DirectDraw

[This is preliminary documentation and subject to change.]

This section provides information about the DirectDraw® component of the DirectX® application programming interface (API). Information is divided into the following groups:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About DirectDraw

�SYMBOL 183 \f "Symbol" \s 11 \h �	Why Use DirectDraw?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Getting Started: Basic Graphics Concepts

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Architecture

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Essentials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Tutorials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Reference

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Samples

About DirectDraw

[This is preliminary documentation and subject to change.]

DirectDraw® is the component of the DirectX® application programming interface (API) that allows you to directly manipulate display memory, the hardware blitter, hardware overlay support, and flipping surface support. DirectDraw provides this functionality while maintaining compatibility with existing Microsoft® Windows®-based applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices while maintaining compatibility with the Windows graphics device interface (GDI). It is not a high-level application programming interface (API) for graphics. DirectDraw provides a device-independent way for games and Windows subsystem software, such as three-dimensional (3-D) graphics packages and digital video codecs, to gain access to the features of specific display devices.

DirectDraw works with a wide variety of display hardware, ranging from simple SVGA monitors to advanced hardware implementations that provide clipping, stretching, and non-RGB color format support. The interface is designed so that your applications can enumerate the capabilities of the underlying hardware and then use any supported hardware-accelerated features. Features that are not implemented in hardware are emulated by DirectX.

DirectDraw provides device-dependent access to display memory in a device-independent way. Essentially, DirectDraw manages display memory. Your application need only recognize some basic device dependencies that are standard across hardware implementations, such as RGB and YUV color formats and the pitch between raster lines. You need not call specific procedures to use the blitter or manipulate palette registers. Using DirectDraw, you can manipulate display memory with ease, taking full advantage of the blitting and color decompression capabilities of different types of display hardware without becoming dependent on a particular piece of hardware.

DirectDraw provides world-class game graphics on computers running Windows 95 and later and Windows NT® version 4.0 or Windows 2000.

Why Use DirectDraw?

[This is preliminary documentation and subject to change.]

The DirectDraw component brings many powerful features to you, the Windows graphics programmer:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The hardware abstraction layer (HAL) of DirectDraw provides a consistent interface through which to work directly with the display hardware, getting maximum performance.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw assesses the video hardware's capabilities, making use of special hardware features whenever possible. For example, if your video card supports hardware blitting, DirectDraw delegates blits to the video card, greatly increasing performance. Additionally, DirectDraw provides a hardware emulation layer (HEL) to support features when the hardware does not.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw exists under Windows, gaining the advantage of 32-bit memory addressing and a flat memory model that the operating system provides. DirectDraw presents video and system memory as large blocks of storage, not as small segments. If you've ever used segment:offset addressing, you will quickly begin to appreciate this "flat" memory model.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw makes it easy for you to implement page flipping with multiple back buffers in full-screen applications. For more information, see Page Flipping and Back Buffering.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Support for clipping in windowed or full-screen applications.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Support for 3-D z-buffers.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Support for hardware-assisted overlays with z-ordering.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Access to image-stretching hardware.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Simultaneous access to standard and enhanced display-device memory areas.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Other features include custom and dynamic palettes, exclusive hardware access, and resolution switching.

These features combine to make it possible for you to write applications that easily outperform standard Windows GDI-based applications and even MS-DOS applications.

Getting Started: Basic Graphics Concepts

[This is preliminary documentation and subject to change.]

This section provides an overview of graphics programming with DirectDraw. Each concept discussed here begins with a non-technical overview, followed by some specific information about how DirectDraw supports it.

You don't need to be a graphics guru to benefit from this overview—in fact, if you are one you might want to skip this section entirely and move on to the more detailed information in the DirectDraw Essentials section. If you're familiar with Windows programming in C and C++, you won't have difficulty digesting this information. When you finish reading these topics, you will have a solid understanding of basic DirectDraw graphics programming concepts.

The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device-Independent Bitmaps

�SYMBOL 183 \f "Symbol" \s 11 \h �	Drawing Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting

�SYMBOL 183 \f "Symbol" \s 11 \h �	Page Flipping and Back Buffering

�SYMBOL 183 \f "Symbol" \s 11 \h �	Introduction to Rectangles

Device-Independent Bitmaps

[This is preliminary documentation and subject to change.]

Windows, and therefore DirectX, uses the device-independent bitmap (DIB) as its native graphics file format. Essentially, a DIB is a file that contains information describing an image's dimensions, the number of colors it uses, values describing those colors, and data that describes each pixel. Additionally, a DIB contains some lesser-used parameters, like information about file compression, significant colors (if all are not used), and physical dimensions of the image (in case it will end up in print). DIB files usually have the .bmp file extension, although they might occasionally have a .dib extension.

[C++]

Because the DIB is so pervasive in Windows programming, the Platform SDK already contains many functions that you can use with DirectX. For example, the following application-defined function, taken from the Ddutil.cpp file that comes with the DirectX APIs in the Platform SDK, combines Win32® and DirectX functions to load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(IDirectDraw *pdd,

 LPCSTR szBitmap, int dx, int dy)

{

 HBITMAP hbm;

 BITMAP bm;

 DDSURFACEDESC ddsd;

 IDirectDrawSurface *pdds;

 //

 // This is the Win32 part.

 // Try to load the bitmap as a resource.

 // If that fails, try it as a file.

 //

 hbm = (HBITMAP)LoadImage(

 GetModuleHandle(NULL), szBitmap,

 IMAGE_BITMAP, dx, dy, LR_CREATEDIBSECTION);

 if (hbm == NULL)

 hbm = (HBITMAP)LoadImage(

 NULL, szBitmap, IMAGE_BITMAP, dx, dy,

 LR_LOADFROMFILE|LR_CREATEDIBSECTION);

 if (hbm == NULL)

 return NULL;

 //

 // Get the size of the bitmap.

 //

 GetObject(hbm, sizeof(bm), &bm);

 //

 // Now, return to DirectX function calls.

 // Create a DirectDrawSurface for this bitmap.

 //

 ZeroMemory(&ddsd, sizeof(ddsd));

 ddsd.dwSize = sizeof(ddsd);

 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH;

 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

 ddsd.dwWidth = bm.bmWidth;

 ddsd.dwHeight = bm.bmHeight;

 if (pdd->CreateSurface(&ddsd, &pdds, NULL) != DD_OK)

 return NULL;

 DDCopyBitmap(pdds, hbm, 0, 0, 0, 0);

 DeleteObject(hbm);

 return pdds;

}

For more detailed information about DIB files, see the Platform SDK.

[C++,Visual Basic]

Drawing Surfaces

[This is preliminary documentation and subject to change.]

Drawing surfaces receive video data to eventually be displayed on the screen as images (bitmaps, to be exact). In most Windows programs, you get access to the drawing surface using a Win32 function such as GetDC, which stands for get the device context (DC). After you have the device context, you can start painting the screen. However, Win32 graphics functions are provided by an entirely different part of the system, the graphics device interface (GDI). The GDI is a system component that provides an abstraction layer that enables standard Windows applications to draw to the screen.

The drawback of GDI is that it wasn't designed for high-performance multimedia software, it was made to be used by business applications like word processors and spreadsheet applications. GDI provides access to a video buffer in system memory, not video memory, and doesn't take advantage of special features that some video cards provide. In short, GDI is great for most business applications, but its performance is too slow for multimedia or game software.

On the other hand, DirectDraw can give you drawing surfaces that represent actual video memory. This means that when you use DirectDraw, you can write directly to the memory on the video card, making your graphics routines extremely fast. These surfaces are represented as contiguous blocks of memory, making it easy to perform addressing within them.

For more detailed information, see Surfaces.

Blitting

[This is preliminary documentation and subject to change.]

The term blit is shorthand for "bit block transfer," which is the process of transferring blocks of data from one place in memory to another. Graphics programmers use blitting to transfer graphics from one place in memory to another. Blits are often used to perform sprite animation, which is discussed later.

For more information on blitting in DirectDraw, see Blitting to Surfaces.

Page Flipping and Back Buffering

[This is preliminary documentation and subject to change.]

Page flipping is key in multimedia, animation, and game software. Software page flipping is analogous to the way animation can be done with a pad of paper. On each page the artist changes the figure slightly, so that when you flip between sheets rapidly the drawing appears animated.

Page flipping in software is very similar to this process. Initially, you set up a series of DirectDraw surfaces that are designed to "flip" to the screen the way artist's paper flips to the next page. The first surface is referred to as the primary surface, and the surfaces behind it are called back buffers . Your application writes to a back buffer, then flips the primary surface so that the back buffer appears on screen. While the system is displaying the image, your software is again writing to a back buffer. The process continues as long as you're animating, allowing you to animate images quickly and efficiently.

DirectDraw makes it easy for you to set up page flipping schemes, from a relatively simple double-buffered scheme (a primary surface with one back buffer) to more sophisticated schemes that add additional back buffers. For more information see DirectDraw Tutorials and Flipping Surfaces.

Introduction to Rectangles

[This is preliminary documentation and subject to change.]

Throughout DirectDraw and Windows programming, objects on the screen are referred to in terms of bounding rectangles. The sides of a bounding rectangle are always parallel to the sides of the screen, so the rectangle can be described by two points, the top-left corner and bottom-right corner. Most applications use the RECT structure to carry information about a bounding rectangle to use when blitting to the screen or performing hit detection.

[C++]

In C++, the RECT structure has the following definition:

typedef struct tagRECT {

 LONG left; // This is the top-left corner's x-coordinate.

 LONG top; // The top-left corner's y-coordinate.

 LONG right; // The bottom-right corner's x-coordinate.

 LONG bottom; // The bottom-right corner's y-coordinate.

} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT;

[Visual Basic]

In Visual Basic, the RECT type has the following definition:

Type RECT

 Left As Long // This is the top-left corner's x-coordinate.

 Top As Long // The top-left corner's y-coordinate.

 Right As Long // The bottom-right corner's x-coordinate.

 Bottom As Long // The bottom-right corner's y-coordinate.

End Type

In the preceding example, the left and top members are the x- and y-coordinates of a bounding rectangle's top-left corner. Similarly, the right and bottom members make up the coordinates of the bottom-right corner. The following diagram illustrates how you can visualize these values.

�

In the interest of efficiency, consistency, and ease of use, all DirectDraw blitting functions work with rectangles. However, you can create the illusion of nonrectangular blit operations by using transparent blitting. For more information, see Transparent Blitting.

DirectDraw Architecture

[This is preliminary documentation and subject to change.]

This section contains general information about the relationship between the DirectDraw component and the rest of DirectX, the operating system, and the system hardware. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Architectural Overview for DirectDraw

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Object Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Hardware Abstraction Layer (HAL)

�SYMBOL 183 \f "Symbol" \s 11 \h �	Software Emulation

�SYMBOL 183 \f "Symbol" \s 11 \h �	System Integration

Architectural Overview for DirectDraw

[This is preliminary documentation and subject to change.]

Multimedia software requires high-performance graphics. Through DirectDraw, Microsoft enables a much higher level of efficiency and speed in graphics-intensive applications for Windows than is possible with GDI, while maintaining device independence. DirectDraw provides tools to perform such key tasks as:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Manipulating multiple display surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Accessing the video memory directly

�SYMBOL 183 \f "Symbol" \s 11 \h �	Page flipping

�SYMBOL 183 \f "Symbol" \s 11 \h �	Back buffering

�SYMBOL 183 \f "Symbol" \s 11 \h �	Managing the palette

�SYMBOL 183 \f "Symbol" \s 11 \h �	Clipping

Additionally, DirectDraw enables you to query the display hardware's capabilities at run time, then provide the best performance possible given the host computer's hardware capabilities.

As with other DirectX components, DirectDraw uses the hardware to its greatest possible advantage, and provides software emulation for most features when hardware support is unavailable. Device independence is possible through use of the hardware abstraction layer, or HAL. For more information about the HAL, see the hardware abstraction layer .

The DirectDraw component provides services through COM-based interfaces. In the most recent iteration, these interfaces are IDirectDraw4, IDirectDrawSurface4, IDirectDrawPalette, IDirectDrawClipper, and IDirectDrawVideoPort. Note that, in addition to these interfaces, DirectDraw continues to support all previous versions. The DirectDraw component doesn't expose an IDirectDraw3 interface, the interface versions skipped from IDirectDraw2 to IDirectDraw4.

For more information about COM concepts that you should understand to create applications with the DirectX APIs in the Platform SDK, see DirectX and the Component Object Model.

The DirectDraw object represents the display adapter and exposes its methods through the IDirectDraw, IDirectDraw2, and IDirectDraw4 interfaces. In most cases you will use the DirectDrawCreate function to create a DirectDraw object, but you can also create one with the CoCreateInstance COM function. For more information, see Creating DirectDraw Objects by Using CoCreateInstance.

After creating a DirectDraw object, you can create surfaces for it by calling the IDirectDraw4::CreateSurface method. Surfaces represent the memory on the display hardware, but can exist on either video memory or system memory. DirectDraw extends support for palettes, clipping (useful for windowed applications), and video ports through its other interfaces.

DirectDraw Object Types

[This is preliminary documentation and subject to change.]

You can think of DirectDraw as being composed of several objects that work together. This section briefly describes the objects you use when working with the DirectDraw component, organized by object type. For detailed information, see DirectDraw Essentials.

The DirectDraw component uses the following objects:

DirectDraw object

The DirectDraw object is the heart of all DirectDraw applications. It's the first object you create, and you use it to make all other related objects. You create a DirectDraw object by calling the DirectDrawCreate function. DirectDraw objects expose their functionality through the IDirectDraw, IDirectDraw2, and IDirectDraw4 interfaces. For more information, see The DirectDraw Object.

DirectDrawSurface object

The DirectDrawSurface object (casually referred to as a "surface") represents an area in memory that holds data to be displayed on the monitor as images or moved to other surfaces. You usually create a surface by calling the IDirectDraw4::CreateSurface method of the DirectDraw object with which it will be associated. DirectDrawSurface objects expose their functionality through the IDirectDrawSurface, IDirectDrawSurface2, IDirectDrawSurface3, and IDirectDrawSurface4 interfaces. For more information, see Surfaces.

DirectDrawPalette object

The DirectDrawPalette object (casually referred to as a "palette") represents a 16- or 256-color indexed palette to be used with a surface. It contains a series of indexed RGB triplets that describe colors associated with values within a surface. You do not use palettes with surfaces that use a pixel format depth greater than 8 bits. You can create a DirectDrawPalette object by calling the IDirectDraw4::CreatePalette method. DirectDrawPalette objects expose their functionality through the IDirectDrawPalette interface. For more information, see Palettes.

DirectDrawClipper object

The DirectDrawClipper object (casually referred to as a "clipper") helps you prevent blitting to certain portions of a surface or beyond the bounds of a surface. You can create a clipper by calling the IDirectDraw4::CreateClipper method. DirectDrawClipper objects expose their functionality through the IDirectDrawClipper interface. For more information, see Clippers.

DirectDrawVideoPort object

The DirectDrawVideoPort object represents video-port hardware present in some systems. This hardware allows direct access to the frame buffer without accessing the CPU or using the PCI bus. You can create a DirectDrawVideoPort object by calling a QueryInterface method for the DirectDraw object, specifying the IID_IDDVideoPortContainer reference identifier. DirectDrawVideoPort objects expose their functionality through the IDDVideoPortContainer and IDirectDrawVideoPort interfaces. For more information, see Video Ports.

Hardware Abstraction Layer (HAL)

[This is preliminary documentation and subject to change.]

DirectDraw provides device independence through the hardware abstraction layer (HAL). The HAL is a device-specific interface, provided by the device manufacturer, that DirectDraw uses to work directly with the display hardware. Applications never interact with the HAL. Rather, with the infrastructure that the HAL provides, DirectDraw exposes a consistent set of interfaces and methods that an application uses to display graphics. The device manufacturer implements the HAL in a combination of 16-bit and 32-bit code under Windows. Under Windows NT/Windows 2000, the HAL is always implemented in 32-bit code. The HAL can be part of the display driver or a separate DLL that communicates with the display driver through a private interface that driver's creator defines.

The DirectDraw HAL is implemented by the chip manufacturer, board producer, or original equipment manufacturer (OEM). The HAL implements only device-dependent code and performs no emulation. If a function is not performed by the hardware, the HAL does not report it as a hardware capability. Additionally, the HAL does not validate parameters; DirectDraw does this before the HAL is invoked.

Software Emulation

[This is preliminary documentation and subject to change.]

When the hardware does not support a feature through the hardware abstraction layer (HAL), DirectDraw attempts to emulate it. This emulated functionality is provided through the hardware emulation layer (HEL). The HEL presents its capabilities to DirectDraw just as the HAL would. And, as with the HAL, applications never work directly with the HEL. The result is transparent support for almost all major features, regardless of whether a given feature is supported by hardware or through the HEL.

Obviously, software emulation cannot equal the performance that hardware features provide. You can query for the features the hardware supports by using the IDirectDraw4::GetCaps method. By examining these capabilities during application initialization, you can adjust application parameters to provide optimum performance over varying levels of hardware performance.

In some cases, certain combinations of hardware supported features and emulation can result in slower performance than emulation alone. For example, if the display device driver supports DirectDraw but not stretch blitting, noticeable performance losses will occur when stretch blitting from video memory surfaces. This happens because video memory is often slower than system memory, forcing the CPU to wait when accessing video memory surfaces. If your application uses a feature that isn't supported by the hardware, it is sometimes best to create surfaces in system memory, thereby avoiding performance losses created when the CPU accesses video memory.

For more information, see Hardware Abstraction Layer (HAL).

System Integration

[This is preliminary documentation and subject to change.]

The following diagram shows the relationships between DirectDraw, the graphics device interface (GDI), the hardware abstraction layer (HAL), the hardware emulation layer (HEL) and the hardware.

�

As the preceding diagram shows, a DirectDraw object exists alongside GDI, and both have direct access to the hardware through a device-dependent abstraction layer. Unlike GDI, DirectDraw makes use of special hardware features whenever possible. If the hardware does not support a feature, DirectDraw attempts to emulate it by using the HEL. DirectDraw can provide surface memory in the form of a device context, making it possible for you to use GDI functions to work with surface objects.

DirectDraw Essentials

[This is preliminary documentation and subject to change.]

This section contains general information about the DirectDraw® component of DirectX®. Information is organized into the following groups:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Cooperative Levels

�SYMBOL 183 \f "Symbol" \s 11 \h �	Display Modes

�SYMBOL 183 \f "Symbol" \s 11 \h �	The DirectDraw Object

�SYMBOL 183 \f "Symbol" \s 11 \h �	Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Palettes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Clippers

�SYMBOL 183 \f "Symbol" \s 11 \h �	Multiple Monitor Systems

�SYMBOL 183 \f "Symbol" \s 11 \h �	Advanced DirectDraw Topics

Cooperative Levels

[This is preliminary documentation and subject to change.]

In the following topics, this section introduces the concept of cooperative levels and describes some common usage situations:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About Cooperative Levels

�SYMBOL 183 \f "Symbol" \s 11 \h �	Testing Cooperative Levels

About Cooperative Levels

[This is preliminary documentation and subject to change.]

Cooperative levels describe how DirectDraw interacts with the display and how it reacts to events that might affect the display. Use the IDirectDraw4::SetCooperativeLevel method to set cooperative level of DirectDraw. For the most part, you use DirectDraw cooperative levels to determine whether your application runs as a full-screen program with exclusive access to the display or as a windowed application. However, DirectDraw cooperative levels can also have the following effects:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enable DirectDraw to use Mode X resolutions. For more information, see Mode X and Mode 13 Display Modes.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Prevent DirectDraw from releasing exclusive control of the display or rebooting if the user presses CTRL + ALT + DEL (exclusive mode only).

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enable DirectDraw to minimize or maximize the application in response to activation events.

The normal cooperative level indicates that your DirectDraw application will operate as a windowed application. At this cooperative level you won't be able to change the primary surface's palette or perform page flipping.

Because applications can use DirectDraw with multiple windows, IDirectDraw4::SetCooperativeLevel does not require a window handle to be specified if the application is requesting the DDSCL_NORMAL mode. By passing a NULL to the window handle, all of the windows can be used simultaneously in normal Windows mode.

At the full-screen and exclusive cooperative level, you can use the hardware to its fullest. In this mode, you can set custom and dynamic palettes, change display resolutions, and implement page flipping. The exclusive (full-screen) mode does not prevent other applications from allocating surfaces, nor does it exclude them from using DirectDraw or GDI. However, it does prevent applications other than the one currently with exclusive access from changing the display mode or palette.

DirectDraw takes control of window activation events for full-screen, exclusive mode applications, sending WM_ACTIVATEAPP messages to the window handle registered through the SetCooperativeLevel method as needed. DirectDraw only sends activation events to the top-level window. If your application creates child windows that require activation event messages, it is your responsibility to subclass the child windows.

SetCooperativeLevel maintains a binding between a process and a window handle. If SetCooperativeLevel is called once in a process, a binding is established between the process and the window. If it is called again in the same process with a different non-null window handle, it returns the DDERR_HWNDALREADYSET error value. Some applications may receive this error value when DirectSound® specifies a different window handle than DirectDraw—they should specify the same, top-level application window handle.

Note

Developers using Microsoft Foundation Classes (MFC) should keep in mind that the window handle given to the SetCooperativeLevel method should identify the application's top-level window, not a derived child window. To retrieve your MFC application's top level window handle, you could use the following code:

 HWND hwndTop = AfxGetMainWnd()->GetSafeHwnd();

See also, Multiple Monitor Systems.

Testing Cooperative Levels

[This is preliminary documentation and subject to change.]

Developers often use messages such as WM_ACTIVATEAPP and WM_DISPLAYCHANGE as notifications that their applications should restore or re-create the surfaces being used. In some cases, applications take action when they don't need to, or don't take action when they should. The IDirectDraw4::TestCooperativeLevel method makes it possible for your application to retrieve more information about the DirectDraw object's cooperative level and take appropriate steps to continue execution without mishap.

The TestCooperativeLevel method succeeds, returning DD_OK, if your application can restore its surfaces (if it has not already done so) and continue to execute. Failure codes, on the other hand, are interpreted differently depending on the cooperative-level your application uses:

Full-screen applications

Full-screen applications receive the DDERR_NOEXCLUSIVEMODE return value if they lose exclusive device access–for example, if the user pressed ALT+TAB to switch away from the current application. In this case, applications might call TestCooperativeLevel in a loop, exiting only when the method returns DD_OK (meaning that exclusive mode was returned). In the body of the loop, the application should relinquish control of the CPU to prevent using cycles unnecessarily. Windows supports functions such as the WaitMessage or Sleep Win32 functions for this purpose.

Any existing surfaces should be restored by calling the IDirectDrawSurface4::Restore or IDirectDraw4::RestoreAllSurfaces methods, and their contents reloaded before displaying them.

Windowed applications

Windowed applications (those that use the normal cooperative level) receive DDERR_EXCLUSIVEMODEALREADYSET if another application has taken exclusive device access. In this case, no action should be taken until the application with exclusive access loses it. This situation is similar to the case for a full-screen application; a windowed application might loop until TestCooperativeLevel returns DD_OK before restoring and reloading its surfaces. As mentioned previously, in a loop like this applications should avoid unnecessarily using CPU cycles by relinquishing CPU control periodically during the loop.

The TestCooperativeLevel method returns DDERR_WRONGMODE to windowed applications when the display mode has changed. In this case, the application should destroy and re-create any surfaces before continuing execution.

Display Modes

[This is preliminary documentation and subject to change.]

This section contains general information about DirectDraw display modes. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About Display Modes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Determining Supported Display Modes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Display Modes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Restoring Display Modes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mode X and Mode 13 Display Modes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Support for High Resolutions and True-Color Bit Depths

About Display Modes

[This is preliminary documentation and subject to change.]

A display mode is a hardware setting that describes the dimensions and bit-depth of graphics that the display hardware sends to the monitor from the primary surface. Display modes are described by their defining characteristics: width, height, and bit-depth. For instance, most display adapters can display graphics 640 pixels wide and 480 pixels tall, where each pixel is 8 bits of data. In shorthand, this display mode is called 640´480´8. As the dimensions of a display mode get larger or as the bit-depth increases, more display memory is required.

There are two types of display modes: palettized and non-palettized. For palettized display modes, each pixel is a value representing an index into an associated palette. The bit depth of the display mode determines the number of colors that can be in the palette. For instance, in an 8-bit palettized display mode, each pixel is a value from 0 to 255. In such a display mode, the palette can contain 256 entries.

Non-palettized display modes, as their name states, do not use palettes. The bit depth of a non-palettized display mode indicates the total number of bits that are used to describe a pixel.

The primary surface and any surfaces in the primary flipping chain match the display mode's dimensions, bit depth and pixel format. For more information, see Pixel Formats.

Determining Supported Display Modes

[This is preliminary documentation and subject to change.]

Because display hardware varies, not all devices will support all display modes. To determine the display modes supported on a given system, call the IDirectDraw4::EnumDisplayModes method. By setting the appropriate values and flags, the EnumDisplayModes method can list all supported display modes or confirm that a single display mode that you specify is supported. The method's first parameter, dwFlags, controls extra options for the method; in most cases, you will set dwFlags to 0 to ignore extra options. The second parameter, lpDDSurfaceDesc, is the address of a DDSURFACEDESC2 structure that describes a given display mode to be confirmed; you'll usually set this parameter to NULL to request that all modes be listed. The third parameter, lpContext, is a pointer that you want DirectDraw to pass to your callback function; if you don't need any extra data in the callback function, use NULL here. Last, you set the lpEnumModesCallback parameter to the address of the callback function that DirectDraw will call for each supported mode.

The callback function you supply when calling EnumDisplayModes must match the prototype for the EnumModesCallback function. For each display mode that the hardware supports, DirectDraw calls your callback function passing two parameters. The first parameter is the address of a DDSURFACEDESC2 structure that describes one supported display mode, and the second parameter is the address of the application-defined data you specified when calling EnumDisplayModes, if any.

Examine the values in the DDSURFACEDESC2 structure to determine the display mode it describes. The key structure members are the dwWidth, dwHeight, and ddpfPixelFormat members. The dwWidth and dwHeight members describe the display mode's dimensions, and the ddpfPixelFormat member is a DDPIXELFORMAT structure that contains information about the mode's bit depth.

The DDPIXELFORMAT structure carries information describing the mode's bit depth and tells you whether or not the display mode uses a palette. If the dwFlags member contains the DDPF_PALETTEINDEXED1, DDPF_PALETTEINDEXED2, DDPF_PALETTEINDEXED4, or DDPF_PALETTEINDEXED8 flag, the display mode's bit depth is 1, 2, 4 or 8 bits, and each pixel is an index into an associated palette. If dwFlags contains DDPF_RGB, then the display mode is non-palettized and its bit depth is provided in the dwRGBBitCount member of the DDPIXELFORMAT structure.

Setting Display Modes

[This is preliminary documentation and subject to change.]

You can set the display mode by using the IDirectDraw4::SetDisplayMode method. The SetDisplayMode method accepts four parameters that describe the dimensions, bit depth, and refresh rate of the mode to be set. The method uses a fifth parameter to indicate special options for the given mode; this is currently only used to differentiate between Mode 13 and the Mode X 320´200´8 display mode.

Although you can specify the desired display mode's bit depth, you cannot specify the pixel format that the display hardware will use for that bit depth. To determine the RGB bit masks that the display hardware uses for the current bit depth, call IDirectDraw4::GetDisplayMode after setting the display mode. If the current display mode is not palettized, you can examine the mask values in the dwRBitMask, dwGBitMask, and dwBBitMask members to determine the correct red, green, and blue bits. For more information, see Pixel Format Masks.

Modes can be changed by more than one application as long as they are all sharing a display card. You can change the bit depth of the display mode only if your application has exclusive access to the DirectDraw object. All DirectDrawSurface objects lose surface memory and become inoperative when the mode is changed. A surface's memory must be reallocated by using the IDirectDrawSurface4::Restore method.

The DirectDraw exclusive (full-screen) mode does not bar other applications from allocating DirectDrawSurface objects, nor does it exclude them from using DirectDraw or GDI functionality. However, it does prevent applications other than the one that obtained exclusive access from changing the display mode or palette.

Note

You can only call the IDirectDraw4::SetDisplayMode method from the thread that created the application window. For single threaded applications (the vast majority), this restriction isn't an issue.

Restoring Display Modes

[This is preliminary documentation and subject to change.]

You can explicitly restore the display hardware to its original mode by calling the IDirectDraw4::RestoreDisplayMode method. If the display mode was set by calling IDirectDraw4::SetDisplayMode and your application takes the exclusive cooperative level, the original display mode is reset automatically when you set the application's cooperative level back to normal. (This behavior was first offered in the IDirectDraw2 interface, and is offered by all newer versions of the interface.)

If you're using the IDirectDraw interface, you must always explicitly restore the display mode by using the RestoreDisplayMode method.

Mode X and Mode 13 Display Modes

[This is preliminary documentation and subject to change.]

DirectDraw supports both Mode 13 and Mode X display modes. Mode 13 is the linear unflippable 320´200´8 bits per pixel palettized mode known widely by its hexadecimal BIOS mode number: 13. For more information, see Mode 13 Support. Mode X is a hybrid display mode derived from the standard VGA Mode 13. This mode allows the use of up to 256 kilobytes (KB) of display memory (rather than the 64 KB allowed by Mode 13) by using the VGA display adapter's EGA multiple video plane system.

DirectDraw provides two Mode X modes (320´200´8 and 320´240´8) for all display cards. Some cards also support linear low-resolution modes. In linear low-resolution modes, the primary surface can be locked and directly accessed. This is not possible in Mode X modes.

Mode X modes are available only if an application uses the DDSCL_ALLOWMODEX, DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE flags when calling the IDirectDraw4::SetCooperativeLevel method. If DDSCL_ALLOWMODEX is not specified, the IDirectDraw4::EnumDisplayModes method will not enumerate Mode X modes, and the IDirectDraw4::SetDisplayMode method will fail if a Mode X mode is requested.

Windows 95 and Windows NT/Windows 2000 do not natively support Mode X modes; therefore, when your application is in a Mode X mode, you cannot use the IDirectDrawSurface4::Lock or IDirectDrawSurface4::Blt methods to lock or blit to the primary surface. You also cannot use either the IDirectDrawSurface4::GetDC method on the primary surface, or GDI with a screen DC. Mode X modes are indicated by the DDSCAPS_MODEX flag in the DDSCAPS2 structure, which is part of the DDSURFACEDESC2 structure returned by the IDirectDrawSurface4::GetCaps and IDirectDraw4::EnumDisplayModes methods.

Support for High Resolutions and True-Color Bit Depths

[This is preliminary documentation and subject to change.]

DirectDraw supports all of the screen resolutions and depths supported by the display device driver. DirectDraw allows an application to change the mode to any one supported by the computer's display driver, including all supported 24- and 32-bpp (true-color) modes.

DirectDraw also supports HEL blitting in true-color surfaces. If the display device driver supports blitting at these resolutions, the hardware blitter will be used for display-memory-to-display-memory blits. Otherwise, the HEL will be used to perform the blits.

DirectDraw checks a list of known display modes against the display restrictions of the installed monitor. If DirectDraw determines that the requested mode is not compatible with the monitor, the call to the IDirectDraw4::SetDisplayMode method fails. Only modes that are supported on the installed monitor will be enumerated when you call the IDirectDraw4::EnumDisplayModes method.

The DirectDraw Object

[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw objects and how you can manipulate them through their IDirectDraw, IDirectDraw2, or IDirectDraw4 interfaces. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are DirectDraw Objects?

�SYMBOL 183 \f "Symbol" \s 11 \h �	What's New in IDirectDraw4?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Parent and Child Object Lifetimes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Multiple DirectDraw Objects per Process

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating DirectDraw Objects by Using CoCreateInstance

What Are DirectDraw Objects?

[This is preliminary documentation and subject to change.]

The DirectDraw object is the heart of all DirectDraw applications and is an integral part of Direct3D® applications as well. It is the first object you create and, through it, you create all other related objects. Typically, you create a DirectDraw object by calling the DirectDrawCreate function, which returns an IDirectDraw interface. If you want to work with a different iteration of the interface (such as IDirectDraw4) to take advantage of new features it provides, you can query for it. (See Getting an IDirectDraw4 Interface.) Note that you can create multiple DirectDraw objects, one for each display device installed in a system.

The DirectDraw object represents the display device and makes use of hardware acceleration if the display device for which it was created supports hardware acceleration. Each unique DirectDraw object can manipulate the display device and create surfaces, palettes, and clipper objects that are dependent on (or are, "connected to") the object that created them. For example, to create surfaces, you call the IDirectDraw4::CreateSurface method. Or, if you need a palette object to apply to a surface, call the IDirectDraw4::CreatePalette method. Additionally, the IDirectDraw4 interface exposes similar methods to create clipper objects.

You can create more than one instance of a DirectDraw object at a time. The simplest example of this is using two monitors on a Windows 95 or Windows NT 4.0 and earlier system. Although these operating systems don't support dual monitors on their own, it is possible to write a DirectDraw HAL for each display device. The display device Windows and GDI recognizes is the one that will be used when you create the instance of the default DirectDraw object. The display device that Windows and GDI do not recognize can be addressed by another, independent DirectDraw object that must be created by using the second display device's globally unique identifier (GUID). This GUID can be obtained by using the DirectDrawEnumerate function.

The DirectDraw object manages all of the objects it creates. It controls the default palette (if the primary surface is in 8-bits-per-pixel mode), the default color key, and the hardware display mode. It tracks what resources have been allocated and what resources remain to be allocated.

What's New in IDirectDraw4?

[This is preliminary documentation and subject to change.]

This section details new features provided by the IDirectDraw4 interface and describes it's new features or how it behaves differently than its predecessor, IDirectDraw2 (there is no IDirectDraw3 interface). The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	New Features in IDirectDraw4

�SYMBOL 183 \f "Symbol" \s 11 \h �	Getting an IDirectDraw4 Interface

The most obvious difference between the IDirectDraw4 interface and its predecessors is how it works with surfaces—how surfaces are described and which interfaces it automatically provides to access them. All of the surface-related methods in the new interface accept slightly different parameters than their counterparts in former interface versions. Wherever an IDirectDraw2 interface method might accept a DDSURFACEDESC structure or retrieve an IDirectDrawSurface3 interface, the methods of IDirectDraw4 accept a DDSURFACEDESC2 structure and retrieve an IDirectDrawSurface4 interface instead.

Another behavioral change that IDirectDraw4 introduces affects the lifetimes of child objects with respect to their parent DirectDraw object. For more information, see Parent and Child Object Lifetimes.

New Features in IDirectDraw4

[This is preliminary documentation and subject to change.]

The IDirectDraw4 interface extends previous iterations by adding several methods that provide improved surface management and ease of use

The IDirectDraw4 interface exposes the new IDirectDraw4::RestoreAllSurfaces method, which restores all of the surfaces created by a DirectDraw with a single call.

Additionally, you can now retrieve a surface's IDirectDrawSurface4 interface from a Windows device context by using the IDirectDraw4::GetSurfaceFromDC method.

Getting an IDirectDraw4 Interface

[This is preliminary documentation and subject to change.]

The Component Object Model on which DirectX is built specifies that an object can provide new functionality through new interfaces, without affecting backward compatibility. To this end, the IDirectDraw4 interface supersedes the IDirectDraw2 interface. This new interface can be obtained by using the IUnknown::QueryInterface method, as the following C++ example shows:

// Create an IDirectDraw4 interface.

LPDIRECTDRAW lpDD;

LPDIRECTDRAW4 lpDD4;

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);

if(ddrval != DD_OK)

 return;

ddrval = lpDD->SetCooperativeLevel(hwnd,

 DDSCL_NORMAL);

if(ddrval != DD_OK)

 return;

ddrval = lpDD->QueryInterface(IID_IDirectDraw4,

 (LPVOID *)&lpDD4);

if(ddrval != DD_OK)

 return;

The preceding example creates a DirectDraw object, then calls the IUnknown::QueryInterface method of the IDirectDraw interface it received to create an IDirectDraw4 interface.

After getting an IDirectDraw4 interface, you can begin calling its methods to take advantage of new features, performance improvements, and behavioral differences. Because some methods might change with the release of a new interface, mixing methods from an interface and its replacement (between IDirectDraw2 and IDirectDraw4, for example) can cause unpredictable results.

Parent and Child Object Lifetimes

[This is preliminary documentation and subject to change.]

All objects you'll use in DirectDraw programming—the DirectDraw object, surfaces, palettes, clippers, and such—only exist in memory for as long as another object, such as an application, needs them. The time that passes from the moment when an object is created and placed in memory to when it is released and subsequently removed from memory is known as the object's lifetime. The Component Object Model (COM) followed by all DirectX components dictates that an object must keep track of how many other objects require its services. This number, known as a reference count, determines the object's lifetime. COM also dictates that an object expose the IUnknown::AddRef and IUnknown::Release methods to enable applications to explicitly manage its reference count; make sure you use these methods in accordance to COM rules.

You aren't the only one who is using the IUnknown methods to manage reference counts for objects—DirectDraw objects use them internally, too. When you use the IDirectDraw4 interface (in contrast to IDirectDraw2 or IDirectDraw) to create a "child" object like a surface, the child uses the IUnknown::AddRef method of the "parent" DirectDraw object to increment the parent's reference count.

When your application no longer needs an object, call the Release method to decrement its reference count. When the count reaches zero, the object is removed from memory. When a child object's reference count reaches zero, it calls the parent's IUnknown::Release method to indicate that there is one less object who will be needing the parent's services.

Implicitly allocated objects, such as the back-buffer surfaces in a flipping chain that you create with a single IDirectDraw4::CreateSurface call, are automatically deallocated when their parent DirectDrawSurface object is released. Also, you can only release a DirectDraw object from the thread that created the application window. For single-threaded applications, this restriction obviously doesn't apply, as there is only one thread. If your application created a primary flipping chain of two surfaces (created by a single CreateSurface call) that used an attached DirectDrawClipper object, the code to release these objects safely might look like:

// For this example, the g_lpDDraw, g_lpDDSurface, and

// g_lpDDClip are valid pointers to objects.

void ReleaseDDrawObjects(void)

{

 // If the DirectDraw object pointer is valid,

 // it should be safe to release it and the objects it owns.

 if(g_lpDDraw)

 {

 // Release the DirectDraw object. (This call wouldn't

 // be safe if the children were created through IDirectDraw2

 // or IDirectDraw. See the following note for

 // more information)

 g_lpDDraw->Release(), g_lpDDraw = NULL;

 // Now, release the clipper that is attached to the surfaces.

 if(g_lpDDClip)

 g_lpDDClip->Release(), g_lpDDClip = NULL;

 // Now, release the primary flipping chain. Note

 // that this is only valid because the flipping

 // chain surfaces were created with a single

 // CreateSurface call. If they were explicitly

 // created and attached, then they must also be

 // explicitly released.

 if(g_lpDDSurface)

 g_lpDDSurface->Release(), g_lpDDSurface = NULL;

 }

}

Note

Earlier versions of the DirectDraw interface (IDirectDraw2 and IDirectDraw, to be exact) behave differently than the most recent interface. When using these early interfaces, DirectDraw automatically releases all child objects when the parent itself is released. As a result, if you use these older interfaces, the order in which you release objects is critical. In this case, you should release the children of a DirectDraw object before releasing the DirectDraw object itself (or not release them at all, counting on the parent to do cleanup for you). Because the DirectDraw object releases the child objects, if you release the parent before the children, you are very likely to incur a memory fault for attempting to dereference a pointer that was invalidated when the parent object released its children.

Some older applications relied on the automatic release of child objects and neglected to properly release some objects when no longer needed. At the time, this practice didn't cause any negative side effects, however doing so when using the IDirectDraw4 interface might result in memory leaks.

Multiple DirectDraw Objects per Process

[This is preliminary documentation and subject to change.]

DirectDraw allows a process to call the DirectDrawCreate function as many times as necessary. A unique and independent interface to a unique and independent DirectDraw object is returned after each call. Each DirectDraw object can be used as desired; there are no dependencies between the objects. Each object behaves exactly as if it had been created by a unique process.

DirectDraw objects are independent of one another and the DirectDrawSurface, DirectDrawPalette, and DirectDrawClipper objects they create should not be used with other DirectDraw objects because they are automatically released when the parent DirectDraw object is destroyed. If they are used with another DirectDraw object, they might stop functioning if their parent object is destroyed, causing the remaining DirectDraw object to malfunction.

The exception is DirectDrawClipper objects created by using the DirectDrawCreateClipper function. These objects are independent of any particular DirectDraw object and can be used with one or more DirectDraw objects.

Creating DirectDraw Objects by Using CoCreateInstance

[This is preliminary documentation and subject to change.]

You can create a DirectDraw object by using the CoCreateInstance function and the IDirectDraw4::Initialize method rather than the DirectDrawCreate function. The following steps describe how to create the DirectDraw object:

	1	Initialize COM at the start of your application by calling CoInitialize and specifying NULL.

if (FAILED(CoInitialize(NULL)))

 return FALSE;

	2	Create the DirectDraw object by using CoCreateInstance and the IDirectDraw4::Initialize method.

ddrval = CoCreateInstance(&CLSID_DirectDraw,

 NULL, CLSCTX_ALL, &IID_IDirectDraw4, &lpdd);

if(!FAILED(ddrval))

 ddrval = IDirectDraw4_Initialize(lpdd, NULL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDraw, is the class identifier of the DirectDraw driver object class, the IID_IDirectDraw4 parameter identifies the particular DirectDraw interface to be created, and the lpdd parameter points to the DirectDraw object that is retrieved. If the call is successful, this function returns an uninitialized object.

	3	Before you use the DirectDraw object, you must call IDirectDraw4::Initialize. This method takes the driver GUID parameter that the DirectDrawCreate function typically uses (NULL in this case). After the DirectDraw object is initialized, you can use and release it as if it had been created by using the DirectDrawCreate function. If you do not call the Initialize method before using one of the methods associated with the DirectDraw object, a DDERR_NOTINITIALIZED error will occur.

Before you close the application, close the COM library by using the CoUninitialize function.

CoUninitialize();

Surfaces

[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawSurface objects. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Basic Concepts of Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Flipping Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting to Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Losing and Restoring Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	COM Reference Count Semantics for Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerating Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Updating Surface Characteristics

�SYMBOL 183 \f "Symbol" \s 11 \h �	Accessing Surface Memory Directly

�SYMBOL 183 \f "Symbol" \s 11 \h �	Gamma and Color Controls

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overlay Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Compressed Texture Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Private Surface Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Surface Uniqueness Values

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Non-local Video Memory Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Converting Color and Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Surfaces and Device Contexts

Basic Concepts of Surfaces

[This is preliminary documentation and subject to change.]

This section contains information about the basic concepts associated with DirectDrawSurface objects. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are Surfaces?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Surface Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Width vs. Pitch

�SYMBOL 183 \f "Symbol" \s 11 \h �	Color Keying

�SYMBOL 183 \f "Symbol" \s 11 \h �	Pixel Formats

What Are Surfaces?

[This is preliminary documentation and subject to change.]

A surface, or DirectDrawSurface object, represents a linear area of display memory. A surface usually resides in the display memory of the display card, although surfaces can exist in system memory. Unless specifically instructed otherwise during the creation of the DirectDrawSurface object, DirectDraw object will put the DirectDrawSurface object wherever the best performance can be achieved given the requested capabilities. DirectDrawSurface objects can take advantage of specialized processors on display cards, not only to perform certain tasks faster, but to perform some tasks in parallel with the system CPU.

Using the IDirectDraw4::CreateSurface method, you can create a single surface object, complex surface-flipping chains, or three-dimensional surfaces. The CreateSurface method creates the requested surface or flipping chain and retrieves a pointer to the primary surface's IDirectDrawSurface4 interface through which the object exposes its functionality.

The IDirectDrawSurface4 interface enables you to indirectly access memory through blit methods, such as IDirectDrawSurface4::BltFast. The surface object can provide a device context to the display that you can use with GDI functions. Additionally, you can use IDirectDrawSurface4 methods to directly access display memory. For example, you can use the IDirectDrawSurface4::Lock method to lock the display memory and retrieve the address corresponding to that surface. Addresses of display memory might point to visible frame buffer memory (primary surface) or to nonvisible buffers (off-screen or overlay surfaces). Nonvisible buffers usually reside in display memory, but can be created in system memory if required by hardware limitations or if DirectDraw is performing software emulation. In addition, the IDirectDrawSurface4 interface extends other methods that you can use to set or retrieve palettes, or to work with specific types or surfaces, like flipping chains or overlays.

From this illustration, you can see that all surface are created by a DirectDraw object and are often used closely with palettes. Although each surface object can be assigned a palette, palettes aren't required for anything but primary surfaces that use pixel formats of 8-bits in depth or less.

�

Surface Interfaces

[This is preliminary documentation and subject to change.]

DirectDrawSurface objects expose their functionality through the IDirectDrawSurface, IDirectDrawSurface2, IDirectDrawSurface3, and IDirectDrawSurface4 interfaces. Each new interface version provides the same utility as its predecessors, with additional options available through new methods.

When you create a surface by calling the IDirectDraw4::CreateSurface method (or another creation method from IDirectDraw4), you receive a pointer to the surface's IDirectDrawSurface4 interface. This behavior is different than previous versions of DirectX. Before the introduction of the IDirectDraw4 interface, the CreateSurface method provided a pointer to a surface's IDirectDrawSurface interface. If you wanted to work with a different iteration of the interface, you had to query for it. When using IDirectDraw4 this isn't the case, although you are free to query a surface for a previous iteration of an interface if you choose.

Width vs. Pitch

[This is preliminary documentation and subject to change.]

Although the terms width and pitch are discussed casually, they have very important (and distinctly different) meanings. As a result, you should understand the meanings for each, and how to interpret the values that DirectDraw uses to describe them.

DirectDraw uses the DDSURFACEDESC2 structure to carry information describing a surface. Among other things, this structure is defined to contain information about a surface's dimensions, as well as how those dimensions are represented in memory. The structure uses the dwHeight and dwWidth members to describe the logical dimensions of the surface. Both of these members are measured in pixels. Therefore, the dwHeight and dwWidth values for a 640´480 surface are the same whether it is an 8-bit palettized surface or a 24-bit RGB surface.

The DDSURFACEDESC2 structure contains information about how a surface is represented in memory through the lPitch member. The value in the lPitch member describes the surface's memory pitch (also called stride). Pitch is the distance, in bytes, between two memory addresses that represent the beginning of one bitmap line and the beginning of the next bitmap line. Because pitch is measured in bytes rather than pixels, a 640´480´8 surface will have a very different pitch value than a surface with the same dimensions but a different pixel format. Additionally, the pitch value sometimes reflects bytes that DirectDraw has reserved as a cache, so it is not safe to assume that pitch is simply the width multiplied by the number of bytes per pixel. Rather, you could visualize the difference between width and pitch as shown in the following illustration.

�

In this figure, the front buffer and back buffer are both 640´480´8, and the cache is 384´480´8.

Pitch values are useful when you are directly accessing surface memory. For example, after calling the IDirectDrawSurface4::Lock method, the lpSurface member of the associated DDSURFACEDESC2 structure contains the address of the top-left pixel of the locked area of the surface, and the lPitch member is the surface pitch. You access pixels horizontally by incrementing or decrementing the surface pointer by the number of bytes per pixel, and you move up or down by adding the pitch value to, or subtracting it from, the current surface pointer.

When accessing surfaces directly, take care to stay within the memory allocated for the dimensions of the surface and stay out of any memory reserved for cache. Additionally, when you lock only a portion of a surface, you must stay within the rectangle you specify when locking the surface. Failing to follow these guidelines will have unpredictable results. When rendering directly into surface memory, always use the pitch returned by the Lock method (or the IDirectDrawSurface4::GetDC method). Do not assume a pitch based solely on the display mode. If your application works on some display adapters but looks garbled on others, this may be the cause of your problem.

For more information, see Accessing Surface Memory Directly.

Color Keying

[This is preliminary documentation and subject to change.]

DirectDraw supports source and destination color keying for blits and overlay surfaces. Color keys enable you to display one image on top of another selectively, so that only certain pixels from the foreground rectangle are displayed, or only certain pixels on the background rectangle are overwritten.

You supply a single color key or a range of colors for source or destination color keying by calling the IDirectDrawSurface4::SetColorKey method.

For more information about color keying, see the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overlay Color Keys

�SYMBOL 183 \f "Symbol" \s 11 \h �	Transparent Blitting

Pixel Formats

[This is preliminary documentation and subject to change.]

Pixel formats dictate how data for each pixel in surface memory is to be interpreted. DirectDraw uses the DDPIXELFORMAT structure to describe various pixel formats. The DDPIXELFORMAT contains members to describe the following traits of a pixel format:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Palettized or non-palettized pixel format

�SYMBOL 183 \f "Symbol" \s 11 \h �	If non-palettized, whether the pixel format is RGB or YUV

�SYMBOL 183 \f "Symbol" \s 11 \h �	Bit depth

�SYMBOL 183 \f "Symbol" \s 11 \h �	Bit masks for the pixel format's components

You can retrieve information about an existing surface's pixel format by calling the IDirectDrawSurface4::GetPixelFormat method.

Creating Surfaces

[This is preliminary documentation and subject to change.]

The DirectDrawSurface object represents a surface that usually resides in the display memory, but can exist in system memory if display memory is exhausted or if it is explicitly requested.

Use the IDirectDraw4::CreateSurface method to create one surface or to simultaneously create multiple surfaces (a complex surface). When calling CreateSurface, you specify the dimensions of the surface, whether it is a single surface or a complex surface, and the pixel format (if the surface won't be using an indexed palette). All these characteristics are contained in a DDSURFACEDESC2 structure, whose address you send with the call. If the hardware can't support the requested capabilities or if it previously allocated those resources to another DirectDrawSurface object, the call will fail.

Creating single surfaces or multiple surfaces is a simple matter that requires only a few lines of code. There are a few common situations (and some less common ones) in which you will need to create surfaces. The following situations are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating the Primary Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating an Off-Screen Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating Complex Surfaces and Flipping Chains

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating Wide Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating Client Memory Surfaces

By default, for all surfaces except client memory surfaces, DirectDraw attempts to create a surface in local video memory. If there isn't enough local video memory available to hold the surface, DirectDraw will try to use non-local video memory (on some Accelerated Graphics Port-equipped systems), and fall back on system memory if all other types of memory are unavailable. You can explicitly request that a surface be created in a certain type of memory by including the appropriate flags in the associated DDSCAPS2 structure when calling IDirectDraw4::CreateSurface.

Creating the Primary Surface

[This is preliminary documentation and subject to change.]

The primary surface is the surface currently visible on the monitor and is identified by the DDSCAPS_PRIMARYSURFACE flag. You can only have one primary surface for each DirectDraw object.

When you create a primary surface, remember that the dimensions and pixel format implicitly match the current display mode. Therefore, this is the one time you don't need to declare a surface's dimensions or pixel format. If you do specify them, the call will fail and return DDERR_INVALIDPARAMS—even if the information you used matches the current display mode.

The following example shows how to prepare the DDSURFACEDESC2 structure members relevant for creating the primary surface.

DDSURFACEDESC2 ddsd;

ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.

ddsd.dwFlags = DDSD_CAPS;

// Request a primary surface.

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

After creating the primary surface, you can retrieve information about its dimensions and pixel format by calling its IDirectDrawSurface4::GetSurfaceDesc method.

See also, Display Modes.

Creating an Off-Screen Surface

[This is preliminary documentation and subject to change.]

An off-screen surface is often used to cache bitmaps that will later be blitted to the primary surface or a back buffer. You must declare the dimensions of an off-screen surface by including the DDSD_WIDTH and DDSD_HEIGHT flags and the corresponding values in the dwWidth and dwHeight members. Additionally, you must include the DDSCAPS_OFFSCREENPLAIN flag in the accompanying DDSCAPS2 structure.

By default, DirectDraw creates a surface in display memory unless it will not fit, in which case it creates the surface in system memory. You can explicitly choose display or system memory by including the DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY flags in the dwCaps member of the DDSCAPS2 structure. The method fails, returning an error, if it can't create the surface in the specified location.

The following example shows how to prepare for creating a simple off-screen surface:

DDSURFACEDESC2 ddsd;

ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

// Request a simple off-screen surface, sized

// 100 by 100 pixels.

//

// (This assumes that the off-screen surface we are about

// to create will match the pixel format of the

// primary surface.)

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

ddsd.dwHeight = 100;

ddsd.dwWidth = 100;

Additionally, you can create surfaces whose pixel format differs from the primary surface's pixel format. However, in this case there is one drawback—you are limited to using system memory. The following code fragment shows how to prepare the DDSURFACEDESC2 structure members in order to create an 8-bit palettized surface (assuming that the current display mode is something other than 8-bits per pixel).

ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT;

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | DDSCAPS_SYSTEMMEMORY;

ddsd.dwHeight = 100;

ddsd.dwWidth = 100;

ddsd.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);

ddsd.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_PALETTEINDEXED8;

// Set the bit depth for an 8-bit surface, but DO NOT

// specify any RGB mask values. The masks must be zero

// for a palettized surface.

ddsd.ddpfPixelFormat.dwRGBBitCount = 8;

In previous versions of DirectX, the maximum width of off-screen surfaces was limited to the width of the primary surface. Beginning with DirectX 5.0, you can create surfaces as wide as you need, permitting that the display hardware can support them. Be careful when declaring wide off-screen surfaces; if the video card memory cannot hold a surface as wide as you request, the surface is created in system memory. If you explicitly choose video memory and the hardware can't support it, the call fails. For more information, see Creating Wide Surfaces.

Creating Complex Surfaces and Flipping Chains

[This is preliminary documentation and subject to change.]

You can also create complex surfaces. A complex surface is a set of surfaces created with a single call to the IDirectDraw4::CreateSurface method. If the DDSCAPS_COMPLEX flag is set when you call CreateSurface call, DirectDraw implicitly creates one or more surfaces in addition to the surface explicitly specified. You manage complex surfaces just like a single surface¾a single call to the IDirectDraw::Release method releases all surfaces, and a single call to the IDirectDrawSurface4::Restore method restores them all. However, implicitly created surfaces cannot be detached. For more information, see IDirectDrawSurface4::DeleteAttachedSurface.

One of the most useful complex surfaces you can create is a flipping chain. Usually, a flipping chain is made of a primary surface and one or more back buffers. The DDSCAPS_FLIP flag indicates that a surface is part of a flipping chain. Creating a flipping chain this way requires that you also include the DDSCAPS_COMPLEX flag.

The following example shows how to prepare for creating a primary surface flipping chain.

DDSURFACEDESC2 ddsd2;

ddsd2.dwSize = sizeof(ddsd2);

// Tell DirectDraw which members are valid.

ddsd2.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// Request a primary surface with a single

// back buffer

ddsd2.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP |

DDSCAPS_PRIMARYSURFACE;

ddsd2.dwBackBufferCount = 1;

The previous example constructs a double-buffered flipping environment¾a single call to the IDirectDrawSurface4::Flip method exchanges the surface memory of the primary surface and the back buffer. If you specify 2 for the value of the dwBackBufferCount member of the DDSURFACEDESC2 structure, two back buffers are created, and each call to Flip rotates the surfaces in a circular pattern, providing a triple-buffered flipping environment. For more information, see Flipping Surfaces.

Note

To create a flipping chain that comprises surfaces that will be used as 3-D render targets, be sure to include the DDSCAPS_3DDEVICE capability flag in the surface description, as well as the DDSCAPS_COMPLEX and DDSCAPS_FLIP flags.

Unlike the CreateSurface method exposed by the IDirectDraw3 and earlier interfaces, you cannot use IDirectDraw4::CreateSurface to implicitly create a flipping chain of render target surfaces with an attached depth-buffer. The DDSURFACEDESC2 structure that the IDirectDraw4::CreateSurface method accepts doesn't contain a field to specify a depth-buffer bit depth. As a result, applications must create a depth-buffer surface explicitly, then attach it to the back-buffer render target surface. For more information, see Depth Buffers.

Creating Wide Surfaces

[This is preliminary documentation and subject to change.]

DirectDraw allows you to create off-screen surfaces in video memory that are wider that the primary surface. This is only possible when display device support for wide surfaces is present.

To check for wide surface support, call IDirectDraw4::GetCaps and look for the DDCAPS2_WIDESURFACES flag in the dwCaps2 member of the first DDCAPS structure you send with the call. If the flag is present, you can create video memory off-screen surfaces that are wider that the primary surface.

If you attempt to create a wide surface in video memory when the DDCAPS2_WIDESURFACES flag isn't present, the attempt will fail and return DDERR_INVALIDPARAMS. Note that attempting to create extremely large surfaces might still fail, even if the driver exposes the DDCAPS2_WIDESURFACES flag.

Wide surfaces are always supported for system memory surfaces, video port surfaces, and execute buffers.

Creating Client Memory Surfaces

[This is preliminary documentation and subject to change.]

Client memory surfaces are simply DirectDrawSurface objects that use system memory that your application has previously allocated to hold image data. Creating such a surface isn't common, but it isn't difficult to do and it can be useful for applications that need to use DirectDraw surface features on existing memory buffers.

Like creating all surfaces, DirectDraw needs information about the dimensions of the surface (measured in pixels) and the surface pitch (measured in bytes), as well as the surface's pixel format. However, unlike creating other types of surfaces, this information doesn't tell DirectDraw how you want the surface to be created, it tells DirectDraw how you've already created it. You set these characteristics, plus the memory address of the buffer you've allocated, in the DDSURFACEDESC2 structure you pass to the IDirectDraw4::CreateSurface method.

A client memory surfaces works just like a normal system-memory surface, with the exception that DirectDraw does not attempt to free the surface memory when it's no longer needed; freeing client allocated memory is the application's responsibility.

The following example shows how you might allocate memory and create a DirectDrawSurface object for a 64´64 pixel 24-bit RGB surface:

// For this example, g_lpDD4 is a valid IDirectDraw4 interface pointer.

#define WIDTH 64 // in pixels

#define HEIGHT 64

#define DEPTH 3 // in bytes (3bytes == 24 bits)

 HRESULT hr;

 LPVOID lpSurface = NULL;

 HLOCAL hMemHandle = NULL;

 DDSURFACEDESC2 ddsd2;

 LPDIRECTDRAWSURFACE4 lpDDS4;

 // Allocate memory for a 64 by 64, 24-bit per pixel buffer.

 // REMEMBER: The application is responsible for freeing this

 // buffer when it is no longer needed.

 if (lpSurface = malloc((size_t)WIDTH*HEIGHT*DEPTH))

 ZeroMemory(lpSurface, (DWORD)WIDTH*HEIGHT*DEPTH);

 else

 return DDERR_OUTOFMEMORY;

 // Initialize the surface description.

 ZeroMemory(&ddsd2, sizeof(DDSURFACEDESC2));

 ZeroMemory(&ddsd2.ddpfPixelFormat, sizeof(DDPIXELFORMAT));

 ddsd2.dwSize = sizeof(ddsd2);

 ddsd2.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_LPSURFACE |

 DDSD_PITCH | DDSD_PIXELFORMAT;

 ddsd2.dwWidth = WIDTH;

 ddsd2.dwHeight= HEIGHT;

 ddsd2.lPitch = (LONG)DEPTH * WIDTH;

 ddsd2.lpSurface = lpSurface;

 // Set up the pixel format for 24-bit RGB (8-8-8).

 ddsd2.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);

 ddsd2.ddpfPixelFormat.dwFlags= DDPF_RGB;

 ddsd2.ddpfPixelFormat.dwRGBBitCount = (DWORD)DEPTH*8;

 ddsd2.ddpfPixelFormat.dwRBitMask = 0x00FF0000;

 ddsd2.ddpfPixelFormat.dwGBitMask = 0x0000FF00;

 ddsd2.ddpfPixelFormat.dwBBitMask = 0x000000FF;

 // Create the surface

 hr = g_lpDD4->CreateSurface(&ddsd2, &lpDDS4, NULL);

 return hr;

Flipping Surfaces

[This is preliminary documentation and subject to change.]

Any surface in DirectDraw can be constructed as a flipping surface. A flipping surface is any piece of memory that can be swapped between a front buffer and a back buffer. (This construct is commonly referred to as a flipping chain). Often, the front buffer is the primary surface, but it doesn't have to be.

Typically, when you use the IDirectDrawSurface4::Flip method to request a surface flip operation, the pointers to surface memory for the primary surface and back buffers are swapped. Flipping is performed by switching pointers that the display device uses for referencing memory, not by copying surface memory. (The exception to this is when DirectDraw is emulating the flip, in which case it simply copies the surfaces. DirectDraw emulates flip operations if a back buffer cannot fit into display memory or if the hardware doesn't support DirectDraw.) When a flipping chain contains a primary surface and more than one back buffer, the pointers are switched in a circular pattern, as shown in the following illustration.

�

Other surfaces that are attached to a DirectDraw object, but not part of the flipping chain, are unaffected when the Flip method is called.

Remember, DirectDraw flips surfaces by swapping surface memory pointers within DirectDrawSurface objects, not by swapping the objects themselves. This means that, to blit to the back buffer in any type of flipping scheme, you always use the same DirectDrawSurface object — the one that was the back buffer when you created the flipping chain. Conversely, you always perform a flip operation by calling the front surface's Flip method.

When working with visible surfaces, such as a primary surface flipping chain or a visible overlay surface flipping chain, the Flip method is asynchronous unless you include the DDFLIP_WAIT flag. On these visible surfaces, the Flip method can return before the actual flip operation occurs in the hardware (because the hardware doesn't flip until the next vertical refresh occurs). While the actual flip operation is pending, the back buffer behind the currently visible surface can't be locked or blitted by calling the IDirectDrawSurface4::Lock, IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltFast, or IDirectDrawSurface4::GetDC methods. If you attempt to call these methods while a flip operation is pending, they will fail and return DDERR_WASSTILLDRAWING. However, if you are using a triple buffered scheme, the rearmost buffer is still available.

Blitting to Surfaces

[This is preliminary documentation and subject to change.]

This section is a guide to copying pixels from one DirectDraw surface to another, or from one part of a surface to another.

The following topics are covered:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting Basics

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting with BltFast

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting with Blt

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blit Timing

�SYMBOL 183 \f "Symbol" \s 11 \h �	Transparent Blitting

�SYMBOL 183 \f "Symbol" \s 11 \h �	Color Fills

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting to Multiple Windows

Blitting Basics

[This is preliminary documentation and subject to change.]

Two methods are available for copying images to a DirectDraw surface: IDirectDrawSurface4::Blt and IDirectDrawSurface4::BltFast. (A third method, IDirectDrawSurface4::BltBatch, is not implemented in this version of DirectX.) These methods are called on the destination surface and receive the source surface as a parameter. The destination and source surfaces can be one and the same, and you don't have to worry about overlap—DirectDraw takes care to preserve all source pixels before overwriting them.

Of the two implemented methods, Blt is the more flexible and BltFast is the faster—but only if there is no hardware blitter. You can determine the blitting capabilities of the hardware from the DDCAPS structure obtained in the lpDDDriverCaps parameter of the IDirectDraw4::GetCaps method. If the dwCaps member contains DDCAPS_BLT, the hardware has at least minimal blitting capabilities.

Blitting with BltFast

[This is preliminary documentation and subject to change.]

When using IDirectDrawSurface4::BltFast, you supply a valid rectangle in the source surface from which the pixels are to be copied (or NULL to specify the entire surface), and an x-coordinate and y-coordinate in the destination surface. The source rectangle must be able to fit in the destination surface with its top left corner at that point, or the call will fail with a return value of DDERR_INVALIDRECT. BltFast cannot be used on surfaces that have an attached clipper.

No stretching, mirroring, or other effects can be performed when using BltFast.

BltFast Example

The following example copies pixels from an offscreen surface, lpDDSOffOne, to the primary surface, lpDDSPrimary. The flags ensure that the operation will take place as soon as the blitter is free, and that transparent pixels in the source image will not be copied. (For more information on the meaning of these flags, see Blit Timing and Transparent Blitting .)

lpDDSPrimary->BltFast(

 100, 200, // Upper left xy of destination

 lpDDSOffOne, // Source surface

 NULL, // Source rectangle = entire surface

 DDBLTFAST_WAIT | DDBLTFAST_SRCCOLORKEY);

Blitting with Blt

[This is preliminary documentation and subject to change.]

When using the IDirectDrawSurface4::Blt method, you supply a valid rectangle in the source surface (or NULL to specify the entire surface), and a rectangle in the destination surface to which the source image will be copied (again, NULL means the rectangle covers the entire surface). If a clipper is attached to the destination surface, the bounds of the destination rectangle can fall outside the surface and clipping will be performed. If there is no clipper, the destination rectangle must fall entirely within the surface or else the method will fail with DDERR_INVALIDRECT. (For more information on clipping, see Clippers.)

Scaling

The Blt method automatically rescales the source image to fit the destination rectangle. If resizing is not your intention, for best performance you should make sure that your source and destination rectangles are exactly the same size, or else use IDirectDrawSurface4:BltFast. (See Blitting with BltFast.)

Hardware acceleration for scaling depends on the DDFXCAPS_BLT* flags in the dwFXCaps member of the DDCAPS structure for the device. If, for example, a device has the DDFXCAPS_BLTSTRETCHXN capability but not DDFXCAPS_BLTSTRETCHX, it can assist when the x-axis of the source rectangle is being multiplied by a whole number but not when non-integral (arbitrary) scaling is being done.

Devices might also support arithmetic scaling, which is scaling by interpolation rather than simple multiplication or deletion of pixels. For instance, if an axis was being increased by one-third, the pixels would be recolored to provide a closer approximation to the original image than would be produced by the doubling of every third pixel on that axis.

Applications cannot control the type of scaling done by the driver, except by setting the DDBLTFX_ARITHSTRETCHY flag in the dwDDFX member of the DDBLTFX structure passed to Blt. This flag requests that arithmetic stretching be done on the y-axis. Arithmetic stretching on the x-axis and arithmetic shrinking are not currently supported in the DirectDraw API, but a driver may perform them by default.

Other Effects

If you do not require any special effects other than scaling when using Blt, you can pass NULL as the lpDDBltFx parameter. Otherwise you can choose among a variety of effects specified in a DDBLTFX structure. Among these, color fills and mirroring are supported by the HEL, so they are always available. Most other effects depend on hardware support.

For a complete view of the effects capabilities of the HEL, run the DDraw Caps utility supplied with the DirectX Programmer's Reference and select HEL FX Caps from the HEL menu. For an explanation of the various flags, see DDCAPS. You can also check HEL capabilities within your own application by using the IDirectDraw4::GetCaps method.

When you specify an effect that requires a value in one of the members of the DDBLTFX structure passed to the IDirectDrawSurface4::Blt method, you must also include the appropriate flags in the dwFlags parameter to show which members of the structure are valid.

Some effects require only the setting of a flag in the dwFlags member of DDBLTFX. One of these is DDBLTFX_NOTEARING. You can use this flag when you are blitting animated images directly to the front buffer, so that the blit is timed to coincide with the screen refresh and the possibility of tearing is minimized. Mirroring and rotation are also set by using flags.

Blitting effects include the standard raster operations (ROPs) used by GDI functions such as BitBlt. The only ROPs supported by the HEL are SRCCOPY (the default), BLACKNESS, and WHITENESS. Hardware support for other ROPs can be examined in the DDCAPS structure for the driver. If you wish to use any of the standard ROPS with the Blt method, you flag them in the dwROP member of the DDBLTFX structure.

The dwDDROP member of the DDBLTFX structure is for specifying ROPs specific to DirectDraw. However, no such ROPs are currently defined.

Alpha and Z Values

Opacity and depth values are not currently supported in DirectDraw blits. If alpha values are stored in the pixel format, they simply overwrite any alpha values in the destination rectangle. Values from alpha buffers and z-buffers are ignored. The members of the DDBLTFX structure that have to do with alpha channels and z-buffers (members whose names begin with "dwAlpha" and "dwZ"), and the corresponding flags for Blt, are not used. The same applies to the DDBLTFX_ZBUFFERBASEDEST and DDBLTFX_ZBUFFERRANGE flags in the dwDDFX member of the DDBLTFX structure.

Although z-buffers are currently used only in Direct3D applications, you can use IDirectDrawSurface4::Blt to set the depth value for a z-buffer surface, by setting the DDBLT_DEPTHFILL flag. For more information, see Clearing Depth Buffers.

For an overview of the use of alpha channels and z-buffers in Direct3D, see the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Alpha States

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are Depth Buffers?

Blt Example

The following example, in which it is assumed that lpDDS is a valid IDirectDrawSurface4 pointer, creates a symmetrical image within the surface by mirroring a rectangle from left to right:

RECT rcSource, rcDest;

DDBLTFX ddbltfx;

ZeroMemory(&ddbltfx, sizeof(ddbltfx));

ddbltfx.dwSize = sizeof(ddbltfx);

ddbltfx.dwDDFX = DDBLTFX_MIRRORLEFTRIGHT;

rcSource.top = 0; rcSource.left = 0;

rcSource.bottom = 100; rcSource.right = 200;

rcDest.top = 0; rcDest.left = 201;

rcDest.bottom = 100; rcDest.right = 401;

HRESULT hr = lpDDS->Blt(&rcDest,

 lpDDS,

 &rcSource,

 DDBLT_WAIT | DDBLT_DDFX,

 &ddbltfx);

Blit Timing

[This is preliminary documentation and subject to change.]

When you copy pixels to a surface using either IDirectDrawSurface4::Blt or IDirectDrawSurface4::BltFast, the method might fail with DDERR_WASSTILLDRAWING because the hardware blitter was not ready to accept the command.

If your application has no urgent business to perform while waiting for the blitter to come back into a state of readiness, you can specify the DDBLT_WAIT flag in the dwFlags parameter of Blt, or the equivalent DDBLTFAST_WAIT flag for BltFast. The flag causes the method to wait until the blit can be handed off to the blitter (or until an error other than DDERR_WASSTILLDRAWING occurs).

Blt accepts another flag, DDBLT_ASYNC, that takes advantage of any hardware FIFO (first in, first out) queuing capabilities.

Transparent Blitting

[This is preliminary documentation and subject to change.]

This section discusses the theory and practice of using transparent blitting to copy parts of a rectangular image selectively, using source and destination color keys.

The concepts are introduced in the following topic:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Is Transparent Blitting?

Information about the implementation of transparent blitting in DirectDraw is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Color Key Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Color Keys

�SYMBOL 183 \f "Symbol" \s 11 \h �	Blitting with Color Keys

What Is Transparent Blitting?

[This is preliminary documentation and subject to change.]

Transparent blitting enables you to create the illusion of nonrectangular blits when animating sprites. A sprite image is usually nonrectangular, but blits are always rectangular, so every pixel within the sprite's bounding rectangle becomes part of the data transfer. With transparent blitting, each pixel that is not part of the sprite image is treated as transparent when the blitter is moving the image to its destination, so that it does not overwrite the color in that pixel on the background image.

The artist creating the sprite chooses an arbitrary color or range of colors to be used as the transparency color key. This is typically a single uncommon color that the artist doesn't use for anything but transparency, and it is used to fill in all parts of the sprite rectangle that are not part of the desired image. At run time you set the color key for the surface containing the sprite. (If you wish, you can automatically set it to the color of the pixel in the upper left corner of the image.) Subsequent blits can take advantage of that color key, ignoring the pixels that match it. This type of color key is known as a source color key.

You can also use a color key on the destination surface, provided the hardware supports destination color keying. This destination color key is used for pixels that can be overwritten by a sprite. For example, the artist might be working on a foreground image that sprites are supposed to pass behind, such as the wall of a room with a window to the outside. The artist chooses an arbitrary color—one that isn't used elsewhere in the image—to represent the sky outside the window. When you set this color key for the destination surface and then blit a sprite to that surface, the sprite's pixels will overwrite only pixels that are using the destination color key. In the example, the sprite appears only in the window, but not on the wall or window frame. As a result, the sprite seems to be outside the room.

Source and destination color keys can be combined. In the example, the sprite could use a source color key so that its entire bounding rectangle does not block out the sky background.

Color Key Format

[This is preliminary documentation and subject to change.]

A color key is described in a DDCOLORKEY structure. If the color key is a single color, both members of this structure should be assigned the same value. Otherwise the color key is a range of colors.

Color keys are specified using the pixel format of a surface. If a surface is in a palettized format, the color key is given as an index or a range of indices. If the surface's pixel format is specified by a FOURCC code that describes a YUV format, the YUV color key is specified by the three low-order bytes in both the dwColorSpaceLowValue and dwColorSpaceHighValue members of the DDCOLORKEY structure. The lowest order byte contains the V data, the second lowest order byte contains the U data, and the highest order byte contains the Y data.

Some examples of valid color keys follow:

8-bit palettized mode

// Palette entry 26 is the color key.

dwColorSpaceLowValue = 26;

dwColorSpaceHighValue = 26;

24-bit true-color mode

// Color 255,128,128 is the color key.

dwColorSpaceLowValue = RGBQUAD(255,128,128);

dwColorSpaceHighValue = RGBQUAD(255,128,128);

FourCC YUV mode

// Any YUV color where Y is between 100 and 110

// and U or V is between 50 and 55 is transparent.

dwColorSpaceLowValue = YUVQUAD(100,50,50);

dwColorSpaceHighValue = YUVQUAD(110,55,55);

Support for a range of colors rather than a single color is hardware-dependent. Check the dwCKeyCaps member of the DDCAPS structure for the hardware. The HEL does not support color ranges.

Some hardware supports color ranges only for YUV pixel data, which is usually video. The transparent background in video footage (the "blue screen" against which the subject was photographed) might not be a single pure color, so a range of colors in the color key is desirable.

Setting Color Keys

[This is preliminary documentation and subject to change.]

You can set the source or destination color key for a surface either when creating it or afterwards.

To set a color key or keys when creating a surface, you assign the appropriate color values to one or both of the ddckCKSrcBlt and ddckCKDestBlt members of the DDSURFACEDESC2 structure that is passed to IDirectDraw4::CreateSurface. To enable the color key for blitting, you must also include one or both of DDSD_CKSRCBLT or DDSD_CKDESTBLT in the dwFlags member.

To set a color key for an existing surface you use the IDirectDrawSurface4::SetColorKey method. You specify a key in the lpDDColorKey parameter and set either DDCKEY_SRCBLT or DDCKEY_DESTBLT in the dwFlags parameter to indicated whether you are setting a source or destination key. If the DDCOLORKEY structure contains a range of colors, you must also set the DDCKEY_COLORSPACE flag. If this flag is not set, only the dwColorSpaceLowValue member of the structure is used.

Blitting with Color Keys

[This is preliminary documentation and subject to change.]

If you want to use color keys for surfaces when calling the IDirectDrawSurface4::BltFast method, you must set one or both of the DDBLTFAST_SRCCOLORKEY or DDBLTFAST_DESTCOLORKEY flags in the dwTrans parameter.

In order to use colors keys when calling IDirectDrawSurface4:Blt, you pass one or both of the DDBLT_KEYSRC or DDBLT_KEYDEST flags in the dwFlags parameter. Alternatively, you can put the appropriate color values in the ddckDestColorkey and ddckSrcColorkey members of the DDBLTFX structure that is passed to the method through the lpDDBltFx parameter. In this case you must also set the DBLT_KEYSRCOVERRIDE or DDBLT_KEYDESTOVERRIDE flag, or both, in the dwFlags parameter, so that the selected keys are taken from the DDBLTFX structure rather than from the surface properties.

Color Fills

[This is preliminary documentation and subject to change.]

In order to fill all or part of a surface with a single color, you can use the IDirectDrawSurface4::Blt method with the DDBLT_COLORFILL flag. This technique allows you to quickly erase an area or draw a solid-colored background.

The following example fills an entire surface with the color blue, after obtaining the numerical value for blue from the pixel format:

/* It is assumed that lpDDS is a valid pointer to

 an IDirectDrawSurface4 interface. */

HRESULT ddrval;

DDPIXELFORMAT ddpf;

ddpf.dwSize = sizeof(ddpf);

if (SUCCEEDED(lpDSS->GetPixelFormat(&ddpf))

{

 DDBLTFX ddbltfx;

 ddbltfx.dwSize = sizeof(ddbltfx);

 ddbltfx.dwFillColor = ddpf.dwBBitMask; // Pure blue

 ddrval = lpDDS->Blt(

 NULL, // Destination is entire surface

 NULL, // No source surface

 NULL, // No source rectangle

 DDBLT_COLORFILL, &ddbltfx);

 switch(ddrval)

 {

 case DDERR_WASSTILLDRAWING:

 .

 .

 .

 case DDERR_SURFACELOST:

 .

 .

 .

 case DD_OK:

 .

 .

 .

 default:

 }

}

Blitting to Multiple Windows

[This is preliminary documentation and subject to change.]

You can use a DirectDraw object and a DirectDrawClipper object to blit to multiple windows created by an application running at the normal cooperative level. For more information, see Using a Clipper with Multiple Windows.

Creating multiple DirectDraw objects that blit to each others' primary surface is not recommended.

Losing and Restoring Surfaces

[This is preliminary documentation and subject to change.]

The surface memory associated with a DirectDrawSurface object may be freed, while the DirectDrawSurface objects representing these pieces of surface memory are not necessarily released. When a DirectDrawSurface object loses its surface memory, many methods return DDERR_SURFACELOST and perform no other action.

Surfaces can be lost because the display mode was changed or because another application received exclusive access to the display card and freed all of the surface memory currently allocated on the card. The IDirectDrawSurface4::Restore method re-creates these lost surfaces and reconnects them to their DirectDrawSurface object. If your application uses more than one surface, you can call the IDirectDraw4::RestoreAllSurfaces method to restore all of your surfaces at once.

Restoring a surface doesn't reload any bitmaps that may have existed in the surface prior to being lost. You must completely reconstitute the graphics they once held.

COM Reference Count Semantics for Surfaces

[This is preliminary documentation and subject to change.]

Being built upon COM means that DirectDraw follows certain rules that employ reference counts to manage object lifetimes. For a conceptual overview, see the COM documentation; a DirectDraw-centered discussion of the topic is found in Parent and Child Object Lifetimes.

By COM rules, when an interface pointer is copied by setting it to another variable or passing to another object, that copy represents another reference to the object, and therefore the IUnknown::AddRef method of the interface must be called to reflect the change. Not only should you follow COM reference counting rules when working with DirectDraw objects, but you should become familiar with the situations in which DirectDraw internally updates reference counts. Some DirectDraw methods—mostly those involving complex surface flipping chains—affect the reference counts of the surfaces involved, while methods involving clippers or palettes affect the reference counts of those objects. Knowing about these situations can make the difference in your application's stability and can prevent memory leaks. This section presents information divided into the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	When Reference Counts Will Change

�SYMBOL 183 \f "Symbol" \s 11 \h �	Reference Counts for Complex Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Releasing Surfaces

Note:

There are some things to remember about the reference count of the DirectDraw object, in addition to the relationships discussed in this section. For more information, see Parent and Child Object Lifetimes in The DirectDraw Object.

When Reference Counts will Change

[This is preliminary documentation and subject to change.]

There are several DirectDraw methods that affect the reference count of a surface, and a few that affect other objects you can associate with a surface. You can think of these situations as "surface-only changes" and "cross-object changes":

Surface-only changes

Surface-only changes, as the name states, only affect the reference count of a surface object. For example, you might use the IDirectDraw4::EnumSurfaces to enumerate the current surfaces that fit a particular description. When the method invokes the callback function that you provide, it passes a pointer to an IDirectDrawSurface4 interface, but it increments the reference count for the object before your application receives the pointer. It's your responsibility to release the object when you are finished with it. This will typically be at the end of your callback routine, or later if you choose to keep the object.

Most other surface-only changes affect the reference counts of complex surfaces, such as a flipping chain. Reference counts are a little more tricky for complex surfaces, because (in most cases) DirectDraw treats a complex surface as if it was a single object, even though it is a set of surfaces. In short, the IDirectDrawSurface4::GetAttachedSurface and IDirectDrawSurface4::AddAttachedSurface methods increment reference counts of surfaces, and IDirectDrawSurface4::DeleteAttachedSurface decrements the reference count. These methods don't affect the counts of any surfaces attached to the current surface. See the references for these methods and Reference Counts for Complex Surfaces for a additional details.

Cross-object changes

Cross-object reference count changes occur when you create an association between a surface and another object that performs a task for the surface, such as a clipper or a palette.

The IDirectDrawSurface4::SetClipper and IDirectDrawSurface4::SetPalette methods increment the reference count of the object being attached. After they are attached, the surface manages them; if the surface is released, it automatically releases any objects it is using. (For this reason, some applications release the interface for the object after these calls succeed. This is a perfectly valid practice.)

Once a clipper or palette is attached to a surface, you can call the IDirectDrawSurface4::GetClipper and IDirectDrawSurface4::GetPalette methods to retrieve them again. Because these methods return a copy of an interface pointer, they implicitly increment the reference count for the object being retrieved. When you're done with the interfaces, don't forget to release them—the objects that the interfaces represent won't disappear so long as the surface they are attached to still holds a reference to them.

Reference Counts for Complex Surfaces

[This is preliminary documentation and subject to change.]

The methods you use to manipulate a complex surface like a flipping chain all use surface interface pointers, and therefore they all affect the reference counts of the surfaces. Because a complex surface is really a series of single surfaces, the reference count relationships require a little more consideration. As you might expect, the IDirectDrawSurface4::GetAttachedSurface method returns the surface interface for a surface attached to the current surface. It does this after incrementing the reference count of the interface being retrieved; it's up to you to release the interface when you no longer need it. The IDirectDrawSurface4::AddAttachedSurface method attaches a new surface to the current one. Similarly, AddAttachedSurface increments the count for the surface being attached. You would use the IDirectDrawSurface4::DeleteAttachedSurface method to remove the surface from the chain and implicitly decrease its reference count.

What isn't immediately clear about these methods is that they don't affect the reference counts of the other objects that make up the complex surface. The GetAttachedSurface method simply increments the reference count of the surface it's retrieving, it doesn't affect the counts of the surfaces on which it depends. (The same situation applies to an explicit call to IUnknown::AddRef.) This means that the reference count for primary surface in a complex surface can reach zero before its subordinate surfaces reach zero. When the primary surface reference count reaches zero, all other surfaces attached to it are released regardless of their current reference counts. (It's like a tree: if you cut the base, the whole thing falls. In this case, the primary surface is the base.) Attempts to access subordinate surfaces after the primary surface has been deallocated will result in memory faults.

To avoid problems, make sure that your application has released all subordinate surface references before attempting to release the primary surface. It might be helpful to track the references you application holds, only accessing subordinate surface interfaces when you're sure that you also hold a reference the primary surface.

Releasing Surfaces

[This is preliminary documentation and subject to change.]

Like all COM interfaces, you must release surfaces by calling their IDirectDrawSurface4::Release method when you no longer need them.

Each surface you individually create must be explicitly released. However, if you implicitly created multiple surfaces with a single call to IDirectDraw4::CreateSurface, such as a flipping chain, you need only release the front buffer. In this case, any pointers you might have to back buffer surfaces are implicitly released and can no longer be used.

Explicitly releasing a back buffer surface doesn't affect the reference count of the other surfaces in the chain.

Enumerating Surfaces

[This is preliminary documentation and subject to change.]

By calling the IDirectDraw4::EnumSurfaces method you can request that DirectDraw enumerate surfaces in various ways. The EnumSurfaces method enables you to look for surfaces that fit, or don't fit, a provided surface description. DirectDraw calls a EnumSurfacesCallback that you include with the call for each enumerated surface.

There are two general ways to search—you can search for surfaces that the DirectDraw object has already created, or for surfaces that the DirectDraw object is capable of creating at the time (given the surface description and available memory). You specify what type of search you want by combining flags in the method's dwFlags parameter.

Enumerating existing surfaces

This is the most common type of enumeration. You enumerate existing surfaces by calling EnumSurfaces, specifying a combination of the DDENUMSURFACES_DOESEXIST search-type flag and one of the matching flags (DDENUMSURFACES_MATCH, DDENUMSURFACES_NOMATCH, or DDENUMSURFACES_ALL) in the dwFlags parameter. If you're enumerating all existing surfaces, you can set the lpDDSD parameter to NULL, otherwise set it to the address of an initialized DDSURFACEDESC2 structure that describes the surface for which you're looking. You can set the third parameter, lpContext, to an address that will be passed to the enumeration function you specify in the fourth parameter, lpEnumSurfacesCallback.

The following code fragment shows what this call might look like to enumerate all of a DirectDraw object's existing surfaces.

 HRESULT ddrval;

 ddrval = lpDD->EnumSurfaces(DDENUMSURFACES_DOESEXIST |

 DDENUMSURFACES_ALL, NULL, NULL,

 EnumCallback);

 if (FAILED(ddrval))

 return FALSE;

When searching for existing surfaces that fit a specific description, DirectDraw determines a match by comparing each member of the provided surface description to those of the existing surfaces. Only exact matches are enumerated. DirectDraw increments the reference counts of the enumerated surfaces, so make sure to release a surface if you don't plan to use it (or when you're done with it).

Enumerating possible surfaces

This type of enumeration is less common than enumerating existing surfaces, but it can be helpful to determine if a surface is supported before you attempt to create it. To perform this search, combine the DDENUMSURFACES_CANBECREATED and DDENUMSURFACES_MATCH flags when you call IDirectDraw4::EnumSurfaces (no other flag combinations are valid). The DDSURFACEDESC2 structure you use with the call must be initialized to contain information about the surface characteristics that DirectDraw will use.

To enumerate surfaces that use a particular pixel format, include the DDSD_PIXELFORMAT flag in the dwFlags member of the DDSURFACEDESC2 structure. Additionally, initialize the DDPIXELFORMAT structure in the surface description and set its dwFlags member to contain the desired pixel format flags—DDPF_RGB, DDPF_YUV, or both. You need not set any other pixel format values.

If you include the DDSD_HEIGHT and DDSD_WIDTH flags in the DDSURFACEDESC2 structure, you can specify the desired dimensions in the dwHeight and dwWidth members. If you exclude these flags, DirectDraw uses the dimensions of the primary surface.

The following code fragment shows what this call could look like to enumerate all valid surface characteristics for 96´96 RGB or YUV surfaces:

 DDSURFACEDESC2 ddsd;

 HRESULT ddrval;

 ZeroMemory(&ddsd, sizeof(ddsd));

 ddsd.dwSize = sizeof(ddsd);

 ddsd.dwFlags = DDSD_CAPS | DDSD_PIXELFORMAT |

 DDSD_HEIGHT | DDSD_WIDTH;

 ddsd.ddpfPixelFormat.dwFlags = DDPF_YUV | DDPF_RGB;

 ddsd.dwHeight = 96;

 ddsd.dwWidth = 96;

 ddrval = lpDD->EnumSurfaces(

 DDENUMSURFACES_CANBECREATED | DDENUMSURFACES_MATCH,

 &ddsd, NULL, EnumCallback);

 if (ddrval != DD_OK)

 return FALSE;

When DirectDraw enumerates possible surfaces, it actually attempts to create a temporary surface that has the desired characteristics. If the attempt succeeds, then DirectDraw calls the provided EnumSurfacesCallback function with only the characteristics that worked; it does not provide the callback function with pointer to the temporary surface. Do not assume that a surface isn't supported if it isn't enumerated. DirectDraw's attempt to create a temporary surface could fail due to memory constraints that exist at the time of the call, resulting in those characteristics not being enumerated, even if the driver actually supports them.

Updating Surface Characteristics

[This is preliminary documentation and subject to change.]

You can update the characteristics of an existing surface by using the IDirectDrawSurface4::SetSurfaceDesc method. With this method, you can change the pixel format and location of a DirectDrawSurface object's surface memory to system memory that your application has explicitly allocated. This is useful as it allows a surface to use data from a previously allocated buffer without copying. The new surface memory is allocated by the client application and, as such, the client application must also deallocate it.

When calling the IDirectDrawSurface4::SetSurfaceDesc method, the lpddsd parameter must be the address of a DDSURFACEDESC2 structure that describes the new surface memory as well as a pointer to that memory. Within the structure, you can only set the dwFlags member to reflect valid members for the location of the surface memory, dimensions, pitch, and pixel format. Therefore, dwFlags can only contain combinations of the DDSD_WIDTH, DDSD_HEIGHT, DDSD_PITCH, DDSD_LPSURFACE, and DDSD_PIXELFORMAT flags, which you set to indicate valid structure members.

Before you set the values in the structure, you must allocate memory to hold the surface. The size of the memory you allocate is important. Not only do you need to allocate enough memory to accommodate the surface's width and height, but you need to have enough to make room for the surface pitch, which must be a QWORD (8 byte) multiple. Remember, pitch is measured in bytes, not pixels.

When setting surface values in the structure, the lpSurface member is a pointer to the memory you allocated and the dwHeight and dwWidth members describe the surface dimensions in pixels. If you specify surface dimensions, you must fill the lPitch member to reflect the surface pitch as well. Pitch must be a DWORD multiple. Likewise, if you specify pitch, you must also specify a width value. Lastly, the ddpfPixelFormat member describes the pixel format for the surface. With the exception of the lpSurface member, if you don't specify a value for these members, the method defaults to using the value from the current surface.

There are some restrictions you must be aware of when using IDirectDrawSurface4::SetSurfaceDesc, some of which are common sense. For example, the lpSurface member of the DDSURFACEDESC2 structure must be a valid pointer to a system memory (the method doesn't support video memory pointers at this time). Also, the dwWidth and dwHeight members must be nonzero values. Lastly, you cannot reassign the primary surface or any surfaces within the primary's flipping chain.

You can set the same memory for multiple DirectDrawSurface objects, but you must take care that the memory is not deallocated while it is assigned to any surface object.

Using the SetSurfaceDesc method incorrectly will cause unpredictable behavior. The DirectDrawSurface object will not deallocate surface memory that it didn't allocate. Therefore, when the surface memory is no longer needed, it is your responsibility to deallocate it. However, when SetSurfaceDesc is called, DirectDraw frees the original surface memory that it implicitly allocated when creating the surface.

Accessing Surface Memory Directly

[This is preliminary documentation and subject to change.]

You can directly access the frame buffer or off-screen surface memory by using the IDirectDrawSurface4::Lock method. When you call this method, the lpDestRect parameter is a pointer to a RECT structure that describes the rectangle on the surface you want to access directly. To request that the entire surface be locked, set lpDestRect to NULL. Also, you can specify a RECT that covers only a portion of the surface. Providing that no two rectangles overlap, two threads or processes can simultaneously lock multiple rectangles in a surface.

The Lock method fills a DDSURFACEDESC2 structure with all the information you need to properly access the surface memory. The structure includes information about the pitch (or stride) and the pixel format of the surface, if different from the pixel format of the primary surface. When you finish accessing the surface memory, call the IDirectDrawSurface4::Unlock method to unlock it.

While you have a surface locked, you can directly manipulate the contents. The following list describes some tips for avoiding common problems with directly rendering surface memory:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Never assume a constant display pitch. Always examine the pitch information returned by the IDirectDrawSurface4::Lock method. This pitch can vary for a number of reasons, including the location of the surface memory, the type of display card, or even the version of the DirectDraw driver. For more information, see Width vs. Pitch.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Make certain you blit to unlocked surfaces. DirectDraw blit methods will fail, returning DDERR_SURFACEBUSY or DDERR_LOCKEDSURFACES, if called on a locked surface. Similarly, GDI blit functions fail without returning error values if called on a locked surface that exists in display memory.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Limit your application's activity while a surface is locked. While a surface is locked, DirectDraw often holds the Win16Mutex (also known as the Win16Lock) so that gaining access to surface memory can occur safely. The Win16Mutex serializes access to GDI and USER dynamic-link libraries, shutting down Windows for the duration between the IDirectDrawSurface4::Lock and IDirectDrawSurface4::Unlock calls. The IDirectDrawSurface4::GetDC method implicitly calls Lock, and the IDirectDrawSurface4::ReleaseDC implicitly calls Unlock.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Always copy data aligned to display memory. (Windows 95 and Windows 98 use a page fault handler, Vflatd.386, to implement a virtual flat-frame buffer for display cards with bank-switched memory. The handler allows these display devices to present a linear frame buffer to DirectDraw. Copying data unaligned to display memory can cause the system to suspend operations if the copy spans memory banks.)

Unless you include the DDLOCK_NOSYSLOCK flag when you call the Lock method, locking the surface typically causes DirectDraw to take the Win16Mutex. During the Win16Mutex all other applications, including Windows, cease execution. Since the Win16Mutex stops applications from executing, standard debuggers cannot be used while the lock is held. Kernel debuggers can be used during this period. DirectDraw always takes the Win16Mutex when locking the primary surface.

If a blit is in progress when you call IDirectDrawSurface4::Lock, the method will return immediately with an error, as a lock cannot be obtained. To prevent the error, use the DDLOCK_WAIT flag to cause the method to wait until a lock can be successfully obtained.

Locking portions of the primary surface can interfere with the display of a software cursor. If the cursor intersects the locked rectangle, it is hidden for the duration of the lock. If it doesn't intersect the rectangle, it is frozen for the duration of the lock. Neither of these effects occurs if the entire surface is locked.

Gamma and Color Controls

[This is preliminary documentation and subject to change.]

This section contains information about the gamma and color control interfaces used with DirectDrawSurface objects. Information is organized into the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are Gamma and Color Controls?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Gamma Controls

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Color Controls

Note

You should not attempt to use both the IDirectDrawGammaControl and IDirectDrawColorControl interfaces on a single surface. Their effects are undefined when used together.

What Are Gamma and Color Controls?

[This is preliminary documentation and subject to change.]

Through the gamma and color control interfaces, DirectDrawSurface objects enable you to change how the system displays the contents of the surface, without affecting the contents of the surface itself. You can think of these controls as very simple filters that DirectDraw applies to the data as it leaves a surface before being rendered on the screen. Surface objects implement the IDirectDrawGammaControl and IDirectDrawColorControl interfaces which expose methods to adjust how the surface's contents are filtered. You can retrieve a pointer to either interface by using the IUnknown::QueryInterface method of the target surface, specifying the IID_IDirectDrawGammaControl or IID_IDirectDrawColorControl reference identifiers.

Gamma controls, represented by the IDirectDrawGammaControl interface, make it possible for you to dynamically change how a surface's individual red, green, and blue levels map to the actual levels that the system displays. By setting gamma levels, you can cause the user's screen to flash colors—red when the user's character is shot, green when they pick up a new item, and so on—without blitting new images to the frame buffer to achieve the effect. Or, you might adjust color levels to apply a color bias to the images in the frame buffer. Although this interface is similar to the color control interface, this one is the easiest to use, making it the best choice for game applications. For details, see Using Gamma Controls.

The IDirectDrawColorControl interface allows you to control color in a surface much like the color controls you might find on a television. The similarity between IDirectDrawColorControl and the actual controls on a TV is no mistake—this interface is most appropriate for adjusting how broadcast video looks in an overlay surface, so it makes sense that it should provide similar control over colors. You can use color controls to allow a user to change video characteristics such as hue, saturation, contrast, and several others. For more information, see Using Color Controls.

Using Gamma Controls

[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl interface, which you retrieve by querying the surface with the IID_IDirectDrawGammaControl reference identifier, allows you to manipulate ramp levels that affect the red, green, and blue color components of pixels from the surface before they are sent to the digital-to-analog converter (DAC) for display. Although all surface types support the IDirectDrawGammaControl interface, you are only allowed to adjust gamma on the primary surface. Attempts to call IDirectDrawGammaControl::GetGammaRamp or IDirectDrawGammaControl::SetGammaRamp on a surface other than the primary surface will fail.

In the following topics, this section describes the general concept of ramp levels, and provides information about working with those levels through the methods of IDirectDrawGammaControl:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About Gamma Ramp Levels

�SYMBOL 183 \f "Symbol" \s 11 \h �	Detecting Gamma Ramp Support

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting and Retrieving Gamma Ramp Levels

About Gamma Ramp Levels

[This is preliminary documentation and subject to change.]

A gamma ramp in DirectDraw is a term used to describe a set of values that map the level of a particular color component (red, green, blue) for all pixels in the frame buffer to new levels that are received by the digital-to-analog converter (DAC) for display on the monitor. The remapping is performed by way of three simple look-up tables, one for each color component.

Here's how it works: DirectDraw takes a pixel from the frame buffer, and looks at it in terms of its individual red, green, and blue color components. Each component is represented by a value from 0 to 65535. DirectDraw takes the original value, and uses it to index into an 256-element array (the ramp), where each element contains a value that replaces the original one. DirectDraw performs this "look-up and replace" process for each color component of each pixel within the frame buffer, thereby changing the final colors for all of the on-screen pixels.

It's handy to visualize the ramp values by graphing them. The left graph of the two following graphs shows a ramp that doesn't modify colors at all, and the right graph shows a ramp that imposes a negative bias to the color component to which it is applied.

�

The array elements for the graph on the left would contain values identical to their index (0 in the element at index 0, and 65535 at index 255). This type of ramp is the default, as it doesn't change the input values before they're displayed. The right graph is a little more interesting; its ramp contains values that range from 0 in the first element to 32768 in the last element, with values ranging relatively uniformly in between. The effect is that the color component that uses this ramp appears muted on the display. You are not limited to using linear graphs; if your application needs to assign arbitrary mapping, it's free to do so. You can even set the entries to all zeroes to leech a particular color component completely from the display.

Detecting Gamma Ramp Support

[This is preliminary documentation and subject to change.]

You can determine whether the hardware supports dynamic gamma ramp adjustment by calling the IDirectDraw4::GetCaps method. After the call, if the DDCAPS2_PRIMARYGAMMA flag is present in the dwFlags2 member of the associate DDCAPS structure, the hardware supports dynamic gamma ramps. DirectDraw does not attempt to emulate this feature, so if the hardware doesn't support it, you can't use it.

Setting and Retrieving Gamma Ramp Levels

[This is preliminary documentation and subject to change.]

Gamma ramp levels are effectively look-up tables that DirectDraw uses to map the frame buffer color components to new levels that will be displayed. For more information, see About Gamma Ramp Levels. You set and retrieve ramp levels for the primary surface by calling the IDirectDrawGammaControl::SetGammaRamp and IDirectDrawGammaControl::GetGammaRamp methods. Both methods accept two parameters, but the first parameter is reserved for future use, and should be set to zero. The second parameter, lpRampData, is the address of a DDGAMMARAMP structure. The DDGAMMARAMP structure contains three 256-element arrays of WORDs, one array each to contain the red, green, and blue gamma ramps.

You can include the DDSGR_CALIBRATE value when calling the IDirectDrawGammaControl::SetGammaRamp to invoke the calibrator when setting new gamma levels. Calibrating gamma ramps incurs some processing overhead, and should not be used frequently. Setting a calibrated gamma ramp will provide a consistent and absolute gamma value for the viewer, regardless of the display adapter and monitor.

Not all systems support gamma calibration. To determine if gamma calibration is supported, call IDirectDraw4::GetCaps, and examine the dwCaps2 member of the associated DDCAPS structure after the method returns. If the DDCAPS2_CANCALIBRATEGAMMA capability flag is present, then gamma calibration is supported.

When setting new ramp levels, keep in mind that that the levels you set in the arrays are only used when your application is in full-screen, exclusive mode. Whenever your application changes to normal mode, the ramp levels are set aside, taking effect again when the application reinstates full-screen mode. In addition, remember that you cannot set ramp levels for any surface other than the primary.

Note

Those very familiar with the Win32® API might wonder why DirectDraw exposes an interface like IDirectDrawGammaControl, when Win32 offers the GetDeviceGammaRamp and SetDeviceGammaRamp functions for the same surfaces. Although the Win32 API includes these functions, they do not always succeed on all Windows platforms like the methods of the IDirectDrawGammaControl interface.

Using Color Controls

[This is preliminary documentation and subject to change.]

You set and retrieve surface color controls through the IDirectDrawColorControl interface, which can be retrieved by querying the DirectDrawSurface object using the IID_IDirectDrawColorControl reference identifier.

Color control information is represented by a DDCOLORCONTROL structure, which is used with both methods of the interface, IDirectDrawColorControl::SetColorControls and IDirectDrawColorControl::GetColorControls. The first structure member, dwSize, should be set to the size of the structure, in bytes, before you use it. How you use the next member, dwFlags, depends on whether you are setting or retrieving color controls. If you are setting new color controls, set dwFlags to a combination of the appropriate flags to indicate which of the other structure members contain valid data that you've set. However, when retrieving color controls, you don't need to set the dwFlags before using it—it will contain flags telling you which members are valid after the IDirectDrawColorControl::GetColorControls method returns.

The remaining DDCOLORCONTROL structure members can contain values that describe the brightness, contrast, hue, saturation, sharpness, gamma, and whether color is used. Note that the structure contains information about gamma correction. This is a single gamma value that affects overall brightness, and it should not be confused with the gamma adjustment features provided through the IDirectDrawGammaControl interface.

Overlay Surfaces

[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw overlay surface support. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overlay Surface Overview

�SYMBOL 183 \f "Symbol" \s 11 \h �	Significant DDCAPS Members and Flags

�SYMBOL 183 \f "Symbol" \s 11 \h �	Source and Destination Rectangles

�SYMBOL 183 \f "Symbol" \s 11 \h �	Boundary and Size Alignment

�SYMBOL 183 \f "Symbol" \s 11 \h �	Minimum and Maximum Stretch Factors

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overlay Color Keys

�SYMBOL 183 \f "Symbol" \s 11 \h �	Positioning Overlay Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating Overlay Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overlay Z-Orders

�SYMBOL 183 \f "Symbol" \s 11 \h �	Flipping Overlay Surfaces

For information about implementing overlay surfaces, see Tutorial 6: Using Overlay Surfaces.

Overlay Surface Overview

[This is preliminary documentation and subject to change.]

Overlay surfaces, casually referred to as overlays, are surfaces with special hardware-supported capabilities. Overlay surfaces are frequently used to display live video, recorded video, or still bitmaps over the primary surface without blitting to the primary surface or changing the primary surface's contents in any way. Overlay surface support is provided entirely by the hardware; DirectDraw supports any capabilities as reported by the display device driver. DirectDraw does not emulate overlay surfaces.

An overlay surface is analogous to a clear piece of plastic that you draw on and place in front of the monitor. When the overlay is in front of the monitor, you can see both the overlay and the contents of the primary surface together, but when you remove it, the primary surface's contents are unchanged. In fact, the mechanics of overlays work much like the clear plastic analogy. When you display an overlay surface, you're telling the device driver where and how you want it to be visible. While the display device paints scan lines to the monitor, it checks the location of each pixel in the primary surface to see if an overlay should be visible there instead. If so, the display device substitutes data from the overlay surface for the corresponding pixel, as shown in the following illustration.

�

By using this method, the display adapter produces a composite of the primary surface and the overlay on the monitor, providing transparency and stretching effects, without modifying the contents of either surface. The composited surfaces are injected into the video stream and sent directly to the monitor. Because this on-the-fly processing and pixel substitution is handled at the hardware level, no noticeable performance loss occurs when displaying overlays. Additionally, this method makes it possible to seamlessly composite primary and overlay surfaces with different pixel formats.

You create overlay surfaces by calling the IDirectDraw4::CreateSurface method, specifying the DDSCAPS_OVERLAY flag in the associated DDSCAPS2 structure. Overlay surfaces can only be created in video memory, so you must also include the DDSCAPS_VIDEOMEMORY flag. As with other types of surfaces, by including the appropriate flags you can create either a single overlay or a flipping chain made up of multiple overlay surfaces.

Significant DDCAPS Members and Flags

[This is preliminary documentation and subject to change.]

You can retrieve information about the supported overlay features by calling the IDirectDraw4::GetCaps method. The method fills a DDCAPS structure with information describing all features.

When reporting hardware features, the device driver sets flags in the dwCaps structure member to indicate when a given type of restriction is enforced by the hardware. After retrieving the driver capabilities, examine the flags in the dwCaps member for information about which restrictions apply. The DDCAPS structure contains nine members that carry information describing hardware restrictions for overlay surfaces. The following table lists the overlay related members and their corresponding flags:

Member�Flag����dwMaxVisibleOverlays�This member is always valid��dwCurrVisibleOverlays�This member is always valid��dwAlignBoundarySrc�DDCAPS_ALIGNBOUNDARYSRC��dwAlignSizeSrc�DDCAPS_ALIGNSIZESRC��dwAlignBoundaryDest�DDCAPS_ALIGNBOUNDARYDEST��dwAlignSizeDest�DDCAPS_ALIGNSIZEDEST��dwAlignStrideAlign�DDCAPS_ALIGNSTRIDE ��dwMinOverlayStretch�DDCAPS_OVERLAYSTRETCH��dwMaxOverlayStretch�DDCAPS_OVERLAYSTRETCH��

The dwMaxVisibleOverlays and dwCurrVisibleOverlays members carry information about the maximum number of overlays the hardware can display, and how many of them are currently visible.

Additionally, the hardware reports rectangle position and size alignment restrictions in the dwAlignBoundarySrc, dwAlignSizeSrc, dwAlignBoundaryDest, dwAlignSizeDest, and dwAlignStrideAlign members. The values in these members dictate how you must size and position source and destination rectangles when displaying overlay surfaces. For more information, see Source and Destination Rectangles and Boundary and Size Alignment.

Also, the hardware reports information about stretch factors in the dwMinOverlayStretch and dwMaxOverlayStretch members. For more information, see Minimum and Maximum Stretch Factors.

Source and Destination Rectangles

[This is preliminary documentation and subject to change.]

To display an overlay surface, you call the overlay surface's IDirectDrawSurface4::UpdateOverlay method, specifying the DDOVER_SHOW flag in the dwFlags parameter. The method requires you to specify a source and destination rectangle in the lpSrcRect and lpDestRect parameters. The source rectangle describes a rectangle on the overlay surface that will be visible on the primary surface. To request that the method use the entire surface, set the lpSrcRect parameter to NULL. The destination rectangle describes a portion of the primary surface on which the overlay surface will be displayed.

Source and destination rectangles do not need to be the same size. You can often specify a destination rectangle smaller or larger than the source rectangle, and the hardware will shrink or stretch the overlay appropriately when it is displayed.

To successfully display an overlay surface, you might need to adjust the size and position of both rectangles. Whether this is necessary depends on the restrictions imposed by the device driver. For more information, see Boundary and Size Alignment and Minimum and Maximum Stretch Factors.

Boundary and Size Alignment

[This is preliminary documentation and subject to change.]

Due to various hardware limitations, some device drivers impose restrictions on the position and size of the source and destination rectangles used to display overlay surfaces. To find out which restrictions apply for a device, call the IDirectDraw4::GetCaps method and then examine the overlay-related flags in the dwCaps member of the DDCAPS structure. The following table shows the members and flags specific to boundary and size alignment restrictions:

Category�Flag�Member����Boundary (position) restrictions�DDCAPS_ALIGNBOUNDARYSRC�dwAlignBoundarySrc���DDCAPS_ALIGNBOUNDARYDEST�dwAlignBoundaryDest��Size restrictions�DDCAPS_ALIGNSIZESRC�dwAlignSizeSrc���DDCAPS_ALIGNSIZEDEST�dwAlignSizeDest��

There are two types of restrictions, boundary restrictions and size restrictions. Both types of restrictions are expressed in terms of pixels (not bytes) and can apply to the source and destination rectangles. Also, these restrictions can vary depending on the pixel formats of the overlay and primary surface.

Boundary restrictions affect where you can position a source or destination rectangle. The values in the dwAlignBoundarySrc and dwAlignBoundaryDest members tell you how to align the top left corner of the corresponding rectangle. The x-coordinate of the top left corner of the rectangle (the left member of the RECT structure), must be a multiple of the reported value.

Size restrictions affect the valid widths for source and destination rectangles. The values in the dwAlignSizeSrc and dwAlignSizeDest members tell you how to align the width, in pixels, of the corresponding rectangle. Your rectangles must have a pixel width that is a multiple of the reported value. If you stretch the rectangle to comply with a minimum required stretch factor, be sure that the stretched rectangle is still size aligned. After stretching the rectangle, align its width by rounding up, not down, so you preserve the minimum stretch factor. For more information, see Minimum and Maximum Stretch Factors.

Minimum and Maximum Stretch Factors

[This is preliminary documentation and subject to change.]

Due to hardware limitations, some devices restrict how wide a destination rectangle can be compared with the corresponding source rectangle. DirectDraw communicates these restrictions as stretch factors. A stretch factor is the ratio between the widths of the source and destination rectangles. If the driver provides information about stretch factors, it sets the DDCAPS_OVERLAYSTRETCH flag in the DDCAPS structure after you call the IDirectDraw4::GetCaps method. Note that stretch factors are reported multiplied by 1000, so a value of 1300 actually means 1.3 (and 750 would be 0.75).

Devices that do not impose limits on stretching or shrinking an overlay destination rectangle often report a minimum and maximum stretch factor of 0.

The minimum stretch factor tells you how much wider or narrower than the source rectangle the destination rectangle needs to be. If the minimum stretch factor is greater than 1000, then you must increase the destination rectangle's width by that ratio. For instance, if the driver reports 1300, you must make sure that the destination rectangle's width is at least 1.3 times the width of the source rectangle. Similarly, a minimum stretch factor less than 1000 indicates that the destination rectangle can be smaller than the source rectangle by that ratio.

The maximum stretch factor tells the maximum amount you can stretch the width of the destination rectangle. For example, if the maximum stretch factor is 2000, you can specify destination rectangles that are up to, but not wider than, twice the width of the source rectangle. If the maximum stretch factor is less than 1000, then you must shrink the width of the destination rectangle by that ratio to be able to display the overlay.

After stretching, the destination rectangle must conform to any size alignment restrictions the device might require. Therefore, it's a good idea to stretch the destination rectangle before adjusting it to be size aligned. For more information, see Boundary and Size Alignment.

Hardware does not require that you adjust the height of destination rectangles. You can increase a destination rectangle's height to preserve aspect ratio without negative effects.

Overlay Color Keys

[This is preliminary documentation and subject to change.]

Like other types of surfaces, overlay surfaces use source and destination color keys for controlling transparent blit operations between surfaces. Because overlay surfaces are not displayed by blitting, there needs to be a different way to control how an overlay surface is displayed over the primary surface when you call the IDirectDrawSurface4::UpdateOverlay method. This need is filled by overlay color keys. Overlay color keys, like their blit-related counterparts, have a source version and a destination version that you set by calling the IDirectDrawSurface4::SetColorKey method. (For more information, see Setting Color Keys.) You use the DDCKEY_SRCOVERLAY or DDCKEY_DESTOVERLAY flags to set a source or destination overlay color key. Overlay surfaces can employ blit and overlay color keys together to control blit operations and overlay display operations appropriately; the two types of color keys do not conflict with one another.

The IDirectDrawSurface4::UpdateOverlay method uses the source overlay color key to determine which pixels in the overlay surface should be considered transparent, allowing the contents of the primary surface to show through. Likewise, the method uses the destination overlay color key to determine the parts of the primary surface that will be covered up by the overlay surface when it is displayed. The resulting visual effect is the same as that created by blit-related color keys.

Positioning Overlay Surfaces

[This is preliminary documentation and subject to change.]

After initially displaying an overlay by calling the IDirectDrawSurface4::UpdateOverlay method, you can update the destination rectangle's by calling the IDirectDrawSurface4::SetOverlayPosition method.

Make sure that the positions you specify comply with any boundary alignment restrictions enforced by the hardware. For more information, see Boundary and Size Alignment. Also remember that SetOverlayPosition doesn't perform clipping for you; using coordinates that would potentially make the overlay run off the edge of the target surface will cause the method to fail, returning DDERR_INVALIDPOSITION.

Creating Overlay Surfaces

[This is preliminary documentation and subject to change.]

Like all surfaces, you create an overlay surface by calling the IDirectDraw4::CreateSurface method. To create an overlay, include the DDSCAPS_OVERLAY flag in the associated DDSCAPS2 structure.

Overlay support varies widely across display devices. As a result, you cannot be sure that a given pixel format will be supported by most drivers and must therefore be prepared to work with a variety of pixel formats. You can request information about the non-RGB formats that a driver supports by calling the IDirectDraw4::GetFourCCCodes method.

When you attempt to create an overlay surface, it is advantageous to try creating a surface with the most desirable pixel format, falling back on other pixel formats if a given pixel format isn't supported.

You can create overlay surface flipping chains. For more information, see Creating Complex Surfaces and Flipping Chains.

Overlay Z-Orders

[This is preliminary documentation and subject to change.]

Overlay surfaces are assumed to be on top of all other screen components, but when you display multiple overlay surfaces, you need some way to visually organize them. DirectDraw supports overlay z-ordering to manage the order in which overlays clip each other. Z-order values represent conceptual distances from the primary surface toward the viewer. They range from 0, which is just on top of the primary surface, to 4 billion, which is as close to the viewer as possible, and no two overlays can share the same z-order. You set z-order values by calling the IDirectDrawSurface4::UpdateOverlayZOrder method.

Destination color keys are affected only by the bits on the primary surface, not by overlays occluded by other overlays. Source color keys work on an overlay whether or not a z-order was specified for the overlay.

Overlays without a specified z-order are assumed to have a z-order of 0. Overlays that do not have a specified z-order behave in unpredictable ways when overlaying the same area on the primary surface.

A DirectDraw object does not track the z-orders of overlays displayed by other applications.

Note

You can ensure proper clipping of multiple overlay surfaces by calling UpdateOverlayZOrder in response to WM_KILLFOCUS messages. When you receive this message, set your overlay surface to the rearmost z-order position by calling the UpdateOverlayZOrder method with the dwFlags parameter set to DDOVERZ_SENDTOBACK.

Flipping Overlay Surfaces

[This is preliminary documentation and subject to change.]

Like other types of surfaces, you can create overlay flipping chains. After creating a flipping chain of overlays, call the IDirectDrawSurface4::Flip method to flip between them. For more information, see Flipping Surfaces.

Software decoders displaying video with overlay surfaces can use the DDFLIP_ODD and DDFLIP_EVEN flags when calling the Flip method to use features that reduce motion artifacts. If the driver supports odd-even flipping, the DDCAPS2_CANFLIPODDEVEN flag will be set in the DDCAPS structure after retrieving driver capabilities. If DDCAPS2_CANFLIPODDEVEN is set, you can include the DDOVER_BOB flag when calling the IDirectDrawSurface4::UpdateOverlay method to inform the driver that you want it to use the "Bob" algorithm to minimize motion artifacts. Later, when you call Flip with the DDFLIP_ODD or DDFLIP_EVEN flag, the driver will automatically adjust the overlay source rectangle to compensate for jittering artifacts.

If the driver doesn't set the DDCAPS2_CANFLIPODDEVEN flag when you retrieve hardware capabilities, UpdateOverlay will fail if you specify the DDOVER_BOB flag.

For more information about the Bob algorithm, see Solutions to Common Video Artifacts.

Compressed Texture Surfaces

[This is preliminary documentation and subject to change.]

A surface can contain a bitmap to be used for texturing 3-D objects. When creating the surface you must specify the DDSCAPS_TEXTURE flag in the dwFlags member of the DDSCAPS structure.

For more information on the use of textures in Direct3D Immediate Mode, see Textures.

In order to reduce the amount of memory consumed by textures, DirectDraw supports the compression of texture surfaces.

Some Direct3D devices support compressed texture surfaces natively. On such devices, once you have created a compressed surface and loaded the data into it, the surface can be used in Direct3D just like any other texture surface. Direct3D handles decompression when the texture is mapped to a 3-D object.

Other devices do not support compressed texture surfaces natively. When using such devices, you may still find it useful to use compressed surfaces to represent textures on disk or for textures that are loaded into memory but not currently being used. You can use DirectDraw to convert the compressed textures to an uncompressed format before giving the texture to Direct3D.

For more information on texture compression in DirectDraw, see the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating Compressed Textures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Decompressing Compressed Textures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Transparency in Blits to Compressed Textures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Compressed Texture Formats

For information on using compressed textures in Direct3D Immediate Mode, see Texture Compression.

Creating Compressed Textures

[This is preliminary documentation and subject to change.]

To describe a compressed texture surface in the DDSURFACEDESC2 structure when creating the surface, you must include the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Specify the DDSCAPS_TEXTURE flag in the dwFlags member of the DDSCAPS structure, just as you would for any texture.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Set the dwFourCC member of the DDPIXELFORMAT structure to one of the DXT codes described later.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Include DDPF_FOURCC in the dwFlags member of DDPIXELFORMAT. Do not set the DDPF_RGB flag.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Specify a width and height that are a multiple of 4 pixels.

There are two ways to load image data into a compressed texture surface:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Create a regular RGB or ARGB surface and load a normal bitmap into it, then use IDirectDrawSurface4::Blt or IDirectDrawSurface4::BltFast to blit from the uncompressed surface to the compressed surface. DirectDraw does the compression for you.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Load the compressed data from a file and copy it directly into the surface memory. (See Accessing Surface Memory Directly.) You can create and convert compressed texture (DDS) files using the DirectX Texture Tool (Dxtex.exe) supplied with the Programmer's Reference. You can also create your own DDS files and either copy the data from compressed surfaces or else use your own routines to convert regular bitmap data to one of the compressed formats.

Note

When you call IDirectDrawSurface4::Lock or IDirectDrawSurface4::GetSurfaceDesc on a compressed surface, the DDSD_LINEARSIZE flag is set in the dwFlags member of the DDSURFACEDESC structure, and the dwLinearSize member contains the number of bytes allocated to contain the compressed surface data. The dwLinearSize parameter resides in a union with the lPitch parameter, so these parameters are mutually exclusive, as are the flags DDSD_LINEARSIZE and DDSD_PITCH.

The advantage of this behavior is that an application can copy the contents of a compressed surface to a file without having to calculate for itself how much storage is required for a surface of a particular width and height in the specific format.

The following table shows the five types of compressed textures. For more information on how the data is stored (you need to know this only if you are writing your own compression routines) see Compressed Texture Formats.

FOURCC�Description�Alpha�premultiplied?����DXT1�Opaque / one-bit alpha�n/a��DXT2�Explicit alpha�Yes��DXT3�Explicit alpha�No��DXT4�Interpolated alpha�Yes��DXT5�Interpolated alpha�No��

Note

When you blit from a non-premultiplied format to a premultiplied format, DirectDraw scales the colors based on the alpha values. Blitting from a premultiplied format to a non-premultiplied format is not supported. If you try to blit from a premultiplied-alpha source to a non-premultiplied-alpha destination, the method will return DDERR_INVALIDPARAMS. If you blit from a premultiplied-alpha source to a destination that has no alpha, the source color components, which have been scaled by alpha, will be copied as is.

Decompressing Compressed Textures

[This is preliminary documentation and subject to change.]

As with compressing a texture surface, decompressing a compressed texture is performed through DirectDraw blitting services. The HEL performs decompressing blits between system memory surfaces, so these always supported. Likewise, the HEL always performs blits for compressed managed textures (the DDSCAPS2_TEXTUREMANAGE capability). For other situations, the restrictions discussed in the following paragraphs apply.

If the driver supports the creation of compressed video-memory surfaces, then the driver can also perform decompressing blits from a compressed video-memory surface to an uncompressed video or system memory surface, so long as the destination surface has the DDSCAPS_OFFSCREENPLAIN capability.

Blits from compressed system-memory surfaces to uncompressed video-memory surfaces are largely unsupported and should not be attempted, even when the driver supports compressed textures. This does not mean that it is impossible to decompress a compressed system-memory surface and move its contents into a video memory surface; it merely requires an additional step:

�SYMBOL 219 \f "MSIcons" \s 11 \h�	To decompress a system memory surface into video memory:

	1.	Create an uncompressed, offscreen-plain, surface in system memory of the desired dimensions and pixel format.

	2.	Blit from the compressed system-memory surface to the uncompressed system-memory surface. (The DirectDraw HEL performs decompression in this case.)

	3.	Blit the uncompressed surface to the uncompressed video-memory surface.

Transparency in Blits to Compressed Textures

[This is preliminary documentation and subject to change.]

DirectDraw provides a special trick for creating compressed textures with alpha from plain RGB surfaces. If a source color key is provided on the source RGB surface, DirectDraw assigns an alpha value of 0 to all pixels of that color in the destination. This technique is especially useful for creating DXT1 textures, since they effectively have only 1 bit of alpha information per pixel.

Note

There are no flags that control this behavior. If you do not want any transparency in your compressed texture, do not set a source color key on the source surface.

Compressed Texture Formats

[This is preliminary documentation and subject to change.]

This section contains information on the internal organization of compressed texture formats. You don't need these details in order to use compressed textures, because DirectDraw handles conversion to and from compressed formats. However, you might find this information useful if you want to operate on compressed surface data directly.

DirectDraw uses a compression format that divides texture maps into 4x4 texel blocks. If the texture contains no transparency (is opaque), or if the transparency is specified by a one-bit alpha, an 8-byte block represents the texture map block. If the texture map does contain transparent texels, using an alpha channel, a 16-byte block represents it.

These two types of format are discussed in the following sections:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Opaque and One-bit Alpha Textures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Textures with Alpha Channels

Note

Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-bit alpha formats on a per-block basis within the same texture. In other words, the comparison of the unsigned integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels.

When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a block-by-block basis.

Opaque and One-bit Alpha Textures

[This is preliminary documentation and subject to change.]

Texture format DXT1 is for textures that are opaque or have a single transparent color.

For each opaque or one-bit alpha block, two 16-bit values (RGB 5:6:5 format) and a 4x4 bitmap with 2-bits-per-pixel are stored. This totals 64 bits for 16 texels, or 4-bits-per-texel. In the block bitmap, there are two bits per texel to select between the four colors, two of which are stored in the encoded data. The other two colors are derived from these stored colors by linear interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color values stored in the block. They are treated as unsigned integers. If the first color is greater than the second, it implies that only opaque texels are defined. This means four colors will be used to represent the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed in RGB color space. This format is analogous to RGB 5:6:5 format. Otherwise, for one-bit alpha transparency, three colors are used and the fourth is reserved to represent transparent texels.

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a transparent texel (alpha information). This format is analogous to RGBA 5:5:5:1, where the final bit is used for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color encoding is selected:

if (color_0 > color_1)

{

 // Four-color block: derive the other two colors.

 // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3

 // These two bit codes correspond to the 2-bit fields

 // stored in the 64-bit block.

 color_2 = (2 * color_0 + color_1) / 3;

 color_3 = (color 0 + 2 * color_1) / 3;

}

else

{

 // Three-color block: derive the other color.

 // 00 = color_0, 01 = color_1, 10 = color_2,

 // 11 = transparent.

 // These two bit codes correspond to the 2-bit fields

 // stored in the 64-bit block.

 color_2 = (color_0 + color_1) / 2;

 color_3 = transparent;

}

The following tables show the memory layout for the 8-byte block. It is assumed that the first index corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example, Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word address�16-bit word����0�Color_0��1�Color_1��2�Bitmap Word_0��3�Bitmap Word_1��

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits�Color����4:0 (LSB)�Blue color component��10:5�Green color component��15:11�Red color component��

Bitmap Word_0 is laid out as follows:

Bits�Texel����1:0 (LSB)�Texel[0][0]��3:2�Texel[0][1]��5:4�Texel[0][2]��7:6�Texel[0][3]��9:8�Texel[1][0]��11:10�Texel[1][1]��13:12�Texel[1][2]��15:14 (MSB)�Texel[1][3]��

Bitmap Word_1 is laid out as follows:

Bits�Texel����1:0 (LSB)�Texel[2][0]��3:2�Texel[2][1]��5:4�Texel[2][2]��7:6�Texel[2][3]��9:8�Texel[3][0]��11:10�Texel[3][1]��13:12�Texel[3][2]��15:14 (MSB)�Texel[3][3]��

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly distributed gradient between them. To determine the values for the 4x4 bitmap, the following calculations are used:

00 ? color_0

01 ? color_1

10 ? 2/3 color_0 + 1/3 color_1

11 ? 1/3 color_0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit integer, color_1. An example of where this format could be used is leaves on a tree to be shown against a blue sky. Some texels could be marked as transparent while three shades of green are still available for the leaves. Two of these colors fix the extremes, and the third color is an interpolated color.

The bitmap encoding for the colors and the transparency is determined using the following calculations:

00 ? color_0

01 ? color_1

10 ? 1/2 color_0 + 1/2 color_1

11 ? Transparent

Textures with Alpha Channels

[This is preliminary documentation and subject to change.]

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a block that describes the transparency precedes the 64-bit block already described. The transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with fewer bits and linear interpolation analogous to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address�64-bit Block����3:0�Transparency block��7:4�Previously described 64-bit block��

Explicit Texture Encoding

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a variety of means such as dithering or by simply using the 4 most significant bits of the alpha data. However they are produced, they are used just as they are, without any form of interpolation.

Note

DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word.

This is the layout for Word 0:

Bits�Alpha����3:0 (LSB)�[0][0]��7:4�[0][1]��11:8�[0][2]��15:12 (MSB)�[0][3]��

This is the layout for Word 1:

Bits�Alpha����3:0 (LSB)�[1][0]��7:4�[1][1]��11:8�[1][2]��15:12 (MSB)�[1][3]��

This is the layout for Word 2:

Bits�Alpha����3:0 (LSB)�[2][0]��7:4�[2][1]��11:8�[2][2]��15:12 (MSB)�[2][3]��

This is the layout for Word 3:

Bits�Alpha����3:0 (LSB)�[3][0]��7:4�[3][1]��11:8�[3][2]��15:12 (MSB)�[3][3]��

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in the first eight bytes of the block. The representative alpha values are used to interpolate intermediate alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four intermediate alpha values are interpolated between the specified alpha extremes. The two additional implicit alpha values are 0 (fully transparent) and 255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?

if (alpha_0 > alpha_1) {

 // 8-alpha block: derive the other 6 alphas.

 // 000 = alpha_0, 001 = alpha_1, others are interpolated

 alpha_2 = (6 * alpha_0 + alpha_1) / 7; // bit code 010

 alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011

 alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100

 alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101

 alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110

 alpha_7 = (alpha_0 + 6 * alpha_1) / 7; // Bit code 111

 }

else { // 6-alpha block: derive the other alphas.

 // 000 = alpha_0, 001 = alpha_1, others are interpolated

 alpha_2 = (4 * alpha_0 + alpha_1) / 5; // Bit code 010

 alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011

 alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100

 alpha_5 = (alpha_0 + 4 * alpha_1) / 5; // Bit code 101

 alpha_6 = 0; // Bit code 110

 alpha_7 = 255; // Bit code 111

}

The memory layout of the alpha block is as follows:

Byte�Alpha����0�Alpha_0��1�Alpha_1��2�[0][2] (2 LSBs), [0][1], [0][0]��3�[1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB)��4�[1][3], [1][2], [1][1] (2 MSBs)��5�[2][2] (2 LSBs), [2][1], [2][0]��6�[3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB)��7�[3][3], [3][2], [3][1] (2 MSBs)��

Private Surface Data

[This is preliminary documentation and subject to change.]

You can store any kind of application-specific data with a surface. For example, a surface representing a map in a game might contain information about terrain.

A surface can have more than one private data buffer. Each buffer is identified by a GUID which you supply when attaching the data to the surface.

To store private surface data, you use the IDirectDrawSurface4::SetPrivateData method, passing in a pointer to the source buffer, the size of the data, and an application-defined GUID for the data. Optionally, the source data can exist in the form of a COM object; in this case, you pass a pointer to the object's IUnknown interface pointer and you set the DDSPD_IUNKNOWNPOINTER flag. Another flag, DDSPD_VOLATILE, indicates that the data being attached to the surface is valid only as long as the contents of the surface do not change. (See Surface Uniqueness Values.)

SetPrivateData allocates an internal buffer for the data and copies it. You can then safely free the source buffer or object. The internal buffer or interface reference is released when IDirectDrawSurface4::FreePrivateData is called. This happens automatically when the surface is freed.

To retrieve private data for a surface, you must allocate a buffer of the correct size and then call the IDirectDrawSurface4::GetPrivateData method, passing the GUID that was assigned to the data by SetPrivateData. You are responsible for freeing any dynamic memory you use for this buffer. If the data is a COM object, this method retrieves the IUnknown pointer.

If you don't know how big a buffer to allocate, first call GetPrivateData with zero in *lpcbBufferSize. If the method fails with DDERR_MOREDATA, it returns the necessary number of bytes in *lpcbBufferSize.

Surface Uniqueness Values

[This is preliminary documentation and subject to change.]

The uniqueness value of a surface allows you to determine whether the surface has changed. When DirectDraw creates a surface, it assigns a uniqueness value, which you can retrieve and store by using the IDirectDrawSurface4::GetUniquenessValue method. Then, whenever you need to determine whether the surface has changed, you call the method again and compare the new value against the old one. If it's different, the surface has changed.

The actual value returned by GetUniquenessValue is irrelevant, unless it is 0. DirectDraw assigns this value to a surface when it knows that the surface might be changed by some process beyond its control. When GetUniquenessValue returns 0, you know only that the state of the surface is indeterminate.

To force the uniqueness value for a surface to change, an application can use the IDirectDrawSurface4::ChangeUniquenessValue method. This method could be called, for example, by an application or component that changed the private data for a surface without changing the surface itself, and wished to notify some other process of the change. Most applications, however, never need to change the uniqueness value.

Using Non-local Video Memory Surfaces

[This is preliminary documentation and subject to change.]

DirectDraw supports the Accelerated Graphics Port (AGP) architecture for creating surfaces in non-local video memory. On AGP-equipped systems, DirectDraw will use non-local video memory if local video memory is exhausted or if non-local video memory is explicitly requested, depending on the type of AGP implementation that is in place.

Currently, there are two implementations of the AGP architecture, known as the "execute model" and the "DMA model." In the execute model implementation, the display device supports the same features for non-local video memory surfaces and local video memory surfaces. As a result, when you retrieve hardware capabilities by calling the IDirectDraw4::GetCaps method, the blit-related flags in the dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, dwNLVBFXCaps, and dwNLVBRops members of the DDCAPS structure will be identical to those for local video memory. Under the execute model, if local video memory is exhausted, DirectDraw will automatically fall back on non-local video memory unless the caller specifically requests otherwise.

In the DMA model implementation, support for blitting and texturing from non-local video memory surfaces is limited. When the display device uses the DMA model, the DDCAPS2_NONLOCALVIDMEMCAPS flag will be set in the dwCaps2 member when you retrieve device capabilities. In the DMA model, the blit-related flags included in the dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, dwNLVBFXCaps, and dwNLVBRops members of the DDCAPS structure describe the features that are supported; these features will often be a smaller subset of those supported for local video memory surfaces. Under the DMA model, when local video memory is exhausted, DirectDraw will automatically fall back on non-local video memory for texture surfaces only, unless the caller had explicitly requested local video memory. Texture surfaces are the only types of surfaces that will be treated this way; all other types of surfaces cannot be created in non-local video memory unless the caller explicitly requests it.

DMA model implementations vary in support for texturing from non-local video memory surfaces. If the driver supports texturing from non-local video memory surfaces, the D3DDEVCAPS_TEXTURENONLOCALVIDMEM flag will be set when you retrieve the 3-D device's capabilities by calling the IDirect3DDevice3::GetCaps method.

Converting Color and Format

[This is preliminary documentation and subject to change.]

Non-RGB surface formats are described by four-character codes (FOURCC). If an application calls the IDirectDrawSurface4::GetPixelFormat method to request the pixel format, and the surface is a non-RGB surface, the DDPF_FOURCC flag will be set and the dwFourCC member of the DDPIXELFORMAT structure will be valid. If the FOURCC code represents a YUV format, the DDPF_YUV flag will also be set and the dwYUVBitCount, dwYBitMask, dwUBitMask, dwVBitMask, and dwYUVAlphaBitMask members will be valid masks that can be used to extract information from the pixels.

If an RGB format is present, the DDPF_RGB flag will be set and the dwRGBBitCount, dwRBitMask, dwGBitMask, dwBBitMask, and dwRGBAlphaBitMask members will be valid masks that can be used to extract information from the pixels. The DDPF_RGB flag can be set in conjunction with the DDPF_FOURCC flag if a nonstandard RGB format is being described.

During color and format conversion, two sets of FOURCC codes are exposed to the application. One set of FOURCC codes represents the capabilities of the blitting hardware; the other represents the capabilities of the overlay hardware.

For more information, see Four Character Codes (FOURCC).

Surfaces and Device Contexts

[This is preliminary documentation and subject to change.]

It is often convenient to mix-and-match DirectDraw and GDI services to manipulate the contents of DirectDraw surfaces. DirectDraw offers methods to enable GDI to access DirectDraw surfaces through device contexts, and to retrieve a surface given the surface's device context. This section contains the follows topics that describe these features in detail:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Retrieving the Device Context for a Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Finding a Surface with a Device Context

Retrieving the Device Context for a Surface

[This is preliminary documentation and subject to change.]

If you want to modify the contents of a DirectDraw surface object by using GDI functions, you must retrieve a GDI-compatible device context handle. This could be useful if you wanted to display text in a DirectDraw surface by calling the DrawText Win32 function, which accepts a handle to a device context as a parameter. It is possible to retrieve a GDI-compatible device context for a surface by calling the IDirectDrawSurface4::GetDC method for that surface. The following example shows how this might be done:

// For this example the lpDDS4 variable is a valid pointer

// to an IDirectDrawSurface4 interface.

 HDC hdc;

 HRESULT HR;

 hr = lpDDS4->GetDC(&hdc);

 if(FAILED(hr))

 return hr;

 // Call DrawText, or some other GDI

 // function here.

 lpDDS4->ReleaseDC(hdc);

Note that the code calls the IDirectDrawSurface4::ReleaseDC method when the surface's device context is no longer needed. This step is required, because the IDirectDrawSurface4::GetDC method uses an internal version of the IDirectDrawSurface4::Lock method to lock the surface. The surface remains locked until the IDirectDrawSurface4::ReleaseDC method is called.

Finding a Surface with a Device Context

[This is preliminary documentation and subject to change.]

You can retrieve a pointer to a surface's IDirectDrawSurface4 interface from the device context for the surface by calling the IDirectDraw4::GetSurfaceFromDC method. This feature might be very useful for component applications or ActiveX® controls, that are commonly given a device context to draw into at run-time, but could benefit by exploiting the features exposed by the IDirectDrawSurface4 interface.

A device context might identify memory that isn't associated with a DirectDraw object, or the device context might identify a surface for another DirectDraw object entirely. The latter case is most likely to occur on a system with multiple monitors. If the device context doesn't identify a surface that wasn't created by that DirectDraw object, the method fails, returning DDERR_NOTFOUND.

The following sample code shows what a very simple scenario might look like:

 // For this example, the hdc variable is a valid

 // handle to a video memory device context, and the

 // lpDD4 variable is a valid IDirectDraw4 interface pointer.

 LPDIRECTDRAWSURFACE4 lpDDS4;

 HRESULT hr;

 hr = lpDD4->GetSurfaceFromDC(hdc, &lpDDS4);

 if(SUCCEEDED(hr)) {

 // Use the surface interface.

 }

 else if(DDERR_NOTFOUND == hr) {

 OutputDebugString("HDC not from this DirectDraw surface\n");

 }

Palettes

[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawPalette objects. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are Palettes?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Palette Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Palettes on Nonprimary Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Sharing Palettes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Palette Animation

What Are Palettes?

[This is preliminary documentation and subject to change.]

Palettized surfaces need palettes to be meaningfully displayed. A palettized surface, also known as a color-indexed surface, is simply a collection of numbers where each number represents a pixel. The value of the number is an index into a color table that tells DirectDraw what color to use when displaying that pixel. DirectDrawPalette objects, casually referred to as palettes, provide you with an easy way to manage a color table. Surfaces that use a 16-bit or greater pixel format do not use palettes.

A DirectDrawPalette object represents an indexed color table that has 2, 4, 16 or 256 entries to be used with a color indexed surface. Each entry in the palette is an RGB triplet that describes the color to be used when displaying pixels within the surface. The color table can contain 16- or 24-bit RGB triplets representing the colors to be used. For 16-color palettes, the table can also contain indexes to another 256-color palette. Palettes are supported for textures, off-screen surfaces, and overlay surfaces, none of which is required to have the same palette as the primary surface.

You can create a palette by calling the IDirectDraw4::CreatePalette method. This method retrieves a pointer to the palette object's IDirectDrawPalette interface. You can use the methods of this interface to manipulate palette entries, retrieve information about the object's capabilities, or initialize the object (if you used the CoCreateInstance COM function to create it).

You apply a palette to a surface by calling the surface's IDirectDrawSurface4::SetPalette method. A single palette can be applied to multiple surfaces.

DirectDrawPalette objects reserve entry 0 and entry 255 for 8-bit palettes, unless you specify the DDPCAPS_ALLOW256 flag to request that these entries be made available to you.

You can retrieve palette entries by using the IDirectDrawPalette::GetEntries method, and you can change entries by using the IDirectDrawPalette::SetEntries method.

The Ddutil.cpp source file included with the SDK contains some handy application-defined functions for working with palettes. For more information, see the DDLoadPalette functions in that source file.

Palette Types

[This is preliminary documentation and subject to change.]

DirectDraw supports 1-bit (2 entry), 2-bit (4 entry), 4-bit (16 entry), and 8-bit (256 entry) palettes. A palette can only be attached to a surface that has a matching pixel format. For example, a 2-entry palette created with the DDPCAPS_1BIT flag can be attached only to a 1-bit surface created with the DDPF_PALETTEINDEXED1 flag.

Additionally, you can create palettes that don't contain a color table at all, known as index palettes. Instead of a color table, an index palette contains index values that represent locations in another palette's color table.

To create an indexed palette, specify the DDPCAPS_8BITENTRIES flag when calling the IDirectDraw4::CreatePalette method. For example, to create a 4-bit indexed palette, specify both the DDPCAPS_4BIT and DDPCAPS_8BITENTRIES flags. When you create an indexed palette, you pass a pointer to an array of bytes rather than a pointer to an array of PALETTEENTRY structures. You must cast the pointer to the array of bytes to an LPPALETTEENTRY type when you use the IDirectDraw4::CreatePalette method.

Note that DirectDraw does not dereference index palette entries during blit operations.

Setting Palettes on Nonprimary Surfaces

[This is preliminary documentation and subject to change.]

Palettes can be attached to any palettized surface (primary, back buffer, off-screen plain, or texture map). Only those palettes attached to primary surfaces will have any effect on the system palette. It is important to note that DirectDraw blits never perform color conversion; any palettes attached to the source or destination surface of a blit are ignored.

Nonprimary surface palettes are intended for use by Direct3D applications.

Sharing Palettes

[This is preliminary documentation and subject to change.]

Palettes can be shared among multiple surfaces. The same palette can be set on the front buffer and the back buffer of a flipping chain or shared among multiple texture surfaces. When an application attaches a palette to a surface by using the IDirectDrawSurface4::SetPalette method, the surface increments the reference count of that palette. When the reference count of the surface reaches 0, the surface will decrement the reference count of the attached palette. In addition, if a palette is detached from a surface by using IDirectDrawSurface4::SetPalette with a NULL palette interface pointer, the reference count of the surface's palette will be decremented.

Note

If IDirectDrawSurface4::SetPalette is called several times consecutively on the same surface with the same palette, the reference count for the palette is incremented only once. Subsequent calls do not affect the palette's reference count.

Palette Animation

[This is preliminary documentation and subject to change.]

Palette animation refers to the process of modifying a surface's palette to change how the surface itself looks when displayed. By repeatedly changing the palette, the surface appears to change without actually modifying the contents of the surface. To this end, palette animation gives you a way to modify the appearance of a surface without changing its contents and with very little overhead.

There are two methods for providing straightforward palette animation:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Modifying palette entries within a single palette

�SYMBOL 183 \f "Symbol" \s 11 \h �	Switching between multiple palettes

Using the first method, you change individual palette entries that correspond to the colors you want to animate, then reset the entries with a single call to the IDirectDrawPalette::SetEntries method.

The second method requires two or more DirectDrawPalette objects. When using this method, you perform the animation by attaching one palette object after another to the surface object by calling the IDirectDrawSurface4::SetPalette method.

Neither method is hardware intensive, so use whichever technique works best for your application.

For specific information and an example of how to implement palette animation, see Tutorial 5: Dynamically Modifying Palettes.

Clippers

[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawClipper objects. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are Clippers?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Clip Lists

�SYMBOL 183 \f "Symbol" \s 11 \h �	Sharing DirectDrawClipper Objects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Independent DirectDrawClipper Objects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating DirectDrawClipper Objects with CoCreateInstance

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using a Clipper with the System Cursor

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using a Clipper with Multiple Windows

What Are Clippers?

[This is preliminary documentation and subject to change.]

Clippers, or DirectDrawClipper objects, allow you to blit to selected parts of a surface represented by a bounding rectangle or a list of several bounding rectangles. (See Clip Lists.)

One common use for a clipper is to define the boundaries of the screen or window. For example, imagine that you want to display a sprite as it enters the screen from an edge. You don't want to make the sprite pop suddenly onto the screen; you want it to appear as though it is smoothly moving into view. Without a clipper object, DirectDraw does not allow you to blit the entire sprite, because part of it would fall outside the destination surface. A straight copy of the pixel values in the sprite to the destination surface buffer would result in an incorrect display and even memory access violations. With a clipper that has the screen rectangle as its clip list, DirectDraw knows how to trim the sprite as it performs the blit so that only the visible portion is copied.

The following illustration shows this type of clipping.

�

You can also use clipper objects to designate certain areas within a destination surface as writable. DirectDraw clips blit operations in these areas, protecting the pixels outside the specified clipping rectangle.

The following illustration shows this use of a clipper.

�

Clip Lists

[This is preliminary documentation and subject to change.]

A clip list consists of one or more RECT structures, in pixel coordinates. DirectDraw manages clip lists by using a DirectDrawClipper object, which can be attached to any surface.

The IDirectDrawSurface4::Blt method copies data only to rectangles in the clip list. For instance, if the upper-right quarter of a surface was excluded by the rectangles in the clip list, and an application blitted to the entire area of the clipped surface, DirectDraw would effectively perform two blits, the first being to the upper-left corner of the surface, and the second being to the bottom half of the surface, as shown in the following diagram.

�

You can manage a surface's clip list manually or, for a primary surface, have it done automatically by DirectDraw.

To manage the clip list yourself, create a list of rectangles in the form of a RGNDATA structure and pass this to the IDirectDrawClipper::SetClipList method.

To have DirectDraw manage the clip list for a primary surface, you attach the clipper to a window (even a full-screen window) by calling the IDirectDrawClipper::SetHWnd method, specifying the target window's handle. This has the effect of setting the clipping region to the client area of the window and ensuring that the clip list is automatically updated as the window is resized, covered, or uncovered.

If you set a clipper using a window handle, you cannot set additional rectangles.

Clipping for overlay surfaces is supported only if the overlay hardware can support clipping and if destination color keying is not active.

Sharing DirectDrawClipper Objects

[This is preliminary documentation and subject to change.]

DirectDrawClipper objects can be shared between multiple surfaces. For example, the same DirectDrawClipper object can be set on both the front buffer and the back buffer of a flipping chain. When an application attaches a DirectDrawClipper object to a surface by using the IDirectDrawSurface4::SetClipper method, the surface increments the reference count of that object. When the reference count of the surface reaches 0, the surface will decrement the reference count of the attached DirectDrawClipper object. In addition, if a DirectDrawClipper object is detached from a surface by calling IDirectDrawSurface4::SetClipper with a NULL clipper interface pointer, the reference count of the surface's DirectDrawClipper object will be decremented.

Note

If IDirectDrawSurface4::SetClipper is called several times consecutively on the same surface for the same DirectDrawClipper object, the reference count for the object is incremented only once. Subsequent calls do not affect the object's reference count.

Independent DirectDrawClipper Objects

[This is preliminary documentation and subject to change.]

You can create DirectDrawClipper objects that are not directly owned by any particular DirectDraw object. These DirectDrawClipper objects can be shared across multiple DirectDraw objects. Driver-independent DirectDrawClipper objects are created by using the new DirectDrawCreateClipper DirectDraw function. An application can call this function before any DirectDraw objects are created.

Because DirectDraw objects do not own these DirectDrawClipper objects, they are not automatically released when your application's objects are released. If the application does not explicitly release these DirectDrawClipper objects, DirectDraw will release them when the application closes.

You can still create DirectDrawClipper objects by using the IDirectDraw4::CreateClipper method. These DirectDrawClipper objects are automatically released when the DirectDraw object from which they were created is released.

Creating DirectDrawClipper Objects with CoCreateInstance

[This is preliminary documentation and subject to change.]

DirectDrawClipper objects have full class-factory support for COM compliance. In addition to using the standard DirectDrawCreateClipper function and IDirectDraw4::CreateClipper method, you can also create a DirectDrawClipper object either by using the CoGetClassObject function to obtain a class factory and then calling the CoCreateInstance function, or by calling CoCreateInstance directly. The following example shows how to create a DirectDrawClipper object by using CoCreateInstance and the IDirectDrawClipper::Initialize method.

ddrval = CoCreateInstance(&CLSID_DirectDrawClipper,

 NULL, CLSCTX_ALL, &IID_IDirectDrawClipper, &lpClipper);

if (!FAILED(ddrval))

 ddrval = IDirectDrawClipper_Initialize(lpClipper,

 lpDD, 0UL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDrawClipper, is the class identifier of the DirectDrawClipper object class, the IID_IDirectDrawClipper parameter identifies the currently supported interface, and the lpClipper parameter points to the DirectDrawClipper object that is retrieved.

An application must use the IDirectDrawClipper::Initialize method to initialize DirectDrawClipper objects that were created by the class-factory mechanism before it can use the object. The value 0UL is the dwFlags parameter, which in this case has a value of 0 because no flags are currently supported. In the example shown here, lpDD is the DirectDraw object that owns the DirectDrawClipper object. However, you could supply a NULL value instead, which would create an independent DirectDrawClipper object. (This is equivalent to creating a DirectDrawClipper object by using the DirectDrawCreateClipper function.)

Before you close the application, close the COM library by using the CoUninitialize function.

Using a Clipper with the System Cursor

[This is preliminary documentation and subject to change.]

DirectDraw applications often need to provide a way for users to navigate using the mouse. For full-screen exclusive mode applications that use page-flipping, the only option is to implement a mouse cursor manually with a sprite, moving the sprite based on data retrieved from the device by DirectInput® or by responding to Windows mouse messages. However, any application that doesn't use page-flipping can still use the system's mouse cursor support.

When you use the system mouse cursor, you will sometimes fall victim to graphic artifacts that occur when you blit to parts of the primary surface. These artifacts appear as portions of the mouse cursor seemingly left behind by the system.

A DirectDrawClipper object can prevent these artifacts from appearing by preventing the mouse cursor image from "being in the way" during a blit operation. It's a relatively simple matter to implement, as well. To do so, create a DirectDrawClipper object by calling the IDirectDraw4::CreateClipper method. Then, assign your application's window handle to the clipper with the IDirectDrawClipper::SetHWnd method. Once a clipper is attached, any subsequent blits you perform on the primary surface with the IDirectDrawSurface4::Blt method will not exhibit the artifact.

Note that the IDirectDrawSurface4::BltFast method, and its counterparts in the IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3 interfaces, will not work on surfaces with attached clippers.

Using a Clipper with Multiple Windows

[This is preliminary documentation and subject to change.]

You can use a DirectDrawClipper object to blit to multiple windows created by an application running at the normal cooperative level.

To do this, create a single DirectDraw object with a primary surface. Then, create a DirectDrawClipper object and assign it to your primary surface by calling the IDirectDrawSurface4::SetClipper method. To blit only to the client area of a window, set the clipper to that window's client area by calling the IDirectDrawClipper::SetHWnd method before blitting to the primary surface. Whenever you need to blit to another window's client area, call the IDirectDrawClipper::SetHWnd method again with the new target window handle.

Creating multiple DirectDraw objects that blit to each others' primary surface is not recommended. The technique just described provides an efficient and reliable way to blit to multiple client areas with a single DirectDraw object.

Multiple Monitor Systems

[This is preliminary documentation and subject to change.]

Windows 98 and Windows 2000 support multiple display devices and monitors on a single system. The multiple monitor architecture (sometimes referred to as "MultiMon") enables the operating system to use the display area from two or more display devices and monitors to create a single logical desktop. For example, in a MultiMon system with two monitors, the user could display applications on either monitor, or even drag windows from one monitor to another. DirectDraw supports this architecture, allowing applications to directly access hardware on multiple display devices in a MultiMon system.

Note

As long as it is created on the null device and is not rendering directly to the primary surface, a non-full-screen DirectDraw application will work automatically with MultiMon, and the user will be able to drag the window from one monitor to another. However, DirectDraw will take advantage of hardware acceleration only when the window is entirely within the primary display. It is recommended that windowed DirectDraw applications be specifically designed for MultiMon by maintaining separate DirectDraw objects and surfaces for each monitor. For more information, see Devices and Acceleration in MultiMon Systems.

This section contains information about using DirectDraw on systems with multiple monitor support. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerating Devices on MultiMon Systems

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Objects on Multiple Monitors

�SYMBOL 183 \f "Symbol" \s 11 \h �	Focus and Device Windows

�SYMBOL 183 \f "Symbol" \s 11 \h �	Devices and Acceleration in MultiMon Systems

�SYMBOL 183 \f "Symbol" \s 11 \h �	Debugging Full-Screen DirectDraw Applications with MultiMon

The Multimon.h header file included with the DirectX Programmer's Reference makes it possible for code written around Windows 98 multiple monitor functions to compile and run successfully on operating systems that do not support MultiMon.

The following sample applications demonstrate the implementation of MultiMon in DirectDraw:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Stretch2 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Stretch3 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Multimonitor Space Donuts Sample

Enumerating Devices on MultiMon Systems

[This is preliminary documentation and subject to change.]

Use the DirectDrawEnumerateEx function to enumerate devices on systems with multiple monitors, specifying flags to determine what types of DirectDraw devices should be enumerated. The function calls an application-defined DDEnumCallbackEx function for each enumerated device.

The DirectDrawEnumerateEx function is supported on Windows 98 and Windows 2000 operating systems. It is available in Ddraw.lib for applications compiled under DirectX 6.0 and later versions. Applications that statically link to the function will always run under DirectX 6.0 and later, and will always run under any version of DirectX on Windows 98 and Windows 2000. Such applications will fail if run on previous versions of DirectX under Windows 95.

If your application needs to run on versions of DirectX older than DirectX 5.0, it should use GetProcAddress to see if DirectDrawEnumerateEx is available. The following example shows one way you can do this:

 HINSTANCE h = LoadLibrary("ddraw.dll");

 // If ddraw.dll doesn't exist in the search path,

 // then DirectX probably isn't installed, so fail.

 if (!h)

 return FALSE;

 // Note that you must know which version of the

 // function to retrieve (see the following text).

 // For this example, we use the ANSI version.

 LPDIRECTDRAWENUMERATEEX lpDDEnumEx;

 lpDDEnumEx = (LPDIRECTDRAWENUMERATEEX) GetProcAddress(h,"DirectDrawEnumerateExA");

 // If the function is there, call it to enumerate all display

 // devices attached to the desktop, and any non-display DirectDraw

 // devices.

 if (lpDDEnumEx)

 lpDDEnumEx(Callback, NULL,

 DDENUM_ATTACHEDSECONDARYDEVICES |

 DDENUM_NONDISPLAYDEVICES

);

 else

 {

 /*

 * We must be running on an old version of DirectDraw.

 * Therefore MultiMon isn't supported. Fall back on

 * DirectDrawEnumerate to enumerate standard devices on a

 * single-monitor system.

 */

 DirectDrawEnumerate(OldCallback,NULL);

 /* Note that it could be handy to let the OldCallback function

 * be a wrapper for a DDEnumCallbackEx.

 *

 * Such a function would look like:

 * BOOL FAR PASCAL OldCallback(GUID FAR *lpGUID,

 * LPSTR pDesc,

 * LPSTR pName,

 * LPVOID pContext)

 * {

 * return Callback(lpGUID,pDesc,pName,pContext,NULL);

 * }

 */

 }

 // If the library was loaded by calling LoadLibrary(),

 // then you must use FreeLibrary() to let go of it.

 FreeLibrary(h);

The previous example will work for applications that link to Ddraw.dll at run-time or load-time.

Note that you must retrieve the address of either the ANSI or Unicode version of the DirectDrawEnumerateEx function, depending of the type of strings your application uses. When declaring the corresponding callback function, use the LPTSTR data type for the string parameters. The LPTSTR data type compiles to use Unicode strings if you declare the _UNICODE symbol, and ANSI strings otherwise. By using the LPTSTR data type, the function should compile properly regardless of the string type you use in your application.

DirectDraw Objects on Multiple Monitors

[This is preliminary documentation and subject to change.]

Windowed DirectDraw applications written for the null or default display driver will work on MultiMon systems, but in applications optimized for MultiMon you will want to create a separate DirectDraw object for each device, using the GUID returned in the enumeration callback. (See Enumerating Devices on MultiMon Systems.)

Avoid setting the cooperative level multiple times on a MultiMon system. If you need to switch from full-screen to normal mode, it is best to create a new DirectDraw object.

It is good practice to release all DirectDraw objects at the same time. If you release only the secondary device or devices, the primary device goes back to its original desktop mode, but only the taskbar is redrawn and the DirectDraw primary surface is still present. You cannot draw to this surface without first releasing the DirectDraw object and then re-creating it.

Focus and Device Windows

[This is preliminary documentation and subject to change.]

Each DirectDraw application that uses one or more monitors in full-screen exclusive mode must have a single focus window, which is the window that receives keyboard input.

Each device that is to hold a full-screen DirectDraw surface must be represented by a DirectDraw object and a device window. The device window is the one that is sized to fit the window and is put on top of all other windows.

For single-monitor applications, there is no distinction between the device and focus window. They are one and the same.For multiple-monitor applications, however, you need to set a device window for each monitor, and you have to let each DirectDraw object know about the application's focus window. The focus window can also serve as the device window for one of the monitors. Other device windows should be children of the focus window so that the application does not minimize when the user clicks on one of them.

See also:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting the Focus Window

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Device Windows

Setting the Focus Window

[This is preliminary documentation and subject to change.]

To set the focus window, you call the IDirectDraw4::SetCooperativeLevel method for each of the DirectDraw objects. You pass in a window handle (normally the application window handle) and set the DDSCL_SETFOCUSWINDOW flag, as in the following example:

/* It is presumed that lpDD is a valid IDirectDraw interface pointer,

 and that hWnd is a valid window handle. */

HRESULT ddrval = lpDD->SetCooperativeLevel(hWnd,

 DDSCL_SETFOCUSWINDOW);

The focus window must be the same for all devices.

Setting Device Windows

[This is preliminary documentation and subject to change.]

There are two ways to set a device window:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Create a window yourself and pass its handle to the IDirectDraw4::SetCooperativeLevel method of the DirectDraw object representing the monitor, setting the DDSCL_SETDEVICEWINDOW, DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE flags. This creates a full-screen window and sets it as the device window for the monitor. Your application will receive mouse messages for the window, and you are responsible for destroying the window at the appropriate time. The window you pass to SetCooperativeLevel should be either the focus window (possible only if it is on the same device) or a child of the focus window.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Let DirectDraw create the window. You pass the focus window handle to SetCooperativeLevel and set the DDSCL_CREATEDEVICEWINDOW, DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE flags. DirectDraw creates a default device window that is a child of the focus window. It manages this window and will destroy it at the appropriate time. Your application will not receive any mouse messages for the window.

The following example sets an existing device window for the DirectDraw object represented by lpDD.

/* It is presumed that lpDD is a valid IDirectDraw interface pointer,

 and that hWnd is the handle to an appropriate device window. */

HRESULT hr = lpDD->SetCooperativeLevel(hWnd,

 DDSCL_SETDEVICEWINDOW | DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

The following example sets a default device window created by DirectDraw. In this case, hWnd is the handle to the existing focus window.

HRESULT hr = lpDD->SetCooperativeLevel(hWnd,

 DDSCL_CREATEDEVICEWINDOW | DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

Although a focus window can be a device window, you cannot set a window as both the focus window and a device window with a single call to SetCooperativeLevel. You must first set it as the focus window and then set it as a device window. However, it is possible to set a focus window and a default device window on the same device with a single call to SetCooperativeLevel. The following example shows how this can be done:

HRESULT hr = lpDD->SetCooperativeLevel(

 hwndFocus,

 DDSCL_SETFOCUSWINDOW | DDSCL_FULLSCREEN |

 DDSCL_EXCLUSIVE | DDSCL_CREATEDEVICEWINDOW);

In this example, an existing window (probably the application window) is set as the focus window, and DirectDraw creates a default device window.

Devices and Acceleration in MultiMon Systems

[This is preliminary documentation and subject to change.]

Full-screen exclusive mode DirectDraw objects will take advantage of hardware acceleration regardless of whether they are running on the primary device or on a secondary device. However, they cannot use built-in support for spanning graphics operations across display devices. It is the application's responsibility to perform operations on the appropriate device.

When the normal cooperative level is set, DirectDraw uses hardware acceleration only when the window is wholly within the display area of the primary device. When a window straddles two or more monitors, all blits are done in emulation and performance can be significantly slower. This is necessarily the case, because hardware buffers cannot blit to a display surface controlled by another piece of hardware.

As long as you create the DirectDraw object for the null device—that is, pass NULL to DirectDrawCreate as the lpGUID parameter—DirectDraw will blit to the entire window regardless of where it is located. However, if the device is created by its actual GUID, this is not the case, and blit operations that cross an edge of the primary surface will be clipped (if you are using a clipper) or will fail, returning DDERR_INVALIDRECT.

Note

When you are blitting to a window in a MultiMon application, negative coordinates are valid when the logical location of the secondary monitor is to the left of the primary monitor.

To get the best performance in a windowed MultiMon application, you need to create a DirectDraw object for each device, maintain off-screen surfaces in parallel on each device, keep track of which part of the window resides on each device, and perform separate blits to each device.

Debugging Full-Screen DirectDraw Applications with MultiMon

[This is preliminary documentation and subject to change.]

It is possible to use a multimonitor system rather than remote debugging in order to step through code while debugging a full-screen DirectDraw application.

You should use the primary monitor for your development environment and the secondary monitor for the DirectDraw output. Also, you need to change a registry setting through the DirectX property sheet in Control Panel. On the DirectDraw page, click Advanced Settings and select the Enable Multi-Monitor Debugging checkbox. This setting will prevent DirectDraw from minimizing your application when it loses focus.

Under Windows 98, you cannot step through code when a surface is locked. For more information, see Accessing Surface Memory Directly.

Advanced DirectDraw Topics

[This is preliminary documentation and subject to change.]

This section supplements the DirectDraw overview, providing information about advanced DirectDraw issues. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mode 13 Support

�SYMBOL 183 \f "Symbol" \s 11 \h �	Taking Advantage of DMA Support

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using DirectDraw Palettes in Windowed Mode

�SYMBOL 183 \f "Symbol" \s 11 \h �	Video Ports

�SYMBOL 183 \f "Symbol" \s 11 \h �	Getting the Flip and Blit Status

�SYMBOL 183 \f "Symbol" \s 11 \h �	Determining the Capabilities of the Display Hardware

�SYMBOL 183 \f "Symbol" \s 11 \h �	Storing Bitmaps in Display Memory

�SYMBOL 183 \f "Symbol" \s 11 \h �	Triple Buffering

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Applications and Window Styles

�SYMBOL 183 \f "Symbol" \s 11 \h �	Matching True RGB Colors to the Frame Buffer's Color Space

�SYMBOL 183 \f "Symbol" \s 11 \h �	Displaying a Window in Full-Screen Mode

Mode 13 Support

[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw Mode 13 graphics mode support. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About Mode 13

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Mode 13

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mode 13 and Surface Capabilities

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Mode 13

About Mode 13

[This is preliminary documentation and subject to change.]

DirectDraw supports access to the linear unflippable 320x200 8 bits per pixel palettized mode known widely by the name Mode 13, its hexadecimal BIOS mode number. DirectDraw treats this mode like a Mode X mode, but with some important differences imposed by the physical nature of Mode 13.

Setting Mode 13

[This is preliminary documentation and subject to change.]

Mode 13 has similar enumeration and mode-setting behavior as Mode X. DirectDraw will only enumerate Mode 13 if the DDSCL_ALLOWMODEX flag was passed to the IDirectDraw4::SetCooperativeLevel method.

You enumerate the Mode 13 display mode like all other modes, but you make a surface capabilities check before calling IDirectDraw4::EnumDisplayModes. To do this, call IDirectDraw4::GetCaps and check for the DDSCAPS_STANDARDVGAMODE flag in the DDSCAPS2 structure after the method returns. If this flag is not present, then Mode 13 is not supported, and attempts to enumerate with the DDEDM_STANDARDVGAMODES flag will fail, returning DDERR_INVALIDPARAMS.

The EnumDisplayModes method now supports a new enumeration flag, DDEDM_STANDARDVGAMODES, which causes DirectDraw to enumerate Mode 13 in addition to the 320x200x8 Mode X mode. There is also a new IDirectDraw4::SetDisplayMode flag, DDSDM_STANDARDVGAMODE, which you must pass in order to distinguish Mode 13 from 320x200x8 Mode X.

Note that some video cards offer linear accelerated 320x200x8 modes. On such cards DirectDraw will not enumerate Mode 13, enumerating the linear mode instead. In this case, if you attempt to set Mode 13 by passing the DDSDM_STANDARDVGAMODE flag to SetDisplayMode, the method will succeed, but the linear mode will be used. This is analogous to the way that linear low resolution modes override Mode X modes.

Mode 13 and Surface Capabilities

[This is preliminary documentation and subject to change.]

When DirectDraw calls an application's EnumModesCallback callback function, the ddsCaps member of the associated DDSURFACEDESC or DDSURFACEDESC2 structure contains flags that reflect the mode being enumerated. You can expect DDSCAPS_MODEX for a Mode X mode or DDSCAPS_STANDARDVGAMODE for Mode 13. These flags are mutually exclusive. If neither of these bits is set, then the mode is a linear accelerated mode. This behavior also applies to the flags retrieved by the IDirectDraw4::GetDisplayMode method.

Using Mode 13

[This is preliminary documentation and subject to change.]

Because Mode 13 is a linear mode, unlike the Mode X modes, DirectDraw can give an application direct access to the frame buffer.You can call the IDirectDrawSurface4::Lock, IDirectDrawSurface4::Blt, and IDirectDrawSurface4::BltFast methods to gain direct access to the primary surface.

When using Mode 13, DirectDraw supports an emulated IDirectDrawSurface4::Flip that is implemented as a straight copy of the contents of a back buffer to the primary surface. You can emulate this yourself by copying all or part of the back-buffer's contents to the primary surface using Blt or BltFast.

There is one warning concerning Lock and Mode 13. Although DirectDraw allows direct linear access to the Mode 13 VGA frame buffer, do not assume that the buffer is always located at address 0xA0000, since DirectDraw can return an aliased virtual-memory pointer to the frame buffer which will not be 0xA0000. Similarly, do not assume that the pitch of a Mode 13 surface is 320, because display cards that support an accelerated 320x200x8 mode will very likely use a different pitch.

Taking Advantage of DMA Support

[This is preliminary documentation and subject to change.]

This section contains information about how you can take advantage of device support for Direct Memory Access (DMA) to increase performance in completing certain tasks. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About DMA Device Support

�SYMBOL 183 \f "Symbol" \s 11 \h �	Testing for DMA Support

�SYMBOL 183 \f "Symbol" \s 11 \h �	Typical Scenarios for DMA

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using DMA

About DMA Device Support

[This is preliminary documentation and subject to change.]

Some display devices can perform blit operations (or other operations) on system memory surfaces. These operations are commonly referred to as Direct Memory Access (DMA) operations. You can exploit DMA support to accelerate certain combinations of operations. For example, on such a device, you could perform a blit from system memory to video memory while using the processor to prepare the next frame. In order to use such facilities, you must assume certain responsibilities. This section details these tasks.

Testing for DMA Support

[This is preliminary documentation and subject to change.]

Before using DMA operations, you must test the device for DMA support and, if it does support DMA, how much support it provides. Begin by retrieving the driver capabilities by calling the IDirectDraw4::GetCaps method, then look for the DDCAPS_CANBLTSYSMEM flag in the dwCaps member of the associated DDCAPS structure. If the flag is set, the device supports DMA.

If you know that DMA is generally supported, you also need to find out how well the driver supports it. You do so by looking at some other structure members that provide information about system-to-video, video-to-system, and system-to-system blit operations. These capabilities are provided in 12 DDCAPS structure members that are named according to blit and capability type. The following table shows these new members.

System-to-video�Video-to-system�System-to-system���� dwSVBCaps� dwVSBCaps� dwSSBCaps �� dwSVBCKeyCaps� dwVSBCKeyCaps� dwSSBCKeyCaps �� dwSVBFXCaps� dwVSBFXCaps� dwSSBFXCaps �� dwSVBRops� dwVSBRops� dwSSBRops ��

For example, the system-to-video blit capability flags are provided in the dwSVBCaps, dwSVBCKeyCaps, dwSVBFXCaps and dwSVBRops members. Similarly, video-to-system blit capabilities are in the members whose names begin with "dwVSB," and system-to system capabilities are in the "dwSSB" members. Examine the flags present in these members to determine the level of hardware support for that blit category.

The flags in these members are parallel with the blit-related flags included in the dwCaps, dwCKeyCaps, and dwFXCaps members, with respect to that member's blit type. For example, the dwSVBCaps member contains general blit capabilities as specified by the same flags you might find in the dwCaps member. Likewise, the raster operation values in the dwSVBRops, dwVSBRops, and dwSSBRops members provide information about the raster operations supported for a given type of blit operation.

One of the key features to look for in these members is support for asynchronous DMA blit operations. If the driver supports asynchronous DMA blits between surfaces, the DDCAPS_BLTQUEUE flag will be set in the dwSVBCaps, dwVSBCaps, or dwSSBCaps member. (Generally, you'll see the best support for system-memory-to-video-memory surfaces.) If the flag isn't present, the driver isn't reporting support for asynchronous DMA blit operations.

Typical Scenarios for DMA

[This is preliminary documentation and subject to change.]

System memory to video memory transfers that use the SRCCOPY raster operation are the most common type of hardware-supported blit operation. (The SRCCOPY raster operation, which is documented in the Platform SDK, causes the data within the source rectangle to be copied directly to the destination rectangle.) The most typical use for such an operation is to move textures from a large collection of system memory surfaces to a surface in video memory in preparation for subsequent operations. System-to-video DMA transfers are about as fast as processor-controlled transfers (for example, HEL blits), but are of great utility since they can operate in parallel with the host processor.

Using DMA

[This is preliminary documentation and subject to change.]

Hardware transfers use physical memory addresses, not the virtual addresses which are home to applications. Some device drivers require that you provide the surface's physical memory address. This mechanism is implemented by the IDirectDrawSurface4::PageLock method. If the device driver does not require page locking, the DDCAPS2_NOPAGELOCKREQUIRED flag will be set when you retrieve the hardware capabilities by calling the IDirectDraw4::GetCaps method.

Page locking a surface prevents the system from committing a surface's physical memory to other uses, and guarantees that the surface's physical address will remain constant until a corresponding IDirectDrawSurface4::PageUnlock call is made. If the device driver requires page locking, DirectDraw will allow asynchronous DMA operations only on system memory surfaces that the application has page locked. If you do not call IDirectDrawSurface4::PageLock in such a situation, DirectDraw will perform the transfers by using software emulation. Note that locking a large amount of system memory will make Windows run poorly. Therefore, it is highly recommended that only full-screen exclusive mode applications use IDirectDrawSurface4::PageLock for large amounts of system memory, and that such applications take care to unlock these surfaces when the application is minimized. Of course, when the application is restored, you should page lock the system memory surface again.

Responsibility for managing page locking is entirely in the hands of the application developer. DirectDraw will never page lock or page unlock a surface. Additionally, it is up to you to determine how much memory you can safely page lock without adversely affecting system performance.

Using DirectDraw Palettes in Windowed Mode

[This is preliminary documentation and subject to change.]

IDirectDrawPalette interface methods write directly to the hardware when the display is in exclusive (full-screen) mode. However, when the display is in nonexclusive (windowed) mode, the IDirectDrawPalette interface methods call the GDIs palette handling functions to work cooperatively with other windowed applications.

The discussion in the following topics assumes that the desktop is in an 8-bit palettized mode and that you have created a primary surface and a typical window.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Types of Palette Entries in Windowed Mode

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating a Palette in Windowed Mode

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Palette Entries in Windowed Mode

Types of Palette Entries in Windowed Mode

[This is preliminary documentation and subject to change.]

Unlike full-screen exclusive mode applications, windowed applications must share the desktop palette with other applications. This imposes several restrictions on which palette entries you can safely modify and how you can modify them. The PALETTEENTRY structure you use when working with DirectDrawPalette objects and GDI contains a peFlags member to carry information that describes how the system should interpret the PALETTEENTRY structure.

The peFlags member describes three types of palette entries, discussed in this topic:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Windows static entries

�SYMBOL 183 \f "Symbol" \s 11 \h �	Animated entries

�SYMBOL 183 \f "Symbol" \s 11 \h �	Nonanimated entries

Windows static entries

In normal mode, Windows reserves palette entries 0 through 9 and 246 through 255 for system colors that it uses to display menu bars, menu text, window borders, and so on. In order to maintain a consistent look for your application and avoid damaging the appearance of other applications, you need to protect these entries in the palette you set to the primary surface. Often, developers retrieve the system palette entries by calling the GetSystemPaletteEntries Win32® function, then explicitly set the identical entries in a custom palette to match before assigning it to the primary surface. Duplicating the system palette entries in a custom palette will work initially, but it becomes invalid if the user changes the desktop color scheme.

To avoid having your palette look bad when the user changes color schemes, you can protect the appropriate entries by providing a reference into the system palette instead specifying a color value. This way, no matter what color the system is using for a given entry, your palette will always match and you won't need to do any updating. The PC_EXPLICIT flag, used in the peFlags member, makes it possible for you to directly refer to a system palette entry. When you use this flag, the system no longer assumes that the other structure members include color information. Rather, when you use PC_EXPLICIT, you set the value in the peRed member to the desired system palette index and set the other colors to zero.

For instance, if you want to ensure that the proper entries in your palette always match the system's color scheme, you could use the following code:

// Set the first and last 10 entries to match the system palette.

PALETTEENTRY pe[256];

ZeroMemory(pe, sizeof(pe));

for(int i=0;i<10;i++){

 pe[i].peFlags = pe[i+246].peFlags = PC_EXPLICIT;

 pe[i].peRed = i;

 pe[i+246].peRed = i+246;

}

You can force Windows to use only the first and last palette entry (0 and 255) by calling the SetSystemPaletteUse Win32 function. In this case, you should set only entries 0 and 255 of your PALETTEENTRY structure to PC_EXPLICIT.

Animated entries

You specify palette entries that you will be animating by using the PC_RESERVED flag in the corresponding PALETTEENTRY structure. Windows will not allow any other application to map its logical palette entry to that physical entry, thereby preventing other applications from cycling their colors when your application animates the palette.

Nonanimated entries

You specify normal, nonanimated palette entries by using the PC_NOCOLLAPSE flag in the corresponding PALETTEENTRY structure. The PC_NOCOLLAPSE flag informs Windows not to substitute some other already-allocated physical palette entry for that entry.

Creating a Palette in Windowed Mode

[This is preliminary documentation and subject to change.]

The following example illustrates how to create a DirectDraw palette in nonexclusive (windowed) mode. In order for your palette to work correctly, it is vital that you set up every one of the 256 entries in the PALETTEENTRY structure that you submit to the IDirectDraw4::CreatePalette method.

LPDIRECTDRAW4 lpDD; // Assumed to be initialized previously

PALETTEENTRY pPaletteEntry[256];

int index;

HRESULT ddrval;

LPDIRECTDRAWPALETTE2 lpDDPal;

// First set up the Windows static entries.

for (index = 0; index < 10 ; index++)

{

 // The first 10 static entries:

 pPaletteEntry[index].peFlags = PC_EXPLICIT;

 pPaletteEntry[index].peRed = index;

 pPaletteEntry[index].peGreen = 0;

 pPaletteEntry[index].peBlue = 0;

 // The last 10 static entries:

 pPaletteEntry[index+246].peFlags = PC_EXPLICIT;

 pPaletteEntry[index+246].peRed = index+246;

 pPaletteEntry[index+246].peGreen = 0;

 pPaletteEntry[index+246].peBlue = 0;

}

// Now set up private entries. In this example, the first 16

// available entries are animated.

for (index = 10; index < 26; index ++)

{

 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE|PC_RESERVED;

 pPaletteEntry[index].peRed = 255;

 pPaletteEntry[index].peGreen = 64;

 pPaletteEntry[index].peBlue = 32;

}

// Now set up the rest, the nonanimated entries.

for (; index < 246; index ++) // Index is set up by previous for loop

{

 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE;

 pPaletteEntry[index].peRed = 25;

 pPaletteEntry[index].peGreen = 6;

 pPaletteEntry[index].peBlue = 63;

}

// All 256 entries are filled. Create the palette.

ddrval = lpDD->CreatePalette(DDPCAPS_8BIT, pPaletteEntry,

 &lpDDPal,NULL);

Setting Palette Entries in Windowed Mode

[This is preliminary documentation and subject to change.]

The rules that apply to the PALETTEENTRY structure used with the IDirectDraw4::CreatePalette method also apply to the IDirectDrawPalette::SetEntries method. Typically, you maintain your own array of PALETTEENTRY structures, so you do not need to rebuild it. When necessary, you can modify the array, and then call IDirectDrawPalette::SetEntries when it is time to update the palette.

In most circumstances, you should not attempt to set any of the Windows static entries when in nonexclusive (windowed) mode or you will get unpredictable results. The only exception is when you reset the 256 entries.

For palette animation, you typically change only a small subset of entries in your PALETTEENTRY array. You submit only those entries to IDirectDrawPalette::SetEntries. If you are resetting such a small subset, you must reset only those entries marked with the PC_NOCOLLAPSE and PC_RESERVED flags. Attempting to animate other entries can have unpredictable results.

The following example illustrates palette animation in nonexclusive mode:

LPDIRECTDRAW lpDD; // Already initialized

PALETTEENTRY pPaletteEntry[256]; // Already initialized

LPDIRECTDRAWPALETTE lpDDPal; // Already initialized

int index;

HRESULT ddrval;

PALETTEENTRY temp;

// Animate some entries. Cycle the first 16 available entries.

// They were already animated.

temp = pPaletteEntry[10];

for (index = 10; index < 25; index ++)

{

 pPaletteEntry[index] = pPaletteEntry[index+1];

}

pPaletteEntry[25] = temp;

// Set the values. Do not pass a pointer to the entire palette entry

// structure, but only to the changed entries.

ddrval = lpDDPal->SetEntries(

 0, // Flags must be zero

 10, // First entry

 16, // Number of entries

 & (pPaletteEntry[10])); // Where to get the data

Video Ports

[This is preliminary documentation and subject to change.]

DirectDraw video-port extensions are a low-level programming interface, not intended for mainstream multimedia programmers. The target customer is the video-streaming software industry, which creates products like DirectShow™. Developers who want to include video playback in their software can make use of video-port extensions. However, for most software, a high-level programming interface like the one provided by DirectShow is recommended for greater ease of use.

This section contains information about DirectDrawVideoPort objects. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	What Are Video Ports?

�SYMBOL 183 \f "Symbol" \s 11 \h �	Video-Port Technology Overview

�SYMBOL 183 \f "Symbol" \s 11 \h �	About DirectDraw Video-Port Extensions

�SYMBOL 183 \f "Symbol" \s 11 \h �	Video Frames and Fields

�SYMBOL 183 \f "Symbol" \s 11 \h �	HREF, VREF, and Connections

�SYMBOL 183 \f "Symbol" \s 11 \h �	Vertical Blanking Interval Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Auto-Flipping

�SYMBOL 183 \f "Symbol" \s 11 \h �	Solutions to Common Video Artifacts

�SYMBOL 183 \f "Symbol" \s 11 \h �	Solving Problems Caused by Half-Lines

�SYMBOL 183 \f "Symbol" \s 11 \h �	Exploiting Hardware Features

What Are Video Ports?

[This is preliminary documentation and subject to change.]

A DirectDrawVideoPort object represents the video-port hardware found on some display adapters. Generally, a video-port object controls how the video-port hardware applies a video signal it receives from a video decoder directly to the frame buffer.

More than one channel of video can be controlled by creating as many DirectDrawVideoPort objects as is required. Because each channel can be separately enumerated and configured, the video hardware for each channel does not need to be identical.

For more information, see Video-Port Technology Overview.

Video-Port Technology Overview

[This is preliminary documentation and subject to change.]

A video port is hardware on a display device that enables direct access to a surface within the frame buffer, bypassing the CPU and PCI bus. Direct frame buffer access makes it possible to efficiently play live or recorded video without creating noticeable load on the CPU. Once in a surface, an image can be displayed on the screen as an overlay, used as a Direct3D texture, or accessed by the CPU for capture or other processing. The following paragraphs provide general information about the components that make up the technology and how they work.

Data Flow

In a machine equipped with a video port, data in a video stream can flow directly from a video source through a video decoder and the video port to the frame buffer. These components often exist together on a display adapter, but can be on separate hardware components that are physically connected to one another. An example of this data flow is provided in the following illustration.

�

Video source

In the scope of video-port technology, a video source is strictly a hardware video input device, such as a Zoom Video port, MPEG codec, or other hardware source. These sources broadcast signals in a variety of formats, including NTSC, PAL, and SECAM through a physical connection to a video decoder.

Video Decoder

A video decoder is also a hardware component. The video decoder's job is to decipher the information provided by the video source and send it to the video port in an agreed upon connection format. The decoder possesses a physical connection to the video port, and exposes its services through a stream class minidriver. The decoder is responsible for sending video data and clock and sync information to the video port.

Video port

Like the other components in the data flow path, the video port is a piece of hardware. The video port exists on the display adapter's VGA chip and has direct access to the frame buffer. It receives information sent from the decoder, processes it, and places it in the frame buffer to be displayed. During processing, the video port can manipulate image data to provide scaling, shrinking, color control, or cropping services.

Frame Buffer

The frame buffer accepts video data as provided by the video port. Once received, applications can programmatically manipulate the image data, blit it to other locations, or show it on the display using an overlay (the most common use).

About DirectDraw Video-Port Extensions

[This is preliminary documentation and subject to change.]

DirectDraw has been extended to include the DirectDrawVideoPort object, which takes advantage of video-port technology and provides its services through the IDDVideoPortContainer and IDirectDrawVideoPort interfaces.

DirectDrawVideoPort objects do not control the video decoder, because it provides services of its own, nor does DirectDraw control the video source; it is beyond the scope of the video port. Rather, a DirectDrawVideoPort object represents the video port itself. It monitors the incoming signal and passes image data to the frame buffer, using parameters set though its interface methods to modify the image, perform flipping, or carry out other services.

The IDDVideoPortContainer interface, which you can retrieve by calling the IDirectDraw4::QueryInterface method, provides methods to query the hardware for its capabilities and create video-port objects. You create a video-port object by calling the IDDVideoPortContainer::CreateVideoPort method. Video-port objects expose their functionality through the IDirectDrawVideoPort interface, enabling you to manipulate the video-port hardware itself. Using these interfaces, you can examine the video-port's capabilities, assign an overlay surface to receive image data, start and stop video playback, and set hardware parameters to manipulate image data for cropping, color control, scaling, or shrinking effects.

DirectDraw video-port extensions provide for multiple video ports on the same machine by allowing you to create multiple DirectDrawVideoPort objects. There is no requirement that multiple video ports on a machine be identical—each port is separately enumerated and configured separately, regardless of any hardware differences that might exist.

In keeping with the general philosophy of DirectX, this technology gives programmers low-level access to hardware features while insulating them from specific hardware implementation details. It is not a high-level API.

Video Frames and Fields

[This is preliminary documentation and subject to change.]

Video can be interlaced or non-interlaced. When a video signal is interlaced, each video frame is made of two fields of image data. Each field is a collection of every other scan line in an image, starting with the first or second scan line. The first field, referred to as the odd field (or field 1), contains the data for the first scan line and skips every other scan line to the end of the image. Similarly, the even field (or field 2), carries every other scan line starting with the second. The "even-ness" or "odd-ness" of a field is referred to as its field polarity.

When video is not interlaced, each field contains all of a frame's scan lines. Typically, video signals are sent at a rate of 30 frames per second; in the case of interleaved video, this means the rate is 60 fields per second.

The fields that make up a frame do not always reflect the same moment in time. For example, if the frames are separated by 1/30 of a second then the two fields of a frame may be separated by 1/60 of a second. Because a television displays each field individually, no two fields are simultaneously visible, and the difference between fields adds to the illusion of movement.

HREF, VREF, and Connections

[This is preliminary documentation and subject to change.]

When a monitor or other display device is displaying an image, it typically scans down the screen, creating an image from left to right, top to bottom. (Sometimes, the device makes two passes down the screen to create a single image; this type of display is called an interlaced display.) The video stream contains signals that instruct the display device when a new line or new screen is to be drawn.

The terms HREF and VREF, also known as hsync and vsync, are the signals within the video stream that tell a display device what to do and when to do it. The HREF signals that a new line is to be drawn and the VREF signals a new screen.

For instance, imagine you're working with a video signal intended for the world's smallest monitor. The monitor only has 4 scan lines. (This is not at all realistic, of course, but it's simple.) On an oscilloscope, the HREF and VREF signals would look somewhat like the following illustration.

�

In the preceding illustration, both HREF and VREF signals are "active high," meaning that they are considered active when in a heightened state (when the waves go up). There is no standard for these signals. In some cases, places where the waves go down ("low" states) might signal an active HREF or VREF, or sometimes one will be active high and the other active low. Although the preceding illustration is only an imaginary example, note that there are lots of HREF signals for each VREF. This is because for each new screen, there are several scan lines. Of course, in a real video signal for a real broadcast, you would see hundreds of HREFs for a single VREF.

HREF signals, VREF signals, and video data are carried across physical data lines from the decoder to the video port. In many cases, a number of lines are reserved for video data, and others are dedicated to carrying HREF and VREF signals. However, there is no standard for how these data lines are used.

A connection is a protocol that a video port or decoder uses to define how it uses these data lines. Video ports and video decoders will support a variety of connections. DirectDraw video-port extensions use globally-unique identifiers (GUIDs) to identify each type of connection. You can query for the connections that the video port supports by calling the IDDVideoPortContainer::GetVideoPortConnectInfo method. You create a DirectDrawVideoPort object that supports a given connection by calling the IDDVideoPortContainer::CreateVideoPort method.

Keep in mind that the video decoder is outside the scope of DirectDraw video-port extensions, and exposes its supported connections through an interface of its own. By enumerating the connections that the video-port supports and comparing the results with the connections supported by the decoder, you can negotiate a common connection (or "language") that both components understand.

Vertical Blanking Interval Data

[This is preliminary documentation and subject to change.]

In broadcast video, a small period of time elapses between video frames, during which a display device refreshes its display for the next frame. This period of time is called the Vertical Blanking Interval (VBI). Instead of sitting idle during the VBI, broadcast video encodes data in the first twenty-one scan lines of a video frame and sends these lines during the VBI. This data is often used for closed captioning or time-stamping, but can be used for other purposes.

DirectDraw video-port extensions enable you to divert data contained with the VBI to a surface, bypass scaling of VBI data, and automatically flip between VBI surfaces in a flipping chain. Once data is in a surface, you can directly access the surface's memory as needed.

For more information, see Auto-Flipping.

Auto-Flipping

[This is preliminary documentation and subject to change.]

To avoid tearing images when refreshing the screen between frames, DirectDrawVideoPort objects can automatically flip their target overlay surfaces in response to VREF signals. To use this service, the target surface you set to the video-port object with the IDirectDrawVideoPort::SetTargetSurface method must be the first surface in a flipping chain of overlay surfaces. Then, to begin playing the video sequence, call the IDirectDrawVideoPort::StartVideo method, specifying the DDVP_AUTOFLIP flag in the dwVPFlags member of the associated DDVIDEOPORTINFO structure. The video-port object will flip to the next surface in the flipping chain for each VREF signal it receives. If the video port is interleaving fields, it will flip once for every two VREF signals it receives.

If you are using auto-flipping and want to direct VBI data to separate auto-flipped surfaces, you must have the same number of VBI surfaces as you do standard video surfaces.

Solutions to Common Video Artifacts

[This is preliminary documentation and subject to change.]

Several problems are inherent in displaying broadcast video on display devices other than televisions. This section briefly discusses some common problems, then describes how DirectDraw video-port extensions tries to solve them.

NTSC Interlaced Display and Interleaved Memory

An NTSC signal broadcasts video at an approximate rate of 30 frames, or 60 fields, per second. Like a frame, a field in an NTSC signal is independent of the other field in a frame and can contain different image data. For more information on this behavior, see Video Frames and Fields.

The problems caused by the independence of fields within a frame become apparent when two fields are interleaved for display. In video with a lot of movement, the two fields of a single frame will contain images that don't match each other, resulting in motion artifacts.

One way that developers have tried to work around this behavior is by discarding one of the fields. This solution causes a loss in image quality by roughly one-half, but provides acceptable results for some purposes. Another method frequently used is to display fields individually, stretching each vertically by a factor of two when it is displayed. This provides better image quality, but because fields are offset by one pixel in the y-direction, the result is an animation that "jitters" up and down as it plays.

DirectDraw video-port extensions can employ two, more advanced, techniques for improving image quality, known as "Bob" and "Weave." Both are supported by the DirectDraw overlay surfaces that are used with video-port extensions.

The first algorithm, Bob, is very similar to the method of displaying each field in a frame individually. However, for each field, the overlay's source rectangle is adjusted to accommodate for any jittering effects. Effectively, the source rectangle bounces up and down in time with the fields, negating the jittering on the screen. The following illustration depicts this process.

�

The Weave algorithm provides the best image quality for material that originates from film by exploiting a common technique used in the video industry for converting motion pictures to television. Unlike Bob, a video-port object does not Weave by itself; you must combine the default overlay behavior of displaying both fields simultaneously with kernel mode video transport (provided with Windows 2000 and Windows 98) to implement the algorithm.

Here is a synopsis of the algorithm, provided for completeness. Motion pictures capture video at a rate of 24 frames per second. When converting a motion picture for television, technicians use a technique called 3:2 pulldown to convert the frame rate to the 30 frames per second required for television broadcasts. This technique involves inserting a redundant field for every four true fields in the video stream to come up with the required number of fields.

When you weave, you are reversing this process. You detect when 3:2 pulldown is being used, removing any redundant fields to restore the original motion-picture frames. The fields that make up the restored frames can then be interleaved in memory without risk of motion artifacts. Occasionally, the pattern of redundant frames will change due to edits within the original film or reel breaks. You must monitor when these changes occur and update the behavior to adjust for the new pattern.

By default, an overlay surface displays both fields simultaneously. This works well if you're implementing the Weave algorithm, but prevents the video port from using the Bob algorithm. You can programmatically change how the overlay treats video data by calling the IDirectDrawSurface4::UpdateOverlay method. The flags you include in the dwFlags parameter determine the overlay's behavior: if you include the DDOVER_BOB flag, the video port will use the Bob algorithm; if you don't, it displays both fields. Note that by simply displaying both fields simultaneously, the resulting video will show motion artifacts.

Solving Problems Caused by Half-Lines

[This is preliminary documentation and subject to change.]

Some video decoders output a half line of meaningless data at the beginning of the even field. If this extra line is written to the frame buffer, the resulting image will appear garbled. In some cases, the video-port hardware is capable of sensing and discarding this data before writing it to the frame buffer.

You can determine if a video port is capable of discarding this data when retrieving connection information with the IDDVideoPortContainer::GetVideoPortConnectInfo method. If the video port cannot discard half-lines, the DDVPCONNECT_HALFLINE flag will be specified in the dwFlags member of the associated DDVIDEOPORTCONNECT structure for each supported connection.

If the video port is unable to discard half-lines, you have two options: you can discard one of the fields, or you can work around the hardware's limitations by making some adjustments in how you create the video-port object and display images with the target overlay surface

Here's how to work around the problem. When creating the video-port object by calling the IDDVideoPortContainer::CreateVideoPort method, include the DDVPCONNECT_INVERTPOLARITY flag in the dwFlags member of the associated DDVIDEOPORTCONNECT structure. This causes the video port to invert the polarity of the fields in the video stream, treating even fields like odd fields and vice versa. Once reversed, the half-line preceding even fields will be written to the frame buffer as the first scan line of each frame. To remove the unwanted data, adjust the source rectangle of the overlay surface used to display the image down one pixel by calling the IDirectDrawVideoPort::StartVideo method with the necessary coordinates. Note that this technique requires that you allocate one extra line in the surface containing the even field.

Exploiting Hardware Features

[This is preliminary documentation and subject to change.]

Video-port hardware often supports special features for adjusting color, shrinking or zooming images, handling VBI data, or skipping fields. The HAL provides information about these features by using flags in the DDVIDEOPORTCAPS structure. You retrieve the capabilities of a machine's video-port hardware by calling the IDDVideoPortContainer::EnumVideoPorts method.

To exploit these features for playback, you use the IDirectDrawVideoPort::StartVideo method, which uses a DDVIDEOPORTINFO structure to request that hardware features be used to modify image data before placing it in the frame buffer or for display. By setting values and flags in this structure, you can specify the source rectangle used with the overlay surface, indicate cropping regions, request hardware scaling, and set pixel formats.

DirectDrawVideoPort objects do not emulate video-port hardware services.

Getting the Flip and Blit Status

[This is preliminary documentation and subject to change.]

When the IDirectDrawSurface4::Flip method is called, the primary surface and back buffer are exchanged. However, the exchange may not occur immediately. For example, if a previous flip has not finished, or if it did not succeed, this method returns DDERR_WASSTILLDRAWING. In the samples included with the SDK, the IDirectDrawSurface4::Flip call continues to loop until it returns DD_OK. Also, a IDirectDrawSurface4::Flip call does not complete immediately. It schedules a flip for the next time a vertical blank occurs on the system.

An application that waits until the DDERR_WASSTILLDRAWING value is not returned is very inefficient. Instead, you could create a function in your application that calls the IDirectDrawSurface4::GetFlipStatus method on the back buffer to determine if the previous flip has finished.

If the previous flip has not finished and the call returns DDERR_WASSTILLDRAWING, your application can use the time to perform another task before it checks the status again. Otherwise, you can perform the next flip. The following example demonstrates this concept:

while(lpDDSBack->GetFlipStatus(DDGFS_ISFLIPDONE) ==

 DDERR_WASSTILLDRAWING);

 // Waiting for the previous flip to finish. The application can

 // perform another task here.

ddrval = lpDDSPrimary->Flip(NULL, 0);

You can use the IDirectDrawSurface4::GetBltStatus method in much the same way to determine whether a blit has finished. Because IDirectDrawSurface4::GetFlipStatus and IDirectDrawSurface4::GetBltStatus return immediately, you can use them periodically in your application with little loss in speed.

Determining the Capabilities of the Display Hardware

[This is preliminary documentation and subject to change.]

DirectDraw uses software emulation to perform the DirectDraw functions not supported by the user's hardware. To accelerate performance of your DirectDraw applications, you should determine the capabilities of the user's display hardware after you have created a DirectDraw object, then structure your program to take advantage of these capabilities when possible.

You can determine these capabilities by using the IDirectDraw4::GetCaps method. Not all hardware features are supported in emulation. If you want to use a feature only supported by some hardware, you must also be prepared to supply some alternative for systems with hardware that lacks that feature.

Storing Bitmaps in Display Memory

[This is preliminary documentation and subject to change.]

Blitting from display memory to display memory is usually much more efficient than blitting from system memory to display memory. As a result, you should store as many of the sprites your application uses as possible in display memory.

Most display adapter hardware contains enough extra memory to store more than the primary surface and the back buffer. Call the IDirectDraw4::GetAvailableVidMem method to determine the amount of total and available memory for storing bitmaps in the display adapter's memory. After the call, the lpdwTotal parameter contains the total amount of display memory, minus the primary surface and any private caches held by driver, and lpdwFree contains the amount of display memory currently free that can be allocated for a surface that matches the capabilities specified by the structure at lpDDSCaps2.

Triple Buffering

[This is preliminary documentation and subject to change.]

In some cases, that is, when the display adapter has enough memory, it may be possible to speed up the process of displaying your application by using triple buffering. Triple buffering uses one primary surface and two back buffers. The following example shows how to initialize a triple-buffering scheme:

// The lpDDSPrimary and lpDDSBack variables are globally

// declared, uninitialized LPDIRECTDRAWSURFACE4 variables.

//

// The lpDD variable is a pointer to an IDirectDraw4 interface

DDSURFACEDESC2 ddsd;

ZeroMemory (&ddsd, sizeof(ddsd));

// Create the primary surface with two back buffers.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

 DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 2;

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

// If we successfully created the flipping chain,

// retrieve pointers to the surfaces we need for

// flipping and blitting.

if(ddrval == DD_OK)

{

 // Get the surface directly attached to the primary (the back buffer).

 ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

 ddrval = lpDDSPrimary->GetAttachedSurface(&ddsd.ddsCaps,

 &lpDDSBack);

 if(ddrval != DD_OK) ;

 // Display an error message here.

}

You do not need to keep track of all surfaces in a triple buffered flipping chain. The only surfaces you must keep pointers to are the primary surface and the back-buffer surface. You need a pointer to the primary surface in order to flip the surfaces in the flipping chain, and you need a pointer to the back buffer for blitting. For more information, see Flipping Surfaces.

Triple buffering allows your application to continue blitting to the back buffer even if a flip has not completed and the back buffer's blit has already finished. Performing a flip is not a synchronous event; one flip can take longer than another. Therefore, if your application uses only one back buffer, it may spend some time idling while waiting for the IDirectDrawSurface4::Flip method to return with DD_OK.

DirectDraw Applications and Window Styles

[This is preliminary documentation and subject to change.]

If your application uses DirectDraw in windowed mode, you can create windows with any window style. However, full-screen exclusive mode applications cannot be created with the WS_EX_TOOLWINDOW style without risk of unpredictable behavior. The WS_EX_TOOLWINDOW style prevents a window from being the top most window, which is required for a DirectDraw full-screen, exclusive mode application.

Full-screen exclusive mode applications should use the WS_EX_TOPMOST extended window style and the WS_VISIBLE window style to display properly. These styles keep the application at the front of the window z-order and prevent GDI from drawing on the primary surface.

The following example shows one way to safely prepare a window to be used in a full-screen, exclusive mode application.

//

// Register the window class, display the window, and init

// all DirectX and graphic objects.

//

BOOL WINAPI InitApp(INT nWinMode)

{

 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);

 wcex.hInstance = g_hinst;

 wcex.lpszClassName = g_szWinName;

 wcex.lpfnWndProc = WndProc;

 wcex.style = CS_VREDRAW|CS_HREDRAW|CS_DBLCLKS;

 wcex.hIcon = LoadIcon (NULL, IDI_APPLICATION);

 wcex.hIconSm = LoadIcon (NULL, IDI_WINLOGO);

 wcex.hCursor = LoadCursor (NULL, IDC_ARROW);

 wcex.lpszMenuName = MAKEINTRESOURCE(IDR_APPMENU);

 wcex.cbClsExtra = 0 ;

 wcex.cbWndExtra = 0 ;

 wcex.hbrBackground = GetStockObject (NULL_BRUSH);

 RegisterClassEx(&wcex);

 g_hwndMain = CreateWindowEx(

 WS_EX_TOPMOST,

 g_szWinName,

 g_szWinCaption,

 WS_VISIBLE|WS_POPUP,

 0,0,CX_SCREEN,CY_SCREEN,

 NULL,

 NULL,

 g_hinst,

 NULL);

 if(!g_hwndMain)

 return(FALSE);

 SetFocus(g_hwndMain);

 ShowWindow(g_hwndMain, nWinMode);

 UpdateWindow(g_hwndMain);

 return TRUE;

}

Matching True RGB Colors to the Frame Buffer's Color Space

[This is preliminary documentation and subject to change.]

Applications often need to find out how a true RGB color (RGB 888) will be mapped into a frame buffer's color space when the display device is not in RGB 888 mode. For example, imagine you're working on an application that will run in 16- and 24-bit RGB display modes. You know that when the art was created, a color was reserved for use as a transparent blitting color key; for the sake of argument, it is a 24-bit color such as RGB(128,64,255). Because your application will also run in a 16-bit RGB mode, you need a way to find out how this 24-bit color key maps into the color space that the frame buffer uses when it's running in a 16-bit RGB mode.

Although DirectDraw does not perform color matching services for you, there are ways to calculate how your color key will be mapped in the frame buffer. These methods can be pretty complicated. For most purposes, you can use the GDI built-in color matching services, combined with the DirectDraw direct frame buffer access, to determine how a color value maps into a different color space. In fact, the Ddutil.cpp source file included in the DirectX examples of the Platform SDK includes a sample function called DDColorMatch that performs this task. The DDColorMatch sample function performs the following main tasks:

	1.	Retrieves the color value of a pixel in a surface at 0,0.

	2.	Calls the Win32 SetPixel function, using a COLORREF structure that describes your 24-bit RGB color.

	3.	Uses DirectDraw to lock the surface, getting a pointer to the frame buffer memory.

	4.	Retrieves the actual color value from the frame buffer (set by GDI in Step 2) and unlocks the surface

	5.	Resets the pixel at 0,0 to its original color using SetPixel.

The process used by the DDColorMatch sample function is not fast; it isn't intended to be. However, it provides a reliable way to determine how a color will be mapped across different RGB color spaces. For more information, see the source code for DDColorMatch in the Ddutil.cpp source file.

Note

Because the SetPixel GDI function only accepts a COLORREF structure on input, this technique only works for matching RGB 888 colors to the frame buffer's pixel format. If your application needs to match colors of another pixel format, you should translate them to RGB 888 before using this technique or query the primary surface for its pixel format and match colors manually.

Displaying a Window in Full-Screen Mode

[This is preliminary documentation and subject to change.]

In full-screen mode, DirectDraw has exclusive control over the display. As a result, dialog boxes and other windows created through GDI are not normally visible. However, by using special techniques you can incorporate a Windows dialog box, HTML Help, or any other kind of window in your application.

The FSWindow Sample illustrates how a dialog box can be displayed and updated in a full-screen application, and how mouse clicks and keystrokes work just as if the dialog box were being displayed by GDI.

In FSWindow, the dialog box is created and "shown" as an ordinary dialog window:

hWndDlg = CreateDialog(g_hInstance,

 MAKEINTRESOURCE(IDD_DIALOG_SAMPLE),

 hWnd, (DLGPROC) SampleDlgProc);

ShowWindow(hWndDlg, SW_SHOWNORMAL);

Of course, at this point the dialog box is shown only on the hidden GDI surface. It does not appear on the primary surface, which is controlled by DirectDraw.

If the hardware capabilities include DDCAPS2_CANRENDERWINDOWED (see DDCAPS), displaying and updating the dialog box is easy. The application simply calls the IDirectDraw4::FlipToGDISurface method, which makes the GDI surface the primary surface. From now on, all updates to the dialog box will be displayed automatically, because GDI is now rendering directly to the front buffer. The application continues rendering to the back buffer, and on each pass through the rendering loop the contents of the back buffer are blitted to the front buffer by DirectDraw. The dialog box is not overwritten because the front buffer is clipped to the application window, and the dialog box is obscuring part of that window.

The following code, from the FSWindow_Init function, creates the clipper, associates it with the application window, and brings the GDI surface to the front:

if (ddObject->CreateClipper(0, &ddClipper, NULL) == DD_OK)

 ddClipper->SetHWnd(0, hwndAppWindow);

ddObject->FlipToGDISurface();

Then, in the FSWindow_Update function, the following code blits the rendered contents of the back buffer to the clipping region:

ddFrontBuffer->SetClipper(ddClipper);

ddFrontBuffer->Blt(NULL, ddBackBuffer, NULL, DDBLT_WAIT, NULL);

Note that because the GDI surface is the primary surface, Windows continues displaying the mouse cursor. (This would not be the case, however, if the application were using DirectInput with the mouse device at the exclusive cooperative level.)

For hardware that does not have the DDCAPS2_CANRENDERWINDOWED capability, the process of displaying and updating a window in full-screen mode is somewhat more complicated. In this case, the application is responsible for obtaining the image of the window created by GDI and blitting it to the back buffer after the full-screen rendering has been done. The entire back buffer is then flipped to the front in the usual way.

The FSWindow sample provides two different methods for accessing the display memory of the window, depending on whether the content is static or dynamic. The method for static content is faster because it involves blitting from a memory device context rather than a screen device context. This method should be used for windows that do not change, such as informational dialog boxes. (Remember, though, that unless you manually update the bitmap in response to events, even basic animations such as a button press will not be visible to the user.)

If the content is static, FSWindow calls the CreateBMPFromWindow function when the window is initialized. This function creates a bitmap and blits the contents of the window into it. The bitmap handle is stored in the global variable hwndFSWindowBMP. Whenever the primary surface is about to be updated, this bitmap is blitted to the back buffer, as follows:

if (FSWindow_IsStatic)

{

 hdcMemory = CreateCompatibleDC(NULL);

 SelectObject(hdcMemory, hwndFSWindowBMP);

 BitBlt(hdcBackBuffer, x, y, cx, cy, hdcMemory, 0, 0, SRCCOPY);

 DeleteDC(hdcMemory);

}

If, on the other hand, the content of the window is dynamic, the following code is executed. It blits the image directly from the GDI surface (represented by the hdcScreen device context) to the back buffer.

BitBlt(hdcBackBuffer, x, y, cx, cy, hdcScreen, x, y, SRCCOPY);

The coordinates represent the position and dimensions of the window on the GDI surface, as retrieved through a call to GetWindowRect.

When the FSWindow application is running on hardware that does not have the DDCAPS2_CANRENDERWINDOWED capability, it does not use the GDI surface, so Windows cannot display the mouse cursor. The application takes over this task by obtaining information about the cursor and displaying it on the back buffer just before the flip.

DirectDraw Tutorials

[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each providing step-by-step instructions for implementing the basics of DirectDraw in a C/C++ or Visual Basic application. The tutorials are written parallel to a set of sample files that are provided with this SDK in the \Samples\Multimedia\DDraw\Tutorials directory, following their code path and providing explanations along the way. Readers are encouraged to follow along in the sample code as they move through these tutorials.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw C/C++ Tutorials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Visual Basic Tutorials

DirectDraw C/C++ Tutorials

[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each of which provides step-by-step instructions for implementing a simple DirectDraw application. These tutorials use many of the DirectDraw sample files that are provided with this SDK. These samples demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to perform common tasks:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 1: The Basics of DirectDraw

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 2: Loading Bitmaps on the Back Buffer

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 3: Blitting from an Off-Screen Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 4: Color Keys and Bitmap Animation

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 5: Dynamically Modifying Palettes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 6: Using Overlay Surfaces

Some samples in these tutorials use older versions IDirectDraw and IDirectDrawSurface interfaces. If you want to update these examples so they use the DirectX 5.0 interfaces query for the new versions of the interfaces before using them. In addition, you must change the appropriate parameters of any methods that have been updated for new versions of the interfaces.

Note

The sample files in these tutorials are written in C++. If you are using a C compiler, you must make the appropriate changes to the files for them to successfully compile. At the very least, you need to add the vtable and this pointers to the interface methods.

Tutorial 1: The Basics of DirectDraw

[This is preliminary documentation and subject to change.]

To use DirectDraw, you first create an instance of the DirectDraw object, which represents the display adapter on the computer. You then use the interface methods to manipulate the object. In addition, you need to create one or more instances of a DirectDrawSurface object to be able to display your application on a graphics surface.

To demonstrate this, the DDEx1 sample included with this SDK performs the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Creating a DirectDraw Object

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Determining the Application's Behavior

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Changing the Display Mode

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Creating Flipping Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Rendering to the Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Writing to the Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 7: Flipping the Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 8: Deallocating the DirectDraw Objects

Note

To use GUIDs successfully in your applications, you must either define INITGUID prior to all other include and define statements, or you must link to the Dxguid.lib library. You should define INITGUID in only one of your source modules.

Step 1: Creating a DirectDraw Object

[This is preliminary documentation and subject to change.]

To create an instance of a DirectDraw object, your application should use the DirectDrawCreate function as shown in the doInit sample function of the DDEx1 program. DirectDrawCreate contains three parameters. The first parameter takes a globally unique identifier (GUID) that represents the display device. The GUID, in most cases, is set to NULL, which means DirectDraw uses the default display driver for the system. The second parameter contains the address of a pointer that identifies the location of the DirectDraw object if it is created. The third parameter is always set to NULL and is included for future expansion.

The following example shows how to create the DirectDraw object and how to determine if the creation was successful or not:

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);

if(ddrval == DD_OK)

{

 // lpDD is a valid DirectDraw object.

}

else

{

 // The DirectDraw object could not be created.

}

Step 2: Determining the Application's Behavior

[This is preliminary documentation and subject to change.]

Before you can change the resolution of the display, you must at a minimum specify the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags in the dwFlags parameter of the IDirectDraw::SetCooperativeLevel method. This gives your application complete control over the display device, and no other application will be able to share it. In addition, the DDSCL_FULLSCREEN flag sets the application in exclusive (full-screen) mode. Your application covers the entire desktop, and only your application can write to the screen. The desktop is still available, however. (To see the desktop in an application running in exclusive mode, start DDEx1 and press ALT+ TAB.)

The following example demonstrates the use of the SetCooperativeLevel method:

HRESULT ddrval;

LPDIRECTDRAW lpDD; // Already created by DirectDrawCreate

ddrval = lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE |

 DDSCL_FULLSCREEN);

if(ddrval == DD_OK)

{

 // Exclusive mode was successful.

}

else

{

 // Exclusive mode was not successful.

 // The application can still run, however.

}

If SetCooperativeLevel does not return DD_OK, you can still run your application. The application will not be in exclusive mode, however, and it might not be capable of the performance your application requires. In this case, you might want to display a message that allows the user to decide whether or not to continue.

If you are setting the full-screen, exclusive cooperative level, you must pass your application's window handle to SetCooperativeLevel to allow Windows to determine if your application terminates abnormally. For example, if a general protection (GP) fault occurs and GDI is flipped to the back buffer, the user will not be able to return to the Windows screen. To prevent this from occurring, DirectDraw provides a process running in the background that traps messages that are sent to that window. DirectDraw uses these messages to determine when the application terminates. This feature imposes some restrictions, however. You have to specify the window handle that is retrieving messages for your application—that is, if you create another window, you must ensure that you specify the window that is active. Otherwise, you might experience problems, including unpredictable behavior from GDI, or no response when you press ALT + TAB.

Step 3: Changing the Display Mode

[This is preliminary documentation and subject to change.]

After you have set the application's behavior, you can use the IDirectDraw::SetDisplayMode method to change the resolution of the display. The following example shows how to set the display mode to 640´480´8 bpp:

HRESULT ddrval;

LPDIRECTDRAW lpDD; // Already created

ddrval = lpDD->SetDisplayMode(640, 480, 8);

if(ddrval == DD_OK)

{

 // The display mode changed successfully.

}

else

{

 // The display mode cannot be changed.

 // The mode is either not supported or

 // another application has exclusive mode.

}

When you set the display mode, you should ensure that if the user's hardware cannot support higher resolutions, your application reverts to a standard mode that is supported by a majority of display adapters. For example, your application could be designed to run on all systems that support 640´480´8 as a standard backup resolution.

Note

IDirectDraw::SetDisplayMode returns a DDERR_INVALIDMODE error value if the display adapter could not be set to the desired resolution. Therefore, you should use the IDirectDraw::EnumDisplayModes method to determine the capabilities of the user's display adapter before trying to set the display mode.

Step 4: Creating Flipping Surfaces

[This is preliminary documentation and subject to change.]

After you have set the display mode, you must create the surfaces on which to place your application. Because the DDEx1 example is using the IDirectDraw::SetCooperativeLevel method to set the mode to exclusive (full-screen) mode, you can create surfaces that flip between the surfaces. If you were using SetCooperativeLevel to set the mode to DDSCL_NORMAL, you could create only surfaces that blit between the surfaces. Creating flipping surfaces requires the following steps, also discussed in this topic:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Defining the surface requirements

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating the surfaces

Defining the Surface Requirements

[This is preliminary documentation and subject to change.]

The first step in creating flipping surfaces is to define the surface requirements in a DDSURFACEDESC structure. The following example shows the structure definitions and flags needed to create a flipping surface.

// Create the primary surface with one back buffer.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

 DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 1;

In this example, the dwSize member is set to the size of the DDSURFACEDESC structure. This is to prevent any DirectDraw method call you use from returning with an invalid member error. (The dwSize member was provided for future expansion of the DDSURFACEDESC structure.)

The dwFlags member determines which members in the DDSURFACEDESC structure will be filled with valid information. For the DDEx1 example, dwFlags is set to specify that you want to use the DDSCAPS structure (DDSD_CAPS) and that you want to create a back buffer (DDSD_BACKBUFFERCOUNT).

The dwCaps member in the example indicates the flags that will be used in the DDSCAPS structure. In this case, it specifies a primary surface (DDSCAPS_PRIMARYSURFACE), a flipping surface (DDSCAPS_FLIP), and a complex surface (DDSCAPS_COMPLEX).

Finally, the example specifies one back buffer. The back buffer is where the backgrounds and sprites will actually be written. The back buffer is then flipped to the primary surface. In the DDEx1 example, the number of back buffers is set to 1. You can, however, create as many back buffers as the amount of display memory allows. For more information on creating more than one back buffer, see Triple Buffering.

Surface memory can be either display memory or system memory. DirectDraw uses system memory if the application runs out of display memory (for example, if you specify more than one back buffer on a display adapter with only 1 MB of RAM). You can also specify whether to use only system memory or only display memory by setting the dwCaps member in the DDSCAPS structure to DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY. (If you specify DDSCAPS_VIDEOMEMORY, but not enough memory is available to create the surface, IDirectDraw::CreateSurface returns with a DDERR_OUTOFVIDEOMEMORY error.)

Creating the Surfaces

[This is preliminary documentation and subject to change.]

After the DDSURFACEDESC structure is filled, you can use it and lpDD, the pointer to the DirectDraw object that was created by the DirectDrawCreate function, to call the IDirectDraw::CreateSurface method, as shown in the following example:

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

if(ddrval == DD_OK)

{

 // lpDDSPrimary points to the new surface.

}

else

{

 // The surface was not created.

 return FALSE;

}

The lpDDSPrimary parameter will point to the primary surface returned by CreateSurface if the call succeeds.

After the pointer to the primary surface is available, you can use the IDirectDrawSurface3::GetAttachedSurface method to retrieve a pointer to the back buffer, as shown in the following example:

ddscaps.dwCaps = DDSCAPS_BACKBUFFER;

ddrval = lpDDSPrimary->GetAttachedSurface(&ddcaps, &lpDDSBack);

if(ddrval == DD_OK)

{

 // lpDDSBack points to the back buffer.

}

else

{

 return FALSE;

}

By supplying the address of the surface's primary surface and by setting the capabilities value with the DDSCAPS_BACKBUFFER flag, the lpDDSBack parameter will point to the back buffer if the IDirectDrawSurface3::GetAttachedSurface call succeeds.

Step 5: Rendering to the Surfaces

[This is preliminary documentation and subject to change.]

After the primary surface and a back buffer have been created, the DDEx1 example renders some text on the primary surface and back buffer surface by using standard Windows GDI functions, as shown in the following example:

if (lpDDSPrimary->GetDC(&hdc) == DD_OK)

{

 SetBkColor(hdc, RGB(0, 0, 255));

 SetTextColor(hdc, RGB(255, 255, 0));

 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));

 lpDDSPrimary->ReleaseDC(hdc);

}

if (lpDDSBack->GetDC(&hdc) == DD_OK)

{

 SetBkColor(hdc, RGB(0, 0, 255));

 SetTextColor(hdc, RGB(255, 255, 0));

 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));

 lpDDSBack->ReleaseDC(hdc);

}

The example uses the IDirectDrawSurface3::GetDC method to retrieve the handle of the device context, and it internally locks the surface. If you are not going to use Windows functions that require a handle of a device context, you could use the IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock methods to lock and unlock the back buffer.

Locking the surface memory (whether the whole surface or part of a surface) ensures that your application and the system blitter cannot obtain access to the surface memory at the same time. This prevents errors from occurring while your application is writing to surface memory. In addition, your application cannot page flip until the surface memory is unlocked.

After the surface is locked, the example uses standard Windows GDI functions: SetBkColor to set the background color, SetTextColor to select the color of the text to be placed on the background, and TextOut to print the text and background color on the surfaces.

After the text has been written to the buffer, the example uses the IDirectDrawSurface3::ReleaseDC method to unlock the surface and release the handle. Whenever your application finishes writing to the back buffer, you must call either IDirectDrawSurface3::ReleaseDC or IDirectDrawSurface3::Unlock, depending on your application. Your application cannot flip the surface until the surface is unlocked.

Typically, you write to a back buffer, which you then flip to the primary surface to be displayed. In the case of DDEx1, there is a significant delay before the first flip, so DDEx1 writes to the primary buffer in the initialization function to prevent a delay before displaying the surface. As you will see in a subsequent step of this tutorial, the DDEx1 example writes only to the back buffer during WM_TIMER. An initialization function or title page may be the only place where you might want to write to the primary surface.

Note

After the surface is unlocked by using IDirectDrawSurface3::Unlock, the pointer to the surface memory is invalid. You must use IDirectDrawSurface3::Lock again to obtain a valid pointer to the surface memory.

Step 6: Writing to the Surface

[This is preliminary documentation and subject to change.]

The first half of the WM_TIMER message in DDEx1 is devoted to writing to the back buffer, as shown in the following example:

case WM_TIMER:

 // Flip surfaces.

 if(bActive)

 {

 if (lpDDSBack->GetDC(&hdc) == DD_OK)

 {

 SetBkColor(hdc, RGB(0, 0, 255));

 SetTextColor(hdc, RGB(255, 255, 0));

 if(phase)

 {

 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));

 phase = 0;

 }

 else

 {

 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));

 phase = 1;

 }

 lpDDSBack->ReleaseDC(hdc);

 }

The line of code that calls the IDirectDrawSurface3::GetDC method locks the back buffer in preparation for writing. The SetBkColor and SetTextColor functions set the colors of the background and text.

Next, the phase variable determines whether the primary buffer message or the back buffer message should be written. If phase equals 1, the primary surface message is written, and phase is set to 0. If phase equals 0, the back buffer message is written, and phase is set to 1. Note, however, that in both cases the messages are written to the back buffer.

After the message is written to the back buffer, the back buffer is unlocked by using the IDirectDrawSurface3::ReleaseDC method.

Step 7: Flipping the Surfaces

[This is preliminary documentation and subject to change.]

After the surface memory is unlocked, you can use the IDirectDrawSurface3::Flip method to flip the back buffer to the primary surface, as shown in the following example:

while(1)

{

 HRESULT ddrval;

 ddrval = lpDDSPrimary->Flip(NULL, 0);

 if(ddrval == DD_OK)

 {

 break;

 }

 if(ddrval == DDERR_SURFACELOST)

 {

 ddrval = lpDDSPrimary->Restore();

 if(ddrval != DD_OK)

 {

 break;

 }

 }

 if(ddrval != DDERR_WASSTILLDRAWING)

 {

 break;

 }

}

In the example, lpDDSPrimary parameter designates the primary surface and its associated back buffer. When IDirectDrawSurface3::Flip is called, the front and back surfaces are exchanged (only the pointers to the surfaces are changed; no data is actually moved). If the flip is successful and returns DD_OK, the application breaks from the while loop.

If the flip returns with a DDERR_SURFACELOST value, an attempt is made to restore the surface by using the IDirectDrawSurface3::Restore method. If the restore is successful, the application loops back to the IDirectDrawSurface3::Flip call and tries again. If the restore is unsuccessful, the application breaks from the while loop, and returns with an error.

Note

When you call IDirectDrawSurface3::Flip, the flip does not complete immediately. Rather, a flip is scheduled for the next time a vertical blank occurs on the system. If, for example, the previous flip has not occurred, IDirectDrawSurface3::Flip returns DDERR_WASSTILLDRAWING. In the example, the IDirectDrawSurface3::Flip call continues to loop until it returns DD_OK.

Step 8: Deallocating the DirectDraw Objects

[This is preliminary documentation and subject to change.]

When you press the F12 key, the DDEx1 application processes the WM_DESTROY message before exiting the application. This message calls the finiObjects sample function, which contains all of the IUnknown::Release calls, as shown in the following example:

static void finiObjects(void)

{

 if(lpDD != NULL)

 {

 if(lpDDSPrimary != NULL)

 {

 lpDDSPrimary->Release();

 lpDDSPrimary = NULL;

 }

 lpDD->Release();

 lpDD = NULL;

 }

} // finiObjects

The application checks if the pointers to the DirectDraw object (lpDD) and the DirectDrawSurface object (lpDDSPrimary) are not equal to NULL. Then DDEx1 calls the IDirectDrawSurface3::Release method to decrease the reference count of the DirectDrawSurface object by 1. Because this brings the reference count to 0, the DirectDrawSurface object is deallocated. The DirectDrawSurface pointer is then destroyed by setting its value to NULL. Next, the application calls IDirectDraw::Release to decrease the reference count of the DirectDraw object to 0, deallocating the DirectDraw object. This pointer is then also destroyed by setting its value to NULL.

Tutorial 2: Loading Bitmaps on the Back Buffer

[This is preliminary documentation and subject to change.]

The sample discussed in this tutorial (DDEx2) expands on the DDEx1 sample that was discussed in Tutorial 1. DDEx2 includes functionality to load a bitmap file on the back buffer. This new functionality is demonstrated in the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Creating the Palette

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Setting the Palette

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Loading a Bitmap on the Back Buffer

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Flipping the Surfaces

As in DDEx1, doInit is the initialization function for the DDEx2 application. Although the code for the DirectDraw initialization does not look quite the same in DDEx2 as it did in DDEx1, it is essentially the same, except for the following section:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)

 goto error;

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)

 goto error;

// Load a bitmap into the back buffer.

ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)

 goto error;

Step 1: Creating the Palette

[This is preliminary documentation and subject to change.]

The DDEx2 sample first loads the palette into a structure by using the following code:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)

 goto error;

The sample function DDLoadPalette is part of the common DirectDraw functions found in the Ddutil.cpp file located in the \Dxsdk\Sdk\Samples\Misc directory. Most of the DirectDraw sample files in this SDK use this file. Essentially, it contains the functions for loading bitmaps and palettes from either files or resources. To avoid having to repeat code in the example files, these functions were placed in a file that could be reused. Make sure you include Ddutil.cpp in the list of files to be compiled with the rest of the DDExn samples.

For DDEx2, the DDLoadPalette sample function creates a DirectDrawPalette object from the Back.bmp file. The DDLoadPalette sample function determines if a file or resource for creating a palette exists. If one does not, it creates a default palette. For DDEx2, it extracts the palette information from the bitmap file and stores it in a structure pointed to by ape.

DDEx2 then creates the DirectDrawPalette object, as shown in the following example:

pdd->CreatePalette(DDPCAPS_8BIT, ape, &ddpal, NULL);

return ddpal;

When the IDirectDraw2::CreatePalette method returns, the ddpal parameter points to the DirectDrawPalette object, which is then returned from the DDLoadPalette call.

The ape parameter is a pointer to a structure that can contain either 2, 4, 16, or 256 entries, organized linearly. The number of entries depends on the dwFlags parameter in the CreatePalette method. In this case, the dwFlags parameter is set to DDPCAPS_8BIT, which indicates that there are 256 entries in this structure. Each entry contains 4 bytes (a red channel, a green channel, a blue channel, and a flags byte).

Step 2: Setting the Palette

[This is preliminary documentation and subject to change.]

After you create the palette, you pass the pointer to the DirectDrawPalette object (ddpal) to the primary surface by calling the IDirectDrawSurface3::SetPalette method, as shown in the following example:

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)

 // SetPalette failed.

After you have called IDirectDrawSurface3::SetPalette, the DirectDrawPalette object is associated with the DirectDrawSurface object. Any time you need to change the palette, you simply create a new palette and set the palette again. (Although this tutorial uses these steps, there are other ways of changing the palette, as will be shown in later examples.)

Step 3: Loading a Bitmap on the Back Buffer

[This is preliminary documentation and subject to change.]

After the DirectDrawPalette object is associated with the DirectDrawSurface object, DDEx2 loads the Back.bmp bitmap on the back buffer by using the following code:

// Load a bitmap into the back buffer.

ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)

 // Load failed.

DDReLoadBitmap is another sample function found in Ddutil.cpp. It loads a bitmap from a file or resource into an already existing DirectDraw surface. (You could also use DDLoadBitmap to create a surface and load the bitmap into that surface. For more information, see Tutorial 5: Dynamically Modifying Palettes.) For DDEx2, it loads the Back.bmp file pointed to by szBackground onto the back buffer pointed to by lpDDSBack. The DDReLoadBitmap function calls the DDCopyBitmap function to copy the file onto the back buffer and stretch it to the proper size.

The DDCopyBitmap function copies the bitmap into memory, and it uses the GetObject function to retrieve the size of the bitmap. It then uses the following code to retrieve the size of the back buffer onto which it will place the bitmap:

// Get the size of the surface.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;

pdds->GetSurfaceDesc(&ddsd);

The ddsd value is a pointer to the DDSURFACEDESC structure. This structure stores the current description of the DirectDraw surface. In this case, the DDSURFACEDESC members describe the height and width of the surface, which are indicated by DDSD_HEIGHT and DDSD_WIDTH. The call to the IDirectDrawSurface3::GetSurfaceDesc method then loads the structure with the proper values. For DDEx2, the values will be 480 for the height and 640 for the width.

The DDCopyBitmap sample function locks the surface and copies the bitmap to the back buffer, stretching or compressing it as applicable by using the StretchBlt function, as shown in the following example:

if ((hr = pdds->GetDC(&hdc)) == DD_OK)

{

 StretchBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight, hdcImage, x, y,

 dx, dy, SRCCOPY);

 pdds->ReleaseDC(hdc);

}

Step 4: Flipping the Surfaces

[This is preliminary documentation and subject to change.]

Flipping surfaces in the DDEx2 sample is essentially the same process as that in the DDEx1 tutorial (see Tutorial 1: The Basics of DirectDraw) except that if the surface is lost (DDERR_SURFACELOST), the bitmap must be reloaded on the back buffer by using the DDReLoadBitmap function after the surface is restored.

Tutorial 3: Blitting from an Off-Screen Surface

[This is preliminary documentation and subject to change.]

The sample in Tutorial 2 (DDEx2) takes a bitmap and puts it in the back buffer, and then it flips between the back buffer and the primary buffer. This is not a very realistic approach to displaying bitmaps. The sample in this tutorial (DDEx3) expands on the capabilities of DDEx2 by including two off-screen buffers in which the two bitmaps—one for the even screen and one for the odd screen—are stored. It uses the IDirectDrawSurface3::BltFast method to copy the contents of an off-screen surface to the back buffer, and then it flips the buffers and copies the next off-screen surface to the back buffer.

The new functionality demonstrated in DDEx3 is shown in the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Creating the Off-Screen Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Loading the Bitmaps to the Off-Screen Surfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

Step 1: Creating the Off-Screen Surfaces

[This is preliminary documentation and subject to change.]

The following code is added to the doInit sample function in DDEx3 to create the two off-screen buffers:

// Create an offscreen bitmap.

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

ddsd.dwHeight = 480;

ddsd.dwWidth = 640;

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSOne, NULL);

if(ddrval != DD_OK)

{

 return initFail(hwnd);

}

// Create another offscreen bitmap.

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSTwo, NULL);

if(ddrval != DD_OK)

{

 return initFail(hwnd);

}

The dwFlags member specifies that the application will use the DDSCAPS structure, and it will set the height and width of the buffer. The surface will be an off-screen plain buffer, as indicated by the DDSCAPS_OFFSCREEN flag set in the DDSCAPS structure. The height and the width are set as 480 and 640, respectively, in the DDSURFACEDESC structure. The surface is then created by using the IDirectDraw::CreateSurface method.

Because both of the off-screen plain buffers are the same size, the only requirement for creating the second buffer is to call IDirectDraw::CreateSurface again with a different pointer name.

You can also specifically request that the off-screen buffer be placed in system memory or display memory by setting either the DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY capability in the DDSCAPS structure. By saving the bitmaps in display memory, you can increase the speed of the transfers between the off-screen surfaces and the back buffer. This will become more important when using bitmap animation. However, if you specify DDSCAPS_VIDEOMEMORY for the off-screen buffer and not enough display memory is available to hold the entire bitmap, a DDERR_OUTOFVIDEOMEMORY error value will be returned when you attempt to create the surface.

Step 2: Loading the Bitmaps to the Off-Screen Surfaces

[This is preliminary documentation and subject to change.]

After the two off-screen surfaces are created, DDEx3 uses the InitSurfaces sample function to load the bitmaps from the Frntback.bmp file onto the surfaces. The InitSurfaces function uses the DDCopyBitmap sample function located in Ddutil.cpp to load both of the bitmaps, as shown in the following example:

// Load the bitmap resource.

hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap,

 IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION);

if (hbm == NULL)

 return FALSE;

DDCopyBitmap(lpDDSOne, hbm, 0, 0, 640, 480);

DDCopyBitmap(lpDDSTwo, hbm, 0, 480, 640, 480);

DeleteObject(hbm);

return TRUE;

If you look at the Frntback.bmp file in Microsoft® Paint or another drawing application, you can see that the bitmap consists of two screens, one on top of the other. The DDCopyBitmap function breaks the bitmap in two at the point where the screens meet. In addition, it loads the first bitmap into the first off-screen surface (lpDDSOne) and the second bitmap into the second off-screen surface (lpDDSTwo).

Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

[This is preliminary documentation and subject to change.]

The WM_TIMER message contains the code for writing to surfaces and flipping surfaces. In the case of DDEx3, it contains the following code to select the proper off-screen surface and to blit it to the back buffer:

rcRect.left = 0;

rcRect.top = 0;

rcRect.right = 640;

rcRect.bottom = 480;

if(phase)

{

 pdds = lpDDSTwo;

 phase = 0;

}

else

{

 pdds = lpDDSOne;

 phase = 1;

}

while(1)

{

 ddrval = lpDDSBack->BltFast(0, 0, pdds, &rcRect, FALSE);

 if(ddrval == DD_OK)

 {

 break;

 }

}

The phase variable determines which off-screen surface will be blitted to the back buffer. The IDirectDrawSurface3::BltFast method is then called to blit the selected off-screen surface onto the back buffer, starting at position (0, 0), the upper-left corner. The rcRect parameter points to the RECT structure that defines the upper-left and lower-right corners of the off-screen surface that will be blitted from. The last parameter is set to FALSE (or 0), indicating that no specific transfer flags are used.

Depending on the requirements of your application, you could use either the IDirectDrawSurface3::Blt method or the IDirectDrawSurface::BltFast method to blit from the off-screen buffer. If you are performing a blit from an off-screen plain buffer that is in display memory, you should use IDirectDrawSurface3::BltFast. Although you will not gain speed on systems that use hardware blitter on their display adapters, the blit will take about 10 percent less time on systems that use hardware emulation to perform the blit. Because of this, you should use IDirectDrawSurface3::BltFast for all display operations that blit from display memory to display memory. If you are blitting from system memory or require special hardware flags, however, you have to use IDirectDrawSurface3::Blt.

After the off-screen surface is loaded in the back buffer, the back buffer and the primary surface are flipped in much the same way as shown in the previous tutorials.

Tutorial 4: Color Keys and Bitmap Animation

[This is preliminary documentation and subject to change.]

The sample in Tutorial 3 (DDEx3) shows one simple method of placing bitmaps into an off-screen buffer before they are blitted to the back buffer. The sample in this tutorial (DDEx4) uses the techniques described in the previous tutorials to load a background and a series of sprites into an off-screen surface. Then it uses the IDirectDrawSurface3::BltFast method to copy portions of the off-screen surface to the back buffer, thereby generating a simple bitmap animation.

The bitmap file that DDEx4 uses, All.bmp, contains the background and 60 iterations of a rotating red donut with a black background. The DDEx4 sample contains new functions that set the color key for the rotating donut sprites. Then, the sample copies the appropriate sprite to the back buffer from the off-screen surface.

The new functionality demonstrated in DDEx4 is shown in the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Setting the Color Key

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Creating a Simple Animation

Step 1: Setting the Color Key

[This is preliminary documentation and subject to change.]

In addition to the other functions found in the doInit sample function of some of the other DirectDraw samples, the DDEx4 sample contains the code to set the color key for the sprites. Color keys are used for setting a color value that will be used for transparency. When the system contains a hardware blitter, all the pixels of a rectangle are blitted except the value that was set as the color key, thereby creating nonrectangular sprites on a surface. The following code shows how to set the color key in DDEx4:

// Set the color key for this bitmap (black).

DDSetColorKey(lpDDSOne, RGB(0,0,0));

return TRUE;

You can select the color key by setting the RGB values for the color you want in the call to the DDSetColorKey sample function. The RGB value for black is (0, 0, 0). The DDSetColorKey function calls the DDColorMatch function. (Both functions are in Ddutil.cpp.) The DDColorMatch function stores the current color value of the pixel at location (0, 0) on the bitmap located in the lpDDSOne surface. Then it takes the RGB values you supplied and sets the pixel at location (0, 0) to that color. Finally, it masks the value of the color with the number of bits per pixel that are available. After that is done, the original color is put back in location (0, 0), and the call returns to DDSetColorKey with the actual color key value. After it is returned, the color key value is placed in the dwColorSpaceLowValue member of the DDCOLORKEY structure. It is also copied to the dwColorSpaceHighValue member. The call to IDirectDrawSurface3::SetColorKey then sets the color key.

You may have noticed the reference to CLR_INVALID in DDSetColorKey and DDColorMatch. If you pass CLR_INVALID as the color key in the DDSetColorKey call in DDEx4, the pixel in the upper-left corner (0, 0) of the bitmap will be used as the color key. As the DDEx4 bitmap is delivered, that does not mean much because the color of the pixel at (0, 0) is a shade of gray. If, however, you would like to see how to use the pixel at (0, 0) as the color key for the DDEx4 sample, open the All.bmp bitmap file in a drawing application and then change the single pixel at (0, 0) to black. Be sure to save the change (it's hard to see). Then change the DDEx4 line that calls DDSetColorKey to the following:

DDSetColorKey(lpDDSOne, CLR_INVALID);

Recompile the DDEx4 sample, and ensure that the resource definition file is also recompiled so that the new bitmap is included. (To do this, you can simply add and then delete a space in the Ddex4.rc file.) The DDEx4 sample will then use the pixel at (0, 0), which is now set to black, as the color key.

Step 2: Creating a Simple Animation

[This is preliminary documentation and subject to change.]

The DDEx4 sample uses the updateFrame sample function to create a simple animation using the red donuts included in the All.bmp file. The animation consists of three red donuts positioned in a triangle and rotating at various speeds. This sample compares the Win32 GetTickCount function with the number of milliseconds since the last call to GetTickCount to determine whether to redraw any of the sprites. It subsequently uses the IDirectDrawSurface3::BltFast method first to blit the background from the off-screen surface (lpDDSOne) to the back buffer, and then to blit the sprites to the back buffer using the color key that you set earlier to determine which pixels are transparent. After the sprites are blitted to the back buffer, DDEx4 calls the IDirectDrawSurface3::Flip method to flip the back buffer and the primary surface.

Note that when you use IDirectDrawSurface3::BltFast to blit the background from the off-screen surface, the dwTrans parameter that specifies the type of transfer is set to DDBLTFAST_NOCOLORKEY. This indicates that a normal blit will occur with no transparency bits. Later, when the red donuts are blitted to the back buffer, the dwTrans parameter is set to DDBLTFAST_SRCCOLORKEY. This indicates that a blit will occur with the color key for transparency as it is defined, in this case, in the lpDDSOne buffer.

In this sample, the entire background is redrawn each time through the updateFrame function. One way of optimizing this sample would be to redraw only that portion of the background that changes while rotating the red donuts. Because the location and size of the rectangles that make up the donut sprites never change, you should be able to easily modify the DDEx4 sample with this optimization.

Tutorial 5: Dynamically Modifying Palettes

[This is preliminary documentation and subject to change.]

The sample described in this tutorial (DDEx5) is a modification of the sample described in Tutorial 4 (DDEx4) example. DDEx5 demonstrates how to dynamically change the palette entries while an application is running. The new functionality demonstrated in DDEx5 is shown in the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Loading the Palette Entries

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Rotating the Palettes

Step 1: Loading the Palette Entries

[This is preliminary documentation and subject to change.]

The following code in DDEx5 loads the palette entries with the values in the lower half of the All.bmp file (the part of the bitmap that contains the red donuts):

// First, set all colors as unused.

for(i=0; i<256; i++)

{

 torusColors[i] = 0;

}

// Lock the surface and scan the lower part (the torus area),

// and keep track of all the indexes found.

ddsd.dwSize = sizeof(ddsd);

while (lpDDSOne->Lock(NULL, &ddsd, 0, NULL) == DDERR_WASSTILLDRAWING)

 ;

// Search through the torus frames and mark used colors.

for(y=480; y<480+384; y++)

{

 for(x=0; x<640; x++)

 {

 torusColors[((BYTE *)ddsd.lpSurface)[y*ddsd.lPitch+x]] = 1;

 }

}

lpDDSOne->Unlock(NULL);

The torusColors array is used as an indicator of the color index of the palette used in the lower half of the All.bmp file. Before it is used, all of the values in the torusColors array are reset to 0. The off-screen buffer is then locked in preparation for determining if a color index value is used.

The torusColors array is set to start at row 480 and column 0 of the bitmap. The color index value in the array is determined by the byte of data at the location in memory where the bitmap surface is located. This location is determined by the lpSurface member of the DDSURFACEDESC structure, which is pointing to the memory location corresponding to row 480 and column 0 of the bitmap (y ´ lPitch + x). The location of the specific color index value is then set to 1. The y-value (row) is multiplied by the lPitch value (found in the DDSURFACEDESC structure) to get the actual location of the pixel in linear memory.

The color index values that are set in torusColors will be used later to determine which colors in the palette are rotated. Because there are no common colors between the background and the red donuts, only those colors associated with the red donuts are rotated. If you want to check whether this is true or not, just remove the "*ddsd.lPitch" from the array and see what happens when you recompile and run the program. (Without multiplying y ´ lPitch, the red donuts are never reached and only the colors found in the background are indexed and later rotated.) For more information about width and pitch, see Width vs. Pitch.

Step 2: Rotating the Palettes

[This is preliminary documentation and subject to change.]

The updateFrame sample function in DDEx5 works in much the same way as it did in Tutorial 4 (DDEx4). It first blits the background into the back buffer, and then it blits the three donuts in the foreground. However, before it flips the surfaces, updateFrame changes the palette of the primary surface from the palette index that was created in the doInit function, as shown in the following code:

// Change the palette.

if(lpDDPal->GetEntries(0, 0, 256, pe) != DD_OK)

{

 return;

}

for(i=1; i<256; i++)

{

 if(!torusColors[i])

 {

 continue;

 }

 pe[i].peRed = (pe[i].peRed+2) % 256;

 pe[i].peGreen = (pe[i].peGreen+1) % 256;

 pe[i].peBlue = (pe[i].peBlue+3) % 256;

}

if(lpDDPal->SetEntries(0, 0, 256, pe) != DD_OK)

{

 return;

}

The IDirectDrawPalette::GetEntries method in the first line queries palette values from a DirectDrawPalette object. Because the palette entry values pointed to by pe should be valid, the method will return DD_OK and continue. The loop that follows checks torusColors to determine if the color index was set to 1 during its initialization. If so, the red, green, and blue values in the palette entry pointed to by pe are rotated.

After all of the marked palette entries are rotated, the IDirectDrawPalette::SetEntries method is called to change the entries in the DirectDrawPalette object. This change takes place immediately if you are working with a palette set to the primary surface.

With this done, the surfaces are subsequently flipped.

Tutorial 6: Using Overlay Surfaces

[This is preliminary documentation and subject to change.]

This tutorial shows you, step by step, how to use DirectDraw and hardware supported overlay surfaces in your applications. The tutorial is written around the Mosquito sample application included with the DirectX SDK samples. Mosquito is a simple application that uses a flipping chain of overlay surfaces to display an animated bitmap on the desktop without blitting to the primary surface. The sample adjusts the characteristics of the overlay surface as needed to accommodate for hardware limitations.

The Mosquito sample application performs the following steps (complex tasks are divided into smaller sub-steps):

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Creating a Primary Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Testing for Hardware Overlay Support

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Creating an Overlay Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Displaying the Overlay Surface

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Updating the Overlay Display Position

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Hiding the Overlay Surface

Step 1: Creating a Primary Surface

[This is preliminary documentation and subject to change.]

To prepare for using overlay surfaces, you must first initialize DirectDraw and create a primary surface over which the overlay surface will be displayed. Mosquito creates a primary surface with the following code:

 // Zero-out the structure and set the dwSize member.

 ZeroMemory(&ddsd, sizeof(ddsd));

 ddsd.dwSize = sizeof(ddsd);

 // Set flags and create a primary surface.

 ddsd.dwFlags = DDSD_CAPS;

 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

 ddrval = g_lpdd->CreateSurface(&ddsd, &g_lpddsPrimary, NULL);

The preceding example begins by initializing the DDSURFACEDESC structure it will use. It then sets the flags appropriate to create a primary surface and creates it by calling the IDirectDraw2::CreateSurface method. For the call, the first parameter is a pointer to a DDSURFACEDESC structure that describes the surface to be created. The second parameter is a pointer to a variable that will receive an IDirectDrawSurface interface pointer if the call succeeds. The last parameter is set to NULL to indicate that no COM aggregation is taking place.

Step 2: Testing for Hardware Overlay Support

[This is preliminary documentation and subject to change.]

After initializing DirectDraw, you need to verify that the device supports overlay surfaces. Because DirectDraw doesn't emulate overlays, if the hardware device driver doesn't support them, you can't continue. You can test for overlay support by retrieving the device driver capabilities with the IDirectDraw2::GetCaps method. After the call, look for the presence of the DDCAPS_OVERLAY flag in the dwFlags member of the associated DDCAPS structure. If the flag is present, then the display hardware supports overlays; if not, you can't use overlay surfaces with that device.

The following example, taken from the Mosquito sample application, shows how to test for hardware overlay support:

BOOL AreOverlaysSupported()

{

 DDCAPS capsDrv;

 HRESULT ddrval;

 // Get driver capabilities to determine Overlay support.

 ZeroMemory(&capsDrv, sizeof(capsDrv));

 capsDrv.dwSize = sizeof(capsDrv);

 ddrval = g_lpdd->GetCaps(&capsDrv, NULL);

 if (FAILED(ddrval))

 return FALSE;

 // Does the driver support overlays in the current mode?

 // (Currently the DirectDraw emulation layer does not support overlays.

 // Overlay related APIs will fail without hardware support).

 if (!(capsDrv.dwCaps & DDCAPS_OVERLAY))

 return FALSE;

 return TRUE;

}

The preceding example calls the IDirectDraw2::GetCaps method to retrieve device driver capabilities. The first parameter for the call is the address of a DDCAPS that will be filled with information describing the device driver's capabilities. Because the application doesn't need information about emulation capabilities, the second parameter is set to NULL.

After retrieving the driver capabilities, the example checks the dwCaps member for the presence of the DDCAPS_OVERLAY flag using a logical AND operation. If the flag isn't present, the example returns FALSE to indicate failure. Otherwise, the example returns TRUE to indicate that the device driver supports overlay surfaces.

In your code, this might be a good time for you to check the dwMaxVisibleOverlays and dwCurrentVisibleOverlays members in the DDCAPS structure to ensure that no other overlay surfaces are in use by other applications.

Step 3: Creating an Overlay Surface

[This is preliminary documentation and subject to change.]

Now that you know that the driver supports overlay surfaces, you can try to create one. Because there is no standard dictating how devices must support overlay surfaces, you can't count on being able to create overlays of any particular size or pixel format. Additionally, you can't expect to succeed in creating an overlay surface on the first try. Therefore, be prepared to attempt creation multiple times starting with the most desirable characteristics, falling back on less desirable (but possibly less hardware intensive) configurations until one works.

Note

You can call the IDirectDraw2::GetFourCCCodes method to retrieve a list of FOURCC codes that describe non-RGB pixel formats that the driver will likely support for overlay surfaces. However, in you want to try using RGB overlay surfaces, it is recommended that you attempt to create surfaces in various common RGB formats, falling back on another format if you fail.

The Mosquito sample follows a "best case to worst case" philosophy when creating an overlay surface. Mosquito first tries to create a triple-buffered page flipping complex overlay surface. If the creation attempt fails, the sample tries the configuration with other common pixel formats. The following code fragment shows how this can be done:

 ZeroMemory(&ddsdOverlay, sizeof(ddsdOverlay));

 ddsdOverlay.dwSize = sizeof(ddsdOverlay);

 ddsdOverlay.dwFlags= DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH |

 DDSD_BACKBUFFERCOUNT| DDSD_PIXELFORMAT;

 ddsdOverlay.ddsCaps.dwCaps = DDSCAPS_OVERLAY | DDSCAPS_FLIP |

 DDSCAPS_COMPLEX | DDSCAPS_VIDEOMEMORY;

 ddsdOverlay.dwWidth =320;

 ddsdOverlay.dwHeight =240;

 ddsdOverlay.dwBackBufferCount=2;

 // Try to create an overlay surface using one of the pixel formats in our

 // global list.

 i=0;

 do{

 ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];

 // Try to create the overlay surface

 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

 } while(FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS));

The preceding example sets the flags and values within a DDSURFACEDESC structure to reflect a triple-buffered page flipping complex overlay surface. Then, the sample performs a loop during which it attempts to create the requested surface in a variety of common pixel formats, in order of most desirable to least desirable pixel formats. If the attempt succeeds, the loop ends. If all the attempts fail, it's likely that the display hardware doesn't have enough memory to support a triple-buffered scheme or that it doesn't support flipping overlay surfaces. In this case, the sample falls back on a less desirable configuration using a single non-flipping overlay surface, as shown in the following example:

 // If we failed to create a triple buffered complex overlay surface, try

 // again with a single non-flippable buffer.

 if(FAILED(ddrval))

 {

 ddsdOverlay.dwBackBufferCount=0;

 ddsdOverlay.ddsCaps.dwCaps=DDSCAPS_OVERLAY | DDSCAPS_VIDEOMEMORY;

 ddsdOverlay.dwFlags= DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT;

 // Try to create the overlay surface

 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

 i=0;

 do{

 ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];

 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

 } while(FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS));

 // We couldn't create an overlay surface. Exit, returning failure.

 if (FAILED(ddrval))

 return FALSE;

 }

The previous code resets the flags and values in the DDSURFACEDESC structure to reflect a single non-flipping overlay surface. Again, the example loops through pixel formats attempting to create the surfaces, stopping the loop if an attempt succeeded. If the attempts still didn't work, the sample returns FALSE to indicate failure.

After you've successfully created your overlay surface or surfaces, you can load bitmaps onto them in preparation for display.

Step 4: Displaying the Overlay Surface

[This is preliminary documentation and subject to change.]

After creating your overlay surface, you can display it. Often, display hardware imposes alignment restrictions on the position and pixel width of the rectangles you use to display the overlay. Additionally, you will often need to account for a minimum required stretch factor by adjusting the width of the destination rectangle in order to successfully display the overlay surface. The Mosquito sample performs the following tasks to prepare and display the overlay surface:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4.1: Determining the Minimum Display Requirements

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4.2: Setting Up the Source and Destination Rectangles

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4.3: Displaying the Overlay Surface

Step 4.1: Determining the Minimum Display Requirements

[This is preliminary documentation and subject to change.]

Most display hardware imposes restrictions on displaying overlay surfaces. You must carefully meet these restrictions in order to successfully display an overlay surface. You can retrieve information about these restrictions by calling the IDirectDraw2::GetCaps method. The DDCAPS structure that the method fills contains information about overlay capabilities and their usage restrictions. Hardware restrictions vary, so always look at the flags included in the dwFlags member to determine which restrictions apply to you.

The Mosquito sample starts by retrieving the hardware capabilities, then takes action based upon the minimum stretch factor, as shown in the following code fragment:

 // Get driver capabilities

 ddrval = g_lpdd->GetCaps(&capsDrv, NULL);

 if (FAILED(ddrval))

 return FALSE;

 // Check the minimum stretch and set the local variable accordingly.

 if(capsDrv.dwCaps & DDCAPS_OVERLAYSTRETCH)

 uStretchFactor1000 = (capsDrv.dwMinOverlayStretch>1000) ? capsDrv.dwMinOverlayStretch : 1000;

 else

 uStretchFactor1000 = 1000;

The preceding code calls GetCaps to retrieve only the hardware capabilities. For this call, the first parameter is a pointer the DDCAPS structure that will be filled with the capability information for the device driver, and the second parameter is NULL to indicate that emulation information is not to be retrieved.

The example retains the minimum stretch factor in a temporary variable for use later. (Keep in mind that stretch factors are reported multiplied by 1000, so 1300 really means 1.3.) If the driver reports a value greater than 1000, it means that the driver requires that all destination rectangles must be stretched along the x-axis by a ratio of the reported value. For example, if the driver reports a stretch factor 1.3 and the source rectangle is 320 pixels wide, the destination rectangle must be at least 416 pixels wide. If the driver reports a stretch factor less than 1000, it means that the driver can display overlays smaller than the source rectangle, but can also stretch the overlay if desired.

Next, the sample examines values describing the driver's size alignment restrictions, as shown in the following example:

 // Grab any alignment restrictions and set the local variables acordingly.

 uSrcSizeAlign = (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?capsDrv.dwAlignSizeSrc:0;

 uDestSizeAlign= (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?capsDrv.dwAlignSizeDest:0;

The sample uses more temporary variables to hold the reported size alignment restrictions taken from the dwAlignSizeSrc and dwAlignSizeDest members. These values provide information about pixel width alignment restrictions and are needed when setting the dimensions of the source and destination rectangles to reflect these restrictions later. Source and destination rectangles must have a pixel width that is a multiple of the values in these members.

Last, the sample examines the value that describes the destination rectangle boundary alignment:

 // Set the "destination position alignment" global so we won't have to

 // keep calling GetCaps() every time we move the overlay surface.

 if (capsDrv.dwCaps & DDCAPS_ALIGNBOUNDARYDEST)

 g_dwOverlayXPositionAlignment = capsDrv.dwAlignBoundaryDest;

 else

 g_dwOverlayXPositionAlignment = 0;

The preceding code uses a global variable to hold the value for the destination rectangle's boundary alignment, as taken from the dwAlignBoundaryDest member. This value will be used when the program repositions the overlay later. (For details, see Step 5: Updating the Overlay Display Position) You must set the x-coordinate of the destination rectangle's top left corner to be aligned with this value, in pixels. That is, if the value specified is 4, you can only specify destination rectangles whose top-left corner has an x-coordinate at pixels 0, 4, 8, 12, and so on. The Mosquito application initially displays the overlay at 0,0, so alignment compliance is assumed and the sample doesn't need to retrieve the restriction information until after displaying the overlay the first time. Your implementation might vary, so you will probably need to check this information and adjust the destination rectangle before displaying the overlay.

Step 4.2: Setting Up the Source and Destination Rectangles

[This is preliminary documentation and subject to change.]

After retrieving the driver's overlay restrictions you should set the values for your source and destination rectangles accordingly, assuring that you will be able to successfully display the overlay. The following sample from the Mosquito sample application starts by setting the characteristics of the source rectangle:

 // Set initial values in the source RECT.

 rs.left=0; rs.top=0;

 rs.right = 320;

 rs.bottom = 240;

 // Apply size alignment restrictions, if necessary.

 if (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC && uSrcSizeAlign)

 rs.right -= rs.right % uSrcSizeAlign;

The preceding code sets initial values for the surface to include the dimensions of the entire surface. If the device driver requires size alignment for the source rectangle, the example adjusts the source rectangle to conform. The example adjusts the width of the source rectangle to be narrower than the original size because the width cannot be expanded without completely recreating the surface. However, your code could just as easily start with a smaller rectangle and widen the rectangle to meet driver restrictions.

After the dimensions of the source rectangle are set and conform with hardware restrictions, you need to set and adjust the dimensions of the destination rectangle. This process requires a little more work because the rectangle might need to be stretched first, then adjusted to meet size alignment restrictions. The following code performs the task of accounting for the minimum stretch factor:

 // Set up the destination RECT, starting with the source RECT values.

 // We use the source RECT dimensions instead of the surface dimensions in

 // case they differ.

 rd.left=0; rd.top=0;

 rd.right = (rs.right*uStretchFactor1000+999)/1000;

 // (Adding 999 avoids integer truncation problems.)

 // (This isn't required by DDraw, but we'll stretch the

 // height, too, to maintain aspect ratio).

 rd.bottom = rs.bottom*uStretchFactor1000/1000;

The preceding code sets the top left corner of the destination rectangle to the top left corner of the screen, then sets the width to account for the minimum stretch factor. While adjusting for the stretch factor, note that the example adds 999 to the product of the width and stretch factor. This is done to prevent integer truncation that could result in a rectangle that isn't as wide as the minimum stretch factor requires. For more information, see Minimum and Maximum Stretch Factors. Also, after the example stretches the width, it stretches the height. Stretching the height isn't required, but was done to preserve the bitmap's aspect ratio and avoid a distorted appearance.

After stretching the destination rectangle, the example continues by adjusting it to conform to size alignment restrictions as follows:

 // Adjust the destination RECT's width to comply with any imposed

 // alignment restrictions.

 if (capsDrv.dwCaps & DDCAPS_ALIGNSIZEDEST && uDestSizeAlign)

 rd.right = (int)((rd.right+uDestSizeAlign-1)/uDestSizeAlign)*uDestSizeAlign;

The example checks the capabilities flags to see if the driver imposes destination size alignment restrictions. If so, the destination rectangle's width is increased by enough pixels to meet alignment restrictions. Note that the rectangle is adjusted by expanding the width, not by decreasing it. This is done because decreasing the width could cause the destination rectangle to be smaller than is required by the minimum stretch factor, consequently causing attempts to display the overlay surface to fail.

Step 4.3: Displaying the Overlay Surface

[This is preliminary documentation and subject to change.]

After you've set up the source and destination rectangles, you can display the overlay for the first time. If you've prepared correctly, this will be simple. The Mosquito sample uses the following code to initially display the overlay:

 // Set the flags we'll send to UpdateOverlay

 dwUpdateFlags = DDOVER_SHOW | DDOVER_DDFX;

 // Does the overlay hardware support source color keying?

 // If so, we can hide the black background around the image.

 // This probably won't work with YUV formats

 if (capsDrv.dwCKeyCaps & DDCKEYCAPS_SRCOVERLAY)

 dwUpdateFlags |= DDOVER_KEYSRCOVERRIDE;

 // Create an overlay FX structure so we can specify a source color key.

 // This information is ignored if the DDOVER_SRCKEYOVERRIDE flag isn't set.

 ZeroMemory(&ovfx, sizeof(ovfx));

 ovfx.dwSize = sizeof(ovfx);

 ovfx.dckSrcColorkey.dwColorSpaceLowValue=0; // Specify black as the color key

 ovfx.dckSrcColorkey.dwColorSpaceHighValue=0;

 // Call UpdateOverlay() to displays the overlay on the screen.

 ddrval = g_lpddsOverlay->UpdateOverlay(&rs, g_lpddsPrimary, &rd, dwUpdateFlags, &ovfx);

 if(FAILED(ddrval))

 return FALSE;

The preceding example starts by setting the DDOVER_SHOW and DDOVER_DDFX flags in the dwUpdateFlags temporary variable, indicating that the overlay is to be displayed for the first time, and that the hardware should use the effects information included in an associated DDOVERLAYFX structure to do so. Next, the example checks a previously existing DDCAPS structure to determine if overlay source color keying is supported. If it is, the DDOVER_KEYSRCOVERRIDE is included in the dwUpdateFlags variable to take advantage of source color keying and the example sets color key values accordingly.

After preparation is complete, the example calls the IDirectDrawSurface3::UpdateOverlay method to display the overlay. For the call, the first and third parameters are the addresses of the adjusted source and destination rectangles. The second parameter is the address of the primary surface over which the overlay will be displayed. The fourth parameter consists of the flags placed in the previously prepared dwUpdateFlags variable, and the fifth parameter is the address of DDOVERLAYFX structure whose members were set to match those flags.

If the hardware only supports one overlay surface and that surface is in use, the UpdateOverlay method fails, returning DDERR_OUTOFCAPS. Additionally, if UpdateOverlay fails, you might try increasing the width of the destination rectangle to accommodate for the possibility that the hardware incorrectly reported a minimum stretch factor that was too small. However, this rarely occurs and Mosquito simply fails if UpdateOverlay doesn't succeed.

Step 5: Updating the Overlay Display Position

[This is preliminary documentation and subject to change.]

After displaying the overlay surface, you might not need to do anything else. However, some software might need to reposition the overlay surface. The Mosquito sample uses the IDirectDrawSurface3::SetOverlayPosition method to reposition the overlay, as shown in the following example:

 // Set x- and y-coordinates

 .

 .

 .

 // We need to check for any alignment restrictions on the x-position

 // and align it if necessary.

 if (g_dwOverlayXPositionAlignment)

 dwXAligned = g_nOverlayXPos - g_nOverlayXPos % g_dwOverlayXPositionAlignment;

 else

 dwXAligned = g_nOverlayXPos;

 // Set the overlay to its new position.

 ddrval = g_lpddsOverlay->SetOverlayPosition(dwXAligned, g_nOverlayYPos);

 if (ddrval == DDERR_SURFACELOST)

 {

 if (!RestoreAllSurfaces())

 return;

 }

The preceding example starts by aligning the rectangle to meet any destination rectangle boundary alignment restrictions that might exist. The global variable that it checks, g_dwOverlayXPositionAlignment, was set earlier to equal the value reported in the dwAlignBoundaryDest member of the DDCAPS structure when the application previously called the IDirectDraw2::GetCaps method. (For details, see Step 4.1: Determining the Minimum Display Requirements). If destination alignment restrictions exist, the example adjusts the new x-coordinate to be pixel-aligned accordingly. Failing to meet this requirement will cause the overlay surface not to be displayed.

After making any requisite adjustments to the new x-coordinate, the example calls IDirectDrawSurface3::SetOverlayPosition method to reposition the overlay. For the call, the first parameter is the aligned x-coordinate, and the second parameter is the new y-coordinate. These values represent the new location of the overlay's top-left corner. Width and height information are not accepted, nor are they needed because DirectDraw already knows the dimensions of the surface from the IDirectDrawSurface3::UpdateOverlay method made to initially display the overlay. If the call fails because one or more surfaces were lost, the example calls an application-defined function to restore them and reload their bitmaps.

Note

Take care not to use coordinates too close to the bottom or right edge of the target surface. The IDirectDraw2::SetOverlayPosition method does not perform clipping for you; using coordinates that would potentially make the overlay run off the edge of the target surface will cause the method to fail, returning DDERR_INVALIDPOSITION.

Step 6: Hiding the Overlay Surface

[This is preliminary documentation and subject to change.]

When you do not need the overlay surface anymore, or if you simply want to remove it from view, you can hide the surface by calling the IDirectDrawSurface3::UpdateOverlay method with the appropriate flags. Mosquito hides the overlay in preparation for closing the application using the following code:

void DestroyOverlay()

{

 if (g_lpddsOverlay){

 // Use UpdateOverlay() with the DDOVER_HIDE flag to remove an overlay

 // from the display.

 g_lpddsOverlay->UpdateOverlay(NULL, g_lpddsPrimary, NULL, DDOVER_HIDE, NULL);

 g_lpddsOverlay->Release();

 g_lpddsOverlay=NULL;

 }

}

When the preceding example calls IDirectDrawSurface3::UpdateOverlay, it specifies NULL for the source and destination rectangles, because they are irrelevant when hiding the overlay. Similarly, the example uses NULL in the fifth parameter because overlay effects aren't being used. The second parameter is a pointer to the target surface. Lastly, the example uses the DDOVER_HIDE flag in the fourth parameter to indicate that the overlay will be removed from view.

After the example hides the overlay, the example releases its IDirectDrawSurface3 interface and invalidates its global variable by setting it to NULL. For the purposes of the Mosquito sample application, the overlay surface is no longer needed. If you still need the overlay surface for later, you could simply hide the overlay without releasing it, then redisplay it whenever you require.

DirectDraw Visual Basic Tutorials

[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each of which provides step-by-step instructions for implementing a simple DirectDraw application. These tutorials use many of the DirectDraw sample files that are provided with this SDK. These samples demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to perform common tasks:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 1: Blitting to the Screen

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 2: Using Transparency

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 3: Using Full Screen Features

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 4: Blitting to Areas of the Screen

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 5: Enumerating DirectDraw Devices

Tutorial 1: Blitting to the Screen

[This is preliminary documentation and subject to change.]

This first tutorial deals with blitting a bitmap to the display adapter. The term blit is shorthand for "bit block transfer," which is the process of transferring blocks of data from one place in memory to another. Graphics programmers use blitting to transfer graphics from one place in memory to another. Blits are often used to perform sprite animation.

To use DirectDraw, you first create an instance of the DirectDraw object, which represents the display adapter on the computer. You then use methods to manipulate the object. In addition, you need to create one or more instances of a DirectDrawSurface object to be able to display your application on a graphics surface.

To demonstrate this, the Tutorial 1 - Blitting to the Screen sample included in this SDK performs the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Creating the Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Declaring Module Level Variables

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Initializing Variables

Step 1: Creating the Form

[This is preliminary documentation and subject to change.]

The Tutorial 1 - blitting sample is a Standard EXE project with a picture box control placed on the form. The picture box control is placed with the top left corner of the picture box with the top left corner of the form. This picture box is used to display the bitmap image of the application and is named Picture1.

Step 2: Declaring Module Level Variables

[This is preliminary documentation and subject to change.]

The first step of coding DirectX application written in Visual Basic is to create the DirectX7 Class. This object contains the methods necessary to create the starting objects of all the DirectX components including DirectDraw, DirectSound, Direct3D Immediate Mode, Direct3D Retained Mode, DirectInput and DirectPlay. Information on Direct3D Retained Mode can be found in the DirectX Media for Visual Basic node of this documentation.

The DirectX7 class is the top level class of the DxVBLib type library and an object of this class is created with the statement:

Dim objDX As New DirectX7

Additional module level variables declarations found in the Tutorial 1 - blitting sample are for a DirectDraw object, DirectDrawSurface objects, DirectDraw surface description types, and a Boolean variable used to hold initialization information.

Note that in this sample we have set the Option Explicit flag and have an external Win32 procedure declaration.

Step 3: Initializing Variables

[This is preliminary documentation and subject to change.]

The first procedure called from the Form_Load event is the init procedure. This procedure creates the DirectDraw object. This is accomplished by invoking the DirectX7.DirectDrawCreate method of the DirectX7 object and setting the returned object to DirectDraw which we declared as an object variable of class DirectDraw4. In the Tutorial 1 - blitting sample, this is done with the statement:

Set objDD = objDX.DirectDrawCreate("")

This method takes only one string argument and passing an empty string specifies the active display driver.

Next you must specify the behavior of the application by calling the DirectDraw4.SetCooperativeLevel method of the DirectDraw object. The Tutorial 1 - blitting sample is run as a regular windowed application and this is done with the statement:

Call objDD.SetCooperativeLevel (Me.hwnd, DDSCL_NORMAL)

You are now ready to start creating surfaces. Before you actually create the surface object, you need to create a surface description by setting the members of the DDSURFACEDESC2 type. One of the members of this type is ddscaps, a nested type, and by setting the lFlags member of the DDSURFACEDESC2 to DDSD_CAPS, you are stating that the ddscaps member is valid in this type. This is done with the statement:

ddsd1.lFlags = DDSD_CAPS

Next you need to specify that this type description is for a primary surface, which is done with the statement:

ddsd1.ddsCaps.lCaps = DDSCAPS_PRIMARYSURFACE

After creating the surface description, you actually create the surface object by invoking the CreateSurface method from the DirectDraw object with the set surface description as an argument. This is done in the Tutorial 1 - blitting sample with the statement:

Set objDDPrimSurf = objDD.CreateSurface(ddsd1)

The surface object creation steps are repeated for a second surface which has the DDSCAPS_OFFSCREENPLAIN flag set to specify that this surface is any off-screen surface that is not an overlay, texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to identify plain surfaces. Then the CreateSurfaceFromFile method is invoked from the DirectDraw object. This method creates the surface object and loads a bitmap onto the surface. These steps are shown with the statements:

ddsd2.lFlags = DDSD_CAPS

ddsd2.ddsCaps.lCaps = DDSCAPS_OFFSCREENPLAIN

Set objDDSurf = objDD.CreateSurfaceFromFile("lake.bmp", ddsd2)

After initializing all the variables and objects we set the bInit variable to True and call the blt procedure.

Step 4: Blitting the Surface

[This is preliminary documentation and subject to change.]

So far in the Tutorial 1 - Blitting to the Screen sample you have created a primary surface and a off-screen surface which has a loaded bitmap. To display the bitmap on the screen, you must blit the off-screen surface to the primary surface. The blit method of the DirectDraw surface object takes four arguments and returns a Long indicating the success or failure of the blit. Two of the arguments of are type RECT which specify the bounding rectangles of the destination surface and the source surface.

The coordinates of the source rectangle are obtained from the lHeight and the lWidth members of the off-screen surface description. There are a few extra steps in obtaining the destination rectangle. First of all, since Visual Basic uses twips for screen measurement and DirectX uses pixels, the dimensions of the Visual Basic picture box control must be converted to pixels before setting the destination rectangle. This is accomplished by setting the ScaleMode property of the form to Pixels and then making the width and height of the picture box equal to the ScaleWidth and ScaleHeight of the form. In the Tutorial 1 - blitting sample, this is done with the statements:

Picture1.Width = Me.ScaleWidth

Picture1.Height = Me.ScaleHeight

These statements are in the Form_Resize procedure and are executed when the form is initially displayed and resized.

Furthermore, the destination RECT type is filled when the Win32 function GetWindowRect is called.

Lastly the blit is perform with the blt method of the primary surface object:

ddrval = objDDPrimSurf.blt(r1, objDDSurf, r2, DDBLT_WAIT)

The result of the method is a Long that is stored in ddrval. You can check this variable for success or failure. The last argument of the above method is the DDBLT_WAIT flag which tells DirectDraw to wait if the blitter is busy and blit the surface when it becomes available.

Tutorial 2: Using Transparency

[This is preliminary documentation and subject to change.]

<To be written>

Tutorial 3: Using Full Screen Features

[This is preliminary documentation and subject to change.]

<To be written>

Tutorial 4: Blitting to Areas of the Screen

[This is preliminary documentation and subject to change.]

<To be written>

Tutorial 5: Enumerating DirectDraw Devices

[This is preliminary documentation and subject to change.]

<To be written>

DirectDraw Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the application programming interface (API) elements provided by DirectDraw® in C/C++ and Visual Basic. Reference material is organized by language:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw C/C++ Reference

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw Visual Basic Reference

DirectDraw C/C++ Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements that DirectDraw provides. Reference material is divided into the following categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Functions

�SYMBOL 183 \f "Symbol" \s 11 \h �	Callback Functions

�SYMBOL 183 \f "Symbol" \s 11 \h �	Structures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Return Values

�SYMBOL 183 \f "Symbol" \s 11 \h �	Pixel Format Masks

�SYMBOL 183 \f "Symbol" \s 11 \h �	Four Character Codes (FOURCC)

Interfaces

[This is preliminary documentation and subject to change.]

This section contains reference information about the interfaces used with the DirectDraw component. The following interfaces are covered:

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDDVideoPortContainer

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDraw4

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDrawClipper

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDrawColorControl

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDrawGammaControl

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDrawPalette

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDrawSurface4

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectDrawVideoPort

IDDVideoPortContainer

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDDVideoPortContainer interface to create and manipulate DirectDrawVideoPort objects. You retrieve a pointer to this interface by calling the IUnknown::QueryInterface method of a DirectDraw object, specifying the IID_IDDVideoPortContainer reference identifier.

The methods of the IDDVideoPortContainer interface can be organized into the following groups:

Creating objects �CreateVideoPort �����Video ports �EnumVideoPorts ���QueryVideoPortStatus�����Connections �GetVideoPortConnectInfo ��

The IDDVideoPortContainer interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef���QueryInterface���Release ��

You can use the LPDDVIDEOPORTCONTAINER data type to declare a variable that contains a pointer to an IDDVideoPortContainer interface. The Dvp.h header file declares the LPDDVIDEOPORTCONTAINER with the following code:

typedef struct IDDVideoPortContainer FAR *LPDDVIDEOPORTCONTAINER;

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDDVideoPortContainer::CreateVideoPort

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::CreateVideoPort method creates a DirectDrawVideoPort object.

HRESULT CreateVideoPort(

 DWORD dwFlags,

 LPDDVIDEOPORTDESC lpDDVideoPortDesc,

 LPDIRECTDRAWVIDEOPORT FAR *lplpDDVideoPort,

 IUnknown FAR *pUnkOuter

);

Parameters

dwFlags

Flags specifying video-port control options. This parameter can be one of the following flags, or NULL if control options are not needed:

DDVPCREATE_VBIONLY

The process only wants to control the VBI portion of the video stream.

DDVPCREATE_VIDEOONLY

The process only wants to control the non-VBI (video) portion of the video stream.

lpDDVideoPortDesc

Address of a DDVIDEOPORTDESC structure that describes the DirectDrawVideoPort object to be created.

lplpDDVideoPort

Address of a variable that will be filled with a pointer to the new DirectDrawVideoPort object's IDirectDrawVideoPort interface if the call succeeds.

pUnkOuter

Allows for future compatibility with COM aggregation features. Presently, however, this method will return an error if this parameter is anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CURRENTLYNOTAVAIL��DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_NOCOOPERATIVELEVELSET��DDERR_OUTOFCAPS��DDERR_OUTOFMEMORY��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDDVideoPortContainer::EnumVideoPorts

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::EnumVideoPorts method enumerates all of the video ports that the hardware exposes that are compatible with a provided video port description.

HRESULT EnumVideoPorts(

 DWORD dwFlags,

 LPDDVIDEOPORTCAPS lpDDVideoPortCaps,

 LPVOID lpContext,

 LPENUMVIDEOCALLBACK lpEnumVideoCallback

);

Parameters

dwFlags

Reserved for future use. This parameter must be zero.

lpDDVideoPortCaps

Pointer to a DDVIDEOPORTCAPS structure that will be checked against the available video ports. If this parameter is NULL, all video ports will be enumerated.

lpContext

Address of a caller-defined structure that will be passed to each enumeration member.

lpEnumVideoCallback

Address of the EnumVideoCallback function that will be called each time a match is found.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDDVideoPortContainer::GetVideoPortConnectInfo

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::GetVideoPortConnectInfo method retrieves the connection information supported by all video ports.

HRESULT GetVideoPortConnectInfo(

 DWORD dwPortId,

 LPDWORD lpNumEntries,

 LPDDVIDEOPORTCONNECT lpConnectInfo

);

Parameters

dwPortId

Identifier of the video port for which the connection information will be retrieved.

lpNumEntries

Address of a variable containing the number of entries that the array at lpConnectInfo can hold. If this number is less than the total number of connections, the method fills the array with as many entries as will fit, sets the value at lpNumEntries to indicate the total number of connections, and returns DDERR_MOREDATA.

lpConnectInfo

Address of an array of DDVIDEOPORTCONNECT structures that will be filled with the connection options supported by the specified video port. If this parameter is NULL, the method sets lpNumEntries to indicate the total number of connections that the video port supports, then returns DD_OK.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_MOREDATA��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDDVideoPortContainer::QueryVideoPortStatus

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::QueryVideoPortStatus method retrieves the status of a DirectDrawVideoPort object.

HRESULT QueryVideoPortStatus(

 DWORD dwPortId,

 LPDDVIDEOPORTSTATUS lpVPStatus

);

Parameters

dwPortId

Identifier of the video port for which the status information will be retrieved.

lpVPStatus

Address of a DDVIDEOPORTSTATUS structure that will be filled with information about the status of the specified video port.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CURRENTLYNOTAVAIL��DDERR_EXCEPTION��DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDraw4

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDraw4 interface to create DirectDraw objects and work with system-level variables. This section is a reference to the methods of this interface. For a conceptual overview, see The DirectDraw Object.

The methods of the IDirectDraw4 interface can be organized into the following groups:

Allocating memory �Compact ���Initialize �����Cooperative levels �SetCooperativeLevel ���TestCooperativeLevel�����Creating objects �CreateClipper ���CreatePalette ���CreateSurface �����Device capabilities �GetCaps �����Display modes �EnumDisplayModes ���GetDisplayMode ���GetMonitorFrequency ���RestoreDisplayMode ���SetDisplayMode ���WaitForVerticalBlank �����Display status �GetScanLine ���GetVerticalBlankStatus �����Miscellaneous �GetAvailableVidMem ���GetDeviceIdentifier���GetFourCCCodes �����Surface management �DuplicateSurface ���EnumSurfaces ���FlipToGDISurface ���GetGDISurface ���GetSurfaceFromDC���RestoreAllSurfaces�����

The IDirectDraw4 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

The IDirectDraw4 interface extends the features of previous versions of the interface by offering methods enabling more flexible surface management than previous versions. Note that all of the surface-related methods in the IDirectDraw4 interface accept slightly different parameters than their counterparts in the IDirectDraw2 interface. Wherever an IDirectDraw2 interface method might accept a DDSURFACEDESC structure and retrieve an IDirectDrawSurface3 interface, the methods in IDirectDraw4 accept a DDSURFACEDESC2 structure and retrieve an IDirectDrawSurface4 interface instead.

IDirectDraw4 introduces improved compliance with COM rules dictating the lifetimes of child objects. For more information, see Parent and Child Object Lifetimes.

You can use the LPDIRECTDRAW, LPDIRECTDRAW2, or LPDIRECTDRAW4 data types to declare a variable that contains a pointer to an IDirectDraw, IDirectDraw2, or IDirectDraw4 interface. The Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDraw FAR *LPDIRECTDRAW;

typedef struct IDirectDraw2 FAR *LPDIRECTDRAW2;

typedef struct IDirectDraw4 FAR *LPDIRECTDRAW4;

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::Compact

[This is preliminary documentation and subject to change.]

The IDirectDraw4::Compact method is not currently implemented.

HRESULT Compact();

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOEXCLUSIVEMODE ��DDERR_SURFACEBUSY ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::CreateClipper

[This is preliminary documentation and subject to change.]

The IDirectDraw4::CreateClipper method creates a DirectDrawClipper object.

HRESULT CreateClipper(

 DWORD dwFlags,

 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,

 IUnknown FAR *pUnkOuter

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

lplpDDClipper

Address of a variable that will be set to a valid IDirectDrawClipper interface pointer if the call succeeds.

pUnkOuter

Allows for future compatibility with COM aggregation features. Presently, however, this method will return an error if this parameter is anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_OUTOFMEMORY ��

Remarks

The DirectDrawClipper object can be attached to a DirectDrawSurface and used during IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltBatch, and IDirectDrawSurface4::UpdateOverlay operations.

To create a DirectDrawClipper object that is not owned by a specific DirectDraw object, use the DirectDrawCreateClipper function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetClipper, IDirectDrawSurface4::SetClipper

IDirectDraw4::CreatePalette

[This is preliminary documentation and subject to change.]

The IDirectDraw4::CreatePalette method creates a DirectDrawPalette object for this DirectDraw object.

HRESULT CreatePalette(

 DWORD dwFlags,

 LPPALETTEENTRY lpDDColorArray,

 LPDIRECTDRAWPALETTE FAR *lplpDDPalette,

 IUnknown FAR *pUnkOuter

);

Parameters

dwFlags

One or more of the following flags:

DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.

DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.

DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.

DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.

DDPCAPS_8BITENTRIES

Indicates that the index refers to an 8-bit color index. This flag is valid only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT flag, and when the target surface is in 8 bpp. Each color entry is 1 byte long and is an index to a destination surface's 8-bpp palette.

DDPCAPS_ALPHA

Indicates that the peFlags member of the associated PALETTEENTRY structure is to be interpreted as a single 8-bit alpha value (in addition to the peRed, peGreen, and peBlue members). A palette created with this flag can only be attached to a texture—a surface created with the DDSCAPS_TEXTURE capability flag.

DDPCAPS_ALLOW256

Indicates that this palette can have all 256 entries defined.

DDPCAPS_INITIALIZE

Initialize this palette with the colors in the color array passed at lpDDColorArray.

DDPCAPS_PRIMARYSURFACE

This palette is attached to the primary surface. Changing this palette's color table immediately affects the display unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT

This palette is the one attached to the left eye primary surface. Changing this palette's color table immediately affects the left eye display unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC

This palette can have modifications to it synced with the monitors refresh rate.

lpDDColorArray

Address of an array of 2, 4, 16, or 256 PALETTEENTRY structures that will initialize this DirectDrawPalette object.

lplpDDPalette

Address of a variable that will be set to a valid IDirectDrawPalette interface pointer if the call succeeds.

pUnkOuter

Allows for future compatibility with COM aggregation features. Presently, however, this method will return an error if this parameter is anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_OUTOFMEMORY ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::CreateSurface

[This is preliminary documentation and subject to change.]

The IDirectDraw4::CreateSurface method creates a DirectDrawSurface object for this DirectDraw object.

HRESULT CreateSurface(

 LPDDSURFACEDESC2 lpDDSurfaceDesc2,

 LPDIRECTDRAWSURFACE4 FAR *lplpDDSurface,

 IUnknown FAR *pUnkOuter

);

Parameters

lpDDSurfaceDesc2

Address of a DDSURFACEDESC2 structure that describes the requested surface. You should set any unused members of the DDSURFACEDESC2 structure to zero before calling this method. A DDSCAPS2 structure is a member of DDSURFACEDESC2.

lplpDDSurface

Address of a variable that will be set to a valid IDirectDrawSurface4 interface pointer if the call succeeds.

pUnkOuter

Allows for future compatibility with COM aggregation features. Presently, however, this method will return an error if this parameter is anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INCOMPATIBLEPRIMARY ��DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPIXELFORMAT ��DDERR_NOALPHAHW ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_NODIRECTDRAWHW ��DDERR_NOEMULATION ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOFLIPHW ��DDERR_NOMIPMAPHW ��DDERR_NOOVERLAYHW ��DDERR_NOZBUFFERHW ��DDERR_OUTOFMEMORY ��DDERR_OUTOFVIDEOMEMORY ��DDERR_PRIMARYSURFACEALREADYEXISTS ��DDERR_UNSUPPORTEDMODE ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::DuplicateSurface

[This is preliminary documentation and subject to change.]

The IDirectDraw4::DuplicateSurface method duplicates a DirectDrawSurface object.

HRESULT DuplicateSurface(

 LPDIRECTDRAWSURFACE4 lpDDSurface,

 LPLPDIRECTDRAWSURFACE4 FAR *lplpDupDDSurface

);

Parameters

lpDDSurface

Address of the IDirectDrawSurface4 interface for the surface to be duplicated.

lplpDupDDSurface

Address of a variable that will be filled with an IDirectDrawSurface4 interface pointer for the newly duplicated DirectDrawSurface object.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTDUPLICATE ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��DDERR_SURFACELOST ��

Remarks

This method creates a new DirectDrawSurface object that points to the same surface memory as an existing DirectDrawSurface object. This duplicate can be used just like the original object. The surface memory is released after the last object referencing it is released. A primary surface, 3-D surface, or implicitly created surface cannot be duplicated.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::EnumDisplayModes

[This is preliminary documentation and subject to change.]

The IDirectDraw4::EnumDisplayModes method enumerates all of the display modes the hardware exposes through the DirectDraw object that are compatible with a provided surface description.

HRESULT EnumDisplayModes(

 DWORD dwFlags,

 LPDDSURFACEDESC2 lpDDSurfaceDesc2,

 LPVOID lpContext,

 LPDDENUMMODESCALLBACK2 lpEnumModesCallback

);

Parameters

dwFlags

DDEDM_REFRESHRATES

Enumerates modes with different refresh rates. IDirectDraw4::EnumDisplayModes guarantees that a particular mode will be enumerated only once. This flag specifies whether the refresh rate is taken into account when determining if a mode is unique.

DDEDM_STANDARDVGAMODES

Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

lpDDSurfaceDesc2

Address of a DDSURFACEDESC2 structure that will be checked against available modes. If the value of this parameter is NULL, all modes are enumerated.

lpContext

Address of an application-defined structure that will be passed to each enumeration member.

lpEnumModesCallback

Address of the EnumModesCallback2 function that the enumeration procedure will call every time a match is found.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

This method enumerates the dwRefreshRate member of the DDSURFACEDESC2 structure; the IDirectDraw::EnumDisplayModes method does not contain this capability. If you use the IDirectDraw4::SetDisplayMode method to set the refresh rate of a new mode, you must use IDirectDraw4::EnumDisplayModes to enumerate the dwRefreshRate member.

This method differs from its counterparts in former interfaces in that it accepts the address of an EnumModesCallback2 function as a parameter rather than an EnumModesCallback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::GetDisplayMode, IDirectDraw4::SetDisplayMode, IDirectDraw4::RestoreDisplayMode

IDirectDraw4::EnumSurfaces

[This is preliminary documentation and subject to change.]

The IDirectDraw4::EnumSurfaces method enumerates all of the existing or possible surfaces that meet the specified surface description.

HRESULT EnumSurfaces(

 DWORD dwFlags,

 LPDDSURFACEDESC2 lpDDSD2,

 LPVOID lpContext,

 LPDDENUMSURFACESCALLBACK2 lpEnumSurfacesCallback

);

Parameters

dwFlags

A combination of one search type flag and one matching flag. The search type flag determines how the method searches for matching surfaces; you can search for surfaces that can be created using the description in the lpDDSD2 parameter or you can search for existing surfaces that already match that description. The matching flag determines whether the method enumerates all surfaces, only those that match, or only those that don't match the description in the lpDDSD2 parameter.

Search type flags

DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search criterion. This flag can only be used with the DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST

Enumerates the already existing surfaces that meet the search criterion.

Matching flags

DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the search criterion. This flag can only be used with the DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH

Searches for any surface that matches the surface description.

DDENUMSURFACES_NOMATCH

Searches for any surface that does not match the surface description.

lpDDSD2

Address of a DDSURFACEDESC2 structure that defines the surface of interest. This parameter can be NULL if dwFlags includes the DDENUMSURFACES_ALL flag.

lpContext

Address of an application-defined structure that will be passed to each enumeration member.

lpEnumSurfacesCallback

Address of the EnumSurfacesCallback2 function the enumeration procedure will call every time a match is found.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

If the DDENUMSURFACES_CANBECREATED flag is set, this method attempts to temporarily create a surface that meets the search criterion.

When using the DDENUMSURFACES_DOESEXIST flag, note that an enumerated surface's reference count is incremented—if you are not going to use the surface, be sure to use IDirectDrawSurface4::Release to release it after each enumeration. If you will be using the surface, release it when it is no longer needed.

This method differs from its counterparts in previous interface versions in that it accepts a pointer to an EnumSurfacesCallback2 function, rather than an EnumSurfacesCallback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

Enumerating Surfaces

IDirectDraw4::FlipToGDISurface

[This is preliminary documentation and subject to change.]

The IDirectDraw4::FlipToGDISurface method makes the surface that GDI writes to the primary surface.

HRESULT FlipToGDISurface();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND ��

Remarks

This method can be called at the end of a page-flipping application to ensure that the display memory that GDI is writing to is visible to the user.

The method can also be used to make the GDI surface the primary surface, so that normal windows such as dialog boxes can be displayed in full-screen mode. The hardware must have the DDCAPS2_CANRENDERWINDOWED capability. For more information, see Displaying a Window in Full-Screen Mode

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::GetGDISurface

IDirectDraw4::GetAvailableVidMem

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetAvailableVidMem method retrieves the total amount of display memory available and the amount of display memory currently free for a given type of surface.

HRESULT GetAvailableVidMem(

 LPDDSCAPS2 lpDDSCaps2,

 LPDWORD lpdwTotal,

 LPDWORD lpdwFree

);

Parameters

lpDDSCaps2

Address of a DDSCAPS2 structure that indicates the hardware capabilities of the proposed surface.

lpdwTotal

Address of a variable that will be filled with the total amount of display memory available, in bytes. The value retrieved reflects the total video memory, less the video memory required for the primary surface and any private caches the display driver reserves.

lpdwFree

Address of a variable that will be filled with the amount of display memory currently free that can be allocated for a surface that matches the capabilities specified by the structure at lpDDSCaps2.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NODIRECTDRAWHW ��

If NULL is passed to either lpdwTotal or lpdwFree, the value for that parameter is not returned.

Remarks

The following C++ example demonstrates using IDirectDraw4::GetAvailableVidMem to determine both the total and free display memory available for texture-map surfaces:

// For this example, the lpDD variable is a valid

// pointer to an IDirectDraw interface.

LPDIRECTDRAW4 lpDD4;

DDSCAPS2 ddsCaps2;

DWORD dwTotal;

DWORD dwFree;

HRESULT hr;

hr = lpDD->QueryInterface(IID_IDirectDraw4, &lpDD4);

if (FAILED(hr))

 return hr;

// Initialize the structure.

ZeroMemory(&ddsCaps2, sizeof(ddsCaps2));

ddsCaps2.dwCaps = DDSCAPS_TEXTURE;

hr = lpDD4->GetAvailableVidMem(&ddsCaps2, &dwTotal, &dwFree);

if (FAILED(hr))

 return hr;

This method provides only a snapshot of the current display-memory state. The amount of free display memory is subject to change as surfaces are created and released. Therefore, you should use the free memory value only as an approximation. In addition, a particular display adapter card may make no distinction between two different memory types. For example, the adapter might use the same portion of display memory to store z-buffers and textures. So, allocating one type of surface (for example, a z-buffer) can affect the amount of display memory available for another type of surface (for example, textures). Therefore, it is best to first allocate an application's fixed resources (such as front and back buffers , and z-buffers) before determining how much memory is available for dynamic use (such as texture mapping).

This method was not implemented in the IDirectDraw interface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::GetCaps

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetCaps method fills in the capabilities of the device driver for the hardware and the hardware-emulation layer (HEL).

HRESULT GetCaps(

 LPDDCAPS lpDDDriverCaps,

 LPDDCAPS lpDDHELCaps

);

Parameters

lpDDDriverCaps

Address of a DDCAPS structure that will be filled with the capabilities of the hardware, as reported by the device driver. Set this parameter to NULL if device driver capabilities are not to be retrieved.

lpDDHELCaps

Address of a DDCAPS structure that will be filled with the capabilities of the HEL. Set this parameter to NULL if HEL capabilities are not to be retrieved.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

You can only set one of the two parameters to NULL to exclude it. If you set both to NULL the method will fail, returning DDERR_INVALIDPARAMS.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::GetDeviceIdentifier

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetDeviceIdentifier method obtains information about the driver. This method can be used, with caution, to recognize specific hardware installations in order to implement workarounds for poor driver/chipset behavior.

HRESULT GetDeviceIdentifier(

 LPDDDEVICEIDENTIFIER lpdddi,

 DWORD dwFlags

);

Parameters

lpdddi

Address of a DDDEVICEIDENTIFIER structure to receive information about the driver.

dwFlags

Flags specifying options. The following flag is defined:

DDGDI_GETHOSTIDENTIFIER

Causes the method to return information about the host (typically 2-D) adapter in a system equipped with a stacked secondary 3-D adapter. Such an adapter appears to the application as if it were part of the host adapter, but is typically located on a separate card. When the dwFlags parameter is zero, the stacked secondary's information is returned, because this most accurately reflects the qualities of the DirectDraw object involved.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be DDERR_INVALIDPARAMS.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::GetDisplayMode

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetDisplayMode method retrieves the current display mode.

HRESULT GetDisplayMode(

 LPDDSURFACEDESC2 lpDDSurfaceDesc2

);

Parameters

lpDDSurfaceDesc2

Address of a DDSURFACEDESC2 structure that will be filled with a description of the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTEDMODE ��

Remarks

An application should not save the information returned by this method to restore the display mode on clean-up. The application should use the IDirectDraw4::RestoreDisplayMode method to restore the mode on clean-up, thereby avoiding mode-setting conflicts that could arise in a multiprocess environment.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::SetDisplayMode, IDirectDraw4::RestoreDisplayMode, IDirectDraw4::EnumDisplayModes

IDirectDraw4::GetFourCCCodes

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetFourCCCodes method retrieves the FOURCC codes supported by the DirectDraw object. This method can also retrieve the number of codes supported.

HRESULT GetFourCCCodes(

 LPDWORD lpNumCodes,

 LPDWORD lpCodes

);

Parameters

lpNumCodes

Address of a variable that contains the number of entries that the array pointed to by lpCodes can hold. If the number of entries is too small to accommodate all the codes, lpNumCodes is set to the required number and the array pointed to by lpCodes is filled with all that fits.

lpCodes

Address of an array of variables that will be filled with FOURCC codes supported by this DirectDraw object. If you specify NULL, lpNumCodes is set to the number of supported FOURCC codes and the method will return.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::GetGDISurface

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetGDISurface method retrieves the DirectDrawSurface object that currently represents the surface memory that GDI is treating as the primary surface.

HRESULT GetGDISurface(

 LPDIRECTDRAWSURFACE4 FAR *lplpGDIDDSSurface4

);

Parameters

lplpGDIDDSSurface4

Address of a variable that will be filled with a pointer to the IDirectDrawSurface4 interface for the surface that currently controls GDI's primary surface memory.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::FlipToGDISurface

IDirectDraw4::GetMonitorFrequency

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetMonitorFrequency method retrieves the frequency of the monitor being driven by the DirectDraw object.

HRESULT GetMonitorFrequency(

 LPDWORD lpdwFrequency

);

Parameters

lpdwFrequency

Address of the variable that will be filled with the monitor frequency, reported in Hz.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::GetScanLine

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetScanLine method retrieves the scan line that is currently being drawn on the monitor.

HRESULT GetScanLine(

 LPDWORD lpdwScanLine

);

Parameters

lpdwScanLine

Address of the variable that will contain the scan line the display is currently drawing.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTED ��DDERR_VERTICALBLANKINPROGRESS ��

Remarks

Scan lines are reported as zero-based integers. The returned scan line value is between 0 and n, where scan line 0 is the first visible scan line on the screen and n is the last visible scan line, plus any scan lines that occur during the vertical blank period. So, in a case where an application is running at 640(480, and there are 12 scan lines during vblank, the values returned by this method will range from 0 to 491.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::GetVerticalBlankStatus, IDirectDraw4::WaitForVerticalBlank

IDirectDraw4::GetSurfaceFromDC

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetSurfaceFromDC method retrieves the IDirectDrawSurface4 interface for a surface based on its GDI device context handle.

HRESULT GetSurfaceFromDC(

 HDC hdc,

 LPDIRECTDRAWSURFACE4 * lpDDS4

);

Parameters

hdc

Handle to a display device context.

lpDDS4

Address of a variable that will be filled with a valid IDirectDrawSurface4 interface pointer if the call succeeds.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��DDERR_NOTFOUND ��

Remarks

This method will succeed only for device context handles that identify surfaces already associated with the DirectDraw object.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

Surfaces and Device Contexts

IDirectDraw4::GetVerticalBlankStatus

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetVerticalBlankStatus method retrieves the status of the vertical blank.

HRESULT GetVerticalBlankStatus(

 LPBOOL lpbIsInVB

);

Parameters

lpbIsInVB

Address of the variable that will be filled with the status of the vertical blank. This parameter is TRUE if a vertical blank is occurring, and FALSE otherwise.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

To synchronize with the vertical blank, use the IDirectDraw4::WaitForVerticalBlank method.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::GetScanLine, IDirectDraw4::WaitForVerticalBlank

IDirectDraw4::Initialize

[This is preliminary documentation and subject to change.]

The IDirectDraw4::Initialize method initializes a DirectDraw object that was created by using the CoCreateInstance COM function.

HRESULT Initialize(

 GUID FAR *lpGUID

);

Parameters

lpGUID

Address of the globally unique identifier (GUID) used as the interface identifier.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_ALREADYINITIALIZED ��DDERR_DIRECTDRAWALREADYCREATED ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NODIRECTDRAWHW ��DDERR_NODIRECTDRAWSUPPORT ��DDERR_OUTOFMEMORY ��

This method is provided for compliance with the Component Object Model (COM) protocol. If the DirectDrawCreate function was used to create a DirectDraw object, this method returns DDERR_ALREADYINITIALIZED. If IDirectDraw4::Initialize is not called when using CoCreateInstance to create a DirectDraw object, any method that is called afterward returns DDERR_NOTINITIALIZED.

Remarks

For more information about using IDirectDraw4::Initialize with CoCreateInstance, see Creating DirectDraw Objects by Using CoCreateInstance.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::RestoreAllSurfaces

[This is preliminary documentation and subject to change.]

The IDirectDraw4::RestoreAllSurfaces method restores all the surfaces created for the DirectDraw object, in the order they were created.

HRESULT RestoreAllSurfaces();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

This method is provided for convenience. Effectively, this method calls the IDirectDrawSurface4::Restore method for each surface created by this DirectDraw object.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Restore, Losing and Restoring Surfaces

IDirectDraw4::RestoreDisplayMode

[This is preliminary documentation and subject to change.]

The IDirectDraw4::RestoreDisplayMode method resets the mode of the display device hardware for the primary surface to what it was before the IDirectDraw4::SetDisplayMode method was called. Exclusive-level access is required to use this method.

HRESULT RestoreDisplayMode();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_LOCKEDSURFACES ��DDERR_NOEXCLUSIVEMODE ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::SetDisplayMode, IDirectDraw4::EnumDisplayModes, IDirectDraw4::SetCooperativeLevel

IDirectDraw4::SetCooperativeLevel

[This is preliminary documentation and subject to change.]

The IDirectDraw4::SetCooperativeLevel method determines the top-level behavior of the application.

HRESULT SetCooperativeLevel(

 HWND hWnd,

 DWORD dwFlags

);

Parameters

hWnd

Window handle used for the application. Set to the calling application's top-level window handle (not a handle for any child windows created by the top-level window). This parameter can be NULL when the DDSCL_NORMAL flag is specified in the dwFlags parameter.

dwFlags

One or more of the following flags:

DDSCL_ALLOWMODEX

Allows the use of Mode X display modes. This flag can only be used if the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT

Allows CTRL+ALT+DEL to function while in exclusive (full-screen) mode.

DDSCL_CREATEDEVICEWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that DirectDraw is to create and manage a default device window for this DirectDraw object. For more information, see Focus and Device Windows.

DDSCL_EXCLUSIVE

Requests the exclusive level. This flag must be used with the DDSCL_FULLSCREEN flag.

DDSCL_FPUSETUP

Indicates that the calling application is likely to keep the FPU set up for optimal Direct3D performance (single precision and exceptions disabled) so Direct3D does not need to explicitly set the FPU each time. For more information, see DirectDraw Cooperative Levels and FPU Precision.

DDSCL_FULLSCREEN

Indicates that the exclusive-mode owner will be responsible for the entire primary surface. GDI can be ignored. This flag must be used with the DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED

Requests multithread-safe DirectDraw behavior. This causes Direct3D to take the global critical section more frequently.

DDSCL_NORMAL

Indicates that the application will function as a regular Windows application. This flag cannot be used with the DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES

Indicates that DirectDraw is not allowed to minimize or restore the application window on activation.

DDSCL_SETDEVICEWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that the hWnd parameter is the window handle of the device window for this DirectDraw object. This flag cannot be used with the DDSCL_SETFOCUSWINDOW flag.

DDSCL_SETFOCUSWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that the hWnd parameter is the window handle of the focus window for this DirectDraw object. This flag cannot be used with the DDSCL_SETDEVICEWINDOW flag.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCLUSIVEMODEALREADYSET ��DDERR_HWNDALREADYSET ��DDERR_HWNDSUBCLASSED ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

Remarks

This method must be called by the same thread that created the application window.

An application must set either the DDSCL_EXCLUSIVE or DDSCL_NORMAL flag.

The DDSCL_EXCLUSIVE flag must be set to call functions that can have drastic performance consequences for other applications. For more information, see Cooperative Levels.

Interaction between this method and the IDirectDraw4::SetDisplayMode method differs from their IDirectDraw counterparts. For more information, see Restoring Display Modes.

Developers using Microsoft Foundation Classes (MFC) should keep in mind that the window handle passed to this method should identify the application's top-level window, not a derived child window. To retrieve your MFC application's top level window handle, you could use the following code:

 HWND hwndTop = AfxGetMainWnd()->GetSafeHwnd();

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::SetDisplayMode, IDirectDraw4::Compact, IDirectDraw4::EnumDisplayModes, Mode X and Mode 13 Display Modes, Focus and Device Windows

IDirectDraw4::SetDisplayMode

[This is preliminary documentation and subject to change.]

The IDirectDraw4::SetDisplayMode method sets the mode of the display-device hardware.

HRESULT SetDisplayMode(

 DWORD dwWidth,

 DWORD dwHeight,

 DWORD dwBPP,

 DWORD dwRefreshRate,

 DWORD dwFlags

);

Parameters

dwWidth and dwHeight

Width and height of the new mode.

dwBPP

Bits per pixel (bpp) of the new mode.

dwRefreshRate

Refresh rate of the new mode. Set this value to 0 to request the default refresh rate for the driver.

dwFlags

Flags describing additional options. Currently, the only valid flag is DDSDM_STANDARDVGAMODE, which causes the method to set Mode 13 instead of Mode X 320x200x8 mode. If you are setting another resolution, bit depth, or a Mode X mode, do not use this flag and set the parameter to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDMODE ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_LOCKEDSURFACES ��DDERR_NOEXCLUSIVEMODE ��DDERR_SURFACEBUSY ��DDERR_UNSUPPORTED ��DDERR_UNSUPPORTEDMODE ��DDERR_WASSTILLDRAWING ��

Remarks

This method must be called by the same thread that created the application window.

If another application changes the display mode, the primary surface will be lost and will return DDERR_SURFACELOST until it is recreated to match the new display mode.

As part of the IDirectDraw interface, this method did not include the dwRefreshRate and dwFlags parameters.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::RestoreDisplayMode, IDirectDraw4::GetDisplayMode, IDirectDraw4::EnumDisplayModes, IDirectDraw4::SetCooperativeLevel, Setting Display Modes, Restoring Display Modes

IDirectDraw4::TestCooperativeLevel

[This is preliminary documentation and subject to change.]

The IDirectDraw4::TestCooperativeLevel method reports the current cooperative-level status of the DirectDraw device for a windowed or full-screen application.

HRESULT TestCooperativeLevel(void);

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK, indicating that the calling application can continue executing.

If the method fails, the return value may be one of the following error values (see remarks):

DDERR_INVALIDOBJECT ��DDERR_EXCLUSIVEMODEALREADYSET��DDERR_NOEXCLUSIVEMODE��DDERR_WRONGMODE��

Remarks

This method is particularly useful to applications that use the WM_ACTIVATEAPP and WM_DISPLAYCHANGE system messages as a notification to restore surfaces or re-create DirectDraw objects. The DD_OK return value always indicates that the application can continue execution, but the failure codes are interpreted differently depending on the cooperative-level that the application uses. For more information, see Testing Cooperative Levels.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDraw4::WaitForVerticalBlank

[This is preliminary documentation and subject to change.]

The IDirectDraw4::WaitForVerticalBlank method helps the application synchronize itself with the vertical-blank interval.

HRESULT WaitForVerticalBlank(

 DWORD dwFlags,

 HANDLE hEvent

);

Parameters

dwFlags

Determines how long to wait for the vertical blank.

DDWAITVB_BLOCKBEGIN

Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKBEGINEVENT

Triggers an event when the vertical blank begins. This value is not currently supported.

DDWAITVB_BLOCKEND

Returns when the vertical-blank interval ends and the display begins.

hEvent

Handle of the event to be triggered when the vertical blank begins. This parameter is not currently used.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::GetVerticalBlankStatus, IDirectDraw4::GetScanLine

IDirectDrawClipper

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawClipper interface to manage clip lists. This section is a reference to the methods of this interface. For a conceptual overview, see Clippers.

The methods of the IDirectDrawClipper interface can be organized into the following groups:

Allocating memory �Initialize �����Clip list�GetClipList ���IsClipListChanged ���SetClipList ���SetHWnd �����Handles �GetHWnd ��

The IDirectDrawClipper interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

You can use the LPDIRECTDRAWCLIPPER data type to declare a variable that contains a pointer to an IDirectDrawClipper interface. The Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawClipper FAR *LPDIRECTDRAWCLIPPER;

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawClipper::GetClipList

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::GetClipList method retrieves a copy of the clip list associated with a DirectDrawClipper object. A subset of the clip list can be selected by passing a rectangle that clips the clip list.

HRESULT GetClipList(

 LPRECT lpRect,

 LPRGNDATA lpClipList,

 LPDWORD lpdwSize

);

Parameters

lpRect

Address of a rectangle that will be used to clip the clip list. This parameter can be NULL to retrieve the entire clip list.

lpClipList

Address of an RGNDATA structure that will contain the resulting copy of the clip list. If this parameter is NULL, the method fills the variable at lpdwSize to the number of bytes necessary to hold the entire clip list.

lpdwSize

Size of the resulting clip list. When retrieving the clip list, this parameter is the size of the buffer at lpClipList. When lpClipList is NULL, the variable at lpdwSize receives the required size of the buffer, in bytes.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCLIPLIST ��DDERR_REGIONTOOSMALL ��

Remarks

The RGNDATA structure used with this method has the following syntax:

typedef struct _RGNDATA {

 RGNDATAHEADER rdh;

 char Buffer[1];

} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER structure that has the following syntax:

typedef struct _RGNDATAHEADER {

 DWORD dwSize;

 DWORD iType;

 DWORD nCount;

 DWORD nRgnSize;

 RECT rcBound;

} RGNDATAHEADER;

For more information about these structures, see the documentation in the Platform SDK.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawClipper::SetClipList

IDirectDrawClipper::GetHWnd

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::GetHWnd method retrieves the window handle previously associated with this DirectDrawClipper object by the IDirectDrawClipper::SetHWnd method.

HRESULT GetHWnd(

 HWND FAR *lphWnd

);

Parameters

lphWnd

Address of the window handle previously associated with this DirectDrawClipper object by the IDirectDrawClipper::SetHWnd method.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawClipper::SetHWnd

IDirectDrawClipper::Initialize

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::Initialize method initializes a DirectDrawClipper object that was created by using the CoCreateInstance COM function.

HRESULT Initialize(

 LPDIRECTDRAW lpDD,

 DWORD dwFlags

);

Parameters

lpDD

Address of the DirectDraw structure that represents the DirectDraw object. If this parameter is set to NULL, an independent DirectDrawClipper object is created (the equivalent of using the DirectDrawCreateClipper function).

dwFlags

This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_ALREADYINITIALIZED ��DDERR_INVALIDPARAMS ��

This method is provided for compliance with the Component Object Model (COM) protocol. If DirectDrawCreateClipper or the IDirectDraw4::CreateClipper method was used to create the DirectDrawClipper object, this method returns DDERR_ALREADYINITIALIZED.

Remarks

For more information about using IDirectDrawClipper::Initialize with CoCreateInstance, see Creating DirectDrawClipper Objects with CoCreateInstance.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release, IDirectDraw4::CreateClipper

IDirectDrawClipper::IsClipListChanged

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::IsClipListChanged method monitors the status of the clip list if a window handle is associated with a DirectDrawClipper object.

HRESULT IsClipListChanged(

 BOOL FAR *lpbChanged

);

Parameters

lpbChanged

Address of a variable that is set to TRUE if the clip list has changed.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawClipper::SetClipList

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::SetClipList method sets or deletes the clip list used by the IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltBatch, and IDirectDrawSurface4::UpdateOverlay methods on surfaces to which the parent DirectDrawClipper object is attached.

HRESULT SetClipList(

 LPRGNDATA lpClipList,

 DWORD dwFlags

);

Parameters

lpClipList

Either an address to a valid RGNDATA structure or NULL. If there is an existing clip list associated with the DirectDrawClipper object and this value is NULL, the clip list will be deleted.

dwFlags

This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CLIPPERISUSINGHWND ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

Remarks

The clip list cannot be set if a window handle is already associated with the DirectDrawClipper object. Note that the BltFast method cannot clip.

The RGNDATA structure used with this method has the following syntax:

typedef struct _RGNDATA {

 RGNDATAHEADER rdh;

 char Buffer[1];

} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER structure that has the following syntax:

typedef struct _RGNDATAHEADER {

 DWORD dwSize;

 DWORD iType;

 DWORD nCount;

 DWORD nRgnSize;

 RECT rcBound;

} RGNDATAHEADER;

For more information about these structures, see the documentation in the Platform Software Development Kit.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawClipper::GetClipList, IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltFast, IDirectDrawSurface4::BltBatch, IDirectDrawSurface4::UpdateOverlay

IDirectDrawClipper::SetHWnd

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::SetHWnd method sets the window handle that the clipper object uses to obtain clipping information.

HRESULT SetHWnd(

 DWORD dwFlags,

 HWND hWnd

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

hWnd

Window handle that obtains the clipping information.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawClipper::GetHWnd

IDirectDrawColorControl

[This is preliminary documentation and subject to change.]

The IDirectDrawColorControl interface allows you to get and set color controls:

Color controls�GetColorControls���SetColorControls�����

The IDirectDrawColorControl interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

You can use the LPDIRECTDRAWCOLORCONTROL data type to declare a variable that contains a pointer to an IDirectDrawColorControl interface. The Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawColorControl FAR *LPDIRECTDRAWCOLORCONTROL;

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawColorControl::GetColorControls

[This is preliminary documentation and subject to change.]

The IDirectDrawColorControl::GetColorControls method returns the current color control settings associated with the specified overlay or primary surface. The dwFlags member of the DDCOLORCONTROL structure indicates which of the color control options are supported.

HRESULT GetColorControls(

 LPDDCOLORCONTROL lpColorControl

);

Parameters

lpColorControl

Address of the DDCOLORCONTROL structure that will receive the current control settings of the specified surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawColorControl::SetColorControls, Using Color Controls, Gamma and Color Controls

IDirectDrawColorControl::SetColorControls

[This is preliminary documentation and subject to change.]

The IDirectDrawColorControl::SetColorControls method sets the color control settings associated with the specified overlay or primary surface.

HRESULT SetColorControls(

 LPDDCOLORCONTROL lpColorControl

);

Parameters

lpColorControl

Address of the DDCOLORCONTROL structure containing the new values to be applied to the specified surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawColorControl::GetColorControls, Using Color Controls, Gamma and Color Controls

IDirectDrawGammaControl

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawGammaControl interface to adjust the red, green, and blue gamma ramp levels of the primary surface. This section is a reference to the methods of this interface. This interface is supported by DirectDrawSurface objects; you can retrieve a pointer to this interface by calling the IUnknown::QueryInterface method of a DirectDrawSurface object, specifying the IID_IDirectDrawGammaControl reference identifier.

For a conceptual overview, see Gamma and Color Controls.

Gamma ramps�GetGammaRamp���SetGammaRamp��

The IDirectDrawGammaControl interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

You can use the LPDIRECTDRAWGAMMACONTROL data type to declare a variable that contains a pointer to an IDirectDrawGammaControl interface. The Ddraw.h header file declares the data type with the following code:

typedef struct IDirectDrawGammaControl FAR *LPDIRECTDRAWGAMMACONTROL;

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawGammaControl::GetGammaRamp

[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl::GetGammaRamp method retrieves the red, green, and blue gamma ramps for the primary surface.

HRESULT GetGammaRamp(

 DWORD dwFlags,

 LPGAMMARAMP lpRampData

);

Parameters

dwFlags

Not currently used; set to 0.

lpRampData

Address of a DDGAMMARAMP structure that will be filled with the current red, green, and blue gamma ramps. Each array maps color values in the frame buffer to the color values that will be passed to the DAC (Digital-to-Analog Converter).

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawGammaControl::SetGammaRamp, Gamma and Color Controls

IDirectDrawGammaControl::SetGammaRamp

[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl::SetGammaRamp method retrieves the red, green, and blue gamma ramps for the primary surface.

HRESULT SetGammaRamp(

 DWORD dwFlags,

 LPGAMMARAMP lpRampData

);

Parameters

dwFlags

Flag indicating if gamma calibration is desired. Set this parameter DDSGR_CALIBRATE to request that the calibrator adjust the gamma ramp according to the physical properties of the display, making the result identical on all systems. If calibration is not needed, set this parameter to 0.

lpRampData

Address of a DDGAMMARAMP structure that contains the new red, green, and blue gamma ramp entries. Each array maps color values in the frame buffer to the color values that will be passed to the DAC (Digital-to-Analog Converter).

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY��

Remarks

Not all systems support gamma calibration. To determine if gamma calibration is supported, call IDirectDraw4::GetCaps, and examine the dwCaps2 member of the associated DDCAPS structure after the method returns. If the DDCAPS2_CANCALIBRATEGAMMA capability flag is present, then gamma calibration is supported.

Calibrating gamma ramps incurs some processing overhead, and should not be used frequently.

Including the DDSGR_CALIBRATE flag in the dwFlags parameter when running on systems that do not support gamma calibration will not cause this method to fail. The method succeeds, setting new gamma ramp values without calibration.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawGammaControl::GetGammaRamp, Gamma and Color Controls

IDirectDrawPalette

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawPalette interface to create DirectDrawPalette objects and work with system-level variables. This section is a reference to the methods of this interface. For a conceptual overview, see Palettes.

The methods of the IDirectDrawPalette interface can be organized into the following groups:

Allocating memory �Initialize �����Palette capabilities �GetCaps �����Palette entries �GetEntries ���SetEntries ��

The IDirectDrawPalette interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

You can use the LPDIRECTDRAWPALETTE data type to declare a variable that contains a pointer to an IDirectDrawPalette interface. The Ddraw.h header file declares the data type with the following code:

typedef struct IDirectDrawPalette FAR *LPDIRECTDRAWPALETTE;

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawPalette::GetCaps

[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::GetCaps method retrieves the capabilities of this palette object.

HRESULT GetCaps(

 LPDWORD lpdwCaps

);

Parameters

lpdwCaps

Flag from the dwPalCaps member of the DDCAPS structure that defines palette capabilities:

DDPCAPS_1BIT��DDPCAPS_2BIT��DDPCAPS_4BIT ��DDPCAPS_8BIT ��DDPCAPS_8BITENTRIES ��DDPCAPS_ALPHA��DDPCAPS_ALLOW256 ��DDPCAPS_PRIMARYSURFACE ��DDPCAPS_PRIMARYSURFACELEFT ��DDPCAPS_VSYNC ��

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawPalette::GetEntries

[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::GetEntries method queries palette values from a DirectDrawPalette object.

HRESULT GetEntries(

 DWORD dwFlags,

 DWORD dwBase,

 DWORD dwNumEntries,

 LPPALETTEENTRY lpEntries

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

dwBase

Start of the entries that should be retrieved sequentially.

dwNumEntries

Number of palette entries that can fit in the address specified in lpEntries. The colors of each palette entry are returned in sequence, from the value of the dwStartingEntry parameter through the value of the dwCount parameter minus 1. (These parameters are set by IDirectDrawPalette::SetEntries.)

lpEntries

Address of the palette entries. The palette entries are 1 byte each if the DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a color description.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTPALETTIZED ��

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawPalette::SetEntries

IDirectDrawPalette::Initialize

[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::Initialize method initializes the DirectDrawPalette object.

HRESULT Initialize(

 LPDIRECTDRAW lpDD,

 DWORD dwFlags,

 LPPALETTEENTRY lpDDColorTable

);

Parameters

lpDD

Address of the DirectDraw structure that represents the DirectDraw object.

dwFlags and lpDDColorTable

These parameters are currently not used and must be set to 0.

Return Values

This method returns DDERR_ALREADYINITIALIZED.

This method is provided for compliance with the Component Object Model (COM) protocol. Because the DirectDrawPalette object is initialized when it is created, this method always returns DDERR_ALREADYINITIALIZED.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release

IDirectDrawPalette::SetEntries

[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::SetEntries method changes entries in a DirectDrawPalette object immediately.

HRESULT SetEntries(

 DWORD dwFlags,

 DWORD dwStartingEntry,

 DWORD dwCount,

 LPPALETTEENTRY lpEntries

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

dwStartingEntry

First entry to be set.

dwCount

Number of palette entries to be changed.

lpEntries

Address of the palette entries. The palette entries are 1 byte each if the DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a color description.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOPALETTEATTACHED ��DDERR_NOTPALETTIZED ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawPalette::GetEntries, IDirectDrawSurface4::SetPalette

IDirectDrawSurface4

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawSurface4 interface to create DirectDrawSurface objects and work with system-level variables. This section is a reference to the methods of this interface. For a conceptual overview, see Surfaces.

The methods of the IDirectDrawSurface4 interface can be organized into the following groups:

Allocating memory �Initialize ���IsLost ���Restore �����Attaching surfaces �AddAttachedSurface ���DeleteAttachedSurface ���EnumAttachedSurfaces ���GetAttachedSurface �����Blitting�Blt ���BltBatch ���BltFast ���GetBltStatus �����Color keying�GetColorKey ���SetColorKey �����Device contexts �GetDC ���ReleaseDC �����Flipping�Flip ���GetFlipStatus �����Locking surfaces �Lock ���PageLock ���PageUnlock ���Unlock �����Miscellaneous �GetDDInterface �����Overlays �AddOverlayDirtyRect ���EnumOverlayZOrders ���GetOverlayPosition ���SetOverlayPosition ���UpdateOverlay ���UpdateOverlayDisplay ���UpdateOverlayZOrder �����Private surface data�FreePrivateData���GetPrivateData���SetPrivateData�����Surface capabilities �GetCaps �����Surface clipper �GetClipper ���SetClipper �����Surface characteristics �ChangeUniquenessValue���GetPixelFormat ���GetSurfaceDesc ���GetUniquenessValue���SetSurfaceDesc�����Surface palettes �GetPalette ���SetPalette ��

The IDirectDrawSurface4 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

The IDirectDrawSurface4 interface extends the features of previous versions of the interface by offering methods that offer better surface management and ease of use. Note that many methods in this interface accept slightly different parameters than their counterparts in former versions of the interface. Wherever an IDirectDrawSurface3 interface method might accept a DDSURFACEDESC structure or an IDirectDrawSurface3 interface, the methods in IDirectDrawSurface4 accept a DDSURFACEDESC2 structure or an IDirectDrawSurface4 interface instead.

You can use the LPDIRECTDRAWSURFACE, LPDIRECTDRAWSURFACE2, LPDIRECTDRAWSURFACE3, or LPDIRECTDRAWSURFACE4 data types to declare variables that point to various DirectDrawSurface object interfaces. The Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawSurface FAR *LPDIRECTDRAWSURFACE;

typedef struct IDirectDrawSurface2 FAR *LPDIRECTDRAWSURFACE2;

typedef struct IDirectDrawSurface3 FAR *LPDIRECTDRAWSURFACE3;

typedef struct IDirectDrawSurface4 FAR *LPDIRECTDRAWSURFACE4;

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::AddAttachedSurface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::AddAttachedSurface method attaches the specified surface to this surface.

HRESULT AddAttachedSurface(

 LPDIRECTDRAWSURFACE4 lpDDSAttachedSurface

);

Parameters

lpDDSAttachedSurface

Address of an IDirectDrawSurface4 interface for the surface to be attached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANNOTATTACHSURFACE ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACEALREADYATTACHED ��DDERR_SURFACELOST ��DDERR_WASSTILLDRAWING ��

Remarks

This method increments the reference count of the surface being attached. You can explicitly unattach the surface and decrement its reference count by using the IDirectDrawSurface4::DeleteAttachedSurface method. Unlike complex surfaces that you create with a single call to IDirectDraw4::CreateSurface, surfaces attached with this method are not automatically released. It is the application's responsibility to release such surfaces.

Possible attachments include z-buffers, alpha channels, and back buffers. Some attachments automatically break other attachments. For example, the 3-D z-buffer can be attached only to one back buffer at a time. Attachment is not bidirectional, and a surface cannot be attached to itself. Emulated surfaces (in system memory) cannot be attached to nonemulated surfaces. Unless one surface is a texture map, the two attached surfaces must be the same size. A flipping surface cannot be attached to another flipping surface of the same type; however, attaching two surfaces of different types is allowed. For example, a flipping z-buffer can be attached to a regular flipping surface. If a nonflipping surface is attached to another nonflipping surface of the same type, the two surfaces will become a flipping chain. If a nonflipping surface is attached to a flipping surface, it becomes part of the existing flipping chain. Additional surfaces can be added to this chain, and each call of the IDirectDrawSurface4::Flip method will advance one step through the surfaces.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::DeleteAttachedSurface, IDirectDrawSurface4::EnumAttachedSurfaces

IDirectDrawSurface4::AddOverlayDirtyRect

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::AddOverlayDirtyRect method is not currently implemented.

HRESULT AddOverlayDirtyRect(

 LPRECT lpRect

);

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::UpdateOverlayDisplay

IDirectDrawSurface4::Blt

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Blt method performs a bit block transfer. This method does not support z-buffering or alpha blending (see alpha channel) during blit operations.

HRESULT Blt(

 LPRECT lpDestRect,

 LPDIRECTDRAWSURFACE4 lpDDSrcSurface,

 LPRECT lpSrcRect,

 DWORD dwFlags,

 LPDDBLTFX lpDDBltFx

);

Parameters

lpDestRect

Address of a RECT structure that defines the upper-left and lower-right points of the rectangle to blit to on the destination surface. If this parameter is NULL, the entire destination surface will be used.

lpDDSrcSurface

Address of an IDirectDrawSurface4 interface for the DirectDrawSurface object that is the source of the blit.

lpSrcRect

Address of a RECT structure that defines the upper-left and lower-right points of the rectangle to blit from on the source surface. If this parameter is NULL, the entire source surface will be used.

dwFlags

A combination of flags that determine the valid members of the associated DDBLTFX structure, specify color key information, or that request special behavior from the method. The following flags are defined.

Validation flags

DDBLT_COLORFILL

Uses the dwFillColor member of the DDBLTFX structure as the RGB color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the dwDDFX member of the DDBLTFX structure to specify the effects to use for this blit.

DDBLT_DDROPS

Uses the dwDDROP member of the DDBLTFX structure to specify the raster operations (ROPS) that are not part of the Win32 API.

DDBLT_DEPTHFILL

Uses the dwFillDepth member of the DDBLTFX structure as the depth value with which to fill the destination rectangle on the destination z-buffer surface.

DDBLT_KEYDESTOVERRIDE

Uses the ddckDestColorkey member of the DDBLTFX structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE

Uses the ddckSrcColorkey member of the DDBLTFX structure as the color key for the source surface.

DDBLT_ROP

Uses the dwROP member of the DDBLTFX structure for the ROP for this blit. These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

Uses the dwRotationAngle member of the DDBLTFX structure as the rotation angle (specified in 1/100th of a degree) for the surface.

Color key flags

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

Behavior flags

DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT

Postpones the DDERR_WASSTILLDRAWING return value if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

Obsolete and unsupported flags

All "DDBLT_ALPHA" flag values.

Not currently implemented.

All "DDBLT_ZBUFFER" flag values

This method does not currently support z-aware blit operations. None of the flags beginning with "DDBLT_ZBUFFER" are supported in this release of DirectX 6.0.

lpDDBltFx

Address of the DDBLTFX structure.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOALPHAHW ��DDERR_NOBLTHW ��DDERR_NOCLIPLIST ��DDERR_NODDROPSHW ��DDERR_NOMIRRORHW ��DDERR_NORASTEROPHW ��DDERR_NOROTATIONHW ��DDERR_NOSTRETCHHW ��DDERR_NOZBUFFERHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING��

Remarks

This method is capable of synchronous or asynchronous blits (the default behavior), either display memory to display memory, display memory to system memory, system memory to display memory, or system memory to system memory. The blits can be performed by using source color keys, and destination color keys. Arbitrary stretching or shrinking will be performed if the source and destination rectangles are not the same size.

Typically, IDirectDrawSurface4::Blt returns immediately with an error if the blitter is busy and the blit could not be set up. Specify the DDBLT_WAIT flag to request a synchronous blit. When you include the DDBLT_WAIT flag, the method waits until the blit can be set up or another error occurs before it returns.

Note that RECT structures are defined so that the right and bottom members are exclusive—therefore, right minus left equals the width of the rectangle, not one less than the width.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::BltBatch

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::BltBatch method is not currently implemented.

HRESULT BltBatch(

 LPDDBLTBATCH lpDDBltBatch,

 DWORD dwCount,

 DWORD dwFlags

);

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::BltFast

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::BltFast method performs a source copy blit or transparent blit by using a source color key or destination color key.

HRESULT BltFast(

 DWORD dwX,

 DWORD dwY,

 LPDIRECTDRAWSURFACE4 lpDDSrcSurface,

 LPRECT lpSrcRect,

 DWORD dwTrans

);

Parameters

dwX and dwY

The x- and y-coordinates to blit to on the destination surface.

lpDDSrcSurface

Address of an IDirectDrawSurface4 interface for the DirectDrawSurface object that is the source of the blit.

lpSrcRect

Address of a RECT structure that defines the upper-left and lower-right points of the rectangle to blit from on the source surface.

dwTrans

Type of transfer.

DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY

Specifies a normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY

Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT

Postpones the DDERR_WASSTILLDRAWING message if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOBLTHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING��

Remarks

This method always attempts an asynchronous blit if it is supported by the hardware.

This method works only on display memory surfaces and cannot clip when blitting. If you use this method on a surface with an attached clipper, the call will fail and the method will return DDERR_UNSUPPORTED.

The software implementation of IDirectDrawSurface4::BltFast is 10 percent faster than the IDirectDrawSurface4::Blt method. However, there is no speed difference between the two if display hardware is being used.

Typically, IDirectDrawSurface4::BltFast returns immediately with an error if the blitter is busy and the blit cannot be set up. You can use the DDBLTFAST_WAIT flag, however, if you want this method to not return until either the blit can be set up or another error occurs.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::ChangeUniquenessValue

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::ChangeUniquenessValue method manually updates the uniqueness value for this surface.

HRESULT ChangeUniquenessValue();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

DirectDraw automatically updates uniqueness values whenever the contents of a surface change.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetUniquenessValue, Surface Uniqueness Values

IDirectDrawSurface4::DeleteAttachedSurface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::DeleteAttachedSurface method detaches two attached surfaces.

HRESULT DeleteAttachedSurface(

 DWORD dwFlags,

 LPDIRECTDRAWSURFACE4 lpDDSAttachedSurface

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

lpDDSAttachedSurface

Address of the IDirectDrawSurface4 interface for the DirectDrawSurface object to be detached. If this parameter is NULL, all attached surfaces are detached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANNOTDETACHSURFACE ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��DDERR_SURFACENOTATTACHED ��

Remarks

This method decrements the reference count of the surface being detached. If the reference count of the surface being detached reaches zero, it is lost and removed from memory.

Implicit attachments, those formed by DirectDraw rather than the IDirectDrawSurface4::AddAttachedSurface method, cannot be detached. Detaching surfaces from a flipping chain can alter other surfaces in the chain. If a front buffer is detached from a flipping chain, the next surface in the chain becomes the front buffer, and the following surface becomes the back buffer. If a back buffer is detached from a chain, the following surface becomes a back buffer. If a plain surface is detached from a chain, the chain simply becomes shorter. If a flipping chain has only two surfaces and they are detached, the chain is destroyed and both surfaces return to their previous designations.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Flip

IDirectDrawSurface4::EnumAttachedSurfaces

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::EnumAttachedSurfaces method enumerates all the surfaces attached to a given surface.

HRESULT EnumAttachedSurfaces(

 LPVOID lpContext,

 LPDDENUMSURFACESCALLBACK2 lpEnumSurfacesCallback

);

Parameters

lpContext

Address of the application-defined structure that is passed to the enumeration member every time it is called.

lpEnumSurfacesCallback

Address of the EnumSurfacesCallback2 function that will be called for each surface that is attached to this surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��

Remarks

This method enumerates only those surfaces that are directly attached to this surface. For example, in a flipping chain of three or more surfaces, only one surface will be enumerated, because each surface is attached only to the next surface in the flipping chain. In such a configuration, you can call EnumAttachedSurfaces on each successive surface to walk the entire flipping chain.

This method differs from its counterparts in previous interface versions in that it accepts a pointer to an EnumSurfacesCallback2 function, rather than an EnumSurfacesCallback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::EnumOverlayZOrders

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::EnumOverlayZOrders method enumerates the overlay surfaces on the specified destination. The overlays can be enumerated in front-to-back or back-to-front order.

HRESULT EnumOverlayZOrders(

 DWORD dwFlags,

 LPVOID lpContext,

 LPDDENUMSURFACESCALLBACK2 lpfnCallback

);

Parameters

dwFlags

One of the following flags:

DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.

DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.

lpContext

Address of the user-defined context that will be passed to the callback function for each overlay surface.

lpfnCallback

Address of the EnumSurfacesCallback2 callback function that will be called for each surface being overlaid on this surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

This method differs from its counterparts in previous interface versions in that it accepts a pointer to an EnumSurfacesCallback2 function, rather than an EnumSurfacesCallback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::Flip

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Flip method makes the surface memory associated with the DDSCAPS_BACKBUFFER surface become associated with the front-buffer surface.

HRESULT Flip(

 LPDIRECTDRAWSURFACE4 lpDDSurfaceTargetOverride,

 DWORD dwFlags

);

Parameters

lpDDSurfaceTargetOverride

Address of the IDirectDrawSurface4 interface for an arbitrary surface in the flipping chain. The default for this parameter is NULL, in which case DirectDraw cycles through the buffers in the order they are attached to each other. If this parameter is not NULL, DirectDraw flips to the specified surface instead of the next surface in the flipping chain. The method fails if the specified surface is not a member of the flipping chain.

dwFlags

Flags specifying flip options.

DDFLIP_EVEN

For use only when displaying video in an overlay surface. The new surface contains data from the even field of a video signal. This flag cannot be used with the DDFLIP_ODD flag.

DDFLIP_INTERVAL2

DDFLIP_INTERVAL3

DDFLIP_INTERVAL4

These flags indicate how many vertical retraces to wait between each flip. The default is 1. DirectDraw will return DERR_WASSTILLDRAWING for each surface involved in the flip until the specified number of vertical retraces has occurred. If DDFLIP_INTERVAL2 is set, DirectDraw will flip on every second vertical sync; if DDFLIP_INTERVAL3, on every third sync; and if DDFLIP_INTERVAL4, on every fourth sync.

These flags are effective only if DDCAPS2_FLIPINTERVAL is set in the DDCAPS structure returned for the device.

DDFLIP_NOVSYNC

Causes DirectDraw to perform the physical flip as close as possible to the next scan line. Subsequent operations involving the two flipped surfaces will not check to see if the physical flip has finished—that is, they will not return DDERR_WASSTILLDRAWING for that reason (but may for other reasons). This allows an application to perform flips at a higher frequency than the monitor refresh rate, but may introduce visible artifacts.

If DDCAPS2_FLIPNOVSYNC is not set in the DDCAPS structure returned for the device, DDFLIP_NOVSYNC has no effect.

DDFLIP_ODD

For use only when displaying video in an overlay surface. The new surface contains data from the odd field of a video signal. This flag cannot be used with the DDFLIP_EVEN flag.

DDFLIP_WAIT

Typically, if the flip cannot be set up because the state of the display hardware is not appropriate, the DDERR_WASSTILLDRAWING error returns immediately and no flip occurs. Setting this flag causes the method to continue trying to flip if it receives the DDERR_WASSTILLDRAWING error from the HAL. The method does not return until the flipping operation has been successfully set up, or another error, such as DDERR_SURFACEBUSY, is returned.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOFLIPHW ��DDERR_NOTFLIPPABLE ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

Remarks

This method can be called only for a surface that has the DDSCAPS_FLIP and DDSCAPS_FRONTBUFFER capabilities. The display memory previously associated with the front buffer is associated with the back buffer.

The lpDDSurfaceTargetOverride parameter is used in rare cases when the back buffer is not the buffer that should become the front buffer. Typically this parameter is NULL.

The IDirectDrawSurface4::Flip method will always be synchronized with the vertical blank. If the surface has been assigned to a video port, this method updates the visible overlay surface and the video port's target surface.

For more information, see Flipping Surfaces.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetFlipStatus

IDirectDrawSurface4::FreePrivateData

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::FreePrivateData method frees the specified private data associated with this surface.

HRESULT FreePrivateData(

 REFGUID guidTag,

);

Parameters

guidTag

Reference to (C++) or address of (C) the globally unique identifier that identifies the private data to be freed.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND��

Remarks

DirectDraw calls this method automatically when a surface is released.

If the private data was set by using the DDSPD_IUNKNOWNPOINTER flag, this method calls the IUnknown::Release method on the associated interface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetPrivateData, IDirectDrawSurface4::SetPrivateData

IDirectDrawSurface4::GetAttachedSurface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetAttachedSurface method obtains the attached surface that has the specified capabilities and increments the reference count of the retrieved interface.

HRESULT GetAttachedSurface(

 LPDDSCAPS2 lpDDSCaps,

 LPDIRECTDRAWSURFACE4 FAR *lplpDDAttachedSurface

);

Parameters

lpDDSCaps

Address of a DDSCAPS2 structure that contains the hardware capabilities of the surface.

lplpDDAttachedSurface

Address of a variable that will contain a pointer to the retrieved surface's IDirectDrawSurface4 interface. The retrieved surface is the one that matches the description according to the lpDDSCaps parameter.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND ��DDERR_SURFACELOST ��

Remarks

Attachments are used to connect multiple DirectDrawSurface objects into complex structures, like the ones needed to support 3-D page flipping with z-buffers. This method fails if more than one surface is attached that matches the capabilities requested. In this case, the application must use the IDirectDrawSurface4::EnumAttachedSurfaces method to obtain the attached surfaces.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetBltStatus

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetBltStatus method obtains the blitter status.

HRESULT GetBltStatus(

 DWORD dwFlags

);

Parameters

dwFlags

One of the following flags:

DDGBS_CANBLT

Inquires whether a blit involving this surface can occur immediately, and returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE

Inquires whether the blit is done, and returns DD_OK if the last blit on this surface has completed.

Return Values

If the method succeeds, that means a blitter is present, the return value is DD_OK.

If the method fails, the return value is DDERR_WASSTILLDRAWING if the blitter is busy, DDERR_NOBLTHW if there is no blitter, or one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOBLTHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetCaps

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetCaps method retrieves the capabilities of the surface. These capabilities are not necessarily related to the capabilities of the display device.

HRESULT GetCaps(

 LPDDSCAPS2 lpDDSCaps

);

Parameters

lpDDSCaps

Address of a DDSCAPS2 structure that will be filled with the hardware capabilities of the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

This method differs from its counterpart in the IDirectDrawSurface3 interface in that it accepts a pointer to a DDSCAPS2 structure rather than the legacy DDSCAPS structure.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetClipper

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetClipper method retrieves the DirectDrawClipper object associated with this surface and increments the reference count of the returned clipper.

HRESULT GetClipper(

 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper

);

Parameters

lplpDDClipper

Address of a pointer to the DirectDrawClipper object associated with the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCLIPPERATTACHED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::SetClipper

IDirectDrawSurface4::GetColorKey

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetColorKey method retrieves the color key value for the DirectDrawSurface object.

HRESULT GetColorKey(

 DWORD dwFlags,

 LPDDCOLORKEY lpDDColorKey

);

Parameters

dwFlags

Determines which color key is requested.

DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as a destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the structure specifies a color key or color space to be used as a destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the structure specifies a color key or color space to be used as a source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the structure specifies a color key or color space to be used as a source color key for overlay operations.

lpDDColorKey

Address of the DDCOLORKEY structure that will be filled with the current values for the specified color key of the DirectDrawSurface object.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOLORKEY ��DDERR_NOCOLORKEYHW ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::SetColorKey

IDirectDrawSurface4::GetDC

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetDC method creates a GDI-compatible handle of a device context for the surface.

HRESULT GetDC(

 HDC FAR *lphDC

);

Parameters

lphDC

Address for the returned handle to a device context.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_DCALREADYCREATED ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

Remarks

This method uses an internal version of the IDirectDrawSurface4::Lock method to lock the surface. The surface remains locked until the IDirectDrawSurface4::ReleaseDC method is called.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Lock

IDirectDrawSurface4::GetDDInterface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetDDInterface method retrieves an interface to the DirectDraw object that was used to create the surface.

HRESULT GetDDInterface(

 LPVOID FAR *lplpDD

);

Parameters

lplpDD

Address of a variable that will be filled with a valid interface pointer if the call succeeds. Cast this pointer to an IUnknown interface pointer, then query for the desired DirectDraw interface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

Remarks

This method was not implemented in the IDirectDraw interface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetFlipStatus

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetFlipStatus method indicates whether the surface has finished its flipping process.

HRESULT GetFlipStatus(

 DWORD dwFlags

);

Parameters

dwFlags

One of the following flags:

DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and returns DD_OK if the flip can be completed.

DDGFS_ISFLIPDONE

Inquires whether the flip has finished and returns DD_OK if the last flip on this surface has completed.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is DDERR_WASSTILLDRAWING if the surface has not finished its flipping process, or one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Flip

IDirectDrawSurface4::GetOverlayPosition

[This is preliminary documentation and subject to change.]

Given a visible, active overlay surface (DDSCAPS_OVERLAY flag set), the IDirectDrawSurface4::GetOverlayPosition method returns the display coordinates of the surface.

HRESULT GetOverlayPosition(

 LPLONG lplX,

 LPLONG lplY

);

Parameters

lplX and lplY

Addresses of the x- and y-display coordinates.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPOSITION ��DDERR_NOOVERLAYDEST ��DDERR_NOTAOVERLAYSURFACE ��DDERR_OVERLAYNOTVISIBLE ��DDERR_SURFACELOST ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::SetOverlayPosition, IDirectDrawSurface4::UpdateOverlay

IDirectDrawSurface4::GetPalette

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetPalette method retrieves the DirectDrawPalette object associated with this surface and increments the reference count of the returned palette.

HRESULT GetPalette(

 LPDIRECTDRAWPALETTE FAR *lplpDDPalette

);

Parameters

lplpDDPalette

Address of a variable that will be filled with a pointer to the palette object's IDirectDrawPalette interface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOPALETTEATTACHED ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::SetPalette

IDirectDrawSurface4::GetPixelFormat

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetPixelFormat method retrieves the color and pixel format of the surface.

HRESULT GetPixelFormat(

 LPDDPIXELFORMAT lpDDPixelFormat

);

Parameters

lpDDPixelFormat

Address of the DDPIXELFORMAT structure that will be filled with a detailed description of the current pixel and color space format of the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetPrivateData

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetPrivateData method copies the private data associated with the surface to a provided buffer.

HRESULT GetPrivateData(

 REFGUID guidTag,

 LPVOID lpBuffer,

 LPDWORD lpcbBufferSize

);

Parameters

guidTag

Reference to (C++) or address of (C) the globally unique identifier that identifies the private data to be retrieved.

lpBuffer

Address of a previously allocated buffer that will be filled with the requested private data if the call succeeds. The application calling this method is responsible for allocating and releasing this buffer.

lpcbBufferSize

Size of the buffer at lpBuffer, in bytes. If this value is less than the actual size of the private data (such as zero), the method sets this parameter to the required buffer size, and the method returns DDERR_MOREDATA.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXPIRED��DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_MOREDATA��DDERR_NOTFOUND��DDERR_OUTOFMEMORY��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::SetPrivateData, IDirectDrawSurface4::FreePrivateData

IDirectDrawSurface4::GetSurfaceDesc

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetSurfaceDesc method retrieves a description of the surface in its current condition.

HRESULT GetSurfaceDesc(

 LPDDSURFACEDESC2 lpDDSurfaceDesc

);

Parameters

lpDDSurfaceDesc

Address of a DDSURFACEDESC2 structure that will be filled with the current description of this surface. You need only initialize this structure's dwSize member to the size, in bytes, of the structure prior to the call; no other preparation is required.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

DDSURFACEDESC, DDSURFACEDESC2

IDirectDrawSurface4::GetUniquenessValue

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetUniquenessValue method retrieves the current uniqueness value for this surface.

HRESULT GetUniquenessValue(

 LPDWORD lpValue,

);

Parameters

lpValue

Address of a variable that will be filled with the surface's current uniqueness value, if the call succeeds.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

Remarks

The only defined uniqueness value is 0, to indicate that the surface is likely to be changing beyond DirectDraw's control. Other uniqueness values are only significant if they differ from a previously cached uniqueness value. If the current value is different than a cached value, then the contents of the surface have changed.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::ChangeUniquenessValue, Surface Uniqueness Values

IDirectDrawSurface4::Initialize

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Initialize method initializes a DirectDrawSurface object.

HRESULT Initialize(

 LPDIRECTDRAW lpDD,

 LPDDSURFACEDESC2 lpDDSurfaceDesc

);

Parameters

lpDD

Address of the DirectDraw structure that represents the DirectDraw object.

lpDDSurfaceDesc

Address of a DDSURFACEDESC2 structure that will be filled with the relevant details about the surface.

Return Values

The method returns DDERR_ALREADYINITIALIZED.

Remarks

This method is provided for compliance with the Component Object Model (COM) protocol. Because the DirectDrawSurface object is initialized when it is created, this method always returns DDERR_ALREADYINITIALIZED.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release

IDirectDrawSurface4::IsLost

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::IsLost method determines if the surface memory associated with a DirectDrawSurface object has been freed.

HRESULT IsLost();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK because the memory has not been freed.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��

You can use this method to determine when you need to reallocate surface memory. When a DirectDrawSurface object loses its surface memory, most methods return DDERR_SURFACELOST and perform no other action.

Remarks

Surfaces can lose their memory when the mode of the display card is changed, or when an application receives exclusive access to the display card and frees all of the surface memory currently allocated on the display card.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Restore, Losing and Restoring Surfaces

IDirectDrawSurface4::Lock

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Lock method obtains a pointer to the surface memory.

HRESULT Lock(

 LPRECT lpDestRect,

 LPDDSURFACEDESC2 lpDDSurfaceDesc,

 DWORD dwFlags,

 HANDLE hEvent

);

Parameters

lpDestRect

Address of a RECT structure that identifies the region of surface that is being locked. If NULL, the entire surface will be locked.

lpDDSurfaceDesc

Address of a DDSURFACEDESC2 structure that will be filled with the relevant details about the surface.

dwFlags

DDLOCK_EVENT

This flag is not currently implemented.

DDLOCK_NOSYSLOCK

Do not take the Win16Mutex (also known as Win16Lock). This flag is ignored when locking the primary surface.

DDLOCK_READONLY

Indicates that the surface being locked will only be read.

DDLOCK_SURFACEMEMORYPTR

Indicates that a valid memory pointer to the top of the specified rectangle should be returned. If no rectangle is specified, a pointer to the top of the surface is returned. This is the default.

DDLOCK_WAIT

If a lock cannot be obtained because a blit operation is in progress, the method retries until a lock is obtained or another error occurs, such as DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY

Indicates that the surface being locked will be write enabled.

hEvent

This parameter is not used and must be set to NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_WASSTILLDRAWING ��

Remarks

For more information on using this method, see Accessing Surface Memory Directly.

After retrieving a surface memory pointer, you can access the surface memory until a corresponding IDirectDrawSurface4::Unlock method is called. When the surface is unlocked, the pointer to the surface memory is invalid.

Do not call DirectDraw blit functions to blit from a locked region of a surface. If you do, the blit returns either DDERR_SURFACEBUSY or DDERR_LOCKEDSURFACES. Additionally, GDI blit functions will silently fail when used on a locked video memory surface.

Unless you include the DDLOCK_NOSYSLOCK flag, this method causes DirectDraw to hold the Win16Mutex (also known as Win16Lock) until you call the IDirectDrawSurface4::Unlock method. GUI debuggers cannot operate while the Win16Mutex is held.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Unlock, IDirectDrawSurface4::GetDC, IDirectDrawSurface4::ReleaseDC

IDirectDrawSurface4::PageLock

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::PageLock method prevents a system-memory surface from being paged out while a blit operation using direct memory access (DMA) transfers to or from system memory is in progress.

HRESULT PageLock(

 DWORD dwFlags

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTPAGELOCK ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��

Remarks

You must call this method to make use of DMA support. If you do not, the blit occurs using software emulation. For more information, see Using DMA.

The performance of the operating system could be negatively affected if too much memory is locked.

A lock count is maintained for each surface and is incremented each time IDirectDrawSurface4::PageLock is called for that surface. The count is decremented when IDirectDrawSurface4::PageUnlock is called. When the count reaches 0, the memory is unlocked and can then be paged by the operating system.

This method works only on system-memory surfaces; it will not page lock a display-memory surface or an emulated primary surface. If an application calls this method on a display memory surface, the method will do nothing except return DD_OK.

This method was not implemented in the IDirectDraw interface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::PageUnlock

IDirectDrawSurface4::PageUnlock

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::PageUnlock method unlocks a system-memory surface, allowing it to be paged out.

HRESULT PageUnlock(

 DWORD dwFlags

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTPAGEUNLOCK ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTPAGELOCKED ��DDERR_SURFACELOST ��

Remarks

A lock count is maintained for each surface and is incremented each time IDirectDrawSurface4::PageLock is called for that surface. The count is decremented when IDirectDrawSurface4::PageUnlock is called. When the count reaches 0, the memory is unlocked and can then be paged by the operating system.

This method works only on system-memory surfaces; it will not page unlock a display-memory surface or an emulated primary surface. If an application calls this method on a display-memory surface, this method will do nothing except return DD_OK.

This method was not implemented in the IDirectDraw interface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::PageLock

IDirectDrawSurface4::ReleaseDC

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::ReleaseDC method releases the handle of a device context previously obtained by using the IDirectDrawSurface4::GetDC method.

HRESULT ReleaseDC(

 HDC hDC

);

Parameters

hDC

Handle to a device context previously obtained by IDirectDrawSurface4::GetDC.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

Remarks

This method also unlocks the surface previously locked when the IDirectDrawSurface4::GetDC method was called.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetDC

IDirectDrawSurface4::Restore

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Restore method restores a surface that has been lost. This occurs when the surface memory associated with the DirectDrawSurface object has been freed.

HRESULT Restore();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_IMPLICITLYCREATED ��DDERR_INCOMPATIBLEPRIMARY ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOEXCLUSIVEMODE ��DDERR_OUTOFMEMORY ��DDERR_UNSUPPORTED ��DDERR_WRONGMODE ��

Remarks

This method restores the memory allocated for a surface, but doesn't reload any bitmaps that may have existed in the surface before it was lost. For more information, see Losing and Restoring Surfaces.

Surfaces can be lost because the mode of the display card was changed or because an application received exclusive access to the display card and freed all of the surface memory currently allocated on the card. When a DirectDrawSurface object loses its surface memory, many methods will return DDERR_SURFACELOST and perform no other function. The IDirectDrawSurface4::Restore method will reallocate surface memory and reattach it to the DirectDrawSurface object.

A single call to this method will restore a DirectDrawSurface object's associated implicit surfaces (back buffers, and so on). An attempt to restore an implicitly created surface will result in an error. IDirectDrawSurface4::Restore will not work across explicit attachments created by using the IDirectDrawSurface4::AddAttachedSurface method—each of these surfaces must be restored individually.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::IsLost

IDirectDrawSurface4::SetClipper

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetClipper method attaches a clipper object to or deletes one from a surface.

HRESULT SetClipper(

 LPDIRECTDRAWCLIPPER lpDDClipper

);

Parameters

lpDDClipper

Address of the IDirectDrawClipper interface for the DirectDrawClipper object that will be attached to the DirectDrawSurface object. If this parameter is NULL, the current DirectDrawClipper object will be detached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_NOCLIPPERATTACHED ��

Remarks

When setting a clipper to a surface for the first time, this method increments the clipper's reference count; subsequent calls to do not affect the clipper's reference count. If you pass NULL as the lpDDClipper parameter, the clipper is removed from the surface, and the clipper's reference count is decremented. If you do not delete the clipper, the surface will automatically release its reference to the clipper when the surface itself is released. According to COM rules, your application is responsible for releasing any references it holds to the clipper when the object is no longer needed.

This method is primarily used by surfaces that are being overlaid on or blitted to the primary surface. However, it can be used on any surface. After a DirectDrawClipper object has been attached and a clip list is associated with it, the DirectDrawClipper object will be used for the IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltBatch, and IDirectDrawSurface4::UpdateOverlay operations involving the parent DirectDrawSurface object. This method can also detach a DirectDrawSurface object's current DirectDrawClipper object.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetClipper

IDirectDrawSurface4::SetColorKey

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetColorKey method sets the color key value for the DirectDrawSurface object if the hardware supports color keys on a per surface basis.

HRESULT SetColorKey(

 DWORD dwFlags,

 LPDDCOLORKEY lpDDColorKey

);

Parameters

dwFlags

Determines which color key is requested.

DDCKEY_COLORSPACE

Set if the structure contains a color space. Not set if the structure contains a single color key.

DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as a destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the structure specifies a color key or color space to be used as a destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the structure specifies a color key or color space to be used as a source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the structure specifies a color key or color space to be used as a source color key for overlay operations.

lpDDColorKey

Address of the DDCOLORKEY structure that contains the new color key values for the DirectDrawSurface object. This value can be NULL to remove a previously set color key.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_NOOVERLAYHW ��DDERR_NOTAOVERLAYSURFACE ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

Remarks

For transparent blits and overlays, you should set destination color on the destination surface and source color on the source surface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetColorKey

IDirectDrawSurface4::SetOverlayPosition

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetOverlayPosition method changes the display coordinates of an overlay surface.

HRESULT SetOverlayPosition(

 LONG lX,

 LONG lY

);

Parameters

lX and lY

New x- and y-display coordinates.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPOSITION��DDERR_NOOVERLAYDEST��DDERR_NOTAOVERLAYSURFACE��DDERR_OVERLAYNOTVISIBLE��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetOverlayPosition, IDirectDrawSurface4::UpdateOverlay

IDirectDrawSurface4::SetPalette

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetPalette method attaches a palette object to (or detaches one from) a surface. The surface uses this palette for all subsequent operations. The palette change takes place immediately, without regard to refresh timing.

HRESULT SetPalette(

 LPDIRECTDRAWPALETTE lpDDPalette

);

Parameters

lpDDPalette

Address of the IDirectDrawPalette interface for the palette object to be used with this surface. If this parameter is NULL, the current palette will be detached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPIXELFORMAT��DDERR_INVALIDSURFACETYPE ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOPALETTEATTACHED ��DDERR_NOPALETTEHW ��DDERR_NOT8BITCOLOR ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

Remarks

When setting a palette to a surface for the first time, this method increments the palette's reference count; subsequent calls to do not affect the palette's reference count. If you pass NULL as the lpDDPalette parameter, the palette is removed from the surface, and the palette's reference count is decremented. If you do not delete the palette, the surface will automatically release its reference to the palette when the surface itself is released. According to COM rules, your application is responsible for releasing any references it holds to the palette when the object is no longer needed.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetPalette, IDirectDraw4::CreatePalette

IDirectDrawSurface4::SetPrivateData

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetPrivateData method associates data with the surface that is intended for use by the application, not by DirectDraw. Data is passed by value, and multiple sets of data can be associated with a single surface.

HRESULT SetPrivateData(

 REFGUID guidTag,

 LPVOID lpData,

 DWORD cbSize,

 DWORD dwFlags

);

Parameters

guidTag

Reference to (C++) or address of (C) the globally unique identifier that identifies the private data to be set.

lpData

Address of a buffer that contains the data to be associated with the surface.

cbSize

Size of the buffer at lpData, in bytes.

dwFlags

Flags describing the type of data being passed, or requesting that the data be invalidated when the surface changes. The following flags are defined:

(none)

If no flags are specified, DirectDraw allocates memory to hold the data within the buffer, and copies the data into the new buffer. The buffer allocated by DirectDraw will automatically be freed as appropriate.

DDSPD_IUNKNOWNPOINTER

The data at lpData is a pointer to an IUnknown interface. DirectDraw automatically calls the IUnknown::AddRef method of this interface. When this data is no longer needed, DirectDraw automatically calls the IUnknown::Release method of this interface.

DDSPD_VOLATILE

The buffer at lpData is only valid while the surface remains unchanged from its current state. If the surface's contents change, subsequent calls to the IDirectDrawSurface4::GetPrivateData method will return DDERR_EXPIRED.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY��

Remarks

DirectDraw does not manage the memory at lpData. If this buffer was dynamically allocated, it is the caller's responsibility to free the memory.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::GetPrivateData, IDirectDrawSurface4::FreePrivateData

IDirectDrawSurface4::SetSurfaceDesc

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetSurfaceDesc method sets the characteristics of an existing surface.

HRESULT SetSurfaceDesc(

 LPDDSURFACEDESC2 lpddsd2,

 DWORD dwFlags

);

Parameters

lpddsd2

Address of a DDSURFACEDESC2 structure that contains the new surface characteristics.

dwFlags

This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDPARAMS��DDERR_INVALIDOBJECT��DDERR_SURFACELOST��DDERR_SURFACEBUSY��DDERR_INVALIDSURFACETYPE��DDERR_INVALIDPIXELFORMAT��DDERR_INVALIDCAPS��DDERR_UNSUPPORTED��DDERR_GENERIC��

Remarks

Currently, this method can only be used to set the surface data and pixel format used by an explicit system memory surface. This is useful as it allows a surface to use data from a previously allocated buffer without copying. The new surface memory is allocated by the client application and, as such, the client application must also deallocate it. For more information about how this method is used, see Updating Surface Characteristics.

Using this method incorrectly will cause unpredictable behavior. The DirectDrawSurface object will not deallocate surface memory that it didn't allocate. Therefore, when the surface memory is no longer needed, it is your responsibility to deallocate it. However, when this method is called, DirectDraw frees the original surface memory that it implicitly allocated when creating the surface.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::Unlock

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Unlock method notifies DirectDraw that the direct surface manipulations are complete.

HRESULT Unlock(

 LPRECT lpRect

);

Parameters

lpRect

Address of the RECT structure that was used to lock the surface in the corresponding call to the IDirectDrawSurface4::Lock method. This parameter can be NULL only if the entire surface was locked by passing NULL in the lpDestRect parameter of the corresponding call to the IDirectDrawSurface4::Lock method.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOTLOCKED ��DDERR_SURFACELOST ��

Remarks

Because it is possible to call IDirectDrawSurface4::Lock multiple times for the same surface with different destination rectangles, the pointer in lpRect links the calls to the IDirectDrawSurface4::Lock and IDirectDrawSurface4::Unlock methods.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::Lock

IDirectDrawSurface4::UpdateOverlay

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::UpdateOverlay method repositions or modifies the visual attributes of an overlay surface. These surfaces must have the DDSCAPS_OVERLAY flag set.

HRESULT UpdateOverlay(

 LPRECT lpSrcRect,

 LPDIRECTDRAWSURFACE4 lpDDDestSurface,

 LPRECT lpDestRect,

 DWORD dwFlags,

 LPDDOVERLAYFX lpDDOverlayFx

);

Parameters

lpSrcRect

Address of a RECT structure that defines the x, y, width, and height of the region on the source surface being used as the overlay. This parameter can be NULL when hiding an overlay or to indicate that the entire overlay surface is to be used and that the overlay surface conforms to any boundary and size alignment restrictions imposed by the device driver.

lpDDDestSurface

Address of the IDirectDrawSurface4 interface for the surface that is being overlaid.

lpDestRect

Address of a RECT structure that defines the x, y, width, and height of the region on the destination surface that the overlay should be moved to. This parameter can be NULL when hiding the overlay.

dwFlags

DDOVER_ADDDIRTYRECT

Adds a dirty rectangle to an emulated overlay surface.

DDOVER_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface attached to the destination surface as the alpha channel for this overlay.

DDOVER_ALPHADESTCONSTOVERRIDE

Uses the dwAlphaDestConst member of the DDOVERLAYFX structure as the destination alpha channel for this overlay.

DDOVER_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the alpha value increases (0 is opaque).

DDOVER_ALPHADESTSURFACEOVERRIDE

Uses the lpDDSAlphaDest member of the DDOVERLAYFX structure as the alpha channel destination for this overlay.

DDOVER_ALPHAEDGEBLEND

Uses the dwAlphaEdgeBlend member of the DDOVERLAYFX structure as the alpha channel for the edges of the image that border the color key colors.

DDOVER_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel surface attached to the source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCCONSTOVERRIDE

Uses the dwAlphaSrcConst member of the DDOVERLAYFX structure as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG

Indicates that the source surface becomes more transparent as the alpha value increases (0 is opaque).

DDOVER_ALPHASRCSURFACEOVERRIDE

Uses the lpDDSAlphaSrc member of the DDOVERLAYFX structure as the alpha channel source for this overlay.

DDOVER_AUTOFLIP

Automatically flip to the next surface in the flip chain each time a video port VSYNC occurs.

DDOVER_BOB

Display each field individually of the interlaced video stream without causing any artifacts.

DDOVER_BOBHARDWARE

Indicates that bob operations will be performed using hardware rather than software or emulated. This flag must be used with the DDOVER_BOB flag.

DDOVER_DDFX

Uses the overlay FX flags in the lpDDOverlayFx parameter to define special overlay effects.

DDOVER_HIDE

Turns off this overlay.

DDOVER_KEYDEST

Uses the color key associated with the destination surface.

DDOVER_KEYDESTOVERRIDE

Uses the dckDestColorkey member of the DDOVERLAYFX structure as the color key for the destination surface.

DDOVER_KEYSRC

Uses the color key associated with the source surface.

DDOVER_KEYSRCOVERRIDE

Uses the dckSrcColorkey member of the DDOVERLAYFX structure as the color key for the source surface.

DDOVER_OVERRIDEBOBWEAVE

Indicates that bob/weave decisions should not be overridden by other interfaces.

DDOVER_INTERLEAVED

Indicates that the surface memory is composed of interleaved fields.

DDOVER_SHOW

Turns on this overlay.

lpDDOverlayFx

Address of a DDOVERLAYFX structure that describes the effects to be used. This parameter can be NULL if the DDOVER_DDFX flag is not specified.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_DEVICEDOESNTOWNSURFACE��DDERR_GENERIC ��DDERR_HEIGHTALIGN ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_INVALIDSURFACETYPE ��DDERR_NOSTRETCHHW ��DDERR_NOTAOVERLAYSURFACE ��DDERR_OUTOFCAPS��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_XALIGN ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

IDirectDrawSurface4::UpdateOverlayDisplay

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::UpdateOverlayDisplay method is not currently implemented.

HRESULT UpdateOverlayDisplay(

 DWORD dwFlags

);

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::AddOverlayDirtyRect

IDirectDrawSurface4::UpdateOverlayZOrder

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::UpdateOverlayZOrder method sets the z-order of an overlay.

HRESULT UpdateOverlayZOrder(

 DWORD dwFlags,

 LPDIRECTDRAWSURFACE4 lpDDSReference

);

Parameters

dwFlags

One of the following flags:

DDOVERZ_INSERTINBACKOF

Inserts this overlay in the overlay chain behind the reference overlay.

DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference overlay.

DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.

DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.

DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.

DDOVERZ_SENDTOFRONT

Moves this overlay to the front of the overlay chain.

lpDDSReference

Address of the IDirectDrawSurface4 interface for the DirectDraw surface to be used as a relative position in the overlay chain. This parameter is needed only for DDOVERZ_INSERTINBACKOF and DDOVERZ_INSERTINFRONTOF.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTAOVERLAYSURFACE ��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawSurface4::EnumOverlayZOrders

IDirectDrawVideoPort

[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawVideoPort interface to channel live video data from a hardware video port to a DirectDraw surface. This section is a reference to the methods of this interface. For a conceptual overview, see Video Ports.

The methods of the IDirectDrawVideoPort interface can be organized into the following groups:

Color controls �GetColorControls ���SetColorControls �����Fields and Signals �GetFieldPolarity ���GetVideoSignalStatus �����Flipping �Flip ���SetTargetSurface �����Formats �GetInputFormats ���GetOutputFormats �����Timing and Synchronization �GetVideoLine ���WaitForSync �����Video control �StartVideo ���StopVideo ���UpdateVideo �����Zoom factors �GetBandwidthInfo ��

The IDirectDrawVideoPort interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface���Release ��

You can use the LPDIRECTDRAWVIDEOPORT data type to declare a variable that contains a pointer to an IDirectDrawVideoPort interface. The Dvp.h header file declares the LPDIRECTDRAWVIDEOPORT with the following code:

typedef struct IDirectDrawVideoPort FAR *LPDIRECTDRAWVIDEOPORT;

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::Flip

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::Flip method instructs the DirectDrawVideoPort object to write the next frame of video to a new surface.

HRESULT Flip(

 LPDIRECTDRAWSURFACE lpDDSurface,

 DWORD dwFlags

);

Parameters

lpDDSurface

Address of the IDirectDrawSurface interface for the surface that will receive the next frame of video. Setting this parameter to NULL causes DirectDraw to cycle through surfaces in the flipping chain in the order they were attached.

dwFlags

Flip options flags. This parameter can be one of the following values:

DDVPFLIP_VIDEO

The specified surface is to receive the normal video data.

DDVPFLIP_VBI

The specified surface is to receive only the data within the vertical blanking interval.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

Remarks

This method can be used to prevent tearing. Calls to IDirectDrawVideoPort::Flip are asynchronous—the actual flip operation will always be synchronized with the vertical blank of the video signal.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetBandwidthInfo

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetBandwidthInfo method retrieves the minimum required overlay zoom factors and device limitations of a video port that uses the provided output pixel format.

HRESULT GetBandwidthInfo(

 LPDDPIXELFORMAT lpddpfFormat,

 DWORD dwWidth,

 DWORD dwHeight,

 DWORD dwFlags,

 LPDDVIDEOPORTBANDWIDTH lpBandwidth

);

Parameters

lpddpfFormat

Address of a DDPIXELFORMAT structure that describes the output pixel format for which bandwidth information will be retrieved.

dwWidth and dwHeight

Dimensions of an overlay or video data. These interpretation of these parameters depends on the value specified in the dwFlags parameter.

dwFlags

Flags indicating how the method is to interpret the dwWidth and dwHeight parameters. This parameter can be one of the following values:

DDVPB_OVERLAY

The dwWidth and dwHeight parameters indicate the size of the source overlay surface. Use this flag when the video port is dependent on the overlay source size.

DDVPB_TYPE

The dwWidth and dwHeight parameters are not set. The method will retrieve the device's dependency type in the dwCaps member of the associated DDVIDEOPORTBANDWIDTH structure. Use this flag when you call this method the first time.

DDVPB_VIDEOPORT

The dwWidth and dwHeight parameters indicate the prescale size of the video data that the video port writes to the frame buffer. Use this flag when the video port is dependent on the overlay zoom factor.

lpBandwidth

Address of a DDVIDEOPORTBANDWIDTH structure that will be filled with the retrieved bandwidth and device dependency information.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

Remarks

This method will usually be called twice. When you make the first call, specify the DDVPB_TYPE flag in the dwFlags parameter to retrieve information about the device's overlay dependency type. Subsequent calls using the DDVPB_VIDEOPORT or DDVPB_OVERLAY flags must be interpreted considering the device's dependency type.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetColorControls

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetColorControls method returns the current color control settings associated with the video port.

HRESULT GetColorControls(

 LPDDCOLORCONTROL lpColorControl

);

Parameters

lpColorControl

Address of a DDCOLORCONTROL structure that will be filled with the current settings of the video port's color control.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

Remarks

The dwFlags member of the DDCOLORCONTROL structure indicate which of the color control options are supported.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetFieldPolarity

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetFieldPolarity method retrieves the polarity of a video field.

HRESULT GetFieldPolarity(

 LPBOOL lpbFieldPolarity

);

Parameters

lpbFieldPolarity

Address of a variable that will be set to indicate the current field polarity. This value is set to TRUE if the current video field is the even field of an interlaced video signal and FALSE otherwise.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��DDERR_VIDEONOTACTIVE��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetInputFormats

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetInputFormats method retrieves the input formats supported by the DirectDrawVideoPort object.

HRESULT GetInputFormats(

 LPDWORD lpNumFormats,

 LPDDPIXELFORMAT lpFormats,

 DWORD dwFlags

);

Parameters

lpNumFormats

Address of a variable containing the number of entries that the array at lpFormats can hold. If this number is less than the total number of codes, the method fills the array with as many codes as will fit, sets the value at lpNumFormats to indicate the total number of codes, and returns DDERR_MOREDATA.

lpFormats

Address of an array of DDPIXELFORMAT structures that will be filled in with the input formats supported by this DirectDrawVideoPort object. If this parameter is NULL, the method sets lpNumFormats to the number of supported formats and then returns DD_OK.

dwFlags

Flags specifying the part of the video signal for which formats will be enumerated. This parameter can be one of the following values:

DDVPFORMAT_VIDEO

Returns formats for the video data.

DDVPFORMAT_VBI

Returns formats for the VBI data.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_MOREDATA��

Remarks

This method can also be used to return the number of formats supported. To do this, set the lpFormats parameter to NULL. When the method returns, the variable at lpNumFormats contains the total number of supported input formats.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetOutputFormats

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetOutputFormats method retrieves a list of output formats that the DirectDrawVideoPort object supports for a specified input format.

HRESULT GetOutputFormats(

 LPDDPIXELFORMAT lpInputFormat,

 LPDWORD lpNumFormats,

 LPDDPIXELFORMAT lpFormats,

 DWORD dwFlags

);

Parameters

lpInputFormat

Address of a DDPIXELFORMAT structure that describes the input format for which conversion information is requested.

lpNumFormats

Address of a variable containing the number of entries that the array at lpFromats can hold. If this number is less than the total number of codes, the method fills the array with as many codes as will fit, sets the value at lpNumFormats to indicate the total number of codes, and returns DDERR_MOREDATA.

lpFormats

Address of an array of DDPIXELFORMAT structures that will be filled in with the output formats supported by this DirectDrawVideoPort object. If this parameter is NULL, the method sets lpNumFormats to the number of supported formats and then returns DD_OK.

dwFlags

Flags specifying the part of the video signal for which formats will be enumerated. This parameter can be one of the following values:

DDVPFORMAT_VIDEO

Returns formats for the video data.

DDVPFORMAT_VBI

Returns formats for the VBI data.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_MOREDATA��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetVideoLine

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetVideoLine method retrieves the current line of video being written to the frame buffer.

HRESULT GetVideoLine(

 LPDWORD lpdwLine

);

Parameters

lpdwLine

Address of a variable that will be filled with a value indicating the video line currently being written to the frame buffer.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��DDERR_VERTICALBLANKINPROGRESS��DDERR_VIDEONOTACTIVE��

Remarks

The value this method retrieves reflects the true video line being written, relative to the field height, before any prescaling occurs.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetVideoSignalStatus

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetVideoSignalStatus method retrieves the status of the video signal currently being presented to the video port.

HRESULT GetVideoSignalStatus(

 LPDWORD lpdwStatus

);

Parameters

lpdwStatus

Address of a variable that will contain a return code indicating the quality of the video signal at the video port. The value will be set to one of the following codes:

DDVPSQ_NOSIGNAL

No video signal is present at the video port.

DDVPSQ_SIGNALOK

A valid video signal is present at the video port.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::SetColorControls

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::SetColorControls method sets the color control settings associated with the video port.

HRESULT SetColorControls(

 LPDDCOLORCONTROL lpColorControl

);

Parameters

lpColorControl

Address of a DDCOLORCONTROL structure containing the new color control settings that will be applied to the video port.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

IDirectDrawVideoPort::SetTargetSurface

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::SetTargetSurface method sets the DirectDraw surface object that will receive the stream of live video data and/or the vertical blank interval data.

HRESULT SetTargetSurface(

 LPDIRECTDRAWSURFACE lpDDSurface,

 DWORD dwFlags

);

Parameters

lpDDSurface

Address of the DirectDrawSurface object that will receive the video data.

dwFlags

Value specifying the type of target surface.

DDVPTARGET_VIDEO

The specified surface should receive the normal video data and vertical interval data unless a separate surface was attached for this purpose.

DDVPTARGET_VBI

The specified surface should receive the data within the vertical blanking interval.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawVideoPort::StartVideo, IDirectDrawVideoPort::StopVideo, IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::StartVideo

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::StartVideo method enables the hardware video port and starts the flow of video data into the currently specified surface.

HRESULT StartVideo(

 LPDDVIDEOPORTINFO lpVideoInfo

);

Parameters

lpVideoInfo

Address of a pointer to a DDVIDEOPORTINFO structure.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_SURFACELOST��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawVideoPort::SetTargetSurface, IDirectDrawVideoPort::StopVideo, IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::StopVideo

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::StopVideo method stops the flow of video port data into the frame buffer.

HRESULT StopVideo();

Parameters

None.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is DDERR_INVALIDOBJECT.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawVideoPort::SetTargetSurface, IIDirectDrawVideoPort::StartVideo, IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::UpdateVideo

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::UpdateVideo method updates parameters that govern the flow of video data from the video port to the DirectDrawSurface object.

HRESULT UpdateVideo(

 LPDDVIDEOPORTINFO lpVideoInfo

);

Parameters

lpVideoInfo

Address of a DDVIDEOPORTINFO structure that describes the video transfer parameters.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

See Also

IDirectDrawVideoPort::SetTargetSurface, IDirectDrawVideoPort::StartVideo, IDirectDrawVideoPort::StopVideo

IDirectDrawVideoPort::WaitForSync

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::WaitForSync method waits for VSYNC or until a given scan line is being drawn.

HRESULT WaitForSync(

 DWORD dwFlags,

 DWORD dwLine,

 DWORD dwTimeout

);

Parameters

dwFlags

Flag specifying how the method will wait for the video VSYNC or the specified line number.

DDVPWAIT_BEGIN

Return at the start of the vertical blanking interval.

DDVPWAIT_END

Return at the end of the vertical blanking interval.

DDVPWAIT_LINE

Return when the video counter either reaches or passes the line specified by the dwLine parameter.

dwLine

The video line determining when the method should return, relative to the field height, before prescaling. This parameter is ignored if the dwFlags parameter is set to DDVPWAIT_BEGIN or DDVPWAIT_END.

dwTimeout

Amount of time, in milliseconds, that the method will wait for the next video vertical blank before timing out. If this parameter is 0, the method waits 3 times the value specified in the dwMicrosecondsPerField member of the DDVIDEOPORTDESC.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��DDERR_VIDEONOTACTIVE��DDERR_WASSTILLDRAWING��

Remarks

This method helps the caller synchronize with the video vertical blank interval or with an arbitrary line of video data. The method blocks the calling thread until either the video VSYNC occurs or when the video line counter matches the specified line number.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.� Import Library: Use ddraw.lib.

Functions

[This is preliminary documentation and subject to change.]

This section contains information about the following DirectDraw global functions:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawCreate

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawCreateClipper

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawEnumerate

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawEnumerateEx

DirectDrawCreate

[This is preliminary documentation and subject to change.]

The DirectDrawCreate function creates an instance of a DirectDraw object.

HRESULT WINAPI DirectDrawCreate(

 GUID FAR *lpGUID,

 LPDIRECTDRAW FAR *lplpDD,

 IUnknown FAR *pUnkOuter

);

Parameters

lpGUID

Address of the globally unique identifier (GUID) that represents the driver to be created. This can be NULL to indicate the active display driver, or you can pass one of the following flags to restrict the active display driver's behavior for debugging purposes:

DDCREATE_EMULATIONONLY

The DirectDraw object will use emulation for all features; it will not take advantage of any hardware supported features.

DDCREATE_HARDWAREONLY

The DirectDraw object will never emulate features not supported by the hardware. Attempts to call methods that require unsupported features will fail, returning DDERR_UNSUPPORTED.

lplpDD

Address of a variable that will be set to a valid IDirectDraw interface pointer if the call succeeds.

pUnkOuter

Allows for future compatibility with COM aggregation features. Presently, however, this method will return an error if this parameter is anything but NULL.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value may be one of the following error values:

DDERR_DIRECTDRAWALREADYCREATED ��DDERR_GENERIC ��DDERR_INVALIDDIRECTDRAWGUID ��DDERR_INVALIDPARAMS ��DDERR_NODIRECTDRAWHW ��DDERR_OUTOFMEMORY ��

Remarks

This function attempts to initialize a DirectDraw object, and it then sets a pointer to the object if the call is successful.

On systems with multiple monitors, specifying NULL for lpGUID causes the DirectDraw object to run in emulation mode when the normal cooperative level is set. To make use of hardware acceleration on these systems, you must specify the device's GUID. For more information, see Devices and Acceleration in MultiMon Systems.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

DirectDrawCreateClipper

[This is preliminary documentation and subject to change.]

The DirectDrawCreateClipper function creates an instance of a DirectDrawClipper object not associated with a DirectDraw object.

HRESULT WINAPI DirectDrawCreateClipper(

 DWORD dwFlags,

 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,

 IUnknown FAR *pUnkOuter

);

Parameters

dwFlags

This parameter is currently not used and must be set to 0.

lplpDDClipper

Address of a pointer that will be filled with the address of the new DirectDrawClipper object.

pUnkOuter

Allows for future compatibility with COM aggregation features. Presently, however, this method will return an error if this parameter is anything but NULL.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value may be one of the following error values:

DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

Remarks

This function can be called before any DirectDraw objects are created. Because these DirectDrawClipper objects are not owned by any DirectDraw object, they are not automatically released when an application's objects are released. If the application does not explicitly release the DirectDrawClipper objects, DirectDraw will release them when the application terminates.

To create a DirectDrawClipper object owned by a specific DirectDraw object, use the IDirectDraw4::CreateClipper method.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

IDirectDraw4::CreateClipper

DirectDrawEnumerate

[This is preliminary documentation and subject to change.]

This function is superseded by the DirectDrawEnumerateEx function.

The DirectDrawEnumerate function enumerates the primary DirectDraw display device and a non-display device (such as a 3-D accelerator that has no 2-D capabilities) if one is installed. The NULL entry always identifies the primary display device shared with GDI.

HRESULT WINAPI DirectDrawEnumerate(

 LPDDENUMCALLBACK lpCallback,

 LPVOID lpContext

);

Parameters

lpCallback

Address of a DDEnumCallback function that will be called with a description of each enumerated DirectDraw-enabled HAL.

lpContext

Address of an application-defined context that will be passed to the enumeration callback function each time it is called.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value is DDERR_INVALIDPARAMS.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.

See Also

DirectDrawEnumerateEx

DirectDrawEnumerateEx

[This is preliminary documentation and subject to change.]

The DirectDrawEnumerateEx function enumerates all DirectDraw devices installed on the system. The NULL entry always identifies the primary display device shared with GDI.

HRESULT WINAPI DirectDrawEnumerateEx(

 LPDDENUMCALLBACKEX lpCallback,

 LPVOID lpContext,

 DWORD dwFlags

);

Parameters

lpCallback

Address of a DDEnumCallbackEx function that will be called with a description of each enumerated DirectDraw-enabled HAL.

lpContext

Address of an application-defined value that will be passed to the enumeration callback function each time it is called.

dwFlags

Flags specifying the enumeration scope. This parameter can be 0 or a combination of the following flags. If the value is 0, the function will enumerate only the primary display device.

DDENUM_ATTACHEDSECONDARYDEVICES

The function will enumerate the primary device, and any display devices that are attached to the desktop.

DDENUM_DETACHEDSECONDARYDEVICES

The function will enumerate the primary device, and any display devices that are not attached to the desktop.

DDENUM_NONDISPLAYDEVICES

The function will enumerate the primary device, and any non-display devices, such as 3-D accelerators that have no 2-D capabilities.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value is DDERR_INVALIDPARAMS.

Remarks

On systems with multiple monitors, this method enumerates multiple display devices. For more information, see Multiple Monitor Systems.

For Windows 98, this function is supported in DirectX 5.0 and later; for all other operating systems, DirectX 6.0 is required. Retrieve the DirectDrawEnumerateEx function's address from the Ddraw.dll dynamic-link library by calling the GetProcAddress Win32 function with the "DirectDrawEnumerateExA" (ANSI) or "DirectDrawEnumerateExW" (Unicode) process name strings. If GetProcAddress fails, then the installed version of the operating system does not support multiple monitors. For more information, see Enumerating Devices on MultiMon Systems.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 98.� Header: Declared in ddraw.h.� Import Library: Use ddraw.lib.� Unicode: Implemented as Unicode and ANSI versions on Windows NT.

Callback Functions

[This is preliminary documentation and subject to change.]

This section contains information about the following callback functions used with DirectDraw:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEnumCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEnumCallbackEx

�SYMBOL 183 \f "Symbol" \s 11 \h �	EnumModesCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	EnumModesCallback2

�SYMBOL 183 \f "Symbol" \s 11 \h �	EnumSurfacesCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	EnumSurfacesCallback2

�SYMBOL 183 \f "Symbol" \s 11 \h �	EnumVideoCallback

DDEnumCallback

[This is preliminary documentation and subject to change.]

The DDEnumCallback function is an application-defined callback function for the DirectDrawEnumerate function.

BOOL WINAPI DDEnumCallback(

 GUID FAR *lpGUID,

 LPSTR lpDriverDescription,

 LPSTR lpDriverName,

 LPVOID lpContext

);

Parameters

lpGUID

Address of the unique identifier of the DirectDraw object.

lpDriverDescription

Address of a string containing the driver description.

lpDriverName

Address of a string containing the driver name.

lpContext

Address of an application-defined structure that will be passed to the callback function each time the function is called.

Return Values

The callback function returns non-zero to continue the enumeration.

The callback function returns zero to stop it.

Remarks

You can use the LPDDENUMCALLBACK data type to declare a variable that can contain a pointer to this callback function.

If UNICODE is defined, the string values will be returned as type LPWSTR rather than LPSTR.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: User-defined.

DDEnumCallbackEx

[This is preliminary documentation and subject to change.]

The DDEnumCallbackEx function is an application-defined callback function for the DirectDrawEnumerateEx function.

BOOL WINAPI DDEnumCallbackEx(

 GUID FAR *lpGUID,

 LPSTR lpDriverDescription,

 LPSTR lpDriverName,

 LPVOID lpContext,

 HMONITOR hm

);

Parameters

lpGUID

Address of the unique identifier of the DirectDraw object.

lpDriverDescription

Address of a string containing the driver description.

lpDriverName

Address of a string containing the driver name.

lpContext

Address of an application-defined structure that will be passed to the callback function each time the function is called.

hm

Handle to the monitor associated with the enumerated DirectDraw object. This parameter will be NULL when the enumerated DirectDraw object is for the primary device, a non-display device (such as a 3-D accelerator with no 2-D capabilities), and devices not attached to the desktop.

Return Values

The callback function returns non-zero to continue the enumeration.

The callback function returns zero to stop it.

Remarks

You can use the LPDDENUMCALLBACKEX data type to declare a variable that can contain a pointer to this callback function.

If UNICODE is defined, the string values will be returned as type LPWSTR rather than LPSTR.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 98.� Header: Declared in ddraw.h.� Import Library: User-defined.

See Also

Enumerating Devices on MultiMon Systems, Multiple Monitor Systems

EnumModesCallback

[This is preliminary documentation and subject to change.]

The EnumModesCallback function is an application-defined callback function for the IDirectDraw3::EnumDisplayModes method, and its counterparts in earlier interfaces.

This callback function is superseded by the EnumModesCallback2 function that is used with the IDirectDraw4::EnumDisplayModes method.

HRESULT WINAPI EnumModesCallback(

 LPDDSURFACEDESC lpDDSurfaceDesc,

 LPVOID lpContext

);

Parameters

lpDDSurfaceDesc

Address of a read-only DDSURFACEDESC structure that provides the monitor frequency and the mode that can be created.

lpContext

Address of an application-defined structure that will be passed to the callback function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMMODESCALLBACK data type to declare a variable that can contain a pointer to this callback function.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: User-defined.

EnumModesCallback2

[This is preliminary documentation and subject to change.]

The EnumModesCallback2 function is an application-defined callback function for the IDirectDraw4::EnumDisplayModes method.

HRESULT WINAPI EnumModesCallback(

 LPDDSURFACEDESC2 lpDDSurfaceDesc,

 LPVOID lpContext

);

Parameters

lpDDSurfaceDesc

Address of a read-only DDSURFACEDESC2 structure that provides the monitor frequency and the mode that can be created.

lpContext

Address of an application-defined structure that will be passed to the callback function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMMODESCALLBACK2 data type to declare a variable that can contain a pointer to this callback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: User-defined.

EnumSurfacesCallback

[This is preliminary documentation and subject to change.]

The EnumSurfacesCallback function is an application-defined callback function for the IDirectDraw2::EnumSurfaces, IDirectDrawSurface3::EnumAttachedSurfaces, and IDirectDrawSurface3::EnumOverlayZOrders methods (and the versions from earlier interfaces).

HRESULT WINAPI EnumSurfacesCallback(

 LPDIRECTDRAWSURFACE lpDDSurface,

 LPDDSURFACEDESC lpDDSurfaceDesc,

 LPVOID lpContext

);

Parameters

lpDDSurface

Address of the IDirectDrawSurface interface for the attached surface.

lpDDSurfaceDesc

Address of a DDSURFACEDESC structure that describes the attached surface.

lpContext

Address of an application-defined structure that will be passed to the callback function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMSURFACESCALLBACK data type to declare a variable that can contain a pointer to this callback function.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: User-defined.

EnumSurfacesCallback2

[This is preliminary documentation and subject to change.]

The EnumSurfacesCallback2 function is an application-defined callback function for the IDirectDrawSurface4::EnumAttachedSurfaces and IDirectDrawSurface4::EnumOverlayZOrders methods.

HRESULT WINAPI EnumSurfacesCallback2(

 LPDIRECTDRAWSURFACE4 lpDDSurface,

 LPDDSURFACEDESC2 lpDDSurfaceDesc,

 LPVOID lpContext

);

Parameters

lpDDSurface

Address of the IDirectDrawSurface4 interface of the attached surface.

lpDDSurfaceDesc

Address of a DDSURFACEDESC2 structure that describes the attached surface.

lpContext

Address of an application-defined structure that will be passed to the callback function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMSURFACESCALLBACK2 data type to declare a variable that can contain a pointer to this callback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: User-defined.

EnumVideoCallback

[This is preliminary documentation and subject to change.]

The EnumVideoCallback function is an application-defined callback procedure for the IDDVideoPortContainer::EnumVideoPorts method.

HRESULT WINAPI EnumVideoCallback(

 LPDDVIDEOPORTCAPS lpDDVideoPortCaps,

 LPVOID lpContext

);

Parameters

lpDDVideoPortCaps

Pointer to the DDVIDEOPORTCAPS structure that contains the video port information, including the ID and capabilities. This data is read-only.

lpContext

Pointer to a caller-defined structure that is passed to the member every time it is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

Video-port related functions cannot be called from inside the EnumVideoCallback function. Attempts to do so will fail, returning DDERR_CURRENTLYNOTAVAIL.

You can use the LPDDENUMVIDEOCALLBACK data type to declare a variable that can contain a pointer to this callback function.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.� Import Library: User-defined.

Structures

[This is preliminary documentation and subject to change.]

This section contains information about the following structures used with DirectDraw:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDBLTBATCH

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDBLTFX

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDCOLORCONTROL

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDCOLORKEY

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDDEVICEIDENTIFIER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDGAMMARAMP

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDOVERLAYFX

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDPIXELFORMAT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDSCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDSCAPS2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDSURFACEDESC

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDSURFACEDESC2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDVIDEOPORTBANDWIDTH

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDVIDEOPORTCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDVIDEOPORTCONNECT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDVIDEOPORTDESC

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDVIDEOPORTINFO

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDVIDEOPORTSTATUS

Note

The memory for all DirectX structures should be initialized to zero before use. In addition, all structures that contain a dwSize member should set the member to the size of the structure, in bytes, before use. The following example performs these tasks on a common structure, DDCAPS:

DDCAPS ddcaps; // Can't use this yet.

ZeroMemory(&ddcaps, sizeof(DDCAPS));

ddcaps.dwSize = sizeof(DDCAPS);

// Now the structure can be used.

.

.

DDBLTBATCH

[This is preliminary documentation and subject to change.]

The DDBLTBATCH structure passes blit operations to the IDirectDrawSurface4::BltBatch method.

typedef struct _DDBLTBATCH{

 LPRECT lprDest;

 LPDIRECTDRAWSURFACE lpDDSSrc;

 LPRECT lprSrc;

 DWORD dwFlags;

 LPDDBLTFX lpDDBltFx;

} DDBLTBATCH,FAR *LPDDBLTBATCH;

Members

lprDest

Address of a RECT structure that defines the destination for the blit.

lpDDSSrc

Address of a DirectDrawSurface object that will be the source of the blit.

lprSrc

Address of a RECT structure that defines the source rectangle of the blit.

dwFlags

Optional control flags.

DDBLT_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface attached to the destination surface as the alpha channel for this blit.

DDBLT_ALPHADESTCONSTOVERRIDE

Uses the dwAlphaDestConst member of the DDBLTFX structure as the alpha channel for the destination surface for this blit.

DDBLT_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the alpha value increases (0 is opaque).

DDBLT_ALPHADESTSURFACEOVERRIDE

Uses the lpDDSAlphaDest member of the DDBLTFX structure as the alpha channel for the destination surface for this blit.

DDBLT_ALPHAEDGEBLEND

Uses the dwAlphaEdgeBlend member of the DDBLTFX structure as the alpha channel for the edges of the image that border the color key colors.

DDBLT_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel surface attached to the source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE

Uses the dwAlphaSrcConst member of the DDBLTFX structure as the source alpha channel for this blit.

DDBLT_ALPHASRCNEG

Indicates that the source surface becomes more transparent as the alpha value increases (0 is opaque).

DDBLT_ALPHASRCSURFACEOVERRIDE

Uses the lpDDSAlphaSrc member of the DDBLTFX structure as the alpha channel source for this blit.

DDBLT_ASYNC

Processes this blit asynchronously through the FIFO hardware in the order received. If there is no room in the FIFO hardware, the call fails.

DDBLT_COLORFILL

Uses the dwFillColor member of the DDBLTFX structure as the RGB color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the dwDDFX member of the DDBLTFX structure to specify the effects to be used for this blit.

DDBLT_DDROPS

Uses the dwDDROP member of the DDBLTFX structure to specify the raster operations (ROPs) that are not part of the Win32 API.

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE

Uses the ddckDestColorkey member of the DDBLTFX structure as the color key for the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE

Uses the ddckSrcColorkey member of the DDBLTFX structure as the color key for the source surface.

DDBLT_ROP

Uses the dwROP member of the DDBLTFX structure for the ROP for this blit. The ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

Uses the dwRotationAngle member of the DDBLTFX structure as the rotation angle (specified in 1/100th of a degree) for the surface.

DDBLT_ZBUFFER

Performs a z-buffered blit using the z-buffers attached to the source and destination surfaces and the dwZBufferOpCode member of the DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE

Performs a z-buffered blit using the dwZDestConst and dwZBufferOpCode members of the DDBLTFX structure as the z-buffer and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERDESTOVERRIDE

Performs a z-buffered blit using the lpDDSZBufferDest and dwZBufferOpCode members of the DDBLTFX structure as the z-buffer and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE

Performs a z-buffered blit using the dwZSrcConst and dwZBufferOpCode members of the DDBLTFX structure as the z-buffer and z-buffer opcode, respectively, for the source.

DDBLT_ZBUFFERSRCOVERRIDE

A z-buffered blit using the lpDDSZBufferSrc and dwZBufferOpCode members of the DDBLTFX structure as the z-buffer and z-buffer opcode, respectively, for the source.

lpDDBltFx

Address of a DDBLTFX structure specifying additional blit effects.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDBLTFX

[This is preliminary documentation and subject to change.]

The DDBLTFX structure passes raster operations, effects, and override information to the IDirectDrawSurface4::Blt method. This structure is also part of the DDBLTBATCH structure used with the IDirectDrawSurface4::BltBatch method.

typedef struct _DDBLTFX{

 DWORD dwSize;

 DWORD dwDDFX;

 DWORD dwROP;

 DWORD dwDDROP;

 DWORD dwRotationAngle;

 DWORD dwZBufferOpCode;

 DWORD dwZBufferLow;

 DWORD dwZBufferHigh;

 DWORD dwZBufferBaseDest;

 DWORD dwZDestConstBitDepth;

 union

 {

 DWORD dwZDestConst;

 LPDIRECTDRAWSURFACE lpDDSZBufferDest;

 } DUMMYUNIONNAMEN(1);

 DWORD dwZSrcConstBitDepth;

 union

 {

 DWORD dwZSrcConst;

 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;

 } DUMMYUNIONNAMEN(2);

 DWORD dwAlphaEdgeBlendBitDepth;

 DWORD dwAlphaEdgeBlend;

 DWORD dwReserved;

 DWORD dwAlphaDestConstBitDepth;

 union

 {

 DWORD dwAlphaDestConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaDest;

 } DUMMYUNIONNAMEN(3);

 DWORD dwAlphaSrcConstBitDepth;

 union

 {

 DWORD dwAlphaSrcConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

 } DUMMYUNIONNAMEN(4);

 union

 {

 DWORD dwFillColor;

 DWORD dwFillDepth;

 DWORD dwFillPixel;

 LPDIRECTDRAWSURFACE lpDDSPattern;

 } DUMMYUNIONNAMEN(5);

 DDCOLORKEY ddckDestColorkey;

 DDCOLORKEY ddckSrcColorkey;

} DDBLTFX,FAR* LPDDBLTFX;

Members

dwSize

Size of the structure, in bytes. This member must be initialized before the structure is used.

dwDDFX

Type of FX operations.

DDBLTFX_ARITHSTRETCHY

Uses arithmetic stretching along the y-axis for this blit.

DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to right.

DDBLTFX_MIRRORUPDOWN

Turns the surface on its x-axis. This blit mirrors the surface from top to bottom.

DDBLTFX_NOTEARING

Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180

Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270

Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90

Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST

Adds the dwZBufferBaseDest member to each of the source z-values before comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE

Uses the dwZBufferLow and dwZBufferHigh members as range values to specify limits to the bits copied from a source surface during this z-blit.

dwROP

Win32 raster operations. You can retrieve a list of supported raster operations by calling the IDirectDraw4::GetCaps method.

dwDDROP

DirectDraw raster operations.

dwRotationAngle

Rotation angle for the blit.

dwZBufferOpCode

Z-buffer compares.

dwZBufferLow

Low limit of a z-buffer.

dwZBufferHigh

High limit of a z-buffer.

dwZBufferBaseDest

Destination base value of a z-buffer.

dwZDestConstBitDepth

Bit depth of the destination z-constant.

dwZDestConst

Constant used as the z-buffer destination.

lpDDSZBufferDest

Surface used as the z-buffer destination.

dwZSrcConstBitDepth

Bit depth of the source z-constant.

dwZSrcConst

Constant used as the z-buffer source.

lpDDSZBufferSrc

Surface used as the z-buffer source.

dwAlphaEdgeBlendBitDepth

Bit depth of the constant for an alpha edge blend.

dwAlphaEdgeBlend

Alpha constant used for edge blending.

dwReserved

Reserved for future use.

dwAlphaDestConstBitDepth

Bit depth of the destination alpha constant.

dwAlphaDestConst

Constant used as the alpha channel destination.

lpDDSAlphaDest

Surface used as the alpha channel destination.

dwAlphaSrcConstBitDepth

Bit depth of the source alpha constant.

dwAlphaSrcConst

Constant used as the alpha channel source.

lpDDSAlphaSrc

Surface used as the alpha channel source.

dwFillColor

Color used to fill a surface when DDBLT_COLORFILL is specified. This value must be a pixel appropriate to the pixel format of the destination surface. For a palettized surface it would be a palette index, and for a 16-bit RGB surface it would be a 16-bit pixel value.

dwFillDepth

Depth value for the z-buffer.

dwFillPixel

Pixel value for RGBA or RGBZ fills. Applications that use RGBZ fills should use this member, not dwFillColor or dwFillDepth.

lpDDSPattern

Surface to use as a pattern. The pattern can be used in certain blit operations that combine a source and a destination.

ddckDestColorkey

Destination color key override.

ddckSrcColorkey

Source color key override.

Remarks

The unions in this structure have been updated to work with compilers that don't support nameless unions. If your compiler doesn't support nameless unions, define the NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDCAPS

[This is preliminary documentation and subject to change.]

The DDCAPS structure represents the capabilities of the hardware exposed through the DirectDraw object. This structure contains a DDSCAPS structure used in this context to describe what kinds of DirectDrawSurface objects can be created. It may not be possible to simultaneously create all of the surfaces described by these capabilities. This structure is used with the IDirectDraw4::GetCaps method.

The ddraw.h header file contains multiple versions of this structure. See Remarks for more information.

typedef struct _DDCAPS {

 DWORD dwSize;

 DWORD dwCaps; // driver-specific caps

 DWORD dwCaps2; // more driver-specific caps

 DWORD dwCKeyCaps; // color key caps

 DWORD dwFXCaps; // stretching and effects caps

 DWORD dwFXAlphaCaps; // alpha caps

 DWORD dwPalCaps; // palette caps

 DWORD dwSVCaps; // stereo vision caps

 DWORD dwAlphaBltConstBitDepths; // alpha bit-depth members

 DWORD dwAlphaBltPixelBitDepths; // .

 DWORD dwAlphaBltSurfaceBitDepths; // .

 DWORD dwAlphaOverlayConstBitDepths; // .

 DWORD dwAlphaOverlayPixelBitDepths; // .

 DWORD dwAlphaOverlaySurfaceBitDepths; // .

 DWORD dwZBufferBitDepths; // Z-buffer bit depth

 DWORD dwVidMemTotal; // total video memory

 DWORD dwVidMemFree; // total free video memory

 DWORD dwMaxVisibleOverlays; // maximum visible overlays

 DWORD dwCurrVisibleOverlays; // overlays currently visible

 DWORD dwNumFourCCCodes; // number of supported FOURCC codes

 DWORD dwAlignBoundarySrc; // overlay alignment restrictions

 DWORD dwAlignSizeSrc; // .

 DWORD dwAlignBoundaryDest; // .

 DWORD dwAlignSizeDest; // .

 DWORD dwAlignStrideAlign; // stride alignment

 DWORD dwRops[DD_ROP_SPACE]; // supported raster ops

 DWORD dwReservedCaps; // reserved

 DWORD dwMinOverlayStretch; // overlay stretch factors

 DWORD dwMaxOverlayStretch; // .

 DWORD dwMinLiveVideoStretch; // obsolete

 DWORD dwMaxLiveVideoStretch; // .

 DWORD dwMinHwCodecStretch; // .

 DWORD dwMaxHwCodecStretch; // .

 DWORD dwReserved1; // reserved

 DWORD dwReserved2; // .

 DWORD dwReserved3; // .

 DWORD dwSVBCaps; // system-to-video blit related caps

 DWORD dwSVBCKeyCaps; // .

 DWORD dwSVBFXCaps; // .

 DWORD dwSVBRops[DD_ROP_SPACE]; // .

 DWORD dwVSBCaps; // video-to-system blit related caps

 DWORD dwVSBCKeyCaps; // .

 DWORD dwVSBFXCaps; // .

 DWORD dwVSBRops[DD_ROP_SPACE]; // .

 DWORD dwSSBCaps; // system-to-system blit related caps

 DWORD dwSSBCKeyCaps; // .

 DWORD dwSSBCFXCaps; // .

 DWORD dwSSBRops[DD_ROP_SPACE]; // .

 DWORD dwMaxVideoPorts; // maximum number of live video ports

 DWORD dwCurrVideoPorts; // current number of live video ports

 DWORD dwSVBCaps2; // additional system-to-video blit caps

 DWORD dwNLVBCaps; // nonlocal-to-local video memory blit caps

 DWORD dwNLVBCaps2; // .

 DWORD dwNLVBCKeyCaps; // .

 DWORD dwNLVBFXCaps; // .

 DWORD dwNLVBRops[DD_ROP_SPACE];// .

 DDSCAPS2 ddsCaps; // general surface caps

} DDCAPS,FAR* LPDDCAPS;

Members

dwSize

Size of the structure, in bytes. This member must be initialized before the structure is used.

dwCaps

Driver-specific capabilities.

DDCAPS_3D

Indicates that the display hardware has 3-D acceleration.

DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those overlay destination rectangles with the x-axis aligned to the dwAlignBoundaryDest boundaries of the surface.

DDCAPS_ALIGNBOUNDARYSRC

Indicates that DirectDraw will support only those overlay source rectangles with the x-axis aligned to the dwAlignBoundarySrc boundaries of the surface.

DDCAPS_ALIGNSIZEDEST

Indicates that DirectDraw will support only those overlay destination rectangles whose x-axis sizes, in pixels, are dwAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC

Indicates that DirectDraw will support only those overlay source rectangles whose x-axis sizes, in pixels, are dwAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE

Indicates that DirectDraw will create display memory surfaces that have a stride alignment equal to the dwAlignStrideAlign value.

DDCAPS_ALPHA

Indicates that the display hardware supports alpha-only surfaces. (See alpha channel)

DDCAPS_BANKSWITCHED

Indicates that the display hardware is bank-switched and is potentially very slow at random access to display memory.

DDCAPS_BLT

Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL

Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL

Indicates that display hardware is capable of depth filling z-buffers with a blitter.

DDCAPS_BLTFOURCC

Indicates that display hardware is capable of color-space conversions during blit operations.

DDCAPS_BLTQUEUE

Indicates that display hardware is capable of asynchronous blit operations.

DDCAPS_BLTSTRETCH

Indicates that display hardware is capable of stretching during blit operations.

DDCAPS_CANBLTSYSMEM

Indicates that display hardware is capable of blitting to or from system memory.

DDCAPS_CANCLIP

Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED

Indicates that display hardware is capable of clipping while stretch blitting.

DDCAPS_COLORKEY

Supports some form of color key in either overlay or blit operations. More specific color key capability information can be found in the dwCKeyCaps member.

DDCAPS_COLORKEYHWASSIST

Indicates that the color key is partially hardware assisted. This means that other resources (CPU or video memory) might be used. If this bit is not set, full hardware support is in place.

DDCAPS_GDI

Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE

Indicates that there is no hardware support.

DDCAPS_OVERLAY

Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP

Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC

Indicates that overlay hardware is capable of color-space conversions during overlay operations.

DDCAPS_OVERLAYSTRETCH

Indicates that overlay hardware is capable of stretching. The dwMinOverlayStretch and dwMaxOverlayStretch members contain valid data.

DDCAPS_PALETTE

Indicates that DirectDraw is capable of creating and supporting DirectDrawPalette objects for more surfaces than only the primary surface.

DDCAPS_PALETTEVSYNC

Indicates that DirectDraw is capable of updating a palette synchronized with the vertical refresh.

DDCAPS_READSCANLINE

Indicates that display hardware is capable of returning the current scan line.

DDCAPS_STEREOVIEW

Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI

Indicates that display hardware is capable of generating a vertical-blank interrupt.

DDCAPS_ZBLTS

Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS

Supports the use of the IDirectDrawSurface4::UpdateOverlayZOrder method as a z-value for overlays to control their layering.

dwCaps2

More driver-specific capabilities.

DDCAPS2_AUTOFLIPOVERLAY

The overlay can be automatically flipped to the next surface in the flip chain each time a video port VSYNC occurs, allowing the video port and the overlay to double buffer the video without CPU overhead. This option is only valid when the surface is receiving data from a video port. If the video port data is non-interlaced or non-interleaved, it will flip on every VSYNC. If the data is being interleaved in memory, it will flip on every other VSYNC.

DDCAPS2_CANBOBHARDWARE

The overlay hardware can display each field of an interlaced video stream individually.

DDCAPS2_CANBOBINTERLEAVED

The overlay hardware can display each field individually of an interlaced video stream while it is interleaved in memory without causing any artifacts that might normally occur without special hardware support. This option is only valid when the surface is receiving data from a video port and is only valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANBOBNONINTERLEAVED

The overlay hardware can display each field individually of an interlaced video stream while it is not interleaved in memory without causing any artifacts that might normally occur without special hardware support. This option is only valid when the surface is receiving data from a video port and is only valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANCALIBRATEGAMMA

The system has a calibrator installed that can automatically adjust the gamma ramp so that the result will be identical on all systems that have a calibrator. To invoke the calibrator when setting new gamma levels, use the DDSGR_CALIBRATE flag when calling the IDirectDrawGammaControl::SetGammaRamp method. Calibrating gamma ramps incurs some processing overhead, and should not be used frequently.

DDCAPS2_CANDROPZ16BIT

16-bit RGBZ values can be converted into sixteen-bit RGB values. (The system does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN

The driver is capable of performing odd and even flip operations, as specified by the DDFLIP_ODD and DDFLIP_EVEN flags used with the IDirectDrawSurface4::Flip method.

DDCAPS2_CANRENDERWINDOWED

The driver is capable of rendering in windowed mode.

DDCAPS2_CERTIFIED

Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLPRIMARY

The primary surface contains color controls (for instance, gamma)

DDCAPS2_COLORCONTROLOVERLAY

The overlay surface contains color controls (such as brightness, sharpness)

DDCAPS2_COPYFOURCC

Indicates that the driver supports blitting any FOURCC surface to another surface of the same FOURCC.

DDCAPS2_FLIPINTERVAL

Indicates that the driver will respond to the DDFLIP_INTERVAL* flags. (see IDirectDrawSurface4::Flip).

DDCAPS2_FLIPNOVSYNC

Indicates that the driver will respond to the DDFLIP_NOVSYNC flag (see IDirectDrawSurface4::Flip).

DDCAPS2_NO2DDURING3DSCENE

Indicates that 2-D operations such as IDirectDrawSurface4::Blt and IDirectDrawSurface4::Lock cannot be performed on any surfaces that Direct3D® is using between calls to the IDirect3DDevice3::BeginScene and IDirect3DDevice3::EndScene methods.

DDCAPS2_NONLOCALVIDMEM

Indicates that the display driver supports surfaces in non-local video memory.

DDCAPS2_NONLOCALVIDMEMCAPS

Indicates that blit capabilities for non-local video memory surfaces differ from local video memory surfaces. If this flag is present, the DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED

DMA blit operations are supported on system memory surfaces that are not page locked.

DDCAPS2_PRIMARYGAMMA

Supports dynamic gamma ramps for the primary surface. For more information, see Gamma and Color Controls.

DDCAPS2_VIDEOPORT

Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES

Indicates that the display surfaces supports surfaces wider than the primary surface.

dwCKeyCaps

Color-key capabilities.

DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE

Supports transparent blitting with a color space that identifies the replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV

Supports transparent blitting with a color space that identifies the replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV

Supports transparent blitting with a color key that identifies the replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY

Supports overlaying with color keying of the replaceable bits of the destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE

Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV

Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE

Supports only one active destination color key value for visible overlay surfaces .

DDCKEYCAPS_DESTOVERLAYYUV

Supports overlaying using color keying of the replaceable bits of the destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY

Indicates there are no bandwidth trade-offs for using the color key with an overlay.

DDCKEYCAPS_SRCBLT

Supports transparent blitting using the color key for the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE

Supports transparent blitting using a color space for the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV

Supports transparent blitting using a color space for the source with this surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV

Supports transparent blitting using the color key for the source with this surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY

Supports overlaying using the color key for the source with this overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE

Supports overlaying using a color space as the source color key for the overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV

Supports overlaying using a color space as the source color key for the overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE

Supports only one active source color key value for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV

Supports overlaying using the color key for the source with this overlay surface for YUV colors.

dwFXCaps

Driver-specific stretching and effects capabilities.

DDFXCAPS_BLTALPHA

Supports alpha-blended blit operations.

DDFXCAPS_BLTARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink surfaces during a blit operation. Occurs along the y-axis (vertically).

DDFXCAPS_BLTARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink surfaces during a blit operation. Occurs along the y-axis (vertically), and works only for integer stretching (´1, ´2, and so on).

DDFXCAPS_BLTFILTER

Driver can do surface-reconstruction filtering for warped blits.

DDFXCAPS_BLTMIRRORLEFTRIGHT

Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN

Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION

Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90

Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN

Supports integer shrinking (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN

Supports integer shrinking (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN

Supports integer stretching (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN

Supports integer stretching (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTTRANSFORM

Supports geometric transformations (or warps) for blitted sprites. Transformations are not currently supported for explicit blit operations.

DDFXCAPS_OVERLAYALPHA

Supports alpha blending for overlay surfaces.

DDFXCAPS_OVERLAYARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink overlay surfaces. Occurs along the y-axis (vertically).

DDFXCAPS_OVERLAYARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink overlay surfaces. Occurs along the y-axis (vertically), and works only for integer stretching (´1, ´2, and so on).

DDFXCAPS_OVERLAYFILTER

Supports surface-reconstruction filtering for warped overlay sprites. Filtering is not currently supported for explicitly displayed overlay surfaces (those displayed with calls to IDirectDrawSurface4::UpdateOverlay).

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT

Supports mirroring of overlays across the vertical axis.

DDFXCAPS_OVERLAYMIRRORUPDOWN

Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN

Supports integer shrinking (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKYN

Supports integer shrinking (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN

Supports integer stretching (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN

Supports integer stretching (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYTRANSFORM

Supports geometric transformations (or warps) for overlay sprites. Transformations are not currently supported for explicitly displayed overlay surfaces (those displayed with calls to IDirectDrawSurface4::UpdateOverlay).

dwFXAlphaCaps

Driver-specific alpha capabilities.

DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA is set. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha value increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be set only if DDCAPS_ALPHA has been set. Used for blit operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha information in pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha information in pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha value increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

dwPalCaps

Palette capabilities.

DDPCAPS_1BIT

Supports palettes that contain 1 bit color entries (two colors).

DDPCAPS_2BIT

Supports palettes that contain 2 bit color entries (four colors).

DDPCAPS_4BIT

Supports palettes that contain 4 bit color entries (16 colors).

DDPCAPS_8BIT

Supports palettes that contain 8 bit color entries (256 colors).

DDPCAPS_8BITENTRIES

Specifies an index to an 8-bit color index. This field is valid only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT capability and when the target surface is in 8 bits per pixel (bpp). Each color entry is 1 byte long and is an index to an 8-bpp palette on the destination surface.

DDPCAPS_ALPHA

Supports palettes that include an alpha component. For alpha-capable palettes, the peFlags member of for each PALETTEENTRY structure the palette contains is to be interpreted as a single 8-bit alpha value (in addition to the color data in the peRed, peGreen, and peBlue members). A palette created with this flag can only be attached to a texture surface.

DDPCAPS_ALLOW256

Supports palettes that can have all 256 entries defined.

DDPCAPS_PRIMARYSURFACE

Indicates that the palette is attached to the primary surface. Changing the palette has an immediate effect on the display unless the DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT

Indicates that the palette is attached to the primary surface on the left. Changing the palette has an immediate effect on the display unless the DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_VSYNC

Indicates that the palette can be modified synchronously with the monitor's refresh rate.

dwSVCaps

Stereo vision capabilities.

DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.

DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency flickering.

DDSVCAPS_REDBLUE

Indicates that the stereo view is accomplished when the viewer looks at the image through red and blue filters placed over the left and right eyes. All images must adapt their color spaces for this process.

DDSVCAPS_SPLIT

Indicates that the stereo view is accomplished with split-screen technology.

dwAlphaBltConstBitDepths

DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaBltPixelBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

dwAlphaBltSurfaceBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

dwAlphaOverlayConstBitDepths

DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaOverlayPixelBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

dwAlphaOverlaySurfaceBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

dwZBufferBitDepths

DDBD_8, DDBD_16, DDBD_24, or DDBD_32. (Indicates 8-, 16-, 24-, 32-bits per pixel.) This member is obsolete for DirectX 6.0 and later. Use the IDirect3D3::EnumZBufferFormats to retrieve information about supported depth buffer formats.

dwVidMemTotal

Total amount of display memory on the device, in bytes, less memory reserved for the primary surface and any private data structures reserved by the driver. (This value is the same as the total video memory reported by the IDirectDraw4::GetAvailableVidMem method.)

dwVidMemFree

Free display memory. This value equals the value in dwVidMemTotal, less any memory currently allocated by the application for surfaces. Unlike the GetAvailableVidMem method, which reports the memory available for a particular type of surface (like a texture), this value reflects the memory available for any type of surface.

dwMaxVisibleOverlays

Maximum number of visible overlays or overlay sprites.

dwCurrVisibleOverlays

Current number of visible overlays or overlay sprites.

dwNumFourCCCodes

Number of FourCC codes.

dwAlignBoundarySrc

Source rectangle alignment for an overlay surface, in pixels.

dwAlignSizeSrc

Source rectangle size alignment for an overlay surface, in pixels. Overlay source rectangles must have a pixel width that is a multiple of this value.

dwAlignBoundaryDest

Destination rectangle alignment for an overlay surface, in pixels.

dwAlignSizeDest

Destination rectangle size alignment for an overlay surface, in pixels. Overlay destination rectangles must have a pixel width that is a multiple of this value.

dwAlignStrideAlign

Stride alignment.

dwRops[DD_ROP_SPACE]

Raster operations supported.

dwReservedCaps

Reserved. Prior to DirectX 6.0, this member contained general surface capabilities, which are now contained in the ddsCaps member (a DDSCAPS2 structure).

dwMinOverlayStretch and dwMaxOverlayStretch

Minimum and maximum overlay stretch factors multiplied by 1000. For example, 1.3 = 1300.

dwMinLiveVideoStretch and dwMaxLiveVideoStretch

These members are obsolete; do not use.

dwMinHwCodecStretch and dwMaxHwCodecStretch

These members are obsolete; do not use.

dwReserved1, dwReserved2, and dwReserved3

Reserved for future use.

dwSVBCaps

Driver-specific capabilities for system-memory-to-display-memory blits. Valid flags are identical to the blit-related flags used with the dwCaps member.

dwSVBCKeyCaps

Driver color-key capabilities for system-memory-to-display-memory blits. Valid flags are identical to the blit-related flags used with for the dwCKeyCaps member.

dwSVBFXCaps

Driver FX capabilities for system-memory-to-display-memory blits. Valid flags are identical to the blit-related flags used with the dwFXCaps member.

dwSVBRops[DD_ROP_SPACE]

Raster operations supported for system-memory-to-display-memory blits.

dwVSBCaps

Driver-specific capabilities for display-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the dwCaps member.

dwVSBCKeyCaps

Driver color-key capabilities for display-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with for the dwCKeyCaps member.

dwVSBFXCaps

Driver FX capabilities for display-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the dwFXCaps member.

dwVSBRops[DD_ROP_SPACE]

Raster operations supported for display-memory-to-system-memory blits.

dwSSBCaps

Driver-specific capabilities for system-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the dwCaps member.

dwSSBCKeyCaps

Driver color-key capabilities for system-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with for the dwCKeyCaps member.

dwSSBCFXCaps

Driver FX capabilities for system-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the dwFXCaps member.

dwSSBRops[DD_ROP_SPACE]

Raster operations supported for system-memory-to-system-memory blits.

dwMaxVideoPorts

Maximum number of live video ports.

dwCurrVideoPorts

Current number of live video ports.

dwSVBCaps2

More driver-specific capabilities for system-memory-to-video-memory blits. Valid flags are identical to the blit-related flags used with the dwCaps2 member.

dwNLVBCaps

Driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with the dwCaps member.

dwNLVBCaps2

More driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with the dwCaps2 member.

dwNLVBCKeyCaps

Driver color-key capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with for the dwCKeyCaps member.

dwNLVBFXCaps

Driver FX capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with the dwFXCaps member.

dwNLVBRops[DD_ROP_SPACE]

Raster operations supported for nonlocal-to-local video memory blits.

ddsCaps

DDSCAPS2 structure with general surface capabilities.

Remarks

For backward compatibility with previous versions of DirectX, the ddraw.h header file contains multiple definitions for the DDCAPS structure. The version that passes the preprocessor is determined by the value of the DIRECTDRAW_VERSION constant. For details, see Component Version Constants.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDCOLORCONTROL

[This is preliminary documentation and subject to change.]

The DDCOLORCONTROL structure defines the color controls associated with a DirectDrawVideoPortObject, an overlay surface, or a primary surface.

typedef struct _DDCOLORCONTROL {

 DWORD dwSize;

 DWORD dwFlags;

 LONG lBrightness;

 LONG lContrast;

 LONG lHue;

 LONG lSaturation;

 LONG lSharpness;

 LONG lGamma;

 LONG lColorEnable;

 DWORD dwReserved1;

} DDCOLORCONTROL, FAR *LPDDCOLORCONTROL;

Members

dwSize

The the size of the structure, in bytes. This member must be initialized before use.

dwFlags

Flags specifying which structure members contain valid data . When the structure is returned by the IDirectDrawColorControl::GetColorControls method, it also indicates which options are supported by the device.

DDCOLOR_BRIGHTNESS

The lBrightness member contains valid data.

DDCOLOR_COLORENABLE

The lColorEnable member contains valid data.

DDCOLOR_CONTRAST

The lContrast member contains valid data.

DDCOLOR_GAMMA

The lGamma member contains valid data.

DDCOLOR_HUE

The lHue member contains valid data.

DDCOLOR_SATURATION

The lSaturation member contains valid data.

DDCOLOR_SHARPNESS

The lSharpness member contains valid data.

lBrightness

Luminance intensity, in IRE units times 100. The valid range is 0 to 10,000. The default is 750, which translates to 7.5 IRE.

lContrast

Relative difference between higher and lower intensity luminance values in IRE units times 100. The valid range is 0 to 20,000. The default value is 10,000 (100 IRE). Higher values of contrast cause darker luminance values to tend towards black, and cause lighter luminance values to tend towards white. Lower values of contrast cause all luminance values to move towards the middle luminance values.

lHue

Phase relationship of the chrominance components. Hue is specified in degrees and the valid range is -180 to 180. The default is 0.

lSaturation

Color intensity, in IRE units times 100. The valid range is 0 to 20,000. The default value is 10,000, which translates to 100 IRE.

lSharpness

Sharpness in arbitrary units. The valid range is 0 to 10. The default value is 5.

lGamma

Controls the amount of gamma correction applied to the luminance values. The valid range is 1 to 500 gamma units, with a default of 1.

lColorEnable

Flag indicating whether color is used. If this member is zero, color is not used; if it is 1, then color is used. The default value is 1.

dwReserved1

This member is reserved.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDDEVICEIDENTIFIER

[This is preliminary documentation and subject to change.]

The DDDEVICEIDENTIFIER structure is passed to the IDirectDraw4::GetDeviceIdentifier method to obtain information about a device.

typedef struct tagDDDEVICEIDENTIFIER {

 char szDriver[MAX_DDDEVICEID_STRING];

 char szDescription[MAX_DDDEVICEID_STRING];

 LARGE_INTEGER liDriverVersion;

 DWORD dwVendorId;

 DWORD dwDeviceId;

 DWORD dwSubSysId;

 DWORD dwRevision;

 GUID guidDeviceIdentifier;

} DDDEVICEIDENTIFIER, * LPDDDEVICEIDENTIFIER;

Members

szDriver

Name of the driver.

szDescription

Description of the driver.

liDriverVersion

Version of the driver. It is legal to do less than and greater than comparisons on the whole 64 bits. Caution should be exercised if you use this element to identify problematic drivers. It is recommended that guidDeviceIdentifier be used for this purpose.

The data takes the following form:

wProduct = HIWORD(liDriverVersion.HighPart)

wVersion = LOWORD(liDriverVersion.HighPart)

wSubVersion = HIWORD(liDriverVersion.LowPart)

wBuild = LOWORD(liDriverVersion.LowPart)

dwVendorId

Identifier of the manufacturer. Can be 0 if unknown.

dwDeviceId

Identifier of the type of chipset. Can be 0 if unknown.

dwSubSysId

Identifier of the subsystem. Typically this means the particular board. Can be 0 if unknown.

dwRevision

Identifier of the revision level of the chipset. Can be 0 if unknown.

guidDeviceIdentifier

Unique identifier for the driver/chipset pair. Use this value if you wish to track changes to the driver/chipset in order to reprofile the graphics subsystem. It can also be used to identify particular problematic drivers.

Remarks

The values in szDriver and szDescription are for presentation to the user only. They should not be used to identify particular drivers, because different strings might be associated with the same device, or the same driver from different vendors might be described differently.

The dwVendorId, dwDeviceId, dwSubSysId, and dwRevision members can be used to identify particular chipsets, but use extreme caution.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDGAMMARAMP

[This is preliminary documentation and subject to change.]

The DDGAMMARAMP structure contains red, green, and blue ramp data for the IDirectDrawGammaControl::GetGammaRamp and IDirectDrawGammaControl::SetGammaRamp methods.

typedef struct _DDGAMMARAMP {

 WORD red[256];

 WORD green[256];

 WORD blue[256];

} DDGAMMARAMP, FAR * LPDDGAMMARAMP;

Members

red, green, and blue

Array of 256 WORD elements that describe the red, green, and blue gamma ramps.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

See Also

Gamma and Color Controls

DDCOLORKEY

[This is preliminary documentation and subject to change.]

The DDCOLORKEY structure describes a source color key, destination color key, or color space. A color key is specified if the low and high range values are the same. This structure is used with the IDirectDrawSurface4::GetColorKey and IDirectDrawSurface4::SetColorKey methods.

typedef struct _DDCOLORKEY{

 DWORD dwColorSpaceLowValue;

 DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

Members

dwColorSpaceLowValue

Low value, inclusive, of the color range that is to be used as the color key.

dwColorSpaceHighValue

High value, inclusive, of the color range that is to be used as the color key.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDOVERLAYFX

[This is preliminary documentation and subject to change.]

The DDOVERLAYFX structure passes override information to the IDirectDrawSurface4::UpdateOverlay method.

typedef struct _DDOVERLAYFX{

 DWORD dwSize;

 DWORD dwAlphaEdgeBlendBitDepth;

 DWORD dwAlphaEdgeBlend;

 DWORD dwReserved;

 DWORD dwAlphaDestConstBitDepth;

 union

 {

 DWORD dwAlphaDestConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaDest;

 } DUMMYUNIONNAMEN(1);

 DWORD dwAlphaSrcConstBitDepth;

 union

 {

 DWORD dwAlphaSrcConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

 } DUMMYUNIONNAMEN(2);

 DDCOLORKEY dckDestColorkey;

 DDCOLORKEY dckSrcColorkey;

 DWORD dwDDFX;

 DWORD dwFlags;

} DDOVERLAYFX,FAR *LPDDOVERLAYFX;

Members

dwSize

Size of the structure, in bytes. This members must be initialized before the structure is used.

dwAlphaEdgeBlendBitDepth

Bit depth used to specify the constant for an alpha edge blend.

dwAlphaEdgeBlend

Constant to use as the alpha for an edge blend.

dwReserved

Reserved for future use.

dwAlphaDestConstBitDepth

Bit depth used to specify the alpha constant for a destination.

dwAlphaDestConst

Constant to use as the alpha channel for a destination.

lpDDSAlphaDest

Address of a surface to use as the alpha channel for a destination.

dwAlphaSrcConstBitDepth

Bit depth used to specify the alpha constant for a source.

dwAlphaSrcConst

Constant to use as the alpha channel for a source.

lpDDSAlphaSrc

Address of a surface to use as the alpha channel for a source.

dckDestColorkey

Destination color key override.

dckSrcColorkey

Source color key override.

dwDDFX

Overlay FX flags.

DDOVERFX_ARITHSTRETCHY

If stretching, use arithmetic stretching along the y-axis for this overlay.

DDOVERFX_MIRRORLEFTRIGHT

Mirror the overlay around the vertical axis.

DDOVERFX_MIRRORUPDOWN

Mirror the overlay around the horizontal axis.

dwFlags

This member is currently not used and must be set to 0.

Remarks

The unions in this structure have been updated to work with compilers that don't support nameless unions. If your compiler doesn't support nameless unions, define the NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDPIXELFORMAT

[This is preliminary documentation and subject to change.]

The DDPIXELFORMAT structure describes the pixel format of a DirectDrawSurface object for the IDirectDrawSurface4::GetPixelFormat method.

typedef struct _DDPIXELFORMAT{

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwFourCC;

 union

 {

 DWORD dwRGBBitCount;

 DWORD dwYUVBitCount;

 DWORD dwZBufferBitDepth;

 DWORD dwAlphaBitDepth;

 DWORD dwLuminanceBitCount; // new for DirectX 6.0

 DWORD dwBumpBitCount; // new for DirectX 6.0

 } DUMMYUNIONNAMEN(1);

 union

 {

 DWORD dwRBitMask;

 DWORD dwYBitMask;

 DWORD dwStencilBitDepth; // new for DirectX 6.0

 DWORD dwLuminanceBitMask; // new for DirectX 6.0

 DWORD dwBumpDuBitMask; // new for DirectX 6.0

 } DUMMYUNIONNAMEN(2);

 union

 {

 DWORD dwGBitMask;

 DWORD dwUBitMask;

 DWORD dwZBitMask; // new for DirectX 6.0

 DWORD dwBumpDvBitMask; // new for DirectX 6.0

 } DUMMYUNIONNAMEN(3);

 union

 {

 DWORD dwBBitMask;

 DWORD dwVBitMask;

 DWORD dwStencilBitMask; // new for DirectX 6.0

 DWORD dwBumpLuminanceBitMask; // new for DirectX 6.0

 } DUMMYUNIONNAMEN(4);

 union

 {

 DWORD dwRGBAlphaBitMask;

 DWORD dwYUVAlphaBitMask;

 DWORD dwLuminanceAlphaBitMask; // new for DirectX 6.0

 DWORD dwRGBZBitMask;

 DWORD dwYUVZBitMask;

 } DUMMYUNIONNAMEN(5);

} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

Members

dwSize

Size of the structure, in bytes. This member must be initialized before the structure is used.

dwFlags

Optional control flags.

DDPF_ALPHA

The pixel format describes an alpha-only surface.

DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.

DDPF_ALPHAPREMULT

The surface uses the premultiplied alpha format. That is, the color components in each pixel are premultiplied by the alpha component.

DDPF_BUMPLUMINANCE

The luminance data in the pixel format is valid, and the dwLuminanceBitMask member describes valid luminance bits for a luminance-only or luminance-alpha surface.

DDPF_BUMPDUDV

Bump-map data in the pixel format is valid. Bump-map information is in the dwBumpBitCount, dwBumpDuBitMask, dwBumpDvBitMask, and dwBumpLuminanceBitMask members.

DDPF_COMPRESSED

The surface will accept pixel data in the specified format and compress it during the write operation.

DDPF_FOURCC

The dwFourCC member is valid and contains a FOURCC code describing a non-RGB pixel format.

DDPF_LUMINANCE

The pixel format describes a luminance-only or luminance-alpha surface.

DDPF_PALETTEINDEXED1

DDPF_PALETTEINDEXED2

DDPF_PALETTEINDEXED4

DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.

DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.

DDPF_RGB

The RGB data in the pixel format structure is valid.

DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write operation to YUV data. The format of the data to be written will be contained in the pixel format structure. The DDPF_RGB flag will be set.

DDPF_STENCILBUFFER

The surface encodes stencil and depth information in each pixel of the z-buffer. This flag can only be used if the DDPF_ZBUFFER flag is also specified.

DDPF_YUV

The YUV data in the pixel format structure is valid.

DDPF_ZBUFFER

The pixel format describes a z-buffer surface.

DDPF_ZPIXELS

The surface contains z information in the pixels.

dwFourCC

FourCC code. For more information see, Four Character Codes (FOURCC).

dwRGBBitCount

RGB bits per pixel (4, 8, 16, 24, or 32).

dwYUVBitCount

YUV bits per pixel (4, 8, 16, 24, or 32).

dwZBufferBitDepth

Z-buffer bit depth (8, 16, 24, or 32).

dwAlphaBitDepth

Alpha channel bit depth (1, 2, 4, or 8) for an alpha-only surface (DDPF_ALPHA). For pixel formats that contain alpha information interleaved with color data (DDPF_ALPHAPIXELS), you must count the bits in the dwRGBAlphaBitMask member to obtain the bit-depth of the alpha component. For more information, see Remarks.

dwLuminanceBitCount

Total luminance bits per pixel. This member applies only to luminance-only and luminance-alpha surfaces.

dwBumpBitCount

Total bump-map bits per pixel in a bump-map surface.

dwRBitMask

Mask for red bits.

dwYBitMask

Mask for Y bits.

dwStencilBitDepth

Bit depth of the stencil buffer. This member specifies how many bits are reserved within each pixel of the z-buffer for stencil information (the total number of z-bits is equal to dwZBufferBitDepth minus dwStencilBitDepth).

dwLuminanceBitMask

Mask for luminance bits.

dwBumpDuBitMask

Mask for bump-map U(bits.

dwGBitMask

Mask for green bits.

dwUBitMask

Mask for U bits.

dwZBitMask

Mask for z bits.

dwBumpDvBitMask

Mask for bump-map V(bits.

dwBBitMask

Mask for blue bits.

dwVBitMask

Mask for V bits.

dwStencilBitMask

Mask for stencil bits within each z-buffer pixel.

dwBumpLuminanceBitMask

Mask for luminance in a bump-map pixel.

dwRGBAlphaBitMask and dwYUVAlphaBitMask and dwLuminanceAlphaBitMask

Masks for alpha channel.

dwRGBZBitMask and dwYUVZBitMask

Masks for z channel.

Remarks

The dwAlphaBitDepth member reflects the bit depth of an alpha-only pixel format (DDPF_ALPHA). For pixel formats that include the alpha component with color components (DDPF_ALPHAPIXELS), the alpha bit depth is obtained by counting the bits in the various mask members. The following example function returns the number of bits set in a given bitmask:

WORD GetNumberOfBits(DWORD dwMask)

{

 WORD wBits = 0;

 while(dwMask)

 {

 dwMask = dwMask & (dwMask - 1);

 wBits++;

 }

 return wBits;

}

The unions in this structure have been updated to work with compilers that don't support nameless unions. If your compiler doesn't support nameless unions, define the NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

See Also

Off-Screen Surface Formats

DDSCAPS

[This is preliminary documentation and subject to change.]

The DDSCAPS structure defines the capabilities of a DirectDrawSurface object. This structure is part of the DDCAPS and DDSURFACEDESC structures.

typedef struct _DDSCAPS{

 DWORD dwCaps;

} DDSCAPS, FAR* LPDDSCAPS;

Members

dwCaps

Capabilities of the surface. One or more of the following flags:

DDSCAPS_3D

Unsupported. Use the DDSCAPS_3DDEVICE instead.

DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can use this flag to ensure that a device that can only render to a certain heap has off-screen surfaces allocated from the correct heap. If this flag is set for a heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD

Indicates that memory for the surface is not allocated until the surface is loaded by using the IDirect3DTexture2::Load.

DDSCAPS_ALPHA

Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER

Indicates that this surface is the back buffer of a surface flipping structure. Typically, this capability is set by the CreateSurface method when the DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the DDSCAPS_FRONTBUFFER surface has this capability set. The other surfaces are identified as back buffers by the presence of the DDSCAPS_FLIP flag, their attachment order, and the absence of the DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If this capability is sent to the CreateSurface method, a stand-alone back buffer is being created. After this method is called, this surface could be attached to a front buffer, another back buffer, or both to form a flipping surface structure. For more information, see IDirectDrawSurface4::AddAttachedSurface. DirectDraw supports an arbitrary number of surfaces in a flipping structure.

DDSCAPS_COMPLEX

Indicates that a complex surface is being described. A complex surface results in the creation of more than one surface. The additional surfaces are attached to the root surface. The complex structure can be destroyed only by destroying the root.

DDSCAPS_FLIP

Indicates that this surface is a part of a surface flipping structure. When this capability is passed to the CreateSurface method, a front buffer and one or more back buffers are created. DirectDraw sets the DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer surface. The dwBackBufferCount member of the DDSURFACEDESC structure must be set to at least 1 in order for the method call to succeed. The DDSCAPS_COMPLEX capability must always be set when creating multiple surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER

Indicates that this surface is the front buffer of a surface flipping structure. This flag is typically set by the CreateSurface method when the DDSCAPS_FLIP capability is set. If this capability is sent to the CreateSurface method, a stand-alone front buffer is created. This surface will not have the DDSCAPS_FLIP capability. It can be attached to other back buffers to form a flipping structure by using IDirectDrawSurface4::AddAttachedSurface.

DDSCAPS_HWCODEC

Indicates that this surface should be able to have a stream decompressed to it by the hardware.

DDSCAPS_LIVEVIDEO

Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM

Indicates that this surface exists in true, local video memory rather than non-local video memory. If this flag is specified then DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP

Indicates that this surface is one level of a mipmap. This surface will be attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This can be done explicitly by creating a number of surfaces and attaching them by using the IDirectDrawSurface4::AddAttachedSurface method, or implicitly by the CreateSurface method. If this capability is set, DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX

Indicates that this surface is a 320´200 or 320´240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM

Indicates that this surface exists in non-local video memory rather than true, local video memory. If this flag is specified, then DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN

Indicates that this surface is any off-screen surface that is not an overlay, texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to identify plain surfaces.

DDSCAPS_OPTIMIZED

Not currently implemented.

DDSCAPS_OVERLAY

Indicates that this surface is an overlay. It may or may not be directly visible depending on whether it is currently being overlaid onto the primary surface. DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the moment.

DDSCAPS_OWNDC

Indicates that this surface will have a device context (DC) association for a long period.

DDSCAPS_PALETTE

Indicates that this device driver allows unique DirectDrawPalette objects to be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE

Indicates the surface is the primary surface. It represents what is visible to the user at the moment.

DDSCAPS_PRIMARYSURFACELEFT

Indicates that this surface is the primary surface for the left eye. It represents what is visible to the user's left eye at the moment. When this surface is created, the surface with the DDSCAPS_PRIMARYSURFACE capability represents what is seen by the user's right eye.

DDSCAPS_STANDARDVGAMODE

Indicates that this surface is a standard VGA mode surface, and not a Mode X surface. This flag cannot be used in combination with the DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY

Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE

Indicates that this surface can be used as a 3-D texture. It does not indicate whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY

Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT

Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE

Indicates that changes made to this surface are immediately visible. It is always set for the primary surface, as well as for overlays while they are being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY

Indicates that only write access is permitted to the surface. Read access from the surface may generate a general protection (GP) fault, but the read results from this surface will not be meaningful.

DDSCAPS_ZBUFFER

Indicates that this surface is the z-buffer. The z-buffer contains information that cannot be displayed. Instead, it contains bit-depth information that is used to determine which pixels are visible and which are obscured.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDSCAPS2

[This is preliminary documentation and subject to change.]

The DDSCAPS2 structure defines the capabilities of a DirectDrawSurface object. This structure is part of the DDSURFACEDESC2 structure.

typedef struct _DDSCAPS2 {

 DWORD dwCaps; // Surface capabilities

 DWORD dwCaps2; // More surface capabilities

 DWORD dwCaps3; // Not currently used

 DWORD dwCaps4; // .

} DDSCAPS2, FAR* LPDDSCAPS2;

Members

dwCaps

One or more flag values representing the capabilities of the surface. (The flags in this member are identical to those in the corresponding member of the DDSCAPS structure.)

DDSCAPS_3D

Unsupported. Use the DDSCAPS_3DDEVICE instead.

DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can use this flag to ensure that a device that can only render to a certain heap has off-screen surfaces allocated from the correct heap. If this flag is set for a heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD

Indicates that memory for the surface is not allocated until the surface is loaded by using the IDirect3DTexture2::Load.

DDSCAPS_ALPHA

Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER

Indicates that this surface is the back buffer of a surface flipping structure. Typically, this capability is set by the CreateSurface method when the DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the DDSCAPS_FRONTBUFFER surface has this capability set. The other surfaces are identified as back buffers by the presence of the DDSCAPS_FLIP flag, their attachment order, and the absence of the DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If this capability is sent to the CreateSurface method, a stand-alone back buffer is being created. After this method is called, this surface could be attached to a front buffer, another back buffer, or both to form a flipping surface structure. For more information, see IDirectDrawSurface4::AddAttachedSurface. DirectDraw supports an arbitrary number of surfaces in a flipping structure.

DDSCAPS_COMPLEX

Indicates that a complex surface is being described. A complex surface results in the creation of more than one surface. The additional surfaces are attached to the root surface. The complex structure can be destroyed only by destroying the root.

DDSCAPS_FLIP

Indicates that this surface is a part of a surface flipping structure. When this capability is passed to the CreateSurface method, a front buffer and one or more back buffers are created. DirectDraw sets the DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer surface. The dwBackBufferCount member of the DDSURFACEDESC structure must be set to at least 1 in order for the method call to succeed. The DDSCAPS_COMPLEX capability must always be set when creating multiple surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER

Indicates that this surface is the front buffer of a surface flipping structure. This flag is typically set by the CreateSurface method when the DDSCAPS_FLIP capability is set. If this capability is sent to the CreateSurface method, a stand-alone front buffer is created. This surface will not have the DDSCAPS_FLIP capability. It can be attached to other back buffers to form a flipping structure by using IDirectDrawSurface4::AddAttachedSurface.

DDSCAPS_HWCODEC

Indicates that this surface should be able to have a stream decompressed to it by the hardware.

DDSCAPS_LIVEVIDEO

Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM

Indicates that this surface exists in true, local video memory rather than non-local video memory. If this flag is specified then DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP

Indicates that this surface is one level of a mipmap. This surface will be attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This can be done explicitly by creating a number of surfaces and attaching them by using the IDirectDrawSurface4::AddAttachedSurface method, or implicitly by the CreateSurface method. If this capability is set, DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX

Indicates that this surface is a 320´200 or 320´240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM

Indicates that this surface exists in non-local video memory rather than true, local video memory. If this flag is specified, then DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN

Indicates that this surface is any off-screen surface that is not an overlay, texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to identify plain surfaces.

DDSCAPS_OPTIMIZED

Not currently implemented.

DDSCAPS_OVERLAY

Indicates that this surface is an overlay. It may or may not be directly visible depending on whether it is currently being overlaid onto the primary surface. DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the moment.

DDSCAPS_OWNDC

Indicates that this surface will have a device context (DC) association for a long period.

DDSCAPS_PALETTE

Indicates that this device driver allows unique DirectDrawPalette objects to be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE

Indicates the surface is the primary surface. It represents what is visible to the user at the moment.

DDSCAPS_PRIMARYSURFACELEFT

Indicates that this surface is the primary surface for the left eye. It represents what is visible to the user's left eye at the moment. When this surface is created, the surface with the DDSCAPS_PRIMARYSURFACE capability represents what is seen by the user's right eye.

DDSCAPS_STANDARDVGAMODE

Indicates that this surface is a standard VGA mode surface, and not a Mode X surface. This flag cannot be used in combination with the DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY

Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE

Indicates that this surface can be used as a 3-D texture. It does not indicate whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY

Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT

Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE

Indicates that changes made to this surface are immediately visible. It is always set for the primary surface, as well as for overlays while they are being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY

Indicates that only write access is permitted to the surface. Read access from the surface may generate a general protection (GP) fault, but the read results from this surface will not be meaningful.

DDSCAPS_ZBUFFER

Indicates that this surface is the z-buffer. The z-buffer contains information that cannot be displayed. Instead, it contains bit-depth information that is used to determine which pixels are visible and which are obscured.

dwCaps2

Additional surface capabilities. This member can contain one or more of the following capability flags or, when using this structure with the IDirectDrawSurface4::SetSurfaceDesc method, this member can contain an additional flag to indicate how the surface memory was allocated:

Capability flags

DDSCAPS2_HARDWAREDEINTERLACE

Indicates that this surface will receive data from a video port using the de-interlacing hardware. This allows the driver to allocate memory for any extra buffers that may be required. The DDSCAPS_VIDEOPORT and DDSCAPS_OVERLAY flags must also be set.

DDSCAPS2_HINTANTIALIASING

Indicates that the application intends to use antialiasing. Only valid if DDSCAPS_3DDEVICE is also set.

DDSCAPS2_HINTDYNAMIC

Indicates to the driver that this surface will be locked very frequently (for procedural textures, dynamic light maps, and so on). This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag set in the dwCaps member). This flag cannot be used with the DDSCAPS2_HINTSTATIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_HINTSTATIC

Indicates to the driver that this surface can be reordered or retiled on load. This operation will not change the size of the texture. It is relatively fast and symmetrical, since the application may lock these bits (although it will take a performance hit when doing so).

This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag set in the dwCaps member). This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_OPAQUE

Indicates to the driver that this surface will never be locked again. The driver is free to optimize this surface by retiling and actual compression. Such a surface cannot be locked or used in blit operations, attempts to lock or blit a surface with this capability will fail. This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag set in the dwCaps member). This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or DDSCAPS2_HINTSTATIC flags.

DDSCAPS2_TEXTUREMANAGE

Indicates that the client would like this texture surface to be managed by DirectDraw and Direct3D Immediate Mode. This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag set in the dwCaps member). For more information, see Automatic Texture Management in the Direct3D Immediate Mode documentation. Do not use this flag if your application uses Direct3D Retained Mode. Instead, create textures in system memory and allow Retained Mode to manage them.

dwCaps3 and dwCaps4

Not currently used.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDSURFACEDESC

[This is preliminary documentation and subject to change.]

The DDSURFACEDESC structure contains a description of a surface. This structure is passed to the IDirectDraw2::CreateSurface method. The relevant members differ for each potential type of surface.

When using the IDirectDraw4 interface, this structure is superseded by the DDSURFACEDESC2 structure.

typedef struct _DDSURFACEDESC {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwHeight;

 DWORD dwWidth;

 union

 {

 LONG lPitch;

 DWORD dwLinearSize;

 };

 DWORD dwBackBufferCount;

 union

 {

 DWORD dwMipMapCount;

 DWORD dwZBufferBitDepth;

 DWORD dwRefreshRate;

 };

 DWORD dwAlphaBitDepth;

 DWORD dwReserved;

 LPVOID lpSurface;

 DDCOLORKEY ddckCKDestOverlay;

 DDCOLORKEY ddckCKDestBlt;

 DDCOLORKEY ddckCKSrcOverlay;

 DDCOLORKEY ddckCKSrcBlt;

 DDPIXELFORMAT ddpfPixelFormat;

 DDSCAPS ddsCaps;

} DDSURFACEDESC, FAR* LPDDSURFACEDESC;

Members

dwSize

Size of the structure, in bytes. This member must be initialized before the structure is used.

dwFlags

Optional control flags. One or more of the following flags:

DDSD_ALL

Indicates that all input members are valid.

DDSD_ALPHABITDEPTH

Indicates that the dwAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT

Indicates that the dwBackBufferCount member is valid.

DDSD_CAPS

Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT

Indicates that the dwHeight member is valid.

DDSD_LINEARSIZE

Indicates that dwLinearSize member is valid.

DDSD_LPSURFACE

Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT

Indicates that the dwMipMapCount member is valid.

DDSD_PITCH

Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE

Indicates that the dwRefreshRate member is valid.

DDSD_WIDTH

Indicates that the dwWidth member is valid.

DDSD_ZBUFFERBITDEPTH

Indicates that the dwZBufferBitDepth member is valid.

dwHeight and dwWidth

Dimensions of the surface to be created, in pixels.

lPitch

Distance, in bytes, to the start of next line. When used with the IDirectDrawSurface4::GetSurfaceDesc method, this is a return value. When creating a surface from existing memory or when calling the IDirectDrawSurface4::SetSurfaceDesc method, this is an input value that must be a DWORD multiple.

dwLinearSize

The size of the buffer. Currently returned only for compressed texture surfaces.

dwBackBufferCount

Number of back buffers.

dwMipMapCount

Number of mipmap levels.

dwZBufferBitDepth

Depth of z-buffer. This member is obsolete for DirectX 6.0 and later. Use the IDirect3D3::EnumZBufferFormats to retrieve information about supported depth buffer formats.

dwRefreshRate

Refresh rate (used when the display mode is described). The value of 0 indicates an adapter fault.

dwAlphaBitDepth

Depth of alpha buffer.

dwReserved

Reserved.

lpSurface

Address of the associated surface memory. When calling IDirectDrawSurface4::Lock, this member contains a valid pointer to surface memory after the call returns. When creating a surface from existing memory or when using the IDirectDrawSurface4::SetSurfaceDesc method, this member is an input value that is the address of system memory allocated by the calling application. Do not set this member if your application needs DirectDraw to allocate and manage surface memory.

ddckCKDestOverlay

DDCOLORKEY structure that describes the destination color key to be used for an overlay surface.

ddckCKDestBlt

DDCOLORKEY structure that describes the destination color key for blit operations.

ddckCKSrcOverlay

DDCOLORKEY structure that describes the source color key to be used for an overlay surface.

ddckCKSrcBlt

DDCOLORKEY structure that describes the source color key for blit operations.

ddpfPixelFormat

DDPIXELFORMAT structure that describes the surface's pixel format.

ddsCaps

DDSCAPS structure containing the surface's capabilities.

Remarks

This structure is similar to the DDSURFACEDESC2 structure, but contains a DDSCAPS structure as the ddsCaps member, rather than a DDSCAPS2 structure. Unlike DDSURFACEDESC2, this structure contains the dwZBufferBitDepth member.

QuickInfo

 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDSURFACEDESC2

[This is preliminary documentation and subject to change.]

The DDSURFACEDESC2 structure contains a description of a surface. This structure is used to pass surface parameters to the IDirectDraw4::CreateSurface and IDirectDrawSurface4::SetSurfaceDesc methods. It is also used to retrieve information about a surface in calls to IDirectDrawSurface4::Lock and IDirectDrawSurface4::GetSurfaceDesc. The relevant members differ for each potential type of surface.

typedef struct _DDSURFACEDESC2 {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwHeight;

 DWORD dwWidth;

 union

 {

 LONG lPitch;

 DWORD dwLinearSize;

 } DUMMYUNIONNAMEN(1);

 DWORD dwBackBufferCount;

 union

 {

 DWORD dwMipMapCount;

 DWORD dwRefreshRate;

 } DUMMYUNIONNAMEN(2);

 DWORD dwAlphaBitDepth;

 DWORD dwReserved;

 LPVOID lpSurface;

 DDCOLORKEY ddckCKDestOverlay;

 DDCOLORKEY ddckCKDestBlt;

 DDCOLORKEY ddckCKSrcOverlay;

 DDCOLORKEY ddckCKSrcBlt;

 DDPIXELFORMAT ddpfPixelFormat;

 DDSCAPS2 ddsCaps;

 DWORD dwTextureStage;

} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

Members

dwSize

Size of the structure, in bytes. This member must be initialized before the structure is used.

dwFlags

Optional control flags. One or more of the following flags:

DDSD_ALL

Indicates that all input members are valid.

DDSD_ALPHABITDEPTH

Indicates that the dwAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT

Indicates that the dwBackBufferCount member is valid.

DDSD_CAPS

Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT

Indicates that the dwHeight member is valid.

DDSD_LINEARSIZE

Indicates that the dwLinearSize member is valid.

DDSD_LPSURFACE

Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT

Indicates that the dwMipMapCount member is valid.

DDSD_PITCH

Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE

Indicates that the dwRefreshRate member is valid.

DDSD_TEXTURESTAGE

Indicates that the dwTextureStage member is valid.

DDSD_WIDTH

Indicates that the dwWidth member is valid.

DDSD_ZBUFFERBITDEPTH

Obsolete; see remarks.

dwHeight and dwWidth

Dimensions of the surface to be created, in pixels.

lPitch

Distance, in bytes, to the start of next line. When used with the IDirectDrawSurface4::GetSurfaceDesc method, this is a return value. When used with the IDirectDrawSurface4::SetSurfaceDesc method, this is an input value that must be a DWORD multiple. See remarks for more information.

dwLinearSize

The size of the buffer. Currently returned only for compressed texture surfaces.

dwBackBufferCount

Number of back buffers.

dwMipMapCount

Number of mipmap levels.

dwRefreshRate

Refresh rate (used when the display mode is described). The value of 0 indicates an adapter fault.

dwAlphaBitDepth

Depth of alpha buffer.

dwReserved

Reserved.

lpSurface

Address of the associated surface memory. When calling IDirectDrawSurface4::Lock, this member is a valid pointer to surface memory. When calling IDirectDrawSurface4::SetSurfaceDesc, this member is a pointer to system memory that the caller explicitly allocates for the DirectDrawSurface object. See remarks for more information.

ddckCKDestOverlay

DDCOLORKEY structure that describes the destination color key to be used for an overlay surface.

ddckCKDestBlt

DDCOLORKEY structure that describes the destination color key for blit operations.

ddckCKSrcOverlay

DDCOLORKEY structure that describes the source color key to be used for an overlay surface.

ddckCKSrcBlt

DDCOLORKEY structure that describes the source color key for blit operations.

ddpfPixelFormat

DDPIXELFORMAT structure that describes the surface's pixel format.

ddsCaps

DDSCAPS2 structure containing the surface's capabilities.

dwTextureStage

Stage identifier used to bind a texture to a specific stage in 3-D device's multitexture cascade. Although not required for all hardware, setting this member is recommended for best performance on the largest variety of 3-D accelerators. Hardware that requires explicitly assigned textures will expose the D3DDEVCAPS_SEPARATETEXTUREMEMORIES 3-D device capability in the D3DDEVICEDESC structure that is filled by the IDirect3DDevice3::GetCaps method.

Remarks

The lPitch and lpSurface members are output values when calling the IDirectDrawSurface4::GetSurfaceDesc method. When creating surfaces from existing memory, or updating surface characteristics, these members are input values that describe the pitch and location of memory allocated by the calling application for use by DirectDraw. DirectDraw does not attempt to manage or free memory allocated by the application. For more information, see Creating Client Memory Surfaces and Updating Surface Characteristics.

This structure is nearly identical to the DDSURFACEDESC structure, but contains a DDSCAPS2 structure as the ddsCaps member. Unlike DDSURFACEDESC, this structure doesn't contain the dwZBufferBitDepth member. Z-buffer depth is provided in the ddpfPixelFormat member.

The unions in this structure were written to work with compilers that don't support nameless unions. If your compiler doesn't support nameless unions, define the NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in ddraw.h.

DDVIDEOPORTBANDWIDTH

[This is preliminary documentation and subject to change.]

The DDVIDEOPORTBANDWIDTH structure describes the bandwidth characteristics of an overlay surface when used with a particular video port and pixel format configuration. This structure is used with the IDirectDrawVideoPort::GetBandwidthInfo method.

typedef struct _DDVIDEOPORTBANDWIDTH {

 DWORD dwSize;

 DWORD dwCaps;

 DWORD dwOverlay;

 DWORD dwColorkey;

 DWORD dwYInterpolate;

 DWORD dwYInterpAndColorkey;

 DWORD dwReserved1;

 DWORD dwReserved2;

} DDVIDEOPORTBANDWIDTH,*LPDDVIDEOPORTBANDWIDTH;

Members

dwSize

Size of this structure, in bytes. This member must be initialized before use.

dwCaps

Flag values specifying device dependency. This member can be one of the following values:

DDVPBCAPS_DESTINATION

This device's capabilities are described in terms of the overlay's minimum stretch factor. Bandwidth information provided for this device refers to the destination overlay size.

DDVPBCAPS_SOURCE

This device's capabilities are described in terms of the required source overlay size. Bandwidth information provided for this device refers to the source overlay size.

dwOverlay

Stretch factor or overlay source size at which an overlay is supported multiplied by 1000. For example 1.3 = 1300, or .75 = 750.

dwColorkey

Stretch factor or overlay source size at which an overlay with color keying is supported multiplied by 1000. For example 1.3 = 1300, or .75 = 750.

dwYInterpolate

Stretch factor or overlay source size at which an overlay with y-axis interpolation is supported multiplied by 1000. For example 1.3 = 1300, or .75 = 750.

dwYInterpAndColorkey

Stretch factor or overlay source size at which an overlay with y-axis interpolation and color keying is supported multiplied by 1000. For example 1.3 = 1300, or .75 = 750.

dwReserved1 and dwReserved2

Reserved; set to zero.

Remarks

When DDVPBCAPS_DESTINATION is specified, the stretch factors described in the other members describe the minimum stretch factor required to display an overlay with the dimensions given when calling the GetBandwidthInfo method. Stretch factor values under 1000 mean that the video port is capable of shrinking an overlay when displayed, and values over 1000 mean that the overlay must be stretched larger than their source to be displayed.

When DDVPBCAPS_SOURCE is specified, the stretch factors described in the other members describe how much you must shrink the overlay source in order for it to be displayed. In this case, the best possible value is 1000, meaning that no shrinking is required. Smaller values tell you that the source rectangle you specified when calling GetBandwidthInfo were too large and must be smaller. For example, if the stretch factor is 750 and you specified 320 pixels for the dwWidth parameter, then you will not be able to display the overlay at that size. To successfully display the overlay, you must use a source rectangle 240 pixels wide to successfully display the overlay.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.

DDVIDEOPORTCAPS

[This is preliminary documentation and subject to change.]

The DDVIDEOPORTCAPS structure describes the capabilities and alignment restrictions of a video port. This structure is used with the IDDVideoPortContainer::EnumVideoPorts method.

typedef struct _DDVIDEOPORTCAPS {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwMaxWidth;

 DWORD dwMaxVBIWidth;

 DWORD dwMaxHeight;

 DWORD dwVideoPortID;

 DWORD dwCaps;

 DWORD dwFX;

 DWORD dwNumAutoFlipSurfaces;

 DWORD dwAlignVideoPortBoundary;

 DWORD dwAlignVideoPortPrescaleWidth;

 DWORD dwAlignVideoPortCropBoundary;

 DWORD dwAlignVideoPortCropWidth;

 DWORD dwPreshrinkXStep;

 DWORD dwPreshrinkYStep;

 DWORD dwNumVBIAutoFlipSurfaces;

 DWORD dwNumPreferredAutoflip;

 WORD wNumFilterTapsX;

 WORD wNumFilterTapsY;

} DDVIDEOPORTCAPS, *LPDDVIDEOPORTCAPS;

Members

dwSize

Size of the structure, in bytes. This must be initialized before use.

dwFlags

Flag values indicating the fields that contain valid data. The following flags are defined:

DDVPD_AUTOFLIP

The dwNumAutoFlipSurfaces member is valid.

DDVPD_ALIGN

The dwAlignVideoPortBoundary, dwAlignVideoPortPrescaleWidth, dwAlignVideoPortCropBoundary, and dwAlignVideoPortCropWidth are valid.

DDVPD_CAPS

The dwCaps member is valid.

DDVPD_FILTERQUALITY

The wNumFilterTapsX and wNumFilterTapsY members are valid.

DDVPD_FX

The dwFX member is valid.

DDVPD_HEIGHT

The dwMaxHeight member is valid.

DDVPD_ID

The dwVideoPortID member is valid.

DDVPD_PREFERREDAUTOFLIP

The dwNumPreferredAutoflip member is valid.

DDVPD_WIDTH

The dwMaxWidth member is valid.

dwMaxWidth

Maximum width of the video port field.

dwMaxVBIWidth

Maximum width of the VBI data.

dwMaxHeight

Maximum height of the video port field.

dwVideoPortID

Zero-based index identifying the video port.

dwCaps

Video port capabilities.

DDVPCAPS_AUTOFLIP

Flip can be performed automatically to avoid tearing when a VREF occurs. If the data is being interleaved in memory, it will flip on every other VREF.

DDVPCAPS_COLORCONTROL

Can perform color control operations on incoming data before writing to the frame buffer.

DDVPCAPS_INTERLACED

Supports interlaced video.

DDVPCAPS_NONINTERLACED

Supports non-interlaced video.

DDVPCAPS_OVERSAMPLEDVBI

Can accept VBI data in a different format or width than the regular video data.

DDVPCAPS_READBACKFIELD

Supports the IDirectDrawVideoPort::GetFieldPolarity method.

DDVPCAPS_READBACKLINE

Supports the IDirectDrawVideoPort::GetVideoLine method.

DDVPCAPS_SHAREABLE

Supports two genlocked video streams that share the video port, where one stream uses the even fields and the other uses the odd fields. Separate parameters (including address, scaling, cropping, and so on) are maintained for both fields.

DDVPCAPS_SKIPEVENFIELDS

Even fields of video can be automatically discarded.

DDVPCAPS_SKIPODDFIELDS

Odd fields of video can be automatically discarded.

DDVPCAPS_SYNCMASTER

Can drive the graphics sync (refresh rate) based on the video port sync.

DDVPCAPS_SYSTEMMEMORY

Capable of writing to surfaces created in system memory.

DDVPCAPS_VBIANDVIDEOINDEPENDENT

Indicates that the VBI and video portions of the video stream can be controlled by independent processes.

DDVPCAPS_VBISURFACE

Data within the VBI can be written to a different surface.

dwFX

Additional video port capabilities.

DDVPFX_CROPTOPDATA

Limited cropping is available to crop VBI data.

DDVPFX_CROPX

Incoming data can be cropped in the x-direction before it is written to the surface.

DDVPFX_CROPY

Incoming data can be cropped in the y-direction before it is written to the surface.

DDVPFX_IGNOREVBIXCROP

The video port can ignore the left and right cropping coordinates when cropping oversampled VBI data.

DDVPFX_INTERLEAVE

Supports interleaving interlaced fields in memory.

DDVPFX_MIRRORLEFTRIGHT

Supports mirroring left to right as the video data is written into the frame buffer.

DDVPFX_MIRRORUPDOWN

Supports mirroring top to bottom as the video data is written into the frame buffer.

DDVPFX_PRESHRINKX

Data can be arbitrarily shrunk in the x-direction before it is written to the surface.

DDVPFX_PRESHRINKY

Data can be arbitrarily shrunk in the y-direction before it is written to the surface.

DDVPFX_PRESHRINKXB

Data can be binary shrunk (1/2, 1/4, 1/8, and so on) in the x-direction before it is written to the surface.

DDVPFX_PRESHRINKYB

Data can be binary shrunk (1/2, 1/4, 1/8, and so on) in the y-direction before it is written to the surface.

DDVPCAPS_PRESHRINKXS

Data can be shrunk in the x-direction by increments of 1/x, where x is specified in the dwShrinkXStep member.

DDVPCAPS_PRESHRINKYS

Data can be shrunk in the y-direction by increments of 1/y, where y is specified in the dwShrinkYStep

DDVPFX_PRESTRETCHX

Data can be arbitrarily stretched in the x-direction before it is written to the surface.

DDVPFX_PRESTRETCHY

Data can be arbitrarily stretched in the y-direction before it is written to the surface.

DDVPFX_PRESTRETCHXN

Data can be integer stretched in the x-direction before it is written to the surface. (1x, 2x, 3x, and so forth)

DDVPFX_PRESTRETCHYN

Data can be integer stretched in the y-direction before it is written to the surface. (1x, 2x, 3x, and so forth)

DDVPFX_VBICONVERT

Data within the VBI can be converted independently of the remaining video data.

DDVPFX_VBINOINTERLEAVE

Interleaving can be disabled for data within the VBI.

DDVPFX_VBINOSCALE

Scaling can be disabled for data within the VBI.

dwNumAutoFlipSurfaces

Maximum number of auto-flippable surfaces supported by the video port.

dwAlignVideoPortBoundary

Byte restriction of placement within the surface.

dwAlignVideoPortPrescaleWidth

Byte restriction of width after prescaling.

dwAlignVideoPortCropBoundary

Byte restriction of left cropping.

dwAlignVideoPortCropWidth

Byte restriction of cropping width.

dwPreshrinkXStep

Width can be shrunk in the x-direction in steps of 1/dwPreshrinkXStep.

dwPreshrinkYStep

Height can be shrunk in the y-direction in steps of 1/dwPreshrinkYStep.

dwNumVBIAutoFlipSurfaces

Maximum number of auto-flipping surfaces capable of receiving data transmitted during the vertical blanking interval (VBI) independent from the remainder of the video stream. When constructing the auto-flip chain, the number of VBI surfaces must equal the number of surfaces receiving the remainder of the video data.

dwNumPreferredAutoflip

Optimal number of auto-flippable surfaces supported by the hardware.

wNumFilterTapsX and wNumFilterTapsY

Number of taps the prescaler filter uses in the x- and y-directions. The value of 0 indicates that no prescaling is performed in that direction, 1 indicates that the prescaler performs replication, 2 indicates that the prescaler uses two taps, and so on.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.

DDVIDEOPORTCONNECT

[This is preliminary documentation and subject to change.]

The DDVIDEOPORTCONNECT structure describes a video port connection. This structure is used with the IDDVideoPortContainer::GetVideoPortConnectInfo method.

typedef struct _DDVIDEOPORTCONNECT{

 DWORD dwSize;

 DWORD dwPortWidth;

 GUID guidTypeID;

 DWORD dwFlags;

 ULONG_PTR dwReserved1;

} DDVIDEOPORTCONNECT,*LPDDVIDEOPORTCONNECT;

Members

dwSize

Size of the structure, in bytes. This member must be initialized before use.

dwPortWidth

Width of the video port. This value represents the number of physical pins on the video port, not the width of a surface in memory. This member must always be set, even when the value in the guidTypeID member assumes a certain size.

guidTypeID

A GUID that describes the sync characteristics of the video port. The following port types are predefined:

DDVPTYPE_E_HREFH_VREFH

External syncs where HREF is active high and VREF is active high.

DDVPTYPE_E_HREFH_VREFL

External syncs where HREF is active high and VREF is active low.

DDVPTYPE_E_HREFL_VREFH

External syncs where HREF is active low and VREF is active high.

DDVPTYPE_E_HREFL_VREFL

External syncs where HREF is active low and VREF is active low.

DDVPTYPE_CCIR656

Sync information is embedded in the data stream according to the CCIR656 specification.

DDVPTYPE_BROOKTREE

Sync information is embedded in the data stream using the Brooktree definition.

DDVPTYPE_PHILIPS

Sync information is embedded in the data stream using the Philips definition.

dwFlags

Flags describing the capabilities of the video-port connection. This member can be set by DirectDraw when connection information is being retrieved or by the client when connection information is being set. This member can be a combination of the following flags:

DDVPCONNECT_DOUBLECLOCK

Indicates that the video port either supports double-clocking data or should double-clock data. This flag is only valid with an external sync.

DDVPCONNECT_VACT

Indicates that the video port either supports using an external VACT signal or should use the external VACT signal. This flag is only valid with an external sync.

DDVPCONNECT_INVERTPOLARITY

Indicates that the video port is capable of inverting the field polarities or is to invert field polarities.

When a video port inverts field polarities, it treats even fields as odd fields and vice versa.

DDVPCONNECT_DISCARDSVREFDATA

The video port discards any data written during the VREF period, causing it to not be written to the frame buffer. This flag is read-only.

DDVPCONNECT_HALFLINE

The video port will write half lines into the frame buffer, sometimes causing the data to be displayed incorrectly. This flag is read-only.

DDVPCONNECT_INTERLACED

Indicates that the signal is interlaced. This flag is only used by the client when creating a video port object.

DDVPCONNECT_SHAREEVEN

The physical video port is shareable, and that this video port object will use the even fields. This flag is only used by the client when creating the video port object.

DDVPCONNECT_SHAREODD

The physical video port is shareable, and that this video port object will use the odd fields. This flag is only used by the client when creating the video port object.

dwReserved1

Reserved; set to zero.

Remarks

This structure is used independently and as a member of the DDVIDEOPORTDESC structure.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.

DDVIDEOPORTDESC

[This is preliminary documentation and subject to change.]

The DDVIDEOPORTDESC structure describes a video-port object to be created. This structure is used with the IDDVideoPortContainer::CreateVideoPort method.

typedef struct _DDVIDEOPORTDESC {

 DWORD dwSize;

 DWORD dwFieldWidth;

 DWORD dwVBIWidth;

 DWORD dwFieldHeight;

 DWORD dwMicrosecondsPerField;

 DWORD dwMaxPixelsPerSecond;

 DWORD dwVideoPortID;

 DWORD dwReserved1;

 DDVIDEOPORTCONNECT VideoPortType;

 ULONG_PTR dwReserved2;

 ULONG_PTR dwReserved3;

 } DDVIDEOPORTDESC, *LPDDVIDEOPORTDESC;

Members

dwSize

Size of this structure, in bytes. This member must be initialized before use.

dwFieldWidth

Width of incoming video stream, in pixels.

dwVBIWidth

Width of the VBI data in the incoming video stream, in pixels.

dwFieldHeight

Field height for fields in the incoming video stream, in scan lines.

dwMicrosecondsPerField

Time interval, in microseconds, between live video VREF periods. This number should be rounded up to the nearest microsecond.

dwMaxPixelsPerSecond

Maximum pixel rate per second.

dwVideoPortID

The zero-based ID of the physical video port to be used.

dwReserved1

Reserved; set to zero.

VideoPortType

A DDVIDEOPORTCONNECT structure describing the connection characteristics of the video port.

dwReserved2 and dwReserved3

Reserved; set to zero.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.

DDVIDEOPORTINFO

[This is preliminary documentation and subject to change.]

The DDVIDEOPORTINFO structure describes the transfer of video data to a surface. This structure is used with the IDirectDrawVideoPort::StartVideo method.

typedef struct _DDVIDEOPORTINFO{

 DWORD dwSize;

 DWORD dwOriginX;

 DWORD dwOriginY;

 DWORD dwVPFlags;

 RECT rCrop;

 DWORD dwPrescaleWidth;

 DWORD dwPrescaleHeight;

 LPDDPIXELFORMAT lpddpfInputFormat;

 LPDDPIXELFORMAT lpddpfVBIInputFormat;

 LPDDPIXELFORMAT lpddpfVBIOutputFormat;

 DWORD dwVBIHeight;

 ULONG_PTR dwReserved1;

 ULONG_PTR dwReserved2;

} DDVIDEOPORTINFO,*LPDDVIDEOPORTINFO;

Members

dwSize

Size of this structure, in bytes. This member must be initialized before use.

dwOriginX and dwOriginY

X- and y-coordinates for the origin of the video data in the surface.

dwVPFlags

Video port options.

DDVP_AUTOFLIP

Perform automatic flipping. For more information, see Auto-flipping.

DDVP_CONVERT

Perform conversion using the information in the lpddpfVBIOutputFormat member.

DDVP_CROP

Perform cropping using the rectangle specified by the rCrop member.

DDVP_IGNOREVBIXCROP

The video port should ignore left and right cropping coordinates when cropping oversampled VBI data.

DDVP_INTERLEAVE

Interlaced fields should be interleaved in memory.

DDVP_MIRRORLEFTRIGHT

Mirror image data from left to right as it is written into the frame buffer.

DDVP_MIRRORUPDOWN

Mirror image data from top to bottom as it is written into the frame buffer.

DDVP_OVERRIDEBOBWEAVE

Override automatic display method chosen by the driver, using only the display method set by the caller when creating the overlay surface.

DDVP_PRESCALE

Perform pre-scaling or pre-zooming based on the values in the dwPrescaleHeight and dwPrescaleWidth members.

DDVP_SKIPEVENFIELDS

Ignore input of even fields.

DDVP_SKIPODDFIELDS

Ignore input of odd fields.

DDVP_SYNCMASTER

Indicates that the video port VREF should drive the graphics VREF, locking the refresh rate to the video port.

DDVP_VBICONVERT

The lpddpfVBIOutputFormat member contains data that should be used to convert VBI data.

DDVP_VBINOSCALE

VBI data should not be scaled.

DDVP_VBINOINTERLEAVE

Interleaving can be disabled for data within the VBI.

rCrop

Cropping rectangle. This member is optional.

dwPrescaleWidth

Pre-scaling or zooming in the x-direction. This member is optional.

dwPrescaleHeight

Pre-scaling or zooming in the y-direction. This member is optional.

lpddpfInputFormat

A DDPIXELFORMAT structure describing the pixel format to be written to the video port. This will often be identical to the surface's pixel format, but can differ if the video port is to perform conversion.

lpddpfVBIInputFormatand lpddpfVBIOutputFormat

DDPIXELFORMAT structures describing the input and output pixel formats of the data within the vertical blanking interval.

dwVBIHeight

The amount of data within the vertical blanking interval, in scan lines.

dwReserved1 and dwReserved2

Reserved; set to zero.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.

DDVIDEOPORTSTATUS

[This is preliminary documentation and subject to change.]

The DDVIDEOPORTSTATUS structure describes the status of a video-port object. This structure is used with the IDDVideoPortContainer::QueryVideoPortStatus method.

typedef struct _DDVIDEOPORTSTATUS {

 DWORD dwSize;

 BOOL bInUse;

 DWORD dwFlags;

 DWORD dwReserved1;

 DDVIDEOPORTCONNECT VideoPortType;

 ULONG_PTR dwReserved2;

 ULONG_PTR dwReserved3;

} DDVIDEOPORTSTATUS, *LPDDVIDEOPORTSTATUS;

Members

dwSize

Size of this structure, in bytes. This member must be initialized before use.

bInUse

Value indicating the current status of the video port. This member is TRUE if the video port is currently being used, and FALSE otherwise.

dwFlags

Flags

DDVPSTATUS_VBIONLY

The video port interface is only controlling the VBI portion of the video stream.

DDVPSTATUS_VIDEOONLY

The video port interface is only controlling the video portion of the video stream.

dwReserved1

Reserved; set to zero.

VideoPortType

A DDVIDEOPORTCONNECT structure that receives information about the video-port connection.

dwReserved2 and dwReserved3

Reserved; set to zero.

QuickInfo

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dvp.h.

Return Values

[This is preliminary documentation and subject to change.]

Errors are represented by negative values and cannot be combined. This table lists the values that can be returned by all methods of the IDirectDraw4, IDirectDrawSurface4, IDirectDrawPalette, IDirectDrawClipper, IDDVideoPortContainer, and IDirectDrawVideoPort interfaces. For a list of the error codes that each method can return, see the method description.

DD_OK

The request completed successfully.

DDERR_ALREADYINITIALIZED

The object has already been initialized.

DDERR_BLTFASTCANTCLIP

A DirectDrawClipper object is attached to a source surface that has passed into a call to the IDirectDrawSurface4::BltFast method.

DDERR_CANNOTATTACHSURFACE

A surface cannot be attached to another requested surface.

DDERR_CANNOTDETACHSURFACE

A surface cannot be detached from another requested surface.

DDERR_CANTCREATEDC

Windows can not create any more device contexts (DCs), or a DC was requested for a palette-indexed surface when the surface had no palette and the display mode was not palette-indexed (in this case DirectDraw cannot select a proper palette into the DC).

DDERR_CANTDUPLICATE

Primary and 3-D surfaces, or surfaces that are implicitly created, cannot be duplicated.

DDERR_CANTLOCKSURFACE

Access to this surface is refused because an attempt was made to lock the primary surface without DCI support.

DDERR_CANTPAGELOCK

An attempt to page lock a surface failed. Page lock will not work on a display-memory surface or an emulated primary surface.

DDERR_CANTPAGEUNLOCK

An attempt to page unlock a surface failed. Page unlock will not work on a display-memory surface or an emulated primary surface.

DDERR_CLIPPERISUSINGHWND

An attempt was made to set a clip list for a DirectDrawClipper object that is already monitoring a window handle.

DDERR_COLORKEYNOTSET

No source color key is specified for this operation.

DDERR_CURRENTLYNOTAVAIL

No support is currently available.

DDERR_DCALREADYCREATED

A device context (DC) has already been returned for this surface. Only one DC can be retrieved for each surface.

DDERR_DEVICEDOESNTOWNSURFACE

Surfaces created by one DirectDraw device cannot be used directly by another DirectDraw device.

DDERR_DIRECTDRAWALREADYCREATED

A DirectDraw object representing this driver has already been created for this process.

DDERR_EXCEPTION

An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET

An attempt was made to set the cooperative level when it was already set to exclusive.

DDERR_EXPIRED

The data has expired and is therefore no longer valid.

DDERR_GENERIC

There is an undefined error condition.

DDERR_HEIGHTALIGN

The height of the provided rectangle is not a multiple of the required alignment.

DDERR_HWNDALREADYSET

The DirectDraw cooperative level window handle has already been set. It cannot be reset while the process has surfaces or palettes created.

DDERR_HWNDSUBCLASSED

DirectDraw is prevented from restoring state because the DirectDraw cooperative level window handle has been subclassed.

DDERR_IMPLICITLYCREATED

The surface cannot be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY

The primary surface creation request does not match with the existing primary surface.

DDERR_INVALIDCAPS

One or more of the capability bits passed to the callback function are incorrect.

DDERR_INVALIDCLIPLIST

DirectDraw does not support the provided clip list.

DDERR_INVALIDDIRECTDRAWGUID

The globally unique identifier (GUID) passed to the DirectDrawCreate function is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE

DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT

DirectDraw received a pointer that was an invalid DirectDraw object.

DDERR_INVALIDPARAMS

One or more of the parameters passed to the method are incorrect.

DDERR_INVALIDPIXELFORMAT

The pixel format was invalid as specified.

DDERR_INVALIDPOSITION

The position of the overlay on the destination is no longer legal.

DDERR_INVALIDRECT

The provided rectangle was invalid.

DDERR_INVALIDSTREAM

The specified stream contains invalid data.

DDERR_INVALIDSURFACETYPE

The requested operation could not be performed because the surface was of the wrong type.

DDERR_LOCKEDSURFACES

One or more surfaces are locked, causing the failure of the requested operation.

DDERR_MOREDATA

There is more data available than the specified buffer size can hold.

DDERR_NO3D

No 3-D hardware or emulation is present.

DDERR_NOALPHAHW

No alpha acceleration hardware is present or available, causing the failure of the requested operation.

DDERR_NOBLTHW

No blitter hardware is present.

DDERR_NOCLIPLIST

No clip list is available.

DDERR_NOCLIPPERATTACHED

No DirectDrawClipper object is attached to the surface object.

DDERR_NOCOLORCONVHW

The operation cannot be carried out because no color-conversion hardware is present or available.

DDERR_NOCOLORKEY

The surface does not currently have a color key.

DDERR_NOCOLORKEYHW

The operation cannot be carried out because there is no hardware support for the destination color key.

DDERR_NOCOOPERATIVELEVELSET

A create function is called without the IDirectDraw4::SetCooperativeLevel method being called.

DDERR_NODC

No DC has ever been created for this surface.

DDERR_NODDROPSHW

No DirectDraw raster operation (ROP) hardware is available.

DDERR_NODIRECTDRAWHW

Hardware-only DirectDraw object creation is not possible; the driver does not support any hardware.

DDERR_NODIRECTDRAWSUPPORT

DirectDraw support is not possible with the current display driver.

DDERR_NOEMULATION

Software emulation is not available.

DDERR_NOEXCLUSIVEMODE

The operation requires the application to have exclusive mode, but the application does not have exclusive mode.

DDERR_NOFLIPHW

Flipping visible surfaces is not supported.

DDERR_NOFOCUSWINDOW

An attempt was made to create or set a device window without first setting the focus window.

DDERR_NOGDI

No GDI is present.

DDERR_NOHWND

Clipper notification requires a window handle, or no window handle has been previously set as the cooperative level window handle.

DDERR_NOMIPMAPHW

The operation cannot be carried out because no mipmap capable texture mapping hardware is present or available.

DDERR_NOMIRRORHW

The operation cannot be carried out because no mirroring hardware is present or available.

DDERR_NONONLOCALVIDMEM

An attempt was made to allocate non-local video memory from a device that does not support non-local video memory.

DDERR_NOOPTIMIZEHW

The device does not support optimized surfaces.

DDERR_NOOVERLAYDEST

The IDirectDrawSurface4::GetOverlayPosition method is called on an overlay that the IDirectDrawSurface4::UpdateOverlay method has not been called on to establish a destination.

DDERR_NOOVERLAYHW

The operation cannot be carried out because no overlay hardware is present or available.

DDERR_NOPALETTEATTACHED

No palette object is attached to this surface.

DDERR_NOPALETTEHW

There is no hardware support for 16- or 256-color palettes.

DDERR_NORASTEROPHW

The operation cannot be carried out because no appropriate raster operation hardware is present or available.

DDERR_NOROTATIONHW

The operation cannot be carried out because no rotation hardware is present or available.

DDERR_NOSTRETCHHW

The operation cannot be carried out because there is no hardware support for stretching.

DDERR_NOT4BITCOLOR

The DirectDrawSurface object is not using a 4-bit color palette and the requested operation requires a 4-bit color palette.

DDERR_NOT4BITCOLORINDEX

The DirectDrawSurface object is not using a 4-bit color index palette and the requested operation requires a 4-bit color index palette.

DDERR_NOT8BITCOLOR

The DirectDrawSurface object is not using an 8-bit color palette and the requested operation requires an 8-bit color palette.

DDERR_NOTAOVERLAYSURFACE

An overlay component is called for a non-overlay surface.

DDERR_NOTEXTUREHW

The operation cannot be carried out because no texture-mapping hardware is present or available.

DDERR_NOTFLIPPABLE

An attempt has been made to flip a surface that cannot be flipped.

DDERR_NOTFOUND

The requested item was not found.

DDERR_NOTINITIALIZED

An attempt was made to call an interface method of a DirectDraw object created by CoCreateInstance before the object was initialized.

DDERR_NOTLOADED

The surface is an optimized surface, but it has not yet been allocated any memory.

DDERR_NOTLOCKED

An attempt is made to unlock a surface that was not locked.

DDERR_NOTPAGELOCKED

An attempt is made to page unlock a surface with no outstanding page locks.

DDERR_NOTPALETTIZED

The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW

The operation cannot be carried out because there is no hardware support for vertical blank synchronized operations.

DDERR_NOZBUFFERHW

The operation to create a z-buffer in display memory or to perform a blit using a z-buffer cannot be carried out because there is no hardware support for z-buffers.

DDERR_NOZOVERLAYHW

The overlay surfaces cannot be z-layered based on the z-order because the hardware does not support z-ordering of overlays.

DDERR_OUTOFCAPS

The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY

DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY

DirectDraw does not have enough display memory to perform the operation.

DDERR_OVERLAPPINGRECTS

Operation could not be carried out because the source and destination rectangles are on the same surface and overlap each other.

DDERR_OVERLAYCANTCLIP

The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE

An attempt was made to have more than one color key active on an overlay.

DDERR_OVERLAYNOTVISIBLE

The IDirectDrawSurface4::GetOverlayPosition method is called on a hidden overlay.

DDERR_PALETTEBUSY

Access to this palette is refused because the palette is locked by another thread.

DDERR_PRIMARYSURFACEALREADYEXISTS

This process has already created a primary surface.

DDERR_REGIONTOOSMALL

The region passed to the IDirectDrawClipper::GetClipList method is too small.

DDERR_SURFACEALREADYATTACHED

An attempt was made to attach a surface to another surface to which it is already attached.

DDERR_SURFACEALREADYDEPENDENT

An attempt was made to make a surface a dependency of another surface to which it is already dependent.

DDERR_SURFACEBUSY

Access to the surface is refused because the surface is locked by another thread.

DDERR_SURFACEISOBSCURED

Access to the surface is refused because the surface is obscured.

DDERR_SURFACELOST

Access to the surface is refused because the surface memory is gone. Call the IDirectDrawSurface4::Restore method on this surface to restore the memory associated with it.

DDERR_SURFACENOTATTACHED

The requested surface is not attached.

DDERR_TOOBIGHEIGHT

The height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE

The size requested by DirectDraw is too large. However, the individual height and width are valid sizes.

DDERR_TOOBIGWIDTH

The width requested by DirectDraw is too large.

DDERR_UNSUPPORTED

The operation is not supported.

DDERR_UNSUPPORTEDFORMAT

The pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMASK

The bitmask in the pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMODE

The display is currently in an unsupported mode.

DDERR_VERTICALBLANKINPROGRESS

A vertical blank is in progress.

DDERR_VIDEONOTACTIVE

The video port is not active.

DDERR_WASSTILLDRAWING

The previous blit operation that is transferring information to or from this surface is incomplete.

DDERR_WRONGMODE

This surface cannot be restored because it was created in a different mode.

DDERR_XALIGN

The provided rectangle was not horizontally aligned on a required boundary.

Pixel Format Masks

[This is preliminary documentation and subject to change.]

This section contains information about the pixel formats supported by the hardware-emulation layer (HEL). The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Texture Map Formats

�SYMBOL 183 \f "Symbol" \s 11 \h �	Off-Screen Surface Formats

Texture Map Formats

[This is preliminary documentation and subject to change.]

A wide range of texture pixel formats are supported by the HEL. The following table shows these formats. The Masks column contains the red, green, blue, and alpha masks for each set of pixel format flags and bit depths.

Pixel format flags �Bit depth �Masks ����DDPF_RGB | �1�R: 0x00000000 ��DDPF_PALETTEINDEXED1 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �1�R: 0x00000000 ��DDPF_PALETTEINDEXED1 | ��G: 0x00000000 ��DDPF_PALETTEINDEXEDTO8 ��B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �2�R: 0x00000000 ��DDPF_PALETTEINDEXED2 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �2�R: 0x00000000 ��DDPF_PALETTEINDEXED2 | ��G: 0x00000000 ��DDPF_PALETTEINDEXEDTO8 ��B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �4�R: 0x00000000 ��DDPF_PALETTEINDEXED4 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �4�R: 0x00000000 ��DDPF_PALETTEINDEXED4 | ��G: 0x00000000 ��DDPF_PALETTEINDEXEDTO8 ��B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �8�R: 0x00000000 ��DDPF_PALETTEINDEXED8 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB �8 �R: 0x000000E0 ����G: 0x0000001C ����B: 0x00000003 ����A: 0x00000000 ������DDPF_RGB | �16�R: 0x00000F00 ��DDPF_ALPHAPIXELS ��G: 0x000000F0 ����B: 0x0000000F ����A: 0x0000F000 ������DDPF_RGB �16�R: 0x0000F800 ����G: 0x000007E0 ����B: 0x0000001F ����A: 0x00000000 ������DDPF_RGB �16�R: 0x0000001F ����G: 0x000007E0 ����B: 0x0000F800 ����A: 0x00000000 ������DDPF_RGB �16�R: 0x00007C00 ����G: 0x000003E0 ����B: 0x0000001F ����A: 0x00000000 ������DDPF_RGB | �16�R: 0x00007C00 ��DDPF_ALPHAPIXELS ��G: 0x000003E0 ����B: 0x0000001F ����A: 0x00008000 ������DDPF_RGB �24�R: 0x00FF0000 ����G: 0x0000FF00 ����B: 0x000000FF ����A: 0x00000000 ������DDPF_RGB �24�R: 0x000000FF ����G: 0x0000FF00 ����B: 0x00FF0000 ����A: 0x00000000 ������DDPF_RGB �32�R: 0x00FF0000 ����G: 0x0000FF00 ����B: 0x000000FF ����A: 0x00000000 ������DDPF_RGB �32�R: 0x000000FF ����G: 0x0000FF00 ����B: 0x00FF0000 ����A: 0x00000000 ������DDPF_RGB | �32�R: 0x00FF0000 ��DDPF_ALPHAPIXELS ��G: 0x0000FF00 ����B: 0x000000FF ����A: 0xFF000000 ������DDPF_RGB | �32�R: 0x000000FF ��DDPF_ALPHAPIXELS ��G: 0x0000FF00 ����B: 0x00FF0000 ����A: 0xFF000000 ��

The HEL can create these formats in system memory. The DirectDraw device driver for a 3-D–accelerated display card may create textures of other formats in display memory. Such a driver exports the DDSCAPS_TEXTURE flag to indicate that it can create textures.

Off-Screen Surface Formats

[This is preliminary documentation and subject to change.]

The following table shows the pixel formats for off-screen plain surfaces supported by the DirectX® 5 HEL. The Masks column contains the red, green, blue, and alpha masks for each set of pixel format flags and bit depths.

Pixel format flags �Bit depth �Masks ����DDPF_RGB | �1�R: 0x00000000 ��DDPF_PALETTEINDEXED1 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �2�R: 0x00000000 ��DDPF_PALETTEINDEXED2 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �4�R: 0x00000000 ��DDPF_PALETTEINDEXED4 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB | �8�R: 0x00000000 ��DDPF_PALETTEINDEXED8 ��G: 0x00000000 ����B: 0x00000000 ����A: 0x00000000 ������DDPF_RGB �16�R: 0x0000F800 ����G: 0x000007E0 ����B: 0x0000001F ����A: 0x00000000 ������DDPF_RGB �16�R: 0x00007C00 ����G: 0x000003E0 ����B: 0x0000001F ����A: 0x00000000 ������DDPF_RGB �24�R: 0x00FF0000 ����G: 0x0000FF00 ����B: 0x000000FF ����A: 0x00000000 ������DDPF_RGB �24�R: 0x000000FF ����G: 0x0000FF00 ����B: 0x00FF0000 ����A: 0x00000000 ������DDPF_RGB �32�R: 0x00FF0000 ����G: 0x0000FF00 ����B: 0x000000FF ����A: 0x00000000 ������DDPF_RGB �32�R: 0x000000FF ����G: 0x0000FF00 ����B: 0x00FF0000 ����A: 0x00000000 ������DDPF_RGB | �32�R: 0x0000F800 ��DDPF_ZPIXELS��G: 0x000007E0 ����B: 0x0000001F ����Z: 0xFFFF0000������DDPF_RGB | �32�R: 0x00007C00 ��DDPF_ZPIXELS��G: 0x000003E0 ����B: 0x0000001F ����Z: 0xFFFF0000��

In addition to supporting a wide range of off-screen surface formats, the HEL also supports surfaces intended for use by Direct3D, or other 3-D renderers.

Four Character Codes (FOURCC)

[This is preliminary documentation and subject to change.]

DirectDraw utilizes a special set of codes that are four characters in length. These codes, called four character codes or FOURCCs, are stored in file headers of files containing multimedia data such as bitmap images, sound, or video. FOURCCs describe the software technology that was used to produce multimedia data. By implication, they also describe the format of the data itself.

DirectDraw applications use FOURCCs for image color and format conversion. If an application calls the IDirectDrawSurface4::GetPixelFormat method to request the pixel format of a surface whose format is not RGB, the dwFourCC member of the DDPIXELFORMAT structure identifies the FOURCC when the method returns. For more information, see Converting Color and Format.

In addition, the biCompression member of the BITMAPINFOHEADER structure can be set to a FOURCC to indicate the codec used to compress or decompress an image.

FOURCCs are registered with Microsoft by the vendors of the respective multimedia software technologies. Some common FOURCCs appear in the following list.

FOURCC�Company�Technology Name����AUR2�AuraVision Corporation�AuraVision Aura 2: YUV 422��AURA�AuraVision Corporation�AuraVision Aura 1: YUV 411��CHAM�Winnov, Inc.�MM_WINNOV_CAVIARA_CHAMPAGNE��CVID�Supermac�Cinepak by Supermac��CYUV�Creative Labs, Inc�Creative Labs YUV��DXT1�Microsoft Corporation�DirectX Texture Compression format 1��DXT2�Microsoft Corporation�DirectX Texture Compression format 2��DXT3�Microsoft Corporation�DirectX Texture Compression format 3��DXT4�Microsoft Corporation�DirectX Texture Compression format 4��DXT5�Microsoft Corporation�DirectX Texture Compression format 5��FVF1�Iterated Systems, Inc.�Fractal Video Frame��IF09�Intel Corporation�Intel Intermediate YUV9��IV31�Intel Corporation�Indeo 3.1��JPEG�Microsoft Corporation�Still Image JPEG DIB��MJPG�Microsoft Corporation�Motion JPEG Dib Format��MRLE�Microsoft Corporation�Run Length Encoding��MSVC�Microsoft Corporation�Video 1��PHMO�IBM Corporation�Photomotion��RT21�Intel Corporation�Indeo 2.1��ULTI�IBM Corporation�Ultimotion��V422�Vitec Multimedia�24 bit YUV 4:2:2��V655�Vitec Multimedia�16 bit YUV 4:2:2��VDCT�Vitec Multimedia�Video Maker Pro DIB��VIDS�Vitec Multimedia�YUV 4:2:2 CCIR 601 for V422��YU92�Intel Corporation�YUV��YUV8�Winnov, Inc.�MM_WINNOV_CAVIAR_YUV8��YUV9�Intel Corporation�YUV9��YUYV�Canopus, Co., Ltd.�BI_YUYV, Canopus��ZPEG�Metheus�Video Zipper��

DirectDraw Visual Basic Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements that DirectDraw provides. Reference material is divided into the following categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Classes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerations

�SYMBOL 183 \f "Symbol" \s 11 \h �	Error Codes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Pixel Format Masks

�SYMBOL 183 \f "Symbol" \s 11 \h �	Four Character Codes (FOURCC)

Classes

[This is preliminary documentation and subject to change.]

This section contains reference information about the classes used with the DirectDraw component. The following classes are covered:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDraw4

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawClipper

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawColorControl

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawEnum

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawEnumModes

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawEnumSurfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawGammaControl

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawPalette

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectDrawSurface4

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectX7

DirectDraw4

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDraw4 class to create DirectDraw objects and work with system-level variables. This section is a reference to the methods of this class. For a conceptual overview, see The DirectDraw Object.

The methods of the DirectDraw4 class can be organized into the following groups:

Cooperative levels �SetCooperativeLevel ���TestCooperativeLevel�����Creating objects �CreateClipper ���CreatePalette ���CreateSurface ���CreateSurfaceFromFile���CreateSurfaceFromResource���GetDirect3D���LoadPaletteFromBitmap�����Device capabilities �GetCaps �����Display modes �GetDisplayMode���GetDisplayModesEnum ���GetMonitorFrequency ���RestoreDisplayMode ���SetDisplayMode ���WaitForVerticalBlank �����Display status �GetScanLine ���GetVerticalBlankStatus �����Miscellaneous �GetAvailableTotalMem ���GetFourCCCodes ���GetFreeMem ���GetNumFourCCCodes �����Surface management �DuplicateSurface ���FlipToGDISurface ���GetGDISurface ���GetSurfaceFromDC���GetSurfacesEnum���RestoreAllSurfaces�����

The DirectDraw4 class extends the features of previous versions of the class by offering methods enabling more flexible surface management than previous versions.

DirectDraw4.CreateClipper

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateClipper method creates a DirectDrawClipper object.

object.CreateClipper(flags As Long) As DirectDrawClipper

object

Object expression that resolves to a DirectDraw4 object.

flags

Argument that is currently not used and must be set to 0.

Return Values

If the method succeeds, a DirectDrawClipper object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The DirectDrawClipper object can be attached to a DirectDrawSurface and used during DirectDrawSurface4.Blt and DirectDrawSurface4.UpdateOverlay operations.

See Also

DirectDrawSurface4.GetClipper, DirectDrawSurface4.SetClipper

DirectDraw4.CreatePalette

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreatePalette method creates a DirectDrawPalette object for this DirectDraw object.

object.CreatePalette(_

 flags As CONST_DDPCAPSFLAGS, _

 pe() As PALETTEENTRY) As DirectDrawPalette

object

Object expression that resolves to a DirectDraw4 object.

flags

One or more of the constants of the CONST_DDPCAPSFLAGS enumeration:

DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.

DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.

DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.

DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.

DDPCAPS_8BITENTRIES

Indicates that the index refers to an 8-bit color index. This flag is valid only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT flag, and when the target surface is in 8 bpp. Each color entry is 1 byte long and is an index to a destination surface's 8-bpp palette.

DDPCAPS_ALPHA

Indicates that the flags member of the associated PALETTEENTRY type is to be interpreted as a single 8-bit alpha value. A palette created with this flag can only be attached to a texture (a surface created with the DDSCAPS_TEXTURE capability flag).

DDPCAPS_ALLOW256

Indicates that this palette can have all 256 entries defined.

DDPCAPS_INITIALIZE

This flag is obsolete and ignored by DirectDraw.

DDPCAPS_PRIMARYSURFACE

This palette is attached to the primary surface. Changing this palette's color table immediately affects the display unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT

This palette is the one attached to the left eye primary surface. Changing this palette's color table immediately affects the left eye display unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC

This palette can have modifications to it synced with the monitors refresh rate.

pe()

An array of 2, 4, 16, or 256 PALETTEENTRY types that will initialize this DirectDrawPalette object.

Return Values

If the method succeeds, a DirectDrawPalette object is returned.

Error Codes

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_OUTOFMEMORY ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.CreateSurface

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateSurface method creates a DirectDrawSurface4 object for this DirectDraw object.

object.CreateSurface(_

 dd As DDSURFACEDESC2) As DirectDrawSurface4

object

Object expression that resolves to a DirectDraw4 object.

dd

A DDSURFACEDESC2 type that describes the requested surface. A DDSCAPS2 type is a member of DDSURFACEDESC2.

Return Values

If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INCOMPATIBLEPRIMARY ��DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPIXELFORMAT ��DDERR_NOALPHAHW ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_NODIRECTDRAWHW ��DDERR_NOEMULATION ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOFLIPHW ��DDERR_NOMIPMAPHW ��DDERR_NOOVERLAYHW ��DDERR_NOZBUFFERHW ��DDERR_OUTOFMEMORY ��DDERR_OUTOFVIDEOMEMORY ��DDERR_PRIMARYSURFACEALREADYEXISTS ��DDERR_UNSUPPORTEDMODE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.CreateSurfaceFromFile

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateSurfaceFromFile method creates a DirectDrawSurface4 object for this DirectDraw object and attaches the specified bitmap image to the DirectDrawSurface object.

object.CreateSurfaceFromFile(_

 file As String, _

 dd As DDSURFACEDESC2) As DirectDrawSurface4

object

Object expression that resolves to a DirectDraw4 object.

file

Name of the bitmap image to load onto the surface that is created.

dd

A DDSURFACEDESC2 type that describes the requested surface. A DDSCAPS2 type is a member of DDSURFACEDESC2.

Return Values

If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INCOMPATIBLEPRIMARY ��DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPIXELFORMAT ��DDERR_NOALPHAHW ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_NODIRECTDRAWHW ��DDERR_NOEMULATION ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOFLIPHW ��DDERR_NOMIPMAPHW ��DDERR_NOOVERLAYHW ��DDERR_NOZBUFFERHW ��DDERR_OUTOFMEMORY ��DDERR_OUTOFVIDEOMEMORY ��DDERR_PRIMARYSURFACEALREADYEXISTS ��DDERR_UNSUPPORTEDMODE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.CreateSurfaceFromResource

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateSurfaceFromResource method creates a DirectDrawSurface4 object for this DirectDraw object and attaches the specified resource to the DirectDrawSurface object.

object.CreateSurfaceFromResource(_

 file As String, _

 resName As String, _

 ddsd As DDSURFACEDESC2) As DirectDrawSurface4

object

Object expression that resolves to a DirectDraw4 object.

file

Filename of the resource that is loaded onto the surface that is created. If the resource is part of the executable, specifying an empty string for this argument will locate the resource. This argument can also be the name of an OCX where the resource is located.

resName

Name of the resource that is loaded onto the surface that is created.

ddsd

A DDSURFACEDESC2 type that describes the requested surface. A DDSCAPS2 type is a member of DDSURFACEDESC2.

Return Values

If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INCOMPATIBLEPRIMARY ��DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPIXELFORMAT ��DDERR_NOALPHAHW ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_NODIRECTDRAWHW ��DDERR_NOEMULATION ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOFLIPHW ��DDERR_NOMIPMAPHW ��DDERR_NOOVERLAYHW ��DDERR_NOZBUFFERHW ��DDERR_OUTOFMEMORY ��DDERR_OUTOFVIDEOMEMORY ��DDERR_PRIMARYSURFACEALREADYEXISTS ��DDERR_UNSUPPORTEDMODE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

If you supply an empty string as the module name and you run the application in the Visual Basic environment, then the resource won't be found. Passing an empty string will succeed only if you're using a stand-alone executable.

DirectDraw4.DuplicateSurface

[This is preliminary documentation and subject to change.]

The DirectDraw4.DuplicateSurface method duplicates a DirectDrawSurface4 object.

object.DuplicateSurface(_

 ddIn As DirectDrawSurface4) As DirectDrawSurface4

object

Object expression that resolves to a DirectDraw4 object.

ddIn

A DirectDrawSurface4 object that is the surface to be duplicated.

Return Values

If the method succeeds, a newly duplicated DirectDrawSurface4 object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_CANTDUPLICATE ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��DDERR_SURFACELOST ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method creates a new DirectDrawSurface4 object that points to the same surface memory as an existing DirectDrawSurface object. This duplicate can be used just like the original object. The surface memory is released after the last object referencing it is released. A primary surface, 3-D surface, or implicitly created surface cannot be duplicated.

DirectDraw4.FlipToGDISurface

[This is preliminary documentation and subject to change.]

The DirectDraw4.FlipToGDISurface method makes the surface that GDI writes to the primary surface.

object.FlipToGDISurface()

object

Object expression that resolves to a DirectDraw4 object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method can be called at the end of a page-flipping application to ensure that the display memory that GDI is writing to is visible to the user.

See Also

DirectDraw4.GetGDISurface

DirectDraw4.GetAvailableTotalMem

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetAvailableTotalMem method retrieves the total amount of display memory available for a given type of surface.

object.GetAvailableTotalMem(_

 ddsCaps As DDSCAPS2) As Long

object

Object expression that resolves to a DirectDraw4 object.

ddsCaps

A DDSCAPS2 type that indicates the hardware capabilities of the proposed surface.

Return Value

If the method succeeds, the return value is the amount of total memory.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NODIRECTDRAWHW ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method provides only a snapshot of the current display-memory state. The amount of free display memory is subject to change as surfaces are created and released. Therefore, you should use the free memory value only as an approximation. In addition, a particular display adapter card may make no distinction between two different memory types. For example, the adapter might use the same portion of display memory to store z-buffers and textures. So, allocating one type of surface (for example, a z-buffer) can affect the amount of display memory available for another type of surface (for example, textures). Therefore, it is best to first allocate an application's fixed resources (such as front and back buffers , and z-buffers) before determining how much memory is available for dynamic use (such as texture mapping).

DirectDraw4.GetCaps

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetCaps method fills in the capabilities of the device driver for the hardware and the hardware-emulation layer (HEL).

object.GetCaps(hwCaps As DDCAPS, helCaps As DDCAPS)

object

Object expression that resolves to a DirectDraw4 object.

hwCaps

A DDCAPS type that will be filled with the capabilities of the hardware, as reported by the device driver. Set this argument to NOTHING if device driver capabilities are not to be retrieved.

helCaps

A DDCAPS type that will be filled with the capabilities of the HEL. Set this argument to NOTHING if HEL capabilities are not to be retrieved.

Error Codes

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

You can only set one of the two arguments to NOTHING in Visual Basic to exclude it. If you set both to NOTHING the method will fail, returning DDERR_INVALIDPARAMS.

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.GetDirect3D

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetDirect3D method creates a Direct3D3 object.

object.GetDirect3D() As Direct3D3

object

Object expression that resolves to a DirectDraw4 object.

Return Value

If the method succeeds, a Direct3D3 object is returned.

Error Codes

E_INVALIDINTERFACE��E_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The object returned by a successful function call must be assigned to a Direct3D3 object variable. For example, in Visual Basic:

Dim Direct3D as Direct3D3

Set Direct3D = object.GetDirect3D()

DirectDraw4.GetDisplayMode

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetDisplayMode method retrieves the current display mode.

object.GetDisplayMode(surface As DDSURFACEDESC2)

object

Object expression that resolves to a DirectDraw4 object.

surface

A DDSURFACEDESC2 type that will be filled with a description of the surface display mode.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTEDMODE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

An application should not save the information returned by this method to restore the display mode on clean-up. The application should use the DirectDraw4.RestoreDisplayMode method to restore the mode on clean-up, thereby avoiding mode-setting conflicts that could arise in a multiprocess environment.

See Also

DirectDraw4.SetDisplayMode, DirectDraw4.RestoreDisplayMode, DirectDraw4.GetDisplayModesEnum

DirectDraw4.GetDisplayModesEnum

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetDisplayModesEnum method returns a DirectDrawEnumModes object filled with display mode information.

object.GetDisplayModesEnum(_

 flags As CONST_DDEDMFLAGS, _

 ddsd As DDSURFACEDESC2) As DirectDrawEnumModes

object

Object expression that resolves to a DirectDraw4 object.

flags

One of the following constants of the CONST_DDEDMFLAGS enumeration:

DDEDM_REFRESHRATES

Enumerates modes with different refresh rates. This guarantees that a particular mode will be enumerated only once. This flag specifies whether the refresh rate is taken into account when determining if a mode is unique.

DDEDM_STANDARDVGAMODES

Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

ddsd

A DDSURFACEDESC2 type that will be filled with a description of the surface display mode.

Return Value

If the method succeeds, a DirectDrawEnumModes object is returned which you can then query for a description of the display modes.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��E_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

An application should not save the information returned by this method to restore the display mode on clean-up. The application should use the DirectDraw4.RestoreDisplayMode method to restore the mode on clean-up, thereby avoiding mode-setting conflicts that could arise in a multiprocess environment.

See Also

DirectDraw4.SetDisplayMode, DirectDraw4.RestoreDisplayMode, DirectDraw4.GetDisplayModesEnum

DirectDraw4.GetFourCCCodes

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetFourCCCodes method retrieves the FOURCC codes supported by the DirectDraw object.

object.GetFourCCCodes(ccCodes() As Long)

object

Object expression that resolves to a DirectDraw4 object.

ccCodes

An array of variables that will be filled with the Four Character Codes(FOURCC) supported by this DirectDraw object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

To retrieve the number of codes supported by a DirectDraw4 object, use DirectDraw4.GetNumFourCCCodes.

DirectDraw4.GetFreeMem

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetFreeMem method retrieves the total amount of display memory currenty free.

object.GetFreeMem(ddsCaps As DDSCAPS2) As Long

object

Object expression that resolves to a DirectDraw4 object.

ddsCaps

A DDSCAPS2 type that indicates the hardware capabilities of the proposed surface.

Return Value

The amount of total memory.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDCAPS ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NODIRECTDRAWHW ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method provides only a snapshot of the current display-memory state. The amount of free display memory is subject to change as surfaces are created and released. Therefore, you should use the free memory value only as an approximation. In addition, a particular display adapter card may make no distinction between two different memory types. For example, the adapter might use the same portion of display memory to store z-buffers and textures. So, allocating one type of surface (for example, a z-buffer) can affect the amount of display memory available for another type of surface (for example, textures). Therefore, it is best to first allocate an application's fixed resources (such as front and back buffers , and z-buffers) before determining how much memory is available for dynamic use (such as texture mapping).

DirectDraw4.GetGDISurface

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetGDISurface method retrieves the DirectDrawSurface object that currently represents the surface memory that GDI is treating as the primary surface.

object.GetGDISurface() As DirectDrawSurface4

object

Object expression that resolves to a DirectDraw4 object.

Return Value

If the method succeeds, a DirectDrawSurface4 is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDraw4.FlipToGDISurface

DirectDraw4.GetMonitorFrequency

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetMonitorFrequency method retrieves the frequency of the monitor being driven by the DirectDraw object.

object.GetMonitorFrequency() As Long

object

Object expression that resolves to a DirectDraw4 object.

Return Values

The monitor frequency, reported in Hz.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.GetNumFourCCCodes

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetNumFourCCCodes method retrieves the number of FOURCC codes supported by the DirectDraw object.

object.GetFourCCCodes() As Long

object

Object expression that resolves to a DirectDraw4 object.

Return Value

The number of supported Four Character Codes(FOURCC).

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method is typically called before calling DirectDraw4.GetFourCCCodes.

DirectDraw4.GetScanLine

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetScanLine method retrieves the scan line that is currently being drawn on the monitor.

object.GetScanLine(lines As Long) As Long

object

Object expression that resolves to a DirectDraw4 object.

lines

The current scan line.

Return Value

If the method succeeds, the return value is DD_OK, indicating that the calling application can continue executing.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTED ��DDERR_VERTICALBLANKINPROGRESS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

Scan lines are reported as zero-based integers. The returned scan line value is between 0 and n, where scan line 0 is the first visible scan line on the screen and n is the last visible scan line, plus any scan lines that occur during the vertical blank period. So, in a case where an application is running at 640(480, and there are 12 scan lines during vblank, the values returned by this method will range from 0 to 491.

See Also

DirectDraw4.GetVerticalBlankStatus, DirectDraw4.WaitForVerticalBlank

DirectDraw4.GetSurfaceFromDC

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetSurfaceFromDC method retrieves the DirectDrawSurface4 object for a surface based on its GDI device context handle.

object.GetSurfaceFromDC(hdc As Long) As DirectDrawSurface4

object

Object expression that resolves to a DirectDraw4 object.

hdc

The handle to a display device context.

Return Value

If the method succeeds, a DirectDrawSurface4 is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��DDERR_NOTFOUND ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method will succeed only for device context handles that identify surfaces already associated with the DirectDraw object.

See Also

Surfaces and Device Contexts

DirectDraw4.GetSurfacesEnum

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetSurfacesEnum method returns a DirectDrawEnumSurfaces object which is used to enumerate the attached surfaces of the DirectDraw4 object.

object.GetSurfacesEnum(_

 flags As CONST_DDENUMSURFACESFLAGS, _

 desc As DDSURFACEDESC2) As DirectDrawEnumSurfaces

object

Object expression that resolves to a DirectDraw4 object.

flags

A CONST_DDENUMSURFACESFLAGS enumeration containing a combination of one search type flag and one matching flag. The search type flag determines how the method searches for matching surfaces; you can search for surfaces that can be created using the description in the desc parameter or you can search for existing surfaces that already match that description. The matching flag determines whether the method enumerates all surfaces, only those that match, or only those that don't match the description in the desc parameter.

Search type flags

DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search criterion. This flag can only be used with the DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST

Enumerates the already existing surfaces that meet the search criterion.

Matching flags

DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the search criterion. This flag can only be used with the DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH

Searches for any surface that matches the surface description.

DDENUMSURFACES_NOMATCH

Searches for any surface that does not match the surface desc

desc

A DDSURFACEDESC2 type that defines the surface of interest. This parameter can be NOTHING if the flags parameter includes the DDENUMSURFACES_ALL flag.

Return Value

If the method succeeds, a DirectDrawEnumSurfaces object is returned which you can then query for a description of the attached surfaces.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��E_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

If the DDENUMSURFACES_CANBECREATED flag is set, this method attempts to temporarily create a surface that meets the search criterion.

DirectDraw4.GetVerticalBlankStatus

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetVerticalBlankStatus method retrieves the status of the vertical blank.

object.GetVerticalBlankStatus() As Long

object

Object expression that resolves to a DirectDraw4 object.

Return Value

The status of the vertical blank. This argument is zero if a vertical blank is occurring, and non-zero otherwise.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

To synchronize with the vertical blank, use the DirectDraw4.WaitForVerticalBlank method.

See Also

DirectDraw4.GetScanLine, DirectDraw4.WaitForVerticalBlank

DirectDraw4.LoadPaletteFromBitmap

[This is preliminary documentation and subject to change.]

The DirectDraw4.LoadPaletteFromBitmap method creates a DirectDrawPalette object based on the palette of the specified bitmap for this DirectDraw object.

object.LoadPaletteFromBitmap(_

 bName As String) As DirectDrawPalette

object

Object expression that resolves to a DirectDraw4 object.

bName

The name of the bitmap from which you want to load the palette.

Return Value

If the method succeeds, a DirectDrawPalette object is returned.

Error Codes

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOOPERATIVELEVELSET ��DDERR_OUTOFMEMORY ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.RestoreAllSurfaces

[This is preliminary documentation and subject to change.]

The DirectDraw4.RestoreAllSurfaces method restores all the surfaces created for the DirectDraw object, in the order they were created.

object.RestoreAllSurfaces()

object

Object expression that resolves to a DirectDraw4 object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method is provided for convenience. Effectively, this method calls the DirectDrawSurface4.Restore method for each surface created by this DirectDraw object.

See Also

DirectDrawSurface4.Restore, Losing and Restoring Surfaces

DirectDraw4.RestoreDisplayMode

[This is preliminary documentation and subject to change.]

The DirectDraw4.RestoreDisplayMode method resets the mode of the display device hardware for the primary surface to what it was before the DirectDraw4.SetDisplayMode method was called. Exclusive-level access is required to use this method.

object.RestoreDisplayMode()

object

Object expression that resolves to a DirectDraw4 object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_LOCKEDSURFACES ��DDERR_NOEXCLUSIVEMODE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDraw4.SetDisplayMode, DirectDrawEnumModes, DirectDraw4.SetCooperativeLevel

DirectDraw4.SetCooperativeLevel

[This is preliminary documentation and subject to change.]

The DirectDraw4.SetCooperativeLevel method determines the top-level behavior of the application.

object.SetCooperativeLevel(_

 hdl As Long, _

 flags As CONST_DDSCLFLAGS)

object

Object expression that resolves to a DirectDraw4 object.

hdl

Argument specifying the window handle used for the application. Set to the calling application's top-level window handle (not a handle for any child windows created by the top-level window). This argument can be NOTHING when the DDSCL_NORMAL flag is specified in the flags argument.

flags

One or more of the following constants from the CONST_DDSCLFLAGS enumeration:

DDSCL_ALLOWMODEX

Allows the use of Mode X display modes. This flag can only be used if the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT

Allows CTRL+ALT+DELl to function while in exclusive (full-screen) mode.

DDSCL_CREATEDEVICEWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that DirectDraw is to create and manage a default device window for this DirectDraw object. For more information, see Focus and Device Windows.

DDSCL_EXCLUSIVE

Requests the exclusive level. This flag must be used with the DDSCL_FULLSCREEN flag.

DDSCL_FULLSCREEN

Indicates that the exclusive-mode owner will be responsible for the entire primary surface. GDI can be ignored. This flag must be used with the DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED

Requests multithread-safe DirectDraw behavior. This causes Direct3D to take the global critical section more frequently.

DDSCL_NORMAL

Indicates that the application will function as a regular Windows application. This flag cannot be used with the DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES

Indicates that DirectDraw is not allowed to minimize or restore the application window on activation.

DDSCL_SETDEVICEWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that the hdl argument is the window handle of the device window for this DirectDraw object. This flag cannot be used with the DDSCL_SETFOCUSWINDOW flag.

DDSCL_SETFOCUSWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that the hdl argument is the window handle of the focus window for this DirectDraw object. This flag cannot be used with the DDSCL_SETDEVICEWINDOW flag.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_EXCLUSIVEMODEALREADYSET ��DDERR_HWNDALREADYSET ��DDERR_HWNDSUBCLASSED ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method must be called by the same thread that created the application window.

An application must set either the DDSCL_EXCLUSIVE or DDSCL_NORMAL flag.

The DDSCL_EXCLUSIVE flag must be set to call functions that can have drastic performance consequences for other applications. For more information, see Cooperative Levels.

See Also

DirectDraw4.SetDisplayMode, DirectDraw4.GetDisplayModesEnum, Mode X and Mode 13 Display Modes, Focus and Device Windows.

DirectDraw4.SetDisplayMode

[This is preliminary documentation and subject to change.]

The DirectDraw4.SetDisplayMode method sets the mode of the display-device hardware.

object.SetDisplayMode(_

 w As Long, _

 h As Long, _

 bpp As Long, _

 ref As Long, _

 mode As CONST_DDSDMFLAGS)

object

Object expression that resolves to a DirectDraw4 object.

w and h

The width and height of the new mode.

bpp

The bits per pixel (bpp) of the new mode.

ref

The refresh rate of the new mode. Set this value to 0 to request the default refresh rate for the driver.

flags

One of the constants from the CONST_DDSDMFLAGS enumeration describing additional options. Currently, the only valid flag is DDSDM_STANDARDVGAMODE, which causes the method to set Mode 13 instead of Mode X 320x200x8 mode. If you are setting another resolution, bit depth, or a Mode X mode, do not use this flag and set the argument to 0.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDMODE ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_LOCKEDSURFACES ��DDERR_NOEXCLUSIVEMODE ��DDERR_SURFACEBUSY ��DDERR_UNSUPPORTED ��DDERR_UNSUPPORTEDMODE ��DDERR_WASSTILLDRAWING ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method must be called by the same thread that created the application window.

If another application changes the display mode, the primary surface will be lost and will return DDERR_SURFACELOST until it is recreated to match the new display mode.

See Also

DirectDraw4.RestoreDisplayMode, DirectDraw4.GetDisplayModesEnum, DirectDraw4.SetCooperativeLevel, Setting Display Modes, Restoring Display Modes

DirectDraw4.TestCooperativeLevel

[This is preliminary documentation and subject to change.]

The DirectDraw4.TestCooperativeLevel method reports the current cooperative-level status of the DirectDraw device for a windowed or full-screen application.

object.TestCooperativeLevel() As Long

object

Object expression that resolves to a DirectDraw4 object.

Return Values

If the method succeeds, the return value is DD_OK, indicating that the calling application can continue executing.

Error Codes

If the method fails or if the DD_OK was not returned, the error code may be one of the following values (see remarks):

DDERR_INVALIDOBJECT ��DDERR_EXCLUSIVEMODEALREADYSET��DDERR_NOEXCLUSIVEMODE��DD_OK��DDERR_WRONGMODE��

Remarks

This method is particularly useful to applications that use the WM_ACTIVATEAPP and WM_DISPLAYCHANGE system messages as a notification to restore surfaces or re-create DirectDraw objects. A zero for a return value always indicates that the application can continue execution without restoring or re-creating surfaces, but the failure codes are interpreted differently depending on the cooperative-level that the application uses. For more information, see Testing Cooperative Levels.

DirectDraw4.WaitForVerticalBlank

[This is preliminary documentation and subject to change.]

The DirectDraw4.WaitForVerticalBlank method helps the application synchronize itself with the vertical-blank interval.

object.WaitForVerticalBlank(_

 flags As CONST_DDWAITVBFLAGS, _

 handle As Long) As Long

object

Object expression that resolves to a DirectDraw4 object.

flags

One of the following constants of the CONST_DDWAITVBFLAGS enumeration specifying how long to wait for the vertical blank.

DDWAITVB_BLOCKBEGIN

Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKBEGINEVENT

Triggers an event when the vertical blank begins. This value is not currently supported.

DDWAITVB_BLOCKEND

Returns when the vertical-blank interval ends and the display begins.

handle

The handle of the event to be triggered when the vertical blank begins. This argument is not currently used.

Return Values

If the method succeeds, the return value is DD_OK, indicating that the calling application can continue executing.

Error Codes

If the method fails or if the return value is not DD_OK, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_UNSUPPORTED ��DD_OK��DDERR_WASSTILLDRAWING ��

See Also

DirectDraw4.GetVerticalBlankStatus, DirectDraw4.GetScanLine

DirectDrawClipper

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawClipper class to manage clip lists. This section is a reference to the methods of this class. For a conceptual overview, see Clippers.

The methods of the DirectDrawClipper class can be organized into the following groups:

Clip list�GetClipList ���GetClipListSize���IsClipListChanged ���SetClipList �����Handles �GetHWnd ���SetHWnd ��

DirectDrawClipper.GetClipList

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.GetClipList method retrieves a copy of the clip list associated with a DirectDrawClipper object.

object.GetClipList(rects() As RECT)

object

Object expression that resolves to a DirectDrawClipper object.

rects()

An array of RECT types is filled with the clip list.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCLIPLIST ��DDERR_REGIONTOOSMALL ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawClipper.SetClipList

DirectDrawClipper.GetClipListSize

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.GetClipListSize method retrieves the size of the clip list associated with a DirectDrawClipper object.

object.GetClipListSize() As Long

object

Object expression that resolves to a DirectDrawClipper object.

Return Value

If the method succeeds, the size of the clip list, in bytes, is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDPARAMS ��DDERR_NOCLIPLIST ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawClipper.GetHWnd

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.GetHWnd method retrieves the window handle previously associated with this DirectDrawClipper object by the DirectDrawClipper.SetHWnd method.

object.GetHWnd() As Long

object

Object expression that resolves to a DirectDrawClipper object.

Return Value

If the method succeeds, the window handle is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawClipper.SetHWnd

DirectDrawClipper.IsClipListChanged

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.IsClipListChanged method monitors the status of the clip list if a window handle is associated with a DirectDrawClipper object.

object.IsClipListChanged() As Long

object

Object expression that resolves to a DirectDrawClipper object.

Return Value

If the method succeeds, the status of the clip list is returned. The result is non-zero if the clip list has changed and zero if it hasn't.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawClipper.SetClipList

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.SetClipList method sets or deletes the clip list used by the DirectDrawSurface4.Blt and DirectDrawSurface4.UpdateOverlay methods on surfaces to which the parent DirectDrawClipper object is attached.

object.SetClipList(_

 count As Long, _ ,

 rects() as RECT)

object

Object expression that resolves to a DirectDrawClipper object.

count

The number of RECT types in the rects() array.

rects()

An array of RECT types that describe the clip list.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_CLIPPERISUSINGHWND ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The clip list cannot be set if a window handle is already associated with the DirectDrawClipper object. Note that the DirectDrawSurface4.BltFast method cannot clip.

See Also

DirectDrawClipper.GetClipList, DirectDrawSurface4.Blt, DirectDrawSurface4.BltFast, DirectDrawSurface4.UpdateOverlay

DirectDrawClipper.SetHWnd

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.SetHWnd method sets the window handle that will obtain the clipping information.

object.SetHWnd(hdl As Long)

object

Object expression that resolves to a DirectDrawClipper object.

hdl

The window handle that will obtain the clipping information.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawClipper.GetHWnd

DirectDrawColorControl

[This is preliminary documentation and subject to change.]

The DirectDrawColorControl class allows you to get and set color controls:

Color controls�GetColorControls���SetColorControls��

DirectDrawColorControl.GetColorControls

[This is preliminary documentation and subject to change.]

The DirectDrawColorControl.GetColorControls method returns the current color control settings associated with the specified overlay or primary surface. The IFlags member of the DDCOLORCONTROL type indicates which of the color control options are supported.

object.GetColorControls(colorControl As DDCOLORCONTROL)

object

Object expression that resolves to a DirectDrawColorControl object.

colorControl

A DDCOLORCONTROL type that will receive the current control settings of the specified surface.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawColorControl.SetColorControls, Using Color Controls, Gamma and Color Controls

DirectDrawColorControl.SetColorControls

[This is preliminary documentation and subject to change.]

The DirectDrawColorControl.SetColorControls method sets the color control settings associated with the specified overlay or primary surface.

object.SetColorControls(colorControl As DDCOLORCONTROL)

object

Object expression that resolves to a DirectDrawColorControl object.

colorControl

A DDCOLORCONTROL type containing the new values to be applied to the specified surface.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��DDERR_UNSUPPORTED��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawColorControl.GetColorControls, Using Color Controls, Gamma and Color Controls

DirectDrawEnum

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawEnum class to obtain information on video driver display adapters that are installed on the computer. This object is created and filled with data by the DirectX7.GetDDEnum method.

DirectDraw Enumeration�GetCount ���GetDescription���GetGuid���GetName��

DirectDrawEnum.GetCount

[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetCount method returns the number of DirectDraw drivers installed on the system.

object.GetCount() As Long

object

Object expression that resolves to a DirectDrawEnum object.

Return Value

The number of entries in the enumeration object.

Remarks

Each entry represents a DirectDraw driver description. To get individual driver descriptions use DirectDrawEnum.GetDescription, DirectDrawEnum.GetGuid and DirectDrawEnum.GetName.

DirectDrawEnum.GetDescription

[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetDescription method returns the driver description of the specified DirectDraw device.

object.GetDescription(index As Long) As String

object

Object expression that resolves to a DirectDrawEnum object.

index

The particular DirectDraw device in the DirectDrawEnum object.

Return Value

The driver description of the device.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawEnum.GetGuid

[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetGuid returns the unique identifier of the specified DirectDraw device.

object.GetGuid(index As Long) As String

object

Object expression that resolves to a DirectDrawEnum object.

index

The particular DirectDraw device in the DirectDrawEnum object.

Return Value

The unique identifier of the device.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawEnum.GetName

[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetName returns the driver name of the specified DirectDraw device.

object.GetName(index As Long) As String

object

Object expression that resolves to a DirectDrawEnum object.

index

The particular DirectDraw device in the DirectDrawEnum object.

Return Value

The driver name of the device.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawEnumModes

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawEnumModes class to enumerate the computer's available video modes. This object is created and filled with data by the DirectDraw4.GetDisplayModesEnum method.

DirectDraw Mode Enumeration�GetCount ���GetItem ��

DirectDrawEnumModes.GetCount

[This is preliminary documentation and subject to change.]

The DirectDrawEnumModes.GetCount method returns the number of available video modes.

object.GetCount() As Long

object

Object expression that resolves to a DirectDrawEnumModes object.

Return Value

The number of available video modes.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

Each entry represents a video mode. To get a description of an individual video mode use DirectDrawEnumModes.GetItem.

DirectDrawEnumModes.GetItem

[This is preliminary documentation and subject to change.]

The DirectDrawEnumModes.GetItem method returns a video mode description for the specified element in the enumeration object.

object.GetItem(index As Long, info As DDSURFACEDESC2)

object

Object expression that resolves to a DirectDrawEnumModes object.

index

Number specifying which element of the array to be accessed. Each element is an available video mode.

info

A DDSURFACEDESC2 type that will be filled with video mode information.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The number of video modes in the DirectDrawEnumModes object can be obtained from the DirectDrawEnumModes.GetCount.

DirectDrawEnumSurfaces

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawEnumSurfaces class to enumerate all of the created surfaces. This object is created and filled with data by the DirectDrawSurface4.GetAttachedSurfaceEnum and DirectDrawSurface4.GetOverlayZOrdersEnum methods.

DirectDraw Surface Enumeration�GetCount ���GetItem ��

DirectDrawEnumSurfaces.GetCount

[This is preliminary documentation and subject to change.]

The DirectDrawEnumSurfaces.GetCount method returns the number of created surfaces.

object.GetCount() As Long

object

Object expression that resolves to a DirectDrawEnumSurfaces object.

Return Value

The number of created surfaces.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

Each entry represents created DirectDraw surfaces. To get a description of a surface use DirectDrawEnumSurfaces.GetItem.

DirectDrawEnumSurfaces.GetItem

[This is preliminary documentation and subject to change.]

The DirectDrawEnumSurfaces.GetItem method returns a specific surface from the list of created surfaces of the DirectDrawEnumSurfaces object.

object.GetItem(index As Long) As DirectDrawSurface4

object

Object expression that resolves to a DirectDrawEnumSurfaces object.

index

Number specifying which element of the array to be accessed. Each element represents a created surface.

Return Value

An DirectDrawSurface4 object describing the surface is returned.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To obtain the number of created surfaces call the DirectDrawEnumSurfaces.GetCount method.

DirectDrawGammaControl

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawGammaControl class to adjust the red, green, and blue gamma ramp levels of the primary surface. This section is a reference to the methods of this class. This object is created with a call to the DirectDrawSurface4.GetDirectDrawGammaControl.

For a conceptual overview, see Gamma and Color Controls.

Gamma ramps�GetGammaRamp���SetGammaRamp��

DirectDrawGammaControl.GetGammaRamp

[This is preliminary documentation and subject to change.]

The DirectDrawGammaControl.GetGammaRamp method retrieves the red, green, and blue gamma ramps for the primary surface.

object.GetGammaRamp(_

 flags As CONST_DDSGRFLAGS, _

 gammaRamp As DDGAMMARAMP)

object

Object expression that resolves to a DirectDrawGammaControl object.

flags

One of the constants of the CONST_DDSGRFLAGS enumeration indicating if gamma calibration is desired. Set this argument DDSGR_CALIBRATE to request that the calibrator adjust the gamma ramp according to the physical properties of the display, making the result identical on all systems. If calibration is not needed, set this argument to 0.

gammaRamp

A DDGAMMARAMP type that will be filled with the current red, green, and blue gamma ramps. This type maps color values in the frame buffer to the color values that will be passed to the DAC (Digital-to-Analog Converter).

Error Codes

If the method fails, the error code may be one of the following:

DDERR_EXCEPTION��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawGammaControl.SetGammaRamp

DirectDrawGammaControl.SetGammaRamp

[This is preliminary documentation and subject to change.]

The DirectDrawGammaControl.SetGammaRamp method sets the red, green, and blue gamma ramps for the primary surface.

object.SetGammaRamp(_

 flags As CONST_DDSGRFLAGS, _

 gammaRamp As DDGAMMARAMP)

object

Object expression that resolves to a DirectDrawGammaControl object.

flags

One of the constants of the CONST_DDSGRFLAGS enumeration indicating if gamma calibration is desired. Set this argument DDSGR_CALIBRATE to request that the calibrator adjust the gamma ramp according to the physical properties of the display, making the result identical on all systems. If calibration is not needed, set this argument to 0.

gammaRamp

A DDGAMMARAMP type that contains the new red, green, and blue gamma ramp entries. Each array maps color values in the frame buffer to the color values that will be passed to the DAC (Digital-to-Analog Converter).

Error Codes

If the method fails, the error code may be one of the following:

DDERR_EXCEPTION��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

Not all systems support gamma calibration. To determine if gamma calibration is supported, call DirectDraw4.GetCaps, and examine the lCaps2 member of the associated DDCAPS type after the method returns. If the DDCAPS_CANCALIBRATEGAMMA capability flag is present, then gamma calibration is supported.

Calibrating gamma ramps incurs some processing overhead, and should not be used frequently.

Including the DDSGR_CALIBRATE flag in the flags argument when running on systems that do not support gamma calibration will not cause this method to fail. The method succeeds, setting new gamma ramp values without calibration.

See Also

DirectDrawGammaControl.GetGammaRamp

DirectDrawPalette

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawPalette class to create DirectDrawPalette objects and work with system-level variables. This section is a reference to the methods of this class. For a conceptual overview, see Palettes.

The methods of the DirectDrawPalette class can be organized into the following groups:

Palette capabilities �GetCaps �����Palette entries �GetEntries ���SetEntries ��

DirectDrawPalette.GetCaps

[This is preliminary documentation and subject to change.]

The DirectDrawPalette.GetCaps method retrieves the capabilities of this palette object.

object.GetCaps() As CONST_DDPCAPSFLAGS

object

Object expression that resolves to a DirectDrawPalette object.

Return Value

One of the following constants of the CONST_DDPCAPSFLAGS enumeration indicating the capabilities of the palette object:

DDPCAPS_1BIT��DDPCAPS_2BIT��DDPCAPS_4BIT ��DDPCAPS_8BIT ��DDPCAPS_8BITENTRIES ��DDPCAPS_ALPHA��DDPCAPS_ALLOW256 ��DDPCAPS_PRIMARYSURFACE ��DDPCAPS_PRIMARYSURFACELEFT ��DDPCAPS_VSYNC ��

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawPalette.GetEntries

[This is preliminary documentation and subject to change.]

The DirectDrawPalette.GetEntries method queries palette values from a DirectDrawPalette object.

object.GetEntries(_

 start As Long, _

 count As Long, _

 val() As PALETTEENTRY)

object

Object expression that resolves to a DirectDrawPalette object.

start

The start of the entries that should be retrieved sequentially.

count

The number of palette entries that can fit in the address specified in val(). The colors of each palette entry are returned in sequence, from the value of the start argument through the value of the count argument minus 1. (These arguments are set by DirectDrawPalette.SetEntries.)

val()

An array of variables of type PALETTEENTRY. The palette entries are 1 byte each if the DDPCAPS_8BITENTRIES flag was set in the flags argument of the DirectDraw4.CreatePalette and 4 bytes otherwise. Each field is a color description.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTPALETTIZED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawPalette.SetEntries

DirectDrawPalette.SetEntries

[This is preliminary documentation and subject to change.]

The DirectDrawPalette.SetEntries method changes entries in a DirectDrawPalette object immediately.

object.SetEntries(_

 start As Long, _

 count As Long, _

 val() As PALETTEENTRY)

object

Object expression that resolves to a DirectDrawPalette object.

start

The first entry to be set.

count

The number of palette entries to be changed.

val()

An arrary of variables of type PALETTEENTRY. The palette entries are 1 byte each if the DDPCAPS_8BITENTRIES flag was set in the flags argument of the DirectDraw4.CreatePalette and 4 bytes otherwise. Each field is a color description.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOPALETTEATTACHED ��DDERR_NOTPALETTIZED ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawPalette.GetEntries, DirectDrawSurface4.SetPalette

DirectDrawSurface4

[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawSurface4 class to create DirectDrawSurface objects and work with system-level variables. This section is a reference to the methods of this class. For a conceptual overview, see Surfaces.

The methods of the DirectDrawSurface4 class can be organized into the following groups:

Allocating memory �IsLost ���Restore �����Attaching surfaces �AddAttachedSurface ���DeleteAttachedSurface ���GetAttachedSurface ���GetAttachedSurfaceEnum�����Blitting�Blt ���BltColorFill���BltFast ���BltFx���BltToDC���GetBltStatus �����Color keying�GetColorKey ���SetColorKey �����Device contexts �GetDC ���ReleaseDC �����Drawing and Text�DrawBox���DrawCircle���DrawEllipse���DrawLine���DrawRoundedBox���DrawText���GetDrawStyle���GetDrawWidth���GetFillColor���GetFillStyle���GetFontTransparency���GetForeColor���SetDrawStyle���SetDrawWidth���SetFillColor���SetFillStyle���SetFont���SetFontTransparency���SetForeColor�����Flipping�Flip ���GetFlipStatus �����Locking�GetLockedPixel ���GetLockedSurfaceBits ���Lock ���SetLockedPixel���SetLockedSurfaceBits���Unlock �����Miscellaneous �GetDirectDraw ���GetDirectDrawColorControl ���GetDirectDrawGammaControl ���GetTexture �����Overlays �GetOverlayZOrdersEnum���UpdateOverlay ���UpdateOverlayZOrder �����Surface capabilities �GetCaps �����Surface clipper �GetClipper ���SetClipper �����Surface characteristics �ChangeUniquenessValue���GetPixelFormat ���GetSurfaceDesc ���GetUniquenessValue�����Surface palettes �GetPalette ���SetPalette �����

DirectDrawSurface4.AddAttachedSurface

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.AddAttachedSurface method attaches the specified surface to this surface.

object.AddAttachedSurface(ddS As DirectDrawSurface4)

object

Object expression that resolves to a DirectDrawSurface4 object.

ddS

A DirectDrawSurface4 object for the surface to be attached.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_CANNOTATTACHSURFACE ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACEALREADYATTACHED ��DDERR_SURFACELOST ��DDERR_WASSTILLDRAWING ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

You can explicitly unattach the surface by using the DirectDrawSurface4.DeleteAttachedSurface method. Unlike complex surfaces that you create with a single call to DirectDraw4.CreateSurface, surfaces attached with this method are not automatically released. It is the application's responsibility to release such surfaces.

Possible attachments include z-buffers, alpha channels, and back buffers. Some attachments automatically break other attachments. For example, the 3-D z-buffer can be attached only to one back buffer at a time. Attachment is not bidirectional, and a surface cannot be attached to itself. Emulated surfaces (in system memory) cannot be attached to nonemulated surfaces. Unless one surface is a texture map, the two attached surfaces must be the same size. A flipping surface cannot be attached to another flipping surface of the same type; however, attaching two surfaces of different types is allowed. For example, a flipping z-buffer can be attached to a regular flipping surface. If a nonflipping surface is attached to another nonflipping surface of the same type, the two surfaces will become a flipping chain. If a nonflipping surface is attached to a flipping surface, it becomes part of the existing flipping chain. Additional surfaces can be added to this chain, and each call of the DirectDrawSurface4.Flip method will advance one step through the surfaces.

See Also

DirectDrawSurface4.DeleteAttachedSurface, DirectDrawSurface4.GetAttachedSurfaceEnum

DirectDrawSurface4.Blt

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Blt method performs a bit block transfer. This method does not support z-buffering or alpha blending (see alpha channel) during blit operations.

object.Blt(_

 destRect As RECT, _

 ddS As DirectDrawSurface4, _

 srcRect As RECT, _

 flags As CONST_DDBLTFLAGS) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

destRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit to on the destination surface. If this argument is NOTHING, the entire destination surface will be used.

ddS

A DirectDrawSurface4 object for the DirectDrawSurface object that is the source of the blit.

srcRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit from on the source surface. If this argument is NOTHING, the entire source surface will be used.

flags

Combination of constants from the CONST_DDBLTFLAGS enumeration that determines the valid members of the associated DDBLTFX type, which specify color key information, or request special behavior from the method. The following flags are defined.

Validation flags

DDBLT_COLORFILL

Uses the lFill member of the DDBLTFX structure as the RGB color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the lDDFX member of the DDBLTFX structure to specify the effects to use for this blit.

DDBLT_DDROPS

Uses the lROP member of the DDBLTFX structure to specify the raster operations (ROPS) that are not part of the Win32 API.

DDBLT_KEYDESTOVERRIDE

Uses the ddckDestColorKey_high and ddckDestColorKey_low members of the DDBLTFX structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE

Uses the ddckSrcColorKey_high and ddckSrcColorKey_low members of the DDBLTFX structure as the color key for the source surface.

DDBLT_ROP

Uses the lROP member of the DDBLTFX structure for the ROP for this blit. These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

Uses the lRotationAngle member of the DDBLTFX structure as the rotation angle (specified in 1/100th of a degree) for the surface.

Color key flags

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

Behavior flags

DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT

Postpones the DDERR_WASSTILLDRAWING return value if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

Obsolete and unsupported flags

All "DDBLT_ALPHA" flag values.

Obsolete.

All "DDBLT_ZBUFFER" flag values

This method does not currently support z-aware blit operations. None of the flags beginning with "DDBLT_ZBUFFER" are supported in this release of DirectX 6.0.

Return Values

The return value may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOALPHAHW ��DDERR_NOBLTHW ��DDERR_NOCLIPLIST ��DDERR_NODDROPSHW ��DDERR_NOMIRRORHW ��DDERR_NORASTEROPHW ��DDERR_NOROTATIONHW ��DDERR_NOSTRETCHHW ��DDERR_NOZBUFFERHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method is capable of synchronous or asynchronous blits (the default behavior), either display memory to display memory, display memory to system memory, system memory to display memory, or system memory to system memory. The blits can be performed by using source color keys, and destination color keys. Arbitrary stretching or shrinking will be performed if the source and destination rectangles are not the same size.

Typically, DirectDrawSurface4.Blt returns immediately with an error if the blitter is busy and the blit could not be set up. Specify the DDBLT_WAIT flag to request a synchronous blit. When you include the DDBLT_WAIT flag, the method waits until the blit can be set up or another error occurs before it returns.

Note that dstRect and srcRect arguments are defined so that the right and bottom members are exclusive—therefore, right minus left equals the width of the rectangle, not one less than the width.

DirectDrawSurface4.BltColorFill

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltColorFill method performs a bit block transfer of a single color to the specified destination rectangle.

object.BltColorFill(_

 destRect As RECT, _

 fillvalue As Long) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

destRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit to on the destination surface. If this argument is NOTHING, the entire destination surface will be used.

fillvalue

The color to blit.

Return Values

The return value may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOALPHAHW ��DDERR_NOBLTHW ��DDERR_NOCLIPLIST ��DDERR_NODDROPSHW ��DDERR_NOMIRRORHW ��DDERR_NORASTEROPHW ��DDERR_NOROTATIONHW ��DDERR_NOSTRETCHHW ��DDERR_NOZBUFFERHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.BltFast

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltFast method performs a source copy blit or transparent blit by using a source color key or destination color key.

object.BltFast(_

 dx As Long, _

 dy As Long, _

 ddS As DirectDrawSurface4, _

 srcRect As RECT, _

 trans As CONST_DDBLTFASTFLAGS) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

dx and dy

The x- and y-coordinates to blit to on the destination surface.

ddS

A DirectDrawSurface4 object for the DirectDrawSurface object that is the source of the blit.

srcRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit from on the source surface.

trans

One of the constants from the CONST_DDBLTFASTFLAGS enumeration which identifies the type of transfer.

DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY

Specifies a normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY

Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT

Postpones the DDERR_WASSTILLDRAWING message if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

Return Value

The value may be one of the following:

DDERR_EXCEPTION ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOBLTHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING��

Remarks

This method always attempts an asynchronous blit if it is supported by the hardware.

This method works only on display memory surfaces and cannot clip when blitting. If you use this method on a surface with an attached clipper, the call will fail and the method will return DDERR_UNSUPPORTED.

The software implementation of DirectDrawSurface4.BltFast is 10 percent faster than the DirectDrawSurface4.Blt method. However, there is no speed difference between the two if display hardware is being used.

Typically, DirectDrawSurface4.BltFast returns immediately with an error if the blitter is busy and the blit cannot be set up. You can use the DDBLTFAST_WAIT flag, however, if you want this method to not return until either the blit can be set up or another error occurs.

DirectDrawSurface4.BltFx

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltFx method performs a bit block transfer with additional blit effect behavior specified in the BltFx argument.

object.BltFx(_

 destRect As RECT, _

 ddS As DirectDrawSurface4, _

 srcRect As RECT, _

 flags As CONST_DDBLTFLAGS, _

 BltFx As DDBLTFX) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

destRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit to on the destination surface. If this argument is NOTHING, the entire destination surface will be used.

ddS

A DirectDrawSurface4 object that is the source for the blit.

srcRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit from on the source surface. If this argument is NOTHING, the entire source surface will be used.

flags

Combination of constants of the CONST_DDBLTFLAGS enumeration that determines the valid members of the associated DDBLTFX type, specify color key information, or that request special behavior from the method. The following flags are defined.

Validation flags

DDBLT_COLORFILL

Uses the lFillColor member of the DDBLTFX type as the RGB color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the lDDFX member of the DDBLTFX type to specify the effects to use for this blit.

DDBLT_DDROPS

Uses the lROP member of the DDBLTFX type to specify the raster operations (ROPS) that are not part of the Win32 API.

DDBLT_KEYDESTOVERRIDE

Uses the ddckDestColorKey_high and ddckDestColorKey_low members of the DDBLTFX type as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE

Uses the ddckSrcColorKey_high and ddckSrcColorKey_low member of the DDBLTFX type as the color key for the source surface.

DDBLT_ROP

Uses the lROP member of the DDBLTFX type for the ROP for this blit. These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

Uses the lRotationAngle member of the DDBLTFX type as the rotation angle (specified in 1/100th of a degree) for the surface.

Color key flags

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

Behavior flags

DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT

Postpones the DDERR_WASSTILLDRAWING return value if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

Obsolete and unsupported flags

All "DDBLT_ALPHA" flag values.

Obsolete.

All "DDBLT_ZBUFFER" flag values

This method does not currently support z-aware blit operations. None of the flags beginning with "DDBLT_ZBUFFER" are supported in this release of DirectX 6.0.

BltFx

A DDBLTFX type specifying additional blit effect operations to be performed.

Return Value

The value may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOALPHAHW ��DDERR_NOBLTHW ��DDERR_NOCLIPLIST ��DDERR_NODDROPSHW ��DDERR_NOMIRRORHW ��DDERR_NORASTEROPHW ��DDERR_NOROTATIONHW ��DDERR_NOSTRETCHHW ��DDERR_NOZBUFFERHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

DirectDrawSurface4.BltToDC

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltToDC method performs a bit block transfer to the specified device context.

object.BltToDC(_

 hdc As LONG, _

 srcRect As RECT, _

 destRect As RECT)

object

Object expression that resolves to a DirectDrawSurface4 object.

hdc

Handle to a device context.

srcRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit from on the source surface. If this argument is NOTHING, the entire source surface will be used.

destRect

A RECT type that defines the upper-left and lower-right points of the rectangle to blit to on the destination surface. If this argument is NOTHING, the entire source surface will be used.

Return Value

The value may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDCLIPLIST ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOALPHAHW ��DDERR_NOBLTHW ��DDERR_NOCLIPLIST ��DDERR_NODDROPSHW ��DDERR_NOMIRRORHW ��DDERR_NORASTEROPHW ��DDERR_NOROTATIONHW ��DDERR_NOSTRETCHHW ��DDERR_NOZBUFFERHW ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

DirectDrawSurface4.ChangeUniquenessValue

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.ChangeUniquenessValue method manually updates the uniqueness value for this surface.

object.ChangeUniquenessValue()

object

Object expression that resolves to a DirectDrawSurface4 object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_EXCEPTION ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

DirectDraw automatically updates uniqueness values whenever the contents of a surface change.

See Also

DirectDrawSurface4.GetUniquenessValue

DirectDrawSurface4.DeleteAttachedSurface

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DeleteAttachedSurface method detaches two attached surfaces.

object.DeleteAttachedSurface(ddS As DirectDrawSurface4)

object

Object expression that resolves to a DirectDrawSurface4 object.

ddS

A DirectDrawSurface4 object for the DirectDrawSurface object to be detached. If this argument is NOTHING, all attached surfaces are detached.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_CANNOTDETACHSURFACE ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��DDERR_SURFACENOTATTACHED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

Implicit attachments, those formed by DirectDraw rather than the DirectDrawSurface4.AddAttachedSurface method, cannot be detached. Detaching surfaces from a flipping chain can alter other surfaces in the chain. If a front buffer is detached from a flipping chain, the next surface in the chain becomes the front buffer, and the following surface becomes the back buffer. If a back buffer is detached from a chain, the following surface becomes a back buffer. If a plain surface is detached from a chain, the chain simply becomes shorter. If a flipping chain has only two surfaces and they are detached, the chain is destroyed and both surfaces return to their previous designations.

See Also

DirectDrawSurface4.Flip

DirectDrawSurface4.DrawBox

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawBox method draws a box on the surface.

object.DrawBox(_

 x1 As Long, _

 y1 As Long, _

 x2 As Long, _

 y2 As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2

The upper-left and bottom-right points of the box to be drawn.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw style is a solid line and the default fill style is set to transparent. Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawCircle

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawCircle method draws a circle on the surface.

object.DrawCircle(_

 x1 As Long, _

 y1 As Long, _

 r As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, r

The center point and the radius of the circle to be drawn.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw style is a solid line and the default fill style is set to transparent. Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawEllipse

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawEllipse method draws a ellipse on the surface.

object.

object

Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2

The upper-left and the lower-right of the bounding rectangle of the ellipse to be drawn.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw style is a solid line and the default fill style is set to transparent. Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawLine

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawLine method draws a line on the surface.

object.DrawLine(_

 x1 As Long, _

 y1 As Long, _

 x2 As Long, _

 y2 As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2

The end points of the line to be drawn.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw style is a solid line can be changed with a call to DirectDrawSurface4.SetDrawStyle.

DirectDrawSurface4.DrawRoundedBox

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawRoundedBox method draws a rounded box on the surface.

object.DrawRoundedBox(_

 x1 As Long, _

 y1 As Long, _

 x2 As Long, _

 y2 As Long, _

 rw As Long, _

 rh As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2

The upper-left and lower-right points of the rectangle.

rw

The width of the ellipse used to draw the rounded corners.

rh

The height of the ellipse used to draw the rounded corners.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw style is a solid line and the default fill style is set to transparent. Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawText

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawText method draws text on the surface.

object.DrawText(_

 x As Long, _

 y As Long, _

 text As String, _

 b As Boolean)

object

Object expression that resolves to a DirectDrawSurface4 object.

x, y

The location on the surface to draw text.

text

The text to display.

b

Boolean value indicating whether to draw to the current cursor position, see Remarks.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To append text to the end of the last call to DirectDrawSurface4.DrawText, you must pass 0,0 as the x and y coordinate and declare b as TRUE. If you declare b as FALSE, then calling this method will result in text being displayed at the specified x and y coordinates.

DirectDrawSurface4.Flip

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Flip method makes the surface memory associated with the DDSCAPS_BACKBUFFER surface become associated with the front-buffer surface.

object.Flip(_

 ddS As DirectDrawSurface4, _

 flags As CONST_DDFLIPFLAGS)

object

Object expression that resolves to a DirectDrawSurface4 object.

ddS

A DirectDrawSurface4 object for an arbitrary surface in the flipping chain. The default for this argument is NOTHING, in which case DirectDraw cycles through the buffers in the order they are attached to each other. If this argument is not NOTHING, DirectDraw flips to the specified surface instead of the next surface in the flipping chain. The method fails if the specified surface is not a member of the flipping chain.

flags

One or more constansts of the CONST_DDFLIPFLAGS enumeration specifying flip options.

DDFLIP_EVEN

For use only when displaying video in an overlay surface. The new surface contains data from the even field of a video signal. This flag cannot be used with the DDFLIP_ODD flag.

DDFLIP_INTERFVAL2

DDFLIP_INTERFVAL3

DDFLIP_INTERFVAL4

These flags indicate how many vertical retraces to wait between each flip. The default is 1. DirectDraw will return DERR_WASSTILLDRAWING for each surface involved in the flip until the specified number of vertical retraces has occurred. If DDFLIP_INTERVAL2 is set, DirectDraw will flip on every second vertical sync; if DDFLIP_INTERVAL3, on every third sync; and if DDFLIP_INTERVAL4, on every fourth sync.

These flags are effective only if DDCAPS2_FLIPINTERVAL is set in the DDCAPS structure returned for the device.

DDFLIP_ODD

For use only when displaying video in an overlay surface. The new surface contains data from the odd field of a video signal. This flag cannot be used with the DDFLIP_EVEN flag.

DDFLIP_WAIT

Typically, if the flip cannot be set up because the state of the display hardware is not appropriate, the DDERR_WASSTILLDRAWING error returns immediately and no flip occurs. Setting this flag causes the method to continue trying to flip if it receives the DDERR_WASSTILLDRAWING error from the HAL. The method does not return until the flipping operation has been successfully set up, or another error, such as DDERR_SURFACEBUSY, is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOFLIPHW ��DDERR_NOTFLIPPABLE ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method can be called only for a surface that has the DDSCAPS_FLIP and DDSCAPS_FRONTBUFFER capabilities. The display memory previously associated with the front buffer is associated with the back buffer.

The ddS argument is used in rare cases when the back buffer is not the buffer that should become the front buffer. Typically this argument is NOTHING.

The DirectDrawSurface4.Flip method will always be synchronized with the vertical blank. If the surface has been assigned to a video port, this method updates the visible overlay surface and the video port's target surface.

For more information, see Flipping Surfaces.

See Also

DirectDrawSurface4.GetFlipStatus

DirectDrawSurface4.GetAttachedSurface

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetAttachedSurface method obtains the attached surface that has the specified capabilities.

object.GetAttachedSurface(_

 caps As DDSCAPS2) As DirectDrawSurface4

object

Object expression that resolves to a DirectDrawSurface4 object.

caps

A DDSCAPS2 type that contains the hardware capabilities of the surface.

Return Values

If the method succeeds, a DirectDrawSurface4 object is returned. The retrieved surface is the one that matches the description according to the caps argument.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTFOUND ��DDERR_SURFACELOST ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

Attachments are used to connect multiple DirectDrawSurface objects into complex types, like the ones needed to support 3-D page flipping with z-buffers. This method fails if more than one surface is attached that matches the capabilities requested. In this case, the application must use the DirectDrawSurface4.GetAttachedSurfaceEnum method to obtain the attached surfaces.

The object returned by a successful function call must be assigned to a DirectDrawSurface4 object variable. For example, in Visual Basic:

Dim DDrawSurface as DirectDrawSurface4

Set DDrawSurface = object.GetAttachedSurface()

DirectDrawSurface4.GetAttachedSurfaceEnum

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetAttachedSurfaceEnum method returns a DirectDrawEnumSurfaces object that is filled with attached surfaces information .

object.GetAttachedSurfaceEnum() As DirectDrawEnumSurfaces

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, a DirectDrawEnumSurfaces enumeration interface is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The number of attached surfaces is obtained with a call to DirectDrawEnumSurfaces.GetCount and a description of the attached surface is obtained with a call to DirectDrawEnumSurfaces.GetItem

The object returned by a successful function call must be assigned to a DirectDrawEnumSurfaces object variable. For example, in Visual Basic:

Dim SurfaceEnum as DirectDrawEnumSurfaces

Set SurfaceEnum = object.GetAttachedSurfacesEnum()

DirectDrawSurface4.GetBltStatus

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetBltStatus method obtains the blitter status.

object.GetBltStatus(flags As CONST_DDGBSFLAGS) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

flags

One of the constants of the CONST_DDGBSFLAGS enumeration:

DDGBS_CANBLT

Inquires whether a blit involving this surface can occur immediately, and returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE

Inquires whether the blit is done, and returns DD_OK if the last blit on this surface has completed.

Return Values

If the method succeeds, depending on which constant is specified in the flags argument, zero is returned for FALSE and non-zero for TRUE.

Error Codes

If the method fails, the error code is DDERR_WASSTILLDRAWING if the surface has not finished its flipping process, or one of the following values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DD_OK��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetCaps

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetCaps method retrieves the capabilities of the surface. These capabilities are not necessarily related to the capabilities of the display device.

object.GetCaps(caps As DDSCAPS2)

object

Object expression that resolves to a DirectDrawSurface4 object.

caps

A DDSCAPS2 type that will be filled with the hardware capabilities of the surface.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetClipper

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetClipper method retrieves the DirectDrawClipper object associated with this surface.

object.GetClipper() As DirectDrawClipper

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, a DirectDrawClipper object associated with the surface is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCLIPPERATTACHED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawSurface4.SetClipper

Remarks

The object returned by a successful function call must be assigned to a DirectDrawClipper object variable. For example, in Visual Basic:

Dim Clipper as DirectDrawClipper

Set Clipper = object.GetClipper()

DirectDrawSurface4.GetColorKey

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetColorKey method retrieves the color key value for the DirectDrawSurface object.

object.GetColorKey(flags As Long, val As DDCOLORKEY)

object

Object expression that resolves to a DirectDrawSurface4 object.

flags

The color key requested.

DDCKEY_DESTBLT

Set if the type specifies a color key or color space to be used as a destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the type specifies a color key or color space to be used as a destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the type specifies a color key or color space to be used as a source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the type specifies a color key or color space to be used as a source color key for overlay operations.

val

A DDCOLORKEY type that will be filled with the current values for the specified color key of the DirectDrawSurface object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOCOLORKEY ��DDERR_NOCOLORKEYHW ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawSurface4.SetColorKey

DirectDrawSurface4.GetDC

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDC method creates a GDI-compatible handle of a device context for the surface.

object.GetDC() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, the handle to a device context is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_DCALREADYCREATED ��DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method uses an internal version of the DirectDrawSurface4.Lock method to lock the surface. The surface remains locked until the DirectDrawSurface4.ReleaseDC method is called.

See Also

DirectDrawSurface4.Lock

DirectDrawSurface4.GetDirectDraw

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDirectDraw method retrieves the DirectDraw object that was used to create the surface.

object.GetDirectDraw() As DirectDraw4

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, a DirectDraw4 object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The object returned by a successful function call must be assigned to a DirectDraw4 object variable. For example:

Dim DDrawObject as DirectDraw4

Set DDrawObject = object.GetDDInterface()

DirectDrawSurface4.GetDirectDrawColorControl

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDirectDrawColorControl method returns the DirectDrawColorControl object used with the surface.

object.GetDirectDrawColorControl() As DirectDrawColorControl

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, a DirectDrawColorControl object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetDirectDrawGammaControl

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDirectDrawGammaControl method returns the DirectDrawGammaControl object used with the surface.

object.GetDirectDrawGammaControl() As DirectDrawGammaControl

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, a DirectDrawGammaControl object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetDrawStyle

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDrawStyle returns the style set by DirectDrawSurface4.SetDrawStyle.

object.getDrawStyle() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

The style set by DirectDrawSurface4.SetDrawStyle.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw style is a solid line.

DirectDrawSurface4.GetDrawWidth

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDrawWidth returns the width set by DirectDrawSurface4.SetDrawWidth.

object.getDrawWidth() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

The width set by DirectDrawSurface4.SetDrawWidth.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default draw width is 1.

DirectDrawSurface4.GetFillColor

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFillColor returns the fill color set by DirectDrawSurface4.SetFillColor.

object.GetFillColor() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

The fill color value set by DirectDrawSurface4.SetFillColor.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default fill color is black.

DirectDrawSurface4.GetFillStyle

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFillStyle returns the fill style set by DirectDrawSurface4.SetFillStyle.

object.GetFillStyle() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

The the fill style set by DirectDrawSurface4.SetFillStyle.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The default fill style is transparent.

DirectDrawSurface4.GetFlipStatus

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFlipStatus method indicates whether the surface has finished its flipping process.

object.GetFlipStatus(flags As CONST_DDGFSFLAGS) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

flags

One of the following constants of the CONST_DDGFSFLAGS enumeration:

DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and returns DD_OK if the flip can be completed.

DDGFS_ISFLIPDONE

Inquires whether the flip has finished and returns DD_OK if the last flip on this surface has completed.

Return Values

If the method succeeds, depending on which constant is specified in the flags argument, zero is returned for FALSE and non-zero for TRUE.

Error Codes

The error code is DDERR_WASSTILLDRAWING if the surface has not finished its flipping process, or one of the following values:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DD_OK��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawSurface4.Flip

DirectDrawSurface4.GetFontTransparency

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFontTransparency returns the font transparency set by DirectDrawSurface4.SetFontTransparency.

object.GetFontTransparency() As Boolean

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

If the font is set to be transparent, non-zero is returned and zero if the font is not set to be transparent.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.GetForeColor

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetForeColor returns the fore color set by DirectDrawSurface4.SetForeColor.

object.GetForeColor() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

The fore color set by DirectDrawSurface4.SetForeColor.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.GetLockedPixel

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetLockedPixel method returns the specified pixel set by DirectDrawSurface4.SetLockedPixel.

object.GetLockedPixel(_

 x As Long, _

 y As Long) As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

x and y

The coordinates of the locked pixel.

Return Values

Returns the color of the locked pixel. This value is in the same format as the pixel format.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.GetLockedSurfaceBits

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetLockedSurfaceBits method fills an array with the locked surface. After manipulating the locked bits, a call to DirectDrawSurface4.SetLockedSurfaceBits will update the surface.

object.GetLockedSurfaceBits(memory As Any)

object

Object expression that resolves to a DirectDrawSurface4 object.

memory

An array filled with the locked surface bits. This array is comprised of the same data type as the pixel format of the locked surface.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The pixel format can be obtained with a call to DirectDrawSurface4.GetPixelFormat.

DirectDrawSurface4.GetOverlayZOrdersEnum

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetOverlayZOrdersEnum method returns a DirectDrawEnumSurfaces object that is filled with overlay data. The created DirectDrawEnumSurfaces object can then be called to enumerate the overlay surfaces on the specified destination. The overlays can be enumerated in front-to-back or back-to-front order..

object.GetOverlayZOrdersEnum(_

 flags As CONST_DDENUMOVERLAYZFLAGS) _

 As DirectDrawEnumSurfaces

object

Object expression that resolves to a DirectDrawSurface4 object.

flags

One of the following constants of the CONST_DDENUMOVERLAYZFLAGS enumeration:

DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.

DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.

Return Value

If the method succeeds, a DirectDrawEnumSurfaces is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The object returned by a successful function call must be assigned to a DirectDrawEnumSurfaces object variable. For example:

Dim SurfaceEnum as DirectDrawEnumSurfaces

Set SurfaceEnum = object.GetOverlayZOrdersEnum(flags)

DirectDrawSurface4.GetPalette

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetPalette method retrieves the DirectDrawPalette object associated with this surface.

object.GetPalette() As DirectDrawPalette

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, a DirectDrawPalette object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOPALETTEATTACHED ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawSurface4.SetPaletteRemarks

The object returned by a successful function call must be assigned to a DirectDrawEnumSurfaces object variable. For example:

Dim DDPalette as DirectDrawPalette

Set DDPalette = object.GetPalette()

DirectDrawSurface4.GetPixelFormat

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetPixelFormat method retrieves the color and pixel format of the surface.

object.GetPixelFormat(pf As DDPIXELFORMAT)

object

Object expression that resolves to a DirectDrawSurface4 object.

pf

A DDPIXELFORMAT type that will be filled with a detailed description of the current pixel and color space format of the surface.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetSurfaceDesc

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetSurfaceDesc method retrieves a description of the surface in its current condition.

object.GetSurfaceDesc(surface As DDSURFACEDESC2)

object

Object expression that resolves to a DirectDrawSurface4 object.

surface

A DDSURFACEDESC2 type that will be filled with the current description of this surface.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetTexture

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetTexture method returns a Direct3DTexture2 object.

object.GetTexture() As Direct3DTexture2

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

If the method succeeds, a Direct3DTexture2 object is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetUniquenessValue

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetUniquenessValue method retrieves the current uniqueness value for this surface.

object.GetUniquenessValue() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Values

If the method succeeds, the surface's current uniqueness value is returned.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT��DDERR_INVALIDPARAMS��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

The only defined uniqueness value is 0, to indicate that the surface is likely to be changing beyond DirectDraw's control. Other uniqueness values are only significant if they differ from a previously cached uniqueness value. If the current value is different than a cached value, then the contents of the surface have changed.

See Also

DirectDrawSurface4.ChangeUniquenessValue

DirectDrawSurface4.IsLost

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.IsLost method determines if the surface memory associated with a DirectDrawSurface object has been freed.

object.IsLost() As Long

object

Object expression that resolves to a DirectDrawSurface4 object.

Return Value

If the method succeeds, zero (FALSE) is returned indicating the surface has not been freed and nonzero if it has been freed.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

You can use this method to find out if you need reallocate surface memory by calling the DirectDrawSurface4.Restore method. When a DirectDrawSurface object loses its surface memory, most methods return DDERR_SURFACELOST and perform no other action.

Surfaces can lose their memory when the mode of the display card is changed, or when an application receives exclusive access to the display card and frees all of the surface memory currently allocated on the display card.

See Also

DirectDrawSurface4.Restore, Losing and Restoring Surfaces

DirectDrawSurface4.Lock

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Lock method obtains a pointer to the surface memory.

object.Lock(_

 r As RECT, _

 desc As DDSURFACEDESC2, _

 flags As CONST_DDLOCKFLAGS, _

 hnd As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

r

A RECT type that defines the upper-left and lower-right points of the rectangle that identifies the region of surface that is being locked. If NOTHING, the entire surface will be locked.

desc

A DDSURFACEDESC2 type that will be filled with the relevant details about the surface.

flags

One or more of the following constants of the CONST_DDLOCKFLAGS enumeration that describes the type of lock to be performed:

DDLOCK_EVENT

This flag is not currently implemented.

DDLOCK_NOSYSLOCK

If possible, do not take the Win16Mutex (also known as Win16Lock). This flag is ignored when locking the primary surface.

DDLOCK_READONLY

Indicates that the surface being locked will only be read.

DDLOCK_SURFACEMEMORYPTR

Indicates that a valid memory pointer to the top of the specified rectangle should be returned. If no rectangle is specified, a pointer to the top of the surface is returned. This is the default.

DDLOCK_WAIT

If a lock cannot be obtained because a blit operation is in progress, the method retries until a lock is obtained or another error occurs, such as DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY

Indicates that the surface being locked will be write enabled.

hnd

This parameter is not used and must be set to NOTHING.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_OUTOFMEMORY ��DDERR_SURFACEBUSY ��DDERR_SURFACELOST ��DDERR_WASSTILLDRAWING ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

For more information on using this method, see Accessing Surface Memory Directly.

After retrieving a surface memory pointer, you can access the surface memory until a corresponding DirectDrawSurface4.Unlock method is called. When the surface is unlocked, the pointer to the surface memory is invalid.

Do not call DirectDraw blit functions to blit from a locked region of a surface. If you do, the blit returns either DDERR_SURFACEBUSY or DDERR_LOCKEDSURFACES. Additionally, GDI blit functions will silently fail when used on a locked video memory surface.

This method often causes DirectDraw to hold the Win16Mutex (also known as Win16Lock) until you call the DirectDrawSurface4.Unlock method. GUI debuggers cannot operate while the Win16Mutex is held.

See Also

DirectDrawSurface4.Unlock, DirectDrawSurface4.GetDC, DirectDrawSurface4.ReleaseDC

DirectDrawSurface4.ReleaseDC

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.ReleaseDC method releases the handle of a device context previously obtained by using the DirectDrawSurface4.GetDC method.

object.ReleaseDC(hdc As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

hdc

The handle to a device context previously obtained by DirectDrawSurface4.GetDC.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method also unlocks the surface previously locked when the DirectDrawSurface4.GetDC method was called.

See Also

DirectDrawSurface4.GetDC

DirectDrawSurface4.Restore

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Restore method restores a surface that has been lost. This occurs when the surface memory associated with the DirectDrawSurface object has been freed.

object.Restore()

object

Object expression that resolves to a DirectDrawSurface4 object.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_IMPLICITLYCREATED ��DDERR_INCOMPATIBLEPRIMARY ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOEXCLUSIVEMODE ��DDERR_OUTOFMEMORY ��DDERR_UNSUPPORTED ��DDERR_WRONGMODE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

This method restores the memory allocated for a surface, but doesn't reload any bitmaps that may have existed in the surface before it was lost.

Surfaces can be lost because the mode of the display card was changed or because an application received exclusive access to the display card and freed all of the surface memory currently allocated on the card. When a DirectDrawSurface object loses its surface memory, many methods will return DDERR_SURFACELOST and perform no other function. The DirectDrawSurface4.Restore method will reallocate surface memory and reattach it to the DirectDrawSurface object.

A single call to this method will restore a DirectDrawSurface object's associated implicit surfaces (back buffers, and so on). An attempt to restore an implicitly created surface will result in an error. DirectDrawSurface4.Restore will not work across explicit attachments created by using the DirectDrawSurface4.AddAttachedSurface method—each of these surfaces must be restored individually.

See Also

DirectDrawSurface4.IsLost

DirectDrawSurface4.SetClipper

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetClipper method attaches a clipper object to or deletes one from a surface.

object.SetClipper(val As DirectDrawClipper)

object

Object expression that resolves to a DirectDrawSurface4 object.

val

A DirectDrawClipper object for the DirectDrawClipper object that will be attached to the DirectDrawSurface object. If this argument is NOTHING, the current DirectDrawClipper object will be detached.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_NOCLIPPERATTACHED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

If you pass NOTHING as the val argument, the clipper is removed from the surface

This method is primarily used by surfaces that are being overlaid on or blitted to the primary surface. However, it can be used on any surface. After a DirectDrawClipper object has been attached and a clip list is associated with it, the DirectDrawClipper object will be used for the DirectDrawSurface4.Blt, and DirectDrawSurface4.UpdateOverlay operations involving the parent DirectDrawSurface object. This method can also detach a DirectDrawSurface object's current DirectDrawClipper object.

See Also

DirectDrawSurface4.GetClipper

DirectDrawSurface4.SetColorKey

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetColorKey method sets the color key value for the DirectDrawSurface object if the hardware supports color keys on a per surface basis.

object.SetColorKey(_

 flags As CONST_DDCKEYFLAGS, _

 val As DDCOLORKEY)

object

Object expression that resolves to a DirectDrawSurface4 object.

flags

One of the following constants of the CONST_DDCKEYFLAGS enumeration specifying the type of color key requested.

DDCKEY_COLORSPACE

Set if the type contains a color space. Not set if the type contains a single color key.

DDCKEY_DESTBLT

Set if the type specifies a color key or color space to be used as a destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the type specifies a color key or color space to be used as a destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the type specifies a color key or color space to be used as a source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the type specifies a color key or color space to be used as a source color key for overlay operations.

val

A DDCOLORKEY type that contains the new color key values for the DirectDrawSurface object. This value can be NOTHING to remove a previously set color key.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDSURFACETYPE ��DDERR_NOOVERLAYHW ��DDERR_NOTAOVERLAYSURFACE ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_WASSTILLDRAWING ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

For transparent blits and overlays, you should set destination color on the destination surface and source color on the source surface.

See Also

DirectDrawSurface4.GetColorKey

DirectDrawSurface4.SetDrawStyle

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetDrawStyle sets the draw style.

object.SetDrawStyle(drawStyle As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

drawStyle

One of the following draw styles to be set.

Setting�Description����0�(Default) Solid��1�Dash��2�Dot��3�Dash-Dot��4�Dash-Dot-Dot��5�Transparent��6�Inside Solid��

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectDrawSurface4.GetDrawStyle

DirectDrawSurface4.SetDrawWidth

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetDrawWidth sets the width of the line used in drawing methods.

object.setDrawWidth(drawWidth As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

drawWidth

The width of the line used in drawing methods. The default value is 1. Any value between 1 and 32,767 is valid.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectDrawSurface4.GetDrawWidth

DirectDrawSurface4.SetFillColor

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFillColor specifies the fill color used in drawing methods.

object.SetFillColor(color As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

color

An RGB value to be used as the fill color in drawing methods. The default value is black (&H00000000).

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectDrawSurface4.GetFillColor

DirectDrawSurface4.SetFillStyle

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFillStyle specifies the fill style used in the drawing methods.

object.SetFillStyle(fillStyle As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

fillStyle

One of the following fill styles to be used in drawing methods.

Setting�Description����0�Solid��1�(Default) Transparent��2�Horizontal Line��3�Vertical Line��4�Upward Diagonal��5�Downward Diagonal��6�Cross��7�Diagonal Cross��

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectDrawSurface4.GetFillStyle

DirectDrawSurface4.SetFont

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFont specifies the font to be used in DirectDrawSurface4.DrawText.

object.SetFont(font As IFont)

object

Object expression that resolves to a DirectDrawSurface4 object.

font

The font as specified in the IFont class.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.SetFontTransparency

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFontTransparency specified whether the font to be used when the DirectDrawSurface4.DrawText is called is transparent.

object.SetFontTransparency(b As Boolean)

object

Object expression that resolves to a DirectDrawSurface4 object.

b

Set to D_TRUE if the font is transparent or D_FALSE if the font is not transparent.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.SetForeColor

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetForeColor method sets the foreground color used in drawing methods.

object.SetForeColor(color As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

color

An RGB value to set as the foreground color.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectDrawSurface4.GetForeColor

DirectDrawSurface4.SetLockedPixel

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetLockedPixel method sets a single pixel to the specified color and updates the locked surface.

object.SetLockedPixel(_

 x As Long, _

 y As Long, _

 col As Long)

object

Object expression that resolves to a DirectDrawSurface4 object.

x and y

The coordinates of the pixel to set.

col

An RGB value to for the set pixel.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

You must first lock the surface with a call to DirectDrawSurface4.Lock.

See Also

DirectDrawSurface4.GetLockedPixel

DirectDrawSurface4.SetLockedSurfaceBits

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetLockedSurfaceBits method updates the locked surface.

object.SetLockedSurfaceBits(memory As Any)

object

Object expression that resolves to a DirectDrawSurface4 object.

memory

An array filled with the manipulated surface bits. This must be the same array used in the method DirectDrawSurface4.GetLockedSurfaceBits.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To manipulate the locked surface, call DirectDrawSurface4.GetLockedSurfaceBits. You must first lock the surface with a call to DirectDrawSurface4.Lock.

DirectDrawSurface4.SetPalette

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetPalette method attaches a palette object to (or detaches one from) a surface. The surface uses this palette for all subsequent operations. The palette change takes place immediately, without regard to refresh timing.

object.SetPalette(ddp As DirectDrawPalette)

object

Object expression that resolves to a DirectDrawSurface4 object.

ddp

A DirectDrawPalette object for the palette object to be used with this surface. If this argument is NOTHING, the current palette will be detached.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDPIXELFORMAT��DDERR_INVALIDSURFACETYPE ��DDERR_NOEXCLUSIVEMODE ��DDERR_NOPALETTEATTACHED ��DDERR_NOPALETTEHW ��DDERR_NOT8BITCOLOR ��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

If you pass NOTHING as the ddp argument, the palette is removed from the surface.

See Also

DirectDrawSurface4.GetPalette, DirectDraw4.CreatePalette

DirectDrawSurface4.Unlock

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Unlock method notifies DirectDraw that the direct surface manipulations are complete.

object.Unlock(r As RECT)

object

Object expression that resolves to a DirectDrawSurface4 object.

r

A RECT type that is used to lock the surface in the corresponding call to the DirectDrawSurface4.Lock method. This argument can be NOTHING only if the entire surface was locked by passing NOTHING in the r argument of the corresponding call to the DirectDrawSurface4.Lock method.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_GENERIC ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_NOTLOCKED ��DDERR_SURFACELOST ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks

Because it is possible to call DirectDrawSurface4.Lock multiple times for the same surface with different destination rectangles, the r parameter links the calls to the DirectDrawSurface4.Lock and DirectDrawSurface4.Unlock methods.

See Also

DirectDrawSurface4.Lock

DirectDrawSurface4.UpdateOverlay

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.UpdateOverlay method repositions or modifies the visual attributes of an overlay surface. These surfaces must have the DDSCAPS_OVERLAY flag set in the DDSCAPS2 type when the surface is created.

object.UpdateOverlay(_

 RECT As RECT, _

 ddS As DirectDrawSurface4, _

 rectD As RECT, _

 flags As CONST_DDOVERFLAGS)

object

Object expression that resolves to a DirectDrawSurface4 object.

RECT

A variable of type RECT that defines the x, y, width, and height of the region on the source surface being used as the overlay. This argument can be NOTHING when hiding an overlay or to indicate that the entire overlay surface is to be used and that the overlay surface conforms to any boundary and size alignment restrictions imposed by the device driver.

ddS

A DirectDrawSurface4 object for the surface that is being overlaid.

rectD

A variable of type RECT that defines the x, y, width, and height of the region on the destination surface that the overlay should be moved to. This argument can be NOTHING when hiding the overlay.

flags

One or more of the following constants of the CONST_DDOVERFLAGS enumeration:

DDOVER_ADDDIRTYRECT

This flag is not used.

DDOVER_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface attached to the destination surface as the alpha channel for this overlay.

DDOVER_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the alpha value increases (0 is opaque).

DDOVER_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel surface attached to the source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG

Indicates that the source surface becomes more transparent as the alpha value increases (0 is opaque).

DDOVER_AUTOFLIP

Automatically flip to the next surface in the flip chain each time a video port VSYNC occurs.

DDOVER_BOB

Display each field individually of the interlaced video stream without causing any artifacts.

DDOVER_BOBHARDWARE

Indicates that bob operations will be performed using hardware rather than software or emulated. This flag must be used with the DDOVER_BOB flag.

DDOVER_HIDE

Turns off this overlay.

DDOVER_KEYDEST

Uses the color key associated with the destination surface.

DDOVER_KEYSRC

Uses the color key associated with the source surface.

DDOVER_OVERRIDEBOBWEAVE

Indicates that bob/weave decisions should not be overridden by other classes.

DDOVER_INTERLEAVED

Indicates that the surface memory is composed of interleaved fields.

DDOVER_SHOW

Turns on this overlay.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_DEVICEDOESNTOWNSURFACE��DDERR_GENERIC ��DDERR_HEIGHTALIGN ��DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_INVALIDRECT ��DDERR_INVALIDSURFACETYPE ��DDERR_NOSTRETCHHW ��DDERR_NOTAOVERLAYSURFACE ��DDERR_OUTOFCAPS��DDERR_SURFACELOST ��DDERR_UNSUPPORTED ��DDERR_XALIGN ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.UpdateOverlayZOrder

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.UpdateOverlayZOrder method sets the z-order of an overlay.

object.UpdateOverlayZOrder(_

 flags As CONST_DDOVERZFLAGS, _

 ddS As DirectDrawSurface4)

object

Object expression that resolves to a DirectDrawSurface4 object.

flags

One of the following constants of the CONST_DDOVERZFLAGS enumeration:

DDOVERZ_INSERTINBACKOF

Inserts this overlay in the overlay chain behind the reference overlay.

DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference overlay.

DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.

DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.

DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.

DDOVERZ_SENDTOFRONT

Moves this overlay to the front of the overlay chain.

ddS

A DirectDrawSurface4 object for the DirectDraw surface to be used as a relative position in the overlay chain. This argument is needed only for DDOVERZ_INSERTINBACKOF and DDOVERZ_INSERTINFRONTOF.

Error Codes

If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT ��DDERR_INVALIDPARAMS ��DDERR_NOTAOVERLAYSURFACE ��

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawSurface4.GetOverlayZOrdersEnum

DirectDraw Global Methods

[This is preliminary documentation and subject to change.]

The DirectX7 class is the main class of any DirectX for Visual Basic application. This class has methods that are used with all of the DirectX components. The methods pertaining to DirectDraw are:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectX7.DirectDrawCreate

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectX7.GetDDEnum

Types

[This is preliminary documentation and subject to change.]

This section contains information about the following types used with DirectDraw:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDBLTFX

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDCOLORCONTROL

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDCOLORKEY

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDGAMMARAMP

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDPIXELFORMAT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDSCAPS2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDSURFACEDESC2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DXDRIVERINFO

�SYMBOL 183 \f "Symbol" \s 11 \h �	PALETTEENTRY

�SYMBOL 183 \f "Symbol" \s 11 \h �	RECT

DDBLTFX

[This is preliminary documentation and subject to change.]

The DDBLTFX type passes raster operations, effects, and override information to the DirectDrawSurface4.Blt method.

Type DDBLTFX

 ddckDestColorKey_high As Long

 ddckDestColorKey_low As Long

 ddckSrcColorKey_high As Long

 ddckSrcColorKey_low As Long

 lAlphaDestConst As Long

 lAlphaDestConstBitDepth As Long

 lAlphaEdgeBlend As Long

 lAlphaEdgeBlendBitDepth As Long

 lAlphaSrcConst As Long

 lAlphaSrcConstBitDepth As Long

 lDDFX As CONST_DDBLTFXFLAGS

 lDDROP As Long

 lFill As Long

 lReserved As Long

 lROP As Long

 lRotationAngle As Long

 lZBufferBaseDest As Long

 lZBufferHigh As Long

 lZBufferLow As Long

 lZBufferOpCode As Long

 lZDestConst As Long

 lZDestConstBitDepth As Long

 lZSrcConst As Long

 lZSrcConstBitDepth As Long

End Type

ddckDestColorKey_high

High value, inclusive, of the color range that is to be used as the destination color key.

ddckDestColorKey_low

Low value, inclusive, of the color range that is to be used as the destination color key.

ddckSrcColorKey_high

High value, inclusive, of the color range that is to be used as the source color key.

ddckSrcColorKey_low

Low value, inclusive, of the color range that is to be used as the source color key.

lAlphaDestConst

Constant used as the alpha channel destination.

lAlphaDestConstBitDepth

Bit depth of the destination alpha constant.

lAlphaEdgeBlend

Alpha constant used for edge blending.

lAlphaEdgeBlendBitDepth

Bit depth of the constant for an alpha edge blend.

lAlphaSrcConst

Constant used as the alpha channel source.

lAlphaSrcConstBitDepth

Bit depth of the source alpha constant.

lDDFX

Type of FX operations. One of the following constants of the CONST_DDBLTFXFLAGS enumeration:

DDBLTFX_ARITHSTRETCHY

Uses arithmetic stretching along the y-axis for this blit.

DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to right.

DDBLTFX_MIRRORUPDOWN

Turns the surface on its x-axis. This blit mirrors the surface from top to bottom.

DDBLTFX_NOTEARING

Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180

Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270

Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90

Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST

Adds the lZBufferBaseDest member to each of the source z-values before comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE

Uses the lZBufferLow and lZBufferHigh members as range values to specify limits to the bits copied from a source surface during this z-blit.

lDDROP

DirectDraw raster operations.

lFill

Color used to fill a surface when DDBLT_COLORFILL is specified. This value must be a pixel appropriate to the pixel format of the destination surface. For a palettized surface it would be a palette index, and for a 16-bit RGB surface it would be a 16-bit pixel value.

lReserved

Reserved for future use.

lROP

Win32 raster operations. You can retrieve a list of supported raster operations by calling the DirectDraw4.GetCaps method.

lRotationAngle

Rotation angle for the blit.

lZBufferBaseDest

Destination base value of a z-buffer.

lZBufferHigh

High limit of a z-buffer.

lZBufferLow

Low limit of a z-buffer.

lZBufferOpCode

Z-buffer compares.

lZDestConst

Constant used as the z-buffer destination.

lZDestConstBitDepth

Bit depth of the destination z-constant.

lZSrcConst

Constant used as the z-buffer source.

lZSrcConstBitDepth

Bit depth of the source z-constant.

DDCAPS

[This is preliminary documentation and subject to change.]

The DDCAPS type represents the capabilities of the hardware exposed through the DirectDraw object. This type contains a DDSCAPS2 type used in this context to describe what kinds of DirectDrawSurface objects can be created. It may not be possible to simultaneously create all of the surfaces described by these capabilities. This type is used with the DirectDraw4.GetCaps method.

Type DDCAPS

 ddsCaps As DDSCAPS2

 lAlignBoundaryDest As Long

 lAlignBoundarySrc As Long

 lAlignSizeDest As Long

 lAlignSizeSrc As Long

 lAlignStrideAlign As Long

 lAlphaBltConstBitDepths As Long

 lAlphaBltPixelBitDepths As Long

 lAlphaBltSurfaceBitDepths As Long

 lAlphaOverlayConstBitDepths As Long

 lAlphaOverlayPixelBitDepths As Long

 lAlphaOverlaySurfaceBitDepths As Long

 lCaps As CONST_DDCAPS1FLAGS

 lCaps2 As CONST_DDCAPS2FLAGS

 lCKeyCaps As CONST_DDCKEYCAPSFLAGS

 lCurrVideoPorts As Long

 lCurrVisibleOverlays As Long

 lFXAlphaCaps As CONST_DDFXALPHACAPSFLAGS

 lFXCaps As CONST_DDFXCAPSFLAGS

 lMaxHwCodecStretch As Long

 lMaxLiveVideoStretch As Long

 lMaxOverlayStretch As Long

 lMaxVideoPorts As Long

 lMaxVisibleOverlays As Long

 lMinHwCodecStretch As Long

 lMinLiveVideoStretch As Long

 lMinOverlayStretch As Long

 lNLVBCaps As CONST_DDCAPS1FLAGS

 lNLVBCaps2 As CONST_DDCAPS2FLAGS

 lNLVBCKeyCaps As CONST_DDCKEYCAPSFLAGS

 lNLVBFXCaps As CONST_DDFXCAPSFLAGS

 lNLVBRops (0 To 7) As Long

 lNumFourCCCodes As Long

 lPalCaps As CONST_DDPCAPSFLAGS

 lReserved1 As Long

 lReserved2 As Long

 lReserved3 As Long

 lReservedCaps As Long

 lRops (0 To 7) As Long

 lSSBCaps As CONST_DDCAPS1FLAGS

 lSSBCKeyCaps As CONST_DDCKEYCAPSFLAGS

 lSSBFXCaps As CONST_DDFXCAPSFLAGS

 lSSBRops (0 To 7) As Long

 lSVBCaps As CONST_DDCAPS1FLAGS

 lSVBCaps2 As CONST_DDCAPS2FLAGS

 lSVBCKeyCaps As CONST_DDCKEYCAPSFLAGS

 lSVBFXCaps As CONST_DDFXCAPSFLAGS

 lSVBRops (0 To 7) As Long

 lSVCaps As CONST_DDSTEREOCAPSFLAGS

 lVidMemFree As Long

 lVidMemTotal As Long

 lVSBCaps As CONST_DDCAPS1FLAGS

 lVSBCKeyCaps As CONST_DDCKEYCAPSFLAGS

 lVSBFXCaps As CONST_DDFXCAPSFLAGS

 lVSRops (0 To 7) As Long

 lZBufferBitDepths As Long

End Type

ddsCaps

A DDSCAPS2 type used for further capability descriptions.

lAlignBoundaryDest

Destination rectangle alignment for an overlay surface, in pixels.

lAlignBoundarySrc

Source rectangle alignment for an overlay surface, in pixels.

lAlignSizeDest

Destination rectangle size alignment for an overlay surface, in pixels. Overlay destination rectangles must have a pixel width that is a multiple of this value.

lAlignSizeSrc

Source rectangle size alignment for an overlay surface, in pixels. Overlay source rectangles must have a pixel width that is a multiple of this value.

lAlignStrideAlign

Stride alignment.

lAlphaBltConstBitDepths

DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

lAlphaBltPixelBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

lAlphaBltSurfaceBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

lAlphaOverlayConstBitDepths

DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

lAlphaOverlayPixelBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

lAlphaOverlaySurfaceBitDepths

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per pixel.)

lCaps

Constants of the CONST_DDCAPS1FLAGS describing driver-specific capabilities.

DDCAPS_3D

Indicates that the display hardware has 3-D acceleration.

DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those overlay destination rectangles with the x-axis aligned to the lAlignBoundaryDest boundaries of the surface.

DDCAPS_ALIGNBOUNDARYSRC

Indicates that DirectDraw will support only those overlay source rectangles with the x-axis aligned to the lAlignBoundarySrc boundaries of the surface.

DDCAPS_ALIGNSIZEDEST

Indicates that DirectDraw will support only those overlay destination rectangles whose x-axis sizes, in pixels, are lAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC

Indicates that DirectDraw will support only those overlay source rectangles whose x-axis sizes, in pixels, are lAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE

Indicates that DirectDraw will create display memory surfaces that have a stride alignment equal to the lAlignStrideAlign value.

DDCAPS_ALPHA

Indicates that the display hardware supports alpha-only surfaces. (See alpha channel)

DDCAPS_BANKSWITCHED

Indicates that the display hardware is bank-switched and is potentially very slow at random access to display memory.

DDCAPS_BLT

Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL

Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL

Indicates that display hardware is capable of depth filling z-buffers with a blitter.

DDCAPS_BLTFOURCC

Indicates that display hardware is capable of color-space conversions during blit operations.

DDCAPS_BLTQUEUE

Indicates that display hardware is capable of asynchronous blit operations.

DDCAPS_BLTSTRETCH

Indicates that display hardware is capable of stretching during blit operations.

DDCAPS_CANBLTSYSMEM

Indicates that display hardware is capable of blitting to or from system memory.

DDCAPS_CANCLIP

Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED

Indicates that display hardware is capable of clipping while stretch blitting.

DDCAPS_COLORKEY

Supports some form of color key in either overlay or blit operations. More specific color key capability information can be found in the lCKeyCaps member.

DDCAPS_COLORKEYHWASSIST

Indicates that the color key is partially hardware assisted. This means that other resources (CPU or video memory) might be used. If this bit is not set, full hardware support is in place.

DDCAPS_GDI

Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE

Indicates that there is no hardware support.

DDCAPS_OVERLAY

Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP

Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC

Indicates that overlay hardware is capable of color-space conversions during overlay operations.

DDCAPS_OVERLAYSTRETCH

Indicates that overlay hardware is capable of stretching. The lMinOverlayStretch and lMaxOverlayStretch members contain valid data.

DDCAPS_PALETTE

Indicates that DirectDraw is capable of creating and supporting DirectDrawPalette objects for more surfaces than only the primary surface.

DDCAPS_PALETTEVSYNC

Indicates that DirectDraw is capable of updating a palette synchronized with the vertical refresh.

DDCAPS_READSCANLINE

Indicates that display hardware is capable of returning the current scan line.

DDCAPS_STEREOVIEW

Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI

Indicates that display hardware is capable of generating a vertical-blank interrupt.

DDCAPS_ZBLTS

Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS

Supports the use of the DirectDrawSurface4.UpdateOverlayZOrder method as a z-value for overlays to control their layering.

lCaps2

Constants of the CONST_DDCAPS2FLAGS enumeration describing more driver-specific capabilities.

DDCAPS2_AUTOFLIPOVERLAY

The overlay can be automatically flipped to the next surface in the flip chain each time a video port VSYNC occurs, allowing the video port and the overlay to double buffer the video without CPU overhead. This option is only valid when the surface is receiving data from a video port. If the video port data is non-interlaced or non-interleaved, it will flip on every VSYNC. If the data is being interleaved in memory, it will flip on every other VSYNC.

DDCAPS2_CANBOBHARDWARE

The overlay hardware can display each field of an interlaced video stream individually.

DDCAPS2_CANBOBINTERLEAVED

The overlay hardware can display each field individually of an interlaced video stream while it is interleaved in memory without causing any artifacts that might normally occur without special hardware support. This option is only valid when the surface is receiving data from a video port and is only valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANBOBNONINTERLEAVED

The overlay hardware can display each field individually of an interlaced video stream while it is not interleaved in memory without causing any artifacts that might normally occur without special hardware support. This option is only valid when the surface is receiving data from a video port and is only valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANCALIBRATEGAMMA

The system has a calibrator installed that can automatically adjust the gamma ramp so that the result will be identical on all systems that have a calibrator. To invoke the calibrator when setting new gamma levels, use the DDSGR_CALIBRATE flag when calling the DirectDrawGammaControl.SetGammaRamp method. Calibrating gamma ramps incurs some processing overhead, and should not be used frequently.

DDCAPS2_CANDROPZ16BIT

16-bit RGBZ values can be converted into sixteen-bit RGB values. (The system does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN

The driver is capable of performing odd and even flip operations, as specified by the DDFLIP_ODD and DDFLIP_EVEN flags used with the DirectDrawSurface4.Flip method.

DDCAPS2_CANRENDERWINDOWED

The driver is capable of rendering in windowed mode.

DDCAPS2_CERTIFIED

Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLPRIMARY

The primary surface contains color controls (for instance, gamma)

DDCAPS2_COLORCONTROLOVERLAY

The overlay surface contains color controls (such as brightness, sharpness)

DDCAPS2_COPYFOURCC

Indicates that the driver supports blitting any FOURCC surface to another surface of the same FOURCC.

DDCAPS2_NO2DDURING3DSCENE

Indicates that 2-D operations such as DirectDrawSurface4.Blt and DirectDrawSurface4.Lock cannot be performed on any surfaces that Direct3D® is using between calls to the Direct3DDevice3.BeginScene and Direct3DDevice3.EndScene methods.

DDCAPS2_NONLOCALVIDMEM

Indicates that the display driver supports surfaces in non-local video memory.

DDCAPS2_NONLOCALVIDMEMCAPS

Indicates that blit capabilities for non-local video memory surfaces differ from local video memory surfaces. If this flag is present, the DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED

DMA blit operations are supported on system memory surfaces that are not page locked.

DDCAPS2_PRIMARYGAMMA

Supports dynamic gamma ramps for the primary surface. For more information, see Gamma and Color Controls.

DDCAPS2_VIDEOPORT

Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES

Indicates that the display surfaces supports surfaces wider than the primary surface.

lCKeyCaps

Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing color-key capabilities.

DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE

Supports transparent blitting with a color space that identifies the replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV

Supports transparent blitting with a color space that identifies the replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV

Supports transparent blitting with a color key that identifies the replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY

Supports overlaying with color keying of the replaceable bits of the destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE

Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV

Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE

Supports only one active destination color key value for visible overlay surfaces .

DDCKEYCAPS_DESTOVERLAYYUV

Supports overlaying using color keying of the replaceable bits of the destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY

Indicates there are no BANDWIDTH trade-offs for using the color key with an overlay.

DDCKEYCAPS_SRCBLT

Supports transparent blitting using the color key for the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE

Supports transparent blitting using a color space for the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV

Supports transparent blitting using a color space for the source with this surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV

Supports transparent blitting using the color key for the source with this surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY

Supports overlaying using the color key for the source with this overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE

Supports overlaying using a color space as the source color key for the overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV

Supports overlaying using a color space as the source color key for the overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE

Supports only one active source color key value for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV

Supports overlaying using the color key for the source with this overlay surface for YUV colors.

lCurrVideoPorts

Current number of live video ports.

lCurrVisibleOverlays

Current number of visible overlays or overlay sprites.

lFXAlphaCaps

Constants of the CONST_DDFXALPHACAPSFLAGS enumeration decribing driver-specific alpha capabilities.

DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA is set. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha value increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be set only if DDCAPS_ALPHA has been set. Used for blit operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha information in pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha information in pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha value increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

lFXCaps

Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver-specific stretching and effects capabilities.

DDFXCAPS_BLTALPHA

Supports alpha-blended blit operations.

DDFXCAPS_BLTARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink surfaces during a blit operation. Occurs along the y-axis (vertically).

DDFXCAPS_BLTARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink surfaces during a blit operation. Occurs along the y-axis (vertically), and works only for integer stretching (´1, ´2, and so on).

DDFXCAPS_BLTFILTER

Driver can do surface-reconstruction filtering for warped blits.

DDFXCAPS_BLTMIRRORLEFTRIGHT

Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN

Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION

Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90

Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN

Supports integer shrinking (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN

Supports integer shrinking (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN

Supports integer stretching (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN

Supports integer stretching (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTTRANSFORM

Supports geometric transformations (or warps) for blitted sprites. Transformations are not currently supported for explicit blit operations.

DDFXCAPS_OVERLAYALPHA

Supports alpha blending for overlay surfaces.

DDFXCAPS_OVERLAYFILTER

Supports surface-reconstruction filtering for warped overlay sprites. Filtering is not currently supported for explicitly displayed overlay surfaces (those displayed with calls to DirectDrawSurface4.UpdateOverlay).

DDFXCAPS_OVERLAYMIRRORUPDOWN

Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN

Supports integer shrinking (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKYN

Supports integer shrinking (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN

Supports integer stretching (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN

Supports integer stretching (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYTRANSFORM

Supports geometric transformations (or warps) for overlay sprites. Transformations are not currently supported for explicitly displayed overlay surfaces (those displayed with calls to DirectDrawSurface4.UpdateOverlay).

lMinHwCodecStretch and lMaxHwCodecStretch

These members are obsolete; do not use.

lMinLiveVideoStretch and lMaxLiveVideoStretch

These members are obsolete; do not use.

lMinOverlayStretch and lMaxOverlayStretch

Minimum and maximum overlay stretch factors multiplied by 1000. For example, 1.3 = 1300.

lMaxVideoPorts

Maximum number of live video ports.

lMaxVisibleOverlays

Maximum number of visible overlays or overlay sprites.

lNLVBCaps

Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with the lCaps member.

lNLVBCaps2

Constants of the CONST_DDCAPS2FLAGS enumeration describing more driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with the lCaps2 member.

lNLVBCKeyCaps

Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing driver color-key capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with for the lCKeyCaps member.

lNLVBFXCaps

Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver FX capabilities for nonlocal-to-local video memory blits. Valid flags are identical to the blit-related flags used with the lFXCaps member.

lNLVBRops[0 to 7]

Raster operations supported for nonlocal-to-local video memory blits.

lNumFourCCCodes

Number of FourCC codes.

lPalCaps

Constants of the CONST_DDPCAPSFLAGS enumeration describing palette capabilities.

DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.

DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.

DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.

DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.

DDPCAPS_8BITENTRIES

Specifies an index to an 8-bit color index. This field is valid only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT capability and when the target surface is in 8 bits per pixel (bpp). Each color entry is 1 byte long and is an index to an 8-bpp palette on the destination surface.

DDPCAPS_ALLOW256

Indicates that this palette can have all 256 entries defined.

DDPCAPS_PRIMARYSURFACE

Indicates that the palette is attached to the primary surface. Changing the palette has an immediate effect on the display unless the DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT

Indicates that the palette is attached to the primary surface on the left. Changing the palette has an immediate effect on the display unless the DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_VSYNC

Indicates that the palette can be modified synchronously with the monitor's refresh rate.

lReserved1, lReserved2, lReserved3, and IReservedCaps

Reserved for future use.

lRops[0 To 7]

Raster operations supported.

lSSBCaps

Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-specific capabilities for system-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the lCaps member.

lSSBCKeyCaps

Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing driver color-key capabilities for system-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with for the lCKeyCaps member.

lSSBCFXCaps

Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver FX capabilities for system-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the lFXCaps member.

lSSBRops[0 To 7]

Raster operations supported for system-memory-to-system-memory blits.

lSVBCaps

Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-specific capabilities for system-memory-to-display-memory blits. Valid flags are identical to the blit-related flags used with the lCaps member.

lSVBCaps2

Constants of the CONST_DDCAPS2FLAGS enumeration describing more driver-specific capabilities for system-memory-to-video-memory blits. Valid flags are identical to the blit-related flags used with the lCaps2 member.

lSVBCKeyCaps

Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing driver color-key capabilities for system-memory-to-display-memory blits. Valid flags are identical to the blit-related flags used with for the lCKeyCaps member.

lSVBFXCaps

Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver FX capabilities for system-memory-to-display-memory blits. Valid flags are identical to the blit-related flags used with the lFXCaps member.

lSVBRops[0 To 7]

Raster operations supported for system-memory-to-display-memory blits.

lSVCaps

Constants of the CONST_DDSTEREOCAPSFLAGS enumeration describing stereo vision capabilities.

DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.

DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency flickering.

DDSVCAPS_REDBLUE

Indicates that the stereo view is accomplished when the viewer looks at the image through red and blue filters placed over the left and right eyes. All images must adapt their color spaces for this process.

DDSVCAPS_SPLIT

Indicates that the stereo view is accomplished with split-screen technology.

lVidMemFree

Amount of free display memory.

lVidMemTotal

Total amount of display memory.

IVSBCaps

Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-specific capabilities for display-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the lCaps member.

lVSBCKeyCaps

Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing driver color-key capabilities for display-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with for the lCKeyCaps member.

lVSBFXCaps

Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver FX capabilities for display-memory-to-system-memory blits. Valid flags are identical to the blit-related flags used with the lFXCaps member.

lVSBRops[0 To 7]

Raster operations supported for display-memory-to-system-memory blits.

lZBufferBitDepths

DDBD_8, DDBD_16, or DDBD_24. (Indicates 8-, 16-, 24-bits per pixel.) 32-bit z-buffers are not supported.

DDCOLORCONTROL

[This is preliminary documentation and subject to change.]

The DDCOLORCONTROL type defines the color controls associated with a DirectDrawVideoPortObject, an overlay surface, or a primary surface.

Type DDCOLORCONTROL

 lBrightness As Long

 lColorEnable As Long

 lContrast As Long

 lFlags As CONST_DDCOLORFLAGS

 lGamma As Long

 lHue As Long

 lReserved1 As Long

 lSaturation As Long

 lSharpness As Long

End Type

lBrightness

Luminance intensity, in IRE units times 100. The valid range is 0 to 10,000. The default is 750, which translates to 7.5 IRE.

lColorEnable

Flag indicating whether color is used. If this member is zero, color is not used; if it is 1, then color is used. The default value is 1.

lContrast

Relative difference between higher and lower intensity luminance values in IRE units times 100. The valid range is 0 to 20,000. The default value is 10,000 (100 IRE). Higher values of contrast cause darker luminance values to tend towards black, and cause lighter luminance values to tend towards white. Lower values of contrast cause all luminance values to move towards the middle luminance values.

lFlags

Constants of the CONST_DDCOLORFLAGS enumeration specifying which type members contain valid data . When the type is returned by the DirectDrawColorControl.GetColorControls method, it also indicates which options are supported by the device.

DDCOLOR_BRIGHTNESS

The lBrightness member contains valid data.

DDCOLOR_COLORENABLE

The lColorEnable member contains valid data.

DDCOLOR_CONTRAST

The lContrast member contains valid data.

DDCOLOR_GAMMA

The lGamma member contains valid data.

DDCOLOR_HUE

The lHue member contains valid data.

DDCOLOR_SATURATION

The lSaturation member contains valid data.

DDCOLOR_SHARPNESS

The lSharpness member contains valid data.

lGamma

Controls the amount of gamma correction applied to the luminance values. The valid range is 1 to 500 gamma units, with a default of 1.

lHue

Phase relationship of the chrominance components. Hue is specified in degrees and the valid range is -180 to 180. The default is 0.

lReserved1

This member is reserved.

lSaturation

Color intensity, in IRE units times 100. The valid range is 0 to 20,000. The default value is 10,000, which translates to 100 IRE.

lSharpness

Sharpness in arbitrary units. The valid range is 0 to 10. The default value is 5.

DDCOLORKEY

[This is preliminary documentation and subject to change.]

The DDCOLORKEY type describes a source color key, destination color key, or color space. A color key is specified if the low and high range values are the same. This type is used with the DirectDrawSurface4.GetColorKey and DirectDrawSurface4.SetColorKey methods.

Type COLORKEY

 high As Long

 low As Long

End Type

high

High value, inclusive, of the color range that is to be used as the color key.

low

Low value, inclusive, of the color range that is to be used as the color key.

DDGAMMARAMP

[This is preliminary documentation and subject to change.]

The DDGAMMARAMP type contains red, green, and blue ramp data for the DirectDrawGammaControl.GetGammaRamp and DirectDrawGammaControl.SetGammaRamp methods.

Type DDGAMMARAMP

 blue(0 To 255) As Integer

 green(0 To 255) As Integer

 red(0 To 255) As Integer

End Type

red, green, and blue

Describes the red, green, and blue gamma ramps.

See Also

Gamma and Color Controls

DDPIXELFORMAT

[This is preliminary documentation and subject to change.]

The DDPIXELFORMAT type describes the pixel format of a DirectDrawSurface object for the DirectDrawSurface4.GetPixelFormat method.

Type DDPIXELFORMAT

 lAlphaBitDepth As Long

 lBBitMask As Long

 lBumpDuBitMask As Long

 lBumpDvBitMask As Long

 lBumpLuminanceBitMask As Long

 lFlags As CONST_DDPIXELFORMATFLAGS

 lFourCC As Long

 lGBitMask As Long

 lLuminanceAlphaBitMask As Long

 lLuminanceBitCount As Long

 lLuminanceBitMask As Long

 lRBitMask As Long

 lRGBAlphaBitMask As Long

 lRGBBitCount As Long

 lRGBZBitMask As Long

 lStencilBitDepth As Long

 lStencilBitMask As Long

 lUBitMask As Long

 lVBitMask As Long

 lYBitMask As Long

 lYUVAlphaBitMask As Long

 lYUVBitCount As Long

 lYUVZBitMask As Long

 lZBufferBitDepth As Long

End Type

lAlphaBitDepth

Alpha channel bit depth (1, 2, 4, or 8) for an alpha-only surface (DDPF_ALPHA). For pixel formats that contain alpha information interleaved with color data (DDPF_ALPHAPIXELS), you must count the bits in the lRGBAlphaBitMask member to obtain the bit-depth of the alpha component.

lBBitMask

Mask for blue bits.

lBumpBitCount

Total bump-map bits per pixel in a bump-map surface.

lBumpDuBitMask

Mask for bump-map U(bits.

lBumpDvBitMask

Mask for bump-map V(bits.

lBumpLuminanceBitMask

Mask for luminance in a bump-map pixel.

lFlags

Constants of the CONST_DDPIXELFORMATFLAGS enumeration describing optional control flags.

DDPF_ALPHA

The pixel format describes an alpha-only surface.

DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.

DDPF_ALPHAPREMULT

The surface uses the premultiplied alpha format. That is, the color components in each pixel are premultiplied by the alpha component.

DDPF_BUMPLUMINANCE

The luminance data in the pixel format is valid, and the lLuminanceBitMask member descibes valid luminance bits for a luminance-only or luminance-alpha surface.

DDPF_BUMPDUDV

Bump-map data in the pixel format is valid. Bump-map information is in the lBumpBitCount, lBumpDuBitMask, lBumpDvBitMask, and lBumpLuminanceBitMask members.

DDPF_COMPRESSED

The surface will accept pixel data in the specified format and compress it during the write operation.

DDPF_FOURCC

The lFourCC member is valid and contains a FOURCC code describing a non-RGB pixel format.

DDPF_LUMINANCE

The pixel format describes a luminance-only or luminance-alpha surface.

DDPF_PALETTEINDEXED1

DDPF_PALETTEINDEXED2

DDPF_PALETTEINDEXED4

DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.

DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.

DDPF_RGB

The RGB data in the pixel format type is valid.

DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write operation to YUV data. The format of the data to be written will be contained in the pixel format type. The DDPF_RGB flag will be set.

DDPF_STENCILBUFFER

The surface encodes stencil and depth information in each pixel of the z-buffer.

DDPF_YUV

The YUV data in the pixel format type is valid.

DDPF_ZBUFFER

The pixel format describes a z-buffer-only surface.

DDPF_ZPIXELS

The surface contains z information in the pixels.

lFourCC

FourCC code. For more information see, Four Character Codes (FOURCC).

lGBitMask

Mask for green bits.

lRGBAlphaBitMask and lYUVAlphaBitMask and lLuminanceAlphaBitMask

Masks for alpha channel.

lLuminanceBitCount

Total luminance bits per pixel. This member applies only to luminance-only and luminance-alpha surfaces.

lLuminanceBitMask

Mask for luminance bits.

lRBitMask

Mask for red bits.

lRGBAlphaBitMask and lYUVAlphaBitMask

Masks for alpha channel.

lRGBBitCount

RGB bits per pixel (4, 8, 16, 24, or 32).

lRGBZBitMask and lYUVZBitMask

Masks for z channel.

lStencilBitDepth

Bit depth of the stencil buffer. This member specifies how many bits are reserved within each pixel of the z-buffer for stencil information (the total number of z-bits is equal to lZBufferBitDepth minus lStencilBitDepth).

lStencilBitMask

Mask for stencil bits within each z-buffer pixel.

lUBitMask

Mask for U bits.

lVBitMask

Mask for V bits.

lYBitMask

Mask for Y bits.

lYUVBitCount

YUV bits per pixel (4, 8, 16, 24, or 32).

lZBitMask

Mask for z bits.

lZBufferBitDepth

Z-buffer bit depth (8, 16, or 24). 32-bit z-buffers are not supported.

DDSCAPS2

[This is preliminary documentation and subject to change.]

The DDSCAPS2 type defines the capabilities of a DirectDrawSurface object. This type is part of the DDSURFACEDESC2 type.

Type DDSCAPS2

 lCaps As CONST_DDSURFACECAPSFLAGS // Surface capabilities

 lCaps2 As CONST_DDSURFACECAPS2FLAGS // More surface Capabilities

 lCaps3 As Long // Not currently used

 lCaps4 As Long // Not currently used

End Type

lCaps

One or more constants of the CONST_DDSURFACECAPSFLAGS enumeration representing the capabilities of the surface.

DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can use this flag to ensure that a device that can only render to a certain heap has off-screen surfaces allocated from the correct heap. If this flag is set for a heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD

Not used, ignored by DirectDraw and Direct3D.

DDSCAPS_ALPHA

Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER

Indicates that this surface is the back buffer of a surface flipping type. Typically, this capability is set by the CreateSurface method when the DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the DDSCAPS_FRONTBUFFER surface has this capability set. The other surfaces are identified as back buffers by the presence of the DDSCAPS_FLIP flag, their attachment order, and the absence of the DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If this capability is sent to the CreateSurface method, a stand-alone back buffer is being created. After this method is called, this surface could be attached to a front buffer, another back buffer, or both to form a flipping surface type. For more information, see DirectDrawSurface4.AddAttachedSurface. DirectDraw supports an arbitrary number of surfaces in a flipping type.

DDSCAPS_COMPLEX

Indicates that a complex surface is being described. A complex surface results in the creation of more than one surface. The additional surfaces are attached to the root surface. The complex type can be destroyed only by destroying the root.

DDSCAPS_FLIP

Indicates that this surface is a part of a surface flipping type. When this capability is passed to the CreateSurface method, a front buffer and one or more back buffers are created. DirectDraw sets the DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer surface. The lBackBufferCount member of the DDSURFACEDESC2 type must be set to at least 1 in order for the method call to succeed. The DDSCAPS_COMPLEX capability must always be set when creating multiple surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER

Indicates that this surface is the front buffer of a surface flipping type. This flag is typically set by the CreateSurface method when the DDSCAPS_FLIP capability is set. If this capability is sent to the CreateSurface method, a stand-alone front buffer is created. This surface will not have the DDSCAPS_FLIP capability. It can be attached to other back buffers to form a flipping type by using DirectDrawSurface4.AddAttachedSurface.

DDSCAPS_HWCODEC

Indicates that this surface should be able to have a stream decompressed to it by the hardware.

DDSCAPS_LIVEVIDEO

Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM

Indicates that this surface exists in true, local video memory rather than non-local video memory. If this flag is specified then DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP

Indicates that this surface is one level of a mipmap. This surface will be attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This can be done explicitly by creating a number of surfaces and attaching them by using the DirectDrawSurface4.AddAttachedSurface method, or implicitly by the CreateSurface method. If this capability is set, DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX

Indicates that this surface is a 320´200 or 320´240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM

Indicates that this surface exists in non-local video memory rather than true, local video memory. If this flag is specified, then DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN

Indicates that this surface is any off-screen surface that is not an overlay, texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to identify plain surfaces.

DDSCAPS_OPTIMIZED

Not currently implemented.

DDSCAPS_OVERLAY

Indicates that this surface is an overlay. It may or may not be directly visible depending on whether it is currently being overlaid onto the primary surface. DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the moment.

DDSCAPS_OWNDC

Indicates that this surface will have a device context (DC) association for a long period.

DDSCAPS_PALETTE

Indicates that this device driver allows unique DirectDrawPalette objects to be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE

Indicates the surface is the primary surface. It represents what is visible to the user at the moment.

DDSCAPS_PRIMARYSURFACELEFT

Indicates that this surface is the primary surface for the left eye. It represents what is visible to the user's left eye at the moment. When this surface is created, the surface with the DDSCAPS_PRIMARYSURFACE capability represents what is seen by the user's right eye.

DDSCAPS_RESERVED2

Reserved for future use.

DDSCAPS_STANDARDVGAMODE

Indicates that this surface is a standard VGA mode surface, and not a Mode X surface. This flag cannot be used in combination with the DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY

Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE

Indicates that this surface can be used as a 3-D texture. It does not indicate whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY

Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT

Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE

Indicates that changes made to this surface are immediately visible. It is always set for the primary surface, as well as for overlays while they are being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY

Indicates that only write access is permitted to the surface. Read access from the surface may generate a general protection (GP) fault, but the read results from this surface will not be meaningful.

DDSCAPS_ZBUFFER

Indicates that this surface is the z-buffer. The z-buffer contains information that cannot be displayed. Instead, it contains bit-depth information that is used to determine which pixels are visible and which are obscured.

lCaps2

Additional surface capabilities. This member can contain one or more of the following capability constants of the CONST_DDSURFACECAPS2FLAGS enumeration and can contain an additional flag to indicate how the surface memory was allocated:

Capability flags

DDSCAPS2_HARDWAREDEINTERLACE

Indicates that this surface will receive data from a video port using the de-interlacing hardware. This allows the driver to allocate memory for any extra buffers that may be required. The DDSCAPS_VIDEOPORT and DDSCAPS_OVERLAY flags must also be set.

DDSCAPS2_HINTDYNAMIC

Indicates to the driver that this surface will be locked very frequently (for procedural textures, dynamic lightmaps, etc). This flag can only be used for texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag cannot be used with the DDSCAPS2_HINTSTATIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_HINTSTATIC

Indicates to the driver that this surface can be reordered or retiled on load. This operation will not change the size of the texture. It is relatively fast and symmetrical, since the application may lock these bits (although it will take a performance hit when doing so). This flag can only be used for texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_OPAQUE

Indicates to the driver that this surface will never be locked again. The driver is free to optimize this surface by retiling and actual compression. Such a surface cannot be locked or used in blit operations, attempts to lock or blit a surface with this capability will fail. This flag can only be used for texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or DDSCAPS2_HINTSTATIC flags.

DDSCAPS2_TEXTUREMANAGE

Indicates that the client would like this texture surface to be managed by DirectDraw and Direct3D. This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag set in the lCaps member).

lCaps3 and lCaps4

Not currently used.

DDSURFACEDESC2

[This is preliminary documentation and subject to change.]

The DDSURFACEDESC2 type contains a description of a surface. This type is passed to the DirectDraw4.CreateSurface method. The relevant members differ for each potential type of surface.

Type DDSURFACEDESC2

 ddckCKDestBlt As DDCOLORKEY

 ddckCKDestOverlay As DDCOLORKEY

 ddckCKSrcBlt As DDCOLORKEY

 ddckCKSrcOverlay As DDCOLORKEY

 ddpfPixelFormat As DDPIXELFORMAT

 ddsCaps As DDSCAPS2

 lAlphaBitDepth As Long

 lBackBufferCount As Long

 lFlags As CONST_DDSURFACEDESCFLAGS

 lHeight As Long

 lLinearSize As Long

 lMipMapCount As Long

 lPitch As Long

 lRefreshRate As Long

 lTextureStage As Long

 lWidth As Long

 lZBufferBitDepth As Long

End Type

ddckCKDestBlt

DDCOLORKEY type that describes the destination color key for blit operations.

ddckCKDestOverlay

DDCOLORKEY type that describes the destination color key to be used for an overlay surface.

ddckCKSrcBlt

DDCOLORKEY type that describes the source color key for blit operations.

ddckCKSrcOverlay

DDCOLORKEY type that describes the source color key to be used for an overlay surface.

ddpfPixelFormat

DDPIXELFORMAT type that describes the surface's pixel format.

ddsCaps

DDSCAPS2 type containing the surface's capabilities.

lAlphaBitDepth

Depth of alpha buffer.

lBackBufferCount

Number of back buffers.

lFlags

Optional control flags. One or more of the following constants of the CONST_DDSURFACEDESCFLAGS enumeration:

DDSD_ALL

Indicates that all input members are valid.

DDSD_ALPHABITDEPTH

Indicates that the lAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT

Indicates that the lBackBufferCount member is valid.

DDSD_CAPS

Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT

Indicates that the lHeight member is valid.

DDSD_LINEARSIZE

Not used.

DDSD_LPSURFACE

Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT

Indicates that the lMipMapCount member is valid.

DDSD_PITCH

Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE

Indicates that the lRefreshRate member is valid.

DDSD_TEXTURESTAGE

Indicates that the lTextureStage member is valid.

DDSD_WIDTH

Indicates that the lWidth member is valid.

DDSD_ZBUFFERBITDEPTH

Indicates that the lZBufferBitDepth member is valid.

lHeight and lWidth

Dimensions of the surface to be created, in pixels.

lLinearSize

Not currently used.

lMipMapCount

Number of mipmap levels.

lPitch

Distance, in bytes, to the start of next line. When used with the DirectDrawSurface4.GetSurfaceDesc method, this is a return value. When creating a surface from existing memory this is an input value that must be a multiple.

lRefreshRate

Refresh rate (used when the display mode is described). The value of 0 indicates an adapter fault.

lTextureStage

Stage identifier used to bind a texture to a specific stage in 3-D device's multitexture cascade. Although not required for all hardware, setting this member is recommended for best performance on the largest variety of 3-D accelerators. Hardware that requires explicitly assigned textures will expose the D3DDEVCAPS_SEPARATETEXTUREMEMORIES 3-D device capability in the D3DDEVICEDESC structure that is filled by the Direct3DDevice3.GetCaps method.

lZBufferBitDepth

Depth of z-buffer. 32-bit z-buffers are not supported.

Remarks

The lPitch member is an output values when calling the DirectDrawSurface4.GetSurfaceDesc method. When creating surfaces from existing memory, or updating surface characteristics, these members are input values that describe the pitch and location of memory allocated by the calling application for use by DirectDraw. DirectDraw does not attempt to manage or free memory allocated by the application. For more information, see Creating Client Memory Surfaces and Updating Surface Characteristics.

DXDRIVERINFO

[This is preliminary documentation and subject to change.]

The DXDRIVERINFO type is used in the enumeration methods for DirectDraw, DirectSound and Direct3D to hold driver information.

Type DXDRIVERINFO

 strDescription As String

 strGuid As String

 strName As String

End Type

strDescription

The textual description of the DirectDraw device.

strGuid

The GUID that identifies the DirectDraw driver being enumerated.

strName

The name of the DirectDraw driver corresponding to this device.

Remarks

This type is also used in DirectSound and Direct3D.

PALETTEENTRY

[This is preliminary documentation and subject to change.]

The PALETTEENTRY type specifies the color and usage of an entry in a logical color palette.

Type PALETTEENTRY

 blue As Byte

 flags As Byte

 green As Byte

 red As Byte

End Type

blue

Specifies a blue intensity value for the palette entry.

flags

Specifies how the palette entry is to be used. The peFlags member may be set to NOTHING or one of the following values:

Value�Meaning����PC_EXPLICIT�Specifies that the low-order word of the logical palette entry designates a hardware palette index. This flag allows the application to show the contents of the display device palette.��PC_NOCOLLAPSE�Specifies that the color be placed in an unused entry in the system palette instead of being matched to an existing color in the system palette. If there are no unused entries in the system palette, the color is matched normally. Once this color is in the system palette, colors in other logical palettes can be matched to this color.��PC_RESERVED�Specifies that the logical palette entry be used for palette animation. This flag prevents other windows from matching colors to the palette entry since the color frequently changes. If an unused system-palette entry is available, the color is placed in that entry. Otherwise, the color is not available for animation.��

green

Specifies a green intensity value for the palette entry.

red

Specifies a red intensity value for the palette entry.

RECT

[This is preliminary documentation and subject to change.]

The RECT type defines the coordinates of the upper-left and lower-right corners of a rectangle.

Type RECT

 Bottom As Long

 Left As Long

 Right As Long

 Top As Long

End Type

Bottom

Specifies the y-coordinate of the lower-right corner of the rectangle.

Left

Specifies the x-coordinate of the upper-left corner of the rectangle.

Right

Specifies the x-coordinate of the lower-right corner of the rectangle.

Top

Specifies the y-coordinate of the upper-left corner of the rectangle.

Enumerations

[This is preliminary documentation and subject to change.]

DirectDraw uses enumerations to group constants and to take advantage of the statement completion feature of Visual Basic. The enumerations used in DirectSound are:

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDBITDEPTHFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDBLTFASTFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDBLTFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDBLTFXFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDCAPS1FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDCAPS2FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDCKEYCAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDCKEYFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDCOLORFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDEDMFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDENUMOVERLAYZFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDENUMSURFACESFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDFLIPFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDFXALPHACAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDFXCAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDGBSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDGFSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDLOCKFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDOVERFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDOVERLAYFXFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDOVERZFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDPCAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDPIXELFORMATFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDRAW

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSCLFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSDMFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSGRFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSTEREOCAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSURFACECAPS2FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSURFACECAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDSURFACEDESCFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DDWAITVBFLAGS

CONST_DDBITDEPTHFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDBITDEPTHFLAGS enumeration is used to specify the bit depth.

Enum CONST_DDBITDEPTHFLAGS

 DDBD_1 = 16384

 DDBD_16 = 1024

 DDBD_2 = 8192

 DDBD_24 = 512

 DDBD_32 = 256

 DDBD_4 = 4096

 DDBD_8 = 2048

End Enum

DDBD_1 to 32

The bits per pixel.

CONST_DDBLTFASTFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDBLTFASTFLAGS enumeration is used in the trans parameter of the DirectDrawSurface4.BltFast method to determine the type of transfer.

Enum CONST_DDBLTFASTFLAGS

 DDBLTFAST_DESTCOLORKEY = 2

 DDBLTFAST_NOCOLORKEY = 0

 DDBLTFAST_SRCCOLORKEY = 1

 DDBLTFAST_WAIT = 16

End Enum

DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY

Specifies a normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY

Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT

Postpones the DDERR_WASSTILLDRAWING message if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

CONST_DDBLTFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDBLTFLAGS enumeration is used in the flags parameter of the DirectDrawSurface4.Blt and DirectDrawSurface4.BltFx methods to determine the valid members of the associated DDBLTFX type. The DDBLTFX type specifies color key information or request special behavior from the methods.

Enum CONST_DDBLTFLAGS

 DDBLT_ASYNC = 512

 DDBLT_COLORFILL = 1024

 DDBLT_DDFX = 2048

 DDBLT_DDROPS = 4096

 DDBLT_KEYDEST = 8192

 DDBLT_KEYDESTOVERRIDE = 16384

 DDBLT_KEYSRC = 32768

 DDBLT_KEYSRCOVERRIDE = 65536

 DDBLT_ROP = 131072

 DDBLT_ROTATIONANGLE = 262144

 DDBLT_WAIT = 16777216

End Enum

Validation flags

DDBLT_COLORFILL

Uses the lFill member of the DDBLTFX structure as the RGB color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the lDDFX member of the DDBLTFX structure to specify the effects to use for this blit.

DDBLT_DDROPS

Uses the lROP member of the DDBLTFX structure to specify the raster operations (ROPS) that are not part of the Win32 API.

DDBLT_KEYDESTOVERRIDE

Uses the ddckDestColorKey_high and ddckDestColorKey_low members of the DDBLTFX structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE

Uses the ddckSrcColorKey_high and ddckSrcColorKey_low members of the DDBLTFX structure as the color key for the source surface.

DDBLT_ROP

Uses the lROP member of the DDBLTFX structure for the ROP for this blit. These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

Uses the lRotationAngle member of the DDBLTFX structure as the rotation angle (specified in 1/100th of a degree) for the surface.

Color key flags

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

Behavior flags

DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT

Postpones the DDERR_WASSTILLDRAWING return value if the blitter is busy, and returns as soon as the blit can be set up or another error occurs.

CONST_DDBLTFXFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDBLTFXFLAGS enumeration is used in the lDDFX member of the DDBLTFX type to specify the type of FX operation.

Enum CONST_DDBLTFXFLAGS

 DDBLTFX_ARITHSTRETCHY = 1

 DDBLTFX_MIRRORLEFTRIGHT = 2

 DDBLTFX_MIRRORUPDOWN = 4

 DDBLTFX_NOTEARING = 8

 DDBLTFX_ROTATE180 = 16

 DDBLTFX_ROTATE270 = 32

 DDBLTFX_ROTATE90 = 64

 DDBLTFX_ZBUFFERBASEDEST = 256

 DDBLTFX_ZBUFFERRANGE = 128

End Enum

DDBLTFX_ARITHSTRETCHY

Uses arithmetic stretching along the y-axis for this blit.

DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to right.

DDBLTFX_MIRRORUPDOWN

Turns the surface on its x-axis. This blit mirrors the surface from top to bottom.

DDBLTFX_NOTEARING

Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180

Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270

Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90

Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST

Adds the lZBufferBaseDest member of the DDBLTFX type to each of the source z-values before comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE

Uses the lZBufferLow and lZBufferHigh members of the DDBLTFX type as range values to specify limits to the bits copied from a source surface during this z-blit.

CONST_DDCAPS1FLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDCAPS1FLAGS enumeration is used by the lCaps, lNLVBCaps, lSSBCaps, lSVBCaps, and the lVSBCaps members of the DDCAPS type to describe hardware capabilities.

Enum CONST_DDCAPS1FLAGS

 DDCAPS_3D = 1

 DDCAPS_ALIGNBOUNDARYDEST = 2

 DDCAPS_ALIGNBOUNDARYSRC = 8

 DDCAPS_ALIGNSIZEDEST = 4

 DDCAPS_ALIGNSIZESRC = 16

 DDCAPS_ALIGNSTRIDE = 32

 DDCAPS_ALPHA = 8388608

 DDCAPS_BANKSWITCHED = 134217728

 DDCAPS_BLT = 64

 DDCAPS_BLTCOLORFILL = 67108864

 DDCAPS_BLTDEPTHFILL = 268435456

 DDCAPS_BLTFOURCC = 256

 DDCAPS_BLTQUEUE = 128

 DDCAPS_BLTSTRETCH = 512

 DDCAPS_CANBLTSYSMEM = -2147483648

 DDCAPS_CANCLIP = 536870912

 DDCAPS_CANCLIPSTRETCHED = 1073741824

 DDCAPS_COLORKEY = 4194304

 DDCAPS_COLORKEYHWASSIST = 16777216

 DDCAPS_GDI = 1024

 DDCAPS_NOHARDWARE = 33554432

 DDCAPS_OVERLAY = 2048

 DDCAPS_OVERLAYCANTCLIP = 4096

 DDCAPS_OVERLAYFOURCC = 8192

 DDCAPS_OVERLAYSTRETCH = 16384

 DDCAPS_PALETTE = 32768

 DDCAPS_PALETTEVSYNC = 65536

 DDCAPS_READSCANLINE = 131072

 DDCAPS_STEREOVIEW = 262144

 DDCAPS_VBI = 524288

 DDCAPS_ZBLTS = 1048576

 DDCAPS_ZOVERLAYS = 2097152

End Enum

DDCAPS_3D

Indicates that the display hardware has 3-D acceleration.

DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those overlay destination rectangles with the x-axis aligned to the lAlignBoundaryDest boundaries of the surface.

DDCAPS_ALIGNBOUNDARYSRC

Indicates that DirectDraw will support only those overlay source rectangles with the x-axis aligned to the lAlignBoundarySrc boundaries of the surface.

DDCAPS_ALIGNSIZEDEST

Indicates that DirectDraw will support only those overlay destination rectangles whose x-axis sizes, in pixels, are lAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC

Indicates that DirectDraw will support only those overlay source rectangles whose x-axis sizes, in pixels, are lAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE

Indicates that DirectDraw will create display memory surfaces that have a stride alignment equal to the lAlignStrideAlign value.

DDCAPS_ALPHA

Indicates that the display hardware supports alpha-only surfaces. (See alpha channel)

DDCAPS_BANKSWITCHED

Indicates that the display hardware is bank-switched and is potentially very slow at random access to display memory.

DDCAPS_BLT

Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL

Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL

Indicates that display hardware is capable of depth filling z-buffers with a blitter.

DDCAPS_BLTFOURCC

Indicates that display hardware is capable of color-space conversions during blit operations.

DDCAPS_BLTQUEUE

Indicates that display hardware is capable of asynchronous blit operations.

DDCAPS_BLTSTRETCH

Indicates that display hardware is capable of stretching during blit operations.

DDCAPS_CANBLTSYSMEM

Indicates that display hardware is capable of blitting to or from system memory.

DDCAPS_CANCLIP

Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED

Indicates that display hardware is capable of clipping while stretch blitting.

DDCAPS_COLORKEY

Supports some form of color key in either overlay or blit operations. More specific color key capability information can be found in the lCKeyCaps member.

DDCAPS_COLORKEYHWASSIST

Indicates that the color key is partially hardware assisted. This means that other resources (CPU or video memory) might be used. If this bit is not set, full hardware support is in place.

DDCAPS_GDI

Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE

Indicates that there is no hardware support.

DDCAPS_OVERLAY

Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP

Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC

Indicates that overlay hardware is capable of color-space conversions during overlay operations.

DDCAPS_OVERLAYSTRETCH

Indicates that overlay hardware is capable of stretching. The lMinOverlayStretch and lMaxOverlayStretch members contain valid data.

DDCAPS_PALETTE

Indicates that DirectDraw is capable of creating and supporting DirectDrawPalette objects for more surfaces than only the primary surface.

DDCAPS_PALETTEVSYNC

Indicates that DirectDraw is capable of updating a palette synchronized with the vertical refresh.

DDCAPS_READSCANLINE

Indicates that display hardware is capable of returning the current scan line.

DDCAPS_STEREOVIEW

Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI

Indicates that display hardware is capable of generating a vertical-blank interrupt.

DDCAPS_ZBLTS

Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS

Supports the use of the DirectDrawSurface4.UpdateOverlayZOrder method as a z-value for overlays to control their layering.

CONST_DDCAPS2FLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDCAPS2FLAGS enumeration is used in the lCaps2, lNLVBCaps2, lSVBCaps2 members of the DDCAPS type to describe additional driver-specific capabilities.

Enum CONST_DDCAPS2FLAGS

 DDCAPS2_AUTOFLIPOVERLAY = 8

 DDCAPS2_CANBOBINTERLEAVED = 16

 DDCAPS2_CANBOBNONINTERLEAVED = 32

 DDCAPS2_CANDROPZ16BIT = 256

 DDCAPS2_CANFLIPODDEVEN = 8192

 DDCAPS2_CERTIFIED = 1

 DDCAPS2_COLORCONTROLOVERLAY = 64

 DDCAPS2_COLORCONTROLPRIMARY = 128

 DDCAPS2_NO2DDURING3DSCENE = 2

 DDCAPS2_NONLOCALVIDMEM = 512

 DDCAPS2_NONLOCALVIDMEMCAPS = 1024

 DDCAPS2_NOPAGELOCKREQUIRED = 2048

 DDCAPS2_VIDEOPORT = 4

 DDCAPS2_WIDESURFACES = 4096

End Enum

DDCAPS2_AUTOFLIPOVERLAY

The overlay can be automatically flipped to the next surface in the flip chain each time a video port VSYNC occurs, allowing the video port and the overlay to double buffer the video without CPU overhead. This option is only valid when the surface is receiving data from a video port. If the video port data is non-interlaced or non-interleaved, it will flip on every VSYNC. If the data is being interleaved in memory, it will flip on every other VSYNC.

DDCAPS2_CANBOBHARDWARE

The overlay hardware can display each field of an interlaced video stream individually.

DDCAPS2_CANBOBINTERLEAVED

The overlay hardware can display each field individually of an interlaced video stream while it is interleaved in memory without causing any artifacts that might normally occur without special hardware support. This option is only valid when the surface is receiving data from a video port and is only valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANBOBNONINTERLEAVED

The overlay hardware can display each field individually of an interlaced video stream while it is not interleaved in memory without causing any artifacts that might normally occur without special hardware support. This option is only valid when the surface is receiving data from a video port and is only valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANCALIBRATEGAMMA

The system has a calibrator installed that can automatically adjust the gamma ramp so that the result will be identical on all systems that have a calibrator. To invoke the calibrator when setting new gamma levels, use the DDSGR_CALIBRATE flag when calling the DirectDrawGammaControl.SetGammaRamp method. Calibrating gamma ramps incurs some processing overhead, and should not be used frequently.

DDCAPS2_CANDROPZ16BIT

16-bit RGBZ values can be converted into sixteen-bit RGB values. (The system does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN

The driver is capable of performing odd and even flip operations, as specified by the DDFLIP_ODD and DDFLIP_EVEN flags used with the DirectDrawSurface4.Flip method.

DDCAPS2_CANRENDERWINDOWED

The driver is capable of rendering in windowed mode.

DDCAPS2_CERTIFIED

Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLOVERLAY

The overlay surface contains color controls (such as brightness, sharpness)

DDCAPS2_COLORCONTROLPRIMARY

The primary surface contains color controls (for instance, gamma)

DDCAPS2_COPYFOURCC

Indicates that the driver supports blitting any FOURCC surface to another surface of the same FOURCC.

DDCAPS2_NO2DDURING3DSCENE

Indicates that 2-D operations such as DirectDrawSurface4.Blt and DirectDrawSurface4.Lock cannot be performed on any surfaces that Direct3D® is using between calls to the Direct3DDevice3.BeginScene and Direct3DDevice3.EndScene methods.

DDCAPS2_NONLOCALVIDMEM

Indicates that the display driver supports surfaces in non-local video memory.

DDCAPS2_NONLOCALVIDMEMCAPS

Indicates that blit capabilities for non-local video memory surfaces differ from local video memory surfaces. If this flag is present, the DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED

DMA blit operations are supported on system memory surfaces that are not page locked.

DDCAPS2_PRIMARYGAMMA

Supports dynamic gamma ramps for the primary surface.

DDCAPS2_VIDEOPORT

Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES

Indicates that the display surfaces supports surfaces wider than the primary surface.

CONST_DDCKEYCAPSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDCKEYCAPSFLAGS enumeration is used by the lCKeyCaps, lNLVBCKeyCaps, lSSBCKeyCaps, lSVBCKeyCaps, and lVSBCKeyCaps members of the DDCAPS type to describe the color-key capabilities of the hardware.

Enum CONST_DDCKEYCAPSFLAGS

 DDCKEYCAPS_DESTBLT = 1

 DDCKEYCAPS_DESTBLTCLRSPACE = 2

 DDCKEYCAPS_DESTBLTCLRSPACEYUV = 4

 DDCKEYCAPS_DESTBLTYUV = 8

 DDCKEYCAPS_DESTOVERLAY = 16

 DDCKEYCAPS_DESTOVERLAYCLRSPACE = 32

 DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV = 64

 DDCKEYCAPS_DESTOVERLAYONEACTIVE = 128

 DDCKEYCAPS_DESTOVERLAYYUV = 256

 DDCKEYCAPS_NOCOSTOVERLAY = 262144

 DDCKEYCAPS_SRCBLT = 512

 DDCKEYCAPS_SRCBLTCLRSPACE = 1024

 DDCKEYCAPS_SRCBLTCLRSPACEYUV = 2048

 DDCKEYCAPS_SRCBLTYUV = 4096

 DDCKEYCAPS_SRCOVERLAY = 8192

 DDCKEYCAPS_SRCOVERLAYCLRSPACE = 16384

 DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV = 32768

 DDCKEYCAPS_SRCOVERLAYONEACTIVE = 65536

 DDCKEYCAPS_SRCOVERLAYYUV = 131072

End Enum

DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE

Supports transparent blitting with a color space that identifies the replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV

Supports transparent blitting with a color space that identifies the replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV

Supports transparent blitting with a color key that identifies the replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY

Supports overlaying with color keying of the replaceable bits of the destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE

Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV

Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE

Supports only one active destination color key value for visible overlay surfaces .

DDCKEYCAPS_DESTOVERLAYYUV

Supports overlaying using color keying of the replaceable bits of the destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY

Indicates there are no BANDWIDTH trade-offs for using the color key with an overlay.

DDCKEYCAPS_SRCBLT

Supports transparent blitting using the color key for the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE

Supports transparent blitting using a color space for the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV

Supports transparent blitting using a color space for the source with this surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV

Supports transparent blitting using the color key for the source with this surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY

Supports overlaying using the color key for the source with this overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE

Supports overlaying using a color space as the source color key for the overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV

Supports overlaying using a color space as the source color key for the overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE

Supports only one active source color key value for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV

Supports overlaying using the color key for the source with this overlay surface for YUV colors.

CONST_DDCKEYFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDCKEYFLAGS enumeration is used in the flags parameter of the DirectDrawSurface4.SetColorKey method to specify the type of color key requested.

Enum CONST_DDCKEYFLAGS

 DDCKEY_COLORSPACE = 1

 DDCKEY_DESTBLT = 2

 DDCKEY_DESTOVERLAY = 4

 DDCKEY_SRCBLT = 8

 DDCKEY_SRCOVERLAY = 16

End Enum

DDCKEY_COLORSPACE

Set if the type contains a color space. Not set if the type contains a single color key.

DDCKEY_DESTBLT

Set if the type specifies a color key or color space to be used as a destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the type specifies a color key or color space to be used as a destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the type specifies a color key or color space to be used as a source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the type specifies a color key or color space to be used as a source color key for overlay operations.

CONST_DDCOLORFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDCOLORFLAGS enumeration is used in the lFlags member of the DDCOLORCONTROL type to specify which members of the DDCOLORCONTROL type contain valid data.

Enum CONST_DDCOLORFLAGS

 DDCOLOR_BRIGHTNESS = 1

 DDCOLOR_COLORENABLE = 64

 DDCOLOR_CONTRAST = 2

 DDCOLOR_GAMMA = 32

 DDCOLOR_HUE = 4

 DDCOLOR_SATURATION = 8

 DDCOLOR_SHARPNESS = 16

End Enum

DDCOLOR_BRIGHTNESS

The lBrightness member contains valid data.

DDCOLOR_COLORENABLE

The lColorEnable member contains valid data.

DDCOLOR_CONTRAST

The lContrast member contains valid data.

DDCOLOR_GAMMA

The lGamma member contains valid data.

DDCOLOR_HUE

The lHue member contains valid data.

DDCOLOR_SATURATION

The lSaturation member contains valid data.

DDCOLOR_SHARPNESS

The lSharpness member contains valid data.

CONST_DDEDMFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDEDMFLAGS enumeration is used in the flags parameter of the DirectDraw4.GetDisplayModesEnum method to specify the type of enumeration.

Enum CONST_DDEDMFLAGS

 DDEDM_DEFAULT = 0

 DDEDM_REFRESHRATES = 1

 DDEDM_STANDARDVGAMODES = 2

End Enum

DDEDM_REFRESHRATES

Enumerates modes with different refresh rates. This guarantees that a particular mode will be enumerated only once. This flag specifies whether the refresh rate is taken into account when determining if a mode is unique.

DDEDM_STANDARDVGAMODES

Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

CONST_DDENUMOVERLAYZFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDENUMOVERLAYZFLAGS enumeration is used by the flags parameter of the DirectDrawSurface4.GetOverlayZOrdersEnum method to describe how overlays should be enumerated.

Enum CONST_DDENUMOVERLAYZFLAGS

 DDENUMOVERLAYZ_BACKTOFRONT = 0

 DDENUMOVERLAYZ_FRONTTOBACK = 1

End Enum

DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.

DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.

CONST_DDENUMSURFACESFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDENUMSURFACESFLAGS enumeration is used by the DirectDraw4.GetSurfacesEnum method to control how the method enumerates attached surfaces.

Enum CONST_DDENUMSURFACESFLAGS

 DDENUMSURFACES_ALL = 1

 DDENUMSURFACES_CANBECREATED = 8

 DDENUMSURFACES_DOESEXIST = 16

 DDENUMSURFACES_MATCH = 2

 DDENUMSURFACES_NOMATCH = 4

End Enum

Search type flags

DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search criterion. This flag can only be used with the DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST

Enumerates the already existing surfaces that meet the search criterion.

Matching flags

DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the search criterion. This flag can only be used with the DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH

Searches for any surface that matches the surface description.

DDENUMSURFACES_NOMATCH

Searches for any surface that does not match the surface description.

CONST_DDFLIPFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDFLIPFLAGS enumeration is used in the flags parameter of the DirectDrawSurface4.Flip method to specify flip options.

Enum CONST_DDFLIPFLAGS

 DDFLIP_EVEN = 2

 DDFLIP_INTERFVAL2 = 536870912

 DDFLIP_INTERFVAL3 = 805306368

 DDFLIP_INTERFVAL4 = 1073741824

 DDFLIP_NOVSYNC = 8

 DDFLIP_ODD = 4

 DDFLIP_WAIT = 1

End Enum

DDFLIP_EVEN

For use only when displaying video in an overlay surface. The new surface contains data from the even field of a video signal. This flag cannot be used with the DDFLIP_ODD flag.

DDFLIP_ODD

For use only when displaying video in an overlay surface. The new surface contains data from the odd field of a video signal. This flag cannot be used with the DDFLIP_EVEN flag.

DDFLIP_WAIT

Typically, if the flip cannot be set up because the state of the display hardware is not appropriate, the DDERR_WASSTILLDRAWING error returns immediately and no flip occurs. Setting this flag causes the method to continue trying to flip if it receives the DDERR_WASSTILLDRAWING error from the HAL. The method does not return until the flipping operation has been successfully set up, or another error, such as DDERR_SURFACEBUSY, is returned.

CONST_DDFXALPHACAPSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDFXALPHACAPSFLAGS enumeration is used in the lFXAlphaCaps member of the DDCAPS type to describe driver-specific alpha capabilities.

Enum CONST_DDFXALPHACAPSFLAGS

 DDFXALPHACAPS_BLTALPHAEDGEBLEND = 1

 DDFXALPHACAPS_BLTALPHAPIXELS = 2

 DDFXALPHACAPS_BLTALPHAPIXELSNEG = 4

 DDFXALPHACAPS_BLTALPHASURFACES = 8

 DDFXALPHACAPS_BLTALPHASURFACESNEG = 16

 DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND = 32

 DDFXALPHACAPS_OVERLAYALPHAPIXELS = 64

 DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG = 128

 DDFXALPHACAPS_OVERLAYALPHASURFACES = 256

 DDFXALPHACAPS_OVERLAYALPHASURFACESNEG = 512

End Enum

DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA is set. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha value increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be set only if DDCAPS_ALPHA has been set. Used for blit operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha information in pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha information in pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value increases. Regardless of the depth of the alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha value increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of the depth of the alpha information, 0 is always the fully opaque value. This flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

CONST_DDFXCAPSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDFXCAPSFLAGS enumeration is used in the lFXCaps, lNLVBFXCaps, lSSBFXCaps, lSVBFXCaps and lVSBFXCaps members of the DDCAPS type to describe driver-specific stretching and effects capabilities, nonlocal-to-local video memory blit capabilities, system-memory-to-system-memory blit capabilities, system-memory-to-display-memory blit capabilities and display-memory-to-system-memory blit capabilities.

Enum CONST_DDFXCAPSFLAGS

 DDFXCAPS_BLTALPHA = 1

 DDFXCAPS_BLTARITHSTRETCHY = 32

 DDFXCAPS_BLTARITHSTRETCHYN = 16

 DDFXCAPS_BLTFILTER = 32

 DDFXCAPS_BLTMIRRORLEFTRIGHT = 64

 DDFXCAPS_BLTMIRRORUPDOWN = 128

 DDFXCAPS_BLTROTATION = 256

 DDFXCAPS_BLTROTATION90 = 512

 DDFXCAPS_BLTSHRINKX = 1024

 DDFXCAPS_BLTSHRINKXN = 2048

 DDFXCAPS_BLTSHRINKY = 4096

 DDFXCAPS_BLTSHRINKYN = 8192

 DDFXCAPS_BLTSTRETCHX = 16384

 DDFXCAPS_BLTSTRETCHXN = 32768

 DDFXCAPS_BLTSTRETCHY = 65536

 DDFXCAPS_BLTSTRETCHYN = 131072

 DDFXCAPS_BLTTRANSFORM = 2

 DDFXCAPS_OVERLAYALPHA = 4

 DDFXCAPS_OVERLAYARITHSTRETCHY = 262144

 DDFXCAPS_OVERLAYARITHSTRETCHYN = 8

 DDFXCAPS_OVERLAYFILTER = 262144

 DDFXCAPS_OVERLAYMIRRORLEFTRIGHT = 134217728

 DDFXCAPS_OVERLAYMIRRORUPDOWN = 268435456

 DDFXCAPS_OVERLAYSHRINKX = 524288

 DDFXCAPS_OVERLAYSHRINKXN = 1048576

 DDFXCAPS_OVERLAYSHRINKY = 2097152

 DDFXCAPS_OVERLAYSHRINKYN = 4194304

 DDFXCAPS_OVERLAYSTRETCHX = 8388608

 DDFXCAPS_OVERLAYSTRETCHXN = 16777216

 DDFXCAPS_OVERLAYSTRETCHY = 33554432

 DDFXCAPS_OVERLAYSTRETCHYN = 67108864

 DDFXCAPS_OVERLAYTRANSFORM = 536870912

End Enum

DDFXCAPS_BLTALPHA

Supports alpha-blended blit operations.

DDFXCAPS_BLTARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink surfaces during a blit operation. Occurs along the y-axis (vertically).

DDFXCAPS_BLTARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and shrink surfaces during a blit operation. Occurs along the y-axis (vertically), and works only for integer stretching (´1, ´2, and so on).

DDFXCAPS_BLTFILTER

Driver can do surface-reconstruction filtering for warped blits.

DDFXCAPS_BLTMIRRORLEFTRIGHT

Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN

Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION

Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90

Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN

Supports integer shrinking (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN

Supports integer shrinking (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN

Supports integer stretching (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN

Supports integer stretching (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTTRANSFORM

Supports geometric transformations (or warps) for blitted sprites. Transformations are not currently supported for explicit blit operations.

DDFXCAPS_OVERLAYALPHA

Supports alpha blending for overlay surfaces.

DDFXCAPS_OVERLAYARITHSTRETCHY

Supports integer stretching (´1, ´2, and so on) of an overlay surface along the y-axis (vertically).

DDFXCAPS_OVERLAYARITHSTRETCHYN

Supports arbitrary stretching of a surface along the x-axis (horizontal) for overlays.

DDFXCAPS_OVERLAYFILTER

Supports surface-reconstruction filtering for warped overlay sprites. Filtering is not currently supported for explicitly displayed overlay surfaces (those displayed with calls to DirectDrawSurface4.UpdateOverlay).

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT

Supports mirroring of overlays across the vertical axis.

DDFXCAPS_OVERLAYMIRRORUPDOWN

Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN

Supports integer shrinking (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKYN

Supports integer shrinking (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN

Supports integer stretching (´1, ´2, and so on) of a surface along the x-axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN

Supports integer stretching (´1, ´2, and so on) of a surface along the y-axis (vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYTRANSFORM

Supports geometric transformations (or warps) for overlay sprites. Transformations are not currently supported for explicitly displayed overlay surfaces (those displayed with calls to DirectDrawSurface4.UpdateOverlay).

CONST_DDGBSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDGBSFLAGS enumeration is used by the flags parameter of the DirectDrawSurface4.GetBltStatus method to specify what type of status to obtain.

Enum CONST_DDGBSFLAGS

 DDGBS_CANBLT = 1

 DDGBS_ISBLTDONE = 2

End Enum

DDGBS_CANBLT

Inquires whether a blit involving this surface can occur immediately, and returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE

Inquires whether the blit is done, and returns DD_OK if the last blit on this surface has completed.

CONST_DDGFSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDGFSFLAGS enumeration is used by the flags parameter of the DirectDrawSurface4.GetFlipStatus method to specify the type of flip status to obtain.

Enum CONST_DDGFSFLAGS

 DDGFS_CANFLIP = 1

 DDGFS_ISFLIPDONE = 2

End Enum

DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and returns DD_OK if the flip can be completed.

DDGFS_ISFLIPDONE

Inquires whether the flip has finished and returns DD_OK if the last flip on this surface has completed.

CONST_DDLOCKFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDLOCKFLAGS enumeration is used by the flags parameter of both the DirectDrawSurface4.Lock and Direct3DVertexBuffer.Lock method to indicate the how the lock is to be performed.

Enum CONST_DDLOCKFLAGS

 DDLOCK_EVENT = 2

 DDLOCK_NOSYSLOCK = 2048

 DDLOCK_READONLY = 16

 DDLOCK_SURFACEMEMORYPTR = 0

 DDLOCK_WAIT = 1

 DDLOCK_WRITEONLY = 32

End Enum

DDLOCK_EVENT

This flag is not currently implemented.

DDLOCK_NOSYSLOCK

If possible, do not take the Win16Mutex (also known as Win16Lock). This flag is ignored when locking the primary surface.

DDLOCK_READONLY

Indicates that the surface being locked will only be read.

DDLOCK_SURFACEMEMORYPTR

Indicates that a valid memory pointer to the top of the specified rectangle should be returned. If no rectangle is specified, a pointer to the top of the surface is returned. This is the default.

DDLOCK_WAIT

If a lock cannot be obtained because a blit operation is in progress, the method retries until a lock is obtained or another error occurs, such as DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY

Indicates that the surface being locked will be write enabled.

CONST_DDOVERFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDOVERFLAGS enumeration is used in the flags parameter of the DirectDrawSurface4.UpdateOverlay method to specify how the overlay should be updated.

Enum CONST_DDOVERFLAGS

 DDOVER_ADDDIRTYRECT = 32768

 DDOVER_ALPHADEST = 1

 DDOVER_ALPHADESTCONSTOVERRIDE = 2

 DDOVER_ALPHADESTNEG = 4

 DDOVER_ALPHADESTSURFACEOVERRIDE = 8

 DDOVER_ALPHAEDGEBLEND = 16

 DDOVER_ALPHASRC = 32

 DDOVER_ALPHASRCCONSTOVERRIDE = 64

 DDOVER_ALPHASRCNEG = 128

 DDOVER_ALPHASRCSURFACEOVERRIDE = 256

 DDOVER_AUTOFLIP = 1048576

 DDOVER_BOB = 2097152

 DDOVER_DDFX = 524288

 DDOVER_HIDE = 512

 DDOVER_INTERLEAVED = 8388608

 DDOVER_KEYDEST = 1024

 DDOVER_KEYDESTOVERRIDE = 2048

 DDOVER_KEYSRC = 4096

 DDOVER_KEYSRCOVERRIDE = 8192

 DDOVER_OVERRIDEBOBWEAVE = 4194304

 DDOVER_REFRESHALL = 131072

 DDOVER_REFRESHDIRTYRECTS = 65536

 DDOVER_SHOW = 16384

End Enum

DDOVER_ADDDIRTYRECT

Adds a dirty rectangle to an emulated overlay surface.‹???: Is this flag supported, overlay surfaces are not supported in the HEL.›

DDOVER_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface attached to the destination surface as the alpha channel for this overlay.

DDOVER_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the alpha value increases (0 is opaque).

DDOVER_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel surface attached to the source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG

Indicates that the source surface becomes more transparent as the alpha value increases (0 is opaque).

DDOVER_AUTOFLIP

Automatically flip to the next surface in the flip chain each time a video port VSYNC occurs.

DDOVER_BOB

Display each field individually of the interlaced video stream without causing any artifacts.

DDOVER_BOBHARDWARE

Indicates that bob operations will be performed using hardware rather than software or emulated. This flag must be used with the DDOVER_BOB flag.

DDOVER_HIDE

Turns off this overlay.

DDOVER_INTERLEAVED

Indicates that the surface memory is composed of interleaved fields.

DDOVER_KEYDEST

Uses the color key associated with the destination surface.

DDOVER_KEYSRC

Uses the color key associated with the source surface.

DDOVER_OVERRIDEBOBWEAVE

Indicates that bob/weave decisions should not be overridden by other classes.

DDOVER_REFRESHALL

DDOVER_REFRESHDIRTYRECTS

DDOVER_SHOW

Turns on this overlay.

CONST_DDOVERLAYFXFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDOVERLAYFXFLAGS enumeration is used by the lDDFX member of the DDOVERLAYFX type to specify the overlay FX.

Enum CONST_DDOVERLAYFXFLAGS

 DDOVERFX_ARITHSTRETCHY = 1

 DDOVERFX_MIRRORLEFTRIGHT = 2

 DDOVERFX_MIRRORUPDOWN = 4

End Enum

DDOVERFX_ARITHSTRETCHY

If stretching, use arithmetic stretching along the y-axis for this overlay.

DDOVERFX_MIRRORLEFTRIGHT

Mirror the overlay around the vertical axis.

DDOVERFX_MIRRORUPDOWN

Mirror the overlay around the horizontal axis.

CONST_DDOVERZFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDOVERZFLAGS enumeration is used in the flags parameter of the DirectDrawSurface4.UpdateOverlayZOrder method to specify how the z-order of an overlay should be updated.

Enum CONST_DDOVERZFLAGS

 DDOVERZ_INSERTINBACKOF = 5

 DDOVERZ_INSERTINFRONTOF = 4

 DDOVERZ_MOVEBACKWARD = 3

 DDOVERZ_MOVEFORWARD = 2

 DDOVERZ_SENDTOBACK = 1

 DDOVERZ_SENDTOFRONT = 0

End Enum

DDOVERZ_INSERTINBACKOF

Inserts this overlay in the overlay chain behind the reference overlay.

DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference overlay.

DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.

DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.

DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.

DDOVERZ_SENDTOFRONT

Moves this overlay to the front of the overlay chain.

CONST_DDPCAPSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDPCAPSFLAGS enumeration is used by the flags parameter of DirectDraw4.CreatePalette, as a return value for DirectDrawPalette.GetCaps and by the lPalCaps member of DDCAPS to describe the capabilities of the palette.

Enum CONST_DDPCAPSFLAGS

 DDPCAPS_1BIT = 256

 DDPCAPS_2BIT = 512

 DDPCAPS_4BIT = 1

 DDPCAPS_8BIT = 4

 DDPCAPS_8BITENTRIES = 2

 DDPCAPS_ALLOW256 = 64

 DDPCAPS_ALPHA = 1024

 DDPCAPS_INITIALIZE = 8

 DDPCAPS_PRIMARYSURFACE = 16

 DDPCAPS_PRIMARYSURFACELEFT = 32

 DDPCAPS_VSYNC = 128

End Enum

DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.

DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.

DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.

DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table_dx_color_table_glos.

DDPCAPS_8BITENTRIES

Indicates that the index refers to an 8-bit color index. This flag is valid only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT flag, and when the target surface is in 8 bpp. Each color entry is 1 byte long and is an index to a destination surface's 8-bpp palette.

DDPCAPS_ALPHA

Indicates that the flags member of the associated PALETTEENTRY type is to be interpreted as a single 8-bit alpha value. A palette created with this flag can only be attached to a texture (a surface created with the DDSCAPS_TEXTURE capability flag).

DDPCAPS_ALLOW256

Indicates that this palette can have all 256 entries defined.

DDPCAPS_INITIALIZE

This flag is obsolete and ignored by DirectDraw.

DDPCAPS_PRIMARYSURFACE

This palette is attached to the primary surface. Changing this palette's color table immediately affects the display unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT

This palette is the one attached to the left eye primary surface. Changing this palette's color table immediately affects the left eye display unless DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC

This palette can have modifications to it synced with the monitors refresh rate.

CONST_DDPIXELFORMATFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDPIXELFORMATFLAGS enumeration is

Enum CONST_DDPIXELFORMATFLAGS

 DDPF_ALPHA = 2

 DDPF_ALPHAPIXELS = 1

 DDPF_ALPHAPREMULT = 32768

 DDPF_BUMPDUDV = 524288

 DDPF_BUMPLUMINANCE = 262144

 DDPF_COMPRESSED = 128

 DDPF_FOURCC = 4

 DDPF_LUMINANCE = 131072

 DDPF_PALETTEINDEXED1 = 2048

 DDPF_PALETTEINDEXED2 = 4096

 DDPF_PALETTEINDEXED4 = 8

 DDPF_PALETTEINDEXED8 = 32

 DDPF_PALETTEINDEXEDTO8 = 16

 DDPF_RGB = 64

 DDPF_RGBTOYUV = 256

 DDPF_STENCILBUFFER = 16384

 DDPF_YUV = 512

 DDPF_ZBUFFER = 1024

 DDPF_ZPIXELS = 8192

End Enum

DDPF_ALPHA

The pixel format describes an alpha-only surface.

DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.

DDPF_ALPHAPREMULT

The surface uses the premultiplied alpha format. That is, the color components in each pixel are premultiplied by the alpha component.

DDPF_BUMPDUDV

Bump-map data in the pixel format is valid. Bump-map information is in the lBumpBitCount, lBumpDuBitMask, lBumpDvBitMask, and lBumpLuminanceBitMask members.

DDPF_BUMPLUMINANCE

The luminance data in the pixel format is valid, and the lLuminanceBitMask member descibes valid luminance bits for a luminance-only or luminance-alpha surface.

DDPF_COMPRESSED

The surface will accept pixel data in the specified format and compress it during the write operation.

DDPF_FOURCC

The lFourCC member is valid and contains a FOURCC code describing a non-RGB pixel format.

DDPF_LUMINANCE

The pixel format describes a luminance-only or luminance-alpha surface.

DDPF_PALETTEINDEXED1

DDPF_PALETTEINDEXED2

DDPF_PALETTEINDEXED4

DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.

DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.

DDPF_RGB

The RGB data in the pixel format type is valid.

DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write operation to YUV data. The format of the data to be written will be contained in the pixel format type. The DDPF_RGB flag will be set.

DDPF_STENCILBUFFER

The surface encodes stencil and depth information in each pixel of the z-buffer.

DDPF_YUV

The YUV data in the pixel format type is valid.

DDPF_ZBUFFER

The pixel format describes a z-buffer-only surface.

DDPF_ZPIXELS

The surface contains z information in the pixels.

CONST_DDRAW

[This is preliminary documentation and subject to change.]

The CONST_DDRAW enumeration contains constants used throughout DirectDraw.

Enum CONST_DDRAW

 DD_ROP_SPACE = 8

End Enum

CONST_DDSCLFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSCLFLAGS enumeration is used in the flags parameter of the DirectDraw4.SetCooperativeLevel method to determine the top-level behavior of the application.

Enum CONST_DDSCLFLAGS

 DDSCL_ALLOWMODEX = 64

 DDSCL_ALLOWREBOOT = 2

 DDSCL_CREATEDEVICEWINDOW = 512

 DDSCL_EXCLUSIVE = 16

 DDSCL_FULLSCREEN = 1

 DDSCL_MULTITHREADED = 1024

 DDSCL_NORMAL = 8

 DDSCL_NOWINDOWCHANGES = 4

 DDSCL_SETDEVICEWINDOW = 256

 DDSCL_SETFOCUSWINDOW = 128

End Enum

DDSCL_ALLOWMODEX

Allows the use of Mode X display modes. This flag can only be used if the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT

Allows CTRL+ALT+DEL to function while in exclusive (full-screen) mode.

DDSCL_CREATEDEVICEWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that DirectDraw is to create and manage a default device window for this DirectDraw object. For more information, see Focus and Device Windows.

DDSCL_EXCLUSIVE

Requests the exclusive level. This flag must be used with the DDSCL_FULLSCREEN flag.

DDSCL_FULLSCREEN

Indicates that the exclusive-mode owner will be responsible for the entire primary surface. GDI can be ignored. This flag must be used with the DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED

Requests multithread-safe DirectDraw behavior. This causes Direct3D to take the global critical section more frequently.

DDSCL_NORMAL

Indicates that the application will function as a regular Windows application. This flag cannot be used with the DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES

Indicates that DirectDraw is not allowed to minimize or restore the application window on activation.

DDSCL_SETDEVICEWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that the hdl argument is the window handle of the device window for this DirectDraw object. This flag cannot be used with the DDSCL_SETFOCUSWINDOW flag.

DDSCL_SETFOCUSWINDOW

This flag is supported in Windows 98 and Windows 2000 only. Indicates that the hdl argument is the window handle of the focus window for this DirectDraw object. This flag cannot be used with the DDSCL_SETDEVICEWINDOW flag.

CONST_DDSDMFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSDMFLAGS enumeration is used in the flags parameter of the DirectDraw4.SetDisplayMode method to set the mode of the display-device hardware.

Enum CONST_DDSDMFLAGS

 DDSDM_DEFAULT = 0

 DDSDM_STANDARDVGAMODE = 1

End Enum

DDSDM_STANDARDVGAMODE

Causes the method to set Mode 13 instead of Mode X 320x200x8 mode. If you are setting another resolution, bit depth, or a Mode X mode, do not use this flag and set the argument to 0.

CONST_DDSGRFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSGRFLAGS enumeration is used in the flags parameter of the DirectDrawGammaControl.SetGammaRamp method to indicate that gamma calibration is desired.

Enum CONST_DDSGRFLAGS

 DDSGR_CALIBRATE = 1

 DDSGR_DEFAULT = 0

End Enum

DDSGR_CALIBRATE

Requests that the calibrator adjust the gamma ramp according to the physical properties of the display, making the result identical on all systems. If calibration is not needed, set this argument to 0.

CONST_DDSTEREOCAPSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSTEREOCAPSFLAGS enumeration is used by the lSVCaps member of the DDCAPS type to describe stereo vision capabilities.

Enum CONST_DDSTEREOCAPSFLAGS

 DDSVCAPS_ENIGMA = 1

 DDSVCAPS_FLICKER = 2

 DDSVCAPS_REDBLUE = 4

 DDSVCAPS_SPLIT = 8

End Enum

DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.

DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency flickering.

DDSVCAPS_REDBLUE

Indicates that the stereo view is accomplished when the viewer looks at the image through red and blue filters placed over the left and right eyes. All images must adapt their color spaces for this process.

DDSVCAPS_SPLIT

Indicates that the stereo view is accomplished with split-screen technology.

CONST_DDSURFACECAPS2FLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSURFACECAPS2FLAGS enumeration is used by the lCaps2 member of DDSCAPS2 type to describe additional surface capabilities.

Enum CONST_DDSURFACECAPS2FLAGS

 DDSCAPS2_HARDWAREDEINTERLACE = 2

 DDSCAPS2_HINTANTIALIASING = 256

 DDSCAPS2_HINTDYNAMIC = 4

 DDSCAPS2_HINTSTATIC = 8

 DDSCAPS2_OPAQUE = 128

 DDSCAPS2_TEXTUREMANAGE = 16

End Enum

DDSCAPS2_HARDWAREDEINTERLACE

Indicates that this surface will receive data from a video port using the de-interlacing hardware. This allows the driver to allocate memory for any extra buffers that may be required. The DDSCAPS_VIDEOPORT and DDSCAPS_OVERLAY flags must also be set.

DDSCAPS2_HINTANTIALIASING

Indicates that the application intends to use antialiasing. Only valid if DDSCAPS_3DDEVICE is also set.

DDSCAPS2_HINTDYNAMIC

Indicates to the driver that this surface will be locked very frequently (for procedural textures, dynamic lightmaps, etc). This flag can only be used for texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag cannot be used with the DDSCAPS2_HINTSTATIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_HINTSTATIC

Indicates to the driver that this surface can be reordered or retiled on load. This operation will not change the size of the texture. It is relatively fast and symmetrical, since the application may lock these bits (although it will take a performance hit when doing so). This flag can only be used for texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_OPAQUE

Indicates to the driver that this surface will never be locked again. The driver is free to optimize this surface by retiling and actual compression. Such a surface cannot be locked or used in blit operations, attempts to lock or blit a surface with this capability will fail. This flag can only be used for texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or DDSCAPS2_HINTSTATIC flags.

DDSCAPS2_TEXTUREMANAGE

Indicates that the client would like this texture surface to be managed by DirectDraw and Direct3D. This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag set in the lCaps member). For more information, see Automatic Texture Management in the Direct3D Immediate Mode documentation.

CONST_DDSURFACECAPSFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSURFACECAPSFLAGS enumeration is used in the lCaps member of the DDSCAPS2 type to describe the capabilities of the surface.

Enum CONST_DDSURFACECAPSFLAGS

 DDSCAPS_3DDEVICE = 8192

 DDSCAPS_ALLOCONLOAD = 67108864

 DDSCAPS_ALPHA = 2

 DDSCAPS_BACKBUFFER = 4

 DDSCAPS_COMPLEX = 8

 DDSCAPS_FLIP = 16

 DDSCAPS_FRONTBUFFER = 32

 DDSCAPS_HWCODEC = 1048576

 DDSCAPS_LIVEVIDEO = 524288

 DDSCAPS_LOCALVIDMEM = 268435456

 DDSCAPS_MIPMAP = 4194304

 DDSCAPS_MODEX = 2097152

 DDSCAPS_NONLOCALVIDMEM = 536870912

 DDSCAPS_OFFSCREENPLAIN = 64

 DDSCAPS_OPTIMIZED = -2147483648

 DDSCAPS_OVERLAY = 128

 DDSCAPS_OWNDC = 262144

 DDSCAPS_PALETTE = 256

 DDSCAPS_PRIMARYSURFACE = 512

 DDSCAPS_PRIMARYSURFACELEFT = 1024

 DDSCAPS_RESERVED2 = 8388608

 DDSCAPS_STANDARDVGAMODE = 1073741824

 DDSCAPS_SYSTEMMEMORY = 2048

 DDSCAPS_TEXTURE = 4096

 DDSCAPS_VIDEOMEMORY = 16384

 DDSCAPS_VIDEOPORT = 134217728

 DDSCAPS_VISIBLE = 32768

 DDSCAPS_WRITEONLY = 65536

 DDSCAPS_ZBUFFER = 131072

End Enum

DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can use this flag to ensure that a device that can only render to a certain heap has off-screen surfaces allocated from the correct heap. If this flag is set for a heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD

Not used, ignored by DirectDraw and Direct3D.

DDSCAPS_ALPHA

Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER

Indicates that this surface is the back buffer of a surface flipping type. Typically, this capability is set by the CreateSurface method when the DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the DDSCAPS_FRONTBUFFER surface has this capability set. The other surfaces are identified as back buffers by the presence of the DDSCAPS_FLIP flag, their attachment order, and the absence of the DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If this capability is sent to the CreateSurface method, a stand-alone back buffer is being created. After this method is called, this surface could be attached to a front buffer, another back buffer, or both to form a flipping surface type. For more information, see DirectDrawSurface4.AddAttachedSurface. DirectDraw supports an arbitrary number of surfaces in a flipping type.

DDSCAPS_COMPLEX

Indicates that a complex surface is being described. A complex surface results in the creation of more than one surface. The additional surfaces are attached to the root surface. The complex type can be destroyed only by destroying the root.

DDSCAPS_FLIP

Indicates that this surface is a part of a surface flipping type. When this capability is passed to the CreateSurface method, a front buffer and one or more back buffers are created. DirectDraw sets the DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer surface. The lBackBufferCount member of the DDSURFACEDESC2 type must be set to at least 1 in order for the method call to succeed. The DDSCAPS_COMPLEX capability must always be set when creating multiple surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER

Indicates that this surface is the front buffer of a surface flipping type. This flag is typically set by the CreateSurface method when the DDSCAPS_FLIP capability is set. If this capability is sent to the CreateSurface method, a stand-alone front buffer is created. This surface will not have the DDSCAPS_FLIP capability. It can be attached to other back buffers to form a flipping type by using DirectDrawSurface4.AddAttachedSurface.

DDSCAPS_HWCODEC

Indicates that this surface should be able to have a stream decompressed to it by the hardware.

DDSCAPS_LIVEVIDEO

Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM

Indicates that this surface exists in true, local video memory rather than non-local video memory. If this flag is specified then DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP

Indicates that this surface is one level of a mipmap. This surface will be attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This can be done explicitly by creating a number of surfaces and attaching them by using the DirectDrawSurface4.AddAttachedSurface method, or implicitly by the CreateSurface method. If this capability is set, DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX

Indicates that this surface is a 320´200 or 320´240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM

Indicates that this surface exists in non-local video memory rather than true, local video memory. If this flag is specified, then DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN

Indicates that this surface is any off-screen surface that is not an overlay, texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to identify plain surfaces.

DDSCAPS_OPTIMIZED

Not currently implemented.

DDSCAPS_OVERLAY

Indicates that this surface is an overlay. It may or may not be directly visible depending on whether it is currently being overlaid onto the primary surface. DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the moment.

DDSCAPS_OWNDC

Indicates that this surface will have a device context (DC) association for a long period.

DDSCAPS_PALETTE

Indicates that this device driver allows unique DirectDrawPalette objects to be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE

Indicates the surface is the primary surface. It represents what is visible to the user at the moment.

DDSCAPS_PRIMARYSURFACELEFT

Indicates that this surface is the primary surface for the left eye. It represents what is visible to the user's left eye at the moment. When this surface is created, the surface with the DDSCAPS_PRIMARYSURFACE capability represents what is seen by the user's right eye.

DDSCAPS_RESERVED2

Reserved for future use.

DDSCAPS_STANDARDVGAMODE

Indicates that this surface is a standard VGA mode surface, and not a Mode X surface. This flag cannot be used in combination with the DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY

Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE

Indicates that this surface can be used as a 3-D texture. It does not indicate whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY

Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT

Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE

Indicates that changes made to this surface are immediately visible. It is always set for the primary surface, as well as for overlays while they are being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY

Indicates that only write access is permitted to the surface. Read access from the surface may generate a general protection (GP) fault, but the read results from this surface will not be meaningful.

DDSCAPS_ZBUFFER

Indicates that this surface is the z-buffer. The z-buffer contains information that cannot be displayed. Instead, it contains bit-depth information that is used to determine which pixels are visible and which are obscured.

CONST_DDSURFACEDESCFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDSURFACEDESCFLAGS enumeration is used in the lFlags member of the DDSURFACEDESC2 type to specify which members of DDSURFACEDESC2 contain valid data.

Enum CONST_DDSURFACEDESCFLAGS

 DDSD_ALL = 1047022

 DDSD_ALPHABITDEPTH = 128

 DDSD_BACKBUFFERCOUNT = 32

 DDSD_CAPS = 1

 DDSD_CKDESTBLT = 16384

 DDSD_CKDESTOVERLAY = 8192

 DDSD_CKSRCBLT = 65536

 DDSD_CKSRCOVERLAY = 32768

 DDSD_HEIGHT = 2

 DDSD_LINEARSIZE = 524288

 DDSD_LPSURFACE = 2048

 DDSD_MIPMAPCOUNT = 131072

 DDSD_PITCH = 8

 DDSD_PIXELFORMAT = 4096

 DDSD_REFRESHRATE = 262144

 DDSD_TEXTURESTAGE = 1048576

 DDSD_WIDTH = 4

 DDSD_ZBUFFERBITDEPTH = 64

End Enum

DDSD_ALL

Indicates that all input members are valid.

DDSD_ALPHABITDEPTH

Indicates that the lAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT

Indicates that the lBackBufferCount member is valid.

DDSD_CAPS

Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT

Indicates that the lHeight member is valid.

DDSD_LINEARSIZE

Not used.‹This will be implemented sometime after DX6 and beyond Indicates that lLinearSize member is valid.›

DDSD_LPSURFACE

Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT

Indicates that the lMipMapCount member is valid.

DDSD_PITCH

Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE

Indicates that the lRefreshRate member is valid.

DDSD_TEXTURESTAGE

Indicates that the lTextureStage member is valid.

DDSD_WIDTH

Indicates that the lWidth member is valid.

DDSD_ZBUFFERBITDEPTH

Indicates that the lZBufferBitDepth member is valid.

CONST_DDWAITVBFLAGS

[This is preliminary documentation and subject to change.]

The CONST_DDWAITVBFLAGS enumeration is used by the flags parameter of the DirectDraw4.WaitForVerticalBlank method to specify how long to wait for the vertical blank.

Enum CONST_DDWAITVBFLAGS

 DDWAITVB_BLOCKBEGIN = 1

 DDWAITVB_BLOCKBEGINEVENT = 2

 DDWAITVB_BLOCKEND = 4

End Enum

DDWAITVB_BLOCKBEGIN

Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKBEGINEVENT

Triggers an event when the vertical blank begins. This value is not currently supported.

DDWAITVB_BLOCKEND

Returns when the vertical-blank interval ends and the display begins.

Error Codes

[This is preliminary documentation and subject to change.]

Errors are represented by negative values and cannot be combined. This table lists the values that can be returned by all methods of the DirectDraw4, DirectDrawSurface4, DirectDrawPalette, and DirectDrawClipper objects. For a list of the error codes that each method can return, see the method description.

DD_OK

The request completed successfully.

DDERR_ALREADYINITIALIZED

The object has already been initialized.

DDERR_BLTFASTCANTCLIP

A DirectDrawClipper object is attached to a source surface that has passed into a call to the DirectDrawSurface4.BltFast method.

DDERR_CANNOTATTACHSURFACE

A surface cannot be attached to another requested surface.

DDERR_CANNOTDETACHSURFACE

A surface cannot be detached from another requested surface.

DDERR_CANTCREATEDC

Windows can not create any more device contexts (DCs), or a DC was requested for a palette-indexed surface when the surface had no palette and the display mode was not palette-indexed (in this case DirectDraw cannot select a proper palette into the DC).

DDERR_CANTDUPLICATE

Primary and 3-D surfaces, or surfaces that are implicitly created, cannot be duplicated.

DDERR_CANTLOCKSURFACE

Access to this surface is refused because an attempt was made to lock the primary surface without DCI support.

DDERR_CANTPAGELOCK

An attempt to page lock a surface failed. Page lock will not work on a display-memory surface or an emulated primary surface.

DDERR_CANTPAGEUNLOCK

An attempt to page unlock a surface failed. Page unlock will not work on a display-memory surface or an emulated primary surface.

DDERR_CLIPPERISUSINGHWND

An attempt was made to set a clip list for a DirectDrawClipper object that is already monitoring a window handle.

DDERR_COLORKEYNOTSET

No source color key is specified for this operation.

DDERR_CURRENTLYNOTAVAIL

No support is currently available.

DDERR_DCALREADYCREATED

A device context (DC) has already been returned for this surface. Only one DC can be retrieved for each surface.

DDERR_DEVICEDOESNTOWNSURFACE

Surfaces created by one DirectDraw device cannot be used directly by another DirectDraw device.

DDERR_DIRECTDRAWALREADYCREATED

A DirectDraw object representing this driver has already been created for this process.

DDERR_EXCEPTION

An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET

An attempt was made to set the cooperative level when it was already set to exclusive.

DDERR_EXPIRED

The data has expired and is therefore no longer valid.

DDERR_GENERIC

There is an undefined error condition.

DDERR_HEIGHTALIGN

The height of the provided rectangle is not a multiple of the required alignment.

DDERR_HWNDALREADYSET

The DirectDraw cooperative level window handle has already been set. It cannot be reset while the process has surfaces or palettes created.

DDERR_HWNDSUBCLASSED

DirectDraw is prevented from restoring state because the DirectDraw cooperative level window handle has been subclassed.

DDERR_IMPLICITLYCREATED

The surface cannot be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY

The primary surface creation request does not match with the existing primary surface.

DDERR_INVALIDCAPS

One or more of the capability bits passed to the callback function are incorrect.

DDERR_INVALIDCLIPLIST

DirectDraw does not support the provided clip list.

DDERR_INVALIDDIRECTDRAWGUID

The globally unique identifier (GUID) passed to the DirectX7.DirectDrawCreate function is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE

DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT

DirectDraw received a pointer that was an invalid DirectDraw object.

DDERR_INVALIDPARAMS

One or more of the parameters passed to the method are incorrect.

DDERR_INVALIDPIXELFORMAT

The pixel format was invalid as specified.

DDERR_INVALIDPOSITION

The position of the overlay on the destination is no longer legal.

DDERR_INVALIDRECT

The provided rectangle was invalid.

DDERR_INVALIDSTREAM

The specified stream contains invalid data.

DDERR_INVALIDSURFACETYPE

The requested operation could not be performed because the surface was of the wrong type.

DDERR_LOCKEDSURFACES

One or more surfaces are locked, causing the failure of the requested operation.

DDERR_MOREDATA

There is more data available than the specified buffer size can hold.

DDERR_NO3D

No 3-D hardware or emulation is present.

DDERR_NOALPHAHW

No alpha acceleration hardware is present or available, causing the failure of the requested operation.

DDERR_NOBLTHW

No blitter hardware is present.

DDERR_NOCLIPLIST

No clip list is available.

DDERR_NOCLIPPERATTACHED

No DirectDrawClipper object is attached to the surface object.

DDERR_NOCOLORCONVHW

The operation cannot be carried out because no color-conversion hardware is present or available.

DDERR_NOCOLORKEY

The surface does not currently have a color key.

DDERR_NOCOLORKEYHW

The operation cannot be carried out because there is no hardware support for the destination color key.

DDERR_NOCOOPERATIVELEVELSET

A create function is called without the DirectDraw4.SetCooperativeLevel method being called.

DDERR_NODC

No DC has ever been created for this surface.

DDERR_NODDROPSHW

No DirectDraw raster operation (ROP) hardware is available.

DDERR_NODIRECTDRAWHW

Hardware-only DirectDraw object creation is not possible; the driver does not support any hardware.

DDERR_NODIRECTDRAWSUPPORT

DirectDraw support is not possible with the current display driver.

DDERR_NOEMULATION

Software emulation is not available.

DDERR_NOEXCLUSIVEMODE

The operation requires the application to have exclusive mode, but the application does not have exclusive mode.

DDERR_NOFLIPHW

Flipping visible surfaces is not supported.

DDERR_NOFOCUSWINDOW

An attempt was made to create or set a device window without first setting the focus window.

DDERR_NOGDI

No GDI is present.

DDERR_NOHWND

Clipper notification requires a window handle, or no window handle has been previously set as the cooperative level window handle.

DDERR_NOMIPMAPHW

The operation cannot be carried out because no mipmap capable texture mapping hardware is present or available.

DDERR_NOMIRRORHW

The operation cannot be carried out because no mirroring hardware is present or available.

DDERR_NONONLOCALVIDMEM

An attempt was made to allocate non-local video memory from a device that does not support non-local video memory.

DDERR_NOOPTIMIZEHW

The device does not support optimized surfaces.

DDERR_NOOVERLAYDEST

The DirectDrawSurface4.UpdateOverlay method has not been called on to establish a destination.

DDERR_NOOVERLAYHW

The operation cannot be carried out because no overlay hardware is present or available.

DDERR_NOPALETTEATTACHED

No palette object is attached to this surface.

DDERR_NOPALETTEHW

There is no hardware support for 16- or 256-color palettes.

DDERR_NORASTEROPHW

The operation cannot be carried out because no appropriate raster operation hardware is present or available.

DDERR_NOROTATIONHW

The operation cannot be carried out because no rotation hardware is present or available.

DDERR_NOSTRETCHHW

The operation cannot be carried out because there is no hardware support for stretching.

DDERR_NOT4BITCOLOR

The DirectDrawSurface object is not using a 4-bit color palette and the requested operation requires a 4-bit color palette.

DDERR_NOT4BITCOLORINDEX

The DirectDrawSurface object is not using a 4-bit color index palette and the requested operation requires a 4-bit color index palette.

DDERR_NOT8BITCOLOR

The DirectDrawSurface object is not using an 8-bit color palette and the requested operation requires an 8-bit color palette.

DDERR_NOTAOVERLAYSURFACE

An overlay component is called for a non-overlay surface.

DDERR_NOTEXTUREHW

The operation cannot be carried out because no texture-mapping hardware is present or available.

DDERR_NOTFLIPPABLE

An attempt has been made to flip a surface that cannot be flipped.

DDERR_NOTFOUND

The requested item was not found.

DDERR_NOTINITIALIZED

An attempt was made to call an interface method of a DirectDraw object created by CoCreateInstance before the object was initialized.

DDERR_NOTLOADED

The surface is an optimized surface, but it has not yet been allocated any memory.

DDERR_NOTLOCKED

An attempt is made to unlock a surface that was not locked.

DDERR_NOTPAGELOCKED

An attempt is made to page unlock a surface with no outstanding page locks.

DDERR_NOTPALETTIZED

The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW

The operation cannot be carried out because there is no hardware support for vertical blank synchronized operations.

DDERR_NOZBUFFERHW

The operation to create a z-buffer in display memory or to perform a blit using a z-buffer cannot be carried out because there is no hardware support for z-buffers.

DDERR_NOZOVERLAYHW

The overlay surfaces cannot be z-layered based on the z-order because the hardware does not support z-ordering of overlays.

DDERR_OUTOFCAPS

The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY

DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY

DirectDraw does not have enough display memory to perform the operation.

DDERR_OVERLAPPINGRECTS

Operation could not be carried out because the source and destination rectangles are on the same surface and overlap each other.

DDERR_OVERLAYCANTCLIP

The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE

An attempt was made to have more than one color key active on an overlay.

DDERR_OVERLAYNOTVISIBLE

The method is called on a hidden overlay.

DDERR_PALETTEBUSY

Access to this palette is refused because the palette is locked by another thread.

DDERR_PRIMARYSURFACEALREADYEXISTS

This process has already created a primary surface.

DDERR_REGIONTOOSMALL

The region passed to the DirectDrawClipper.GetClipList method is too small.

DDERR_SURFACEALREADYATTACHED

An attempt was made to attach a surface to another surface to which it is already attached.

DDERR_SURFACEALREADYDEPENDENT

An attempt was made to make a surface a dependency of another surface to which it is already dependent.

DDERR_SURFACEBUSY

Access to the surface is refused because the surface is locked by another thread.

DDERR_SURFACEISOBSCURED

Access to the surface is refused because the surface is obscured.

DDERR_SURFACELOST

Access to the surface is refused because the surface memory is gone. Call the DirectDrawSurface4.Restore method on this surface to restore the memory associated with it.

DDERR_SURFACENOTATTACHED

The requested surface is not attached.

DDERR_TOOBIGHEIGHT

The height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE

The size requested by DirectDraw is too large. However, the individual height and width are valid sizes.

DDERR_TOOBIGWIDTH

The width requested by DirectDraw is too large.

DDERR_UNSUPPORTED

The operation is not supported.

DDERR_UNSUPPORTEDFORMAT

The FourCC format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMASK

The bitmask in the pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMODE

The display is currently in an unsupported mode.

DDERR_VERTICALBLANKINPROGRESS

A vertical blank is in progress.

DDERR_VIDEONOTACTIVE

The video port is not active.

DDERR_WASSTILLDRAWING

The previous blit operation that is transferring information to or from this surface is incomplete.

DDERR_WRONGMODE

This surface cannot be restored because it was created in a different mode.

DDERR_XALIGN

The provided rectangle was not horizontally aligned on a required boundary.

E_INVALIDINTERFACE

The specified interface is invalid or does not exist.

E_OUTOFMEMORY

Not enough free memory to complete the method.

Pixel Format Masks

[This is preliminary documentation and subject to change.]

This section contains information about the pixel formats supported by the hardware-emulation layer (HEL). The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Texture Map Formats

�SYMBOL 183 \f "Symbol" \s 11 \h �	Off-Screen Surface Formats

Texture Map Formats

[This is preliminary documentation and subject to change.]

A wide range of texture pixel formats are supported by the HEL. The following table shows these formats. The Masks column contains the red, green, blue, and alpha masks for each set of pixel format flags and bit depths.

Pixel format flags �Bit depth �Masks ����DDPF_RGB | �1�R: 0x00000000 ��DDPF_PALETTEINDEXED1 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �1�R: 0x00000000 ��DDPF_PALETTEINDEXED1 | ��G: 0x00000000 ��DDPF_PALETTEINDEXEDTO8 ��B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �2�R: 0x00000000 ��DDPF_PALETTEINDEXED2 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �2�R: 0x00000000 ��DDPF_PALETTEINDEXED2 | ��G: 0x00000000 ��DDPF_PALETTEINDEXEDTO8 ��B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �4�R: 0x00000000 ��DDPF_PALETTEINDEXED4 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �4�R: 0x00000000 ��DDPF_PALETTEINDEXED4 | ��G: 0x00000000 ��DDPF_PALETTEINDEXEDTO8 ��B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �8�R: 0x00000000 ��DDPF_PALETTEINDEXED8 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB �8 �R: 0x000000E0 �G: 0x0000001C �B: 0x00000003 �A: 0x00000000 ������DDPF_RGB | �16�R: 0x00000F00 ��DDPF_ALPHAPIXELS ��G: 0x000000F0 �B: 0x0000000F �A: 0x0000F000 ������DDPF_RGB �16�R: 0x0000F800 �G: 0x000007E0 �B: 0x0000001F �A: 0x00000000 ������DDPF_RGB �16�R: 0x0000001F �G: 0x000007E0 �B: 0x0000F800 �A: 0x00000000 ������DDPF_RGB �16�R: 0x00007C00 �G: 0x000003E0 �B: 0x0000001F �A: 0x00000000 ������DDPF_RGB | �16�R: 0x00007C00 ��DDPF_ALPHAPIXELS ��G: 0x000003E0 �B: 0x0000001F �A: 0x00008000 ������DDPF_RGB �24�R: 0x00FF0000 �G: 0x0000FF00 �B: 0x000000FF �A: 0x00000000 ������DDPF_RGB �24�R: 0x000000FF �G: 0x0000FF00 �B: 0x00FF0000 �A: 0x00000000 ������DDPF_RGB �32�R: 0x00FF0000 �G: 0x0000FF00 �B: 0x000000FF �A: 0x00000000 ������DDPF_RGB �32�R: 0x000000FF �G: 0x0000FF00 �B: 0x00FF0000 �A: 0x00000000 ������DDPF_RGB | �32�R: 0x00FF0000 ��DDPF_ALPHAPIXELS ��G: 0x0000FF00 �B: 0x000000FF �A: 0xFF000000 ������DDPF_RGB | �32�R: 0x000000FF ��DDPF_ALPHAPIXELS ��G: 0x0000FF00 �B: 0x00FF0000 �A: 0xFF000000 ��

The HEL can create these formats in system memory. The DirectDraw device driver for a 3-D–accelerated display card may create textures of other formats in display memory. Such a driver exports the DDSCAPS_TEXTURE flag to indicate that it can create textures.

Off-Screen Surface Formats

[This is preliminary documentation and subject to change.]

The following table shows the pixel formats for off-screen plain surfaces supported by the DirectX® 5 HEL. The Masks column contains the red, green, blue, and alpha masks for each set of pixel format flags and bit depths.

Pixel format flags �Bit depth �Masks ����DDPF_RGB | �1�R: 0x00000000 ��DDPF_PALETTEINDEXED1 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �2�R: 0x00000000 ��DDPF_PALETTEINDEXED2 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �4�R: 0x00000000 ��DDPF_PALETTEINDEXED4 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB | �8�R: 0x00000000 ��DDPF_PALETTEINDEXED8 ��G: 0x00000000 �B: 0x00000000 �A: 0x00000000 ������DDPF_RGB �16�R: 0x0000F800 �G: 0x000007E0 �B: 0x0000001F �A: 0x00000000 ������DDPF_RGB �16�R: 0x00007C00 �G: 0x000003E0 �B: 0x0000001F �A: 0x00000000 ������DDPF_RGB �24�R: 0x00FF0000 �G: 0x0000FF00 �B: 0x000000FF �A: 0x00000000 ������DDPF_RGB �24�R: 0x000000FF �G: 0x0000FF00 �B: 0x00FF0000 �A: 0x00000000 ������DDPF_RGB �32�R: 0x00FF0000 �G: 0x0000FF00 �B: 0x000000FF �A: 0x00000000 ������DDPF_RGB �32�R: 0x000000FF �G: 0x0000FF00 �B: 0x00FF0000 �A: 0x00000000 ������DDPF_RGB | �32�R: 0x0000F800 ��DDPF_ZPIXELS��G: 0x000007E0 �B: 0x0000001F �Z: 0xFFFF0000������DDPF_RGB | �32�R: 0x00007C00 ��DDPF_ZPIXELS��G: 0x000003E0 �B: 0x0000001F �Z: 0xFFFF0000��

In addition to supporting a wide range of off-screen surface formats, the HEL also supports surfaces intended for use by Direct3D, or other 3-D renderers.

Four Character Codes (FOURCC)

[This is preliminary documentation and subject to change.]

DirectDraw utilizes a special set of codes that are four characters in length. These codes, called four character codes or FOURCCs, are stored in file headers of files containing multimedia data such as bitmap images, sound, or video. FOURCCs describe the software technology that was used to produce multimedia data. By implication, they also describe the format of the data itself.

DirectDraw applications use FOURCCs for image color and format conversion. If an application calls the DirectDrawSurface4.GetPixelFormat method to request the pixel format of a surface whose format is not RGB, the lFourCC member of the DDPIXELFORMAT type identifies the FOURCC when the method returns. For more information, see Converting Color and Format.

In addition, the biCompression member of the BITMAPINFOHEADER type can be set to a FOURCC to indicate the codec used to compress or decompress an image.

FOURCCs are registered with Microsoft by the vendors of the respective multimedia software technologies. Some common FOURCCs appear in the following list.

FOURCC�Company�Technology Name������AUR2�AuraVision Corporation�AuraVision Aura 2: YUV 422��AURA�AuraVision Corporation�AuraVision Aura 1: YUV 411��CHAM�Winnov, Inc.�MM_WINNOV_CAVIARA_CHAMPAGNE��CVID�Supermac�Cinepak by Supermac��CYUV�Creative Labs, Inc�Creative Labs YUV��FVF1�Iterated Systems, Inc.�Fractal Video Frame��IF09�Intel Corporation�Intel Intermediate YUV9��IV31�Intel Corporation�Indeo 3.1��JPEG�Microsoft Corporation�Still Image JPEG DIB��MJPG�Microsoft Corporation�Motion JPEG Dib Format��MRLE�Microsoft Corporation�Run Length Encoding��MSVC�Microsoft Corporation�Video 1��PHMO�IBM Corporation�Photomotion��RT21�Intel Corporation�Indeo 2.1��ULTI�IBM Corporation�Ultimotion��V422�Vitec Multimedia�24 bit YUV 4:2:2��V655�Vitec Multimedia�16 bit YUV 4:2:2��VDCT�Vitec Multimedia�Video Maker Pro DIB��VIDS�Vitec Multimedia�YUV 4:2:2 CCIR 601 for V422��YU92�Intel Corporation�YUV��YUV8�Winnov, Inc.�MM_WINNOV_CAVIAR_YUV8��YUV9�Intel Corporation�YUV9��YUYV�Canopus, Co., Ltd.�BI_YUYV, Canopus��ZPEG�Metheus�Video Zipper��

DirectDraw Samples

[This is preliminary documentation and subject to change.]

This section gives brief descriptions of sample applications in the DirectX Programmer's Reference primarily intended to demonstrate the DirectDraw component. The following sample programs are included:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEnum Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEx1 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEx2 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEx3 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEx4 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDEx5 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DDOverlay Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Donut Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Flip2D Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	FSWindow Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Font Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Memtime Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mosquito Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Multimonitor Space Donuts Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Space Donuts Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Stretch Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Stretch2 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Stretch3 Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Switcher Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Wormhole Sample

Although DirectX samples include Microsoft® Visual C++® project workspace files, you might need to verify other settings in your development environment to ensure that the samples compile properly. For more information, see Compiling DirectX Samples and Other DirectX Applications.

DDEnum Sample

[This is preliminary documentation and subject to change.]

Description

This sample shows how to enumerate the current DirectDraw devices and how to get information using the IDirectDraw4::GetDeviceIdentifier method.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\DDEnum

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

The user interface is a simple dialog box. Two buttons, Prev and Next, display information for the previous or next device that was enumerated. Click the Close button to exit the application.

DDEx1 Sample

[This is preliminary documentation and subject to change.]

Description

DDEx1 demonstrates the tasks required to initialize and run a DirectDraw application.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex1

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

DDEx1 requires no user input. Press the F12 key or the ESC key to quit the program.

Programming Notes

This program shows how to initialize DirectDraw and create a DirectDraw surface. It creates a back buffer and uses page flipping to alternately display the contents of the front and back buffers. Other techniques demonstrated include color fills and using GDI functions on a DirectDraw surface.

DDEx2 Sample

[This is preliminary documentation and subject to change.]

Description

The DDEx2 program is an extension of DDEx1 that adds a bitmap.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex2

Executable: (SDK root)\Samples\Multimedia\DDraw\bin

User's Guide

DDEx2 requires no user input. Press F12 or ESC to quit the program.

Programming Notes

DDEx2 shows how to set a palettized video mode. Routines in DDutil.cpp load a bitmap file and copy it to a DirectDraw surface.

DDEx3 Sample

[This is preliminary documentation and subject to change.]

Description

The DDEx3 program is an extension of DDEx2. This example demonstrates the use of off-screen surfaces.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex3

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

DDEx3 requires no user input. Press F12 or ESC to quit the program.

The program requires at least 1.2 MB of video RAM.

Programming Notes

In addition to the front and back buffers, the program creates two off-screen surfaces and loads bitmaps into them. It calls the IDirectDrawSurface4::BltFast method to copy the contents of an off-screen surface to the back buffer, alternating the source surface on each frame. After it blits the bitmap to the back buffer, DDEx3 flips the front and back buffers.

DDEx4 Sample

[This is preliminary documentation and subject to change.]

Description

The DDEx4 program is an extension of DDEx3. It demonstrates a simple animation technique.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex4

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

DDEx4 requires no user input. Press F12 or ESC to quit the program.

This program requires at least 1.2 MB of video RAM.

Programming Notes

Unlike DDEx3, the DDEx4 program creates only one off-screen surface. It loads a bitmap containing a series of animation images onto this surface. To create the animation, it blits portions of the off-screen surface to the back buffer, then flips the front and back buffers.

The blitting routines illustrate the use of a source color key to create a sprite with a transparent background.

DDEx5 Sample

[This is preliminary documentation and subject to change.]

Description

The DDEx5 program is an extension of DDEx4. It demonstrates a simple palette manipulation.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex5

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

DDEx4 requires no user input. Press F12 or ESC to quit the program.

This program requires at least 1.2 MB of video RAM.

Programming Notes

The program uses IDirectDrawPalette::GetEntries to read a palette, modifies the entries, and then uses IDirectDrawPalette::SetEntries to update the palette.

DDOverlay Sample

[This is preliminary documentation and subject to change.]

Description

This sample application demonstrates the use of overlays in a windowed DirectDraw application.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\DDovrly

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Your hardware must support overlays in order for the program to run.

Try moving, resizing, and minimizing and restoring the window. Press ALT+F4 or click the Close button to quit.

Programming Notes

The program checks for overlay support, loads a bitmap into an overlay surface, and updates the window from the overlay surface in response to Windows messages.

Donut Sample

[This is preliminary documentation and subject to change.]

Description

The Donut program uses DirectDraw to display an animated sprite directly on the screen. In non-exclusive mode, the sprite appears on top of the desktop and any windows. In exclusive mode, it appears on an otherwise blank screen.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Donut

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

The Donut application requires no user input. Press F12 or ESC to quit. Note that because the program does not run in a window, you may have to switch to it by using the taskbar or ALT+TAB before you can close it.

You can specify various command line switches to modify the operational characteristics of this program. Each command line switch consists of one character, and need not be preceded with a hyphen or slash. Alphabetical characters must be capitals. The switches are as follows:

0�Default. Display the donut in the left position. ��1�Display the donut in the middle position.��2�Display the donut in the right position. ��X�Use exclusive mode. The default is non-exclusive mode.��A�Switch to 640x480x8 resolution and use exclusive mode.��B�Switch to 800x600x8 resolution and use exclusive mode.��C�Switch to 1024x768x8 resolution and use exclusive mode.��D�Switch to 1280x1024x8 resolution and use exclusive mode.��

The switches can be combined. If you specify two or more command line switches that contradict each other, the last switch is used.

If you run the program in non-exclusive mode, it attempts to continue to run even when it loses focus. If you run it in exclusive mode, it does not attempt to modify the screen when it doesn't have focus.

Programming Notes

The Donut program creates a primary DirectDraw surface and two off-screen surfaces. Animation images are blitted from the off-screen surfaces directly to the primary surface during each frame.

The program demonstrates how DirectX applications can set the video mode based on user input. It is also useful for testing multiple exclusive mode applications interacting with multiple non-exclusive mode applications.

Flip2D Sample

[This is preliminary documentation and subject to change.]

Description

This sample program demonstrates DirectDraw animation using surface flipping.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Flip2d

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

The Flip2D program displays and animates a cube. You can change the screen mode by pressing the F10 key and selecting a resolution and color depth value from the Modes menu. Use the Cube menu or the keyboard shortcuts to increase (F7) or decrease (F8) the displayed size of the cube, or to switch to GDI drawing on the primary surface (F9).

Programming Notes

Normally the cube is rendered on the back buffer and then the surface is flipped to the front. You can compare the results with those from rendering directly on to the front surface by choosing GDI drawing.

The palette that the Flip2D program uses for 8-bpp modes is red, green and blue wash. There isn't enough room in the palette for yellow, orange, and purple. In 8-bpp modes the Flip2D sample application maps yellow, orange and purple to red. If you select DrawWithGDI from the Cube menu, yellow, orange, purple are drawn without very many shades. This is because the program is using system colors, and there are only a few shades of yellow, orange, and purple available in the system palette.

Font Sample

[This is preliminary documentation and subject to change.]

Description

This sample program shows how to directly lock and access video memory, using text generated from a GDI font. There are much better ways to draw text into a DirectDrawSurface, and the only point of this sample is to show exactly how to lock and access the video memory directly.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Font

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

The program repeatedly updates a text string in the Arial font and moves it randomly about the screen. No user input is required. Quit by closing the window.

Programming Notes

The program creates a font in a memory device context and a DIB section, and uses them to get access to the pixels once GDI has drawn them. The text bitmap is then put on the primary surface with a straight memory copy. It could easily be moved instead to an off-screen surface which could then be blitted as needed, transparently or not.

FSWindow Sample

[This is preliminary documentation and subject to change.]

Description

This sample shows how you can bring up a dialog box, or any other type of window, while your application is running in DirectDraw's full-screen exclusive mode. Even devices that are non-GDI are detected and supported by creating a bitmap from their window contents and then blitting that to the device.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\FSWindow

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

If you have more than one device, the sample starts by displaying a dialog box so that you can select which device to run the sample on. It then switches to full-screen exclusive mode and displays a dialog box and the mouse cursor.

Click on the Cancel or OK button to close the dialog and hide the mouse cursor. Press F1 to bring the dialog and cursor back. Press Esc to exit the program when the dialog is no longer displayed.

Programming Notes

Most of the important code is in the Fswindow.cpp file.

The sample uses just the dynamic content mode, which constantly refreshes the dialog box to show which controls have focus, text in the edit field, and so on. The static content mode consumes less CPU time and would be good for pop-up windows that display help messages, for example.

It is important to understand that the content window can be any type of window. It could be an HTML Help window, or a window with a rich edit control to display formatted text. The window does not need to have a square clipping region; it could have a complex clipping region that fits the shape of the window you want to display.

Memtime Sample

[This is preliminary documentation and subject to change.]

Description

The Memtime sample program is intended to be a demonstration of the advantages and disadvantages of various drawing methods. It runs a series of tests of memory bandwidth and displays a report.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\MemTime

Executable: None.

User's Guide

Choose Time All from the main menu to begin the tests. Note that your screen will change resolution during the tests. It will also go blank for short periods of time.

Programming Notes

The sample is not intended as an example of particular techniques in DirectDraw programming. Of more interest are the results of the memory tests.

Mosquito Sample

[This is preliminary documentation and subject to change.]

Description

This program demonstrates DirectDraw animation using overlays.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Mosquito

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

To run the Mosquito application, you must have a display adapter that supports overlays. On a computer with overlay support, the program creates a large mosquito that flies around the screen. If your display adapter card doesn't support source color keying for overlays, you'll see an ugly, black, rectangular background around the mosquito.

Some cards have better overlay support in certain resolutions that others. If you know your card has overlay support through DirectDraw, but the Mosquito program is having problems creating or displaying the overlay, try switching to a lower screen resolution or color depth and restarting the application.

Programming Notes

The program creates a complex overlay surface and animates by flipping.

Multimonitor Space Donuts Sample

[This is preliminary documentation and subject to change.]

Description

This version of Space Donuts demonstrates the multimonitor capabilities of DirectX.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\MultiNut

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

In order to run the program, you must have Windows 2000 or Windows 98 configured for multiple monitors.

The program will run on up to nine monitors. The play area is determined by the monitor configuration of your Windows desktop, which may be adjusted on the Settings tab of the Display Control Panel. The amount of video RAM you have on each video card will determine the maximum resolutions at which you will experience a reasonable frame rate. If the frame rate is slow, try exiting, lowering the resolution or color depth of your windows desktop, and restart.

Multimonitor Space Donuts supports two command-line switches:

-w#�Put monitor number # in windowed mode��-s�Turn sound off��

For information on the keyboard interface, see Space Donuts.

Space Donuts Sample

[This is preliminary documentation and subject to change.]

Description

This simple game shows how to combine DirectDraw, DirectInput, and DirectSound. Although it demonstrates other DirectX components, it is primarily intended to show how to animate multiple sprites.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Donuts

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Input is from the keyboard by default, but you can select a joystick from the Game menu.

The commands are listed on the opening screen. All numbers must be entered from the numeric keypad. "Joy" refers to a joystick button.

Key�Command����ESC, F12�Quit��4�Turn left��6�Turn right��5 (Joy 3)�Stop��8�Accelerate forward��2�Accelerate backward��7 (Joy 2)�Shield��SPACEBAR (Joy 1)�Fire��ENTER�Start game��F1�Toggle trailing afterimage effect on/off��F3�Turn audio on/off��F5�Toggle frame rate display on/off��F10�Main menu��

Space Donuts defaults to 640x480 at 256 colors. You can specify a different resolution and pixel depth on the command line.

The game uses the following command line switches, which are case-sensitive:

e�Use software emulation, not hardware acceleration��t�Test mode, no input required��x�Stress mode. Never stop if you can help it��S�Turn sound off/on��

These switches may be followed by three option numbers representing x-resolution, y-resolution, and bits per pixel. For example:

donuts -S 800 600 16

Programming Notes

This game demonstrates many of the features of DirectDraw. It takes advantage of hardware acceleration if it is supported by the driver.

The program requires less than 1 MB of video RAM.

The sound code is deliberately designed to stress the DirectSound API. It is not intended to be a demonstration of how to use DirectSound API efficiently. For example, each bullet on the screen uses a different sound buffer. Space Donuts creates over 70 sound buffers (including duplicates), and between 20 to 25 may be playing at any time.

The sounds are implemented using the helper functions in Dsutil.h and Dsutil.c (found in the Sdk\Samples\Misc directory). These functions might help you to add sound to your application quickly and easily.

Stretch Sample

[This is preliminary documentation and subject to change.]

Description

The Stretch sample application program illustrates stretching and clipping while blitting a bitmap image.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Stretch

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Stretch must be run in a video mode that uses 8 bits per pixel. It will not work properly in other video modes.

The program displays a red torus moving in its client window. Control the rotational speed with the Stop, Slow, and Fast options in the Rotation menu. Alter the size of the window by selecting items from the Size menu, or by resizing the window with the mouse.

Programming Notes

Any time you resize the Stretch program window to a size other than 1x1, you are using the image stretching capabilities of the DirectDraw blitting methods.

The clipper for the primary surface is set to the client window. To demonstrate clipping, partially overlap another window over the Stretch program's window. When Stretch blits the bitmap, the portion of the bitmap that would fall within the other window is clipped.

Stretch2 Sample

[This is preliminary documentation and subject to change.]

Description

Stretch2 is an extension of the Stretch program. In addition to the capabilities of the Stretch example, Stretch2 illustrates how an application can use DirectDraw on multiple monitors.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Stretch2

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Resize the window to see the bitmap stretch. If you have more than one monitor attached to your computer, the window can be dragged from monitor to monitor.

Programming Notes

Look at how the application handles WM_MOVE to detect when the window moves monitors. Also note how it converts from window client coordinates to device coordinates.

Multimon.h contains stub functions that enable the program to run on Windows 95 or Windows NT 4.0.

Stretch3 Sample

[This is preliminary documentation and subject to change.]

Description

The Stretch3 application is an improved version of the Stretch2 program. It demonstrates more complex handling of DirectDraw images on multiple monitors.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Stretch3

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Resize the window to see the bitmap stretch. If you have more than one monitor attached to your computer, the window can be dragged from monitor to monitor.

Switcher Sample

[This is preliminary documentation and subject to change.]

Description

This sample shows how to switch between the normal and exclusive cooperative levels in DirectDraw.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Switcher

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Press ALT+ENTER to switch between full-screen and windowed mode. Quit the program by pressing ESC.

Programming Notes

In normal (windowed) mode, the sample assigns a clipper, shows the mouse cursor, and handles window moves, WM_PAINT messages, and pausing caused by losing focus to other applications. In exclusive (full-screen) mode it uses page flipping rather than blitting to update the scene.

Wormhole Sample

[This is preliminary documentation and subject to change.]

Description

This sample program shows how palette changes can create an animated effect.

Path

Source: (SDK root)\Samples\Multimedia\DDraw\Src\Wormhole

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide

Press F12 or ESC to quit the program.

Programming Notes

Imagine a 4x4 display using 4 colors. We could set the colors up to look something like this:

�

Now we can cycle all of the colors in each row to the right. The one on the right will wrap-around to the left.

�

If we continue this cycling we would get animated lines moving to the right. The same can be done to animate the lines going down:

�

Now if we expand our palette to 16 color we can combine moving down and right at the same time.

Move right:

�

Move down:

�

Move right and down:

�

Now if you tile these 4x4 blocks end to end and cycle the colors as above, you get a moving checkerboard. Wormhole does the same thing, except that it uses 15x15 blocks (225 colors) and instead of tiling the blocks end to end on a flat plane, it tiles them in 3-D converging at the center of the wormhole.

The following code will generate the 3-D wormhole using the aforementioned 15x15 grids:

//Do all the work!

//convert r,theta,z to x,y,x to screen x,y

//plot the point

//z=-1.0+(log(2.0*j/DIVS) is the line that sets the math eqn for plot

//Feel free to try other functions!

//Cylindrical coordinates, e.g. z=f(r,theta)

#define STRETCH 25

#define PI 3.14159265358979323846

#define XCENTER 160

#define YCENTER 50

#define DIVS 1200

#define SPOKES 2400

void transarray(void)

 {

 float x,y,z;

 int i,j,color;

 for(j=1;j<DIVS+1;j++)

 for(i=0;i<SPOKES;i++)

 {

 z=-1.0+(log(2.0*j/DIVS));

 x=(320.0*j/DIVS*cos(2*PI*i/SPOKES));

 y=(240.0*j/DIVS*sin(2*PI*i/SPOKES));

 y=y-STRETCH*z;

 x+=XCENTER;

 y+=YCENTER;

 color=((i/8)%15)+15*((j/6)%15)+1;

 if ((x>=0)&&(x<=320)&&(y>=0)&&(y<=200))

 plot((int) x,(int) y,color);

 }

 }

After loading the bitmap to a DirectDraw surface, all that is left to do is rotate the colors and you have a wormhole.

IDH__dx_DirectDraw4_ddraw_vb

IDH__dx_DirectDraw4.CreateClipper_ddraw_vb

IDH__dx_DirectDraw4.CreatePalette_ddraw_vb

IDH__dx_DirectDraw4.CreateSurface_ddraw_vb

IDH__dx_DirectDraw4.CreateSurfaceFromFile_ddraw_vb

IDH__dx_DirectDraw4.CreateSurfaceFromResource_ddraw_vb

IDH__dx_DirectDraw4.DuplicateSurface_ddraw_vb

IDH__dx_DirectDraw4.FlipToGDISurface_ddraw_vb

IDH__dx_DirectDraw4.GetAvailableTotalMem_ddraw_vb

IDH__dx_DirectDraw4.GetCaps_ddraw_vb

IDH__dx_DirectDraw4.GetDirect3D_ddraw_vb

IDH__dx_DirectDraw4.GetDisplayMode_ddraw_vb

IDH__dx_DirectDraw4.GetDisplayModesEnum_ddraw_vb

IDH__dx_DirectDraw4.GetFourCCCodes_ddraw_vb

IDH__dx_DirectDraw4.GetFreeMem_ddraw_vb

IDH__dx_DirectDraw4.GetGDISurface_ddraw_vb

IDH__dx_DirectDraw4.GetMonitorFrequency_ddraw_vb

IDH__dx_DirectDraw4.GetNumFourCCCodes_ddraw_vb

IDH__dx_DirectDraw4.GetScanLine_ddraw_vb

IDH__dx_DirectDraw4.GetSurfaceFromDC_ddraw_vb

IDH__dx_DirectDraw4.GetSurfacesEnum_ddraw_vb

IDH__dx_DirectDraw4.GetVerticalBlankStatus_ddraw_vb

IDH__dx_DirectDraw4.LoadPaletteFromBitmap_ddraw_vb

IDH__dx_DirectDraw4.RestoreAllSurfaces_ddraw_vb

IDH__dx_DirectDraw4.RestoreDisplayMode_ddraw_vb

IDH__dx_DirectDraw4.SetCooperativeLevel_ddraw_vb

IDH__dx_DirectDraw4.SetDisplayMode_ddraw_vb

IDH__dx_DirectDraw4.TestCooperativeLevel_ddraw_vb

IDH__dx_DirectDraw4.WaitForVerticalBlank_ddraw_vb

IDH__dx_DirectDrawClipper_ddraw_vb

IDH__dx_DirectDrawClipper.GetClipList_ddraw_vb

IDH__dx_DirectDrawClipper.GetClipListSize_ddraw_vb

IDH__dx_DirectDrawClipper.GetHWnd_ddraw_vb

IDH__dx_DirectDrawClipper.IsClipListChanged_ddraw_vb

IDH__dx_DirectDrawClipper.SetClipList_ddraw_vb

IDH__dx_DirectDrawClipper.SetHWnd_ddraw_vb

IDH__dx_DirectDrawColorControl_ddraw_vb

IDH__dx_DirectDrawColorControl.GetColorControls_ddraw_vb

IDH__dx_DirectDrawColorControl.SetColorControls_ddraw_vb

IDH__dx_DirectDrawEnum_ddraw_vb

IDH__dx_DirectDrawEnum.GetCount_ddraw_vb

IDH__dx_DirectDrawEnum.GetDescription_ddraw_vb

IDH__dx_DirectDrawEnum.GetGuid_ddraw_vb

IDH__dx_DirectDrawEnum.GetName_ddraw_vb

IDH__dx_DirectDrawEnumModes_ddraw_vb

IDH__dx_DirectDrawEnumModes.GetCount_ddraw_vb

IDH__dx_DirectDrawEnumModes.GetItem_ddraw_vb

IDH__dx_DirectDrawEnumSurfaces_ddraw_vb

IDH__dx_DirectDrawEnumSurfaces.GetCount_ddraw_vb

IDH__dx_DirectDrawEnumSurfaces.GetItem_ddraw_vb

IDH__dx_DirectDrawGammaControl_ddraw_vb

IDH__dx_DirectDrawGammaControl.GetGammaRamp_ddraw_vb

IDH__dx_DirectDrawGammaControl.SetGammaRamp_ddraw_vb

IDH__dx_DirectDrawPalette_ddraw_vb

IDH__dx_DirectDrawPalette.GetCaps_ddraw_vb

IDH__dx_DirectDrawPalette.GetEntries_ddraw_vb

IDH__dx_DirectDrawPalette.SetEntries_ddraw_vb

IDH__dx_DirectDrawSurface4_ddraw_vb

IDH__dx_DirectDrawSurface4.AddAttachedSurface_ddraw_vb

IDH__dx_DirectDrawSurface4.Blt_ddraw_vb

IDH__dx_DirectDrawSurface4.BltColorFill_ddraw_vb

IDH__dx_DirectDrawSurface4.BltFast_ddraw_vb

IDH__dx_DirectDrawSurface4.BltFx_ddraw_vb

IDH__dx_DirectDrawSurface4.BltToDC_ddraw_vb

IDH__dx_DirectDrawSurface4.ChangeUniquenessValue_ddraw_vb

IDH__dx_DirectDrawSurface4.DeleteAttachedSurface_ddraw_vb

IDH__dx_DirectDrawSurface4.DrawBox_ddraw_vb

IDH__dx_DirectDrawSurface4.DrawCircle_ddraw_vb

IDH__dx_DirectDrawSurface4.DrawEllipse_ddraw_vb

IDH__dx_DirectDrawSurface4.DrawLine_ddraw_vb

IDH__dx_DirectDrawSurface4.DrawRoundedBox_ddraw_vb

IDH__dx_DirectDrawSurface4.DrawText_ddraw_vb

IDH__dx_DirectDrawSurface4.Flip_ddraw_vb

IDH__dx_DirectDrawSurface4.GetAttachedSurface_ddraw_vb

IDH__dx_DirectDrawSurface4.GetAttachedSurfaceEnum_ddraw_vb

IDH__dx_DirectDrawSurface4.GetBltStatus_ddraw_vb

IDH__dx_DirectDrawSurface4.GetCaps_ddraw_vb

IDH__dx_DirectDrawSurface4.GetClipper_ddraw_vb

IDH__dx_DirectDrawSurface4.GetColorKey_ddraw_vb

IDH__dx_DirectDrawSurface4.GetDC_ddraw_vb

IDH__dx_DirectDrawSurface4.GetDirectDraw_ddraw_vb

IDH__dx_DirectDrawSurface4.GetDirectDrawColorControl_ddraw_vb

IDH__dx_DirectDrawSurface4.GetDirectDrawGammaControl_ddraw_vb

IDH__dx_DirectDrawSurface4.GetDrawStyle_ddraw_vb

IDH__dx_DirectDrawSurface4.GetDrawWidth_ddraw_vb

IDH__dx_DirectDrawSurface4.GetFillColor_ddraw_vb

IDH__dx_DirectDrawSurface4.GetFillStyle_ddraw_vb

IDH__dx_DirectDrawSurface4.GetFlipStatus_ddraw_vb

IDH__dx_DirectDrawSurface4.GetFontTransparency_ddraw_vb

IDH__dx_DirectDrawSurface4.GetForeColor_ddraw_vb

IDH__dx_DirectDrawSurface4.GetLockedPixel_ddraw_vb

IDH__dx_DirectDrawSurface4.GetLockedSurfaceBits_ddraw_vb

IDH__dx_DirectDrawSurface4.GetOverlayZOrdersEnum_ddraw_vb

IDH__dx_DirectDrawSurface4.GetPalette_ddraw_vb

IDH__dx_DirectDrawSurface4.GetPixelFormat_ddraw_vb

IDH__dx_DirectDrawSurface4.GetSurfaceDesc_ddraw_vb

IDH__dx_DirectDrawSurface4.GetTexture_ddraw_vb

IDH__dx_DirectDrawSurface4.GetUniquenessValue_ddraw_vb

IDH__dx_DirectDrawSurface4.IsLost_ddraw_vb

IDH__dx_DirectDrawSurface4.Lock_ddraw_vb

IDH__dx_DirectDrawSurface4.ReleaseDC_ddraw_vb

IDH__dx_DirectDrawSurface4.Restore_ddraw_vb

IDH__dx_DirectDrawSurface4.SetClipper_ddraw_vb

IDH__dx_DirectDrawSurface4.SetColorKey_ddraw_vb

IDH__dx_DirectDrawSurface4.SetDrawStyle_ddraw_vb

IDH__dx_DirectDrawSurface4.SetDrawWidth_ddraw_vb

IDH__dx_DirectDrawSurface4.SetFillColor_ddraw_vb

IDH__dx_DirectDrawSurface4.SetFillStyle_ddraw_vb

IDH__dx_DirectDrawSurface4.SetFont_ddraw_vb

IDH__dx_DirectDrawSurface4.SetFontTransparency_ddraw_vb

IDH__dx_DirectDrawSurface4.SetForeColor_ddraw_vb

IDH__dx_DirectDrawSurface4.SetLockedPixel_ddraw_vb

IDH__dx_DirectDrawSurface4.SetLockedSurfaceBits_ddraw_vb

IDH__dx_DirectDrawSurface4.SetPalette_ddraw_vb

IDH__dx_DirectDrawSurface4.Unlock_ddraw_vb

IDH__dx_DirectDrawSurface4.UpdateOverlay_ddraw_vb

IDH__dx_DirectDrawSurface4.UpdateOverlayZOrder_ddraw_vb

IDH__dx_DDBLTFX_ddraw_vb

IDH__dx_DDCAPS_ddraw_vb

IDH__dx_DDCOLORCONTROL_ddraw_vb

IDH__dx_DDCOLORKEY_ddraw_vb

IDH__dx_DDGAMMARAMP_ddraw_vb

IDH__dx_DDPIXELFORMAT_ddraw_vb

IDH__dx_DDSCAPS2_ddraw_vb

IDH__dx_DDSURFACEDESC2_ddraw_vb

IDH__dx_DXDRIVERINFO_ddraw_vb

IDH__dx_PALETTEENTRY_ddraw_vb

IDH__dx_RECT_ddraw_vb

IDH__dx_CONST_DDBITDEPTHFLAGS_ddraw_vb

IDH__dx_CONST_DDBLTFASTFLAGS_ddraw_vb

IDH__dx_CONST_DDBLTFLAGS_ddraw_vb

IDH__dx_CONST_DDBLTFXFLAGS_ddraw_vb

IDH__dx_CONST_DDCAPS1FLAGS_ddraw_vb

IDH__dx_CONST_DDCAPS2FLAGS_ddraw_vb

IDH__dx_CONST_DDCKEYCAPSFLAGS_ddraw_vb

IDH__dx_CONST_DDCKEYFLAGS_ddraw_vb

IDH__dx_CONST_DDCOLORFLAGS_ddraw_vb

IDH__dx_CONST_DDEDMFLAGS_ddraw_vb

IDH__dx_CONST_DDENUMOVERLAYZFLAGS_ddraw_vb

IDH__dx_CONST_DDENUMSURFACESFLAGS_ddraw_vb

IDH__dx_CONST_DDFLIPFLAGS_ddraw_vb

IDH__dx_CONST_DDFXALPHACAPSFLAGS_ddraw_vb

IDH__dx_CONST_DDFXCAPSFLAGS_ddraw_vb

IDH__dx_CONST_DDGBSFLAGS_ddraw_vb

IDH__dx_CONST_DDGFSFLAGS_ddraw_vb

IDH__dx_CONST_DDLOCKFLAGS_ddraw_vb

IDH__dx_CONST_DDOVERFLAGS_ddraw_vb

IDH__dx_CONST_DDOVERLAYFXFLAGS_ddraw_vb

IDH__dx_CONST_DDOVERZFLAGS_ddraw_vb

IDH__dx_CONST_DDPCAPSFLAGS_ddraw_vb

IDH__dx_CONST_DDPIXELFORMATFLAGS_ddraw_vb

IDH__dx_CONST_DDRAW_ddraw_vb

IDH__dx_CONST_DDSCLFLAGS_ddraw_vb

IDH__dx_CONST_DDSDMFLAGS_ddraw_vb

IDH__dx_CONST_DDSGRFLAGS_ddraw_vb

IDH__dx_CONST_DDSTEREOCAPSFLAGS_ddraw_vb

IDH__dx_CONST_DDSURFACECAPS2FLAGS_ddraw_vb

IDH__dx_CONST_DDSURFACECAPSFLAGS_ddraw_vb

IDH__dx_CONST_DDSURFACEDESCFLAGS_ddraw_vb

IDH__dx_CONST_DDWAITVBFLAGS_ddraw_vb

� FILENAME * MERGEFORMAT �DDOVER.doc� – page � PAGE * MERGEFORMAT �2�

� FILENAME * MERGEFORMAT �DDOVER.doc� – page � PAGE * MERGEFORMAT �3�

