DirectDraw

[This is preliminary documentation and subject to change.]

This section provides information about the DirectDraw® component of the
DirectX® application programming interface (API). Information is divided into the
following groups:

® About DirectDraw

® Why Use DirectDraw?

® QGetting Started: Basic Graphics Concepts
® DirectDraw Architecture

® DirectDraw Essentials

® DirectDraw Tutorials

® DirectDraw Reference

® DirectDraw Samples

About DirectDraw

[This is preliminary documentation and subject to change.]

DirectDraw® is the component of the DirectX® application programming interface
(API) that allows you to directly manipulate display memory, the hardware blitter,
hardware overlay support, and flipping surface support. DirectDraw provides this
functionality while maintaining compatibility with existing Microsoft® Windows®-
based applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices
while maintaining compatibility with the Windows graphics device interface (GDI).
It is not a high-level application programming interface (API) for graphics.
DirectDraw provides a device-independent way for games and Windows subsystem
software, such as three-dimensional (3-D) graphics packages and digital video
codecs, to gain access to the features of specific display devices.

DirectDraw works with a wide variety of display hardware, ranging from simple
SVGA monitors to advanced hardware implementations that provide clipping,
stretching, and non-RGB color format support. The interface is designed so that your
applications can enumerate the capabilities of the underlying hardware and then use
any supported hardware-accelerated features. Features that are not implemented in
hardware are emulated by DirectX.

DirectDraw provides device-dependent access to display memory in a device-
independent way. Essentially, DirectDraw manages display memory. Your
application need only recognize some basic device dependencies that are standard

in.doc — page 2

across hardware implementations, such as RGB and YUV color formats and the
pitch between raster lines. You need not call specific procedures to use the blitter or
manipulate palette registers. Using DirectDraw, you can manipulate display memory
with ease, taking full advantage of the blitting and color decompression capabilities
of different types of display hardware without becoming dependent on a particular
piece of hardware.

DirectDraw provides world-class game graphics on computers running Windows 95
and later and Windows NT® version 4.0 or Windows 2000.

Why Use DirectDraw?

[This is preliminary documentation and subject to change.]

The DirectDraw component brings many powerful features to you, the Windows
graphics programmer:

® The hardware abstraction layer (HAL) of DirectDraw provides a consistent
interface through which to work directly with the display hardware, getting
maximum performance.

® DirectDraw assesses the video hardware's capabilities, making use of special
hardware features whenever possible. For example, if your video card supports
hardware blitting, DirectDraw delegates blits to the video card, greatly
increasing performance. Additionally, DirectDraw provides a hardware
emulation layer (HEL) to support features when the hardware does not.

® DirectDraw exists under Windows, gaining the advantage of 32-bit memory
addressing and a flat memory model that the operating system provides.
DirectDraw presents video and system memory as large blocks of storage, not as
small segments. If you've ever used segment:offset addressing, you will quickly
begin to appreciate this "flat" memory model.

¢ DirectDraw makes it easy for you to implement page flipping with multiple
back buffers in full-screen applications. For more information, see Page Flipping
and Back Buffering.

® Support for clipping in windowed or full-screen applications.

® Support for 3-D z-buffers.

® Support for hardware-assisted overlays with z-ordering.

® Access to image-stretching hardware.

¢ Simultaneous access to standard and enhanced display-device memory areas.

® Other features include custom and dynamic palettes, exclusive hardware access,
and resolution switching.

These features combine to make it possible for you to write applications that easily
outperform standard Windows GDI-based applications and even MS-DOS
applications.

in.doc — page 3

Getting Started: Basic
Graphics Concepts

[This is preliminary documentation and subject to change.]

This section provides an overview of graphics programming with DirectDraw. Each
concept discussed here begins with a non-technical overview, followed by some
specific information about how DirectDraw supports it.

You don't need to be a graphics guru to benefit from this overview—in fact, if you
are one you might want to skip this section entirely and move on to the more
detailed information in the DirectDraw Essentials section. If you're familiar with
Windows programming in C and C++, you won't have difficulty digesting this
information. When you finish reading these topics, you will have a solid
understanding of basic DirectDraw graphics programming concepts.

The following topics are discussed:

® Device-Independent Bitmaps

® Drawing Surfaces

® Blitting

® Page Flipping and Back Buffering

® Introduction to Rectangles

Device-Independent Bitmaps

[This is preliminary documentation and subject to change.]

Windows, and therefore DirectX, uses the device-independent bitmap (DIB) as its
native graphics file format. Essentially, a DIB is a file that contains information
describing an image's dimensions, the number of colors it uses, values describing
those colors, and data that describes each pixel. Additionally, a DIB contains some
lesser-used parameters, like information about file compression, significant colors (if
all are not used), and physical dimensions of the image (in case it will end up in
print). DIB files usually have the .bmp file extension, although they might
occasionally have a .dib extension.

[CHt]

Because the DIB is so pervasive in Windows programming, the Platform SDK
already contains many functions that you can use with DirectX. For example, the
following application-defined function, taken from the Ddutil.cpp file that comes
with the DirectX APIs in the Platform SDK, combines Win32® and DirectX
functions to load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(IDirectDraw *pdd,
LPCSTR szBitmap, int dx, int dy)
{

in.doc — page 4

HBITMAP hbm;
BITMAP bm;
DDSURFACEDESC ddsd;
IDirectDrawSurface *pdds;

1

/I This is the Win32 part.

/I Try to load the bitmap as a resource.

/I If that fails, try it as a file.

1

hbm = (HBITMAP)Loadimage(
GetModuleHandle(NULL), szBitmap,
IMAGE_BITMAP, dx, dy, LR_CREATEDIBSECTION);

if (hbm == NULL)
hbm = (HBITMAP)Loadimage(
NULL, szBitmap, IMAGE_BITMAP, dx, dy,
LR_LOADFROMFILE|LR_CREATEDIBSECTION);

if (hbm == NULL)
return NULL;

/

/I Get the size of the bitmap.

/

GetObject(hbm, sizeof(bm), &bm);

/

// Now, return to DirectX function calls.

// Create a DirectDrawSurface for this bitmap.

/

ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddsd.dwWidth = bm.bmWidth;

ddsd.dwHeight = bm.bmHeight;

if (pdd->CreateSurface(&ddsd, &pdds, NULL) !'= DD_OK)
return NULL;

DDCopyBitmap(pdds, hbm, 0, 0, 0, 0);
DeleteObject(hbm);

return pdds;

in.doc — page 5

For more detailed information about DIB files, see the Platform SDK.

[|C++,Visual Basic]

Drawing Surfaces

[This is preliminary documentation and subject to change.]

Drawing surfaces receive video data to eventually be displayed on the screen as
images (bitmaps, to be exact). In most Windows programs, you get access to the
drawing surface using a Win32 function such as GetDC, which stands for get the
device context (DC). After you have the device context, you can start painting the
screen. However, Win32 graphics functions are provided by an entirely different part
of the system, the graphics device interface (GDI). The GDI is a system component
that provides an abstraction layer that enables standard Windows applications to
draw to the screen.

The drawback of GDI is that it wasn't designed for high-performance multimedia
software, it was made to be used by business applications like word processors and
spreadsheet applications. GDI provides access to a video buffer in system memory,
not video memory, and doesn't take advantage of special features that some video
cards provide. In short, GDI is great for most business applications, but its
performance is too slow for multimedia or game software.

On the other hand, DirectDraw can give you drawing surfaces that represent actual
video memory. This means that when you use DirectDraw, you can write directly to
the memory on the video card, making your graphics routines extremely fast. These
surfaces are represented as contiguous blocks of memory, making it easy to perform
addressing within them.

For more detailed information, see Surfaces.

Blitting
[This is preliminary documentation and subject to change.]

The term blit is shorthand for "bit block transfer," which is the process of
transferring blocks of data from one place in memory to another. Graphics
programmers use blitting to transfer graphics from one place in memory to another.
Blits are often used to perform sprite animation, which is discussed later.

For more information on blitting in DirectDraw, see Blitting to Surfaces.

in.doc — page 6

Page Flipping and Back Buffering

[This is preliminary documentation and subject to change.]

Page flipping is key in multimedia, animation, and game software. Software page
flipping is analogous to the way animation can be done with a pad of paper. On each
page the artist changes the figure slightly, so that when you flip between sheets
rapidly the drawing appears animated.

Page flipping in software is very similar to this process. Initially, you set up a series
of DirectDraw surfaces that are designed to "flip" to the screen the way artist's paper
flips to the next page. The first surface is referred to as the primary surface, and the
surfaces behind it are called back buffers . Your application writes to a back buffer,
then flips the primary surface so that the back buffer appears on screen. While the
system is displaying the image, your software is again writing to a back buffer. The
process continues as long as you're animating, allowing you to animate images
quickly and efficiently.

DirectDraw makes it easy for you to set up page flipping schemes, from a relatively
simple double-buffered scheme (a primary surface with one back buffer) to more
sophisticated schemes that add additional back buffers. For more information see
DirectDraw Tutorials and Flipping Surfaces.

Introduction to Rectangles

[This is preliminary documentation and subject to change.]

Throughout DirectDraw and Windows programming, objects on the screen are
referred to in terms of bounding rectangles. The sides of a bounding rectangle are
always parallel to the sides of the screen, so the rectangle can be described by two
points, the top-left corner and bottom-right corner. Most applications use the RECT
structure to carry information about a bounding rectangle to use when blitting to the
screen or performing hit detection.

[C++]
In C++, the RECT structure has the following definition:

typedef struct tagRECT {
LONG left; // This is the top-left corner's x-coordinate.
LONG top; // The top-left corner's y-coordinate.
LONG right; // The bottom-right corner's x-coordinate.
LONG bottom; // The bottom-right corner's y-coordinate.
} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT;

[Visual Basic]
In Visual Basic, the RECT type has the following definition:

in.doc — page 7

Type RECT
Left As Long // This is the top-left corner's x-coordinate.
Top As Long // The top-left corner's y-coordinate.
Right As Long // The bottom-right corner's x-coordinate.
Bottom As Long // The bottom-right corner's y-coordinate.
End Type

In the preceding example, the left and top members are the x- and y-coordinates of a
bounding rectangle's top-left corner. Similarly, the right and bottom members make
up the coordinates of the bottom-right corner. The following diagram illustrates how
you can visualize these values.

Display Screen
4)
(left, top)
: Bounding Rectangle)
! (RECT) [
------------- (r-igr;t,.bottom)
N J

In the interest of efficiency, consistency, and ease of use, all DirectDraw blitting
functions work with rectangles. However, you can create the illusion of
nonrectangular blit operations by using transparent blitting. For more information,
see Transparent Blitting.

DirectDraw Architecture

[This is preliminary documentation and subject to change.]

This section contains general information about the relationship between the
DirectDraw component and the rest of DirectX, the operating system, and the system
hardware. The following topics are discussed:

® Architectural Overview for DirectDraw

® DirectDraw Object Types

in.doc — page 8

® Hardware Abstraction Layer (HAL)
® Software Emulation

® System Integration

Architectural Overview for
DirectDraw

[This is preliminary documentation and subject to change.]

Multimedia software requires high-performance graphics. Through DirectDraw,
Microsoft enables a much higher level of efficiency and speed in graphics-intensive
applications for Windows than is possible with GDI, while maintaining device
independence. DirectDraw provides tools to perform such key tasks as:

® Manipulating multiple display surfaces
® Accessing the video memory directly
® Page flipping

® Back buffering

® Managing the palette

® Clipping

Additionally, DirectDraw enables you to query the display hardware's capabilities at
run time, then provide the best performance possible given the host computer's
hardware capabilities.

As with other DirectX components, DirectDraw uses the hardware to its greatest
possible advantage, and provides software emulation for most features when
hardware support is unavailable. Device independence is possible through use of the
hardware abstraction layer, or HAL. For more information about the HAL, see the
hardware abstraction layer .

The DirectDraw component provides services through COM-based interfaces. In the
most recent iteration, these interfaces are IDirectDraw4, IDirectDrawSurface4,
IDirectDrawPalette, IDirectDrawClipper, and IDirectDrawVideoPort. Note that,
in addition to these interfaces, DirectDraw continues to support all previous versions.
The DirectDraw component doesn't expose an IDirectDraw3 interface, the interface
versions skipped from IDirectDraw? to IDirectDraw4.

For more information about COM concepts that you should understand to create
applications with the DirectX APIs in the Platform SDK, see DirectX and the
Component Object Model.

The DirectDraw object represents the display adapter and exposes its methods
through the IDirectDraw, IDirectDraw2, and IDirectDraw4 interfaces. In most
cases you will use the DirectDrawCreate function to create a DirectDraw object,
but you can also create one with the CoCreatelnstance COM function. For more
information, see Creating DirectDraw Objects by Using CoCreatelnstance.

in.doc — page 9

After creating a DirectDraw object, you can create surfaces for it by calling the
IDirectDraw4::CreateSurface method. Surfaces represent the memory on the
display hardware, but can exist on either video memory or system memory.
DirectDraw extends support for palettes, clipping (useful for windowed
applications), and video ports through its other interfaces.

DirectDraw Object Types

[This is preliminary documentation and subject to change.]

You can think of DirectDraw as being composed of several objects that work
together. This section briefly describes the objects you use when working with the
DirectDraw component, organized by object type. For detailed information, see
DirectDraw Essentials.

The DirectDraw component uses the following objects:

DirectDraw object
The DirectDraw object is the heart of all DirectDraw applications. It's the first
object you create, and you use it to make all other related objects. You create a
DirectDraw object by calling the DirectDrawCreate function. DirectDraw
objects expose their functionality through the IDirectDraw, IDirectDraw2, and
IDirectDraw4 interfaces. For more information, see The DirectDraw Object.

DirectDrawSurface object
The DirectDrawSurface object (casually referred to as a "surface") represents an
area in memory that holds data to be displayed on the monitor as images or
moved to other surfaces. You usually create a surface by calling the
IDirectDraw4::CreateSurface method of the DirectDraw object with which it
will be associated. DirectDrawSurface objects expose their functionality through
the IDirectDrawSurface, IDirectDrawSurface2, IDirectDrawSurface3, and
IDirectDrawSurface4 interfaces. For more information, see Surfaces.

DirectDrawPalette object
The DirectDrawPalette object (casually referred to as a "palette") represents a
16- or 256-color indexed palette to be used with a surface. It contains a series of
indexed RGB triplets that describe colors associated with values within a
surface. You do not use palettes with surfaces that use a pixel format depth
greater than 8 bits. You can create a DirectDrawPalette object by calling the
IDirectDraw4::CreatePalette method. DirectDrawPalette objects expose their
functionality through the IDirectDrawPalette interface. For more information,
see Palettes.

DirectDrawClipper object
The DirectDrawClipper object (casually referred to as a "clipper") helps you
prevent blitting to certain portions of a surface or beyond the bounds of a
surface. You can create a clipper by calling the IDirectDraw4::CreateClipper
method. DirectDrawClipper objects expose their functionality through the
IDirectDrawClipper interface. For more information, see Clippers.

DirectDrawVideoPort object

in.doc — page 10

The DirectDrawVideoPort object represents video-port hardware present in
some systems. This hardware allows direct access to the frame buffer without
accessing the CPU or using the PCI bus. You can create a DirectDrawVideoPort
object by calling a QueryInterface method for the DirectDraw object,
specifying the IID IDDVideoPortContainer reference identifier.
DirectDrawVideoPort objects expose their functionality through the
IDDVideoPortContainer and IDirectDrawVideoPort interfaces. For more
information, see Video Ports.

Hardware Abstraction Layer (HAL)

[This is preliminary documentation and subject to change.]

DirectDraw provides device independence through the hardware abstraction layer
(HAL). The HAL is a device-specific interface, provided by the device
manufacturer, that DirectDraw uses to work directly with the display hardware.
Applications never interact with the HAL. Rather, with the infrastructure that the
HAL provides, DirectDraw exposes a consistent set of interfaces and methods that an
application uses to display graphics. The device manufacturer implements the HAL
in a combination of 16-bit and 32-bit code under Windows. Under

Windows NT/Windows 2000, the HAL is always implemented in 32-bit code. The
HAL can be part of the display driver or a separate DLL that communicates with the
display driver through a private interface that driver's creator defines.

The DirectDraw HAL is implemented by the chip manufacturer, board producer, or
original equipment manufacturer (OEM). The HAL implements only device-
dependent code and performs no emulation. If a function is not performed by the
hardware, the HAL does not report it as a hardware capability. Additionally, the
HAL does not validate parameters; DirectDraw does this before the HAL is invoked.

Software Emulation

[This is preliminary documentation and subject to change.]

When the hardware does not support a feature through the hardware abstraction layer
(HAL), DirectDraw attempts to emulate it. This emulated functionality is provided
through the hardware emulation layer (HEL). The HEL presents its capabilities to
DirectDraw just as the HAL would. And, as with the HAL, applications never work
directly with the HEL. The result is transparent support for almost all major features,
regardless of whether a given feature is supported by hardware or through the HEL.

Obviously, software emulation cannot equal the performance that hardware features
provide. You can query for the features the hardware supports by using the
IDirectDraw4::GetCaps method. By examining these capabilities during
application initialization, you can adjust application parameters to provide optimum
performance over varying levels of hardware performance.

in.doc — page 11

In some cases, certain combinations of hardware supported features and emulation
can result in slower performance than emulation alone. For example, if the display
device driver supports DirectDraw but not stretch blitting, noticeable performance
losses will occur when stretch blitting from video memory surfaces. This happens
because video memory is often slower than system memory, forcing the CPU to wait
when accessing video memory surfaces. If your application uses a feature that isn't
supported by the hardware, it is sometimes best to create surfaces in system memory,
thereby avoiding performance losses created when the CPU accesses video memory.

For more information, see Hardware Abstraction Layer (HAL).

System Integration

[This is preliminary documentation and subject to change.]

The following diagram shows the relationships between DirectDraw, the graphics
device interface (GDI), the hardware abstraction layer (HAL), the hardware
emulation layer (HEL) and the hardware.

Win32 Application
Graphics Device Interface .
(GDI) DirectDraw
. . Hardware
Display De\?[c)g II)nterface Emulation
Layer (HEL)
Hardware Abstraction
Layer (HAL)
Hardware
(Video Card)

As the preceding diagram shows, a DirectDraw object exists alongside GDI, and
both have direct access to the hardware through a device-dependent abstraction
layer. Unlike GDI, DirectDraw makes use of special hardware features whenever
possible. If the hardware does not support a feature, DirectDraw attempts to emulate
it by using the HEL. DirectDraw can provide surface memory in the form of a device
context, making it possible for you to use GDI functions to work with surface
objects.

in.doc — page 12

DirectDraw Essentials

[This is preliminary documentation and subject to change.]

This section contains general information about the DirectDraw® component of
DirectX®. Information is organized into the following groups:

® Cooperative Levels

¢ Display Modes

® The DirectDraw Object

® Surfaces

® Palettes

¢ Clippers

® Multiple Monitor Systems

® Advanced DirectDraw Topics

Cooperative Levels

[This is preliminary documentation and subject to change.]

In the following topics, this section introduces the concept of cooperative levels and
describes some common usage situations:

® About Cooperative Levels

® Testing Cooperative Levels

About Cooperative Levels

[This is preliminary documentation and subject to change.]

Cooperative levels describe how DirectDraw interacts with the display and how it
reacts to events that might affect the display. Use the
IDirectDraw4::SetCooperativeLevel method to set cooperative level of
DirectDraw. For the most part, you use DirectDraw cooperative levels to determine
whether your application runs as a full-screen program with exclusive access to the
display or as a windowed application. However, DirectDraw cooperative levels can
also have the following effects:

® Enable DirectDraw to use Mode X resolutions. For more information, see Mode
X and Mode 13 Display Modes.

® Prevent DirectDraw from releasing exclusive control of the display or rebooting
if the user presses CTRL + ALT + DEL (exclusive mode only).

® Enable DirectDraw to minimize or maximize the application in response to
activation events.

in.doc — page 13

The normal cooperative level indicates that your DirectDraw application will operate
as a windowed application. At this cooperative level you won't be able to change the
primary surface's palette or perform page flipping.

Because applications can use DirectDraw with multiple windows,
IDirectDraw4::SetCooperativeLevel does not require a window handle to be
specified if the application is requesting the DDSCL. NORMAL mode. By passing a
NULL to the window handle, all of the windows can be used simultaneously in
normal Windows mode.

At the full-screen and exclusive cooperative level, you can use the hardware to its
fullest. In this mode, you can set custom and dynamic palettes, change display
resolutions, and implement page flipping. The exclusive (full-screen) mode does not
prevent other applications from allocating surfaces, nor does it exclude them from
using DirectDraw or GDI. However, it does prevent applications other than the one
currently with exclusive access from changing the display mode or palette.

DirectDraw takes control of window activation events for full-screen, exclusive
mode applications, sending WM_ACTIVATEAPP messages to the window handle
registered through the SetCooperativeLevel method as needed. DirectDraw only
sends activation events to the top-level window. If your application creates child
windows that require activation event messages, it is your responsibility to subclass
the child windows.

SetCooperativeLevel maintains a binding between a process and a window handle.
If SetCooperativeLevel is called once in a process, a binding is established between
the process and the window. If it is called again in the same process with a different
non-null window handle, it returns the DDERR. HWNDALREADYSET error value.
Some applications may receive this error value when DirectSound® specifies a
different window handle than DirectDraw—they should specify the same, top-level
application window handle.

Note
Developers using Microsoft Foundation Classes (MFC) should keep in mind that
the window handle given to the SetCooperativeLevel method should identify
the application's top-level window, not a derived child window. To retrieve your
MEFC application's top level window handle, you could use the following code:
HWND hwndTop = AfxGetMainWnd()->GetSafeHwnd();

See also, Multiple Monitor Systems.

Testing Cooperative Levels

[This is preliminary documentation and subject to change.]

Developers often use messages such as WM_ACTIVATEAPP and

WM _DISPLAYCHANGE as notifications that their applications should restore or re-
create the surfaces being used. In some cases, applications take action when they
don't need to, or don't take action when they should. The

in.doc — page 14

IDirectDraw4::TestCooperativeLevel method makes it possible for your
application to retrieve more information about the DirectDraw object's cooperative
level and take appropriate steps to continue execution without mishap.

The TestCooperativeLevel method succeeds, returning DD_OK, if your application
can restore its surfaces (if it has not already done so) and continue to execute. Failure
codes, on the other hand, are interpreted differently depending on the cooperative-
level your application uses:

Full-screen applications

Full-screen applications receive the DDERR_NOEXCLUSIVEMODE return value if
they lose exclusive device access—for example, if the user pressed ALT+TAB to
switch away from the current application. In this case, applications might call
TestCooperativeLevel in a loop, exiting only when the method returns DD_OK
(meaning that exclusive mode was returned). In the body of the loop, the application
should relinquish control of the CPU to prevent using cycles unnecessarily. Windows
supports functions such as the WaitMessage or Sleep Win32 functions for this

purpose.
Any existing surfaces should be restored by calling the

IDirectDrawSurface4::Restore or IDirectDraw4::RestoreAllSurfaces methods,
and their contents reloaded before displaying them.

Windowed applications

Windowed applications (those that use the normal cooperative level) receive
DDERR EXCLUSIVEMODEALREADYSET if another application has taken
exclusive device access. In this case, no action should be taken until the application
with exclusive access loses it. This situation is similar to the case for a full-screen
application; a windowed application might loop until TestCooperativeLevel returns
DD_OK before restoring and reloading its surfaces. As mentioned previously, in a
loop like this applications should avoid unnecessarily using CPU cycles by
relinquishing CPU control periodically during the loop.

The TestCooperativeLevel method returns DDERR. WRONGMODE to windowed
applications when the display mode has changed. In this case, the application should
destroy and re-create any surfaces before continuing execution.

Display Modes

[This is preliminary documentation and subject to change.]

This section contains general information about DirectDraw display modes. The
following topics are discussed:

® About Display Modes

® Determining Supported Display Modes
® Setting Display Modes

® Restoring Display Modes

in.doc — page 15

® Mode X and Mode 13 Display Modes
® Support for High Resolutions and True-Color Bit Depths

About Display Modes
[This is preliminary documentation and subject to change.]

A display mode is a hardware setting that describes the dimensions and bit-depth of
graphics that the display hardware sends to the monitor from the primary surface.
Display modes are described by their defining characteristics: width, height, and bit-
depth. For instance, most display adapters can display graphics 640 pixels wide and
480 pixels tall, where each pixel is 8 bits of data. In shorthand, this display mode is
called 640x480x8. As the dimensions of a display mode get larger or as the bit-
depth increases, more display memory is required.

There are two types of display modes: palettized and non-palettized. For palettized
display modes, each pixel is a value representing an index into an associated palette.
The bit depth of the display mode determines the number of colors that can be in the
palette. For instance, in an 8-bit palettized display mode, each pixel is a value from 0
to 255. In such a display mode, the palette can contain 256 entries.

Non-palettized display modes, as their name states, do not use palettes. The bit depth
of a non-palettized display mode indicates the total number of bits that are used to
describe a pixel.

The primary surface and any surfaces in the primary flipping chain match the display
mode's dimensions, bit depth and pixel format. For more information, see Pixel
Formats.

Determining Supported Display Modes
[This is preliminary documentation and subject to change.]

Because display hardware varies, not all devices will support all display modes. To
determine the display modes supported on a given system, call the
IDirectDraw4::EnumDisplayModes method. By setting the appropriate values and
flags, the EnumDisplayModes method can list all supported display modes or
confirm that a single display mode that you specify is supported. The method's first
parameter, dwFlags, controls extra options for the method; in most cases, you will
set dwFlags to 0 to ignore extra options. The second parameter, [pDDSurfaceDesc, is
the address of a DDSURFACEDESC?2 structure that describes a given display mode
to be confirmed; you'll usually set this parameter to NULL to request that all modes
be listed. The third parameter, [pContext, is a pointer that you want DirectDraw to
pass to your callback function; if you don't need any extra data in the callback
function, use NULL here. Last, you set the [pEnumModesCallback parameter to the
address of the callback function that DirectDraw will call for each supported mode.

The callback function you supply when calling EnumDisplayModes must match the
prototype for the EnumModesCallback function. For each display mode that the

in.doc — page 16

hardware supports, DirectDraw calls your callback function passing two parameters.
The first parameter is the address of a DDSURFACEDESC?2 structure that describes
one supported display mode, and the second parameter is the address of the
application-defined data you specified when calling EnumDisplayModes, if any.

Examine the values in the DDSURFACEDESC?2 structure to determine the display
mode it describes. The key structure members are the dwWidth, dwHeight, and
ddpfPixelFormat members. The dwWidth and dwHeight members describe the
display mode's dimensions, and the ddpfPixelFormat member is a
DDPIXELFORMAT structure that contains information about the mode's bit depth.

The DDPIXELFORMAT structure carries information describing the mode's bit
depth and tells you whether or not the display mode uses a palette. If the dwFlags
member contains the DDPF PALETTEINDEXEDI1, DDPF PALETTEINDEXED?2,
DDPF PALETTEINDEXEDA4, or DDPF PALETTEINDEXEDS flag, the display
mode's bit depth is 1, 2, 4 or 8 bits, and each pixel is an index into an associated
palette. If dwFlags contains DDPF RGB, then the display mode is non-palettized
and its bit depth is provided in the dWRGBBitCount member of the
DDPIXELFORMAT structure.

Setting Display Modes

[This is preliminary documentation and subject to change.]

You can set the display mode by using the IDirectDraw4::SetDisplayMode
method. The SetDisplayMode method accepts four parameters that describe the
dimensions, bit depth, and refresh rate of the mode to be set. The method uses a fifth
parameter to indicate special options for the given mode; this is currently only used
to differentiate between Mode 13 and the Mode X 320x200X%8 display mode.

Although you can specify the desired display mode's bit depth, you cannot specify
the pixel format that the display hardware will use for that bit depth. To determine
the RGB bit masks that the display hardware uses for the current bit depth, call
IDirectDraw4::GetDisplayMode after setting the display mode. If the current
display mode is not palettized, you can examine the mask values in the
dwRBitMask, dwGBitMask, and dwBBitMask members to determine the correct
red, green, and blue bits. For more information, see Pixel Format Masks.

Modes can be changed by more than one application as long as they are all sharing a
display card. You can change the bit depth of the display mode only if your
application has exclusive access to the DirectDraw object. All DirectDrawSurface
objects lose surface memory and become inoperative when the mode is changed. A
surface's memory must be reallocated by using the IDirectDrawSurface4::Restore
method.

The DirectDraw exclusive (full-screen) mode does not bar other applications from
allocating DirectDrawSurface objects, nor does it exclude them from using
DirectDraw or GDI functionality. However, it does prevent applications other than
the one that obtained exclusive access from changing the display mode or palette.

in.doc — page 17

Note
You can only call the IDirectDraw4::SetDisplayMode method from the thread
that created the application window. For single threaded applications (the vast
majority), this restriction isn't an issue.

Restoring Display Modes
[This is preliminary documentation and subject to change.]

You can explicitly restore the display hardware to its original mode by calling the
IDirectDraw4::RestoreDisplayMode method. If the display mode was set by
calling IDirectDraw4::SetDisplayMode and your application takes the exclusive
cooperative level, the original display mode is reset automatically when you set the
application's cooperative level back to normal. (This behavior was first offered in the
IDirectDraw2 interface, and is offered by all newer versions of the interface.)

If you're using the IDirectDraw interface, you must always explicitly restore the
display mode by using the RestoreDisplayMode method.

Mode X and Mode 13 Display Modes

[This is preliminary documentation and subject to change.]

DirectDraw supports both Mode 13 and Mode X display modes. Mode 13 is the
linear unflippable 3202008 bits per pixel palettized mode known widely by its
hexadecimal BIOS mode number: 13. For more information, see Mode 13 Support.
Mode X is a hybrid display mode derived from the standard VGA Mode 13. This
mode allows the use of up to 256 kilobytes (KB) of display memory (rather than the
64 KB allowed by Mode 13) by using the VGA display adapter's EGA multiple
video plane system.

DirectDraw provides two Mode X modes (320X200X8 and 320x240x8) for all
display cards. Some cards also support linear low-resolution modes. In linear low-
resolution modes, the primary surface can be locked and directly accessed. This is
not possible in Mode X modes.

Mode X modes are available only if an application uses the
DDSCL_ALLOWMODEX, DDSCL FULLSCREEN, and DDSCL_EXCLUSIVE
flags when calling the IDirectDraw4::SetCooperativeLevel method. If
DDSCL_ALLOWMODEX is not specified, the
IDirectDraw4::EnumDisplayModes method will not enumerate Mode X modes,
and the IDirectDraw4::SetDisplayMode method will fail if a Mode X mode is
requested.

Windows 95 and Windows NT/Windows 2000 do not natively support Mode X
modes; therefore, when your application is in a Mode X mode, you cannot use the
IDirectDrawSurface4::Lock or IDirectDrawSurface4::Blt methods to lock or blit
to the primary surface. You also cannot use either the
IDirectDrawSurface4::GetDC method on the primary surface, or GDI with a

in.doc — page 18

screen DC. Mode X modes are indicated by the DDSCAPS MODEX flag in the
DDSCAPS2 structure, which is part of the DDSURFACEDESC?2 structure returned
by the IDirectDrawSurface4::GetCaps and IDirectDraw4::EnumDisplayModes
methods.

Support for High Resolutions and True-
Color Bit Depths

[This is preliminary documentation and subject to change.]

DirectDraw supports all of the screen resolutions and depths supported by the display
device driver. DirectDraw allows an application to change the mode to any one
supported by the computer's display driver, including all supported 24- and 32-bpp
(true-color) modes.

DirectDraw also supports HEL blitting in true-color surfaces. If the display device
driver supports blitting at these resolutions, the hardware blitter will be used for
display-memory-to-display-memory blits. Otherwise, the HEL will be used to
perform the blits.

DirectDraw checks a list of known display modes against the display restrictions of
the installed monitor. If DirectDraw determines that the requested mode is not
compatible with the monitor, the call to the IDirectDraw4::SetDisplayMode
method fails. Only modes that are supported on the installed monitor will be
enumerated when you call the IDirectDraw4::EnumDisplayModes method.

The DirectDraw Object

[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw objects and how you can
manipulate them through their IDirectDraw, IDirectDraw2, or IDirectDraw4
interfaces. The following topics are discussed:

® What Are DirectDraw Objects?

® What's New in IDirectDraw4?

® Parent and Child Object Lifetimes

¢ Multiple DirectDraw Objects per Process

® (Creating DirectDraw Objects by Using CoCreatelnstance

What Are DirectDraw Objects?

[This is preliminary documentation and subject to change.]

The DirectDraw object is the heart of all DirectDraw applications and is an integral
part of Direct3D® applications as well. It is the first object you create and, through
it, you create all other related objects. Typically, you create a DirectDraw object by

in.doc — page 19

calling the DirectDrawCreate function, which returns an IDirectDraw interface. If
you want to work with a different iteration of the interface (such as IDirectDraw4)
to take advantage of new features it provides, you can query for it. (See Getting an
IDirectDraw4 Interface.) Note that you can create multiple DirectDraw objects, one
for each display device installed in a system.

The DirectDraw object represents the display device and makes use of hardware
acceleration if the display device for which it was created supports hardware
acceleration. Each unique DirectDraw object can manipulate the display device and
create surfaces, palettes, and clipper objects that are dependent on (or are,
"connected to") the object that created them. For example, to create surfaces, you
call the IDirectDraw4::CreateSurface method. Or, if you need a palette object to
apply to a surface, call the IDirectDraw4::CreatePalette method. Additionally, the
IDirectDraw4 interface exposes similar methods to create clipper objects.

You can create more than one instance of a DirectDraw object at a time. The
simplest example of this is using two monitors on a Windows 95 or Windows NT 4.0
and ecarlier system. Although these operating systems don't support dual monitors on
their own, it is possible to write a DirectDraw HAL for each display device. The
display device Windows and GDI recognizes is the one that will be used when you
create the instance of the default DirectDraw object. The display device that
Windows and GDI do not recognize can be addressed by another, independent
DirectDraw object that must be created by using the second display device's globally
unique identifier (GUID). This GUID can be obtained by using the
DirectDrawEnumerate function.

The DirectDraw object manages all of the objects it creates. It controls the default
palette (if the primary surface is in 8-bits-per-pixel mode), the default color key, and
the hardware display mode. It tracks what resources have been allocated and what
resources remain to be allocated.

What's New in IDirectDraw4?

[This is preliminary documentation and subject to change.]

This section details new features provided by the IDirectDraw4 interface and
describes it's new features or how it behaves differently than its predecessor,
IDirectDraw2 (there is no IDirectDraw3 interface). The following topics are
discussed:

® New Features in IDirectDraw4

® Getting an IDirectDraw4 Interface

The most obvious difference between the IDirectDraw4 interface and its
predecessors is how it works with surfaces—how surfaces are described and which
interfaces it automatically provides to access them. All of the surface-related
methods in the new interface accept slightly different parameters than their
counterparts in former interface versions. Wherever an IDirectDraw?2 interface
method might accept a DDSURFACEDESC structure or retrieve an

in.doc — page 20

IDirectDrawSurface3 interface, the methods of IDirectDraw4 accept a
DDSURFACEDESC?2 structure and retrieve an IDirectDrawSurface4 interface
instead.

Another behavioral change that IDirectDraw4 introduces affects the lifetimes of
child objects with respect to their parent DirectDraw object. For more information,
see Parent and Child Object Lifetimes.

New Features in IDirectDraw4

[This is preliminary documentation and subject to change.]

The IDirectDraw4 interface extends previous iterations by adding several methods
that provide improved surface management and ease of use

The IDirectDraw4 interface exposes the new IDirectDraw4::RestoreAllSurfaces
method, which restores all of the surfaces created by a DirectDraw with a single call.

Additionally, you can now retrieve a surface's IDirectDrawSurface4 interface from
a Windows device context by using the IDirectDraw4::GetSurfaceFromDC
method.

Getting an IDirectDraw4 Interface

[This is preliminary documentation and subject to change.]

The Component Object Model on which DirectX is built specifies that an object can
provide new functionality through new interfaces, without affecting backward
compatibility. To this end, the IDirectDraw4 interface supersedes the
IDirectDraw2 interface. This new interface can be obtained by using the
IUnknown::Querylnterface method, as the following C++ example shows:

// Create an IDirectDraw4 interface.
LPDIRECTDRAW IpDD;
LPDIRECTDRAW4 IpDD4;

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);
if(ddrval '= DD_OK)
return;

ddrval = IpDD->SetCooperativeLevel(hwnd,
DDSCL_NORMAL);

if(ddrval '= DD_OK)
return;

ddrval = IpDD->Querylnterface(lID_IDirectDraw4,
(LPVOID *)&IpDD4);

if(ddrval '= DD_OK)
return;

in.doc — page 21

The preceding example creates a DirectDraw object, then calls the
IUnknown::Querylnterface method of the IDirectDraw interface it received to
create an IDirectDraw4 interface.

After getting an IDirectDraw4 interface, you can begin calling its methods to take
advantage of new features, performance improvements, and behavioral differences.
Because some methods might change with the release of a new interface, mixing
methods from an interface and its replacement (between IDirectDraw2 and
IDirectDrawd4, for example) can cause unpredictable results.

Parent and Child Object Lifetimes

[This is preliminary documentation and subject to change.]

All objects you'll use in DirectDraw programming—the DirectDraw object, surfaces,
palettes, clippers, and such—only exist in memory for as long as another object,
such as an application, needs them. The time that passes from the moment when an
object is created and placed in memory to when it is released and subsequently
removed from memory is known as the object's lifetime. The Component Object
Model (COM) followed by all DirectX components dictates that an object must keep
track of how many other objects require its services. This number, known as a
reference count, determines the object's lifetime. COM also dictates that an object
expose the IUnknown::AddRef and IUnknown::Release methods to enable
applications to explicitly manage its reference count; make sure you use these
methods in accordance to COM rules.

You aren't the only one who is using the IUnknown methods to manage reference

counts for objects—DirectDraw objects use them internally, too. When you use the
IDirectDraw4 interface (in contrast to IDirectDraw2 or IDirectDraw) to create a
"child" object like a surface, the child uses the IUnknown::AddRef method of the
"parent" DirectDraw object to increment the parent's reference count.

When your application no longer needs an object, call the Release method to
decrement its reference count. When the count reaches zero, the object is removed
from memory. When a child object's reference count reaches zero, it calls the
parent's IUnknown::Release method to indicate that there is one less object who
will be needing the parent's services.

Implicitly allocated objects, such as the back-buffer surfaces in a flipping chain that
you create with a single IDirectDraw4::CreateSurface call, are automatically
deallocated when their parent DirectDrawSurface object is released. Also, you can
only release a DirectDraw object from the thread that created the application
window. For single-threaded applications, this restriction obviously doesn't apply, as
there is only one thread. If your application created a primary flipping chain of two
surfaces (created by a single CreateSurface call) that used an attached
DirectDrawClipper object, the code to release these objects safely might look like:

// For this example, the g_IpDDraw, g_lpDDSurface, and
// g_lpDDClip are valid pointers to objects.
void ReleaseDDrawObjects(void)

in.doc — page 22

{
// If the DirectDraw object pointer is valid,
// it should be safe to release it and the objects it owns.
if(g_IpDDraw)
{
// Release the DirectDraw object. (This call wouldn't
/I be safe if the children were created through IDirectDraw2
// or IDirectDraw. See the following note for
// more information)
g_|lpDDraw->Release(), g_IpDDraw = NULL;

/I Now, release the clipper that is attached to the surfaces.
if(g_lpDDClip)
g_IpDDClip->Release(), g_IpDDClip = NULL;

/I Now, release the primary flipping chain. Note
// that this is only valid because the flipping
/I chain surfaces were created with a single
// CreateSurface call. If they were explicitly
// created and attached, then they must also be
/] explicitly released.
if(g_IpDDSurface)
g_lpDDSurface->Release(), g_IpDDSurface = NULL;

Note
Earlier versions of the DirectDraw interface (IDirectDraw2 and IDirectDraw,
to be exact) behave differently than the most recent interface. When using these
early interfaces, DirectDraw automatically releases all child objects when the
parent itself is released. As a result, if you use these older interfaces, the order in
which you release objects is critical. In this case, you should release the children
of a DirectDraw object before releasing the DirectDraw object itself (or not
release them at all, counting on the parent to do cleanup for you). Because the
DirectDraw object releases the child objects, if you release the parent before the
children, you are very likely to incur a memory fault for attempting to
dereference a pointer that was invalidated when the parent object released its
children.
Some older applications relied on the automatic release of child objects and
neglected to properly release some objects when no longer needed. At the time,
this practice didn't cause any negative side effects, however doing so when using
the IDirectDraw4 interface might result in memory leaks.

in.doc — page 23

Multiple DirectDraw Objects per
Process

[This is preliminary documentation and subject to change.]

DirectDraw allows a process to call the DirectDrawCreate function as many times
as necessary. A unique and independent interface to a unique and independent
DirectDraw object is returned after each call. Each DirectDraw object can be used as
desired; there are no dependencies between the objects. Each object behaves exactly
as if it had been created by a unique process.

DirectDraw objects are independent of one another and the DirectDrawSurface,
DirectDrawPalette, and DirectDrawClipper objects they create should not be used
with other DirectDraw objects because they are automatically released when the
parent DirectDraw object is destroyed. If they are used with another DirectDraw
object, they might stop functioning if their parent object is destroyed, causing the
remaining DirectDraw object to malfunction.

The exception is DirectDrawClipper objects created by using the
DirectDrawCreateClipper function. These objects are independent of any
particular DirectDraw object and can be used with one or more DirectDraw objects.

Creating DirectDraw Objects by Using
CoCreatelnstance

[This is preliminary documentation and subject to change.]

You can create a DirectDraw object by using the CoCreatelnstance function and the
IDirectDraw4::Initialize method rather than the DirectDrawCreate function. The
following steps describe how to create the DirectDraw object:

1 Initialize COM at the start of your application by calling Colnitialize and
specifying NULL.
if (FAILED(Colnitialize(NULL)))
return FALSE;

2 Create the DirectDraw object by using CoCreatelnstance and the
IDirectDraw4::Initialize method.

ddrval = CoCreatelnstance(&CLSID_DirectDraw,
NULL, CLSCTX_ALL, &lID_IDirectDraw4, &lpdd);
if('FAILED(ddrval))
ddrval = IDirectDraw4_lInitialize(lpdd, NULL);

In this call to CoCreatelnstance, the first parameter, CLSID DirectDraw, is the
class identifier of the DirectDraw driver object class, the /ID IDirectDraw4
parameter identifies the particular DirectDraw interface to be created, and the
Ipdd parameter points to the DirectDraw object that is retrieved. If the call is
successful, this function returns an uninitialized object.

in.doc — page 24

3 Before you use the DirectDraw object, you must call IDirectDraw4::Initialize.

This method takes the driver GUID parameter that the DirectDrawCreate
function typically uses (NULL in this case). After the DirectDraw object is
initialized, you can use and release it as if it had been created by using the
DirectDrawCreate function. If you do not call the Initialize method before
using one of the methods associated with the DirectDraw object, a
DDERR_NOTINITIALIZED error will occur.

Before you close the application, close the COM library by using the CoUninitialize
function.

CoUninitialize();

Surfaces

[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawSurface objects. The following
topics are discussed:

Basic Concepts of Surfaces

Creating Surfaces

Flipping Surfaces

Blitting to Surfaces

Losing and Restoring Surfaces

COM Reference Count Semantics for Surfaces
Enumerating Surfaces

Updating Surface Characteristics
Accessing Surface Memory Directly
Gamma and Color Controls

Overlay Surfaces

Compressed Texture Surfaces

Private Surface Data

Surface Uniqueness Values

Using Non-local Video Memory Surfaces
Converting Color and Format

Surfaces and Device Contexts

Basic Concepts of Surfaces

[This is preliminary documentation and subject to change.]

in.doc — page 25

This section contains information about the basic concepts associated with
DirectDrawSurface objects. The following topics are discussed:

® What Are Surfaces?
® Surface Interfaces

® Width vs. Pitch

® Color Keying

® Pixel Formats

What Are Surfaces?

[This is preliminary documentation and subject to change.]

A surface, or DirectDrawSurface object, represents a linear area of display memory.
A surface usually resides in the display memory of the display card, although
surfaces can exist in system memory. Unless specifically instructed otherwise during
the creation of the DirectDrawSurface object, DirectDraw object will put the
DirectDrawSurface object wherever the best performance can be achieved given the
requested capabilities. DirectDrawSurface objects can take advantage of specialized
processors on display cards, not only to perform certain tasks faster, but to perform
some tasks in parallel with the system CPU.

Using the IDirectDraw4::CreateSurface method, you can create a single surface
object, complex surface-flipping chains, or three-dimensional surfaces. The
CreateSurface method creates the requested surface or flipping chain and retrieves a
pointer to the primary surface's IDirectDrawSurface4 interface through which the
object exposes its functionality.

The IDirectDrawSurface4 interface enables you to indirectly access memory
through blit methods, such as IDirectDrawSurface4::BltFast. The surface object
can provide a device context to the display that you can use with GDI functions.
Additionally, you can use IDirectDrawSurface4 methods to directly access display
memory. For example, you can use the IDirectDrawSurface4::Lock method to lock
the display memory and retrieve the address corresponding to that surface. Addresses
of display memory might point to visible frame buffer memory (primary surface) or
to nonvisible buffers (off-screen or overlay surfaces). Nonvisible buffers usually
reside in display memory, but can be created in system memory if required by
hardware limitations or if DirectDraw is performing software emulation. In addition,
the IDirectDrawSurface4 interface extends other methods that you can use to set or
retrieve palettes, or to work with specific types or surfaces, like flipping chains or
overlays.

From this illustration, you can see that all surface are created by a DirectDraw object
and are often used closely with palettes. Although each surface object can be
assigned a palette, palettes aren't required for anything but primary surfaces that use
pixel formats of 8-bits in depth or less.

in.doc — page 26

DirectDraw Component
Primary Surface Palette
Back Buffer Surface Palette
Off Screen Surface Palette

Surface Interfaces

[This is preliminary documentation and subject to change.]

DirectDrawSurface objects expose their functionality through the
IDirectDrawSurface, IDirectDrawSurface2, IDirectDrawSurface3, and
IDirectDrawSurface4 interfaces. Each new interface version provides the same
utility as its predecessors, with additional options available through new methods.

When you create a surface by calling the IDirectDraw4::CreateSurface method (or
another creation method from IDirectDraw4), you receive a pointer to the surface's
IDirectDrawSurface4 interface. This behavior is different than previous versions of
DirectX. Before the introduction of the IDirectDraw4 interface, the CreateSurface
method provided a pointer to a surface's IDirectDrawSurface interface. If you
wanted to work with a different iteration of the interface, you had to query for it.
When using IDirectDraw4 this isn't the case, although you are free to query a
surface for a previous iteration of an interface if you choose.

Width vs. Pitch

[This is preliminary documentation and subject to change.]

Although the terms width and pitch are discussed casually, they have very important
(and distinctly different) meanings. As a result, you should understand the meanings
for each, and how to interpret the values that DirectDraw uses to describe them.

DirectDraw uses the DDSURFACEDESC?2 structure to carry information describing
a surface. Among other things, this structure is defined to contain information about
a surface's dimensions, as well as how those dimensions are represented in memory.

in.doc — page 27

The structure uses the dwHeight and dwWidth members to describe the logical
dimensions of the surface. Both of these members are measured in pixels. Therefore,
the dwHeight and dwWidth values for a 640X480 surface are the same whether it is
an 8-bit palettized surface or a 24-bit RGB surface.

The DDSURFACEDESC?2 structure contains information about how a surface is
represented in memory through the 1Pitch member. The value in the 1Pitch member
describes the surface's memory pitch (also called stride). Pitch is the distance, in
bytes, between two memory addresses that represent the beginning of one bitmap
line and the beginning of the next bitmap line. Because pitch is measured in bytes
rather than pixels, a 640X480X8 surface will have a very different pitch value than a
surface with the same dimensions but a different pixel format. Additionally, the pitch
value sometimes reflects bytes that DirectDraw has reserved as a cache, so it is not
safe to assume that pitch is simply the width multiplied by the number of bytes per
pixel. Rather, you could visualize the difference between width and pitch as shown
in the following illustration.

')
Width of this > o Pl
: DirectDraw surface
DirectDraw surface Front Cache: 180K

buffer 384x480
Back Cache: 180K
buffer 384x480

\ J

In this figure, the front buffer and back buffer are both 640 x480x8, and the cache is
384x480x8.

Pitch values are useful when you are directly accessing surface memory. For
example, after calling the IDirectDrawSurface4::Lock method, the IpSurface
member of the associated DDSURFACEDESC?2 structure contains the address of
the top-left pixel of the locked area of the surface, and the 1Pitch member is the
surface pitch. You access pixels horizontally by incrementing or decrementing the
surface pointer by the number of bytes per pixel, and you move up or down by
adding the pitch value to, or subtracting it from, the current surface pointer.

When accessing surfaces directly, take care to stay within the memory allocated for
the dimensions of the surface and stay out of any memory reserved for cache.
Additionally, when you lock only a portion of a surface, you must stay within the
rectangle you specify when locking the surface. Failing to follow these guidelines
will have unpredictable results. When rendering directly into surface memory,
always use the pitch returned by the Lock method (or the
IDirectDrawSurface4::GetDC method). Do not assume a pitch based solely on the
display mode. If your application works on some display adapters but looks garbled
on others, this may be the cause of your problem.

For more information, see Accessing Surface Memory Directly.

in.doc — page 28

Color Keying
[This is preliminary documentation and subject to change.]

DirectDraw supports source and destination color keying for blits and overlay
surfaces. Color keys enable you to display one image on top of another selectively,
so that only certain pixels from the foreground rectangle are displayed, or only
certain pixels on the background rectangle are overwritten.

You supply a single color key or a range of colors for source or destination color
keying by calling the IDirectDrawSurface4::SetColorKey method.

For more information about color keying, see the following topics:

® OQpverlay Color Keys
® Transparent Blitting

Pixel Formats
[This is preliminary documentation and subject to change.]

Pixel formats dictate how data for each pixel in surface memory is to be interpreted.
DirectDraw uses the DDPIXELFORMAT structure to describe various pixel
formats. The DDPIXELFORMAT contains members to describe the following
traits of a pixel format:

® Palettized or non-palettized pixel format

® If non-palettized, whether the pixel format is RGB or YUV
® Bitdepth

® Bit masks for the pixel format's components

You can retrieve information about an existing surface's pixel format by calling the
IDirectDrawSurface4::GetPixelFormat method.

Creating Surfaces

[This is preliminary documentation and subject to change.]

The DirectDrawSurface object represents a surface that usually resides in the display
memory, but can exist in system memory if display memory is exhausted or if it is
explicitly requested.

Use the IDirectDraw4::CreateSurface method to create one surface or to
simultaneously create multiple surfaces (a complex surface). When calling
CreateSurface, you specify the dimensions of the surface, whether it is a single
surface or a complex surface, and the pixel format (if the surface won't be using an
indexed palette). All these characteristics are contained in a DDSURFACEDESC2
structure, whose address you send with the call. If the hardware can't support the
requested capabilities or if it previously allocated those resources to another
DirectDrawSurface object, the call will fail.

in.doc — page 29

Creating single surfaces or multiple surfaces is a simple matter that requires only a
few lines of code. There are a few common situations (and some less common ones)
in which you will need to create surfaces. The following situations are discussed:

® Creating the Primary Surface

® Creating an Off-Screen Surface

® (Creating Complex Surfaces and Flipping Chains
® Creating Wide Surfaces

® C(Creating Client Memory Surfaces

By default, for all surfaces except client memory surfaces, DirectDraw attempts to
create a surface in local video memory. If there isn't enough local video memory
available to hold the surface, DirectDraw will try to use non-local video memory (on
some Accelerated Graphics Port-equipped systems), and fall back on system memory
if all other types of memory are unavailable. You can explicitly request that a
surface be created in a certain type of memory by including the appropriate flags in
the associated DDSCAPS2 structure when calling IDirectDraw4::CreateSurface.

Creating the Primary Surface

[This is preliminary documentation and subject to change.]

The primary surface is the surface currently visible on the monitor and is identified
by the DDSCAPS PRIMARYSURFACE flag. You can only have one primary
surface for each DirectDraw object.

When you create a primary surface, remember that the dimensions and pixel format
implicitly match the current display mode. Therefore, this is the one time you don't
need to declare a surface's dimensions or pixel format. If you do specify them, the
call will fail and return DDERR _INVALIDPARAMS—even if the information you
used matches the current display mode.

The following example shows how to prepare the DDSURFACEDESC?2 structure
members relevant for creating the primary surface.

DDSURFACEDESC?2 ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS;

// Request a primary surface.
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

After creating the primary surface, you can retrieve information about its dimensions
and pixel format by calling its IDirectDrawSurface4::GetSurfaceDesc method.

See also, Display Modes.

in.doc — page 30

Creating an Off-Screen Surface
[This is preliminary documentation and subject to change.]

An off-screen surface is often used to cache bitmaps that will later be blitted to the
primary surface or a back buffer. You must declare the dimensions of an off-screen
surface by including the DDSD WIDTH and DDSD HEIGHT flags and the
corresponding values in the dwWidth and dwHeight members. Additionally, you
must include the DDSCAPS OFFSCREENPLAIN flag in the accompanying
DDSCAPS2 structure.

By default, DirectDraw creates a surface in display memory unless it will not fit, in
which case it creates the surface in system memory. You can explicitly choose
display or system memory by including the DDSCAPS SYSTEMMEMORY or
DDSCAPS VIDEOMEMORY flags in the dwCaps member of the DDSCAPS2
structure. The method fails, returning an error, if it can't create the surface in the
specified location.

The following example shows how to prepare for creating a simple off-screen
surface:

DDSURFACEDESC?2 ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

// Request a simple off-screen surface, sized

// 100 by 100 pixels.

1

/I (This assumes that the off-screen surface we are about
// to create will match the pixel format of the

/] primary surface.)

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddsd.dwHeight = 100;

ddsd.dwWidth = 100;

Additionally, you can create surfaces whose pixel format differs from the primary
surface's pixel format. However, in this case there is one drawback—you are limited
to using system memory. The following code fragment shows how to prepare the
DDSURFACEDESC?2 structure members in order to create an 8-bit palettized
surface (assuming that the current display mode is something other than 8-bits per
pixel).

ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | DDSCAPS _SYSTEMMEMORY;
ddsd.dwHeight = 100;

in.doc — page 31

ddsd.dwWidth = 100;
ddsd.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);
ddsd.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_PALETTEINDEXEDS;

// Set the bit depth for an 8-bit surface, but DO NOT

// specify any RGB mask values. The masks must be zero
// for a palettized surface.
ddsd.ddpfPixelFormat.dwRGBBitCount = 8;

In previous versions of DirectX, the maximum width of off-screen surfaces was
limited to the width of the primary surface. Beginning with DirectX 5.0, you can
create surfaces as wide as you need, permitting that the display hardware can support
them. Be careful when declaring wide off-screen surfaces; if the video card memory
cannot hold a surface as wide as you request, the surface is created in system
memory. If you explicitly choose video memory and the hardware can't support it,
the call fails. For more information, see Creating Wide Surfaces.

Creating Complex Surfaces and Flipping Chains

[This is preliminary documentation and subject to change.]

You can also create complex surfaces. A complex surface is a set of surfaces created
with a single call to the IDirectDraw4::CreateSurface method. If the

DDSCAPS COMPLEX flag is set when you call CreateSurface call, DirectDraw
implicitly creates one or more surfaces in addition to the surface explicitly specified.
You manage complex surfaces just like a single surface —a single call to the
IDirectDraw::Release method releases all surfaces, and a single call to the
IDirectDrawSurface4::Restore method restores them all. However, implicitly
created surfaces cannot be detached. For more information, see
IDirectDrawSurface4::DeleteAttachedSurface.

One of the most useful complex surfaces you can create is a flipping chain. Usually,
a flipping chain is made of a primary surface and one or more back buffers. The
DDSCAPS_FLIP flag indicates that a surface is part of a flipping chain. Creating a
flipping chain this way requires that you also include the DDSCAPS COMPLEX
flag.

The following example shows how to prepare for creating a primary surface flipping

chain.

DDSURFACEDESC2 ddsd?2;
ddsd2.dwSize = sizeof(ddsd2);

// Tell DirectDraw which members are valid.
ddsd2.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// Request a primary surface with a single
// back buffer
ddsd2.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP |

in.doc — page 32

DDSCAPS_PRIMARYSURFACE;
ddsd2.dwBackBufferCount = 1;

The previous example constructs a double-buffered flipping environment —a single
call to the IDirectDrawSurface4::Flip method exchanges the surface memory of
the primary surface and the back buffer. If you specify 2 for the value of the
dwBackBufferCount member of the DDSURFACEDESC?2 structure, two back
buffers are created, and each call to Flip rotates the surfaces in a circular pattern,
providing a triple-buffered flipping environment. For more information, see Flipping
Surfaces.

Note
To create a flipping chain that comprises surfaces that will be used as 3-D
render targets, be sure to include the DDSCAPS 3DDEVICE capability flag in
the surface description, as well as the DDSCAPS COMPLEX and
DDSCAPS_FLIP flags.
Unlike the CreateSurface method exposed by the IDirectDraw3 and earlier
interfaces, you cannot use IDirectDraw4::CreateSurface to implicitly create a
flipping chain of render target surfaces with an attached depth-buffer. The
DDSURFACEDESC?2 structure that the IDirectDraw4::CreateSurface method
accepts doesn't contain a field to specify a depth-buffer bit depth. As a result,
applications must create a depth-buffer surface explicitly, then attach it to the
back-buffer render target surface. For more information, see Depth Buffers.

Creating Wide Surfaces

[This is preliminary documentation and subject to change.]

DirectDraw allows you to create off-screen surfaces in video memory that are wider
that the primary surface. This is only possible when display device support for wide
surfaces is present.

To check for wide surface support, call IDirectDraw4::GetCaps and look for the
DDCAPS2 WIDESURFACES flag in the dwCaps2 member of the first DDCAPS
structure you send with the call. If the flag is present, you can create video memory
off-screen surfaces that are wider that the primary surface.

If you attempt to create a wide surface in video memory when the
DDCAPS2_WIDESURFACES flag isn't present, the attempt will fail and return
DDERR INVALIDPARAMS. Note that attempting to create extremely large
surfaces might still fail, even if the driver exposes the DDCAPS2 WIDESURFACES
flag.

Wide surfaces are always supported for system memory surfaces, video port
surfaces, and execute buffers.

Creating Client Memory Surfaces

[This is preliminary documentation and subject to change.]

in.doc — page 33

Client memory surfaces are simply DirectDrawSurface objects that use system
memory that your application has previously allocated to hold image data. Creating
such a surface isn't common, but it isn't difficult to do and it can be useful for
applications that need to use DirectDraw surface features on existing memory
buffers.

Like creating all surfaces, DirectDraw needs information about the dimensions of the
surface (measured in pixels) and the surface pitch (measured in bytes), as well as the
surface's pixel format. However, unlike creating other types of surfaces, this
information doesn't tell DirectDraw how you want the surface to be created, it tells
DirectDraw how you've already created it. You set these characteristics, plus the
memory address of the buffer you've allocated, in the DDSURFACEDESC2
structure you pass to the IDirectDraw4::CreateSurface method.

A client memory surfaces works just like a normal system-memory surface, with the
exception that DirectDraw does not attempt to free the surface memory when it's no
longer needed; freeing client allocated memory is the application's responsibility.

The following example shows how you might allocate memory and create a
DirectDrawSurface object for a 64 X64 pixel 24-bit RGB surface:

/] For this example, g_IpDD4 is a valid IDirectDraw4 interface pointer.

#define WIDTH 64 // in pixels
#define HEIGHT 64
#define DEPTH 3 //in bytes (3bytes == 24 bits)

HRESULT hr;

LPVOID IpSurface = NULL;
HLOCAL hMemHandle = NULL;
DDSURFACEDESC?2 ddsd2;
LPDIRECTDRAWSURFACE4 IpDDS4;

// Allocate memory for a 64 by 64, 24-bit per pixel buffer.
// REMEMBER: The application is responsible for freeing this
Vi buffer when it is no longer needed.
if (IpSurface = malloc((size_t)WIDTH*HEIGHT*DEPTH))
ZeroMemory(lpSurface, (DWORD)WIDTH*HEIGHT*DEPTH);
else
return DDERR_OUTOFMEMORY;

// Initialize the surface description.

ZeroMemory(&ddsd2, sizeof(DDSURFACEDESC2));

ZeroMemory(&ddsd2.ddpfPixelFormat, sizeof(DDPIXELFORMAT));

ddsd2.dwSize = sizeof(ddsd2);

ddsd2.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_LPSURFACE |
DDSD_PITCH | DDSD_PIXELFORMAT;

ddsd2.dwWidth = WIDTH;

in.doc — page 34

ddsd2.dwHeight= HEIGHT;
ddsd2.IPitch = (LONG)DEPTH * WIDTH,;
ddsd2.IpSurface = IpSurface;

// Set up the pixel format for 24-bit RGB (8-8-8).
ddsd2.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);
ddsd2.ddpfPixelFormat.dwFlags= DDPF_RGB;
ddsd2.ddpfPixelFormat.dwRGBBitCount = (DWORD)DEPTH*8;
ddsd2.ddpfPixelFormat.dwRBitMask = 0xO0FF0000;
ddsd2.ddpfPixelFormat.dwGBitMask = 0x0000FFQO;
ddsd2.ddpfPixelFormat.dwBBitMask = 0x000000FF;

// Create the surface
hr = g_IpDD4->CreateSurface(&ddsd2, &pDDS4, NULL);
return hr;

Flipping Surfaces

[This is preliminary documentation and subject to change.]

Any surface in DirectDraw can be constructed as a flipping surface. A flipping
surface is any piece of memory that can be swapped between a front buffer and a
back buffer. (This construct is commonly referred to as a flipping chain). Often, the
front buffer is the primary surface, but it doesn't have to be.

Typically, when you use the IDirectDrawSurface4::Flip method to request a
surface flip operation, the pointers to surface memory for the primary surface and
back buffers are swapped. Flipping is performed by switching pointers that the
display device uses for referencing memory, not by copying surface memory. (The
exception to this is when DirectDraw is emulating the flip, in which case it simply
copies the surfaces. DirectDraw emulates flip operations if a back buffer cannot fit
into display memory or if the hardware doesn't support DirectDraw.) When a
flipping chain contains a primary surface and more than one back buffer, the pointers
are switched in a circular pattern, as shown in the following illustration.

in.doc — page 35

Primary
Surface Back Buffer Third Buffer
Bef
Flping A B C
After
Flipping F B C A T
Once
After
Flipping F C A B T
Twice
Aft
Third A B C
Flip F T

Other surfaces that are attached to a DirectDraw object, but not part of the flipping
chain, are unaffected when the Flip method is called.

Remember, DirectDraw flips surfaces by swapping surface memory pointers within
DirectDrawSurface objects, not by swapping the objects themselves. This means
that, to blit to the back buffer in any type of flipping scheme, you always use the
same DirectDrawSurface object — the one that was the back buffer when you
created the flipping chain. Conversely, you always perform a flip operation by
calling the front surface's Flip method.

When working with visible surfaces, such as a primary surface flipping chain or a
visible overlay surface flipping chain, the Flip method is asynchronous unless you
include the DDFLIP_WAIT flag. On these visible surfaces, the Flip method can
return before the actual flip operation occurs in the hardware (because the hardware
doesn't flip until the next vertical refresh occurs). While the actual flip operation is
pending, the back buffer behind the currently visible surface can't be locked or
blitted by calling the IDirectDrawSurface4::Lock, IDirectDrawSurface4::Blt,
IDirectDrawSurface4::BltFast, or IDirectDrawSurface4::GetDC methods. If you
attempt to call these methods while a flip operation is pending, they will fail and
return DDERR_WASSTILLDRAWING. However, if you are using a triple buffered
scheme, the rearmost buffer is still available.

Blitting to Surfaces

[This is preliminary documentation and subject to change.]

in.doc — page 36

This section is a guide to copying pixels from one DirectDraw surface to another, or
from one part of a surface to another.

The following topics are covered:
¢ Blitting Basics
¢ Blitting with BltFast
¢ Blitting with Blt
¢ BIlit Timing
® Transparent Blitting
® Color Fills
¢ Blitting to Multiple Windows

Blitting Basics
[This is preliminary documentation and subject to change.]

Two methods are available for copying images to a DirectDraw surface:
IDirectDrawSurfaced4::Blt and IDirectDrawSurface4::BltFast. (A third method,
IDirectDrawSurface4::BltBatch, is not implemented in this version of DirectX.)
These methods are called on the destination surface and receive the source surface as
a parameter. The destination and source surfaces can be one and the same, and you
don't have to worry about overlap—DirectDraw takes care to preserve all source
pixels before overwriting them.

Of the two implemented methods, BIt is the more flexible and BltFast is the faster—
but only if there is no hardware blitter. You can determine the blitting capabilities of
the hardware from the DDCAPS structure obtained in the [pDDDriverCaps
parameter of the IDirectDraw4::GetCaps method. If the dwCaps member contains
DDCAPS BLT, the hardware has at least minimal blitting capabilities.

Blitting with BltFast

[This is preliminary documentation and subject to change.]

When using IDirectDrawSurface4::BltFast, you supply a valid rectangle in the
source surface from which the pixels are to be copied (or NULL to specify the entire
surface), and an x-coordinate and y-coordinate in the destination surface. The source
rectangle must be able to fit in the destination surface with its top left corner at that
point, or the call will fail with a return value of DDERR INVALIDRECT. BltFast
cannot be used on surfaces that have an attached clipper.

No stretching, mirroring, or other effects can be performed when using BltFast.
BltFast Example

The following example copies pixels from an offscreen surface, [pDDSOffOne, to the
primary surface, [pDDSPrimary. The flags ensure that the operation will take place
as soon as the blitter is free, and that transparent pixels in the source image will not

in.doc — page 37

be copied. (For more information on the meaning of these flags, see Blit Timing and
Transparent Blitting .)

IpDDSPrimary->BItFast(
100, 200, // Upper left xy of destination
IpDDSOffOne, // Source surface
NULL, // Source rectangle = entire surface
DDBLTFAST WAIT | DDBLTFAST _SRCCOLORKEY);

Blitting with BIt

[This is preliminary documentation and subject to change.]

When using the IDirectDrawSurface4::Blt method, you supply a valid rectangle in
the source surface (or NULL to specify the entire surface), and a rectangle in the
destination surface to which the source image will be copied (again, NULL means
the rectangle covers the entire surface). If a clipper is attached to the destination
surface, the bounds of the destination rectangle can fall outside the surface and
clipping will be performed. If there is no clipper, the destination rectangle must fall
entirely within the surface or else the method will fail with
DDERR_INVALIDRECT. (For more information on clipping, see Clippers.)

Scaling

The BIt method automatically rescales the source image to fit the destination
rectangle. If resizing is not your intention, for best performance you should make
sure that your source and destination rectangles are exactly the same size, or else use
IDirectDrawSurface4:BltFast. (See Blitting with BltFast.)

Hardware acceleration for scaling depends on the DDFXCAPS BLT* flags in the
dwFXCaps member of the DDCAPS structure for the device. If, for example, a
device has the DDFXCAPS BLTSTRETCHXN capability but not

DDFXCAPS BLTSTRETCHX, it can assist when the x-axis of the source rectangle
is being multiplied by a whole number but not when non-integral (arbitrary) scaling
is being done.

Devices might also support arithmetic scaling, which is scaling by interpolation
rather than simple multiplication or deletion of pixels. For instance, if an axis was
being increased by one-third, the pixels would be recolored to provide a closer
approximation to the original image than would be produced by the doubling of
every third pixel on that axis.

Applications cannot control the type of scaling done by the driver, except by setting
the DDBLTFX ARITHSTRETCHY flag in the dwDDFX member of the
DDBLTFX structure passed to Blt. This flag requests that arithmetic stretching be
done on the y-axis. Arithmetic stretching on the x-axis and arithmetic shrinking are
not currently supported in the DirectDraw API, but a driver may perform them by
default.

Other Effects

in.doc — page 38

If you do not require any special effects other than scaling when using BIt, you can
pass NULL as the [pDDBItFx parameter. Otherwise you can choose among a variety
of effects specified in a DDBLTFX structure. Among these, color fills and mirroring
are supported by the HEL, so they are always available. Most other effects depend
on hardware support.

For a complete view of the effects capabilities of the HEL, run the DDraw Caps
utility supplied with the DirectX Programmer's Reference and select HEL FX Caps
from the HEL menu. For an explanation of the various flags, sce DDCAPS. You can
also check HEL capabilities within your own application by using the
IDirectDraw4::GetCaps method.

When you specify an effect that requires a value in one of the members of the
DDBLTFX structure passed to the IDirectDrawSurface4::Blt method, you must
also include the appropriate flags in the dwFlags parameter to show which members
of the structure are valid.

Some effects require only the setting of a flag in the dwFlags member of
DDBLTFX. One of these is DDBLTFX NOTEARING. You can use this flag when
you are blitting animated images directly to the front buffer, so that the blit is timed
to coincide with the screen refresh and the possibility of tearing is minimized.
Mirroring and rotation are also set by using flags.

Blitting effects include the standard raster operations (ROPs) used by GDI functions
such as BitBIt. The only ROPs supported by the HEL are SRCCOPY (the default),
BLACKNESS, and WHITENESS. Hardware support for other ROPs can be
examined in the DDCAPS structure for the driver. If you wish to use any of the
standard ROPS with the BIt method, you flag them in the dwROP member of the
DDBLTEFX structure.

The dwDDROP member of the DDBLTFX structure is for specifying ROPs specific
to DirectDraw. However, no such ROPs are currently defined.

Alpha and Z Values

Opacity and depth values are not currently supported in DirectDraw blits. If alpha
values are stored in the pixel format, they simply overwrite any alpha values in the
destination rectangle. Values from alpha buffers and z-buffers are ignored. The
members of the DDBLTFX structure that have to do with alpha channels and z-
buffers (members whose names begin with "dwAlpha" and "dwZ"), and the
corresponding flags for BIt, are not used. The same applies to the

DDBLTFX ZBUFFERBASEDEST and DDBLTFX ZBUFFERRANGE flags in the
dwDDFX member of the DDBLTFX structure.

Although z-buffers are currently used only in Direct3D applications, you can use
IDirectDrawSurface4::Blt to set the depth value for a z-buffer surface, by setting
the DDBLT DEPTHFILL flag. For more information, see Clearing Depth Buffers.

For an overview of the use of alpha channels and z-buffers in Direct3D, see the
following topics:

® Alpha States

in.doc — page 39

® What Are Depth Buffers?

Bit Example

The following example, in which it is assumed that /pDDS is a valid
IDirectDrawSurface4 pointer, creates a symmetrical image within the surface by
mirroring a rectangle from left to right:

RECT rcSource, rcDest;
DDBLTFX ddbltfx;

ZeroMemory(&ddbltfx, sizeof(ddbltfx));
ddbltfx.dwSize = sizeof(ddbltfx);
ddbltfx.dwDDFX = DDBLTFX_MIRRORLEFTRIGHT;

rcSource.top = 0; rcSource.left = 0;
rcSource.bottom = 100; rcSource.right = 200;
rcDest.top = 0; rcDest.left = 201;
rcDest.bottom = 100; rcDest.right = 401;

HRESULT hr = |[pDDS->BIt(&rcDest,
IpDDS,
&rcSource,
DDBLT_WAIT | DDBLT _DDFX,
&ddbltfx);

Blit Timing
[This is preliminary documentation and subject to change.]

When you copy pixels to a surface using either IDirectDrawSurface4::Blt or
IDirectDrawSurface4::BltFast, the method might fail with
DDERR_WASSTILLDRAWING because the hardware blitter was not ready to
accept the command.

If your application has no urgent business to perform while waiting for the blitter to
come back into a state of readiness, you can specify the DDBLT WAIT flag in the
dwFlags parameter of BIt, or the equivalent DDBLTFAST WAIT flag for BltFast.
The flag causes the method to wait until the blit can be handed off to the blitter (or
until an error other than DDERR_WASSTILLDRAWING occurs).

BIt accepts another flag, DDBLT ASYNC, that takes advantage of any hardware
FIFO (first in, first out) queuing capabilities.

Transparent Blitting

[This is preliminary documentation and subject to change.]

in.doc — page 40

This section discusses the theory and practice of using transparent blitting to copy
parts of a rectangular image selectively, using source and destination color keys.

The concepts are introduced in the following topic:

® What Is Transparent Blitting?

Information about the implementation of transparent blitting in DirectDraw is
contained in the following topics:

® Color Key Format
¢ Setting Color Keys
¢ Blitting with Color Keys

What Is Transparent Blitting?
[This is preliminary documentation and subject to change.]

Transparent blitting enables you to create the illusion of nonrectangular blits when
animating sprites. A sprite image is usually nonrectangular, but blits are always
rectangular, so every pixel within the sprite's bounding rectangle becomes part of the
data transfer. With transparent blitting, each pixel that is not part of the sprite image
is treated as transparent when the blitter is moving the image to its destination, so
that it does not overwrite the color in that pixel on the background image.

The artist creating the sprite chooses an arbitrary color or range of colors to be used
as the transparency color key. This is typically a single uncommon color that the
artist doesn't use for anything but transparency, and it is used to fill in all parts of the
sprite rectangle that are not part of the desired image. At run time you set the color
key for the surface containing the sprite. (If you wish, you can automatically set it to
the color of the pixel in the upper left corner of the image.) Subsequent blits can take
advantage of that color key, ignoring the pixels that match it. This type of color key
is known as a source color key.

You can also use a color key on the destination surface, provided the hardware
supports destination color keying. This destination color key is used for pixels that
can be overwritten by a sprite. For example, the artist might be working on a
foreground image that sprites are supposed to pass behind, such as the wall of a room
with a window to the outside. The artist chooses an arbitrary color—one that isn't
used elsewhere in the image—to represent the sky outside the window. When you set
this color key for the destination surface and then blit a sprite to that surface, the
sprite's pixels will overwrite only pixels that are using the destination color key. In
the example, the sprite appears only in the window, but not on the wall or window
frame. As a result, the sprite seems to be outside the room.

Source and destination color keys can be combined. In the example, the sprite could
use a source color key so that its entire bounding rectangle does not block out the
sky background.

in.doc — page 41

Color Key Format
[This is preliminary documentation and subject to change.]

A color key is described in a DDCOLORKEY structure. If the color key is a single
color, both members of this structure should be assigned the same value. Otherwise
the color key is a range of colors.

Color keys are specified using the pixel format of a surface. If a surface is in a
palettized format, the color key is given as an index or a range of indices. If the
surface's pixel format is specified by a FOURCC code that describes a YUV format,
the YUV color key is specified by the three low-order bytes in both the
dwColorSpaceLowValue and dwColorSpaceHighValue members of the
DDCOLORKEY structure. The lowest order byte contains the V data, the second
lowest order byte contains the U data, and the highest order byte contains the Y data.

Some examples of valid color keys follow:
8-bit palettized mode

// Palette entry 26 is the color key.
dwColorSpacelLowValue = 26;
dwColorSpaceHighValue = 26;

24-bit true-color mode

// Color 255,128,128 is the color key.
dwColorSpaceLowValue = RGBQUAD(255,128,128);
dwColorSpaceHighValue = RGBQUAD(255,128,128);

FourCC YUYV mode

// Any YUV color where Y is between 100 and 110
// and U or V is between 50 and 55 is transparent.
dwColorSpacelLowValue = YUVQUAD(100,50,50);
dwColorSpaceHighValue = YUVQUAD(110,55,55);

Support for a range of colors rather than a single color is hardware-dependent. Check
the d wCKeyCaps member of the DDCAPS structure for the hardware. The HEL
does not support color ranges.

Some hardware supports color ranges only for YUV pixel data, which is usually
video. The transparent background in video footage (the "blue screen" against which
the subject was photographed) might not be a single pure color, so a range of colors
in the color key is desirable.

Setting Color Keys
[This is preliminary documentation and subject to change.]

You can set the source or destination color key for a surface either when creating it
or afterwards.

in.doc — page 42

To set a color key or keys when creating a surface, you assign the appropriate color
values to one or both of the ddckCKSreBIt and ddckCKDestBIt members of the
DDSURFACEDESC?2 structure that is passed to IDirectDraw4::CreateSurface. To
enable the color key for blitting, you must also include one or both of

DDSD CKSRCBLT or DDSD CKDESTBLT in the dwFlags member.

To set a color key for an existing surface you use the
IDirectDrawSurface4::SetColorKey method. You specify a key in the
IpDDColorKey parameter and set either DDCKEY SRCBLT or

DDCKEY DESTBLT in the dwFlags parameter to indicated whether you are setting
a source or destination key. If the DDCOLORKEY structure contains a range of
colors, you must also set the DDCKEY COLORSPACE flag. If this flag is not set,
only the dwColorSpaceLowValue member of the structure is used.

Blitting with Color Keys
[This is preliminary documentation and subject to change.]

If you want to use color keys for surfaces when calling the
IDirectDrawSurface4::BltFast method, you must set one or both of the
DDBLTFAST SRCCOLORKEY or DDBLTFAST DESTCOLORKEY flags in the

dwTrans parameter.

In order to use colors keys when calling IDirectDrawSurface4:Blt, you pass one or
both of the DDBLT KEYSRC or DDBLT KEYDEST flags in the dwFlags
parameter. Alternatively, you can put the appropriate color values in the
ddckDestColorkey and ddckSrcColorkey members of the DDBLTFX structure
that is passed to the method through the [pDDBItFx parameter. In this case you must
also set the DBLT KEYSRCOVERRIDE or DDBLT KEYDESTOVERRIDE flag,
or both, in the dwFlags parameter, so that the selected keys are taken from the
DDBLTEFX structure rather than from the surface properties.

Color Fills

[This is preliminary documentation and subject to change.]

In order to fill all or part of a surface with a single color, you can use the
IDirectDrawSurface4::Blt method with the DDBLT COLORFILL flag. This
technique allows you to quickly erase an area or draw a solid-colored background.

The following example fills an entire surface with the color blue, after obtaining the
numerical value for blue from the pixel format:

/* It is assumed that IpDDS is a valid pointer to

an IDirectDrawSurface4 interface. */

HRESULT ddrval;
DDPIXELFORMAT ddpf;

ddpf.dwSize = sizeof(ddpf);
if (SUCCEEDED(IpDSS->GetPixelFormat(&ddpf))

in.doc — page 43

DDBLTFX ddbltfx;

ddbltfx.dwSize = sizeof(ddbltfx);
ddbltfx.dwrFillColor = ddpf.dwBBitMask; // Pure blue

ddrval = IpDDS->BIt(

NULL, // Destination is entire surface
NULL, // No source surface
NULL, // No source rectangle

DDBLT_COLORFILL, &ddbltfx);

switch(ddrval)

{
case DDERR_WASSTILLDRAWING:

case DDERR_SURFACELOST:

case DD_OK:

default:

Blitting to Multiple Windows

[This is preliminary documentation and subject to change.]

You can use a DirectDraw object and a DirectDrawClipper object to blit to multiple
windows created by an application running at the normal cooperative level. For more
information, see Using a Clipper with Multiple Windows.

Creating multiple DirectDraw objects that blit to each others' primary surface is not
recommended.

Losing and Restoring Surfaces

[This is preliminary documentation and subject to change.]

The surface memory associated with a DirectDrawSurface object may be freed,
while the DirectDrawSurface objects representing these pieces of surface memory

in.doc — page 44

are not necessarily released. When a DirectDrawSurface object loses its surface
memory, many methods return DDERR_SURFACELOST and perform no other
action.

Surfaces can be lost because the display mode was changed or because another
application received exclusive access to the display card and freed all of the surface
memory currently allocated on the card. The IDirectDrawSurface4::Restore
method re-creates these lost surfaces and reconnects them to their
DirectDrawSurface object. If your application uses more than one surface, you can
call the IDirectDraw4::RestoreAllSurfaces method to restore all of your surfaces at
once.

Restoring a surface doesn't reload any bitmaps that may have existed in the surface
prior to being lost. You must completely reconstitute the graphics they once held.

COM Reference Count Semantics for
Surfaces

[This is preliminary documentation and subject to change.]

Being built upon COM means that DirectDraw follows certain rules that employ
reference counts to manage object lifetimes. For a conceptual overview, see the
COM documentation; a DirectDraw-centered discussion of the topic is found in
Parent and Child Object Lifetimes.

By COM rules, when an interface pointer is copied by setting it to another variable
or passing to another object, that copy represents another reference to the object, and
therefore the IUnknown::AddRef method of the interface must be called to reflect
the change. Not only should you follow COM reference counting rules when
working with DirectDraw objects, but you should become familiar with the
situations in which DirectDraw internally updates reference counts. Some
DirectDraw methods—mostly those involving complex surface flipping chains—
affect the reference counts of the surfaces involved, while methods involving
clippers or palettes affect the reference counts of those objects. Knowing about these
situations can make the difference in your application's stability and can prevent
memory leaks. This section presents information divided into the following topics:

® When Reference Counts Will Change
® Reference Counts for Complex Surfaces

® Releasing Surfaces

Note:
There are some things to remember about the reference count of the DirectDraw
object, in addition to the relationships discussed in this section. For more
information, see Parent and Child Object Lifetimes in The DirectDraw Object.

in.doc — page 45

When Reference Counts will Change

[This is preliminary documentation and subject to change.]

There are several DirectDraw methods that affect the reference count of a surface,
and a few that affect other objects you can associate with a surface. You can think of
these situations as "surface-only changes" and "cross-object changes":

Surface-only changes
Surface-only changes, as the name states, only affect the reference count of a
surface object. For example, you might use the IDirectDraw4::EnumSurfaces
to enumerate the current surfaces that fit a particular description. When the
method invokes the callback function that you provide, it passes a pointer to an
IDirectDrawSurface4 interface, but it increments the reference count for the
object before your application receives the pointer. It's your responsibility to
release the object when you are finished with it. This will typically be at the end
of your callback routine, or later if you choose to keep the object.

Most other surface-only changes affect the reference counts of complex
surfaces, such as a flipping chain. Reference counts are a little more tricky for
complex surfaces, because (in most cases) DirectDraw treats a complex surface
as if it was a single object, even though it is a set of surfaces. In short, the
IDirectDrawSurface4::GetAttachedSurface and
IDirectDrawSurface4::AddAttachedSurface methods increment reference
counts of surfaces, and IDirectDrawSurface4::DeleteAttachedSurface
decrements the reference count. These methods don't affect the counts of any
surfaces attached to the current surface. See the references for these methods
and Reference Counts for Complex Surfaces for a additional details.

Cross-object changes
Cross-object reference count changes occur when you create an association
between a surface and another object that performs a task for the surface, such
as a clipper or a palette.

The IDirectDrawSurface4::SetClipper and IDirectDrawSurface4::SetPalette
methods increment the reference count of the object being attached. After they
are attached, the surface manages them; if the surface is released, it
automatically releases any objects it is using. (For this reason, some applications
release the interface for the object after these calls succeed. This is a perfectly
valid practice.)

Once a clipper or palette is attached to a surface, you can call the
IDirectDrawSurface4::GetClipper and IDirectDrawSurface4::GetPalette
methods to retrieve them again. Because these methods return a copy of an
interface pointer, they implicitly increment the reference count for the object
being retrieved. When you're done with the interfaces, don't forget to release
them—the objects that the interfaces represent won't disappear so long as the
surface they are attached to still holds a reference to them.

Reference Counts for Complex Surfaces

[This is preliminary documentation and subject to change.]

in.doc — page 46

The methods you use to manipulate a complex surface like a flipping chain all use
surface interface pointers, and therefore they all affect the reference counts of the
surfaces. Because a complex surface is really a series of single surfaces, the
reference count relationships require a little more consideration. As you might
expect, the IDirectDrawSurface4::GetAttachedSurface method returns the surface
interface for a surface attached to the current surface. It does this after incrementing
the reference count of the interface being retrieved; it's up to you to release the
interface when you no longer need it. The
IDirectDrawSurface4::AddAttachedSurface method attaches a new surface to the
current one. Similarly, AddAttachedSurface increments the count for the surface
being attached. You would use the IDirectDrawSurface4::DeleteAttachedSurface
method to remove the surface from the chain and implicitly decrease its reference
count.

What isn't immediately clear about these methods is that they don't affect the
reference counts of the other objects that make up the complex surface. The
GetAttachedSurface method simply increments the reference count of the surface
it's retrieving, it doesn't affect the counts of the surfaces on which it depends. (The
same situation applies to an explicit call to [IUnknown::AddRef.) This means that
the reference count for primary surface in a complex surface can reach zero before
its subordinate surfaces reach zero. When the primary surface reference count
reaches zero, all other surfaces attached to it are released regardless of their current
reference counts. (It's like a tree: if you cut the base, the whole thing falls. In this
case, the primary surface is the base.) Attempts to access subordinate surfaces after
the primary surface has been deallocated will result in memory faults.

To avoid problems, make sure that your application has released all subordinate
surface references before attempting to release the primary surface. It might be
helpful to track the references you application holds, only accessing subordinate
surface interfaces when you're sure that you also hold a reference the primary
surface.

Releasing Surfaces

[This is preliminary documentation and subject to change.]

Like all COM interfaces, you must release surfaces by calling their
IDirectDrawSurface4::Release method when you no longer need them.

Each surface you individually create must be explicitly released. However, if you
implicitly created multiple surfaces with a single call to
IDirectDraw4::CreateSurface, such as a flipping chain, you need only release the
front buffer. In this case, any pointers you might have to back buffer surfaces are
implicitly released and can no longer be used.

Explicitly releasing a back buffer surface doesn't affect the reference count of the
other surfaces in the chain.

in.doc — page 47

Enumerating Surfaces
[This is preliminary documentation and subject to change.]

By calling the IDirectDraw4::EnumSurfaces method you can request that
DirectDraw enumerate surfaces in various ways. The EnumSurfaces method enables
you to look for surfaces that fit, or don't fit, a provided surface description.
DirectDraw calls a EnumSurfacesCallback that you include with the call for each
enumerated surface.

There are two general ways to search—you can search for surfaces that the
DirectDraw object has already created, or for surfaces that the DirectDraw object is
capable of creating at the time (given the surface description and available memory).
You specify what type of search you want by combining flags in the method's
dwFlags parameter.

Enumerating existing surfaces
This is the most common type of enumeration. You enumerate existing surfaces by
calling EnumSurfaces, specifying a combination of the
DDENUMSURFACES DOESEXIST search-type flag and one of the matching flags
(DDENUMSURFACES MATCH, DDENUMSURFACES NOMATCH, or
DDENUMSURFACES ALL) in the dwFlags parameter. If you're enumerating all
existing surfaces, you can set the [pDDSD parameter to NULL, otherwise set it to the
address of an initialized DDSURFACEDESC?2 structure that describes the surface
for which you're looking. You can set the third parameter, [pContext, to an address
that will be passed to the enumeration function you specify in the fourth parameter,
IpEnumSurfacesCallback.

The following code fragment shows what this call might look like to enumerate all
of a DirectDraw object's existing surfaces.

HRESULT ddrval;
ddrval = IpDD->EnumSurfaces(DDENUMSURFACES_DOESEXIST |
DDENUMSURFACES_ALL, NULL, NULL,
EnumCallback);
if (FAILED(ddrval))
return FALSE;

When searching for existing surfaces that fit a specific description, DirectDraw
determines a match by comparing each member of the provided surface description
to those of the existing surfaces. Only exact matches are enumerated. DirectDraw
increments the reference counts of the enumerated surfaces, so make sure to release
a surface if you don't plan to use it (or when you're done with it).

Enumerating possible surfaces
This type of enumeration is less common than enumerating existing surfaces, but it
can be helpful to determine if a surface is supported before you attempt to create it.
To perform this search, combine the DDENUMSURFACES CANBECREATED and
DDENUMSURFACES MATCH flags when you call
IDirectDraw4::EnumSurfaces (no other flag combinations are valid). The

in.doc — page 48

DDSURFACEDESC?2 structure you use with the call must be initialized to contain
information about the surface characteristics that DirectDraw will use.

To enumerate surfaces that use a particular pixel format, include the

DDSD PIXELFORMAT flag in the dwFlags member of the DDSURFACEDESC2
structure. Additionally, initialize the DDPIXELFORMAT structure in the surface
description and set its dwFlags member to contain the desired pixel format flags—
DDPF RGB, DDPF YUYV, or both. You need not set any other pixel format values.

If you include the DDSD_HEIGHT and DDSD WIDTH flags in the
DDSURFACEDESC?2 structure, you can specify the desired dimensions in the
dwHeight and dwWidth members. If you exclude these flags, DirectDraw uses the
dimensions of the primary surface.

The following code fragment shows what this call could look like to enumerate all
valid surface characteristics for 96xX96 RGB or YUV surfaces:

DDSURFACEDESC?2 ddsd;
HRESULT ddrval;
ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_PIXELFORMAT |
DDSD_HEIGHT | DDSD_WIDTH;

ddsd.ddpfPixelFormat.dwFlags = DDPF_YUV | DDPF_RGB;

ddsd.dwHeight = 96;

ddsd.dwWidth = 96;

ddrval = IpDD->EnumSurfaces(
DDENUMSURFACES_CANBECREATED | DDENUMSURFACES_MATCH,
&ddsd, NULL, EnumCallback);
if (ddrval != DD_OK)
return FALSE;

When DirectDraw enumerates possible surfaces, it actually attempts to create a
temporary surface that has the desired characteristics. If the attempt succeeds, then
DirectDraw calls the provided EnumSurfacesCallback function with only the
characteristics that worked; it does not provide the callback function with pointer to
the temporary surface. Do not assume that a surface isn't supported if it isn't
enumerated. DirectDraw's attempt to create a temporary surface could fail due to
memory constraints that exist at the time of the call, resulting in those characteristics
not being enumerated, even if the driver actually supports them.

Updating Surface Characteristics

[This is preliminary documentation and subject to change.]

You can update the characteristics of an existing surface by using the
IDirectDrawSurface4::SetSurfaceDesc method. With this method, you can change

in.doc — page 49

the pixel format and location of a DirectDrawSurface object's surface memory to
system memory that your application has explicitly allocated. This is useful as it
allows a surface to use data from a previously allocated buffer without copying. The
new surface memory is allocated by the client application and, as such, the client
application must also deallocate it.

When calling the IDirectDrawSurface4::SetSurfaceDesc method, the Ipddsd
parameter must be the address of a DDSURFACEDESC?2 structure that describes
the new surface memory as well as a pointer to that memory. Within the structure,
you can only set the dwFlags member to reflect valid members for the location of
the surface memory, dimensions, pitch, and pixel format. Therefore, dwFlags can
only contain combinations of the DDSD WIDTH, DDSD HEIGHT, DDSD_PITCH,
DDSD LPSURFACE, and DDSD PIXELFORMAT flags, which you set to indicate
valid structure members.

Before you set the values in the structure, you must allocate memory to hold the
surface. The size of the memory you allocate is important. Not only do you need to
allocate enough memory to accommodate the surface's width and height, but you
need to have enough to make room for the surface pitch, which must be a QWORD
(8 byte) multiple. Remember, pitch is measured in bytes, not pixels.

When setting surface values in the structure, the IpSurface member is a pointer to
the memory you allocated and the dwHeight and dwWidth members describe the
surface dimensions in pixels. If you specify surface dimensions, you must fill the
IPitch member to reflect the surface pitch as well. Pitch must be a DWORD
multiple. Likewise, if you specify pitch, you must also specify a width value. Lastly,
the ddpfPixelFormat member describes the pixel format for the surface. With the
exception of the IpSurface member, if you don't specify a value for these members,
the method defaults to using the value from the current surface.

There are some restrictions you must be aware of when using
IDirectDrawSurface4::SetSurfaceDesc, some of which are common sense. For
example, the IpSurface member of the DDSURFACEDESC?2 structure must be a
valid pointer to a system memory (the method doesn't support video memory
pointers at this time). Also, the dwWidth and dwHeight members must be nonzero
values. Lastly, you cannot reassign the primary surface or any surfaces within the
primary's flipping chain.

You can set the same memory for multiple DirectDrawSurface objects, but you must
take care that the memory is not deallocated while it is assigned to any surface
object.

Using the SetSurfaceDesc method incorrectly will cause unpredictable behavior.
The DirectDrawSurface object will not deallocate surface memory that it didn't
allocate. Therefore, when the surface memory is no longer needed, it is your
responsibility to deallocate it. However, when SetSurfaceDesc is called, DirectDraw
frees the original surface memory that it implicitly allocated when creating the
surface.

in.doc — page 50

Accessing Surface Memory Directly
[This is preliminary documentation and subject to change.]

You can directly access the frame buffer or off-screen surface memory by using the
IDirectDrawSurface4::Lock method. When you call this method, the [pDestRect
parameter is a pointer to a RECT structure that describes the rectangle on the
surface you want to access directly. To request that the entire surface be locked, set
IpDestRect to NULL. Also, you can specify a RECT that covers only a portion of
the surface. Providing that no two rectangles overlap, two threads or processes can
simultaneously lock multiple rectangles in a surface.

The Lock method fills a DDSURFACEDESC? structure with all the information
you need to properly access the surface memory. The structure includes information
about the pitch (or stride) and the pixel format of the surface, if different from the
pixel format of the primary surface. When you finish accessing the surface memory,
call the IDirectDrawSurface4::Unlock method to unlock it.

While you have a surface locked, you can directly manipulate the contents. The
following list describes some tips for avoiding common problems with directly
rendering surface memory:

® Never assume a constant display pitch. Always examine the pitch information
returned by the IDirectDrawSurface4::Lock method. This pitch can vary for a
number of reasons, including the location of the surface memory, the type of
display card, or even the version of the DirectDraw driver. For more
information, see Width vs. Pitch.

® Make certain you blit to unlocked surfaces. DirectDraw blit methods will fail,
returning DDERR_SURFACEBUSY or DDERR LOCKEDSURFACES, if
called on a locked surface. Similarly, GDI blit functions fail without returning
error values if called on a locked surface that exists in display memory.

¢ Limit your application's activity while a surface is locked. While a surface is
locked, DirectDraw often holds the Winl6Mutex (also known as the
Winl6Lock) so that gaining access to surface memory can occur safely. The
Winl6Mutex serializes access to GDI and USER dynamic-link libraries,
shutting down Windows for the duration between the
IDirectDrawSurface4::Lock and IDirectDrawSurface4::Unlock calls. The
IDirectDrawSurface4::GetDC method implicitly calls Lock, and the
IDirectDrawSurface4::ReleaseDC implicitly calls Unlock.

® Always copy data aligned to display memory. (Windows 95 and Windows 98
use a page fault handler, Vflatd.386, to implement a virtual flat-frame buffer for
display cards with bank-switched memory. The handler allows these display
devices to present a linear frame buffer to DirectDraw. Copying data unaligned
to display memory can cause the system to suspend operations if the copy spans
memory banks.)

Unless you include the DDLOCK NOSYSLOCK flag when you call the Lock
method, locking the surface typically causes DirectDraw to take the Winl6Mutex.

in.doc — page 51

During the Winl6Mutex all other applications, including Windows, cease execution.
Since the Winl6Mutex stops applications from executing, standard debuggers cannot
be used while the lock is held. Kernel debuggers can be used during this period.
DirectDraw always takes the Winl6Mutex when locking the primary surface.

If a blit is in progress when you call IDirectDrawSurface4::Lock, the method will
return immediately with an error, as a lock cannot be obtained. To prevent the error,
use the DDLOCK_WAIT flag to cause the method to wait until a lock can be
successfully obtained.

Locking portions of the primary surface can interfere with the display of a software
cursor. If the cursor intersects the locked rectangle, it is hidden for the duration of
the lock. If it doesn't intersect the rectangle, it is frozen for the duration of the lock.
Neither of these effects occurs if the entire surface is locked.

Gamma and Color Controls

[This is preliminary documentation and subject to change.]

This section contains information about the gamma and color control interfaces used
with DirectDrawSurface objects. Information is organized into the following topics:

® What Are Gamma and Color Controls?
® Using Gamma Controls

® Using Color Controls

Note
You should not attempt to use both the IDirectDrawGammaControl and
IDirectDrawColorControl interfaces on a single surface. Their effects are
undefined when used together.

What Are Gamma and Color Controls?

[This is preliminary documentation and subject to change.]

Through the gamma and color control interfaces, DirectDrawSurface objects enable
you to change how the system displays the contents of the surface, without affecting
the contents of the surface itself. You can think of these controls as very simple
filters that DirectDraw applies to the data as it leaves a surface before being rendered
on the screen. Surface objects implement the IDirectDrawGammaControl and
IDirectDrawColorControl interfaces which expose methods to adjust how the
surface's contents are filtered. You can retrieve a pointer to either interface by using
the IUnknown::QuerylInterface method of the target surface, specifying the
IID_IDirectDrawGammaControl or IID IDirectDrawColorControl reference
identifiers.

Gamma controls, represented by the IDirectDrawGammaControl interface, make it
possible for you to dynamically change how a surface's individual red, green, and
blue levels map to the actual levels that the system displays. By setting gamma

in.doc — page 52

levels, you can cause the user's screen to flash colors—red when the user's character
is shot, green when they pick up a new item, and so on—without blitting new images
to the frame buffer to achieve the effect. Or, you might adjust color levels to apply a
color bias to the images in the frame buffer. Although this interface is similar to the
color control interface, this one is the easiest to use, making it the best choice for
game applications. For details, see Using Gamma Controls.

The IDirectDrawColorControl interface allows you to control color in a surface
much like the color controls you might find on a television. The similarity between
IDirectDrawColorControl and the actual controls on a TV is no mistake—this
interface is most appropriate for adjusting how broadcast video looks in an overlay
surface, so it makes sense that it should provide similar control over colors. You can
use color controls to allow a user to change video characteristics such as hue,
saturation, contrast, and several others. For more information, see Using Color
Controls.

Using Gamma Controls

[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl interface, which you retrieve by querying the
surface with the /ID IDirectDrawGammaControl reference identifier, allows you to
manipulate ramp levels that affect the red, green, and blue color components of
pixels from the surface before they are sent to the digital-to-analog converter (DAC)
for display. Although all surface types support the IDirectDrawGammaControl
interface, you are only allowed to adjust gamma on the primary surface. Attempts to
call IDirectDrawGammaControl::GetGammaRamp or
IDirectDrawGammaControl::SetGammaRamp on a surface other than the
primary surface will fail.

In the following topics, this section describes the general concept of ramp levels, and
provides information about working with those levels through the methods of
IDirectDrawGammaControl:

® About Gamma Ramp Levels

® Detecting Gamma Ramp Support

® Setting and Retrieving Gamma Ramp Levels

About Gamma Ramp Levels
[This is preliminary documentation and subject to change.]

A gamma ramp in DirectDraw is a term used to describe a set of values that map the
level of a particular color component (red, green, blue) for all pixels in the frame
buffer to new levels that are received by the digital-to-analog converter (DAC) for
display on the monitor. The remapping is performed by way of three simple look-up
tables, one for each color component.

Here's how it works: DirectDraw takes a pixel from the frame buffer, and looks at it
in terms of its individual red, green, and blue color components. Each component is

in.doc — page 53

represented by a value from 0 to 65535. DirectDraw takes the original value, and
uses it to index into an 256-element array (the ramp), where each element contains a
value that replaces the original one. DirectDraw performs this "look-up and replace"
process for each color component of each pixel within the frame buffer, thereby
changing the final colors for all of the on-screen pixels.

It's handy to visualize the ramp values by graphing them. The left graph of the two
following graphs shows a ramp that doesn't modify colors at all, and the right graph
shows a ramp that imposes a negative bias to the color component to which it is
applied.

65535 65535
Output Output
Color Color
Level Level
0 0
0 Input Color Level 65535 0 Input Color Level 65535

The array elements for the graph on the left would contain values identical to their
index (0 in the element at index 0, and 65535 at index 255). This type of ramp is the
default, as it doesn't change the input values before they're displayed. The right
graph is a little more interesting; its ramp contains values that range from 0 in the
first element to 32768 in the last element, with values ranging relatively uniformly in
between. The effect is that the color component that uses this ramp appears muted on
the display. You are not limited to using linear graphs; if your application needs to
assign arbitrary mapping, it's free to do so. You can even set the entries to all zeroes
to leech a particular color component completely from the display.

Detecting Gamma Ramp Support
[This is preliminary documentation and subject to change.]

You can determine whether the hardware supports dynamic gamma ramp adjustment
by calling the IDirectDraw4::GetCaps method. After the call, if the

DDCAPS2 PRIMARYGAMMA flag is present in the dwFlags2 member of the
associate DDCAPS structure, the hardware supports dynamic gamma ramps.
DirectDraw does not attempt to emulate this feature, so if the hardware doesn't
support it, you can't use it.

Setting and Retrieving Gamma Ramp Levels

[This is preliminary documentation and subject to change.]

in.doc — page 54

Gamma ramp levels are effectively look-up tables that DirectDraw uses to map the
frame buffer color components to new levels that will be displayed. For more
information, see About Gamma Ramp Levels. You set and retrieve ramp levels for
the primary surface by calling the IDirectDrawGammaControl::SetGammaRamp
and IDirectDrawGammaControl::GetGammaRamp methods. Both methods
accept two parameters, but the first parameter is reserved for future use, and should
be set to zero. The second parameter, [pRampData, is the address of a
DDGAMMARAMP structure. The DDGAMMARAMP structure contains three
256-element arrays of WORDSs, one array each to contain the red, green, and blue
gamma ramps.

You can include the DDSGR_CALIBRATE value when calling the
IDirectDrawGammaControl::SetGammaRamp to invoke the calibrator when
setting new gamma levels. Calibrating gamma ramps incurs some processing
overhead, and should not be used frequently. Setting a calibrated gamma ramp will
provide a consistent and absolute gamma value for the viewer, regardless of the
display adapter and monitor.

Not all systems support gamma calibration. To determine if gamma calibration is
supported, call IDirectDraw4::GetCaps, and examine the dwCaps2 member of the
associated DDCAPS structure after the method returns. If the

DDCAPS2 CANCALIBRATEGAMMA capability flag is present, then gamma
calibration is supported.

When setting new ramp levels, keep in mind that that the levels you set in the arrays
are only used when your application is in full-screen, exclusive mode. Whenever
your application changes to normal mode, the ramp levels are set aside, taking effect
again when the application reinstates full-screen mode. In addition, remember that
you cannot set ramp levels for any surface other than the primary.

Note
Those very familiar with the Win32® API might wonder why DirectDraw
exposes an interface like IDirectDrawGammaControl, when Win32 offers the
GetDeviceGammaRamp and SetDeviceGammaRamp functions for the same
surfaces. Although the Win32 API includes these functions, they do not always
succeed on all Windows platforms like the methods of the
IDirectDrawGammaControl interface.

Using Color Controls
[This is preliminary documentation and subject to change.]

You set and retrieve surface color controls through the IDirectDrawColorControl
interface, which can be retrieved by querying the DirectDrawSurface object using
the IID_IDirectDrawColorControl reference identifier.

Color control information is represented by a DDCOLORCONTROL structure,
which is used with both methods of the interface,
IDirectDrawColorControl::SetColorControls and
IDirectDrawColorControl::GetColorControls. The first structure member,

in.doc — page 55

dwSize, should be set to the size of the structure, in bytes, before you use it. How
you use the next member, dwFlags, depends on whether you are setting or retrieving
color controls. If you are setting new color controls, set dwFlags to a combination of
the appropriate flags to indicate which of the other structure members contain valid
data that you've set. However, when retrieving color controls, you don't need to set
the dwFlags before using it—it will contain flags telling you which members are
valid after the IDirectDrawColorControl::GetColorControls method returns.

The remaining DDCOLORCONTROL structure members can contain values that
describe the brightness, contrast, hue, saturation, sharpness, gamma, and whether
color is used. Note that the structure contains information about gamma correction.
This is a single gamma value that affects overall brightness, and it should not be
confused with the gamma adjustment features provided through the
IDirectDrawGammaControl interface.

Overlay Surfaces

[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw overlay surface support. The
following topics are discussed:
® Overlay Surface Overview
¢ Significant DDCAPS Members and Flags
® Source and Destination Rectangles
® Boundary and Size Alignment
® Minimum and Maximum Stretch Factors
® Qverlay Color Keys
® Positioning Overlay Surfaces
® Creating Overlay Surfaces
® Overlay Z-Orders
® Flipping Overlay Surfaces

For information about implementing overlay surfaces, see Tutorial 6: Using Overlay
Surfaces.

Overlay Surface Overview

[This is preliminary documentation and subject to change.]

Overlay surfaces, casually referred to as overlays, are surfaces with special
hardware-supported capabilities. Overlay surfaces are frequently used to display live
video, recorded video, or still bitmaps over the primary surface without blitting to
the primary surface or changing the primary surface's contents in any way. Overlay
surface support is provided entirely by the hardware; DirectDraw supports any

in.doc — page 56

capabilities as reported by the display device driver. DirectDraw does not emulate
overlay surfaces.

An overlay surface is analogous to a clear piece of plastic that you draw on and place
in front of the monitor. When the overlay is in front of the monitor, you can see both
the overlay and the contents of the primary surface together, but when you remove it,
the primary surface's contents are unchanged. In fact, the mechanics of overlays
work much like the clear plastic analogy. When you display an overlay surface,
you're telling the device driver where and how you want it to be visible. While the
display device paints scan lines to the monitor, it checks the location of each pixel in
the primary surface to see if an overlay should be visible there instead. If so, the
display device substitutes data from the overlay surface for the corresponding pixel,
as shown in the following illustration.

~

|V|0n itOI’ scanning overlay

Overlay
Surface

E—— -

scanning
primary

Primary Surface

By using this method, the display adapter produces a composite of the primary
surface and the overlay on the monitor, providing transparency and stretching
effects, without modifying the contents of either surface. The composited surfaces
are injected into the video stream and sent directly to the monitor. Because this on-
the-fly processing and pixel substitution is handled at the hardware level, no
noticeable performance loss occurs when displaying overlays. Additionally, this
method makes it possible to seamlessly composite primary and overlay surfaces with
different pixel formats.

You create overlay surfaces by calling the IDirectDraw4::CreateSurface method,
specifying the DDSCAPS OVERLAY flag in the associated DDSCAPS2 structure.

in.doc — page 57

Overlay surfaces can only be created in video memory, so you must also include the
DDSCAPS _VIDEOMEMORY flag. As with other types of surfaces, by including the
appropriate flags you can create either a single overlay or a flipping chain made up
of multiple overlay surfaces.

Significant DDCAPS Members and Flags
[This is preliminary documentation and subject to change.]

You can retrieve information about the supported overlay features by calling the
IDirectDraw4::GetCaps method. The method fills a DDCAPS structure with
information describing all features.

When reporting hardware features, the device driver sets flags in the dwCaps
structure member to indicate when a given type of restriction is enforced by the
hardware. After retrieving the driver capabilities, examine the flags in the dwCaps
member for information about which restrictions apply. The DDCAPS structure
contains nine members that carry information describing hardware restrictions for
overlay surfaces. The following table lists the overlay related members and their
corresponding flags:

Member Flag

dwMaxVisibleOverlays This member is always valid
dwCurrVisibleOverlays This member is always valid
dwAlignBoundarySrc DDCAPS_ALIGNBOUNDARYSRC
dwAlignSizeSrc DDCAPS_ ALIGNSIZESRC
dwAlignBoundaryDest DDCAPS ALIGNBOUNDARYDEST
dwAlignSizeDest DDCAPS ALIGNSIZEDEST
dwAlignStrideAlign DDCAPS_ALIGNSTRIDE
dwMinOverlayStretch DDCAPS OVERLAYSTRETCH
dwMaxOverlayStretch DDCAPS OVERLAYSTRETCH

The dwMaxVisibleOverlays and dwCurrVisibleOverlays members carry
information about the maximum number of overlays the hardware can display, and
how many of them are currently visible.

Additionally, the hardware reports rectangle position and size alignment restrictions
in the dwAlignBoundarySrc, dwAlignSizeSrc, dwAlignBoundaryDest,
dwAlignSizeDest, and dwAlignStrideAlign members. The values in these members
dictate how you must size and position source and destination rectangles when
displaying overlay surfaces. For more information, see Source and Destination
Rectangles and Boundary and Size Alignment.

Also, the hardware reports information about stretch factors in the
dwMinOverlayStretch and dwMaxOverlayStretch members. For more
information, see Minimum and Maximum Stretch Factors.

in.doc — page 58

Source and Destination Rectangles
[This is preliminary documentation and subject to change.]

To display an overlay surface, you call the overlay surface's
IDirectDrawSurface4::UpdateOverlay method, specifying the DDOVER_SHOW
flag in the dwFlags parameter. The method requires you to specify a source and
destination rectangle in the IpSrcRect and IpDestRect parameters. The source
rectangle describes a rectangle on the overlay surface that will be visible on the
primary surface. To request that the method use the entire surface, set the /pSrcRect
parameter to NULL. The destination rectangle describes a portion of the primary
surface on which the overlay surface will be displayed.

Source and destination rectangles do not need to be the same size. You can often
specify a destination rectangle smaller or larger than the source rectangle, and the
hardware will shrink or stretch the overlay appropriately when it is displayed.

To successfully display an overlay surface, you might need to adjust the size and
position of both rectangles. Whether this is necessary depends on the restrictions
imposed by the device driver. For more information, see Boundary and Size
Alignment and Minimum and Maximum Stretch Factors.

Boundary and Size Alignment
[This is preliminary documentation and subject to change.]

Due to various hardware limitations, some device drivers impose restrictions on the
position and size of the source and destination rectangles used to display overlay
surfaces. To find out which restrictions apply for a device, call the
IDirectDraw4::GetCaps method and then examine the overlay-related flags in the
dwCaps member of the DDCAPS structure. The following table shows the members
and flags specific to boundary and size alignment restrictions:

Category Flag Member

Boundary DDCAPS ALIGNBOUNDARYSRC dwAlignBoundarySrc
(position)

restrictions

DDCAPS ALIGNBOUNDARYDEST dwAlignBoundaryDest
Size restrictions DDCAPS ALIGNSIZESRC dwAlignSizeSrc
DDCAPS ALIGNSIZEDEST dwAlignSizeDest

There are two types of restrictions, boundary restrictions and size restrictions. Both
types of restrictions are expressed in terms of pixels (not bytes) and can apply to the
source and destination rectangles. Also, these restrictions can vary depending on the
pixel formats of the overlay and primary surface.

Boundary restrictions affect where you can position a source or destination rectangle.
The values in the dwAlignBoundarySrc and dwAlignBoundaryDest members tell
you how to align the top left corner of the corresponding rectangle. The x-coordinate

in.doc — page 59

of the top left corner of the rectangle (the left member of the RECT structure), must
be a multiple of the reported value.

Size restrictions affect the valid widths for source and destination rectangles. The
values in the dwAlignSizeSrc and dwAlignSizeDest members tell you how to align
the width, in pixels, of the corresponding rectangle. Your rectangles must have a
pixel width that is a multiple of the reported value. If you stretch the rectangle to
comply with a minimum required stretch factor, be sure that the stretched rectangle
is still size aligned. After stretching the rectangle, align its width by rounding up, not
down, so you preserve the minimum stretch factor. For more information, see
Minimum and Maximum Stretch Factors.

Minimum and Maximum Stretch Factors
[This is preliminary documentation and subject to change.]

Due to hardware limitations, some devices restrict how wide a destination rectangle
can be compared with the corresponding source rectangle. DirectDraw
communicates these restrictions as stretch factors. A stretch factor is the ratio
between the widths of the source and destination rectangles. If the driver provides
information about stretch factors, it sets the DDCAPS OVERLAYSTRETCH flag in
the DDCAPS structure after you call the IDirectDraw4::GetCaps method. Note
that stretch factors are reported multiplied by 1000, so a value of 1300 actually
means 1.3 (and 750 would be 0.75).

Devices that do not impose limits on stretching or shrinking an overlay destination
rectangle often report a minimum and maximum stretch factor of 0.

The minimum stretch factor tells you how much wider or narrower than the source
rectangle the destination rectangle needs to be. If the minimum stretch factor is
greater than 1000, then you must increase the destination rectangle's width by that
ratio. For instance, if the driver reports 1300, you must make sure that the
destination rectangle's width is at least 1.3 times the width of the source rectangle.
Similarly, a minimum stretch factor less than 1000 indicates that the destination
rectangle can be smaller than the source rectangle by that ratio.

The maximum stretch factor tells the maximum amount you can stretch the width of
the destination rectangle. For example, if the maximum stretch factor is 2000, you
can specify destination rectangles that are up to, but not wider than, twice the width
of the source rectangle. If the maximum stretch factor is less than 1000, then you
must shrink the width of the destination rectangle by that ratio to be able to display
the overlay.

After stretching, the destination rectangle must conform to any size alignment
restrictions the device might require. Therefore, it's a good idea to stretch the
destination rectangle before adjusting it to be size aligned. For more information, see
Boundary and Size Alignment.

Hardware does not require that you adjust the height of destination rectangles. You
can increase a destination rectangle's height to preserve aspect ratio without negative
effects.

in.doc — page 60

Overlay Color Keys
[This is preliminary documentation and subject to change.]

Like other types of surfaces, overlay surfaces use source and destination color keys
for controlling transparent blit operations between surfaces. Because overlay
surfaces are not displayed by blitting, there needs to be a different way to control
how an overlay surface is displayed over the primary surface when you call the
IDirectDrawSurface4::UpdateOverlay method. This need is filled by overlay color
keys. Overlay color keys, like their blit-related counterparts, have a source version
and a destination version that you set by calling the
IDirectDrawSurface4::SetColorKey method. (For more information, see Setting
Color Keys.) You use the DDCKEY_ SRCOVERLAY or

DDCKEY DESTOVERLAY flags to set a source or destination overlay color key.
Overlay surfaces can employ blit and overlay color keys together to control blit
operations and overlay display operations appropriately; the two types of color keys
do not conflict with one another.

The IDirectDrawSurface4::UpdateOverlay method uses the source overlay color
key to determine which pixels in the overlay surface should be considered
transparent, allowing the contents of the primary surface to show through. Likewise,
the method uses the destination overlay color key to determine the parts of the
primary surface that will be covered up by the overlay surface when it is displayed.
The resulting visual effect is the same as that created by blit-related color keys.

Positioning Overlay Surfaces
[This is preliminary documentation and subject to change.]

After initially displaying an overlay by calling the
IDirectDrawSurface4::UpdateOverlay method, you can update the destination
rectangle's by calling the IDirectDrawSurface4::SetOverlayPosition method.

Make sure that the positions you specify comply with any boundary alignment
restrictions enforced by the hardware. For more information, see Boundary and Size
Alignment. Also remember that SetOverlayPosition doesn't perform clipping for
you; using coordinates that would potentially make the overlay run off the edge of
the target surface will cause the method to fail, returning
DDERR_INVALIDPOSITION.

Creating Overlay Surfaces

[This is preliminary documentation and subject to change.]

Like all surfaces, you create an overlay surface by calling the
IDirectDraw4::CreateSurface method. To create an overlay, include the
DDSCAPS OVERLAY flag in the associated DDSCAPS2 structure.

Overlay support varies widely across display devices. As a result, you cannot be sure
that a given pixel format will be supported by most drivers and must therefore be
prepared to work with a variety of pixel formats. You can request information about

in.doc — page 61

the non-RGB formats that a driver supports by calling the
IDirectDraw4::GetFourCCCodes method.

When you attempt to create an overlay surface, it is advantageous to try creating a
surface with the most desirable pixel format, falling back on other pixel formats if a
given pixel format isn't supported.

You can create overlay surface flipping chains. For more information, see Creating
Complex Surfaces and Flipping Chains.

Overlay Z-Orders
[This is preliminary documentation and subject to change.]

Overlay surfaces are assumed to be on top of all other screen components, but when
you display multiple overlay surfaces, you need some way to visually organize them.
DirectDraw supports overlay z-ordering to manage the order in which overlays clip
each other. Z-order values represent conceptual distances from the primary surface
toward the viewer. They range from 0, which is just on top of the primary surface, to
4 billion, which is as close to the viewer as possible, and no two overlays can share
the same z-order. You set z-order values by calling the
IDirectDrawSurface4::UpdateOverlayZOrder method.

Destination color keys are affected only by the bits on the primary surface, not by
overlays occluded by other overlays. Source color keys work on an overlay whether
or not a z-order was specified for the overlay.

Overlays without a specified z-order are assumed to have a z-order of 0. Overlays
that do not have a specified z-order behave in unpredictable ways when overlaying
the same area on the primary surface.

A DirectDraw object does not track the z-orders of overlays displayed by other
applications.

Note
You can ensure proper clipping of multiple overlay surfaces by calling
UpdateOverlayZOrder in response to WM_KILLFOCUS messages. When you
receive this message, set your overlay surface to the rearmost z-order position
by calling the UpdateOverlayZOrder method with the dwFlags parameter set
to DDOVERZ SENDTOBACK.

Flipping Overlay Surfaces
[This is preliminary documentation and subject to change.]

Like other types of surfaces, you can create overlay flipping chains. After creating a
flipping chain of overlays, call the IDirectDrawSurface4::Flip method to flip
between them. For more information, see Flipping Surfaces.

Software decoders displaying video with overlay surfaces can use the DDFLIP_ODD
and DDFLIP_EVEN flags when calling the Flip method to use features that reduce

in.doc — page 62

motion artifacts. If the driver supports odd-even flipping, the

DDCAPS2 CANFLIPODDEVEN flag will be set in the DDCAPS structure after
retrieving driver capabilities. If DDCAPS2 CANFLIPODDEVEN is set, you can
include the DDOVER BOB flag when calling the
IDirectDrawSurface4::UpdateOverlay method to inform the driver that you want
it to use the "Bob" algorithm to minimize motion artifacts. Later, when you call Flip
with the DDFLIP_ODD or DDFLIP_EVEN flag, the driver will automatically adjust
the overlay source rectangle to compensate for jittering artifacts.

If the driver doesn't set the DDCAPS2 CANFLIPODDEVEN flag when you retrieve
hardware capabilities, UpdateOverlay will fail if you specify the DDOVER _BOB
flag.

For more information about the Bob algorithm, see Solutions to Common Video
Artifacts.

Compressed Texture Surfaces

[This is preliminary documentation and subject to change.]

A surface can contain a bitmap to be used for texturing 3-D objects. When creating
the surface you must specify the DDSCAPS TEXTURE flag in the dwFlags
member of the DDSCAPS structure.

For more information on the use of textures in Direct3D Immediate Mode, see
Textures.

In order to reduce the amount of memory consumed by textures, DirectDraw
supports the compression of texture surfaces.

Some Direct3D devices support compressed texture surfaces natively. On such
devices, once you have created a compressed surface and loaded the data into it, the
surface can be used in Direct3D just like any other texture surface. Direct3D handles
decompression when the texture is mapped to a 3-D object.

Other devices do not support compressed texture surfaces natively. When using such
devices, you may still find it useful to use compressed surfaces to represent textures
on disk or for textures that are loaded into memory but not currently being used. You
can use DirectDraw to convert the compressed textures to an uncompressed format
before giving the texture to Direct3D.

For more information on texture compression in DirectDraw, see the following
topics:

® Creating Compressed Textures

® Decompressing Compressed Textures

® Transparency in Blits to Compressed Textures

® Compressed Texture Formats

For information on using compressed textures in Direct3D Immediate Mode, see
Texture Compression.

in.doc — page 63

Creating Compressed Textures

[This is preliminary documentation and subject to change.]

To describe a compressed texture surface in the DDSURFACEDESC?2 structure
when creating the surface, you must include the following steps:

¢ Specify the DDSCAPS TEXTURE flag in the dwFlags member of the
DDSCAPS structure, just as you would for any texture.

® Set the dwFourCC member of the DDPIXELFORMAT structure to one of the
DXT codes described later.

¢ Include DDPF_FOURCC in the dwFlags member of DDPIXELFORMAT. Do
not set the DDPF_RGB flag.

® Specify a width and height that are a multiple of 4 pixels.

There are two ways to load image data into a compressed texture surface:

® C(Create a regular RGB or ARGB surface and load a normal bitmap into it, then
use IDirectDrawSurface4::Blt or IDirectDrawSurface4::BltFast to blit from
the uncompressed surface to the compressed surface. DirectDraw does the
compression for you.

® Load the compressed data from a file and copy it directly into the surface
memory. (See Accessing Surface Memory Directly.) You can create and convert
compressed texture (DDS) files using the DirectX Texture Tool (Dxtex.exe)
supplied with the Programmer's Reference. You can also create your own DDS
files and either copy the data from compressed surfaces or else use your own
routines to convert regular bitmap data to one of the compressed formats.

Note
When you call IDirectDrawSurface4::Lock or
IDirectDrawSurface4::GetSurfaceDesc on a compressed surface, the
DDSD LINEARSIZE flag is set in the dwFlags member of the
DDSURFACEDESC structure, and the dwLinearSize member contains the
number of bytes allocated to contain the compressed surface data. The
dwLinearSize parameter resides in a union with the IPitch parameter, so these
parameters are mutually exclusive, as are the flags DDSD LINEARSIZE and
DDSD_PITCH.
The advantage of this behavior is that an application can copy the contents of a
compressed surface to a file without having to calculate for itself how much
storage is required for a surface of a particular width and height in the specific
format.

The following table shows the five types of compressed textures. For more
information on how the data is stored (you need to know this only if you are writing
your own compression routines) see Compressed Texture Formats.

FOURCC Description Alpha

in.doc — page 64

premultiplied?
DXT1 Opaque / one-bit alpha n/a
DXT2 Explicit alpha Yes
DXT3 Explicit alpha No
DXT4 Interpolated alpha Yes
DXT5 Interpolated alpha No

Note
When you blit from a non-premultiplied format to a premultiplied format,
DirectDraw scales the colors based on the alpha values. Blitting from a
premultiplied format to a non-premultiplied format is not supported. If you try to
blit from a premultiplied-alpha source to a non-premultiplied-alpha destination,
the method will return DDERR_INVALIDPARAMS. If you blit from a
premultiplied-alpha source to a destination that has no alpha, the source color
components, which have been scaled by alpha, will be copied as is.

Decompressing Compressed Textures

[This is preliminary documentation and subject to change.]

As with compressing a texture surface, decompressing a compressed texture is
performed through DirectDraw blitting services. The HEL performs decompressing
blits between system memory surfaces, so these always supported. Likewise, the
HEL always performs blits for compressed managed textures (the

DDSCAPS2 TEXTUREMANAGE capability). For other situations, the restrictions
discussed in the following paragraphs apply.

If the driver supports the creation of compressed video-memory surfaces, then the
driver can also perform decompressing blits from a compressed video-memory
surface to an uncompressed video or system memory surface, so long as the
destination surface has the DDSCAPS OFFSCREENPLAIN capability.

Blits from compressed system-memory surfaces to uncompressed video-memory
surfaces are largely unsupported and should not be attempted, even when the driver
supports compressed textures. This does not mean that it is impossible to decompress
a compressed system-memory surface and move its contents into a video memory
surface; it merely requires an additional step:

I To decompress a system memory surface into
video memory:

1. Create an uncompressed, offscreen-plain, surface in system memory of the
desired dimensions and pixel format.

2. Blit from the compressed system-memory surface to the uncompressed system-
memory surface. (The DirectDraw HEL performs decompression in this case.)

3. Blit the uncompressed surface to the uncompressed video-memory surface.

in.doc — page 65

Transparency in Blits to Compressed Textures

[This is preliminary documentation and subject to change.]

DirectDraw provides a special trick for creating compressed textures with alpha from
plain RGB surfaces. If a source color key is provided on the source RGB surface,
DirectDraw assigns an alpha value of 0 to all pixels of that color in the destination.
This technique is especially useful for creating DXT1 textures, since they effectively
have only 1 bit of alpha information per pixel.

Note
There are no flags that control this behavior. If you do not want any
transparency in your compressed texture, do not set a source color key on the
source surface.

Compressed Texture Formats

[This is preliminary documentation and subject to change.]

This section contains information on the internal organization of compressed texture
formats. You don't need these details in order to use compressed textures, because
DirectDraw handles conversion to and from compressed formats. However, you
might find this information useful if you want to operate on compressed surface data
directly.

DirectDraw uses a compression format that divides texture maps into 4x4 texel
blocks. If the texture contains no transparency (is opaque), or if the transparency is
specified by a one-bit alpha, an 8-byte block represents the texture map block. If the
texture map does contain transparent texels, using an alpha channel, a 16-byte block
represents it.

These two types of format are discussed in the following sections:

® Opaque and One-bit Alpha Textures
® Textures with Alpha Channels

Note
Any single texture must specify that its data is stored as 64 or 128 bits per group
of 16 texels. If 64-bit blocks—that is, format DXT1—are used for the texture, it
is possible to mix the opaque and one-bit alpha formats on a per-block basis
within the same texture. In other words, the comparison of the unsigned integer
magnitude of color 0 and color 1 is performed uniquely for each block of 16
texels.
When 128-bit blocks are used, then the alpha channel must be specified in either
explicit (format DXT2 or DXT3) or interpolated mode (format DXT4 or DXTS)
for the entire texture. Note that as with color, once interpolated mode is selected
then either 8 interpolated alphas or 6 interpolated alphas mode can be used on a
block-by-block basis. Again the magnitude comparison of alpha 0 and alpha 1
is done uniquely on a block-by-block basis.

in.doc — page 66

Opaque and One-bit Alpha Textures
[This is preliminary documentation and subject to change.]

Texture format DXTI1 is for textures that are opaque or have a single transparent
color.

For each opaque or one-bit alpha block, two 16-bit values (RGB 5:6:5 format) and a
4x4 bitmap with 2-bits-per-pixel are stored. This totals 64 bits for 16 texels, or 4-
bits-per-texel. In the block bitmap, there are two bits per texel to select between the
four colors, two of which are stored in the encoded data. The other two colors are
derived from these stored colors by linear interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the
two 16-bit color values stored in the block. They are treated as unsigned integers. If
the first color is greater than the second, it implies that only opaque texels are
defined. This means four colors will be used to represent the texels. In four-color
encoding, there are two derived colors and all four colors are equally distributed in
RGB color space. This format is analogous to RGB 5:6:5 format. Otherwise, for one-
bit alpha transparency, three colors are used and the fourth is reserved to represent
transparent texels.

In three-color encoding, there is one derived color and the fourth two-bit code is
reserved to indicate a transparent texel (alpha information). This format is analogous
to RGBA 5:5:5:1, where the final bit is used for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether
three- or four-color encoding is selected:

if (color_0 > color_1)
{
// Four-color block: derive the other two colors.
// 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
color_2 = (2 * color_0 + color_1)/ 3;
color_3 = (color 0 + 2 * color_1) / 3;
}
else
{
/l Three-color block: derive the other color.
// 00 = color_0, 01 = color_1, 10 = color_2,
// 11 = transparent.
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
color_2 = (color_0 + color_1) / 2;
color_3 = transparent;

in.doc — page 67

The following tables show the memory layout for the 8-byte block. It is assumed that
the first index corresponds to the y-coordinate and the second corresponds to the x-
coordinate. For example, Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word address 16-bit word

0 Color 0

1 Color 1

2 Bitmap Word 0
3 Bitmap Word 1

Color 0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color

4:0 (LSB) Blue color component
10:5 Green color component
15:11 Red color component

Bitmap Word 0 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[0][0]
3:2 Texel[0][1]
5:4 Texel[0][2]
7:6 Texel[0][3]
9:8 Texel[1][0]
11:10 Texel[1][1]
13:12 Texel[1][2]
15:14 (MSB) Texel[1][3]
Bitmap Word 1 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[2][0]
3:2 Texel[2][1]
5:4 Texel[2][2]
7:6 Texel[2][3]
9:8 Texel[3][0]
11:10 Texel[3][1]
13:12 Texel[3][2]

15:14 (MSB) Texel[3][3]

in.doc — page 68

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are
at the extremes. We will call red color 0 and black color 1. There will be four
interpolated colors that form the uniformly distributed gradient between them. To
determine the values for the 4x4 bitmap, the following calculations are used:

00 ? color O
01 ? color_1
10 ? 2/3 color 0 + 1/3 color_1
11 ? 1/3 color_ 0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color 0, is less than the
unsigned 16-bit integer, color 1. An example of where this format could be used is
leaves on a tree to be shown against a blue sky. Some texels could be marked as
transparent while three shades of green are still available for the leaves. Two of these
colors fix the extremes, and the third color is an interpolated color.

The bitmap encoding for the colors and the transparency is determined using the
following calculations:

00 ? color O

01 ? color_1

10?7 1/2 color_0 + 1/2 color_1
11 ? Transparent

Textures with Alpha Channels
[This is preliminary documentation and subject to change.]

There are two ways to encode texture maps that exhibit more complex transparency.
In each case, a block that describes the transparency precedes the 64-bit block
already described. The transparency is either represented as a 4x4 bitmap with four
bits per pixel (explicit encoding), or with fewer bits and linear interpolation
analogous to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block
3:0 Transparency block
7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of
the texels that describe transparency are encoded in a 4x4 bitmap with 4 bits per
texel. These 4 bits can be achieved through a variety of means such as dithering or

in.doc — page 69

by simply using the 4 most significant bits of the alpha data. However they are
produced, they are used just as they are, without any form of interpolation.

Note

DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for
each 16-bit word.

This is the layout for Word 0:

Bits Alpha
3:0 (LSB) [0][0]
7:4 [0][1]
11:8 [0][2]
15:12 (MSB) [0][3]

This is the layout for Word 1:

Bits Alpha
3:0 (LSB) [1][0]
7:4 (1][1]
11:8 (11[2]
15:12 (MSB) [11[3]

This is the layout for Word 2:

Bits Alpha
3:0 (LSB) [2][0]
7:4 [2][1]
11:8 (2][2]
15:12 (MSB) (2][3]

This is the layout for Word 3:

Bits Alpha
3:0 (LSB) [31[0]
7:4 [31[1]
11:8 [3][2]
15:12 (MSB) [3113]

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the DXT4 and DXTS formats is based on a concept
similar to the linear encoding used for color. Two 8-bit alpha values and a 4x4

in.doc — page 70

bitmap with three bits per pixel are stored in the first eight bytes of the block. The
representative alpha values are used to interpolate intermediate alpha values.
Additional information is available in the way the two alpha values are stored. If
alpha 0 is greater than alpha 1, then six intermediate alpha values are created by the
interpolation. Otherwise, four intermediate alpha values are interpolated between the
specified alpha extremes. The two additional implicit alpha values are 0 (fully
transparent) and 255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?

if (alpha_0 > alpha_1) {
// 8-alpha block: derive the other 6 alphas.
// 000 = alpha_0, 001 = alpha_1, others are interpolated
alpha_2 = (6 *alpha_0 + alpha_1)/7; // bit code 010
alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011
alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100
alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101
alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110
alpha_7 = (alpha_0 + 6 *alpha_1)/7; // Bit code 111

}

else { // 6-alpha block: derive the other alphas.
// 000 = alpha_0, 001 = alpha_1, others are interpolated
alpha_2 = (4 *alpha_0 + alpha_1)/5; // Bit code 010
alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011
alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100
alpha_5 = (alpha_0 + 4 *alpha_1)/5; // Bit code 101
alpha_6 = 0; // Bit code 110
alpha_7 = 255; // Bit code 111

}

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha 0

1 Alpha 1

2 [0][2] (2 LSBs), [0][1], [0][0]

3 [11[1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB)
4 (11031, [11[2], [1][1] (2 MSBs)

5 [2](2] (2 LSBs), [2][1], [2][0]

6 [31(1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB)
7 [31031, [312], [3][1] (2 MSBs)

in.doc — page 71

Private Surface Data
[This is preliminary documentation and subject to change.]

You can store any kind of application-specific data with a surface. For example, a
surface representing a map in a game might contain information about terrain.

A surface can have more than one private data buffer. Each buffer is identified by a
GUID which you supply when attaching the data to the surface.

To store private surface data, you use the IDirectDrawSurface4::SetPrivateData
method, passing in a pointer to the source buffer, the size of the data, and an
application-defined GUID for the data. Optionally, the source data can exist in the
form of a COM object; in this case, you pass a pointer to the object's [Unknown
interface pointer and you set the DDSPD [TUNKNOWNPOINTER flag. Another
flag, DDSPD_VOLATILE, indicates that the data being attached to the surface is
valid only as long as the contents of the surface do not change. (See Surface
Uniqueness Values.)

SetPrivateData allocates an internal buffer for the data and copies it. You can then
safely free the source buffer or object. The internal buffer or interface reference is
released when IDirectDrawSurface4::FreePrivateData is called. This happens
automatically when the surface is freed.

To retrieve private data for a surface, you must allocate a buffer of the correct size
and then call the IDirectDrawSurface4::GetPrivateData method, passing the
GUID that was assigned to the data by SetPrivateData. You are responsible for
freeing any dynamic memory you use for this buffer. If the data is a COM object,
this method retrieves the IUnknown pointer.

If you don't know how big a buffer to allocate, first call GetPrivateData with zero
in *IpcbBufferSize. If the method fails with DDERR_MOREDATA, it returns the
necessary number of bytes in */pcbBufferSize.

Surface Uniqueness Values

[This is preliminary documentation and subject to change.]

The uniqueness value of a surface allows you to determine whether the surface has
changed. When DirectDraw creates a surface, it assigns a uniqueness value, which
you can retrieve and store by using the
IDirectDrawSurface4::GetUniquenessValue method. Then, whenever you need to
determine whether the surface has changed, you call the method again and compare
the new value against the old one. If it's different, the surface has changed.

The actual value returned by GetUniquenessValue is irrelevant, unless it is 0.
DirectDraw assigns this value to a surface when it knows that the surface might be
changed by some process beyond its control. When GetUniquenessValue returns 0,
you know only that the state of the surface is indeterminate.

in.doc — page 72

To force the uniqueness value for a surface to change, an application can use the
IDirectDrawSurface4::ChangeUniquenessValue method. This method could be
called, for example, by an application or component that changed the private data for
a surface without changing the surface itself, and wished to notify some other
process of the change. Most applications, however, never need to change the
uniqueness value.

Using Non-local Video Memory
Surfaces

[This is preliminary documentation and subject to change.]

DirectDraw supports the Accelerated Graphics Port (AGP) architecture for creating
surfaces in non-local video memory. On AGP-equipped systems, DirectDraw will
use non-local video memory if local video memory is exhausted or if non-local video
memory is explicitly requested, depending on the type of AGP implementation that
is in place.

Currently, there are two implementations of the AGP architecture, known as the
"execute model" and the "DMA model." In the execute model implementation, the
display device supports the same features for non-local video memory surfaces and
local video memory surfaces. As a result, when you retrieve hardware capabilities by
calling the IDirectDraw4::GetCaps method, the blit-related flags in the
dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, dwNLVBFXCaps, and
dwNLVBRops members of the DDCAPS structure will be identical to those for
local video memory. Under the execute model, if local video memory is exhausted,
DirectDraw will automatically fall back on non-local video memory unless the caller
specifically requests otherwise.

In the DMA model implementation, support for blitting and texturing from non-local
video memory surfaces is limited. When the display device uses the DMA model,
the DDCAPS2 NONLOCALVIDMEMCAPS flag will be set in the dwCaps2
member when you retrieve device capabilities. In the DMA model, the blit-related
flags included in the dwWNLVBCaps, dwWNLVBCaps2, dwWNLVBCKeyCaps,
dwNLVBFXCaps, and dwNLVBRops members of the DDCAPS structure describe
the features that are supported; these features will often be a smaller subset of those
supported for local video memory surfaces. Under the DMA model, when local
video memory is exhausted, DirectDraw will automatically fall back on non-local
video memory for texture surfaces only, unless the caller had explicitly requested
local video memory. Texture surfaces are the only types of surfaces that will be
treated this way; all other types of surfaces cannot be created in non-local video
memory unless the caller explicitly requests it.

DMA model implementations vary in support for texturing from non-local video
memory surfaces. If the driver supports texturing from non-local video memory
surfaces, the D3DDEVCAPS TEXTURENONLOCALVIDMEM flag will be set
when you retrieve the 3-D device's capabilities by calling the
IDirect3DDevice3::GetCaps method.

in.doc — page 73

Converting Color and Format

[This is preliminary documentation and subject to change.]

Non-RGB surface formats are described by four-character codes (FOURCC). If an
application calls the IDirectDrawSurface4::GetPixelFormat method to request the
pixel format, and the surface is a non-RGB surface, the DDPF_FOURCC flag will be
set and the dwFourCC member of the DDPIXELFORMAT structure will be valid.
If the FOURCC code represents a YUV format, the DDPF_YUYV flag will also be set
and the dwYUVBIitCount, dwYBitMask, dwUBitMask, dwVBitMask, and
dwYUVAlphaBitMask members will be valid masks that can be used to extract
information from the pixels.

If an RGB format is present, the DDPF RGB flag will be set and the
dwRGBBiItCount, dwRBitMask, dwGBitMask, dwBBitMask, and
dwRGBAIlphaBitMask members will be valid masks that can be used to extract
information from the pixels. The DDPF RGB flag can be set in conjunction with the
DDPF_FOURCC flag if a nonstandard RGB format is being described.

During color and format conversion, two sets of FOURCC codes are exposed to the
application. One set of FOURCC codes represents the capabilities of the blitting
hardware; the other represents the capabilities of the overlay hardware.

For more information, see Four Character Codes (FOURCC).

Surfaces and Device Contexts

[This is preliminary documentation and subject to change.]

It is often convenient to mix-and-match DirectDraw and GDI services to manipulate
the contents of DirectDraw surfaces. DirectDraw offers methods to enable GDI to
access DirectDraw surfaces through device contexts, and to retrieve a surface given
the surface's device context. This section contains the follows topics that describe
these features in detail:

® Retrieving the Device Context for a Surface

® Finding a Surface with a Device Context

Retrieving the Device Context for a Surface

[This is preliminary documentation and subject to change.]

If you want to modify the contents of a DirectDraw surface object by using GDI
functions, you must retrieve a GDI-compatible device context handle. This could be
useful if you wanted to display text in a DirectDraw surface by calling the
DrawText Win32 function, which accepts a handle to a device context as a
parameter. It is possible to retrieve a GDI-compatible device context for a surface by
calling the IDirectDrawSurface4::GetDC method for that surface. The following
example shows how this might be done:

in.doc — page 74

// For this example the IpDDS4 variable is a valid pointer
// to an IDirectDrawSurface4 interface.

HDC hdc;
HRESULT HR;

hr = [pDDS4->GetDC(&hdc);
if(FAILED(hr))
return hr;

// Call DrawText, or some other GDI
// function here.

IpDDS4->ReleaseDC(hdc);

Note that the code calls the IDirectDrawSurface4::ReleaseDC method when the
surface's device context is no longer needed. This step is required, because the
IDirectDrawSurface4::GetDC method uses an internal version of the
IDirectDrawSurfaced::Lock method to lock the surface. The surface remains
locked until the IDirectDrawSurface4::ReleaseDC method is called.

Finding a Surface with a Device Context

[This is preliminary documentation and subject to change.]

You can retrieve a pointer to a surface's IDirectDrawSurface4 interface from the
device context for the surface by calling the IDirectDraw4::GetSurfaceFromDC
method. This feature might be very useful for component applications or ActiveX®
controls, that are commonly given a device context to draw into at run-time, but
could benefit by exploiting the features exposed by the IDirectDrawSurface4
interface.

A device context might identify memory that isn't associated with a DirectDraw
object, or the device context might identify a surface for another DirectDraw object
entirely. The latter case is most likely to occur on a system with multiple monitors.
If the device context doesn't identify a surface that wasn't created by that DirectDraw
object, the method fails, returning DDERR__NOTFOUND.

The following sample code shows what a very simple scenario might look like:

// For this example, the hdc variable is a valid
// handle to a video memory device context, and the
// lpDD4 variable is a valid IDirectDraw4 interface pointer.

LPDIRECTDRAWSURFACE4 IpDDS4;
HRESULT hr;

hr = I[pDD4->GetSurfaceFromDC(hdc, & pDDS4);
if(SUCCEEDED(hr)) {

in.doc — page 75

/I Use the surface interface.
}
else if(DDERR_NOTFOUND == hr) {

OutputDebugString("HDC not from this DirectDraw surface\n");
}

Palettes

[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawPalette objects. The following
topics are discussed:

® What Are Palettes?

® Palette Types

® Setting Palettes on Nonprimary Surfaces
® Sharing Palettes

® Palette Animation

What Are Palettes?

[This is preliminary documentation and subject to change.]

Palettized surfaces need palettes to be meaningfully displayed. A palettized surface,
also known as a color-indexed surface, is simply a collection of numbers where each
number represents a pixel. The value of the number is an index into a color table that
tells DirectDraw what color to use when displaying that pixel. DirectDrawPalette
objects, casually referred to as palettes, provide you with an easy way to manage a
color table. Surfaces that use a 16-bit or greater pixel format do not use palettes.

A DirectDrawPalette object represents an indexed color table that has 2, 4, 16 or 256
entries to be used with a color indexed surface. Each entry in the palette is an RGB
triplet that describes the color to be used when displaying pixels within the surface.
The color table can contain 16- or 24-bit RGB triplets representing the colors to be
used. For 16-color palettes, the table can also contain indexes to another 256-color
palette. Palettes are supported for textures, off-screen surfaces, and overlay surfaces,
none of which is required to have the same palette as the primary surface.

You can create a palette by calling the IDirectDraw4::CreatePalette method. This
method retrieves a pointer to the palette object's IDirectDrawPalette interface. You
can use the methods of this interface to manipulate palette entries, retrieve
information about the object's capabilities, or initialize the object (if you used the
CoCreatelnstance COM function to create it).

You apply a palette to a surface by calling the surface's
IDirectDrawSurface4::SetPalette method. A single palette can be applied to
multiple surfaces.

in.doc — page 76

DirectDrawPalette objects reserve entry 0 and entry 255 for 8-bit palettes, unless you
specify the DDPCAPS ALLOW?256 flag to request that these entries be made
available to you.

You can retrieve palette entries by using the IDirectDrawPalette::GetEntries
method, and you can change entries by using the IDirectDrawPalette::SetEntries
method.

The Ddutil.cpp source file included with the SDK contains some handy application-
defined functions for working with palettes. For more information, see the
DDLoadPalette functions in that source file.

Palette Types

[This is preliminary documentation and subject to change.]

DirectDraw supports 1-bit (2 entry), 2-bit (4 entry), 4-bit (16 entry), and 8-bit (256
entry) palettes. A palette can only be attached to a surface that has a matching pixel
format. For example, a 2-entry palette created with the DDPCAPS_1BIT flag can be
attached only to a 1-bit surface created with the DDPF PALETTEINDEXEDI flag.

Additionally, you can create palettes that don't contain a color table at all, known as
index palettes. Instead of a color table, an index palette contains index values that
represent locations in another palette's color table.

To create an indexed palette, specify the DDPCAPS 8BITENTRIES flag when
calling the IDirectDraw4::CreatePalette method. For example, to create a 4-bit
indexed palette, specify both the DDPCAPS 4BIT and DDPCAPS 8BITENTRIES
flags. When you create an indexed palette, you pass a pointer to an array of bytes
rather than a pointer to an array of PALETTEENTRY structures. You must cast the
pointer to the array of bytes to an LPPALETTEENTRY type when you use the
IDirectDraw4::CreatePalette method.

Note that DirectDraw does not dereference index palette entries during blit
operations.

Setting Palettes on Nonprimary
Surfaces

[This is preliminary documentation and subject to change.]

Palettes can be attached to any palettized surface (primary, back buffer, off-screen
plain, or texture map). Only those palettes attached to primary surfaces will have any
effect on the system palette. It is important to note that DirectDraw blits never
perform color conversion; any palettes attached to the source or destination surface
of a blit are ignored.

Nonprimary surface palettes are intended for use by Direct3D applications.

in.doc — page 77

Sharing Palettes
[This is preliminary documentation and subject to change.]

Palettes can be shared among multiple surfaces. The same palette can be set on the
front buffer and the back buffer of a flipping chain or shared among multiple texture
surfaces. When an application attaches a palette to a surface by using the
IDirectDrawSurfaced4::SetPalette method, the surface increments the reference
count of that palette. When the reference count of the surface reaches 0, the surface
will decrement the reference count of the attached palette. In addition, if a palette is
detached from a surface by using IDirectDrawSurface4::SetPalette with a NULL
palette interface pointer, the reference count of the surface's palette will be
decremented.

Note
If IDirectDrawSurface4::SetPalette is called several times consecutively on
the same surface with the same palette, the reference count for the palette is
incremented only once. Subsequent calls do not affect the palette's reference
count.

Palette Animation

[This is preliminary documentation and subject to change.]

Palette animation refers to the process of modifying a surface's palette to change
how the surface itself looks when displayed. By repeatedly changing the palette, the
surface appears to change without actually modifying the contents of the surface. To
this end, palette animation gives you a way to modify the appearance of a surface
without changing its contents and with very little overhead.

There are two methods for providing straightforward palette animation:

® Modifying palette entries within a single palette
® Switching between multiple palettes

Using the first method, you change individual palette entries that correspond to the
colors you want to animate, then reset the entries with a single call to the
IDirectDrawPalette::SetEntries method.

The second method requires two or more DirectDrawPalette objects. When using
this method, you perform the animation by attaching one palette object after another
to the surface object by calling the IDirectDrawSurface4::SetPalette method.

Neither method is hardware intensive, so use whichever technique works best for
your application.

For specific information and an example of how to implement palette animation, see
Tutorial 5: Dynamically Modifying Palettes.

in.doc — page 78

Clippers

[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawClipper objects. The following
topics are discussed:

® What Are Clippers?

® Clip Lists

¢ Sharing DirectDrawClipper Objects

¢ Independent DirectDrawClipper Objects

® (Creating DirectDrawClipper Objects with CoCreatelnstance

® Using a Clipper with the System Cursor

® Using a Clipper with Multiple Windows

What Are Clippers?

[This is preliminary documentation and subject to change.]

Clippers, or DirectDrawClipper objects, allow you to blit to selected parts of a
surface represented by a bounding rectangle or a list of several bounding rectangles.
(See Clip Lists.)

One common use for a clipper is to define the boundaries of the screen or window.
For example, imagine that you want to display a sprite as it enters the screen from an
edge. You don't want to make the sprite pop suddenly onto the screen; you want it to
appear as though it is smoothly moving into view. Without a clipper object,
DirectDraw does not allow you to blit the entire sprite, because part of it would fall
outside the destination surface. A straight copy of the pixel values in the sprite to the
destination surface buffer would result in an incorrect display and even memory
access violations. With a clipper that has the screen rectangle as its clip list,
DirectDraw knows how to trim the sprite as it performs the blit so that only the
visible portion is copied.

The following illustration shows this type of clipping.

in.doc — page 79

< 640 pixels >
A
Y Sprite Graphic
s Destination
§ Surface Visible Clipped
portion Portion
v

You can also use clipper objects to designate certain areas within a destination
surface as writable. DirectDraw clips blit operations in these areas, protecting the
pixels outside the specified clipping rectangle.

The following illustration shows this use of a clipper.

< 640 pixels >
A
K Valid Blit Area
o
2
Protected
Surface
Memory
v

Clip Lists

[This is preliminary documentation and subject to change.]

in.doc — page 80

A clip list consists of one or more RECT structures, in pixel coordinates.
DirectDraw manages clip lists by using a DirectDrawClipper object, which can be
attached to any surface.

The IDirectDrawSurface4::Blt method copies data only to rectangles in the clip
list. For instance, if the upper-right quarter of a surface was excluded by the
rectangles in the clip list, and an application blitted to the entire area of the clipped
surface, DirectDraw would effectively perform two blits, the first being to the upper-
left corner of the surface, and the second being to the bottom half of the surface, as
shown in the following diagram.

(Blits here will not be

Blit Area 1 visible.)

Clipping
Rectangle 1

Blit Area 2

Clipping Rectangle 2

You can manage a surface's clip list manually or, for a primary surface, have it done
automatically by DirectDraw.

To manage the clip list yourself, create a list of rectangles in the form of a
RGNDATA structure and pass this to the IDirectDrawClipper::SetClipList
method.

To have DirectDraw manage the clip list for a primary surface, you attach the clipper
to a window (even a full-screen window) by calling the
IDirectDrawClipper::SetHWnd method, specifying the target window's handle.
This has the effect of setting the clipping region to the client area of the window and
ensuring that the clip list is automatically updated as the window is resized, covered,
or uncovered.

If you set a clipper using a window handle, you cannot set additional rectangles.

Clipping for overlay surfaces is supported only if the overlay hardware can support
clipping and if destination color keying is not active.

Sharing DirectDrawClipper Objects

[This is preliminary documentation and subject to change.]

in.doc — page 81

DirectDrawClipper objects can be shared between multiple surfaces. For example,
the same DirectDrawClipper object can be set on both the front buffer and the back
buffer of a flipping chain. When an application attaches a DirectDrawClipper object
to a surface by using the IDirectDrawSurface4::SetClipper method, the surface
increments the reference count of that object. When the reference count of the
surface reaches 0, the surface will decrement the reference count of the attached
DirectDrawClipper object. In addition, if a DirectDrawClipper object is detached
from a surface by calling IDirectDrawSurface4::SetClipper with a NULL clipper
interface pointer, the reference count of the surface's DirectDrawClipper object will
be decremented.

Note
If IDirectDrawSurface4::SetClipper is called several times consecutively on
the same surface for the same DirectDrawClipper object, the reference count for
the object is incremented only once. Subsequent calls do not affect the object's
reference count.

Independent DirectDrawClipper
Objects

[This is preliminary documentation and subject to change.]

You can create DirectDrawClipper objects that are not directly owned by any
particular DirectDraw object. These DirectDrawClipper objects can be shared across
multiple DirectDraw objects. Driver-independent DirectDrawClipper objects are
created by using the new DirectDrawCreateClipper DirectDraw function. An
application can call this function before any DirectDraw objects are created.

Because DirectDraw objects do not own these DirectDrawClipper objects, they are
not automatically released when your application's objects are released. If the
application does not explicitly release these DirectDrawClipper objects, DirectDraw
will release them when the application closes.

You can still create DirectDrawClipper objects by using the
IDirectDraw4::CreateClipper method. These DirectDrawClipper objects are
automatically released when the DirectDraw object from which they were created is
released.

Creating DirectDrawClipper Objects
with CoCreatelnstance

[This is preliminary documentation and subject to change.]

DirectDrawClipper objects have full class-factory support for COM compliance. In
addition to using the standard DirectDrawCreateClipper function and
IDirectDraw4::CreateClipper method, you can also create a DirectDrawClipper
object either by using the CoGetClassObject function to obtain a class factory and

in.doc — page 82

then calling the CoCreatelnstance function, or by calling CoCreatelnstance
directly. The following example shows how to create a DirectDrawClipper object by
using CoCreatelnstance and the IDirectDrawClipper::Initialize method.

ddrval = CoCreatelnstance(&CLSID_DirectDrawClipper,
NULL, CLSCTX_ALL, &IID_IDirectDrawClipper, &IpClipper);
if ('FAILED(ddrval))
ddrval = IDirectDrawClipper_Initialize(IpClipper,
IpDD, OUL);

In this call to CoCreatelnstance, the first parameter, CLSID DirectDrawClipper, is
the class identifier of the DirectDrawClipper object class, the
1ID_IDirectDrawClipper parameter identifies the currently supported interface, and
the IpClipper parameter points to the DirectDrawClipper object that is retrieved.

An application must use the IDirectDrawClipper::Initialize method to initialize
DirectDrawClipper objects that were created by the class-factory mechanism before
it can use the object. The value OUL is the dwFlags parameter, which in this case has
a value of 0 because no flags are currently supported. In the example shown here,
IpDD is the DirectDraw object that owns the DirectDrawClipper object. However,
you could supply a NULL value instead, which would create an independent
DirectDrawClipper object. (This is equivalent to creating a DirectDrawClipper
object by using the DirectDrawCreateClipper function.)

Before you close the application, close the COM library by using the CoUninitialize
function.

Using a Clipper with the System Cursor

[This is preliminary documentation and subject to change.]

DirectDraw applications often need to provide a way for users to navigate using the
mouse. For full-screen exclusive mode applications that use page-flipping, the only
option is to implement a mouse cursor manually with a sprite, moving the sprite
based on data retrieved from the device by Directlnput® or by responding to
Windows mouse messages. However, any application that doesn't use page-flipping
can still use the system's mouse cursor support.

When you use the system mouse cursor, you will sometimes fall victim to graphic
artifacts that occur when you blit to parts of the primary surface. These artifacts
appear as portions of the mouse cursor seemingly left behind by the system.

A DirectDrawClipper object can prevent these artifacts from appearing by
preventing the mouse cursor image from "being in the way" during a blit operation.
It's a relatively simple matter to implement, as well. To do so, create a
DirectDrawClipper object by calling the IDirectDraw4::CreateClipper method.
Then, assign your application's window handle to the clipper with the
IDirectDrawClipper::SetHWnd method. Once a clipper is attached, any
subsequent blits you perform on the primary surface with the
IDirectDrawSurface4::Blt method will not exhibit the artifact.

in.doc — page 83

Note that the IDirectDrawSurface4::BltFast method, and its counterparts in the
IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3 interfaces,
will not work on surfaces with attached clippers.

Using a Clipper with Multiple Windows

[This is preliminary documentation and subject to change.]

You can use a DirectDrawClipper object to blit to multiple windows created by an
application running at the normal cooperative level.

To do this, create a single DirectDraw object with a primary surface. Then, create a
DirectDrawClipper object and assign it to your primary surface by calling the
IDirectDrawSurface4::SetClipper method. To blit only to the client area of a
window, set the clipper to that window's client area by calling the
IDirectDrawClipper::SetHWnd method before blitting to the primary surface.
Whenever you need to blit to another window's client area, call the
IDirectDrawClipper::SetHWnd method again with the new target window handle.

Creating multiple DirectDraw objects that blit to each others' primary surface is not
recommended. The technique just described provides an efficient and reliable way to
blit to multiple client areas with a single DirectDraw object.

Multiple Monitor Systems

[This is preliminary documentation and subject to change.]

Windows 98 and Windows 2000 support multiple display devices and monitors on a
single system. The multiple monitor architecture (sometimes referred to as
"MultiMon") enables the operating system to use the display area from two or more
display devices and monitors to create a single logical desktop. For example, in a
MultiMon system with two monitors, the user could display applications on either
monitor, or even drag windows from one monitor to another. DirectDraw supports
this architecture, allowing applications to directly access hardware on multiple
display devices in a MultiMon system.

Note
As long as it is created on the null device and is not rendering directly to the
primary surface, a non-full-screen DirectDraw application will work
automatically with MultiMon, and the user will be able to drag the window from
one monitor to another. However, DirectDraw will take advantage of hardware
acceleration only when the window is entirely within the primary display. It is
recommended that windowed DirectDraw applications be specifically designed
for MultiMon by maintaining separate DirectDraw objects and surfaces for each
monitor. For more information, see Devices and Acceleration in MultiMon
Systems.

in.doc — page 84

This section contains information about using DirectDraw on systems with multiple
monitor support. The following topics are discussed:

¢ Enumerating Devices on MultiMon Systems

® DirectDraw Objects on Multiple Monitors

® Focus and Device Windows

® Devices and Acceleration in MultiMon Systems

® Debugging Full-Screen DirectDraw Applications with MultiMon

The Multimon.h header file included with the DirectX Programmer's Reference
makes it possible for code written around Windows 98 multiple monitor functions to
compile and run successfully on operating systems that do not support MultiMon.

The following sample applications demonstrate the implementation of MultiMon in
DirectDraw:

® Stretch2 Sample
¢ Stretch3 Sample
® Multimonitor Space Donuts Sample

Enumerating Devices on MultiMon
Systems

[This is preliminary documentation and subject to change.]

Use the DirectDrawEnumerateEx function to enumerate devices on systems with
multiple monitors, specifying flags to determine what types of DirectDraw devices
should be enumerated. The function calls an application-defined
DDEnumCallbackEx function for each enumerated device.

The DirectDrawEnumerateEx function is supported on Windows 98 and

Windows 2000 operating systems. It is available in Ddraw.lib for applications
compiled under DirectX 6.0 and later versions. Applications that statically link to the
function will always run under DirectX 6.0 and later, and will always run under any
version of DirectX on Windows 98 and Windows 2000. Such applications will fail if
run on previous versions of DirectX under Windows 95.

If your application needs to run on versions of DirectX older than DirectX 5.0, it
should use GetProcAddress to see if DirectDrawEnumerateEx is available. The
following example shows one way you can do this:

HINSTANCE h = LoadLibrary("ddraw.dll");

// If ddraw.dll doesn't exist in the search path,
// then DirectX probably isn't installed, so fail.
if ('h)

return FALSE;

in.doc — page 85

/I Note that you must know which version of the

// function to retrieve (see the following text).

// For this example, we use the ANSI version.

LPDIRECTDRAWENUMERATEEX IpDDEnumEx;

IpPDDEnumEx = (LPDIRECTDRAWENUMERATEEX)
GetProcAddress(h,"DirectDrawEnumerateExA");

/1 If the function is there, call it to enumerate all display

// devices attached to the desktop, and any non-display DirectDraw
/] devices.

if IpDDEnumMEXx)

IpDDEnumEx(Callback, NULL,
DDENUM_ATTACHEDSECONDARYDEVICES |
DDENUM_NONDISPLAYDEVICES
);

else
{

/*

* We must be running on an old version of DirectDraw.

* Therefore MultiMon isn't supported. Fall back on

* DirectDrawEnumerate to enumerate standard devices on a

* single-monitor system.

*/

DirectDrawEnumerate(OldCallback,NULL);

/* Note that it could be handy to let the OldCallback function
* be a wrapper for a DDEnumCallbackEx.

*

* Such a function would look like:

* BOOL FAR PASCAL OldCallback(GUID FAR *IpGUID,

* LPSTR pDesc,

* LPSTR pName,

* LPVOID pContext)

* A

* return Callback(lpGUID,pDesc,pName,pContext,NULL);
* }

*/

// If the library was loaded by calling LoadLibrary(),
// then you must use FreeLibrary() to let go of it.
FreeLibrary(h);

The previous example will work for applications that link to Ddraw.dll at run-time or
load-time.

in.doc — page 86

Note that you must retrieve the address of either the ANSI or Unicode version of the
DirectDrawEnumerateEx function, depending of the type of strings your
application uses. When declaring the corresponding callback function, use the
LPTSTR data type for the string parameters. The LPTSTR data type compiles to
use Unicode strings if you declare the _UNICODE symbol, and ANSI strings
otherwise. By using the LPTSTR data type, the function should compile properly
regardless of the string type you use in your application.

DirectDraw Objects on Multiple
Monitors

[This is preliminary documentation and subject to change.]

Windowed DirectDraw applications written for the null or default display driver will
work on MultiMon systems, but in applications optimized for MultiMon you will
want to create a separate DirectDraw object for each device, using the GUID
returned in the enumeration callback. (See Enumerating Devices on MultiMon
Systems.)

Avoid setting the cooperative level multiple times on a MultiMon system. If you
need to switch from full-screen to normal mode, it is best to create a new
DirectDraw object.

It is good practice to release all DirectDraw objects at the same time. If you release
only the secondary device or devices, the primary device goes back to its original
desktop mode, but only the taskbar is redrawn and the DirectDraw primary surface is
still present. You cannot draw to this surface without first releasing the DirectDraw
object and then re-creating it.

Focus and Device Windows

[This is preliminary documentation and subject to change.]

Each DirectDraw application that uses one or more monitors in full-screen exclusive
mode must have a single focus window, which is the window that receives keyboard
input.

Each device that is to hold a full-screen DirectDraw surface must be represented by a
DirectDraw object and a device window. The device window is the one that is sized
to fit the window and is put on top of all other windows.

For single-monitor applications, there is no distinction between the device and focus
window. They are one and the same.For multiple-monitor applications, however, you
need to set a device window for each monitor, and you have to let each DirectDraw
object know about the application's focus window. The focus window can also serve
as the device window for one of the monitors. Other device windows should be
children of the focus window so that the application does not minimize when the
user clicks on one of them.

See also:

in.doc — page 87

® Setting the Focus Window
® Setting Device Windows

Setting the Focus Window
[This is preliminary documentation and subject to change.]

To set the focus window, you call the IDirectDraw4::SetCooperativeLevel method
for each of the DirectDraw objects. You pass in a window handle (normally the
application window handle) and set the DDSCL_SETFOCUSWINDOW flag, as in
the following example:

/* It is presumed that IpDD is a valid IDirectDraw interface pointer,
and that hWnd is a valid window handle. */

HRESULT ddrval = IpDD->SetCooperativeLevel(hWnd,
DDSCL_SETFOCUSWINDOW);

The focus window must be the same for all devices.

Setting Device Windows
[This is preliminary documentation and subject to change.]
There are two ways to set a device window:

® (Create a window yourself and pass its handle to the
IDirectDraw4::SetCooperativeLevel method of the DirectDraw object
representing the monitor, setting the DDSCL_SETDEVICEWINDOW,
DDSCL _FULLSCREEN, and DDSCL_EXCLUSIVE flags. This creates a full-
screen window and sets it as the device window for the monitor. Your
application will receive mouse messages for the window, and you are
responsible for destroying the window at the appropriate time. The window you
pass to SetCooperativeLevel should be either the focus window (possible only
if it is on the same device) or a child of the focus window.

® Let DirectDraw create the window. You pass the focus window handle to
SetCooperativeLevel and set the DDSCL_CREATEDEVICEWINDOW,
DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE flags. DirectDraw creates
a default device window that is a child of the focus window. It manages this
window and will destroy it at the appropriate time. Your application will not
receive any mouse messages for the window.

The following example sets an existing device window for the DirectDraw object
represented by /pDD.

/* It is presumed that IpDD is a valid IDirectDraw interface pointer,
and that hWnd is the handle to an appropriate device window. */

in.doc — page 88

HRESULT hr = IpDD->SetCooperativeLevel(hWnd,
DDSCL_SETDEVICEWINDOW | DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

The following example sets a default device window created by DirectDraw. In this
case, hWnd is the handle to the existing focus window.

HRESULT hr = IpDD->SetCooperativeLevel(hWnd,
DDSCL_CREATEDEVICEWINDOW | DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

Although a focus window can be a device window, you cannot set a window as both
the focus window and a device window with a single call to SetCooperativeLevel.
You must first set it as the focus window and then set it as a device window.
However, it is possible to set a focus window and a default device window on the
same device with a single call to SetCooperativeLevel. The following example
shows how this can be done:

HRESULT hr = IpDD->SetCooperativelLevel(
hwndFocus,
DDSCL_SETFOCUSWINDOW | DDSCL_FULLSCREEN |
DDSCL_EXCLUSIVE | DDSCL_CREATEDEVICEWINDOW);

In this example, an existing window (probably the application window) is set as the
focus window, and DirectDraw creates a default device window.

Devices and Acceleration in MultiMon
Systems

[This is preliminary documentation and subject to change.]

Full-screen exclusive mode DirectDraw objects will take advantage of hardware
acceleration regardless of whether they are running on the primary device or on a
secondary device. However, they cannot use built-in support for spanning graphics
operations across display devices. It is the application's responsibility to perform
operations on the appropriate device.

When the normal cooperative level is set, DirectDraw uses hardware acceleration
only when the window is wholly within the display area of the primary device. When
a window straddles two or more monitors, all blits are done in emulation and
performance can be significantly slower. This is necessarily the case, because
hardware buffers cannot blit to a display surface controlled by another piece of
hardware.

As long as you create the DirectDraw object for the null device—that is, pass NULL
to DirectDrawCreate as the [pGUID parameter—DirectDraw will blit to the entire
window regardless of where it is located. However, if the device is created by its
actual GUID, this is not the case, and blit operations that cross an edge of the
primary surface will be clipped (if you are using a clipper) or will fail, returning
DDERR_INVALIDRECT.

in.doc — page 89

Note
When you are blitting to a window in a MultiMon application, negative
coordinates are valid when the logical location of the secondary monitor is to
the left of the primary monitor.

To get the best performance in a windowed MultiMon application, you need to
create a DirectDraw object for each device, maintain off-screen surfaces in parallel
on each device, keep track of which part of the window resides on each device, and
perform separate blits to each device.

Debugging Full-Screen DirectDraw
Applications with MultiMon

[This is preliminary documentation and subject to change.]

It is possible to use a multimonitor system rather than remote debugging in order to
step through code while debugging a full-screen DirectDraw application.

You should use the primary monitor for your development environment and the
secondary monitor for the DirectDraw output. Also, you need to change a registry
setting through the DirectX property sheet in Control Panel. On the DirectDraw
page, click Advanced Settings and select the Enable Multi-Monitor Debugging
checkbox. This setting will prevent DirectDraw from minimizing your application
when it loses focus.

Under Windows 98, you cannot step through code when a surface is locked. For
more information, see Accessing Surface Memory Directly.

Advanced DirectDraw Topics

[This is preliminary documentation and subject to change.]

This section supplements the DirectDraw overview, providing information about
advanced DirectDraw issues. The following topics are discussed:

® Mode 13 Support

® Taking Advantage of DMA Support

® Using DirectDraw Palettes in Windowed Mode

® Video Ports

® QGetting the Flip and Blit Status

® Determining the Capabilities of the Display Hardware

¢ Storing Bitmaps in Display Memory

® Triple Buffering

® DirectDraw Applications and Window Styles

® Matching True RGB Colors to the Frame Buffer's Color Space

® Displaying a Window in Full-Screen Mode

in.doc — page 90

Mode 13 Support
[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw Mode 13 graphics mode
support. The following topics are discussed:

® About Mode 13

® Setting Mode 13

® Mode 13 and Surface Capabilities
® Using Mode 13

About Mode 13

[This is preliminary documentation and subject to change.]

DirectDraw supports access to the linear unflippable 320x200 8 bits per pixel
palettized mode known widely by the name Mode 13, its hexadecimal BIOS mode
number. DirectDraw treats this mode like a Mode X mode, but with some important
differences imposed by the physical nature of Mode 13.

Setting Mode 13
[This is preliminary documentation and subject to change.]

Mode 13 has similar enumeration and mode-setting behavior as Mode X. DirectDraw
will only enumerate Mode 13 if the DDSCL_ALLOWMODEX flag was passed to
the IDirectDraw4::SetCooperativeLevel method.

You enumerate the Mode 13 display mode like all other modes, but you make a
surface capabilities check before calling IDirectDraw4::EnumDisplayModes. To
do this, call IDirectDraw4::GetCaps and check for the

DDSCAPS STANDARDVGAMODE flag in the DDSCAPS2 structure after the
method returns. If this flag is not present, then Mode 13 is not supported, and
attempts to enumerate with the DDEDM_STANDARDVGAMODES flag will fail,
returning DDERR_INVALIDPARAMS.

The EnumDisplayModes method now supports a new enumeration flag,

DDEDM STANDARDVGAMODES, which causes DirectDraw to enumerate Mode
13 in addition to the 320x200x8 Mode X mode. There is also a new
IDirectDraw4::SetDisplayMode flag, DDSDM_STANDARDVGAMODE, which
you must pass in order to distinguish Mode 13 from 320x200x8 Mode X.

Note that some video cards offer linear accelerated 320x200x8 modes. On such cards
DirectDraw will not enumerate Mode 13, enumerating the linear mode instead. In
this case, if you attempt to set Mode 13 by passing the
DDSDM_STANDARDVGAMODE flag to SetDisplayMode, the method will
succeed, but the linear mode will be used. This is analogous to the way that linear
low resolution modes override Mode X modes.

in.doc — page 91

Mode 13 and Surface Capabilities

[This is preliminary documentation and subject to change.]

When DirectDraw calls an application's EnumModesCallback callback function,
the ddsCaps member of the associated DDSURFACEDESC or
DDSURFACEDESC?2 structure contains flags that reflect the mode being
enumerated. You can expect DDSCAPS MODEX for a Mode X mode or
DDSCAPS STANDARDVGAMODE for Mode 13. These flags are mutually
exclusive. If neither of these bits is set, then the mode is a linear accelerated mode.
This behavior also applies to the flags retrieved by the
IDirectDraw4::GetDisplayMode method.

Using Mode 13

[This is preliminary documentation and subject to change.]

Because Mode 13 is a linear mode, unlike the Mode X modes, DirectDraw can give
an application direct access to the frame buffer.You can call the
IDirectDrawSurface4::Lock, IDirectDrawSurface4::Blt, and
IDirectDrawSurface4::BltFast methods to gain direct access to the primary
surface.

When using Mode 13, DirectDraw supports an emulated
IDirectDrawSurface4::Flip that is implemented as a straight copy of the contents of
a back buffer to the primary surface. You can emulate this yourself by copying all or
part of the back-buffer's contents to the primary surface using BIt or BltFast.

There is one warning concerning Lock and Mode 13. Although DirectDraw allows
direct linear access to the Mode 13 VGA frame buffer, do not assume that the buffer
is always located at address 0xA0000, since DirectDraw can return an aliased
virtual-memory pointer to the frame buffer which will not be 0xA0000. Similarly, do
not assume that the pitch of a Mode 13 surface is 320, because display cards that
support an accelerated 320x200x8 mode will very likely use a different pitch.

Taking Advantage of DMA Support

[This is preliminary documentation and subject to change.]

This section contains information about how you can take advantage of device
support for Direct Memory Access (DMA) to increase performance in completing
certain tasks. The following topics are discussed:

® About DMA Device Support
® Testing for DMA Support

® Typical Scenarios for DMA
¢ Using DMA

in.doc — page 92

About DMA Device Support

[This is preliminary documentation and subject to change.]

Some display devices can perform blit operations (or other operations) on system
memory surfaces. These operations are commonly referred to as Direct Memory
Access (DMA) operations. You can exploit DMA support to accelerate certain
combinations of operations. For example, on such a device, you could perform a blit
from system memory to video memory while using the processor to prepare the next
frame. In order to use such facilities, you must assume certain responsibilities. This
section details these tasks.

Testing for DMA Support
[This is preliminary documentation and subject to change.]

Before using DMA operations, you must test the device for DMA support and, if it
does support DMA, how much support it provides. Begin by retrieving the driver
capabilities by calling the IDirectDraw4::GetCaps method, then look for the
DDCAPS CANBLTSYSMEM flag in the dwCaps member of the associated
DDCAPS structure. If the flag is set, the device supports DMA.

If you know that DMA is generally supported, you also need to find out how well the
driver supports it. You do so by looking at some other structure members that
provide information about system-to-video, video-to-system, and system-to-system
blit operations. These capabilities are provided in 12 DDCAPS structure members
that are named according to blit and capability type. The following table shows these
new members.

System-to-video Video-to-system System-to-system
dwSVBCaps dwVSBCaps dwSSBCaps
dwSVBCKeyCaps dwVSBCKeyCaps dwSSBCKeyCaps
dwSVBFXCaps dwVSBFXCaps dwSSBFXCaps
dwSVBRops dwVSBRops dwSSBRops

For example, the system-to-video blit capability flags are provided in the
dwSVBCaps, dwSVBCKeyCaps, dwSVBFXCaps and dwSVBRops members.
Similarly, video-to-system blit capabilities are in the members whose names begin
with "dwVSB," and system-to system capabilities are in the "dwSSB" members.
Examine the flags present in these members to determine the level of hardware
support for that blit category.

The flags in these members are parallel with the blit-related flags included in the
dwCaps, dwCKeyCaps, and dwFXCaps members, with respect to that member's
blit type. For example, the dAwSVBCaps member contains general blit capabilities as
specified by the same flags you might find in the dwCaps member. Likewise, the
raster operation values in the dwSVBRops, dwVSBRops, and dwSSBRops members
provide information about the raster operations supported for a given type of blit
operation.

in.doc — page 93

One of the key features to look for in these members is support for asynchronous
DMA blit operations. If the driver supports asynchronous DMA blits between
surfaces, the DDCAPS BLTQUEUE flag will be set in the dwSVBCaps,
dwVSBCaps, or dwSSBCaps member. (Generally, you'll see the best support for
system-memory-to-video-memory surfaces.) If the flag isn't present, the driver isn't
reporting support for asynchronous DMA blit operations.

Typical Scenarios for DMA

[This is preliminary documentation and subject to change.]

System memory to video memory transfers that use the SRCCOPY raster operation
are the most common type of hardware-supported blit operation. (The SRCCOPY
raster operation, which is documented in the Platform SDK, causes the data within
the source rectangle to be copied directly to the destination rectangle.) The most
typical use for such an operation is to move textures from a large collection of
system memory surfaces to a surface in video memory in preparation for subsequent
operations. System-to-video DMA transfers are about as fast as processor-controlled
transfers (for example, HEL blits), but are of great utility since they can operate in
parallel with the host processor.

Using DMA
[This is preliminary documentation and subject to change.]

Hardware transfers use physical memory addresses, not the virtual addresses which
are home to applications. Some device drivers require that you provide the surface's
physical memory address. This mechanism is implemented by the
IDirectDrawSurfaced4::PageLock method. If the device driver does not require
page locking, the DDCAPS2 NOPAGELOCKREQUIRED flag will be set when you
retrieve the hardware capabilities by calling the IDirectDraw4::GetCaps method.

Page locking a surface prevents the system from committing a surface's physical
memory to other uses, and guarantees that the surface's physical address will remain
constant until a corresponding IDirectDrawSurface4::PageUnlock call is made. If
the device driver requires page locking, DirectDraw will allow asynchronous DMA
operations only on system memory surfaces that the application has page locked. If
you do not call IDirectDrawSurface4::PageLock in such a situation, DirectDraw
will perform the transfers by using software emulation. Note that locking a large
amount of system memory will make Windows run poorly. Therefore, it is highly
recommended that only full-screen exclusive mode applications use
IDirectDrawSurface4::PageLock for large amounts of system memory, and that
such applications take care to unlock these surfaces when the application is
minimized. Of course, when the application is restored, you should page lock the
system memory surface again.

Responsibility for managing page locking is entirely in the hands of the application
developer. DirectDraw will never page lock or page unlock a surface. Additionally,
it is up to you to determine how much memory you can safely page lock without
adversely affecting system performance.

in.doc — page 94

Using DirectDraw Palettes in
Windowed Mode

[This is preliminary documentation and subject to change.]

IDirectDrawPalette interface methods write directly to the hardware when the
display is in exclusive (full-screen) mode. However, when the display is in
nonexclusive (windowed) mode, the IDirectDrawPalette interface methods call the
GDIs palette handling functions to work cooperatively with other windowed
applications.

The discussion in the following topics assumes that the desktop is in an 8-bit
palettized mode and that you have created a primary surface and a typical window.

® Types of Palette Entries in Windowed Mode
® (Creating a Palette in Windowed Mode
® Setting Palette Entries in Windowed Mode

Types of Palette Entries in Windowed Mode

[This is preliminary documentation and subject to change.]

Unlike full-screen exclusive mode applications, windowed applications must share
the desktop palette with other applications. This imposes several restrictions on
which palette entries you can safely modify and how you can modify them. The
PALETTEENTRY structure you use when working with DirectDrawPalette objects
and GDI contains a peFlags member to carry information that describes how the
system should interpret the PALETTEENTRY structure.

The peFlags member describes three types of palette entries, discussed in this topic:

® Windows static entries
® Animated entries

® Nonanimated entries

Windows static entries

In normal mode, Windows reserves palette entries 0 through 9 and 246 through 255
for system colors that it uses to display menu bars, menu text, window borders, and
so on. In order to maintain a consistent look for your application and avoid damaging
the appearance of other applications, you need to protect these entries in the palette
you set to the primary surface. Often, developers retrieve the system palette entries
by calling the GetSystemPaletteEntries Win32® function, then explicitly set the
identical entries in a custom palette to match before assigning it to the primary
surface. Duplicating the system palette entries in a custom palette will work initially,
but it becomes invalid if the user changes the desktop color scheme.

To avoid having your palette look bad when the user changes color schemes, you can
protect the appropriate entries by providing a reference into the system palette

in.doc — page 95

instead specifying a color value. This way, no matter what color the system is using
for a given entry, your palette will always match and you won't need to do any
updating. The PC_EXPLICIT flag, used in the peFlags member, makes it possible
for you to directly refer to a system palette entry. When you use this flag, the system
no longer assumes that the other structure members include color information.
Rather, when you use PC_EXPLICIT, you set the value in the peRed member to the
desired system palette index and set the other colors to zero.

For instance, if you want to ensure that the proper entries in your palette always
match the system's color scheme, you could use the following code:

// Set the first and last 10 entries to match the system palette.
PALETTEENTRY pe[256];
ZeroMemory(pe, sizeof(pe));
for(int i=0;i<10;i++){
pelil.peFlags = pe[i+246].peFlags = PC_EXPLICIT;
pelil.peRed = i;
peli+246].peRed = i+246;
}

You can force Windows to use only the first and last palette entry (0 and 255) by
calling the SetSystemPaletteUse Win32 function. In this case, you should set only
entries 0 and 255 of your PALETTEENTRY structure to PC_EXPLICIT.

Animated entries

You specify palette entries that you will be animating by using the PC_ RESERVED
flag in the corresponding PALETTEENTRY structure. Windows will not allow any
other application to map its logical palette entry to that physical entry, thereby
preventing other applications from cycling their colors when your application
animates the palette.

Nonanimated entries

You specify normal, nonanimated palette entries by using the PC_ NOCOLLAPSE
flag in the corresponding PALETTEENTRY structure. The PC_ NOCOLLAPSE
flag informs Windows not to substitute some other already-allocated physical palette
entry for that entry.

Creating a Palette in Windowed Mode

[This is preliminary documentation and subject to change.]

The following example illustrates how to create a DirectDraw palette in
nonexclusive (windowed) mode. In order for your palette to work correctly, it is vital
that you set up every one of the 256 entries in the PALETTEENTRY structure that
you submit to the IDirectDraw4::CreatePalette method.

LPDIRECTDRAW4 IpDD; // Assumed to be initialized previously
PALETTEENTRY pPaletteEntry[256];
int index;

in.doc — page 96

HRESULT ddrval;
LPDIRECTDRAWPALETTE2 IpDDPal;

// First set up the Windows static entries.

for (index = 0; index < 10 ; index++)

{
// The first 10 static entries:
pPaletteEntry[index].peFlags = PC_EXPLICIT;
pPaletteEntry[index].peRed = index;
pPaletteEntry[index].peGreen = 0;
pPaletteEntry[index].peBlue = 0O;

/I The last 10 static entries:
pPaletteEntry[index+246].peFlags = PC_EXPLICIT;
pPaletteEntry[index+246].peRed = index+246;
pPaletteEntry[index+246].peGreen = 0;
pPaletteEntry[index+246].peBlue = 0;

// Now set up private entries. In this example, the first 16

// available entries are animated.

for (index = 10; index < 26; index ++)

{
pPaletteEntry[index].peFlags = PC_NOCOLLAPSE|PC_RESERVED;
pPaletteEntry[index].peRed = 255;
pPaletteEntry[index].peGreen = 64;
pPaletteEntry[index].peBlue = 32;

/I Now set up the rest, the nonanimated entries.
for (; index < 246; index ++) // Index is set up by previous for loop
{
pPaletteEntry[index].peFlags = PC_NOCOLLAPSE;
pPaletteEntry[index].peRed = 25;
pPaletteEntry[index].peGreen = 6;
pPaletteEntry[index].peBlue = 63;

/1 All 256 entries are filled. Create the palette.
ddrval = IpDD->CreatePalette(DDPCAPS_8BIT, pPaletteEntry,
&lpDDPal,NULL);

Setting Palette Entries in Windowed Mode

[This is preliminary documentation and subject to change.]

in.doc — page 97

The rules that apply to the PALETTEENTRY structure used with the
IDirectDraw4::CreatePalette method also apply to the
IDirectDrawPalette::SetEntries method. Typically, you maintain your own array
of PALETTEENTRY structures, so you do not need to rebuild it. When necessary,
you can modify the array, and then call IDirectDrawPalette::SetEntries when it is
time to update the palette.

In most circumstances, you should not attempt to set any of the Windows static
entries when in nonexclusive (windowed) mode or you will get unpredictable results.
The only exception is when you reset the 256 entries.

For palette animation, you typically change only a small subset of entries in your
PALETTEENTRY array. You submit only those entries to
IDirectDrawPalette::SetEntries. If you are resetting such a small subset, you must
reset only those entries marked with the PC_ NOCOLLAPSE and PC_RESERVED
flags. Attempting to animate other entries can have unpredictable results.

The following example illustrates palette animation in nonexclusive mode:

LPDIRECTDRAW IpDD; /] Already initialized
PALETTEENTRY pPaletteEntry[256]; // Already initialized
LPDIRECTDRAWPALETTE IpDDPal; // Already initialized
int index;

HRESULT ddrval;

PALETTEENTRY temp;

// Animate some entries. Cycle the first 16 available entries.
// They were already animated.
temp = pPaletteEntry[10];
for (index = 10; index < 25; index ++)
{
pPaletteEntry[index] = pPaletteEntry[index+1];

}
pPaletteEntry[25] = temp;

/I Set the values. Do not pass a pointer to the entire palette entry
// structure, but only to the changed entries.
ddrval = IpDDPal->SetEntries(

0, // Flags must be zero
10, // First entry
16, // Number of entries

& (pPaletteEntry[10])); // Where to get the data

Video Ports

[This is preliminary documentation and subject to change.]

in.doc — page 98

DirectDraw video-port extensions are a low-level programming interface, not
intended for mainstream multimedia programmers. The target customer is the video-
streaming software industry, which creates products like DirectShow™. Developers
who want to include video playback in their software can make use of video-port
extensions. However, for most software, a high-level programming interface like the
one provided by DirectShow is recommended for greater ease of use.

This section contains information about DirectDrawVideoPort objects. The
following topics are discussed:

® What Are Video Ports?

® Video-Port Technology Overview

® About DirectDraw Video-Port Extensions
® Video Frames and Fields

¢ HREF, VREF, and Connections

® Vertical Blanking Interval Data

® Auto-Flipping

® Solutions to Common Video Artifacts

® Solving Problems Caused by Half-Lines

® Exploiting Hardware Features

What Are Video Ports?

[This is preliminary documentation and subject to change.]

A DirectDrawVideoPort object represents the video-port hardware found on some
display adapters. Generally, a video-port object controls how the video-port
hardware applies a video signal it receives from a video decoder directly to the
frame buffer.

More than one channel of video can be controlled by creating as many
DirectDrawVideoPort objects as is required. Because each channel can be separately
enumerated and configured, the video hardware for each channel does not need to be
identical.

For more information, see Video-Port Technology Overview.

Video-Port Technology Overview
[This is preliminary documentation and subject to change.]

A video port is hardware on a display device that enables direct access to a surface
within the frame buffer, bypassing the CPU and PCI bus. Direct frame buffer access
makes it possible to efficiently play live or recorded video without creating
noticeable load on the CPU. Once in a surface, an image can be displayed on the
screen as an overlay, used as a Direct3D texture, or accessed by the CPU for capture
or other processing. The following paragraphs provide general information about the
components that make up the technology and how they work.

in.doc — page 99

Data Flow

In a machine equipped with a video port, data in a video stream can flow directly
from a video source through a video decoder and the video port to the frame buffer.
These components often exist together on a display adapter, but can be on separate
hardware components that are physically connected to one another. An example of
this data flow is provided in the following illustration.

Video Input
(Physical video input,
MPEG codec, or other
device)

Frame Buffer
Video Videg-Pon Offséreen - __ . :: e Monitor
Decoder > Equpefi > overlay [T
VGA Chip surface p
I Video
e Playback
e T Image

Video source

In the scope of video-port technology, a video source is strictly a hardware video
input device, such as a Zoom Video port, MPEG codec, or other hardware source.
These sources broadcast signals in a variety of formats, including NTSC, PAL, and
SECAM through a physical connection to a video decoder.

Video Decoder

A video decoder is also a hardware component. The video decoder's job is to
decipher the information provided by the video source and send it to the video port
in an agreed upon connection format. The decoder possesses a physical connection
to the video port, and exposes its services through a stream class minidriver. The
decoder is responsible for sending video data and clock and sync information to the
video port.

Video port

Like the other components in the data flow path, the video port is a piece of
hardware. The video port exists on the display adapter's VGA chip and has direct
access to the frame buffer. It receives information sent from the decoder, processes
it, and places it in the frame buffer to be displayed. During processing, the video port
can manipulate image data to provide scaling, shrinking, color control, or cropping
services.

Frame Buffer

The frame buffer accepts video data as provided by the video port. Once received,
applications can programmatically manipulate the image data, blit it to other
locations, or show it on the display using an overlay (the most common use).

in.doc — page 100

About DirectDraw Video-Port Extensions

[This is preliminary documentation and subject to change.]

DirectDraw has been extended to include the DirectDrawVideoPort object, which
takes advantage of video-port technology and provides its services through the
IDDVideoPortContainer and IDirectDrawVideoPort interfaces.

DirectDrawVideoPort objects do not control the video decoder, because it provides
services of its own, nor does DirectDraw control the video source; it is beyond the
scope of the video port. Rather, a DirectDrawVideoPort object represents the video
port itself. It monitors the incoming signal and passes image data to the frame buffer,
using parameters set though its interface methods to modify the image, perform
flipping, or carry out other services.

The IDDVideoPortContainer interface, which you can retrieve by calling the
IDirectDraw4::QueryInterface method, provides methods to query the hardware
for its capabilities and create video-port objects. You create a video-port object by
calling the IDDVideoPortContainer::CreateVideoPort method. Video-port objects
expose their functionality through the IDirectDrawVideoPort interface, enabling
you to manipulate the video-port hardware itself. Using these interfaces, you can
examine the video-port's capabilities, assign an overlay surface to receive image
data, start and stop video playback, and set hardware parameters to manipulate
image data for cropping, color control, scaling, or shrinking effects.

DirectDraw video-port extensions provide for multiple video ports on the same
machine by allowing you to create multiple DirectDrawVideoPort objects. There is
no requirement that multiple video ports on a machine be identical—each port is
separately enumerated and configured separately, regardless of any hardware
differences that might exist.

In keeping with the general philosophy of DirectX, this technology gives
programmers low-level access to hardware features while insulating them from
specific hardware implementation details. It is not a high-level APL

Video Frames and Fields

[This is preliminary documentation and subject to change.]

Video can be interlaced or non-interlaced. When a video signal is interlaced, each
video frame is made of two fields of image data. Each field is a collection of every
other scan line in an image, starting with the first or second scan line. The first field,
referred to as the odd field (or field 1), contains the data for the first scan line and
skips every other scan line to the end of the image. Similarly, the even field (or field
2), carries every other scan line starting with the second. The "even-ness" or "odd-
ness" of a field is referred to as its field polarity.

When video is not interlaced, each field contains all of a frame's scan lines.
Typically, video signals are sent at a rate of 30 frames per second; in the case of
interleaved video, this means the rate is 60 fields per second.

in.doc — page 101

The fields that make up a frame do not always reflect the same moment in time. For
example, if the frames are separated by 1/30 of a second then the two fields of a
frame may be separated by 1/60 of a second. Because a television displays each field
individually, no two fields are simultaneously visible, and the difference between
fields adds to the illusion of movement.

HREF, VREF, and Connections

[This is preliminary documentation and subject to change.]

When a monitor or other display device is displaying an image, it typically scans
down the screen, creating an image from left to right, top to bottom. (Sometimes, the
device makes two passes down the screen to create a single image; this type of
display is called an interlaced display.) The video stream contains signals that
instruct the display device when a new line or new screen is to be drawn.

The terms HREF and VREEF, also known as hsync and vsync, are the signals within
the video stream that tell a display device what to do and when to do it. The HREF
signals that a new line is to be drawn and the VREF signals a new screen.

For instance, imagine you're working with a video signal intended for the world's
smallest monitor. The monitor only has 4 scan lines. (This is not at all realistic, of
course, but it's simple.) On an oscilloscope, the HREF and VREEF signals would look
somewhat like the following illustration.

VREF T ﬂ H r
HREF | L

In the preceding illustration, both HREF and VREF signals are "active high,"
meaning that they are considered active when in a heightened state (when the waves
go up). There is no standard for these signals. In some cases, places where the waves
go down ("low" states) might signal an active HREF or VREF, or sometimes one
will be active high and the other active low. Although the preceding illustration is
only an imaginary example, note that there are lots of HREF signals for each VREF.
This is because for each new screen, there are several scan lines. Of course, in a real
video signal for a real broadcast, you would see hundreds of HREFs for a single
VREF.

HREF signals, VREF signals, and video data are carried across physical data lines
from the decoder to the video port. In many cases, a number of lines are reserved for
video data, and others are dedicated to carrying HREF and VREF signals. However,
there is no standard for how these data lines are used.

A connection is a protocol that a video port or decoder uses to define how it uses
these data lines. Video ports and video decoders will support a variety of
connections. DirectDraw video-port extensions use globally-unique identifiers
(GUIDs) to identify each type of connection. You can query for the connections that

in.doc — page 102

the video port supports by calling the
IDDVideoPortContainer::GetVideoPortConnectInfo method. You create a
DirectDrawVideoPort object that supports a given connection by calling the
IDDVideoPortContainer::CreateVideoPort method.

Keep in mind that the video decoder is outside the scope of DirectDraw video-port
extensions, and exposes its supported connections through an interface of its own. By
enumerating the connections that the video-port supports and comparing the results
with the connections supported by the decoder, you can negotiate a common
connection (or "language") that both components understand.

Vertical Blanking Interval Data

[This is preliminary documentation and subject to change.]

In broadcast video, a small period of time elapses between video frames, during
which a display device refreshes its display for the next frame. This period of time is
called the Vertical Blanking Interval (VBI). Instead of sitting idle during the VBI,
broadcast video encodes data in the first twenty-one scan lines of a video frame and
sends these lines during the VBI. This data is often used for closed captioning or
time-stamping, but can be used for other purposes.

DirectDraw video-port extensions enable you to divert data contained with the VBI
to a surface, bypass scaling of VBI data, and automatically flip between VBI
surfaces in a flipping chain. Once data is in a surface, you can directly access the
surface's memory as needed.

For more information, see Auto-Flipping.

Auto-Flipping
[This is preliminary documentation and subject to change.]

To avoid tearing images when refreshing the screen between frames,
DirectDrawVideoPort objects can automatically flip their target overlay surfaces in
response to VREF signals. To use this service, the target surface you set to the video-
port object with the IDirectDrawVideoPort::SetTargetSurface method must be the
first surface in a flipping chain of overlay surfaces. Then, to begin playing the video
sequence, call the IDirectDrawVideoPort::StartVideo method, specifying the
DDVP_ AUTOFLIP flag in the dwVPFlags member of the associated
DDVIDEOPORTINFO structure. The video-port object will flip to the next surface
in the flipping chain for each VREF signal it receives. If the video port is
interleaving fields, it will flip once for every two VREF signals it receives.

If you are using auto-flipping and want to direct VBI data to separate auto-flipped
surfaces, you must have the same number of VBI surfaces as you do standard video
surfaces.

Solutions to Common Video Artifacts

[This is preliminary documentation and subject to change.]

in.doc — page 103

Several problems are inherent in displaying broadcast video on display devices other
than televisions. This section briefly discusses some common problems, then
describes how DirectDraw video-port extensions tries to solve them.

NTSC Interlaced Display and Interleaved Memory

An NTSC signal broadcasts video at an approximate rate of 30 frames, or 60 fields,
per second. Like a frame, a field in an NTSC signal is independent of the other field
in a frame and can contain different image data. For more information on this
behavior, see Video Frames and Fields.

The problems caused by the independence of fields within a frame become apparent
when two fields are interleaved for display. In video with a lot of movement, the two
fields of a single frame will contain images that don't match each other, resulting in
motion artifacts.

One way that developers have tried to work around this behavior is by discarding
one of the fields. This solution causes a loss in image quality by roughly one-half,
but provides acceptable results for some purposes. Another method frequently used
is to display fields individually, stretching each vertically by a factor of two when it
is displayed. This provides better image quality, but because fields are offset by one
pixel in the y-direction, the result is an animation that "jitters" up and down as it

plays.

DirectDraw video-port extensions can employ two, more advanced, techniques for
improving image quality, known as "Bob" and "Weave." Both are supported by the
DirectDraw overlay surfaces that are used with video-port extensions.

The first algorithm, Bob, is very similar to the method of displaying each field in a
frame individually. However, for each field, the overlay's source rectangle is
adjusted to accommodate for any jittering effects. Effectively, the source rectangle
bounces up and down in time with the fields, negating the jittering on the screen.
The following illustration depicts this process.

Odd Field Even Field

Scan line 1

Scan line n

The Weave algorithm provides the best image quality for material that originates
from film by exploiting a common technique used in the video industry for
converting motion pictures to television. Unlike Bob, a video-port object does not
Weave by itself; you must combine the default overlay behavior of displaying both
fields simultaneously with kernel mode video transport (provided with

Windows 2000 and Windows 98) to implement the algorithm.

in.doc — page 104

Here is a synopsis of the algorithm, provided for completeness. Motion pictures
capture video at a rate of 24 frames per second. When converting a motion picture
for television, technicians use a technique called 3:2 pulldown to convert the frame
rate to the 30 frames per second required for television broadcasts. This technique
involves inserting a redundant field for every four true fields in the video stream to
come up with the required number of fields.

When you weave, you are reversing this process. You detect when 3:2 pulldown is
being used, removing any redundant fields to restore the original motion-picture
frames. The fields that make up the restored frames can then be interleaved in
memory without risk of motion artifacts. Occasionally, the pattern of redundant
frames will change due to edits within the original film or reel breaks. You must
monitor when these changes occur and update the behavior to adjust for the new
pattern.

By default, an overlay surface displays both fields simultaneously. This works well if
you're implementing the Weave algorithm, but prevents the video port from using
the Bob algorithm. You can programmatically change how the overlay treats video
data by calling the IDirectDrawSurface4::UpdateOverlay method. The flags you
include in the dwFlags parameter determine the overlay's behavior: if you include
the DDOVER BOB flag, the video port will use the Bob algorithm; if you don't, it
displays both fields. Note that by simply displaying both fields simultaneously, the
resulting video will show motion artifacts.

Solving Problems Caused by Half-Lines

[This is preliminary documentation and subject to change.]

Some video decoders output a half line of meaningless data at the beginning of the
even field. If this extra line is written to the frame buffer, the resulting image will
appear garbled. In some cases, the video-port hardware is capable of sensing and
discarding this data before writing it to the frame buffer.

You can determine if a video port is capable of discarding this data when retrieving
connection information with the
IDDVideoPortContainer::GetVideoPortConnectInfo method. If the video port
cannot discard half-lines, the DDVPCONNECT HALFLINE flag will be specified
in the dwFlags member of the associated DDVIDEOPORTCONNECT structure
for each supported connection.

If the video port is unable to discard half-lines, you have two options: you can
discard one of the fields, or you can work around the hardware's limitations by
making some adjustments in how you create the video-port object and display
images with the target overlay surface

Here's how to work around the problem. When creating the video-port object by
calling the IDDVideoPortContainer::CreateVideoPort method, include the
DDVPCONNECT INVERTPOLARITY flag in the dwFlags member of the
associated DDVIDEOPORTCONNECT structure. This causes the video port to
invert the polarity of the fields in the video stream, treating even fields like odd

in.doc — page 105

fields and vice versa. Once reversed, the half-line preceding even fields will be
written to the frame buffer as the first scan line of each frame. To remove the
unwanted data, adjust the source rectangle of the overlay surface used to display the
image down one pixel by calling the IDirectDrawVideoPort::StartVideo method
with the necessary coordinates. Note that this technique requires that you allocate
one extra line in the surface containing the even field.

Exploiting Hardware Features

[This is preliminary documentation and subject to change.]

Video-port hardware often supports special features for adjusting color, shrinking or
zooming images, handling VBI data, or skipping fields. The HAL provides
information about these features by using flags in the DDVIDEOPORTCAPS
structure. You retrieve the capabilities of a machine's video-port hardware by calling
the IDDVideoPortContainer::EnumVideoPorts method.

To exploit these features for playback, you use the
IDirectDrawVideoPort::StartVideo method, which uses a DDVIDEOPORTINFO
structure to request that hardware features be used to modify image data before
placing it in the frame buffer or for display. By setting values and flags in this
structure, you can specify the source rectangle used with the overlay surface,
indicate cropping regions, request hardware scaling, and set pixel formats.

DirectDrawVideoPort objects do not emulate video-port hardware services.

Getting the Flip and Blit Status

[This is preliminary documentation and subject to change.]

When the IDirectDrawSurface4::Flip method is called, the primary surface and
back buffer are exchanged. However, the exchange may not occur immediately. For
example, if a previous flip has not finished, or if it did not succeed, this method
returns DDERR_WASSTILLDRAWING. In the samples included with the SDK, the
IDirectDrawSurface4::Flip call continues to loop until it returns DD OK. Also, a
IDirectDrawSurface4::Flip call does not complete immediately. It schedules a flip
for the next time a vertical blank occurs on the system.

An application that waits until the DDERR_WASSTILLDRAWING value is not
returned is very inefficient. Instead, you could create a function in your application
that calls the IDirectDrawSurface4::GetFlipStatus method on the back buffer to
determine if the previous flip has finished.

If the previous flip has not finished and the call returns

DDERR_ WASSTILLDRAWING, your application can use the time to perform
another task before it checks the status again. Otherwise, you can perform the next
flip. The following example demonstrates this concept:

while(lpDDSBack->GetFlipStatus(DDGFS_ISFLIPDONE) ==
DDERR_WASSTILLDRAWING);

in.doc — page 106

/I Waiting for the previous flip to finish. The application can
/I perform another task here.

ddrval = IpDDSPrimary->Flip(NULL, 0);

You can use the IDirectDrawSurface4::GetBltStatus method in much the same
way to determine whether a blit has finished. Because
IDirectDrawSurface4::GetFlipStatus and IDirectDrawSurface4::GetBltStatus
return immediately, you can use them periodically in your application with little loss
in speed.

Determining the Capabilities of the
Display Hardware

[This is preliminary documentation and subject to change.]

DirectDraw uses software emulation to perform the DirectDraw functions not
supported by the user's hardware. To accelerate performance of your DirectDraw
applications, you should determine the capabilities of the user's display hardware
after you have created a DirectDraw object, then structure your program to take
advantage of these capabilities when possible.

You can determine these capabilities by using the IDirectDraw4::GetCaps method.
Not all hardware features are supported in emulation. If you want to use a feature
only supported by some hardware, you must also be prepared to supply some
alternative for systems with hardware that lacks that feature.

Storing Bitmaps in Display Memory
[This is preliminary documentation and subject to change.]

Blitting from display memory to display memory is usually much more efficient than
blitting from system memory to display memory. As a result, you should store as
many of the sprites your application uses as possible in display memory.

Most display adapter hardware contains enough extra memory to store more than the
primary surface and the back buffer. Call the IDirectDraw4::GetAvailableVidMem
method to determine the amount of total and available memory for storing bitmaps
in the display adapter's memory. After the call, the [pdwTotal parameter contains the
total amount of display memory, minus the primary surface and any private caches
held by driver, and I[pdwFree contains the amount of display memory currently free
that can be allocated for a surface that matches the capabilities specified by the
structure at [pDDSCaps2.

Triple Buffering

[This is preliminary documentation and subject to change.]

in.doc — page 107

In some cases, that is, when the display adapter has enough memory, it may be
possible to speed up the process of displaying your application by using triple
buffering. Triple buffering uses one primary surface and two back buffers. The
following example shows how to initialize a triple-buffering scheme:

// The IpDDSPrimary and IpDDSBack variables are globally

// declared, uninitialized LPDIRECTDRAWSURFACE4 variables.
1

// The IpDD variable is a pointer to an IDirectDraw4 interface

DDSURFACEDESC?2 ddsd;
ZeroMemory (&ddsd, sizeof(ddsd));

// Create the primary surface with two back buffers.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 2;

ddrval = IpDD->CreateSurface(&ddsd, & pDDSPrimary, NULL);

/1 If we successfully created the flipping chain,
// retrieve pointers to the surfaces we need for
// flipping and blitting.
if(ddrval == DD_OK)
{
/! Get the surface directly attached to the primary (the back buffer).
ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;
ddrval = IpDDSPrimary->GetAttachedSurface(&ddsd.ddsCaps,
&IpDDSBack);
if(ddrval '= DD_OK) ;
// Display an error message here.

You do not need to keep track of all surfaces in a triple buffered flipping chain. The
only surfaces you must keep pointers to are the primary surface and the back-buffer
surface. You need a pointer to the primary surface in order to flip the surfaces in the
flipping chain, and you need a pointer to the back buffer for blitting. For more
information, see Flipping Surfaces.

Triple buffering allows your application to continue blitting to the back buffer even
if a flip has not completed and the back buffer's blit has already finished. Performing
a flip is not a synchronous event; one flip can take longer than another. Therefore, if
your application uses only one back buffer, it may spend some time idling while
waiting for the IDirectDrawSurface4::Flip method to return with DD_OK.

in.doc — page 108

DirectDraw Applications and Window
Styles

[This is preliminary documentation and subject to change.]

If your application uses DirectDraw in windowed mode, you can create windows
with any window style. However, full-screen exclusive mode applications cannot be
created with the WS _EX TOOLWINDOW style without risk of unpredictable
behavior. The WS _EX TOOLWINDOW style prevents a window from being the
top most window, which is required for a DirectDraw full-screen, exclusive mode
application.

Full-screen exclusive mode applications should use the WS _EX TOPMOST
extended window style and the WS_VISIBLE window style to display properly.
These styles keep the application at the front of the window z-order and prevent GDI
from drawing on the primary surface.

The following example shows one way to safely prepare a window to be used in a
full-screen, exclusive mode application.

M TN
// Register the window class, display the window, and init
// all DirectX and graphic objects.
I TN
BOOL WINAPI InitApp(INT nWinMode)
{

WNDCLASSEX wcex;

wcex.cbSize = sizeof(WNDCLASSEX);

wcex.hlnstance = g_hinst;

wcex.lpszClassName = g_szWinName;

wcex.lpfnWndProc = WndProc;

wcex.style = CS_VREDRAW|CS_HREDRAW|CS_DBLCLKS;
wcex.hlcon = Loadlcon (NULL, IDI_APPLICATION);
wcex.hlconSm = Loadlcon (NULL, IDI_WINLOGO);
wcex.hCursor = LoadCursor (NULL, IDC_ARROW);
wcex.l[pszMenuName = MAKEINTRESOURCE(IDR_APPMENU);
wcex.cbClsExtra = 0;

wcex.coWndExtra = 0;

wcex.hbrBackground = GetStockObject (NULL_BRUSH);

RegisterClassEx(&wcex);

g_hwndMain = CreateWindowEx(
WS_EX_TOPMOST,
g_szWinName,
g_szWinCaption,
WS_VISIBLE|WS_POPUP,

in.doc — page 109

0,0,CX_SCREEN,CY_SCREEN,
NULL,

NULL,

g_hinst,

NULL);

if('g_hwndMain)
return(FALSE);

SetFocus(g_hwndMain);
ShowWindow(g_hwndMain, nWinMode);
UpdateWindow(g_hwndMain);

return TRUE;

Matching True RGB Colors to the
Frame Buffer's Color Space

[This is preliminary documentation and subject to change.]

Applications often need to find out how a true RGB color (RGB 888) will be mapped
into a frame buffer's color space when the display device is not in RGB 888 mode.
For example, imagine you're working on an application that will run in 16- and 24-
bit RGB display modes. You know that when the art was created, a color was
reserved for use as a transparent blitting color key; for the sake of argument, it is a
24-bit color such as RGB(128,64,255). Because your application will also run in a
16-bit RGB mode, you need a way to find out how this 24-bit color key maps into
the color space that the frame buffer uses when it's running in a 16-bit RGB mode.

Although DirectDraw does not perform color matching services for you, there are
ways to calculate how your color key will be mapped in the frame buffer. These
methods can be pretty complicated. For most purposes, you can use the GDI built-in
color matching services, combined with the DirectDraw direct frame buffer access,
to determine how a color value maps into a different color space. In fact, the
Ddutil.cpp source file included in the DirectX examples of the Platform SDK
includes a sample function called DDColorMatch that performs this task. The
DDColorMatch sample function performs the following main tasks:

1. Retrieves the color value of a pixel in a surface at 0,0.

2. Calls the Win32 SetPixel function, using a COLORREF structure that
describes your 24-bit RGB color.

3. Uses DirectDraw to lock the surface, getting a pointer to the frame buffer
memory.

4. Retrieves the actual color value from the frame buffer (set by GDI in Step 2) and
unlocks the surface

in.doc — page 110

5. Resets the pixel at 0,0 to its original color using SetPixel.

The process used by the DDColorMatch sample function is not fast; it isn't intended
to be. However, it provides a reliable way to determine how a color will be mapped
across different RGB color spaces. For more information, see the source code for
DDColorMatch in the Ddutil.cpp source file.

Note
Because the SetPixel GDI function only accepts a COLORRETF structure on
input, this technique only works for matching RGB 888 colors to the frame
buffer's pixel format. If your application needs to match colors of another pixel
format, you should translate them to RGB 888 before using this technique or
query the primary surface for its pixel format and match colors manually.

Displaying a Window in Full-Screen
Mode

[This is preliminary documentation and subject to change.]

In full-screen mode, DirectDraw has exclusive control over the display. As a result,
dialog boxes and other windows created through GDI are not normally visible.
However, by using special techniques you can incorporate a Windows dialog box,
HTML Help, or any other kind of window in your application.

The FSWindow Sample illustrates how a dialog box can be displayed and updated in
a full-screen application, and how mouse clicks and keystrokes work just as if the
dialog box were being displayed by GDI.

In FSWindow, the dialog box is created and "shown" as an ordinary dialog window:

hWndDlg = CreateDialog(g_hlInstance,
MAKEINTRESOURCE(IDD_DIALOG_SAMPLE),
hWnd, (DLGPROC) SampleDIgProc);

ShowWindow(hWndDlg, SW_SHOWNORMAL);

Of course, at this point the dialog box is shown only on the hidden GDI surface. It
does not appear on the primary surface, which is controlled by DirectDraw.

If the hardware capabilities include DDCAPS2 CANRENDERWINDOWED (see
DDCAPS), displaying and updating the dialog box is easy. The application simply
calls the IDirectDraw4::FlipToGDISurface method, which makes the GDI surface
the primary surface. From now on, all updates to the dialog box will be displayed
automatically, because GDI is now rendering directly to the front buffer. The
application continues rendering to the back buffer, and on each pass through the
rendering loop the contents of the back buffer are blitted to the front buffer by
DirectDraw. The dialog box is not overwritten because the front buffer is clipped to
the application window, and the dialog box is obscuring part of that window.

in.doc — page 111

The following code, from the FSWindow _Init function, creates the clipper,
associates it with the application window, and brings the GDI surface to the front:

if (ddObject->CreateClipper(0, &ddClipper, NULL) == DD_OK)
ddClipper->SetHWnd(0, hwndAppWindow);
ddObject->FlipToGDISurface();

Then, in the FSWindow_Update function, the following code blits the rendered
contents of the back buffer to the clipping region:

ddFrontBuffer->SetClipper(ddClipper);
ddFrontBuffer->BIt(NULL, ddBackBuffer, NULL, DDBLT_WAIT, NULL);

Note that because the GDI surface is the primary surface, Windows continues
displaying the mouse cursor. (This would not be the case, however, if the application
were using DirectInput with the mouse device at the exclusive cooperative level.)

For hardware that does not have the DDCAPS2 CANRENDERWINDOWED
capability, the process of displaying and updating a window in full-screen mode is
somewhat more complicated. In this case, the application is responsible for obtaining
the image of the window created by GDI and blitting it to the back buffer after the
full-screen rendering has been done. The entire back buffer is then flipped to the
front in the usual way.

The FSWindow sample provides two different methods for accessing the display
memory of the window, depending on whether the content is static or dynamic. The
method for static content is faster because it involves blitting from a memory device
context rather than a screen device context. This method should be used for windows
that do not change, such as informational dialog boxes. (Remember, though, that
unless you manually update the bitmap in response to events, even basic animations
such as a button press will not be visible to the user.)

If the content is static, FSWindow calls the CreateBMPFromWindow function when
the window is initialized. This function creates a bitmap and blits the contents of the
window into it. The bitmap handle is stored in the global variable
hwndFSWindowBMP. Whenever the primary surface is about to be updated, this
bitmap is blitted to the back buffer, as follows:

if (FSWindow_IsStatic)

{
hdcMemory = CreateCompatibleDC(NULL);
SelectObject(hdcMemory, hwndFSWindowBMP);
BitBlt(hdcBackBuffer, x, y, cx, cy, hdcMemory, 0, 0, SRCCOPY);
DeleteDC(hdcMemory);

}

If, on the other hand, the content of the window is dynamic, the following code is
executed. It blits the image directly from the GDI surface (represented by the
hdcScreen device context) to the back buffer.

in.doc — page 112

BitBlt(hdcBackBuffer, x, y, cx, cy, hdcScreen, x, y, SRCCOPY);

The coordinates represent the position and dimensions of the window on the GDI
surface, as retrieved through a call to GetWindowRect.

When the FSWindow application is running on hardware that does not have the
DDCAPS2 CANRENDERWINDOWED capability, it does not use the GDI surface,
so Windows cannot display the mouse cursor. The application takes over this task by
obtaining information about the cursor and displaying it on the back buffer just
before the flip.

DirectDraw Tutorials

[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each providing step-by-step instructions
for implementing the basics of DirectDraw in a C/C++ or Visual Basic application.
The tutorials are written parallel to a set of sample files that are provided with this
SDK in the \Samples\Multimedia\DDraw\Tutorials directory, following their code
path and providing explanations along the way. Readers are encouraged to follow
along in the sample code as they move through these tutorials.

® DirectDraw C/C++ Tutorials

® DirectDraw Visual Basic Tutorials

DirectDraw C/C++ Tutorials

[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each of which provides step-by-step
instructions for implementing a simple DirectDraw application. These tutorials use
many of the DirectDraw sample files that are provided with this SDK. These samples
demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to
perform common tasks:

® Tutorial 1: The Basics of DirectDraw

® Tutorial 2: Loading Bitmaps on the Back Buffer

® Tutorial 3: Blitting from an Off-Screen Surface

® Tutorial 4: Color Keys and Bitmap Animation

® Tutorial 5: Dynamically Modifying Palettes

® Tutorial 6: Using Overlay Surfaces

in.doc — page 113

Some samples in these tutorials use older versions IDirectDraw and
IDirectDrawSurface interfaces. If you want to update these examples so they use
the DirectX 5.0 interfaces query for the new versions of the interfaces before using
them. In addition, you must change the appropriate parameters of any methods that
have been updated for new versions of the interfaces.

Note
The sample files in these tutorials are written in C++. If you are using a C
compiler, you must make the appropriate changes to the files for them to
successfully compile. At the very least, you need to add the vtable and this
pointers to the interface methods.

Tutorial 1: The Basics of DirectDraw

[This is preliminary documentation and subject to change.]

To use DirectDraw, you first create an instance of the DirectDraw object, which
represents the display adapter on the computer. You then use the interface methods
to manipulate the object. In addition, you need to create one or more instances of a
DirectDrawSurface object to be able to display your application on a graphics
surface.

To demonstrate this, the DDEx1 sample included with this SDK performs the
following steps:

® Step 1: Creating a DirectDraw Object

® Step 2: Determining the Application's Behavior

® Step 3: Changing the Display Mode

® Step 4: Creating Flipping Surfaces

® Step 5: Rendering to the Surfaces

® Step 6: Writing to the Surface

® Step 7: Flipping the Surfaces

® Step 8: Deallocating the DirectDraw Objects

Note
To use GUIDs successfully in your applications, you must either define
INITGUID prior to all other include and define statements, or you must link to
the Dxguid.lib library. You should define INITGUID in only one of your source
modules.

Step 1: Creating a DirectDraw Object

[This is preliminary documentation and subject to change.]

To create an instance of a DirectDraw object, your application should use the
DirectDrawCreate function as shown in the dolnit sample function of the DDEx1

in.doc — page 114

program. DirectDrawCreate contains three parameters. The first parameter takes a
globally unique identifier (GUID) that represents the display device. The GUID, in
most cases, is set to NULL, which means DirectDraw uses the default display driver
for the system. The second parameter contains the address of a pointer that identifies
the location of the DirectDraw object if it is created. The third parameter is always
set to NULL and is included for future expansion.

The following example shows how to create the DirectDraw object and how to
determine if the creation was successful or not:

ddrval = DirectDrawCreate(NULL, &pDD, NULL);
if(ddrval == DD_OK)
{
// IpDD is a valid DirectDraw object.
}
else
{
// The DirectDraw object could not be created.

}

Step 2: Determining the Application's Behavior
[This is preliminary documentation and subject to change.]

Before you can change the resolution of the display, you must at a minimum specify
the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags in the dwFlags
parameter of the IDirectDraw::SetCooperativeLevel method. This gives your
application complete control over the display device, and no other application will
be able to share it. In addition, the DDSCL FULLSCREEN flag sets the application
in exclusive (full-screen) mode. Your application covers the entire desktop, and only
your application can write to the screen. The desktop is still available, however. (To
see the desktop in an application running in exclusive mode, start DDEx1 and press
ALT+ TAB))

The following example demonstrates the use of the SetCooperativeLevel method:

HRESULT ddrval;
LPDIRECTDRAW IpDD; // Already created by DirectDrawCreate

ddrval = IpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE |
DDSCL_FULLSCREEN);
if(ddrval == DD_OK)
{
// Exclusive mode was successful.
}
else
{
// Exclusive mode was not successful.
// The application can still run, however.

in.doc — page 115

}

If SetCooperativeLevel does not return DD_OK, you can still run your application.
The application will not be in exclusive mode, however, and it might not be capable
of the performance your application requires. In this case, you might want to display
a message that allows the user to decide whether or not to continue.

If you are setting the full-screen, exclusive cooperative level, you must pass your
application's window handle to SetCooperativeLevel to allow Windows to
determine if your application terminates abnormally. For example, if a general
protection (GP) fault occurs and GDI is flipped to the back buffer, the user will not
be able to return to the Windows screen. To prevent this from occurring, DirectDraw
provides a process running in the background that traps messages that are sent to that
window. DirectDraw uses these messages to determine when the application
terminates. This feature imposes some restrictions, however. You have to specify the
window handle that is retrieving messages for your application—that is, if you create
another window, you must ensure that you specify the window that is active.
Otherwise, you might experience problems, including unpredictable behavior from
GDI, or no response when you press ALT + TAB.

Step 3: Changing the Display Mode
[This is preliminary documentation and subject to change.]

After you have set the application's behavior, you can use the
IDirectDraw::SetDisplayMode method to change the resolution of the display. The
following example shows how to set the display mode to 640x480X8 bpp:

HRESULT ddrval;
LPDIRECTDRAW IpDD; // Already created

ddrval = IpDD->SetDisplayMode(640, 480, 8);
if(ddrval == DD_OK)
{

// The display mode changed successfully.
}
else
{

// The display mode cannot be changed.

// The mode is either not supported or

// another application has exclusive mode.

}

When you set the display mode, you should ensure that if the user's hardware cannot
support higher resolutions, your application reverts to a standard mode that is
supported by a majority of display adapters. For example, your application could be
designed to run on all systems that support 6404808 as a standard backup
resolution.

in.doc — page 116

Note
IDirectDraw::SetDisplayMode returns a DDERR INVALIDMODE error
value if the display adapter could not be set to the desired resolution. Therefore,
you should use the IDirectDraw::EnumDisplayModes method to determine the
capabilities of the user's display adapter before trying to set the display mode.

Step 4: Creating Flipping Surfaces
[This is preliminary documentation and subject to change.]

After you have set the display mode, you must create the surfaces on which to place
your application. Because the DDEx1 example is using the
IDirectDraw::SetCooperativeLevel method to set the mode to exclusive (full-
screen) mode, you can create surfaces that flip between the surfaces. If you were
using SetCooperativeLevel to set the mode to DDSCL NORMAL, you could create
only surfaces that blit between the surfaces. Creating flipping surfaces requires the
following steps, also discussed in this topic:

® Defining the surface requirements

® (Creating the surfaces

Defining the Surface Requirements
[This is preliminary documentation and subject to change.]

The first step in creating flipping surfaces is to define the surface requirements in a
DDSURFACEDESC structure. The following example shows the structure
definitions and flags needed to create a flipping surface.

// Create the primary surface with one back buffer.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
DDSCAPS _FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 1;

In this example, the dwSize member is set to the size of the DDSURFACEDESC
structure. This is to prevent any DirectDraw method call you use from returning with
an invalid member error. (The dwSize member was provided for future expansion of
the DDSURFACEDESC structure.)

The dwFlags member determines which members in the DDSURFACEDESC
structure will be filled with valid information. For the DDEx1 example, dwFlags is
set to specify that you want to use the DDSCAPS structure (DDSD_CAPS) and that
you want to create a back buffer (DDSD_BACKBUFFERCOUNT).

The dwCaps member in the example indicates the flags that will be used in the
DDSCAPS structure. In this case, it specifies a primary surface

in.doc — page 117

(DDSCAPS_PRIMARYSURFACE), a flipping surface (DDSCAPS_FLIP), and a
complex surface (DDSCAPS_COMPLEX).

Finally, the example specifies one back buffer. The back buffer is where the
backgrounds and sprites will actually be written. The back buffer is then flipped to
the primary surface. In the DDEx1 example, the number of back buffers is set to 1.
You can, however, create as many back buffers as the amount of display memory
allows. For more information on creating more than one back buffer, see Triple
Buffering.

Surface memory can be either display memory or system memory. DirectDraw uses
system memory if the application runs out of display memory (for example, if you
specify more than one back buffer on a display adapter with only 1 MB of RAM).
You can also specify whether to use only system memory or only display memory by
setting the dwCaps member in the DDSCAPS structure to

DDSCAPS SYSTEMMEMORY or DDSCAPS VIDEOMEMORY. (If you specify
DDSCAPS VIDEOMEMORY, but not enough memory is available to create the
surface, IDirectDraw::CreateSurface returns with a
DDERR_OUTOFVIDEOMEMORY error.)

Creating the Surfaces
[This is preliminary documentation and subject to change.]

After the DDSURFACEDESC structure is filled, you can use it and /[pDD, the
pointer to the DirectDraw object that was created by the DirectDrawCreate
function, to call the IDirectDraw::CreateSurface method, as shown in the
following example:

ddrval = IpDD->CreateSurface(&ddsd, & pDDSPrimary, NULL);
if(ddrval == DD_OK)
{
// lpDDSPrimary points to the new surface.
}
else
{
/l The surface was not created.
return FALSE;
}

The IpDDSPrimary parameter will point to the primary surface returned by
CreateSurface if the call succeeds.

After the pointer to the primary surface is available, you can use the
IDirectDrawSurface3::GetAttachedSurface method to retrieve a pointer to the
back buffer, as shown in the following example:

ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
ddrval = IpDDSPrimary->GetAttachedSurface(&ddcaps, &lpDDSBack);
if(ddrval == DD_OK)

in.doc — page 118

{
/I IpDDSBack points to the back buffer.
}
else
{
return FALSE;
}

By supplying the address of the surface's primary surface and by setting the
capabilities value with the DDSCAPS BACKBUFFER flag, the [pDDSBack
parameter will point to the back buffer if the
IDirectDrawSurface3::GetAttachedSurface call succeeds.

Step 5: Rendering to the Surfaces
[This is preliminary documentation and subject to change.]

After the primary surface and a back buffer have been created, the DDEx1 example
renders some text on the primary surface and back buffer surface by using standard
Windows GDI functions, as shown in the following example:

if (IpDDSPrimary->GetDC(&hdc) == DD_OK)
{
SetBkColor(hdc, RGB(0, 0, 255));
SetTextColor(hdc, RGB(255, 255, 0));
TextOut(hdc, 0, 0, szFrontMsg, Istrlen(szFrontMsg));
IpDDSPrimary->ReleaseDC(hdc);
}

if (IpDDSBack->GetDC(&hdc) == DD_OK)

SetBkColor(hdc, RGB(0, 0, 255));
SetTextColor(hdc, RGB(255, 255, 0));
TextOut(hdc, 0, 0, szBackMsg, Istrlen(szBackMsq));
IpDDSBack->ReleaseDC(hdc);

}

The example uses the IDirectDrawSurface3::GetDC method to retrieve the handle
of the device context, and it internally locks the surface. If you are not going to use
Windows functions that require a handle of a device context, you could use the
IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock methods to lock
and unlock the back buffer.

Locking the surface memory (whether the whole surface or part of a surface) ensures
that your application and the system blitter cannot obtain access to the surface
memory at the same time. This prevents errors from occurring while your application
is writing to surface memory. In addition, your application cannot page flip until the
surface memory is unlocked.

in.doc — page 119

After the surface is locked, the example uses standard Windows GDI functions:
SetBkColor to set the background color, SetTextColor to select the color of the text
to be placed on the background, and TextO