcScreenRect, g_pddsBackBuffer,
 &g_rcViewportRect, DDBLT_WAIT, NULL);
}

in.doc – page 319

Note that the preceding application-defined function simply blits the entire contents
of the render target surface to the window on the desktop. The tutorial tracks the
destination rectangle for the blit in the g_rcScreenRect global variable. This
rectangle is updated whenever the user moves the window, as covered in the Handle
Window Movement section.

Step 6: Shut Down
[This is preliminary documentation and subject to change.]

At some point during execution, your application must shut down. Shutting down a
DirectX application not only means that you should destroy the application window,
but you also deallocate any DirectX objects your application uses and invalidate the
pointers to them. The Triangle calls an application-defined function to handle this
cleanup, called Cleanup3DEnvironment, when it receives a WM_DESTROY
message:

HRESULT Cleanup3DEnvironment()
{
 // Cleanup any objects created for the scene
 App_DeleteDeviceObjects(g_pd3dDevice, g_pvViewport);

 // Release the DDraw and D3D objects used by the app
 if(g_pvViewport) g_pvViewport->Release();
 if(g_pD3D) g_pD3D->Release();
 if(g_pddsBackBuffer) g_pddsBackBuffer->Release();
 if(g_pddsPrimary) g_pddsPrimary->Release();
 if(g_pDD4) g_pDD4->Release();

 // Do a safe check for releasing the D3DDEVICE. RefCount should be zero.
 if(g_pd3dDevice)
 if(0 < g_pd3dDevice->Release())
 return E_FAIL;

 // Do a safe check for releasing DDRAW. RefCount should be zero.
 if(g_pDD1)
 if(0 < g_pDD1->Release())
 return E_FAIL;

 g_pvViewport = NULL;
 g_pd3dDevice = NULL;
 g_pD3D = NULL;
 g_pddsBackBuffer = NULL;
 g_pddsPrimary = NULL;
 g_pDD4 = NULL;
 g_pDD1 = NULL;

in.doc – page 320

 return S_OK;
}

The preceding function deallocates the DirectX objects it uses by calling the
IUnknown::Release methods for each object. Because the tutorial follows COM
rules, the reference counts for most objects should become zero and are
automatically removed from memory.

In addition to shut down, there are times during normal execution—such as when the
user changes the desktop resolution or color depth—when you might need to destroy
and re-create the DirectX objects in use. As a result, it's handy to keep your
application's cleanup code in one place, which can be called when the need arises.

Handle Window Movement
[This is preliminary documentation and subject to change.]

Any DirectX application that runs in a window must track the position of the client
area for the window so that blits to the window will appear on the desktop in the
right place. Failing to track this results in graphics appearing outside the application
window—a confusing sight for the user. The Triangle sample responds to the
WM_MOVE messages that the system sends to the window procedure as shown
here:

 .
 .
 .
 case WM_MOVE:
 // Move messages need to be tracked to update the screen rects
 // used for blitting the backbuffer to the primary.
 if(g_bActive && g_bReady)
 OnMove((SHORT)LOWORD(lParam), (SHORT)HIWORD(lParam));
 break;
 .
 .
 .

The g_bActive variable is set elsewhere in the window procedure to reflect whether
or not the window is active—when the window is minimized it's set to FALSE. The
g_bReady variable is TRUE except when the application is in the midst of re-
creating the DirectX objects it uses. If these variables are both TRUE, the OnMove
application-defined function gets called:

VOID OnMove(INT x, INT y)
{
 DWORD dwWidth = g_rcScreenRect.right - g_rcScreenRect.left;
 DWORD dwHeight = g_rcScreenRect.bottom - g_rcScreenRect.top;
 SetRect(&g_rcScreenRect, x, y, x + dwWidth, y + dwHeight);
}

in.doc – page 321

This function simply recalculates the size of the global variable, g_rcScreenRect,
that the tutorial uses as the destination rectangle when it updates the display in Step
5.3: Update the Display.

Handle Window Resizing
[This is preliminary documentation and subject to change.]

Any DirectX application that runs in a window must respond to any WM_SIZE
messages that the system sends. The render target surface is usually kept as small as
possible to conserve memory, and the smallest size is usually the size of the window
client area. When window size increases, you must destroy the render target surface
and the associated objects and re-create it at an appropriate size. Technically, an
application could do this only when the window gets larger, and respond to situations
when window size decreases by adjusting the viewport and decreasing the size of the
blit accordingly. For simplicity, this tutorial destroys and re-creates the objects it
uses whenever it receives a WM_SIZE message:

 .
 .
 .
 case WM_SIZE:
 // Check to see if we are losing or gaining our window.
 // Set the active flag to match.
 if(SIZE_MAXHIDE==wParam || SIZE_MINIMIZED==wParam)
 g_bActive = FALSE;
 else g_bActive = TRUE;

 // A new window size will require a new back buffer size. The
 // easiest way to achieve this is to release and re-create
 // everything. Note: if the window gets too big, we may run out
 // of video memory and need to exit. This simple app exits
 // without displaying error messages, but a real app would
 // behave itself much better.
 if(g_bActive && g_bReady)
 {
 g_bReady = FALSE;
 if(FAILED(Cleanup3DEnvironment()))
 DestroyWindow(hWnd);
 if(FAILED(Initialize3DEnvironment(hWnd)))
 DestroyWindow(hWnd);
 g_bReady = TRUE;
 }
 break;
 .
 .

in.doc – page 322

 .

Note that the preceding code sets a global variable to communicate to other portions
of the code that the DirectX objects in use are being invalidated. In addition, this
code calls the application-defined Cleanup3DEnvironment function to destroy the
objects, which is also called during application shut-down. Ending the application is
discussed in Step 6: Shut Down.

Tutorial 2: Adding a Depth Buffer
[This is preliminary documentation and subject to change.]

Direct3D applications often rely on depth buffers to properly display objects in a
scene. For a conceptual overview, see Depth Buffers. To use depth buffering, you
must enumerate supported depth-buffer formats, create a depth-buffer surface, attach
it to a render-target surface, and enable depth buffering for the rendering device.

This tutorial parallels the code in the Triangle sample project which uses the most
commonly supported type of depth buffer, a z-buffer. The ZBuffer sample performs
the following steps to use a z-buffer:

· Step 1: Enumerate Depth-Buffer Formats
· Step 2: Create the Depth Buffer
· Step 3: Attach the Depth Buffer
· Step 4: Enable Depth Buffering

Note
The code in the ZBuffer sample is nearly identical to the code in Triangle. This
tutorial focuses only on the depth-buffer code unique to ZBuffer, and does not
cover setting up Direct3D, rendering, shutting down, or handling Windows
messages. For information on these tasks, see Tutorial 1: Rendering a Single
Triangle.
Because some rendering devices require depth buffers to be located in particular
places in memory, the system requires that you create and attach the depth-
buffer surface to the render-target surface before you create a rendering device.

Step 1: Enumerate Depth-Buffer Formats
[This is preliminary documentation and subject to change.]

Before you can create a depth buffer you must determine what depth-buffer formats,
if any, are supported by the rendering device. Call the
IDirect3D3::EnumZBufferFormats method to enumerate the depth-buffer formats
that the device supports. The ZBuffer sample uses the following code to enumerate
depth-buffer formats:

 //---
 // Create the z-buffer AFTER creating the back buffer and BEFORE creating

in.doc – page 323

 // the d3ddevice.
 //
 // Note: before creating the z-buffer, apps may want to check the device
 // caps for the D3DPRASTERCAPS_ZBUFFERLESSHSR flag. This flag is true for
 // certain hardware that can do HSR (hidden-surface-removal) without a
 // z-buffer. For those devices, there is no need to create a z-buffer.
 //---

 DDPIXELFORMAT ddpfZBuffer; // Passing this as a VOID*

 g_pD3D->EnumZBufferFormats(*pDeviceGUID,
 EnumZBufferCallback, (VOID*)&ddpfZBuffer);

The EnumZBufferFormats method accepts the globally unique identifier (GUID)
of the device for which the formats will be enumerated, the address of a callback
function, and the address of an arbitrary data structure that will be passed to the
callback function. The callback function you provide must conform to the
D3DEnumPixelFormatsCallback function prototype. The system calls the specified
callback function once for each supported depth-buffer format, unless the callback
function returns D3DENUMRET_CANCEL. The ZBuffer sample processes
callbacks as follows:

static HRESULT WINAPI EnumZBufferCallback(DDPIXELFORMAT* pddpf,
 VOID* pddpfDesired)
{
 // If this is ANY type of depth-buffer, stop.
 if(pddpf->dwFlags == DDPF_ZBUFFER)
 {
 memcpy(pddpfDesired, pddpf, sizeof(DDPIXELFORMAT));

 // Return with D3DENUMRET_CANCEL to end the search.
 return D3DENUMRET_CANCEL;
 }

 // Return with D3DENUMRET_OK to continue the search.
 return D3DENUMRET_OK;
}

When the system calls the callback function, it passes the address of a
DDPIXELFORMAT structure that describes the pixel format of the depth buffer.
The dwFlags member will contain DDPF_ZBUFFER for any pixel formats that
include depth-buffer bits. If so, the dwZBufferBitDepth member includes an integer
that represents the number of bits in the pixel format reserved for depth information,
and the dwZBitMask member masks the relevant bits.

For simplicity, this tutorial only uses z-buffers, which are the most common type of
depth buffer. It ignores any other formats (such as DDPF_STENCILBUFFER) that

in.doc – page 324

the system enumerates. Applications could also check the bit depth of the z-buffer
(8-, 16-, 24-, 32-bit) and make a choice based on that as well. If a suitable format is
found, the function copies the provided DDPIXELFORMAT structure to the
address passed in the second parameter (also a DDPIXELFORMAT structure), and
returns D3DENUMRET_CANCEL to stop the enumeration.

After you determine the format of the depth buffer, you can create a
DirectDrawSurface that uses that format, which is the topic of Step 2: Create the
Depth Buffer.

Step 2: Create the Depth Buffer
[This is preliminary documentation and subject to change.]

Now that you have chosen the depth-buffer format, you can create the
DirectDrawSurface object that will become the depth buffer. The pixel format of the
surface is the one determined through enumeration, but the surface dimensions must
be identical to the render-target surface to which it will be attached. The ZBuffer
sample uses the following code for this task:

 // If the enumerated format is good (it should be), the
 // dwSize member will be properly initialized. Check this
 // just in case.
 if(sizeof(DDPIXELFORMAT) != ddpfZBuffer.dwSize)
 return E_FAIL;

 // Get z-buffer dimensions from the render target
 // Setup the surface desc for the z-buffer.
 ddsd.dwFlags = DDSD_CAPS|DDSD_WIDTH|DDSD_HEIGHT|
DDSD_PIXELFORMAT;
 ddsd.ddsCaps.dwCaps = DDSCAPS_ZBUFFER;
 ddsd.dwWidth = g_rcScreenRect.right - g_rcScreenRect.left;
 ddsd.dwHeight = g_rcScreenRect.bottom - g_rcScreenRect.top;
 memcpy(&ddsd.ddpfPixelFormat, &ddpfZBuffer, sizeof(DDPIXELFORMAT));

 // Software devices require system-memory depth buffers.
 if(IsEqualIID(*pDeviceGUID, IID_IDirect3DHALDevice))
 ddsd.ddsCaps.dwCaps |= DDSCAPS_VIDEOMEMORY;
 else
 ddsd.ddsCaps.dwCaps |= DDSCAPS_SYSTEMMEMORY;

 // Create the depth-buffer.
 if(FAILED(hr = g_pDD4->CreateSurface(&ddsd, &g_pddsZBuffer, NULL)))
 return hr;

The preceding code simply prepares a DDSURFACEDESC2 structure for the depth
buffer, using the dimensions of the render-target surface calculated from previously

in.doc – page 325

set global variables. The pixel format information retrieved during the previous step,
Step 1: Enumerate Depth-Buffer Formats, is copied into the surface description.

Note
A hardware device can use a depth buffer regardless of its location in memory.
When using a hardware device, it's best to let the device determine the best
location for the buffer by omitting the DDSCAPS_VIDEOMEMORY and
DDSCAPS_SYSTEMMEMORY surface capability flags. However, a software
device can only be created if the depth buffer exists in system memory. The
preceding code checks for this possibility and includes the
DDSCAPS_SYSTEMMEMORY flag if necessary.

Once the surface description is ready, the code calls the
IDirectDraw4::CreateSurface method to create the new depth-buffer surface. After
the depth buffer is created, it can be attached to the surface that will be used as the
render target, as described in Step 3: Attach the Depth Buffer.

Step 3: Attach the Depth Buffer
[This is preliminary documentation and subject to change.]

Once the depth buffer is created, you need to attach it to the surface that will be used
as the render target. Do this by calling the
IDirectDrawSurface4::AddAttachedSurface method of the render-target surface.
The ZBuffer sample performs this with the following code:

 // Attach the z-buffer to the back buffer.
 if(FAILED(hr = g_pddsBackBuffer->AddAttachedSurface(g_pddsZBuffer)))
 return hr;

Once the depth buffer is attached to the render-target surface, the system will
automatically use the depth buffer whenever depth buffering is enabled, as discussed
in Step 4: Enable Depth Buffering.

Step 4: Enable Depth Buffering
[This is preliminary documentation and subject to change.]

After attaching the depth buffer to the render-target surface, you can create a
rendering device from the render target. Given a rendering device, you enable depth
buffering by setting the D3DRENDERSTATE_ZENABLE render state for the
device. The D3DZBUFFERTYPE enumerated type includes members to set the
depth-buffer render state. The D3DZB_TRUE member (or TRUE) enables z-
buffering. The ZBuffer sample enables z-buffering during scene rendering in the
App_Render application-defined function. The following is the appropriate excerpt
from App_Render:

 // Enable z-buffering.
 pd3dDevice->SetRenderState(D3DRENDERSTATE_ZENABLE, TRUE);

in.doc – page 326

Although this tutorial enables depth-buffering each frame, it is not necessary to do
so. A real-world application would likely set the D3DRENDERSTATE_ZENABLE
render state during scene initialization, only changing to disable depth buffering or
to choose another type of depth buffering.

Note
The D3DZBUFFERTYPE enumerated type includes the D3DZB_USEW value
to enable w-based depth comparisons on compliant hardware. For more
information, see Depth Buffers.

Direct3D Immediate Mode Visual
Basic Tutorials

[This is preliminary documentation and subject to change.]

Tutorial 1: ?
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode
Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the application programming
interface (API) elements provided by Direct3D® Immediate Mode in C/C++ and
Visual Basic. Reference material is organized by language:

· Direct3D Immediate Mode C/C++ Reference
· Direct3D Immediate Mode Visual Basic Reference

Direct3D Immediate Mode C/C++
Reference

[This is preliminary documentation and subject to change.]

in.doc – page 327

This section contains reference information for the application programming
interface (API) elements provided by Direct3D® Immediate Mode. Reference
material is divided into the following categories:

· Interfaces
· D3D_OVERLOADS
· Callback Functions
· Macros
· Structures
· Enumerated Types
· Other Types
· Flexible Vertex Format Flags
· Return Values

Interfaces
[This is preliminary documentation and subject to change.]

This section contains reference information for the COM interfaces provided by
Direct3D Immediate Mode. The following interfaces are covered:

· IDirect3D3
· IDirect3DDevice
· IDirect3DDevice3
· IDirect3DExecuteBuffer
· IDirect3DLight
· IDirect3DMaterial3
· IDirect3DTexture2
· IDirect3DVertexBuffer
· IDirect3DViewport3

Some stub methods that were exposed in previous releases of DirectX are no longer
exposed. For more information, see Unimplemented Methods.

IDirect3D3
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3D3 interface to create Direct3D objects
and set up the environment. This section is a reference to the methods of this
interface. For a conceptual overview, see Direct3D Interfaces.

The IDirect3D3 interface is obtained by calling the QueryInterface method from a
DirectDraw object.

in.doc – page 328

The methods of the IDirect3D3 interface can be organized into the following
groups:

Creation CreateDevice
CreateLight
CreateMaterial
CreateVertexBuffer
CreateViewport

Enumeration EnumDevices
EnumZBufferFormats
FindDevice

Miscellaneous EvictManagedTextures

The IDirect3D3 interface extends the IDirect3D2 interface by adding methods that
enable applications to create vertex buffers and enumerate texture map and depth-
buffer formats.

The IDirect3D3 interface, like all COM interfaces, inherits the IUnknown interface
methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3D3, LPDIRECT3D2, and LPDIRECT3D types are defined as
pointers to the IDirect3D3, IDirect3D2 and IDirect3D interfaces:

typedef struct IDirect3D *LPDIRECT3D;
typedef struct IDirect3D2 *LPDIRECT3D2;
typedef struct IDirect3D3 *LPDIRECT3D3;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Accessing Direct3D, Direct3D and DirectDraw

in.doc – page 329

IDirect3D3::CreateDevice
[This is preliminary documentation and subject to change.]

The IDirect3D3::CreateDevice method creates a Direct3D device to be used with
the DrawPrimitive methods.

HRESULT CreateDevice(
 REFCLSID rclsid,
 LPDIRECTDRAWSURFACE4 lpDDS,
 LPDIRECT3DDEVICE3 * lplpD3DDevice,
 LPUNKNOWN pUnkOuter // See remarks
);

rclsid
Class identifier for the new device. This value can be
IID_IDirect3DHALDevice, IID_IDirect3DMMXDevice, or
IID_IDirect3DRGBDevice. The IID_IDirect3DRampDevice, used for the ramp
emulation device, is not supported by IDirect3D3. To use ramp emulation, you
must use the legacy IDirect3D2 interface.

lpDDS
Address of the IDirectDrawSurface4 interface for the DirectDrawSurface
object that will be the device's rendering target. The surface must have been
created as a 3-D device by using the DDSCAPS_3DDEVICE capability.

lplpD3DDevice
Address that points to the new IDirect3DDevice3 interface when the method
returns.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D3::CreateDevice method returns an
error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3D2 interface. In previous versions of
Direct3D, devices could be created only by calling the
IDirectDrawSurface::QueryInterface method; devices created in this manner can
only be used with execute buffers.

in.doc – page 330

In the IDirect3D2 interface, the CreateDevice method accepts only three
parameters, which are identical to the first three parameters for the
IDirect3D3::CreateDevice method.

When you call IDirect3D3::CreateDevice, you create a device object that is
separate from a DirectDraw surface object. This device uses a DirectDraw surface as
a rendering target.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3, Creating a Direct3D Device, Direct3D Devices

IDirect3D3::CreateLight
[This is preliminary documentation and subject to change.]

The IDirect3D3::CreateLight method allocates a Direct3DLight object. This object
can then be associated with a viewport by using the
IDirect3DViewport3::AddLight method.

HRESULT CreateLight(
 LPDIRECT3DLIGHT* lplpDirect3DLight,
 IUnknown* pUnkOuter
);

Parameters
lplpDirect3DLight

Address that will be filled with a pointer to an IDirect3DLight interface if the
call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D3::CreateLight method returns an
error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

in.doc – page 331

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3D2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DLight, Lights, Using Lights, Lighting and Materials

IDirect3D3::CreateMaterial
[This is preliminary documentation and subject to change.]

The IDirect3D3::CreateMaterial method allocates a Direct3DMaterial3 object.

HRESULT CreateMaterial(
 LPDIRECT3DMATERIAL3* lplpDirect3DMaterial,
 IUnknown* pUnkOuter
);

Parameters
lplpDirect3DMaterial

Address that will be filled with a pointer to an IDirect3DMaterial3 interface if
the call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, CreateMaterial returns an error if this parameter
is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate Mode Return Values.

in.doc – page 332

Remarks
In the IDirect3D2 interface, this method retrieves a pointer to an
IDirect3DMaterial2 interface, not an IDirect3DMaterial3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Materials, Lighting and Materials

IDirect3D3::CreateVertexBuffer
[This is preliminary documentation and subject to change.]

The IDirect3D3::CreateVertexBuffer method creates a vertex buffer object.

HRESULT CreateVertexBuffer(
 LPD3DVERTEXBUFFERDESC lpVBDesc,
 LPDIRECT3DVERTEXBUFFER* lpD3DVertexBuffer,
 DWORD dwFlags,
 LPUNKNOWN pUnkOuter
);

Parameters
lpVBDesc

Address of a D3DVERTEXBUFFERDESC structure that describes the format
and number of vertices that the vertex buffer will contain.

lpD3DVertexBuffer
Address of a variable that will contain a pointer to a IDirect3DVertexBuffer
interface for the new vertex buffer.

dwFlags
Clipping flag value. Set this parameter to 0 to create a vertex buffer that can
contain clipping information for untransformed or transformed vertices, or use
the D3DDP_DONOTCLIP flag to create a vertex buffer that will contain
transformed vertices, but no clipping information.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, CreateVertexBuffer returns an error if this
parameter is anything but NULL.

in.doc – page 333

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

CLASS_E_NOAGGREGATION
D3DERR_INVALIDVERTEXFORMAT
D3DERR_VBUF_CREATE_FAILED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

Remarks
This method was introduced with the IDirect3D3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DVertexBuffer, Vertex Buffers

IDirect3D3::CreateViewport
[This is preliminary documentation and subject to change.]

The IDirect3D3::CreateViewport method creates a Direct3DViewport object. The
viewport is associated with a Direct3DDevice object by using the
IDirect3DDevice3::AddViewport method.

HRESULT CreateViewport(
 LPDIRECT3DVIEWPORT3* lplpD3DViewport,
 IUnknown* pUnkOuter
);

Parameters
lplpD3DViewport

in.doc – page 334

Address that will be filled with a pointer to an IDirect3DViewport3 interface if
the call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D3::CreateViewport method returns
an error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
In the IDirect3D interface, this method retrieves a pointer to an IDirect3DViewport
interface, not an IDirect3DViewport3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3D3::EnumDevices
[This is preliminary documentation and subject to change.]

The IDirect3D3::EnumDevices method enumerates all Direct3D device drivers
installed on the system.

HRESULT EnumDevices(
 LPD3DENUMDEVICESCALLBACK lpEnumDevicesCallback,
 LPVOID lpUserArg
);

Parameters
lpEnumDevicesCallback

Address of the D3DEnumDevicesCallback callback function that the
enumeration procedure will call every time a match is found.

lpUserArg

in.doc – page 335

Address of application-defined data passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
To use execute buffers with an MMX device, you must call the
IDirect3D3::CreateDevice method to create an MMX IDirect3DDevice3 interface
and then use the QueryInterface method to create an IDirect3DDevice interface
from IDirect3DDevice3.

MMX devices are enumerated only by IDirect3D3::EnumDevices and
IDirect3D2::EnumDevices, not by IDirect3D::EnumDevices. If you use the
QueryInterface method to create an IDirect3D interface from IDirect3D3 before
you enumerate the Direct3D drivers, the enumeration will behave like
IDirect3D::EnumDevices — no MMX devices will be enumerated.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3D3::EnumZBufferFormats
[This is preliminary documentation and subject to change.]

The IDirect3D3::EnumZBufferFormats method enumerates the supported depth-
buffer formats for a specified device.

HRESULT EnumZBufferFormats(
 REFCLSID riidDevice,
 LPD3DENUMPIXELFORMATSCALLBACK lpEnumCallback,
 LPVOID lpContext
);

Parameters
riidDevice

in.doc – page 336

Reference to a globally unique identifier for the device whose depth-buffer
formats will be enumerated.

lpEnumCallback
Address of a D3DEnumPixelFormatsCallback callback function that will be
called for each supported depth-buffer format.

lpContext
Application-defined data that is passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOZBUFFERHW
DDERR_OUTOFMEMORY

Remarks
This method was introduced with the IDirect3D3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3D3::EvictManagedTextures
[This is preliminary documentation and subject to change.]

The IDirect3D3::EvictManagedTextures method purges all managed textures from
local or non-local video memory.

HRESULT EvictManagedTextures();

Parameters
None.

Return Values
This method returns D3D_OK.

in.doc – page 337

Remarks
This method causes Direct3D to remove any texture surfaces created with the
DDSCAPS2_TEXTUREMANAGE flag from local or non-local video memory.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Automatic Texture Management

IDirect3D3::FindDevice
[This is preliminary documentation and subject to change.]

The IDirect3D3::FindDevice method finds a device with specified characteristics
and retrieves a description of it.

HRESULT FindDevice(
 LPD3DFINDDEVICESEARCH lpD3DFDS,
 LPD3DFINDDEVICERESULT lpD3DFDR
);

Parameters
lpD3DFDS

Address of the D3DFINDDEVICESEARCH structure describing the device to
be located.

lpD3DFDR
Address of the D3DFINDDEVICERESULT structure describing the device if it
is found.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate Mode Return Values.

Remarks
This method is unchanged from its implementation in the IDirect3D2 interface.

in.doc – page 338

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3DDevice interface to retrieve and set
the capabilities of Direct3D devices. This section is a reference to the methods of
these interface. For a conceptual overview, see Direct3D Devices.

The IDirect3DDevice interface supports applications that work with execute buffers.
It has been extended by the IDirect3DDevice3 interface, which supports the
DrawPrimitive methods.

The Direct3DDevice object is obtained by calling the QueryInterface method from
a DirectDrawSurface object that was created as a 3-D–capable surface.

The methods of the IDirect3DDevice interface can be organized into the following
groups.

Execute buffers CreateExecuteBuffer
Execute

Information EnumTextureFormats
GetCaps
GetDirect3D
GetPickRecords
GetStats

Matrices CreateMatrix
DeleteMatrix
GetMatrix
SetMatrix

Miscellaneous Initialize
Pick
SwapTextureHandles

Scenes BeginScene

in.doc – page 339

EndScene

Viewports AddViewport
DeleteViewport
NextViewport

The IDirect3DDevice interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3DDEVICE type is defined as a pointer to the IDirect3DDevice
interface:

typedef struct IDirect3DDevice *LPDIRECT3DDEVICE;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Execute Buffers

IDirect3DDevice::AddViewport
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::AddViewport method adds the specified viewport to the list
of viewport objects associated with the device and increments the reference count of
the viewport.

HRESULT AddViewport(
 LPDIRECT3DVIEWPORT lpDirect3DViewport
);

Parameters
lpDirect3DViewport

Address of the IDirect3DViewport interface of the viewport that should be
associated with this device.

in.doc – page 340

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
In the IDirect3DDevice3 interface, this method accepts a pointer to an
IDirect3DViewport3 interface.

This method will fail, returning DDERR_INVALIDPARAMS, if you attempt to add
a viewport that has already been assigned to the device.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::BeginScene
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::BeginScene method begins a scene. Applications must call
this method before performing any rendering, and must call
IDirect3DDevice::EndScene when rendering is complete, and before calling
IDirect3DDevice::BeginScene again.

HRESULT BeginScene();

Parameters
None.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

in.doc – page 341

Remarks
Do not attempt to use GDI functions that use the device context of a render-target
surface between calls to BeginScene and EndScene. Attempts to do so can prevent
the results of the GDI operations from being visible. If your application uses GDI
functions, make sure that all GDI calls are made outside of the scene functions.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::EndScene, Beginning and Ending a Scene

IDirect3DDevice::CreateExecuteBu
ffer

[This is preliminary documentation and subject to change.]

The IDirect3DDevice::CreateExecuteBuffer method allocates an execute buffer
for a display list.

HRESULT CreateExecuteBuffer(
 LPD3DEXECUTEBUFFERDESC lpDesc,
 LPDIRECT3DEXECUTEBUFFER *lplpDirect3DExecuteBuffer,
 IUnknown *pUnkOuter
);

Parameters
lpDesc

Address of a D3DEXECUTEBUFFERDESC structure that describes the
Direct3DExecuteBuffer object to be created. The call will fail if a buffer of at
least the specified size cannot be created.

lplpDirect3DExecuteBuffer
Address of a pointer that will be filled with the address of the new
Direct3DExecuteBuffer object.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, this method returns an error if this parameter is
anything but NULL.

in.doc – page 342

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
The display list may be read by hardware DMA into VRAM for processing. All
display primitives in the buffer that have indices to vertices must also have those
vertices in the same buffer.

The D3DEXECUTEBUFFERDESC structure describes the execute buffer to be
created. At a minimum, the application must specify the size required. If the
application specifies D3DDEBCAPS_VIDEOMEMORY in the dwCaps member,
Direct3D will attempt to keep the execute buffer in video memory.

The application can use the IDirect3DExecuteBuffer::Lock method to request that
the memory be moved. When this method returns, it will adjust the contents of the
D3DEXECUTEBUFFERDESC structure to indicate whether the data resides in
system or video memory.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::CreateMatrix
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::CreateMatrix method creates a matrix.

HRESULT CreateMatrix(
 LPD3DMATRIXHANDLE lpD3DMatHandle
);

Parameters
lpD3DMatHandle

Address of a variable that will contain a handle to the matrix that is created. The
call will fail if a buffer of at least the size of the matrix cannot be created.

in.doc – page 343

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error, such as
DDERR_INVALIDPARAMS.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::DeleteMatrix, IDirect3DDevice::SetMatrix

IDirect3DDevice::DeleteMatrix
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::DeleteMatrix method deletes a matrix handle. This matrix
handle must have been created by using the IDirect3DDevice::CreateMatrix
method.

HRESULT DeleteMatrix(
 D3DMATRIXHANDLE d3dMatHandle
);

Parameters
d3dMatHandle

Matrix handle to be deleted.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error, such as
DDERR_INVALIDPARAMS.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 344

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::CreateMatrix, IDirect3DDevice::SetMatrix

IDirect3DDevice::DeleteViewport
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::DeleteViewport method removes the specified viewport
from the list of viewport objects associated with the device and decrements the
reference count of the viewport.

HRESULT DeleteViewport(
 LPDIRECT3DVIEWPORT lpDirect3DViewport
);

Parameters
lpDirect3DViewport

Address of the IDirect3DViewport interface of the viewport object that will be
disassociated with this device object.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method fails, returning DDERR_INVALIDPARAMS, if you attempt to delete a
viewport from the device without previously assigning the viewport with a call to
IDirect3DDevice::AddViewport.

In the IDirect3DDevice3 interface, this method accepts a pointer to an
IDirect3DViewport3 interface.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 345

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::AddViewport

IDirect3DDevice::EndScene
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::EndScene method ends a scene that was begun by calling
the IDirect3DDevice::BeginScene method.

HRESULT EndScene();

Parameters
None.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

Remarks
When this method succeeds, the scene will have been rendered and the device
surface will hold the contents of the rendering.

Do not attempt to use GDI functions that use the device context of a render-target
surface between calls to BeginScene and EndScene. Attempts to do so can prevent
the results of the GDI operations from being visible. If your application uses GDI
functions, make sure that all GDI calls are made outside of the scene functions.

You must call this method before you can call the IDirect3DDevice::BeginScene
method to start rendering another scene, even if the previous attempt to render was
unsuccessful.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 346

See Also
IDirect3DDevice::BeginScene, Beginning and Ending a Scene

IDirect3DDevice::EnumTextureFor
mats

[This is preliminary documentation and subject to change.]

The IDirect3DDevice::EnumTextureFormats method queries the current driver for
a list of supported texture formats.

HRESULT EnumTextureFormats(
 LPD3DENUMTEXTUREFORMATSCALLBACK
lpd3dEnumTextureProc,
 LPVOID lpArg
);

Parameters
lpd3dEnumTextureProc

Address of the D3DEnumTextureFormatsCallback function that the
enumeration procedure will call for each texture format.

lpArg
Address of application-defined data passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::Execute
[This is preliminary documentation and subject to change.]

in.doc – page 347

The IDirect3DDevice::Execute method executes a buffer.

HRESULT Execute(
 LPDIRECT3DEXECUTEBUFFER lpDirect3DExecuteBuffer,
 LPDIRECT3DVIEWPORT lpDirect3DViewport,
 DWORD dwFlags
);

Parameters
lpDirect3DExecuteBuffer

Address of the execute buffer to be executed.
lpDirect3DViewport

Address of the Direct3DViewport object that describes the transformation
context into which the execute buffer will be rendered.

dwFlags
Flags specifying whether or not objects in the buffer should be clipped. This
parameter must be one of the following values:
D3DEXECUTE_CLIPPED

Clip any primitives in the buffer that are outside or partially outside the
viewport.

D3DEXECUTE_UNCLIPPED
All primitives in the buffer are contained within the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
D3DEXECUTEDATA, D3DINSTRUCTION, IDirect3DExecuteBuffer::Validate

in.doc – page 348

IDirect3DDevice::GetCaps
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::GetCaps method retrieves the capabilities of the Direct3D
device.

HRESULT GetCaps(
 LPD3DDEVICEDESC lpD3DHWDevDesc,
 LPD3DDEVICEDESC lpD3DHELDevDesc
);

Parameters
lpD3DHWDevDesc

Address of the D3DDEVICEDESC structure that will contain the hardware
features of the device.

lpD3DHELDevDesc
Address of the D3DDEVICEDESC structure that will contain the software
emulation being provided.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method does not retrieve the capabilities of the display device. To retrieve this
information, use the IDirectDraw4::GetCaps method.

This method's implementation is unchanged in the IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::GetDirect3D
[This is preliminary documentation and subject to change.]

in.doc – page 349

The IDirect3DDevice::GetDirect3D method retrieves the Direct3D object for this
device.

HRESULT GetDirect3D(
 LPDIRECT3D *lplpD3D
);

Parameters
lplpD3D

Address that will contain a pointer to the Direct3D object's IDirect3D interface
when the method returns.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate Mode Return Values.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::GetMatrix
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::GetMatrix method retrieves a matrix from a matrix handle.
This matrix handle must have been created by using the
IDirect3DDevice::CreateMatrix method.

HRESULT GetMatrix(
 D3DMATRIXHANDLE D3DMatHandle,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
D3DMatHandle

Handle to the matrix to be retrieved.
lpD3DMatrix

in.doc – page 350

Address of a D3DMATRIX structure that contains the matrix when the method
returns.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error, such as
DDERR_INVALIDPARAMS.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::CreateMatrix, IDirect3DDevice::DeleteMatrix,
IDirect3DDevice::SetMatrix

IDirect3DDevice::GetPickRecords
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::GetPickRecords method retrieves the pick records for a
device.

HRESULT GetPickRecords(
 LPDWORD lpCount,
 LPD3DPICKRECORD lpD3DPickRec
);

Parameters
lpCount

Address of a variable that contains the number of D3DPICKRECORD
structures to retrieve.

lpD3DPickRec
Address that will contain an array of D3DPICKRECORD structures when the
method returns.

Return Values
If the method succeeds, the return value is D3D_OK.

in.doc – page 351

If the method fails, the return value is an error.

Remarks
An application typically calls this method twice. In the first call, the second
parameter is set to NULL, and the first parameter retrieves a count of all relevant
D3DPICKRECORD structures. The application then allocates sufficient memory
for those structures and calls the method again, specifying the newly allocated
memory for the second parameter.

This method returns an unsorted list of pick records. Your application is responsible
for sorting the records, if needed.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::GetStats
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::GetStats method retrieves statistics about a device.

HRESULT GetStats(
 LPD3DSTATS lpD3DStats
);

Parameters
lpD3DStats

Address of a D3DSTATS structure that will be filled with the statistics.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 352

Remarks
This method can report inaccurately low statistics when used with DirectX 6.0 and
later drivers. (The also applies to this method in the legacy IDirect3DDevice2
interface.)

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::Initialize
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::Initialize method is not implemented.

HRESULT Initialize(
 LPDIRECT3D lpd3d,
 LPGUID lpGUID,
 LPD3DDEVICEDESC lpd3ddvdesc
);

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::NextViewport
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::NextViewport method enumerates the viewports associated
with the device.

HRESULT NextViewport(
 LPDIRECT3DVIEWPORT lpDirect3DViewport,
 LPDIRECT3DVIEWPORT* lplpAnotherViewport,
 DWORD dwFlags
);

in.doc – page 353

Parameters
lpDirect3DViewport

Address of the IDirect3DViewport interface of a viewport in the list of
viewports associated with this Direct3D device.

lplpAnotherViewport
Address that will contain a pointer to the IDirect3DViewport interface for
another viewport in the device's viewport list. Which viewport the method
retrieves is determined by the flag in the dwFlags parameter.

dwFlags
Flag specifying which viewport to retrieve from the list of viewports. This must
be set to one of the following flags:
D3DNEXT_HEAD

Retrieve the item at the beginning of the list.
D3DNEXT_NEXT

Retrieve the next item in the list.
D3DNEXT_TAIL

Retrieve the item at the end of the list.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
If you attempt to retrieve the next viewport in the list when you are at the end of the
list, this method returns D3D_OK but lplpAnotherViewport is NULL.

In the IDirect3DDevice3 interface, this method requires pointers to
IDirect3DViewport3 interfaces.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice::Pick
[This is preliminary documentation and subject to change.]

in.doc – page 354

The IDirect3DDevice::Pick method executes a buffer without performing any
rendering, but returns a z-ordered list of offsets to the primitives that intersect the
upper-left corner of the rectangle specified by lpRect.

This call fails if the Direct3DExecuteBuffer object is locked.

HRESULT Pick(
 LPDIRECT3DEXECUTEBUFFER lpDirect3DExecuteBuffer,
 LPDIRECT3DVIEWPORT lpDirect3DViewport,
 DWORD dwFlags,
 LPD3DRECT lpRect
);

Parameters
lpDirect3DExecuteBuffer

Address of an execute buffer from which the z-ordered list is retrieved.
lpDirect3DViewport

Address of a viewport in the list of viewports associated with this
Direct3DDevice object.

dwFlags
No flags are currently defined for this method.

lpRect
Address of a D3DRECT structure specifying the device coordinates to be
picked. Currently, only primitives that intersect the x1, y1 coordinates of this
rectangle are returned. The x2, y2 coordinates are ignored.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
The coordinates are specified in device-pixel space.

All Direct3DExecuteBuffer objects must be attached to a Direct3DDevice object in
order for this method to succeed.

in.doc – page 355

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::GetPickRecords

IDirect3DDevice::SetMatrix
[This is preliminary documentation and subject to change.]

The IDirect3DDevice::SetMatrix method applies a matrix to a matrix handle. This
matrix handle must have been created by using the IDirect3DDevice::CreateMatrix
method.

HRESULT SetMatrix(
 D3DMATRIXHANDLE d3dMatHandle,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
d3dMatHandle

Matrix handle to be set.
lpD3DMatrix

Address of a D3DMATRIX structure that describes the matrix to be set.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error, such as
DDERR_INVALIDPARAMS.

Remarks
Transformations inside the execute buffer include a handle to a matrix. The
IDirect3DDevice::SetMatrix method enables an application to change this matrix
without having to lock and unlock the execute buffer.

in.doc – page 356

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice::CreateMatrix, IDirect3DDevice::GetMatrix,
IDirect3DDevice::DeleteMatrix

IDirect3DDevice::SwapTextureHan
dles

[This is preliminary documentation and subject to change.]

The IDirect3DDevice::SwapTextureHandles method swaps two texture handles.

HRESULT SwapTextureHandles(
 LPDIRECT3DTEXTURE lpD3DTex1,
 LPDIRECT3DTEXTURE lpD3DTex2
);

Parameters
lpD3DTex1 and lpD3DTex2

Addresses of the IDirect3DTexture interfaces for the textures whose handles
will be swapped.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

Remarks
This method is useful when an application is changing all the textures in a
complicated object.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 357

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3 interface provides methods enabling applications to perform
DrawPrimitive-based rendering; this is in contrast to the IDirect3DDevice interface,
which applications use to work with execute buffers. You can create a
Direct3DDevice object and retrieve a pointer to this interface by calling the
IDirect3D3::CreateDevice method.

For a conceptual overview, see Direct3D Devices and The DrawPrimitive Methods.

The methods of the IDirect3DDevice3 interface can be organized into the following
groups:

Information GetCaps
GetDirect3D
GetStats

Miscellaneous ComputeSphereVisibility
MultiplyTransform

Getting and Setting States GetClipStatus
GetCurrentViewport
GetLightState
GetRenderState
GetRenderTarget
GetTransform
SetClipStatus
SetCurrentViewport
SetLightState
SetRenderState
SetRenderTarget
SetTransform

Rendering Begin
BeginIndexed
DrawIndexedPrimitive
DrawIndexedPrimitiveStrided

in.doc – page 358

DrawIndexedPrimitiveVB
DrawPrimitive
DrawPrimitiveStrided
DrawPrimitiveVB
End
Index
Vertex

Scenes BeginScene
EndScene

Textures EnumTextureFormats
GetTexture
GetTextureStageState
SetTexture
SetTextureStageState
ValidateDevice

Viewports AddViewport
DeleteViewport
NextViewport

The IDirect3DDevice3 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

This interface extends the IDirect3DDevice2 interface by adding methods to support
more flexible vertex formats, vertex buffers, and visibility computation. Note that all
of the viewport-related methods in this interface accept slightly different parameters
than their counterparts in the IDirect3DDevice2 interface. Wherever an
IDirect3DDevice2 interface method might accept an IDirect3DViewport2 interface
pointer as a parameter, the methods in the IDirect3DDevice3 interface accept an
IDirect3DViewport3 interface pointer instead.

This interface is not intended to be used with execute buffers, and therefore does not
contain any execute-buffer related methods. If you need to use some of the methods
in the IDirect3DDevice interface that are not supported in IDirect3DDevice2 or
IDirect3DDevice3, you can call IDirect3DDevice2::QueryInterface to retrieve a
pointer to an IDirect3DDevice interface.

in.doc – page 359

You can use the LPDIRECT3DDEVICE2 or LPDIRECT3DDEVICE3 data types
to declare a variable that contains a pointer to an IDirect3DDevice2 or
IDirect3DDevice3 interface. The D3d.h header file declares these data types with
the following code:

typedef struct IDirect3DDevice2 *LPDIRECT3DDEVICE2;
typedef struct IDirect3DDevice3 *LPDIRECT3DDEVICE3;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Direct3D Devices, Rendering

IDirect3DDevice3::AddViewport
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::AddViewport method adds the specified viewport to the
list of viewport objects associated with the device and increments the reference
count of the viewport.

HRESULT AddViewport(
 LPDIRECT3DVIEWPORT3 lpDirect3DViewport
);

Parameters
lpDirect3DViewport

Address of the IDirect3DViewport3 interface that should be associated with
this Direct3DDevice object.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 360

Remarks
This method will fail, returning DDERR_INVALIDPARAMS, if you attempt to add
a viewport that has already been assigned to the device.

In the IDirect3DDevice2 interface, this method accepts a pointer to an
IDirect3DViewport interface, not an IDirect3DViewport3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::Begin
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::Begin method indicates the start of a sequence of rendered
primitives. This method defines the type of these primitives and the type of vertices
on which they are based. The only method you can legally call between calls to
IDirect3DDevice3::Begin and IDirect3DDevice3::End is
IDirect3DDevice3::Vertex.

HRESULT Begin(
 D3DPRIMITIVETYPE d3dpt,
 DWORD dwVertexTypeDesc,
 DWORD dwFlags
);

Parameters
d3dpt

One of the members of the D3DPRIMITIVETYPE enumerated type.
dwVertexTypeDesc

A combination of flexible vertex format flags that describe the vertex format
used. Only vertices that match this description will be accepted before the
corresponding IDirect3DDevice3::End.

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT

in.doc – page 361

Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method differs from its counterpart in the IDirect3DDevice2 interface in that it
accepts a flexible vertex format descriptor rather than a member of the
D3DVERTEXTYPE enumerated type as the second parameter. If you attempt to
use one of the members of D3DVERTEXTYPE, the method fails, returning
DDERR_INVALIDPARAMS. For more information, see Vertex Formats.

This method fails if it is called after a call to the IDirect3DDevice3::Begin or
IDirect3DDevice3::BeginIndexed method that has no bracketing call to
IDirect3DDevice3::End method. Rendering calls that specify the wrong vertex type
or that perform state changes will cause rendering of this primitive to fail.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 362

See Also
IDirect3DDevice3::BeginIndexed, IDirect3DDevice3::End,
IDirect3DDevice3::Vertex

IDirect3DDevice3::BeginIndexed
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::BeginIndexed method defines the start of a primitive based
on indexing into an array of vertices. This method fails if it is called after a call to
the IDirect3DDevice3::Begin or IDirect3DDevice3::BeginIndexed method that has
no corresponding call to IDirect3DDevice3::End. The only method you can legally
call between calls to IDirect3DDevice3::BeginIndexed and
IDirect3DDevice3::End is IDirect3DDevice3::Index.

HRESULT BeginIndexed(
 D3DPRIMITIVETYPE dptPrimitiveType,
 DWORD dwVertexTypeDesc,
 LPVOID lpvVertices,
 DWORD dwNumVertices,
 DWORD dwFlags
);

Parameters
dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type. Note that the
D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not indexed.

dwVertexTypeDesc
A combination of flexible vertex format flags that describes the vertex format
being used. Only vertices that match this type will be accepted before the
corresponding IDirect3DDevice3::End.

lpvVertices
Pointer to the list of vertices to be used in the primitive sequence.

dwNumVertices
Number of vertices in the array at lpvVertices.

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT

in.doc – page 363

Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current
material does not match the current
texture handle that is set as a render
state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

Remarks
This method differs from its counterpart in the IDirect3DDevice2 interface in that it
accepts a flexible vertex format descriptor rather than a member of the
D3DVERTEXTYPE enumerated type as the second parameter. If you attempt to
use one of the members of D3DVERTEXTYPE, the method fails, returning
DDERR_INVALIDPARAMS. For more information, see Vertex Formats.

This method was first introduced in the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 364

See Also
IDirect3DDevice3::Begin, IDirect3DDevice3::End, IDirect3DDevice3::Index

IDirect3DDevice3::BeginScene
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::BeginScene method begins a scene. Applications must call
this method before performing any rendering, and must call
IDirect3DDevice3::EndScene when rendering is complete, and before calling
IDirect3DDevice::BeginScene again.

HRESULT BeginScene();

Parameters
None.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::EndScene

IDirect3DDevice3::ComputeSphere
Visibility

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::ComputeSphereVisibility method calculates the visibility
(complete, partial, or no visibility) of an array spheres within the current viewport
for this device.

HRESULT ComputeSphereVisibility(
 LPD3DVECTOR lpCenters,
 LPD3DVALUE lpRadii,

in.doc – page 365

 DWORD dwNumSpheres,
 DWORD dwFlags,
 LPDWORD lpdwReturnValues
);

Parameters
lpCenters

Array of D3DVECTOR structures describing the center point for each sphere,
in world-space coordinates.

lpRadii
Array of D3DVALUE variables that represent the radius for each sphere.

dwNumSpheres
Number of spheres. This value must be greater than zero.

dwFlags
Not currently used; set to zero.

lpdwReturnValues
Array of DWORD values. The array need not be initialized, but it must be large
enough to contain a DWORD for each sphere being tested. When the method
returns, each element in the array contains a combination of the following flags
that describe the visibility of that sphere within the current viewport for this
device:
Inside flags
D3DVIS_INSIDE_BOTTOM, D3DVIS_INSIDE_FAR,
D3DVIS_INSIDE_FRUSTUM, D3DVIS_INSIDE_LEFT
D3DVIS_INSIDE_NEAR, D3DVIS_INSIDE_RIGHT, D3DVIS_INSIDE_TOP

The sphere is inside the viewing frustum of the current viewport.
Intersection flags
D3DVIS_INTERSECT_BOTTOM or D3DVIS_INTERSECT_TOP

The sphere intersects the bottom or top plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_INTERSECT_FAR or D3DVIS_INTERSECT_NEAR
The sphere intersects the far or near plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_INTERSECT_FRUSTUM
The sphere intersects some part of the viewing frustum for the current
viewport.

D3DVIS_INTERSECT_LEFT or D3DVIS_INTERSECT_RIGHT
The sphere intersects the left or right plane of the viewing frustum for the
current viewport, depending on which flag is present.

Outside flags
D3DVIS_OUTSIDE_BOTTOM or D3DVIS_OUTSIDE_TOP

The sphere is outside the bottom or top plane of the viewing frustum for the
current viewport, depending on which flag is present.

in.doc – page 366

D3DVIS_OUTSIDE_FAR or D3DVIS_OUTSIDE_NEAR
The sphere is outside the far or near plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_OUTSIDE_FRUSTUM
The sphere is somewhere outside the viewing frustum for the current
viewport.

D3DVIS_OUTSIDE_LEFT or D3DVIS_OUTSIDE_RIGHT
The sphere is outside the left or right plane of the viewing frustum for the
current viewport, depending on which flag is present.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDMATRIX
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
Sphere visibility is computed by back transforming the viewing frustum to the model
space, using the inverse of the combined world, view or projection matrices. If the
combined matrix can not be inverted (if the determinant is zero), the method fails,
returning D3DERR_INVALIDMATRIX.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::DeleteViewport
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DeleteViewport method removes the specified viewport
from the list of viewport objects associated with the device and decrements the
reference count of the viewport.

HRESULT DeleteViewport(
 LPDIRECT3DVIEWPORT3 lpDirect3DViewport
);

in.doc – page 367

Parameters
lpDirect3DViewport

Address of the IDirect3DViewport3 interface of the viewport object that will be
disassociated with this device.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method fails, returning DDERR_INVALIDPARAMS, if you attempt to delete a
viewport from the device without previously assigning the viewport with a call to
IDirect3DDevice3::AddViewport.

In the IDirect3DDevice2 interface, this method accepts a pointer to an
IDirect3DViewport interface, not an IDirect3DViewport3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::AddViewport

IDirect3DDevice3::DrawIndexedPri
mitive

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawIndexedPrimitive method renders the specified
geometric primitive based on indexing into an array of vertices.

HRESULT DrawIndexedPrimitive(
 D3DPRIMITIVETYPE d3dptPrimitiveType,
 DWORD dwVertexTypeDesc,
 LPVOID lpvVertices,

in.doc – page 368

 DWORD dwVertexCount,
 LPWORD lpwIndices,
 DWORD dwIndexCount,
 DWORD dwFlags
);

Parameters
d3dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.
Note that the D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not
indexed.

dwVertexTypeDesc
A combination of flexible vertex format flags that describes the vertex format
for this set of primitives.

lpvVertices
Pointer to the list of vertices to be used in the primitive sequence.

dwVertexCount
Defines the number of vertices in the list.
Notice that this parameter is used differently from the dwVertexCount parameter
in the IDirect3DDevice3::DrawPrimitive method. In that method, the
dwVertexCount parameter gives the number of vertices to draw, but here it gives
the total number of vertices in the array pointed to by the lpvVertices parameter.
When you call IDirect3DDevice3::DrawIndexedPrimitive, you specify the
number of vertices to draw in the dwIndexCount parameter.

lpwIndices
Pointer to a list of WORDs that are to be used to index into the specified vertex
list when creating the geometry to render.

dwIndexCount
Specifies the number of indices provided for creating the geometry. The
maximum number of indices allowed is 65,535 (0xFFFF).

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

in.doc – page 369

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

Do not use this method to render very small subsets of vertices from extremely large
vertex arrays. This method transforms every vertex in the provided buffer, regardless
of the location or quantity of vertices being rendered. Thus, if you pass an array that
contains thousands of vertices, but only intend to render hundreds, your application's
performance will suffer dramatically. In cases where you need to render a small
number of vertices from a large buffer, use the Direct3D vertex buffer rendering
methods. For more information, see Vertex Buffers.

This method differs from its counterpart in the IDirect3DDevice2 interface in that it
accepts a flexible vertex format descriptor rather than a member of the
D3DVERTEXTYPE enumerated type as the second parameter. If you attempt to
use one of the members of D3DVERTEXTYPE, the method fails, returning
DDERR_INVALIDPARAMS. For more information, see Vertex Formats.

In current versions of DirectX, IDirect3DDevice3::DrawIndexedPrimitive can
sometimes generate an update rectangle that is larger than it strictly needs to be. If a
large number of vertices need to be processed, this can have a negative impact on the

in.doc – page 370

performance of your application. If you are using D3DTLVERTEX vertices and the
system is processing more vertices than you need, you should use the
D3DDP_DONOTCLIP and D3DDP_DONOTUPDATEEXTENTS flags to solve the
problem.

This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::DrawPrimitive, IDirect3DDevice3::DrawPrimitiveStrided,
IDirect3DDevice3::DrawPrimitiveVB,
IDirect3DDevice3::DrawIndexedPrimitiveStrided,
IDirect3DDevice3::DrawIndexedPrimitiveVB

IDirect3DDevice3::DrawIndexedPri
mitiveStrided

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawIndexedPrimitiveStrided method renders a
geometric primitive based on indexing into an array of strided vertices. For more
information, see Strided Vertex Format.

HRESULT DrawIndexedPrimitiveStrided(
 D3DPRIMITIVETYPE d3dptPrimitiveType,
 DWORD dwVertexTypeDesc,
 LPD3DDRAWPRIMITIVESTRIDEDDATA lpVertexArray,
 DWORD dwVertexCount,
 LPWORD lpwIndices,
 DWORD dwIndexCount,
 DWORD dwFlags
);

Parameters
d3dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.

in.doc – page 371

Note that the D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not
indexed.

dwVertexTypeDesc
A combination of flexible vertex format flags vertex format for this primitive.

lpVertexArray
Array of D3DDRAWPRIMITIVESTRIDEDDATA structures that contains the
vertices for this primitive, in the format specified by the flags in
dwVertexTypeDesc.

dwVertexCount
Defines the number of vertices in the list.
Notice that this parameter is used differently from the dwVertexCount parameter
in the IDirect3DDevice3::DrawPrimitive method. In that method, the
dwVertexCount parameter gives the number of vertices to draw, but here it gives
the total number of vertices in the array pointed to by the lpVertexArray
parameter. When you call IDirect3DDevice3::DrawIndexedPrimitiveStrided,
you specify the number of vertices to draw in the dwIndexCount parameter.

lpwIndices
Pointer to a list of WORDs that are to be used to index into the specified vertex
list when creating the geometry to render.

dwIndexCount
Specifies the number of indices provided for creating the geometry. The
maximum number of indices allowed is 65,535 (0xFFFF).

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

in.doc – page 372

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

This method does not support transformed vertices. As a result, if you include the
D3DFVF_XYZRHW vertex format descriptor in the dwVertexTypeDesc parameter,
the method fails, returning D3DERR_INVALIDVERTEXTYPE.

This method was introduced with the IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::DrawPrimitive, IDirect3DDevice3::DrawPrimitiveStrided,
IDirect3DDevice3::DrawPrimitiveVB,
IDirect3DDevice3::DrawIndexedPrimitive,
IDirect3DDevice3::DrawIndexedPrimitiveVB, Strided Vertex Format

IDirect3DDevice3::DrawIndexedPri
mitiveVB

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawIndexedPrimitiveVB method renders a geometric
primitive based on indexing into an array of vertices within a vertex buffer.

in.doc – page 373

HRESULT DrawIndexedPrimitiveVB(
 D3DPRIMITIVETYPE d3dptPrimitiveType,
 LPDIRECT3DVERTEXBUFFER lpd3dVertexBuffer,
 LPWORD lpwIndices,
 DWORD dwIndexCount,
 DWORD dwFlags
);

Parameters
d3dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.
Note that the D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not
indexed.

lpd3dVertexBuffer
Address of the IDirect3DVertexBuffer interface for the vertex buffer that
contains the array of vertices. Vertices can be transformed or untransformed,
optimized or unoptimized.

lpwIndices
Address of an array of WORDs that will be used to index into the vertices in the
vertex buffer.

dwIndexCount
The number of indices in the array at lpwIndices. The maximum number of
indices allowed is 65,535 (0xFFFF).

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT

in.doc – page 374

Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
D3DERR_VERTEXBUFFERLOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

Software devices—MMX and RGB devices—cannot render from a video memory
(local or non-local) vertex buffer. To render a vertex buffer using a software device,
the vertex buffer must exist in system memory. Hardware devices can render from
system memory or video memory vertex buffers.

You cannot render from a locked vertex buffer; calls to the
IDirect3DDevice3::DrawIndexedPrimitiveVB or
IDirect3DDevice3::DrawPrimitiveVB method using a locked buffer will fail,
returning D3DERR_VERTEXBUFFERLOCKED.

This method was introduced with the IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 375

See Also
IDirect3DDevice3::DrawPrimitive, IDirect3DDevice3::DrawPrimitiveStrided,
IDirect3DDevice3::DrawPrimitiveVB,
IDirect3DDevice3::DrawIndexedPrimitive,
IDirect3DDevice3::DrawIndexedPrimitiveStrided

IDirect3DDevice3::DrawPrimitive
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawPrimitive method renders the specified array of
vertices as a sequence of geometric primitives of the specified type.

HRESULT DrawPrimitive(
 D3DPRIMITIVETYPE dptPrimitiveType,
 DWORD dwVertexTypeDesc,
 LPVOID lpvVertices,
 DWORD dwVertexCount,
 DWORD dwFlags
);

Parameters
dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.

dwVertexTypeDesc
A combination of flexible vertex format flags that describe the vertex format
used for this set of primitives.

lpvVertices
Pointer to the array of vertices to be used in the primitive sequence.

dwVertexCount
The number of vertices in the array. The maximum number of vertices allowed
is 65,535 (0xFFFF).

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system

in.doc – page 376

uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

This method differs from its counterpart in the IDirect3DDevice2 interface in that it
accepts a flexible vertex format descriptor rather than a member of the
D3DVERTEXTYPE enumerated type as the second parameter. If you attempt to
use one of the members of D3DVERTEXTYPE, the method fails, returning
DDERR_INVALIDPARAMS. For more information, see Vertex Formats.

This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 377

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::DrawPrimitiveStrided,
IDirect3DDevice3::DrawPrimitiveVB,
IDirect3DDevice3::DrawIndexedPrimitive,
IDirect3DDevice3::DrawIndexedPrimitiveStrided,
IDirect3DDevice3::DrawIndexedPrimitiveVB

IDirect3DDevice3::DrawPrimitiveS
trided

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawPrimitiveStrided method renders the specified array
of strided vertices as a sequence of geometric primitives. For more information, see
Strided Vertex Format.

HRESULT DrawPrimitiveStrided(
 D3DPRIMITIVETYPE dptPrimitiveType,
 DWORD dwVertexTypeDesc,
 LPD3DDRAWPRIMITIVESTRIDEDDATA lpVertexArray,
 DWORD dwVertexCount,
 DWORD dwFlags
);

Parameters
dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.

dwVertexTypeDesc
A combination of flexible vertex format flags that describe the vertex format.

lpVertexArray
Array of D3DDRAWPRIMITIVESTRIDEDDATA structures that contains the
vertices for this primitive.

dwVertexCount
Number of vertices in the array at lpVertexArray. The maximum number of
vertices allowed is 65,535 (0xFFFF).

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

in.doc – page 378

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

This method does not support transformed vertices. As a result, if you include the
D3DFVF_XYZRHW vertex format descriptor in the dwVertexTypeDesc parameter,
the method fails, returning D3DERR_INVALIDVERTEXTYPE.

This method was introduced with the IDirect3DDevice3 interface.

in.doc – page 379

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::DrawPrimitive, IDirect3DDevice3::DrawPrimitiveVB,
IDirect3DDevice3::DrawIndexedPrimitive,
IDirect3DDevice3::DrawIndexedPrimitiveStrided,
IDirect3DDevice3::DrawIndexedPrimitiveVB, Strided Vertex Format

IDirect3DDevice3::DrawPrimitiveV
B

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::DrawPrimitiveVB method renders an array of vertices in a
vertex buffer as a sequence of geometric primitives.

HRESULT DrawPrimitiveVB(
 D3DPRIMITIVETYPE d3dptPrimitiveType,
 LPDIRECT3DVERTEXBUFFER lpd3dVertexBuffer,
 DWORD dwStartVertex,
 DWORD dwNumVertices,
 DWORD dwFlags
);

Parameters
d3dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.

lpd3dVertexBuffer
Address of the IDirect3DVertexBuffer interface for the vertex buffer that
contains the array of vertices. Vertices can be transformed or untransformed,
optimized or unoptimized.

dwStartVertex
Index value of the first vertex in the primitive. The highest possible starting
index is 65,535 (0xFFFF). In debug builds, specifying a starting index value that
exceeds this limit will cause the method to fail and return
DDERR_INVALIDPARAMS.

dwNumVertices

in.doc – page 380

Number of vertices to be rendered. The maximum number of vertices allowed is
65,535 (0xFFFF).

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
IDirect3DDevice3::GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
D3DERR_VERTEXBUFFERLOCKED
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

in.doc – page 381

Software devices—MMX and RGB devices—cannot render from a video memory
(local or non-local) vertex buffer. To render a vertex buffer using a software device,
the vertex buffer must exist in system memory. Hardware devices can render from
system memory or video memory vertex buffers.

You cannot render from a locked vertex buffer; calls to the
IDirect3DDevice3::DrawIndexedPrimitiveVB or
IDirect3DDevice3::DrawPrimitiveVB method using a locked buffer will fail,
returning D3DERR_VERTEXBUFFERLOCKED.

This method was introduced with the IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::DrawPrimitive, IDirect3DDevice3::DrawPrimitiveStrided,
IDirect3DDevice3::DrawIndexedPrimitive,
IDirect3DDevice3::DrawIndexedPrimitiveStrided,
IDirect3DDevice3::DrawIndexedPrimitiveVB

IDirect3DDevice3::End
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::End method signals the completion of a primitive
sequence. This method fails if no corresponding call to the
IDirect3DDevice3::Begin method (or IDirect3DDevice3::BeginIndexed) was
made.

HRESULT End(
 DWORD dwFlags
);

Parameters
dwFlags

Reserved for future use; set to zero.

Return Values
If the method succeeds, the return value is D3D_OK.

in.doc – page 382

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the texture
handle in the current material does not match
the current texture handle that is set as a
render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

Remarks
This method fails if the vertex count is incorrect for the primitive type. It fails
without drawing if it is called before a sufficient number of vertices is specified. If
the number of IDirect3DDevice3::Vertex or IDirect3DDevice3::Index calls made
is not evenly divisible by 3 (in the case of triangles), or 2 (in the case of a line list),
the remainder will be ignored.

This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::Begin, IDirect3DDevice3::BeginIndexed

IDirect3DDevice3::EndScene
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::EndScene method ends a scene that was begun by calling
the IDirect3DDevice3::BeginScene method.

HRESULT EndScene();

Parameters
None.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

in.doc – page 383

Remarks
When this method succeeds, the scene will have been rendered and the device
surface will hold the contents of the rendering.

You must call this method before you can call the IDirect3DDevice3::BeginScene
method to start rendering another scene, even if the previous attempt to render was
unsuccessful.

This method is unchanged from its implementation in the IDirect3DDevice
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::BeginScene

IDirect3DDevice3::EnumTextureFo
rmats

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::EnumTextureFormats method queries the current driver
for a list of supported texture formats.

HRESULT EnumTextureFormats(
 LPD3DENUMPIXELFORMATSCALLBACK lpd3dEnumPixelProc,
 LPVOID lpArg
);

Parameters
lpd3dEnumTextureProc

Address of the D3DEnumPixelFormatsCallback callback function that the
enumeration procedure will call for each texture format.

lpArg
Address of application-defined data passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.

in.doc – page 384

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
In the IDirect3DDevice2 interface, this method accepts a pointer to a
D3DEnumTextureFormatsCallback function, not a
D3DEnumPixelFormatsCallback.

This method might not enumerate newly implemented texture formats on some
devices. Applications that require a texture format that isn't enumerated can attempt
to create a surface of that format. If the creation attempt succeeds, the format is
supported.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::GetCaps
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetCaps method retrieves the capabilities of the Direct3D
device.

HRESULT GetCaps(
 LPD3DDEVICEDESC lpD3DHWDevDesc,
 LPD3DDEVICEDESC lpD3DHELDevDesc
);

Parameters
lpD3DHWDevDesc

Address of the D3DDEVICEDESC structure that will contain the hardware
features of the device.

lpD3DHELDevDesc
Address of the D3DDEVICEDESC structure that will contain the software
emulation being provided.

in.doc – page 385

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method does not retrieve the capabilities of the display device. To retrieve this
information, use the IDirectDraw4::GetCaps method.

This method is unchanged from its implementation in the IDirect3DDevice
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::GetClipStatus
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetClipStatus method gets the current clip status.

HRESULT GetClipStatus(
 LPD3DCLIPSTATUS lpD3DClipStatus
);

Parameters
lpD3DClipStatus

Address of a D3DCLIPSTATUS structure that describes the current clip status.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

in.doc – page 386

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetClipStatus

IDirect3DDevice3::GetCurrentView
port

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetCurrentViewport method retrieves the current
viewport.

HRESULT GetCurrentViewport(
 LPDIRECT3DVIEWPORT3 *lplpd3dViewport
);

Parameters
lplpd3dViewport

Address that will contain a pointer to the current viewport's
IDirect3DViewport3 interface when the method returns. A reference is taken to
the viewport object.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDPARAMS One of the arguments is invalid.
D3DERR_NOCURRENTVIEWPORT No current viewport has been set by a call to

the IDirect3DDevice3::SetCurrentViewport
method.

in.doc – page 387

Remarks
This method increases the reference count of the viewport interface retrieved in the
lplpd3dViewport parameter. The application must release this interface when it is no
longer needed.

This method was introduced with the IDirect3DDevice2 interface. In the
IDirect3DDevice2 interface, this method accepts a pointer to an
IDirect3DViewport interface, not an IDirect3DViewport3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetCurrentViewport

IDirect3DDevice3::GetDirect3D
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetDirect3D method retrieves the Direct3D object for this
device.

HRESULT GetDirect3D(
 LPDIRECT3D3 *lplpD3D
);

Parameters
lplpD3D

Address that will contain a pointer to the Direct3D object's IDirect3D3 interface
when the method returns.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate Mode Return Values.

in.doc – page 388

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::GetLightState
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetLightState method gets a single Direct3D device
lighting-related state value.

HRESULT GetLightState(
 D3DLIGHTSTATETYPE dwLightStateType,
 LPDWORD lpdwLightState
);

Parameters
dwLightStateType

Device state variable that is being queried. This parameter can be any of the
members of the D3DLIGHTSTATETYPE enumerated type.

lpdwLightState
Address of a variable that will contain the Direct3DDevice light state when the
method returns.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 389

See Also
IDirect3DDevice3::SetLightState

IDirect3DDevice3::GetRenderState
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetRenderState method gets a single Direct3DDevice
rendering state parameter.

HRESULT GetRenderState(
 D3DRENDERSTATETYPE dwRenderStateType,
 LPDWORD lpdwRenderState
);

Parameters
dwRenderStateType

Device state variable that is being queried. This parameter can be any of the
members of the D3DRENDERSTATETYPE enumerated type.

lpdwRenderState
Address of a variable that will contain the Direct3DDevice render state when the
method returns.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetRenderState

in.doc – page 390

IDirect3DDevice3::GetRenderTarg
et

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetRenderTarget method retrieves a pointer to the
DirectDraw surface that is being used as a render target.

HRESULT GetRenderTarget(
 LPDIRECTDRAWSURFACE4 *lplpRenderTarget
);

Parameters
lplpRenderTarget

Address that will contain a pointer to the IDirectDrawSurface4 interface of the
render target surface for this device.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetRenderTarget

IDirect3DDevice3::GetStats
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetStats method is obsolete, and not implemented in the
IDirect3DDevice3 interface.

in.doc – page 391

HRESULT GetStats(
 LPD3DSTATS lpD3DStats
);

Return Values
The method returns E_NOTIMPL.

Remarks
This method is implemented in the IDirect3DDevice2 and IDirect3DDevice
interfaces, but can under-report statistics when used with DirectX 6.0 and later
drivers.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::GetTexture
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetTexture method retrieves a texture assigned to a given
stage for a device.

HRESULT GetTexture(
 DWORD dwStage,
 LPDIRECT3DTEXTURE2 * lplpTexture
);

Parameters
dwStage

Stage identifier of the texture to be retrieved. Stage identifiers are zero-based.
Currently, devices can have up to 8 set textures, so the maximum allowable
value allowed for dwStage is 7.

lplpTexture
Address of a variable that will be filled with a pointer to the specified texture's
IDirect3DTexture2 interface if the call succeeds.

Return Values
If the method succeeds, the return value is D3D_OK.

in.doc – page 392

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method was introduced with the IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetTexture, IDirect3DDevice3::GetTextureStageState,
IDirect3DDevice3::SetTextureStageState, Textures

IDirect3DDevice3::GetTextureStag
eState

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetTextureStageState method retrieves a state value for a
currently assigned texture.

HRESULT GetTextureStageState(
 DWORD dwStage,
 D3DTEXTURESTAGESTATETYPE dwState,
 LPDWORD lpdwValue
);

Parameters
dwStage

Stage identifier of the texture for which the state will be retrieved. Stage
identifiers are zero-based. Currently, devices can have up to 8 set textures, so
the maximum allowable value allowed for dwStage is 7.

dwState
Texture state to be retrieved. This parameter can be any member of the
D3DTEXTURESTAGESTATETYPE enumerated type.

lpdwValue

in.doc – page 393

Address of a variable that will be filled with the retrieved state value. The
meaning of the retrieved value is determined by the dwState parameter.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method was introduced with the IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetTextureStageState, IDirect3DDevice3::GetTexture,
IDirect3DDevice3::SetTexture, Textures

IDirect3DDevice3::GetTransform
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::GetTransform method gets a matrix describing a
transformation state.

HRESULT GetTransform(
 D3DTRANSFORMSTATETYPE dtstTransformStateType,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
dtstTransformStateType

Device state variable that is being modified. This parameter can be any of the
members of the D3DTRANSFORMSTATETYPE enumerated type.

lpD3DMatrix

in.doc – page 394

Address of a D3DMATRIX structure describing the transformation.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::SetTransform

IDirect3DDevice3::Index
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::Index method adds a new index to the primitive sequence
started with a previous call to the IDirect3DDevice3::BeginIndexed method.

HRESULT Index(
 WORD wVertexIndex
);

Parameters
wVertexIndex

Index of the next vertex to be added to the currently started primitive sequence.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the texture handle
in the current material does not match the current

in.doc – page 395

texture handle that is set as a render state.
DDERR_INVALIDPARAMS One of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::BeginIndexed, IDirect3DDevice3::End

IDirect3DDevice3::MultiplyTransfo
rm

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::MultiplyTransform method multiplies a device's world,
view, or projection matrices by a specified matrix. The multiplication order is
lpD3DMatrix times dtstTransformStateType.

HRESULT MultiplyTransform(
 D3DTRANSFORMSTATETYPE dtstTransformStateType,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
dtstTransformStateType

A member of the D3DTRANSFORMSTATETYPE enumerated type that
identifies which device matrix is to be modified. The most common setting,
D3DTRANSFORMSTATE_WORLD, modifies the world matrix, but you can
specify that the method modify the view or projection matrices if needed.

lpD3DMatrix
Address of a D3DMATRIX structure that modifies the current transformation.

Return Values
If the method succeeds, the return value is D3D_OK.

in.doc – page 396

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
An application might use the MultiplyTransform method to work with hierarchies
of transformations. For example, the geometry and transformations describing an
arm might be arranged in the following hierarchy:

shoulder_transformation
 upper_arm geometry
 elbow transformation
 lower_arm geometry
 wrist transformation
 hand geometry

An application might use the following series of calls to render this hierarchy. (Not
all of the parameters are shown in this pseudocode.)

IDirect3DDevice3::SetTransform(D3DTRANSFORMSTATE_WORLD,
 shoulder_transform)
IDirect3DDevice3::DrawPrimitive(upper_arm)
IDirect3DDevice3::MultiplyTransform(D3DTRANSFORMSTATE_WORLD,
 elbow_transform)
IDirect3DDevice3::DrawPrimitive(lower_arm)
IDirect3DDevice3::MultiplyTransform(D3DTRANSFORMSTATE_WORLD,
 wrist_transform)
IDirect3DDevice3::DrawPrimitive(hand)

This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::DrawPrimitive, IDirect3DDevice3::SetTransform

IDirect3DDevice3::NextViewport
[This is preliminary documentation and subject to change.]

in.doc – page 397

The IDirect3DDevice3::NextViewport method enumerates the viewports associated
with the device.

HRESULT NextViewport(
 LPDIRECT3DVIEWPORT3 lpDirect3DViewport,
 LPDIRECT3DVIEWPORT3 *lplpAnotherViewport,
 DWORD dwFlags
);

Parameters
lpDirect3DViewport

Address of the IDirect3DViewport3 interface of a viewport in the list of
viewports associated with this Direct3D device.

lplpAnotherViewport
Address that will contain a pointer to the IDirect3DViewport3 interface for
another viewport in the device's viewport list. Which viewport the method
retrieves is determined by the flag in the dwFlags parameter.

dwFlags
Flag specifying which viewport to retrieve from the list of viewports. This must
be set to one of the following flags:
D3DNEXT_HEAD

Retrieve the item at the beginning of the list.
D3DNEXT_NEXT

Retrieve the next item in the list.
D3DNEXT_TAIL

Retrieve the item at the end of the list.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
If you attempt to retrieve the next viewport in the list when you are at the end of the
list, this method returns D3D_OK but lplpAnotherViewport is NULL.

In the IDirect3DDevice2 interface, this method requires pointers to
IDirect3DViewport2 interfaces, not IDirect3DViewport3 interfaces.

in.doc – page 398

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DDevice3::SetClipStatus
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetClipStatus method sets the current clip status.

HRESULT SetClipStatus(
 LPD3DCLIPSTATUS lpD3DClipStatus
);

Parameters
lpD3DClipStatus

Address of a D3DCLIPSTATUS structure that describes the new settings for
the clip status.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetClipStatus

in.doc – page 399

IDirect3DDevice3::SetCurrentView
port

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetCurrentViewport method sets the current viewport.

HRESULT SetCurrentViewport(
 LPDIRECT3DVIEWPORT3 lpd3dViewport
);

Parameters
lpd3dViewport

Address of the IDirect3DViewport3 interface for the viewport that will become
the current viewport if the method is successful.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
Applications must call this method before calling any rendering functions. Before
calling this method, applications must have already called the
IDirect3DDevice3::AddViewport method to add the viewport to the device.

Before the first call to IDirect3DDevice3::SetCurrentViewport, the current
viewport for the device is invalid, and any attempts to render using the device will
fail.

This method increases the reference count of the viewport interface specified by the
lpd3dViewport parameter and releases the previous viewport, if any.

This method was introduced with the IDirect3DDevice2 interface. In the
IDirect3DDevice2 interface, this method accepts a pointer to an
IDirect3DViewport interface, not an IDirect3DViewport3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 400

See Also
IDirect3DDevice3::GetCurrentViewport

IDirect3DDevice3::SetLightState
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetLightState method sets a single Direct3DDevice
lighting-related state value.

HRESULT SetLightState(
 D3DLIGHTSTATETYPE dwLightStateType,
 DWORD dwLightState
);

Parameters
dwLightStateType

Device state variable that is being modified. This parameter can be any of the
members of the D3DLIGHTSTATETYPE enumerated type.

dwLightState
New value for the Direct3DDevice light state. The meaning of this parameter is
dependent on the value specified for dwLightStateType. For example, if
dwLightStateType were D3DLIGHTSTATE_COLORMODEL, the second
parameter would be one of the values of the D3DCOLORMODEL data type.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 401

See Also
IDirect3DDevice3::GetLightState, IDirect3DDevice3::SetRenderState,
IDirect3DDevice3::SetTransform

IDirect3DDevice3::SetRenderState
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetRenderState method sets a single Direct3DDevice
rendering state parameter.

HRESULT SetRenderState(
 D3DRENDERSTATETYPE dwRenderStateType,
 DWORD dwRenderState
);

Parameters
dwRenderStateType

Device state variable that is being modified. This parameter can be any of the
members of the D3DRENDERSTATETYPE enumerated type.

dwRenderState
New value for the Direct3DDevice render state. The meaning of this parameter
is dependent on the value specified for dwRenderStateType. For example, if
dwRenderStateType were D3DRENDERSTATE_SHADEMODE, the second
parameter would be one of the members of the D3DSHADEMODE enumerated
type.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

Applications should use the IDirect3DDevice3::SetTextureStageState method to
set texture states in favor of the legacy texture-related render states. For more
information, see About Render States.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 402

Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetRenderState, IDirect3DDevice3::SetLightState,
IDirect3DDevice3::SetTransform

IDirect3DDevice3::SetRenderTarge
t

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetRenderTarget method permits the application to easily
route rendering output to a new DirectDraw surface as a render target.

HRESULT SetRenderTarget(
 LPDIRECTDRAWSURFACE4 lpNewRenderTarget,
 DWORD dwFlags
);

Parameters
lpNewRenderTarget

Address of a IDirectDrawSurface4 interface for the surface object that will be
the new rendering target. This surface must be created with the
DDSCAPS_3DDEVICE capability.

dwFlags
Not currently used; set to zero.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The error may be one of the
following values:

DDERR_INVALIDPARAMS One of the arguments is invalid.
DDERR_INVALIDSURFACETYPE The surface passed as the first parameter is

invalid.

Remarks
You cannot use this method to set a new render target surface with a depth-buffer if
the current render target does not have a depth buffer. Likewise, you cannot use this
method to switch from a non-depth-buffered render target to a depth-buffered render

in.doc – page 403

target. Attempts to do this will fail in debug builds, and can exhibit unreliable
behavior in retail builds. Given that both the new and old render targets use depth
buffers, the depth-buffer attached to the new render target replaces the previous
depth-buffer for the context.

When you change the rendering target, all of the handles associated with the
previous rendering target become invalid. This means that you will have to reacquire
all of the texture handles. If you are using ramp mode, you should also update the
texture handles inside materials, by calling the IDirect3DMaterial3::SetMaterial
method. Any execute buffers (which have embedded handles) also need to be
updated. The IDirect3DDevice3::SetRenderTarget method is most useful to
applications that use the DrawPrimitive methods, especially when these applications
do not use ramp mode.

If the new render target surface has different dimensions from the old (length, width,
pixel-format), this method marks the viewport as invalid. The viewport may be
revalidated after calling IDirect3DDevice3::SetRenderTarget by calling
IDirect3DViewport3::SetViewport to restate viewport parameters that are
compatible with the new surface.

Capabilities do not change with changes in the properties of the render target
surface. Both the Direct3D HAL and the software rasterizers have only one
opportunity to expose capabilities to the application. The system cannot expose
different sets of capabilities depending on the format of the destination surface.

If more than one depth-buffer is attached to the render target, this function fails.

This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetRenderTarget

IDirect3DDevice3::SetTexture
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetTexture method assigns a texture to a given stage for a
device.

HRESULT SetTexture(
 DWORD dwStage,
 LPDIRECT3DTEXTURE2 lpTexture

in.doc – page 404

);

Parameters
dwStage

Stage identifier to which the texture will be set. Stage identifiers are zero-based.
Currently, devices can have up to 8 set textures, so the maximum allowable
value allowed for dwStage is 7.

lpTexture
Address of the IDirect3DTexture2 interface for the texture being set.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method was introduced with the IDirect3DDevice3 interface.

Software devices do not support assigning a texture to more than one texture stage at
a time.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetTexture, IDirect3DDevice3::GetTextureStageState,
IDirect3DDevice3::SetTextureStageState, Textures

IDirect3DDevice3::SetTextureStag
eState

[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetTextureStageState method sets the state value for a
currently assigned texture.

in.doc – page 405

HRESULT SetTextureStageState(
 DWORD dwStage,
 D3DTEXTURESTAGESTATETYPE dwState,
 DWORD dwValue
);

Parameters
dwStage

Stage identifier of the texture for which the state value will be set. Stage
identifiers are zero-based. Currently, devices can have up to 8 set textures, so
the maximum allowable value allowed for dwStage is 7.

dwState
Texture state to be set. This parameter can be any member of the
D3DTEXTURESTAGESTATETYPE enumerated type.

dwValue
State value to be set. The meaning of this value is determined by the dwState
parameter.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method was introduced with the IDirect3DDevice3 interface.

Applications should use this method to set texture states in favor of the legacy
texture-related render states. For more information, see About Render States.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetTextureStageState, IDirect3DDevice3::GetTexture,
IDirect3DDevice3::SetTexture, Textures

in.doc – page 406

IDirect3DDevice3::SetTransform
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::SetTransform method sets a single Direct3DDevice
transformation-related state.

HRESULT SetTransform(
 D3DTRANSFORMSTATETYPE dtstTransformStateType,
 LPD3DMATRIX lpD3DMatrix
);

Parameters
dtstTransformStateType

Device state variable that is being modified. This parameter can be any of the
members of the D3DTRANSFORMSTATETYPE enumerated type.

lpD3DMatrix
Address of a D3DMATRIX structure that modifies the current transformation.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetTransform, IDirect3DDevice3::SetLightState,
IDirect3DDevice3::SetRenderState

IDirect3DDevice3::ValidateDevice
[This is preliminary documentation and subject to change.]

in.doc – page 407

The IDirect3DDevice3::ValidateDevice method reports the device's ability to
render the currently set texture blending operations and arguments in a single pass.

HRESULT ValidateDevice(
 LPDWORD lpdwPasses
);

Parameters
lpdwPasses

Address that will be filled with the number of rendering passes to complete the
desired effect through multipass rendering.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
D3DERR_CONFLICTINGTEXTUREFILTER
D3DERR_CONFLICTINGTEXTUREPALETTE
D3DERR_TOOMANYOPERATIONS
D3DERR_UNSUPPORTEDALPHAARG
D3DERR_UNSUPPORTEDALPHAOPERATION
D3DERR_UNSUPPORTEDCOLORARG
D3DERR_UNSUPPORTEDCOLOROPERATION
D3DERR_UNSUPPORTEDFACTORVALUE
D3DERR_UNSUPPORTEDTEXTUREFILTER
D3DERR_WRONGTEXTUREFORMAT

Remarks
Current hardware does not necessarily implement all possible combinations of
operations and arguments. You can determine whether a particular blending
operation can be performed with given arguments by setting-up the desired blending
operation, then calling the ValidateDevice method.

The ValidateDevice method uses the currently set render states, textures, and,
texture stage states to perform validation at the time of the call. Any changes to these
factors after the call invalidate the previous result, and the method must be called
again before rendering a scene.

Using diffuse iterated values, either as an argument or as an operation
(D3DTA_DIFFUSE or D3DTOP_BLENDDIFFUSEALPHA) is sparsely supported

in.doc – page 408

on current hardware. Most hardware can only introduce iterated color data at the last
texture operation stage.

Try to specify the texture (D3DTA_TEXTURE) for each stage as the first argument,
in preference to the second argument.

Many cards do not support use of diffuse or scalar values at arbitrary texture stages.
Often, these are only available at the first or last texture blending stage.

Many cards do not actually have a blending unit associated with the first texture that
is capable of more than replicating alpha to color channels, or inverting the input. As
a result, your application might need to use only the second texture stage if possible.
On such hardware, the first unit is presumed to be in its default state, which has the
first color argument set to D3DTA_TEXTURE with the D3DTOP_SELECTARG1
operation.

Operations on the output alpha that are more intricate than or substantially different
from the color operations are less likely to be supported.

Some hardware does not support simultaneous use of both D3DTA_TFACTOR and
D3DTA_DIFFUSE.

Many cards do not support simultaneous use of multiple textures and mipmapped
trilinear filtering. If trilinear filtering has been requested for a texture involved in
multi-texture blending operations and validation fails, turn off trilinear filtering and
revalidate. In this case, it might be best to perform multipass rendering instead.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::GetTextureStageState,
IDirect3DDevice3::SetTextureStageState

IDirect3DDevice3::Vertex
[This is preliminary documentation and subject to change.]

The IDirect3DDevice3::Vertex method adds a new Direct3D vertex to the primitive
sequence started with a previous call to the IDirect3DDevice3::Begin method.

HRESULT Vertex(
 LPVOID lpVertex
);

in.doc – page 409

Parameters
lpVertex

Pointer to the next Direct3D vertex to be added to the currently started primitive
sequence. This can be any of the Direct3D vertex types (D3DLVERTEX,
D3DTLVERTEX, or D3DVERTEX) or a vertex specified in flexible vertex
format. The vertex format must match the description specified in the preceding
call to IDirect3DDevice3::Begin.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

Remarks
This method was introduced with the IDirect3DDevice2 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DDevice3::Begin, IDirect3DDevice3::End

IDirect3DExecuteBuffer
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3DExecuteBuffer interface to set up and
control Direct3D execute buffers. This section is a reference to the methods of this
interface. For a conceptual overview, see Execute Buffers.

The methods of the IDirect3DExecuteBuffer interface can be organized into the
following groups:

Execute data GetExecuteData

in.doc – page 410

SetExecuteData

Lock and unlock Lock
Unlock

Miscellaneous Initialize
Optimize
Validate

The IDirect3DExecuteBuffer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3DEXECUTEBUFFER type is defined as a pointer to the
IDirect3DExecuteBuffer interface:

typedef struct IDirect3DExecuteBuffer *LPDIRECT3DEXECUTEBUFFER;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
Execute Buffers

IDirect3DExecuteBuffer::GetExecu
teData

[This is preliminary documentation and subject to change.]

The IDirect3DExecuteBuffer::GetExecuteData method retrieves the execute data
state of the Direct3DExecuteBuffer object. The execute data is used to describe the
contents of the Direct3DExecuteBuffer object.

HRESULT GetExecuteData(
 LPD3DEXECUTEDATA lpData

in.doc – page 411

);

Parameters
lpData

Address of a D3DEXECUTEDATA structure that will be filled with the current
execute data state of the Direct3DExecuteBuffer object.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This call fails if the Direct3DExecuteBuffer object is locked.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DExecuteBuffer::SetExecuteData

IDirect3DExecuteBuffer::Initialize
[This is preliminary documentation and subject to change.]

The IDirect3DExecuteBuffer::Initialize method is provided for compliance with
the COM protocol.

HRESULT Initialize(
 LPDIRECT3DDEVICE lpDirect3DDevice,
 LPD3DEXECUTEBUFFERDESC lpDesc
);

in.doc – page 412

Parameters
lpDirect3DDevice

Address of the device representing the Direct3D object.
lpDesc

Address of a D3DEXECUTEBUFFERDESC structure that describes the
Direct3DExecuteBuffer object to be created. The call fails if a buffer of at least
the specified size cannot be created.

Return Values
The method returns DDERR_ALREADYINITIALIZED because the
Direct3DExecuteBuffer object is initialized when it is created.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirect3DExecuteBuffer::Lock
[This is preliminary documentation and subject to change.]

The IDirect3DExecuteBuffer::Lock method obtains a direct pointer to the
commands in the execute buffer.

HRESULT Lock(
 LPD3DEXECUTEBUFFERDESC lpDesc
);

Parameters
lpDesc

Address of a D3DEXECUTEBUFFERDESC structure. When the method
returns, the lpData member will be set to point to the actual data to which the
application has access. This data may reside in system or video memory, and is
specified by the dwCaps member. The application may use the
IDirect3DExecuteBuffer::Lock method to request that Direct3D move the data
between system or video memory.

Return Values
If the method succeeds, the return value is D3D_OK.

in.doc – page 413

If the method fails, the return value may be one of the following values:

D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

Remarks
This call fails if the Direct3DExecuteBuffer object is locked—that is, if another
thread is accessing the buffer, or if a IDirect3DDevice::Execute method that was
issued on this buffer has not yet completed.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DExecuteBuffer::Unlock

IDirect3DExecuteBuffer::Optimize
[This is preliminary documentation and subject to change.]

The IDirect3DExecuteBuffer::Optimize method is not currently supported.

HRESULT Optimize();

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirect3DExecuteBuffer::SetExecut
eData

[This is preliminary documentation and subject to change.]

in.doc – page 414

The IDirect3DExecuteBuffer::SetExecuteData method sets the execute data state
of the Direct3DExecuteBuffer object. The execute data is used to describe the
contents of the Direct3DExecuteBuffer object.

HRESULT SetExecuteData(
 LPD3DEXECUTEDATA lpData
);

Parameters
lpData

Address of a D3DEXECUTEDATA structure that describes the execute buffer
layout.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This call fails if the Direct3DExecuteBuffer object is locked.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DExecuteBuffer::GetExecuteData

IDirect3DExecuteBuffer::Unlock
[This is preliminary documentation and subject to change.]

The IDirect3DExecuteBuffer::Unlock method releases the direct pointer to the
commands in the execute buffer. This must be done prior to calling the
IDirect3DDevice::Execute method for the buffer.

in.doc – page 415

HRESULT Unlock();

Parameters
None.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_EXECUTE_NOT_LOCKED
DDERR_INVALIDOBJECT

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DExecuteBuffer::Lock

IDirect3DExecuteBuffer::Validate
[This is preliminary documentation and subject to change.]

The IDirect3DExecuteBuffer::Validate method is not currently implemented.

HRESULT Validate(
 LPDWORD lpdwOffset,
 LPD3DVALIDATECALLBACK lpFunc,
 LPVOID lpUserArg,
 DWORD dwReserved
);

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 416

IDirect3DLight
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3DLight interface to retrieve and set the
capabilities of lights. This section is a reference to the methods of this interface. For
a conceptual overview, see Lights.

The IDirect3DLight interface is obtained by calling the IDirect3D3::CreateLight
method.

The methods of the IDirect3DLight interface can be organized into the following
groups:

Get and set GetLight
SetLight

Initialization Initialize

The IDirect3DLight interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3DLIGHT type is defined as a pointer to the IDirect3DLight
interface:

typedef struct IDirect3DLight *LPDIRECT3DLIGHT;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirect3DLight::GetLight
[This is preliminary documentation and subject to change.]

The IDirect3DLight::GetLight method retrieves the light information for the
Direct3DLight object.

HRESULT GetLight(
 LPD3DLIGHT lpLight
);

in.doc – page 417

Parameters
lpLight

Address of a D3DLIGHT2 structure that will be filled with the current light
data.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
Although this method's declaration specifies the lpLight parameter as being the
address of a D3DLIGHT structure, that structure is not normally used. Rather, the
D3DLIGHT2 structure is recommended to achieve the best lighting effects.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DLight::SetLight

IDirect3DLight::Initialize
[This is preliminary documentation and subject to change.]

The IDirect3DLight::Initialize method is provided for compliance with the COM
protocol.

HRESULT Initialize(
 LPDIRECT3D lpDirect3D
);

in.doc – page 418

Parameters
lpDirect3D

Address of the IDirect3D interface for the Direct3D object.

Return Values
The method returns DDERR_ALREADYINITIALIZED because the Direct3DLight
object is initialized when it is created.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirect3DLight::SetLight
[This is preliminary documentation and subject to change.]

The IDirect3DLight::SetLight method sets the light information for the
Direct3DLight object.

HRESULT SetLight(
 LPD3DLIGHT lpLight
);

Parameters
lpLight

Address of a D3DLIGHT2 structure that will be used to set the current light
data.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 419

Remarks
Although this method's declaration specifies the lpLight parameter as being the
address of a D3DLIGHT structure, that structure is not normally used. Rather, the
D3DLIGHT2 structure is recommended to achieve the best lighting effects.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DLight::GetLight

IDirect3DMaterial3
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3DMaterial3 interface to retrieve and
set the properties of materials. This section is a reference to the methods of this
interface. For a conceptual overview, see Materials.

You create this interface by calling the IDirect3D3::CreateMaterial method. The
IDirect3DMaterial3 interface provides identical services to its predecessor, the
IDirect3DMaterial2 interface, but binds materials to the latest iteration of the
Direct3DDevice interface, IDirect3DDevice3.

The methods of the IDirect3DMaterial3 interface can be organized into the
following groups:

Handles GetHandle

Materials GetMaterial
SetMaterial

The IDirect3DMaterial3 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

in.doc – page 420

The LPDIRECT3DMATERIAL3, LPDIRECT3DMATERIAL2, and
LPDIRECT3DMATERIAL types are defined as pointers to the
IDirect3DMaterial3, IDirect3DMaterial2 and IDirect3DMaterial interfaces:

typedef struct IDirect3DMaterial3 *LPDIRECT3DMATERIAL3;
typedef struct IDirect3DMaterial2 *LPDIRECT3DMATERIAL2;
typedef struct IDirect3DMaterial *LPDIRECT3DMATERIAL;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Materials, Lighting and Materials

IDirect3DMaterial3::GetHandle
[This is preliminary documentation and subject to change.]

The IDirect3DMaterial3::GetHandle method binds a material to a device,
retrieving a handle that represents the association between the two. This handle is
used in all Direct3D methods in which a material is to be referenced. A material can
be used by only one device at a time.

If the device is destroyed, the material is disassociated from the device.

HRESULT GetHandle(
 LPDIRECT3DDEVICE3 lpDirect3DDevice,
 LPD3DMATERIALHANDLE lpHandle
);

Parameters
lpDirect3DDevice

Address of the IDirect3DDevice3 interface for the rendering device to which
the material is being bound.

lpHandle
Address of a variable that will be filled with the material handle corresponding
to the Direct3DMaterial object.

in.doc – page 421

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is DDERR_INVALIDOBJECT.

Remarks
In the IDirect3DMaterial2 interface, this method accepts a pointer to an
IDirect3DDevice2 interface instead of an IDirect3DDevice3 interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Retrieving Material Handles

IDirect3DMaterial3::GetMaterial
[This is preliminary documentation and subject to change.]

The IDirect3DMaterial3::GetMaterial method retrieves the material data for the
Direct3DMaterial object.

HRESULT GetMaterial(
 LPD3DMATERIAL lpMat
);

Parameters
lpMat

Address of a D3DMATERIAL structure that will be filled with the current
material properties.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 422

Remarks
This method is unchanged from its implementation in the IDirect3DMaterial2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DMaterial3::SetMaterial, Retrieving Material Properties, Setting Material
Properties

IDirect3DMaterial3::SetMaterial
[This is preliminary documentation and subject to change.]

The IDirect3DMaterial3::SetMaterial method sets the material data for a material
object.

HRESULT SetMaterial(
 LPD3DMATERIAL lpMat
);

Parameters
lpMat

Address of a D3DMATERIAL structure that contains the material properties.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 423

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DMaterial3::GetMaterial, Retrieving Material Properties, Setting Material
Properties

IDirect3DTexture2
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3DTexture2 interface to retrieve and set
the properties of textures. This section is a reference to the methods of this interface.
For a conceptual overview, see Textures.

You create the IDirect3DTexture2 interface by calling the
IDirectDrawSurface::QueryInterface method from the DirectDrawSurface object
that was created as a texture map.

The methods of the IDirect3DTexture2 interface can be organized into the
following groups:

Handles GetHandle

Loading Load

Palette information PaletteChanged

The IDirect3DTexture2 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3DTEXTURE2 and LPDIRECT3DTEXTURE types are defined
as pointers to the IDirect3DTexture2 and IDirect3DTexture interfaces:

typedef struct IDirect3DTexture2 *LPDIRECT3DTEXTURE2;
typedef struct IDirect3DTexture *LPDIRECT3DTEXTURE;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 424

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Textures

IDirect3DTexture2::GetHandle
[This is preliminary documentation and subject to change.]

The IDirect3DTexture2::GetHandle method obtains the texture handle to be used
when rendering with the IDirect3DDevice2 or IDirect3DDevice interfaces.

HRESULT GetHandle(
 LPDIRECT3DDEVICE2 lpDirect3DDevice2,
 LPD3DTEXTUREHANDLE lpHandle
);

Parameters
lpDirect3DDevice2

Address of the Direct3DDevice2 object into which the texture is to be loaded.
lpHandle

Address that will contain the texture handle corresponding to the
Direct3DTexture2 object.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDPARAMS

Remarks
In the IDirect3DTexture interface, this method uses a pointer to a Direct3DDevice
object instead of a Direct3DDevice2 object.

Texture handles are used only device interfaces earlier than IDirect3DDevice3. The
IDirect3DDevice3 interface references textures using texture interface pointers, set
through the IDirect3DDevice3::SetTexture method.

You cannot use this method to retrieve the handle of a texture that is managed by
Direct3D. For more information, see Automatic Texture Management .

in.doc – page 425

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DTexture2::Load
[This is preliminary documentation and subject to change.]

The IDirect3DTexture2::Load method loads a system-memory texture surface into
a video-memory texture surface. This method can be used to load texture mipmap
chains (see remarks).

HRESULT Load(
 LPDIRECT3DTEXTURE2 lpD3DTexture2
);

Parameters
lpD3DTexture2

Address of the texture to load.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return values,
see Direct3D Immediate Mode Return Values.

Remarks
This method uses hardware-accelerated blit operations to load data from the source
texture into the destination texture.

If both textures are mipmaps, the method will copy the mipmap levels from the
source mipmap that match those of the destination mipmap. If the destination
mipmap uses levels-of-detail not present in the source mipmap, the method fails.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

in.doc – page 426

IDirect3DTexture2::PaletteChange
d

[This is preliminary documentation and subject to change.]

The IDirect3DTexture2::PaletteChanged method informs the driver that the
palette has changed on a texture surface.

HRESULT PaletteChanged(
 DWORD dwStart,
 DWORD dwCount
);

Parameters
dwStart

Index of first palette entry that has changed.
dwCount

Total number of palette entries that have changed.

Return Values
This method returns D3D_OK.

If the method fails, the return value is an error. For a list of possible return values,
see Direct3D Immediate Mode Return Values.

Remarks
This method is particularly useful for applications that play video clips and therefore
require palette-changing capabilities.

This method only affects the legacy ramp device. For all other devices, this method
takes no action and returns D3D_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DVertexBuffer
[This is preliminary documentation and subject to change.]

in.doc – page 427

Applications use the methods of the IDirect3DVertexBuffer interface to manipulate
a collection of vertices for use with the IDirect3DDevice3::DrawPrimitiveVB and
IDirect3DDevice3::DrawIndexedPrimitiveVB rendering methods. This section is a
reference to the methods of this interface. For a conceptual overview, see Vertex
Buffers.

This methods of the IDirect3DVertexBuffer interface can be organized into the
following groups:

Information GetVertexBufferDesc

Vertex data Lock
Optimize
ProcessVertices
Unlock

The IDirect3DVertexBuffer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3DVERTEXBUFFER data type is defined as a pointer to the
IDirect3DVertexBuffer interface:

typedef struct IDirect3DVertexBuffer *LPDIRECT3DVERTEXBUFFER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Vertex Buffers

IDirect3DVertexBuffer::GetVertex
BufferDesc

[This is preliminary documentation and subject to change.]

in.doc – page 428

The IDirect3DVertexBuffer::GetVertexBufferDesc method retrieves a description
of the vertex buffer.

HRESULT GetVertexBufferDesc(
 LPD3DVERTEXBUFFERDESC lpVBDesc,
);

Parameters
lpVBDesc

Address of a D3DVERTEXBUFFERDESC structure that will be filled with a
description of the vertex buffer.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be DDERR_INVALIDPARAMS or another
error code.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DVertexBuffer::Lock
[This is preliminary documentation and subject to change.]

The IDirect3DVertexBuffer::Lock methods locks a vertex buffer and obtains a
pointer to the vertex buffer memory.

HRESULT Lock(
 DWORD dwFlags,
 LPVOID* lplpData,
 LPDWORD lpdwSize
);

Parameters
dwFlags

Flags indicating how the vertex buffer memory should be locked.
DDLOCK_EVENT

This flag is not currently implemented.
DDLOCK_NOSYSLOCK

in.doc – page 429

If possible, do not take the Win16Mutex (also known as Win16Lock).
DDLOCK_READONLY

Indicates that the memory being locked will only be read from.
DDLOCK_SURFACEMEMORYPTR

Indicates that a valid memory pointer to the vertex buffer should be returned;
this is the default.

DDLOCK_WAIT
If a lock cannot be obtained immediately, the method retries until a lock is
obtained or another error occurs.

DDLOCK_WRITEONLY
Indicates that the memory being locked will only be written to.

lplpData
Address of a variable that will contain the address of the vertex buffer memory
if the call succeeds.

lpdwSize
Address of a variable that will contain the size of the vertex buffer memory at
lplpData. Set to NULL if the buffer size is unneeded.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_VERTEXBUFFEROPTIMIZED
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST

Remarks
After locking the vertex buffer, you can access the memory until a corresponding
call to IDirect3DVertexBuffer::Unlock.

You cannot render from a locked vertex buffer; calls to the
IDirect3DDevice3::DrawIndexedPrimitiveVB or
IDirect3DDevice3::DrawPrimitiveVB method using a locked buffer will fail,
returning D3DERR_VERTEXBUFFERLOCKED.

This method often causes the system to hold the Win16Mutex until you call the
IDirect3DVertexBuffer::Unlock method. GUI debuggers cannot operate while the
Win16Mutex is held.

in.doc – page 430

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DVertexBuffer::Unlock, Accessing Vertex Buffer Memory

IDirect3DVertexBuffer::Optimize
[This is preliminary documentation and subject to change.]

The IDirect3DVertexBuffer::Optimize method converts an unoptimized vertex
buffer into an optimized vertex buffer.

HRESULT Optimize (
 LPDIRECT3DDEVICE3 lpD3DDevice,
 DWORD dwFlags
);

Parameters
lpD3DDevice

Address of the IDirect3DDevice3 interface of the device for which this vertex
buffer will be optimized.

dwFlags
Not currently used; set to zero.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_VERTEXBUFFEROPTIMIZED
D3DERR_VERTEXBUFFERLOCKED
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 431

Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Optimizing a Vertex Buffer, Vertex Buffers

IDirect3DVertexBuffer::ProcessVer
tices

[This is preliminary documentation and subject to change.]

The IDirect3DVertexBuffer::ProcessVertices method processes untransformed
vertices into a transformed or optimized vertex buffer.

HRESULT ProcessVertices(
 DWORD dwVertexOp,
 DWORD dwDestIndex,
 DWORD dwCount,
 LPDIRECT3DVERTEXBUFFER lpSrcBuffer,
 DWORD dwSrcIndex,
 LPDIRECT3DDEVICE3 lpD3DDevice,
 DWORD dwFlags
);

Parameters
dwVertexOp

Flags defining how the method processes the vertices as they are transferred
from the source buffer. You can specify any combination of the following flags:
D3DVOP_CLIP

Transform the vertices and clip any vertices that exist outside the viewing
frustum. This flag cannot be used with vertex buffers that do not contain
clipping information (for example, created with the D3DDP_DONOTCLIP
flag).

D3DVOP_EXTENTS
Transform the vertices, then update the extents of the screen rectangle when
the vertices are rendered. Using this flag can potentially help performance,
but the extents returned by IDirect3DDevice3::GetClipStatus will not have
been updated to account for the vertices when they are rendered.

D3DVOP_LIGHT
Light the vertices.

D3DVOP_TRANSFORM
Transform the vertices using the world, view, and projection matrices. This
flag must always be set.

dwDestIndex

in.doc – page 432

Index into the destination vertex buffer (this buffer) where the vertices will be
placed after processing.

dwCount
Number of vertices in the source buffer to process.

lpSrcBuffer
Address of the IDirect3DVertexBuffer interface for the source vertex buffer.

dwSrcIndex
Index of the first vertex in the source buffer to be processed.

lpD3DDevice
Address of the IDirect3DDevice3 interface for the device that will be used to
transform the vertices.

dwFlags
Reserved for future use; set to zero. Failing to set this parameter to 0 causes the
method to fail and return DDERR_INVALIDPARAMS.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_INVALIDVERTEXFORMAT
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST

Remarks
You must always include the D3DVOP_TRANSFORMED flag in the dwVertexOp
parameter. If you fail to include this flag, the method will fail, returning
DDERR_INVALIDPARAMS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Processing Vertices, Vertex Buffers

in.doc – page 433

IDirect3DVertexBuffer::Unlock
[This is preliminary documentation and subject to change.]

The IDirect3DVertexBuffer::Unlock method unlocks a previously locked vertex
buffer.

HRESULT Unlock();

Parameters
None.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACEBUSY
DDERR_SURFACELOST

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DVertexBuffer::Lock, Accessing Vertex Buffer Memory

IDirect3DViewport3
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirect3DViewport3 interface to retrieve and
set the properties of viewports. This section is a reference to the methods of this
interface. For a conceptual overview, see Viewports and Clipping.

The IDirect3DViewport3 interface offers the same services as the
IDirect3DViewport2 interface, but adds the Clear2 method, which simultaneously
clears the viewport, depth-buffer, and stencil buffer.

in.doc – page 434

You create the IDirect3DViewport3 interface by calling the
IDirect3D3::CreateViewport method.

The methods of the IDirect3DViewport3 interface can be organized into the
following groups:

Backgrounds GetBackground
GetBackgroundDepth
GetBackgroundDepth2
SetBackground
SetBackgroundDepth
SetBackgroundDepth2

Lights AddLight
DeleteLight
LightElements
NextLight

Materials and viewports Clear
Clear2
GetViewport
GetViewport2
SetViewport
SetViewport2

Miscellaneous Initialize

Transformation TransformVertices

The IDirect3DViewport3 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECT3DVIEWPORT3, LPDIRECT3DVIEWPORT2 and
LPDIRECT3DVIEWPORT types are defined as pointers to the
IDirect3DViewport3, IDirect3DViewport2, and IDirect3DViewport interfaces:

typedef struct IDirect3DViewport3 *LPDIRECT3DVIEWPORT3;
typedef struct IDirect3DViewport2 *LPDIRECT3DVIEWPORT2;
typedef struct IDirect3DViewport *LPDIRECT3DVIEWPORT;

in.doc – page 435

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
Viewports and Clipping

IDirect3DViewport3::AddLight
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::AddLight method adds the specified light to the list of
Direct3DLight objects associated with this viewport and increments the reference
count of the light object.

HRESULT AddLight(
 LPDIRECT3DLIGHT lpDirect3DLight
);

Parameters
lpDirect3DLight

Address of the IDirect3DLight interface for the light that should be associated
with this viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

in.doc – page 436

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DViewport3::Clear
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::Clear method clears the viewport or a set of rectangles
in the viewport to the current background material.

HRESULT Clear(
 DWORD dwCount,
 LPD3DRECT lpRects,
 DWORD dwFlags
);

Parameters
dwCount

Number of rectangles pointed to by lpRects.
lpRects

Address of an array of D3DRECT structures. Each rectangle uses screen
coordinates that correspond to points on the render target surface. Coordinates
are clipped to the bounds of the viewport rectangle.

dwFlags
Flags indicating what to clear: the rendering target, the depth-buffer, or both.
D3DCLEAR_TARGET

Clear the rendering target to the background material (if set).
D3DCLEAR_ZBUFFER

Clear the depth-buffer or set it to the current background depth field (if set).

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_VIEWPORTHASNODEVICE
D3DERR_ZBUFFER_NOTPRESENT
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 437

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

The behavior of this method is undefined for depth buffers that include stencil bits,
and using this method on such a depth buffer can cause the stencil bits to be
arbitrarily overwritten or the depth values to be incorrect. Always use the use the
IDirect3DViewport3::Clear2 method to clear depth buffers that contain stencil bits.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::Clear2

IDirect3DViewport3::Clear2
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::Clear2 method clears the viewport (or a set of rectangles
in the viewport) to a specified RGBA color, clears the depth-buffer, and erases the
stencil buffer.

HRESULT Clear2(
 DWORD dwCount,
 LPD3DRECT lpRects,
 DWORD dwFlags,
 DWORD dwColor,
 D3DVALUE dvZ,
 DWORD dwStencil
);

Parameters
dwCount

Number of rectangles in the array at lpRects.
lpRects

Array of D3DRECT structures that describe the rectangles to be cleared. Set a
rectangle to the dimensions of the rendering target to clear the entire surface.
Each rectangle uses screen coordinates that correspond to points on the render
target surface. Coordinates are clipped to the bounds of the viewport rectangle.

in.doc – page 438

dwFlags
Flags indicating which surfaces should be cleared. This parameter can be any
combination of the following flags, but at least one flag must be used:
D3DCLEAR_TARGET

Clear the rendering target to the color in the dwColor parameter.
D3DCLEAR_STENCIL

Clear the stencil buffer to the value in the dwStencil parameter.
D3DCLEAR_ZBUFFER

Clear the depth-buffer to the value in the dvZ parameter.

dwColor
32-bit RGBA color value to which the render target surface will be cleared.

dvZ
New z value that this method stores in the depth-buffer. This parameter can
range from 0.0 to 1.0, inclusive. The value of 0.0 represents the nearest distance
to the viewer, and 1.0 the farthest distance.

dwStencil
Integer value to store in each stencil buffer entry. This parameter can range from
0 to 2n-1 inclusive, where n is the bit depth of the stencil buffer.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_STENCILBUFFER_NOTPRESENT
D3DERR_VIEWPORTHASNODEVICE
D3DERR_ZBUFFER_NOTPRESENT
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method fails if you specify the D3DCLEAR_ZBUFFER or
D3DCLEAR_STENCIL flags when the render target does not have an attached
depth-buffer. This behavior differs from the IDirect3DViewport3::Clear method,
which will succeed if under these circumstances.

If you specify the D3DCLEAR_STENCIL flag when the depth-buffer format doesn't
contain stencil buffer information, this method fails.

This method ignores the current background material for the viewport; to clear a
viewport using the background material, use the IDirect3DViewport3::Clear
method.

in.doc – page 439

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::Clear

IDirect3DViewport3::DeleteLight
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::DeleteLight method removes the specified light from the
list of Direct3DLight objects associated with this viewport, and decrements the
reference count for the light object.

HRESULT DeleteLight(
 LPDIRECT3DLIGHT lpDirect3DLight
);

Parameters
lpDirect3DLight

Address of the IDirect3DLight interface for the light that should be
disassociated with this viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 440

Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DViewport3::GetBackgrou
nd

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::GetBackground method retrieves the handle to a
material that represents the current background associated with the viewport.

HRESULT GetBackground(
 LPD3DMATERIALHANDLE lphMat,
 LPBOOL lpValid
);

Parameters
lphMat

Address that will contain the handle to the material being used as the
background.

lpValid
Address of a variable that will be filled to indicate whether a background is
associated with the viewport. If this parameter is FALSE, no background is
associated with the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 441

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::SetBackground

IDirect3DViewport3::GetBackgrou
ndDepth

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::GetBackgroundDepth method retrieves a DirectDraw
surface that represents the current background-depth field associated with the
viewport.

HRESULT GetBackgroundDepth(
 LPDIRECTDRAWSURFACE* lplpDDSurface,
 LPBOOL lpValid
);

Parameters
lplpDDSurface

Address of a variable that will be filled with the IDirectDrawSurface interface
for the surface object that represents the background depth.

lpValid
Address of a variable that is set to FALSE if no background depth is associated
with the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

in.doc – page 442

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::SetBackgroundDepth

IDirect3DViewport3::GetBackgrou
ndDepth2

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::GetBackgroundDepth2 method retrieves a DirectDraw
surface that represents the current background-depth field associated with the
viewport.

HRESULT GetBackgroundDepth2(
 LPDIRECTDRAWSURFACE4* lplpDDS,
 LPBOOL lpValid
);

Parameters
lplpDDS

Address of a variable that will be filled with the IDirectDrawSurface4 interface
for the surface object that represents the background depth.

lpValid
Address of a variable that is set to FALSE if no background depth is associated
with the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 443

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::SetBackgroundDepth2

IDirect3DViewport3::GetViewport
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::GetViewport method retrieves the viewport registers of
the viewport. This method is provided for backward compatibility. It has been
superseded by the IDirect3DViewport3::GetViewport2 method.

HRESULT GetViewport(
 LPD3DVIEWPORT lpData
);

Parameters
lpData

Address of a D3DVIEWPORT structure representing the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 444

 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::GetViewport2, IDirect3DViewport3::SetViewport

IDirect3DViewport3::GetViewport2
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::GetViewport2 method retrieves the viewport registers of
the viewport.

HRESULT GetViewport2(
 LPD3DVIEWPORT2 lpData
);

Parameters
lpData

Address of a D3DVIEWPORT2 structure representing the viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::SetViewport2

IDirect3DViewport3::Initialize
[This is preliminary documentation and subject to change.]

in.doc – page 445

The IDirect3DViewport3::Initialize method is not implemented.

HRESULT Initialize(
 LPDIRECT3D lpDirect3D
);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DViewport3::LightElement
s

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::LightElements method is not currently implemented.

HRESULT LightElements(
 DWORD dwElementCount,
 LPD3DLIGHTDATA lpData
);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DViewport3::NextLight
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::NextLight method enumerates the Direct3DLight
objects associated with the viewport.

HRESULT NextLight(
 LPDIRECT3DLIGHT lpDirect3DLight,
 LPDIRECT3DLIGHT* lplpDirect3DLight,
 DWORD dwFlags
);

in.doc – page 446

Parameters
lpDirect3DLight

Address of a light in the list of lights associated with this viewport object.
lplpDirect3DLight

Address of a pointer that will contain the requested light in the list of lights
associated with this viewport object. The requested light is specified in the
dwFlags parameter.

dwFlags
Flags specifying which light to retrieve from the list of lights. This must be set
to one of the following flags:
D3DNEXT_HEAD

Retrieve the item at the beginning of the list.
D3DNEXT_NEXT

Retrieve the next item in the list.
D3DNEXT_TAIL

Retrieve the item at the end of the list.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

IDirect3DViewport3::SetBackgrou
nd

[This is preliminary documentation and subject to change.]

in.doc – page 447

The IDirect3DViewport3::SetBackground method sets the background material
associated with the viewport.

HRESULT SetBackground(
 D3DMATERIALHANDLE hMat
);

Parameters
hMat

Material handle that will be used as the background.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::GetBackground

IDirect3DViewport3::SetBackgrou
ndDepth

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::SetBackgroundDepth method sets the background-
depth field for the viewport.

HRESULT SetBackgroundDepth(

in.doc – page 448

 LPDIRECTDRAWSURFACE lpDDSurface
);

Parameters
lpDDSurface

Address of the DirectDrawSurface object representing the background depth.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
The depth-buffer is filled with the specified depth field when the
IDirect3DViewport3::Clear method is called and the D3DCLEAR_ZBUFFER flag
is specified. The bit depth must be 16 bits.

This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::GetBackgroundDepth

IDirect3DViewport3::SetBackgrou
ndDepth2

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::SetBackgroundDepth2 method sets the background-
depth field for the viewport.

HRESULT SetBackgroundDepth2(
 LPDIRECTDRAWSURFACE4 lpDDS

in.doc – page 449

);

Parameters
lpDDS

Address of the IDirectDrawSurface4 interface for the surface object that
represents the new background depth.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
The depth-buffer is filled with the specified depth field when the
IDirect3DViewport3::Clear or IDirect3DViewport3::Clear2 methods are called
with the D3DCLEAR_ZBUFFER flag is specified.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::GetBackgroundDepth2

IDirect3DViewport3::SetViewport
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::SetViewport method sets the viewport registers of the
viewport. This method is provided for backward compatibility. It has been
superseded by the IDirect3DViewport3::SetViewport2 method.

HRESULT SetViewport(
 LPD3DVIEWPORT lpData
);

in.doc – page 450

Parameters
lpData

Address of a D3DVIEWPORT structure that describces the new viewport
properties. The method ignores the values in the dvMaxX, dvMaxY, dvMinZ,
and dvMaxZ members.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is unchanged from its implementation in the IDirect3DViewport2
interface.

You cannot set viewport parameters unless the viewport is associated with a
rendering device (by calling the IDirect3DDevice3::AddViewport method). For
details, see Preparing to Use a Viewport.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::GetViewport, IDirect3DViewport3::SetViewport2, Using
Viewports, Viewports and Clipping

IDirect3DViewport3::SetViewport2
[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::SetViewport2 method sets the viewport registers of the
viewport.

HRESULT SetViewport2(
 LPD3DVIEWPORT2 lpData
);

in.doc – page 451

Parameters
lpData

Address of a D3DVIEWPORT2 structure that contains the new viewport.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

D3DERR_VIEWPORTHASNODEVICE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
You cannot set viewport parameters unless the viewport is associated with a
rendering device (by calling the IDirect3DDevice3::AddViewport method). For
details, see Preparing to Use a Viewport.

The dvMinZ and dvMaxZ members of the associated D3DVIEWPORT2 structure
must not contain identical values.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

See Also
IDirect3DViewport3::GetViewport2, Using Viewports, Viewports and Clipping

IDirect3DViewport3::TransformVer
tices

[This is preliminary documentation and subject to change.]

The IDirect3DViewport3::TransformVertices method transforms a set of vertices
by the transformation matrix.

HRESULT TransformVertices(
 DWORD dwVertexCount,
 LPD3DTRANSFORMDATA lpData,
 DWORD dwFlags,

in.doc – page 452

 LPDWORD lpOffscreen
);

Parameters
dwVertexCount

Number of vertices in the lpData parameter to be transformed.
lpData

Address of a D3DTRANSFORMDATA structure that contains the vertices to
be transformed. See Remarks.

dwFlags
One of the following flags. See the comments section following the parameter
description for a discussion of how to use these flags.
D3DTRANSFORM_CLIPPED
D3DTRANSFORM_UNCLIPPED

lpOffscreen
Address of a variable that is set to a nonzero value if the resulting vertices are
all off-screen.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method has often be used to perform visibility checking, as it returns clipping
information in the D3DTRANSFORMDATA structure after the call completes.
Although the clipping information is accurate, visibility checking is best performed
by calling the IDirect3DDevice3::ComputeSphereVisibility method, which was
specially designed and optimized for this purpose.

If the dwFlags parameter is set to D3DTRANSFORM_CLIPPED, this method uses
the current transformation matrix to transform a set of vertices, checking the
resulting vertices to see if they are within the viewing frustum. The homogeneous
part of the D3DTLVERTEX structure within lpData will be set if the vertex is
clipped; otherwise only the screen coordinates will be set. The clip intersection of all
the vertices transformed is returned in lpOffscreen. That is, if lpOffscreen is nonzero,
all the vertices were off-screen and not straddling the viewport.

Initialize the drExtent member of the D3DTRANSFORMDATA structure to a
D3DRECT structure that describes a 2-D bounding rectangle (extents) that the
method will "grow" if the transformed vertices do not fit within it. If the transformed

in.doc – page 453

vertices are outside the provided extents, the method adjusts the extents to fit the
vertices, otherwise no changes are made. If the dwFlags parameter is set to
D3DTRANSFORM_UNCLIPPED, this method transforms the vertices assuming that
the resulting coordinates will be within the viewing frustum. If clipping is requested
by setting the dwFlags parameter to D3DTRANSFORM_CLIPPED, the method
adjusts the extents to fit only the transformed vertices that are within the viewing
area.

The dwClip member of D3DTRANSFORMDATA can help the transformation
module determine whether the geometry will need clipping against the viewing
volume. Before transforming a geometry, high-level software often can test whether
bounding boxes or bounding spheres are wholly within the viewing volume, allowing
clipping tests to be skipped, or wholly outside the viewing volume, allowing the
geometry to be skipped entirely.

This method is unchanged from its implementation in the IDirect3DViewport2
interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.
 Import Library: Use ddraw.lib.

Unimplemented Methods
[This is preliminary documentation and subject to change.]

The following methods were stubs in previous versions of DirectX, but are not
implemented in the most recent versions of their interfaces.

IDirect3D::Initialize

IDirect3DMaterial::Initialize

IDirect3DMaterial::Reserve

IDirect3DMaterial::Unreserve

IDirect3DTexture::Initialize

IDirect3DTexture::Unload

D3D_OVERLOADS
[This is preliminary documentation and subject to change.]

C++ programmers who define D3D_OVERLOADS can use the extensions
documented here to simplify their code in Direct3D Immediate Mode applications.

in.doc – page 454

The use of D3D_OVERLOADS was introduced with DirectX® 5.0. This section is a
reference to the D3D_OVERLOADS extensions.

These extensions must be defined with C++ linkage. If D3D_OVERLOADS is
defined and the inclusion of D3dtypes.h or D3d.h is surrounded by extern "C", link
errors will result. For example, the following syntax would generate link errors
because of C linkage of D3D_OVERLOADS functionality:

#define D3D_OVERLOADS
extern "C" {
#include <d3d.h>
};

The D3D_OVERLOADS extensions can be organized into the following groups:

Constructors D3DLVERTEX
D3DTLVERTEX
D3DVECTOR
D3DVERTEX

Operators Access Grant Operators
Addition Operator
Assignment Operators
Bitwise Equality Operator
D3DMATRIX
Division Operator
Multiplication Operator
Subtraction Operator
Unary Operators
Vector Dominance Operators

Helper functions CrossProduct
DotProduct
Magnitude
Max
Maximize
Min
Minimize
Normalize
SquareMagnitude

in.doc – page 455

D3D_OVERLOADS
Constructors

[This is preliminary documentation and subject to change.]

This section contains reference information for the constructors provided by the
D3D_OVERLOADS C++ extensions.

· D3DLVERTEX
· D3DTLVERTEX
· D3DVECTOR
· D3DVERTEX

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

D3DLVERTEX Constructors
[This is preliminary documentation and subject to change.]

The D3D_OVERLOADS constructors for the D3DLVERTEX structure offer a
convenient way for C++ programmers to create lit vertices.

_D3DLVERTEX() { }
_D3DLVERTEX(const D3DVECTOR& v,
 D3DCOLOR _color, D3DCOLOR _specular,
 float _tu, float _tv)
 { x = v.x; y = v.y; z = v.z; dwReserved = 0;
 color = _color; specular = _specular;
 tu = _tu; tv = _tv;
 }

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

D3DTLVERTEX Constructors
[This is preliminary documentation and subject to change.]

in.doc – page 456

The D3D_OVERLOADS constructors for the D3DTLVERTEX structure offer a
convenient way for C++ programmers to create transformed and lit vertices.

_D3DTLVERTEX() { }
_D3DTLVERTEX(const D3DVECTOR& v, float _rhw,
 D3DCOLOR _color, D3DCOLOR _specular,
 float _tu, float _tv)
 { sx = v.x; sy = v.y; sz = v.z; rhw = _rhw;
 color = _color; specular = _specular;
 tu = _tu; tv = _tv;
 }

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

D3DVECTOR Constructors
[This is preliminary documentation and subject to change.]

The D3D_OVERLOADS constructors for the D3DVECTOR structure offer a
convenient way for C++ programmers to create vectors.

_D3DVECTOR() { }
_D3DVECTOR(D3DVALUE f);
_D3DVECTOR(D3DVALUE _x, D3DVALUE _y, D3DVALUE _z);
_D3DVECTOR(const D3DVALUE f[3]);

These constructors are defined as follows:

inline _D3DVECTOR::_D3DVECTOR(D3DVALUE f)
 { x = y = z = f; }

inline _D3DVECTOR::_D3DVECTOR(D3DVALUE _x, D3DVALUE _y, D3DVALUE _z)
 { x = _x; y = _y; z = _z; }

inline _D3DVECTOR::_D3DVECTOR(const D3DVALUE f[3])
 { x = f[0]; y = f[1]; z = f[2]; }

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 457

Windows 95.
 Header: Declared in d3d.h.

D3DVERTEX Constructors
[This is preliminary documentation and subject to change.]

The D3D_OVERLOADS constructors for the D3DVERTEX structure offer a
convenient way for C++ programmers to create lit vertices.

_D3DVERTEX() { }
_D3DVERTEX(const D3DVECTOR& v, const D3DVECTOR& n, float _tu, float _tv)
 { x = v.x; y = v.y; z = v.z;
 nx = n.x; ny = n.y; nz = n.z;
 tu = _tu; tv = _tv;
 }

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

D3D_OVERLOADS Operators
[This is preliminary documentation and subject to change.]

This section contains reference information for the operators provided by the
D3D_OVERLOADS C++ extensions.

· Access Grant Operators
· Addition Operator
· Assignment Operators
· Bitwise Equality Operator
· D3DMATRIX
· Division Operator
· Multiplication Operator
· Subtraction Operator
· Unary Operators
· Vector Dominance Operators

in.doc – page 458

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

Access Grant Operators
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

The bracket ("[]") operators are overloaded operators for the D3D_OVERLOADS
extensions. You can use empty brackets ("[]") for access grants, "v[0]" to access the
x component of a vector, "v[1]" to access the y component, and "v[2]" to access the z
component. These operators are defined as follows:

const D3DVALUE&operator[](int i) const;
D3DVALUE&operator[](int i);

inline const D3DVALUE&
_D3DVECTOR::operator[](int i) const
{
 return (&x)[i];
}

inline D3DVALUE&
_D3DVECTOR::operator[](int i)
{
 return (&x)[i];
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

Addition Operator
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

This binary operator is an overloaded operator for the D3D_OVERLOADS
extensions. The addition operator is defined as follows:

in.doc – page 459

_D3DVECTOR operator + (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator + (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x+v2.x, v1.y+v2.y, v1.z+v2.z);
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

Assignment Operators
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

The assignment operators are overloaded operators for the D3D_OVERLOADS
extensions. Both scalar and vector forms of the "*=" and "/=" operators have been
implemented. (In the vector form, multiplication and division are memberwise.)

_D3DVECTOR& operator += (const _D3DVECTOR& v);
_D3DVECTOR& operator -= (const _D3DVECTOR& v);
_D3DVECTOR& operator *= (const _D3DVECTOR& v);
_D3DVECTOR& operator /= (const _D3DVECTOR& v);
_D3DVECTOR& operator *= (D3DVALUE s);
_D3DVECTOR& operator /= (D3DVALUE s);

The assignment operators are defined as follows:

inline _D3DVECTOR&
_D3DVECTOR::operator += (const _D3DVECTOR& v)
{
 x += v.x; y += v.y; z += v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator -= (const _D3DVECTOR& v)
{
 x -= v.x; y -= v.y; z -= v.z;
 return *this;
}

in.doc – page 460

inline _D3DVECTOR&
_D3DVECTOR::operator *= (const _D3DVECTOR& v)
{
 x *= v.x; y *= v.y; z *= v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator /= (const _D3DVECTOR& v)
{
 x /= v.x; y /= v.y; z /= v.z;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator *= (D3DVALUE s)
{
 x *= s; y *= s; z *= s;
 return *this;
}

inline _D3DVECTOR&
_D3DVECTOR::operator /= (D3DVALUE s)
{
 x /= s; y /= s; z /= s;
 return *this;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

Bitwise Equality Operator
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

This binary operator is an overloaded operator for the D3D_OVERLOADS
extensions. The bitwise-equality operator is defined as follows:

int operator == (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline int

in.doc – page 461

operator == (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1.x==v2.x && v1.y==v2.y && v1.z == v2.z;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

D3DMATRIX (D3D_OVERLOADS)
[This is preliminary documentation and subject to change.]

The D3D_OVERLOADS implementation of the D3DMATRIX structure
implements a parentheses ("()") operator. This operator offers convenient access to
values in the matrix for C++ programmers. Instead of having to refer to the structure
members by name, C++ programmers can refer to them by row and column number,
and simply index these numbers as needed.

typedef struct _D3DMATRIX {
#if (defined __cplusplus) && (defined D3D_OVERLOADS)
 union {
 struct {
#endif

 D3DVALUE _11, _12, _13, _14;
 D3DVALUE _21, _22, _23, _24;
 D3DVALUE _31, _32, _33, _34;
 D3DVALUE _41, _42, _43, _44;

#if (defined __cplusplus) && (defined D3D_OVERLOADS)
 };
 D3DVALUE m[4][4];
 };
 _D3DMATRIX() { }

 D3DVALUE& operator()(int iRow, int iColumn) { return m[iRow][iColumn]; }
 const D3DVALUE& operator()(int iRow, int iColumn) const { return m[iRow]
[iColumn]; }
#endif
} D3DMATRIX, *LPD3DMATRIX;

in.doc – page 462

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
D3DMATRIX

Division Operator
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

This binary operator is an overloaded operator for the D3D_OVERLOADS
extensions. Both scalar and vector forms of this operator have been implemented.
The division operator is defined as follows:

_D3DVECTOR operator / (const _D3DVECTOR& v, D3DVALUE s);
_D3DVECTOR operator / (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator / (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x/v2.x, v1.y/v2.y, v1.z/v2.z);
}

inline _D3DVECTOR
operator / (const _D3DVECTOR& v, D3DVALUE s)
{
 return _D3DVECTOR(v.x/s, v.y/s, v.z/s);
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

Multiplication Operator
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

in.doc – page 463

This binary operator is an overloaded operator for the D3D_OVERLOADS
extensions. Both scalar and vector forms of this operator have been implemented.
The multiplication operator is defined as follows:

_D3DVECTOR operator * (const _D3DVECTOR& v, D3DVALUE s);
_D3DVECTOR operator * (D3DVALUE s, const _D3DVECTOR& v);
_D3DVECTOR operator * (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator * (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x*v2.x, v1.y*v2.y, v1.z*v2.z);
}

inline _D3DVECTOR
operator * (const _D3DVECTOR& v, D3DVALUE s)
{
 return _D3DVECTOR(s*v.x, s*v.y, s*v.z);
}

inline _D3DVECTOR
operator * (D3DVALUE s, const _D3DVECTOR& v)
{
 return _D3DVECTOR(s*v.x, s*v.y, s*v.z);
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

Subtraction Operator
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

This binary operator is an overloaded operator for the D3D_OVERLOADS
extensions. The subtraction operator is defined as follows:

_D3DVECTOR operator - (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

inline _D3DVECTOR
operator - (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1.x-v2.x, v1.y-v2.y, v1.z-v2.z);

in.doc – page 464

}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

Unary Operators
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

The unary operators are overloaded operators for the D3D_OVERLOADS
extensions. The unary operators are defined as follows:

_D3DVECTOR operator + (const _D3DVECTOR& v);
_D3DVECTOR operator - (const _D3DVECTOR& v);

inline _D3DVECTOR
operator + (const _D3DVECTOR& v)
{
 return v;
}

inline _D3DVECTOR
operator - (const _D3DVECTOR& v)
{
 return _D3DVECTOR(-v.x, -v.y, -v.z);
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

Vector Dominance Operators
(D3D_OVERLOADS)

[This is preliminary documentation and subject to change.]

These binary operators are overloaded operators for the D3D_OVERLOADS
extensions. Vector v1 dominates vector v2 if any component of v1 is greater than the

in.doc – page 465

corresponding component of v2. Therefore, it is possible for neither of the two
specified vectors to dominate the other.

int operator < (const _D3DVECTOR& v1, const _D3DVECTOR& v2);
int operator <= (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

The vector-dominance operators are defined as follows:

inline int
operator < (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1[0] < v2[0] && v1[1] < v2[1] && v1[2] < v2[2];
}

inline int
operator <= (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1[0] <= v2[0] && v1[1] <= v2[1] && v1[2] <= v2[2];
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3D_OVERLOADS Helper
Functions

[This is preliminary documentation and subject to change.]

This section contains reference information for the helper functions provided by the
D3D_OVERLOADS C++ extensions.

· CrossProduct
· DotProduct
· Magnitude
· Max
· Maximize
· Min
· Minimize
· Normalize
· SquareMagnitude

in.doc – page 466

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

CrossProduct
[This is preliminary documentation and subject to change.]

This helper function returns the cross product of the specified vectors. CrossProduct
is part of the suite of extra functionality that is available to C++ programmers who
define D3D_OVERLOADS.

_D3DVECTOR CrossProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:

inline _D3DVECTOR
CrossProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 _D3DVECTOR result;

 result[0] = v1[1] * v2[2] - v1[2] * v2[1];
 result[1] = v1[2] * v2[0] - v1[0] * v2[2];
 result[2] = v1[0] * v2[1] - v1[1] * v2[0];

 return result;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
DotProduct

DotProduct
[This is preliminary documentation and subject to change.]

in.doc – page 467

This helper function returns the dot product of the specified vectors. DotProduct is
part of the suite of extra functionality that is available to C++ programmers who
define D3D_OVERLOADS.

D3DVALUE DotProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:

inline D3DVALUE
DotProduct (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return v1.x*v2.x + v1.y * v2.y + v1.z*v2.z;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
CrossProduct

Magnitude
[This is preliminary documentation and subject to change.]

This helper function returns the absolute value of the specified vector. Magnitude is
part of the suite of extra functionality that is available to C++ programmers who
define D3D_OVERLOADS.

D3DVALUE Magnitude (const _D3DVECTOR& v);

This function is defined as follows:

inline D3DVALUE
Magnitude (const _D3DVECTOR& v)
{
 return (D3DVALUE) sqrt(SquareMagnitude(v));
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 468

Windows 95.
 Header: Declared in d3d.h.

See Also
SquareMagnitude

Max
[This is preliminary documentation and subject to change.]

This helper function returns the maximum component of the specified vector. Max
is part of the suite of extra functionality that is available to C++ programmers who
define D3D_OVERLOADS.

D3DVALUE Max (const _D3DVECTOR& v);

This function is defined as follows:

inline D3DVALUE
Max (const _D3DVECTOR& v)
{
 D3DVALUE ret = v.x;
 if (ret < v.y) ret = v.y;
 if (ret < v.z) ret = v.z;
 return ret;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
Min

Maximize
[This is preliminary documentation and subject to change.]

This helper function returns a vector that is made up of the largest components of the
two specified vectors. Maximize is part of the suite of extra functionality that is
available to C++ programmers who define D3D_OVERLOADS.

_D3DVECTOR Maximize (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

in.doc – page 469

This function is defined as follows:

inline _D3DVECTOR
Maximize (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1[0] > v2[0] ? v1[0] : v2[0],
 v1[1] > v2[1] ? v1[1] : v2[1],
 v1[2] > v2[2] ? v1[2] : v2[2]);
}

Remarks
You could use the Maximize and Minimize functions to compute the bounding box
for a set of points, in a function that looks like this:

 void
 ComputeBoundingBox(const D3DVECTOR *pts, int N, D3DVECTOR *min,
D3DVECTOR *max)
 {
 int i;
 *min = *max = pts[0];
 for (i = 1; i < N; i += 1)
 {
 *min = Minimize(*min, pts[i]);
 *max = Maximize(*max, pts[i]);
 }
 }

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
Minimize

Min
[This is preliminary documentation and subject to change.]

This helper function returns the minimum component of the specified vector. Min is
part of the suite of extra functionality that is available to C++ programmers who
define D3D_OVERLOADS.

D3DVALUE Min (const _D3DVECTOR& v);

in.doc – page 470

This function is defined as follows:

inline D3DVALUE
Min (const _D3DVECTOR& v)
{
 D3DVALUE ret = v.x;
 if (v.y < ret) ret = v.y;
 if (v.z < ret) ret = v.z;
 return ret;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
Max

Minimize
[This is preliminary documentation and subject to change.]

This helper function returns a vector that is made up of the smallest components of
the two specified vectors. Minimize is part of the suite of extra functionality that is
available to C++ programmers who define D3D_OVERLOADS.

_D3DVECTOR Minimize (const _D3DVECTOR& v1, const _D3DVECTOR& v2);

This function is defined as follows:

inline _D3DVECTOR
Minimize (const _D3DVECTOR& v1, const _D3DVECTOR& v2)
{
 return _D3DVECTOR(v1[0] < v2[0] ? v1[0] : v2[0],
 v1[1] < v2[1] ? v1[1] : v2[1],
 v1[2] < v2[2] ? v1[2] : v2[2]);
}

Remarks
You could use the Maximize and Minimize functions to compute the bounding box
for a set of points, in a function that looks like this:

in.doc – page 471

 void
 ComputeBoundingBox(const D3DVECTOR *pts, int N, D3DVECTOR *min,
D3DVECTOR *max)
 {
 int i;
 *min = *max = pts[0];
 for (i = 1; i < N; i += 1)
 {
 *min = Minimize(*min, pts[i]);
 *max = Maximize(*max, pts[i]);
 }
 }

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
Maximize

Normalize
[This is preliminary documentation and subject to change.]

This helper function returns the normalized version of the specified vector (that is, a
unit-length vector with the same direction as the source). Normalize is part of the
suite of extra functionality that is available to C++ programmers who define
D3D_OVERLOADS.

_D3DVECTOR Normalize (const _D3DVECTOR& v);

This function is defined as follows:

inline _D3DVECTOR
Normalize (const _D3DVECTOR& v)
{
 return v / Magnitude(v);
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 472

Windows 95.
 Header: Declared in d3d.h.

SquareMagnitude
[This is preliminary documentation and subject to change.]

This helper function returns the square of the absolute value of the specified vector.
SquareMagnitude is part of the suite of extra functionality that is available to C++
programmers who define D3D_OVERLOADS.

D3DVALUE SquareMagnitude (const _D3DVECTOR& v);

This function is defined as follows:

inline D3DVALUE
SquareMagnitude (const _D3DVECTOR& v)
{
 return v.x*v.x + v.y*v.y + v.z*v.z;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3d.h.

See Also
Magnitude

Callback Functions
[This is preliminary documentation and subject to change.]

This section contains reference information for the callback functions you may need
to implement when you work with Direct3D Immediate Mode.

· D3DEnumDevicesCallback
· D3DEnumPixelFormatsCallback
· D3DEnumTextureFormatsCallback
· D3DValidateCallback

D3DEnumDevicesCallback
[This is preliminary documentation and subject to change.]

in.doc – page 473

The D3DEnumDevicesCallback is an application-defined callback function for the
IDirect3D3::EnumDevices method.

HRESULT CALLBACK D3DEnumDevicesCallback(
 GUID FAR* lpGuid,
 LPSTR lpDeviceDescription,
 LPSTR lpDeviceName,
 LPD3DDEVICEDESC lpD3DHWDeviceDesc,
 LPD3DDEVICEDESC lpD3DHELDeviceDesc,
 LPVOID lpContext
);

Parameters
lpGuid

Address of a globally unique identifier (GUID) that identifies a Direct3D device.
lpDeviceDescription

Address of a textual description of the device.
lpDeviceName

Address of the device name.
lpD3DHWDeviceDesc

Address of a D3DDEVICEDESC structure that contains the hardware
capabilities of the Direct3D device.

lpD3DHELDeviceDesc
Address of a D3DDEVICEDESC structure that contains the emulated
capabilities of the Direct3D device.

lpContext
Address of application-defined data passed to this callback function.

Return Values
Applications should return D3DENUMRET_OK to continue the enumeration, or
D3DENUMRET_CANCEL to cancel it.

Remarks
When determining the order in which to call callback functions, the system searches
the objects highest in the hierarchy first, and then calls their callback functions in the
order in which they were created.

The LPD3DENUMDEVICESCALLBACK data type is defined as a pointer to this
callback function:

typedef HRESULT (FAR PASCAL * LPD3DENUMDEVICESCALLBACK)(
 GUID FAR *lpGuid, LPSTR lpDeviceDescription, LPSTR lpDeviceName,
 LPD3DDEVICEDESC, LPD3DDEVICEDESC, LPVOID);

in.doc – page 474

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.
 Import Library: User-defined.

D3DEnumPixelFormatsCallba
ck

[This is preliminary documentation and subject to change.]

The D3DEnumPixelFormatsCallback is an application-defined callback function
for the IDirect3D3::EnumZBufferFormats, and
IDirect3DDevice3::EnumTextureFormats methods.

HRESULT CALLBACK D3DEnumPixelFormatsCallback(
 LPDDPIXELFORMAT lpDDPixFmt,
 LPVOID lpContext
);

Parameters
lpDDPixFmt

Address of a DDPIXELFORMAT structure that describes the enumerated pixel
format.

lpContext
Address of application-defined data passed to the function by the caller.

Return Values
Applications should return D3DENUMRET_OK to continue the enumeration, or
D3DENUMRET_CANCEL to cancel it.

Remarks
The LPD3DENUMPIXELFORMATSCALLBACK data type is defined as a
pointer to this callback function:

typedef HRESULT (WINAPI* LPD3DENUMPIXELFORMATSCALLBACK)
(LPDDPIXELFORMAT lpDDPixFmt, LPVOID lpContext);

in.doc – page 475

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.
 Import Library: User-defined.

D3DEnumTextureFormatsCall
back

[This is preliminary documentation and subject to change.]

The D3DEnumTextureFormatsCallback function is an application-defined
callback function for the IDirect3DDevice::EnumTextureFormats and
IDirect3DDevice2::EnumTextureFormats methods.

HRESULT CALLBACK D3DEnumTextureFormatsCallback(
 LPDDSURFACEDESC lpDdsd,
 LPVOID lpUserArg
);

Parameters
lpDdsd

Address of a DDSURFACEDESC structure containing the texture information.
lpUserArg

Address of application-defined data passed to this callback function.

Return Values
Applications should return D3DENUMRET_OK to continue the enumeration, or
D3DENUMRET_CANCEL to cancel it.

Remarks
When determining the order in which to call callback functions, the system searches
the objects highest in the hierarchy first, and then calls their callback functions in the
order in which they were created.

The LPD3DENUMTEXTUREFORMATSCALLBACK data type is defined as a
pointer to this callback function:

typedef HRESULT (WINAPI* LPD3DENUMTEXTUREFORMATSCALLBACK)
(LPDDSURFACEDESC lpDdsd, LPVOID lpContext);

in.doc – page 476

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.
 Import Library: User-defined.

D3DValidateCallback
[This is preliminary documentation and subject to change.]

The D3DValidateCallback function is an application-defined callback function for
the IDirect3DExecuteBuffer::Validate method. The
IDirect3DExecuteBuffer::Validate method is not currently implemented.

IDirect3DExecuteBuffer::Validate is a debugging routine that checks the execute
buffer and returns an offset into the buffer when any errors are encountered.

HRESULT CALLBACK D3DValidateCallback(
 LPVOID lpUserArg,
 DWORD dwOffset
);

Parameters
lpUserArg

Address of application-defined data passed to this callback function.
dwOffset

Offset into the execute buffer at which the system found an error.

Return Values
Applications should return D3DENUMRET_OK to continue the enumeration, or
D3DENUMRET_CANCEL to cancel it.

Remarks
When determining the order in which to call callback functions, the system searches
the objects highest in the hierarchy first, and then calls their callback functions in the
order in which they were created.

The LPD3DVALIDATECALLBACK data type is defined as a pointer to this
callback function:

typedef HRESULT (WINAPI* LPD3DVALIDATECALLBACK)(LPVOID lpUserArg, DWORD
dwOffset);

in.doc – page 477

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.
 Import Library: User-defined.

Macros
[This is preliminary documentation and subject to change.]

This section contains reference information for the macros provided by Direct3D
Immediate Mode.

· D3DDivide
· D3DMultiply
· D3DRGB
· D3DRGBA
· D3DSTATE_OVERRIDE
· D3DVAL
· D3DVALP
· RGB_GETBLUE
· RGB_GETGREEN
· RGB_GETRED
· RGB_MAKE
· RGB_TORGBA
· RGBA_GETALPHA
· RGBA_GETBLUE
· RGBA_GETGREEN
· RGBA_GETRED
· RGBA_MAKE
· RGBA_SETALPHA
· RGBA_TORGB

D3DDivide
[This is preliminary documentation and subject to change.]

The D3DDivide macro divides two values.

D3DDivide(a, b) (float)((double) (a) / (double) (b))

in.doc – page 478

Parameters
a and b

Dividend and divisor in the expression, respectively.

Return Values
The macros returns the quotient of the division.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DMultiply

D3DMultiply
[This is preliminary documentation and subject to change.]

The D3DMultiply macro multiplies two values.

D3DMultiply(a, b) ((a) * (b))

Parameters
a and b

Values to be multiplied.

Return Values
The macros returns the product of the multiplication.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DDivide

in.doc – page 479

D3DRGB
[This is preliminary documentation and subject to change.]

The D3DRGB macro initializes a color with the supplied RGB values.

D3DRGB(r, g, b) \
 (0xff000000L | (((long)((r) * 255)) << 16) | \
 (((long)((g) * 255)) << 8) | (long)((b) * 255))

Parameters
r, g, and b

Red, green, and blue components of the color. These should be floating-point
values in the range 0 through 1.

Return Values
The macros returns the D3DCOLOR value corresponding to the supplied RGB
values.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DRGBA

D3DRGBA
[This is preliminary documentation and subject to change.]

The D3DRGBA macro initializes a color with the supplied RGBA values.

D3DRGBA(r, g, b, a) \
 ((((long)((a) * 255)) << 24) | (((long)((r) * 255)) << 16) |
 (((long)((g) * 255)) << 8) | (long)((b) * 255))

Parameters
r, g, b, and a

Red, green, blue, and alpha components of the color.

in.doc – page 480

Return Values
The macros returns the D3DCOLOR value corresponding to the supplied RGBA
values.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DRGB

D3DSTATE_OVERRIDE
[This is preliminary documentation and subject to change.]

The D3DSTATE_OVERRIDE macro overrides the state of the rasterization,
lighting, or transformation module. Applications can use this macro to lock and
unlock a state.

D3DSTATE_OVERRIDE(type) (D3DRENDERSTATETYPE)(((DWORD) (type) +
D3DSTATE_OVERRIDE_BIAS))

Parameters
type

State to override. This parameter should be one of the members of the
D3DTRANSFORMSTATETYPE, D3DLIGHTSTATETYPE, or
D3DRENDERSTATETYPE enumerated types.

Return Values
No return value.

Remarks
An application might, for example, use the STATE_DATA helper macro (defined in
the D3dmacs.h header file in the Misc directory of the DirectX Programmer's
Reference sample code) and D3DSTATE_OVERRIDE to lock and unlock the
D3DRENDERSTATE_SHADEMODE render state:

// Lock the shade mode.

in.doc – page 481

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), TRUE,
lpBuffer);

// Work with the shade mode and unlock it when read-only status is not required.

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), FALSE,
lpBuffer);

For more information about overriding rendering states, see States and State
Overrides.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DVAL
[This is preliminary documentation and subject to change.]

The D3DVAL macro creates a value whose type is D3DVALUE.

D3DVAL(val) ((float)val)

Parameters
val

Value to be converted.

Return Values
The macros returns the converted value.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DVALP

in.doc – page 482

D3DVALP
[This is preliminary documentation and subject to change.]

The D3DVALP macro creates a value of the specified precision.

D3DVALP(val, prec) ((float)val)

Parameters
val

Value to be converted.
prec

Ignored.

Return Values
The macros returns the converted value.

Remarks
The precision, as implemented by the D3DVAL macro, is 16 bits for the fractional
part of the value.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DVAL

RGB_GETBLUE
[This is preliminary documentation and subject to change.]

The RGB_GETBLUE macro retrieves the blue component of a D3DCOLOR value.

RGB_GETBLUE(rgb) ((rgb) & 0xff)

Parameters
rgb

Color index from which the blue component is retrieved.

in.doc – page 483

Return Values
Returns the blue component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGB_GETGREEN
[This is preliminary documentation and subject to change.]

The RGB_GETGREEN macro retrieves the green component of a D3DCOLOR
value.

RGB_GETGREEN(rgb) (((rgb) >> 8) & 0xff)

Parameters
rgb

Color index from which the green component is retrieved.

Return Values
The macros returns the green component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGB_GETRED
[This is preliminary documentation and subject to change.]

The RGB_GETRED macro retrieves the red component of a D3DCOLOR value.

RGB_GETRED(rgb) (((rgb) >> 16) & 0xff)

in.doc – page 484

Parameters
rgb

Color index from which the red component is retrieved.

Return Values
The macros returns the red component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGB_MAKE
[This is preliminary documentation and subject to change.]

The RGB_MAKE macro creates an RGB color from supplied values.

RGB_MAKE(r, g, b) ((D3DCOLOR) (((r) << 16) | ((g) << 8) | (b)))

Parameters
r, g, and b

Red, green, and blue components of the color to be created. These should be
integer values in the range zero through 255.

Return Values
The macros returns the color.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGB_TORGBA
[This is preliminary documentation and subject to change.]

The RGB_TORGBA macro creates an RGBA color from a supplied RGB color.

in.doc – page 485

RGB_TORGBA(rgb) ((D3DCOLOR) ((rgb) | 0xff000000))

Parameters
rgb

RGB color to be converted to an RGBA color.

Return Values
Returns the RGBA color.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
RGBA_TORGB

RGBA_GETALPHA
[This is preliminary documentation and subject to change.]

The RGBA_GETALPHA macro retrieves the alpha component of an RGBA
D3DCOLOR value.

RGBA_GETALPHA(rgb) ((rgb) >> 24)

Parameters
rgb

Color index from which the alpha component is retrieved.

Return Values
The macros returns the alpha component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

in.doc – page 486

RGBA_GETBLUE
[This is preliminary documentation and subject to change.]

The RGBA_GETBLUE macro retrieves the blue component of an RGBA
D3DCOLOR value.

RGBA_GETBLUE(rgb) ((rgb) & 0xff)

Parameters
rgb

Color index from which the blue component is retrieved.

Return Values
The macros returns the blue component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGBA_GETGREEN
[This is preliminary documentation and subject to change.]

The RGBA_GETGREEN macro retrieves the green component of an RGBA
D3DCOLOR value.

RGBA_GETGREEN(rgb) (((rgb) >> 8) & 0xff)

Parameters
rgb

Color index from which the green component is retrieved.

Return Values
The macros returns the green component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 487

Windows 95.
 Header: Declared in d3dtypes.h.

RGBA_GETRED
[This is preliminary documentation and subject to change.]

The RGBA_GETRED macro retrieves the red component of an RGBA
D3DCOLOR value.

RGBA_GETRED(rgb) (((rgb) >> 16) & 0xff)

Parameters
rgb

Color index from which the red component is retrieved.

Return Values
The macros returns the red component.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGBA_MAKE
[This is preliminary documentation and subject to change.]

The RGBA_MAKE macro creates an RGBA D3DCOLOR value from supplied red,
green, blue, and alpha components.

RGBA_MAKE(r, g, b, a) \
 ((D3DCOLOR) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b)))

Parameters
r, g, b, and a

Red, green, blue, and alpha components of the RGBA color to be created.

Return Values
The macros returns the color.

in.doc – page 488

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGBA_SETALPHA
[This is preliminary documentation and subject to change.]

The RGBA_SETALPHA macro sets the alpha component of an RGBA
D3DCOLOR value.

RGBA_SETALPHA(rgba, x) (((x) << 24) | ((rgba) & 0x00ffffff))

Parameters
rgba

RGBA color for which the alpha component will be set.
x

Value of alpha component to be set.

Return Values
The macros returns the RGBA color whose alpha component has been set.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

RGBA_TORGB
[This is preliminary documentation and subject to change.]

The RGBA_TORGB macro creates an RGB D3DCOLOR value from a supplied
RGBA D3DCOLOR value by stripping off the alpha component of the color.

RGBA_TORGB(rgba) ((D3DCOLOR) ((rgba) & 0xffffff))

Parameters
rgba

RGBA color to be converted to an RGB color.

in.doc – page 489

Return Values
The macros returns the RGB color.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
RGB_TORGBA

Structures
[This is preliminary documentation and subject to change.]

This section contains information about the following structures used with Direct3D
Immediate Mode.

· D3DBRANCH
· D3DCLIPSTATUS
· D3DCOLORVALUE
· D3DDEVICEDESC
· D3DDP_PTRSTRIDE
· D3DDRAWPRIMITIVESTRIDEDDATA
· D3DEXECUTEBUFFERDESC
· D3DEXECUTEDATA
· D3DFINDDEVICERESULT
· D3DFINDDEVICESEARCH
· D3DHVERTEX
· D3DINSTRUCTION
· D3DLIGHT
· D3DLIGHT2
· D3DLIGHTDATA
· D3DLIGHTINGCAPS
· D3DLIGHTINGELEMENT
· D3DLINE
· D3DLINEPATTERN

in.doc – page 490

· D3DLVERTEX
· D3DMATERIAL
· D3DMATRIX
· D3DMATRIXLOAD
· D3DMATRIXMULTIPLY
· D3DPICKRECORD
· D3DPOINT
· D3DPRIMCAPS
· D3DPROCESSVERTICES
· D3DRECT
· D3DSPAN
· D3DSTATE
· D3DSTATS
· D3DSTATUS
· D3DTEXTURELOAD
· D3DTLVERTEX
· D3DTRANSFORMCAPS
· D3DTRANSFORMDATA
· D3DTRIANGLE
· D3DVECTOR
· D3DVERTEX
· D3DVERTEXBUFFERDESC
· D3DVIEWPORT
· D3DVIEWPORT2

Note
The memory for all DirectX structures must be initialized to zero before use. In
addition, all structures that contain a dwSize member must set the member to
the size of the structure, in bytes, before use. The following example performs
these tasks on a common structure, DDCAPS:

DDCAPS ddcaps; // Can't use this yet.

ZeroMemory(&ddcaps, sizeof(ddcaps));
ddcaps.dwSize = sizeof(ddcaps);

// Now the structure can be used.
.
.

in.doc – page 491

D3DBRANCH
[This is preliminary documentation and subject to change.]

The D3DBRANCH structure performs conditional operations inside an execute
buffer. This structure is a forward-branch structure.

typedef struct _D3DBRANCH {
 DWORD dwMask;
 DWORD dwValue;
 BOOL bNegate;
 DWORD dwOffset;
} D3DBRANCH, *LPD3DBRANCH;

Members
dwMask

Bitmask for the branch. This mask is combined with the driver-status mask by
using the bitwise AND operator. If the result equals the value specified in the
dwValue member and the bNegate member is FALSE, the branch is taken.
For a list of the available driver-status masks, see the dwStatus member of the
D3DSTATUS structure.

dwValue
Application-defined value to compare against the operation described in the
dwMask member.

bNegate
TRUE to negate comparison.

dwOffset
How far to branch forward. Specify zero to exit.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DCLIPSTATUS
[This is preliminary documentation and subject to change.]

The D3DCLIPSTATUS structure describes the current clip status and extents of the
clipping region. This structure was introduced in DirectX 5.0.

typedef struct _D3DCLIPSTATUS {
 DWORD dwFlags;

in.doc – page 492

 DWORD dwStatus;
 float minx, maxx;
 float miny, maxy;
 float minz, maxz;
} D3DCLIPSTATUS, *LPD3DCLIPSTATUS;

Members
dwFlags

Flags describing whether this structure describes 2-D extents, 3-D extents, or the
clip status. This member can be a combination of the following flags:
D3DCLIPSTATUS_STATUS

The structure describes the current clip status.
D3DCLIPSTATUS_EXTENTS2

The structure describes the current 2-D extents. This flag cannot be combined
with D3DCLIPSTATUS_EXTENTS3.

D3DCLIPSTATUS_EXTENTS3
Not currently implemented.

dwStatus
Describes the current clip status. For a list of the available driver-status masks,
see the dwStatus member of the D3DSTATUS structure.

minx, maxx, miny, maxy, minz, maxz
x, y, and z extents of the current clipping region.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice3::GetClipStatus, IDirect3DDevice3::SetClipStatus

D3DCOLORVALUE
[This is preliminary documentation and subject to change.]

The D3DCOLORVALUE structure describes color values for the D3DLIGHT2 and
D3DMATERIAL structures.

typedef struct _D3DCOLORVALUE {
 union {
 D3DVALUE r;
 D3DVALUE dvR;

in.doc – page 493

 };
 union {
 D3DVALUE g;
 D3DVALUE dvG;
 };
 union {
 D3DVALUE b;
 D3DVALUE dvB;
 };
 union {
 D3DVALUE a;
 D3DVALUE dvA;
 };
} D3DCOLORVALUE;

Members
dvR, dvG, dvB, and dvA

Values of the D3DVALUE type specifying the red, green, blue, and alpha
components of a color. These values generally range from 0 to 1, with 0 being
black.

Remarks
You can set the members of this structure to values outside the range of 0 to 1 to
implement some unusual effects. Values greater than 1 produce strong lights that
tend to wash out a scene. Negative values produce dark lights, which actually
remove light from a scene. For more information, see Colored Lights.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DDEVICEDESC
[This is preliminary documentation and subject to change.]

The D3DDEVICEDESC structure contains a description of the current device. This
structure is used to query the current device by such methods as
IDirect3DDevice3::GetCaps.

typedef struct _D3DDeviceDesc {
 DWORD dwSize;
 DWORD dwFlags;

in.doc – page 494

 D3DCOLORMODEL dcmColorModel;
 DWORD dwDevCaps;
 D3DTRANSFORMCAPS dtcTransformCaps;
 BOOL bClipping;
 D3DLIGHTINGCAPS dlcLightingCaps;
 D3DPRIMCAPS dpcLineCaps;
 D3DPRIMCAPS dpcTriCaps;
 DWORD dwDeviceRenderBitDepth;
 DWORD dwDeviceZBufferBitDepth;
 DWORD dwMaxBufferSize;
 DWORD dwMaxVertexCount;
 DWORD dwMinTextureWidth, dwMinTextureHeight;
 DWORD dwMaxTextureWidth, dwMaxTextureHeight;
 DWORD dwMinStippleWidth, dwMaxStippleWidth;
 DWORD dwMinStippleHeight, dwMaxStippleHeight;
 DWORD dwMaxTextureRepeat;
 DWORD dwMaxTextureAspectRatio;
 DWORD dwMaxAnisotropy;
 D3DVALUE dvGuardBandLeft;
 D3DVALUE dvGuardBandTop;
 D3DVALUE dvGuardBandRight;
 D3DVALUE dvGuardBandBottom;
 D3DVALUE dvExtentsAdjust;
 DWORD dwStencilCaps;
 DWORD dwFVFCaps;
 DWORD dwTextureOpCaps;
 WORD wMaxTextureBlendStages;
 WORD wMaxSimultaneousTextures;
} D3DDEVICEDESC, *LPD3DDEVICEDESC;

Members
dwSize

Size, in bytes, of this structure. You can use the D3DDEVICEDESCSIZE
constant for this value. This member must be initialized before the structure is
used.

dwFlags
Flags identifying the members of this structure that contain valid data.
D3DDD_BCLIPPING

The bClipping member is valid.
D3DDD_COLORMODEL

The dcmColorModel member is valid.
D3DDD_DEVCAPS

The dwDevCaps member is valid.
D3DDD_DEVICERENDERBITDEPTH

in.doc – page 495

The dwDeviceRenderBitDepth member is valid.
D3DDD_DEVICEZBUFFERBITDEPTH

The dwDeviceZBufferBitDepth member is valid.
D3DDD_LIGHTINGCAPS

The dlcLightingCaps member is valid.
D3DDD_LINECAPS

The dpcLineCaps member is valid.
D3DDD_MAXBUFFERSIZE

The dwMaxBufferSize member is valid.
D3DDD_MAXVERTEXCOUNT

The dwMaxVertexCount member is valid.
D3DDD_TRANSFORMCAPS

The dtcTransformCaps member is valid.
D3DDD_TRICAPS

The dpcTriCaps member is valid.
dcmColorModel

One of the values of the D3DCOLORMODEL data type, specifying the color
model for the device.

dwDevCaps
Flags identifying the capabilities of the device.
D3DDEVCAPS_CANRENDERAFTERFLIP

Device can queue rendering commands after a page flip. Applications should
not change their behavior if this flag is set; this capability simply means that
the device is relatively fast.
This flag was introduced in DirectX 5.0.

D3DDEVCAPS_DRAWPRIMTLVERTEX
Device exports a DrawPrimitive-aware HAL.
This flag was introduced in DirectX 5.0.

D3DDEVCAPS_EXECUTESYSTEMMEMORY
Device can use execute buffers from system memory.

D3DDEVCAPS_EXECUTEVIDEOMEMORY
Device can use execute buffer from video memory.

D3DDEVCAPS_FLOATTLVERTEX
Device accepts floating point for post-transform vertex data.

D3DDEVCAPS_SEPARATETEXTUREMEMORIES
Device uses discrete texture memory pools for each stage. Textures must be
assigned to texture stages explicitly at creation-time by setting the
dwTextureStage member of the DDSURFACEDESC2 structure to the
appropriate stage identifier.

D3DDEVCAPS_SORTDECREASINGZ
Device needs data sorted for decreasing depth.

D3DDEVCAPS_SORTEXACT
Device needs data sorted exactly.

in.doc – page 496

D3DDEVCAPS_SORTINCREASINGZ
Device needs data sorted for increasing depth.

D3DDEVCAPS_TEXREPEATNOTSCALEDBYSIZE
Device defers scaling of texture indices by the texture size until after the
texture address mode is applied.

D3DDEVCAPS_TEXTURENONLOCALVIDMEM
Device can retrieve textures from non-local video (AGP) memory.
This flag was introduced in DirectX 5.0. For more information about AGP
memory, see Using Non-local Video Memory Surfaces in the DirectDraw
documentation.

D3DDEVCAPS_TEXTURESYSTEMMEMORY
Device can retrieve textures from system memory.

D3DDEVCAPS_TEXTUREVIDEOMEMORY
Device can retrieve textures from device memory.

D3DDEVCAPS_TLVERTEXSYSTEMMEMORY
Device can use buffers from system memory for transformed and lit vertices.

D3DDEVCAPS_TLVERTEXVIDEOMEMORY
Device can use buffers from video memory for transformed and lit vertices.

dtcTransformCaps
One of the members of the D3DTRANSFORMCAPS structure, specifying the
transformation capabilities of the device.

bClipping
TRUE if the device can perform 3-D clipping.

dlcLightingCaps
One of the members of the D3DLIGHTINGCAPS structure, specifying the
lighting capabilities of the device.

dpcLineCaps and dpcTriCaps
D3DPRIMCAPS structures defining the device's support for line-drawing and
triangle primitives.

dwDeviceRenderBitDepth
Device's rendering bit-depth. This can be one or more of the following
DirectDraw bit-depth constants: DDBD_8, DDBD_16, DDBD_24, or
DDBD_32.

dwDeviceZBufferBitDepth
Device's depth-buffer bit-depth. This can be one of the following DirectDraw
bit-depth constants: DDBD_8, DDBD_16, DDBD_24, or DDBD_32.

dwMaxBufferSize
Maximum size of the execute buffer for this device. If this member is 0, the
application can use any size.

dwMaxVertexCount
Maximum number of vertices supported by an execute buffer for this device.
(The DrawPrimitive rendering methods support up to 65,536 vertices.)

dwMinTextureWidth, dwMinTextureHeight

in.doc – page 497

Minimum texture width and height for this device.
dwMaxTextureWidth, dwMaxTextureHeight

Maximum texture width and height for this device.
dwMinStippleWidth, dwMaxStippleWidth

Minimum and maximum width of the stipple pattern for this device.
dwMinStippleHeight, dwMaxStippleHeight

Minimum and maximum height of the stipple pattern for this device.
dwMaxTextureRepeat

Full range of the integer (non-fractional) bits of the post-normalized texture
indices. If the D3DDEVCAPS_TEXREPEATNOTSCALEDBYSIZE bit is set,
the device defers scaling by the texture size until after the texture address mode
is applied. If it isn't set, the device scales the texture indices by the texture size
(largest level-of-detail) prior to interpolation.

dwMaxTextureAspectRatio
Maximum texture aspect ratio supported by the hardware; this will typically be a
power of 2.

dwMaxAnisotropy
Maximum valid value for the D3DRENDERSTATE_ANISOTROPY render
state.

dvGuardBandLeft, dvGuardBandTop, dvGuardBandRight, and
dvGuardBandBottom

The screen-space coordinates of the guard-band clipping region. Coordinates
inside this rectangle but outside the viewport rectangle will automatically be
clipped.

dvExtentsAdjust
Number of pixels to adjust the extents rectangle outward to accommodate
antialiasing kernels.

dwStencilCaps
Flags specifying supported stencil-buffer operations. Stencil operations are
assumed to be valid for all three stencil-buffer operation render states
(D3DRENDERSTATE_STENCILFAIL,
D3DRENDERSTATE_STENCILPASS, and
D3DRENDERSTATE_STENCILFAILZFAIL).
D3DSTENCILCAPS_DECR

The D3DSTENCILOP_DECR operation is supported.
D3DSTENCILCAPS_DECRSAT

The D3DSTENCILOP_DECRSAT operation is supported.
D3DSTENCILCAPS_INCR

The D3DSTENCILOP_INCR operation is supported.
D3DSTENCILCAPS_INCRSAT

The D3DSTENCILOP_INCRSAT operation is supported.
D3DSTENCILCAPS_INVERT

The D3DSTENCILOP_INVERT operation is supported.
D3DSTENCILCAPS_KEEP

in.doc – page 498

The D3DSTENCILOP_KEEP operation is supported.
D3DSTENCILCAPS_REPLACE

The D3DSTENCILOP_REPLACE operation is supported.
D3DSTENCILCAPS_ZERO

The D3DSTENCILOP_ZERO operation is supported.
dwFVFCaps

Flexible vertex format capabilities:
D3DFVFCAPS_DONOTSTRIPELEMENTS

Device prefers that vertex elements not be stripped. That is, if the vertex
format contains elements that will not be used with the current render states,
there is no need to regenerate the vertices. If this capability flag is not
present, stripping extraneous elements from the vertex format will provide
better performance.

D3DFVFCAPS_TEXCOORDCOUNTMASK
Masks the low WORD of dwFVFCaps. These bits, cast to the WORD data
type, describe the total number of texture coordinate sets that the device can
simultaneously use for multiple texture blending. (You can use up to eight
texture coordinate sets for any vertex, but the device can only blend using the
specified number of texture coordinate sets.)

dwTextureOpCaps
Combination of flags describing the texture operations supported by this device.
The following flags are defined:
D3DTEXOPCAPS_ADD

The D3DTOP_ADD texture blending operation is supported by this device.
D3DTEXOPCAPS_ADDSIGNED

The D3DTOP_ADDSIGNED texture blending operation is supported by this
device.

D3DTEXOPCAPS_ADDSIGNED2X
The D3DTOP_ADDSIGNED2X texture blending operation is supported by
this device.

D3DTEXOPCAPS_ADDSMOOTH
The D3DTOP_ADDSMOOTH texture blending operation is supported by
this device.

D3DTEXOPCAPS_BLENDCURRENTALPHA
The D3DTOP_BLENDCURRENTALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDDIFFUSEALPHA
The D3DTOP_BLENDDIFFUSEALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDFACTORALPHA
The D3DTOP_BLENDFACTORALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDTEXTUREALPHA

in.doc – page 499

The D3DTOP_BLENDTEXTUREALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDTEXTUREALPHAPM
The D3DTOP_BLENDTEXTUREALPHAPM texture blending operation is
supported by this device.

D3DTEXOPCAPS_BUMPENVMAP
The D3DTOP_BUMPENVMAP texture blending operation is supported by
this device.

D3DTEXOPCAPS_BUMPENVMAPLUMINANCE
The D3DTOP_BUMPENVMAPLUMINANCE texture blending operation
is supported by this device.

D3DTEXOPCAPS_DISABLE
The D3DTOP_DISABLE texture blending operation is supported by this
device.

D3DTEXOPCAPS_DOTPRODUCT3
The D3DTOP_DOTPRODUCT3 texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATE
The D3DTOP_MODULATE texture blending operation is supported by this
device.

D3DTEXOPCAPS_MODULATE2X
The D3DTOP_MODULATE2X texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATE4X
The D3DTOP_MODULATE4X texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATEALPHA_ADDCOLOR
The D3DTOP_MODULATEALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATECOLOR_ADDALPHA
The D3DTOP_MODULATEALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATEINVALPHA_ADDCOLOR
The D3DTOP_MODULATEINVALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATEINVCOLOR_ADDALPHA
The D3DTOP_MODULATEINVCOLOR_ADDALPHA texture blending
operation is supported by this device.

D3DTEXOPCAPS_PREMODULATE
The D3DTOP_PREMODULATE texture blending operation is supported
by this device.

D3DTEXOPCAPS_SELECTARG1
The D3DTOP_SELECTARG1 texture blending operation is supported by
this device.

in.doc – page 500

D3DTEXOPCAPS_SELECTARG2
The D3DTOP_SELECTARG2 texture blending operation is supported by
this device.

D3DTEXOPCAPS_SUBTRACT
The D3DTOP_SUBTRACT texture blending operation is supported by this
device.

wMaxTextureBlendStages
Maximum number of texture blending stages supported by this device.

wMaxSimultaneousTextures
Maximum number of textures that can be simultaneously bound to the texture
blending stages for this device. See remarks.

Remarks
The wMaxTextureBlendStages and wMaxSimultaneousTextures members might
seem very similar at first glance, but they contain different information. The
wMaxTextureBlendStages member contains the total number of texture-blending
stages supported by the current device, and the wMaxSimultaneousTextures
member describes how many of those stages can have textures bound to them by
using the IDirect3DDevice3::SetTexture method.

When the driver fills this structure, it can set values for execute buffer capabilities
even when the interface being used to retrieve the capabilities (such as
IDirect3DDevice3) doesn't support execute buffers.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

See Also
D3DCOLORMODEL, D3DFINDDEVICERESULT, D3DLIGHTINGCAPS,
D3DPRIMCAPS, D3DTRANSFORMCAPS

D3DDP_PTRSTRIDE
[This is preliminary documentation and subject to change.]

The D3DDP_PTRSTRIDE structure contains the address of an array of flexible
vertex format components and the stride to the next element in the array. This
structure is contained by the D3DDRAWPRIMITIVESTRIDEDDATA structure.

typedef struct _D3DDP_PTRSTRIDE {
 LPVOID lpvData;

in.doc – page 501

 DWORD dwStride;
} D3DDP_PTRSTRIDE;

Members
lpvData

Address of an array of data.
dwStride

Memory stride to between elements in the array.

Remarks
This structure can be used with a composite vertex format (like the D3DLVERTEX
structure) or a distinct array of vertex components. In a composite vertex format, the
lpvData points to a particular component, and the dwStride member is the stride, in
bytes, of the composite format. In an array that contains only one vertex component,
the dwStride member should be the stride of each element in the array.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DDRAWPRIMITIVESTRIDEDDATA, Strided Vertex Format

D3DDRAWPRIMITIVESTRIDED
DATA

[This is preliminary documentation and subject to change.]

The D3DDRAWPRIMITIVESTRIDEDDATA structure contains flexible vertex
format components.

typedef struct D3DDRAWPRIMITIVESTRIDEDDATA {
 D3DDP_PTRSTRIDE position;
 D3DDP_PTRSTRIDE normal;
 D3DDP_PTRSTRIDE diffuse;
 D3DDP_PTRSTRIDE specular;
 D3DDP_PTRSTRIDE textureCoords[D3DDP_MAXTEXCOORD];
} D3DDRAWPRIMITIVESTRIDEDDATA , *LPD3DDRAWPRIMITIVESTRIDEDDATA;

in.doc – page 502

Members
position and normal

D3DDP_PTRSTRIDE structures that point to arrays of position and normal
vectors for a collection of vertices (each vector is a 3-element array of float
values).

diffuse and specular
D3DDP_PTRSTRIDE structures that point to diffuse and specular color
information for a collection of vertices. Each color component is an 8-8-8-8
RGBA value.

textureCoords
An 8-element array of D3DDP_PTRSTRIDE structures. Each element in the
array is an array of texture coordinates for the collection of vertices. Your
application determines which array of texture coordinates is used for a given
texture stage by calling the IDirect3DDevice3::SetTextureStageState method
with the D3DTSS_TEXCOORDINDEX stage state value.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DDP_PTRSTRIDE, Strided Vertex Format, Vertex Formats

D3DEXECUTEBUFFERDESC
[This is preliminary documentation and subject to change.]

The D3DEXECUTEBUFFERDESC structure describes the execute buffer for such
methods as IDirect3DDevice::CreateExecuteBuffer and
IDirect3DExecuteBuffer::Lock.

typedef struct _D3DExecuteBufferDesc {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwCaps;
 DWORD dwBufferSize;
 LPVOID lpData;
} D3DEXECUTEBUFFERDESC, *LPD3DEXECUTEBUFFERDESC;

Members
dwSize

in.doc – page 503

Size of this structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
Flags identifying the members of this structure that contain valid data.
D3DDEB_BUFSIZE

The dwBufferSize member is valid.
D3DDEB_CAPS

The dwCaps member is valid.
D3DDEB_LPDATA

The lpData member is valid.
dwCaps

Location in memory of the execute buffer.
D3DDEBCAPS_MEM

A logical OR of D3DDEBCAPS_SYSTEMMEMORY and
D3DDEBCAPS_VIDEOMEMORY.

D3DDEBCAPS_SYSTEMMEMORY
The execute buffer data resides in system memory.

D3DDEBCAPS_VIDEOMEMORY
The execute buffer data resides in device memory.

dwBufferSize
Size of the execute buffer, in bytes.

lpData
Address of the buffer data.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

D3DEXECUTEDATA
[This is preliminary documentation and subject to change.]

The D3DEXECUTEDATA structure specifies data for the
IDirect3DDevice::Execute method. When this method is called and the
transformation has been done, the instruction list starting at the value specified in the
dwInstructionOffset member is parsed and rendered.

typedef struct _D3DEXECUTEDATA {
 DWORD dwSize;
 DWORD dwVertexOffset;
 DWORD dwVertexCount;
 DWORD dwInstructionOffset;

in.doc – page 504

 DWORD dwInstructionLength;
 DWORD dwHVertexOffset;
 D3DSTATUS dsStatus;
} D3DEXECUTEDATA, *LPD3DEXECUTEDATA;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before the
structure is used.

dwVertexOffset
Offset into the list of vertices.

dwVertexCount
Number of vertices to execute.

dwInstructionOffset
Offset into the list of instructions to execute.

dwInstructionLength
Length of the instructions to execute.

dwHVertexOffset
Offset into the list of vertices for the homogeneous vertex used when the
application is supplying screen coordinate data that needs clipping.

dsStatus
Value storing the screen extent of the rendered geometry for use after the
transformation is complete. This value is a D3DSTATUS structure.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DSTATUS

D3DFINDDEVICERESULT
[This is preliminary documentation and subject to change.]

The D3DFINDDEVICERESULT structure identifies a device an application has
found by calling the IDirect3D3::FindDevice method.

typedef struct _D3DFINDDEVICERESULT {
 DWORD dwSize;

in.doc – page 505

 GUID guid;
 D3DDEVICEDESC ddHwDesc;
 D3DDEVICEDESC ddSwDesc;
} D3DFINDDEVICERESULT, *LPD3DFINDDEVICERESULT;

Members
dwSize

Size, in bytes, of the structure. This member must be initialized before the
structure is used.

guid
Globally unique identifier (GUID) of the device that was found.

ddHwDesc and ddSwDesc
D3DDEVICEDESC structures describing the hardware and software devices
that were found.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

See Also
D3DFINDDEVICESEARCH

D3DFINDDEVICESEARCH
[This is preliminary documentation and subject to change.]

The D3DFINDDEVICESEARCH structure specifies the characteristics of a device
an application wants to find. This structure is used in calls to the
IDirect3D3::FindDevice method.

typedef struct _D3DFINDDEVICESEARCH {
 DWORD dwSize;
 DWORD dwFlags;
 BOOL bHardware;
 D3DCOLORMODEL dcmColorModel;
 GUID guid;
 DWORD dwCaps;
 D3DPRIMCAPS dpcPrimCaps;
} D3DFINDDEVICESEARCH, *LPD3DFINDDEVICESEARCH;

in.doc – page 506

Members
dwSize

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

dwFlags
Flags defining the type of device the application wants to find. This member can
be one or more of the following values:
D3DFDS_ALPHACMPCAPS

Match the dwAlphaCmpCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_COLORMODEL
Match the color model specified in the dcmColorModel member of this
structure.

D3DFDS_DSTBLENDCAPS
Match the dwDestBlendCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_GUID
Match the globally unique identifier (GUID) specified in the guid member of
this structure.

D3DFDS_HARDWARE
Match the hardware or software search specification given in the bHardware
member of this structure.

D3DFDS_LINES
Match the D3DPRIMCAPS structure specified by the dpcLineCaps member
of the D3DDEVICEDESC structure.

D3DFDS_MISCCAPS
Match the dwMiscCaps member of the D3DPRIMCAPS structure specified
as the dpcPrimCaps member of this structure.

D3DFDS_RASTERCAPS
Match the dwRasterCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_SHADECAPS
Match the dwShadeCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_SRCBLENDCAPS
Match the dwSrcBlendCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_TEXTUREBLENDCAPS
Match the dwTextureBlendCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_TEXTURECAPS
Match the dwTextureCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

in.doc – page 507

D3DFDS_TEXTUREFILTERCAPS
Match the dwTextureFilterCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_TRIANGLES
Match the D3DPRIMCAPS structure specified by the dpcTriCaps member
of the D3DDEVICEDESC structure.

D3DFDS_ZCMPCAPS
Match the dwZCmpCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

bHardware
Flag specifying whether the device to find is implemented as hardware or
software. If this member is TRUE, the device to search for has hardware
rasterization and may also provide other hardware acceleration. Applications
that use this flag should set the D3DFDS_HARDWARE bit in the dwFlags
member.

dcmColorModel
One of the values of the D3DCOLORMODEL data type, specifying whether
the device to find should use the ramp or RGB color model.

guid
Globally unique identifier (GUID) of the device to find.

dwCaps
Reserved.

dpcPrimCaps
Specifies a D3DPRIMCAPS structure defining the device's capabilities for each
primitive type.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

See Also
D3DFINDDEVICERESULT

D3DHVERTEX
[This is preliminary documentation and subject to change.]

The D3DHVERTEX structure defines a homogeneous vertex used when the
application is supplying screen coordinate data that needs clipping. This structure is
part of the D3DTRANSFORMDATA structure.

typedef struct _D3DHVERTEX {

in.doc – page 508

 DWORD dwFlags;
 union {
 D3DVALUE hx;
 D3DVALUE dvHX;
 };
 union {
 D3DVALUE hy;
 D3DVALUE dvHY;
 };
 union {
 D3DVALUE hz;
 D3DVALUE dvHZ;
 };
} D3DHVERTEX, *LPD3DHVERTEX;

Members
dwFlags

Flags defining the clip status of the homogeneous vertex. This member can be
one or more of the flags described in the dwClip member of the
D3DTRANSFORMDATA structure.

dvHX, dvHY, and dvHZ
Values of the D3DVALUE type describing transformed homogeneous
coordinates. These coordinates define the vertex.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DINSTRUCTION
[This is preliminary documentation and subject to change.]

The D3DINSTRUCTION structure defines an instruction in an execute buffer. A
display list is made up from a list of variable length instructions. Each instruction
begins with a common instruction header and is followed by the data required for
that instruction.

typedef struct _D3DINSTRUCTION {
 BYTE bOpcode;
 BYTE bSize;
 WORD wCount;
} D3DINSTRUCTION, *LPD3DINSTRUCTION;

in.doc – page 509

Members
bOpcode

Rendering operation, specified as a member of the D3DOPCODE enumerated
type.

bSize
Size of each instruction data unit. This member can be used to skip to the next
instruction in the sequence.

wCount
Number of data units of instructions that follow. This member allows efficient
processing of large batches of similar instructions, such as triangles that make
up a triangle mesh.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DLIGHT
[This is preliminary documentation and subject to change.]

For DirectX 5.0 and later, this structure is superseded by the D3DLIGHT2 structure.
The D3DLIGHT2 structure adds a dwFlags member. In addition, the
dvAttenuation members are interpreted differently in D3DLIGHT2 than they were
for D3DLIGHT.

typedef struct _D3DLIGHT {
 DWORD dwSize;
 D3DLIGHTTYPE dltType;
 D3DCOLORVALUE dcvColor;
 D3DVECTOR dvPosition;
 D3DVECTOR dvDirection;
 D3DVALUE dvRange;
 D3DVALUE dvFalloff;
 D3DVALUE dvAttenuation0;
 D3DVALUE dvAttenuation1;
 D3DVALUE dvAttenuation2;
 D3DVALUE dvTheta;
 D3DVALUE dvPhi;
} D3DLIGHT, *LPD3DLIGHT;

in.doc – page 510

Remarks
When light properties are defined with this structure, per-vertex color (enabled
through D3DLIGHTSTATE_COLORVERTEX) is not supported. You must define
and set light properties in a D3DLIGHT2 structure to use per-vertex color.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DLIGHT2
[This is preliminary documentation and subject to change.]

The D3DLIGHT2 structure defines the light type in calls to methods such as
IDirect3DLight::SetLight and IDirect3DLight::GetLight.

For DirectX 5.0 and newer, this structure supersedes the D3DLIGHT structure. The
D3DLIGHT2 structure is identical to D3DLIGHT except for the addition of the
dwFlags member. In addition, the dvAttenuation members are interpreted
differently in D3DLIGHT2 than they were for D3DLIGHT.

typedef struct _D3DLIGHT2 {
 DWORD dwSize;
 D3DLIGHTTYPE dltType;
 D3DCOLORVALUE dcvColor;
 D3DVECTOR dvPosition;
 D3DVECTOR dvDirection;
 D3DVALUE dvRange;
 D3DVALUE dvFalloff;
 D3DVALUE dvAttenuation0;
 D3DVALUE dvAttenuation1;
 D3DVALUE dvAttenuation2;
 D3DVALUE dvTheta;
 D3DVALUE dvPhi;
 DWORD dwFlags;
} D3DLIGHT2, *LPD3DLIGHT2;

Members
dwSize

Size, in bytes, of this structure. You must specify a value for this member.
Direct3D uses the specified size to determine whether this is a D3DLIGHT or a
D3DLIGHT2 structure.

in.doc – page 511

dltType
Type of the light source. This value is one of the members of the
D3DLIGHTTYPE enumerated type.

dcvColor
Color of the light. This member is a D3DCOLORVALUE structure. In ramp
mode, the color is converted to a gray scale.

dvPosition
Position of the light in world space. This member has no meaning for directional
lights and is ignored in that case.

dvDirection
Direction the light is pointing in world space. This member only has meaning
for directional and spotlights. This vector need not be normalized but it should
have a nonzero length.

dvRange
Distance beyond which the light has no effect. The maximum allowable value
for this member is D3DLIGHT_RANGE_MAX, which is defined as the square
root of FLT_MAX. This member does not affect directional lights.

dvFalloff
Decrease in illumination between a spotlight's inner cone (the angle specified by
the dvTheta member) and the outer edge of the outer cone (the angle specified
by the dvPhi member). This feature was implemented for DirectX 5.0. For
details on how dvFalloff values affect a spotlight, see Spotlight Falloff Model.
The effect of falloff on the lighting is subtle. Furthermore, a small performance
penalty is incurred by shaping the falloff curve. For these reasons, most
developers set this value to 1.0.

dvAttenuation0 through dvAttenuation2
Values specifying how a light's intensity changes over distance. (Attenuation
does not affect directional lights.) In the D3DLIGHT2 structure these values are
interpreted differently than they were for the D3DLIGHT structure. For
information about how these attenuation values affect lighting in a scene, see
Light Attenuation Over Distance.

dvTheta
Angle, in radians, of the spotlight's inner cone—that is, the fully illuminated
spotlight cone. This value must be between 0 and the value specified by the
dvPhi member.

dvPhi
Angle, in radians, defining the outer edge of the spotlight's outer cone. Points
outside this cone are not lit by the spotlight. This value must be between 0 and
pi.

dwFlags
A combination of the following performance-related flags. This member is new
for DirectX 5.0.
D3DLIGHT_ACTIVE

Enables the light. This flag must be set to enable the light; if it is not set, the
light is ignored.

in.doc – page 512

D3DLIGHT_NO_SPECULAR
Turns off specular highlights for the light.

Remarks
In the D3DLIGHT structure, the affects of the attenuation settings were difficult to
predict; developers were encouraged to experiment with the settings until they
achieved the desired result. For D3DLIGHT2, it is much easier to work with
lighting attenuation.

When you use this structure with the IDirect3DLight::GetLight or
IDirect3DLight::SetLight, cast the pointer to this structure to the LPD3DLIGHT
data type.

For more information about lights, see Lights and IDirect3DLight.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DLIGHTTYPE

D3DLIGHTDATA
[This is preliminary documentation and subject to change.]

The D3DLIGHTDATA structure describes the points to be lit and resulting colors in
calls to the IDirect3DViewport3::LightElements method.

typedef struct _D3DLIGHTDATA {
 DWORD dwSize;
 LPD3DLIGHTINGELEMENT lpIn;
 DWORD dwInSize;
 LPD3DTLVERTEX lpOut;
 DWORD dwOutSize;
} D3DLIGHTDATA, *LPD3DLIGHTDATA;

Members
dwSize

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

lpIn

in.doc – page 513

Address of a D3DLIGHTINGELEMENT structure specifying the input
positions and normal vectors.

dwInSize
Amount to skip from one input element to the next. This allows the application
to store extra data inline with the element.

lpOut
Address of a D3DTLVERTEX structure specifying the output colors.

dwOutSize
Amount to skip from one output color to the next. This allows the application to
store extra data inline with the color.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DLIGHTINGCAPS
[This is preliminary documentation and subject to change.]

The D3DLIGHTINGCAPS structure describes the lighting capabilities of a device.
This structure is a member of the D3DDEVICEDESC structure.

typedef struct _D3DLIGHTINGCAPS {
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwLightingModel;
 DWORD dwNumLights;
} D3DLIGHTINGCAPS, *LPD3DLIGHTINGCAPS;

Members
dwSize

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

dwCaps
Flags describing the capabilities of the lighting module. The following flags are
defined:
D3DLIGHTCAPS_DIRECTIONAL

Supports directional lights.
D3DLIGHTCAPS_GLSPOT

Not used.
D3DLIGHTCAPS_PARALLELPOINT

in.doc – page 514

Supports parallel point lights.
D3DLIGHTCAPS_POINT

Supports point lights.
D3DLIGHTCAPS_SPOT

Supports spotlights.
dwLightingModel

Flags defining whether the lighting model is RGB or monochrome. The
following flags are defined:
D3DLIGHTINGMODEL_MONO

Monochromatic lighting model.
D3DLIGHTINGMODEL_RGB

RGB lighting model.
dwNumLights

Number of lights that can be handled.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

D3DLIGHTINGELEMENT
[This is preliminary documentation and subject to change.]

The D3DLIGHTINGELEMENT structure describes the points in model space that
will be lit. This structure is part of the D3DLIGHTDATA structure.

typedef struct _D3DLIGHTINGELEMENT {
 D3DVECTOR dvPosition;
 D3DVECTOR dvNormal;
} D3DLIGHTINGELEMENT, *LPD3DLIGHTINGELEMENT;

Members
dvPosition

Value specifying the lightable point in model space. This value is a
D3DVECTOR structure.

dvNormal
Value specifying the normalized unit vector. This value is a D3DVECTOR
structure.

in.doc – page 515

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DLIGHTDATA, IDirect3DViewport3::LightElements

D3DLINE
[This is preliminary documentation and subject to change.]

The D3DLINE structure describes a line for the D3DOP_LINE opcode in the
D3DOPCODE enumerated type.

typedef struct _D3DLINE {
 union {
 WORD v1;
 WORD wV1;
 };
 union {
 WORD v2;
 WORD wV2;
 };
} D3DLINE, *LPD3DLINE;

Members
wV1 and wV2

Vertex indices.

Remarks
The instruction count defines the number of line segments.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

in.doc – page 516

D3DLINEPATTERN
[This is preliminary documentation and subject to change.]

The D3DLINEPATTERN structure describes a line pattern. These values are used
by the D3DRENDERSTATE_LINEPATTERN render state in the
D3DRENDERSTATETYPE enumerated type.

typedef struct _D3DLINEPATTERN {
 WORD wRepeatFactor;
 WORD wLinePattern;
} D3DLINEPATTERN;

Members
wRepeatFactor

Number of times to duplicate each series of 1s and 0s specified in the
wLinePattern member. This repeat factor allows an application to "stretch" the
line pattern.

wLinePattern
Bits specifying the line pattern. For example, the following value would produce
a dotted line: 1100110011001100.

Remarks
A line pattern specifies how a line is drawn. The line pattern is always the same, no
matter where it is started. (This is as opposed to stippling, which affects how objects
are rendered; that is, to imitate transparency.)
The line pattern specifies up to a 16-pixel pattern of on and off pixels along the line.
The wRepeatFactor member specifies how many pixels are repeated for each entry
in wLinePattern.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DLVERTEX
[This is preliminary documentation and subject to change.]

The D3DLVERTEX structure defines an untransformed and lit vertex (model
coordinates with color). An application should use this structure when the vertex
transformations will be handled by Direct3D. This structure contains only data and a
color that would be filled by software lighting.

in.doc – page 517

typedef struct _D3DLVERTEX {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
 DWORD dwReserved;
 union {
 D3DCOLOR color;
 D3DCOLOR dcColor;
 };
 union {
 D3DCOLOR specular;
 D3DCOLOR dcSpecular;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DLVERTEX, *LPD3DLVERTEX;

Members
dvX, dvY, and dvZ

Values of the D3DVALUE type specifying the model coordinates of the vertex.
dwReserved

Reserved; must be zero.
dcColor and dcSpecular

Values of the D3DCOLOR type specifying the color and specular component of
the vertex.

dvTU and dvTV
Values of the D3DVALUE type specifying the texture coordinates of the vertex.

in.doc – page 518

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DTLVERTEX, D3DVERTEX

D3DMATERIAL
[This is preliminary documentation and subject to change.]

The D3DMATERIAL structure specifies material properties in calls to the
IDirect3DMaterial3::GetMaterial and IDirect3DMaterial3::SetMaterial
methods.

typedef struct _D3DMATERIAL {
 DWORD dwSize;
 union {
 D3DCOLORVALUE diffuse;
 D3DCOLORVALUE dcvDiffuse;
 };
 union {
 D3DCOLORVALUE ambient;
 D3DCOLORVALUE dcvAmbient;
 };
 union {
 D3DCOLORVALUE specular;
 D3DCOLORVALUE dcvSpecular;
 };
 union {
 D3DCOLORVALUE emissive;
 D3DCOLORVALUE dcvEmissive;
 };
 union {
 D3DVALUE power;
 D3DVALUE dvPower;
 };
 D3DTEXTUREHANDLE hTexture; // Used only by Ramp devices.
 DWORD dwRampSize;
} D3DMATERIAL, *LPD3DMATERIAL;

in.doc – page 519

Members
dwSize

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

dcvDiffuse, dcvAmbient, dcvSpecular, and dcvEmissive
Values specifying the diffuse color, ambient color, specular color, and emissive
color of the material, respectively. These values are D3DCOLORVALUE
structures.

dvPower
Value of the D3DVALUE type specifying the sharpness of specular highlights.

hTexture
Handle to the texture map for use by a ramp device. This member can be zero to
indicate that the material does not use a texture or when the material is being
used with a device other than the ramp device.

dwRampSize
Size of the color ramp. For the monochromatic (ramp) driver, this value should
be 1 for materials assigned to the background.

Remarks
The texture handle specified by the hTexture member is acquired from Direct3D by
loading a texture into the device. The texture handle may be used only when it has
been loaded into the device. This texture handle is only used by the legacy ramp
device, which is not supported by interfaces introduced in DirectX 6.0, such as the
new IDirect3DDevice3 interface. For more information, see Ramp Device in
Legacy Device Types.

To turn off specular highlights for a material, you must set the dvPower member to
0—simply setting the specular color components to 0 is not enough.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DMaterial3::GetMaterial, IDirect3DMaterial3::SetMaterial

D3DMATRIX
[This is preliminary documentation and subject to change.]

in.doc – page 520

The D3DMATRIX structure describes a matrix for such methods as
IDirect3DDevice::GetMatrix and IDirect3DDevice::SetMatrix.

C++ programmers can use an extended version of this structure that includes a
parentheses ("()") operator. For more information, see D3DMATRIX
(D3D_OVERLOADS)

typedef struct _D3DMATRIX {
 D3DVALUE _11, _12, _13, _14;
 D3DVALUE _21, _22, _23, _24;
 D3DVALUE _31, _32, _33, _34;
 D3DVALUE _41, _42, _43, _44;
} D3DMATRIX, *LPD3DMATRIX;

Remarks
In Direct3D, the _34 element of a projection matrix cannot be a negative number. If
your application needs to use a negative value in this location, it should scale the
entire projection matrix by -1, instead.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice::GetMatrix, IDirect3DDevice::SetMatrix

D3DMATRIXLOAD
[This is preliminary documentation and subject to change.]

The D3DMATRIXLOAD structure describes the operand data for the
D3DOP_MATRIXLOAD opcode in the D3DOPCODE enumerated type.

typedef struct _D3DMATRIXLOAD {
 D3DMATRIXHANDLE hDestMatrix;
 D3DMATRIXHANDLE hSrcMatrix;
} D3DMATRIXLOAD, *LPD3DMATRIXLOAD;

Members
hDestMatrix and hSrcMatrix

Handles to the destination and source matrices. These values are D3DMATRIX
structures.

in.doc – page 521

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE

D3DMATRIXMULTIPLY
[This is preliminary documentation and subject to change.]

The D3DMATRIXMULTIPLY structure describes the operand data for the
D3DOP_MATRIXMULTIPLY opcode in the D3DOPCODE enumerated type.

typedef struct _D3DMATRIXMULTIPLY {
 D3DMATRIXHANDLE hDestMatrix;
 D3DMATRIXHANDLE hSrcMatrix1;
 D3DMATRIXHANDLE hSrcMatrix2;
} D3DMATRIXMULTIPLY, *LPD3DMATRIXMULTIPLY;

Members
hDestMatrix

Handle to the matrix that stores the product of the source matrices. This value is
a D3DMATRIX structure.

hSrcMatrix1 and hSrcMatrix2
Handles of the first and second source matrices. These values are D3DMATRIX
structures.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE

in.doc – page 522

D3DPICKRECORD
[This is preliminary documentation and subject to change.]

The D3DPICKRECORD structure returns information about picked primitives in an
execute buffer for the IDirect3DDevice::GetPickRecords method.

typedef struct _D3DPICKRECORD {
 BYTE bOpcode;
 BYTE bPad;
 DWORD dwOffset;
 D3DVALUE dvZ;
} D3DPICKRECORD, *LPD3DPICKRECORD;

Members
bOpcode

Opcode of the picked primitive.
bPad

Pad byte.
dwOffset

Offset from the start of the instruction segment portion of the execute buffer in
which the picked primitive was found. (The instruction segment portion of the
execute buffer is the part of the execute buffer that follows the vertex list.)

dvZ
Depth of the picked primitive.

Remarks
The x- and y-coordinates of the picked primitive are specified in the call to the
IDirect3DDevice::Pick method that created the pick records.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice::GetPickRecords, IDirect3DDevice::Pick

D3DPOINT
[This is preliminary documentation and subject to change.]

in.doc – page 523

The D3DPOINT structure describes operand data for the D3DOP_POINT opcode in
the in D3DOPCODE enumerated type.

typedef struct _D3DPOINT {
 WORD wCount;
 WORD wFirst;
} D3DPOINT, *LPD3DPOINT;

Members
wCount

Number of points.
wFirst

Index of the first vertex.

Remarks
Points are rendered by using a list of vertices.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE

D3DPRIMCAPS
[This is preliminary documentation and subject to change.]

The D3DPRIMCAPS structure defines the capabilities for each primitive type. This
structure is used when creating a device and when querying the capabilities of a
device. This structure defines several members in the D3DDEVICEDESC structure.

typedef struct _D3DPrimCaps {
 DWORD dwSize; // size of structure
 DWORD dwMiscCaps; // miscellaneous caps
 DWORD dwRasterCaps; // raster caps
 DWORD dwZCmpCaps; // z-comparison caps
 DWORD dwSrcBlendCaps; // source blending caps
 DWORD dwDestBlendCaps; // destination blending caps
 DWORD dwAlphaCmpCaps; // alpha-test comparison caps
 DWORD dwShadeCaps; // shading caps

in.doc – page 524

 DWORD dwTextureCaps; // texture caps
 DWORD dwTextureFilterCaps; // texture filtering caps
 DWORD dwTextureBlendCaps; // texture blending caps
 DWORD dwTextureAddressCaps; // texture addressing caps
 DWORD dwStippleWidth; // stipple width
 DWORD dwStippleHeight; // stipple height
} D3DPRIMCAPS, *LPD3DPRIMCAPS;

Members
dwSize

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

dwMiscCaps
General capabilities for this primitive. This member can be one or more of the
following:
D3DPMISCCAPS_CONFORMANT

The device conforms to the OpenGL standard.
D3DPMISCCAPS_CULLCCW

The driver supports counterclockwise culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CCW member of the
D3DCULL enumerated type.

D3DPMISCCAPS_CULLCW
The driver supports clockwise triangle culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CW member of the
D3DCULL enumerated type.

D3DPMISCCAPS_CULLNONE
The driver does not perform triangle culling. This corresponds to the
D3DCULL_NONE member of the D3DCULL enumerated type.

D3DPMISCCAPS_LINEPATTERNREP
The driver can handle values other than 1 in the wRepeatFactor member of
the D3DLINEPATTERN structure. (This applies only to line-drawing
primitives.)

D3DPMISCCAPS_MASKPLANES
The device can perform a bitmask of color planes.

D3DPMISCCAPS_MASKZ
The device can enable and disable modification of the depth-buffer on pixel
operations.

dwRasterCaps
Information on raster-drawing capabilities. This member can be one or more of
the following:
D3DPRASTERCAPS_ANISOTROPY

in.doc – page 525

The device supports anisotropic filtering. For more information, see
D3DRENDERSTATE_ANISOTROPY in the D3DRENDERSTATETYPE
structure.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_ANTIALIASEDGES
The device can antialias lines forming the convex outline of objects. For
more information, see D3DRENDERSTATE_EDGEANTIALIAS in the
D3DRENDERSTATETYPE structure.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT
The device supports antialiasing that is dependent on the sort order of the
polygons (back-to-front or front-to-back). The application must draw
polygons in the right order for antialiasing to occur. For more information,
see the D3DANTIALIASMODE enumerated type.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT
The device supports antialiasing that is not dependent on the sort order of the
polygons. For more information, see the D3DANTIALIASMODE
enumerated type.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_DITHER
The device can dither to improve color resolution.

D3DPRASTERCAPS_FOGRANGE
The device supports range-based fog. In range-based fog, the distance of an
object from the viewer is used to compute fog effects, not the depth of the
object (that is, the z-coordinate) in the scene. For more information, see
Range-based Fog.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_FOGTABLE
The device calculates the fog value by referring to a lookup table containing
fog values that are indexed to the depth of a given pixel.

D3DPRASTERCAPS_FOGVERTEX
The device calculates the fog value during the lighting operation, places the
value into the alpha component of the D3DCOLOR value given for the
specular member of the D3DTLVERTEX structure, and interpolates the fog
value during rasterization.

D3DPRASTERCAPS_MIPMAPLODBIAS
The device supports level-of-detail (LOD) bias adjustments. These bias
adjustments enable an application to make a mipmap appear crisper or less
sharp than it normally would. For more information about LOD bias in
mipmaps, see D3DRENDERSTATE_MIPMAPLODBIAS.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_PAT

in.doc – page 526

The driver can perform patterned drawing (lines or fills with
D3DRENDERSTATE_LINEPATTERN or one of the
D3DRENDERSTATE_STIPPLEPATTERN render states) for the primitive
being queried.

D3DPRASTERCAPS_ROP2
The device can support raster operations other than R2_COPYPEN.

D3DPRASTERCAPS_STIPPLE
The device can stipple polygons to simulate translucency.

D3DPRASTERCAPS_SUBPIXEL
The device performs subpixel placement of z, color, and texture data, rather
than working with the nearest integer pixel coordinate. This helps avoid
bleed-through due to z imprecision, and jitter of color and texture values for
pixels. Note that there is no corresponding state that can be enabled and
disabled; the device either performs subpixel placement or it does not, and
this bit is present only so that the Direct3D client will be better able to
determine what the rendering quality will be.

D3DPRASTERCAPS_SUBPIXELX
The device is subpixel accurate along the x-axis only and is clamped to an
integer y-axis scan line. For information about subpixel accuracy, see
D3DPRASTERCAPS_SUBPIXEL.

D3DPRASTERCAPS_TRANSLUCENTSORTINDEPENDENT
The device supports translucency that is not dependent on the sort order of
the polygons. For more information, see the
D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT.

D3DPRASTERCAPS_WBUFFER
The device supports depth buffering using w. For more information, see
Depth Buffers.

D3DPRASTERCAPS_WFOG
The device supports w-based fog. W-based fog is used when a perspective
projection matrix is specified, but affine projections will still use z-based fog.
The system considers a projection matrix that contains a non-zero value in
the [3][4] element to be a perspective projection matrix.

D3DPRASTERCAPS_XOR
The device can support XOR operations. If this flag is not set but
D3DPRIM_RASTER_ROP2 is set, then XOR operations must still be
supported.

D3DPRASTERCAPS_ZBIAS
The device supports z-bias values. These are integer values assigned to
polygons that allow physically coplanar polygons to appear separate. For
more information, see D3DRENDERSTATE_ZBIAS in the
D3DRENDERSTATETYPE enumerated type.
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_ZBUFFERLESSHSR
The device can perform hidden-surface removal (HSR) without requiring the
application to sort polygons, and without requiring the allocation of a depth-

in.doc – page 527

buffer. This leaves more video memory for textures. The method used to
perform hidden-surface removal is hardware-dependent and is transparent to
the application.
Z-bufferless HSR is performed if no depth-buffer surface is attached to the
rendering-target surface and the depth-buffer comparison test is enabled (that
is, when the state value associated with the
D3DRENDERSTATE_ZENABLE enumeration constant is set to TRUE).
This flag was introduced in DirectX 5.0.

D3DPRASTERCAPS_ZTEST
The device can perform z-test operations. This effectively renders a primitive
and indicates whether any z pixels would have been rendered.

dwZCmpCaps
Z-buffer comparison functions that the driver can perform. This member can be
one or more of the following:
D3DPCMPCAPS_ALWAYS

Always pass the z test.
D3DPCMPCAPS_EQUAL

Pass the z test if the new z equals the current z.
D3DPCMPCAPS_GREATER

Pass the z test if the new z is greater than the current z.
D3DPCMPCAPS_GREATEREQUAL

Pass the z test if the new z is greater than or equal to the current z.
D3DPCMPCAPS_LESS

Pass the z test if the new z is less than the current z.
D3DPCMPCAPS_LESSEQUAL

Pass the z test if the new z is less than or equal to the current z.
D3DPCMPCAPS_NEVER

Always fail the z test.
D3DPCMPCAPS_NOTEQUAL

Pass the z test if the new z does not equal the current z.
dwSrcBlendCaps

Source blending capabilities. This member can be one or more of the following.
(The RGBA values of the source and destination are indicated with the
subscripts s and d.)
D3DPBLENDCAPS_BOTHINVSRCALPHA

Source blend factor is (1-As, 1-As, 1-As, 1-As) and destination blend factor is
(As, As, As, As); the destination blend selection is overridden.

D3DPBLENDCAPS_BOTHSRCALPHA
The driver supports the D3DBLEND_BOTHSRCALPHA blend mode. (This
blend mode is obsolete for DirectX 6.0 and later. For more information, see
D3DBLEND.)

D3DPBLENDCAPS_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).

in.doc – page 528

D3DPBLENDCAPS_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).

D3DPBLENDCAPS_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).

D3DPBLENDCAPS_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As, 1-As).

D3DPBLENDCAPS_INVSRCCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_ONE
Blend factor is (1, 1, 1, 1).

D3DPBLENDCAPS_SRCALPHA
Blend factor is (As, As, As, As).

D3DPBLENDCAPS_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).

D3DPBLENDCAPS_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).

D3DPBLENDCAPS_ZERO
Blend factor is (0, 0, 0, 0).

dwDestBlendCaps
Destination blending capabilities. This member can be the same capabilities that
are defined for the dwSrcBlendCaps member.

dwAlphaCmpCaps
Alpha-test comparison functions that the driver can perform. This member can
include the same capability flags defined for the dwZCmpCaps member. If this
member contains only the D3DPCMPCAPS_ALWAYS capability or only the
D3DPCMPCAPS_NEVER capability, the driver does not support alpha tests.
Otherwise, the flags identify the individual comparisons that are supported for
alpha testing.

dwShadeCaps
Shading operations that the device can perform. It is assumed, in general, that if
a device supports a given command (such as D3DOP_TRIANGLE) at all, it
supports the D3DSHADE_FLAT mode (as specified in the D3DSHADEMODE
enumerated type). This flag specifies whether the driver can also support
Gouraud and Phong shading and whether alpha color components are supported
for each of the three color-generation modes. When alpha components are not
supported in a given mode, the alpha value of colors generated in that mode is
implicitly 255. This is the maximum possible alpha (that is, the alpha
component is at full intensity).
With the monochromatic shade modes, the blue channel of the specular
component is interpreted as a white intensity. (This is controlled by the
D3DRENDERSTATE_MONOENABLE render state.)

in.doc – page 529

The color, specular highlights, fog, and alpha interpolants of a triangle each
have capability flags that an application can use to find out how they are
implemented by the device driver. These are modified by the shade mode, color
model, and by whether the alpha component of a color is blended or stippled.
For more information, see 3-D Primitives.
This member can be one or more of the following:
D3DPSHADECAPS_ALPHAFLATBLEND
D3DPSHADECAPS_ALPHAFLATSTIPPLED

Device can support an alpha component for flat blended and stippled
transparency, respectively (the D3DSHADE_FLAT state for the
D3DSHADEMODE enumerated type). In these modes, the alpha color
component for a primitive is provided as part of the color for the first vertex
of the primitive.

D3DPSHADECAPS_ALPHAGOURAUDBLEND
D3DPSHADECAPS_ALPHAGOURAUDSTIPPLED

Device can support an alpha component for Gouraud blended and stippled
transparency, respectively (the D3DSHADE_GOURAUD state for the
D3DSHADEMODE enumerated type). In these modes, the alpha color
component for a primitive is provided at vertices and interpolated across a
face along with the other color components.

D3DPSHADECAPS_ALPHAPHONGBLEND
D3DPSHADECAPS_ALPHAPHONGSTIPPLED

Device can support an alpha component for Phong blended and stippled
transparency, respectively (the D3DSHADE_PHONG state for the
D3DSHADEMODE enumerated type). In these modes, vertex parameters
are reevaluated on a per-pixel basis, applying lighting effects for the red,
green, and blue color components. Phong shading is not currently supported.

D3DPSHADECAPS_COLORFLATMONO
D3DPSHADECAPS_COLORFLATRGB

Device can support colored flat shading in the D3DCOLOR_MONO and
D3DCOLOR_RGB color models, respectively. In these modes, the color
component for a primitive is provided as part of the color for the first vertex
of the primitive. In monochromatic lighting modes, only the blue component
of the color is interpolated; in RGB lighting modes, the red, green, and blue
components are interpolated.

D3DPSHADECAPS_COLORGOURAUDMONO
D3DPSHADECAPS_COLORGOURAUDRGB

Device can support colored Gouraud shading in the D3DCOLOR_MONO
and D3DCOLOR_RGB color models, respectively. In these modes, the
color component for a primitive is provided at vertices and interpolated
across a face along with the other color components. In monochromatic
lighting modes, only the blue component of the color is interpolated; in RGB
lighting modes, the red, green, and blue components are interpolated.

D3DPSHADECAPS_COLORPHONGMONO
D3DPSHADECAPS_COLORPHONGRGB

in.doc – page 530

Device can support colored Phong shading in the D3DCOLOR_MONO and
D3DCOLOR_RGB color models, respectively. In these modes, vertex
parameters are reevaluated on a per-pixel basis. Lighting effects are applied
for the red, green, and blue color components in RGB mode, and for the blue
component only for monochromatic mode. Phong shading is not currently
supported.

D3DPSHADECAPS_FOGFLAT
D3DPSHADECAPS_FOGGOURAUD
D3DPSHADECAPS_FOGPHONG

Device can support fog in the flat, Gouraud, and Phong shading models,
respectively. Phong shading is not currently supported.

D3DPSHADECAPS_SPECULARFLATMONO
D3DPSHADECAPS_SPECULARFLATRGB

Device can support specular highlights in flat shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.

D3DPSHADECAPS_SPECULARGOURAUDMONO
D3DPSHADECAPS_SPECULARGOURAUDRGB

Device can support specular highlights in Gouraud shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.

D3DPSHADECAPS_SPECULARPHONGMONO
D3DPSHADECAPS_SPECULARPHONGRGB

Device can support specular highlights in Phong shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.
Phong shading is not currently supported.

dwTextureCaps
Miscellaneous texture-mapping capabilities. This member can be one or more of
the following:
D3DPTEXTURECAPS_ALPHA

Supports RGBA textures in the D3DTBLEND_DECAL and
D3DTBLEND_MODULATE texture filtering modes. If this capability is not
set, then only RGB textures are supported in those modes. Regardless of the
setting of this flag, alpha must always be supported in
D3DTBLEND_DECALMASK, D3DTBLEND_DECALALPHA, and
D3DTBLEND_MODULATEALPHA filtering modes whenever those
filtering modes are available.

D3DPTEXTURECAPS_ALPHAPALETTE
Supports palettized texture surfaces whose palettes contain alpha information
(see DDPCAPS_ALPHA in the DDCAPS structure).

D3DPTEXTURECAPS_BORDER
Superseded by D3DPTADDRESSCAPS_BORDER.

D3DPTEXTURECAPS_NONPOW2CONDITIONAL
Conditionally supports the use of textures with dimensions that are not
powers of two. A device that exposes this capability can use such a texture if
all of the following requirements are met.

in.doc – page 531

· The texture addressing mode for the texture stage is set to
D3DTADDRESS_CLAMP.

· Texture wrapping for the texture stage is disabled
(D3DRENDERSTATE_WRAPn set to zero).

· Mipmapping is not in use. (Mipmapped textures must have dimensions that
are powers of two.)

· Anisotropic texture filtering is disabled.
D3DPTEXTURECAPS_PERSPECTIVE

Perspective correction is supported.
D3DPTEXTURECAPS_POW2

All nonmipmapped textures must have widths and heights specified as
powers of two if this flag is set. (Note that all mipmapped textures must
always have dimensions that are powers of two.)

D3DPTEXTURECAPS_SQUAREONLY
All textures must be square.

D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE
Texture indices are not scaled by the texture size prior to interpolation.

D3DPTEXTURECAPS_TRANSPARENCY
Texture transparency is supported. (Only those texels that are not the current
transparent color are drawn.)

dwTextureFilterCaps
Texture-map filtering capabilities. General texture filtering flags reflect which
texture filtering modes you can set for the
D3DRENDERSTATE_TEXTUREMAG,
D3DRENDERSTATE_TEXTUREMIN render states. Per-stage filtering
capabilities reflect which filtering modes are supported for texture stages when
performing multiple texture blending with the IDirect3DDevice3 interface. This
member be can any combination of the following general and per-stage texture
filtering flags:
General texture filtering flags
D3DPTFILTERCAPS_LINEAR

Bilinear filtering. Chooses the texel that has nearest coordinates, then
performs a weighted average with the four surrounding texels to determine
the final color. This applies to both zooming in and zooming out. If either
zooming in or zooming out is supported, then both must be supported.

D3DPTFILTERCAPS_LINEARMIPLINEAR
Trilinear interpolation between mipmaps. Performs bilinear filtering on the
two nearest mipmaps, then interpolates linearly between the two colors to
determine a final color.

D3DPTFILTERCAPS_LINEARMIPNEAREST
Linear interpolation between two point sampled mipmaps. Chooses the
nearest texel from the two closest mipmap levels, then performs linear
interpolation between them.

D3DPTFILTERCAPS_MIPLINEAR

in.doc – page 532

Nearest mipmapping, with bilinear filtering applied to the result. Chooses the
texel from the appropriate mipmap that has nearest coordinates, then
performs a weighted average with the four surrounding texels to determine
the final color.

D3DPTFILTERCAPS_MIPNEAREST
Nearest mipmapping. Chooses the texel from the appropriate mipmap with
coordinates nearest to the desired pixel value.

D3DPTFILTERCAPS_NEAREST
Point sampling. The texel with coordinates nearest to the desired pixel value
is used. This applies to both zooming in and zooming out. If either zooming
in or zooming out is supported, then both must be supported.

Per-stage texture filtering flags
D3DPTFILTERCAPS_MAGFAFLATCUBIC

The device supports per-stage flat-cubic filtering for magnifying textures.
The flat-cubic magnification filter is represented by the
D3DTFG_FLATCUBIC member of the D3DTEXTUREMAGFILTER
enumerated type.

D3DPTFILTERCAPS_MAGFANISOTROPIC
The device supports per-stage anisotropic filtering for magnifying textures.
The anisotropic magnification filter is represented by the
D3DTFG_ANISOTROPIC member of the D3DTEXTUREMAGFILTER
enumerated type.

D3DPTFILTERCAPS_MAGFGAUSSIANCUBIC
The device supports the per-stage Gaussian-cubic filtering for magnifying
textures. The Gaussian-cubic magnification filter is represented by the
D3DTFG_GAUSSIANCUBIC member of the
D3DTEXTUREMAGFILTER enumerated type.

D3DPTFILTERCAPS_MAGFLINEAR
The device supports per-stage bilinear-interpolation filtering for magnifying
textures. The bilinear-interpolation magnification filter is represented by the
D3DTFG_LINEAR member of the D3DTEXTUREMAGFILTER
enumerated type.

D3DPTFILTERCAPS_MAGFPOINT
The device supports per-stage point-sampled filtering for magnifying
textures. The point-sample magnification filter is represented by the
D3DTFG_POINT member of the D3DTEXTUREMAGFILTER
enumerated type.

D3DPTFILTERCAPS_MINFANISOTROPIC
The device supports per-stage anisotropic filtering for minifying textures. The
anisotropic minification filter is represented by the
D3DTFN_ANISOTROPIC member of the D3DTEXTUREMINFILTER
enumerated type.

D3DPTFILTERCAPS_MINFLINEAR
The device supports per-stage bilinear-interpolation filtering for minifying
textures. The bilinear minification filter is represented by the

in.doc – page 533

D3DTFN_LINEAR member of the D3DTEXTUREMINFILTER
enumerated type.

D3DPTFILTERCAPS_MINFPOINT
The device supports per-stage point-sampled filtering for minifying textures.
The point-sample minification filter is represented by the D3DTFN_POINT
member of the D3DTEXTUREMINFILTER enumerated type.

D3DPTFILTERCAPS_MIPFLINEAR
The device supports per-stage trilinear-interpolation filtering for mipmaps.
The trilinear-interpolation mipmapping filter is represented by the
D3DTFP_LINEAR member of the D3DTEXTUREMIPFILTER
enumerated type.

D3DPTFILTERCAPS_MIPFPOINT
The device supports per-stage point-sampled filtering for mipmaps. The
point-sample mipmapping filter is represented by the D3DTFP_POINT
member of the D3DTEXTUREMIPFILTER enumerated type.

dwTextureBlendCaps
Texture-blending capabilities. See the D3DTEXTUREBLEND enumerated
type for discussions of the various texture-blending modes. This member can be
one or more of the following:
D3DPTBLENDCAPS_ADD

Supports the additive texture-blending mode, in which the Gouraud
interpolants are added to the texture lookup with saturation semantics. This
capability corresponds to the D3DTBLEND_ADD member of the
D3DTEXTUREBLEND enumerated type.
This flag was introduced in DirectX 5.0.

D3DPTBLENDCAPS_COPY
Copy mode texture-blending (D3DTBLEND_COPY from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_DECAL
Decal texture-blending mode (D3DTBLEND_DECAL from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_DECALALPHA
Decal-alpha texture-blending mode (D3DTBLEND_DECALALPHA from
the D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_DECALMASK
Decal-mask texture-blending mode (D3DTBLEND_DECALMASK from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_MODULATE
Modulate texture-blending mode (D3DTBLEND_MODULATE from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_MODULATEALPHA
Modulate-alpha texture-blending mode
(D3DTBLEND_MODULATEALPHA from the D3DTEXTUREBLEND
enumerated type) is supported.

in.doc – page 534

D3DPTBLENDCAPS_MODULATEMASK
Modulate-mask texture-blending mode (D3DTBLEND_MODULATEMASK
from the D3DTEXTUREBLEND enumerated type) is supported.

dwTextureAddressCaps
Texture-addressing capabilities. This member can be one or more of the
following:
D3DPTADDRESSCAPS_BORDER

Device supports setting coordinates outside the range [0.0, 1.0] to the border
color, as specified by the D3DRENDERSTATE_BORDERCOLOR render
state. This ability corresponds to the D3DTADDRESS_BORDER texture-
addressing mode.
This flag was introduced in DirectX 5.0.

D3DPTADDRESSCAPS_CLAMP
Device can clamp textures to addresses.

D3DPTADDRESSCAPS_INDEPENDENTUV
Device can separate the texture-addressing modes of the u and v coordinates
of the texture. This ability corresponds to the
D3DRENDERSTATE_TEXTUREADDRESSU and
D3DRENDERSTATE_TEXTUREADDRESSV render-state values.
This flag was introduced in DirectX 5.0.

D3DPTADDRESSCAPS_MIRROR
Device can mirror textures to addresses.

D3DPTADDRESSCAPS_WRAP
Device can wrap textures to addresses.

dwStippleWidth and dwStippleHeight
Maximum width and height of the supported stipple (up to 3232).

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

D3DPROCESSVERTICES
[This is preliminary documentation and subject to change.]

The D3DPROCESSVERTICES structure describes how vertices in the execute
buffer should be handled by the driver. This is used by the
D3DOP_PROCESSVERTICES opcode in the D3DOPCODE enumerated type.

typedef struct _D3DPROCESSVERTICES {
 DWORD dwFlags;
 WORD wStart;

in.doc – page 535

 WORD wDest;
 DWORD dwCount;
 DWORD dwReserved;
} D3DPROCESSVERTICES, *LPD3DPROCESSVERTICES;

Members
dwFlags

One or more of the following flags indicating how the driver should process the
vertices:
D3DPROCESSVERTICES_COPY

Vertices should simply be copied to the driver, because they have always
been transformed and lit. If all the vertices in the execute buffer can be
copied, the driver does not need to do the work of processing the vertices,
and a performance improvement results.

D3DPROCESSVERTICES_NOCOLOR
Vertices should not be colored.

D3DPROCESSVERTICES_OPMASK
Specifies a bitmask of the other flags in the dwFlags member, exclusive of
D3DPROCESSVERTICES_NOCOLOR and
D3DPROCESSVERTICES_UPDATEEXTENTS.

D3DPROCESSVERTICES_TRANSFORM
Vertices should be transformed.

D3DPROCESSVERTICES_TRANSFORMLIGHT
Vertices should be transformed and lit.

D3DPROCESSVERTICES_UPDATEEXTENTS
Extents of all transformed vertices should be updated. This information is
returned in the drExtent member of the D3DSTATUS structure.

wStart
Index of the first vertex in the source.

wDest
Index of the first vertex in the local buffer.

dwCount
Number of vertices to be processed.

dwReserved
Reserved; must be zero.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

in.doc – page 536

See Also
D3DOPCODE

D3DRECT
[This is preliminary documentation and subject to change.]

The D3DRECT structure is a rectangle definition.

typedef struct _D3DRECT {
 union {
 LONG x1;
 LONG lX1;
 };
 union {
 LONG y1;
 LONG lY1;
 };
 union {
 LONG x2;
 LONG lX2;
 };
 union {
 LONG y2;
 LONG lY2;
 };
} D3DRECT, *LPD3DRECT;

Members
lX1 and lY1

Coordinates of the upper-left corner of the rectangle.
lX2 and lY2

Coordinates of the lower-right corner of the rectangle.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice::Pick, IDirect3DViewport3::Clear

in.doc – page 537

D3DSPAN
[This is preliminary documentation and subject to change.]

The D3DSPAN structure defines a span for the D3DOP_SPAN opcode in the
D3DOPCODE enumerated type. Spans join a list of points with the same y-value. If
the y-value changes, a new span is started.

typedef struct _D3DSPAN {
 WORD wCount;
 WORD wFirst;
} D3DSPAN, *LPD3DSPAN;

Members
wCount

Number of spans.
wFirst

Index to first vertex.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE

D3DSTATE
[This is preliminary documentation and subject to change.]

The D3DSTATE structure describes the render state for the
D3DOP_STATETRANSFORM, D3DOP_STATELIGHT, and
D3DOP_STATERENDER opcodes in the D3DOPCODE enumerated type. The first
member of this structure is the relevant enumerated type and the second is the value
for that type.

typedef struct _D3DSTATE {
 union {
 D3DTRANSFORMSTATETYPE dtstTransformStateType;
 D3DLIGHTSTATETYPE dlstLightStateType;
 D3DRENDERSTATETYPE drstRenderStateType;
 };

in.doc – page 538

 union {
 DWORD dwArg[1];
 D3DVALUE dvArg[1];
 };
} D3DSTATE, *LPD3DSTATE;

Members
dtstTransformStateType, dlstLightStateType, and drstRenderStateType

One of the members of the D3DTRANSFORMSTATETYPE,
D3DLIGHTSTATETYPE, or D3DRENDERSTATETYPE enumerated type
specifying the render state.

dvArg
Value of the type specified in the first member of this structure.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DLIGHTSTATETYPE, D3DOPCODE, D3DRENDERSTATETYPE, and
D3DTRANSFORMSTATETYPE, D3DVALUE

D3DSTATS
[This is preliminary documentation and subject to change.]

The D3DSTATS structure contains statistics used by the
IDirect3DDevice3::GetStats method.

typedef struct _D3DSTATS {
 DWORD dwSize;
 DWORD dwTrianglesDrawn;
 DWORD dwLinesDrawn;
 DWORD dwPointsDrawn;
 DWORD dwSpansDrawn;
 DWORD dwVerticesProcessed;
} D3DSTATS, *LPD3DSTATS;

Members
dwSize

in.doc – page 539

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

dwTrianglesDrawn, dwLinesDrawn, dwPointsDrawn, and dwSpansDrawn
Number of triangles, lines, points, and spans drawn since the device was created.

dwVerticesProcessed
Number of vertices processed since the device was created.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice3::GetStats

D3DSTATUS
[This is preliminary documentation and subject to change.]

The D3DSTATUS structure describes the current status of the execute buffer. This
structure is part of the D3DEXECUTEDATA structure and is used with the
D3DOP_SETSTATUS opcode in the D3DOPCODE enumerated type.

typedef struct _D3DSTATUS {
 DWORD dwFlags;
 DWORD dwStatus;
 D3DRECT drExtent;
} D3DSTATUS, *LPD3DSTATUS;

Members
dwFlags

One of the following flags, specifying whether the status, the extents, or both are
being set:
D3DSETSTATUS_STATUS

Set the status.
D3DSETSTATUS_EXTENTS

Set the extents specified in the drExtent member.
D3DSETSTATUS_ALL

Set both the status and the extents.
dwStatus

Clipping flags. This member can be one or more of the following flags:

in.doc – page 540

Combination and General Flags
D3DSTATUS_CLIPINTERSECTIONALL

Combination of all CLIPINTERSECTION flags.
D3DSTATUS_CLIPUNIONALL

Combination of all CLIPUNION flags.
D3DSTATUS_DEFAULT

Combination of D3DSTATUS_CLIPINTERSECTIONALL and
D3DSTATUS_ZNOTVISIBLE flags. This value is the default.

D3DSTATUS_ZNOTVISIBLE
Indicates that the rendered primitive is not visible. This flag is set or cleared
by the system when rendering with z-checking enabled (see
D3DRENDERSTATE_ZVISIBLE).

Clip Intersection Flags
D3DSTATUS_CLIPINTERSECTIONBACK

Logical AND of the clip flags for the vertices compared to the back clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.

Clip Union Flags
D3DSTATUS_CLIPUNIONBACK

Equal to D3DCLIP_BACK.
D3DSTATUS_CLIPUNIONBOTTOM

Equal to D3DCLIP_BOTTOM.
D3DSTATUS_CLIPUNIONFRONT

Equal to D3DCLIP_FRONT.
D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5

Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.

in.doc – page 541

D3DSTATUS_CLIPUNIONLEFT
Equal to D3DCLIP_LEFT.

D3DSTATUS_CLIPUNIONRIGHT
Equal to D3DCLIP_RIGHT.

D3DSTATUS_CLIPUNIONTOP
Equal to D3DCLIP_TOP.

Basic Clipping Flags
D3DCLIP_BACK

All vertices are clipped by the back plane of the viewing frustum.
D3DCLIP_BOTTOM

All vertices are clipped by the bottom plane of the viewing frustum.
D3DCLIP_FRONT

All vertices are clipped by the front plane of the viewing frustum.
D3DCLIP_LEFT

All vertices are clipped by the left plane of the viewing frustum.
D3DCLIP_RIGHT

All vertices are clipped by the right plane of the viewing frustum.
D3DCLIP_TOP

All vertices are clipped by the top plane of the viewing frustum.
D3DCLIP_GEN0 through D3DCLIP_GEN5

Application-defined clipping planes.
drExtent

A D3DRECT structure that defines a bounding box for all the relevant vertices.
For example, the structure might define the area containing the output of the
D3DOP_PROCESSVERTICES opcode, assuming the
D3DPROCESSVERTICES_UPDATEEXTENTS flag is set in the
D3DPROCESSVERTICES structure.

Remarks
The status is a rolling status and is updated during each execution. The bounding box
in the drExtent member can grow with each execution, but it does not shrink; it can
be reset only by using the D3DOP_SETSTATUS opcode.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DEXECUTEDATA, D3DOPCODE, D3DRECT

in.doc – page 542

D3DTEXTURELOAD
[This is preliminary documentation and subject to change.]

The D3DTEXTURELOAD structure describes operand data for the
D3DOP_TEXTURELOAD opcode in the D3DOPCODE enumerated type.

typedef struct _D3DTEXTURELOAD {
 D3DTEXTUREHANDLE hDestTexture;
 D3DTEXTUREHANDLE hSrcTexture;
} D3DTEXTURELOAD, *LPD3DTEXTURELOAD;

Members
hDestTexture

Handle to the destination texture.
hSrcTexture

Handle to the source texture.

Remarks
The textures referred to by the hDestTexture and hSrcTexture members must be
the same size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DTLVERTEX
[This is preliminary documentation and subject to change.]

The D3DTLVERTEX structure defines a transformed and lit vertex (screen
coordinates with color) for the D3DLIGHTDATA structure.

typedef struct _D3DTLVERTEX {
 union {
 D3DVALUE sx;
 D3DVALUE dvSX;
 };
 union {
 D3DVALUE sy;
 D3DVALUE dvSY;
 };

in.doc – page 543

 union {
 D3DVALUE sz;
 D3DVALUE dvSZ;
 };
 union {
 D3DVALUE rhw;
 D3DVALUE dvRHW;
 };
 union {
 D3DCOLOR color;
 D3DCOLOR dcColor;
 };
 union {
 D3DCOLOR specular;
 D3DCOLOR dcSpecular;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DTLVERTEX, *LPD3DTLVERTEX;

Members
dvSX, dvSY, and dvSZ

Values of the D3DVALUE type describing a vertex in screen coordinates. The
largest allowable value for dvSZ is 0.99999, if you want the vertex to be within
the range of z-values that are displayed.

dvRHW
Value of the D3DVALUE type that is the reciprocal of homogeneous w from
homogeneous coordinate (x,y,z,w). This value is often 1 divided by the distance
from the origin to the object along the z-axis.

dcColor and dcSpecular
Values of the D3DCOLOR type describing the color and specular component of
the vertex.

dvTU and dvTV
Values of the D3DVALUE type describing the texture coordinates of the vertex.

in.doc – page 544

Remarks
Direct3D uses the current viewport parameters (the dwX, dwY, dwWidth, and
dwHeight members of the D3DVIEWPORT2 structure) to clip D3DTLVERTEX
vertices. The system always clips z-coordinates to [0, 1]. To prevent the system from
clipping these vertices, use the D3DDP_DONOTCLIP flag in your call to
IDirect3DDevice3::Begin.

Prior to DirectX 5.0, Direct3D did not clip D3DTLVERTEX vertices.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DLIGHTDATA, D3DLVERTEX, D3DVERTEX

D3DTRANSFORMCAPS
[This is preliminary documentation and subject to change.]

The D3DTRANSFORMCAPS structure describes the transformation capabilities of
a device. This structure is part of the D3DDEVICEDESC structure.

typedef struct _D3DTransformCaps {
 DWORD dwSize;
 DWORD dwCaps;
} D3DTRANSFORMCAPS, *LPD3DTRANSFORMCAPS;

Members
dwSize

Size, in bytes, of this structure. This member must be initialized before the
structure is used.

dwCaps
Flag specifying whether the system clips while transforming. This member can
be zero or the following flag:
D3DTRANSFORMCAPS_CLIP

The system clips while transforming.

in.doc – page 545

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dcaps.h.

D3DTRANSFORMDATA
[This is preliminary documentation and subject to change.]

The D3DTRANSFORMDATA structure contains information about transformations
for the IDirect3DViewport3::TransformVertices method.

typedef struct _D3DTRANSFORMDATA {
 DWORD dwSize;
 LPVOID lpIn;
 DWORD dwInSize;
 LPVOID lpOut;
 DWORD dwOutSize;
 LPD3DHVERTEX lpHOut;
 DWORD dwClip;
 DWORD dwClipIntersection;
 DWORD dwClipUnion;
 D3DRECT drExtent;
} D3DTRANSFORMDATA, *LPD3DTRANSFORMDATA;

Members
dwSize

Size of the structure, in bytes. This member must be initialized before the
structure is used.

lpIn
Address of the vertices to be transformed. This should be a D3DLVERTEX
structure.

dwInSize
Stride of the vertices to be transformed.

lpOut
Address used to store the transformed vertices.

dwOutSize
Stride of output vertices.

lpHOut
Address of a value that contains homogeneous transformed vertices. This value
is a D3DHVERTEX structure

dwClip

in.doc – page 546

Flags specifying how the vertices are clipped. This member can be one or more
of the following values:
D3DCLIP_BACK

Clipped by the back plane of the viewing frustum.
D3DCLIP_BOTTOM

Clipped by the bottom plane of the viewing frustum.
D3DCLIP_FRONT

Clipped by the front plane of the viewing frustum.
D3DCLIP_GEN0 through D3DCLIP_GEN5

Application-defined clipping planes.
D3DCLIP_LEFT

Clipped by the left plane of the viewing frustum.
D3DCLIP_RIGHT

Clipped by the right plane of the viewing frustum.
D3DCLIP_TOP

Clipped by the top plane of the viewing frustum_dx_viewing_frustum_glos.
dwClipIntersection

Flags denoting the intersection of the clip flags. This member can be one or
more of the following values:
D3DSTATUS_CLIPINTERSECTIONBACK

Logical AND of the clip flags for the vertices compared to the back clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.

dwClipUnion
Flags denoting the union of the clip flags. This member can be one or more of
the following values:

in.doc – page 547

D3DSTATUS_CLIPUNIONBACK
Equal to D3DCLIP_BACK.

D3DSTATUS_CLIPUNIONBOTTOM
Equal to D3DCLIP_BOTTOM.

D3DSTATUS_CLIPUNIONFRONT
Equal to D3DCLIP_FRONT.

D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5
Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.

D3DSTATUS_CLIPUNIONLEFT
Equal to D3DCLIP_LEFT.

D3DSTATUS_CLIPUNIONRIGHT
Equal to D3DCLIP_RIGHT.

D3DSTATUS_CLIPUNIONTOP
Equal to D3DCLIP_TOP.

drExtent
A D3DRECT structure that defines the extents of the transformed vertices.
Initialize this structure to initial extents that the
IDirect3DViewport3::TransformVertices method will adjust if the
transformed vertices do not fit. For geometries that are clipped, extents will only
include vertices that are inside the viewing volume.

Remarks
Each input vertex should be a three-vector vertex giving the [x y z] coordinates in
model space for the geometry. The dwInSize member gives the amount to skip
between vertices, allowing the application to store extra data inline with each vertex.

All values generated by the transformation module are stored as 16-bit precision
values. The clip is treated as an integer bitfield that is set to the inclusive OR of the
viewing volume planes that clip a given transformed vertex.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DViewport3::TransformVertices

D3DTRIANGLE
[This is preliminary documentation and subject to change.]

in.doc – page 548

The D3DTRIANGLE structure describes the base type for all triangles. The triangle
is the main rendering primitive.

For related information, see the D3DOP_TRIANGLE member in the D3DOPCODE
enumerated type.

typedef struct _D3DTRIANGLE {
 union {
 WORD v1;
 WORD wV1;
 };
 union {
 WORD v2;
 WORD wV2;
 };
 union {
 WORD v3;
 WORD wV3;
 };
 WORD wFlags;
} D3DTRIANGLE, *LPD3DTRIANGLE;

Members
wV1, wV2, and wV3

Vertices describing the triangle.
wFlags

This value can be a combination of the following flags:
Edge flags
These flags describe which edges of the triangle to enable. (This information is
useful only in wireframe mode.)
D3DTRIFLAG_EDGEENABLE1

Edge defined by v1–v2.
D3DTRIFLAG_EDGEENABLE2

Edge defined by v2–v3.
D3DTRIFLAG_EDGEENABLE3

Edge defined by v3–v1.
D3DTRIFLAG_EDGEENABLETRIANGLE

All edges.
Strip and fan flags
D3DTRIFLAG_EVEN

The v1–v2 edge of the current triangle is adjacent to the v3–v1 edge of the
previous triangle; that is, v1 is the previous v1, and v2 is the previous v3.

D3DTRIFLAG_ODD

in.doc – page 549

The v1–v2 edge of the current triangle is adjacent to the v2–v3 edge of the
previous triangle; that is, v1 is the previous v3, and v2 is the previous v2.

D3DTRIFLAG_START
Begin the strip or fan, loading all three vertices.

D3DTRIFLAG_STARTFLAT(len)
Cull or render the triangles in the strip or fan based on the treatment of this
triangle. That is, if this triangle is culled, also cull the specified number of
subsequent triangles. If this triangle is rendered, also render the specified
number of subsequent triangles.
This length must be greater than zero and less than 30.

Remarks
This structure can be used directly for all triangle fills. For flat shading, the color and
specular components are taken from the first vertex. The three vertex indices v1, v2,
and v3 are vertex indexes into the vertex list at the start of the execute buffer.

Enabled edges are visible in wireframe mode. When an application displays
wireframe triangles that share an edge, it typically enables only one (or neither) edge
to avoid drawing the edge twice.

The D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN flags refer to the locations of
a triangle in a conventional triangle strip or fan. If a triangle strip had five triangles,
the following flags would be used to define the strip:

D3DTRIFLAG_START
D3DTRIFLAG_ODD
D3DTRIFLAG_EVEN
D3DTRIFLAG_ODD
D3DTRIFLAG_EVEN

Similarly, the following flags would define a triangle fan with five triangles:

D3DTRIFLAG_START
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN

The following flags could define a flat triangle fan with five triangles:

D3DTRIFLAG_STARTFLAT(4)
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN

For more information, see Triangle Strips and Triangle Fans.

in.doc – page 550

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DVECTOR
[This is preliminary documentation and subject to change.]

The D3DVECTOR structure defines a vector for many Direct3D and Direct3DRM
methods and structures.

typedef struct _D3DVECTOR {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
} D3DVECTOR, *LPD3DVECTOR;

Members
dvX, dvY, and dvZ

Values of the D3DVALUE type describing the vector.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DLIGHT2, D3DLIGHTINGELEMENT

in.doc – page 551

D3DVERTEX
[This is preliminary documentation and subject to change.]

The D3DVERTEX structure defines an untransformed and unlit vertex (model
coordinates with normal direction vector).

For related information, see the D3DOP_TRIANGLE member in the D3DOPCODE
enumerated type.

typedef struct _D3DVERTEX {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
 union {
 D3DVALUE nx;
 D3DVALUE dvNX;
 };
 union {
 D3DVALUE ny;
 D3DVALUE dvNY;
 };
 union {
 D3DVALUE nz;
 D3DVALUE dvNZ;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DVERTEX, *LPD3DVERTEX;

in.doc – page 552

Members
dvX, dvY, and dvZ

Values of the D3DVALUE type describing the homogeneous coordinates of the
vertex.

dvNX, dvNY, and dvNZ
Values of the D3DVALUE type describing the normal coordinates of the vertex.

dvTU and dvTV
Values of the D3DVALUE type describing the texture coordinates of the vertex.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DLVERTEX, D3DTLVERTEX, D3DVALUE

D3DVERTEXBUFFERDESC
[This is preliminary documentation and subject to change.]

The D3DVERTEXBUFFERDESC structure describes the properties of a vertex
buffer object. This structure is used with the IDirect3D3::CreateVertexBuffer and
IDirect3DVertexBuffer::GetVertexBufferDesc methods.

typedef struct _D3DVERTEXBUFFERDESC {
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwFVF;
 DWORD dwNumVertices;
} D3DVERTEXBUFFERDESC, *LPD3DVERTEXBUFFERDESC;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before the
structure is used.

dwCaps
Capability flags that describe the vertex buffer and identify if the vertex buffer
can contain optimized vertex data. This parameter can be any combination of
the following flags:
(none)

in.doc – page 553

The vertex buffer should be created in whatever memory the driver chooses
to allow efficient read operations.

D3DVBCAPS_OPTIMIZED
The vertex buffer contains optimized vertex data. (This flag is not used when
creating a new vertex buffer.)

D3DVBCAPS_SYSTEMMEMORY
The vertex buffer should be created in system memory. Use this capability
for vertex buffers that will be rendered by using software devices (MMX and
RGB devices).

D3DVBCAPS_WRITEONLY
Hints to the system that the application will only write to the vertex buffer.
Using this flag enables the driver to choose the best memory location for
efficient write operations and rendering. Attempts to read from a vertex
buffer that is created with this capability can result in degraded performance.

dwFVF
A combination of flexible vertex format flags that describes the vertex format of
the vertices in this buffer.

dwNumVertices
The maximum number of vertices that this vertex buffer can contain.

Remarks
Software devices—MMX and RGB devices—cannot render from a video memory
(local or non-local) vertex buffer. To render a vertex buffer using a software device,
the vertex buffer must exist in system memory. Hardware devices can render from
system memory or video memory vertex buffers.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
Vertex Buffer Descriptions, Vertex Buffers

D3DVIEWPORT
[This is preliminary documentation and subject to change.]

The D3DVIEWPORT structure defines the visible 3-D volume and the 2-D screen
area that a 3-D volume projects onto for the IDirect3DViewport3::GetViewport
and IDirect3DViewport3::SetViewport methods.

in.doc – page 554

For the IDirect3D2 and IDirect3DDevice2 interfaces, this structure has been
superseded by the D3DVIEWPORT2 structure.

typedef struct _D3DVIEWPORT {
 DWORD dwSize;
 DWORD dwX;
 DWORD dwY;
 DWORD dwWidth;
 DWORD dwHeight;
 D3DVALUE dvScaleX;
 D3DVALUE dvScaleY;
 D3DVALUE dvMaxX;
 D3DVALUE dvMaxY;
 D3DVALUE dvMinZ;
 D3DVALUE dvMaxZ;
} D3DVIEWPORT, *LPD3DVIEWPORT;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before the
structure is used.

dwX and dwY
Coordinates of the top-left corner of the viewport.

dwWidth and dwHeight
Dimensions of the viewport.

dvScaleX and dvScaleY
Values of the D3DVALUE type describing how coordinates are scaled. The
relevant coordinates here are the nonhomogeneous coordinates that result from
the perspective division that projects the vertices onto the w=1 plane.

dvMaxX, dvMaxY, dvMinZ, and dvMaxZ
Values of the D3DVALUE type describing the maximum and minimum
nonhomogeneous coordinates of x, y, and z. Again, the relevant coordinates are
the nonhomogeneous coordinates that result from the perspective division.

Remarks
When the viewport is changed, the driver builds a new transformation matrix.

The coordinates and dimensions of the viewport are given relative to the top left of
the device.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 555

Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DVALUE, IDirect3DViewport3::GetViewport,
IDirect3DViewport3::SetViewport

D3DVIEWPORT2
[This is preliminary documentation and subject to change.]

The D3DVIEWPORT2 structure defines the visible 3-D volume and the window
dimensions that a 3-D volume projects onto. This structure is used by the methods of
the IDirect3D2 and IDirect3DDevice2 interfaces, and in particular by the
IDirect3DViewport3::GetViewport2 and IDirect3DViewport3::SetViewport2
methods. This structure was introduced in DirectX 5.0.

typedef struct _D3DVIEWPORT2 {
 DWORD dwSize;
 DWORD dwX;
 DWORD dwY;
 DWORD dwWidth;
 DWORD dwHeight;
 D3DVALUE dvClipX;
 D3DVALUE dvClipY;
 D3DVALUE dvClipWidth;
 D3DVALUE dvClipHeight;
 D3DVALUE dvMinZ;
 D3DVALUE dvMaxZ;
} D3DVIEWPORT2, *LPD3DVIEWPORT2;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before the
structure is used.

dwX and dwY
Pixel coordinates of the top-left corner of the viewport on the render target
surface. Unless you want to render to a subset of the surface, these members can
be set to zero.

dwWidth and dwHeight
Dimensions of the viewport on the render target surface, in pixels. Unless you
are rendering only to a subset of the surface, these members should be set to the
dimensions of the render target surface.

dvClipX and dvClipY

in.doc – page 556

Coordinates of the top-left corner of the clipping volume.
The relevant coordinates here are the nonhomogeneous coordinates that result
from the perspective division that projects the vertices onto the w=1 plane.

dvClipWidth and dvClipHeight
Dimensions of the clipping volume projected onto the w=1 plane. Unless you
want to render to a subset of the surface, these members can be set to the width
and height of the destination surface.

dvMinZ and dvMaxZ
Values of the D3DVALUE type describing the maximum and minimum
nonhomogeneous z-coordinates resulting from the perspective divide and
projected onto the w=1 plane. The values in these members must not be
identical.

Remarks
The dwX, dwY, dwWidth and dwHeight members describe the position and
dimensions of the viewport on the render target surface. Usually, applications render
to the entire target surface; when rendering on a 640x480 surface, these members
should be 0, 0, 640, and 480, respectively.

The dvClipX, dvClipY, dvClipWidth, dvClipHeight, dvMinZ, and dvMaxZ
members define the non-normalized post-perspective 3-D view volume which is
visible to the viewer. In most cases, dvClipX is set to -1.0 and dvClipY is set to the
inverse of the viewport's aspect ratio on the target surface, which can be calculated
by dividing the dwHeight member by dwWidth. Similarly, the dvClipWidth
member is typically 2.0 and dvClipHeight is set to twice the aspect ratio set in
dwClipY. The dvMinZ and dvMaxZ are usually set to 0.0 and 1.0.

Unlike the D3DVIEWPORT structure, D3DVIEWPORT2 specifies the
relationship between the size of the viewport and the window. The coordinates and
dimensions of the viewport are given relative to the top left of the device; values
increase in the y-direction as you descend the screen.

When the viewport is changed, the driver builds a new transformation matrix.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DVALUE, IDirect3DViewport3::GetViewport2,
IDirect3DViewport3::SetViewport2, Clipping Volumes, Viewports and Clipping

in.doc – page 557

Enumerated Types
[This is preliminary documentation and subject to change.]

This section contains information about the following enumerated types used with
Direct3D Immediate Mode.

· D3DANTIALIASMODE
· D3DBLEND
· D3DCMPFUNC
· D3DCULL
· D3DFILLMODE
· D3DFOGMODE
· D3DLIGHTSTATETYPE
· D3DLIGHTTYPE
· D3DOPCODE
· D3DPRIMITIVETYPE
· D3DRENDERSTATETYPE
· D3DSHADEMODE
· D3DSTENCILOP
· D3DTEXTUREADDRESS
· D3DTEXTUREBLEND
· D3DTEXTUREFILTER
· D3DTEXTUREMAGFILTER
· D3DTEXTUREMINFILTER
· D3DTEXTUREMIPFILTER
· D3DTEXTUREOP
· D3DTEXTURESTAGESTATETYPE
· D3DTRANSFORMSTATETYPE
· D3DVERTEXTYPE
· D3DZBUFFERTYPE

D3DANTIALIASMODE
[This is preliminary documentation and subject to change.]

The D3DANTIALIASMODE enumerated type defines the supported antialiasing
mode for the D3DRENDERSTATE_ANTIALIAS value in the
D3DRENDERSTATETYPE enumerated type. These values define the settings only
for full-scene antialiasing (for more information, see Antialiasing).

typedef enum _D3DANTIALIASMODE {

in.doc – page 558

 D3DANTIALIAS_NONE = 0,
 D3DANTIALIAS_SORTDEPENDENT = 1,
 D3DANTIALIAS_SORTINDEPENDENT = 2
 D3DANTIALIAS_FORCE_DWORD = 0x7fffffff,
} D3DANTIALIASMODE;

Members
D3DANTIALIAS_NONE

No antialiasing is performed. This is the default setting.
D3DANTIALIAS_SORTDEPENDENT

Antialiasing is dependent on the sort order of the polygons (back-to-front or
front-to-back). The application must draw polygons in the right order for
antialiasing to occur.

D3DANTIALIAS_SORTINDEPENDENT
Antialiasing is not dependent on the sort order of the polygons.

D3DANTIALIAS_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DBLEND
[This is preliminary documentation and subject to change.]

The D3DBLEND enumerated type defines the supported blend mode for the
D3DRENDERSTATE_DESTBLEND values in the D3DRENDERSTATETYPE
enumerated type. In the member descriptions that follow, the RGBA values of the
source and destination are indicated with the subscripts s and d.

typedef enum _D3DBLEND {
 D3DBLEND_ZERO = 1,
 D3DBLEND_ONE = 2,
 D3DBLEND_SRCCOLOR = 3,
 D3DBLEND_INVSRCCOLOR = 4,
 D3DBLEND_SRCALPHA = 5,
 D3DBLEND_INVSRCALPHA = 6,
 D3DBLEND_DESTALPHA = 7,
 D3DBLEND_INVDESTALPHA = 8,
 D3DBLEND_DESTCOLOR = 9,
 D3DBLEND_INVDESTCOLOR = 10,

in.doc – page 559

 D3DBLEND_SRCALPHASAT = 11,
 D3DBLEND_BOTHSRCALPHA = 12,
 D3DBLEND_BOTHINVSRCALPHA = 13,
 D3DBLEND_FORCE_DWORD = 0x7fffffff,
} D3DBLEND;

Members
D3DBLEND_ZERO

Blend factor is (0, 0, 0, 0).
D3DBLEND_ONE

Blend factor is (1, 1, 1, 1).
D3DBLEND_SRCCOLOR

Blend factor is (Rs, Gs, Bs, As).
D3DBLEND_INVSRCCOLOR

Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As).
D3DBLEND_SRCALPHA

Blend factor is (As, As, As, As).
D3DBLEND_INVSRCALPHA

Blend factor is (1-As, 1-As, 1-As, 1-As).
D3DBLEND_DESTALPHA

Blend factor is (Ad, Ad, Ad, Ad).
D3DBLEND_INVDESTALPHA

Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).
D3DBLEND_DESTCOLOR

Blend factor is (Rd, Gd, Bd, Ad).
D3DBLEND_INVDESTCOLOR

Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).
D3DBLEND_SRCALPHASAT

Blend factor is (f, f, f, 1); f = min(As, 1-Ad).
D3DBLEND_BOTHSRCALPHA

Obsolete. For DirectX 6.0 and later, you can achieve the same affect by setting
the source and destination blend factors to D3DBLEND_SRCALPHA and
D3DBLEND_INVSRCALPHA in separate calls.

D3DBLEND_BOTHINVSRCALPHA
Source blend factor is (1-As, 1-As, 1-As, 1-As), and destination blend factor is
(As, As, As, As); the destination blend selection is overridden. This blend mode is
supported only for the D3DRENDERSTATE_SRCBLEND render state.

D3DBLEND_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

in.doc – page 560

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DCMPFUNC
[This is preliminary documentation and subject to change.]

The D3DCMPFUNC enumerated type defines the supported compare functions for
the D3DRENDERSTATE_ZFUNC, D3DRENDERSTATE_ALPHAFUNC, and
D3DRENDERSTATE_STENCILFUNC render states.

typedef enum _D3DCMPFUNC {
 D3DCMP_NEVER = 1,
 D3DCMP_LESS = 2,
 D3DCMP_EQUAL = 3,
 D3DCMP_LESSEQUAL = 4,
 D3DCMP_GREATER = 5,
 D3DCMP_NOTEQUAL = 6,
 D3DCMP_GREATEREQUAL = 7,
 D3DCMP_ALWAYS = 8,
 D3DCMP_FORCE_DWORD = 0x7fffffff,
} D3DCMPFUNC;

Members
D3DCMP_NEVER

Always fail the test.
D3DCMP_LESS

Accept the new pixel if its value is less than the value of the current pixel.
D3DCMP_EQUAL

Accept the new pixel if its value equals the value of the current pixel.
D3DCMP_LESSEQUAL

Accept the new pixel if its value is less than or equal to the value of the current
pixel.

D3DCMP_GREATER
Accept the new pixel if its value is greater than the value of the current pixel.

D3DCMP_NOTEQUAL
Accept the new pixel if its value does not equal the value of the current pixel.

D3DCMP_GREATEREQUAL
Accept the new pixel if its value is greater than or equal to the value of the
current pixel.

in.doc – page 561

D3DCMP_ALWAYS
Always pass the test.

D3DCMP_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DCULL
[This is preliminary documentation and subject to change.]

The D3DCULL enumerated type defines the supported cull modes. These define
how back faces are culled when rendering a geometry.

typedef enum _D3DCULL {
 D3DCULL_NONE = 1,
 D3DCULL_CW = 2,
 D3DCULL_CCW = 3,
 D3DCULL_FORCE_DWORD = 0x7fffffff,
} D3DCULL;

Members
D3DCULL_NONE

Do not cull back faces.
D3DCULL_CW

Cull back faces with clockwise vertices.
D3DCULL_CCW

Cull back faces with counterclockwise vertices.
D3DCULL_FORCE_DWORD

Forces this enumerated type to be 32 bits in size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

in.doc – page 562

See Also
D3DPRIMCAPS, D3DRENDERSTATETYPE

D3DFILLMODE
[This is preliminary documentation and subject to change.]

The D3DFILLMODE enumerated type contains constants describing the fill mode.
These values are used by the D3DRENDERSTATE_FILLMODE render state in the
D3DRENDERSTATETYPE enumerated type.

typedef enum _D3DFILLMODE {
 D3DFILL_POINT = 1,
 D3DFILL_WIREFRAME = 2,
 D3DFILL_SOLID = 3
 D3DFILL_FORCE_DWORD = 0x7fffffff,
} D3DFILLMODE;

Members
D3DFILL_POINT

Fill points.
D3DFILL_WIREFRAME

Fill wireframes. This fill mode currently does not work for clipped primitives
when you are using the DrawPrimitive methods.

D3DFILL_SOLID
Fill solids.

D3DFILL_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DFOGMODE
[This is preliminary documentation and subject to change.]

The D3DFOGMODE enumerated type contains constants describing the fog mode.
These values are used by the D3DRENDERSTATE_FOGTABLEMODE render state
in the D3DRENDERSTATETYPE enumerated type.

typedef enum _D3DFOGMODE {

in.doc – page 563

 D3DFOG_NONE = 0,
 D3DFOG_EXP = 1,
 D3DFOG_EXP2 = 2,
 D3DFOG_LINEAR = 3
 D3DFOG_FORCE_DWORD = 0x7fffffff,
} D3DFOGMODE;

Members
D3DFOG_NONE

No fog effect.
D3DFOG_EXP

The fog effect intensifies exponentially, according to the following formula:

f d density
1
e

D3DFOG_EXP2
The fog effect intensifies exponentially with the square of the distance,
according to the following formula:

f d density
1

2e()

D3DFOG_LINEAR
The fog effect intensifies linearly between the start and end points, according to
the following formula:

f
end d

end start

This is the only fog mode currently supported.
D3DFOG_FORCE_DWORD

Forces this enumerated type to be 32 bits in size.

Remarks
In monochromatic (ramp) lighting mode, fog works properly only when the fog color
is black. (If there is no lighting, any fog color will work, since in this case any fog
color is effectively black.)

For more information about fog, see Fog.

Note
Fog can be considered a measure of visibility—the lower the fog value produced
by one of the fog equations, the less visible an object is.

in.doc – page 564

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DLIGHTSTATETYPE
[This is preliminary documentation and subject to change.]

The D3DLIGHTSTATETYPE enumerated type defines the light state for the
IDirect3DDevice3::SetLightState method. This enumerated type is part of the
D3DSTATE structure.

typedef enum _D3DLIGHTSTATETYPE {
 D3DLIGHTSTATE_MATERIAL = 1,
 D3DLIGHTSTATE_AMBIENT = 2,
 D3DLIGHTSTATE_COLORMODEL = 3,
 D3DLIGHTSTATE_FOGMODE = 4,
 D3DLIGHTSTATE_FOGSTART = 5,
 D3DLIGHTSTATE_FOGEND = 6,
 D3DLIGHTSTATE_FOGDENSITY = 7,
 D3DLIGHTSTATE_COLORVERTEX = 8,
 D3DLIGHTSTATE_FORCE_DWORD = 0x7fffffff,
} D3DLIGHTSTATETYPE;

Members
D3DLIGHTSTATE_MATERIAL

Defines the material that is lit and used to compute the final color and intensity
values during rasterization. The default value is NULL. This value must be set
when you use textures in ramp mode. When no material is selected (NULL), the
Direct3D lighting engine is disabled.

D3DLIGHTSTATE_AMBIENT
Sets the color and intensity of the current ambient light. If an application
specifies this value, it should not specify a light as a parameter. The default
value is 0.

D3DLIGHTSTATE_COLORMODEL
One of the values for the D3DCOLORMODEL data type. The default value is
D3DCOLOR_RGB.

D3DLIGHTSTATE_FOGMODE
One of the members of the D3DFOGMODE enumerated type. The default
value is D3DFOG_NONE.

D3DLIGHTSTATE_FOGSTART
Defines the starting value for fog. The default value is 1.0.

in.doc – page 565

D3DLIGHTSTATE_FOGEND
Defines the ending value for fog. The default value is 100.0.

D3DLIGHTSTATE_FOGDENSITY
Defines the density setting for fog. The default value is 1.0.

D3DLIGHTSTATE_COLORVERTEX
Enables or disables the use of the vertex color in lighting calculations for
vertices whose vertex format (specified as a flexible vertex format) includes
color information. The default value, TRUE, enables the use of the vertex color
in lighting. Set this to FALSE to cause the system to ignore the vertex color.
Per-vertex color is supported only by lights for which properties are defined by a
D3DLIGHT2 structure.

D3DLIGHTSTATE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
When programming for execute buffers, this enumerated type is used with the
D3DOP_STATELIGHT opcode.

Setting D3DLIGHTSTATE_COLORVERTEX to FALSE instructs the geometry
pipeline to ignore part of each vertex (the vertex color). The only reason to use this
light state is to change the appearance of the geometry without respecifying it in a
different vertex format.

If D3DLIGHTSTATE_COLORVERTEX is set to TRUE and a diffuse vertex color
is present, the output alpha is equal to the diffuse alpha for the vertex. Otherwise,
output alpha is equal to the alpha component of diffuse material, clamped to the
range [0, 255].

You can disable or enable lighting by including or omitting the
D3DDP_DONOTLIGHT flag when calling a standard IDirect3DDevice3 rendering
method, such as IDirect3DDevice3::DrawPrimitive. If you are using vertex buffers,
disable or enable lighting by ommiting or including the D3DVOP_LIGHT flag when
you call the IDirect3DVertexBuffer::ProcessVertices method.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE and D3DSTATE, Light Properties

in.doc – page 566

D3DLIGHTTYPE
[This is preliminary documentation and subject to change.]

The D3DLIGHTTYPE enumerated type defines the light type. This enumerated
type is part of the D3DLIGHT2 structure.

typedef enum _D3DLIGHTTYPE {
 D3DLIGHT_POINT = 1,
 D3DLIGHT_SPOT = 2,
 D3DLIGHT_DIRECTIONAL = 3,
 D3DLIGHT_PARALLELPOINT = 4,
 D3DLIGHT_FORCE_DWORD = 0x7fffffff,
} D3DLIGHTTYPE;

Members
D3DLIGHT_POINT

Light is a point source. The light has a position in space and radiates light in all
directions.

D3DLIGHT_SPOT
Light is a spotlight source. This light is something like a point light except that
the illumination is limited to a cone. This light type has a direction and several
other parameters which determine the shape of the cone it produces. For
information about these parameters, see the D3DLIGHT2 structure.

D3DLIGHT_DIRECTIONAL
Light is a directional source. This is equivalent to using a point light source at
an infinite distance.

D3DLIGHT_PARALLELPOINT
Light is a parallel point source. This light type acts like a directional light except
its direction is the vector going from the light position to the origin of the
geometry it is illuminating.

D3DLIGHT_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
Directional and parallel-point lights are slightly faster than point light sources, but
point lights look a little better. Spotlights offer interesting visual effects but are
computationally expensive.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 567

Windows 95.
 Header: Declared in d3dtypes.h.

D3DOPCODE
[This is preliminary documentation and subject to change.]

The D3DOPCODE enumerated type contains the opcodes for execute buffer.

typedef enum _D3DOPCODE {
 D3DOP_POINT = 1,
 D3DOP_LINE = 2,
 D3DOP_TRIANGLE = 3,
 D3DOP_MATRIXLOAD = 4,
 D3DOP_MATRIXMULTIPLY = 5,
 D3DOP_STATETRANSFORM = 6,
 D3DOP_STATELIGHT = 7,
 D3DOP_STATERENDER = 8,
 D3DOP_PROCESSVERTICES = 9,
 D3DOP_TEXTURELOAD = 10,
 D3DOP_EXIT = 11,
 D3DOP_BRANCHFORWARD = 12,
 D3DOP_SPAN = 13,
 D3DOP_SETSTATUS = 14,
 D3DOP_FORCE_DWORD = 0x7fffffff,
} D3DOPCODE;

Members
D3DOP_POINT

Sends a point to the renderer. Operand data is described by the D3DPOINT
structure.

D3DOP_LINE
Sends a line to the renderer. Operand data is described by the D3DLINE
structure.

D3DOP_TRIANGLE
Sends a triangle to the renderer. Operand data is described by the
D3DTRIANGLE structure.

D3DOP_MATRIXLOAD
Triggers a data transfer in the rendering engine. Operand data is described by
the D3DMATRIXLOAD structure.

D3DOP_MATRIXMULTIPLY
Triggers a data transfer in the rendering engine. Operand data is described by
the D3DMATRIXMULTIPLY structure.

D3DOP_STATETRANSFORM

in.doc – page 568

Sets the value of internal state variables in the rendering engine for the
transformation module. Operand data is a variable token and the new value. The
token identifies the internal state variable, and the new value is the value to
which that variable should be set. For more information about these variables,
see the D3DSTATE structure and the D3DTRANSFORMSTATETYPE
enumerated type.

D3DOP_STATELIGHT
Sets the value of internal state variables in the rendering engine for the lighting
module. Operand data is a variable token and the new value. The token
identifies the internal state variable, and the new value is the value to which that
variable should be set. For more information about these variables, see the
D3DSTATE structure and the D3DLIGHTSTATETYPE enumerated type.

D3DOP_STATERENDER
Sets the value of internal state variables in the rendering engine for the
rendering module. Operand data is a variable token and the new value. The
token identifies the internal state variable, and the new value is the value to
which that variable should be set. For more information about these variables,
see the D3DSTATE structure and the D3DRENDERSTATETYPE enumerated
type.

D3DOP_PROCESSVERTICES
Sets both lighting and transformations for vertices. Operand data is described by
the D3DPROCESSVERTICES structure.

D3DOP_TEXTURELOAD
Triggers a data transfer in the rendering engine. Operand data is described by
the D3DTEXTURELOAD structure.

D3DOP_EXIT
Signals that the end of the list has been reached.

D3DOP_BRANCHFORWARD
Enables a branching mechanism within the execute buffer. For more
information, see the D3DBRANCH structure.

D3DOP_SPAN
This opcode is obsolete and is silently ignored. Spans a list of points with the
same y value. For more information, see the D3DSPAN structure.

D3DOP_SETSTATUS
Resets the status of the execute buffer. For more information, see the
D3DSTATUS structure.

D3DOP_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
An execute buffer has two parts: an array of vertices (each typically with position,
normal vector, and texture coordinates) and an array of opcode/operand groups. One
opcode can have several operands following it; the system simply performs the
relevant operation on each operand.

in.doc – page 569

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DINSTRUCTION

D3DPRIMITIVETYPE
[This is preliminary documentation and subject to change.]

The D3DPRIMITIVETYPE enumerated type lists the primitives supported by
DrawPrimitive methods. This type was introduced in DirectX 5.0.

typedef enum _D3DPRIMITIVETYPE {
 D3DPT_POINTLIST = 1,
 D3DPT_LINELIST = 2,
 D3DPT_LINESTRIP = 3,
 D3DPT_TRIANGLELIST = 4,
 D3DPT_TRIANGLESTRIP = 5,
 D3DPT_TRIANGLEFAN = 6
 D3DPT_FORCE_DWORD = 0x7fffffff,
} D3DPRIMITIVETYPE;

Members
D3DPT_POINTLIST

Renders the vertices as a collection of isolated points.
D3DPT_LINELIST

Renders the vertices as a list of isolated straight line segments. Calls using this
primitive type will fail if the count is less than 2, or is odd.

D3DPT_LINESTRIP
Renders the vertices as a single polyline. Calls using this primitive type will fail
if the count is less than 2.

D3DPT_TRIANGLELIST
Renders the specified vertices as a sequence of isolated triangles. Each group of
3 vertices defines a separate triangle. Calls using this primitive type will fail if
the count is less than 3, or if not evenly divisible by 3.
Backface culling is affected by the current winding order render state.

D3DPT_TRIANGLESTRIP

in.doc – page 570

Renders the vertices as a triangle strip. Calls using this primitive type will fail if
the count is less than 3. The backface removal flag is automatically flipped on
even numbered triangles.

D3DPT_TRIANGLEFAN
Renders the vertices as a triangle fan. Calls using this primitive type will fail if
the count is less than 3.

D3DPT_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
Using triangle strips or fans is often more effecient than using triangle lists, as fewer
vertices are duplicated. For a conceptual overview and information about defining
triangle strips and fans, see Triangle Strips and Triangle Fans.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice3::Begin, IDirect3DDevice3::BeginIndexed,
IDirect3DDevice3::DrawIndexedPrimitive, IDirect3DDevice3::DrawPrimitive,
Primitive Types

D3DRENDERSTATETYPE
[This is preliminary documentation and subject to change.]

The D3DRENDERSTATETYPE enumerated type describes the render state for the
D3DOP_STATERENDER opcode. This enumerated type is part of the D3DSTATE
structure. The values mentioned in the following descriptions are set in the second
member of this structure.

Values 40 through 49 were introduced with DirectX 5.0.

typedef enum _D3DRENDERSTATETYPE {
 D3DRENDERSTATE_TEXTUREHANDLE = 1, // texture handle
 D3DRENDERSTATE_ANTIALIAS = 2, // antialiasing mode
 D3DRENDERSTATE_TEXTUREADDRESS = 3, // texture address
 D3DRENDERSTATE_TEXTUREPERSPECTIVE = 4, // perspective correction
 D3DRENDERSTATE_WRAPU = 5, // wrap in u direction
 D3DRENDERSTATE_WRAPV = 6, // wrap in v direction
 D3DRENDERSTATE_ZENABLE = 7, // enable z test

in.doc – page 571

 D3DRENDERSTATE_FILLMODE = 8, // fill mode
 D3DRENDERSTATE_SHADEMODE = 9, // shade mode
 D3DRENDERSTATE_LINEPATTERN = 10, // line pattern
 D3DRENDERSTATE_MONOENABLE = 11, // enable mono rendering
 D3DRENDERSTATE_ROP2 = 12, // raster operation
 D3DRENDERSTATE_PLANEMASK = 13, // physical plane mask
 D3DRENDERSTATE_ZWRITEENABLE = 14, // enable z writes
 D3DRENDERSTATE_ALPHATESTENABLE = 15, // enable alpha tests
 D3DRENDERSTATE_LASTPIXEL = 16, // draw last pixel in a line
 D3DRENDERSTATE_TEXTUREMAG = 17, // how textures are magnified
 D3DRENDERSTATE_TEXTUREMIN = 18, // how textures are reduced
 D3DRENDERSTATE_SRCBLEND = 19, // blend factor for source
 D3DRENDERSTATE_DESTBLEND = 20, // blend factor for destination
 D3DRENDERSTATE_TEXTUREMAPBLEND = 21, // blend mode for map
 D3DRENDERSTATE_CULLMODE = 22, // back-face culling mode
 D3DRENDERSTATE_ZFUNC = 23, // z-comparison function
 D3DRENDERSTATE_ALPHAREF = 24, // reference alpha value
 D3DRENDERSTATE_ALPHAFUNC = 25, // alpha-comparison function
 D3DRENDERSTATE_DITHERENABLE = 26, // enable dithering
 D3DRENDERSTATE_ALPHABLENDENABLE = 27, // enable alpha blending
 D3DRENDERSTATE_FOGENABLE = 28, // enable fog
 D3DRENDERSTATE_SPECULARENABLE = 29, // enable specular highlights
 D3DRENDERSTATE_ZVISIBLE = 30, // enable z-checking
 D3DRENDERSTATE_SUBPIXEL = 31, // enable subpixel correction
 D3DRENDERSTATE_SUBPIXELX = 32, // enable x subpixel correction
 D3DRENDERSTATE_STIPPLEDALPHA = 33, // enable stippled alpha
 D3DRENDERSTATE_FOGCOLOR = 34, // fog color
 D3DRENDERSTATE_FOGTABLEMODE = 35, // fog mode
 D3DRENDERSTATE_FOGTABLESTART = 36, // fog table start
 D3DRENDERSTATE_FOGTABLEEND = 37, // fog table end
 D3DRENDERSTATE_FOGTABLEDENSITY = 38, // fog density
 D3DRENDERSTATE_STIPPLEENABLE = 39, // enables stippling
 D3DRENDERSTATE_EDGEANTIALIAS = 40, // antialias edges
 D3DRENDERSTATE_COLORKEYENABLE = 41, // enable color-key transparency
 D3DRENDERSTATE_BORDERCOLOR = 43, // border color
 D3DRENDERSTATE_TEXTUREADDRESSU = 44, // u texture address mode
 D3DRENDERSTATE_TEXTUREADDRESSV = 45, // v texture address mode
 D3DRENDERSTATE_MIPMAPLODBIAS = 46, // mipmap LOD bias
 D3DRENDERSTATE_ZBIAS = 47, // z-bias
 D3DRENDERSTATE_RANGEFOGENABLE = 48, // enables range-based fog
 D3DRENDERSTATE_ANISOTROPY = 49, // max. anisotropy
 D3DRENDERSTATE_FLUSHBATCH = 50, // explicit flush for DP batching (DX5
Only)
 D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT=51, // enable sort-
independent transparency
 D3DRENDERSTATE_STENCILENABLE = 52, // enable or disable stenciling

in.doc – page 572

 D3DRENDERSTATE_STENCILFAIL = 53, // stencil operation
 D3DRENDERSTATE_STENCILZFAIL = 54, // stencil operation
 D3DRENDERSTATE_STENCILPASS = 55, // stencil operation
 D3DRENDERSTATE_STENCILFUNC = 56, // stencil comparison function
 D3DRENDERSTATE_STENCILREF = 57, // reference value for stencil test
 D3DRENDERSTATE_STENCILMASK = 58, // mask value used in stencil test
 D3DRENDERSTATE_STENCILWRITEMASK = 59, // stencil buffer write mask
 D3DRENDERSTATE_TEXTUREFACTOR = 60, // texture factor
 D3DRENDERSTATE_STIPPLEPATTERN00 = 64, // first line of stipple pattern
 // Stipple patterns 01 through 30 omitted here.
 D3DRENDERSTATE_STIPPLEPATTERN31 = 95, // last line of stipple pattern
 D3DRENDERSTATE_WRAP0 = 128, // wrapping flags for first texture
 // Wrap renderstates 1 through 6 omitted here.
 D3DRENDERSTATE_WRAP7 = 135, // wrapping flags for last texture
 D3DRENDERSTATE_FORCE_DWORD = 0x7fffffff,
} D3DRENDERSTATETYPE;

Members
D3DRENDERSTATE_TEXTUREHANDLE

Texture handle for use when rendering with the IDirect3DDevice2 or earlier
interfaces. The default value is NULL, which disables texture mapping and
reverts to flat or Gouraud shading.
If the specified texture is in a system memory surface and the driver can only
support texturing from display memory surfaces, the call will fail.
In retail builds the texture handle is not validated.

D3DRENDERSTATE_ANTIALIAS
One of the members of the D3DANTIALIASMODE enumerated type
specifying the desired type of full-scene antialiasing. The default value is
D3DANTIALIAS_NONE. For more information, see Full-scene Antialiasing
and Antialiasing States.
You can only enable full-scene antialiasing on devices that expose the
D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT or
D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT capabilities.

D3DRENDERSTATE_TEXTUREADDRESS
This render state is superseded by the D3DTSS_ADDRESS texture stage state
value set through the IDirect3DDevice3::SetTextureStageState method, but
can still be used to set the addressing mode of the first texture stage. Valid
values are members of the D3DTEXTUREADDRESS enumerated type. The
default value is D3DTADDRESS_WRAP. For more information, see Texture
Addressing Modes.
Applications that need to specify separate texture-addressing modes for the u
and v coordinates of a texture can use the
D3DRENDERSTATE_TEXTUREADDRESSU and
D3DRENDERSTATE_TEXTUREADDRESSV render states.

in.doc – page 573

D3DRENDERSTATE_TEXTUREPERSPECTIVE
TRUE to enable for perspective correct texture mapping. (See perspective
correction.) For the IDirect3DDevice3 interface, the default value is TRUE. For
earlier interfaces, the default is FALSE. For more information, see Texture
Perspective State.

D3DRENDERSTATE_WRAPU and
D3DRENDERSTATE_WRAPV

These render states are superseded by the D3DRENDERSTATE_WRAP0
through D3DRENDERSTATE_WRAP7 render states, but can be used to set
wrapping for the first texture stage. Set to TRUE for wrapping in u direction.
The default value is FALSE. For more information, see Texture Wrapping.

D3DRENDERSTATE_ZENABLE
The depth buffering state, as one of the members of the D3DZBUFFERTYPE
enumerated type. Set this state to D3DZB_TRUE to enable z-buffering,
D3DZB_USEW to enable w-buffering, or D3DZB_FALSE to disable depth
buffering.
The default value for this render state is D3DZB_TRUE if a depth buffer is
attached to the render-target surface, and D3DZB_FALSE otherwise.

D3DRENDERSTATE_FILLMODE
One or more members of the D3DFILLMODE enumerated type. The default
value is D3DFILL_SOLID.

D3DRENDERSTATE_SHADEMODE
One or more members of the D3DSHADEMODE enumerated type. The default
value is D3DSHADE_GOURAUD.

D3DRENDERSTATE_LINEPATTERN
The D3DLINEPATTERN structure. The default values are 0 for
wRepeatPattern and 0 for wLinePattern.

D3DRENDERSTATE_MONOENABLE
TRUE to enable monochromatic rendering, using a gray scale based on the blue
channel of the color rather than full RGB. The default value is FALSE. If the
device does not support RGB rendering, the value will be TRUE. Applications
can check whether the device supports RGB rendering by using the
dcmColorModel member of the D3DDEVICEDESC structure.
In monochromatic rendering, only the intensity (gray scale) component of the
color and specular components are interpolated across the triangle. This means
that only one channel (gray) is interpolated across the triangle instead of 3
channels (R,G,B), which is a performance gain for some hardware. This gray-
scale component is derived from the blue channel of the color and specular
components of the triangle.

D3DRENDERSTATE_ROP2
One of the 16 standard Windows ROP2 binary raster operations specifying how
the supplied pixels are combined with the pixels of the display surface. The
default value is R2_COPYPEN. Applications can use the
D3DPRASTERCAPS_ROP2 flag in the dwRasterCaps member of the

in.doc – page 574

D3DPRIMCAPS structure to determine whether additional raster operations are
supported.

D3DRENDERSTATE_PLANEMASK
Physical plane mask whose type is ULONG. The default value is the bitwise
negation of zero (~0). This physical plane mask can be used to turn off the red
bit, the blue bit, and so on. This render state is not supported by the software
rasterizers, and is often ignored by hardware drivers. To disable writes to the
color buffer by using alpha blending, you can set
D3DRENDERSTATE_SRCBLEND to D3DBLEND_ZERO and
D3DRENDERSTATE_DESTBLEND to D3DBLEND_ONE.

D3DRENDERSTATE_ZWRITEENABLE
TRUE to enable writes to the depth buffer. The default value is TRUE. This
member enables an application to prevent the system from updating the depth
buffer with new depth values. If this state is FALSE, depth comparisons are still
made according to the render state D3DRENDERSTATE_ZFUNC (assuming
depth buffering is taking place), but depth values are not written to the buffer.

D3DRENDERSTATE_ALPHATESTENABLE
TRUE to enable alpha tests. The default value is FALSE. This member enables
applications to turn off the tests that otherwise would accept or reject a pixel
based on its alpha value.
The incoming alpha value is compared with the reference alpha value using the
comparison function provided by the D3DRENDERSTATE_ALPHAFUNC
render state. When this mode is enabled, alpha blending occurs only if the test
succeeds.

D3DRENDERSTATE_LASTPIXEL
FALSE to enable drawing the last pixel in a line or triangle. The default value is
TRUE.

D3DRENDERSTATE_TEXTUREMAG
This render state is superseded by the D3DTSS_MAGFILTER texture stage
stage, set through the IDirect3DDevice3::SetTextureStageState method, but
can still be used to set the magnification filter for the first texture stage. This
render state can be one of the members of the D3DTEXTUREFILTER
enumerated type, which describes how a texture should be filtered when it is
being magnified (that is, when a texel must cover more than one pixel). The
valid values are D3DFILTER_NEAREST (the default) and
D3DFILTER_LINEAR.

D3DRENDERSTATE_TEXTUREMIN
This render state is superseded by the D3DTSS_MINFILTER texture stage
stage, set through the IDirect3DDevice3::SetTextureStageState method, but
can still be used to set the minification filter for the first texture stage. This
render state can be one of the members of the D3DTEXTUREFILTER
enumerated type, which describes how a texture should be filtered when it is
being made smaller (that is, when a pixel contains more than one texel). Any of
the members of the D3DTEXTUREFILTER enumerated type can be specified
for this render state. The default value is D3DFILTER_NEAREST.

in.doc – page 575

D3DRENDERSTATE_SRCBLEND
One of the members of the D3DBLEND enumerated type. The default value is
D3DBLEND_ONE.

D3DRENDERSTATE_DESTBLEND
One of the members of the D3DBLEND enumerated type. The default value is
D3DBLEND_ZERO.

D3DRENDERSTATE_TEXTUREMAPBLEND
This render state is used when rendering with the IDirect3DDevice2 interface.
When rendering multiple textures with the IDirect3DDevice3 interface, you can
set blending operations and arguments through the
IDirect3DDevice3::SetTextureStageState method. For more information, see
Multiple Texture Blending.
One of the members of the D3DTEXTUREBLEND enumerated type. The
default value is D3DTBLEND_MODULATE.

D3DRENDERSTATE_CULLMODE
Specifies how back-facing triangles are to be culled, if at all. This can be set to
one of the members of the D3DCULL enumerated type. The default value is
D3DCULL_CCW.

D3DRENDERSTATE_ZFUNC
One of the members of the D3DCMPFUNC enumerated type. The default value
is D3DCMP_LESSEQUAL. This member enables an application to accept or
reject a pixel based on its distance from the camera.
The depth value of the pixel is compared with the depth buffer value. If the
depth value of the pixel passes the comparison function, the pixel is written.
The depth value is written to the depth buffer only if the render state is TRUE.
Software rasterizers and many hardware accelerators work faster if the depth test
fails, since there is no need to filter and modulate the texture if the pixel is not
going to be rendered.

D3DRENDERSTATE_ALPHAREF
Value specifying a reference alpha value against which pixels are tested when
alpha-testing is enabled. This is an 8 bit value placed in the low 8 bits of the
DWORD render state value. Values can range from 0x00000000 to
0x000000FF.

D3DRENDERSTATE_ALPHAFUNC
One of the members of the D3DCMPFUNC enumerated type. The default value
is D3DCMP_ALWAYS. This member enables an application to accept or reject
a pixel based on its alpha value.

D3DRENDERSTATE_DITHERENABLE
TRUE to enable dithering. The default value is FALSE.

D3DRENDERSTATE_ALPHABLENDENABLE
TRUE to enable alpha-blended transparency. The default value is FALSE. This
member supersedes the legacy D3DRENDERSTATE_BLENDENABLE render
state; see remarks for more information.

in.doc – page 576

Prior to DirectX 5.0, the software rasterizers used this render state to toggle both
color keying and alpha blending. Currently, you can use the
D3DRENDERSTATE_COLORKEYENABLE render state to toggle color
keying. (Hardware rasterizers have always used the
D3DRENDERSTATE_BLENDENABLE render state only for toggling alpha
blending.)
The type of alpha blending is determined by the
D3DRENDERSTATE_SRCBLEND and D3DRENDERSTATE_DESTBLEND
render states. D3DRENDERSTATE_ALPHABLENDENABLE, with
D3DRENDERSTATE_COLORKEYENABLE, allows fine blending control.
D3DRENDERSTATE_ALPHABLENDENABLE does not affect the texture-
blending modes specified by the D3DTEXTUREBLEND enumerated type.
Texture blending is logically well before the
D3DRENDERSTATE_ALPHABLENDENABLE part of the pixel pipeline. The
only interaction between the two is that the alpha portions remaining in the
polygon after the D3DTEXTUREBLEND phase may be used in the
D3DRENDERSTATE_ALPHABLENDENABLE phase to govern interaction
with the content in the frame buffer.
Applications should check the D3DDEVCAPS_DRAWPRIMTLVERTEX flag
in the D3DDEVICEDESC structure to find out whether this render state is
supported.

D3DRENDERSTATE_FOGENABLE
TRUE to enable fog blending. The default value is FALSE. For more
information, see Fog Blending and Fog.

D3DRENDERSTATE_SPECULARENABLE
TRUE to enable specular highlights. For the IDirect3DDevice3 interface, the
default value is FALSE. For earlier interfaces, the default is TRUE.
Specular highlights are calculated as though every vertex in the object being lit
were at the object's origin. This gives the expected results as long as the object
is modeled around the origin and the distance from the light to the object is
relatively large.

D3DRENDERSTATE_ZVISIBLE
This render state is not supported.

D3DRENDERSTATE_SUBPIXEL
TRUE to enable subpixel correction. The default value is FALSE.
Subpixel correction is the ability to draw pixels in precisely their correct
locations. In a system that implemented subpixel correction, if a pixel were at
position 0.1356, its position would be interpolated from the actual coordinate
rather than simply drawn at 0 (using the integer values). Hardware can be non-
subpixel correct or subpixel correct in x or in both x and y. When interpolating
across the x-direction the actual coordinate is used. All hardware should be
subpixel correct. Some software rasterizers are not subpixel correct because of
the performance loss.
Subpixel correction means that the hardware always pre-steps the interpolant
values in the x-direction to the nearest pixel centers and then steps one pixel at a

in.doc – page 577

time in the y-direction. For each x span it also pre-steps in the x-direction to the
nearest pixel center and then steps in the x-direction one pixel each time. This
results in very accurate rendering and eliminates almost all jittering of pixels on
triangle edges. Most hardware either doesn't support it (always off) or always
supports it (always on).

D3DRENDERSTATE_SUBPIXELX
TRUE to enable subpixel correction in the x-direction only. The default value is
FALSE.

D3DRENDERSTATE_STIPPLEDALPHA
TRUE to enable stippled alpha. The default value is FALSE.
Current software rasterizers ignore this render state. You can use the
D3DPSHADECAPS_ALPHAFLATSTIPPLED flag in the D3DPRIMCAPS
structure to discover whether the current hardware supports this render state.

D3DRENDERSTATE_FOGCOLOR
Value whose type is D3DCOLOR. The default value is 0. For more
information, see Fog Color.

D3DRENDERSTATE_FOGTABLEMODE
The fog formula to be used for pixel fog. Set to one of the members of the
D3DFOGMODE enumerated type. The default value is D3DFOG_NONE. For
more information, see Pixel Fog.

D3DRENDERSTATE_FOGTABLESTART
D3DRENDERSTATE_FOGTABLEEND

Depth at which pixel fog effects begin and end for linear fog mode. Depth is
specified in world-space for hardware devices (which use eye-relative fog) or in
device-space for software devices. For more information, see Pixel Fog
Parameters and Eye-Relative vs. Z-Based Depth.
These render states enable you to exclude fog effects for positions close to the
camera. For example, you could set the starting depth to 0.3 to prevent fog
effects for depths between 0.0 and 0.299, and the ending depth to 0.7 to prevent
additional fog effects for depths between 0.701 and 1.0.

D3DRENDERSTATE_FOGTABLEDENSITY
Fog density for pixel fog to be used in the exponential fog modes
(D3DFOG_EXP and D3DFOG_EXP2). Valid density values range from 0.0 to
1.0, inclusive. The default value is 1.0. For more information, see Pixel Fog
Parameters.

D3DRENDERSTATE_STIPPLEENABLE
Enables stippling in the device driver. When stippled alpha is enabled, it
overrides the current stipple pattern, as specified by the
D3DRENDERSTATE_STIPPLEPATTERN00 through
D3DRENDERSTATE_STIPPLEPATTERN31 render states. When stippled
alpha is disabled, the stipple pattern must be returned.

D3DRENDERSTATE_EDGEANTIALIAS
TRUE to antialias lines forming the convex outline of objects. The default value
is FALSE. For more information, see Edge Antialiasing and Antialiasing States.
When set to TRUE, applications should only render lines, and only to the

in.doc – page 578

exterior edges of polygons in a scene. The behavior is undefined if triangles or
points are drawn when this render state is set. Antialiasing is performed simply
by averaging the values of neighboring pixels. Although this is not the best way
to perform antialiasing, it can be very efficient; hardware that supports this kind
of operation is becoming more common.
You can only enable edge antialiasing on devices that expose the
D3DPRASTERCAPS_ANTIALIASEDGES capability.

D3DRENDERSTATE_COLORKEYENABLE
TRUE to enable color-keyed transparency. The default value is FALSE. You
can use this render state with D3DRENDERSTATE_ALPHABLENDENABLE
to implement fine blending control.
Applications should check the D3DDEVCAPS_DRAWPRIMTLVERTEX flag
in the D3DDEVICEDESC structure to find out whether this render state is
supported.
When color-keyed transparency is enabled, only texture surfaces that were
created with the DDSD_CKSRCBLT flag will be affected. Surfaces that were
created without the DDSD_CKSRCBLT flag will exhibit color-keyed
transparency effects.

D3DRENDERSTATE_BORDERCOLOR
A DWORD value specifying a border color. If the texture addressing mode is
specified as D3DTADDRESS_BORDER (as set in the
D3DTEXTUREADDRESS enumerated type), this render state specifies the
border color the system uses when it encounters texture coordinates outside the
range [0.0, 1.0].
The format of the physical-color information specified by the DWORD value
depends on the format of the DirectDraw surface.

D3DRENDERSTATE_TEXTUREADDRESSU
This render state is superseded by the D3DTSS_ADDRESSU texture stage state
value set through the IDirect3DDevice3::SetTextureStageState method, but
can still be used to set the addressing mode of the first texture stage. Valid
values are members of the D3DTEXTUREADDRESS enumerated type. The
default value is D3DTADDRESS_WRAP. For more information, see Texture
Addressing Modes.
This render state applies only to the u texture coordinate. This render state,
along with D3DRENDERSTATE_TEXTUREADDRESSV, allows you to
specify separate texture-addressing modes for the u and v coordinates of a
texture. Because the D3DRENDERSTATE_TEXTUREADDRESS render state
applies to both the u and v texture coordinates, it overrides any values set for the
D3DRENDERSTATE_TEXTUREADDRESSU render state.

D3DRENDERSTATE_TEXTUREADDRESSV
This render state is superseded by the D3DTSS_ADDRESSV texture stage state
value set through the IDirect3DDevice3::SetTextureStageState method, but
can still be used to set the addressing mode of the first texture stage. Valid
values are members of the D3DTEXTUREADDRESS enumerated type. The

in.doc – page 579

default value is D3DTADDRESS_WRAP. For more information, see Texture
Addressing Modes.
This render state applies only to the v texture coordinate. This render state,
along with D3DRENDERSTATE_TEXTUREADDRESSU, allows you to
specify separate texture-addressing modes for the u and v coordinates of a
texture. Because the D3DRENDERSTATE_TEXTUREADDRESS render state
applies to both the u and v texture coordinates, it overrides any values set for the
D3DRENDERSTATE_TEXTUREADDRESSV render state.

D3DRENDERSTATE_MIPMAPLODBIAS
Floating-point D3DVALUE value used to change the level of detail (LOD) bias.
This value offsets the value of the mipmap level that is computed by trilinear
texturing. It is usually in the range –1.0 to 1.0; the default value is 0.0.
Each unit bias (+/-1.0) biases the selection by exactly one mipmap level. A
positive bias will cause the use of larger mipmap levels, resulting in a sharper
but more aliased image. A negative bias will cause the use of smaller mipmap
levels, resulting in a blurrier image. Applying a negative bias also results in the
referencing of a smaller amount of texture data, which can boost performance on
some systems.

D3DRENDERSTATE_ZBIAS
An integer value in the range 0 to 16 that causes polygons that are physically
coplanar to appear separate. Polygons with a high z-bias value will appear in
front of polygons with a low value, without requiring sorting for drawing order.
Polygons with a value of 1 appear in front of polygons with a value of 0, and so
on. The default value is zero. For more information, see Using Depth Buffers.

D3DRENDERSTATE_RANGEFOGENABLE
TRUE to enable range-based vertex fog. (The default value is FALSE, in which
case the system uses depth-based fog.) In range-based fog, the distance of an
object from the viewer is used to compute fog effects, not the depth of the object
(that is, the z-coordinate) in the scene. In range-based fog, all fog methods work
as usual, except that they use range instead of depth in the computations.
Range is the correct factor to use for fog computations, but depth is commonly
used instead because range is expensive to compute and depth is generally
already available. Using depth to calculate fog has the undesirable effect of
having the 'fogginess' of peripheral objects change as the eye is rotated — in this
case, the depth changes while the range remains constant.
This render state works only with D3DVERTEX vertices. When you specify
D3DLVERTEX or D3DTLVERTEX vertices, the F (fog) component of the
RGBF fog value should already be corrected for range.
Since no hardware currently supports per-pixel range-based fog, range
correction offered only for vertex fog. For more information, see Range-based
Fog and Vertex Fog.

D3DRENDERSTATE_ANISOTROPY
This render state is superseded by the D3DTSS_MAXANISOTROPY texture
stage state, set through the IDirect3DDevice3::SetTextureStageState method,

in.doc – page 580

but can still be used to set the degree of anisotropic filtering for the first texture
stage.
This render state can be an integer value that enables a degree of anisotropic
filtering, used for bilinear or trilinear filtering. The value determines the
maximum aspect ratio of the sampling filter kernel. To determine the range of
appropriate values, use the D3DPRASTERCAPS_ANISOTROPY flag in the
D3DPRIMCAPS structure.
Anisotropy is the distortion visible in the texels of a 3-D object whose surface is
oriented at an angle with respect to the plane of the screen. The anisotropy is
measured as the elongation (length divided by width) of a screen pixel that is
inverse-mapped into texture space.

D3DRENDERSTATE_FLUSHBATCH
Flush any pending DrawPrimitive batches. When rendering with texture handles
(using the IDirect3DDevice2 interface) you must flush batched primitives after
modifying the current texture surface. Batched primitives are implicitly flushed
when rendering with the IDirect3DDevice3 interface, as well as when rendering
with execute buffers.

D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT
TRUE to enable sort-independent transparency, or FALSE to disable.

D3DRENDERSTATE_STENCILENABLE
TRUE to enable stenciling, or FALSE to disable stenciling. The default value is
FALSE. For more information, see Stencil Buffers.

D3DRENDERSTATE_STENCILFAIL
Stencil operation to perform if the stencil test fails. This can be one of the
members of the D3DSTENCILOP enumerated type. The default value is
D3DSTENCILOP_KEEP. For more information, see Stencil Buffers.

D3DRENDERSTATE_STENCILZFAIL
Stencil operation to perform if the stencil test passes and depth test (z-test) fails.
This can be one of the members of the D3DSTENCILOP enumerated type. The
default value is D3DSTENCILOP_KEEP. For more information, see Stencil
Buffers.

D3DRENDERSTATE_STENCILPASS
Stencil operation to perform if both the stencil and depth (z) tests pass. This can
be one of the members of the D3DSTENCILOP enumerated type. The default
value is D3DSTENCILOP_KEEP. For more information, see Stencil Buffers.

D3DRENDERSTATE_STENCILFUNC
Comparison function for the stencil test. This can be one of the members of the
D3DCMPFUNC enumerated type. The default value is D3DCMP_ALWAYS.
The comparison function is used to compare the reference value to a stencil
buffer entry. This comparison only applies to the bits in the reference value and
stencil buffer entry that are set in the stencil mask (set by the
D3DRENDERSTATE_STENCILMASK render state). If the comparison is true,
the stencil test passes.

D3DRENDERSTATE_STENCILREF
Integer reference value for the stencil test. The default value is 0.

in.doc – page 581

D3DRENDERSTATE_STENCILMASK
Mask applied to the reference value and each stencil buffer entry to determine
the significant bits for the stencil test. The default mask is 0xFFFFFFFF.

D3DRENDERSTATE_STENCILWRITEMASK
Write mask applied to values written into the stencil buffer. The default mask is
0xFFFFFFFF.

D3DRENDERSTATE_TEXTUREFACTOR
Color used for multiple texture blending with the D3DTA_TFACTOR texture-
blending argument or D3DTOP_BLENDFACTORALPHA texture-blending
operation. The associated value is a D3DCOLOR variable.

D3DRENDERSTATE_STIPPLEPATTERN00 through
D3DRENDERSTATE_STIPPLEPATTERN31

Stipple pattern. Each render state applies to a separate line of the stipple pattern.
Together, these render states specify a 32x32 stipple pattern.

D3DRENDERSTATE_WRAP0 through D3DRENDERSTATE_WRAP7
Texture wrapping behavior for multiple textures. Valid values for these render
states are a combination of one or both of the D3DWRAP_U and D3DWRAP_V
flags, which cause the system to wrap in the u and v directions for a given
texture coordinate set. The default value for these render states is 0 (wrapping
disabled in both directions). For more information, see Texture Wrapping.

D3DRENDERSTATE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
The D3DRENDERSTATE_BLENDENABLE member was superseded by the
D3DRENDERSTATE_ALPHABLENDENABLE member. Its name was changed to
make its meaning more explicit. To maintain compatibility with legacy applications,
the D3DRENDERSTATE_BLENDENABLE constant is declared as equivalent to
D3DRENDERSTATE_ALPHABLENDENABLE:

#define D3DRENDERSTATE_BLENDENABLE
D3DRENDERSTATE_ALPHABLENDENABLE

Direct3D defines the D3DRENDERSTATE_WRAPBIAS constant as a convenience
for applications to enable or disable texture wrapping based on the zero-based
integer of a texture coordinate set (rather than explicitly using one of the
D3DRENDERSTATE_WRAPn state values). Add the
D3DRENDERSTATE_WRAPBIAS value to the zero-based index of a texture
coordinate set to calculate the D3DRENDERSTATE_WRAPn value that
corresponds to that index, as shown in the following example:

// Enable U/V wrapping for textures that use the texture
// coordinate set at the index within the dwIndex variable.
HRESULT hr = lpD3DDevice->SetRenderState(
 dwIndex + D3DRENDERSTATE_WRAPBIAS,

in.doc – page 582

 D3DWRAP_U | D3DWRAPV);

// If dwIndex is 3, the value that results from
// the addition equates to D3DRENDERSTATE_WRAP3 (131).

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE, D3DSTATE

D3DSHADEMODE
[This is preliminary documentation and subject to change.]

The D3DSHADEMODE enumerated type describes the supported shade mode for
the D3DRENDERSTATE_SHADEMODE render state in the
D3DRENDERSTATETYPE enumerated type.

typedef enum _D3DSHADEMODE {
 D3DSHADE_FLAT = 1,
 D3DSHADE_GOURAUD = 2,
 D3DSHADE_PHONG = 3,
 D3DSHADE_FORCE_DWORD = 0x7fffffff,
} D3DSHADEMODE;

Members
D3DSHADE_FLAT

Flat shade mode. The color and specular component of the first vertex in the
triangle are used to determine the color and specular component of the face.
These colors remain constant across the triangle; that is, they aren't interpolated.

D3DSHADE_GOURAUD
Gouraud shade mode. The color and specular components of the face are
determined by a linear interpolation between all three of the triangle's vertices.

D3DSHADE_PHONG
Phong shade mode is not currently supported.

D3DSHADE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

in.doc – page 583

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DRENDERSTATETYPE

D3DSTENCILOP
[This is preliminary documentation and subject to change.]

The D3DSTENCILOP enumerated type describes the stencil operations for the
D3DRENDERSTATE_STENCILFAIL, D3DRENDERSTATE_STENCILZFAIL,
D3DRENDERSTATE_STENCILPASS render states.

typedef enum _D3DSTENCILOP {
 D3DSTENCILOP_KEEP = 1,
 D3DSTENCILOP_ZERO = 2,
 D3DSTENCILOP_REPLACE = 3,
 D3DSTENCILOP_INCRSAT = 4,
 D3DSTENCILOP_DECRSAT = 5,
 D3DSTENCILOP_INVERT = 6,
 D3DSTENCILOP_INCR = 7,
 D3DSTENCILOP_DECR = 8,
 D3DSTENCILOP_FORCE_DWORD = 0x7fffffff
} D3DSTENCILOP;

Members
D3DSTENCILOP_KEEP

Do not update the entry in the stencil buffer. This is the default value.
D3DSTENCILOP_ZERO

Set the stencil-buffer entry to zero.
D3DSTENCILOP_REPLACE

Replace the stencil-buffer entry with reference value.
D3DSTENCILOP_INCRSAT

Increment the stencil-buffer entry, clamping to the maximum value. See remarks
for infomation on the maximum stencil-buffer values.

D3DSTENCILOP_DECRSAT
Decrement the stencil-buffer entry, clamping to zero.

D3DSTENCILOP_INVERT
Invert the bits in the stencil-buffer entry.

in.doc – page 584

D3DSTENCILOP_INCR
Increment the stencil-buffer entry, wrapping to zero if the new value exceeds the
maximum value. See remarks for infomation on the maximum stencil-buffer
values.

D3DSTENCILOP_DECR
Decrement the stencil-buffer entry, wrapping to the maximum value if the new
value is less than zero.

D3DSTENCILOP_FORCE_DWORD
Forces this enumeration to be compiled to 32 bits in size. This value is not used.

Remarks
Stencil-buffer entries are integer values ranging inclusively from 0 to 2n -1, where n
is the bit depth of the stencil buffer.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DRENDERSTATETYPE, Stencil Buffers

D3DTEXTUREADDRESS
[This is preliminary documentation and subject to change.]

The D3DTEXTUREADDRESS enumerated type describes the supported texture
addressing modes when setting them with
IDirect3DDevice3::SetTextureStageState or with the
D3DRENDERSTATE_TEXTUREADDRESS render state.

typedef enum _D3DTEXTUREADDRESS {
 D3DTADDRESS_WRAP = 1,
 D3DTADDRESS_MIRROR = 2,
 D3DTADDRESS_CLAMP = 3,
 D3DTADDRESS_BORDER = 4,
 D3DTADDRESS_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREADDRESS;

Members
D3DTADDRESS_WRAP

in.doc – page 585

Tile the texture at every integer junction. For example, for u values between 0
and 3, the texture will be repeated three times; no mirroring is performed.

D3DTADDRESS_MIRROR
Similar to D3DTADDRESS_WRAP, except that the texture is flipped at every
integer junction. For u values between 0 and 1, for example, the texture is
addressed normally, between 1 and 2 the texture is flipped (mirrored), between 2
and 3 the texture is normal again, and so on.

D3DTADDRESS_CLAMP
Texture coordinates outside the range [0.0, 1.0] are set to the texture color at 0.0
or 1.0, respectively.

D3DTADDRESS_BORDER
Texture coordinates outside the range [0.0, 1.0] are set to the border color,
which is a new render state corresponding to
D3DRENDERSTATE_BORDERCOLOR in the D3DRENDERSTATETYPE
enumerated type.

D3DTADDRESS_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
For information about using the D3DRENDERSTATE_WRAPU and
D3DRENDERSTATE_WRAPV render states, see Textures.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DRENDERSTATETYPE

D3DTEXTUREBLEND
[This is preliminary documentation and subject to change.]

The D3DTEXTUREBLEND enumerated type defines the supported texture-
blending modes. This enumerated type is used by the
D3DRENDERSTATE_TEXTUREMAPBLEND render state in the
D3DRENDERSTATETYPE enumerated type.

typedef enum _D3DTEXTUREBLEND {
 D3DTBLEND_DECAL = 1,
 D3DTBLEND_MODULATE = 2,
 D3DTBLEND_DECALALPHA = 3,

in.doc – page 586

 D3DTBLEND_MODULATEALPHA = 4,
 D3DTBLEND_DECALMASK = 5,
 D3DTBLEND_MODULATEMASK = 6,
 D3DTBLEND_COPY = 7,
 D3DTBLEND_ADD = 8,
 D3DTBLEND_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREBLEND;

Members
D3DTBLEND_DECAL

Decal texture-blending mode is supported. In this mode, the RGB and alpha
values of the texture replace the colors that would have been used with no
texturing.
cPix = cTex
aPix = aTex

D3DTBLEND_MODULATE
Modulate texture-blending mode is supported. In this mode, the RGB values of
the texture are multiplied with the RGB values that would have been used with
no texturing. Any alpha values in the texture replace the alpha values in the
colors that would have been used with no texturing; if the texture does not
contain an alpha component, alpha values at the vertices in the source are
interpolated between vertices.
cPix = cSrc * cTex
if(the texture has an alpha channel)
 aPix = aTex
else
 aPix = aSrc

D3DTBLEND_DECALALPHA
Decal-alpha texture-blending mode is supported. In this mode, the RGB and
alpha values of the texture are blended with the colors that would have been
used with no texturing, according to the following formulas:
cPix = (cSrc * (1.0 - aTex)) + (aTex * cTex)
aPix = aSrc

D3DTBLEND_MODULATEALPHA
Modulate-alpha texture-blending mode is supported. In this mode, the RGB
values of the texture are multiplied with the RGB values that would have been
used with no texturing, and the alpha values of the texture are multiplied with
the alpha values that would have been used with no texturing.
cPix = cSrc * cTex
aPix = aSrc * aTex

in.doc – page 587

D3DTBLEND_DECALMASK
This blending mode is not supported.
cPix = lsb(aTex) ? cTex : cSrc
aPix = aSrc

When the least-significant bit of the texture's alpha component is zero, the effect
is as if texturing were disabled.

D3DTBLEND_MODULATEMASK
This blending mode is not supported.
cPix = lsb(aTex) ? cTex * cSrc : cSrc
aPix = aSrc

When the least-significant bit of the texture's alpha component is zero, the effect
is as if texturing were disabled.

D3DTBLEND_COPY
This blending mode is obsolete, and is treated as equivalent to the
D3DTBLEND_DECAL texture-blending mode.

D3DTBLEND_ADD
Add the Gouraud interpolants to the texture lookup with saturation semantics
(that is, if the color value overflows it is set to the maximum possible value).
This member was introduced in DirectX 5.0.
cPix = cTex + cSrc
aPix = aSrc

D3DTBLEND_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
In the formulas given for the members of this enumerated type, the placeholders
have the following meanings:

· cTex is the color of the source texel
· aTex is the alpha component of the source texel
· cSrc is the interpolated color of the source primitive
· aSrc is the alpha component of the source primitive
· cPix is the new blended color value
· aPix is the new blended alpha value

Modulation combines the effects of lighting and texturing. Because colors are
specified as values between and including 0 and 1, modulating (multiplying) the
texture and preexisting colors together typically produces colors that are less bright
than either source. The brightness of a color component is undiminished when one of
the sources for that component is white (1). The simplest way to ensure that the

in.doc – page 588

colors of a texture do not change when the texture is applied to an object is to ensure
that the object is white (1,1,1).

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DTEXTUREFILTER
[This is preliminary documentation and subject to change.]

The D3DTEXTUREFILTER enumerated type defines the supported texture filter
modes used by the D3DRENDERSTATE_TEXTUREMAG render state in the
D3DRENDERSTATETYPE enumerated type.

typedef enum _D3DTEXTUREFILTER {
 D3DFILTER_NEAREST = 1,
 D3DFILTER_LINEAR = 2,
 D3DFILTER_MIPNEAREST = 3,
 D3DFILTER_MIPLINEAR = 4,
 D3DFILTER_LINEARMIPNEAREST = 5,
 D3DFILTER_LINEARMIPLINEAR = 6,
 D3DFILTER_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREFILTER;

Members
D3DFILTER_NEAREST

The texel with coordinates nearest to the desired pixel value is used. This is a
point filter with no mipmapping.
This applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

D3DFILTER_LINEAR
A weighted average of a 22 area of texels surrounding the desired pixel is
used. This is a bilinear filter with no mipmapping.
This applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

D3DFILTER_MIPNEAREST
The closest mipmap level is chosen and a point filter is applied.

D3DFILTER_MIPLINEAR
The closest mipmap level is chosen and a bilinear filter is applied within it.

D3DFILTER_LINEARMIPNEAREST

in.doc – page 589

The two closest mipmap levels are chosen and then a linear blend is used
between point filtered samples of each level.

D3DFILTER_LINEARMIPLINEAR
The two closest mipmap levels are chosen and then combined using a bilinear
filter.

D3DFILTER_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

Remarks
All of these filter modes are valid with the D3DRENDERSTATE_TEXTUREMIN
render state, but only the first two (D3DFILTER_NEAREST and
D3DFILTER_LINEAR) are valid with D3DRENDERSTATE_TEXTUREMAG.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DTEXTUREMAGFILTER
[This is preliminary documentation and subject to change.]

The D3DTEXTUREMAGFILTER enumerated type defines texture magnification
filtering modes for a texture stage.

typedef enum _D3DTEXTUREMAGFILTER {
 D3DTFG_POINT = 1,
 D3DTFG_LINEAR = 2,
 D3DTFG_FLATCUBIC = 3,
 D3DTFG_GAUSSIANCUBIC= 4,
 D3DTFG_ANISOTROPIC = 5,
 D3DTFG_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREMAGFILTER;

Members
D3DTFG_POINT

Point filtering. The texel with coordinates nearest to the desired pixel value is
used.

D3DTFG_LINEAR
Bilinear interpolation filtering. A weighted average of a 22 area of texels
surrounding the desired pixel is used.

D3DTFG_FLATCUBIC

in.doc – page 590

Not currently supported; do not use.
D3DTFG_GAUSSIANCUBIC

Not currently supported; do not use.
D3DTFG_ANISOTROPIC

Anisotropic texture filtering. Compensates for distortion caused by the
difference in angle between the texture polygon and the plane of the screen.

D3DTFG_FORCE_DWORD
Forces this enumerated type to compile to 32 bits in size.

Remarks
You set a texture stage's magnification filter by calling the
IDirect3DDevice3::SetTextureStageState method with the D3DTSS_MAGFILTER
value as the second parameter, and one of members of this enumeration as the third
parameter.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DTEXTUREMINFILTER, D3DTEXTUREMIPFILTER, Texture Filtering

D3DTEXTUREMINFILTER
[This is preliminary documentation and subject to change.]

The D3DTEXTUREMINFILTER enumerated type defines texture minification
filtering modes for a texture stage.

typedef enum _D3DTEXTUREMINFILTER {
 D3DTFN_POINT = 1,
 D3DTFN_LINEAR = 2,
 D3DTFN_ANISOTROPIC = 3,
 D3DTFN_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREMINFILTER;

Members
D3DTFN_POINT

Point filtering. The texel with coordinates nearest to the desired pixel value is
used.

in.doc – page 591

D3DTFN_LINEAR
Bilinear interpolation filtering. A weighted average of a 22 area of texels
surrounding the desired pixel is used.

D3DTFN_ANISOTROPIC
Anisotropic texture filtering. Compensates for distortion caused by the
difference in angle between the texture polygon and the plane of the screen.

D3DTFN_FORCE_DWORD
Forces this enumerated type to compile to 32 bits in size.

Remarks
You set a texture stage's magnification filter by calling the
IDirect3DDevice3::SetTextureStageState method with the D3DTSS_MINFILTER
value as the second parameter, and one of members of this enumeration as the third
parameter.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DTEXTUREMAGFILTER, D3DTEXTUREMIPFILTER, Texture Filtering

D3DTEXTUREMIPFILTER
[This is preliminary documentation and subject to change.]

The D3DTEXTUREMIPFILTER enumerated type defines texture mipmap
filtering modes for a texture stage.

typedef enum _D3DTEXTUREMIPFILTER {
 D3DTFP_NONE = 1,
 D3DTFP_POINT = 2,
 D3DTFP_LINEAR = 3,
 D3DTFP_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREMIPFILTER;

Members
D3DTFP_NONE

Mipmapping disabled. The rasterizer should use the magnification filter instead.
D3DTFP_POINT

in.doc – page 592

Nearest point mipmap filtering. The rasterizer uses the color from the texel of
the nearest mipmap texture.

D3DTFP_LINEAR
Trilinear mipmap interpolation. The rasterizer linearly interpolates pixel color
using the texels of the two nearest mipmap textures.

D3DTFP_FORCE_DWORD
Forces this enumerated type to compile to 32 bits in size.

Remarks
You set a texture stage's magnification filter by calling the
IDirect3DDevice3::SetTextureStageState method with the D3DTSS_MIPFILTER
value as the second parameter, and one of members of this enumeration as the third
parameter.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DTEXTUREMAGFILTER, D3DTEXTUREMIPFILTER, Texture Filtering

D3DTEXTUREOP
[This is preliminary documentation and subject to change.]

The D3DTEXTUREOP enumerated type defines per-stage texture blending
operations. The members of this type are used when setting color or alpha operations
by using the D3DTSS_COLOROP or D3DTSS_ALPHAOP values with the
IDirect3DDevice3::SetTextureStageState method.

typedef enum _D3DTEXTUREOP {
 D3DTOP_DISABLE = 1,
 D3DTOP_SELECTARG1 = 2,
 D3DTOP_SELECTARG2 = 3,
 D3DTOP_MODULATE = 4,
 D3DTOP_MODULATE2X = 5,
 D3DTOP_MODULATE4X = 6,
 D3DTOP_ADD = 7,
 D3DTOP_ADDSIGNED = 8,
 D3DTOP_ADDSIGNED2X = 9,
 D3DTOP_SUBTRACT = 10,
 D3DTOP_ADDSMOOTH = 11,

in.doc – page 593

 D3DTOP_BLENDDIFFUSEALPHA = 12,
 D3DTOP_BLENDTEXTUREALPHA = 13,
 D3DTOP_BLENDFACTORALPHA = 14,
 D3DTOP_BLENDTEXTUREALPHAPM = 15,
 D3DTOP_BLENDCURRENTALPHA = 16,
 D3DTOP_PREMODULATE = 17,
 D3DTOP_MODULATEALPHA_ADDCOLOR = 18,
 D3DTOP_MODULATECOLOR_ADDALPHA = 19,
 D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20,
 D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21,
 D3DTOP_BUMPENVMAP = 22,
 D3DTOP_BUMPENVMAPLUMINANCE = 23,
 D3DTOP_DOTPRODUCT3 = 24,
 D3DTOP_FORCE_DWORD = 0x7fffffff,
} D3DTEXTUREOP;

Members
Control members
D3DTOP_DISABLE

Disables output from this texture stage and all stages with a higher index. To
disable texture mapping, set this operation for the first texture stage (stage 0).

D3DTOP_SELECTARG1
Use this texture stage's first color or alpha argument, unmodified, as the output.
This operation affects the color argument when used with the
D3DTSS_COLOROP texture stage state, and the alpha argument when used
with D3DTSS_ALPHAOP.

S RGBA = Arg1

D3DTOP_SELECTARG2
Use this texture stage's second color or alpha argument, unmodified, as the
output. This operation affects the color argument when used with the
D3DTSS_COLOROP texture stage state, and the alpha argument when used
with D3DTSS_ALPHAOP.

S RGBA = Arg2

Modulation members
D3DTOP_MODULATE

Multiply the components of the arguments together.

S RGBA = Arg1 x Arg2

D3DTOP_MODULATE2X
Multiply the components of the arguments and shift the products to the left one
bit (effectively multiplying them by two) for brightening.

in.doc – page 594

S RGBA = (Arg1 x Arg2) << 1

D3DTOP_MODULATE4X
Multiply the components of the arguments and shift the products to the left two
bits (effectively multiplying them by four) for brightening.

S RGBA = (Arg1 x Arg2) << 2

Addition and Subtraction members
D3DTOP_ADD

Add the components of the arguments.

S RGBA = Arg1 + Arg2

D3DTOP_ADDSIGNED
Add the components of the arguments with a -0.5 bias, making the effective
range of values from -0.5 to 0.5.

S RGBA = Arg1 + Arg2 - 0.5

D3DTOP_ADDSIGNED2X
Add the components of the arguments with a -0.5 bias, and shift the products to
the left one bit.

S RGBA = (Arg1 + Arg2 - 0.5) << 2

D3DTOP_SUBTRACT
Subtract the components of the second argument from those of the first
argument.

S RGBA = Arg1 - Arg2

D3DTOP_ADDSMOOTH
Add the first and second arguments, then subract their product from the sum.

S RGBA = Arg 1 + Arg2 - Arg1 x Arg2
 = Arg1 + Arg2 (1 - Arg1)

Linear alpha blending members
D3DTOP_BLENDDIFFUSEALPHA
D3DTOP_BLENDTEXTUREALPHA
D3DTOP_BLENDFACTORALPHA
D3DTOP_BLENDCURRENTALPHA

Linearly blend this texture stage using the interpolated alpha from each vertex
(D3DTOP_BLENDDIFFUSEALPHA), alpha from this stage's texture
(D3DTOP_BLENDTEXTUREALPHA), a scalar alpha
(D3DTOP_BLENDFACTORALPHA) set with the
D3DRENDERSTATE_TEXTUREFACTOR render state, or the alpha taken
from the previous texture stage (D3DTOP_BLENDCURRENTALPHA).

in.doc – page 595

S RGBA = Arg 1 x (Alpha) + Arg2 x (1 - Alpha)

D3DTOP_BLENDTEXTUREALPHAPM
Linearly blend a texture stage that uses premultiplied alpha.

S RGBA = Arg 1 + Arg2 x (1 - Alpha)

Specular mapping members
D3DTOP_PREMODULATE

Modulate this texture stage with the next texture stage.
D3DTOP_MODULATEALPHA_ADDCOLOR

Modulate the second argument's color using the first argument's alpha, then add
the result to argument one. This operation is supported only for color operations
(D3DTSS_COLOROP).

S RGBA = Arg 1RGB + Arg1 A x Arg2 RGB

D3DTOP_MODULATECOLOR_ADDALPHA
Modulate the arguments, then add the first argument's alpha. This operation is
supported only for color operations (D3DTSS_COLOROP).

S RGBA = Arg 1RGB x Arg2 RGB + Arg1 A

D3DTOP_MODULATEINVALPHA_ADDCOLOR
Similar to D3DTOP_MODULATEALPHA_ADDCOLOR, but use the inverse of
the first argument's alpha. This operation is supported only for color operations
(D3DTSS_COLOROP).

S RGBA = (1 - Arg 1A) x Arg2 RGB + Arg1 RGB

D3DTOP_MODULATEINVCOLOR_ADDALPHA
Similar to D3DTOP_MODULATECOLOR_ADDALPHA, but use the inverse of
the first argument's color. This operation is supported only for color operations
(D3DTSS_COLOROP).

S RGBA = (1 - Arg 1RGB) x Arg2 RGB + Arg1 A

Bump mapping members
D3DTOP_BUMPENVMAP

Perform per-pixel bump-mapping using the environment map in the next texture
stage (without luminance). This operation is supported only for color operations
(D3DTSS_COLOROP).

D3DTOP_BUMPENVMAPLUMINANCE
Perform per-pixel bump-mapping using the environment map in the next texture
stage (with luminance). This operation is supported only for color operations
(D3DTSS_COLOROP).

D3DTOP_DOTPRODUCT3

in.doc – page 596

Modulate the components of each argument (as signed components), add their
products, then replicate the sum to all color channels, including alpha. This
operation is supported for color and alpha operations.

S RGBA = (Arg 1R x Arg2 R + Arg1 G x Arg2 G + Arg1 B x Arg2 B)

Miscellaneous member
D3DTOP_FORCE_DWORD

Forces this enumerated type to be compiled to 32 bits in size. This value is not
used.

Remarks
In the preceding formulas, SRGBA is the RGBA color produced by a texture operation,
and Arg1 and Arg2 represent the complete RGBA color of the texture arguments.
Individual components of an argument are shown with subscripts. For example, the
alpha component for argument one would be shown as Arg1A.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice3::GetTextureStageState,
IDirect3DDevice3::SetTextureStageState, D3DTEXTURESTAGESTATETYPE

D3DTEXTURESTAGESTATETYP
E

[This is preliminary documentation and subject to change.]

The D3DTEXTURESTAGESTATETYPE enumerated type defines texture stage
states. Members of this enumerated type are used with the
IDirect3DDevice3::GetTextureStageState and
IDirect3DDevice3::SetTextureStageState methods to retrieve and set texture state
values.

typedef enum _D3DTEXTURESTAGESTATETYPE {
 D3DTSS_COLOROP = 1,
 D3DTSS_COLORARG1 = 2,
 D3DTSS_COLORARG2 = 3,
 D3DTSS_ALPHAOP = 4,
 D3DTSS_ALPHAARG1 = 5,

in.doc – page 597

 D3DTSS_ALPHAARG2 = 6,
 D3DTSS_BUMPENVMAT00 = 7,
 D3DTSS_BUMPENVMAT01 = 8,
 D3DTSS_BUMPENVMAT10 = 9,
 D3DTSS_BUMPENVMAT11 = 10,
 D3DTSS_TEXCOORDINDEX = 11,
 D3DTSS_ADDRESS = 12,
 D3DTSS_ADDRESSU = 13,
 D3DTSS_ADDRESSV = 14,
 D3DTSS_BORDERCOLOR = 15,
 D3DTSS_MAGFILTER = 16,
 D3DTSS_MINFILTER = 17,
 D3DTSS_MIPFILTER = 18,
 D3DTSS_MIPMAPLODBIAS = 19,
 D3DTSS_MAXMIPLEVEL = 20,
 D3DTSS_MAXANISOTROPY = 21,
 D3DTSS_BUMPENVLSCALE = 22,
 D3DTSS_BUMPENVLOFFSET = 23,
 D3DTSS_FORCE_DWORD = 0x7fffffff,
} D3DTEXTURESTAGESTATETYPE;

Members
D3DTSS_COLOROP

The texture stage state is a texture color blending operation identified by one of
the members of the D3DTEXTUREOP enumerated type. The default value for
the first texture stage (stage zero) is D3DTOP_MODULATE, and for all other
stages the default is D3DTOP_DISABLE.

D3DTSS_COLORARG1
The texture stage state is the first color argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_TEXTURE.

D3DTSS_COLORARG2
The texture stage state is the second color argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_CURRENT.

D3DTSS_ALPHAOP
The texture stage state is texture alpha blending operation identified by one of
the members of the D3DTEXTUREOP enumerated type. The default value for
the first texture stage (stage zero) is D3DTOP_SELECTARG1, and for all other
stages the default is D3DTOP_DISABLE.

D3DTSS_ALPHAARG1
The texture stage state is the first alpha argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_TEXTURE. If no
texture is set for this stage, the default argument is D3DTA_DIFFUSE.

D3DTSS_ALPHAARG2

in.doc – page 598

The texture stage state is the second alpha argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_CURRENT.

D3DTSS_BUMPENVMAT00
The texture stage state is a D3DVALUE for the [0][0] coefficient in a bump
mapping matrix. The default value is zero.

D3DTSS_BUMPENVMAT01
The texture stage state is a D3DVALUE for the [0][1] coefficient in a bump
mapping matrix. The default value is 0.

D3DTSS_BUMPENVMAT10
The texture stage state is a D3DVALUE for the [1][0] coefficient in a bump
mapping matrix. The default value is 0.

D3DTSS_BUMPENVMAT11
The texture stage state is a D3DVALUE for the [1][1] coefficient in a bump
mapping matrix. The default value is 0.

D3DTSS_TEXCOORDINDEX
Index of the texture coordinate set to use with this texture stage. The default
index is 0. Set this state to the zero-based index of the coordinate set for each
vertex that this texture stage will use. (You can specify up to eight sets of
texture coordinates per vertex.) If a vertex does not include a set of texture
coordinates at the specified index, the system defaults to using the u, v
coordinates (0,0).

D3DTSS_ADDRESS
Member of the D3DTEXTUREADDRESS enumerated type. Selects the texture
addressing method for both the u and v coordinates. The default is
D3DTADDRESS_WRAP.

D3DTSS_ADDRESSU
Member of the D3DTEXTUREADDRESS enumerated type. Selects the texture
addressing method for the u coordinate. The default is
D3DTADDRESS_WRAP.

D3DTSS_ADDRESSV
Member of the D3DTEXTUREADDRESS enumerated type. Selects the texture
addressing method for the v coordinate. The default value is
D3DTADDRESS_WRAP.

D3DTSS_BORDERCOLOR
D3DCOLOR value that describes the color to be used for rasterizing texture
coordinates outside the [0.0,1.0] range. The default color is 0x00000000.

D3DTSS_MAGFILTER
Member of the D3DTEXTUREMAGFILTER enumerated type that indicates
the texture magnification filter to be used when rendering the texture onto
primitives. The default value is D3DTFG_POINT.

D3DTSS_MINFILTER
Member of the D3DTEXTUREMINFILTER enumerated type that indicates
the texture magnification filter to be used when rendering the texture onto
primitives. The default value is D3DTFN_POINT.

in.doc – page 599

D3DTSS_MIPFILTER
Member of the D3DTEXTUREMIPFILTER enumerated type that indicates
the texture magnification filter to be used when rendering the texture onto
primitives. The default value is D3DTFP_NONE.

D3DTSS_MIPMAPLODBIAS
Level of detail bias for mipmaps. Can be used to make textures appear more
chunky or more blurred. The default value is 0.

D3DTSS_MAXMIPLEVEL
Maximum mipmap level-of-detail that the application will allow, expressed as
an index from the top of the mipmap chain. (Lower values identify higher levels
of detail within the mipmap chain). Zero, which is the default, indicates that all
levels can be used. Non-zero values indicate that the application does not want
to display mipmaps that have a higher level-of-detail than the mipmap at the
specified index.

D3DTSS_MAXANISOTROPY
Maximum level of anisotropy. The default value is 1.

D3DTSS_BUMPENVLSCALE
D3DVALUE scale for bump map luminance. The default value is 0.

D3DTSS_BUMPENVLOFFSET
D3DVALUE offset for bump map luminance. The default value is 0.

D3DTSS_FORCE_DWORD
Forces this enumerated type to be compiled to 32 bits in size. This value is not
used.

Remarks
The valid range of values for the D3DTSS_BUMPENVMAT00,
D3DTSS_BUMPENVMAT01, D3DTSS_BUMPENVMAT10, and
D3DTSS_BUMPENVMAT11 bump-mapping matrix coefficients is greater than or
equal to -8.0, and less than 8.0. This range, expressed in mathematical notation is [-
8.0,8.0).

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DTRANSFORMSTATETYPE
[This is preliminary documentation and subject to change.]

The D3DTRANSFORMSTATETYPE enumerated type describes the
transformation state for the D3DOP_STATETRANSFORM opcode in the

in.doc – page 600

D3DOPCODE enumerated type. This enumerated type is part of the D3DSTATE
structure.

typedef enum _D3DTRANSFORMSTATETYPE {
 D3DTRANSFORMSTATE_WORLD = 1,
 D3DTRANSFORMSTATE_VIEW = 2,
 D3DTRANSFORMSTATE_PROJECTION = 3,
 D3DTRANSFORMSTATE_FORCE_DWORD = 0x7fffffff,
} D3DTRANSFORMSTATETYPE;

Members
D3DTRANSFORMSTATE_WORLD

Define the matrices for the world transformation. The default value is NULL
(the identity matrix).

D3DTRANSFORMSTATE_VIEW
Define the matrices for the view transformation. The default value is NULL (the
identity matrix).

D3DTRANSFORMSTATE_PROJECTION
Define the matrices for the projection transformation. The default value is
NULL (the identity matrix).

D3DTRANSFORMSTATE_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DOPCODE, D3DRENDERSTATETYPE

D3DVERTEXTYPE
[This is preliminary documentation and subject to change.]

The D3DVERTEXTYPE enumerated type lists the vertex types that are supported
by the legacy IDirect3DDevice2 and IDirect3DDevice interfaces. If your
application uses IDirect3DDevice3, the D3DVERTEXTYPE enumerated type is
superseded by flexible vertex format flags.

typedef enum _D3DVERTEXTYPE {
 D3DVT_VERTEX = 1,
 D3DVT_LVERTEX = 2,

in.doc – page 601

 D3DVT_TLVERTEX = 3
 D3DVT_FORCE_DWORD = 0x7fffffff,
} D3DVERTEXTYPE;

Members
D3DVT_VERTEX

All the vertices in the array are of the D3DVERTEX type. This setting will
cause transformation, lighting and clipping to be applied to the primitive as it is
rendered.

D3DVT_LVERTEX
All the vertices in the array are of the D3DLVERTEX type. When used with
this option, the primitive will have transformations applied during rendering.

D3DVT_TLVERTEX
All the vertices in the array are of the D3DTLVERTEX type. Rasterization only
will be applied to this data.

D3DVT_FORCE_DWORD
Forces this enumerated type to be 32 bits in size.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
Vertex Formats

D3DZBUFFERTYPE
[This is preliminary documentation and subject to change.]

The D3DZBUFFERTYPE enumerated type describes depth-buffer formats for use
with the D3DRENDERSTATE_ZENABLE render state.

typedef enum _D3DZBUFFERTYPE {
 D3DZB_FALSE = 0,
 D3DZB_TRUE = 1,
 D3DZB_USEW = 2,
 D3DZB_FORCE_DWORD = 0x7fffffff,
} D3DZBUFFERTYPE;

in.doc – page 602

Members
D3DZB_FALSE

Disable depth-buffering.
D3DZB_TRUE

Enable z-buffering.
D3DZB_USEW

Enable w-buffering. To use w-buffering, perspective-correct texture mapping
must also be enabled. To enable perspective-correct texture mapping, set the
D3DRENDERSTATE_TEXTUREPERSPECTIVE render state to TRUE. For
DirectX 6.0, this is the default value.

D3DZB_FORCE_DWORD
Forces this enumeration to be compiled to 32-bits in size. This value is not used.

Remarks
The D3DZB_FALSE and D3DZB_TRUE values are interchangeable with the TRUE
and FALSE macro values previously used with D3DRENDERSTATE_ZENABLE.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
IDirect3DDevice3::SetRenderState, Depth Buffers

Other Types
[This is preliminary documentation and subject to change.]

This section contains information about the following Direct3D Immediate Mode
types that are neither structures nor enumerated types:

· D3DCOLOR
· D3DCOLORMODEL
· D3DFIXED
· D3DVALUE

D3DCOLOR
[This is preliminary documentation and subject to change.]

in.doc – page 603

The D3DCOLOR type is the fundamental Direct3D color type.

typedef DWORD D3DCOLOR, D3DCOLOR, *LPD3DCOLOR;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DRGB, D3DRGBA

D3DCOLORMODEL
[This is preliminary documentation and subject to change.]

The D3DCOLORMODEL type is used to define the color model in which the
system will run. A driver can expose either or both flags in the dcmColorModel
member of the D3DDEVICEDESC structure.

typedef DWORD D3DCOLORMODEL

Values
D3DCOLOR_MONO

Use a monochromatic model (or ramp model). In this model, the blue
component of a vertex color is used to define the brightness of a lit vertex.

D3DCOLOR_RGB
Use a full RGB model.

Remarks
Prior to DirectX 5.0, these values were part of an enumerated type. The enumerated
type in earlier versions of DirectX had this syntax:

typedef enum _D3DCOLORMODEL {
 D3DCOLOR_MONO = 1,
 D3DCOLOR_RGB = 2,
} D3DCOLORMODEL;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 604

Windows 95.
 Header: Declared in d3dtypes.h.

See Also
D3DDEVICEDESC, D3DFINDDEVICESEARCH, D3DLIGHTSTATETYPE

D3DFIXED
[This is preliminary documentation and subject to change.]

The D3DFIXED type is used to represent a 16:16 fixed point value.

typedef LONG D3DFIXED;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

D3DVALUE
[This is preliminary documentation and subject to change.]

The D3DVALUE type is the fundamental Direct3D fractional data type.

typedef float D3DVALUE, *LPD3DVALUE;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in d3dtypes.h.

Flexible Vertex Format Flags
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode uses flag values to describe vertex formats used for
DrawPrimitive-based rendering. The D3dtypes.h header file defines the following
flags to explicitly describe a vertex format, and provides helper macros that act as
common combinations of such flags. For more information, see About Vertex
Formats.

Flexible vertex format (FVF) flags

in.doc – page 605

D3DFVF_DIFFUSE
Vertex format includes a diffuse color component.

D3DFVF_NORMAL
Vertex format includes a vertex normal vector. This flag cannot be used with the
D3DFVF_XYZRHW flag.

D3DFVF_SPECULAR
Vertex format includes a specular color component.

D3DFVF_XYZ
Vertex format includes the position of an untransformed vertex. This flag cannot
be used with the D3DFVF_XYZRHW flag. If you use this flag, you must also
specify a vertex normal, a vertex color component (D3DFVF_DIFFUSE or
D3DFVF_SPECULAR), or include at least one set of texture coordinates
(D3DFVF_TEX1 through D3DFVF_TEX8).

D3DFVF_XYZRHW
Vertex format includes the position of a transformed vertex. This flag cannot be
used with the D3DFVF_XYZ or D3DFVF_NORMAL flags. If you use this flag,
you must also specify a vertex color component (D3DFVF_DIFFUSE or
D3DFVF_SPECULAR) or include at least one set of texture coordinates
(D3DFVF_TEX1 through D3DFVF_TEX8).

Texture-related FVF flags
D3DFVF_TEX0 through D3DFVF_TEX8

Number of texture coordinate sets for this vertex. The actual values for these
flags are not sequential.

Helper macros
D3DFVF_LVERTEX

Vertex format is equivalent to the D3DLVERTEX vertex type.
D3DFVF_TLVERTEX

Vertex format is equivalent to the D3DTLVERTEX vertex type.
D3DFVF_VERTEX

Vertex format is equivalent to the D3DVERTEX vertex type.
Mask values
D3DFVF_POSITION_MASK

Mask for position bits.
D3DFVF_RESERVED0 and D3DFVF_RESERVED2

Mask values for reserved bits in the flexible vertex format. Do not use.
D3DFVF_RESERVED1,

This bit is reserved to indicate that the system should emulate D3DLVERTEX
processing. If this flag is used, the D3DFVF_XYZ, D3DFVF_DIFFUSE,
D3DFVF_SPECULAR, and D3DFVF_TEX1 flags must also be used. This
equates to the effect of the D3DFVF_LVERTEX helper macro.

D3DFVF_TEXCOUNT_MASK
Mask value for texture flag bits.

Miscellaneous
D3DFVF_TEXCOUNT_SHIFT

in.doc – page 606

The number of bits to shift an integer value that identifies the number of a
texture coordinates for a vertex. This value might be used as follows:

 DWORD dwNumTextures = 1; // vertex has only one set of coordinates

 // Shift the value for use when creating an FVF combination.
 dwFVF = dwNumTextures<<D3DFVF_TEXCOUNT_SHIFT;

 /*
 * Now, create an FVF combination using the shifted value.
 */

The following example shows some other common flag combinations:

 // Lightweight, untransformed vertex for lit, untextured,
 // Gouraud-shaded content.
 dwFVF = (D3DFVF_XYZ | D3DFVF_DIFFUSE);

 // Untransformed vertex for unlit, untextured, Gouraud-shaded
 // content with diffuse material color specified per vertex.
 dwFVF = (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE);

 // Untransformed vertex for light-map based lighting.
 dwFVF = (D3DFVF_XYZ | D3DFVF_TEX2);

 // Transformed vertex for light-map based lighting
 // with shared rhw.
 dwFVF = (D3DFVF_XYZRHW | D3DFVF_TEX2);

 // Heavyweight vertex for unlit, colored content with two
 //sets of texture coordinates.
 dwFVF = (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE |
 D3DFVF_SPECULAR | D3DFVF_TEX2);

Texture Argument Flags
[This is preliminary documentation and subject to change.]

Each texture stage for a device can have two texture arguments that affect the color
or alpha channel of the texture. You set and retrieve texture arguments by calling the
IDirect3DDevice3::SetTextureStageState and
IDirect3DDevice3::GetTextureStageState, specifying the
D3DTSS_COLORARG1, D3DTSS_COLORARG2, D3DTSS_ALPHAARG1 or
D3DTSS_ALPHAARG2 members of the D3DTEXTURESTAGESTATETYPE
enumerated type.

in.doc – page 607

The following flags, organized as arguments and modifiers, can be used with color
and alpha arguments for a texture stage. You can combine an argument flag with a
modifier, but you cannot combine two argument flags.

Argument flags
D3DTA_CURRENT

The texture argument is the result of the previous blending stage. In the first
texture stage (stage zero), this argument defaults to D3DTA_DIFFUSE.

D3DTA_DIFFUSE
The texture argument is the diffuse color interpolated from vertex components
during Gouraud shading. If the vertex does not contain a diffuse color, the
default color is 0xFFFFFFFF.

D3DTA_SELECTMASK
Mask value for all arguments; not used when setting texture arguments.

D3DTA_TEXTURE
The texture argument is the texture color for this texture stage. This is valid only
for the first color and alpha arguments in a stage (the D3DTSS_COLORARG1
and D3DTSS_ALPHAARG1 members of
D3DTEXTURESTAGESTATETYPE). If no texture is set for a stage that uses
this blending argument, the system defaults to a color value of R: 1.0, G: 1.0, B:
1.0 for color, and 1.0 for alpha.

D3DTA_TFACTOR
The texture argument is the texture factor set in a previous call to the
IDirect3DDevice3::SetRenderState with the
D3DRENDERSTATE_TEXTUREFACTOR render state value.

Modifier flags
D3DTA_ALPHAREPLICATE

Replicate the alpha information to all color channels before the operation
completes.

D3DTA_COMPLEMENT
Invert the argument such that, if the result of the argument were referred to by
the variable x, the value would be 1.0 - x.

Return Values
[This is preliminary documentation and subject to change.]

Errors are represented by negative values and cannot be combined. This table lists
the values that can be returned by all Direct3D Immediate Mode methods. See the
individual method descriptions for lists of the values each can return.

D3D_OK
No error occurred.

D3DERR_BADMAJORVERSION
The service you requested is unavailable in this major version of DirectX. (A
"major version" denotes a primary release, such as DirectX 6.0.)

in.doc – page 608

D3DERR_BADMINORVERSION
The service you requested is available in this major version of DirectX, but not
in this minor version. Get the latest version of the component runtime from
Microsoft. (A "minor version" denotes a secondary release, such as DirectX 6.1.)

D3DERR_COLORKEYATTACHED
The application attempted to create a texture with a surface that uses a color key
for transparency.

D3DERR_CONFLICTINGTEXTUREFILTER
The current texture filters cannot be used together.

D3DERR_CONFLICTINGTEXTUREPALETTE
The current textures cannot be used simultaneously. This generally occurs when
a multi-texture device requires that all palettized textures simultaneously
enabled also share the same palette.

D3DERR_CONFLICTINGRENDERSTATE
The currently set render states cannot be used together.

D3DERR_DEVICEAGGREGATED
The IDirect3DDevice3::SetRenderTarget method was called on a device that
was retrieved from the render target surface.

D3DERR_EXECUTE_CLIPPED_FAILED
The execute buffer could not be clipped during execution.

D3DERR_EXECUTE_CREATE_FAILED
The execute buffer could not be created. This typically occurs when no memory
is available to allocate the execute buffer.

D3DERR_EXECUTE_DESTROY_FAILED
The memory for the execute buffer could not be deallocated.

D3DERR_EXECUTE_FAILED
The contents of the execute buffer are invalid and cannot be executed.

D3DERR_EXECUTE_LOCK_FAILED
The execute buffer could not be locked.

D3DERR_EXECUTE_LOCKED
The operation requested by the application could not be completed because the
execute buffer is locked.

D3DERR_EXECUTE_NOT_LOCKED
The execute buffer could not be unlocked because it is not currently locked.

D3DERR_EXECUTE_UNLOCK_FAILED
The execute buffer could not be unlocked.

D3DERR_INITFAILED
A rendering device could not be created because the new device could not be
initialized.

D3DERR_INBEGIN
The requested operation cannot be completed while scene rendering is taking
place. Try again after the scene is completed and the
IDirect3DDevice::EndScene method (or equivalent method) is called.

in.doc – page 609

D3DERR_INVALID_DEVICE
The requested device type is not valid.

D3DERR_INVALIDCURRENTVIEWPORT
The currently selected viewport is not valid.

D3DERR_INVALIDMATRIX
The requested operation could not be completed because the combination of the
currently set world, view, and projection matrices is invalid (the determinant of
the combined matrix is zero).

D3DERR_INVALIDPALETTE
The palette associated with a surface is invalid.

D3DERR_INVALIDPRIMITIVETYPE
The primitive type specified by the application is invalid.

D3DERR_INVALIDRAMPTEXTURE
Ramp mode is being used and the texture handle in the current material does not
match the current texture handle that is set as a render state.

D3DERR_INVALIDVERTEXFORMAT
The combination of flexible vertex format flags specified by the application is
not valid.

D3DERR_INVALIDVERTEXTYPE
The vertex type specified by the application is invalid.

D3DERR_LIGHT_SET_FAILED
The attempt to set lighting parameters for a light object failed.

D3DERR_LIGHTHASVIEWPORT
The requested operation failed because the light object is associated with
another viewport.

D3DERR_LIGHTNOTINTHISVIEWPORT
The requested operation failed because the light object has not been associated
with this viewport.

D3DERR_MATERIAL_CREATE_FAILED
The material could not be created. This typically occurs when no memory is
available to allocate for the material.

D3DERR_MATERIAL_DESTROY_FAILED
The memory for the material could not be deallocated.

D3DERR_MATERIAL_GETDATA_FAILED
The material parameters could not be retrieved.

D3DERR_MATERIAL_SETDATA_FAILED
The material parameters could not be set.

D3DERR_MATRIX_CREATE_FAILED
The matrix could not be created. This can occur when no memory is available to
allocate for the matrix.

D3DERR_MATRIX_DESTROY_FAILED
The memory for the matrix could not be deallocated.

D3DERR_MATRIX_GETDATA_FAILED

in.doc – page 610

The matrix data could not be retrieved. This can occur when the matrix was not
created by the current device.

D3DERR_MATRIX_SETDATA_FAILED
The matrix data could not be set. This can occur when the matrix was not
created by the current device.

D3DERR_NOCURRENTVIEWPORT
The viewport parameters could not be retrieved because none have been set.

D3DERR_NOTINBEGIN
The requested rendering operation could not be completed because scene
rendering has not begun. Call IDirect3DDevice3::BeginScene to begin
rendering then try again.

D3DERR_NOVIEWPORTS
The requested operation failed because the device currently has no viewports
associated with it.

D3DERR_SCENE_BEGIN_FAILED
Scene rendering could not begin.

D3DERR_SCENE_END_FAILED
Scene rendering could not be completed.

D3DERR_SCENE_IN_SCENE
Scene rendering could not begin because a previous scene was not completed by
a call to the IDirect3DDevice3::EndScene method.

D3DERR_SCENE_NOT_IN_SCENE
Scene rendering could not be completed because a scene was not started by a
previous call to the IDirect3DDevice3::BeginScene method.

D3DERR_SETVIEWPORTDATA_FAILED
The viewport parameters could not be set.

D3DERR_STENCILBUFFER_NOTPRESENT
The requested stencil buffer operation could not be completed because there is
no stencil buffer attached to the render target surface.

D3DERR_SURFACENOTINVIDMEM
The device could not be created because the render target surface is not located
in video-memory. (Hardware-accelerated devices require video-memory render
target surfaces.)

D3DERR_TEXTURE_BADSIZE
The dimensions of a current texture are invalid. This can occur when an
application attempts to use a texture that has non-power-of-two dimensions with
a device that requires them.

D3DERR_TEXTURE_CREATE_FAILED
The texture handle for the texture could not be retrieved from the driver.

D3DERR_TEXTURE_DESTROY_FAILED
The device was unable to deallocate the texture memory.

D3DERR_TEXTURE_GETSURF_FAILED
The DirectDraw surface used to create the texture could not be retrieved.

in.doc – page 611

D3DERR_TEXTURE_LOAD_FAILED
The texture could not be loaded.

D3DERR_TEXTURE_LOCK_FAILED
The texture could not be locked.

D3DERR_TEXTURE_LOCKED
The requested operation could not be completed because the texture surface is
currently locked.

D3DERR_TEXTURE_NO_SUPPORT
The device does not support texture mapping.

D3DERR_TEXTURE_NOT_LOCKED
The requested operation could not be completed because the texture surface is
not locked.

D3DERR_TEXTURE_SWAP_FAILED
The texture handles could not be swapped.

D3DERR_TEXTURE_UNLOCK_FAILED
The texture surface could not be unlocked.

D3DERR_TOOMANYOPERATIONS
The application is requesting more texture filtering operations than the device
supports.

D3DERR_TOOMANYPRIMITIVES
The device is unable to render the provided quantity of primitives in a single
pass.

D3DERR_UNSUPPORTEDALPHAARG
The device does not support one of the specified texture blending arguments for
the alpha channel.

D3DERR_UNSUPPORTEDALPHAOPERATION
The device does not support one of the specified texture blending operations for
the alpha channel.

D3DERR_UNSUPPORTEDCOLORARG
The device does not support the one of the specified texture blending arguments
for color values.

D3DERR_UNSUPPORTEDCOLOROPERATION
The device does not support the one of the specified texture blending operations
for color values.

D3DERR_UNSUPPORTEDFACTORVALUE
The specified texture factor value is not supported by the device.

D3DERR_UNSUPPORTEDTEXTUREFILTER
The specified texture filter is not supported by the device.

D3DERR_VBUF_CREATE_FAILED
The vertex buffer could not be created. This can happen when there is
insufficient memory to allocate a vertex buffer.

D3DERR_VERTEXBUFFERLOCKED

in.doc – page 612

The requested operation could not be completed because the vertex buffer is
locked.

D3DERR_VERTEXBUFFEROPTIMIZED
The requested operation could not be completed because the vertex buffer is
optimized. (The contents of optimized vertex buffers are driver specific, and
considered private.)

D3DERR_VIEWPORTDATANOTSET
The requested operation could not be completed because viewport parameters
have not yet been set. Set the viewport parameters by calling
IDirect3DViewport3::SetViewport method and try again.

D3DERR_VIEWPORTHASNODEVICE
The requested operation could not be completed because the viewport has not
yet been associated with a device. Associate the viewport with a rendering
device by calling IDirect3DDevice3::AddViewport and try again.

D3DERR_WRONGTEXTUREFORMAT
The pixel format of the texture surface is not valid.

D3DERR_ZBUFF_NEEDS_SYSTEMMEMORY
The requested operation could not be completed because the specified device
requires system-memory depth-buffer surfaces. (Software rendering devices
require system-memory depth buffers.)

D3DERR_ZBUFF_NEEDS_VIDEOMEMORY
The requested operation could not be completed because the specified device
requires video-memory depth-buffer surfaces. (Hardware-accelerated devices
require video-memory depth buffers.)

D3DERR_ZBUFFER_NOTPRESENT
The requested operation could not be completed because the render target
surface does not have an attached depth buffer.

Direct3D Immediate Mode Visual
Basic Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the application programming
interface (API) elements provided by Direct3D® Immediate Mode. Reference
material is divided into the following categories:

· Classes
· Types
· Enumerations
· Flexible Vertex Format Flags

in.doc – page 613

· Texture Argument Flags
· Error Codes

Classes
[This is preliminary documentation and subject to change.]

This section contains reference information for the classes provided by Direct3D
Immediate Mode. The following classes are covered:

· Direct3D3
· Direct3DDevice3
· Direct3DEnumDevices
· Direct3DEnumPixelFormats
· Direct3DLight
· Direct3DMaterial3
· Direct3DTexture2
· Direct3DVertexBuffer
· Direct3DViewport3

Direct3D3
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3D3 class to create Direct3D objects and
set up the environment. Moreover, The Direct3D3 class enables applications to
create vertex buffers and enumerate texture map and depth-buffer formats. This
section is a reference to the methods of this class. For a conceptual overview, see
Direct3D Interfaces.

The Direct3D3 class is obtained by calling the GetDirect3D method from a
DirectDraw4 object.

The methods of the Direct3D3 class can be organized into the following groups:

Creation CreateDevice
CreateLight
CreateMaterial
CreateVertexBuffer
CreateViewport

Enumeration FindDevice

IDH__dx_Direct3D3_d3d_vb

in.doc – page 614

GetDevicesEnum
GetEnumZBufferFormats

Miscellaneous EvictManagedTextures
GetDirectDraw

See Also
Accessing Direct3D, Direct3D and DirectDraw

Direct3D3.CreateDevice
[This is preliminary documentation and subject to change.]

The Direct3D3.CreateDevice method creates a Direct3D device to be used with the
DrawPrimitive methods.

object.CreateDevice(_
 guid As String, _
 surf As DirectDrawSurface4) As Direct3DDevice3

object
Object expression that resolves to a Direct3D3 object.

guid
Guid for the new device. This value can be IID_Direct3DHALDevice,
IID_Direct3DMMXDevice, or IID_Direct3DRGBDevice. The
IID_Direct3DRampDevice, used for the ramp emulation device, is not supported
by Direct3D3.

surf
A DirectDrawSurface4 object for the DirectDrawSurface object that will be the
device's rendering target. The surface must have been created as a 3-D device by
using the DDSCAPS_3DDEVICE capability.

Return Values
If the method succeeds, the return value is a Direct3DDevice3 object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

IDH__dx_Direct3D3.CreateDevice_d3d_vb

in.doc – page 615

Remarks
When you call Direct3D3.CreateDevice, you create a device object that is separate
from a DirectDraw surface object. This device uses a DirectDraw surface as a
rendering target.

See Also
Direct3DDevice3

Direct3D3.CreateLight
[This is preliminary documentation and subject to change.]

The Direct3D3.CreateLight method creates a Direct3DLight object. This object
can then be associated with a viewport by using the Direct3DViewport3.AddLight
method.

object.CreateLight() As Direct3DLight

object
Object expression that resolves to a Direct3D3 object.

Return Values
If the method succeeds, a Direct3DLight object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
Direct3DLight

Direct3D3.CreateMaterial
[This is preliminary documentation and subject to change.]

The Direct3D3.CreateMaterial method allocates a Direct3DMaterial3 object.

object.CreateMaterial() As Direct3DMaterial3

IDH__dx_Direct3D3.CreateLight_d3d_vb
IDH__dx_Direct3D3.CreateMaterial_d3d_vb

in.doc – page 616

object
Object expression that resolves to a Direct3D3 object.

Return Values
If the method succeeds, a Direct3DMaterial3 object is returned.

Error Codes
If the method fails, an error is raised and Err.Number will be set. For information
on trapping errors, see the Visual Basic Error Trapping topic.

Direct3D3.CreateVertexBuffer
[This is preliminary documentation and subject to change.]

The Direct3D3.CreateVertexBuffer method creates a vertex buffer object.

object.CreateVertexBuffer(_
 desc As D3DVERTEXBUFFERDESC, _
 flags As CONST_D3DDPFLAGS) As Direct3DVertexBuffer

object
Object expression that resolves to a Direct3D3 object.

desc
A D3DVERTEXBUFFERDESC type that describes the format and number of
vertices that the vertex buffer will contain.

flags
One of the constants of the CONST_D3DDPFLAGS enumeration representing
the clipping value. Set this parameter to 0 to create a vertex buffer that can
contain clipping information for untransformed or transformed vertices, or use
the D3DDP_DONOTCLIP flag to create a vertex buffer that will contain
transformed vertices, but no clipping information.

Return Values
If the method succeeds, a Direct3DVertexBuffer object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following error codes:

D3DERR_INVALIDVERTEXFORMAT
D3DERR_VBUF_CREATE_FAILED

IDH__dx_Direct3D3.CreateVertexBuffer_d3d_vb

in.doc – page 617

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

See Also
Direct3DVertexBuffer, Vertex Buffers

Direct3D3.CreateViewport
[This is preliminary documentation and subject to change.]

The Direct3D3.CreateViewport method creates a Direct3DViewport2 object. The
viewport is associated with a Direct3DDevice object by using the
Direct3DDevice3.AddViewport method.

object.CreateViewport() As Direct3DViewport2

object
Object expression that resolves to a Direct3D3 object.

Return Values
If the method succeeds, a Direct3DViewport3 object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Direct3D3.EvictManagedTextures
[This is preliminary documentation and subject to change.]

The Direct3D3.EvictManagedTextures method purges all managed textures from
local or non-local video memory.

object.EvictManagedTextures()

object
Object expression that resolves to a Direct3D3 object.

IDH__dx_Direct3D3.CreateViewport_d3d_vb
IDH__dx_Direct3D3.EvictManagedTextures_d3d_vb

in.doc – page 618

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
This method causes Direct3D to remove any texture surfaces created with the
DDSCAPS2_TEXTUREMANAGE flag from local or non-local video memory.

Direct3D3.FindDevice
[This is preliminary documentation and subject to change.]

The Direct3D3.FindDevice method finds a device with specified characteristics and
retrieves a description of it.

object.FindDevice(_
 ds As D3DFINDDEVICESEARCH, _
 findresult As D3DFINDDEVICERESULT2)

object
Object expression that resolves to a Direct3D3 object.

ds
A D3DFINDDEVICESEARCH type describing the device to be located.

findresult
A D3DFINDDEVICERESULT2 type describing the device if it is found.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3D3.GetDevicesEnum
[This is preliminary documentation and subject to change.]

The Direct3D3.GetDevicesEnum method creates a Direct3DEnumDevices object.

object.GetDevicesEnum() As Direct3DEnumDevices

object
Object expression that resolves to a Direct3D3 object.

IDH__dx_Direct3D3.FindDevice_d3d_vb
IDH__dx_Direct3D3.GetDevicesEnum_d3d_vb

in.doc – page 619

Return Values
If the method succeeds, a Direct3DEnumDevices object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following error codes:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Direct3D3.GetDirectDraw
[This is preliminary documentation and subject to change.]

The Direct3D3.GetDirectDraw method creates a DirectDraw4 object.

object.GetDirectDraw() As DirectDraw4

object
Object expression that resolves to a Direct3D3 object.

Return Values
If the method succeeds, a DirectDraw4 object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3D3.GetEnumZBufferFormat
s

[This is preliminary documentation and subject to change.]

The Direct3D3.GetEnumZBufferFormats method creates a
Direct3DEnumPixelFormats object.

object.GetEnumZBufferFormats(_
IDH__dx_Direct3D3.GetDirectDraw_d3d_vb
IDH__dx_Direct3D3.GetEnumZBufferFormats_d3d_vb

in.doc – page 620

 guid As String) As Direct3DEnumPixelFormats

object
Object expression that resolves to a Direct3D3 object.

guid
A globally unique identifier for the device whose depth-buffer formats will be
enumerated.

Return Values
If the method succeeds, a Direct3DEnumPixelFormats object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOZBUFFERHW
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3DDevice3
[This is preliminary documentation and subject to change.]

The Direct3DDevice3 class provides methods enabling applications to perform
DrawPrimitive-based rendering; this is in contrast to the Direct3DDevice class,
which applications use to work with execute buffers. You can create a
Direct3DDevice object and retrieve a pointer to this object by calling the
Direct3D3.CreateDevice method.

For a conceptual overview, see Direct3D Devices and The DrawPrimitive Methods.

The methods of the Direct3DDevice3 class can be organized into the following
groups:

Information GetCaps
GetDirect3D
GetStats

Miscellaneous ComputeSphereVisibility

IDH__dx_Direct3DDevice3_d3d_vb

in.doc – page 621

MultiplyTransform

Getting and Setting States GetClipStatus
GetCurrentViewport
GetLightState
GetRenderState
GetRenderTarget
GetTransform
SetClipStatus
SetCurrentViewport
SetLightState
SetRenderState
SetRenderTarget
SetTransform

Rendering Begin
BeginIndexed
DrawIndexedPrimitive
DrawIndexedPrimitiveVB
DrawPrimitive
DrawPrimitiveVB
End
Index
Vertex

Scenes BeginScene
EndScene

Textures GetTexture
GetTextureFormatsEnum
GetTextureStageState
SetTexture
SetTextureStageState
ValidateDevice

Viewports AddViewport
DeleteViewport
NextViewport

in.doc – page 622

This class contains methods to support more flexible vertex formats, vertex buffers,
and visibility computation. This class is not intended to be used with execute buffers,
and therefore does not contain any execute-buffer related methods.

See Also
Direct3D Devices, Rendering

Direct3DDevice3.AddViewport
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.AddViewport method adds the specified viewport to the list
of viewport objects associated with the device and increments the reference count of
the viewport.

object.AddViewport(viewport As Direct3DViewport3)

object
Object expression that resolves to a Direct3DDevice3 object.

viewport
A Direct3DViewport3 object that should be associated with this
Direct3DDevice object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method will fail, returning DDERR_INVALIDPARAMS, if you attempt to add
a viewport that has already been assigned to the device.

Direct3DDevice3.Begin
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.Begin method indicates the start of a sequence of rendered
primitives. This method defines the type of these primitives and the type of vertices

IDH__dx_Direct3DDevice3.AddViewport_d3d_vb
IDH__dx_Direct3DDevice3.Begin_d3d_vb

in.doc – page 623

on which they are based. The only method you can legally call between calls to
Direct3DDevice3.Begin and Direct3DDevice3.End is Direct3DDevice3.Vertex.

object.Begin(_
 d3dpt As CONST_D3DPRIMITIVETYPE, _
 d3dvt As CONST_D3DVERTEXTYPE, _
 flags As Long)

object
Object expression that resolves to a Direct3DDevice3 object.

d3dpt
One of the constants of the CONST_D3DPRIMITIVETYPE enumeration.

d3dvt
A combination of flexible vertex format flags that describe the vertex format
used. Only vertices that match this description will be accepted before the
corresponding Direct3DDevice3.End.

flags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

in.doc – page 624

This method fails if it is called after a call to the Direct3DDevice3.Begin or
Direct3DDevice3.BeginIndexed method that has no bracketing call to
Direct3DDevice3.End method. Rendering calls that specify the wrong vertex type
or that perform state changes will cause rendering of this primitive to fail.

See Also
Direct3DDevice3.BeginIndexed, Direct3DDevice3.End, Direct3DDevice3.Vertex

Direct3DDevice3.BeginIndexed
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.BeginIndexed method defines the start of a primitive based
on indexing into an array of vertices. This method fails if it is called after a call to
the Direct3DDevice3.Begin or Direct3DDevice3.BeginIndexed method that has no
corresponding call to Direct3DDevice3.End. The only method you can legally call
between calls to Direct3DDevice3.BeginIndexed and Direct3DDevice3.End is
Direct3DDevice3.Index.

object.BeginIndexed(_
 d3Dpt As CONST_D3DPRIMITIVETYPE, _
 d3dvt As Long, _
 verts As Any, _
 vertexCount As Long, _
 flags As CONST_D3DDPFLAGS)

object
Object expression that resolves to a Direct3DDevice3 object.

d3Dpt
Type of primitive to be rendered by this command. This must be one of the
constants of the CONST_D3DPRIMITIVETYPE enumeration. Note that the
D3DPT_POINTLIST member of CONST_D3DPRIMITIVETYPE is not
indexed.

d3dvt
A combination of flexible vertex format flags that describe the vertex format
used. Only vertices that match this description will be accepted before the
corresponding Direct3DDevice3.End.

verts
Pointer to the list of vertices to be used in the primitive sequence.

vertexCount
Number of vertices in the array at verts.

flags
One or more of the following constants from the CONST_D3DDPFLAGS
enumeration defining how the primitive is drawn:

IDH__dx_Direct3DDevice3.BeginIndexed_d3d_vb

in.doc – page 625

D3DDP_DONOTCLIP
The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE
Ramp mode is being used and the texture handle in the current material does not
match the current texture handle that is set as a render state.
DDERR_INVALIDPARAMSOne of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.Begin, Direct3DDevice3.End, Direct3DDevice3.Index

Direct3DDevice3.BeginScene
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.BeginScene method begins a scene. Applications must call
this method before performing any rendering, and must call

IDH__dx_Direct3DDevice3.BeginScene_d3d_vb

in.doc – page 626

Direct3DDevice3.EndScene when rendering is complete, and before calling
Direct3DDevice.BeginScene again.

object.BeginScene()

object
Object expression that resolves to a Direct3DDevice3 object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
Direct3DDevice3.EndScene

Direct3DDevice3.ComputeSphereV
isibility

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.ComputeSphereVisibility method calculates the visibility
(complete, partial, or no visibility) of a sphere within the current viewport for this
device.

object.ComputeSphereVisibility(_
 center As D3DVECTOR, _
 radi As Single) As Long

object
Object expression that resolves to a Direct3DDevice3 object.

center
A D3DVECTOR type describing the center point for the sphere, in world-space
coordinates.

radi
The radius for the sphere.

Return Values
If the method succeeds, the return value is a combination of the following flags from
the CONST_D3DVISFLAGS enumeration that describe the visibility of that sphere
within the current viewport for this device:

Inside flags

IDH__dx_Direct3DDevice3.ComputeSphereVisibility_d3d_vb

in.doc – page 627

D3DVIS_INSIDE_BOTTOM, D3DVIS_INSIDE_FAR,
D3DVIS_INSIDE_FRUSTUM, D3DVIS_INSIDE_LEFT,
D3DVIS_INSIDE_NEAR, D3DVIS_INSIDE_RIGHT, D3DVIS_INSIDE_TOP

The sphere is inside the viewing frustum of the current viewport.
Intersection flags

D3DVIS_INTERSECT_BOTTOM or D3DVIS_INTERSECT_TOP
The sphere intersects the bottom or top plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_INTERSECT_FAR or D3DVIS_INTERSECT_NEAR
The sphere intersects the far or near plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_INTERSECT_FRUSTUM
The sphere intersects some part of the viewing frustum for the current
viewport.

D3DVIS_INTERSECT_LEFT or D3DVIS_INTERSECT_RIGHT
The sphere intersects the left or right plane of the viewing frustum for the
current viewport, depending on which flag is present.

Outside flags
D3DVIS_OUTSIDE_BOTTOM or D3DVIS_OUTSIDE_TOP

The sphere is outside the bottom or top plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_OUTSIDE_FAR or D3DVIS_OUTSIDE_NEAR
The sphere is outside the far or near plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_OUTSIDE_FRUSTUM
The sphere is somewhere outside the viewing frustum for the current
viewport.

D3DVIS_OUTSIDE_LEFT or D3DVIS_OUTSIDE_RIGHT
The sphere is outside the left or right plane of the viewing frustum for the
current viewport, depending on which flag is present.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

in.doc – page 628

Remarks
Sphere visibility is computed by back transforming the viewing frustum to the model
space, using the inverse of the combined world, view or projection matrices. If the
combined matrix can not be inverted (if the determinant is zero), the method fails,
returning DDERR_GENERIC.

Direct3DDevice3.DeleteViewport
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.DeleteViewport method removes the specified viewport from
the list of viewport objects associated with the device and decrements the reference
count of the viewport.

object.DeleteViewport(vport As Direct3DViewport3)

object
Object expression that resolves to a Direct3DDevice3 object.

vport
A Direct3DViewport3 object of the viewport object that will be disassociated
with this device.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method fails, returning DDERR_INVALIDPARAMS, if you attempt to delete a
viewport from the device without previously assigning the viewport with a call to
Direct3DDevice3.AddViewport.

See Also
Direct3DDevice3.AddViewport

IDH__dx_Direct3DDevice3.DeleteViewport_d3d_vb

in.doc – page 629

Direct3DDevice3.DrawIndexedPri
mitive

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.DrawIndexedPrimitive method renders the specified
geometric primitive based on indexing into an array of vertices.

object.DrawIndexedPrimitive(_
 d3Dpt As CONST_D3DPRIMITIVETYPE, _
 d3dvt As CONST_D3DVERTEXTYPE, _
 vertices As Any, _
 vertexCount As Long, _
 indices() As Integer, _
 indicesCount As Long, _
 flags As CONST_D3DDPFLAGS)

object
Object expression that resolves to a Direct3DDevice3 object.

d3Dpt
Type of primitive to be rendered by this command. This must be one of the
constants of the CONST_D3DPRIMITIVETYPE enumeration.
Note that the D3DPT_POINTLIST member of
CONST_D3DPRIMITIVETYPE is not indexed.

d3dvt
A combination of flexible vertex format flags from the
CONST_D3DVERTEXTYPE enumeration that describe the vertex format
used.Only vertices that match this description will be accepted before the
corresponding Direct3DDevice3.End.

vertices
Pointer to the list of vertices to be used in the primitive sequence.

vertexCount
Defines the number of vertices in the list.
Notice that this parameter is used differently from the vertexCount parameter in
the Direct3DDevice3.DrawPrimitive method. In that method, the vertexCount
parameter gives the number of vertices to draw, but here it gives the total
number of vertices in the array pointed to by the vertices parameter. When you
call Direct3DDevice3.DrawIndexedPrimitive, you specify the number of
vertices to draw in the indicesCount parameter.

indices()
Pointer to an array that is to be used to index into the specified vertex list when
creating the geometry to render.

IndicesCount
Specifies the number of indices provided for creating the geometry.

IDH__dx_Direct3DDevice3.DrawIndexedPrimitive_d3d_vb

in.doc – page 630

flags
One or more of the following constants from the CONST_D3DDPFLAGS
defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
DDERR_WASSTILLDRAWING
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

in.doc – page 631

In current versions of DirectX, Direct3DDevice3.DrawIndexedPrimitive can
sometimes generate an update rectangle that is larger than it strictly needs to be. If a
large number of vertices need to be processed, this can have a negative impact on the
performance of your application. If you are using D3DTLVERTEX vertices and the
system is processing more vertices than you need, you should use the
D3DDP_DONOTCLIP and D3DDP_DONOTUPDATEEXTENTS flags to solve the
problem.

See Also
Direct3DDevice3.DrawPrimitive, Direct3DDevice3.DrawPrimitiveVB,
Direct3DDevice3.DrawIndexedPrimitiveVB

Direct3DDevice3.DrawIndexedPri
mitiveVB

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.DrawIndexedPrimitiveVB method renders a geometric
primitive based on indexing into an array of vertices within a vertex buffer.

object.DrawIndexedPrimitiveVB(_
 d3Dpt As CONST_D3DPRIMITIVETYPE, _
 vertexBuffer As Direct3DVertexBuffer, _
 indexArray() As Integer, _
 indexcount As Long, _
 flags As CONST_D3DDPFLAGS)

object
Object expression that resolves to a Direct3DDevice3 object.

d3Dpt
Type of primitive to be rendered by this command. This must be one of the
constants of the CONST_D3DPRIMITIVETYPE enumeration.
Note that the D3DPT_POINTLIST member of
CONST_D3DPRIMITIVETYPE is not indexed.

vertexBuffer
A Direct3DVertexBuffer object for the vertex buffer that contains the array of
vertices. Vertices can be transformed or untransformed, optimized or
unoptimized.

indexArray()
An array that will be used to index into the vertices in the vertex buffer.

indexcount
The number of indices in the array at indexArray().

flags

IDH__dx_Direct3DDevice3.DrawIndexedPrimitiveVB_d3d_vb

in.doc – page 632

One or more of the following constants of the CONST_D3DDPFLAGS
enumeration defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
D3DERR_VERTEXBUFFERLOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

in.doc – page 633

Software devices — MMX and RGB devices — cannot render from a video memory
(local or non-local) vertex buffer. To render a vertex buffer using a software device,
the vertex buffer must exist in system memory. Hardware devices can render from
system memory or video memory vertex buffers.

You cannot render from a locked vertex buffer; calls to the
Direct3DDevice3.DrawIndexedPrimitiveVB or
Direct3DDevice3.DrawPrimitiveVB method using a locked buffer will fail,
returning D3DERR_VERTEXBUFFERLOCKED.

See Also
Direct3DDevice3.DrawPrimitive, Direct3DDevice3.DrawPrimitiveVB,
Direct3DDevice3.DrawIndexedPrimitive

Direct3DDevice3.DrawPrimitive
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.DrawPrimitive method renders the specified array of
vertices as a sequence of geometric primitives of the specified type.

object.DrawPrimitive(_
 d3Dpt As CONST_D3DPRIMITIVETYPE, _
 d3dvt As CONST_D3DVERTEXTYPE, _
 vertices As Any, _
 vertexCount As Long, _
 flags As CONST_D3DDPFLAGS)

object
Object expression that resolves to a Direct3DDevice3 object.

d3Dpt
Type of primitive to be rendered by this command. This must be one of the
constants of the CONST_D3DPRIMITIVETYPE enumeration.
Note that the D3DPT_POINTLIST member of
CONST_D3DPRIMITIVETYPE is not indexed.

d3dvt
A combination of flexible vertex format flags from the
CONST_D3DVERTEXTYPE enumeration that describe the vertex format
used. Only vertices that match this description will be accepted before the
corresponding Direct3DDevice3.End.

vertices
The array of vertices to be used in the primitive sequence.

vertexCount
Defines the number of vertices in the array.

IDH__dx_Direct3DDevice3.DrawPrimitive_d3d_vb

in.doc – page 634

flags
One or more of the following constants of the CONST_D3DDPFLAGS
enumeration defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
DDERR_WASSTILLDRAWING
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

in.doc – page 635

See Also
Direct3DDevice3.DrawPrimitiveVB, Direct3DDevice3.DrawIndexedPrimitive,
Direct3DDevice3.DrawIndexedPrimitiveVB

Direct3DDevice3.DrawPrimitiveVB
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.DrawPrimitiveVB method renders an array of vertices in a
vertex buffer as a sequence of geometric primitives.

object.DrawPrimitiveVB(_
 d3Dpt As CONST_D3DPRIMITIVETYPE, _
 vertexBuffer As Direct3DVertexBuffer, _
 startVertex As Long, _
 numVertices As Long, _
 flags As CONST_D3DDPFLAGS)

object
Object expression that resolves to a Direct3DDevice3 object.

d3Dpt
Type of primitive to be rendered by this command. This must be one of the
constants of the CONST_D3DPRIMITIVETYPE enumeration.
Note that the D3DPT_POINTLIST member of
CONST_D3DPRIMITIVETYPE is not indexed.

vertexBuffer
A Direct3DVertexBuffer object for the vertex buffer that contains the array of
vertices. Vertices can be transformed or untransformed, optimized or
unoptimized.

startVertex
Index value of the first vertex in the primitive. The highest possible starting
index is 65,535 (0xFFFF). In debug builds, specifying a starting index value that
exceeds this limit will cause the method fail and return
DDERR_INVALIDPARAMS.

numVertices
Number of vertices to be rendered.

flags
One or more of the following constants of the CONST_D3DDPFLAGS
enumeration defining how the primitive is drawn:
D3DDP_DONOTCLIP

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

IDH__dx_Direct3DDevice3.DrawPrimitiveVB_d3d_vb

in.doc – page 636

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE
D3DERR_INVALIDPRIMITIVETYPE
D3DERR_INVALIDVERTEXTYPE
D3DERR_VERTEXBUFFERLOCKED
DDERR_WASSTILLDRAWING
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Make sure that the vertices being rendered match the vertex format you specify. For
performance reasons, Direct3D does not attempt to verify that vertex size and stride
match the provided flexible vertex format. If a mismatch occurs, a memory fault is
likely to result.

Software devices — MMX and RGB devices — cannot render from a video memory
(local or non-local) vertex buffer. To render a vertex buffer using a software device,
the vertex buffer must exist in system memory. Hardware devices can render from
system memory or video memory vertex buffers.

You cannot render from a locked vertex buffer; calls to the
Direct3DDevice3.DrawIndexedPrimitiveVB or

in.doc – page 637

Direct3DDevice3.DrawPrimitiveVB method using a locked buffer will fail,
returning D3DERR_VERTEXBUFFERLOCKED.

See Also
Direct3DDevice3.DrawPrimitive, Direct3DDevice3.DrawIndexedPrimitive,
Direct3DDevice3.DrawIndexedPrimitiveVB

Direct3DDevice3.End
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.End method signals the completion of a primitive sequence.
This method fails if no corresponding call to the Direct3DDevice3.Begin method (or
Direct3DDevice3.BeginIndexed) was made.

object.End()

object
Object expression that resolves to a Direct3DDevice3 object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method fails if the vertex count is incorrect for the primitive type. It fails
without drawing if it is called before a sufficient number of vertices is specified. If
the number of Direct3DDevice3.Vertex or Direct3DDevice3.Index calls made is
not evenly divisible by 3 (in the case of triangles), or 2 (in the case of a line list), the
remainder will be ignored.

See Also
Direct3DDevice3.Begin, Direct3DDevice3.BeginIndexed

IDH__dx_Direct3DDevice3.End_d3d_vb

in.doc – page 638

Direct3DDevice3.EndScene
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.EndScene method ends a scene that was begun by calling the
Direct3DDevice3.BeginScene method.

object.EndScene()

object
Object expression that resolves to a Direct3DDevice3 object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
When this method succeeds, the scene will have been rendered and the device
surface will hold the contents of the rendering.

You must call this method before you can call the Direct3DDevice3.BeginScene
method to start rendering another scene, even if the previous attempt to render was
unsuccessful.

See Also
Direct3DDevice3.BeginScene

Direct3DDevice3.GetCaps
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetCaps method retrieves the capabilities of the Direct3D
device.

object.GetCaps(_
 hwDesc As D3DDEVICEDESC, _
 helDesc As D3DDEVICEDESC)

object
Object expression that resolves to a Direct3DDevice3 object.

hwDesc
A D3DDEVICEDESC type that will contain the hardware features of the
device.

helDesc

IDH__dx_Direct3DDevice3.EndScene_d3d_vb
IDH__dx_Direct3DDevice3.GetCaps_d3d_vb

in.doc – page 639

A D3DDEVICEDESC type that will contain the software emulation being
provided.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method does not retrieve the capabilities of the display device. To retrieve this
information, use the DirectDraw4.GetCaps method.

Direct3DDevice3.GetClipStatus
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetClipStatus method gets the current clip status.

object.GetClipStatus(clipStatus As D3DCLIPSTATUS)

object
Object expression that resolves to a Direct3DDevice3 object.

clipStatus
A D3DCLIPSTATUS type that describes the current clip status.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

See Also
Direct3DDevice3.SetClipStatus

Direct3DDevice3.GetCurrentViewp
ort

[This is preliminary documentation and subject to change.]

IDH__dx_Direct3DDevice3.GetClipStatus_d3d_vb
IDH__dx_Direct3DDevice3.GetCurrentViewport_d3d_vb

in.doc – page 640

The Direct3DDevice3.GetCurrentViewport method retrieves the current viewport.

object.GetCurrentViewport() As Direct3DViewport3

object
Object expression that resolves to a Direct3DDevice3 object.

Return Values
If the method succeeds, a Direct3DViewport3 object containing the current
viewport will be returned. A reference is taken to the viewport object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDPARAMS One of the arguments is invalid.
D3DERR_NOCURRENTVIEWPORT No current viewport has been set by a

call to the
Direct3DDevice3.SetCurrentViewpo
rt method.

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.SetCurrentViewport

Direct3DDevice3.GetDirect3D
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetDirect3D method retrieves the Direct3D object for this
device.

object.GetDirect3D() As Direct3D3

object
Object expression that resolves to a Direct3DDevice3 object.

Return Values
If the method succeeds, a Direct3D3 object is returned.

IDH__dx_Direct3DDevice3.GetDirect3D_d3d_vb

in.doc – page 641

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DDevice3.GetLightState
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetLightState method gets a single Direct3D device
lighting-related state value.

object.GetLightState(_
 state As CONST_D3DLIGHTSTATETYPE) As Long

object
Object expression that resolves to a Direct3DDevice3 object.

state
Device state variable that is being queried. This parameter can be any of the
constants of the CONST_D3DLIGHTSTATETYPE enumeration.

Return Values
If the method succeeds, the return value is the Direct3DDevice light state.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

See Also
Direct3DDevice3.SetLightState

Direct3DDevice3.GetRenderState
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetRenderState method gets a single Direct3DDevice
rendering state parameter.

object.GetRenderState(_
 state As CONST_D3DRENDERSTATETYPE) As Long

object
Object expression that resolves to a Direct3DDevice3 object.

state
IDH__dx_Direct3DDevice3.GetLightState_d3d_vb
IDH__dx_Direct3DDevice3.GetRenderState_d3d_vb

in.doc – page 642

Device state variable that is being queried. This parameter can be any of the
constants of the CONST_D3DRENDERSTATETYPE enumeration.

Return Values
If the method succeeds, the return value is the Direct3DDevice render state.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

See Also
Direct3DDevice3.SetRenderState

Direct3DDevice3.GetRenderTarget
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetRenderTarget method retrieves a pointer to the
DirectDrawSurface4 object that is being used as a render target.

object.GetRenderTarget() As DirectDrawSurface4

object
Object expression that resolves to a Direct3DDevice3 object.

Return Values
If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes
If the method fails, an error is raised and Err.Number will be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

See Also
Direct3DDevice3.SetRenderTarget

Direct3DDevice3.GetStats
[This is preliminary documentation and subject to change.]

IDH__dx_Direct3DDevice3.GetRenderTarget_d3d_vb
IDH__dx_Direct3DDevice3.GetStats_d3d_vb

in.doc – page 643

The Direct3DDevice3.GetStats method retrieves statistics about a device.

object.GetStats(stat As D3DSTATS)

object
Object expression that resolves to a Direct3DDevice3 object.

stat
A D3DSTATS type that will be filled with the statistics.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3DDevice3.GetTexture
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetTexture method retrieves a texture assigned to a given
stage for a device.

object.GetTexture(stage As Long) As Direct3DTexture2

object
Object expression that resolves to a Direct3DDevice3 object.

stage
Stage identifier of the texture to be retrieved. Stage identifiers are zero-based.
Currently, devices can have up to 8 set textures, so the maximum allowable
value allowed for stage is 7.

Return Values
If the method succeeds, the return value is the specified texture's Direct3DTexture2
object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT

IDH__dx_Direct3DDevice3.GetTexture_d3d_vb

in.doc – page 644

DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.SetTexture, Direct3DDevice3.GetTextureStageState,
Direct3DDevice3.SetTextureStageState

Direct3DDevice3.GetTextureForma
tsEnum

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.EnumTextureFormats method returns a
Direct3DEnumPixelFormats object.

object.GetTextureFormatsEnum() As
Direct3DEnumPixelFormats

object
Object expression that resolves to a Direct3DDevice3 object.

Return Values
If the method succeeds, a Direct3DEnumPixelFormats object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3DDevice3.GetTextureStage
State

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetTextureStageState method retrieves a state value for a
currently assigned texture.

IDH__dx_Direct3DDevice3.GetTextureFormatsEnum_d3d_vb
IDH__dx_Direct3DDevice3.GetTextureStageState_d3d_vb

in.doc – page 645

object.GetTextureStageState(_
 stage As Long, _
 state As CONST_D3DTEXTURESTAGESTATETYPE) As Long

object
Object expression that resolves to a Direct3DDevice3 object.

stage
Stage identifier of the texture for which the state will be retrieved. Stage
identifiers are zero-based. Currently, devices can have up to 8 set textures, so
the maximum allowable value allowed for stage is 7.

state
Texture state to be retrieved. This parameter can be any constant of the
CONST_D3DTEXTURESTAGESTATETYPE enumeration.

Return Values
If the method succeeds, the return value is the state value.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.SetTextureStageState, Direct3DDevice3.GetTexture,
Direct3DDevice3.SetTexture

Direct3DDevice3.GetTransform
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.GetTransform method gets a matrix describing a
transformation state.

object.GetTransform(_
 transformType As CONST_D3DTRANSFORMSTATETYPE, _
 matrix As D3DMATRIX)

object
Object expression that resolves to a Direct3DDevice3 object.

IDH__dx_Direct3DDevice3.GetTransform_d3d_vb

in.doc – page 646

transformType
Device state variable that is being modified. This parameter can be any of the
constants of the CONST_D3DTRANSFORMSTATETYPE enumeration.

matrix
A D3DMATRIX type describing the transformation.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDPARAMS if one of the arguments is invalid.

See Also
Direct3DDevice3.SetTransform

Direct3DDevice3.Index
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.Index method adds a new index to the primitive sequence
started with a previous call to the Direct3DDevice3.BeginIndexed method.

object.Index(vertexIndex As Integer)

object
Object expression that resolves to a Direct3DDevice3 object.

vertexIndex
Index of the next vertex to be added to the currently started primitive sequence.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.BeginIndexed, Direct3DDevice3.End

IDH__dx_Direct3DDevice3.Index_d3d_vb

in.doc – page 647

Direct3DDevice3.MultiplyTransfor
m

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.MultiplyTransform method multiplies a device's world,
view, or projection matrices by a specified matrix. The multiplication order is matrix
times dstTransformStateType.

object.MultiplyTransform(_
 dstTransformStateType As Long, _
 matrix As D3DMATRIX)

object
Object expression that resolves to a Direct3DDevice3 object.

dstTransformStateType
Identifies which device matrix is to be modified. The most common setting,
D3DTRANSFORMSTATE_WORLD, modifies the world matrix, but you can
specify that the method modify the view or projection matrices if needed.

matrix
A D3DMATRIX type that modifies the current transformation.

Error Codes
If the method fails, an error is raised and Err.Number will be set. The method
returns DDERR_INVALIDPARAMS if one of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
An application might use the MultiplyTransform method to work with hierarchies
of transformations. For example, the geometry and transformations describing an
arm might be arranged in the following hierarchy:

shoulder_transformation
 upper_arm geometry
 elbow transformation
 lower_arm geometry
 wrist transformation
 hand geometry

An application might use the following series of calls to render this hierarchy. (Not
all of the parameters are shown in this pseudocode.)

Direct3DDevice3.SetTransform(D3DTRANSFORMSTATE_WORLD,

IDH__dx_Direct3DDevice3.MultiplyTransform_d3d_vb

in.doc – page 648

 shoulder_transform)
Direct3DDevice3.DrawPrimitive(upper_arm)
Direct3DDevice3.MultiplyTransform(D3DTRANSFORMSTATE_WORLD,
 elbow_transform)
Direct3DDevice3.DrawPrimitive(lower_arm)
Direct3DDevice3.MultiplyTransform(D3DTRANSFORMSTATE_WORLD,
 wrist_transform)
Direct3DDevice3.DrawPrimitive(hand)

See Also
Direct3DDevice3.DrawPrimitive, Direct3DDevice3.SetTransform

Direct3DDevice3.NextViewport
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.NextViewport method enumerates the viewports associated
with the device.

object.NextViewport(_
 vp1 As Direct3DViewport3, _
 flags As CONST_D3DNEXTFLAGS) As Direct3DViewport3

object
Object expression that resolves to a Direct3DDevice3 object.

vp1
A Direct3DViewport3 object of a viewport in the list of viewports associated
with this Direct3D device.

flags
Flag specifying which viewport to retrieve from the list of viewports. This must
be set to one of the following constants of the CONST_D3DNEXTFLAGS
enumeration:
D3DNEXT_HEAD

Retrieve the item at the beginning of the list.
D3DNEXT_NEXT

Retrieve the next item in the list.
D3DNEXT_TAIL

Retrieve the item at the end of the list.

IDH__dx_Direct3DDevice3.NextViewport_d3d_vb

in.doc – page 649

Return Values
If the method succeeds, a Direct3DViewport3 object for another viewport in the
device's viewport list is returned. Which viewport the method retrieves is determined
by the flag in the flags parameter.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
If you attempt to retrieve the next viewport in the list when you are at the end of the
list, this method returns Nothing.

Direct3DDevice3.SetClipStatus
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetClipStatus method sets the current clip status.

object.SetClipStatus(clipStatus As D3DCLIPSTATUS)

object
Object expression that resolves to a Direct3DDevice3 object.

clipStatus
A D3DCLIPSTATUS type that describes the new settings for the clip status.

Error Codes
If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.GetClipStatus

IDH__dx_Direct3DDevice3.SetClipStatus_d3d_vb

in.doc – page 650

Direct3DDevice3.SetCurrentViewp
ort

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetCurrentViewport method sets the current viewport.

object.SetCurrentViewport(viewport As Direct3DViewport3)

object
Object expression that resolves to a Direct3DDevice3 object.

viewport
A Direct3DViewport3 object for the viewport that will become the current
viewport if the method is successful.

Error Codes
If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Applications must call this method before calling any rendering functions. Before
calling this method, applications must have already called the
Direct3DDevice3.AddViewport method to add the viewport to the device.

Before the first call to Direct3DDevice3.SetCurrentViewport, the current viewport
for the device is invalid, and any attempts to render using the device will fail.

See Also
Direct3DDevice3.GetCurrentViewport

Direct3DDevice3.SetLightState
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetLightState method sets a single Direct3DDevice lighting-
related state value.

object.SetLightState(_
 state As CONST_D3DLIGHTSTATETYPE, _
 lightstate As Long)

IDH__dx_Direct3DDevice3.SetCurrentViewport_d3d_vb
IDH__dx_Direct3DDevice3.SetLightState_d3d_vb

in.doc – page 651

object
Object expression that resolves to a Direct3DDevice3 object.

state
Device state variable that is being modified. This parameter can be any of the
constants of the CONST_D3DLIGHTSTATETYPE enumeration.

lightstate
New value for the Direct3DDevice light state. The meaning of this parameter is
dependent on the value specified for state. For example, if state were
D3DLIGHTSTATE_COLORMODEL, the second parameter would be one of
the values of the CONST_D3DCOLORMODEL data type.

Error Codes
If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Although Direct3DIM supports the D3DLIGHTSTATE_COLORVERTEX through
the Direct3DDevice3.SetLightState method, the Direct3DDevice3.GetLightState
method does not recognize the value, and will return DDERR_INVALIDPARAMS.

See Also
Direct3DDevice3.GetLightState, Direct3DDevice3.SetRenderState,
Direct3DDevice3.SetTransform

Direct3DDevice3.SetRenderState
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetRenderState method sets a single Direct3DDevice
rendering state parameter.

object.SetRenderState(_
 state As CONST_D3DRENDERSTATETYPE, _
 renderstate As Long)

object
Object expression that resolves to a Direct3DDevice3 object.

state
Device state variable that is being modified. This parameter can be any of the
constants of the CONST_D3DRENDERSTATETYPE enumeration.

renderstate

IDH__dx_Direct3DDevice3.SetRenderState_d3d_vb

in.doc – page 652

New value for the Direct3DDevice render state. The meaning of this parameter
is dependent on the value specified for state. For example, if state were
D3DRENDERSTATE_SHADEMODE, the second parameter would be one of
the constants of the CONST_D3DSHADEMODE enumeration.

Error Codes
If the method fails, it sets Err.Number to an error code and raises an error. The
error code is DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks
Applications should use the Direct3DDevice3.SetTextureStageState method to set
texture states in favor of the legacy texture-related render states. For more
information, see About Render States.

See Also
Direct3DDevice3.GetRenderState, Direct3DDevice3.SetLightState,
Direct3DDevice3.SetTransform

Direct3DDevice3.SetRenderTarget
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetRenderTarget method permits the application to easily
route rendering output to a new DirectDraw surface as a render target.

object.SetRenderTarget(surface As DirectDrawSurface4)

object
Object expression that resolves to a Direct3DDevice3 object.

surface
A DirectDrawSurface4 object for the previously created surface object that will
be the new rendering target.

Error Codes
If the method fails, an error is raised and Err.Number may be set one of the
following values:

DDERR_INVALIDPARAMS One of the arguments is invalid.
DDERR_INVALIDSURFACETYPE The surface passed as the first parameter

is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_Direct3DDevice3.SetRenderTarget_d3d_vb

in.doc – page 653

Remarks
When you change the rendering target, all of the handles associated with the
previous rendering target become invalid. This means that you will have to reacquire
all of the texture handles. If you are using ramp mode, you should also update the
texture handles inside materials, by calling the Direct3DMaterial3.SetMaterial
method. The Direct3DDevice3.SetRenderTarget method is most useful to
applications that use the DrawPrimitive methods, especially when these applications
do not use ramp mode.

If the new render target surface has different dimensions from the old (length, width,
pixel-format), this method marks the viewport as invalid. The viewport may be
revalidated after calling Direct3DDevice3.SetRenderTarget by calling
Direct3DViewport3.SetViewport to restate viewport parameters that are compatible
with the new surface.

Capabilities do not change with changes in the properties of the render target
surface. Both the Direct3D HAL and the software rasterizers have only one
opportunity to expose capabilities to the application. The system cannot expose
different sets of capabilities depending on the format of the destination surface.

If a depth-buffer is attached to the new render target, it replaces the previous z-buffer
for the context. Otherwise, the old z-buffer is detached and z-buffering is disabled.

If more than one depth-buffer is attached to the render target, this function fails.

See Also
Direct3DDevice3.GetRenderTarget

Direct3DDevice3.SetTexture
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetTexture method assigns a texture to a given stage for a
device.

object.SetTexture(_
 stage As Long, _
 texture As Direct3DTexture2)

object
Object expression that resolves to a Direct3DDevice3 object.

stage
Stage identifier to which the texture will be set. Stage identifiers are zero-based.
Currently, devices can have up to 8 set textures, so the maximum allowable
value allowed for stage is 7.

texture

IDH__dx_Direct3DDevice3.SetTexture_d3d_vb

in.doc – page 654

A Direct3DTexture2 object for the texture being set.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Software devices do not support assigning a texture to more than one texture stage at
a time.

See Also
Direct3DDevice3.GetTexture, Direct3DDevice3.GetTextureStageState,
Direct3DDevice3.SetTextureStageState

Direct3DDevice3.SetTextureStage
State

[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetTextureStageState method sets the state value for a
currently assigned texture.

object.SetTextureStageState(_
 stage As Long, _
 state As CONST_D3DTEXTURESTAGESTATETYPE, _
 value As Long)

object
Object expression that resolves to a Direct3DDevice3 object.

stage
Stage identifier of the texture for which the state value will be set. Stage
identifiers are zero-based. Currently, devices can have up to 8 set textures, so
the maximum allowable value allowed for stage is 7.

state
Texture state to be set. This parameter can be any constant of the
CONST_D3DTEXTURESTAGESTATETYPE enumeration.

value

IDH__dx_Direct3DDevice3.SetTextureStageState_d3d_vb

in.doc – page 655

State value to be set. The meaning of this value is determined by the state
parameter.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Applications should use this method to set texture states in favor of the legacy
texture-related render states.

See Also
Direct3DDevice3.GetTextureStageState, Direct3DDevice3.GetTexture,
Direct3DDevice3.SetTexture, Textures

Direct3DDevice3.SetTransform
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.SetTransform method sets a single Direct3DDevice
transformation-related state.

object.SetTransform(_
 transformType As CONST_D3DTRANSFORMSTATETYPE, _
 matrix As D3DMATRIX)

object
Object expression that resolves to a Direct3DDevice3 object.

transformType
Device state variable that is being modified. This parameter can be any of the
constants of the CONST_D3DTRANSFORMSTATETYPE enumeration.

matrix
A D3DMATRIX type that modifies the current transformation.

Error Codes
If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

IDH__dx_Direct3DDevice3.SetTransform_d3d_vb

in.doc – page 656

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.GetTransform, Direct3DDevice3.SetLightState,
Direct3DDevice3.SetRenderState

Direct3DDevice3.ValidateDevice
[This is preliminary documentation and subject to change.]

The Direct3DDevice3.ValidateDevice method reports the device's ability to render
the currently set texture blending operations and arguments in a single pass.

object.ValidateDevice() As Long

object
Object expression that resolves to a Direct3DDevice3 object.

Return Values
If the method succeeds, the return value is the number of rendering passes to
complete the desired effect through multipass rendering.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
D3DERR_CONFLICTINGTEXTUREFILTER
D3DERR_TOOMANYOPERATIONS
D3DERR_UNSUPPORTEDALPHAARG
D3DERR_UNSUPPORTEDALPHAOPERATION
D3DERR_UNSUPPORTEDCOLORARG
D3DERR_UNSUPPORTEDCOLOROPERATION
D3DERR_UNSUPPORTEDFACTORVALUE
D3DERR_UNSUPPORTEDTEXTUREFILTER
D3DERR_WRONGTEXTUREFORMAT

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_Direct3DDevice3.ValidateDevice_d3d_vb

in.doc – page 657

Remarks
Current hardware does not necessarily implement all possible combinations of
operations and arguments. You can determine whether a particular blending
operation can be performed with given arguments by setting-up the desired blending
operation, then calling the ValidateDevice method.

The ValidateDevice method uses the currently set render states, textures, and,
texture stage states to perform validation at the time of the call. Any changes to these
factors after the call invalidate the previous result, and the method must be called
again before rendering a scene.

Using diffuse iterated values, either as an argument or as an operation
(D3DTA_DIFFUSE or D3DTOP_BLENDDIFFUSEALPHA) is sparsely supported
on current hardware. Most hardware can only introduce iterated color data at the last
texture operation stage.

Try to specify the texture (D3DTA_TEXTURE) for each stage as the first argument,
in preference to the second argument.

Many cards do not support use of diffuse or scalar values at arbitrary texture stages.
Often, these are only available at the first or last texture blending stage.

Many cards do not actually have a blending unit associated with the first texture that
is capable of more than replicating alpha to color channels, or inverting the input. As
a result, your application might need to use only the second texture stage if possible.
On such hardware, the first unit is presumed to be in its default state, which has the
first color argument set to D3DTA_TEXTURE with the D3DTOP_SELECTARG1
operation.

Operations on the output alpha that are more intricate than or substantially different
from the color operations are less likely to be supported.

Some hardware does not support simultaneous use of both D3DTA_TFACTOR and
D3DTA_DIFFUSE.

Many cards do not support simultaneous use of multiple textures and mipmapped
trilinear filtering. If trilinear filtering has been requested for a texture involved in
multi-texture blending operations and validation fails, turn off trilinear filtering and
revalidate. In this case, it might be best to perform multipass rendering instead.

See Also
Direct3DDevice3.GetTextureStageState, Direct3DDevice3.SetTextureStageState

Direct3DDevice3.Vertex
[This is preliminary documentation and subject to change.]

IDH__dx_Direct3DDevice3.Vertex_d3d_vb

in.doc – page 658

The Direct3DDevice3.Vertex method adds a new Direct3D vertex to the primitive
sequence started with a previous call to the Direct3DDevice3.Begin method.

object.Vertex(Vertex As Any)

object
Object expression that resolves to a Direct3DDevice3 object.

Vertex
Pointer to the next Direct3D vertex to be added to the currently started primitive
sequence. This can be any of the Direct3D vertex types (D3DLVERTEX,
D3DTLVERTEX, or D3DVERTEX) or a vertex specified in flexible vertex
format. The vertex format must match the description specified in the preceding
call to Direct3DDevice3.Begin.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DDevice3.Begin, Direct3DDevice3.End

Direct3DEnumDevices
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3DEnumDevices class to retrieve
information about the Direct3D devices present on a system. The
Direct3DEnumDevices class is obtained by calling the
Direct3D3.GetDevicesEnum method.

The methods of the Direct3DEnumDevices class can be organized into the
following groups:

Device count GetCount

IDH__dx_Direct3DEnumDevices_d3d_vb

in.doc – page 659

Device information GetDescription
GetGuid
GetHELDesc
GetHWDesc
GetName

Direct3DEnumDevices.GetCount
[This is preliminary documentation and subject to change.]

The Direct3DEnumDevices.GetCount method returns the number of Direct3D
devices installed on the system.

object.GetCount() As Long

object
Object expression that resolves to a Direct3DEnumDevices object.

Return Values
If the method succeeds, the number of Direct3D devices installed on the system is
returned.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DEnumDevices.GetDescript
ion

[This is preliminary documentation and subject to change.]

The Direct3DEnumDevices.GetDescription method returns user-friendly
description of the desired Direct3D device.

object.GetDescription(index As Long) As String

object
Object expression that resolves to a Direct3DEnumDevices object.

index
Index of the enumerated device. This value can be between 1 and the value
returned by the Direct3DEnumDevices.GetCount method.

IDH__dx_Direct3DEnumDevices.GetCount_d3d_vb
IDH__dx_Direct3DEnumDevices.GetDescription_d3d_vb

in.doc – page 660

Return Values
If the method succeeds, the return value is the user-friendly description of the
enumerated device.

Error Codes
If the method fails, the method sets Err.Number to an error code and raises an error.
For a list of possible error codes, see Direct3D Immediate Mode Error Codes.

Direct3DEnumDevices.GetGuid
[This is preliminary documentation and subject to change.]

The Direct3DEnumDevices.GetDescription method returns the globally-unique ID
(GUID) of the desired Direct3D device.

object.GetGuid(index As Long) As String

object
Object expression that resolves to a Direct3DEnumDevices object.

index
Index of the enumerated device. This value can be between 1 and the value
returned by the Direct3DEnumDevices.GetCount method.

Return Values
If the method succeeds, the return value is the globally-unique identifier of the
enumerated device. This value is used to create the device with a subsequent call to
the Direct3D3.CreateDevice method.

Error Codes
If the method fails, the method sets Err.Number to an error code and raises an error.
For a list of possible error codes, see Direct3D Immediate Mode Error Codes.

Direct3DEnumDevices.GetHELDesc
[This is preliminary documentation and subject to change.]

The Direct3DEnumDevices.GetHELDesc method returns the emulated capabilities
of the desired Direct3D device.

object.GetHELDesc(index As Long, helDesc As D3DDEVICEDESC)

object

IDH__dx_Direct3DEnumDevices.GetGuid_d3d_vb
IDH__dx_Direct3DEnumDevices.GetHELDesc_d3d_vb

in.doc – page 661

Object expression that resolves to a Direct3DEnumDevices object.
index

Index of the enumerated device. This value can be between 1 and the value
returned by the Direct3DEnumDevices.GetCount method.

helDesc
A D3DDEVICEDESC type that contains the emulated capabilities of the
Direct3D device.

Error Codes
If the method fails, an error is generated. For a list of possible error codes, see
Direct3D Immediate Mode Error Codes.

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3DEnumDevices.GetHWDesc
[This is preliminary documentation and subject to change.]

The Direct3DEnumDevices.GetHWDesc method returns the hardware capabilities
of the desired Direct3D device.

object.GetHWDesc(index As Long, hwDesc As D3DDEVICEDESC)

object
Object expression that resolves to a Direct3DEnumDevices object.

index
On a system with multiple Direct3D devices, this parameter represents the
specific device.

hwDesc
A D3DDEVICEDESC type that contains the hardware capabilities of the
Direct3D device.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DEnumDevices.GetName
[This is preliminary documentation and subject to change.]

The Direct3DEnumDevices.GetName method returns the user-friendly name of the
desired Direct3D device.

object.GetName(index As Long) As String

IDH__dx_Direct3DEnumDevices.GetHWDesc_d3d_vb
IDH__dx_Direct3DEnumDevices.GetName_d3d_vb

in.doc – page 662

object
Object expression that resolves to a Direct3DEnumDevices object.

index
Index of the enumerated device. This value can be between 1 and the value
returned by the Direct3DEnumDevices.GetCount method.

Return Values
If the method succeeds, the return value is the user-friendly name of the device.

Error Codes
If the method fails, the method sets Err.Number to an error code and raises an error.
For a list of possible error codes, see Direct3D Immediate Mode Error Codes.

Direct3DEnumPixelFormats
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3DEnumPixelFormats class to retrieve
information about the pixel formats supported by a rendering device. The
Direct3D3EnumDevices class is obtained by calling the
Direct3DDevice3.GetTextureFormatsEnum and
Direct3D3.GetEnumZBufferFormats methods.

This class consists of two methods.

· GetCount
· GetItem

Direct3DEnumPixelFormats.GetCo
unt

[This is preliminary documentation and subject to change.]

The Direct3DEnumPixelFormats.GetCount method returns the number of
supported pixel formats of the Direct3D device.

object.GetCount() As Long

object
Object expression that resolves to a Direct3DEnumPixelFormats object.

IDH__dx_Direct3DEnumPixelFormats_d3d_vb
IDH__dx_Direct3DEnumPixelFormats.GetCount_d3d_vb

in.doc – page 663

Return Values
If the method succeeds, the number of supported pixel formats is returned.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DEnumPixelFormats.GetIte
m

[This is preliminary documentation and subject to change.]

The Direct3DEnumPixelFormats.GetItem method returns the description of the
specified pixel format.

object.GetItem(index As Long, pixelFormat As DDPIXELFORMAT)

object
Object expression that resolves to a Direct3DEnumPixelFormats object.

index
The specific pixel format that you want a description for.

pixelFormat
A DDPIXELFORMAT type that describes the enumerated pixel format.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DLight
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3DLight class to retrieve and set the
capabilities of lights. This section is a reference to the methods of this class. For a
conceptual overview, see Lights.

The Direct3DLight object is obtained by calling the Direct3D3.CreateLight
method.

The methods of the Direct3DLight class can be organized into the following groups:

Get and set GetLight
SetLight

IDH__dx_Direct3DEnumPixelFormats.GetItem_d3d_vb
IDH__dx_Direct3DLight_d3d_vb

in.doc – page 664

Direct3DLight.GetLight
[This is preliminary documentation and subject to change.]

The Direct3DLight.GetLight method retrieves the light information for the
Direct3DLight object.

object.GetLight(light As D3DLIGHT2)

object
Object expression that resolves to a Direct3DLight object.

light
A D3DLIGHT2 type that will be filled with the current light data.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DLight.SetLight

Direct3DLight.SetLight
[This is preliminary documentation and subject to change.]

The Direct3DLight.SetLight method sets the light information for the
Direct3DLight object.

object.SetLight(light As D3DLIGHT2)

object
Object expression that resolves to a Direct3DLight object.

light
A D3DLIGHT2 type that will be filled with the current light data.

IDH__dx_Direct3DLight.GetLight_d3d_vb
IDH__dx_Direct3DLight.SetLight_d3d_vb

in.doc – page 665

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DLight.GetLight

Direct3DMaterial3
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3DMaterial3 class to retrieve and set the
properties of materials. This section is a reference to the methods of this class. For a
conceptual overview, see Materials.

You create this object by calling the Direct3D3.CreateMaterial method.

The methods of the Direct3DMaterial3 class can be organized into the following
groups:

Handles GetHandle

Materials GetMaterial
SetMaterial

See Also
Materials, Lighting and Materials

Direct3DMaterial3.GetHandle
[This is preliminary documentation and subject to change.]

The Direct3DMaterial3.GetHandle method binds a material to a device, retrieving
a handle that represents the association between the two. This handle is used in all
Direct3D methods in which a material is to be referenced. A material can be used by
only one device at a time.

If the device is destroyed, the material is disassociated from the device.

IDH__dx_Direct3DMaterial3_d3d_vb
IDH__dx_Direct3DMaterial3.GetHandle_d3d_vb

in.doc – page 666

object.GetHandle(dev As Direct3DDevice3) As Long

object
Object expression that resolves to a Direct3DMaterial3 object.

dev
A Direct3DDevice3 object for the rendering device to which the material is
being bound.

Return Values
If the method succeeds, the return value is the material handle corresponding to the
Direct3DMaterial3 object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DDERR_INVALIDOBJECT.

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Retrieving Material Handles

Direct3DMaterial3.GetMaterial
[This is preliminary documentation and subject to change.]

The Direct3DMaterial3.GetMaterial method retrieves the material data for the
Direct3DMaterial object.

object.GetMaterial(mat As D3DMATERIAL)

object
Object expression that resolves to a Direct3DMaterial3 object.

mat
A D3DMATERIAL type that will be filled with the current material properties.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

IDH__dx_Direct3DMaterial3.GetMaterial_d3d_vb

in.doc – page 667

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DMaterial3.SetMaterial

Direct3DMaterial3.SetMaterial
[This is preliminary documentation and subject to change.]

The Direct3DMaterial3.SetMaterial method sets the material data for the
Direct3DMaterial object.

object.SetMaterial(mat As D3DMATERIAL)

object
Object expression that resolves to a Direct3DMaterial3 object.

mat
A D3DMATERIAL type that contains the material properties.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DMaterial3.GetMaterial, Retrieving Material Properties, Setting Material
Properties

Direct3DTexture2
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3DTexture2 class to retrieve and set the
properties of textures. This section is a reference to the methods of this class. For a
conceptual overview, see Textures.

You create the Direct3DTexture2 object by calling the
DirectDrawSurface4.GetTexture

IDH__dx_Direct3DMaterial3.SetMaterial_d3d_vb
IDH__dx_Direct3DTexture2_d3d_vb

in.doc – page 668

The methods of the Direct3DTexture2 class can be organized into the following
groups:

Handles GetHandle

Loading Load

Creating objects GetSurface

Palette information PaletteChanged

See Also
Textures

Direct3DTexture2.GetHandle
[This is preliminary documentation and subject to change.]

The Direct3DTexture2.GetHandle method obtains the texture handle to be used
when rendering with Direct3DDevice2 objects.

object.GetHandle(dev As Direct3DDevice3) As Long

object
Object expression that resolves to a Direct3DTexture2 object.

dev
A Direct3DDevice3 object into which the texture is to be loaded.

Return Values
If the method succeeds, the return value is the texture handle corresponding to the
Direct3DTexture2 object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_Direct3DTexture2.GetHandle_d3d_vb

in.doc – page 669

Remarks
In the Direct3DTexture class, this method uses a pointer to a Direct3DDevice
object instead of a Direct3DDevice2 object.

Texture handles are used only device objects earlier than Direct3DDevice3. The
Direct3DDevice3 object references textures using texture object pointers, set
through the Direct3DDevice3.SetTexture method.

Direct3DTexture2.GetSurface
[This is preliminary documentation and subject to change.]

The Direct3DTexture2.GetSurface method creates a DirectDrawSurface4 object.

object.GetSurface() As DirectDrawSurface4

object
Object expression that resolves to a Direct3DTexture2 object.

Return Values
If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes
If the method fails, an error is raised and Err.Number will be set. For a list of
possible error codes, see Direct3D Immediate Mode Error Codes.

Direct3DTexture2.Load
[This is preliminary documentation and subject to change.]

The Direct3DTexture2.Load method loads a system-memory texture surface into a
video-memory texture surface. This method can be used to load texture mipmap
chains (see remarks).

object.Load(tex As Direct3DTexture2)

object
Object expression that resolves to a Direct3DTexture2 object.

tex
The texture to load.

IDH__dx_Direct3DTexture2.GetSurface_d3d_vb
IDH__dx_Direct3DTexture2.Load_d3d_vb

in.doc – page 670

Error Codes
If the method fails, an error is raised and Err.Number will be set. For a list of
possible return values, see Direct3D Immediate Mode Error Codes.

Remarks
This method uses hardware-accelerated blit operations to load data from the source
texture into the destination texture.

If both textures are mipmaps, the method will copy the mipmap levels from the
source mipmap that match those of the destination mipmap. If the destination
mipmap uses levels-of-detail not present in the source mipmap, the method fails.

Direct3DTexture2.PaletteChanged
[This is preliminary documentation and subject to change.]

The Direct3DTexture2.PaletteChanged method informs the driver that the palette
has changed on a texture surface.

object.PaletteChanged(start As Long, count As Long)

object
Object expression that resolves to a Direct3DTexture2 object.

start
Index of first palette entry that has changed.

count
Number of palette entries that have changed.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
This method is particularly useful for applications that play video clips and therefore
require palette-changing capabilities.

This method only affects the legacy ramp device. For all other devices, this method
takes no action and returns D3D_OK.

Direct3DVertexBuffer
[This is preliminary documentation and subject to change.]

IDH__dx_Direct3DTexture2.PaletteChanged_d3d_vb
IDH__dx_Direct3DVertexBuffer_d3d_vb

in.doc – page 671

Applications use the methods of the Direct3DVertexBuffer class to manipulate a
collection of vertices for use with the Direct3DDevice3.DrawPrimitiveVB and
Direct3DDevice3.DrawIndexedPrimitiveVB rendering methods. This section is a
reference to the methods of this class. For a conceptual overview, see Vertex
Buffers.

This methods of the Direct3DVertexBuffer class can be organized into the
following groups:

Information GetVertexBufferDesc

Vertex data GetVertices
Lock
Optimize
ProcessVertices
SetVertices
Unlock

See Also
Vertex Buffers

Direct3DVertexBuffer.GetVertexBu
fferDesc

[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.GetVertexBufferDesc method retrieves a description of
the vertex buffer.

object.GetVertexBufferDesc(desc As D3DVERTEXBUFFERDESC)

object
Object expression that resolves to a Direct3DVertexBuffer object.

desc
A D3DVERTEXBUFFERDESC type that will be filled with a description of
the vertex buffer.

Error Codes
If the method fails, an error is raised and Err.Number may be
DDERR_INVALIDPARAMS or another error code.

IDH__dx_Direct3DVertexBuffer.GetVertexBufferDesc_d3d_vb

in.doc – page 672

Direct3DVertexBuffer.GetVertices
[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.GetVertices method returns the vertices in the vertex
buffer.

object.GetVertices(startIndex As Long, _
 count As Long, _
 verts As Any)

object
Object expression that resolves to a Direct3DVertexBuffer object.

startIndex

count

verts

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DVertexBuffer.Lock
[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.Lock methods locks a vertex buffer and obtains a
pointer to the vertex buffer memory.

object.Lock(flags As CONST_DDLOCKFLAGS)

object
Object expression that resolves to a Direct3DVertexBuffer object.

flags
One of the constants of the CONST_DDLOCKFLAGS enumeration indicating
how the vertex buffer memory should be locked.
DDLOCK_EVENT

This flag is not currently implemented.
DDLOCK_NOSYSLOCK

If possible, do not take the Win16Mutex (also known as Win16Lock).
DDLOCK_READONLY

Indicates that the memory being locked will only be read from.

IDH__dx_Direct3DVertexBuffer.GetVertices_d3d_vb
IDH__dx_Direct3DVertexBuffer.Lock_d3d_vb

in.doc – page 673

DDLOCK_SURFACEMEMORYPTR
Indicates that a valid memory pointer to the vertex buffer should be returned;
this is the default.

DDLOCK_WAIT
If a lock cannot be obtained immediately, the method retries until a lock is
obtained or another error occurs.

DDLOCK_WRITEONLY
Indicates that the memory being locked will only be written to.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_VERTEXBUFFEROPTIMIZED
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
After locking the vertex buffer, you can access the memory until a corresponding
call to Direct3DVertexBuffer.Unlock.

You cannot render from a locked vertex buffer; calls to the
Direct3DDevice3.DrawIndexedPrimitiveVB or
Direct3DDevice3.DrawPrimitiveVB method using a locked buffer will fail,
returning D3DERR_VERTEXBUFFERLOCKED.

This method often causes the system to hold the Win16Mutex until you call the
Direct3DVertexBuffer.Unlock method. GUI debuggers cannot operate while the
Win16Mutex is held.

See Also
Direct3DVertexBuffer.Unlock

Direct3DVertexBuffer.Optimize
[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.Optimize method converts an unoptimized vertex
buffer into an optimized vertex buffer.

IDH__dx_Direct3DVertexBuffer.Optimize_d3d_vb

in.doc – page 674

object.Optimize(dev As Direct3DDevice3)

object
Object expression that resolves to a Direct3DVertexBuffer object.

dev
A Direct3DDevice3 object of the device for which this vertex buffer will be
optimized.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_VERTEXBUFFEROPTIMIZED
D3DERR_VERTEXBUFFERLOCKED
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Optimizing a Vertex Buffer, Vertex Buffers

Direct3DVertexBuffer.ProcessVerti
ces

[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.ProcessVertices method processes untransformed
vertices into a transformed or optimized vertex buffer.

object.ProcessVertices(_
 vertexOp As CONST_D3DVOPFLAGS, _
 destIndex As Long, _
 count As Long, _
 srcBuffer As Direct3DVertexBuffer, _
 srcIndex As Long, _
 dev As Direct3DDevice3)

object
Object expression that resolves to a Direct3DVertexBuffer object.

vertexOp

IDH__dx_Direct3DVertexBuffer.ProcessVertices_d3d_vb

in.doc – page 675

Flags defining how the method processes the vertices as they are transferred
from the source buffer. You can specify any combination of the following
constants of the CONST_D3DVOPFLAGS enumeration:
D3DVOP_CLIP

Transform the vertices and clip any vertices that exist outside the viewing
frustum. This flag cannot be used with vertex buffers that do not contain
clipping information (for example, created with the D3DDP_DONOTCLIP
flag).

D3DVOP_EXTENTS
Transform the vertices, then update the extents of the screen rectangle when
the vertices are rendered. Using this flag can potentially help performance,
but the extents returned by Direct3DDevice3.GetClipStatus will not have
been updated to account for the vertices when they are rendered.

D3DVOP_LIGHT
Light the vertices.

D3DVOP_TRANSFORM
Transform the vertices using the world, view, and projection matrices. This
flag must always be set.

destIndex
Index into the destination vertex buffer (this buffer) where the vertices will be
placed after processing.

count
Number of vertices in the source buffer to process.

srcBuffer
A Direct3DVertexBuffer object for the source vertex buffer.

srcIndex
Index of the first vertex in the source buffer to be processed.

dev
A Direct3DDevice3 object for the device that will be used to transform the
vertices.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_INVALIDVERTEXFORMAT
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

in.doc – page 676

Remarks
You must always include the D3DVOP_TRANSFORMED flag in the vertexOp
parameter. If you fail to include this flag, the method will fail, returning
DDERR_INVALIDPARAMS.

See Also
Processing Vertices, Vertex Buffers

Direct3DVertexBuffer.SetVertices
[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.SetVertices method sets the vertices in the vertex
buffer.

object.SetVertices(startIndex As Long, _
 count As Long, _
 verts As Any)

object
Object expression that resolves to a Direct3DVertexBuffer object.

startIndex

count

verts

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Direct3DVertexBuffer.Unlock
[This is preliminary documentation and subject to change.]

The Direct3DVertexBuffer.Unlock method unlocks a previously locked vertex
buffer.

object.Unlock()

object
Object expression that resolves to a Direct3DVertexBuffer object.

IDH__dx_Direct3DVertexBuffer.SetVertices_d3d_vb
IDH__dx_Direct3DVertexBuffer.Unlock_d3d_vb

in.doc – page 677

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACEBUSY
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DVertexBuffer.Lock, Accessing Vertex Buffer Memory

Direct3DViewport3
[This is preliminary documentation and subject to change.]

Applications use the methods of the Direct3DViewport3 class to retrieve and set the
properties of viewports. This section is a reference to the methods of this class. For a
conceptual overview, see Viewports and Clipping.

The Direct3DViewport3 class offers the same services as the Direct3DViewport2
class, but adds the Clear2 method, which simultaneously clears the viewport, depth-
buffer, and stencil buffer.

You create the Direct3DViewport3 object by calling the
Direct3D3.CreateViewport method.

The methods of the Direct3DViewport3 class can be organized into the following
groups:

Backgrounds GetBackground
GetBackgroundDepth
SetBackground
SetBackgroundDepth

Lights AddLight
DeleteLight
LightElements

IDH__dx_Direct3DViewport3_d3d_vb

in.doc – page 678

NextLight

Materials and viewports Clear
Clear2
GetViewport
GetViewport2
SetViewport
SetViewport2

Transformation TransformVertices

See Also
Viewports and Clipping

Direct3DViewport3.AddLight
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.AddLight method adds the specified light to the list of
Direct3DLight objects associated with this viewport and increments the reference
count of the light object.

object.AddLight(light As Direct3DLight)

object
Object expression that resolves to a Direct3DViewport3 object.

light
A Direct3DLight object that should be associated with this Direct3DViewport3
object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Direct3DViewport3.Clear
[This is preliminary documentation and subject to change.]

IDH__dx_Direct3DViewport3.AddLight_d3d_vb
IDH__dx_Direct3DViewport3.Clear_d3d_vb

in.doc – page 679

The Direct3DViewport3.Clear method clears the viewport or a set of rectangles in
the viewport to the current background material.

object.Clear(count As Long, _
 recs() As D3DRECT, _
 flags As CONST_D3DCLEARFLAGS)

object
Object expression that resolves to a Direct3DViewport3 object.

count
Number of rectangles in the recs() array.

recs()
An array of D3DRECT types. Each rectangle uses screen coordinates that
correspond to points on the render target surface. Coordinates are clipped to the
bounds of the viewport rectangle.

flags
One or both of the following constants of the CONST_D3DCLEARFLAGS
enumeration indicating what to clear: the rendering target, the depth-buffer, or
both.
D3DCLEAR_TARGET

Clear the rendering target to the background material (if set).
D3DCLEAR_ZBUFFER

Clear the depth-buffer or set it to the current background depth field (if set).

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_VIEWPORTHASNODEVICE
D3DERR_ZBUFFER_NOTPRESENT
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method does not support clearing the stencil buffer. To clear the stencil buffer,
use the Direct3DViewport3.Clear2 method.

See Also
Direct3DViewport3.Clear2

in.doc – page 680

Direct3DViewport3.Clear2
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.Clear2 method clears the viewport (or a set of rectangles
in the viewport) to a specified RGBA color, clears the depth-buffer, and erases the
stencil buffer.

object.Clear2(count As Long, _
 recs() As D3DRECT, _
 flags As CONST_D3DCLEARFLAGS, _
 color As Long, _
 z As Single, _
 stencil As Long)

object
Object expression that resolves to a Direct3DViewport3 object.

count
Number of rectangles in the array at recs().

recs()
An array of D3DRECT types that describe the rectangles to be cleared. Set a
rectangle to the dimensions of the rendering target to clear the entire surface.
Each rectangle uses screen coordinates that correspond to points on the render
target surface. Coordinates are clipped to the bounds of the viewport rectangle.

flags
Flags indicating which surfaces should be cleared. This parameter can be any
combination of the following constants of the CONST_D3DCLEARFLAGS
enumeration, but at least one constant must be used:
D3DCLEAR_TARGET

Clear the rendering target to the color in the dwColor parameter.
D3DCLEAR_STENCIL

Clear the stencil buffer to the value in the dwStencil parameter.
D3DCLEAR_ZBUFFER

Clear the depth-buffer to the value in the dvZ parameter.
color

32-bit RGBA color value to which the render target surface will be cleared.
z

New z value that this method stores in the depth-buffer. This parameter can
range from 0.0 to 1.0, inclusive. The value of 0.0 represents the nearest distance
to the viewer, and 1.0 the farthest distance.

stencil
Integer value to store in each stencil buffer entry. This parameter can range from
0 to 2n-1 inclusive, where n is the bit depth of the stencil buffer.

IDH__dx_Direct3DViewport3.Clear2_d3d_vb

in.doc – page 681

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_STENCILBUFFER_NOTPRESENT
D3DERR_VIEWPORTHASNODEVICE
D3DERR_ZBUFFER_NOTPRESENT
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method fails if you specify the D3DCLEAR_ZBUFFER or
D3DCLEAR_STENCIL flags when the render target does not have an attached
depth-buffer. This behavior differs from the Direct3DViewport3.Clear method,
which will succeed if under these circumstances.

If you specify the D3DCLEAR_STENCIL flag when the depth-buffer format doesn't
contain stencil buffer information, this method fails.

This method ignores the current background material for the viewport; to clear a
viewport using the background material, use the Direct3DViewport3.Clear method.

See Also
Direct3DViewport3.Clear

Direct3DViewport3.DeleteLight
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.DeleteLight method removes the specified light from the
list of Direct3DLight objects associated with this viewport, and decrements the
reference count for the light object.

object.DeleteLight(light As Direct3DLight)

object
Object expression that resolves to a Direct3DViewport3 object.

light
A Direct3DLight object that should be disassociated with this
Direct3DViewport3 object.

IDH__dx_Direct3DViewport3.DeleteLight_d3d_vb

in.doc – page 682

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3DViewport3.GetBackgroun
d

[This is preliminary documentation and subject to change.]

The Direct3DViewport3.GetBackground method retrieves the handle to a material
that represents the current background associated with the viewport.

object.GetBackground(hdl As Long, stat As Long)

object
Object expression that resolves to a Direct3DViewport3 object.

hdl
The handle to the material being used as the background.

stat
Indicator of whether a background is associated with the viewport. If this
parameter is False, no background is associated with the viewport. This will be
non zero for True.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DViewport3.SetBackground

IDH__dx_Direct3DViewport3.GetBackground_d3d_vb

in.doc – page 683

Direct3DViewport3.GetBackgroun
dDepth

[This is preliminary documentation and subject to change.]

The Direct3DViewport3.GetBackgroundDepth method retrieves a DirectDraw
surface that represents the current background-depth field associated with the
viewport.

object.GetBackgroundDepth(status As Long) _
 As DirectDrawSurface4

object
Object expression that resolves to a Direct3DViewport3 object.

status
A parameter that is set to False if no background depth is associated with the
viewport.

Return Values
If the method succeeds, the return value is a DirectDrawSurface4 object
representing the background depth.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DViewport3.SetBackgroundDepth

Direct3DViewport3.GetViewport
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.GetViewport method retrieves the viewport registers of
the viewport. This method is provided for backward compatibility. It has been
superseded by the Direct3DViewport3.GetViewport2 method.

IDH__dx_Direct3DViewport3.GetBackgroundDepth_d3d_vb
IDH__dx_Direct3DViewport3.GetViewport_d3d_vb

in.doc – page 684

object.GetViewport(vp As D3DVIEWPORT)

object
Object expression that resolves to a Direct3DViewport3 object.

vp
A D3DVIEWPORT type representing the viewport.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DViewport3.GetViewport2, Direct3DViewport3.SetViewport

Direct3DViewport3.GetViewport2
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.GetViewport2 method retrieves the viewport registers of
the viewport.

object.GetViewport2(vp As D3DVIEWPORT2)

object
Object expression that resolves to a Direct3DViewport3 object.

vp
A D3DVIEWPORT2 type representing the viewport.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_Direct3DViewport3.GetViewport2_d3d_vb

in.doc – page 685

See Also
Direct3DViewport3.SetViewport2

Direct3DViewport3.LightElements
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.LightElements method is not currently implemented.

object.LightElements(elementCount As Long, _
 lightData() As D3DLIGHTDATA)

object
Object expression that resolves to a Direct3DViewport3 object.

elementCount

lightData()

Direct3DViewport3.NextLight
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.NextLight method enumerates the Direct3DLight objects
associated with the viewport.

object.NextLight(l1 As Direct3DLight, _
 flags As CONST_D3DNEXTFLAGS) As Direct3DLight

object
Object expression that resolves to a Direct3DViewport3 object.

l1
A Direct3DLight object representing the light in the list of lights associated
with this viewport object.

flags
Flags specifying which light to retrieve from the list of lights. This must be set
to one of the following constants of the CONST_D3DNEXTFLAGS
enumeration:
D3DNEXT_HEAD

Retrieve the item at the beginning of the list.
D3DNEXT_NEXT

Retrieve the next item in the list.
D3DNEXT_TAIL

IDH__dx_Direct3DViewport3.LightElements_d3d_vb
IDH__dx_Direct3DViewport3.NextLight_d3d_vb

in.doc – page 686

Retrieve the item at the end of the list.

Return Values
If the method succeeds, the return value a Direct3DLight object representing the
requested light in the list of lights associated with this viewport object. The
requested light is specified in the flags parameter.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Direct3DViewport3.SetBackground
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.SetBackground method sets the background material
associated with the viewport.

object.SetBackground(hdl As Long)

object
Object expression that resolves to a Direct3DViewport3 object.

hdl
Material handle that will be used as the background.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
Direct3DViewport3.GetBackground

IDH__dx_Direct3DViewport3.SetBackground_d3d_vb

in.doc – page 687

Direct3DViewport3.SetBackground
Depth

[This is preliminary documentation and subject to change.]

The Direct3DViewport3.SetBackgroundDepth method sets the background-depth
field for the viewport.

object.SetBackgroundDepth(surface As DirectDrawSurface4)

object
Object expression that resolves to a Direct3DViewport3 object.

surface
A DirectDrawSurface4 object representing the background depth.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
The depth-buffer is filled with the specified depth field when the
Direct3DViewport3.Clear method is called and the D3DCLEAR_ZBUFFER flag is
specified. The bit depth must be 16 bits.

See Also
Direct3DViewport3.GetBackgroundDepth

Direct3DViewport3.SetViewport
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.SetViewport method sets the viewport registers of the
viewport. This method is provided for backward compatibility. It has been
superseded by the Direct3DViewport3.SetViewport2 method.

object.SetViewport(vp As D3DVIEWPORT)

IDH__dx_Direct3DViewport3.SetBackgroundDepth_d3d_vb
IDH__dx_Direct3DViewport3.SetViewport_d3d_vb

in.doc – page 688

object
Object expression that resolves to a Direct3DViewport3 object.

vp
A D3DVIEWPORT type that contains the new viewport.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
You cannot set viewport parameters unless the viewport is associated with a
rendering device (by calling the Direct3DDevice3.AddViewport method).

See Also
Direct3DViewport3.GetViewport, Direct3DViewport3.SetViewport2, Using
Viewports, Viewports and Clipping

Direct3DViewport3.SetViewport2
[This is preliminary documentation and subject to change.]

The Direct3DViewport3.SetViewport2 method sets the viewport registers of the
viewport.

object.SetViewport2(vp As D3DVIEWPORT2)

object
Object expression that resolves to a Direct3DViewport3 object.

vp
A D3DVIEWPORT2 type that contains the new viewport parameters.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

D3DERR_VIEWPORTHASNODEVICE
DDERR_INVALIDOBJECT

IDH__dx_Direct3DViewport3.SetViewport2_d3d_vb

in.doc – page 689

DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
You cannot set viewport parameters unless the viewport is associated with a
rendering device (by calling the Direct3DDevice3.AddViewport method). For
details, see Preparing to Use a Viewport.

The dvMinZ and dvMaxZ members of the associated D3DVIEWPORT2 type must
not contain identical values.

See Also
Direct3DViewport3.GetViewport2, Using Viewports, Viewports and Clipping

Direct3DViewport3.TransformVerti
ces

[This is preliminary documentation and subject to change.]

The Direct3DViewport3.TransformVertices method transforms a set of vertices by
the transformation matrix.

object.TransformVertices(_
 vertexCount As Long, _
 transformdata As D3DTRANSFORMDATA, _
 InLVerts() As D3DLVERTEX, _
 OutTLVerts() As D3DTLVERTEX, _
 OutHVerts() As D3DHVERTEX, _
 flags As CONST_D3DTRANSFORMFLAGS, _
 offscreen As Long)

object
Object expression that resolves to a Direct3DViewport3 object.

vertexCount
Number of vertices in the InLVerts parameter to be transformed.

transformdata
Variable of type D3DTRANSFORMDATA that contains the vertices to be
transformed. See Remarks.

InLVerts()
Variable array of type D3DLVERTEX that contains the lit vertices to be
transformed.

OutTLVerts()

IDH__dx_Direct3DViewport3.TransformVertices_d3d_vb

in.doc – page 690

Variable array of type D3DTLVERTEX that will contain the transformed
vertices if the call succeeds.

OutHVerts()
Variable array of type D3DHVERTEX that will contain the homogeneous
transformed vertices if the call succeeds.

flags
One of the following constants of the CONST_D3DTRANSFORMFLAGS
enumeration. See the comments section following the parameter description for
a discussion of how to use these flags.

D3DTRANSFORM_CLIPPED
Transform the vertices and adjust the rectangle in the rExtent member of the
associated D3DTRANSFORMDATA type to reflect the new extents.

D3DTRANSFORM_UNCLIPPED
Transform the vertices without updating the extents.

offscreen
Variable that will be set to indicate the orientation of the transformed vertices. If
this variable is non-zero after the call, all the transformed vertices are outside
the viewing volume. If this is zero, then all or some of the vertices are visible.

Error Codes
If the method fails, it sets Err.Number to one of the following values and raises an
error:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
If the flags parameter is set to D3DTRANSFORM_CLIPPED, this method uses the
current transformation matrix to transform a set of vertices, checking the resulting
vertices to see if they are within the viewing frustum. The homogeneous part of the
D3DLVERTEX type within data() will be set if the vertex is clipped; otherwise
only the screen coordinates will be set. The clip intersection of all the vertices
transformed is returned in offscreen. That is, if offscreen is nonzero, all the vertices
were off-screen and not straddling the viewport.

Initialize the rExtent member of the D3DTRANSFORMDATA type to a
D3DRECT type that describes a 2-D bounding rectangle (extents) that the method
will "grow" if the transformed vertices do not fit within it. If the transformed vertices
are outside the provided extents, the method adjusts the extents to fit the vertices,
otherwise no changes are made. If the flags parameter is set to
D3DTRANSFORM_UNCLIPPED, this method transforms the vertices assuming that
the resulting coordinates will be within the viewing frustum. If clipping is requested
by setting the flags parameter to D3DTRANSFORM_CLIPPED, the method adjusts
the extents to fit only the transformed vertices that are within the viewing area.

in.doc – page 691

The lClip member of D3DTRANSFORMDATA can help the transformation
module determine whether the geometry will need clipping against the viewing
volume. Before transforming a geometry, high-level software often can test whether
bounding boxes or bounding spheres are wholly within the viewing volume, allowing
clipping tests to be skipped, or wholly outside the viewing volume, allowing the
geometry to be skipped entirely.

Types
[This is preliminary documentation and subject to change.]

This section contains information about the following types used with Direct3D
Immediate Mode.

· D3DCLIPSTATUS
· D3DCOLORVALUE
· D3DDEVICEDESC
· D3DFINDDEVICERESULT2
· D3DFINDDEVICESEARCH
· D3DHVERTEX
· D3DLIGHT2
· D3DLIGHTDATA
· D3DLIGHTINGCAPS
· D3DLVERTEX
· D3DMATERIAL
· D3DMATRIX
· D3DPRIMCAPS
· D3DRECT
· D3DSTATS
· D3DTLVERTEX
· D3DTRANSFORMDATA
· D3DVECTOR
· D3DVERTEX
· D3DVERTEXBUFFERDESC
· D3DVIEWPORT
· D3DVIEWPORT2
· DXDRIVERINFO

in.doc – page 692

D3DCLIPSTATUS
[This is preliminary documentation and subject to change.]

The D3DCLIPSTATUS type describes the current clip status and extents of the
clipping region.

Type D3DCLIPSTATUS
 lFlags As Long
 lStatus As Long
 maxx As Single
 maxy As Single
 maxz As Single
 minx As Single
 miny As Single
 minz As Single
End Type

lFlags
Flags describing whether this structure describes 2-D extents, 3-D extents, or the
clip status. This member can be a combination of the following flags from the
CONST_D3DCLIPSTATUSFLAGS enumeration:
D3DCLIPSTATUS_STATUS

The structure describes the current clip status.
D3DCLIPSTATUS_EXTENTS2

The structure describes the current 2-D extents. This flag cannot be combined
with D3DCLIPSTATUS_EXTENTS3.

D3DCLIPSTATUS_EXTENTS3
Not currently implemented.

lStatus
Describes the current clip status. Clipping flags. This member can be one or
more of the following constants of the CONST_D3DCLIPFLAGS
enumeration:
Combination and General Flags
D3DSTATUS_CLIPINTERSECTIONALL

Combination of all CLIPINTERSECTION flags.
D3DSTATUS_CLIPUNIONALL

Combination of all CLIPUNION flags.
D3DSTATUS_DEFAULT

Combination of D3DSTATUS_CLIPINTERSECTIONALL and
D3DSTATUS_ZNOTVISIBLE flags. This value is the default.

D3DSTATUS_ZNOTVISIBLE

IDH__dx_D3DCLIPSTATUS_d3d_vb

in.doc – page 693

Indicates that the rendered primitive is not visible. This flag is set or cleared
by the system when rendering with z-checking enabled (see
D3DRENDERSTATE_ZVISIBLE).

Clip Intersection Flags
D3DSTATUS_CLIPINTERSECTIONBACK

Logical AND of the clip flags for the vertices compared to the back clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.

Clip Union Flags
D3DSTATUS_CLIPUNIONBACK

Equal to D3DCLIP_BACK.
D3DSTATUS_CLIPUNIONBOTTOM

Equal to D3DCLIP_BOTTOM.
D3DSTATUS_CLIPUNIONFRONT

Equal to D3DCLIP_FRONT.
D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5

Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.
D3DSTATUS_CLIPUNIONLEFT

Equal to D3DCLIP_LEFT.
D3DSTATUS_CLIPUNIONRIGHT

Equal to D3DCLIP_RIGHT.
D3DSTATUS_CLIPUNIONTOP

Equal to D3DCLIP_TOP.
Basic Clipping Flags
D3DCLIP_BACK

All vertices are clipped by the back plane of the viewing frustum.

in.doc – page 694

D3DCLIP_BOTTOM
All vertices are clipped by the bottom plane of the viewing frustum.

D3DCLIP_FRONT
All vertices are clipped by the front plane of the viewing frustum.

D3DCLIP_LEFT
All vertices are clipped by the left plane of the viewing frustum.

D3DCLIP_RIGHT
All vertices are clipped by the right plane of the viewing frustum.

D3DCLIP_TOP
All vertices are clipped by the top plane of the viewing frustum.

D3DCLIP_GEN0 through D3DCLIP_GEN5
Application-defined clipping planes.

maxx, minx, maxy, miny, maxz, minz
The x, y, and z extents of the current clipping region.

See Also
Direct3DDevice3.GetClipStatus, Direct3DDevice3.SetClipStatus

D3DCOLORVALUE
[This is preliminary documentation and subject to change.]

The D3DCOLORVALUE type describes color values for the D3DLIGHT2 and
D3DMATERIAL types.

Type D3DCOLORVALUE
 a As Single
 b As Single
 g As Single
 r As Single
End Type

a, b, g and r
Values specifying the red, green, blue, and alpha components of a color. These
values generally range from 0 to 1, with 0 being black.

Remarks
You can set the members of this type to values outside the range of 0 to 1 to
implement some unusual effects. Values greater than 1 produce strong lights that
tend to wash out a scene. Negative values produce dark lights, which actually
remove light from a scene.

IDH__dx_D3DCOLORVALUE_d3d_vb

in.doc – page 695

D3DDEVICEDESC
[This is preliminary documentation and subject to change.]

The D3DDEVICEDESC type contains a description of the current device. This type
is used to query the current device by such methods as Direct3DDevice3.GetCaps.

Type D3DDeviceDesc
 dlcLightingCaps As D3DLIGHTINGCAPS
 dpcLineCaps As D3DPRIMCAPS
 dpcTriCaps As D3DPRIMCAPS
 dvExtentsAdjust As Single
 dvGuardBandBottom As Single
 dvGuardBandLeft As Single
 dvGuardBandRight As Single
 dvGuardBandTop As Single
 lClipping As Long
 lColorModel As CONST_D3DCOLORMODEL
 lDevCaps As CONST_D3DDEVICEDESCCAPS
 lDeviceRenderBitDepth As Long
 lDeviceZBufferBitDepth As Long
 lFlags As CONST_D3DDEVICEDESCFLAGS
 lFVFCaps As CONST_D3DFVFCAPSFLAGS
 lMaxAnisotropy As Long
 lMaxBufferSize As Long
 lMinStippleHeight, lMaxStippleHeight As Long
 lMinStippleWidth, lMaxStippleWidth As Long
 lMaxTextureAspectRatio As Long
 lMaxTextureWidth, lMaxTextureHeight As Long
 lMaxTextureRepeat As Long
 lMaxVertexCount As Long
 lMinTextureWidth, lMinTextureHeight As Long
 lStencilCaps As CONST_D3DSTENCILCAPSFLAGS
 lTextureOpCaps As CONST_D3DTEXOPCAPSFLAGS
 lTransformCaps As CONST_D3DTRANSFORMCAPS
 nMaxSimultaneousTextures As Integer
 nMaxTextureBlendStages As Integer
End Type

dlcLightingCaps
One of the members of the D3DLIGHTINGCAPS structure, specifying the
lighting capabilities of the device.

dpcLineCaps and dpcTriCaps
D3DPRIMCAPS type defining the device's support for line-drawing and
triangle primitives.

IDH__dx_D3DDEVICEDESC_d3d_vb

in.doc – page 696

dvExtentsAdjust
Number of pixels to adjust the extents rectangle outward to accommodate
antialiasing kernels.

dvGuardBandLeft, dvGuardBandTop, dvGuardBandRight, and
dvGuardBandBottom

The screen-space coordinates of the guard-band clipping region. Coordinates
inside this rectangle but outside the viewport rectangle will automatically be
clipped.

lClipping
Non zero if the device can perform 3-D clipping.

lColorModel
One of the constants of the CONST_D3DCOLORMODEL enumeration,
specifying the color model for the device.

lDevCaps
One of the following constants of the CONST_D3DDEVICEDESCCAPS
enumeration identifying the capabilities of the device.
D3DDEVCAPS_CANRENDERAFTERFLIP

Device can queue rendering commands after a page flip. Applications should
not change their behavior if this flag is set; this capability simply means that
the device is relatively fast.

D3DDEVCAPS_DRAWPRIMTLVERTEX
Device exports a DrawPrimitive-aware HAL.

D3DDEVCAPS_EXECUTESYSTEMMEMORY
Device can use execute buffers from system memory.

D3DDEVCAPS_EXECUTEVIDEOMEMORY
Device can use execute buffer from video memory.

D3DDEVCAPS_FLOATTLVERTEX
Device accepts floating point for post-transform vertex data.

D3DDEVCAPS_SORTDECREASINGZ
Device needs data sorted for decreasing depth.

D3DDEVCAPS_SORTEXACT
Device needs data sorted exactly.

D3DDEVCAPS_SORTINCREASINGZ
Device needs data sorted for increasing depth.

D3DDEVCAPS_TEXREPEATNOTSCALEDBYSIZE
Device defers scaling of texture indices by the texture size until after the
texture address mode is applied.

D3DDEVCAPS_TEXTURENONLOCALVIDMEM
Device can retrieve textures from non-local video (AGP) memory.

D3DDEVCAPS_TEXTURESYSTEMMEMORY
Device can retrieve textures from system memory.

D3DDEVCAPS_TEXTUREVIDEOMEMORY

in.doc – page 697

Device can retrieve textures from device memory.
D3DDEVCAPS_TLVERTEXSYSTEMMEMORY

Device can use buffers from system memory for transformed and lit vertices.
D3DDEVCAPS_TLVERTEXVIDEOMEMORY

Device can use buffers from video memory for transformed and lit vertices.
lDeviceRenderBitDepth

Device's rendering bit-depth. This can be one or more of the following constants
from the CONST_DDBITDEPTHFLAGS enumeration: DDBD_8, DDBD_16,
DDBD_24, or DDBD_32.

lDeviceZBufferBitDepth
Device's depth-buffer bit-depth. This can be one or more of the following
constants from the CONST_DDBITDEPTHFLAGS enumeration: DDBD_8,
DDBD_16, DDBD_24, or DDBD_32.

lFlags
Constants of the CONST_D3DDEVICEDESCFLAGS enumeration identifying
the members of this type that contain valid data.
D3DDD_BCLIPPING

The lClipping member is valid.
D3DDD_COLORMODEL

The lColorModel member is valid.
D3DDD_DEVCAPS

The lDevCaps member is valid.
D3DDD_DEVICERENDERBITDEPTH

The lDeviceRenderBitDepth member is valid.
D3DDD_DEVICEZBUFFERBITDEPTH

The lDeviceZBufferBitDepth member is valid.
D3DDD_LIGHTINGCAPS

The dlcLightingCaps member is valid.
D3DDD_LINECAPS

The dpcLineCaps member is valid.
D3DDD_MAXBUFFERSIZE

The lMaxBufferSize member is valid.
D3DDD_MAXVERTEXCOUNT

The lMaxVertexCount member is valid.
D3DDD_TRANSFORMCAPS

The lTransformCaps member is valid.
D3DDD_TRICAPS

The dpcTriCaps member is valid.
lFVFCaps

Combination of constants of the CONST_D3DFVFCAPSFLAGS that describe
the vertex formats supported by this device.

lMaxAnisotropy

in.doc – page 698

Maximum valid value for the D3DRENDERSTATE_ANISOTROPY render
state.

lMaxBufferSize
Maximum size of the execute buffer for this device. If this member is 0, the
application can use any size.

lMinStippleHeight, lMaxStippleHeight
Minimum and maximum height of the stipple pattern for this device.

lMinStippleWidth, lMaxStippleWidth
Minimum and maximum width of the stipple pattern for this device.

lMaxTextureAspectRatio
Maximum texture aspect ratio supported by the hardware; this will typically be a
power of 2.

lMaxTextureWidth, lMaxTextureHeight
Maximum texture width and height for this device.

lMaxTextureRepeat
Full range of the integer (non-fractional) bits of the post-normalized texture
indices. If the D3DDEVCAPS_TEXREPEATNOTSCALEDBYSIZE bit is set,
the device defers scaling by the texture size until after the texture address mode
is applied. If it isn't set, the device scales the texture indices by the texture size
(largest level-of-detail) prior to interpolation.

lMaxVertexCount
Maximum vertex count for this device.

lMinTextureWidth, lMinTextureHeight
Minimum texture width and height for this device.

lStencilCaps
Constants of the CONST_D3DSTENCILCAPSFLAGS enumeration specifying
supported stencil-buffer operations. Stencil operations are assumed to be valid
for all three stencil-buffer operation render states
(D3DRENDERSTATE_STENCILFAIL,
D3DRENDERSTATE_STENCILPASS, and
D3DRENDERSTATE_STENCILFAILZFAIL).
D3DSTENCILCAPS_DECR

The D3DSTENCILOP_DECR operation is supported.
D3DSTENCILCAPS_DECRSAT

The D3DSTENCILOP_DECRSAT operation is supported.
D3DSTENCILCAPS_INCR

The D3DSTENCILOP_INCR operation is supported.
D3DSTENCILCAPS_INCRSAT

The D3DSTENCILOP_INCRSAT operation is supported.
D3DSTENCILCAPS_INVERT

The D3DSTENCILOP_INVERT operation is supported.
D3DSTENCILCAPS_KEEP

The D3DSTENCILOP_KEEP operation is supported.

in.doc – page 699

D3DSTENCILCAPS_REPLACE
The D3DSTENCILOP_REPLACE operation is supported.

D3DSTENCILCAPS_ZERO
The D3DSTENCILOP_ZERO operation is supported.

lTextureOpCaps
Combination of constants of the CONST_D3DTEXOPCAPSFLAGS
enumeration describing the texture operations supported by this device. The
following flags are defined:
D3DTEXOPCAPS_ADD

The D3DTOP_ADD texture blending operation is supported by this device.
D3DTEXOPCAPS_ADDSIGNED

The D3DTOP_ADDSIGNED texture blending operation is supported by this
device.

D3DTEXOPCAPS_ADDSIGNED2X
The D3DTOP_ADDSIGNED2X texture blending operation is supported by
this device.

D3DTEXOPCAPS_ADDSMOOTH
The D3DTOP_ADDSMOOTH texture blending operation is supported by
this device.

D3DTEXOPCAPS_BLENDCURRENTALPHA
The D3DTOP_BLENDCURRENTALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDDIFFUSEALPHA
The D3DTOP_BLENDDIFFUSEALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDFACTORALPHA
The D3DTOP_BLENDFACTORALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDTEXTUREALPHA
The D3DTOP_BLENDTEXTUREALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDTEXTUREALPHAPM
The D3DTOP_BLENDTEXTUREALPHAPM texture blending operation is
supported by this device.

D3DTEXOPCAPS_BUMPENVMAP
The D3DTOP_BUMPENVMAP texture blending operation is supported by
this device.

D3DTEXOPCAPS_BUMPENVMAPLUMINANCE
The D3DTOP_BUMPENVMAPLUMINANCE texture blending operation
is supported by this device.

D3DTEXOPCAPS_DISABLE
The D3DTOP_DISABLE texture blending operation is supported by this
device.

D3DTEXOPCAPS_DOTPRODUCT3

in.doc – page 700

The D3DTOP_DOTPRODUCT3 texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATE
The D3DTOP_MODULATE texture blending operation is supported by this
device.

D3DTEXOPCAPS_MODULATE2X
The D3DTOP_MODULATE2X texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATE4X
The D3DTOP_MODULATE4X texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATEALPHA_ADDCOLOR
The D3DTOP_MODULATEALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATECOLOR_ADDALPHA
The D3DTOP_MODULATEALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATEINVALPHA_ADDCOLOR
The D3DTOP_MODULATEINVALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATEINVCOLOR_ADDALPHA
The D3DTOP_MODULATEINVCOLOR_ADDALPHA texture blending
operation is supported by this device.

D3DTEXOPCAPS_PREMODULATE
The D3DTOP_PREMODULATE texture blending operation is supported
by this device.

D3DTEXOPCAPS_SELECTARG1
The D3DTOP_SELECTARG1 texture blending operation is supported by
this device.

D3DTEXOPCAPS_SELECTARG2
The D3DTOP_SELECTARG2 texture blending operation is supported by
this device.

D3DTEXOPCAPS_SUBTRACT
The D3DTOP_SUBTRACT texture blending operation is supported by this
device.

lTransformCaps
One of the constants of the CONST_D3DTRANSFORMCAPS enumeration,
specifying the transformation capabilities of the device.

nMaxSimultaneousTextures
Maximum number of textures that can be simultaneously bound to the texture
blending stages for this device. See remarks.

nMaxTextureBlendStages
Maximum number of texture blending stages supported by this device.

in.doc – page 701

Remarks
The wMaxTextureBlendStages and wMaxSimultaneousTextures members might
seem very similar at first glance, but they contain different information. The
wMaxTextureBlendStages member contains the total number of texture-blending
stages supported by the current device, and the wMaxSimultaneousTextures
member describes how many of those stages can have textures bound to them by
using the Direct3DDevice3.SetTexture method.

See Also
CONST_D3DCOLORMODEL, D3DFINDDEVICERESULT2,
D3DLIGHTINGCAPS, D3DPRIMCAPS, CONST_D3DTRANSFORMCAPS

D3DFINDDEVICERESULT2
[This is preliminary documentation and subject to change.]

The D3DFINDDEVICERESULT2 type identifies a device an application has found
by calling the Direct3D3.FindDevice method.

Type D3DFINDDEVICERESULT
 ddHwDesc As D3DDEVICEDESC
 ddSwDesc As D3DDEVICEDESC
 strGuid As String
End Type

ddHwDesc and ddSwDesc
D3DDEVICEDESC types describing the hardware and software devices that
were found.

strGuid
Globally unique identifier (GUID) of the device that was found.

See Also
D3DFINDDEVICESEARCH

D3DFINDDEVICESEARCH
[This is preliminary documentation and subject to change.]

The D3DFINDDEVICESEARCH type specifies the characteristics of a device an
application wants to find. This type is used in calls to the Direct3D3.FindDevice
method.

IDH__dx_D3DFINDDEVICERESULT2_d3d_vb
IDH__dx_D3DFINDDEVICESEARCH_d3d_vb

in.doc – page 702

Type D3DFINDDEVICESEARCH
 dcmColorModel As CONST_D3DCOLORMODEL
 dpcPrimCaps As D3DPRIMCAPS
 lCaps As Long
 lFlags As CONST_D3DFINDDEVICESEARCHFLAGS
 lHardware As CONST_DBOOLFLAGS
 strGuid As String
End Type

dcmColorModel
One of the constants of the CONST_D3DCOLORMODEL enumeration,
specifying whether the device to find should use the ramp or RGB color model.

dpcPrimCaps
Specifies a D3DPRIMCAPS type defining the device's capabilities for each
primitive type.

lCaps
Reserved.

lFlags
Flags defining the type of device the application wants to find. This member can
be one or more of the following constants of the
CONST_D3DFINDDEVICESEARCHFLAGS enumeration:
D3DFDS_ALPHACMPCAPS

Match the lAlphaCmpCaps member of the D3DPRIMCAPS type specified
as the dpcPrimCaps member of this structure.

D3DFDS_COLORMODEL
Match the color model specified in the dcmColorModel member of this
structure.

D3DFDS_DSTBLENDCAPS
Match the lDestBlendCaps member of the D3DPRIMCAPS type specified
as the dpcPrimCaps member of this structure.

D3DFDS_GUID
Match the globally unique identifier (GUID) specified in the guid member of
this structure.

D3DFDS_HARDWARE
Match the hardware or software search specification given in the bHardware
member of this structure.

D3DFDS_LINES
Match the D3DPRIMCAPS type specified by the dpcLineCaps member of
the D3DDEVICEDESC structure.

D3DFDS_MISCCAPS
Match the lMiscCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this structure.

D3DFDS_RASTERCAPS

in.doc – page 703

Match the lRasterCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this structure.

D3DFDS_SHADECAPS
Match the lShadeCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this structure.

D3DFDS_SRCBLENDCAPS
Match the lSrcBlendCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this structure.

D3DFDS_TEXTUREBLENDCAPS
Match the lTextureBlendCaps member of the D3DPRIMCAPS type
specified as the dpcPrimCaps member of this structure.

D3DFDS_TEXTURECAPS
Match the lTextureCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this structure.

D3DFDS_TEXTUREFILTERCAPS
Match the lTextureFilterCaps member of the D3DPRIMCAPS type
specified as the dpcPrimCaps member of this structure.

D3DFDS_TRIANGLES
Match the D3DPRIMCAPS type specified by the dpcTriCaps member of
the D3DDEVICEDESC structure.

D3DFDS_ZCMPCAPS
Match the lZCmpCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this structure.

lHardware
Constant of the CONST_DBOOLFLAGS enumeration specifying whether the
device to find is implemented as hardware or software. If this member is True,
the device to search for has hardware rasterization and may also provide other
hardware acceleration. Applications that use this flag should set the
D3DFDS_HARDWARE bit in the lFlags member.

strGuid
Globally unique identifier (GUID) of the device to find.

See Also
D3DFINDDEVICERESULT2

D3DHVERTEX
[This is preliminary documentation and subject to change.]

The D3DHVERTEX type defines a homogeneous vertex used when the application
is supplying screen coordinate data that needs clipping. This type is part of the
D3DTRANSFORMDATA structure.

IDH__dx_D3DHVERTEX_d3d_vb

in.doc – page 704

Type D3DHVERTEX
 hx As Single
 hy As Single
 hz As Single
 lFlags As Long
End Type

hx, hy, and hz
Values describing transformed homogeneous coordinates. These coordinates
define the vertex.

lFlags
Flags defining the clip status of the homogeneous vertex. This member can be
one or more of the flags described in the lClip member of the
D3DTRANSFORMDATA type.

See Also
D3DTLVERTEX, D3DVERTEX

D3DLIGHT2
[This is preliminary documentation and subject to change.]

The D3DLIGHT2 type defines the light type in calls to methods such as
Direct3DLight.SetLight and Direct3DLight.GetLight.

Type D3DLIGHT2
 attenuation0 As Single
 attenuation1 As Single
 attenuation2 As Single
 color As D3DCOLORVALUE
 direction As D3DVECTOR
 dltType As CONST_D3DLIGHTTYPE
 falloff As Single
 lFlags As CONST_D3DLIGHT2FLAGS
 phi As Single
 position As D3DVECTOR
 range As Single
 theta As Single
End Type

attenuation0, attenuation1, and attenuation2
Values specifying how a light's intensity changes over distance. (Attenuation
does not affect directional lights.) In the D3DLIGHT2 type these values are
interpreted differently than they were for the D3DLIGHT structure.

IDH__dx_D3DLIGHT2_d3d_vb

in.doc – page 705

color
Color of the light. This member is a D3DCOLORVALUE structure. In ramp
mode, the color is converted to a gray scale.

direction
Direction the light is pointing in world space. This member only has meaning
for directional and spotlights. This vector need not be normalized but it should
have a nonzero length.

dltType
Type of the light source. This value is one of the following members of the
CONST_D3DLIGHTTYPE enumeration:
D3DLIGHT_DIRECTIONAL

Light is a directional source. This is equivalent to using a point light source at
an infinite distance.

D3DLIGHT_PARALLELPOINT
Light is a parallel point source. This light type acts like a directional light
except its direction is the vector going from the light position to the origin of
the geometry it is illuminating.

D3DLIGHT_POINT
Light is a point source. The light has a position in space and radiates light in
all directions.

D3DLIGHT_SPOT
Light is a spotlight source. This light is something like a point light except
that the illumination is limited to a cone. This light type has a direction and
several other parameters which determine the shape of the cone it produces.
For information about these parameters, see the D3DLIGHT2 type.

falloff
Decrease in illumination between a spotlight's inner cone (the angle specified by
the theta member) and the outer edge of the outer cone (the angle specified by
the phi member).
The effect of falloff on the lighting is subtle. Furthermore, a small performance
penalty is incurred by shaping the falloff curve. For these reasons, most
developers set this value to 1.0.

lFlags
A combination of the following performance-related constants of the
CONST_D3DLIGHT2FLAGS enumeration.
D3DLIGHT_ACTIVE

Enables the light. This flag must be set to enable the light; if it is not set, the
light is ignored.

D3DLIGHT_NO_SPECULAR
Turns off specular highlights for the light.

phi
Angle, in radians, defining the outer edge of the spotlight's outer cone. Points
outside this cone are not lit by the spotlight. This value must be between 0 and
pi.

in.doc – page 706

position
Position of the light in world space. This member has no meaning for directional
lights and is ignored in that case.

range
Distance beyond which the light has no effect. The maximum allowable value
for this member is D3DLIGHT_RANGE_MAX, which is defined as the square
root of FLT_MAX. This member does not affect directional lights.

theta
Angle, in radians, of the spotlight's inner cone — that is, the fully illuminated
spotlight cone. This value must be between 0 and the value specified by the phi
member.

Remarks
For more information about lights, see Direct3DLight.

See Also
CONST_D3DLIGHTSTATETYPE

D3DLIGHTDATA
[This is preliminary documentation and subject to change.]

The D3DLIGHTDATA type describes the points to be lit and resulting colors in
calls to the Direct3DViewport3.LightElements method.

Type D3DLIGHTDATA
 lInSize As Long
 lOutSize As Long
End Type

lInSize
Amount to skip from one input element to the next. This allows the application
to store extra data inline with the element.

lOutSize
Amount to skip from one output color to the next. This allows the application to
store extra data inline with the color.

D3DLIGHTINGCAPS
[This is preliminary documentation and subject to change.]

IDH__dx_D3DLIGHTDATA_d3d_vb
IDH__dx_D3DLIGHTINGCAPS_d3d_vb

in.doc – page 707

The D3DLIGHTINGCAPS type describes the lighting capabilities of a device. This
type is a member of the D3DDEVICEDESC structure.

Type D3DLIGHTINGCAPS
 lCaps As CONST_D3DLIGHTCAPSFLAGS
 lLightingModel As CONST_D3DLIGHTINGMODELFLAGS
 lNumLights As Long
End Type

lCaps
Flags describing the capabilities of the lighting module. The following constants
of the CONST_D3DLIGHTCAPSFLAGS enumeration are defined:
D3DLIGHTCAPS_DIRECTIONAL

Supports directional lights.
D3DLIGHTCAPS_PARALLELPOINT

Supports parallel point lights.
D3DLIGHTCAPS_POINT

Supports point lights.
D3DLIGHTCAPS_SPOT

Supports spotlights.
lLightingModel

Flags defining whether the lighting model is RGB or monochrome. The
following constants of the CONST_D3DLIGHTINGMODELFLAGS
enumeration are defined:
D3DLIGHTINGMODEL_MONO

Monochromatic lighting model.
D3DLIGHTINGMODEL_RGB

RGB lighting model.
lNumLights

Number of lights that can be handled.

D3DLVERTEX
[This is preliminary documentation and subject to change.]

The D3DLVERTEX type defines an untransformed and lit vertex (model
coordinates with color). An application should use this type when the vertex
transformations will be handled by Direct3D. This type contains only data and a
color that would be filled by software lighting.

Type D3DLVERTEX
 color As Long
 specular As Long
 tu As Single

IDH__dx_D3DLVERTEX_d3d_vb

in.doc – page 708

 tv As Single
 x As Single
 y As Single
 z As Single
End Type

color and specular
Values specifying the color and specular component of the vertex.

tu and tv
Values specifying the texture coordinates of the vertex.

x, y, and z
Values specifying the model coordinates of the vertex.

See Also
D3DTLVERTEX, D3DVERTEX

D3DMATERIAL
[This is preliminary documentation and subject to change.]

The D3DMATERIAL type specifies material properties in calls to the
Direct3DMaterial3.GetMaterial and Direct3DMaterial3.SetMaterial methods.

Type D3DMATERIAL
 ambient As D3DCOLORVALUE
 diffuse As D3DCOLORVALUE
 emissive As D3DCOLORVALUE
 hTexture As Long
 lRampSize As Long
 power As Single
 specular As D3DCOLORVALUE
End Type

diffuse, ambient, specular, and emissive
Values specifying the diffuse color, ambient color, specular color, and emissive
color of the material, respectively. These values are D3DCOLORVALUE
types.

hTexture
Handle to the texture map for use by a ramp device. This member can be zero to
indicate that the material does not use a texture or when the material is being
used with a device other than the ramp device.

lRampSize

IDH__dx_D3DMATERIAL_d3d_vb

in.doc – page 709

Size of the color ramp. For the monochromatic (ramp) driver, this value should
be 1 for materials assigned to the background.

power
Value specifying the sharpness of specular highlights.

Remarks
The texture handle specified by the hTexture member is acquired from Direct3D by
loading a texture into the device. The texture handle may be used only when it has
been loaded into the device. This texture handle is only used by the legacy ramp
device, which is not supported by interfaces introduced in DirectX 6.0, such as the
new Direct3DDevice3 interface.

To turn off specular highlights for a material, you must set the power member to 0—
simply setting the specular color components to 0 is not enough.

See Also
Direct3DMaterial3.GetMaterial, Direct3DMaterial3.SetMaterial

D3DMATRIX
[This is preliminary documentation and subject to change.]

The D3DMATRIX type describes a matrix.

Type D3DMATRIX
 rc11 As Single
 rc12 As Single
 rc13 As Single
 rc14 As Single
 rc21 As Single
 rc22 As Single
 rc23 As Single
 rc24 As Single
 rc31 As Single
 rc32 As Single
 rc33 As Single
 rc34 As Single
 rc41 As Single
 rc42 As Single
 rc43 As Single
 rc44 As Single
End Type

IDH__dx_D3DMATRIX_d3d_vb

in.doc – page 710

Remarks
In Direct3D, the rc34 element of a projection matrix cannot be a negative number. If
your application needs to use a negative value in this location, it should scale the
entire projection matrix by -1, instead.

D3DPRIMCAPS
[This is preliminary documentation and subject to change.]

The D3DPRIMCAPS type defines the capabilities for each primitive type. This type
is used when creating a device and when querying the capabilities of a device. This
type defines several members in the D3DDEVICEDESC structure.

Type D3DPrimCaps
 lAlphaCmpCaps As CONST_D3DCAPSCMP
 lDestBlendCaps As CONST_D3DCAPSBLEND
 lMiscCaps As CONST_D3DCAPSMISC
 lRasterCaps As CONST_D3DCAPSRASTER
 lShadeCaps As CONST_D3DCAPSSHADE
 lSrcBlendCaps As CONST_D3DCAPSBLEND
 lStippleHeight As Long
 lStippleWidth As Long
 lTextureAddressCaps As CONST_D3DCAPSTEXTUREADDRESS
 lTextureBlendCaps As CONST_D3DCAPSTEXTUREBLEND
 lTextureCaps As CONST_D3DCAPSTEXTURE
 lTextureFilterCaps As CONST_D3DCAPSTEXTUREFILTER
 lZCmpCaps As CONST_D3DCAPSCMP
End Type

lAlphaCmpCaps
Alpha-test comparison functions that the driver can perform. If this member
contains only the D3DPCMPCAPS_ALWAYS capability or only the
D3DPCMPCAPS_NEVER capability, the driver does not support alpha tests.
Otherwise, the flags identify the individual comparisons that are supported for
alpha testing. This member can be one or more of the following constants of the
CONST_D3DCAPSCMP enumeration:
D3DPCMPCAPS_ALWAYS

Always pass the z test.
D3DPCMPCAPS_EQUAL

Pass the z test if the new z equals the current z.
D3DPCMPCAPS_GREATER

Pass the z test if the new z is greater than the current z.
D3DPCMPCAPS_GREATEREQUAL

Pass the z test if the new z is greater than or equal to the current z.

IDH__dx_D3DPRIMCAPS_d3d_vb

in.doc – page 711

D3DPCMPCAPS_LESS
Pass the z test if the new z is less than the current z.

D3DPCMPCAPS_LESSEQUAL
Pass the z test if the new z is less than or equal to the current z.

D3DPCMPCAPS_NEVER
Always fail the z test.

D3DPCMPCAPS_NOTEQUAL
Pass the z test if the new z does not equal the current z.

lDestBlendCaps
Constants of the CONST_D3DCAPSBLEND enumeration describing the
destination blending capabilities. This member can be one or more of the
following constants of the CONST_D3DCAPSBLEND enumeration. (The
RGBA values of the source and destination are indicated with the subscripts s
and d.)
D3DPBLENDCAPS_BOTHINVSRCALPHA

Source blend factor is (1-As, 1-As, 1-As, 1-As) and destination blend factor is
(As, As, As, As); the destination blend selection is overridden.

D3DPBLENDCAPS_BOTHSRCALPHA
Source blend factor is (As, As, As, As) and destination blend factor is (1-As, 1-
As, 1-As, 1-As); the destination blend selection is overridden.

D3DPBLENDCAPS_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).

D3DPBLENDCAPS_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).

D3DPBLENDCAPS_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).

D3DPBLENDCAPS_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As, 1-As).

D3DPBLENDCAPS_INVSRCCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_ONE
Blend factor is (1, 1, 1, 1).

D3DPBLENDCAPS_SRCALPHA
Blend factor is (As, As, As, As).

D3DPBLENDCAPS_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).

D3DPBLENDCAPS_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).

D3DPBLENDCAPS_ZERO
Blend factor is (0, 0, 0, 0).

in.doc – page 712

lMiscCaps
General capabilities for this primitive. This member can be one or more of the
following constants of the CONST_D3DCAPSMISC enumeration:
D3DPMISCCAPS_CONFORMANT

The device conforms to the OpenGL standard.
D3DPMISCCAPS_CULLCCW

The driver supports counterclockwise culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CCW constant of the
CONST_D3DCULL enumeration.

D3DPMISCCAPS_CULLCW
The driver supports clockwise triangle culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CW constant of the
CONST_D3DCULL enumeration.

D3DPMISCCAPS_CULLNONE
The driver does not perform triangle culling. This corresponds to the
D3DCULL_NONE constant of the CONST_D3DCULL enumeration.

D3DPMISCCAPS_LINEPATTERNREP
Not supported.

D3DPMISCCAPS_MASKPLANES
The device can perform a bitmask of color planes.

D3DPMISCCAPS_MASKZ
The device can enable and disable modification of the depth-buffer on pixel
operations.

lRasterCaps
Information on raster-drawing capabilities. This member can be one or more of
the following constants of the CONST_D3DCAPSRASTER ENUMERATION:
D3DPRASTERCAPS_ANISOTROPY

The device supports anisotropic filtering. For more information, see
D3DRENDERSTATE_ANISOTROPY in the
CONST_D3DRENDERSTATETYPE structure.

D3DPRASTERCAPS_ANTIALIASEDGES
The device can antialias lines forming the convex outline of objects. For
more information, see D3DRENDERSTATE_EDGEANTIALIAS in the
CONST_D3DRENDERSTATETYPE enumeration.

D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT
The device supports antialiasing that is dependent on the sort order of the
polygons (back-to-front or front-to-back). The application must draw
polygons in the right order for antialiasing to occur. For more information,
see the CONST_D3DANTIALIASMODE enumeration.

D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT

in.doc – page 713

The device supports antialiasing that is not dependent on the sort order of the
polygons. For more information, see the CONST_D3DANTIALIASMODE
enumeration.

D3DPRASTERCAPS_DITHER
The device can dither to improve color resolution.

D3DPRASTERCAPS_FOGRANGE
The device supports range-based fog. In range-based fog, the distance of an
object from the viewer is used to compute fog effects, not the depth of the
object (that is, the z-coordinate) in the scene.

D3DPRASTERCAPS_FOGTABLE
The device calculates the fog value by referring to a lookup table containing
fog values that are indexed to the depth of a given pixel.

D3DPRASTERCAPS_FOGVERTEX
The device calculates the fog value during the lighting operation, places the
value into the alpha component given for the specular member of the
D3DTLVERTEX structure, and interpolates the fog value during
rasterization.

D3DPRASTERCAPS_MIPMAPLODBIAS
The device supports level-of-detail (LOD) bias adjustments. These bias
adjustments enable an application to make a mipmap appear crisper or less
sharp than it normally would. For more information about LOD bias in
mipmaps, see D3DRENDERSTATE_MIPMAPLODBIAS.

D3DPRASTERCAPS_PAT
The driver can perform patterned drawing (lines or fills with the
D3DRENDERSTATE_STIPPLEPATTERN render state) for the primitive
being queried.

D3DPRASTERCAPS_ROP2
The device can support raster operations other than R2_COPYPEN.

D3DPRASTERCAPS_STIPPLE
The device can stipple polygons to simulate translucency.

D3DPRASTERCAPS_SUBPIXEL
The device performs subpixel placement of z, color, and texture data, rather
than working with the nearest integer pixel coordinate. This helps avoid
bleed-through due to z imprecision, and jitter of color and texture values for
pixels. Note that there is no corresponding state that can be enabled and
disabled; the device either performs subpixel placement or it does not, and
this bit is present only so that the Direct3D client will be better able to
determine what the rendering quality will be.

D3DPRASTERCAPS_SUBPIXELX
The device is subpixel accurate along the x-axis only and is clamped to an
integer y-axis scan line. For information about subpixel accuracy, see
D3DPRASTERCAPS_SUBPIXEL.

D3DPRASTERCAPS_TRANSLUCENTSORTINDEPENDENT

in.doc – page 714

The device supports translucency that is not dependent on the sort order of
the polygons. For more information, see the
D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT.

D3DPRASTERCAPS_WBUFFER
The device supports depth buffering using w.

D3DPRASTERCAPS_WFOG
The device supports w-based fog. W-based fog is used when a perspective
projection matrix is specified, but affine projections will still use z-based fog.
The system considers a projection matrix that contains a non-zero value in
the [3][4] element to be a perspective projection matrix.

D3DPRASTERCAPS_XOR
The device can support XOR operations. If this flag is not set but
D3DPRIM_RASTER_ROP2 is set, then XOR operations must still be
supported.

D3DPRASTERCAPS_ZBIAS
The device supports z-bias values. These are integer values assigned to
polygons that allow physically coplanar polygons to appear separate. For
more information, see D3DRENDERSTATE_ZBIAS in the
CONST_D3DRENDERSTATETYPE enumeration.

D3DPRASTERCAPS_ZBUFFERLESSHSR
The device can perform hidden-surface removal (HSR) without requiring the
application to sort polygons, and without requiring the allocation of a depth-
buffer. This leaves more video memory for textures. The method used to
perform hidden-surface removal is hardware-dependent and is transparent to
the application.
Z-bufferless HSR is performed if no depth-buffer surface is attached to the
rendering-target surface and the depth-buffer comparison test is enabled (that
is, when the state value associated with the
D3DRENDERSTATE_ZENABLE enumeration constant is set to True).

D3DPRASTERCAPS_ZTEST
The device can perform z-test operations. This effectively renders a primitive
and indicates whether any z pixels would have been rendered.

lShadeCaps
Shading operations that the device can perform. It is assumed, in general, that if
a device supports a given command (such as D3DOP_TRIANGLE) at all, it
supports the D3DSHADE_FLAT mode (as specified in the
CONST_D3DSHADEMODE enumeration). This flag specifies whether the
driver can also support Gouraud and Phong shading and whether alpha color
components are supported for each of the three color-generation modes. When
alpha components are not supported in a given mode, the alpha value of colors
generated in that mode is implicitly 255. This is the maximum possible alpha
(that is, the alpha component is at full intensity).
With the monochromatic shade modes, the blue channel of the specular
component is interpreted as a white intensity. (This is controlled by the
D3DRENDERSTATE_MONOENABLE render state.)

in.doc – page 715

The color, specular highlights, fog, and alpha interpolants of a triangle each
have capability flags that an application can use to find out how they are
implemented by the device driver. These are modified by the shade mode, color
model, and by whether the alpha component of a color is blended or stippled.
This member can be one or more of the following constants of the
CONST_D3DCAPSSHADE enumeration:
D3DPSHADECAPS_ALPHAFLATBLEND
D3DPSHADECAPS_ALPHAFLATSTIPPLED

Device can support an alpha component for flat blended and stippled
transparency, respectively (the D3DSHADE_FLAT state for the
CONST_D3DSHADEMODE enumeration). In these modes, the alpha color
component for a primitive is provided as part of the color for the first vertex
of the primitive.

D3DPSHADECAPS_ALPHAGOURAUDBLEND
D3DPSHADECAPS_ALPHAGOURAUDSTIPPLED

Device can support an alpha component for Gouraud blended and stippled
transparency, respectively (the D3DSHADE_GOURAUD state for the
CONST_D3DSHADEMODE enumeration). In these modes, the alpha color
component for a primitive is provided at vertices and interpolated across a
face along with the other color components.

D3DPSHADECAPS_ALPHAPHONGBLEND
D3DPSHADECAPS_ALPHAPHONGSTIPPLED

Device can support an alpha component for Phong blended and stippled
transparency, respectively (the D3DSHADE_PHONG state for the
CONST_D3DSHADEMODE enumeration). In these modes, vertex
parameters are reevaluated on a per-pixel basis, applying lighting effects for
the red, green, and blue color components. Phong shading is not currently
supported.

D3DPSHADECAPS_COLORFLATMONO
D3DPSHADECAPS_COLORFLATRGB

Device can support colored flat shading in color models, respectively. In
these modes, the color component for a primitive is provided as part of the
color for the first vertex of the primitive. In monochromatic lighting modes,
only the blue component of the color is interpolated; in RGB lighting modes,
the red, green, and blue components are interpolated.

D3DPSHADECAPS_COLORGOURAUDMONO
D3DPSHADECAPS_COLORGOURAUDRGB

Device can support colored Gouraud shading in the D3DCOLOR_MONO
and D3DCOLOR_RGB color models, respectively. In these modes, the
color component for a primitive is provided at vertices and interpolated
across a face along with the other color components. In monochromatic
lighting modes, only the blue component of the color is interpolated; in RGB
lighting modes, the red, green, and blue components are interpolated.

D3DPSHADECAPS_COLORPHONGMONO
D3DPSHADECAPS_COLORPHONGRGB

in.doc – page 716

Device can support colored Phong shading in the D3DCOLOR_MONO and
D3DCOLOR_RGB color models, respectively. In these modes, vertex
parameters are reevaluated on a per-pixel basis. Lighting effects are applied
for the red, green, and blue color components in RGB mode, and for the blue
component only for monochromatic mode. Phong shading is not currently
supported.

D3DPSHADECAPS_FOGFLAT
D3DPSHADECAPS_FOGGOURAUD
D3DPSHADECAPS_FOGPHONG

Device can support fog in the flat, Gouraud, and Phong shading models,
respectively. Phong shading is not currently supported.

D3DPSHADECAPS_SPECULARFLATMONO
D3DPSHADECAPS_SPECULARFLATRGB

Device can support specular highlights in flat shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.

D3DPSHADECAPS_SPECULARGOURAUDMONO
D3DPSHADECAPS_SPECULARGOURAUDRGB

Device can support specular highlights in Gouraud shading in color models,
respectively.

D3DPSHADECAPS_SPECULARPHONGMONO
D3DPSHADECAPS_SPECULARPHONGRGB

Device can support specular highlights in Phong shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.
Phong shading is not currently supported.

lSrcBlendCaps
Source blending capabilities. This member can be the same capabilities that are
defined for the lDestBlendCaps member.

lStippleWidth and lStippleHeight
Maximum width and height of the supported stipple (up to 3232).

lTextureAddressCaps
Texture-addressing capabilities. This member can be one or more of the
following constants of the CONST_D3DCAPSTEXTUREADDRESS
enumeration:
D3DPTADDRESSCAPS_BORDER

Device supports setting coordinates outside the range [0.0, 1.0] to the border
color, as specified by the D3DRENDERSTATE_BORDERCOLOR render
state. This ability corresponds to the D3DTADDRESS_BORDER texture-
addressing mode.

D3DPTADDRESSCAPS_CLAMP
Device can clamp textures to addresses.

D3DPTADDRESSCAPS_INDEPENDENTUV
Device can separate the texture-addressing modes of the u and v coordinates
of the texture. This ability corresponds to the
D3DRENDERSTATE_TEXTUREADDRESSU and
D3DRENDERSTATE_TEXTUREADDRESSV render-state values.

in.doc – page 717

D3DPTADDRESSCAPS_MIRROR
Device can mirror textures to addresses.

D3DPTADDRESSCAPS_WRAP
Device can wrap textures to addresses.

lTextureBlendCaps
Texture-blending capabilities. See the CONST_D3DTEXTUREBLEND
enumeration for discussions of the various texture-blending modes. This
member can be one or more of the following constants of the
CONST_D3DCAPSTEXTUREBLEND enumeration:
D3DPTBLENDCAPS_ADD

Supports the additive texture-blending mode, in which the Gouraud
interpolants are added to the texture lookup with saturation semantics. This
capability corresponds to the D3DTBLEND_ADD member of the
CONST_D3DTEXTUREBLEND enumeration.

D3DPTBLENDCAPS_COPY
Copy mode texture-blending (D3DTBLEND_COPY from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_DECAL
Decal texture-blending mode (D3DTBLEND_DECAL from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_DECALALPHA
Decal-alpha texture-blending mode (D3DTBLEND_DECALALPHA from
the CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_DECALMASK
Decal-mask texture-blending mode (D3DTBLEND_DECALMASK from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_MODULATE
Modulate texture-blending mode (D3DTBLEND_MODULATE from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_MODULATEALPHA
Modulate-alpha texture-blending mode
(D3DTBLEND_MODULATEALPHA from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_MODULATEMASK
Modulate-mask texture-blending mode (D3DTBLEND_MODULATEMASK
from the CONST_D3DTEXTUREBLEND enumeration) is supported.

lTextureCaps
Miscellaneous texture-mapping capabilities. This member can be one or more of
the following constants of the CONST_D3DCAPSTEXTURE enumeration:
D3DPTEXTURECAPS_ALPHA

Supports RGBA textures in the D3DTEX_DECAL and
D3DTEX_MODULATE texture filtering modes. If this capability is not set,
then only RGB textures are supported in those modes. Regardless of the
setting of this flag, alpha must always be supported in

in.doc – page 718

D3DTEX_DECAL_MASK, D3DTEX_DECAL_ALPHA, and
D3DTEX_MODULATE_ALPHA filtering modes whenever those filtering
modes are available.

D3DPTEXTURECAPS_ALPHAPALETTE
Supports palettized texture surfaces whose palettes contain alpha information
(see DDPCAPS_ALPHA in the DDCAPS structure).

D3DPTEXTURECAPS_BORDER
Superseded by D3DPTADDRESSCAPS_BORDER.

D3DPTEXTURECAPS_PERSPECTIVE
Perspective correction is supported.

D3DPTEXTURECAPS_POW2
All nonmipmapped textures must have widths and heights specified as
powers of two if this flag is set. (Note that all mipmapped textures must
always have dimensions that are powers of two.)

D3DPTEXTURECAPS_SQUAREONLY
All textures must be square.

D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE
Texture indices are not scaled by the texture size prior to interpolation.

D3DPTEXTURECAPS_TRANSPARENCY
Texture transparency is supported. (Only those texels that are not the current
transparent color are drawn.)

lTextureFilterCaps
Texture-map filtering capabilities. General texture filtering flags reflect which
texture filtering modes you can set for the
D3DRENDERSTATE_TEXTUREMAG,
D3DRENDERSTATE_TEXTUREMIN render states. Per-stage filtering
capabilities reflect which filtering modes are supported for texture stages when
performing multiple texture blending with the Direct3DDevice3 interface. This
member can any combination of the following general and per-stage texture
filtering constants of the CONST_D3DCAPSTEXTUREFILTER enumeration:
General texture filtering flags
D3DPTFILTERCAPS_LINEAR

A weighted average of a 22 area of texels surrounding the desired pixel is
used. This applies to both zooming in and zooming out. If either zooming in
or zooming out is supported, then both must be supported.

D3DPTFILTERCAPS_LINEARMIPLINEAR
Similar to D3DPTFILTERCAPS_MIPLINEAR, but interpolates between the
two nearest mipmaps.

D3DPTFILTERCAPS_LINEARMIPNEAREST
The mipmap chosen is the mipmap whose texels most closely match the size
of the pixel to be textured. The D3DFILTER_LINEAR method is then used
with the texture.

D3DPTFILTERCAPS_MIPLINEAR

in.doc – page 719

Two mipmaps are chosen whose texels most closely match the size of the
pixel to be textured. The D3DFILTER_NEAREST method is then used with
each texture to produce two values which are then weighted to produce a
final texel value.

D3DPTFILTERCAPS_MIPNEAREST
Similar to D3DPTFILTERCAPS_NEAREST, but uses the appropriate
mipmap for texel selection.

D3DPTFILTERCAPS_NEAREST
The texel with coordinates nearest to the desired pixel value is used. This
applies to both zooming in and zooming out. If either zooming in or zooming
out is supported, then both must be supported.

Per-stage texture filtering flags
D3DPTFILTERCAPS_MAGFAFLATCUBIC

The device supports per-stage flat-cubic filtering for magnifying textures.
The flat-cubic magnification filter is represented by the
D3DTFG_FLATCUBIC member of the
CONST_D3DTEXTUREMAGFILTER enumeration.

D3DPTFILTERCAPS_MAGFANISOTROPIC
The device supports per-stage anisotropic filtering for magnifying textures.
The anisotropic magnification filter is represented by the
D3DTFG_ANISOTROPIC member of the D3DTEXTUREMAGFILTER
enumeration.

D3DPTFILTERCAPS_MAGFGAUSSIANCUBIC
The device supports the per-stage Gaussian-cubic filtering for magnifying
textures. The Gaussian-cubic magnification filter is represented by the
D3DTFG_GAUSSIANCUBIC member of the
D3DTEXTUREMAGFILTER enumeration.

D3DPTFILTERCAPS_MAGFLINEAR
The device supports per-stage bilinear-interpolation filtering for magnifying
textures. The bilinear-interpolation magnification filter is represented by the
D3DTFG_LINEAR member of the D3DTEXTUREMAGFILTER
enumeration.

D3DPTFILTERCAPS_MAGFPOINT
The device supports per-stage point-sampled filtering for magnifying
textures. The point-sample magnification filter is represented by the
D3DTFG_POINT member of the D3DTEXTUREMAGFILTER
enumeration.

D3DPTFILTERCAPS_MINFANISOTROPIC
The device supports per-stage anisotropic filtering for minifying textures. The
anisotropic minification filter is represented by the
D3DTFN_ANISOTROPIC member of the
CONST_D3DTEXTUREMINFILTER enumeration.

D3DPTFILTERCAPS_MINFLINEAR
The device supports per-stage bilinear-interpolation filtering for minifying
textures. The bilinear minification filter is represented by the

in.doc – page 720

D3DTFN_LINEAR member of the D3DTEXTUREMINFILTER
enumeration.

D3DPTFILTERCAPS_MINFPOINT
The device supports per-stage point-sampled filtering for minifying textures.
The point-sample minification filter is represented by the D3DTFN_POINT
member of the D3DTEXTUREMINFILTER enumeration.

D3DPTFILTERCAPS_MIPFLINEAR
The device supports per-stage trilinear-interpolation filtering for mipmaps.
The trilinear-interpolation mipmapping filter is represented by the
D3DTFP_LINEAR member of the CONST_D3DTEXTUREMIPFILTER
enumeration.

D3DPTFILTERCAPS_MIPFPOINT
The device supports per-stage point-sampled filtering for mipmaps. The
point-sample mipmapping filter is represented by the D3DTFP_POINT
member of the D3DTEXTUREMIPFILTER enumeration.

lZCmpCaps
Z-buffer comparison functions that the driver can perform. This member can
include same constants of the CONST_D3DCAPSCMP as defined for the
lAlphaCmpCaps member.

D3DRECT
[This is preliminary documentation and subject to change.]

The D3DRECT type is a rectangle definition.

Type D3DRECT {
 x1 As Long
 x2 As Long
 y1 As Long
 y2 As Long
End Type

x1 and y1
Coordinates of the upper-left corner of the rectangle.

x2 and y2
Coordinates of the lower-right corner of the rectangle.

See Also
Direct3DViewport3.Clear

IDH__dx_D3DRECT_d3d_vb

in.doc – page 721

D3DSTATS
[This is preliminary documentation and subject to change.]

The D3DSTATS type contains statistics used by the Direct3DDevice3.GetStats
method.

Type D3DSTATS
 lLinesDrawn As Long
 lPointsDrawn As Long
 lSpansDrawn As Long
 lTrianglesDrawn As Long
 lVerticesProcessed As Long
End Type

lTrianglesDrawn, lLinesDrawn, lPointsDrawn, and lSpansDrawn
Number of triangles, lines, points, and spans drawn since the device was created.

lVerticesProcessed
Number of vertices processed since the device was created.

See Also
Direct3DDevice3.GetStats

D3DTLVERTEX
[This is preliminary documentation and subject to change.]

The D3DTLVERTEX type defines a transformed and lit vertex (screen coordinates
with color) for the D3DLIGHTDATA structure.

Type D3DTLVERTEX
 color As Long
 rhw As Single
 specular As Long
 sx As Single
 sy As Single
 sz As Single
 tu As Single
 tv As Single
End Type

color and specular
Values describing the color and specular component of the vertex.

IDH__dx_D3DSTATS_d3d_vb
IDH__dx_D3DTLVERTEX_d3d_vb

in.doc – page 722

rhw
Value that is the reciprocal of homogeneous w from homogeneous coordinate
(x,y,z,w). This value is often 1 divided by the distance from the origin to the
object along the z-axis.

sx, sy, and sz
Values describing a vertex in screen coordinates. The largest allowable value for
sz is 1.0, if you want the vertex to be within the range of z-values that are
displayed.

tu and tv
Values describing the texture coordinates of the vertex.

Remarks
Direct3D uses the current viewport parameters (the lX, lY, lWidth, and lHeight
members of the D3DVIEWPORT2 structure) to clip D3DTLVERTEX vertices.
The system always clips z-coordinates to [0, 1]. To prevent the system from clipping
these vertices, use the D3DDP_DONOTCLIP flag in your call to
Direct3DDevice3.Begin.

See Also
D3DLIGHTDATA, D3DLVERTEX, D3DVERTEX

D3DTRANSFORMDATA
[This is preliminary documentation and subject to change.]

The D3DTRANSFORMDATA type contains information about transformations for
the Direct3DViewport3.TransformVertices method.

Type D3DTRANSFORMDATA
 lClip As CONST_D3DCLIPFLAGS
 lClipIntersection As CONST_D3DCLIPFLAGS
 lClipUnion As CONST_D3DCLIPFLAGS
 rExtent As D3DRECT
End Type

lClip
Flags specifying how the vertices are clipped. This member can be one or more
of the following values constants of the CONST_D3DCLIPFLAGS
enumeration:
D3DCLIP_BACK

Clipped by the back plane of the viewing frustum.
D3DCLIP_BOTTOM

Clipped by the bottom plane of the viewing frustum.

IDH__dx_D3DTRANSFORMDATA_d3d_vb

in.doc – page 723

D3DCLIP_FRONT
Clipped by the front plane of the viewing frustum.

D3DCLIP_GEN0 through D3DCLIP_GEN5
Application-defined clipping planes.

D3DCLIP_LEFT
Clipped by the left plane of the viewing frustum.

D3DCLIP_RIGHT
Clipped by the right plane of the viewing frustum.

D3DCLIP_TOP
Clipped by the top plane of the viewing frustum_dx_viewing_frustum_glos.

lClipIntersection
Flags denoting the intersection of the clip flags. This member can be one or
more of the following values constants of the CONST_D3DCLIPFLAGS
enumeration:
D3DSTATUS_CLIPINTERSECTIONBACK

Logical AND of the clip flags for the vertices compared to the back clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.

lClipUnion
Flags denoting the union of the clip flags. This member can be one or more of
the following values constants of the CONST_D3DCLIPFLAGS enumeration:
D3DSTATUS_CLIPUNIONBACK

Equal to D3DCLIP_BACK.
D3DSTATUS_CLIPUNIONBOTTOM

Equal to D3DCLIP_BOTTOM.
D3DSTATUS_CLIPUNIONFRONT

in.doc – page 724

Equal to D3DCLIP_FRONT.
D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5

Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.
D3DSTATUS_CLIPUNIONLEFT

Equal to D3DCLIP_LEFT.
D3DSTATUS_CLIPUNIONRIGHT

Equal to D3DCLIP_RIGHT.
D3DSTATUS_CLIPUNIONTOP

Equal to D3DCLIP_TOP.
rExtent

A D3DRECT type that defines the extents of the transformed vertices. Initialize
this type to initial extents that the Direct3DViewport3.TransformVertices
method will adjust if the transformed vertices do not fit. For geometries that are
clipped, extents will only include vertices that are inside the viewing volume.

Remarks
All values generated by the transformation module are stored as 16-bit precision
values. The clip is treated as an integer bitfield that is set to the inclusive OR of the
viewing volume planes that clip a given transformed vertex.

See Also
Direct3DViewport3.TransformVertices

D3DVECTOR
[This is preliminary documentation and subject to change.]

The D3DVECTOR type defines a vector for many Direct3D and Direct3DRM
methods and types.

Type D3DVECTOR
 x As Single
 y As Single
 z As Single
End Type

x, y, and z
Values describing the vector.

See Also
D3DLIGHT2

IDH__dx_D3DVECTOR_d3d_vb

in.doc – page 725

D3DVERTEX
[This is preliminary documentation and subject to change.]

The D3DVERTEX type defines an untransformed and unlit vertex (model
coordinates with normal direction vector).

Type D3DVERTEX
 nx As Single
 ny As Single
 nz As Single
 tu As Single
 tv As Single
 x As Single
 y As Single
 z As Single
End Type

x, y, and z
Values describing the homogeneous coordinates of the vertex.

nx, ny, and nz
Values describing the normal coordinates of the vertex.

tu and tv
Values describing the texture coordinates of the vertex.

See Also
D3DLVERTEX, D3DTLVERTEX

D3DVERTEXBUFFERDESC
[This is preliminary documentation and subject to change.]

The D3DVERTEXBUFFERDESC type describes the properties of a vertex buffer
object. This type is used with the Direct3D3.CreateVertexBuffer and
Direct3DVertexBuffer.GetVertexBufferDesc methods.

Type D3DVERTEXBUFFERDESC
 lCaps As CONST_D3DVBCAPSFLAGS
 lFVF As CONST_D3DFVFFLAGS
 lNumVertices As Long
End Type

lCaps

IDH__dx_D3DVERTEX_d3d_vb
IDH__dx_D3DVERTEXBUFFERDESC_d3d_vb

in.doc – page 726

Capability flags that describe the vertex buffer and identify if the vertex buffer
can contain optimized vertex data. This parameter can be any combination of
the following constants of the CONST_D3DVBCAPSFLAGS enumeration:
(none)

The vertex buffer should be created in whatever memory the driver chooses
to allow efficient read operations.

D3DVBCAPS_OPTIMIZED
The vertex buffer contains optimized vertex data. (This flag is not used when
creating a new vertex buffer.)

D3DVBCAPS_SYSTEMMEMORY
The vertex buffer should be created in system memory. Use this capability
for vertex buffers that will be rendered by using software devices (MMX and
RGB devices).

D3DVBCAPS_WRITEONLY
Hints to the system that the application will only write to the vertex buffer.
Using this flag enables the driver to choose the best memory location for
efficient write operations and rendering. Attempts to read from a vertex
buffer that is created with this capability can result in degraded performance.

lFVF
A combination of constants of the CONST_D3DFVFFLAGS enumeration that
describes the vertex format of the vertices in this buffer.

lNumVertices
The maximum number of vertices that this vertex buffer can contain.

Remarks
Software devices — MMX and RGB devices — cannot render from a video memory
(local or non-local) vertex buffer. To render a vertex buffer using a software device,
the vertex buffer must exist in system memory. Hardware devices can render from
system memory or video memory vertex buffers.

See Also
Vertex Buffer Descriptions, Vertex Buffers

D3DVIEWPORT
[This is preliminary documentation and subject to change.]

The D3DVIEWPORT type defines the visible 3-D volume and the 2-D screen area
that a 3-D volume projects onto for the Direct3DViewport3.GetViewport and
Direct3DViewport3.SetViewport methods.

For the Direct3D2 and Direct3DDevice2 interfaces, this type has been superseded
by the D3DVIEWPORT2 structure.
IDH__dx_D3DVIEWPORT_d3d_vb

in.doc – page 727

Type D3DVIEWPORT
 lHeight As Long
 lWidth As Long
 lX As Long
 lY As Long
 maxx As Single
 maxy As Single
 maxz As Single
 minz As Single
 scaleX As Single
 scaleY As Single
End Type

lWidth and lHeight
Dimensions of the viewport.

lX and lY
Coordinates of the top-left corner of the viewport.

maxx, maxy, minz, and maxz
Values describing the maximum and minimum nonhomogeneous coordinates of
x, y, and z. Again, the relevant coordinates are the nonhomogeneous coordinates
that result from the perspective division.

scaleX and scaleY
Values describing how coordinates are scaled. The relevant coordinates here are
the nonhomogeneous coordinates that result from the perspective division that
projects the vertices onto the w=1 plane.

Remarks
When the viewport is changed, the driver builds a new transformation matrix.

The coordinates and dimensions of the viewport are given relative to the top left of
the device.

See Also
Direct3DViewport3.GetViewport, Direct3DViewport3.SetViewport

D3DVIEWPORT2
[This is preliminary documentation and subject to change.]

The D3DVIEWPORT2 type defines the visible 3-D volume and the window
dimensions that a 3-D volume projects onto. This type is used by the methods of the
Direct3D2 and Direct3DDevice2 interfaces, and in particular by the

IDH__dx_D3DVIEWPORT2_d3d_vb

in.doc – page 728

Direct3DViewport3.GetViewport2 and Direct3DViewport3.SetViewport2
methods.

Type D3DVIEWPORT2
 clipHeight As Single
 clipWidth As Single
 clipX As Single
 clipY As Single
 lHeight As Long
 lWidth As Long
 lX As Long
 lY As Long
 maxz As Single
 minz As Single
End Type

clipWidth and clipHeight
Dimensions of the clipping volume projected onto the w=1 plane. Unless you
want to render to a subset of the surface, these members can be set to the width
and height of the destination surface.

clipX and clipY
Coordinates of the top-left corner of the clipping volume.
The relevant coordinates here are the nonhomogeneous coordinates that result
from the perspective division that projects the vertices onto the w=1 plane.

lWidth and lHeight
Dimensions of the viewport on the render target surface, in pixels. Unless you
are rendering only to a subset of the surface, these members should be set to the
dimensions of the render target surface.

lX and lY
Pixel coordinates of the top-left corner of the viewport on the render target
surface. Unless you want to render to a subset of the surface, these members can
be set to zero.

minz and maxz
Values describing the maximum and minimum nonhomogeneous z-coordinates
resulting from the perspective divide and projected onto the w=1 plane. The
values in these members must not be identical.

Remarks
The lX, lY, lWidth and lHeight members describe the position and dimensions of
the viewport on the render target surface. Usually, applications render to the entire
target surface; when rendering on a 640x480 surface, these members should be 0, 0,
640, and 480, respectively.

The clipX, clipY, clipWidth, clipHeight, minz, and maxz members define the non-
normalized post-perspective 3-D view volume which is visible to the viewer. In most

in.doc – page 729

cases, clipX is set to -1.0 and clipY is set to the inverse of the viewport's aspect ratio
on the target surface, which can be calculated by dividing the lHeight member by
lWidth. Similarly, the clipWidth member is typically 2.0 and clipHeight is set to
twice the aspect ratio set in lClipY. The minz and maxz are usually set to 0.0 and
1.0.

Unlike the D3DVIEWPORT structure, D3DVIEWPORT2 specifies the
relationship between the size of the viewport and the window. The coordinates and
dimensions of the viewport are given relative to the top left of the device; values
increase in the y-direction as you descend the screen.

When the viewport is changed, the driver builds a new transformation matrix.

See Also
Direct3DViewport3.GetViewport2, Direct3DViewport3.SetViewport2

DXDRIVERINFO
[This is preliminary documentation and subject to change.]

The DXDRIVERINFO type is used in the enumeration methods for DirectDraw,
DirectSound and Direct3D to hold driver information.

Type DXDRIVERINFO
 strDescription As String
 strGuid As String
 strName As String
End Type

strDescription
The textual description of the Direct3D device.

strGuid
The GUID that identifies the Direct3D driver being enumerated.

strName
The name of the Direct3D driver corresponding to this device.

Remarks
This type is also used in DirectDraw and DirectSound.

Enumerations
[This is preliminary documentation and subject to change.]

IDH__dx_DXDRIVERINFO_d3d_vb

in.doc – page 730

This section contains information about the following enumerations used with
Direct3D Immediate Mode.

· CONST_D3D
· CONST_D3DANTIALIASMODE
· CONST_D3DBLEND
· CONST_D3DCAPSBLEND
· CONST_D3DCAPSCMP
· CONST_D3DCAPSMISC
· CONST_D3DCAPSRASTER
· CONST_D3DCAPSSHADE
· CONST_D3DCAPSTEXTURE
· CONST_D3DCAPSTEXTUREADDRESS
· CONST_D3DCAPSTEXTUREBLEND
· CONST_D3DCAPSTEXTUREFILTER
· CONST_D3DCLEARFLAGS
· CONST_D3DCLIPFLAGS
· CONST_D3DCLIPSTATUSFLAGS
· CONST_D3DCMPFUNC
· CONST_D3DCOLORMODEL
· CONST_D3DCULL
· CONST_D3DDEVICEDESCCAPS
· CONST_D3DDEVICEDESCFLAGS
· CONST_D3DDPFLAGS
· CONST_D3DFILLMODE
· CONST_D3DFINDDEVICESEARCHFLAGS
· CONST_D3DFOGMODE
· CONST_D3DFVFCAPSFLAGS
· CONST_D3DFVFFLAGS
· CONST_D3DIMERR
· CONST_D3DLIGHT2FLAGS
· CONST_D3DLIGHTCAPSFLAGS
· CONST_D3DLIGHTINGMODELFLAGS
· CONST_D3DLIGHTSTATETYPE
· CONST_D3DLIGHTTYPE
· CONST_D3DNEXTFLAGS
· CONST_D3DPALFLAGS
· CONST_D3DPRIMITIVETYPE

in.doc – page 731

· CONST_D3DRENDERSTATETYPE
· CONST_D3DSETSTATUSFLAGS
· CONST_D3DSHADEMODE
· CONST_D3DSTENCILCAPSFLAGS
· CONST_D3DSTENCILOP
· CONST_D3DTAFLAGS
· CONST_D3DTEXOPCAPSFLAGS
· CONST_D3DTEXTUREADDRESS
· CONST_D3DTEXTUREBLEND
· CONST_D3DTEXTUREFILTER
· CONST_D3DTEXTUREMAGFILTER
· CONST_D3DTEXTUREMINFILTER
· CONST_D3DTEXTUREMIPFILTER
· CONST_D3DTEXTUREOP
· CONST_D3DTEXTURESTAGESTATETYPE
· CONST_D3DTRANSFORMCAPS
· CONST_D3DTRANSFORMFLAGS
· CONST_D3DTRANSFORMSTATETYPE
· CONST_D3DVBCAPSFLAGS
· CONST_D3DVERTEXTYPE
· CONST_D3DVISFLAGS
· CONST_D3DVOPFLAGS
· CONST_D3DZBUFFERTYPE

CONST_D3D
[This is preliminary documentation and subject to change.]

The CONST_D3D enumeration defines miscellaneous constants.

Enum CONST_D3D
 D3DRENDERSTATE_WRAPBIAS = 128
 D3DDP_MAXTEXCOORD =8
 D3DWRAP_U= 1
 D3DWRAP_V= 2
End Enum

D3DRENDERSTATE_WRAPBIAS

IDH__dx_CONST_D3D_d3d_vb

in.doc – page 732

A convenience value that can be added to a zero-based index for a texture stage
to produce a valid D3DRENDERSTATE_WRAPn value for use with the
Direct3DDevice3.SetRenderState and Direct3DDevice3.SetRenderState
methods.

D3DDP_MAXTEXCOORD
The maximum number of texture coordinates allowed for a vertex.

D3DWRAP_U and D3DWRAP_V
Enables or disables texture wrapping in the U and V directions. These values are
used to set values for the D3DRENDERSTATE_WRAP0 through
D3DRENDERSTATE_WRAP7 render states.

CONST_D3DANTIALIASMODE
[This is preliminary documentation and subject to change.]

The CONST_D3DANTIALIASMODE enumeration defines the supported
antialiasing mode for the D3DRENDERSTATE_ANTIALIAS value in the
CONST_D3DRENDERSTATETYPE enumeration. These values define the
settings for antialiasing the edges of primitives.

Enum CONST_D3DANTIALIASMODE
 D3DANTIALIAS_NONE = 0
 D3DANTIALIAS_SORTDEPENDENT = 1
 D3DANTIALIAS_SORTINDEPENDENT = 2
 D3DANTIALIAS_FORCE_DWORD = &H7FFFFFFF
End Enum

D3DANTIALIAS_NONE
No antialiasing is performed. This is the default setting.

D3DANTIALIAS_SORTDEPENDENT
Antialiasing is dependent on the sort order of the polygons (back-to-front or
front-to-back). The application must draw polygons in the right order for
antialiasing to occur.

D3DANTIALIAS_SORTINDEPENDENT
Antialiasing is not dependent on the sort order of the polygons.

D3DANTIALIAS_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

CONST_D3DBLEND
[This is preliminary documentation and subject to change.]

IDH__dx_CONST_D3DANTIALIASMODE_d3d_vb
IDH__dx_CONST_D3DBLEND_d3d_vb

in.doc – page 733

The CONST_D3DBLEND enumeration defines the supported blend mode for the
D3DRENDERSTATE_DESTBLEND values in the
CONST_D3DRENDERSTATETYPE enumeration. In the member descriptions
that follow, the RGBA values of the source and destination are indicated with the
subscripts s and d.

Enum CONST_D3DBLEND
 D3DBLEND_ZERO = 1
 D3DBLEND_ONE = 2
 D3DBLEND_SRCCOLOR = 3
 D3DBLEND_INVSRCCOLOR = 4
 D3DBLEND_SRCALPHA = 5
 D3DBLEND_INVSRCALPHA = 6
 D3DBLEND_DESTALPHA = 7
 D3DBLEND_INVDESTALPHA = 8
 D3DBLEND_DESTCOLOR = 9
 D3DBLEND_INVDESTCOLOR = 10
 D3DBLEND_SRCALPHASAT = 11
 D3DBLEND_BOTHSRCALPHA = 12
 D3DBLEND_BOTHINVSRCALPHA = 13
 D3DBLEND_FORCE_DWORD = &H7FFFFFFF
End Enum

D3DBLEND_ZERO
Blend factor is (0, 0, 0, 0).

D3DBLEND_ONE
Blend factor is (1, 1, 1, 1).

D3DBLEND_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).

D3DBLEND_INVSRCCOLOR
Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As).

D3DBLEND_SRCALPHA
Blend factor is (As, As, As, As).

D3DBLEND_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As, 1-As).

D3DBLEND_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).

D3DBLEND_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).

D3DBLEND_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).

D3DBLEND_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DBLEND_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).

in.doc – page 734

D3DBLEND_BOTHSRCALPHA
Not supported.

D3DBLEND_BOTHINVSRCALPHA
Source blend factor is (1-As, 1-As, 1-As, 1-As), and destination blend factor is
(As, As, As, As); the destination blend selection is overridden.

D3DBLEND_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

Remarks
D3DBLEND_BOTHSRCALPHA is no longer supported in Direct3D versions DX6
and higher. Please explicitly set both D3DBLEND_SRCALPHA and
D3DBLEND_INVSRCALPHA separately.

CONST_D3DCAPSBLEND
[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSBLEND enumeration defines the blending capabilities for a
device. These values are combined in the lSrceBlendCaps and lDestBlendCaps
members of the D3DPRIMCAPS type.

Enum CONST_D3DCAPSBLEND
 D3DPBLENDCAPS_BOTHINVSRCALPHA =4096
 D3DPBLENDCAPS_BOTHSRCALPHA =2048
 D3DPBLENDCAPS_DESTALPHA =64
 D3DPBLENDCAPS_DESTCOLOR =256
 D3DPBLENDCAPS_INVDESTALPHA =128
 D3DPBLENDCAPS_INVDESTCOLOR =512
 D3DPBLENDCAPS_INVSRCALPHA =32
 D3DPBLENDCAPS_INVSRCCOLOR =8
 D3DPBLENDCAPS_ONE =2
 D3DPBLENDCAPS_SRCALPHA =16
 D3DPBLENDCAPS_SRCALPHASAT =1024
 D3DPBLENDCAPS_SRCCOLOR =4
 D3DPBLENDCAPS_ZERO =1
End Enum

D3DPBLENDCAPS_BOTHINVSRCALPHA
Source blend factor is (1-As, 1-As, 1-As, 1-As) and destination blend factor is
(As, As, As, As); the destination blend selection is overridden.

D3DPBLENDCAPS_BOTHSRCALPHA
Source blend factor is (As, As, As, As) and destination blend factor is (1-As, 1-
As, 1-As, 1-As); the destination blend selection is overridden.

IDH__dx_CONST_D3DCAPSBLEND_d3d_vb

in.doc – page 735

D3DPBLENDCAPS_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).

D3DPBLENDCAPS_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).

D3DPBLENDCAPS_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).

D3DPBLENDCAPS_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As, 1-As).

D3DPBLENDCAPS_INVSRCCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_ONE
Blend factor is (1, 1, 1, 1).

D3DPBLENDCAPS_SRCALPHA
Blend factor is (As, As, As, As).

D3DPBLENDCAPS_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).

D3DPBLENDCAPS_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).

D3DPBLENDCAPS_ZERO
Blend factor is (0, 0, 0, 0).

CONST_D3DCAPSCMP
[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSCMP enumeration defines comparison capabilities for
depth-buffer comparisons and alpha-testing. These flags are combined and present in
the lZCmpCaps and lAlphaCmpCaps members of the D3DPRIMCAPS type.

Enum CONST_D3DCAPSCMP
 D3DPCMPCAPS_ALWAYS = 128
 D3DPCMPCAPS_EQUAL = 4
 D3DPCMPCAPS_GREATER = 16
 D3DPCMPCAPS_GREATEREQUAL = 64
 D3DPCMPCAPS_LESS = 2
 D3DPCMPCAPS_LESSEQUAL = 8
 D3DPCMPCAPS_NEVER = 1
 D3DPCMPCAPS_NOTEQUAL = 32
End Enum

D3DPCMPCAPS_ALWAYS

IDH__dx_CONST_D3DCAPSCMP_d3d_vb

in.doc – page 736

Always pass the comparison.
D3DPCMPCAPS_EQUAL

Pass the comparison if the new value equals the current value.
D3DPCMPCAPS_GREATER

Pass the comparison if the new value is greater than the current value.
D3DPCMPCAPS_GREATEREQUAL

Pass the comparison if the new value is greater than or equal to the current
value.

D3DPCMPCAPS_LESS
Pass the comparison if the new value is less than the current value.

D3DPCMPCAPS_LESSEQUAL
Pass the comparison if the new value is less than or equal to the current value.

D3DPCMPCAPS_NEVER
Always fail the comparison.

D3DPCMPCAPS_NOTEQUAL
Pass the comparison if the new value does not equal the current value.

CONST_D3DCAPSMISC
[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSMISC enumeration defines capability flags that are
combined and found in the lMiscCaps member of the D3DPRIMCAPS type.

Enum CONST_D3DCAPSMISC
 D3DPMISCCAPS_CONFORMANT = 8
 D3DPMISCCAPS_CULLCCW = 64
 D3DPMISCCAPS_CULLCW = 32
 D3DPMISCCAPS_CULLNONE = 16
 D3DPMISCCAPS_LINEPATTERNREP = 4
 D3DPMISCCAPS_MASKPLANES = 1
 D3DPMISCCAPS_MASKZ = 2
End Enum

D3DPMISCCAPS_CONFORMANT
The device conforms to the OpenGL standard.

D3DPMISCCAPS_CULLCCW
The driver supports counterclockwise culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CCW constant of the
CONST_D3DCULL enumeration.

D3DPMISCCAPS_CULLCW
The driver supports clockwise triangle culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle

IDH__dx_CONST_D3DCAPSMISC_d3d_vb

in.doc – page 737

primitives.) This corresponds to the D3DCULL_CW constant of the
CONST_D3DCULL enumeration.

D3DPMISCCAPS_CULLNONE
The driver does not perform triangle culling. This corresponds to the
D3DCULL_NONE constant of the CONST_D3DCULL enumeration.

D3DPMISCCAPS_LINEPATTERNREP
The driver can handle values other than 1 in the wRepeatFactor member of the
D3DLINEPATTERN structure. (This applies only to line-drawing primitives.)

D3DPMISCCAPS_MASKPLANES
The device can perform a bitmask of color planes.

D3DPMISCCAPS_MASKZ
The device can enable and disable modification of the depth-buffer on pixel
operations.

CONST_D3DCAPSRASTER
[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSRASTER enumeration defines rasterization capability
flags that are combined and present in the lRasterCaps member of the
D3DPRIMCAPS type.

Enum CONST_D3DCAPSRASTER
 D3DPRASTERCAPS_ANISOTROPY = 131072
 D3DPRASTERCAPS_ANTIALIASEDGES = 4096
 D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT = 1024
 D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT = 2048
 D3DPRASTERCAPS_DITHER= 1
 D3DPRASTERCAPS_FOGRANGE = 65536
 D3DPRASTERCAPS_FOGTABLE = 256
 D3DPRASTERCAPS_FOGVERTEX = 128
 D3DPRASTERCAPS_MIPMAPLODBIAS = 8192
 D3DPRASTERCAPS_PAT = 8
 D3DPRASTERCAPS_ROP2 = 2
 D3DPRASTERCAPS_STIPPLE = 512
 D3DPRASTERCAPS_SUBPIXEL= 32
 D3DPRASTERCAPS_SUBPIXELX = 64
 D3DPRASTERCAPS_XOR = 4
 D3DPRASTERCAPS_ZBIAS = 16384
 D3DPRASTERCAPS_ZBUFFERLESSHSR = 32768
 D3DPRASTERCAPS_ZTEST = 16
End Enum

D3DPRASTERCAPS_ANISOTROPY

IDH__dx_CONST_D3DCAPSRASTER_d3d_vb

in.doc – page 738

The device supports anisotropic filtering. For more information, see
D3DRENDERSTATE_ANISOTROPY in the
CONST_D3DRENDERSTATETYPE structure.

D3DPRASTERCAPS_ANTIALIASEDGES
The device can antialias lines forming the convex outline of objects. For more
information, see D3DRENDERSTATE_EDGEANTIALIAS in the
CONST_D3DRENDERSTATETYPE enumeration.

D3DPRASTERCAPS_ANTIALIASSORTDEPENDENT
The device supports antialiasing that is dependent on the sort order of the
polygons (back-to-front or front-to-back). The application must draw polygons
in the right order for antialiasing to occur. For more information, see the
CONST_D3DANTIALIASMODE enumeration.

D3DPRASTERCAPS_ANTIALIASSORTINDEPENDENT
The device supports antialiasing that is not dependent on the sort order of the
polygons. For more information, see the CONST_D3DANTIALIASMODE
enumeration.

D3DPRASTERCAPS_DITHER
The device can dither to improve color resolution.

D3DPRASTERCAPS_FOGRANGE
The device supports range-based fog. In range-based fog, the distance of an
object from the viewer is used to compute fog effects, not the depth of the object
(that is, the z-coordinate) in the scene.

D3DPRASTERCAPS_FOGTABLE
The device calculates the fog value by referring to a lookup table containing fog
values that are indexed to the depth of a given pixel.

D3DPRASTERCAPS_FOGVERTEX
The device calculates the fog value during the lighting operation, places the
value into the alpha component given for the specular member of the
D3DTLVERTEX structure, and interpolates the fog value during rasterization.

D3DPRASTERCAPS_MIPMAPLODBIAS
The device supports level-of-detail (LOD) bias adjustments. These bias
adjustments enable an application to make a mipmap appear crisper or less sharp
than it normally would. For more information about LOD bias in mipmaps, see
D3DRENDERSTATE_MIPMAPLODBIAS.

D3DPRASTERCAPS_PAT
The driver can perform patterned drawing (lines or fills with the
D3DRENDERSTATE_STIPPLEPATTERN render state) for the primitive being
queried.

D3DPRASTERCAPS_ROP2
The device can support raster operations other than R2_COPYPEN.

D3DPRASTERCAPS_STIPPLE
The device can stipple polygons to simulate translucency.

D3DPRASTERCAPS_SUBPIXEL

in.doc – page 739

The device performs subpixel placement of z, color, and texture data, rather than
working with the nearest integer pixel coordinate. This helps avoid bleed-
through due to z imprecision, and jitter of color and texture values for pixels.
Note that there is no corresponding state that can be enabled and disabled; the
device either performs subpixel placement or it does not, and this bit is present
only so that the Direct3D client will be better able to determine what the
rendering quality will be.

D3DPRASTERCAPS_SUBPIXELX
The device is subpixel accurate along the x-axis only and is clamped to an
integer y-axis scan line. For information about subpixel accuracy, see
D3DPRASTERCAPS_SUBPIXEL.

D3DPRASTERCAPS_TRANSLUCENTSORTINDEPENDENT
The device supports translucency that is not dependent on the sort order of the
polygons. For more information, see the
D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT.

D3DPRASTERCAPS_WBUFFER
The device supports depth buffering using w.

D3DPRASTERCAPS_WFOG
The device supports w-based fog. W-based fog is used when a perspective
projection matrix is specified, but affine projections will still use z-based fog.
The system considers a projection matrix that contains a non-zero value in the
[3][4] element to be a perspective projection matrix.

D3DPRASTERCAPS_XOR
The device can support XOR operations. If this flag is not set but
D3DPRIM_RASTER_ROP2 is set, then XOR operations must still be
supported.

D3DPRASTERCAPS_ZBIAS
The device supports z-bias values. These are integer values assigned to polygons
that allow physically coplanar polygons to appear separate. For more
information, see D3DRENDERSTATE_ZBIAS in the
CONST_D3DRENDERSTATETYPE enumeration.

D3DPRASTERCAPS_ZBUFFERLESSHSR
The device can perform hidden-surface removal (HSR) without requiring the
application to sort polygons, and without requiring the allocation of a depth-
buffer. This leaves more video memory for textures. The method used to
perform hidden-surface removal is hardware-dependent and is transparent to the
application.
Z-bufferless HSR is performed if no depth-buffer surface is attached to the
rendering-target surface and the depth-buffer comparison test is enabled (that is,
when the state value associated with the D3DRENDERSTATE_ZENABLE
enumeration constant is set to True).

D3DPRASTERCAPS_ZTEST
The device can perform z-test operations. This effectively renders a primitive
and indicates whether any z pixels would have been rendered.

in.doc – page 740

CONST_D3DCAPSSHADE
[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSSHADE enumeration defines polygon shading capability
flags that are combined and present in the lShadeCaps member of the
D3DPRIMCAPS type.

Enum CONST_D3DCAPSSHADE
 D3DPSHADECAPS_ALPHAFLATBLEND = 4096
 D3DPSHADECAPS_ALPHAFLATSTIPPLED = 8192
 D3DPSHADECAPS_ALPHAGOURAUDBLEND = 16384
 D3DPSHADECAPS_ALPHAGOURAUDSTIPPLED = 32768
 D3DPSHADECAPS_ALPHAPHONGBLEND = 65536
 D3DPSHADECAPS_ALPHAPHONGSTIPPLED = 131072
 D3DPSHADECAPS_COLORFLATMONO = 1
 D3DPSHADECAPS_COLORFLATRGB = 2
 D3DPSHADECAPS_COLORGOURAUDMONO = 4
 D3DPSHADECAPS_COLORGOURAUDRGB = 8
 D3DPSHADECAPS_COLORPHONGMONO = 16
 D3DPSHADECAPS_COLORPHONGRGB = 32
 D3DPSHADECAPS_FOGFLAT = 262144
 D3DPSHADECAPS_FOGGOURAUD = 524288
 D3DPSHADECAPS_FOGPHONG = 1048576
 D3DPSHADECAPS_SPECULARFLATMONO = 64
 D3DPSHADECAPS_SPECULARFLATRGB = 128
 D3DPSHADECAPS_SPECULARGOURAUDMONO = 256
 D3DPSHADECAPS_SPECULARGOURAUDRGB = 512
 D3DPSHADECAPS_SPECULARPHONGMONO = 1024
 D3DPSHADECAPS_SPECULARPHONGRGB = 2048
End Enum

D3DPSHADECAPS_ALPHAFLATBLEND,
D3DPSHADECAPS_ALPHAFLATSTIPPLED

Device can support an alpha component for flat blended and stippled
transparency, respectively (the D3DSHADE_FLAT state for the
CONST_D3DSHADEMODE enumeration). In these modes, the alpha color
component for a primitive is provided as part of the color for the first vertex of
the primitive.

D3DPSHADECAPS_ALPHAGOURAUDBLEND,
D3DPSHADECAPS_ALPHAGOURAUDSTIPPLED

Device can support an alpha component for Gouraud blended and stippled
transparency, respectively (the D3DSHADE_GOURAUD state for the
CONST_D3DSHADEMODE enumeration). In these modes, the alpha color

IDH__dx_CONST_D3DCAPSSHADE_d3d_vb

in.doc – page 741

component for a primitive is provided at vertices and interpolated across a face
along with the other color components.

D3DPSHADECAPS_ALPHAPHONGBLEND,
D3DPSHADECAPS_ALPHAPHONGSTIPPLED

Device can support an alpha component for Phong blended and stippled
transparency, respectively (the D3DSHADE_PHONG state for the
CONST_D3DSHADEMODE enumeration). In these modes, vertex parameters
are reevaluated on a per-pixel basis, applying lighting effects for the red, green,
and blue color components. Phong shading is not currently supported.

D3DPSHADECAPS_COLORFLATMONO,
D3DPSHADECAPS_COLORFLATRGB

Device can support colored flat shading in color models, respectively. In these
modes, the color component for a primitive is provided as part of the color for
the first vertex of the primitive. In monochromatic lighting modes, only the blue
component of the color is interpolated; in RGB lighting modes, the red, green,
and blue components are interpolated.

D3DPSHADECAPS_COLORGOURAUDMONO,
D3DPSHADECAPS_COLORGOURAUDRGB

Device can support colored Gouraud shading in the D3DCOLOR_MONO and
D3DCOLOR_RGB color models, respectively. In these modes, the color
component for a primitive is provided at vertices and interpolated across a face
along with the other color components. In monochromatic lighting modes, only
the blue component of the color is interpolated; in RGB lighting modes, the red,
green, and blue components are interpolated.

D3DPSHADECAPS_COLORPHONGMONO,
D3DPSHADECAPS_COLORPHONGRGB

Device can support colored Phong shading in the D3DCOLOR_MONO and
D3DCOLOR_RGB color models, respectively. In these modes, vertex
parameters are reevaluated on a per-pixel basis. Lighting effects are applied for
the red, green, and blue color components in RGB mode, and for the blue
component only for monochromatic mode. Phong shading is not currently
supported.

D3DPSHADECAPS_FOGFLAT, D3DPSHADECAPS_FOGGOURAUD,
D3DPSHADECAPS_FOGPHONG

Device can support fog in the flat, Gouraud, and Phong shading models,
respectively. Phong shading is not currently supported.

D3DPSHADECAPS_SPECULARFLATMONO,
D3DPSHADECAPS_SPECULARFLATRGB

Device can support specular highlights in flat shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.

D3DPSHADECAPS_SPECULARGOURAUDMONO,
D3DPSHADECAPS_SPECULARGOURAUDRGB

Device can support specular highlights in Gouraud shading in color models,
respectively.

in.doc – page 742

D3DPSHADECAPS_SPECULARPHONGMONO,
D3DPSHADECAPS_SPECULARPHONGRGB

Device can support specular highlights in Phong shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models, respectively.
Phong shading is not currently supported.

CONST_D3DCAPSTEXTURE
[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSTEXTURE enumeration defines texturing capability flags
that are combined and present in the lTextureCaps member of the D3DPRIMCAPS
type.

Enum CONST_D3DCAPSTEXTURE {
 D3DPTEXTURECAPS_ALPHA = 4
 D3DPTEXTURECAPS_BORDER = 16
 D3DPTEXTURECAPS_PERSPECTIVE = 1
 D3DPTEXTURECAPS_POW2 = 2
 D3DPTEXTURECAPS_SQUAREONLY = 32
 D3DPTEXTURECAPS_TRANSPARENCY = 8
End Enum

D3DPTEXTURECAPS_ALPHA
Supports RGBA textures in the D3DTEX_DECAL and
D3DTEX_MODULATE texture filtering modes. If this capability is not set,
then only RGB textures are supported in those modes. Regardless of the
setting of this flag, alpha must always be supported in
D3DTEX_DECAL_MASK, D3DTEX_DECAL_ALPHA, and
D3DTEX_MODULATE_ALPHA filtering modes whenever those filtering
modes are available.

D3DPTEXTURECAPS_ALPHAPALETTE
Supports palettized texture surfaces whose palettes contain alpha information
(see DDPCAPS_ALPHA in the DDCAPS structure).

D3DPTEXTURECAPS_BORDER
Superseded by D3DPTADDRESSCAPS_BORDER.

D3DPTEXTURECAPS_PERSPECTIVE
Perspective correction is supported.

D3DPTEXTURECAPS_POW2
All nonmipmapped textures must have widths and heights specified as
powers of two if this flag is set. (Note that all mipmapped textures must
always have dimensions that are powers of two.)

D3DPTEXTURECAPS_SQUAREONLY
All textures must be square.

IDH__dx_CONST_D3DCAPSTEXTURE_d3d_vb

in.doc – page 743

D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE
Texture indices are not scaled by the texture size prior to interpolation.

D3DPTEXTURECAPS_TRANSPARENCY
Texture transparency is supported. (Only those texels that are not the current
transparent color are drawn.)

CONST_D3DCAPSTEXTUREAD
DRESS

[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSTEXTUREADDRESS enumeration defines texture
addressing capability flags that are combined and present in the
lTextureAddressCaps member of the D3DPRIMCAPS type.

Enum CONST_D3DCAPSTEXTUREADDRESS
 D3DPTADDRESSCAPS_BORDER = 8
 D3DPTADDRESSCAPS_CLAMP = 4
 D3DPTADDRESSCAPS_INDEPENDENTUV = 16
 D3DPTADDRESSCAPS_MIRROR = 2
 D3DPTADDRESSCAPS_WRAP = 1
End Enum

D3DPTADDRESSCAPS_BORDER
Device supports setting coordinates outside the range [0.0, 1.0] to the border
color, as specified by the D3DRENDERSTATE_BORDERCOLOR render state.
This ability corresponds to the D3DTADDRESS_BORDER texture-addressing
mode.

D3DPTADDRESSCAPS_CLAMP
Device can clamp textures to addresses.

D3DPTADDRESSCAPS_INDEPENDENTUV
Device can separate the texture-addressing modes of the u and v coordinates of
the texture. This ability corresponds to the
D3DRENDERSTATE_TEXTUREADDRESSU and
D3DRENDERSTATE_TEXTUREADDRESSV render-state values.

D3DPTADDRESSCAPS_MIRROR
Device can mirror textures to addresses.

D3DPTADDRESSCAPS_WRAP
Device can wrap textures to addresses.

IDH__dx_CONST_D3DCAPSTEXTUREADDRESS_d3d_vb

in.doc – page 744

CONST_D3DCAPSTEXTUREBLE
ND

[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSTEXTUREBLEND enumeration defines texture blending
capability flags that are combined and present in the lTextureBlendCaps member of
the D3DPRIMCAPS type.

Enum CONST_D3DCAPSTEXTUREBLEND
 D3DPTBLENDCAPS_ADD = 128
 D3DPTBLENDCAPS_COPY = 64
 D3DPTBLENDCAPS_DECAL = 1
 D3DPTBLENDCAPS_DECALALPHA = 4
 D3DPTBLENDCAPS_DECALMASK = 16
 D3DPTBLENDCAPS_MODULATE = 2
 D3DPTBLENDCAPS_MODULATEALPHA = 8
 D3DPTBLENDCAPS_MODULATEMASK = 32
End Enum

D3DPTBLENDCAPS_ADD
Supports the additive texture-blending mode, in which the Gouraud interpolants
are added to the texture lookup with saturation semantics. This capability
corresponds to the D3DTBLEND_ADD member of the
CONST_D3DTEXTUREBLEND enumeration.

D3DPTBLENDCAPS_COPY
Copy mode texture-blending (D3DTBLEND_COPY from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_DECAL
Decal texture-blending mode (D3DTBLEND_DECAL from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_DECALALPHA
Decal-alpha texture-blending mode (D3DTBLEND_DECALALPHA from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_DECALMASK
Decal-mask texture-blending mode (D3DTBLEND_DECALMASK from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_MODULATE
Modulate texture-blending mode (D3DTBLEND_MODULATE from the
CONST_D3DTEXTUREBLEND enumeration) is supported.

D3DPTBLENDCAPS_MODULATEALPHA
Modulate-alpha texture-blending mode (D3DTBLEND_MODULATEALPHA
from the CONST_D3DTEXTUREBLEND enumeration) is supported.

IDH__dx_CONST_D3DCAPSTEXTUREBLEND_d3d_vb

in.doc – page 745

D3DPTBLENDCAPS_MODULATEMASK
Modulate-mask texture-blending mode (D3DTBLEND_MODULATEMASK
from the CONST_D3DTEXTUREBLEND enumeration) is supported.

CONST_D3DCAPSTEXTUREFIL
TER

[This is preliminary documentation and subject to change.]

The CONST_D3DCAPSTEXTUREFILTER enumeration defines texture filtering
capability flags that are combined and present in the lTextureFilterCaps of the
D3DPRIMCAPS type.

Enum CONST_D3DCAPSTEXTUREFILTER
 D3DPTFILTERCAPS_LINEAR = 2
 D3DPTFILTERCAPS_LINEARMIPLINEAR = 32
 D3DPTFILTERCAPS_LINEARMIPNEAREST = 16
 D3DPTFILTERCAPS_MIPLINEAR = 8
 D3DPTFILTERCAPS_MIPNEAREST = 4
 D3DPTFILTERCAPS_NEAREST = 1
End Enum

D3DPTFILTERCAPS_LINEAR
A weighted average of a 22 area of texels surrounding the desired pixel is
used. This applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

D3DPTFILTERCAPS_LINEARMIPLINEAR
Similar to D3DPTFILTERCAPS_MIPLINEAR, but interpolates between the
two nearest mipmaps.

D3DPTFILTERCAPS_LINEARMIPNEAREST
The mipmap chosen is the mipmap whose texels most closely match the size of
the pixel to be textured. The D3DFILTER_LINEAR method is then used with
the texture.

D3DPTFILTERCAPS_MIPLINEAR
Two mipmaps are chosen whose texels most closely match the size of the pixel
to be textured. The D3DFILTER_NEAREST method is then used with each
texture to produce two values which are then weighted to produce a final texel
value.

D3DPTFILTERCAPS_MIPNEAREST
Similar to D3DPTFILTERCAPS_NEAREST, but uses the appropriate mipmap
for texel selection.

D3DPTFILTERCAPS_NEAREST
The texel with coordinates nearest to the desired pixel value is used. This
applies to both zooming in and zooming out. If either zooming in or zooming

IDH__dx_CONST_D3DCAPSTEXTUREFILTER_d3d_vb

in.doc – page 746

out is supported, then both must be supported.

CONST_D3DCLEARFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DCLEARFLAGS enumeration defines flags that are used to
determine the behavior of the Direct3DViewport3.Clear and
Direct3DViewport3.Clear2 methods.

Enum CONST_D3DCLEARFLAGS
 D3DCLEAR_ALL = 7
 D3DCLEAR_STENCIL = 4 ' Not supported by 3DViewport.Clear
 D3DCLEAR_TARGET = 1
 D3DCLEAR_ZBUFFER = 2
End Enum

D3DCLEAR_ALL
For the D3DViewport3.Clear2 method, clear the rendering target, stencil
buffer, and depth-buffer surfaces. For the For the D3DViewport3.Clear method,
clear the rendering target and depth-buffer surfaces.

D3DCLEAR_STENCIL
Clear the stencil buffer to the value in the dwStencil parameter. (This flag is not
supported by the D3DViewport3.Clear method.)

D3DCLEAR_TARGET
For the D3DViewport3.Clear2 method, clear the rendering target to the color in
the dwColor parameter; for the D3DViewport3.Clear method, clear the
rendering target to the color of the background material.

D3DCLEAR_ZBUFFER
For the D3DViewport3.Clear2 method, clear the depth-buffer to the value in
the dvZ parameter; for the D3DViewport3.Clear method, clear the depth buffer
to the default value.

CONST_D3DCLIPFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DCLIPFLAGS enumeration defines clipping flags used in the
D3DSTATUS and D3DTRANSFORMDATA types.

Enum CONST_D3DCLIPFLAGS
 ' Combination and general flags
 D3DSTATUS_CLIPINTERSECTIONALL = 17891328
 D3DSTATUS_CLIPUNIONALL = 17891328

IDH__dx_CONST_D3DCLEARFLAGS_d3d_vb
IDH__dx_CONST_D3DCLIPFLAGS_d3d_vb

in.doc – page 747

 D3DSTATUS_DEFAULT = 34668544
 D3DSTATUS_ZNOTVISIBLE = 16777216
 ' Clip intersection flags
 D3DSTATUS_CLIPINTERSECTIONBACK = 131072
 D3DSTATUS_CLIPINTERSECTIONBOTTOM = 32768
 D3DSTATUS_CLIPINTERSECTIONFRONT = 65536
 D3DSTATUS_CLIPINTERSECTIONGEN0 = 262144
 D3DSTATUS_CLIPINTERSECTIONGEN1 = 524288
 D3DSTATUS_CLIPINTERSECTIONGEN2 = 1048576
 D3DSTATUS_CLIPINTERSECTIONGEN3 = 2097152
 D3DSTATUS_CLIPINTERSECTIONGEN4 = 4194304
 D3DSTATUS_CLIPINTERSECTIONGEN5 = 8388608
 D3DSTATUS_CLIPINTERSECTIONLEFT = 4096
 D3DSTATUS_CLIPINTERSECTIONRIGHT = 8192
 D3DSTATUS_CLIPINTERSECTIONTOP = 16384
 ' Clip union flags
 D3DSTATUS_CLIPUNIONBACK = 32
 D3DSTATUS_CLIPUNIONBOTTOM = 8
 D3DSTATUS_CLIPUNIONFRONT = 16
 D3DSTATUS_CLIPUNIONGEN0 = 64
 D3DSTATUS_CLIPUNIONGEN1 = 128
 D3DSTATUS_CLIPUNIONGEN2 = 256
 D3DSTATUS_CLIPUNIONGEN3 = 512
 D3DSTATUS_CLIPUNIONGEN4 = 1024
 D3DSTATUS_CLIPUNIONGEN5 = 2048
 D3DSTATUS_CLIPUNIONLEFT = 1
 D3DSTATUS_CLIPUNIONRIGHT = 2
 D3DSTATUS_CLIPUNIONTOP = 4
 ' Basic clipping flags
 D3DCLIP_BACK = 32
 D3DCLIP_BOTTOM = 8
 D3DCLIP_FRONT = 16
 D3DCLIP_GEN0 = 64
 D3DCLIP_GEN1 = 128
 D3DCLIP_GEN2 = 256
 D3DCLIP_GEN3 = 512
 D3DCLIP_GEN4 = 1024
 D3DCLIP_GEN5 = 2048
 D3DCLIP_LEFT = 1
 D3DCLIP_RIGHT = 2
 D3DCLIP_TOP = 4
End Enum

Combination and General Flags
D3DSTATUS_CLIPINTERSECTIONALL

Combination of all CLIPINTERSECTION flags.

in.doc – page 748

D3DSTATUS_CLIPUNIONALL
Combination of all CLIPUNION flags.

D3DSTATUS_DEFAULT
Combination of D3DSTATUS_CLIPINTERSECTIONALL and
D3DSTATUS_ZNOTVISIBLE flags. This value is the default.

D3DSTATUS_ZNOTVISIBLE
Indicates that the rendered primitive is not visible. This flag is set or cleared by
the system when rendering with z-checking enabled (see
D3DRENDERSTATE_ZVISIBLE).
Clip Intersection Flags

D3DSTATUS_CLIPINTERSECTIONBACK
Logical AND of the clip flags for the vertices compared to the back clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front clipping
plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side of the
viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.
Clip Union Flags

D3DSTATUS_CLIPUNIONBACK
Equal to D3DCLIP_BACK.

D3DSTATUS_CLIPUNIONBOTTOM
Equal to D3DCLIP_BOTTOM.

D3DSTATUS_CLIPUNIONFRONT
Equal to D3DCLIP_FRONT.

D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5
Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.

D3DSTATUS_CLIPUNIONLEFT
Equal to D3DCLIP_LEFT.

D3DSTATUS_CLIPUNIONRIGHT

in.doc – page 749

Equal to D3DCLIP_RIGHT.
D3DSTATUS_CLIPUNIONTOP

Equal to D3DCLIP_TOP.
Basic Clipping Flags

D3DCLIP_BACK
All vertices are clipped by the back plane of the viewing frustum.

D3DCLIP_BOTTOM
All vertices are clipped by the bottom plane of the viewing frustum.

D3DCLIP_FRONT
All vertices are clipped by the front plane of the viewing frustum.

D3DCLIP_LEFT
All vertices are clipped by the left plane of the viewing frustum.

D3DCLIP_RIGHT
All vertices are clipped by the right plane of the viewing frustum.

D3DCLIP_TOP
All vertices are clipped by the top plane of the viewing frustum.

D3DCLIP_GEN0 through D3DCLIP_GEN5
Application-defined clipping planes.

CONST_D3DCLIPSTATUSFLAG
S

[This is preliminary documentation and subject to change.]

The CONST_D3DCLIPSTATUSFLAGS enumeration defines flags that are used in
the D3DCLIPSTATUS type.

Enum CONST_D3DCLIPSTATUSFLAGS
 D3DCLIPSTATUS_EXTENTS2 = 2
 D3DCLIPSTATUS_EXTENTS3 = 4
 D3DCLIPSTATUS_STATUS = 1
End Enum

D3DCLIPSTATUS_EXTENTS2
The structure describes the current 2-D extents. This flag cannot be combined
with D3DCLIPSTATUS_EXTENTS3.

D3DCLIPSTATUS_EXTENTS3
Not currently implemented.

D3DCLIPSTATUS_STATUS
The structure describes the current clip status.

IDH__dx_CONST_D3DCLIPSTATUSFLAGS_d3d_vb

in.doc – page 750

CONST_D3DCMPFUNC
[This is preliminary documentation and subject to change.]

The CONST_D3DCMPFUNC enumeration defines the supported compare
functions for the D3DRENDERSTATE_ZFUNC,
D3DRENDERSTATE_ALPHAFUNC, and D3DRENDERSTATE_STENCILFUNC
render states.

Enum CONST_D3DCMPFUNC
 D3DCMP_NEVER = 1
 D3DCMP_LESS = 2
 D3DCMP_EQUAL = 3
 D3DCMP_LESSEQUAL = 4
 D3DCMP_GREATER = 5
 D3DCMP_NOTEQUAL = 6
 D3DCMP_GREATEREQUAL = 7
 D3DCMP_ALWAYS = 8
 D3DCMP_FORCE_DWORD = 0x7fffffff
End Enum

D3DCMP_NEVER
Always fail the test.

D3DCMP_LESS
Accept the new pixel if its value is less than the value of the current pixel.

D3DCMP_EQUAL
Accept the new pixel if its value equals the value of the current pixel.

D3DCMP_LESSEQUAL
Accept the new pixel if its value is less than or equal to the value of the current
pixel.

D3DCMP_GREATER
Accept the new pixel if its value is greater than the value of the current pixel.

D3DCMP_NOTEQUAL
Accept the new pixel if its value does not equal the value of the current pixel.

D3DCMP_GREATEREQUAL
Accept the new pixel if its value is greater than or equal to the value of the
current pixel.

D3DCMP_ALWAYS
Always pass the test.

D3DCMP_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

IDH__dx_CONST_D3DCMPFUNC_d3d_vb

in.doc – page 751

CONST_D3DCOLORMODEL
[This is preliminary documentation and subject to change.]

The CONST_D3DCOLORMODEL enumeration is used to define the color model
in which the system will run. A driver can expose either or both flags in the
CONST_COLORMODEL member of the D3DDEVICEDESC structure.

Enum CONST_D3DCOLORMODEL
 D3DCOLOR_MONO = 1
 D3DCOLOR_RGB = 2
End Enum

D3DCOLOR_MONO
Use a monochromatic model (or ramp model). In this model, the blue
component of a vertex color is used to define the brightness of a lit vertex.

D3DCOLOR_RGB
Use a full RGB model.

CONST_D3DCULL
[This is preliminary documentation and subject to change.]

The CONST_D3DCULL enumeration defines the supported cull modes. These
define how back faces are culled when rendering a geometry.

Enum CONST_D3DCULL
 D3DCULL_NONE = 1
 D3DCULL_CW = 2
 D3DCULL_CCW = 3
 D3DCULL_FORCE_DWORD = 0x7fffffff
End Enum

D3DCULL_NONE
Do not cull back faces.

D3DCULL_CW
Cull back faces with clockwise vertices.

D3DCULL_CCW
Cull back faces with counterclockwise vertices.

D3DCULL_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

IDH__dx_CONST_D3DCOLORMODEL_d3d_vb
IDH__dx_CONST_D3DCULL_d3d_vb

in.doc – page 752

See Also
D3DPRIMCAPS, CONST_D3DRENDERSTATETYPE

CONST_D3DDEVICEDESCCAPS
[This is preliminary documentation and subject to change.]

The CONST_D3DDEVICEDESCCAPS enumeration defines device capability
flags that are combined and present in the lDevCaps member of the
D3DDEVICEDESC type.

Enum CONST_D3DDEVICEDESCCAPS
 D3DDEVCAPS_CANRENDERAFTERFLIP = 2048
 D3DDEVCAPS_DRAWPRIMTLVERTEX = 1024
 D3DDEVCAPS_EXECUTESYSTEMMEMORY = 16
 D3DDEVCAPS_EXECUTEVIDEOMEMORY = 32
 D3DDEVCAPS_FLOATTLVERTEX = 1
 D3DDEVCAPS_SORTDECREASINGZ = 4
 D3DDEVCAPS_SORTEXACT = 8
 D3DDEVCAPS_SORTINCREASINGZ = 2
 D3DDEVCAPS_TEXTURENONLOCALVIDMEM = 4096
 D3DDEVCAPS_TEXTURESYSTEMMEMORY = 256
 D3DDEVCAPS_TEXTUREVIDEOMEMORY = 512
 D3DDEVCAPS_TLVERTEXSYSTEMMEMORY = 64
 D3DDEVCAPS_TLVERTEXVIDEOMEMORY = 128
End Enum

D3DDEVCAPS_CANRENDERAFTERFLIP
Device can queue rendering commands after a page flip. Applications should
not change their behavior if this flag is set; this capability simply means that
the device is relatively fast.

D3DDEVCAPS_DRAWPRIMTLVERTEX
Device exports a DrawPrimitive-aware HAL.

D3DDEVCAPS_EXECUTESYSTEMMEMORY
Device can use execute buffers from system memory.

D3DDEVCAPS_EXECUTEVIDEOMEMORY
Device can use execute buffer from video memory.

D3DDEVCAPS_FLOATTLVERTEX
Device accepts floating point for post-transform vertex data.

D3DDEVCAPS_SORTDECREASINGZ
Device needs data sorted for decreasing depth.

D3DDEVCAPS_SORTEXACT
Device needs data sorted exactly.

IDH__dx_CONST_D3DDEVICEDESCCAPS_d3d_vb

in.doc – page 753

D3DDEVCAPS_SORTINCREASINGZ
Device needs data sorted for increasing depth.

D3DDEVCAPS_TEXREPEATNOTSCALEDBYSIZE
Device defers scaling of texture indices by the texture size until after the
texture address mode is applied.

D3DDEVCAPS_TEXTURENONLOCALVIDMEM
Device can retrieve textures from non-local video (AGP) memory.

D3DDEVCAPS_TEXTURESYSTEMMEMORY
Device can retrieve textures from system memory.

D3DDEVCAPS_TEXTUREVIDEOMEMORY
Device can retrieve textures from device memory.

D3DDEVCAPS_TLVERTEXSYSTEMMEMORY
Device can use buffers from system memory for transformed and lit vertices.

D3DDEVCAPS_TLVERTEXVIDEOMEMORY
Device can use buffers from video memory for transformed and lit vertices.

CONST_D3DDEVICEDESCFLAG
S

[This is preliminary documentation and subject to change.]

The CONST_D3DDEVICEDESCFLAGS enumeration defines flags that are used
in the lFlags member of the D3DDEVICEDESC type.

Enum CONST_D3DDEVICEDESCFLAGS
 D3DDD_BCLIPPING = 16
 D3DDD_COLORMODEL = 1
 D3DDD_DEVCAPS = 2
 D3DDD_DEVICERENDERBITDEPTH = 128
 D3DDD_DEVICEZBUFFERBITDEPTH = 256
 D3DDD_LIGHTINGCAPS = 8
 D3DDD_LINECAPS = 32
 D3DDD_MAXBUFFERSIZE = 512
 D3DDD_MAXVERTEXCOUNT = 1024
 D3DDD_TRANSFORMCAPS = 4
 D3DDD_TRICAPS = 64
End Enum

D3DDD_BCLIPPING
The lClipping member of the D3DDEVICEDESC type is valid.

D3DDD_COLORMODEL
The lColorModel member of the D3DDEVICEDESC type is valid.

IDH__dx_CONST_D3DDEVICEDESCFLAGS_d3d_vb

in.doc – page 754

D3DDD_DEVCAPS
The lDevCaps member of the D3DDEVICEDESC type is valid.

D3DDD_DEVICERENDERBITDEPTH
The lDeviceRenderBitDepth member of the D3DDEVICEDESC type is valid.

D3DDD_DEVICEZBUFFERBITDEPTH
The lDeviceZBufferBitDepth member of the D3DDEVICEDESC type is valid.

D3DDD_LIGHTINGCAPS
The dlcLightingCaps member of the D3DDEVICEDESC type is valid.

D3DDD_LINECAPS
The dpcLineCaps member of the D3DDEVICEDESC type is valid.

D3DDD_MAXBUFFERSIZE
The lMaxBufferSize member of the D3DDEVICEDESC type is valid.

D3DDD_MAXVERTEXCOUNT
The lMaxVertexCount member of the D3DDEVICEDESC type is valid.

D3DDD_TRANSFORMCAPS
The lTransformCaps member of the D3DDEVICEDESC type is valid.

D3DDD_TRICAPS
The dpcTriCaps member of the D3DDEVICEDESC type is valid.

CONST_D3DDPFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DDPFLAGS enumeration defines flags that are used to determine
the behavior of the Direct3D rendering methods. These flags are used with the
Direct3DDevice3.DrawPrimitive, Direct3DDevice3.DrawIndexedPrimitive,
Direct3DDevice3.DrawPrimitiveVB,
Direct3DDevice3.DrawIndexedPrimitiveVB, Direct3DDevice3.Begin, and
Direct3DDevice3.BeginIndexed.

Enum CONST_D3DDPFLAGS
 D3DDP_DEFAULT = 0
 D3DDP_DONOTCLIP = 4
 D3DDP_DONOTLIGHT = 16
 D3DDP_DONOTUPDATEEXTENTS = 8
 D3DDP_WAIT = 1
End Enum

D3DDP_DEFAULT
Perform normal rendering. (Return as soon as the polygons are sent to the
card.)

D3DDP_DONOTCLIP

IDH__dx_CONST_D3DDPFLAGS_d3d_vb

in.doc – page 755

The application has already done the required clipping, so the system should
not necessarily clip the primitives. (This flag is a hint; the system may clip
the primitive even when this flag is specified, under some circumstances.)

D3DDP_DONOTLIGHT
Disables the Direct3D lighting engine. The system uses the diffuse and
specular components at each vertex for shading when it rasterizes the set of
primitives. If a diffuse or specular component is not specified, the system
uses the default color for the missing component (0xFFFFFFFF for diffuse
and 0x00000000 for specular).

D3DDP_DONOTUPDATEEXTENTS
Disables the updating of the screen rectangle affected by this rendering call.
Using this flag can potentially help performance, but the extents returned by
Direct3DDevice3.GetClipStatus will not have been updated to account for
the data rendered by this call.

D3DDP_WAIT
Causes the method to wait until the polygons have been rendered before it
returns, instead of returning as soon as the polygons have been sent to the
card. (On scene-capture cards, the method returns as soon as the card
responds.) This flag is typically used for debugging. Applications should not
attempt to use this flag to ensure that a scene is up-to-date before continuing.

CONST_D3DFILLMODE
[This is preliminary documentation and subject to change.]

The CONST_D3DFILLMODE enumeration contains constants describing the fill
mode. These values are used by the D3DRENDERSTATE_FILLMODE render state
in the CONST_D3DRENDERSTATETYPE enumeration.

Enum CONST_D3DFILLMODE
 D3DFILL_POINT = 1
 D3DFILL_WIREFRAME = 2
 D3DFILL_SOLID = 3
 D3DFILL_FORCE_DWORD = 0x7fffffff
End Enum

D3DFILL_POINT
Fill points.

D3DFILL_WIREFRAME
Fill wireframes. This fill mode currently does not work for clipped primitives
when you are using the DrawPrimitive methods.

D3DFILL_SOLID
Fill solids.

D3DFILL_FORCE_DWORD

IDH__dx_CONST_D3DFILLMODE_d3d_vb

in.doc – page 756

Forces this enumeration to be 32 bits in size.

CONST_D3DFINDDEVICESEAR
CHFLAGS

[This is preliminary documentation and subject to change.]

The CONST_D3DFINDDEVICESEARCHFLAGS enumeration contains flags
defining the type of device the application wants to find. This member can be one or
more of the following values:

Enum CONST_D3DFINDDEVICESEARCHFLAGS
 D3DFDS_ALPHACMPCAPS = 256 (&H100)
 D3DFDS_COLORMODEL = 1
 D3DFDS_DSTBLENDCAPS = 1024 (&H400)
 D3DFDS_GUID = 2
 D3DFDS_HARDWARE = 4
 D3DFDS_LINES = 16 (&H10)
 D3DFDS_MISCCAPS = 32 (&H20)
 D3DFDS_RASTERCAPS = 64 (&H40)
 D3DFDS_SHADECAPS = 2048 (&H800)
 D3DFDS_SRCBLENDCAPS = 512 (&H200)
 D3DFDS_TEXTUREADDRESSCAPS = 32768 (&H8000)
 D3DFDS_TEXTUREBLENDCAPS = 16384 (&H4000)
 D3DFDS_TEXTURECAPS = 4096 (&H1000)
 D3DFDS_TEXTUREFILTERCAPS = 8192 (&H2000)
 D3DFDS_TRIANGLES = 8
 D3DFDS_ZCMPCAPS = 128 (&H80)
End Enum

D3DFDS_ALPHACMPCAPS
Match the lAlphaCmpCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this type.

D3DFDS_COLORMODEL
Match the color model specified in the dcmColorModel member of this type.

D3DFDS_DSTBLENDCAPS
Match the lDestBlendCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this type.

D3DFDS_GUID
Match the globally unique identifier (GUID) specified in the guid member of
this type.

D3DFDS_HARDWARE
Match the hardware or software search specification given in the bHardware
member of this type.

IDH__dx_CONST_D3DFINDDEVICESEARCHFLAGS_d3d_vb

in.doc – page 757

D3DFDS_LINES
Match the D3DPRIMCAPS type specified by the dpcLineCaps member of the
D3DDEVICEDESC type.

D3DFDS_MISCCAPS
Match the lMiscCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this type.

D3DFDS_RASTERCAPS
Match the lRasterCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this type.

D3DFDS_SHADECAPS
Match the lShadeCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this type.

D3DFDS_SRCBLENDCAPS
Match the lSrcBlendCaps member of the D3DPRIMCAPS type specified as
the dpcPrimCaps member of this type.

D3DFDS_TEXTUREBLENDCAPS
Match the lTextureBlendCaps member of the D3DPRIMCAPS type specified
as the dpcPrimCaps member of this type.

D3DFDS_TEXTURECAPS
Match the lTextureCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this type.

D3DFDS_TEXTUREFILTERCAPS
Match the lTextureFilterCaps member of the D3DPRIMCAPS type specified
as the dpcPrimCaps member of this type.

D3DFDS_TRIANGLES
Match the D3DPRIMCAPS type specified by the dpcTriCaps member of the
D3DDEVICEDESC type.

D3DFDS_ZCMPCAPS
Match the lZCmpCaps member of the D3DPRIMCAPS type specified as the
dpcPrimCaps member of this type.

CONST_D3DFOGMODE
[This is preliminary documentation and subject to change.]

The CONST_D3DFOGMODE enumeration contains constants describing the fog
mode. These values are used by the D3DRENDERSTATE_FOGTABLEMODE
render state in the CONST_D3DRENDERSTATETYPE enumeration.

Enum CONST_D3DFOGMODE
 D3DFOG_NONE = 0
 D3DFOG_EXP = 1
 D3DFOG_EXP2 = 2
 D3DFOG_LINEAR = 3

IDH__dx_CONST_D3DFOGMODE_d3d_vb

in.doc – page 758

 D3DFOG_FORCE_DWORD = 0x7fffffff
End Enum

D3DFOG_NONE
No fog effect.

D3DFOG_EXP
The fog effect intensifies exponentially, according to the following formula:

f d density
1
e

D3DFOG_EXP2
The fog effect intensifies exponentially with the square of the distance,
according to the following formula:

f d density
1

2e()

D3DFOG_LINEAR
The fog effect intensifies linearly between the start and end points, according to
the following formula:

f
end d

end start

This is the only fog mode currently supported.
D3DFOG_FORCE_DWORD

Forces this enumeration to be 32 bits in size.

Remarks
In monochromatic (ramp) lighting mode, fog works properly only when the fog color
is black. (If there is no lighting, any fog color will work, since in this case any fog
color is effectively black.)

Note
Fog can be considered a measure of visibility — the lower the fog value
produced by one of the fog equations, the less visible an object is.

CONST_D3DFVFCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DFVFCAPSFLAGS enumeration defines values present within or
used with the lFVFCaps member of the D3DDEVICEDESC type.

Enum CONST_D3DFVFCAPSFLAGS

IDH__dx_CONST_D3DFVFCAPSFLAGS_d3d_vb

in.doc – page 759

 D3DFVFCAPS_DONOTSTRIPELEMENTS = 524288
End Enum

D3DFVFCAPS_DONOTSTRIPELEMENTS
Device prefers that vertex elements not be stripped. That is, if the vertex format
contains elements that will not be used with the current render states, there is no
need to regenerate the vertices. If this capability flag is not present, stripping
extraneous elements from the vertex format will provide better performance.

CONST_D3DFVFFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DFVFFLAGS enumeration defines flexible vertex format flags for
use with the DrawPrimitive rendering methods. For details, see Flexible Vertex
Format Flags.

CONST_D3DIMERR
[This is preliminary documentation and subject to change.]

The CONST_D3DIMERR enumeration defines error codes raised by the system,
and are not otherwise useful. For descriptions of these error codes, see Error Codes.

CONST_D3DLIGHT2FLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DLIGHT2FLAGS enumeration defines flags that can be combined
in the lFlags member of the D3DLIGHT2 type.

Enum CONST_D3DLIGHT2FLAGS
 D3DLIGHT_ACTIVE = 1
 D3DLIGHT_NO_SPECULAR = 2
End Enum

D3DLIGHT_ACTIVE
Enables the light. This flag must be set to enable the light; if it is not set, the
light is ignored.

D3DLIGHT_NO_SPECULAR
Turns off specular highlights for the light.

IDH__dx_CONST_D3DFVFFLAGS_d3d_vb
IDH__dx_CONST_D3DIMERR_d3d_vb
IDH__dx_CONST_D3DLIGHT2FLAGS_d3d_vb

in.doc – page 760

CONST_D3DLIGHTCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DLIGHTCAPSFLAGS enumeration defines lighting capability
flags that are combined and present in the lCaps member of the
D3DLIGHTINGCAPS type.

Enum CONST_D3DLIGHTCAPSFLAGS
 D3DLIGHTCAPS_DIRECTIONAL = 4
 D3DLIGHTCAPS_POINT = 1
 D3DLIGHTCAPS_SPOT = 2
 D3DLIGHTCAPS_PARALLELPOINT = 8
End Enum

D3DLIGHTCAPS_DIRECTIONAL
Supports directional lights.

D3DLIGHTCAPS_PARALLELPOINT
Supports parallel point lights.

D3DLIGHTCAPS_POINT
Supports point lights.

D3DLIGHTCAPS_SPOT
Supports spotlights.

CONST_D3DLIGHTINGMODELF
LAGS

[This is preliminary documentation and subject to change.]

The CONST_D3DLIGHTINGMODELFLAGS enumeration defines lighting
model capability flags that are combined and present in the lLightingModel member
of the D3DLIGHTINGCAPS type.

Enum CONST_D3DLIGHTINGMODELFLAGS
 D3DLIGHTINGMODEL_MONO = 2
 D3DLIGHTINGMODEL_RGB = 1
End Enum

D3DLIGHTINGMODEL_MONO
Monochromatic lighting model.

D3DLIGHTINGMODEL_RGB
RGB lighting model.

IDH__dx_CONST_D3DLIGHTCAPSFLAGS_d3d_vb
IDH__dx_CONST_D3DLIGHTINGMODELFLAGS_d3d_vb

in.doc – page 761

CONST_D3DLIGHTSTATETYPE
[This is preliminary documentation and subject to change.]

The CONST_D3DLIGHTSTATETYPE enumeration defines the light state for the
Direct3DDevice3.SetLightState method.

Enum CONST_D3DLIGHTSTATETYPE
 D3DLIGHTSTATE_MATERIAL = 1
 D3DLIGHTSTATE_AMBIENT = 2
 D3DLIGHTSTATE_COLORMODEL = 3
 D3DLIGHTSTATE_FOGMODE = 4
 D3DLIGHTSTATE_FOGSTART = 5
 D3DLIGHTSTATE_FOGEND = 6
 D3DLIGHTSTATE_FOGDENSITY = 7
 D3DLIGHTSTATE_COLORVERTEX = 8
 D3DLIGHTSTATE_FORCE_DWORD = 0x7fffffff
End Enum

D3DLIGHTSTATE_MATERIAL
Defines the material that is lit and used to compute the final color and intensity
values during rasterization. The default value is Nothing. This value must be set
when you use textures in ramp mode.

D3DLIGHTSTATE_AMBIENT
Sets the color and intensity of the current ambient light. If an application
specifies this value, it should not specify a light as a parameter. The default
value is 0.

D3DLIGHTSTATE_COLORMODEL
Either D3DCOLOR_MONO or D3DCOLOR_RGB constant. The default value
is D3DCOLOR_RGB.

D3DLIGHTSTATE_FOGMODE
One of the constants of the CONST_D3DFOGMODE enumeration. The
default value is D3DFOG_NONE.

D3DLIGHTSTATE_FOGSTART
Defines the starting value for fog. The default value is 1.0.

D3DLIGHTSTATE_FOGEND
Defines the ending value for fog. The default value is 100.0.

D3DLIGHTSTATE_FOGDENSITY
Defines the density setting for fog. The default value is 1.0.

D3DLIGHTSTATE_COLORVERTEX
Enables or disables the use of the vertex color in lighting calculations for
vertices whose vertex format (specified as a flexible vertex format) includes
color information. The default value, True, enables the use of the vertex color in
lighting. Set this to False to cause the system to ignore the vertex color. Per-

IDH__dx_CONST_D3DLIGHTSTATETYPE_d3d_vb

in.doc – page 762

vertex color is supported only by lights for which properties are defined by a
D3DLIGHT2 structure.

D3DLIGHTSTATE_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

Remarks
Setting D3DLIGHTSTATE_COLORVERTEX to False instructs the geometry
pipeline to ignore part of each vertex (the vertex color). The only reason to use this
light state is to change the appearance of the geometry without respecifying it in a
different vertex format.

If D3DLIGHTSTATE_COLORVERTEX is set to True and a diffuse vertex color is
present, the output alpha is equal to the diffuse alpha for the vertex. Otherwise,
output alpha is equal to the alpha component of diffuse material, clamped to the
range [0, 255].

You can disable or enable lighting by including or omitting the
D3DDP_DONOTLIGHT flag when calling a standard Direct3DDevice3 rendering
method, such as Direct3DDevice3.DrawPrimitive. If you are using vertex buffers,
disable or enable lighting by ommiting or including the D3DVOP_LIGHT flag when
you call the Direct3DVertexBuffer.ProcessVertices method.

See Also
Light Properties

CONST_D3DLIGHTTYPE
[This is preliminary documentation and subject to change.]

The CONST_D3DLIGHTTYPE enumeration defines flags that identify light types.
These flags are used in the lType member of the D3DLIGHT2 type.

Enum CONST_D3DLIGHTTYPE
 D3DLIGHT_DIRECTIONAL = 3
 D3DLIGHT_PARALLELPOINT = 4
 D3DLIGHT_POINT = 1
 D3DLIGHT_SPOT = 2
End Enum

D3DLIGHT_DIRECTIONAL
Light is a directional source. This is equivalent to using a point light source at
an infinite distance.

D3DLIGHT_PARALLELPOINT

IDH__dx_CONST_D3DLIGHTTYPE_d3d_vb

in.doc – page 763

Light is a parallel point source. This light type acts like a directional light except
its direction is the vector going from the light position to the origin of the
geometry it is illuminating.

D3DLIGHT_POINT
Light is a point source. The light has a position in space and radiates light in all
directions.

D3DLIGHT_SPOT
Light is a spotlight source. This light is something like a point light except that
the illumination is limited to a cone. This light type has a direction and several
other parameters which determine the shape of the cone it produces. For
information about these parameters, see the D3DLIGHT2 type.

CONST_D3DNEXTFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DNEXTFLAGS defines behavior flags that can be used in the flags
parameter of the Direct3DDevice3.NextViewport method.

Enum CONST_D3DNEXTFLAGS
 D3DNEXT_HEAD = 2
 D3DNEXT_NEXT = 1
 D3DNEXT_TAIL = 4
End Enum

D3DNEXT_HEAD
Retrieve the item at the beginning of the list.

D3DNEXT_NEXT
Retrieve the next item in the list.

D3DNEXT_TAIL
Retrieve the item at the end of the list.

CONST_D3DPALFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DPALFLAGS enumeration defines palette entry flags that can be
combined and used in the flags member of the PALETTEENTRY type.

Enum CONST_D3DPALFLAGS
 D3DPAL_FREE = 0
 D3DPAL_READONLY = 64
 D3DPAL_RESERVED = 128
End Enum

IDH__dx_CONST_D3DNEXTFLAGS_d3d_vb
IDH__dx_CONST_D3DPALFLAGS_d3d_vb

in.doc – page 764

D3DPAL_FREE

D3DPAL_READONLY

D3DPAL_RESERVED

CONST_D3DPRIMITIVETYPE
[This is preliminary documentation and subject to change.]

The CONST_D3DPRIMITIVETYPE enumeration lists the primitives supported by
DrawPrimitive methods.

Enum CONST_D3DPRIMITIVETYPE
 D3DPT_POINTLIST = 1
 D3DPT_LINELIST = 2
 D3DPT_LINESTRIP = 3
 D3DPT_TRIANGLELIST = 4
 D3DPT_TRIANGLESTRIP = 5
 D3DPT_TRIANGLEFAN = 6
 D3DPT_FORCE_DWORD = 0x7fffffff
End Enum

D3DPT_POINTLIST
Renders the vertices as a collection of isolated points.

D3DPT_LINELIST
Renders the vertices as a list of isolated straight line segments. Calls using this
primitive type will fail if the count is less than 2, or is odd.

D3DPT_LINESTRIP
Renders the vertices as a single polyline. Calls using this primitive type will fail
if the count is less than 2.

D3DPT_TRIANGLELIST
Renders the specified vertices as a sequence of isolated triangles. Each group of
3 vertices defines a separate triangle. Calls using this primitive type will fail if
the count is less than 3, or if not evenly divisible by 3.
Backface culling is affected by the current winding order render state.

D3DPT_TRIANGLESTRIP
Renders the vertices as a triangle strip. Calls using this primitive type will fail if
the count is less than 3. The backface removal flag is automatically flipped on
even numbered triangles.

D3DPT_TRIANGLEFAN

IDH__dx_CONST_D3DPRIMITIVETYPE_d3d_vb

in.doc – page 765

Renders the vertices as a triangle fan. Calls using this primitive type will fail if
the count is less than 3.

D3DPT_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

Remarks
Using triangle strips or fans is often more efficient than using triangle lists, as fewer
vertices are duplicated.

See Also
Direct3DDevice3.Begin, Direct3DDevice3.BeginIndexed,
Direct3DDevice3.DrawIndexedPrimitive, Direct3DDevice3.DrawPrimitive

CONST_D3DRENDERSTATETY
PE

[This is preliminary documentation and subject to change.]

The CONST_D3DRENDERSTATETYPE enumeration describes the render state
for the D3DOP_STATERENDER opcode. The values mentioned in the following
descriptions are set in the second member of this structure.

Enum CONST_D3DRENDERSTATETYPE
 D3DRENDERSTATE_TEXTUREHANDLE = 1,
 D3DRENDERSTATE_ANTIALIAS = 2,
 D3DRENDERSTATE_TEXTUREADDRESS = 3,
 D3DRENDERSTATE_TEXTUREPERSPECTIVE = 4,
 D3DRENDERSTATE_WRAPU = 5,
 D3DRENDERSTATE_WRAPV = 6,
 D3DRENDERSTATE_ZENABLE = 7,
 D3DRENDERSTATE_FILLMODE = 8,
 D3DRENDERSTATE_SHADEMODE = 9,
 D3DRENDERSTATE_MONOENABLE = 11,
 D3DRENDERSTATE_ROP2 = 12,
 D3DRENDERSTATE_PLANEMASK = 13,
 D3DRENDERSTATE_ZWRITEENABLE = 14,
 D3DRENDERSTATE_ALPHATESTENABLE = 15,
 D3DRENDERSTATE_LASTPIXEL = 16,
 D3DRENDERSTATE_TEXTUREMAG = 17,
 D3DRENDERSTATE_TEXTUREMIN = 18,
 D3DRENDERSTATE_SRCBLEND = 19,
 D3DRENDERSTATE_DESTBLEND = 20,

IDH__dx_CONST_D3DRENDERSTATETYPE_d3d_vb

in.doc – page 766

 D3DRENDERSTATE_TEXTUREMAPBLEND = 21,
 D3DRENDERSTATE_CULLMODE = 22,
 D3DRENDERSTATE_ZFUNC = 23,
 D3DRENDERSTATE_ALPHAREF = 24,
 D3DRENDERSTATE_ALPHAFUNC = 25,
 D3DRENDERSTATE_DITHERENABLE = 26,
 D3DRENDERSTATE_ALPHABLENDENABLE = 27,
 D3DRENDERSTATE_FOGENABLE = 28,
 D3DRENDERSTATE_SPECULARENABLE = 29,
 D3DRENDERSTATE_ZVISIBLE = 30,
 D3DRENDERSTATE_SUBPIXEL = 31,
 D3DRENDERSTATE_SUBPIXELX = 32,
 D3DRENDERSTATE_STIPPLEDALPHA = 33,
 D3DRENDERSTATE_FOGCOLOR = 34,
 D3DRENDERSTATE_FOGTABLEMODE = 35,
 D3DRENDERSTATE_FOGTABLESTART = 36,
 D3DRENDERSTATE_FOGTABLEEND = 37,
 D3DRENDERSTATE_FOGTABLEDENSITY = 38,
 D3DRENDERSTATE_STIPPLEENABLE = 39,
 D3DRENDERSTATE_EDGEANTIALIAS = 40,
 D3DRENDERSTATE_COLORKEYENABLE = 41,
 D3DRENDERSTATE_BORDERCOLOR = 43,
 D3DRENDERSTATE_TEXTUREADDRESSU = 44,
 D3DRENDERSTATE_TEXTUREADDRESSV = 45,
 D3DRENDERSTATE_MIPMAPLODBIAS = 46,
 D3DRENDERSTATE_ZBIAS = 47,
 D3DRENDERSTATE_RANGEFOGENABLE = 48,
 D3DRENDERSTATE_ANISOTROPY = 49,
 D3DRENDERSTATE_FLUSHBATCH = 50, // (DX5 Only)
 D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT=51,
 D3DRENDERSTATE_STENCILENABLE = 52,
 D3DRENDERSTATE_STENCILFAIL = 53,
 D3DRENDERSTATE_STENCILZFAIL = 54,
 D3DRENDERSTATE_STENCILPASS = 55,
 D3DRENDERSTATE_STENCILFUNC = 56,
 D3DRENDERSTATE_STENCILREF = 57,
 D3DRENDERSTATE_STENCILMASK = 58,
 D3DRENDERSTATE_STENCILWRITEMASK = 59,
 D3DRENDERSTATE_TEXTUREFACTOR = 60,
 D3DRENDERSTATE_STIPPLEPATTERN00 = 64,
 // Stipple patterns 01 through 30 omitted here.
 D3DRENDERSTATE_STIPPLEPATTERN31 = 95,
 // last line of stipple pattern
 D3DRENDERSTATE_WRAP0 = 128,
 // Wrap render states 1 through 6 omitted here.
 D3DRENDERSTATE_WRAP7 = 135,

in.doc – page 767

 D3DRENDERSTATE_FORCE_DWORD = 0x7fffffff
} D3DRENDERSTATETYPE;

D3DRENDERSTATE_TEXTUREHANDLE
Texture handle for use when rendering with the Direct3DDevice2 or earlier
interfaces. The default value is Nothing, which disables texture mapping and
reverts to flat or Gouraud shading.
If the specified texture is in a system memory surface and the driver can only
support texturing from display memory surfaces, the call will fail.
In retail builds the texture handle is not validated.

D3DRENDERSTATE_ANTIALIAS
One of the constants of the CONST_D3DANTIALIASMODE enumeration
specifying the antialiasing of primitive edges. The default value is
D3DANTIALIAS_NONE.

D3DRENDERSTATE_TEXTUREADDRESS
This render state is superseded by the D3DTSS_ADDRESS texture stage state
value set through the Direct3DDevice3.SetTextureStageState method, but can
still be used to set the addressing mode of the first texture stage. Valid values
are constants of the CONST_D3DTEXTUREADDRESS enumeration. The
default value is D3DTADDRESS_WRAP.
Applications that need to specify separate texture-addressing modes for the u
and v coordinates of a texture can use the
D3DRENDERSTATE_TEXTUREADDRESSU and
D3DRENDERSTATE_TEXTUREADDRESSV render states.

D3DRENDERSTATE_TEXTUREPERSPECTIVE
True to enable for perspective correct texture mapping. (See perspective
correction.) For the Direct3DDevice3 interface, the default value is True.

D3DRENDERSTATE_WRAPU and
D3DRENDERSTATE_WRAPV

These render states are superseded by the D3DRENDERSTATE_WRAP0
through D3DRENDERSTATE_WRAP7 render states, but can be used to set
wrapping for the first texture stage. Set to True for wrapping in u direction. The
default value is False.

D3DRENDERSTATE_ZENABLE
The depth buffering state, as one of the constants of the
CONST_D3DZBUFFERTYPE enumeration. Set this state to D3DZB_TRUE
to enable z-buffering, D3DZB_USEW to enable w-buffering, or
D3DZB_FALSE to disable depth buffering.
The default value for this render state is D3DZB_TRUE if a depth buffer is
attached to the render-target surface, and D3DZB_FALSE otherwise.

D3DRENDERSTATE_FILLMODE
One or more constants of the CONST_D3DFILLMODE enumeration. The
default value is D3DFILL_SOLID.

D3DRENDERSTATE_SHADEMODE

in.doc – page 768

One or more constants of the D3DSHADEMODE enumeration. The default
value is D3DSHADE_GOURAUD.

D3DRENDERSTATE_MONOENABLE
True to enable monochromatic rendering, using a gray scale based on the blue
channel of the color rather than full RGB. The default value is False. If the
device does not support RGB rendering, the value will be True. Applications can
check whether the device supports RGB rendering by using the
dcmColorModel member of the D3DDEVICEDESC structure.
In monochromatic rendering, only the intensity (gray scale) component of the
color and specular components are interpolated across the triangle. This means
that only one channel (gray) is interpolated across the triangle instead of 3
channels (R,G,B), which is a performance gain for some hardware. This gray-
scale component is derived from the blue channel of the color and specular
components of the triangle.

D3DRENDERSTATE_ROP2
One of the 16 standard Windows ROP2 binary raster operations specifying how
the supplied pixels are combined with the pixels of the display surface. The
default value is R2_COPYPEN. Applications can use the
D3DPRASTERCAPS_ROP2 flag in the lRasterCaps member of the
D3DPRIMCAPS type to determine whether additional raster operations are
supported.

D3DRENDERSTATE_PLANEMASK
Physical plane mask whose default value is the bitwise negation of zero (~0).
This physical plane mask can be used to turn off the red bit, the blue bit, and so
on. This render state is not supported by the software rasterizers, and is often
ignored by hardware drivers. To disable writes to the color buffer by using alpha
blending, you can set D3DRENDERSTATE_SRCBLEND to
D3DBLEND_ZERO and D3DRENDERSTATE_DESTBLEND to
D3DBLEND_ONE.

D3DRENDERSTATE_ZWRITEENABLE
True to enable writes to the depth buffer. The default value is True. This
member enables an application to prevent the system from updating the depth
buffer with new depth values. If this state is False, depth comparisons are still
made according to the render state D3DRENDERSTATE_ZFUNC (assuming
depth buffering is taking place), but depth values are not written to the buffer.

D3DRENDERSTATE_ALPHATESTENABLE
True to enable alpha tests. The default value is False. This member enables
applications to turn off the tests that otherwise would accept or reject a pixel
based on its alpha value.
The incoming alpha value is compared with the reference alpha value using the
comparison function provided by the D3DRENDERSTATE_ALPHAFUNC
render state. When this mode is enabled, alpha blending occurs only if the test
succeeds.

D3DRENDERSTATE_LASTPIXEL

in.doc – page 769

False to enable drawing the last pixel in a line or triangle. The default value is
True.

D3DRENDERSTATE_TEXTUREMAG
This render state is superseded by the D3DTSS_MAGFILTER texture stage
stage, set through the Direct3DDevice3.SetTextureStageState method, but can
still be used to set the magnification filter for the first texture stage. This render
state can be one of the constants of the CONST_D3DTEXTUREFILTER
enumeration, which describes how a texture should be filtered when it is being
magnified (that is, when a texel must cover more than one pixel). The valid
values are D3DFILTER_NEAREST (the default) and D3DFILTER_LINEAR.

D3DRENDERSTATE_TEXTUREMIN
This render state is superseded by the D3DTSS_MINFILTER texture stage
stage, set through the Direct3DDevice3.SetTextureStageState method, but can
still be used to set the minification filter for the first texture stage. This render
state can be one of the constants of the CONST_D3DTEXTUREFILTER
enumeration, which describes how a texture should be filtered when it is being
made smaller (that is, when a pixel contains more than one texel). Any of the
constants of the CONST_D3DTEXTUREFILTER enumeration can be
specified for this render state. The default value is D3DFILTER_NEAREST.

D3DRENDERSTATE_SRCBLEND
One of the constants of the CONST_D3DBLEND enumeration. The default
value is D3DBLEND_ONE.

D3DRENDERSTATE_DESTBLEND
One of the constants of the CONST_D3DBLEND enumeration. The default
value is D3DBLEND_ZERO.

D3DRENDERSTATE_TEXTUREMAPBLEND
This render state is used when rendering with the Direct3DDevice2 interface.
When rendering multiple textures with the Direct3DDevice3 interface, you can
set blending operations and arguments through the
Direct3DDevice3.SetTextureStageState method.
One of the constants of the CONST_D3DTEXTUREBLEND enumeration. The
default value is D3DTBLEND_MODULATE.

D3DRENDERSTATE_CULLMODE
Specifies how back-facing triangles are to be culled, if at all. This can be set to
one of the constants of the CONST_D3DCULL enumeration. The default value
is D3DCULL_CCW.

D3DRENDERSTATE_ZFUNC
One of the constants of the CONST_D3DCMPFUNC enumeration. The default
value is D3DCMP_LESSEQUAL. This member enables an application to accept
or reject a pixel based on its distance from the camera.
The depth value of the pixel is compared with the depth buffer value. If the
depth value of the pixel passes the comparison function, the pixel is written.
The depth value is written to the depth buffer only if the render state
D3DRENDERSTATE_ZWRITEENABLE is True.

in.doc – page 770

Software rasterizers and many hardware accelerators work faster if the depth test
fails, since there is no need to filter and modulate the texture if the pixel is not
going to be rendered.

D3DRENDERSTATE_ALPHAREF
Value specifying a reference alpha value against which pixels are tested when
alpha-testing is enabled. This can be a 16:16 fixed point value (D3DFIXED)
ranging from 0 to 1, inclusive, where 1.0 is represented as 0x00010000. The
default value is 0.0.

D3DRENDERSTATE_ALPHAFUNC
One of the constants of the CONST_D3DCMPFUNC enumeration. The default
value is D3DCMP_ALWAYS. This member enables an application to accept or
reject a pixel based on its alpha value.

D3DRENDERSTATE_DITHERENABLE
True to enable dithering. The default value is False.

D3DRENDERSTATE_ALPHABLENDENABLE
True to enable alpha-blended transparency. The default value is False. This
member supersedes the legacy D3DRENDERSTATE_BLENDENABLE render
state; see remarks for more information.
You can use the D3DRENDERSTATE_COLORKEYENABLE render state to
toggle color keying. (Hardware rasterizers have always used the
D3DRENDERSTATE_BLENDENABLE render state only for toggling alpha
blending.)
The type of alpha blending is determined by the
D3DRENDERSTATE_SRCBLEND and D3DRENDERSTATE_DESTBLEND
render states. D3DRENDERSTATE_ALPHABLENDENABLE, with
D3DRENDERSTATE_COLORKEYENABLE, allows fine blending control.
D3DRENDERSTATE_ALPHABLENDENABLE does not affect the texture-
blending modes specified by the CONST_D3DTEXTUREBLEND
enumeration. Texture blending is logically well before the
D3DRENDERSTATE_ALPHABLENDENABLE part of the pixel pipeline. The
only interaction between the two is that the alpha portions remaining in the
polygon after the CONST_D3DTEXTUREBLEND phase may be used in the
D3DRENDERSTATE_ALPHABLENDENABLE phase to govern interaction
with the content in the frame buffer.
Applications should check the D3DDEVCAPS_DRAWPRIMTLVERTEX flag
in the D3DDEVICEDESC type to find out whether this render state is
supported.

D3DRENDERSTATE_FOGENABLE
True to enable fog blending. The default value is False.

D3DRENDERSTATE_SPECULARENABLE
True to enable specular highlights. The default value is True.
Specular highlights are calculated as though every vertex in the object being lit
were at the object's origin. This gives the expected results as long as the object
is modeled around the origin and the distance from the light to the object is
relatively large.

in.doc – page 771

D3DRENDERSTATE_ZVISIBLE
(This render state is valid only for execute buffer devices.) True to enable z-
checking. The default value is False. Z-checking is a culling technique in which
a polygon representing the screen space of an entire group of polygons is tested
against the depth-buffer to discover whether any of the polygons should be
drawn.
In this mode of operation, the primitives are rendered without writing pixels or
updating the depth-buffer. You can determine if the primitive would be visible
by calling the Direct3DDevice3.GetClipStatus method. If the
D3DSTATUS_ZNOTVISIBLE flag bit is set after the call, the rendered
primitives are not visible, and do not need to be rendered to the frame and
depth-buffers. If D3DSTATUS_ZNOTVISIBLE is not present, then one or more
of the primitives are visible.
Direct3D Retained Mode uses this operation as a quick-reject test: it does the z-
visible test on the bounding box of a set of primitives and only renders them if it
returns True.

D3DRENDERSTATE_SUBPIXEL
True to enable subpixel correction. The default value is False.
Subpixel correction is the ability to draw pixels in precisely their correct
locations. In a system that implemented subpixel correction, if a pixel were at
position 0.1356, its position would be interpolated from the actual coordinate
rather than simply drawn at 0 (using the integer values). Hardware can be non-
subpixel correct or subpixel correct in x or in both x and y. When interpolating
across the x-direction the actual coordinate is used. All hardware should be
subpixel correct. Some software rasterizers are not subpixel correct because of
the performance loss.
Subpixel correction means that the hardware always pre-steps the interpolant
values in the x-direction to the nearest pixel centers and then steps one pixel at a
time in the y-direction. For each x span it also pre-steps in the x-direction to the
nearest pixel center and then steps in the x-direction one pixel each time. This
results in very accurate rendering and eliminates almost all jittering of pixels on
triangle edges. Most hardware either doesn't support it (always off) or always
supports it (always on).

D3DRENDERSTATE_SUBPIXELX
True to enable subpixel correction in the x-direction only. The default value is
False.

D3DRENDERSTATE_STIPPLEDALPHA
True to enable stippled alpha. The default value is False.
Current software rasterizers ignore this render state. You can use the
D3DPSHADECAPS_ALPHAFLATSTIPPLED flag in the D3DPRIMCAPS
type to discover whether the current hardware supports this render state.

D3DRENDERSTATE_FOGCOLOR
Value indicating RGB values, the default value is 0.

D3DRENDERSTATE_FOGTABLEMODE

in.doc – page 772

The fog formula to be used for pixel fog. Set to one of the constants of the
CONST_D3DFOGMODE enumeration. The default value is D3DFOG_NONE.

D3DRENDERSTATE_FOGTABLESTART
D3DRENDERSTATE_FOGTABLEEND

Depth at which pixel fog effects begin and end for linear fog mode. Depth can
be specified in world-space or in device-space, depending on the other fog
parameters. For more information, see Pixel Fog Parameters and Eye-Relative
vs. Z-Based Depth.
These render states enable you to exclude fog effects for positions close to the
camera. For example, you could set the starting depth to 0.3 to prevent fog
effects for depths between 0.0 and 0.299, and the ending depth to 0.7 to prevent
additional fog effects for depths between 0.701 and 1.0.

D3DRENDERSTATE_FOGTABLEDENSITY
Fog density for pixel fog to be used in the exponential fog modes
(D3DFOG_EXP and D3DFOG_EXP2). Valid density values range from 0.0 to
1.0, inclusive. The default value is 1.0.

D3DRENDERSTATE_STIPPLEENABLE
Enables stippling in the device driver. When stippled alpha is enabled, it
overrides the current stipple pattern, as specified by the
D3DRENDERSTATE_STIPPLEPATTERN00 through
D3DRENDERSTATE_STIPPLEPATTERN31 render states. When stippled
alpha is disabled, the stipple pattern must be returned.

D3DRENDERSTATE_EDGEANTIALIAS
True to antialias lines forming the convex outline of objects. The default value
is False. When set to True, only lines should be drawn. The behavior is
undefined if triangles or points are drawn when this render state is set.
Antialiasing is performed simply by averaging the values of neighboring pixels.
Although this is not the best way to perform antialiasing, it can be very efficient;
hardware that supports this kind of operation is becoming more common.
Applications should not antialias interior edges of objects. The lines forming the
outside edges should be drawn last.

D3DRENDERSTATE_COLORKEYENABLE
True to enable color-keyed transparency. The default value is False. You can
use this render state with D3DRENDERSTATE_ALPHABLENDENABLE to
implement fine blending control.
Applications should check the D3DDEVCAPS_DRAWPRIMTLVERTEX flag
in the D3DDEVICEDESC type to find out whether this render state is
supported.
When color-keyed transparency is enabled, only texture surfaces that were
created with the DDSD_CKSRCBLT flag will be affected. Surfaces that were
created without the DDSD_CKSRCBLT flag will exhibit color-keyed
transparency effects.

D3DRENDERSTATE_BORDERCOLOR
A value specifying a border color. If the texture addressing mode is specified as
D3DTADDRESS_BORDER (as set in the CONST_D3DTEXTUREADDRESS

in.doc – page 773

enumeration), this render state specifies the border color the system uses when it
encounters texture coordinates outside the range [0.0, 1.0].
The format of the physical-color information specified by the value depends on
the format of the DirectDraw surface.

D3DRENDERSTATE_TEXTUREADDRESSU
This render state is superseded by the D3DTSS_ADDRESSU texture stage state
value set through the Direct3DDevice3.SetTextureStageState method, but can
still be used to set the addressing mode of the first texture stage. Valid values
are constants of the CONST_D3DTEXTUREADDRESS enumeration. The
default value is D3DTADDRESS_WRAP. For more information, see Texture
Addressing Modes.
This render state applies only to the u texture coordinate. This render state,
along with D3DRENDERSTATE_TEXTUREADDRESSV, allows you to
specify separate texture-addressing modes for the u and v coordinates of a
texture. Because the D3DRENDERSTATE_TEXTUREADDRESS render state
applies to both the u and v texture coordinates, it overrides any values set for the
D3DRENDERSTATE_TEXTUREADDRESSU render state.

D3DRENDERSTATE_TEXTUREADDRESSV
This render state is superseded by the D3DTSS_ADDRESSV texture stage state
value set through the Direct3DDevice3.SetTextureStageState method, but can
still be used to set the addressing mode of the first texture stage. Valid values
are constants of the CONST_D3DTEXTUREADDRESS enumeration. The
default value is D3DTADDRESS_WRAP.
This render state applies only to the v texture coordinate. This render state,
along with D3DRENDERSTATE_TEXTUREADDRESSU, allows you to
specify separate texture-addressing modes for the u and v coordinates of a
texture. Because the D3DRENDERSTATE_TEXTUREADDRESS render state
applies to both the u and v texture coordinates, it overrides any values set for the
D3DRENDERSTATE_TEXTUREADDRESSV render state.

D3DRENDERSTATE_MIPMAPLODBIAS
Floating-point value used to change the level of detail (LOD) bias. This value
offsets the value of the mipmap level that is computed by trilinear texturing. It is
usually in the range –1.0 to 1.0; the default value is 0.0.
Each unit bias (+/-1.0) biases the selection by exactly one mipmap level. A
positive bias will cause the use of larger mipmap levels, resulting in a sharper
but more aliased image. A negative bias will cause the use of smaller mipmap
levels, resulting in a blurrier image. Applying a negative bias also results in the
referencing of a smaller amount of texture data, which can boost performance on
some systems.

D3DRENDERSTATE_ZBIAS
An integer value in the range 0 to 16 that causes polygons that are physically
coplanar to appear separate. Polygons with a high z-bias value will appear in
front of polygons with a low value, without requiring sorting for drawing order.
Polygons with a value of 1 appear in front of polygons with a value of 0, and so
on. The default value is zero.

in.doc – page 774

D3DRENDERSTATE_RANGEFOGENABLE
True to enable range-based vertex fog. (The default value is False, in which case
the system uses depth-based fog.) In range-based fog, the distance of an object
from the viewer is used to compute fog effects, not the depth of the object (that
is, the z-coordinate) in the scene. In range-based fog, all fog methods work as
usual, except that they use range instead of depth in the computations.
Range is the correct factor to use for fog computations, but depth is commonly
used instead because range is expensive to compute and depth is generally
already available. Using depth to calculate fog has the undesirable effect of
having the 'fogginess' of peripheral objects change as the eye is rotated — in this
case, the depth changes while the range remains constant.
This render state works only with D3DVERTEX vertices. When you specify
D3DLVERTEX or D3DTLVERTEX vertices, the F (fog) component of the
RGBF fog value should already be corrected for range.
Since no hardware currently supports per-pixel range-based fog, range
correction offered only for vertex fog.

D3DRENDERSTATE_ANISOTROPY
This render state is superseded by the D3DTSS_MAXANISOTROPY texture
stage state, set through the Direct3DDevice3.SetTextureStageState method,
but can still be used to set the degree of anisotropic filtering for the first texture
stage.
This render state can be an integer value that enables a degree of anisotropic
filtering, used for bilinear or trilinear filtering. The value determines the
maximum aspect ratio of the sampling filter kernel. To determine the range of
appropriate values, use the D3DPRASTERCAPS_ANISOTROPY flag in the
D3DPRIMCAPS structure.
Anisotropy is the distortion visible in the texels of a 3-D object whose surface is
oriented at an angle with respect to the plane of the screen. The anisotropy is
measured as the elongation (length divided by width) of a screen pixel that is
inverse-mapped into texture space.

D3DRENDERSTATE_FLUSHBATCH
Flush any pending DrawPrimitive batches. When rendering with texture handles
(using the Direct3DDevice2 interface) you must flush batched primitives after
modifying the current texture surface. Batched primitives are implicitly flushed
when rendering with the Direct3DDevice3 interface, as well as when rendering
with execute buffers.

D3DRENDERSTATE_TRANSLUCENTSORTINDEPENDENT
True to enable sort-independent transparency, or False to disable.

D3DRENDERSTATE_STENCILENABLE
True to enable stenciling, or False to disable stenciling. The default value is
False.

D3DRENDERSTATE_STENCILFAIL
Stencil operation to perform if the stencil test fails. This can be one of the
constants of the CONST_D3DSTENCILOP enumeration. The default value is
D3DSTENCILOP_KEEP.

in.doc – page 775

D3DRENDERSTATE_STENCILZFAIL
Stencil operation to perform if the stencil test passes and depth test (z-test) fails.
This can be one of the constants of the CONST_D3DSTENCILOP
enumeration. The default value is D3DSTENCILOP_KEEP.

D3DRENDERSTATE_STENCILPASS
Stencil operation to perform if both the stencil and depth (z) tests pass. This can
be one of the constants of the CONST_D3DSTENCILOP enumeration. The
default value is D3DSTENCILOP_KEEP.

D3DRENDERSTATE_STENCILFUNC
Comparison function for the stencil test. This can be one of the constants of the
CONST_D3DCMPFUNC enumeration. The default value is
D3DCMP_ALWAYS.
The comparison function is used to compare the reference value to a stencil
buffer entry. This comparison only applies to the bits in the reference value and
stencil buffer entry that are set in the stencil mask (set by the
D3DRENDERSTATE_STENCILMASK render state). If the comparison is true,
the stencil test passes.

D3DRENDERSTATE_STENCILREF
Integer reference value for the stencil test. The default value is 0.

D3DRENDERSTATE_STENCILMASK
Mask applied to the reference value and each stencil buffer entry to determine
the significant bits for the stencil test. The default mask is 0xFFFFFFFF.

D3DRENDERSTATE_STENCILWRITEMASK
Write mask applied to values written into the stencil buffer. The default mask is
0xFFFFFFFF.

D3DRENDERSTATE_TEXTUREFACTOR
Color used for multiple texture blending with the D3DTA_TFACTOR texture-
blending argument or D3DTOP_BLENDFACTORALPHA texture-blending
operation.

D3DRENDERSTATE_STIPPLEPATTERN00 through
D3DRENDERSTATE_STIPPLEPATTERN31

Stipple pattern. Each render state applies to a separate line of the stipple pattern.
Together, these render states specify a 32x32 stipple pattern.

D3DRENDERSTATE_WRAP0 through D3DRENDERSTATE_WRAP7
Texture wrapping behavior for multiple textures. Valid values for these render
states are a combination of one or both of the D3DWRAP_U and D3DWRAP_V
flags, which cause the system to wrap in the u and v directions for a given
texture coordinate set.

D3DRENDERSTATE_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

in.doc – page 776

Remarks
The D3DRENDERSTATE_BLENDENABLE member was superseded by the
D3DRENDERSTATE_ALPHABLENDENABLE member. Its name was changed to
make its meaning more explicit. To maintain compatibility with legacy applications,
the D3DRENDERSTATE_BLENDENABLE constant is declared as equivalent to
D3DRENDERSTATE_ALPHABLENDENABLE:

Direct3D defines the D3DRENDERSTATE_WRAPBIAS constant as a convenience
for applications to enable or disable texture wrapping based on the zero-based
integer of a texture coordinate set (rather than explicitly using one of the
D3DRENDERSTATE_WRAPn state values). Add the
D3DRENDERSTATE_WRAPBIAS value to the zero-based index of a texture
coordinate set to calculate the D3DRENDERSTATE_WRAPn value that
corresponds to that index, as shown in the following example:

// Enable U/V wrapping for textures that use the texture
// coordinate set at the index within the lIndex variable.
hr = lpD3DDevice.SetRenderState(
 lIndex + D3DRENDERSTATE_WRAPBIAS,
 D3DWRAP_U | D3DWRAPV);

// If lIndex is 3, the value that results from
// the addition equates to D3DRENDERSTATE_WRAP3 (131).

CONST_D3DSETSTATUSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DSETSTATUSFLAGS enumeration is not used.

Enum CONST_D3DSETSTATUSFLAGS
 D3DSETSTATUS_ALL = 3
 D3DSETSTATUS_EXTENTS = 2
 D3DSETSTATUS_STATUS = 1
End Enum

D3DSETSTATUS_ALL
Set both the status and the extents.

D3DSETSTATUS_EXTENTS
Set the extents specified in the drExtent member.

D3DSETSTATUS_STATUS
Set the status.

IDH__dx_CONST_D3DSETSTATUSFLAGS_d3d_vb

in.doc – page 777

CONST_D3DSHADEMODE
[This is preliminary documentation and subject to change.]

The CONST_D3DSHADEMODE enumeration describes the supported shade mode
for the D3DRENDERSTATE_SHADEMODE render state in the
CONST_D3DRENDERSTATETYPE enumeration.

Enum CONST_D3DSHADEMODE
 D3DSHADE_FLAT = 1
 D3DSHADE_GOURAUD = 2
 D3DSHADE_PHONG = 3
 D3DSHADE_FORCE_DWORD = 0x7fffffff
End Enum

D3DSHADE_FLAT
Flat shade mode. The color and specular component of the first vertex in the
triangle are used to determine the color and specular component of the face.
These colors remain constant across the triangle; that is, they aren't interpolated.

D3DSHADE_GOURAUD
Gouraud shade mode. The color and specular components of the face are
determined by a linear interpolation between all three of the triangle's vertices.

D3DSHADE_PHONG
Phong shade mode is not currently supported.

D3DSHADE_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

See Also
CONST_D3DRENDERSTATETYPE

CONST_D3DSTENCILCAPSFLA
GS

[This is preliminary documentation and subject to change.]

The CONST_D3DSTENCILCAPSFLAGS enumeration defines stencil buffer
capability flags that are combined and present in the lStencilCaps member of the
D3DDEVICEDESC type.

Enum CONST_D3DSTENCILCAPSFLAGS
 D3DSTENCILCAPS_DECR = 128
 D3DSTENCILCAPS_DECRSAT = 16

IDH__dx_CONST_D3DSHADEMODE_d3d_vb
IDH__dx_CONST_D3DSTENCILCAPSFLAGS_d3d_vb

in.doc – page 778

 D3DSTENCILCAPS_INCR = 64
 D3DSTENCILCAPS_INCRSAT = 8
 D3DSTENCILCAPS_INVERT = 32
 D3DSTENCILCAPS_KEEP = 1
 D3DSTENCILCAPS_REPLACE = 4
 D3DSTENCILCAPS_ZERO = 2
End Enum

D3DSTENCILCAPS_DECR
The D3DSTENCILOP_DECR stencil buffer operation is supported.

D3DSTENCILCAPS_DECRSAT
The D3DSTENCILOP_DECRSAT stencil buffer operation is supported.

D3DSTENCILCAPS_INCR
The D3DSTENCILOP_INCR stencil buffer operation is supported.

D3DSTENCILCAPS_INCRSAT
The D3DSTENCILOP_INCRSAT stencil buffer operation is supported.

D3DSTENCILCAPS_INVERT
The D3DSTENCILOP_INVERT stencil buffer operation is supported.

D3DSTENCILCAPS_KEEP
The D3DSTENCILOP_KEEP stencil buffer operation is supported.

D3DSTENCILCAPS_REPLACE
The D3DSTENCILOP_REPLACE stencil buffer operation is supported.

D3DSTENCILCAPS_ZERO
The D3DSTENCILOP_ZERO stencil buffer operation is supported.

CONST_D3DSTENCILOP
[This is preliminary documentation and subject to change.]

The CONST_D3DSTENCILOP enumeration describes the stencil operations for
the D3DRENDERSTATE_STENCILFAIL,
D3DRENDERSTATE_STENCILZFAIL, D3DRENDERSTATE_STENCILPASS
render states.

Enum CONST_D3DSTENCILOP
 D3DSTENCILOP_DECR = 8
 D3DSTENCILOP_DECRSAT = 5
 D3DSTENCILOP_INCR = 7
 D3DSTENCILOP_INCRSAT = 4
 D3DSTENCILOP_INVERT = 6
 D3DSTENCILOP_KEEP = 1
 D3DSTENCILOP_REPLACE = 3
 D3DSTENCILOP_ZERO = 2
End Enum

IDH__dx_CONST_D3DSTENCILOP_d3d_vb

in.doc – page 779

D3DSTENCILOP_DECR
Decrement the stencil-buffer entry, wrapping to the maximum value if the new
value is less than zero

D3DSTENCILOP_DECRSAT
Decrement the stencil-buffer entry, clamping to zero

D3DSTENCILOP_INCRSAT
Increment the stencil-buffer entry, clamping to the maximum value. See remarks
for information on the maximum stencil-buffer values

D3DSTENCILOP_INVERT
Invert the bits in the stencil-buffer entry.

D3DSTENCILOP_INCR
Increment the stencil-buffer entry, wrapping to zero if the new value exceeds the
maximum value. See remarks for information on the maximum stencil-buffer
values

D3DSTENCILOP_KEEP
Do not update the entry in the stencil buffer. This is the default value

D3DSTENCILOP_REPLACE
Replace the stencil-buffer entry with reference value

D3DSTENCILOP_ZERO
Set the stencil-buffer entry to zero

Remarks
Stencil-buffer entries are integer values ranging inclusively from 0 to 2n -1, where n
is the bit depth of the stencil buffer.

See Also
CONST_D3DRENDERSTATETYPE

CONST_D3DTAFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DTAFLAGS enumeration defines texture argument flags used to
define texture blending stages. For details, see Texture Argument Flags.

IDH__dx_CONST_D3DTAFLAGS_d3d_vb

in.doc – page 780

CONST_D3DTEXOPCAPSFLAG
S

[This is preliminary documentation and subject to change.]

The CONST_D3DTEXOPCAPSFLAGS enumeration defines texture-blending
operation capabilities that are combined and present in the lTextureOpCaps
member of the D3DDEVICEDESC type.

Enum CONST_D3DTEXOPCAPSFLAGS
 D3DTEXOPCAPS_ADD = 64
 D3DTEXOPCAPS_ADDSIGNED = 128
 D3DTEXOPCAPS_ADDSIGNED2X = 256
 D3DTEXOPCAPS_ADDSMOOTH = 1024
 D3DTEXOPCAPS_BLENDCURRENTALPHA = 32768
 D3DTEXOPCAPS_BLENDDIFFUSEALPHA = 2048
 D3DTEXOPCAPS_BLENDFACTORALPHA = 8192
 D3DTEXOPCAPS_BLENDTEXTUREALPHA = 4096
 D3DTEXOPCAPS_BLENDTEXTUREALPHAPM = 16384
 D3DTEXOPCAPS_BUMPENVMAP = 2097152
 D3DTEXOPCAPS_BUMPENVMAPLUMINANCE = 4194304
 D3DTEXOPCAPS_DISABLE = 1
 D3DTEXOPCAPS_DOTPRODUCT3 = 8388608
 D3DTEXOPCAPS_MODULATE = 8
 D3DTEXOPCAPS_MODULATE2X = 16
 D3DTEXOPCAPS_MODULATE4X = 32
 D3DTEXOPCAPS_MODULATEALPHA_ADDCOLOR = 131072
 D3DTEXOPCAPS_MODULATECOLOR_ADDALPHA = 262144
 D3DTEXOPCAPS_MODULATEINVALPHA_ADDCOLOR = 524288
 D3DTEXOPCAPS_MODULATEINVCOLOR_ADDALPHA = 1048576
 D3DTEXOPCAPS_PREMODULATE = 65536
 D3DTEXOPCAPS_SELECTARG1 = 2
 D3DTEXOPCAPS_SELECTARG2 = 4
 D3DTEXOPCAPS_SUBTRACT = 512
End Enum

D3DTEXOPCAPS_ADD
The D3DTOP_ADD texture blending operation is supported by this device.

D3DTEXOPCAPS_ADDSIGNED
The D3DTOP_ADDSIGNED texture blending operation is supported by this
device.

D3DTEXOPCAPS_ADDSIGNED2X
The D3DTOP_ADDSIGNED2X texture blending operation is supported by
this device.

IDH__dx_CONST_D3DTEXOPCAPSFLAGS_d3d_vb

in.doc – page 781

D3DTEXOPCAPS_ADDSMOOTH
The D3DTOP_ADDSMOOTH texture blending operation is supported by
this device.

D3DTEXOPCAPS_BLENDCURRENTALPHA
The D3DTOP_BLENDCURRENTALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDDIFFUSEALPHA
The D3DTOP_BLENDDIFFUSEALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDFACTORALPHA
The D3DTOP_BLENDFACTORALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDTEXTUREALPHA
The D3DTOP_BLENDTEXTUREALPHA texture blending operation is
supported by this device.

D3DTEXOPCAPS_BLENDTEXTUREALPHAPM
The D3DTOP_BLENDTEXTUREALPHAPM texture blending operation is
supported by this device.

D3DTEXOPCAPS_BUMPENVMAP
The D3DTOP_BUMPENVMAP texture blending operation is supported by
this device.

D3DTEXOPCAPS_BUMPENVMAPLUMINANCE
The D3DTOP_BUMPENVMAPLUMINANCE texture blending operation
is supported by this device.

D3DTEXOPCAPS_DISABLE
The D3DTOP_DISABLE texture blending operation is supported by this
device.

D3DTEXOPCAPS_DOTPRODUCT3
The D3DTOP_DOTPRODUCT3 texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATE
The D3DTOP_MODULATE texture blending operation is supported by this
device.

D3DTEXOPCAPS_MODULATE2X
The D3DTOP_MODULATE2X texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATE4X
The D3DTOP_MODULATE4X texture blending operation is supported by
this device.

D3DTEXOPCAPS_MODULATEALPHA_ADDCOLOR
The D3DTOP_MODULATEALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATECOLOR_ADDALPHA

in.doc – page 782

The D3DTOP_MODULATEALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATEINVALPHA_ADDCOLOR
The D3DTOP_MODULATEINVALPHA_ADDCOLOR texture blending
operation is supported by this device.

D3DTEXOPCAPS_MODULATEINVCOLOR_ADDALPHA
The D3DTOP_MODULATEINVCOLOR_ADDALPHA texture blending
operation is supported by this device.

D3DTEXOPCAPS_PREMODULATE
The D3DTOP_PREMODULATE texture blending operation is supported
by this device.

D3DTEXOPCAPS_SELECTARG1
The D3DTOP_SELECTARG1 texture blending operation is supported by
this device.

D3DTEXOPCAPS_SELECTARG2
The D3DTOP_SELECTARG2 texture blending operation is supported by
this device.

D3DTEXOPCAPS_SUBTRACT
The D3DTOP_SUBTRACT texture blending operation is supported by this
device.

CONST_D3DTEXTUREADDRES
S

[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREADDRESS enumeration describes the supported
texture addressing modes when setting them with
Direct3DDevice3.SetTextureStageState or with the
D3DRENDERSTATE_TEXTUREADDRESS render state.

Enum CONST_D3DTEXTUREADDRESS
 D3DTADDRESS_WRAP = 1
 D3DTADDRESS_MIRROR = 2
 D3DTADDRESS_CLAMP = 3
 D3DTADDRESS_BORDER = 4,
 D3DTADDRESS_FORCE_DWORD = 0x7fffffff
End Enum

D3DTADDRESS_WRAP
Tile the texture at every integer junction. For example, for u values between 0
and 3, the texture will be repeated three times; no mirroring is performed.

D3DTADDRESS_MIRROR

IDH__dx_CONST_D3DTEXTUREADDRESS_d3d_vb

in.doc – page 783

Similar to D3DTADDRESS_WRAP, except that the texture is flipped at every
integer junction. For u values between 0 and 1, for example, the texture is
addressed normally, between 1 and 2 the texture is flipped (mirrored), between 2
and 3 the texture is normal again, and so on.

D3DTADDRESS_CLAMP
Texture coordinates outside the range [0.0, 1.0] are set to the texture color at 0.0
or 1.0, respectively.

D3DTADDRESS_BORDER
Texture coordinates outside the range [0.0, 1.0] are set to the border color,
which is a new render state corresponding to
D3DRENDERSTATE_BORDERCOLOR in the
CONST_D3DRENDERSTATETYPE enumeration.

D3DTADDRESS_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

See Also
CONST_D3DRENDERSTATETYPE

CONST_D3DTEXTUREBLEND
[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREBLEND enumeration defines the supported texture-
blending modes. This enumeration is used by the
D3DRENDERSTATE_TEXTUREMAPBLEND render state in the
CONST_D3DRENDERSTATETYPE enumeration.

Enum CONST_D3DTEXTUREBLEND
 D3DTBLEND_DECAL = 1
 D3DTBLEND_MODULATE = 2
 D3DTBLEND_DECALALPHA = 3
 D3DTBLEND_MODULATEALPHA = 4
 D3DTBLEND_DECALMASK = 5
 D3DTBLEND_MODULATEMASK = 6
 D3DTBLEND_COPY = 7
 D3DTBLEND_ADD = 8
 D3DTBLEND_FORCE_DWORD = 0x7fffffff
End Enum

D3DTBLEND_DECAL
Decal texture-blending mode is supported. In this mode, the RGB and alpha
values of the texture replace the colors that would have been used with no
texturing.

IDH__dx_CONST_D3DTEXTUREBLEND_d3d_vb

in.doc – page 784

cPix = cTex
aPix = aTex

D3DTBLEND_MODULATE
Modulate texture-blending mode is supported. In this mode, the RGB values of
the texture are multiplied with the RGB values that would have been used with
no texturing. Any alpha values in the texture replace the alpha values in the
colors that would have been used with no texturing; if the texture does not
contain an alpha component, alpha values at the vertices in the source are
interpolated between vertices.
cPix = cSrc * cTex
if(the texture has an alpha channel)
 aPix = aTex
else
 aPix = aSrc

D3DTBLEND_DECALALPHA
Decal-alpha texture-blending mode is supported. In this mode, the RGB and
alpha values of the texture are blended with the colors that would have been
used with no texturing, according to the following formulas:
cPix = (cSrc * (1.0 - aTex)) + (aTex * cTex)
aPix = aSrc

D3DTBLEND_MODULATEALPHA
Modulate-alpha texture-blending mode is supported. In this mode, the RGB
values of the texture are multiplied with the RGB values that would have been
used with no texturing, and the alpha values of the texture are multiplied with
the alpha values that would have been used with no texturing.
cPix = cSrc * cTex
aPix = aSrc * aTex

D3DTBLEND_DECALMASK
This blending mode is not supported.
cPix = lsb(aTex) ? cTex : cSrc
aPix = aSrc

When the least-significant bit of the texture's alpha component is zero, the effect
is as if texturing were disabled.

D3DTBLEND_MODULATEMASK
This blending mode is not supported.
cPix = lsb(aTex) ? cTex * cSrc : cSrc
aPix = aSrc

When the least-significant bit of the texture's alpha component is zero, the effect
is as if texturing were disabled.

in.doc – page 785

D3DTBLEND_COPY
This blending mode is obsolete, and is treated as equivalent to the
D3DTBLEND_DECAL texture-blending mode.

D3DTBLEND_ADD
Add the Gouraud interpolants to the texture lookup with saturation semantics
(that is, if the color value overflows it is set to the maximum possible value).
cPix = cTex + cSrc
aPix = aSrc

D3DTBLEND_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

Remarks
In the formulas given for the constants of this enumeration, the placeholders have the
following meanings:

· cTex is the color of the source texel
· aTex is the alpha component of the source texel
· cSrc is the interpolated color of the source primitive
· aSrc is the alpha component of the source primitive
· cPix is the new blended color value
· aPix is the new blended alpha value

Modulation combines the effects of lighting and texturing. Because colors are
specified as values between and including 0 and 1, modulating (multiplying) the
texture and preexisting colors together typically produces colors that are less bright
than either source. The brightness of a color component is undiminished when one of
the sources for that component is white (1). The simplest way to ensure that the
colors of a texture do not change when the texture is applied to an object is to ensure
that the object is white (1,1,1).

CONST_D3DTEXTUREFILTER
[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREFILTER enumeration defines the supported texture
filter modes used by the D3DRENDERSTATE_TEXTUREMAG render state in the
CONST_D3DRENDERSTATETYPE enumeration.

Enum CONST_D3DTEXTUREFILTER
 D3DFILTER_NEAREST = 1
 D3DFILTER_LINEAR = 2
 D3DFILTER_MIPNEAREST = 3

IDH__dx_CONST_D3DTEXTUREFILTER_d3d_vb

in.doc – page 786

 D3DFILTER_MIPLINEAR = 4
 D3DFILTER_LINEARMIPNEAREST = 5
 D3DFILTER_LINEARMIPLINEAR = 6
 D3DFILTER_FORCE_DWORD = 0x7fffffff
End Enum

D3DFILTER_NEAREST
The texel with coordinates nearest to the desired pixel value is used. This is a
point filter with no mipmapping.
This applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

D3DFILTER_LINEAR
A weighted average of a 22 area of texels surrounding the desired pixel is
used. This is a bilinear filter with no mipmapping.
This applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

D3DFILTER_MIPNEAREST
The closest mipmap level is chosen and a point filter is applied.

D3DFILTER_MIPLINEAR
The closest mipmap level is chosen and a bilinear filter is applied within it.

D3DFILTER_LINEARMIPNEAREST
The two closest mipmap levels are chosen and then a linear blend is used
between point filtered samples of each level.

D3DFILTER_LINEARMIPLINEAR
The two closest mipmap levels are chosen and then combined using a bilinear
filter.

D3DFILTER_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

Remarks
All of these filter modes are valid with the D3DRENDERSTATE_TEXTUREMIN
render state, but only the first two (D3DFILTER_NEAREST and
D3DFILTER_LINEAR) are valid with D3DRENDERSTATE_TEXTUREMAG.

CONST_D3DTEXTUREMAGFILT
ER

[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREMAGFILTER enumeration defines texture
magnification filtering modes for a texture stage.

IDH__dx_CONST_D3DTEXTUREMAGFILTER_d3d_vb

in.doc – page 787

Enum CONST_D3DTEXTUREMAGFILTER
 D3DTFG_POINT = 1,
 D3DTFG_LINEAR = 2,
 D3DTFG_FLATCUBIC = 3,
 D3DTFG_GAUSSIANCUBIC= 4,
 D3DTFG_ANISOTROPIC = 5,
 D3DTFG_FORCE_DWORD = 0x7fffffff,
End Enum

D3DTFG_POINT
Point filtering. The texel with coordinates nearest to the desired pixel value is
used.

D3DTFG_LINEAR
Bilinear interpolation filtering. A weighted average of a 22 area of texels
surrounding the desired pixel is used.

D3DTFG_FLATCUBIC
Not currently supported; do not use.

D3DTFG_GAUSSIANCUBIC
Not currently supported; do not use.

D3DTFG_ANISOTROPIC
Anisotropic texture filtering. Compensates for distortion caused by the
difference in angle between the texture polygon and the plane of the screen.

D3DTFG_FORCE_DWORD
Forces this enumeration to compile to 32 bits in size.

Remarks
You set a texture stage's magnification filter by calling the
Direct3DDevice3.SetTextureStageState method with the D3DTSS_MAGFILTER
value as the second parameter, and one of constants of this enumeration as the third
parameter.

See Also
CONST_D3DTEXTUREMINFILTER, CONST_D3DTEXTUREMIPFILTER

CONST_D3DTEXTUREMINFILT
ER

[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREMINFILTER enumeration defines texture
minification filtering modes for a texture stage.

IDH__dx_CONST_D3DTEXTUREMINFILTER_d3d_vb

in.doc – page 788

Enum CONST_D3DTEXTUREMINFILTER
 D3DTFN_POINT = 1,
 D3DTFN_LINEAR = 2,
 D3DTFN_ANISOTROPIC = 3,
 D3DTFN_FORCE_DWORD = 0x7fffffff,
End Enum

D3DTFN_POINT
Point filtering. The texel with coordinates nearest to the desired pixel value is
used.

D3DTFN_LINEAR
Bilinear interpolation filtering. A weighted average of a 22 area of texels
surrounding the desired pixel is used.

D3DTFN_ANISOTROPIC
Anisotropic texture filtering. Compensates for distortion caused by the
difference in angle between the texture polygon and the plane of the screen.

D3DTFN_FORCE_DWORD
Forces this enumeration to compile to 32 bits in size.

Remarks
You set a texture stage's magnification filter by calling the
Direct3DDevice3.SetTextureStageState method with the D3DTSS_MINFILTER
value as the second parameter, and one of constants of this enumeration as the third
parameter.

See Also
CONST_D3DTEXTUREMAGFILTER, CONST_D3DTEXTUREMIPFILTER

CONST_D3DTEXTUREMIPFILT
ER

[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREMIPFILTER enumeration defines texture mipmap
filtering modes for a texture stage.

Enum CONST_D3DTEXTUREMIPFILTER
 D3DTFP_NONE = 1,
 D3DTFP_POINT = 2,
 D3DTFP_LINEAR = 3,
 D3DTFP_FORCE_DWORD = 0x7fffffff,
End Enum

IDH__dx_CONST_D3DTEXTUREMIPFILTER_d3d_vb

in.doc – page 789

D3DTFP_NONE
Mipmapping disabled. The rasterizer should use the magnification filter instead.

D3DTFP_POINT
Nearest point mipmap filtering. The rasterizer uses the color from the texel of
the nearest mipmap texture.

D3DTFP_LINEAR
Trilinear mipmap interpolation. The rasterizer linearly interpolates pixel color
using the texels of the two nearest mipmap textures.

D3DTFP_FORCE_DWORD
Forces this enumeration to compile to 32 bits in size.

Remarks
You set a texture stage's magnification filter by calling the
Direct3DDevice3.SetTextureStageState method with the D3DTSS_MIPFILTER
value as the second parameter, and one of constants of this enumeration as the third
parameter.

See Also
CONST_D3DTEXTUREMAGFILTER, CONST_D3DTEXTUREMIPFILTER

CONST_D3DTEXTUREOP
[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTUREOP enumeration defines per-stage texture blending
operations. The constants of this type are used when setting color or alpha operations
by using the D3DTSS_COLOROP or D3DTSS_ALPHAOP values with the
Direct3DDevice3.SetTextureStageState method.

Enum CONST_D3DTEXTUREOP
 D3DTOP_DISABLE = 1,
 D3DTOP_SELECTARG1 = 2,
 D3DTOP_SELECTARG2 = 3,
 D3DTOP_MODULATE = 4,
 D3DTOP_MODULATE2X = 5,
 D3DTOP_MODULATE4X = 6,
 D3DTOP_ADD = 7,
 D3DTOP_ADDSIGNED = 8,
 D3DTOP_ADDSIGNED2X = 9,
 D3DTOP_SUBTRACT = 10,
 D3DTOP_ADDSMOOTH = 11,
 D3DTOP_BLENDDIFFUSEALPHA = 12,

IDH__dx_CONST_D3DTEXTUREOP_d3d_vb

in.doc – page 790

 D3DTOP_BLENDTEXTUREALPHA = 13,
 D3DTOP_BLENDFACTORALPHA = 14,
 D3DTOP_BLENDTEXTUREALPHAPM = 15,
 D3DTOP_BLENDCURRENTALPHA = 16,
 D3DTOP_PREMODULATE = 17,
 D3DTOP_MODULATEALPHA_ADDCOLOR = 18,
 D3DTOP_MODULATECOLOR_ADDALPHA = 19,
 D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20,
 D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21,
 D3DTOP_BUMPENVMAP = 22
 D3DTOP_BUMPENVMAPLUMINANCE = 23
 D3DTOP_DOTPRODUCT3 = 24,
 D3DTOP_FORCE_DWORD = 0x7fffffff,
End Enum

Control constants
D3DTOP_DISABLE

Disables output from this texture stage and all stages with a higher index.
D3DTOP_SELECTARG1

Use this texture stage's first color or alpha argument, unmodified, as the output.
This operation affects the color argument when used with the
D3DTSS_COLOROP texture stage state, and the alpha argument when used
with D3DTSS_ALPHAOP.

S RGBA = Arg1

D3DTOP_SELECTARG2
Use this texture stage's second color or alpha argument, unmodified, as the
output. This operation affects the color argument when used with the
D3DTSS_COLOROP texture stage state, and the alpha argument when used
with D3DTSS_ALPHAOP.

S RGBA = Arg2

Modulation constants
D3DTOP_MODULATE

Multiply the components of the arguments together.

S RGBA = Arg1 x Arg2

D3DTOP_MODULATE2X
Multiply the components of the arguments and shift the products to the left one
bit (effectively multiplying them by two) for brightening.

S RGBA = (Arg1 x Arg2) << 1

D3DTOP_MODULATE4X
Multiply the components of the arguments and shift the products to the left two
bits (effectively multiplying them by four) for brightening.

in.doc – page 791

S RGBA = (Arg1 x Arg2) << 2

Addition and Subtraction constants
D3DTOP_ADD

Add the components of the arguments.

S RGBA = Arg1 + Arg2

D3DTOP_ADDSIGNED
Add the components of the arguments with a -0.5 bias, making the effective
range of values from -0.5 to 0.5.

S RGBA = Arg1 + Arg2 - 0.5

D3DTOP_ADDSIGNED2X
Add the components of the arguments with a -0.5 bias, and shift the products to
the left one bit.

S RGBA = (Arg1 + Arg2 - 0.5) << 2

D3DTOP_SUBTRACT
Subtract the components of the second argument from those of the first
argument.

S RGBA = Arg1 - Arg2

D3DTOP_ADDSMOOTH
Add the first and second arguments, then subract their product from the sum.

S RGBA = Arg 1 + Arg2 - Arg1 x Arg2
 = Arg1 + Arg2 (1 - Arg1)

Linear alpha blending constants
D3DTOP_BLENDDIFFUSEALPHA
D3DTOP_BLENDTEXTUREALPHA
D3DTOP_BLENDFACTORALPHA
D3DTOP_BLENDCURRENTALPHA

Linearly blend this texture stage using the interpolated alpha from each vertex
(D3DTOP_BLENDDIFFUSEALPHA), alpha from this stage's texture
(D3DTOP_BLENDTEXTUREALPHA), a scalar alpha
(D3DTOP_BLENDFACTORALPHA) set with the
D3DRENDERSTATE_TEXTUREFACTOR render state, or the alpha taken
from the previous texture stage (D3DTOP_BLENDCURRENTALPHA).

S RGBA = Arg 1 x (Alpha) + Arg2 x (1 - Alpha)

D3DTOP_BLENDTEXTUREALPHAPM
Linearly blend a texture stage that uses premultiplied alpha.

S RGBA = Arg 1 + Arg2 x (1 - Alpha)

in.doc – page 792

Specular mapping constants
D3DTOP_PREMODULATE

Modulate this texture stage with the next texture stage.
D3DTOP_MODULATEALPHA_ADDCOLOR

Modulate the second argument's color using the first argument's alpha, then add
the result to argument one. This operation is supported only for color operations
(D3DTSS_COLOROP).

S RGBA = Arg 1RGB + Arg1 A x Arg2 RGB

D3DTOP_MODULATECOLOR_ADDALPHA
Modulate the arguments, then add the first argument's alpha. This operation is
supported only for color operations (D3DTSS_COLOROP).

S RGBA = Arg 1RGB x Arg2 RGB + Arg1 A

D3DTOP_MODULATEINVALPHA_ADDCOLOR
Similar to D3DTOP_MODULATEALPHA_ADDCOLOR, but use the inverse of
the first argument's alpha. This operation is supported only for color operations
(D3DTSS_COLOROP).

S RGBA = (1 - Arg 1A) x Arg2 RGB + Arg1 RGB

D3DTOP_MODULATEINVCOLOR_ADDALPHA
Similar to D3DTOP_MODULATECOLOR_ADDALPHA, but use the inverse of
the first argument's color. This operation is supported only for color operations
(D3DTSS_COLOROP).

S RGBA = (1 - Arg 1RGB) x Arg2 RGB + Arg1 A

Bump mapping constants
D3DTOP_BUMPENVMAP

Perform per-pixel bump-mapping using the environment map in the next texture
stage (without luminance).

D3DTOP_BUMPENVMAPLUMINANCE
Perform per-pixel bump-mapping using the environment map in the next texture
stage (with luminance).

D3DTOP_DOTPRODUCT3
Modulate the components of each argument (as signed components), add their
products, then replicate the sum to all color channels, including alpha. This
operation is supported only for color operations (D3DTSS_COLOROP).

S RGBA = (Arg 1R x Arg2 R + Arg1 G x Arg2 G + Arg1 B x Arg2 B)

Miscellaneous member
D3DTOP_FORCE_DWORD

Forces this enumeration to be compiled to 32 bits in size. This value is not used.

in.doc – page 793

Remarks
In the preceding formulas, SRGBA is the RGBA color produced by a texture operation,
and Arg1 and Arg2 represent the complete RGBA color of the texture arguments.
Individual components of an argument are shown with subscripts. For example, the
alpha component for argument one would be shown as Arg1A.

See Also
Direct3DDevice3.GetTextureStageState,
Direct3DDevice3.SetTextureStageState,
CONST_D3DTEXTURESTAGESTATETYPE

CONST_D3DTEXTURESTAGES
TATETYPE

[This is preliminary documentation and subject to change.]

The CONST_D3DTEXTURESTAGESTATETYPE enumeration defines texture
stage states. Constants of this enumeration are used with the
Direct3DDevice3.GetTextureStageState and
Direct3DDevice3.SetTextureStageState methods to retrieve and set texture state
values.

Enum CONST_D3DTEXTURESTAGESTATETYPE
 D3DTSS_COLOROP = 1,
 D3DTSS_COLORARG1 = 2,
 D3DTSS_COLORARG2 = 3,
 D3DTSS_ALPHAOP = 4,
 D3DTSS_ALPHAARG1 = 5,
 D3DTSS_ALPHAARG2 = 6,
 D3DTSS_BUMPENVMAT00 = 7,
 D3DTSS_BUMPENVMAT01 = 8,
 D3DTSS_BUMPENVMAT10 = 9,
 D3DTSS_BUMPENVMAT11 = 10
 D3DTSS_TEXCOORDINDEX = 11
 D3DTSS_ADDRESS = 12
 D3DTSS_ADDRESSU = 13
 D3DTSS_ADDRESSV = 14
 D3DTSS_BORDERCOLOR = 15
 D3DTSS_MAGFILTER = 16
 D3DTSS_MINFILTER = 17
 D3DTSS_MIPFILTER = 18
 D3DTSS_MIPMAPLODBIAS = 19
 D3DTSS_MAXMIPLEVEL = 20

IDH__dx_CONST_D3DTEXTURESTAGESTATETYPE_d3d_vb

in.doc – page 794

 D3DTSS_MAXANISOTROPY = 21
 D3DTSS_BUMPENVLSCALE = 22
 D3DTSS_BUMPENVLOFFSET = 23
 D3DTSS_FORCE_DWORD = 0x7fffffff,
End Enum

D3DTSS_COLOROP
The texture stage state is a texture color blending operation identified by one of
the constants of the CONST_D3DTEXTUREOP enumeration. The default
value for the first texture stage (stage zero) is D3DTOP_MODULATE, and for
all other stages the default is D3DTOP_DISABLE.

D3DTSS_COLORARG1
The texture stage state is the first color argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_TEXTURE.

D3DTSS_COLORARG2
The texture stage state is the second color argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_CURRENT.

D3DTSS_ALPHAOP
The texture stage state is texture alpha blending operation identified by one of
the constants of the CONST_D3DTEXTUREOP enumeration. The default
value for the first texture stage (stage zero) is D3DTOP_SELECTARG1, and for
all other stages the default is D3DTOP_DISABLE.

D3DTSS_ALPHAARG1
The texture stage state is the first alpha argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_TEXTURE. If no
texture is set for this stage, the default argument is D3DTA_DIFFUSE.

D3DTSS_ALPHAARG2
The texture stage state is the second alpha argument for the stage, identified by a
texture argument flag. The default argument is D3DTA_CURRENT.

D3DTSS_BUMPENVMAT00
The texture stage state is a value for the [0][0] coefficient in a bump mapping
matrix. The default value is zero.

D3DTSS_BUMPENVMAT01
The texture stage state is a value for the [0][1] coefficient in a bump mapping
matrix. The default value is 0.

D3DTSS_BUMPENVMAT10
The texture stage state is a value for the [1][0] coefficient in a bump mapping
matrix. The default value is 0.

D3DTSS_BUMPENVMAT11
The texture stage state is a value for the [1][1] coefficient in a bump mapping
matrix. The default value is 0.

D3DTSS_TEXCOORDINDEX
Index of the texture coordinate set to use with this texture stage. The default
index is 0. Set this state to the zero-based index of the texture set at for each
vertex that this texture stage will use. (You can specify up to eight sets of

in.doc – page 795

texture coordinates per vertex.) If a vertex does not include a set of texture
coordinates at the specified index, the system defaults to using the u, v
coordinates (0,0).

D3DTSS_ADDRESS
Member of the CONST_D3DTEXTUREADDRESS enumeration. Selects the
texture addressing method for both the u and v coordinates. The default is
D3DTADDRESS_WRAP.

D3DTSS_ADDRESSU
Member of the CONST_D3DTEXTUREADDRESS enumeration. Selects the
texture addressing method for the u coordinate. The default is
D3DTADDRESS_WRAP.

D3DTSS_ADDRESSV
Member of the CONST_D3DTEXTUREADDRESS enumeration. Selects the
texture addressing method for the v coordinate. The default value is
D3DTADDRESS_WRAP.

D3DTSS_BORDERCOLOR
Value that describes the color to be used for rasterizing texture coordinates
outside the [0.0,1.0] range. The default color is 0x00000000.

D3DTSS_MAGFILTER
Member of the CONST_D3DTEXTUREMAGFILTER enumeration that
indicates the texture magnification filter to be used when rendering the texture
onto primitives. The default value is D3DTFG_POINT.

D3DTSS_MINFILTER
Member of the CONST_D3DTEXTUREMINFILTER enumeration that
indicates the texture magnification filter to be used when rendering the texture
onto primitives. The default value is D3DTFN_POINT.

D3DTSS_MIPFILTER
Member of the CONST_D3DTEXTUREMIPFILTER enumeration that
indicates the texture magnification filter to be used when rendering the texture
onto primitives. The default value is D3DTFP_NONE.

D3DTSS_MIPMAPLODBIAS
Level of detail bias for mipmaps. Can be used to make textures appear more
chunky or more blurred. The default value is 0.

D3DTSS_MAXMIPLEVEL
Maximum level-of-detail mipmap that the application will allow. Zero, which is
the default, indicates that all levels can be used.

D3DTSS_MAXANISOTROPY
Maximum level of anisotropy. The default value is 1.

D3DTSS_BUMPENVLSCALE
Scale for bump map luminance. The default value is 0.

D3DTSS_BUMPENVLOFFSET
Offset for bump map luminance. The default value is 0.

D3DTSS_FORCE_DWORD
Forces this enumeration to be compiled to 32 bits in size. This value is not used.

in.doc – page 796

Remarks
The valid range of values for the D3DTSS_BUMPENVMAT00,
D3DTSS_BUMPENVMAT01, D3DTSS_BUMPENVMAT10, and
D3DTSS_BUMPENVMAT11 bump-mapping matrix coefficients is greater than or
equal to -8.0, and less than 8.0. This range, expressed in mathematical notation is [-
8.0,8.0).

CONST_D3DTRANSFORMCAPS
[This is preliminary documentation and subject to change.]

The CONST_D3DTRANSFORMCAPS enumeration describes the transformation
capabilities of the device. This enumeration is used in the lTransformCaps member
of the D3DDEVICEDESC type.

Enum CONST_D3DTRANSFORMCAPS
 D3DTRANSFORMCAPS_CLIP = 1
End Enum

D3DTRANSFORMCAPS_CLIP
The system clips while transforming.

CONST_D3DTRANSFORMFLAG
S

[This is preliminary documentation and subject to change.]

The CONST_D3DTRANSFORMFLAGS enumeration defines that are used in the
flags parameter of the Direct3DViewport3.TransformVertices method.

Enum CONST_D3DTRANSFORMFLAGS
 D3DTRANSFORM_CLIPPED = 1
 D3DTRANSFORM_UNCLIPPED = 2
End Enum

D3DTRANSFORM_CLIPPED
Transform the vertices and adjust the rectangle in the rExtent member of the
associated D3DTRANSFORMDATA type to reflect the new extents.

D3DTRANSFORM_UNCLIPPED
Transform the vertices without updating the extents.

IDH__dx_CONST_D3DTRANSFORMCAPS_d3d_vb
IDH__dx_CONST_D3DTRANSFORMFLAGS_d3d_vb

in.doc – page 797

CONST_D3DTRANSFORMSTAT
ETYPE

[This is preliminary documentation and subject to change.]

The CONST_D3DTRANSFORMSTATETYPE enumeration defines values that
describe the transformation state.

Enum CONST_D3DTRANSFORMSTATETYPE
 D3DTRANSFORMSTATE_WORLD = 1
 D3DTRANSFORMSTATE_VIEW = 2
 D3DTRANSFORMSTATE_PROJECTION = 3
 D3DTRANSFORMSTATE_FORCE_DWORD = 0x7fffffff
End Enum

D3DTRANSFORMSTATE_WORLD, D3DTRANSFORMSTATE_VIEW, and
D3DTRANSFORMSTATE_PROJECTION

Define the matrices for the world, view, and projection transformations. The
default values are Nothing (the identity matrices).

D3DTRANSFORMSTATE_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

See Also
CONST_D3DRENDERSTATETYPE

CONST_D3DVBCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DVBCAPSFLAGS enumeration defines vertex buffer capability
flags that are used in the lCaps member of the D3DVERTEXBUFFERDESC type.

Enum CONST_D3DVBCAPSFLAGS
 D3DVBCAPS_OPTIMIZED = 2147483648
 D3DVBCAPS_SYSTEMMEMORY = 2048
 D3DVBCAPS_WRITEONLY = 65536
End Enum

D3DVBCAPS_OPTIMIZED
The vertex buffer contains optimized vertex data. (This flag is not used when
creating a new vertex buffer.)

D3DVBCAPS_SYSTEMMEMORY

IDH__dx_CONST_D3DTRANSFORMSTATETYPE_d3d_vb
IDH__dx_CONST_D3DVBCAPSFLAGS_d3d_vb

in.doc – page 798

The vertex buffer should be created in system memory. Use this capability for
vertex buffers that will be rendered by using software devices (MMX and RGB
devices).

D3DVBCAPS_WRITEONLY
Hints to the system that the application will only write to the vertex buffer.
Using this flag enables the driver to choose the best memory location for
efficient write operations and rendering. Attempts to read from a vertex buffer
that is created with this capability can result in degraded performance.

CONST_D3DVERTEXTYPE
[This is preliminary documentation and subject to change.]

The CONST_D3DVERTEXTYPE enumeration lists the vertex types that are
supported by the legacy Direct3DDevice2 and Direct3DDevice interfaces. If your
application uses Direct3DDevice3, the CONST_D3DVERTEXTYPE enumeration
is superseded by flexible vertex format flags.

Enum CONST_D3DVERTEXTYPE
 D3DVT_VERTEX = 1
 D3DVT_LVERTEX = 2
 D3DVT_TLVERTEX = 3
 D3DVT_FORCE_DWORD = 0x7fffffff
End Enum

D3DVT_VERTEX
All the vertices in the array are of the D3DVERTEX type. This setting will
cause transformation, lighting and clipping to be applied to the primitive as it is
rendered.

D3DVT_LVERTEX
All the vertices in the array are of the D3DLVERTEX type. When used with
this option, the primitive will have transformations applied during rendering.

D3DVT_TLVERTEX
All the vertices in the array are of the D3DTLVERTEX type. Rasterization only
will be applied to this data.

D3DVT_FORCE_DWORD
Forces this enumeration to be 32 bits in size.

CONST_D3DVISFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DVISFLAGS enumeration defines flags used with the
Direct3DDevice3.ComputeSphereVisibility method.

IDH__dx_CONST_D3DVERTEXTYPE_d3d_vb
IDH__dx_CONST_D3DVISFLAGS_d3d_vb

in.doc – page 799

Enum CONST_D3DVISFLAGS
 D3DVIS_INSIDE_BOTTOM = 0
 D3DVIS_INSIDE_FAR = 0
 D3DVIS_INSIDE_FRUSTUM = 0
 D3DVIS_INSIDE_LEFT = 0
 D3DVIS_INSIDE_NEAR = 0
 D3DVIS_INSIDE_RIGHT = 0
 D3DVIS_INSIDE_TOP = 0
 D3DVIS_INTERSECT_BOTTOM = 256
 D3DVIS_INTERSECT_FAR = 4096
 D3DVIS_INTERSECT_FRUSTUM = 1
 D3DVIS_INTERSECT_LEFT = 2
 D3DVIS_INTERSECT_NEAR = 1024
 D3DVIS_INTERSECT_RIGHT = 16
 D3DVIS_INTERSECT_TOP = 64
 D3DVIS_MASK_BOTTOM = 768
 D3DVIS_MASK_FAR = 12288
 D3DVIS_MASK_FRUSTUM = 3
 D3DVIS_MASK_LEFT = 12
 D3DVIS_MASK_NEAR = 3072
 D3DVIS_MASK_RIGHT = 40
 D3DVIS_MASK_TOP = 192
 D3DVIS_OUTSIDE_BOTTOM = 512
 D3DVIS_OUTSIDE_FAR = 8192
 D3DVIS_OUTSIDE_FRUSTUM = 2
 D3DVIS_OUTSIDE_LEFT = 4
 D3DVIS_OUTSIDE_NEAR = 2048
 D3DVIS_OUTSIDE_RIGHT = 32
 D3DVIS_OUTSIDE_TOP = 128
End Enum

Inside flags

D3DVIS_INSIDE_BOTTOM, D3DVIS_INSIDE_FAR,
D3DVIS_INSIDE_FRUSTUM, D3DVIS_INSIDE_LEFT, D3DVIS_INSIDE_NEAR,
D3DVIS_INSIDE_RIGHT, D3DVIS_INSIDE_TOP

The sphere is inside the viewing frustum of the current viewport.
Intersection flags

D3DVIS_INTERSECT_BOTTOM or D3DVIS_INTERSECT_TOP
The sphere intersects the bottom or top plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_INTERSECT_FAR or D3DVIS_INTERSECT_NEAR
The sphere intersects the far or near plane of the viewing frustum for the current
viewport, depending on which flag is present.

D3DVIS_INTERSECT_FRUSTUM

in.doc – page 800

The sphere intersects some part of the viewing frustum for the current viewport.
D3DVIS_INTERSECT_LEFT or D3DVIS_INTERSECT_RIGHT

The sphere intersects the left or right plane of the viewing frustum for the
current viewport, depending on which flag is present.

Outside flags

D3DVIS_OUTSIDE_BOTTOM or D3DVIS_OUTSIDE_TOP
The sphere is outside the bottom or top plane of the viewing frustum for the
current viewport, depending on which flag is present.

D3DVIS_OUTSIDE_FAR or D3DVIS_OUTSIDE_NEAR
The sphere is outside the far or near plane of the viewing frustum for the current
viewport, depending on which flag is present.

D3DVIS_OUTSIDE_FRUSTUM
The sphere is somewhere outside the viewing frustum for the current viewport.

D3DVIS_OUTSIDE_LEFT or D3DVIS_OUTSIDE_RIGHT
The sphere is outside the left or right plane of the viewing frustum for the
current viewport, depending on which flag is present.

CONST_D3DVOPFLAGS
[This is preliminary documentation and subject to change.]

The CONST_D3DVOPFLAGS enumeration devices vertex operation flags used in
the vertexOp parameter of the Direct3DVertexBuffer.ProcessVertices method.

Enum CONST_D3DVOPFLAGS
 D3DVOP_CLIP = =2
 D3DVOP_EXTENTS = =4
 D3DVOP_LIGHT = 1024
 D3DVOP_TRANSFORM = =1
End Enum

D3DVOP_CLIP
Transform the vertices and clip any vertices that exist outside the viewing
frustum. This flag cannot be used with vertex buffers that do not contain
clipping information (for example, created with the D3DDP_DONOTCLIP
flag).

D3DVOP_EXTENTS
Transform the vertices, then update the extents of the screen rectangle when the
vertices are rendered. Using this flag can potentially help performance, but the
extents returned by Direct3DDevice3.GetClipStatus will not have been
updated to account for the vertices when they are rendered.

D3DVOP_LIGHT
Light the vertices.

IDH__dx_CONST_D3DVOPFLAGS_d3d_vb

in.doc – page 801

D3DVOP_TRANSFORM
Transform the vertices using the world, view, and projection matrices. This flag
must always be set.

CONST_D3DZBUFFERTYPE
[This is preliminary documentation and subject to change.]

The CONST_D3DZBUFFERTYPE enumeration describes depth-buffer formats for
use with the D3DRENDERSTATE_ZENABLE render state.

Enum CONST_D3DZBUFFERTYPE
 D3DZB_FALSE = 0,
 D3DZB_TRUE = 1,
 D3DZB_USEW = 2,
 D3DZB_FORCE_DWORD = 0x7fffffff
End Enum

D3DZB_FALSE
Disable depth-buffering.

D3DZB_TRUE
Enable z-buffering.

D3DZB_USEW
Enable w-buffering.

D3DZB_FORCE_DWORD
Forces this enumeration to be compiled to 32-bits in size. This value is not used.

Remarks
The D3DZB_FALSE and D3DZB_TRUE values are interchangeable with the True
and False macro values previously used with D3DRENDERSTATE_ZENABLE.

See Also
Direct3DDevice3.SetRenderState, Depth Buffers

Flexible Vertex Format Flags
[This is preliminary documentation and subject to change.]

Direct3D Immediate Mode uses flag values to describe vertex formats used for
DrawPrimitive-based rendering. The CONST_D3DFVFFLAGS enumeration
defines the following flags to explicitly describe a vertex format, and provides helper
macros that act as common combinations of such flags. For more information, see
About Vertex Formats.

IDH__dx_CONST_D3DZBUFFERTYPE_d3d_vb

in.doc – page 802

Flexible vertex format (FVF) flags
D3DFVF_DIFFUSE

Vertex format includes a diffuse color component.
D3DFVF_NORMAL

Vertex format includes a vertex normal vector. This flag cannot be used with the
D3DFVF_XYZRHW flag.

D3DFVF_SPECULAR
Vertex format includes a specular color component.

D3DFVF_XYZ
Vertex format includes the position of an untransformed vertex. This flag cannot
be used with the D3DFVF_XYZRHW flag. If you use this flag, you must also
specify a vertex normal, a vertex color component (D3DFVF_DIFFUSE or
D3DFVF_SPECULAR), or include at least one set of texture coordinates
(D3DFVF_TEX1 through D3DFVF_TEX8).

D3DFVF_XYZRHW
Vertex format includes the position of a transformed vertex. This flag cannot be
used with the D3DFVF_XYZ or D3DFVF_NORMAL flags. If you use this flag,
you must also specify a vertex color component (D3DFVF_DIFFUSE or
D3DFVF_SPECULAR) or include at least one set of texture coordinates
(D3DFVF_TEX1 through D3DFVF_TEX8).

Texture-related FVF flags
D3DFVF_TEX0 through D3DFVF_TEX8

Number of texture coordinate sets for this vertex. The actual values for these
flags are not sequential.

Helper macros
D3DFVF_LVERTEX

Vertex format is equivalent to the D3DLVERTEX vertex type.
D3DFVF_TLVERTEX

Vertex format is equivalent to the D3DTLVERTEX vertex type.
D3DFVF_VERTEX

Vertex format is equivalent to the D3DVERTEX vertex type.
Mask values
D3DFVF_POSITION_MASK

Mask for position bits.
D3DFVF_RESERVED0 and D3DFVF_RESERVED2

Mask values for reserved bits in the flexible vertex format.
D3DFVF_RESERVED1,

This bit is reserved to indicate that the system should emulate D3DLVERTEX
processing. If this flag is used, the D3DFVF_XYZ, D3DFVF_DIFFUSE,
D3DFVF_SPECULAR, and D3DFVF_TEX1 flags must also be used. This
equates to the effect of the D3DFVF_LVERTEX helper macro.

D3DFVF_TEXCOUNT_MASK
Mask value for texture flag bits.

Miscellaneous

in.doc – page 803

D3DFVF_TEXCOUNT_SHIFT
The number of bits to shift an integer value that identifies the number of a texture
coordinates for a vertex.

Texture Argument Flags
[This is preliminary documentation and subject to change.]

Each texture stage for a device can have two texture arguments that affect the color
or alpha channel of the texture. You set and retrieve texture arguments by calling the
Direct3DDevice3.SetTextureStageState and
Direct3DDevice3.GetTextureStageState, specifying the D3DTSS_COLORARG1,
D3DTSS_COLORARG2, D3DTSS_ALPHAARG1 or D3DTSS_ALPHAARG2
constants of the CONST_D3DTEXTURESTAGESTATETYPE enumeration.

The following flags, organized as arguments and modifiers, can be used with color
and alpha arguments for a texture stage. You can combine an argument flag with a
modifier, but you cannot combine two argument flags.

Argument flags
D3DTA_CURRENT

The texture argument is the result of the previous blending stage. In the first
texture stage (stage zero), this argument defaults to D3DTA_DIFFUSE.

D3DTA_DIFFUSE
The texture argument is the diffuse color interpolated from vertex components
during Gouraud shading. If the vertex does not contain a diffuse color, the
default color is 0xFFFFFFFF.

D3DTA_SELECTMASK
Mask value for all arguments; not used when setting texture arguments.

D3DTA_TEXTURE
The texture argument is the texture color for this texture stage. This is valid only
for the first color and alpha arguments in a stage (the D3DTSS_COLORARG1
and D3DTSS_ALPHAARG1 constants of
CONST_D3DTEXTURESTAGESTATETYPE). If no texture is set for a stage
that uses this blending argument, the system defaults to a color value of R: 1.0,
G: 1.0, B: 1.0 for color, and 1.0 for alpha.

D3DTA_TFACTOR
The texture argument is the texture factor set in a previous call to the
Direct3DDevice3.SetRenderState with the
D3DRENDERSTATE_TEXTUREFACTOR render state value.

Modifier flags
D3DTA_ALPHAREPLICATE

Replicate the alpha information to all color channels before the operation
completes.

D3DTA_COMPLEMENT
Invert the argument such that, if the result of the argument were referred to by
the variable x, the value would be 1.0 - x.

in.doc – page 804

Error Codes
[This is preliminary documentation and subject to change.]

Errors, defined by the CONST_D3DIMERR enumeration, are represented by
negative values and cannot be combined. This table lists the error codes that can be
generated by all Direct3D Immediate Mode methods. See the individual method
descriptions for lists of the values each can return.

D3D_OK
No error occurred.

D3DERR_BADMAJORVERSION
The service you requested is unavailable in this major version of DirectX. (A
"major version" denotes a primary release, such as DirectX 6.0.)

D3DERR_BADMINORVERSION
The service you requested is available in this major version of DirectX, but not
in this minor version. Get the latest version of the component runtime from
Microsoft. (A "minor version" denotes a secondary release, such as DirectX 6.1.)

D3DERR_COLORKEYATTACHED
The application attempted to create a texture with a surface that uses a color key
for transparency.

D3DERR_CONFLICTINGTEXTUREFILTER
The current texture filters cannot be used together.

D3DERR_CONFLICTINGTEXTUREPALETTE
The current textures cannot be used simultaneously. This generally occurs when
a multi-texture device requires that all palettized textures simultaneously
enabled also share the same palette.

D3DERR_CONFLICTINGRENDERSTATE
The currently set render states cannot be used together.

D3DERR_DEVICEAGGREGATED
The IDirect3DDevice3::SetRenderTarget method was called on a device that
was retrieved from the render target surface.

D3DERR_EXECUTE_CLIPPED_FAILED
The execute buffer could not be clipped during execution.

D3DERR_EXECUTE_CREATE_FAILED
The execute buffer could not be created. This typically occurs when no memory
is available to allocate the execute buffer.

D3DERR_EXECUTE_DESTROY_FAILED
The memory for the execute buffer could not be deallocated.

D3DERR_EXECUTE_FAILED
The contents of the execute buffer are invalid and cannot be executed.

D3DERR_EXECUTE_LOCK_FAILED
The execute buffer could not be locked.

D3DERR_EXECUTE_LOCKED

in.doc – page 805

The operation requested by the application could not be completed because the
execute buffer is locked.

D3DERR_EXECUTE_NOT_LOCKED
The execute buffer could not be unlocked because it is not currently locked.

D3DERR_EXECUTE_UNLOCK_FAILED
The execute buffer could not be unlocked.

D3DERR_INITFAILED
A rendering device could not be created because the new device could not be
initialized.

D3DERR_INBEGIN
The requested operation cannot be completed while scene rendering is taking
place. Try again after the scene is completed and the
IDirect3DDevice::EndScene method (or equivalent method) is called.

D3DERR_INVALID_DEVICE
The requested device type is not valid.

D3DERR_INVALIDCURRENTVIEWPORT
The currently selected viewport is not valid.

D3DERR_INVALIDMATRIX
The requested operation could not be completed because the combination of the
currently set world, view, and projection matrices is invalid (the determinant of
the combined matrix is zero).

D3DERR_INVALIDPALETTE
The palette associated with a surface is invalid.

D3DERR_INVALIDPRIMITIVETYPE
The primitive type specified by the application is invalid.

D3DERR_INVALIDRAMPTEXTURE
Ramp mode is being used and the texture handle in the current material does not
match the current texture handle that is set as a render state.

D3DERR_INVALIDVERTEXFORMAT
The combination of flexible vertex format flags specified by the application is
not valid.

D3DERR_INVALIDVERTEXTYPE
The vertex type specified by the application is invalid.

D3DERR_LIGHT_SET_FAILED
The attempt to set lighting parameters for a light object failed.

D3DERR_LIGHTHASVIEWPORT
The requested operation failed because the light object is associated with
another viewport.

D3DERR_LIGHTNOTINTHISVIEWPORT
The requested operation failed because the light object has not been associated
with this viewport.

D3DERR_MATERIAL_CREATE_FAILED

in.doc – page 806

The material could not be created. This typically occurs when no memory is
available to allocate for the material.

D3DERR_MATERIAL_DESTROY_FAILED
The memory for the material could not be deallocated.

D3DERR_MATERIAL_GETDATA_FAILED
The material parameters could not be retrieved.

D3DERR_MATERIAL_SETDATA_FAILED
The material parameters could not be set.

D3DERR_MATRIX_CREATE_FAILED
The matrix could not be created. This can occur when no memory is available to
allocate for the matrix.

D3DERR_MATRIX_DESTROY_FAILED
The memory for the matrix could not be deallocated.

D3DERR_MATRIX_GETDATA_FAILED
The matrix data could not be retrieved. This can occur when the matrix was not
created by the current device.

D3DERR_MATRIX_SETDATA_FAILED
The matrix data could not be set. This can occur when the matrix was not
created by the current device.

D3DERR_NOCURRENTVIEWPORT
The viewport parameters could not be retrieved because none have been set.

D3DERR_NOTINBEGIN
The requested rendering operation could not be completed because scene
rendering has not begun. Call IDirect3DDevice3::BeginScene to begin
rendering then try again.

D3DERR_NOVIEWPORTS
The requested operation failed because the device currently has no viewports
associated with it.

D3DERR_SCENE_BEGIN_FAILED
Scene rendering could not begin.

D3DERR_SCENE_END_FAILED
Scene rendering could not be completed.

D3DERR_SCENE_IN_SCENE
Scene rendering could not begin because a previous scene was not completed by
a call to the IDirect3DDevice3::EndScene method.

D3DERR_SCENE_NOT_IN_SCENE
Scene rendering could not be completed because a scene was not started by a
previous call to the IDirect3DDevice3::BeginScene method.

D3DERR_SETVIEWPORTDATA_FAILED
The viewport parameters could not be set.

D3DERR_STENCILBUFFER_NOTPRESENT
The requested stencil buffer operation could not be completed because there is
no stencil buffer attached to the render target surface.

in.doc – page 807

D3DERR_SURFACENOTINVIDMEM
The device could not be created because the render target surface is not located
in video-memory. (Hardware-accelerated devices require video-memory render
target surfaces.)

D3DERR_TEXTURE_BADSIZE
The dimensions of a current texture are invalid. This can occur when an
application attempts to use a texture that has non-power-of-two dimensions with
a device that requires them.

D3DERR_TEXTURE_CREATE_FAILED
The texture handle for the texture could not be retrieved from the driver.

D3DERR_TEXTURE_DESTROY_FAILED
The device was unable to deallocate the texture memory.

D3DERR_TEXTURE_GETSURF_FAILED
The DirectDraw surface used to create the texture could not be retrieved.

D3DERR_TEXTURE_LOAD_FAILED
The texture could not be loaded.

D3DERR_TEXTURE_LOCK_FAILED
The texture could not be locked.

D3DERR_TEXTURE_LOCKED
The requested operation could not be completed because the texture surface is
currently locked.

D3DERR_TEXTURE_NO_SUPPORT
The device does not support texture mapping.

D3DERR_TEXTURE_NOT_LOCKED
The requested operation could not be completed because the texture surface is
not locked.

D3DERR_TEXTURE_SWAP_FAILED
The texture handles could not be swapped.

D3DERR_TEXTURE_UNLOCK_FAILED
The texture surface could not be unlocked.

D3DERR_TOOMANYOPERATIONS
The application is requesting more texture filtering operations than the device
supports.

D3DERR_TOOMANYPRIMITIVES
The device is unable to render the provided quantity of primitives in a single
pass.

D3DERR_UNSUPPORTEDALPHAARG
The device does not support one of the specified texture blending arguments for
the alpha channel.

D3DERR_UNSUPPORTEDALPHAOPERATION
The device does not support one of the specified texture blending operations for
the alpha channel.

D3DERR_UNSUPPORTEDCOLORARG

in.doc – page 808

The device does not support the one of the specified texture blending arguments
for color values.

D3DERR_UNSUPPORTEDCOLOROPERATION
The device does not support the one of the specified texture blending operations
for color values.

D3DERR_UNSUPPORTEDFACTORVALUE
The specified texture factor value is not supported by the device.

D3DERR_UNSUPPORTEDTEXTUREFILTER
The specified texture filter is not supported by the device.

D3DERR_VBUF_CREATE_FAILED
The vertex buffer could not be created. This can happen when there is
insufficient memory to allocate a vertex buffer.

D3DERR_VERTEXBUFFERLOCKED
The requested operation could not be completed because the vertex buffer is
locked.

D3DERR_VERTEXBUFFEROPTIMIZED
The requested operation could not be completed because the vertex buffer is
optimized. (The contents of optimized vertex buffers are driver specific, and
considered private.)

D3DERR_VIEWPORTDATANOTSET
The requested operation could not be completed because viewport parameters
have not yet been set. Set the viewport parameters by calling
IDirect3DViewport3::SetViewport method and try again.

D3DERR_VIEWPORTHASNODEVICE
The requested operation could not be completed because the viewport has not
yet been associated with a device. Associate the viewport with a rendering
device by calling IDirect3DDevice3::AddViewport and try again.

D3DERR_WRONGTEXTUREFORMAT
The pixel format of the texture surface is not valid.

D3DERR_ZBUFF_NEEDS_SYSTEMMEMORY
The requested operation could not be completed because the specified device
requires system-memory depth-buffer surfaces. (Software rendering devices
require system-memory depth buffers.)

D3DERR_ZBUFF_NEEDS_VIDEOMEMORY
The requested operation could not be completed because the specified device
requires video-memory depth-buffer surfaces. (Hardware-accelerated devices
require video-memory depth buffers.)

D3DERR_ZBUFFER_NOTPRESENT
The requested operation could not be completed because the render target
surface does not have an attached depth buffer.

in.doc – page 809

Direct3D Immediate Mode
Samples

[This is preliminary documentation and subject to change.]

This section provides summaries of the applications in the DirectX® SDK that are
primarily intended to demonstrate the Direct3D® component in Immediate Mode.
The following sample programs demonstrate the use and capabilities of Direct3D:

· Bend Sample
· Billboard Sample
· Boids Sample
· BumpMap Sample
· Compress Sample
· D3DFrame Library
· Filter Sample
· Fireworks Sample
· Flare Sample
· Fog Sample
· LightMap Sample
· Lights Sample
· MipMap Sample
· MTexture Sample
· PPlane Sample
· ShadowVol Sample
· ShadowVol2 Sample
· Spheremap Sample
· TunnelDP Sample
· TunnelEB Sample
· VideoTex Sample
· VBuffer Sample
· WBuffer Sample
· XFile Sample

Note
Most of the sample programs have a common interface (found in the D3DFrame
Library) that has no menu bar. In addition to normal Windows® functions
(minimize, maximize, restore, resize, and close), the interface supports the
following commands:

in.doc – page 810

Key / Input Command

ESC Quit
F1 Help/About Box (lists these keystrokes)
F2 Device options
ALT+ENTER Toggle between full-screen and windowed mode
Right Mouse Button Display options popup menu.

The device options dialog box allows the user to change the driver, Direct3D device,
or display mode (full-screen only) at run time. Not all devices can support rendering
in a window at all display depths. Note that 3-D hardware has finite video memory
that may be exceeded for certain display modes and window sizes. In either case, the
samples will display a message and default to a software rasterizer.

Although DirectX samples include Microsoft® Visual C++® project workspace files,
you might need to verify other settings in your development environment to ensure
that the samples compile properly. For more information, see Compiling DirectX
Samples and Other DirectX Applications.

Bend Sample
[This is preliminary documentation and subject to change.]

Description
The Bend sample demonstrates a technique called surface skinning. It displays 3-D
object which rotates about the y-axis and appears to bend.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Bend

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
The sample achieves the surface skinning effect by using two static copies of the
object, one of which is oscillating along an axis. Each frame, the vertices of the two
objects are merged and blended into a third object. The sample program displays the
object derived from the third set of vertices.

This sample was built using the Direct3D sample framework.

in.doc – page 811

Billboard Sample
[This is preliminary documentation and subject to change.]

Description
The Billboard sample illustrates the billboarding technique. Billboarding is a way of
making 2-D sprites appear to be 3-D. It can also be used for smoke, clouds, vapor
trails, energy blasts and more. For more information, see Common Techniques and
Special Effects.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Billboard

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
The sample displays a grassy field with trees in it. The trees look like 3-D objects.
However, they are actually 2-D texture bitmaps that are blended onto invisible
rectangular polygons.

As the sample program executes, the viewpoint changes. Each time it does, all of the
billboard polygons that the trees are painted onto are rotated so they face the viewer.
The program then blends the images of the trees onto the billboard polygons. The
trees appear to be 3-D because they can be viewed from all angles. However, close
inspection reveals that the trees have exactly the same appearance from all angles.
For many applications, users will not notice this minor drawback.

The shadows are also 2-D textures.

This sample was built using the Direct3D sample framework.

Boids Sample
[This is preliminary documentation and subject to change.]

Description
Boids illustrates how to write a Direct3D program. Using a flocking algorithm, the
program moves a group of 3-D objects over a simple landscape.

in.doc – page 812

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Boids

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
The Boids program illustrates the fundamentals of creating a 3-D environment and
animating a group of objects in it. From a programming perspective, the most
interesting aspect is the way flocking is handled.

BumpMap Sample
[This is preliminary documentation and subject to change.]

Description
The BumpMap program demonstrates the bump mapping capabilities of Direct3D.
Bump mapping is a texture blending technique used to render the appearance of
rough surfaces.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Bumpmap

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Your graphics hardware might not support bump mapping, in which case Direct3D
displays a message to that effect when you attempt to run this program. The solution
is to enable the reference rasterizer. You can do so by running (SDK root)\Samples\
Multimedia\D3dim\Bin\Enablerefrast.reg.

Programming Notes
Bump mapping is an advanced multitexture blending technique that can be used to
render the appearance of rough surfaces. The bump map itself is a texture that stores
the perturbation data.

in.doc – page 813

In this sample program, the map of the world is a texture. The program blends both
the map texture and the bump map texture onto the sphere to give the appearance of
a high-resolution topographical map.

For more details on this technique, see Bump Mapping.

This sample was built using the Direct3D sample framework.

Compress Sample
[This is preliminary documentation and subject to change.]

Description
The Compress sample demonstrates how to load the DDS file format into a
compressed texture surface. DDS textures can be created using the DxTex program
included with the DirectX SDK.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Compress

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
The file format is called DDS because it encapsulates the information in a
DirectDrawSurface. The data can be read directly into a surface of a matching
format.

The ReadDDSTexture function demonstrations how a DDS surface is read from a
file.

A DDS file has the following format:

DWORD dwMagic (0x20534444, or "DDS ")
DDSURFACEDESC2 ddsd Information about the surface format
BYTE bData1[] Data for the main surface
[BYTE bData2[] Data for attached surfaces, if any, follow

This format is easy to read and write, and supports features such as alpha and
multiple mip levels, as well as DXTn compression. If it uses DXTn compression, it
may be one of 5 compressed types. See Compressed Texture Surfaces.

After the texture is read in, a pixel format must be chosen that is supported by the
renderer. In the sample, the supported pixel formats are enumerated and stored in a

in.doc – page 814

linked list. After the pixel formats are collected, the list is searched for a best match,
using the FindBestPixelFormatMatch function.

Some Direct3D devices such as the reference rasterizer and some hardware devices
can render compressed textures directly. But for renderers that don't directly support
this, the compressed surface must be blitted to a non-compressed surface. The
function BltToUncompressedSurface demonstrates how this is done.

D3DFrame Library
[This is preliminary documentation and subject to change.]

Description
The D3D framework is a set of C++ classes that were used to create the Direct3D
Immediate Mode sample programs. It is not a part of the Direct3D API. The
framework was created and used to provide consistency and clarity of presentation
for the Direct3D samples. The framework classes may or may not be appropriate for
use in your applications.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\D3DFrame

Executable: None.

User's Guide
D3DFrame compiles as a static linker library, which is used to build the remainder of
the Direct3D Immediate Mode samples.

Programming Notes
The framework consists of classes that enumerate the DirectDraw drivers, Direct3D
devices, and display modes available to each device. The sample programs use them
to initialize and run Direct3D. The classes also help provide a consistent user
interface for the set of sample programs. In addition, the framework includes a set of
classes for loading and managing textures.

The Direct3D framework also contains numerous macros and functions for
debugging, for manipulating Direct3D objects, and for doing math operations
common in Direct3D programming.

Filter Sample
[This is preliminary documentation and subject to change.]

in.doc – page 815

Description
The Filter sample program demonstrates the texture filtering techniques that
Direct3D supports. Direct3D texture filtering techniques enable applications to
achieve a greater realism in the appearance of rendered primitives. For more
information, see Texture Filtering.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Filter

Executable: None.

User's Guide
When the program begins, it displays two rectangular primitives with textures on
them.

In addition to the usual commands listed in the About box when you press F1, this
program has a main menu.

The File menu contains choices for pausing and resuming the program, changing the
Direct3D device, and exiting the program. You can also pause and resume the
application by pressing the ENTER key on your keyboard.

The Left Pane menu controls the texture filtering methods that the program uses for
magnification and minification of the 3-D primitive on the left side of the screen. It
also has options for edge antialiasing and anisotropic texture filtering. You may have
to enable to software reference rasterizer to view the effects of these options. To
enable the reference rasterizer, run (SDK root)\Samples\Multimedia\D3dim\Bin\
Enablerefrast.reg.

The Right Pane menu enables you to set the filtering methods that the program uses
to perform magnification and minification when it renders the primitive on the right
side of the screen.

Programming Notes
This program demonstrates nearest point sampling, linear filtering, and anisotropic
texture filtering. It illustrates how to enable and disable anisotropy. In addition, this
sample shows how your program can set Direct3D to perform edge antialiasing.

Fireworks Sample
[This is preliminary documentation and subject to change.]

Description
Fireworks implements a system of particles simulating a fireworks explosion.
Particles are popular in games to show effects like smoke, sparks, and explosions.

in.doc – page 816

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Fireworks

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
The fireworks explosion is simulated by using a system of particles, where each
particle is rendered with a partially transparent texture map of a sphere. The position
and color of each particle are governed by parameterized equations and are updated
in each frame.

Flare Sample
[This is preliminary documentation and subject to change.]

Description
The Flare sample shows how to create a lens flare effect using alpha blending.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Flare

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
In this sample, lens flare is simulated with mathematical functions which govern the
position of each flare. The flares are rendered using additive alpha blending, and
animated to give a sparkle effect.

Fog Sample
[This is preliminary documentation and subject to change.]

Description
The Fog sample does a fly-by over some terrain with fog enabled.

in.doc – page 817

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Fog

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands. The effects are most striking in full-screen
mode.

Programming Notes
Games that use terrain typically turn on fog so they can prevent the rendering of
objects in the far distance. It looks like a cool effect, but is actually used to get high
performance.

LightMap Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows how to use multitexturing and multipass techniques to do some
complex lighting effects. There is a light swinging in a room, which dynamically
lights up the walls and ceiling as the light moves.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\LightMap

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
On the Options menu, choose between multipass and multiple texture blending. The
latter will not be available if your hardware does not support it.

Press F1 to see other available commands.

Programming Notes
There is no “true” lighting in this sample–everything is done with light maps. Light
maps are extremely popular in games theses days, because they are much faster than
real lighting. Also, real lighting is calculated only at the vertices, so highly tesselated
meshes are required.

in.doc – page 818

Lights Sample
[This is preliminary documentation and subject to change.]

Description
The Lights sample shows how to turn on and move the various types of Direct3D
lights. The lights fly around, illuminating the scene, and switch every few seconds to
a new light type.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Lights

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
This sample shows how to set up the D3DLIGHT structure for each of the several
types of lights available. It also shows how to dynamically orient the lights on each
frame.

MipMap Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows two brick walls moving back and forth along the z-axis. One uses
mipmapping and the other does not, giving a side-by-side comparison of the benefits
of mipmapping.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\MipMap

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

in.doc – page 819

Programming Notes
This sample does not use the texture code of D3DFrame, but actually shows the full
implementation needed to load and build mipmapped textures.

MTexture Sample
[This is preliminary documentation and subject to change.]

Description
The MTexture program shows how to use multitexturing. The scene consists of a
room with walls that have a base texture and a spotlight texture, each using a
different set of texture coordinates.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\MTexture

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
This sample shows how to program the multitexture stages using the new
IDirect3DDevice3::SetTextureStageState method. Dozens of different effects are
attainable with this method. The sample just shows one, monochrome light mapping,
which is very popular in current game titles.

PPlane Sample
[This is preliminary documentation and subject to change.]

Description
The PPlane program is a simple example of how to create Direct3D Immediate
Mode programs.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Pplane

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

in.doc – page 820

User's Guide
Press F1 to see available commands.

Programming Notes
In addition to demonstrating Direct3D Immediate Mode programming techniques,
this application contains a flocking algorithm used to animate the paper planes.

ShadowVol Sample
[This is preliminary documentation and subject to change.]

Description
The ShadowVol sample demonstrates how to create and use stencil buffers to
implement shadow volumes. With shadow volumes, an arbitrarily shaped object can
cast a shadow onto another arbitrarily shaped object.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\ShadowVol

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
This sample will run only on devices that support stencil buffers.

Press F1 to see available commands.

Programming Notes
Shadow volumes are a fairly advanced technique. To start, take an object that you’d
like to have cast a shadow. From that object, build a set of polygonal faces that
encompass the volume of its shadow. Next, use the stencil buffer to render the front
facing planes of the shadow volume. Then, set up the stencil buffer to render the
back-facing planes, this time subtracting values from the stencil buffer. Afterwards,
the stencil buffer contains a mask of the cast shadow. Just draw a large gray or black
rectangle using the stencil buffer as a mask, and the frame buffer will get updated
with the shadow.

ShadowVol2 Sample
[This is preliminary documentation and subject to change.]

in.doc – page 821

Description
The ShadowVol2 sample demonstrates how to create and use stencil buffers to
implement shadow volumes, which are used to cast shadows on arbitrarily complex
objects. It is an extension of the ShadowVol Sample.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\ShadowVol2

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
This sample will run only on devices that support stencil buffers.

Press F1 to see available commands.

The following options are available on the Shadow Modes menu:

· Draw Shadows: Check this option to enable shadow rendering.
· Show Shadow Volumes: Instead of shadows, draw the shadow volumes used to

compute them.
· Draw Shadow Volume Caps: If this is turned off, "extra" shadows may be

visible where the far caps of the directional-light cylindrical shadow volumes
happen to be visible.

· Show Quarter Viewpoint: Show scene from a different angle.
· 1 Bit Stencil Mode: Use different algorithm that uses only 1 bit of stencil

buffer, where overlapping shadows are not allowed. If the device only supports
1-bit stencil, you will not be allowed to switch out of this mode.

· Z Order Shadow Vols: In 1-Bit Mode, shadow volumes must be rendered front-
to-back, so rendering may be incorrect unless this option is checked.

Programming Notes
Shadow volumes are a technique for casting shadows onto arbitrary non-planar
surfaces. The effect is achieved by constructing a shadow volume with respect to the
light source and the shadow caster. In this example, the light source is a directional
light whose direction circles about points on the plane, and the shadow volume is
computed by projecting the vertices of the shadow caster onto a plane perpendicular
to the light, finding the 2-D convex hull of these points in the plane, and extruding
the 2-D hull in the light direction to form the 3-D shadow volume. The shadow
volume must extend far enough so that it covers any geometry that will be in
shadow. This particular shadow volume computation requires that the shadow caster
be a convex object.

The rendering proceeds as follows. First the geometry is rendered as normal, then the
shadow volume is rendered without writing to the z or color buffer (alpha blending is

in.doc – page 822

used here to avoid writes to the color buffer). Every place the shadow volume
appears is marked in the stencil buffer. Next, the cull order is reversed and the back
faces of the shadow volume are rendered, this time unmarking all the pixels that are
covered in the stencil buffer. These have passed the z-test, and thus are visible
behind the back of the shadow volume, so they are not in shadow. The pixels still
marked are those that lie inside the front and back bounds of the shadow volume and
are thus in shadow. These pixels are blended with a large black rectangle that covers
the viewport, generating the shadow.

Spheremap Sample
[This is preliminary documentation and subject to change.]

Description
This samples loads a 3-D object and renders it using a sphere map.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Spheremap

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands.

Programming Notes
The sphere map itself is a special, preconstructed texture map containing a 180-
degree view of an environment. Before a frame is rendered, the object’s normals are
used to compute the texture coordinates for each vertex of the object. When
rendered, the object looks as if it reflects the environment.

TunnelDP Sample
[This is preliminary documentation and subject to change.]

Description
This sample uses DrawPrimitive to render objects.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\TunnelDP

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

in.doc – page 823

User's Guide
Press F1 to see available commands. In addition, you can change some effects by
using the main menu.

Programming Notes
The point of this sample is to compare its source code to that of TunnelEB, the
identical version using execute buffers.

TunnelEB Sample
[This is preliminary documentation and subject to change.]

Description
This sample uses execute buffers to render objects.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\TunnelEB

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see available commands. In addition, you can change some effects by
using the main menu.

Programming Notes
The point of this sample is to compare its source code to that of TunnelDP, the
identical version using DrawPrimitive.

VBuffer Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows how to use the vertex buffers that are new to DirectX 6.0.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\VBuffer

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

in.doc – page 824

User's Guide
Press F1 to see available commands.

Programming Notes

Before vertex buffers, geometry rendering was accomplished by using an array of
vertices passed to DrawPrimitive calls. Vertex buffers are more useful, but need to
be specifically created, locked, filled, and unlocked before being rendered with the
new DrawPrimitiveVB calls.

VideoTex Sample
[This is preliminary documentation and subject to change.]

The VideoTex sample shows how to use an .avi file as a texture map.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\VideoTex

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
Press F1 to see a list of the usual commands.

Programming Notes
The program draws a cube with an .avi texture mapped to each of its faces. The key
is to have the texture's surface use the DDSCAPS2_HINTDYNAMIC flag.

WBuffer Sample
[This is preliminary documentation and subject to change.]

Description
The WBuffer sample shows how to use w-buffering.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\WBuffer

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

in.doc – page 825

User's Guide
Press F1 to see a list of the usual commands. In addition, you can change the
buffering mechanism by pressing W (w-buffering, if supported), Z (z-buffering), or
N (no buffering). Note the artifacts that appear when using z-buffering.

Programming Notes
W-buffering is a depth-buffering alternative to z-buffering, and should be used in
cases where z-buffering produces artifacts. W-buffering does a much better job of
quantizing the depth buffer.

XFile Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows how to load and render .x files.

Path
Source: (SDK root)\Samples\Multimedia\D3dim\Src\Xfile

Executable: (SDK root)\Samples\Multimedia\D3dim\Bin

User's Guide
When you run the program, an Open File dialog box appears. You can find some .x
files in the media folder of the D3DIM samples directory. If there is a .bmp file of
the same name in the directory, the bmp is automatically used as a texture for the
object.

Press F1 to see available commands. In addition, you can load a different file from
the File menu.

Programming Notes
If a texture appears upside-down on an object you have loaded, it is because of the
way the object loads the texture. An earlier version of Direct3D loaded bitmaps
upside-down, so the creators of some .x files compensated by reversing the
coordinates.

	About Direct3D Immediate Mode
	Why Use Direct3D Immediate Mode?
	Getting Started with Immediate Mode
	3-D Coordinate Systems and Geometry
	3-D Coordinate Systems
	3-D Primitives
	Triangle Rasterization Rules
	Shading
	Shade Modes
	Flat Shading
	Gouraud Shading

	Comparing Shading Modes
	Setting the Shade Mode
	Face and Vertex Normal Vectors
	Triangle Interpolants

	Matrices and Transformations
	Matrices
	3-D Transformations
	About 3-D Transformations
	Translation
	Rotation
	Scaling
	Matrix Concatenation

	Direct3D Immediate Mode Architecture
	Architectural Overview of Immediate Mode
	Immediate Mode Object Types
	Immediate Mode COM Interfaces
	DrawPrimitive Methods and Execute Buffers

	Direct3D Immediate Mode Essentials
	Immediate Mode Changes for DirectX 7.0
	Direct3D and DirectDraw
	The DirectDraw Object and Direct3D
	Direct3D Interfaces
	Accessing Direct3D
	Creating Objects Subordinate to Direct3D
	DirectDraw Cooperative Levels and FPU Precision

	Direct3D Devices
	What Is a Direct3D Device?
	Direct3D Device Types
	About Device Types
	HAL Device
	RGB Device
	Reference Rasterizer
	Legacy Device Types

	Device Interfaces
	Using Devices
	Enumerating Direct3D Devices
	Starting Device Enumeration
	Selecting An Enumerated Device

	Creating a Direct3D Device
	Setting Transformations
	Rendering
	About Rendering
	Beginning and Ending a Scene
	Clearing Surfaces
	Rendering Primitives
	The DrawPrimitive Methods
	Rendering Strided Vertices

	Primitive Types
	Point Lists
	Line Lists
	Line Strips
	Triangle Lists
	Triangle Strips
	Triangle Fans

	Render States
	About Render States
	Current Texture
	Antialiasing States
	Texture Addressing State
	Texture Wrapping State
	Texture Borders
	Texture Perspective State
	Texture Filtering State
	Outline and Fill States
	Shading State
	Fog State
	Alpha States
	Texture Blending State
	Culling State
	Depth Buffering State
	Ramp State
	Subpixel Correction State
	Plane Masking State
	Color Keying State
	Render Command Batching State
	Stencil Buffer State

	Lighting States
	Vertex Color Lighting
	Ambient Lighting
	Ramp Mode Lighting
	Vertex Fog Parameter States
	Material State

	Emulation Modes
	AGP Surfaces and Direct3D Devices
	Execute Buffers
	About Execute Buffers
	Creating a Device for Execute Buffers
	Using Execute Buffers
	Execute-Buffer Architecture
	Execute-Buffer Contents
	Execute Buffer Format
	Execute Buffer Vertices
	Execute Buffer Instructions

	Creating an Execute Buffer
	Locking the Execute Buffer
	Filling the Execute Buffer
	Selecting the Vertex Type
	Triangles
	Processing Vertices
	Finishing the Instructions

	Unlocking the Execute Buffer
	Executing the Execute Buffer
	States and State Overrides

	Triangle Flags
	Clip Tests on Execution
	Direct3D Execute-Buffer Tutorial
	Definitions, Prototypes, and Globals
	Header and Includes
	Constants in Imsample.c
	Macros in Imsample.c
	Global Variables
	Function Prototypes

	Enumerating Direct3D Devices
	Enumeration Callback Function
	Enumeration Function

	Creating Objects and Interfaces
	Creating the Primary Surface and Clipper Object
	Creating the Direct3D Object
	Creating the Direct3D Device

	Creating the Scene
	Filling the Execute Buffer
	Animating the Scene
	Rendering Using an Execute Buffer
	Rendering the Scene
	Rendering a Single Frame

	Working with Matrices
	Setting the Perspective Transformation
	Setting a Rotation Transformation

	Restoring and Redrawing
	Restoring the Direct3D Device
	Restoring the Primary Surface
	Restoring All Surfaces
	Redrawing on Window Movement
	Redrawing on Window Resizing
	Repainting the Client Area
	Updating the Viewport

	Releasing Objects
	Releasing the Direct3D Object
	Releasing the Direct3D Device
	Releasing the Primary Surface
	Releasing the Objects in the Scene

	Error Checking
	Checking for Active Status
	Reporting Standard Errors
	Reporting Fatal Errors
	Displaying a Notification String

	Converting Bit Depths
	Converting a Bit Depth into a Flag
	Converting a Flag into a Bit Depth

	Main Window Procedure
	WinMain Function

	The Geometry Pipeline
	Overview of the Pipeline
	The World Transformation
	What Is the World Transformation?
	Setting Up a World Matrix

	The View Transformation
	What Is the View Transformation?
	Setting Up a View Matrix

	The Projection Transformation
	The Viewing Frustum
	What Is the Projection Transformation?
	Setting Up a Projection Matrix
	A W-Friendly Projection Matrix

	Viewports and Clipping
	What Is a Viewport?
	Clipping Volumes
	About Clipping Volumes
	Considerations for Various Vertex Types
	Viewport Scaling

	Using Viewports
	Preparing to Use a Viewport
	Creating a Viewport
	Adding a Viewport to a Device
	Setting the Viewport Clipping Volume
	Deleting a Viewport
	Clearing a Viewport
	Manually Transforming Vertices

	The Rasterizer

	Lighting and Materials
	Introduction to Lighting and Materials
	The Direct3D Light Model vs. Nature
	Color Values for Lights and Materials
	Direct Light vs. Ambient Light
	Enabling and Disabling the Lighting Engine
	Lights
	Introduction to Light Objects
	Point Lights
	Spotlights
	Directional Lights
	Parallel-Point lights

	Light Properties
	Light Type
	Light Color
	Light Position, Range and Attenuation
	Light Direction
	Spotlight Properties

	Using Lights
	Preparing to Use a Light
	Creating a Light
	Setting Light Properties
	Adding a Light to a Viewport
	Deleting a Light
	Retrieving Light Properties

	Materials
	What are Materials?
	Material Properties
	Using Materials
	Preparing to Use a Material
	Creating a Material
	Setting Material Properties
	Retrieving Material Handles
	Selecting a Material for Rendering
	Retrieving Material Properties

	The Mathematics of Direct3D Lighting
	Light Attenuation Over Distance
	Reflectance Model
	Diffuse Reflection Model
	Specular Reflection Model

	Spotlight Falloff Model

	Vertex Formats
	About Vertex Formats
	Untransformed and Unlit Vertices
	Untransformed and Lit Vertices
	Transformed and Lit Vertices
	Strided Vertex Format

	Textures
	Basic Texturing Concepts
	What Is a Texture?
	Texture Coordinates
	Texture Addressing Modes
	What Are Texture Addressing Modes?
	About the Wrap Texture Address Mode
	About the Mirror Texture Address Mode
	About the Clamp Texture Address Mode
	About the Border Color Texture Address Mode
	Setting and Retrieving Texture Addressing Modes
	Texture Addressing Modes and Texture Wrapping

	Texture Handles and Texture Interfaces
	Palettized Textures

	Texture Handles
	Creating a Texture Handle
	Rendering with Texture Handles

	Texture Interfaces
	Obtaining a Texture Interface Pointer
	Rendering with Texture Interface Pointers

	Texture Filtering
	Nearest Point Sampling
	Linear Texture Filtering
	Anisotropic Texture Filtering
	Texture Filtering With Mipmaps
	What Is a Mipmap?
	Creating a Set of Mipmaps
	Selecting and Displaying a Mipmap

	Texture Wrapping
	What is Texture Wrapping?
	Using Texture Wrapping

	Texture Blending
	Alpha Texture Blending
	Multipass Texture Blending
	Multiple Texture Blending
	Texture Stages and the Texture Blending Cascade
	Texture Blending Operations and Arguments
	Assigning the Current Textures
	Creating Blending Stages

	Legacy Blending Modes and Texture Stages
	Light Mapping With Textures
	Monochrome Light Maps
	Color Light Maps
	Specular Light Maps
	Diffuse Light Maps

	Texture Compression
	Automatic Texture Management
	Hardware Considerations for Texturing

	Depth Buffers
	What Are Depth Buffers?
	Using Depth Buffers
	Querying for Depth Buffer Support
	Creating a Depth Buffer
	Enabling Depth Buffering
	Clearing Depth Buffers
	Changing Depth Buffer Write Access
	Changing Depth Buffer Comparison Functions
	Using Z-Bias

	Stencil Buffers
	What is a Stencil Buffer?
	How the Stencil Buffer Works
	Customizing the Stencil Buffer

	Vertex Buffers
	What Are Vertex Buffers?
	Vertex Buffer Descriptions
	Vertex Buffers and Device Types
	Using Vertex Buffers
	Creating a Vertex Buffer
	Accessing Vertex Buffer Memory
	Processing Vertices
	Optimizing a Vertex Buffer
	Rendering From a Vertex Buffer
	About Vertex Buffer Rendering
	Calling Vertex Buffer Rendering Methods

	Retrieving Vertex Buffer Descriptions

	Common Techniques and Special Effects
	Fog
	Introduction to Fog
	Fog Formulas
	Fog Blending
	Fog Color
	Range-Based Fog
	Pixel Fog
	About Pixel Fog
	Eye-Relative vs. Z-based Depth
	Pixel Fog Parameters
	Using Pixel Fog

	Vertex Fog
	About Vertex Fog
	Vertex Fog Parameters
	Using Vertex Fog

	Billboarding
	Clouds, Smoke, and Vapor Trails
	Texture Blending Techniques
	Bump Mapping
	Detail Texture Mapping

	Fire, Flares, Explosions, and More
	Motion Blur
	Stencil Buffer Techniques
	Dissolves, Fades, and Swipes
	Decaling
	Compositing
	Outlines and Silhouettes

	Colored Lights
	Antialiasing
	Edge Antialiasing
	Full-scene Antialiasing

	GUIDs
	Performance Optimization
	Databases and Culling
	Batching Primitives
	Lighting Tips
	Texture Size
	General Performance Tips
	Ramp Performance Notes
	Ramp Textures
	Copy Texture-blending Mode
	Ramp Performance Tips

	Z-Buffer Performance

	Troubleshooting
	Device Creation
	Nothing Visible
	Debugging
	Borland Floating-Point Initialization
	Parameter Validation
	Miscellaneous

	Direct3D Immediate Mode Tutorials
	Direct3D Immediate Mode C/C++ Tutorials
	Tutorial 1: Rendering a Single Triangle
	Step 1: Create a Window
	Step 2: Initialize System Objects
	Step 2.1: Initialize DirectDraw
	Step 2.2: Set Up DirectDraw Surfaces
	Step 2.3: Initialize Direct3D
	Step 2.4: Prepare the Viewport

	Step 3: Initialize the Scene
	Step 3.1: Prepare Geometry
	Step 3.2: Set Up Material and Initial Lighting States
	Step 3.3: Prepare and Set Transformation Matrices

	Step 4: Monitor System Messages
	Step 5: Render and Display the Scene
	Step 5.1: Update the Scene
	Step 5.2: Render the Scene
	Step 5.3: Update the Display

	Step 6: Shut Down
	Handle Window Movement
	Handle Window Resizing

	Tutorial 2: Adding a Depth Buffer
	Step 1: Enumerate Depth-Buffer Formats
	Step 2: Create the Depth Buffer
	Step 3: Attach the Depth Buffer
	Step 4: Enable Depth Buffering

	Direct3D Immediate Mode Visual Basic Tutorials
	Tutorial 1: ?

	Direct3D Immediate Mode Reference
	Direct3D Immediate Mode C/C++ Reference
	Interfaces
	D3D_OVERLOADS
	Callback Functions
	Macros
	Structures
	Enumerated Types
	Other Types
	Flexible Vertex Format Flags
	Texture Argument Flags
	Return Values

	Direct3D Immediate Mode Visual Basic Reference
	Classes
	Types
	Enumerations
	Flexible Vertex Format Flags
	Texture Argument Flags
	Error Codes

	Direct3D Immediate Mode Samples
	Bend Sample
	Billboard Sample
	Boids Sample
	BumpMap Sample
	Compress Sample
	D3DFrame Library
	Filter Sample
	Fireworks Sample
	Flare Sample
	Fog Sample
	LightMap Sample
	Lights Sample
	MipMap Sample
	MTexture Sample
	PPlane Sample
	ShadowVol Sample
	ShadowVol2 Sample
	Spheremap Sample
	TunnelDP Sample
	TunnelEB Sample
	VBuffer Sample
	VideoTex Sample
	WBuffer Sample
	XFile Sample

