
DirectDraw
[This is preliminary documentation and subject to change.]

This section provides information about the DirectDraw® component of the
DirectX® application programming interface (API). Information is divided into the
following groups:

· About DirectDraw
· Why Use DirectDraw?
· Getting Started: Basic Graphics Concepts
· DirectDraw Architecture
· DirectDraw Essentials
· DirectDraw Tutorials
· DirectDraw Reference
· DirectDraw Samples

About DirectDraw
[This is preliminary documentation and subject to change.]

DirectDraw® is the component of the DirectX® application programming interface
(API) that allows you to directly manipulate display memory, the hardware blitter,
hardware overlay support, and flipping surface support. DirectDraw provides this
functionality while maintaining compatibility with existing Microsoft® Windows®-
based applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices
while maintaining compatibility with the Windows graphics device interface (GDI).
It is not a high-level application programming interface (API) for graphics.
DirectDraw provides a device-independent way for games and Windows subsystem
software, such as three-dimensional (3-D) graphics packages and digital video
codecs, to gain access to the features of specific display devices.

DirectDraw works with a wide variety of display hardware, ranging from simple
SVGA monitors to advanced hardware implementations that provide clipping,
stretching, and non-RGB color format support. The interface is designed so that your
applications can enumerate the capabilities of the underlying hardware and then use
any supported hardware-accelerated features. Features that are not implemented in
hardware are emulated by DirectX.

DirectDraw provides device-dependent access to display memory in a device-
independent way. Essentially, DirectDraw manages display memory. Your
application need only recognize some basic device dependencies that are standard

in.doc – page 2

across hardware implementations, such as RGB and YUV color formats and the
pitch between raster lines. You need not call specific procedures to use the blitter or
manipulate palette registers. Using DirectDraw, you can manipulate display memory
with ease, taking full advantage of the blitting and color decompression capabilities
of different types of display hardware without becoming dependent on a particular
piece of hardware.

DirectDraw provides world-class game graphics on computers running Windows 95
and later and Windows NT® version 4.0 or Windows 2000.

Why Use DirectDraw?
[This is preliminary documentation and subject to change.]

The DirectDraw component brings many powerful features to you, the Windows
graphics programmer:

· The hardware abstraction layer (HAL) of DirectDraw provides a consistent
interface through which to work directly with the display hardware, getting
maximum performance.

· DirectDraw assesses the video hardware's capabilities, making use of special
hardware features whenever possible. For example, if your video card supports
hardware blitting, DirectDraw delegates blits to the video card, greatly
increasing performance. Additionally, DirectDraw provides a hardware
emulation layer (HEL) to support features when the hardware does not.

· DirectDraw exists under Windows, gaining the advantage of 32-bit memory
addressing and a flat memory model that the operating system provides.
DirectDraw presents video and system memory as large blocks of storage, not as
small segments. If you've ever used segment:offset addressing, you will quickly
begin to appreciate this "flat" memory model.

· DirectDraw makes it easy for you to implement page flipping with multiple
back buffers in full-screen applications. For more information, see Page Flipping
and Back Buffering.

· Support for clipping in windowed or full-screen applications.
· Support for 3-D z-buffers.
· Support for hardware-assisted overlays with z-ordering.
· Access to image-stretching hardware.
· Simultaneous access to standard and enhanced display-device memory areas.
· Other features include custom and dynamic palettes, exclusive hardware access,

and resolution switching.

These features combine to make it possible for you to write applications that easily
outperform standard Windows GDI-based applications and even MS-DOS
applications.

in.doc – page 3

Getting Started: Basic
Graphics Concepts

[This is preliminary documentation and subject to change.]

This section provides an overview of graphics programming with DirectDraw. Each
concept discussed here begins with a non-technical overview, followed by some
specific information about how DirectDraw supports it.

You don't need to be a graphics guru to benefit from this overview—in fact, if you
are one you might want to skip this section entirely and move on to the more
detailed information in the DirectDraw Essentials section. If you're familiar with
Windows programming in C and C++, you won't have difficulty digesting this
information. When you finish reading these topics, you will have a solid
understanding of basic DirectDraw graphics programming concepts.

The following topics are discussed:

· Device-Independent Bitmaps
· Drawing Surfaces
· Blitting
· Page Flipping and Back Buffering
· Introduction to Rectangles

Device-Independent Bitmaps
[This is preliminary documentation and subject to change.]

Windows, and therefore DirectX, uses the device-independent bitmap (DIB) as its
native graphics file format. Essentially, a DIB is a file that contains information
describing an image's dimensions, the number of colors it uses, values describing
those colors, and data that describes each pixel. Additionally, a DIB contains some
lesser-used parameters, like information about file compression, significant colors (if
all are not used), and physical dimensions of the image (in case it will end up in
print). DIB files usually have the .bmp file extension, although they might
occasionally have a .dib extension.

[C++]
Because the DIB is so pervasive in Windows programming, the Platform SDK
already contains many functions that you can use with DirectX. For example, the
following application-defined function, taken from the Ddutil.cpp file that comes
with the DirectX APIs in the Platform SDK, combines Win32® and DirectX
functions to load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(IDirectDraw *pdd,
 LPCSTR szBitmap, int dx, int dy)
{

in.doc – page 4

 HBITMAP hbm;
 BITMAP bm;
 DDSURFACEDESC ddsd;
 IDirectDrawSurface *pdds;

 //
 // This is the Win32 part.
 // Try to load the bitmap as a resource.
 // If that fails, try it as a file.
 //
 hbm = (HBITMAP)LoadImage(
 GetModuleHandle(NULL), szBitmap,
 IMAGE_BITMAP, dx, dy, LR_CREATEDIBSECTION);

 if (hbm == NULL)
 hbm = (HBITMAP)LoadImage(
 NULL, szBitmap, IMAGE_BITMAP, dx, dy,
 LR_LOADFROMFILE|LR_CREATEDIBSECTION);

 if (hbm == NULL)
 return NULL;

 //
 // Get the size of the bitmap.
 //
 GetObject(hbm, sizeof(bm), &bm);

 //
 // Now, return to DirectX function calls.
 // Create a DirectDrawSurface for this bitmap.
 //
 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH;
 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
 ddsd.dwWidth = bm.bmWidth;
 ddsd.dwHeight = bm.bmHeight;

 if (pdd->CreateSurface(&ddsd, &pdds, NULL) != DD_OK)
 return NULL;

 DDCopyBitmap(pdds, hbm, 0, 0, 0, 0);

 DeleteObject(hbm);

 return pdds;

in.doc – page 5

}

For more detailed information about DIB files, see the Platform SDK.

[C++,Visual Basic]

Drawing Surfaces
[This is preliminary documentation and subject to change.]

Drawing surfaces receive video data to eventually be displayed on the screen as
images (bitmaps, to be exact). In most Windows programs, you get access to the
drawing surface using a Win32 function such as GetDC, which stands for get the
device context (DC). After you have the device context, you can start painting the
screen. However, Win32 graphics functions are provided by an entirely different part
of the system, the graphics device interface (GDI). The GDI is a system component
that provides an abstraction layer that enables standard Windows applications to
draw to the screen.

The drawback of GDI is that it wasn't designed for high-performance multimedia
software, it was made to be used by business applications like word processors and
spreadsheet applications. GDI provides access to a video buffer in system memory,
not video memory, and doesn't take advantage of special features that some video
cards provide. In short, GDI is great for most business applications, but its
performance is too slow for multimedia or game software.

On the other hand, DirectDraw can give you drawing surfaces that represent actual
video memory. This means that when you use DirectDraw, you can write directly to
the memory on the video card, making your graphics routines extremely fast. These
surfaces are represented as contiguous blocks of memory, making it easy to perform
addressing within them.

For more detailed information, see Surfaces.

Blitting
[This is preliminary documentation and subject to change.]

The term blit is shorthand for "bit block transfer," which is the process of
transferring blocks of data from one place in memory to another. Graphics
programmers use blitting to transfer graphics from one place in memory to another.
Blits are often used to perform sprite animation, which is discussed later.

For more information on blitting in DirectDraw, see Blitting to Surfaces.

in.doc – page 6

Page Flipping and Back Buffering
[This is preliminary documentation and subject to change.]

Page flipping is key in multimedia, animation, and game software. Software page
flipping is analogous to the way animation can be done with a pad of paper. On each
page the artist changes the figure slightly, so that when you flip between sheets
rapidly the drawing appears animated.

Page flipping in software is very similar to this process. Initially, you set up a series
of DirectDraw surfaces that are designed to "flip" to the screen the way artist's paper
flips to the next page. The first surface is referred to as the primary surface, and the
surfaces behind it are called back buffers . Your application writes to a back buffer,
then flips the primary surface so that the back buffer appears on screen. While the
system is displaying the image, your software is again writing to a back buffer. The
process continues as long as you're animating, allowing you to animate images
quickly and efficiently.

DirectDraw makes it easy for you to set up page flipping schemes, from a relatively
simple double-buffered scheme (a primary surface with one back buffer) to more
sophisticated schemes that add additional back buffers. For more information see
DirectDraw Tutorials and Flipping Surfaces.

Introduction to Rectangles
[This is preliminary documentation and subject to change.]

Throughout DirectDraw and Windows programming, objects on the screen are
referred to in terms of bounding rectangles. The sides of a bounding rectangle are
always parallel to the sides of the screen, so the rectangle can be described by two
points, the top-left corner and bottom-right corner. Most applications use the RECT
structure to carry information about a bounding rectangle to use when blitting to the
screen or performing hit detection.

[C++]
In C++, the RECT structure has the following definition:

typedef struct tagRECT {
 LONG left; // This is the top-left corner's x-coordinate.
 LONG top; // The top-left corner's y-coordinate.
 LONG right; // The bottom-right corner's x-coordinate.
 LONG bottom; // The bottom-right corner's y-coordinate.
} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT;

[Visual Basic]
In Visual Basic, the RECT type has the following definition:

in.doc – page 7

Type RECT
 Left As Long // This is the top-left corner's x-coordinate.
 Top As Long // The top-left corner's y-coordinate.
 Right As Long // The bottom-right corner's x-coordinate.
 Bottom As Long // The bottom-right corner's y-coordinate.
End Type

In the preceding example, the left and top members are the x- and y-coordinates of a
bounding rectangle's top-left corner. Similarly, the right and bottom members make
up the coordinates of the bottom-right corner. The following diagram illustrates how
you can visualize these values.

Bounding Rectangle
(RECT)

Display Screen

(left, top)

(right, bottom)

In the interest of efficiency, consistency, and ease of use, all DirectDraw blitting
functions work with rectangles. However, you can create the illusion of
nonrectangular blit operations by using transparent blitting. For more information,
see Transparent Blitting.

DirectDraw Architecture
[This is preliminary documentation and subject to change.]

This section contains general information about the relationship between the
DirectDraw component and the rest of DirectX, the operating system, and the system
hardware. The following topics are discussed:

· Architectural Overview for DirectDraw
· DirectDraw Object Types

in.doc – page 8

· Hardware Abstraction Layer (HAL)
· Software Emulation
· System Integration

Architectural Overview for
DirectDraw

[This is preliminary documentation and subject to change.]

Multimedia software requires high-performance graphics. Through DirectDraw,
Microsoft enables a much higher level of efficiency and speed in graphics-intensive
applications for Windows than is possible with GDI, while maintaining device
independence. DirectDraw provides tools to perform such key tasks as:

· Manipulating multiple display surfaces
· Accessing the video memory directly
· Page flipping
· Back buffering
· Managing the palette
· Clipping

Additionally, DirectDraw enables you to query the display hardware's capabilities at
run time, then provide the best performance possible given the host computer's
hardware capabilities.

As with other DirectX components, DirectDraw uses the hardware to its greatest
possible advantage, and provides software emulation for most features when
hardware support is unavailable. Device independence is possible through use of the
hardware abstraction layer, or HAL. For more information about the HAL, see the
hardware abstraction layer .

The DirectDraw component provides services through COM-based interfaces. In the
most recent iteration, these interfaces are IDirectDraw4, IDirectDrawSurface4,
IDirectDrawPalette, IDirectDrawClipper, and IDirectDrawVideoPort. Note that,
in addition to these interfaces, DirectDraw continues to support all previous versions.
The DirectDraw component doesn't expose an IDirectDraw3 interface, the interface
versions skipped from IDirectDraw2 to IDirectDraw4.

For more information about COM concepts that you should understand to create
applications with the DirectX APIs in the Platform SDK, see DirectX and the
Component Object Model.

The DirectDraw object represents the display adapter and exposes its methods
through the IDirectDraw, IDirectDraw2, and IDirectDraw4 interfaces. In most
cases you will use the DirectDrawCreate function to create a DirectDraw object,
but you can also create one with the CoCreateInstance COM function. For more
information, see Creating DirectDraw Objects by Using CoCreateInstance.

in.doc – page 9

After creating a DirectDraw object, you can create surfaces for it by calling the
IDirectDraw4::CreateSurface method. Surfaces represent the memory on the
display hardware, but can exist on either video memory or system memory.
DirectDraw extends support for palettes, clipping (useful for windowed
applications), and video ports through its other interfaces.

DirectDraw Object Types
[This is preliminary documentation and subject to change.]

You can think of DirectDraw as being composed of several objects that work
together. This section briefly describes the objects you use when working with the
DirectDraw component, organized by object type. For detailed information, see
DirectDraw Essentials.

The DirectDraw component uses the following objects:

DirectDraw object
The DirectDraw object is the heart of all DirectDraw applications. It's the first
object you create, and you use it to make all other related objects. You create a
DirectDraw object by calling the DirectDrawCreate function. DirectDraw
objects expose their functionality through the IDirectDraw, IDirectDraw2, and
IDirectDraw4 interfaces. For more information, see The DirectDraw Object.

DirectDrawSurface object
The DirectDrawSurface object (casually referred to as a "surface") represents an
area in memory that holds data to be displayed on the monitor as images or
moved to other surfaces. You usually create a surface by calling the
IDirectDraw4::CreateSurface method of the DirectDraw object with which it
will be associated. DirectDrawSurface objects expose their functionality through
the IDirectDrawSurface, IDirectDrawSurface2, IDirectDrawSurface3, and
IDirectDrawSurface4 interfaces. For more information, see Surfaces.

DirectDrawPalette object
The DirectDrawPalette object (casually referred to as a "palette") represents a
16- or 256-color indexed palette to be used with a surface. It contains a series of
indexed RGB triplets that describe colors associated with values within a
surface. You do not use palettes with surfaces that use a pixel format depth
greater than 8 bits. You can create a DirectDrawPalette object by calling the
IDirectDraw4::CreatePalette method. DirectDrawPalette objects expose their
functionality through the IDirectDrawPalette interface. For more information,
see Palettes.

DirectDrawClipper object
The DirectDrawClipper object (casually referred to as a "clipper") helps you
prevent blitting to certain portions of a surface or beyond the bounds of a
surface. You can create a clipper by calling the IDirectDraw4::CreateClipper
method. DirectDrawClipper objects expose their functionality through the
IDirectDrawClipper interface. For more information, see Clippers.

DirectDrawVideoPort object

in.doc – page 10

The DirectDrawVideoPort object represents video-port hardware present in
some systems. This hardware allows direct access to the frame buffer without
accessing the CPU or using the PCI bus. You can create a DirectDrawVideoPort
object by calling a QueryInterface method for the DirectDraw object,
specifying the IID_IDDVideoPortContainer reference identifier.
DirectDrawVideoPort objects expose their functionality through the
IDDVideoPortContainer and IDirectDrawVideoPort interfaces. For more
information, see Video Ports.

Hardware Abstraction Layer (HAL)
[This is preliminary documentation and subject to change.]

DirectDraw provides device independence through the hardware abstraction layer
(HAL). The HAL is a device-specific interface, provided by the device
manufacturer, that DirectDraw uses to work directly with the display hardware.
Applications never interact with the HAL. Rather, with the infrastructure that the
HAL provides, DirectDraw exposes a consistent set of interfaces and methods that an
application uses to display graphics. The device manufacturer implements the HAL
in a combination of 16-bit and 32-bit code under Windows. Under
Windows NT/Windows 2000, the HAL is always implemented in 32-bit code. The
HAL can be part of the display driver or a separate DLL that communicates with the
display driver through a private interface that driver's creator defines.

The DirectDraw HAL is implemented by the chip manufacturer, board producer, or
original equipment manufacturer (OEM). The HAL implements only device-
dependent code and performs no emulation. If a function is not performed by the
hardware, the HAL does not report it as a hardware capability. Additionally, the
HAL does not validate parameters; DirectDraw does this before the HAL is invoked.

Software Emulation
[This is preliminary documentation and subject to change.]

When the hardware does not support a feature through the hardware abstraction layer
(HAL), DirectDraw attempts to emulate it. This emulated functionality is provided
through the hardware emulation layer (HEL). The HEL presents its capabilities to
DirectDraw just as the HAL would. And, as with the HAL, applications never work
directly with the HEL. The result is transparent support for almost all major features,
regardless of whether a given feature is supported by hardware or through the HEL.

Obviously, software emulation cannot equal the performance that hardware features
provide. You can query for the features the hardware supports by using the
IDirectDraw4::GetCaps method. By examining these capabilities during
application initialization, you can adjust application parameters to provide optimum
performance over varying levels of hardware performance.

in.doc – page 11

In some cases, certain combinations of hardware supported features and emulation
can result in slower performance than emulation alone. For example, if the display
device driver supports DirectDraw but not stretch blitting, noticeable performance
losses will occur when stretch blitting from video memory surfaces. This happens
because video memory is often slower than system memory, forcing the CPU to wait
when accessing video memory surfaces. If your application uses a feature that isn't
supported by the hardware, it is sometimes best to create surfaces in system memory,
thereby avoiding performance losses created when the CPU accesses video memory.

For more information, see Hardware Abstraction Layer (HAL).

System Integration
[This is preliminary documentation and subject to change.]

The following diagram shows the relationships between DirectDraw, the graphics
device interface (GDI), the hardware abstraction layer (HAL), the hardware
emulation layer (HEL) and the hardware.

Win32 Application

Graphics Device Interface
(GDI) DirectDraw

Display Device Interface
(DDI)

Hardware Abstraction
Layer (HAL)

Hardware
(Video Card)

 Hardware
Emulation

Layer (HEL)

As the preceding diagram shows, a DirectDraw object exists alongside GDI, and
both have direct access to the hardware through a device-dependent abstraction
layer. Unlike GDI, DirectDraw makes use of special hardware features whenever
possible. If the hardware does not support a feature, DirectDraw attempts to emulate
it by using the HEL. DirectDraw can provide surface memory in the form of a device
context, making it possible for you to use GDI functions to work with surface
objects.

in.doc – page 12

DirectDraw Essentials
[This is preliminary documentation and subject to change.]

This section contains general information about the DirectDraw® component of
DirectX®. Information is organized into the following groups:

· Cooperative Levels
· Display Modes
· The DirectDraw Object
· Surfaces
· Palettes
· Clippers
· Multiple Monitor Systems
· Advanced DirectDraw Topics

Cooperative Levels
[This is preliminary documentation and subject to change.]

In the following topics, this section introduces the concept of cooperative levels and
describes some common usage situations:

· About Cooperative Levels
· Testing Cooperative Levels

About Cooperative Levels
[This is preliminary documentation and subject to change.]

Cooperative levels describe how DirectDraw interacts with the display and how it
reacts to events that might affect the display. Use the
IDirectDraw4::SetCooperativeLevel method to set cooperative level of
DirectDraw. For the most part, you use DirectDraw cooperative levels to determine
whether your application runs as a full-screen program with exclusive access to the
display or as a windowed application. However, DirectDraw cooperative levels can
also have the following effects:

· Enable DirectDraw to use Mode X resolutions. For more information, see Mode
X and Mode 13 Display Modes.

· Prevent DirectDraw from releasing exclusive control of the display or rebooting
if the user presses CTRL + ALT + DEL (exclusive mode only).

· Enable DirectDraw to minimize or maximize the application in response to
activation events.

in.doc – page 13

The normal cooperative level indicates that your DirectDraw application will operate
as a windowed application. At this cooperative level you won't be able to change the
primary surface's palette or perform page flipping.

Because applications can use DirectDraw with multiple windows,
IDirectDraw4::SetCooperativeLevel does not require a window handle to be
specified if the application is requesting the DDSCL_NORMAL mode. By passing a
NULL to the window handle, all of the windows can be used simultaneously in
normal Windows mode.

At the full-screen and exclusive cooperative level, you can use the hardware to its
fullest. In this mode, you can set custom and dynamic palettes, change display
resolutions, and implement page flipping. The exclusive (full-screen) mode does not
prevent other applications from allocating surfaces, nor does it exclude them from
using DirectDraw or GDI. However, it does prevent applications other than the one
currently with exclusive access from changing the display mode or palette.

DirectDraw takes control of window activation events for full-screen, exclusive
mode applications, sending WM_ACTIVATEAPP messages to the window handle
registered through the SetCooperativeLevel method as needed. DirectDraw only
sends activation events to the top-level window. If your application creates child
windows that require activation event messages, it is your responsibility to subclass
the child windows.

SetCooperativeLevel maintains a binding between a process and a window handle.
If SetCooperativeLevel is called once in a process, a binding is established between
the process and the window. If it is called again in the same process with a different
non-null window handle, it returns the DDERR_HWNDALREADYSET error value.
Some applications may receive this error value when DirectSound® specifies a
different window handle than DirectDraw—they should specify the same, top-level
application window handle.

Note
Developers using Microsoft Foundation Classes (MFC) should keep in mind that
the window handle given to the SetCooperativeLevel method should identify
the application's top-level window, not a derived child window. To retrieve your
MFC application's top level window handle, you could use the following code:

 HWND hwndTop = AfxGetMainWnd()->GetSafeHwnd();

See also, Multiple Monitor Systems.

Testing Cooperative Levels
[This is preliminary documentation and subject to change.]

Developers often use messages such as WM_ACTIVATEAPP and
WM_DISPLAYCHANGE as notifications that their applications should restore or re-
create the surfaces being used. In some cases, applications take action when they
don't need to, or don't take action when they should. The

in.doc – page 14

IDirectDraw4::TestCooperativeLevel method makes it possible for your
application to retrieve more information about the DirectDraw object's cooperative
level and take appropriate steps to continue execution without mishap.

The TestCooperativeLevel method succeeds, returning DD_OK, if your application
can restore its surfaces (if it has not already done so) and continue to execute. Failure
codes, on the other hand, are interpreted differently depending on the cooperative-
level your application uses:

Full-screen applications

Full-screen applications receive the DDERR_NOEXCLUSIVEMODE return value if
they lose exclusive device access–for example, if the user pressed ALT+TAB to
switch away from the current application. In this case, applications might call
TestCooperativeLevel in a loop, exiting only when the method returns DD_OK
(meaning that exclusive mode was returned). In the body of the loop, the application
should relinquish control of the CPU to prevent using cycles unnecessarily. Windows
supports functions such as the WaitMessage or Sleep Win32 functions for this
purpose.

Any existing surfaces should be restored by calling the
IDirectDrawSurface4::Restore or IDirectDraw4::RestoreAllSurfaces methods,
and their contents reloaded before displaying them.

Windowed applications

Windowed applications (those that use the normal cooperative level) receive
DDERR_EXCLUSIVEMODEALREADYSET if another application has taken
exclusive device access. In this case, no action should be taken until the application
with exclusive access loses it. This situation is similar to the case for a full-screen
application; a windowed application might loop until TestCooperativeLevel returns
DD_OK before restoring and reloading its surfaces. As mentioned previously, in a
loop like this applications should avoid unnecessarily using CPU cycles by
relinquishing CPU control periodically during the loop.

The TestCooperativeLevel method returns DDERR_WRONGMODE to windowed
applications when the display mode has changed. In this case, the application should
destroy and re-create any surfaces before continuing execution.

Display Modes
[This is preliminary documentation and subject to change.]

This section contains general information about DirectDraw display modes. The
following topics are discussed:

· About Display Modes
· Determining Supported Display Modes
· Setting Display Modes
· Restoring Display Modes

in.doc – page 15

· Mode X and Mode 13 Display Modes
· Support for High Resolutions and True-Color Bit Depths

About Display Modes
[This is preliminary documentation and subject to change.]

A display mode is a hardware setting that describes the dimensions and bit-depth of
graphics that the display hardware sends to the monitor from the primary surface.
Display modes are described by their defining characteristics: width, height, and bit-
depth. For instance, most display adapters can display graphics 640 pixels wide and
480 pixels tall, where each pixel is 8 bits of data. In shorthand, this display mode is
called 6404808. As the dimensions of a display mode get larger or as the bit-
depth increases, more display memory is required.

There are two types of display modes: palettized and non-palettized. For palettized
display modes, each pixel is a value representing an index into an associated palette.
The bit depth of the display mode determines the number of colors that can be in the
palette. For instance, in an 8-bit palettized display mode, each pixel is a value from 0
to 255. In such a display mode, the palette can contain 256 entries.

Non-palettized display modes, as their name states, do not use palettes. The bit depth
of a non-palettized display mode indicates the total number of bits that are used to
describe a pixel.

The primary surface and any surfaces in the primary flipping chain match the display
mode's dimensions, bit depth and pixel format. For more information, see Pixel
Formats.

Determining Supported Display Modes
[This is preliminary documentation and subject to change.]

Because display hardware varies, not all devices will support all display modes. To
determine the display modes supported on a given system, call the
IDirectDraw4::EnumDisplayModes method. By setting the appropriate values and
flags, the EnumDisplayModes method can list all supported display modes or
confirm that a single display mode that you specify is supported. The method's first
parameter, dwFlags, controls extra options for the method; in most cases, you will
set dwFlags to 0 to ignore extra options. The second parameter, lpDDSurfaceDesc, is
the address of a DDSURFACEDESC2 structure that describes a given display mode
to be confirmed; you'll usually set this parameter to NULL to request that all modes
be listed. The third parameter, lpContext, is a pointer that you want DirectDraw to
pass to your callback function; if you don't need any extra data in the callback
function, use NULL here. Last, you set the lpEnumModesCallback parameter to the
address of the callback function that DirectDraw will call for each supported mode.

The callback function you supply when calling EnumDisplayModes must match the
prototype for the EnumModesCallback function. For each display mode that the

in.doc – page 16

hardware supports, DirectDraw calls your callback function passing two parameters.
The first parameter is the address of a DDSURFACEDESC2 structure that describes
one supported display mode, and the second parameter is the address of the
application-defined data you specified when calling EnumDisplayModes, if any.

Examine the values in the DDSURFACEDESC2 structure to determine the display
mode it describes. The key structure members are the dwWidth, dwHeight, and
ddpfPixelFormat members. The dwWidth and dwHeight members describe the
display mode's dimensions, and the ddpfPixelFormat member is a
DDPIXELFORMAT structure that contains information about the mode's bit depth.

The DDPIXELFORMAT structure carries information describing the mode's bit
depth and tells you whether or not the display mode uses a palette. If the dwFlags
member contains the DDPF_PALETTEINDEXED1, DDPF_PALETTEINDEXED2,
DDPF_PALETTEINDEXED4, or DDPF_PALETTEINDEXED8 flag, the display
mode's bit depth is 1, 2, 4 or 8 bits, and each pixel is an index into an associated
palette. If dwFlags contains DDPF_RGB, then the display mode is non-palettized
and its bit depth is provided in the dwRGBBitCount member of the
DDPIXELFORMAT structure.

Setting Display Modes
[This is preliminary documentation and subject to change.]

You can set the display mode by using the IDirectDraw4::SetDisplayMode
method. The SetDisplayMode method accepts four parameters that describe the
dimensions, bit depth, and refresh rate of the mode to be set. The method uses a fifth
parameter to indicate special options for the given mode; this is currently only used
to differentiate between Mode 13 and the Mode X 3202008 display mode.

Although you can specify the desired display mode's bit depth, you cannot specify
the pixel format that the display hardware will use for that bit depth. To determine
the RGB bit masks that the display hardware uses for the current bit depth, call
IDirectDraw4::GetDisplayMode after setting the display mode. If the current
display mode is not palettized, you can examine the mask values in the
dwRBitMask, dwGBitMask, and dwBBitMask members to determine the correct
red, green, and blue bits. For more information, see Pixel Format Masks.

Modes can be changed by more than one application as long as they are all sharing a
display card. You can change the bit depth of the display mode only if your
application has exclusive access to the DirectDraw object. All DirectDrawSurface
objects lose surface memory and become inoperative when the mode is changed. A
surface's memory must be reallocated by using the IDirectDrawSurface4::Restore
method.

The DirectDraw exclusive (full-screen) mode does not bar other applications from
allocating DirectDrawSurface objects, nor does it exclude them from using
DirectDraw or GDI functionality. However, it does prevent applications other than
the one that obtained exclusive access from changing the display mode or palette.

in.doc – page 17

Note
You can only call the IDirectDraw4::SetDisplayMode method from the thread
that created the application window. For single threaded applications (the vast
majority), this restriction isn't an issue.

Restoring Display Modes
[This is preliminary documentation and subject to change.]

You can explicitly restore the display hardware to its original mode by calling the
IDirectDraw4::RestoreDisplayMode method. If the display mode was set by
calling IDirectDraw4::SetDisplayMode and your application takes the exclusive
cooperative level, the original display mode is reset automatically when you set the
application's cooperative level back to normal. (This behavior was first offered in the
IDirectDraw2 interface, and is offered by all newer versions of the interface.)

If you're using the IDirectDraw interface, you must always explicitly restore the
display mode by using the RestoreDisplayMode method.

Mode X and Mode 13 Display Modes
[This is preliminary documentation and subject to change.]

DirectDraw supports both Mode 13 and Mode X display modes. Mode 13 is the
linear unflippable 3202008 bits per pixel palettized mode known widely by its
hexadecimal BIOS mode number: 13. For more information, see Mode 13 Support.
Mode X is a hybrid display mode derived from the standard VGA Mode 13. This
mode allows the use of up to 256 kilobytes (KB) of display memory (rather than the
64 KB allowed by Mode 13) by using the VGA display adapter's EGA multiple
video plane system.

DirectDraw provides two Mode X modes (3202008 and 3202408) for all
display cards. Some cards also support linear low-resolution modes. In linear low-
resolution modes, the primary surface can be locked and directly accessed. This is
not possible in Mode X modes.

Mode X modes are available only if an application uses the
DDSCL_ALLOWMODEX, DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE
flags when calling the IDirectDraw4::SetCooperativeLevel method. If
DDSCL_ALLOWMODEX is not specified, the
IDirectDraw4::EnumDisplayModes method will not enumerate Mode X modes,
and the IDirectDraw4::SetDisplayMode method will fail if a Mode X mode is
requested.

Windows 95 and Windows NT/Windows 2000 do not natively support Mode X
modes; therefore, when your application is in a Mode X mode, you cannot use the
IDirectDrawSurface4::Lock or IDirectDrawSurface4::Blt methods to lock or blit
to the primary surface. You also cannot use either the
IDirectDrawSurface4::GetDC method on the primary surface, or GDI with a

in.doc – page 18

screen DC. Mode X modes are indicated by the DDSCAPS_MODEX flag in the
DDSCAPS2 structure, which is part of the DDSURFACEDESC2 structure returned
by the IDirectDrawSurface4::GetCaps and IDirectDraw4::EnumDisplayModes
methods.

Support for High Resolutions and True-
Color Bit Depths

[This is preliminary documentation and subject to change.]

DirectDraw supports all of the screen resolutions and depths supported by the display
device driver. DirectDraw allows an application to change the mode to any one
supported by the computer's display driver, including all supported 24- and 32-bpp
(true-color) modes.

DirectDraw also supports HEL blitting in true-color surfaces. If the display device
driver supports blitting at these resolutions, the hardware blitter will be used for
display-memory-to-display-memory blits. Otherwise, the HEL will be used to
perform the blits.

DirectDraw checks a list of known display modes against the display restrictions of
the installed monitor. If DirectDraw determines that the requested mode is not
compatible with the monitor, the call to the IDirectDraw4::SetDisplayMode
method fails. Only modes that are supported on the installed monitor will be
enumerated when you call the IDirectDraw4::EnumDisplayModes method.

The DirectDraw Object
[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw objects and how you can
manipulate them through their IDirectDraw, IDirectDraw2, or IDirectDraw4
interfaces. The following topics are discussed:

· What Are DirectDraw Objects?
· What's New in IDirectDraw4?
· Parent and Child Object Lifetimes
· Multiple DirectDraw Objects per Process
· Creating DirectDraw Objects by Using CoCreateInstance

What Are DirectDraw Objects?
[This is preliminary documentation and subject to change.]

The DirectDraw object is the heart of all DirectDraw applications and is an integral
part of Direct3D® applications as well. It is the first object you create and, through
it, you create all other related objects. Typically, you create a DirectDraw object by

in.doc – page 19

calling the DirectDrawCreate function, which returns an IDirectDraw interface. If
you want to work with a different iteration of the interface (such as IDirectDraw4)
to take advantage of new features it provides, you can query for it. (See Getting an
IDirectDraw4 Interface.) Note that you can create multiple DirectDraw objects, one
for each display device installed in a system.

The DirectDraw object represents the display device and makes use of hardware
acceleration if the display device for which it was created supports hardware
acceleration. Each unique DirectDraw object can manipulate the display device and
create surfaces, palettes, and clipper objects that are dependent on (or are,
"connected to") the object that created them. For example, to create surfaces, you
call the IDirectDraw4::CreateSurface method. Or, if you need a palette object to
apply to a surface, call the IDirectDraw4::CreatePalette method. Additionally, the
IDirectDraw4 interface exposes similar methods to create clipper objects.

You can create more than one instance of a DirectDraw object at a time. The
simplest example of this is using two monitors on a Windows 95 or Windows NT 4.0
and earlier system. Although these operating systems don't support dual monitors on
their own, it is possible to write a DirectDraw HAL for each display device. The
display device Windows and GDI recognizes is the one that will be used when you
create the instance of the default DirectDraw object. The display device that
Windows and GDI do not recognize can be addressed by another, independent
DirectDraw object that must be created by using the second display device's globally
unique identifier (GUID). This GUID can be obtained by using the
DirectDrawEnumerate function.

The DirectDraw object manages all of the objects it creates. It controls the default
palette (if the primary surface is in 8-bits-per-pixel mode), the default color key, and
the hardware display mode. It tracks what resources have been allocated and what
resources remain to be allocated.

What's New in IDirectDraw4?
[This is preliminary documentation and subject to change.]

This section details new features provided by the IDirectDraw4 interface and
describes it's new features or how it behaves differently than its predecessor,
IDirectDraw2 (there is no IDirectDraw3 interface). The following topics are
discussed:

· New Features in IDirectDraw4
· Getting an IDirectDraw4 Interface

The most obvious difference between the IDirectDraw4 interface and its
predecessors is how it works with surfaces—how surfaces are described and which
interfaces it automatically provides to access them. All of the surface-related
methods in the new interface accept slightly different parameters than their
counterparts in former interface versions. Wherever an IDirectDraw2 interface
method might accept a DDSURFACEDESC structure or retrieve an

in.doc – page 20

IDirectDrawSurface3 interface, the methods of IDirectDraw4 accept a
DDSURFACEDESC2 structure and retrieve an IDirectDrawSurface4 interface
instead.

Another behavioral change that IDirectDraw4 introduces affects the lifetimes of
child objects with respect to their parent DirectDraw object. For more information,
see Parent and Child Object Lifetimes.

New Features in IDirectDraw4
[This is preliminary documentation and subject to change.]

The IDirectDraw4 interface extends previous iterations by adding several methods
that provide improved surface management and ease of use

The IDirectDraw4 interface exposes the new IDirectDraw4::RestoreAllSurfaces
method, which restores all of the surfaces created by a DirectDraw with a single call.

Additionally, you can now retrieve a surface's IDirectDrawSurface4 interface from
a Windows device context by using the IDirectDraw4::GetSurfaceFromDC
method.

Getting an IDirectDraw4 Interface
[This is preliminary documentation and subject to change.]

The Component Object Model on which DirectX is built specifies that an object can
provide new functionality through new interfaces, without affecting backward
compatibility. To this end, the IDirectDraw4 interface supersedes the
IDirectDraw2 interface. This new interface can be obtained by using the
IUnknown::QueryInterface method, as the following C++ example shows:

// Create an IDirectDraw4 interface.
LPDIRECTDRAW lpDD;
LPDIRECTDRAW4 lpDD4;

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);
if(ddrval != DD_OK)
 return;

ddrval = lpDD->SetCooperativeLevel(hwnd,
 DDSCL_NORMAL);
if(ddrval != DD_OK)
 return;

ddrval = lpDD->QueryInterface(IID_IDirectDraw4,
 (LPVOID *)&lpDD4);
if(ddrval != DD_OK)
 return;

in.doc – page 21

The preceding example creates a DirectDraw object, then calls the
IUnknown::QueryInterface method of the IDirectDraw interface it received to
create an IDirectDraw4 interface.

After getting an IDirectDraw4 interface, you can begin calling its methods to take
advantage of new features, performance improvements, and behavioral differences.
Because some methods might change with the release of a new interface, mixing
methods from an interface and its replacement (between IDirectDraw2 and
IDirectDraw4, for example) can cause unpredictable results.

Parent and Child Object Lifetimes
[This is preliminary documentation and subject to change.]

All objects you'll use in DirectDraw programming—the DirectDraw object, surfaces,
palettes, clippers, and such—only exist in memory for as long as another object,
such as an application, needs them. The time that passes from the moment when an
object is created and placed in memory to when it is released and subsequently
removed from memory is known as the object's lifetime. The Component Object
Model (COM) followed by all DirectX components dictates that an object must keep
track of how many other objects require its services. This number, known as a
reference count, determines the object's lifetime. COM also dictates that an object
expose the IUnknown::AddRef and IUnknown::Release methods to enable
applications to explicitly manage its reference count; make sure you use these
methods in accordance to COM rules.

You aren't the only one who is using the IUnknown methods to manage reference
counts for objects—DirectDraw objects use them internally, too. When you use the
IDirectDraw4 interface (in contrast to IDirectDraw2 or IDirectDraw) to create a
"child" object like a surface, the child uses the IUnknown::AddRef method of the
"parent" DirectDraw object to increment the parent's reference count.

When your application no longer needs an object, call the Release method to
decrement its reference count. When the count reaches zero, the object is removed
from memory. When a child object's reference count reaches zero, it calls the
parent's IUnknown::Release method to indicate that there is one less object who
will be needing the parent's services.

Implicitly allocated objects, such as the back-buffer surfaces in a flipping chain that
you create with a single IDirectDraw4::CreateSurface call, are automatically
deallocated when their parent DirectDrawSurface object is released. Also, you can
only release a DirectDraw object from the thread that created the application
window. For single-threaded applications, this restriction obviously doesn't apply, as
there is only one thread. If your application created a primary flipping chain of two
surfaces (created by a single CreateSurface call) that used an attached
DirectDrawClipper object, the code to release these objects safely might look like:

// For this example, the g_lpDDraw, g_lpDDSurface, and
// g_lpDDClip are valid pointers to objects.
void ReleaseDDrawObjects(void)

in.doc – page 22

{
 // If the DirectDraw object pointer is valid,
 // it should be safe to release it and the objects it owns.
 if(g_lpDDraw)
 {
 // Release the DirectDraw object. (This call wouldn't
 // be safe if the children were created through IDirectDraw2
 // or IDirectDraw. See the following note for
 // more information)
 g_lpDDraw->Release(), g_lpDDraw = NULL;

 // Now, release the clipper that is attached to the surfaces.
 if(g_lpDDClip)
 g_lpDDClip->Release(), g_lpDDClip = NULL;

 // Now, release the primary flipping chain. Note
 // that this is only valid because the flipping
 // chain surfaces were created with a single
 // CreateSurface call. If they were explicitly
 // created and attached, then they must also be
 // explicitly released.
 if(g_lpDDSurface)
 g_lpDDSurface->Release(), g_lpDDSurface = NULL;
 }
}

Note
Earlier versions of the DirectDraw interface (IDirectDraw2 and IDirectDraw,
to be exact) behave differently than the most recent interface. When using these
early interfaces, DirectDraw automatically releases all child objects when the
parent itself is released. As a result, if you use these older interfaces, the order in
which you release objects is critical. In this case, you should release the children
of a DirectDraw object before releasing the DirectDraw object itself (or not
release them at all, counting on the parent to do cleanup for you). Because the
DirectDraw object releases the child objects, if you release the parent before the
children, you are very likely to incur a memory fault for attempting to
dereference a pointer that was invalidated when the parent object released its
children.
Some older applications relied on the automatic release of child objects and
neglected to properly release some objects when no longer needed. At the time,
this practice didn't cause any negative side effects, however doing so when using
the IDirectDraw4 interface might result in memory leaks.

in.doc – page 23

Multiple DirectDraw Objects per
Process

[This is preliminary documentation and subject to change.]

DirectDraw allows a process to call the DirectDrawCreate function as many times
as necessary. A unique and independent interface to a unique and independent
DirectDraw object is returned after each call. Each DirectDraw object can be used as
desired; there are no dependencies between the objects. Each object behaves exactly
as if it had been created by a unique process.

DirectDraw objects are independent of one another and the DirectDrawSurface,
DirectDrawPalette, and DirectDrawClipper objects they create should not be used
with other DirectDraw objects because they are automatically released when the
parent DirectDraw object is destroyed. If they are used with another DirectDraw
object, they might stop functioning if their parent object is destroyed, causing the
remaining DirectDraw object to malfunction.

The exception is DirectDrawClipper objects created by using the
DirectDrawCreateClipper function. These objects are independent of any
particular DirectDraw object and can be used with one or more DirectDraw objects.

Creating DirectDraw Objects by Using
CoCreateInstance

[This is preliminary documentation and subject to change.]

You can create a DirectDraw object by using the CoCreateInstance function and the
IDirectDraw4::Initialize method rather than the DirectDrawCreate function. The
following steps describe how to create the DirectDraw object:

1 Initialize COM at the start of your application by calling CoInitialize and
specifying NULL.
if (FAILED(CoInitialize(NULL)))
 return FALSE;

2 Create the DirectDraw object by using CoCreateInstance and the
IDirectDraw4::Initialize method.
ddrval = CoCreateInstance(&CLSID_DirectDraw,
 NULL, CLSCTX_ALL, &IID_IDirectDraw4, &lpdd);
if(!FAILED(ddrval))
 ddrval = IDirectDraw4_Initialize(lpdd, NULL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDraw, is the
class identifier of the DirectDraw driver object class, the IID_IDirectDraw4
parameter identifies the particular DirectDraw interface to be created, and the
lpdd parameter points to the DirectDraw object that is retrieved. If the call is
successful, this function returns an uninitialized object.

in.doc – page 24

3 Before you use the DirectDraw object, you must call IDirectDraw4::Initialize.
This method takes the driver GUID parameter that the DirectDrawCreate
function typically uses (NULL in this case). After the DirectDraw object is
initialized, you can use and release it as if it had been created by using the
DirectDrawCreate function. If you do not call the Initialize method before
using one of the methods associated with the DirectDraw object, a
DDERR_NOTINITIALIZED error will occur.

Before you close the application, close the COM library by using the CoUninitialize
function.

CoUninitialize();

Surfaces
[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawSurface objects. The following
topics are discussed:

· Basic Concepts of Surfaces
· Creating Surfaces
· Flipping Surfaces
· Blitting to Surfaces
· Losing and Restoring Surfaces
· COM Reference Count Semantics for Surfaces
· Enumerating Surfaces
· Updating Surface Characteristics
· Accessing Surface Memory Directly
· Gamma and Color Controls
· Overlay Surfaces
· Compressed Texture Surfaces
· Private Surface Data
· Surface Uniqueness Values
· Using Non-local Video Memory Surfaces
· Converting Color and Format
· Surfaces and Device Contexts

Basic Concepts of Surfaces
[This is preliminary documentation and subject to change.]

in.doc – page 25

This section contains information about the basic concepts associated with
DirectDrawSurface objects. The following topics are discussed:

· What Are Surfaces?
· Surface Interfaces
· Width vs. Pitch
· Color Keying
· Pixel Formats

What Are Surfaces?
[This is preliminary documentation and subject to change.]

A surface, or DirectDrawSurface object, represents a linear area of display memory.
A surface usually resides in the display memory of the display card, although
surfaces can exist in system memory. Unless specifically instructed otherwise during
the creation of the DirectDrawSurface object, DirectDraw object will put the
DirectDrawSurface object wherever the best performance can be achieved given the
requested capabilities. DirectDrawSurface objects can take advantage of specialized
processors on display cards, not only to perform certain tasks faster, but to perform
some tasks in parallel with the system CPU.

Using the IDirectDraw4::CreateSurface method, you can create a single surface
object, complex surface-flipping chains, or three-dimensional surfaces. The
CreateSurface method creates the requested surface or flipping chain and retrieves a
pointer to the primary surface's IDirectDrawSurface4 interface through which the
object exposes its functionality.

The IDirectDrawSurface4 interface enables you to indirectly access memory
through blit methods, such as IDirectDrawSurface4::BltFast. The surface object
can provide a device context to the display that you can use with GDI functions.
Additionally, you can use IDirectDrawSurface4 methods to directly access display
memory. For example, you can use the IDirectDrawSurface4::Lock method to lock
the display memory and retrieve the address corresponding to that surface. Addresses
of display memory might point to visible frame buffer memory (primary surface) or
to nonvisible buffers (off-screen or overlay surfaces). Nonvisible buffers usually
reside in display memory, but can be created in system memory if required by
hardware limitations or if DirectDraw is performing software emulation. In addition,
the IDirectDrawSurface4 interface extends other methods that you can use to set or
retrieve palettes, or to work with specific types or surfaces, like flipping chains or
overlays.

From this illustration, you can see that all surface are created by a DirectDraw object
and are often used closely with palettes. Although each surface object can be
assigned a palette, palettes aren't required for anything but primary surfaces that use
pixel formats of 8-bits in depth or less.

in.doc – page 26

DirectDraw Component

Primary Surface

Back Buffer Surface

Off Screen Surface

Palette

Palette

Palette

Surface Interfaces
[This is preliminary documentation and subject to change.]

DirectDrawSurface objects expose their functionality through the
IDirectDrawSurface, IDirectDrawSurface2, IDirectDrawSurface3, and
IDirectDrawSurface4 interfaces. Each new interface version provides the same
utility as its predecessors, with additional options available through new methods.

When you create a surface by calling the IDirectDraw4::CreateSurface method (or
another creation method from IDirectDraw4), you receive a pointer to the surface's
IDirectDrawSurface4 interface. This behavior is different than previous versions of
DirectX. Before the introduction of the IDirectDraw4 interface, the CreateSurface
method provided a pointer to a surface's IDirectDrawSurface interface. If you
wanted to work with a different iteration of the interface, you had to query for it.
When using IDirectDraw4 this isn't the case, although you are free to query a
surface for a previous iteration of an interface if you choose.

Width vs. Pitch
[This is preliminary documentation and subject to change.]

Although the terms width and pitch are discussed casually, they have very important
(and distinctly different) meanings. As a result, you should understand the meanings
for each, and how to interpret the values that DirectDraw uses to describe them.

DirectDraw uses the DDSURFACEDESC2 structure to carry information describing
a surface. Among other things, this structure is defined to contain information about
a surface's dimensions, as well as how those dimensions are represented in memory.

in.doc – page 27

The structure uses the dwHeight and dwWidth members to describe the logical
dimensions of the surface. Both of these members are measured in pixels. Therefore,
the dwHeight and dwWidth values for a 640480 surface are the same whether it is
an 8-bit palettized surface or a 24-bit RGB surface.

The DDSURFACEDESC2 structure contains information about how a surface is
represented in memory through the lPitch member. The value in the lPitch member
describes the surface's memory pitch (also called stride). Pitch is the distance, in
bytes, between two memory addresses that represent the beginning of one bitmap
line and the beginning of the next bitmap line. Because pitch is measured in bytes
rather than pixels, a 6404808 surface will have a very different pitch value than a
surface with the same dimensions but a different pixel format. Additionally, the pitch
value sometimes reflects bytes that DirectDraw has reserved as a cache, so it is not
safe to assume that pitch is simply the width multiplied by the number of bytes per
pixel. Rather, you could visualize the difference between width and pitch as shown
in the following illustration.

Front
buffer

Back
buffer

Cache: 180K
384x480

Cache: 180K
384x480

Width of this
DirectDraw surface

Pitch of this
DirectDraw surface

In this figure, the front buffer and back buffer are both 6404808, and the cache is
3844808.

Pitch values are useful when you are directly accessing surface memory. For
example, after calling the IDirectDrawSurface4::Lock method, the lpSurface
member of the associated DDSURFACEDESC2 structure contains the address of
the top-left pixel of the locked area of the surface, and the lPitch member is the
surface pitch. You access pixels horizontally by incrementing or decrementing the
surface pointer by the number of bytes per pixel, and you move up or down by
adding the pitch value to, or subtracting it from, the current surface pointer.

When accessing surfaces directly, take care to stay within the memory allocated for
the dimensions of the surface and stay out of any memory reserved for cache.
Additionally, when you lock only a portion of a surface, you must stay within the
rectangle you specify when locking the surface. Failing to follow these guidelines
will have unpredictable results. When rendering directly into surface memory,
always use the pitch returned by the Lock method (or the
IDirectDrawSurface4::GetDC method). Do not assume a pitch based solely on the
display mode. If your application works on some display adapters but looks garbled
on others, this may be the cause of your problem.

For more information, see Accessing Surface Memory Directly.

in.doc – page 28

Color Keying
[This is preliminary documentation and subject to change.]

DirectDraw supports source and destination color keying for blits and overlay
surfaces. Color keys enable you to display one image on top of another selectively,
so that only certain pixels from the foreground rectangle are displayed, or only
certain pixels on the background rectangle are overwritten.

You supply a single color key or a range of colors for source or destination color
keying by calling the IDirectDrawSurface4::SetColorKey method.

For more information about color keying, see the following topics:

· Overlay Color Keys
· Transparent Blitting

Pixel Formats
[This is preliminary documentation and subject to change.]

Pixel formats dictate how data for each pixel in surface memory is to be interpreted.
DirectDraw uses the DDPIXELFORMAT structure to describe various pixel
formats. The DDPIXELFORMAT contains members to describe the following
traits of a pixel format:

· Palettized or non-palettized pixel format
· If non-palettized, whether the pixel format is RGB or YUV
· Bit depth
· Bit masks for the pixel format's components

You can retrieve information about an existing surface's pixel format by calling the
IDirectDrawSurface4::GetPixelFormat method.

Creating Surfaces
[This is preliminary documentation and subject to change.]

The DirectDrawSurface object represents a surface that usually resides in the display
memory, but can exist in system memory if display memory is exhausted or if it is
explicitly requested.

Use the IDirectDraw4::CreateSurface method to create one surface or to
simultaneously create multiple surfaces (a complex surface). When calling
CreateSurface, you specify the dimensions of the surface, whether it is a single
surface or a complex surface, and the pixel format (if the surface won't be using an
indexed palette). All these characteristics are contained in a DDSURFACEDESC2
structure, whose address you send with the call. If the hardware can't support the
requested capabilities or if it previously allocated those resources to another
DirectDrawSurface object, the call will fail.

in.doc – page 29

Creating single surfaces or multiple surfaces is a simple matter that requires only a
few lines of code. There are a few common situations (and some less common ones)
in which you will need to create surfaces. The following situations are discussed:

· Creating the Primary Surface
· Creating an Off-Screen Surface
· Creating Complex Surfaces and Flipping Chains
· Creating Wide Surfaces
· Creating Client Memory Surfaces

By default, for all surfaces except client memory surfaces, DirectDraw attempts to
create a surface in local video memory. If there isn't enough local video memory
available to hold the surface, DirectDraw will try to use non-local video memory (on
some Accelerated Graphics Port-equipped systems), and fall back on system memory
if all other types of memory are unavailable. You can explicitly request that a
surface be created in a certain type of memory by including the appropriate flags in
the associated DDSCAPS2 structure when calling IDirectDraw4::CreateSurface.

Creating the Primary Surface
[This is preliminary documentation and subject to change.]

The primary surface is the surface currently visible on the monitor and is identified
by the DDSCAPS_PRIMARYSURFACE flag. You can only have one primary
surface for each DirectDraw object.

When you create a primary surface, remember that the dimensions and pixel format
implicitly match the current display mode. Therefore, this is the one time you don't
need to declare a surface's dimensions or pixel format. If you do specify them, the
call will fail and return DDERR_INVALIDPARAMS—even if the information you
used matches the current display mode.

The following example shows how to prepare the DDSURFACEDESC2 structure
members relevant for creating the primary surface.

DDSURFACEDESC2 ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS;

// Request a primary surface.
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

After creating the primary surface, you can retrieve information about its dimensions
and pixel format by calling its IDirectDrawSurface4::GetSurfaceDesc method.

See also, Display Modes.

in.doc – page 30

Creating an Off-Screen Surface
[This is preliminary documentation and subject to change.]

An off-screen surface is often used to cache bitmaps that will later be blitted to the
primary surface or a back buffer. You must declare the dimensions of an off-screen
surface by including the DDSD_WIDTH and DDSD_HEIGHT flags and the
corresponding values in the dwWidth and dwHeight members. Additionally, you
must include the DDSCAPS_OFFSCREENPLAIN flag in the accompanying
DDSCAPS2 structure.

By default, DirectDraw creates a surface in display memory unless it will not fit, in
which case it creates the surface in system memory. You can explicitly choose
display or system memory by including the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY flags in the dwCaps member of the DDSCAPS2
structure. The method fails, returning an error, if it can't create the surface in the
specified location.

The following example shows how to prepare for creating a simple off-screen
surface:

DDSURFACEDESC2 ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

// Request a simple off-screen surface, sized
// 100 by 100 pixels.
//
// (This assumes that the off-screen surface we are about
// to create will match the pixel format of the
// primary surface.)
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddsd.dwHeight = 100;
ddsd.dwWidth = 100;

Additionally, you can create surfaces whose pixel format differs from the primary
surface's pixel format. However, in this case there is one drawback—you are limited
to using system memory. The following code fragment shows how to prepare the
DDSURFACEDESC2 structure members in order to create an 8-bit palettized
surface (assuming that the current display mode is something other than 8-bits per
pixel).

ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | DDSCAPS_SYSTEMMEMORY;
ddsd.dwHeight = 100;

in.doc – page 31

ddsd.dwWidth = 100;
ddsd.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);
ddsd.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_PALETTEINDEXED8;

// Set the bit depth for an 8-bit surface, but DO NOT
// specify any RGB mask values. The masks must be zero
// for a palettized surface.
ddsd.ddpfPixelFormat.dwRGBBitCount = 8;

In previous versions of DirectX, the maximum width of off-screen surfaces was
limited to the width of the primary surface. Beginning with DirectX 5.0, you can
create surfaces as wide as you need, permitting that the display hardware can support
them. Be careful when declaring wide off-screen surfaces; if the video card memory
cannot hold a surface as wide as you request, the surface is created in system
memory. If you explicitly choose video memory and the hardware can't support it,
the call fails. For more information, see Creating Wide Surfaces.

Creating Complex Surfaces and Flipping Chains
[This is preliminary documentation and subject to change.]

You can also create complex surfaces. A complex surface is a set of surfaces created
with a single call to the IDirectDraw4::CreateSurface method. If the
DDSCAPS_COMPLEX flag is set when you call CreateSurface call, DirectDraw
implicitly creates one or more surfaces in addition to the surface explicitly specified.
You manage complex surfaces just like a single surfacea single call to the
IDirectDraw::Release method releases all surfaces, and a single call to the
IDirectDrawSurface4::Restore method restores them all. However, implicitly
created surfaces cannot be detached. For more information, see
IDirectDrawSurface4::DeleteAttachedSurface.

One of the most useful complex surfaces you can create is a flipping chain. Usually,
a flipping chain is made of a primary surface and one or more back buffers. The
DDSCAPS_FLIP flag indicates that a surface is part of a flipping chain. Creating a
flipping chain this way requires that you also include the DDSCAPS_COMPLEX
flag.

The following example shows how to prepare for creating a primary surface flipping
chain.

DDSURFACEDESC2 ddsd2;
ddsd2.dwSize = sizeof(ddsd2);

// Tell DirectDraw which members are valid.
ddsd2.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// Request a primary surface with a single
// back buffer
ddsd2.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP |

in.doc – page 32

DDSCAPS_PRIMARYSURFACE;
ddsd2.dwBackBufferCount = 1;

The previous example constructs a double-buffered flipping environmenta single
call to the IDirectDrawSurface4::Flip method exchanges the surface memory of
the primary surface and the back buffer. If you specify 2 for the value of the
dwBackBufferCount member of the DDSURFACEDESC2 structure, two back
buffers are created, and each call to Flip rotates the surfaces in a circular pattern,
providing a triple-buffered flipping environment. For more information, see Flipping
Surfaces.

Note
To create a flipping chain that comprises surfaces that will be used as 3-D
render targets, be sure to include the DDSCAPS_3DDEVICE capability flag in
the surface description, as well as the DDSCAPS_COMPLEX and
DDSCAPS_FLIP flags.
Unlike the CreateSurface method exposed by the IDirectDraw3 and earlier
interfaces, you cannot use IDirectDraw4::CreateSurface to implicitly create a
flipping chain of render target surfaces with an attached depth-buffer. The
DDSURFACEDESC2 structure that the IDirectDraw4::CreateSurface method
accepts doesn't contain a field to specify a depth-buffer bit depth. As a result,
applications must create a depth-buffer surface explicitly, then attach it to the
back-buffer render target surface. For more information, see Depth Buffers.

Creating Wide Surfaces
[This is preliminary documentation and subject to change.]

DirectDraw allows you to create off-screen surfaces in video memory that are wider
that the primary surface. This is only possible when display device support for wide
surfaces is present.

To check for wide surface support, call IDirectDraw4::GetCaps and look for the
DDCAPS2_WIDESURFACES flag in the dwCaps2 member of the first DDCAPS
structure you send with the call. If the flag is present, you can create video memory
off-screen surfaces that are wider that the primary surface.

If you attempt to create a wide surface in video memory when the
DDCAPS2_WIDESURFACES flag isn't present, the attempt will fail and return
DDERR_INVALIDPARAMS. Note that attempting to create extremely large
surfaces might still fail, even if the driver exposes the DDCAPS2_WIDESURFACES
flag.

Wide surfaces are always supported for system memory surfaces, video port
surfaces, and execute buffers.

Creating Client Memory Surfaces
[This is preliminary documentation and subject to change.]

in.doc – page 33

Client memory surfaces are simply DirectDrawSurface objects that use system
memory that your application has previously allocated to hold image data. Creating
such a surface isn't common, but it isn't difficult to do and it can be useful for
applications that need to use DirectDraw surface features on existing memory
buffers.

Like creating all surfaces, DirectDraw needs information about the dimensions of the
surface (measured in pixels) and the surface pitch (measured in bytes), as well as the
surface's pixel format. However, unlike creating other types of surfaces, this
information doesn't tell DirectDraw how you want the surface to be created, it tells
DirectDraw how you've already created it. You set these characteristics, plus the
memory address of the buffer you've allocated, in the DDSURFACEDESC2
structure you pass to the IDirectDraw4::CreateSurface method.

A client memory surfaces works just like a normal system-memory surface, with the
exception that DirectDraw does not attempt to free the surface memory when it's no
longer needed; freeing client allocated memory is the application's responsibility.

The following example shows how you might allocate memory and create a
DirectDrawSurface object for a 6464 pixel 24-bit RGB surface:

// For this example, g_lpDD4 is a valid IDirectDraw4 interface pointer.

#define WIDTH 64 // in pixels
#define HEIGHT 64
#define DEPTH 3 // in bytes (3bytes == 24 bits)

 HRESULT hr;
 LPVOID lpSurface = NULL;
 HLOCAL hMemHandle = NULL;
 DDSURFACEDESC2 ddsd2;
 LPDIRECTDRAWSURFACE4 lpDDS4;

 // Allocate memory for a 64 by 64, 24-bit per pixel buffer.
 // REMEMBER: The application is responsible for freeing this
 // buffer when it is no longer needed.
 if (lpSurface = malloc((size_t)WIDTH*HEIGHT*DEPTH))
 ZeroMemory(lpSurface, (DWORD)WIDTH*HEIGHT*DEPTH);
 else
 return DDERR_OUTOFMEMORY;

 // Initialize the surface description.
 ZeroMemory(&ddsd2, sizeof(DDSURFACEDESC2));
 ZeroMemory(&ddsd2.ddpfPixelFormat, sizeof(DDPIXELFORMAT));
 ddsd2.dwSize = sizeof(ddsd2);
 ddsd2.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_LPSURFACE |
 DDSD_PITCH | DDSD_PIXELFORMAT;
 ddsd2.dwWidth = WIDTH;

in.doc – page 34

 ddsd2.dwHeight= HEIGHT;
 ddsd2.lPitch = (LONG)DEPTH * WIDTH;
 ddsd2.lpSurface = lpSurface;

 // Set up the pixel format for 24-bit RGB (8-8-8).
 ddsd2.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);
 ddsd2.ddpfPixelFormat.dwFlags= DDPF_RGB;
 ddsd2.ddpfPixelFormat.dwRGBBitCount = (DWORD)DEPTH*8;
 ddsd2.ddpfPixelFormat.dwRBitMask = 0x00FF0000;
 ddsd2.ddpfPixelFormat.dwGBitMask = 0x0000FF00;
 ddsd2.ddpfPixelFormat.dwBBitMask = 0x000000FF;

 // Create the surface
 hr = g_lpDD4->CreateSurface(&ddsd2, &lpDDS4, NULL);
 return hr;

Flipping Surfaces
[This is preliminary documentation and subject to change.]

Any surface in DirectDraw can be constructed as a flipping surface. A flipping
surface is any piece of memory that can be swapped between a front buffer and a
back buffer. (This construct is commonly referred to as a flipping chain). Often, the
front buffer is the primary surface, but it doesn't have to be.

Typically, when you use the IDirectDrawSurface4::Flip method to request a
surface flip operation, the pointers to surface memory for the primary surface and
back buffers are swapped. Flipping is performed by switching pointers that the
display device uses for referencing memory, not by copying surface memory. (The
exception to this is when DirectDraw is emulating the flip, in which case it simply
copies the surfaces. DirectDraw emulates flip operations if a back buffer cannot fit
into display memory or if the hardware doesn't support DirectDraw.) When a
flipping chain contains a primary surface and more than one back buffer, the pointers
are switched in a circular pattern, as shown in the following illustration.

in.doc – page 35

After
Flipping

Once

After
Flipping
Twice

After
Third
Flip

AB C

BC A

CA B

Primary
Surface Back Buffer Third Buffer

ABefore
Flipping B C

Other surfaces that are attached to a DirectDraw object, but not part of the flipping
chain, are unaffected when the Flip method is called.

Remember, DirectDraw flips surfaces by swapping surface memory pointers within
DirectDrawSurface objects, not by swapping the objects themselves. This means
that, to blit to the back buffer in any type of flipping scheme, you always use the
same DirectDrawSurface object — the one that was the back buffer when you
created the flipping chain. Conversely, you always perform a flip operation by
calling the front surface's Flip method.

When working with visible surfaces, such as a primary surface flipping chain or a
visible overlay surface flipping chain, the Flip method is asynchronous unless you
include the DDFLIP_WAIT flag. On these visible surfaces, the Flip method can
return before the actual flip operation occurs in the hardware (because the hardware
doesn't flip until the next vertical refresh occurs). While the actual flip operation is
pending, the back buffer behind the currently visible surface can't be locked or
blitted by calling the IDirectDrawSurface4::Lock, IDirectDrawSurface4::Blt,
IDirectDrawSurface4::BltFast, or IDirectDrawSurface4::GetDC methods. If you
attempt to call these methods while a flip operation is pending, they will fail and
return DDERR_WASSTILLDRAWING. However, if you are using a triple buffered
scheme, the rearmost buffer is still available.

Blitting to Surfaces
[This is preliminary documentation and subject to change.]

in.doc – page 36

This section is a guide to copying pixels from one DirectDraw surface to another, or
from one part of a surface to another.

The following topics are covered:

· Blitting Basics
· Blitting with BltFast
· Blitting with Blt
· Blit Timing
· Transparent Blitting
· Color Fills
· Blitting to Multiple Windows

Blitting Basics
[This is preliminary documentation and subject to change.]

Two methods are available for copying images to a DirectDraw surface:
IDirectDrawSurface4::Blt and IDirectDrawSurface4::BltFast. (A third method,
IDirectDrawSurface4::BltBatch, is not implemented in this version of DirectX.)
These methods are called on the destination surface and receive the source surface as
a parameter. The destination and source surfaces can be one and the same, and you
don't have to worry about overlap—DirectDraw takes care to preserve all source
pixels before overwriting them.

Of the two implemented methods, Blt is the more flexible and BltFast is the faster—
but only if there is no hardware blitter. You can determine the blitting capabilities of
the hardware from the DDCAPS structure obtained in the lpDDDriverCaps
parameter of the IDirectDraw4::GetCaps method. If the dwCaps member contains
DDCAPS_BLT, the hardware has at least minimal blitting capabilities.

Blitting with BltFast
[This is preliminary documentation and subject to change.]

When using IDirectDrawSurface4::BltFast, you supply a valid rectangle in the
source surface from which the pixels are to be copied (or NULL to specify the entire
surface), and an x-coordinate and y-coordinate in the destination surface. The source
rectangle must be able to fit in the destination surface with its top left corner at that
point, or the call will fail with a return value of DDERR_INVALIDRECT. BltFast
cannot be used on surfaces that have an attached clipper.

No stretching, mirroring, or other effects can be performed when using BltFast.

BltFast Example

The following example copies pixels from an offscreen surface, lpDDSOffOne, to the
primary surface, lpDDSPrimary. The flags ensure that the operation will take place
as soon as the blitter is free, and that transparent pixels in the source image will not

in.doc – page 37

be copied. (For more information on the meaning of these flags, see Blit Timing and
Transparent Blitting .)

lpDDSPrimary->BltFast(
 100, 200, // Upper left xy of destination
 lpDDSOffOne, // Source surface
 NULL, // Source rectangle = entire surface
 DDBLTFAST_WAIT | DDBLTFAST_SRCCOLORKEY);

Blitting with Blt
[This is preliminary documentation and subject to change.]

When using the IDirectDrawSurface4::Blt method, you supply a valid rectangle in
the source surface (or NULL to specify the entire surface), and a rectangle in the
destination surface to which the source image will be copied (again, NULL means
the rectangle covers the entire surface). If a clipper is attached to the destination
surface, the bounds of the destination rectangle can fall outside the surface and
clipping will be performed. If there is no clipper, the destination rectangle must fall
entirely within the surface or else the method will fail with
DDERR_INVALIDRECT. (For more information on clipping, see Clippers.)

Scaling

The Blt method automatically rescales the source image to fit the destination
rectangle. If resizing is not your intention, for best performance you should make
sure that your source and destination rectangles are exactly the same size, or else use
IDirectDrawSurface4:BltFast. (See Blitting with BltFast.)

Hardware acceleration for scaling depends on the DDFXCAPS_BLT* flags in the
dwFXCaps member of the DDCAPS structure for the device. If, for example, a
device has the DDFXCAPS_BLTSTRETCHXN capability but not
DDFXCAPS_BLTSTRETCHX, it can assist when the x-axis of the source rectangle
is being multiplied by a whole number but not when non-integral (arbitrary) scaling
is being done.

Devices might also support arithmetic scaling, which is scaling by interpolation
rather than simple multiplication or deletion of pixels. For instance, if an axis was
being increased by one-third, the pixels would be recolored to provide a closer
approximation to the original image than would be produced by the doubling of
every third pixel on that axis.

Applications cannot control the type of scaling done by the driver, except by setting
the DDBLTFX_ARITHSTRETCHY flag in the dwDDFX member of the
DDBLTFX structure passed to Blt. This flag requests that arithmetic stretching be
done on the y-axis. Arithmetic stretching on the x-axis and arithmetic shrinking are
not currently supported in the DirectDraw API, but a driver may perform them by
default.

Other Effects

in.doc – page 38

If you do not require any special effects other than scaling when using Blt, you can
pass NULL as the lpDDBltFx parameter. Otherwise you can choose among a variety
of effects specified in a DDBLTFX structure. Among these, color fills and mirroring
are supported by the HEL, so they are always available. Most other effects depend
on hardware support.

For a complete view of the effects capabilities of the HEL, run the DDraw Caps
utility supplied with the DirectX Programmer's Reference and select HEL FX Caps
from the HEL menu. For an explanation of the various flags, see DDCAPS. You can
also check HEL capabilities within your own application by using the
IDirectDraw4::GetCaps method.

When you specify an effect that requires a value in one of the members of the
DDBLTFX structure passed to the IDirectDrawSurface4::Blt method, you must
also include the appropriate flags in the dwFlags parameter to show which members
of the structure are valid.

Some effects require only the setting of a flag in the dwFlags member of
DDBLTFX. One of these is DDBLTFX_NOTEARING. You can use this flag when
you are blitting animated images directly to the front buffer, so that the blit is timed
to coincide with the screen refresh and the possibility of tearing is minimized.
Mirroring and rotation are also set by using flags.

Blitting effects include the standard raster operations (ROPs) used by GDI functions
such as BitBlt. The only ROPs supported by the HEL are SRCCOPY (the default),
BLACKNESS, and WHITENESS. Hardware support for other ROPs can be
examined in the DDCAPS structure for the driver. If you wish to use any of the
standard ROPS with the Blt method, you flag them in the dwROP member of the
DDBLTFX structure.

The dwDDROP member of the DDBLTFX structure is for specifying ROPs specific
to DirectDraw. However, no such ROPs are currently defined.

Alpha and Z Values

Opacity and depth values are not currently supported in DirectDraw blits. If alpha
values are stored in the pixel format, they simply overwrite any alpha values in the
destination rectangle. Values from alpha buffers and z-buffers are ignored. The
members of the DDBLTFX structure that have to do with alpha channels and z-
buffers (members whose names begin with "dwAlpha" and "dwZ"), and the
corresponding flags for Blt, are not used. The same applies to the
DDBLTFX_ZBUFFERBASEDEST and DDBLTFX_ZBUFFERRANGE flags in the
dwDDFX member of the DDBLTFX structure.

Although z-buffers are currently used only in Direct3D applications, you can use
IDirectDrawSurface4::Blt to set the depth value for a z-buffer surface, by setting
the DDBLT_DEPTHFILL flag. For more information, see Clearing Depth Buffers.

For an overview of the use of alpha channels and z-buffers in Direct3D, see the
following topics:

· Alpha States

in.doc – page 39

· What Are Depth Buffers?

Blt Example

The following example, in which it is assumed that lpDDS is a valid
IDirectDrawSurface4 pointer, creates a symmetrical image within the surface by
mirroring a rectangle from left to right:

RECT rcSource, rcDest;
DDBLTFX ddbltfx;

ZeroMemory(&ddbltfx, sizeof(ddbltfx));
ddbltfx.dwSize = sizeof(ddbltfx);
ddbltfx.dwDDFX = DDBLTFX_MIRRORLEFTRIGHT;

rcSource.top = 0; rcSource.left = 0;
rcSource.bottom = 100; rcSource.right = 200;
rcDest.top = 0; rcDest.left = 201;
rcDest.bottom = 100; rcDest.right = 401;

HRESULT hr = lpDDS->Blt(&rcDest,
 lpDDS,
 &rcSource,
 DDBLT_WAIT | DDBLT_DDFX,
 &ddbltfx);

Blit Timing
[This is preliminary documentation and subject to change.]

When you copy pixels to a surface using either IDirectDrawSurface4::Blt or
IDirectDrawSurface4::BltFast, the method might fail with
DDERR_WASSTILLDRAWING because the hardware blitter was not ready to
accept the command.

If your application has no urgent business to perform while waiting for the blitter to
come back into a state of readiness, you can specify the DDBLT_WAIT flag in the
dwFlags parameter of Blt, or the equivalent DDBLTFAST_WAIT flag for BltFast.
The flag causes the method to wait until the blit can be handed off to the blitter (or
until an error other than DDERR_WASSTILLDRAWING occurs).

Blt accepts another flag, DDBLT_ASYNC, that takes advantage of any hardware
FIFO (first in, first out) queuing capabilities.

Transparent Blitting
[This is preliminary documentation and subject to change.]

in.doc – page 40

This section discusses the theory and practice of using transparent blitting to copy
parts of a rectangular image selectively, using source and destination color keys.

The concepts are introduced in the following topic:

· What Is Transparent Blitting?

Information about the implementation of transparent blitting in DirectDraw is
contained in the following topics:

· Color Key Format
· Setting Color Keys
· Blitting with Color Keys

What Is Transparent Blitting?
[This is preliminary documentation and subject to change.]

Transparent blitting enables you to create the illusion of nonrectangular blits when
animating sprites. A sprite image is usually nonrectangular, but blits are always
rectangular, so every pixel within the sprite's bounding rectangle becomes part of the
data transfer. With transparent blitting, each pixel that is not part of the sprite image
is treated as transparent when the blitter is moving the image to its destination, so
that it does not overwrite the color in that pixel on the background image.

The artist creating the sprite chooses an arbitrary color or range of colors to be used
as the transparency color key. This is typically a single uncommon color that the
artist doesn't use for anything but transparency, and it is used to fill in all parts of the
sprite rectangle that are not part of the desired image. At run time you set the color
key for the surface containing the sprite. (If you wish, you can automatically set it to
the color of the pixel in the upper left corner of the image.) Subsequent blits can take
advantage of that color key, ignoring the pixels that match it. This type of color key
is known as a source color key.

You can also use a color key on the destination surface, provided the hardware
supports destination color keying. This destination color key is used for pixels that
can be overwritten by a sprite. For example, the artist might be working on a
foreground image that sprites are supposed to pass behind, such as the wall of a room
with a window to the outside. The artist chooses an arbitrary color—one that isn't
used elsewhere in the image—to represent the sky outside the window. When you set
this color key for the destination surface and then blit a sprite to that surface, the
sprite's pixels will overwrite only pixels that are using the destination color key. In
the example, the sprite appears only in the window, but not on the wall or window
frame. As a result, the sprite seems to be outside the room.

Source and destination color keys can be combined. In the example, the sprite could
use a source color key so that its entire bounding rectangle does not block out the
sky background.

in.doc – page 41

Color Key Format
[This is preliminary documentation and subject to change.]

A color key is described in a DDCOLORKEY structure. If the color key is a single
color, both members of this structure should be assigned the same value. Otherwise
the color key is a range of colors.

Color keys are specified using the pixel format of a surface. If a surface is in a
palettized format, the color key is given as an index or a range of indices. If the
surface's pixel format is specified by a FOURCC code that describes a YUV format,
the YUV color key is specified by the three low-order bytes in both the
dwColorSpaceLowValue and dwColorSpaceHighValue members of the
DDCOLORKEY structure. The lowest order byte contains the V data, the second
lowest order byte contains the U data, and the highest order byte contains the Y data.

Some examples of valid color keys follow:

8-bit palettized mode

// Palette entry 26 is the color key.
dwColorSpaceLowValue = 26;
dwColorSpaceHighValue = 26;

24-bit true-color mode

// Color 255,128,128 is the color key.
dwColorSpaceLowValue = RGBQUAD(255,128,128);
dwColorSpaceHighValue = RGBQUAD(255,128,128);

FourCC YUV mode

// Any YUV color where Y is between 100 and 110
// and U or V is between 50 and 55 is transparent.
dwColorSpaceLowValue = YUVQUAD(100,50,50);
dwColorSpaceHighValue = YUVQUAD(110,55,55);

Support for a range of colors rather than a single color is hardware-dependent. Check
the dwCKeyCaps member of the DDCAPS structure for the hardware. The HEL
does not support color ranges.

Some hardware supports color ranges only for YUV pixel data, which is usually
video. The transparent background in video footage (the "blue screen" against which
the subject was photographed) might not be a single pure color, so a range of colors
in the color key is desirable.

Setting Color Keys
[This is preliminary documentation and subject to change.]

You can set the source or destination color key for a surface either when creating it
or afterwards.

in.doc – page 42

To set a color key or keys when creating a surface, you assign the appropriate color
values to one or both of the ddckCKSrcBlt and ddckCKDestBlt members of the
DDSURFACEDESC2 structure that is passed to IDirectDraw4::CreateSurface. To
enable the color key for blitting, you must also include one or both of
DDSD_CKSRCBLT or DDSD_CKDESTBLT in the dwFlags member.

To set a color key for an existing surface you use the
IDirectDrawSurface4::SetColorKey method. You specify a key in the
lpDDColorKey parameter and set either DDCKEY_SRCBLT or
DDCKEY_DESTBLT in the dwFlags parameter to indicated whether you are setting
a source or destination key. If the DDCOLORKEY structure contains a range of
colors, you must also set the DDCKEY_COLORSPACE flag. If this flag is not set,
only the dwColorSpaceLowValue member of the structure is used.

Blitting with Color Keys
[This is preliminary documentation and subject to change.]

If you want to use color keys for surfaces when calling the
IDirectDrawSurface4::BltFast method, you must set one or both of the
DDBLTFAST_SRCCOLORKEY or DDBLTFAST_DESTCOLORKEY flags in the
dwTrans parameter.

In order to use colors keys when calling IDirectDrawSurface4:Blt, you pass one or
both of the DDBLT_KEYSRC or DDBLT_KEYDEST flags in the dwFlags
parameter. Alternatively, you can put the appropriate color values in the
ddckDestColorkey and ddckSrcColorkey members of the DDBLTFX structure
that is passed to the method through the lpDDBltFx parameter. In this case you must
also set the DBLT_KEYSRCOVERRIDE or DDBLT_KEYDESTOVERRIDE flag,
or both, in the dwFlags parameter, so that the selected keys are taken from the
DDBLTFX structure rather than from the surface properties.

Color Fills
[This is preliminary documentation and subject to change.]

In order to fill all or part of a surface with a single color, you can use the
IDirectDrawSurface4::Blt method with the DDBLT_COLORFILL flag. This
technique allows you to quickly erase an area or draw a solid-colored background.

The following example fills an entire surface with the color blue, after obtaining the
numerical value for blue from the pixel format:

/* It is assumed that lpDDS is a valid pointer to
 an IDirectDrawSurface4 interface. */

HRESULT ddrval;
DDPIXELFORMAT ddpf;

ddpf.dwSize = sizeof(ddpf);
if (SUCCEEDED(lpDSS->GetPixelFormat(&ddpf))

in.doc – page 43

{
 DDBLTFX ddbltfx;

 ddbltfx.dwSize = sizeof(ddbltfx);
 ddbltfx.dwFillColor = ddpf.dwBBitMask; // Pure blue

 ddrval = lpDDS->Blt(
 NULL, // Destination is entire surface
 NULL, // No source surface
 NULL, // No source rectangle
 DDBLT_COLORFILL, &ddbltfx);

 switch(ddrval)
 {
 case DDERR_WASSTILLDRAWING:
 .
 .
 .
 case DDERR_SURFACELOST:
 .
 .
 .
 case DD_OK:
 .
 .
 .
 default:
 }
}

Blitting to Multiple Windows
[This is preliminary documentation and subject to change.]

You can use a DirectDraw object and a DirectDrawClipper object to blit to multiple
windows created by an application running at the normal cooperative level. For more
information, see Using a Clipper with Multiple Windows.

Creating multiple DirectDraw objects that blit to each others' primary surface is not
recommended.

Losing and Restoring Surfaces
[This is preliminary documentation and subject to change.]

The surface memory associated with a DirectDrawSurface object may be freed,
while the DirectDrawSurface objects representing these pieces of surface memory

in.doc – page 44

are not necessarily released. When a DirectDrawSurface object loses its surface
memory, many methods return DDERR_SURFACELOST and perform no other
action.

Surfaces can be lost because the display mode was changed or because another
application received exclusive access to the display card and freed all of the surface
memory currently allocated on the card. The IDirectDrawSurface4::Restore
method re-creates these lost surfaces and reconnects them to their
DirectDrawSurface object. If your application uses more than one surface, you can
call the IDirectDraw4::RestoreAllSurfaces method to restore all of your surfaces at
once.

Restoring a surface doesn't reload any bitmaps that may have existed in the surface
prior to being lost. You must completely reconstitute the graphics they once held.

COM Reference Count Semantics for
Surfaces

[This is preliminary documentation and subject to change.]

Being built upon COM means that DirectDraw follows certain rules that employ
reference counts to manage object lifetimes. For a conceptual overview, see the
COM documentation; a DirectDraw-centered discussion of the topic is found in
Parent and Child Object Lifetimes.

By COM rules, when an interface pointer is copied by setting it to another variable
or passing to another object, that copy represents another reference to the object, and
therefore the IUnknown::AddRef method of the interface must be called to reflect
the change. Not only should you follow COM reference counting rules when
working with DirectDraw objects, but you should become familiar with the
situations in which DirectDraw internally updates reference counts. Some
DirectDraw methods—mostly those involving complex surface flipping chains—
affect the reference counts of the surfaces involved, while methods involving
clippers or palettes affect the reference counts of those objects. Knowing about these
situations can make the difference in your application's stability and can prevent
memory leaks. This section presents information divided into the following topics:

· When Reference Counts Will Change
· Reference Counts for Complex Surfaces
· Releasing Surfaces

Note:
There are some things to remember about the reference count of the DirectDraw
object, in addition to the relationships discussed in this section. For more
information, see Parent and Child Object Lifetimes in The DirectDraw Object.

in.doc – page 45

When Reference Counts will Change
[This is preliminary documentation and subject to change.]

There are several DirectDraw methods that affect the reference count of a surface,
and a few that affect other objects you can associate with a surface. You can think of
these situations as "surface-only changes" and "cross-object changes":

Surface-only changes
Surface-only changes, as the name states, only affect the reference count of a
surface object. For example, you might use the IDirectDraw4::EnumSurfaces
to enumerate the current surfaces that fit a particular description. When the
method invokes the callback function that you provide, it passes a pointer to an
IDirectDrawSurface4 interface, but it increments the reference count for the
object before your application receives the pointer. It's your responsibility to
release the object when you are finished with it. This will typically be at the end
of your callback routine, or later if you choose to keep the object.
Most other surface-only changes affect the reference counts of complex
surfaces, such as a flipping chain. Reference counts are a little more tricky for
complex surfaces, because (in most cases) DirectDraw treats a complex surface
as if it was a single object, even though it is a set of surfaces. In short, the
IDirectDrawSurface4::GetAttachedSurface and
IDirectDrawSurface4::AddAttachedSurface methods increment reference
counts of surfaces, and IDirectDrawSurface4::DeleteAttachedSurface
decrements the reference count. These methods don't affect the counts of any
surfaces attached to the current surface. See the references for these methods
and Reference Counts for Complex Surfaces for a additional details.

Cross-object changes
Cross-object reference count changes occur when you create an association
between a surface and another object that performs a task for the surface, such
as a clipper or a palette.
The IDirectDrawSurface4::SetClipper and IDirectDrawSurface4::SetPalette
methods increment the reference count of the object being attached. After they
are attached, the surface manages them; if the surface is released, it
automatically releases any objects it is using. (For this reason, some applications
release the interface for the object after these calls succeed. This is a perfectly
valid practice.)
Once a clipper or palette is attached to a surface, you can call the
IDirectDrawSurface4::GetClipper and IDirectDrawSurface4::GetPalette
methods to retrieve them again. Because these methods return a copy of an
interface pointer, they implicitly increment the reference count for the object
being retrieved. When you're done with the interfaces, don't forget to release
them—the objects that the interfaces represent won't disappear so long as the
surface they are attached to still holds a reference to them.

Reference Counts for Complex Surfaces
[This is preliminary documentation and subject to change.]

in.doc – page 46

The methods you use to manipulate a complex surface like a flipping chain all use
surface interface pointers, and therefore they all affect the reference counts of the
surfaces. Because a complex surface is really a series of single surfaces, the
reference count relationships require a little more consideration. As you might
expect, the IDirectDrawSurface4::GetAttachedSurface method returns the surface
interface for a surface attached to the current surface. It does this after incrementing
the reference count of the interface being retrieved; it's up to you to release the
interface when you no longer need it. The
IDirectDrawSurface4::AddAttachedSurface method attaches a new surface to the
current one. Similarly, AddAttachedSurface increments the count for the surface
being attached. You would use the IDirectDrawSurface4::DeleteAttachedSurface
method to remove the surface from the chain and implicitly decrease its reference
count.

What isn't immediately clear about these methods is that they don't affect the
reference counts of the other objects that make up the complex surface. The
GetAttachedSurface method simply increments the reference count of the surface
it's retrieving, it doesn't affect the counts of the surfaces on which it depends. (The
same situation applies to an explicit call to IUnknown::AddRef.) This means that
the reference count for primary surface in a complex surface can reach zero before
its subordinate surfaces reach zero. When the primary surface reference count
reaches zero, all other surfaces attached to it are released regardless of their current
reference counts. (It's like a tree: if you cut the base, the whole thing falls. In this
case, the primary surface is the base.) Attempts to access subordinate surfaces after
the primary surface has been deallocated will result in memory faults.

To avoid problems, make sure that your application has released all subordinate
surface references before attempting to release the primary surface. It might be
helpful to track the references you application holds, only accessing subordinate
surface interfaces when you're sure that you also hold a reference the primary
surface.

Releasing Surfaces
[This is preliminary documentation and subject to change.]

Like all COM interfaces, you must release surfaces by calling their
IDirectDrawSurface4::Release method when you no longer need them.

Each surface you individually create must be explicitly released. However, if you
implicitly created multiple surfaces with a single call to
IDirectDraw4::CreateSurface, such as a flipping chain, you need only release the
front buffer. In this case, any pointers you might have to back buffer surfaces are
implicitly released and can no longer be used.

Explicitly releasing a back buffer surface doesn't affect the reference count of the
other surfaces in the chain.

in.doc – page 47

Enumerating Surfaces
[This is preliminary documentation and subject to change.]

By calling the IDirectDraw4::EnumSurfaces method you can request that
DirectDraw enumerate surfaces in various ways. The EnumSurfaces method enables
you to look for surfaces that fit, or don't fit, a provided surface description.
DirectDraw calls a EnumSurfacesCallback that you include with the call for each
enumerated surface.

There are two general ways to search—you can search for surfaces that the
DirectDraw object has already created, or for surfaces that the DirectDraw object is
capable of creating at the time (given the surface description and available memory).
You specify what type of search you want by combining flags in the method's
dwFlags parameter.

Enumerating existing surfaces
This is the most common type of enumeration. You enumerate existing surfaces by
calling EnumSurfaces, specifying a combination of the
DDENUMSURFACES_DOESEXIST search-type flag and one of the matching flags
(DDENUMSURFACES_MATCH, DDENUMSURFACES_NOMATCH, or
DDENUMSURFACES_ALL) in the dwFlags parameter. If you're enumerating all
existing surfaces, you can set the lpDDSD parameter to NULL, otherwise set it to the
address of an initialized DDSURFACEDESC2 structure that describes the surface
for which you're looking. You can set the third parameter, lpContext, to an address
that will be passed to the enumeration function you specify in the fourth parameter,
lpEnumSurfacesCallback.

The following code fragment shows what this call might look like to enumerate all
of a DirectDraw object's existing surfaces.

 HRESULT ddrval;
 ddrval = lpDD->EnumSurfaces(DDENUMSURFACES_DOESEXIST |
 DDENUMSURFACES_ALL, NULL, NULL,
 EnumCallback);
 if (FAILED(ddrval))
 return FALSE;

When searching for existing surfaces that fit a specific description, DirectDraw
determines a match by comparing each member of the provided surface description
to those of the existing surfaces. Only exact matches are enumerated. DirectDraw
increments the reference counts of the enumerated surfaces, so make sure to release
a surface if you don't plan to use it (or when you're done with it).

Enumerating possible surfaces
This type of enumeration is less common than enumerating existing surfaces, but it
can be helpful to determine if a surface is supported before you attempt to create it.
To perform this search, combine the DDENUMSURFACES_CANBECREATED and
DDENUMSURFACES_MATCH flags when you call
IDirectDraw4::EnumSurfaces (no other flag combinations are valid). The

in.doc – page 48

DDSURFACEDESC2 structure you use with the call must be initialized to contain
information about the surface characteristics that DirectDraw will use.

To enumerate surfaces that use a particular pixel format, include the
DDSD_PIXELFORMAT flag in the dwFlags member of the DDSURFACEDESC2
structure. Additionally, initialize the DDPIXELFORMAT structure in the surface
description and set its dwFlags member to contain the desired pixel format flags—
DDPF_RGB, DDPF_YUV, or both. You need not set any other pixel format values.

If you include the DDSD_HEIGHT and DDSD_WIDTH flags in the
DDSURFACEDESC2 structure, you can specify the desired dimensions in the
dwHeight and dwWidth members. If you exclude these flags, DirectDraw uses the
dimensions of the primary surface.

The following code fragment shows what this call could look like to enumerate all
valid surface characteristics for 9696 RGB or YUV surfaces:

 DDSURFACEDESC2 ddsd;
 HRESULT ddrval;
 ZeroMemory(&ddsd, sizeof(ddsd));

 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_PIXELFORMAT |
 DDSD_HEIGHT | DDSD_WIDTH;
 ddsd.ddpfPixelFormat.dwFlags = DDPF_YUV | DDPF_RGB;
 ddsd.dwHeight = 96;
 ddsd.dwWidth = 96;

 ddrval = lpDD->EnumSurfaces(
 DDENUMSURFACES_CANBECREATED | DDENUMSURFACES_MATCH,
 &ddsd, NULL, EnumCallback);
 if (ddrval != DD_OK)
 return FALSE;

When DirectDraw enumerates possible surfaces, it actually attempts to create a
temporary surface that has the desired characteristics. If the attempt succeeds, then
DirectDraw calls the provided EnumSurfacesCallback function with only the
characteristics that worked; it does not provide the callback function with pointer to
the temporary surface. Do not assume that a surface isn't supported if it isn't
enumerated. DirectDraw's attempt to create a temporary surface could fail due to
memory constraints that exist at the time of the call, resulting in those characteristics
not being enumerated, even if the driver actually supports them.

Updating Surface Characteristics
[This is preliminary documentation and subject to change.]

You can update the characteristics of an existing surface by using the
IDirectDrawSurface4::SetSurfaceDesc method. With this method, you can change

in.doc – page 49

the pixel format and location of a DirectDrawSurface object's surface memory to
system memory that your application has explicitly allocated. This is useful as it
allows a surface to use data from a previously allocated buffer without copying. The
new surface memory is allocated by the client application and, as such, the client
application must also deallocate it.

When calling the IDirectDrawSurface4::SetSurfaceDesc method, the lpddsd
parameter must be the address of a DDSURFACEDESC2 structure that describes
the new surface memory as well as a pointer to that memory. Within the structure,
you can only set the dwFlags member to reflect valid members for the location of
the surface memory, dimensions, pitch, and pixel format. Therefore, dwFlags can
only contain combinations of the DDSD_WIDTH, DDSD_HEIGHT, DDSD_PITCH,
DDSD_LPSURFACE, and DDSD_PIXELFORMAT flags, which you set to indicate
valid structure members.

Before you set the values in the structure, you must allocate memory to hold the
surface. The size of the memory you allocate is important. Not only do you need to
allocate enough memory to accommodate the surface's width and height, but you
need to have enough to make room for the surface pitch, which must be a QWORD
(8 byte) multiple. Remember, pitch is measured in bytes, not pixels.

When setting surface values in the structure, the lpSurface member is a pointer to
the memory you allocated and the dwHeight and dwWidth members describe the
surface dimensions in pixels. If you specify surface dimensions, you must fill the
lPitch member to reflect the surface pitch as well. Pitch must be a DWORD
multiple. Likewise, if you specify pitch, you must also specify a width value. Lastly,
the ddpfPixelFormat member describes the pixel format for the surface. With the
exception of the lpSurface member, if you don't specify a value for these members,
the method defaults to using the value from the current surface.

There are some restrictions you must be aware of when using
IDirectDrawSurface4::SetSurfaceDesc, some of which are common sense. For
example, the lpSurface member of the DDSURFACEDESC2 structure must be a
valid pointer to a system memory (the method doesn't support video memory
pointers at this time). Also, the dwWidth and dwHeight members must be nonzero
values. Lastly, you cannot reassign the primary surface or any surfaces within the
primary's flipping chain.

You can set the same memory for multiple DirectDrawSurface objects, but you must
take care that the memory is not deallocated while it is assigned to any surface
object.

Using the SetSurfaceDesc method incorrectly will cause unpredictable behavior.
The DirectDrawSurface object will not deallocate surface memory that it didn't
allocate. Therefore, when the surface memory is no longer needed, it is your
responsibility to deallocate it. However, when SetSurfaceDesc is called, DirectDraw
frees the original surface memory that it implicitly allocated when creating the
surface.

in.doc – page 50

Accessing Surface Memory Directly
[This is preliminary documentation and subject to change.]

You can directly access the frame buffer or off-screen surface memory by using the
IDirectDrawSurface4::Lock method. When you call this method, the lpDestRect
parameter is a pointer to a RECT structure that describes the rectangle on the
surface you want to access directly. To request that the entire surface be locked, set
lpDestRect to NULL. Also, you can specify a RECT that covers only a portion of
the surface. Providing that no two rectangles overlap, two threads or processes can
simultaneously lock multiple rectangles in a surface.

The Lock method fills a DDSURFACEDESC2 structure with all the information
you need to properly access the surface memory. The structure includes information
about the pitch (or stride) and the pixel format of the surface, if different from the
pixel format of the primary surface. When you finish accessing the surface memory,
call the IDirectDrawSurface4::Unlock method to unlock it.

While you have a surface locked, you can directly manipulate the contents. The
following list describes some tips for avoiding common problems with directly
rendering surface memory:

· Never assume a constant display pitch. Always examine the pitch information
returned by the IDirectDrawSurface4::Lock method. This pitch can vary for a
number of reasons, including the location of the surface memory, the type of
display card, or even the version of the DirectDraw driver. For more
information, see Width vs. Pitch.

· Make certain you blit to unlocked surfaces. DirectDraw blit methods will fail,
returning DDERR_SURFACEBUSY or DDERR_LOCKEDSURFACES, if
called on a locked surface. Similarly, GDI blit functions fail without returning
error values if called on a locked surface that exists in display memory.

· Limit your application's activity while a surface is locked. While a surface is
locked, DirectDraw often holds the Win16Mutex (also known as the
Win16Lock) so that gaining access to surface memory can occur safely. The
Win16Mutex serializes access to GDI and USER dynamic-link libraries,
shutting down Windows for the duration between the
IDirectDrawSurface4::Lock and IDirectDrawSurface4::Unlock calls. The
IDirectDrawSurface4::GetDC method implicitly calls Lock, and the
IDirectDrawSurface4::ReleaseDC implicitly calls Unlock.

· Always copy data aligned to display memory. (Windows 95 and Windows 98
use a page fault handler, Vflatd.386, to implement a virtual flat-frame buffer for
display cards with bank-switched memory. The handler allows these display
devices to present a linear frame buffer to DirectDraw. Copying data unaligned
to display memory can cause the system to suspend operations if the copy spans
memory banks.)

Unless you include the DDLOCK_NOSYSLOCK flag when you call the Lock
method, locking the surface typically causes DirectDraw to take the Win16Mutex.

in.doc – page 51

During the Win16Mutex all other applications, including Windows, cease execution.
Since the Win16Mutex stops applications from executing, standard debuggers cannot
be used while the lock is held. Kernel debuggers can be used during this period.
DirectDraw always takes the Win16Mutex when locking the primary surface.

If a blit is in progress when you call IDirectDrawSurface4::Lock, the method will
return immediately with an error, as a lock cannot be obtained. To prevent the error,
use the DDLOCK_WAIT flag to cause the method to wait until a lock can be
successfully obtained.

Locking portions of the primary surface can interfere with the display of a software
cursor. If the cursor intersects the locked rectangle, it is hidden for the duration of
the lock. If it doesn't intersect the rectangle, it is frozen for the duration of the lock.
Neither of these effects occurs if the entire surface is locked.

Gamma and Color Controls
[This is preliminary documentation and subject to change.]

This section contains information about the gamma and color control interfaces used
with DirectDrawSurface objects. Information is organized into the following topics:

· What Are Gamma and Color Controls?
· Using Gamma Controls
· Using Color Controls

Note
You should not attempt to use both the IDirectDrawGammaControl and
IDirectDrawColorControl interfaces on a single surface. Their effects are
undefined when used together.

What Are Gamma and Color Controls?
[This is preliminary documentation and subject to change.]

Through the gamma and color control interfaces, DirectDrawSurface objects enable
you to change how the system displays the contents of the surface, without affecting
the contents of the surface itself. You can think of these controls as very simple
filters that DirectDraw applies to the data as it leaves a surface before being rendered
on the screen. Surface objects implement the IDirectDrawGammaControl and
IDirectDrawColorControl interfaces which expose methods to adjust how the
surface's contents are filtered. You can retrieve a pointer to either interface by using
the IUnknown::QueryInterface method of the target surface, specifying the
IID_IDirectDrawGammaControl or IID_IDirectDrawColorControl reference
identifiers.

Gamma controls, represented by the IDirectDrawGammaControl interface, make it
possible for you to dynamically change how a surface's individual red, green, and
blue levels map to the actual levels that the system displays. By setting gamma

in.doc – page 52

levels, you can cause the user's screen to flash colors—red when the user's character
is shot, green when they pick up a new item, and so on—without blitting new images
to the frame buffer to achieve the effect. Or, you might adjust color levels to apply a
color bias to the images in the frame buffer. Although this interface is similar to the
color control interface, this one is the easiest to use, making it the best choice for
game applications. For details, see Using Gamma Controls.

The IDirectDrawColorControl interface allows you to control color in a surface
much like the color controls you might find on a television. The similarity between
IDirectDrawColorControl and the actual controls on a TV is no mistake—this
interface is most appropriate for adjusting how broadcast video looks in an overlay
surface, so it makes sense that it should provide similar control over colors. You can
use color controls to allow a user to change video characteristics such as hue,
saturation, contrast, and several others. For more information, see Using Color
Controls.

Using Gamma Controls
[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl interface, which you retrieve by querying the
surface with the IID_IDirectDrawGammaControl reference identifier, allows you to
manipulate ramp levels that affect the red, green, and blue color components of
pixels from the surface before they are sent to the digital-to-analog converter (DAC)
for display. Although all surface types support the IDirectDrawGammaControl
interface, you are only allowed to adjust gamma on the primary surface. Attempts to
call IDirectDrawGammaControl::GetGammaRamp or
IDirectDrawGammaControl::SetGammaRamp on a surface other than the
primary surface will fail.

In the following topics, this section describes the general concept of ramp levels, and
provides information about working with those levels through the methods of
IDirectDrawGammaControl:

· About Gamma Ramp Levels
· Detecting Gamma Ramp Support
· Setting and Retrieving Gamma Ramp Levels

About Gamma Ramp Levels
[This is preliminary documentation and subject to change.]

A gamma ramp in DirectDraw is a term used to describe a set of values that map the
level of a particular color component (red, green, blue) for all pixels in the frame
buffer to new levels that are received by the digital-to-analog converter (DAC) for
display on the monitor. The remapping is performed by way of three simple look-up
tables, one for each color component.

Here's how it works: DirectDraw takes a pixel from the frame buffer, and looks at it
in terms of its individual red, green, and blue color components. Each component is

in.doc – page 53

represented by a value from 0 to 65535. DirectDraw takes the original value, and
uses it to index into an 256-element array (the ramp), where each element contains a
value that replaces the original one. DirectDraw performs this "look-up and replace"
process for each color component of each pixel within the frame buffer, thereby
changing the final colors for all of the on-screen pixels.

It's handy to visualize the ramp values by graphing them. The left graph of the two
following graphs shows a ramp that doesn't modify colors at all, and the right graph
shows a ramp that imposes a negative bias to the color component to which it is
applied.

0
0 65535

65535

Input Color Level

Output
Color
Level

0
0 65535

65535

Input Color Level

Output
Color
Level

The array elements for the graph on the left would contain values identical to their
index (0 in the element at index 0, and 65535 at index 255). This type of ramp is the
default, as it doesn't change the input values before they're displayed. The right
graph is a little more interesting; its ramp contains values that range from 0 in the
first element to 32768 in the last element, with values ranging relatively uniformly in
between. The effect is that the color component that uses this ramp appears muted on
the display. You are not limited to using linear graphs; if your application needs to
assign arbitrary mapping, it's free to do so. You can even set the entries to all zeroes
to leech a particular color component completely from the display.

Detecting Gamma Ramp Support
[This is preliminary documentation and subject to change.]

You can determine whether the hardware supports dynamic gamma ramp adjustment
by calling the IDirectDraw4::GetCaps method. After the call, if the
DDCAPS2_PRIMARYGAMMA flag is present in the dwFlags2 member of the
associate DDCAPS structure, the hardware supports dynamic gamma ramps.
DirectDraw does not attempt to emulate this feature, so if the hardware doesn't
support it, you can't use it.

Setting and Retrieving Gamma Ramp Levels
[This is preliminary documentation and subject to change.]

in.doc – page 54

Gamma ramp levels are effectively look-up tables that DirectDraw uses to map the
frame buffer color components to new levels that will be displayed. For more
information, see About Gamma Ramp Levels. You set and retrieve ramp levels for
the primary surface by calling the IDirectDrawGammaControl::SetGammaRamp
and IDirectDrawGammaControl::GetGammaRamp methods. Both methods
accept two parameters, but the first parameter is reserved for future use, and should
be set to zero. The second parameter, lpRampData, is the address of a
DDGAMMARAMP structure. The DDGAMMARAMP structure contains three
256-element arrays of WORDs, one array each to contain the red, green, and blue
gamma ramps.

You can include the DDSGR_CALIBRATE value when calling the
IDirectDrawGammaControl::SetGammaRamp to invoke the calibrator when
setting new gamma levels. Calibrating gamma ramps incurs some processing
overhead, and should not be used frequently. Setting a calibrated gamma ramp will
provide a consistent and absolute gamma value for the viewer, regardless of the
display adapter and monitor.

Not all systems support gamma calibration. To determine if gamma calibration is
supported, call IDirectDraw4::GetCaps, and examine the dwCaps2 member of the
associated DDCAPS structure after the method returns. If the
DDCAPS2_CANCALIBRATEGAMMA capability flag is present, then gamma
calibration is supported.

When setting new ramp levels, keep in mind that that the levels you set in the arrays
are only used when your application is in full-screen, exclusive mode. Whenever
your application changes to normal mode, the ramp levels are set aside, taking effect
again when the application reinstates full-screen mode. In addition, remember that
you cannot set ramp levels for any surface other than the primary.

Note
Those very familiar with the Win32® API might wonder why DirectDraw
exposes an interface like IDirectDrawGammaControl, when Win32 offers the
GetDeviceGammaRamp and SetDeviceGammaRamp functions for the same
surfaces. Although the Win32 API includes these functions, they do not always
succeed on all Windows platforms like the methods of the
IDirectDrawGammaControl interface.

Using Color Controls
[This is preliminary documentation and subject to change.]

You set and retrieve surface color controls through the IDirectDrawColorControl
interface, which can be retrieved by querying the DirectDrawSurface object using
the IID_IDirectDrawColorControl reference identifier.

Color control information is represented by a DDCOLORCONTROL structure,
which is used with both methods of the interface,
IDirectDrawColorControl::SetColorControls and
IDirectDrawColorControl::GetColorControls. The first structure member,

in.doc – page 55

dwSize, should be set to the size of the structure, in bytes, before you use it. How
you use the next member, dwFlags, depends on whether you are setting or retrieving
color controls. If you are setting new color controls, set dwFlags to a combination of
the appropriate flags to indicate which of the other structure members contain valid
data that you've set. However, when retrieving color controls, you don't need to set
the dwFlags before using it—it will contain flags telling you which members are
valid after the IDirectDrawColorControl::GetColorControls method returns.

The remaining DDCOLORCONTROL structure members can contain values that
describe the brightness, contrast, hue, saturation, sharpness, gamma, and whether
color is used. Note that the structure contains information about gamma correction.
This is a single gamma value that affects overall brightness, and it should not be
confused with the gamma adjustment features provided through the
IDirectDrawGammaControl interface.

Overlay Surfaces
[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw overlay surface support. The
following topics are discussed:

· Overlay Surface Overview
· Significant DDCAPS Members and Flags
· Source and Destination Rectangles
· Boundary and Size Alignment
· Minimum and Maximum Stretch Factors
· Overlay Color Keys
· Positioning Overlay Surfaces
· Creating Overlay Surfaces
· Overlay Z-Orders
· Flipping Overlay Surfaces

For information about implementing overlay surfaces, see Tutorial 6: Using Overlay
Surfaces.

Overlay Surface Overview
[This is preliminary documentation and subject to change.]

Overlay surfaces, casually referred to as overlays, are surfaces with special
hardware-supported capabilities. Overlay surfaces are frequently used to display live
video, recorded video, or still bitmaps over the primary surface without blitting to
the primary surface or changing the primary surface's contents in any way. Overlay
surface support is provided entirely by the hardware; DirectDraw supports any

in.doc – page 56

capabilities as reported by the display device driver. DirectDraw does not emulate
overlay surfaces.

An overlay surface is analogous to a clear piece of plastic that you draw on and place
in front of the monitor. When the overlay is in front of the monitor, you can see both
the overlay and the contents of the primary surface together, but when you remove it,
the primary surface's contents are unchanged. In fact, the mechanics of overlays
work much like the clear plastic analogy. When you display an overlay surface,
you're telling the device driver where and how you want it to be visible. While the
display device paints scan lines to the monitor, it checks the location of each pixel in
the primary surface to see if an overlay should be visible there instead. If so, the
display device substitutes data from the overlay surface for the corresponding pixel,
as shown in the following illustration.

Monitor

scanning
primary

scanning overlay

Primary Surface

Overlay
Surface

By using this method, the display adapter produces a composite of the primary
surface and the overlay on the monitor, providing transparency and stretching
effects, without modifying the contents of either surface. The composited surfaces
are injected into the video stream and sent directly to the monitor. Because this on-
the-fly processing and pixel substitution is handled at the hardware level, no
noticeable performance loss occurs when displaying overlays. Additionally, this
method makes it possible to seamlessly composite primary and overlay surfaces with
different pixel formats.

You create overlay surfaces by calling the IDirectDraw4::CreateSurface method,
specifying the DDSCAPS_OVERLAY flag in the associated DDSCAPS2 structure.

in.doc – page 57

Overlay surfaces can only be created in video memory, so you must also include the
DDSCAPS_VIDEOMEMORY flag. As with other types of surfaces, by including the
appropriate flags you can create either a single overlay or a flipping chain made up
of multiple overlay surfaces.

Significant DDCAPS Members and Flags
[This is preliminary documentation and subject to change.]

You can retrieve information about the supported overlay features by calling the
IDirectDraw4::GetCaps method. The method fills a DDCAPS structure with
information describing all features.

When reporting hardware features, the device driver sets flags in the dwCaps
structure member to indicate when a given type of restriction is enforced by the
hardware. After retrieving the driver capabilities, examine the flags in the dwCaps
member for information about which restrictions apply. The DDCAPS structure
contains nine members that carry information describing hardware restrictions for
overlay surfaces. The following table lists the overlay related members and their
corresponding flags:

Member Flag

dwMaxVisibleOverlays This member is always valid
dwCurrVisibleOverlays This member is always valid
dwAlignBoundarySrc DDCAPS_ALIGNBOUNDARYSRC
dwAlignSizeSrc DDCAPS_ALIGNSIZESRC
dwAlignBoundaryDest DDCAPS_ALIGNBOUNDARYDEST
dwAlignSizeDest DDCAPS_ALIGNSIZEDEST
dwAlignStrideAlign DDCAPS_ALIGNSTRIDE
dwMinOverlayStretch DDCAPS_OVERLAYSTRETCH
dwMaxOverlayStretch DDCAPS_OVERLAYSTRETCH

The dwMaxVisibleOverlays and dwCurrVisibleOverlays members carry
information about the maximum number of overlays the hardware can display, and
how many of them are currently visible.

Additionally, the hardware reports rectangle position and size alignment restrictions
in the dwAlignBoundarySrc, dwAlignSizeSrc, dwAlignBoundaryDest,
dwAlignSizeDest, and dwAlignStrideAlign members. The values in these members
dictate how you must size and position source and destination rectangles when
displaying overlay surfaces. For more information, see Source and Destination
Rectangles and Boundary and Size Alignment.

Also, the hardware reports information about stretch factors in the
dwMinOverlayStretch and dwMaxOverlayStretch members. For more
information, see Minimum and Maximum Stretch Factors.

in.doc – page 58

Source and Destination Rectangles
[This is preliminary documentation and subject to change.]

To display an overlay surface, you call the overlay surface's
IDirectDrawSurface4::UpdateOverlay method, specifying the DDOVER_SHOW
flag in the dwFlags parameter. The method requires you to specify a source and
destination rectangle in the lpSrcRect and lpDestRect parameters. The source
rectangle describes a rectangle on the overlay surface that will be visible on the
primary surface. To request that the method use the entire surface, set the lpSrcRect
parameter to NULL. The destination rectangle describes a portion of the primary
surface on which the overlay surface will be displayed.

Source and destination rectangles do not need to be the same size. You can often
specify a destination rectangle smaller or larger than the source rectangle, and the
hardware will shrink or stretch the overlay appropriately when it is displayed.

To successfully display an overlay surface, you might need to adjust the size and
position of both rectangles. Whether this is necessary depends on the restrictions
imposed by the device driver. For more information, see Boundary and Size
Alignment and Minimum and Maximum Stretch Factors.

Boundary and Size Alignment
[This is preliminary documentation and subject to change.]

Due to various hardware limitations, some device drivers impose restrictions on the
position and size of the source and destination rectangles used to display overlay
surfaces. To find out which restrictions apply for a device, call the
IDirectDraw4::GetCaps method and then examine the overlay-related flags in the
dwCaps member of the DDCAPS structure. The following table shows the members
and flags specific to boundary and size alignment restrictions:

Category Flag Member

Boundary
(position)
restrictions

DDCAPS_ALIGNBOUNDARYSRC dwAlignBoundarySrc

DDCAPS_ALIGNBOUNDARYDEST dwAlignBoundaryDest
Size restrictions DDCAPS_ALIGNSIZESRC dwAlignSizeSrc

DDCAPS_ALIGNSIZEDEST dwAlignSizeDest

There are two types of restrictions, boundary restrictions and size restrictions. Both
types of restrictions are expressed in terms of pixels (not bytes) and can apply to the
source and destination rectangles. Also, these restrictions can vary depending on the
pixel formats of the overlay and primary surface.

Boundary restrictions affect where you can position a source or destination rectangle.
The values in the dwAlignBoundarySrc and dwAlignBoundaryDest members tell
you how to align the top left corner of the corresponding rectangle. The x-coordinate

in.doc – page 59

of the top left corner of the rectangle (the left member of the RECT structure), must
be a multiple of the reported value.

Size restrictions affect the valid widths for source and destination rectangles. The
values in the dwAlignSizeSrc and dwAlignSizeDest members tell you how to align
the width, in pixels, of the corresponding rectangle. Your rectangles must have a
pixel width that is a multiple of the reported value. If you stretch the rectangle to
comply with a minimum required stretch factor, be sure that the stretched rectangle
is still size aligned. After stretching the rectangle, align its width by rounding up, not
down, so you preserve the minimum stretch factor. For more information, see
Minimum and Maximum Stretch Factors.

Minimum and Maximum Stretch Factors
[This is preliminary documentation and subject to change.]

Due to hardware limitations, some devices restrict how wide a destination rectangle
can be compared with the corresponding source rectangle. DirectDraw
communicates these restrictions as stretch factors. A stretch factor is the ratio
between the widths of the source and destination rectangles. If the driver provides
information about stretch factors, it sets the DDCAPS_OVERLAYSTRETCH flag in
the DDCAPS structure after you call the IDirectDraw4::GetCaps method. Note
that stretch factors are reported multiplied by 1000, so a value of 1300 actually
means 1.3 (and 750 would be 0.75).

Devices that do not impose limits on stretching or shrinking an overlay destination
rectangle often report a minimum and maximum stretch factor of 0.

The minimum stretch factor tells you how much wider or narrower than the source
rectangle the destination rectangle needs to be. If the minimum stretch factor is
greater than 1000, then you must increase the destination rectangle's width by that
ratio. For instance, if the driver reports 1300, you must make sure that the
destination rectangle's width is at least 1.3 times the width of the source rectangle.
Similarly, a minimum stretch factor less than 1000 indicates that the destination
rectangle can be smaller than the source rectangle by that ratio.

The maximum stretch factor tells the maximum amount you can stretch the width of
the destination rectangle. For example, if the maximum stretch factor is 2000, you
can specify destination rectangles that are up to, but not wider than, twice the width
of the source rectangle. If the maximum stretch factor is less than 1000, then you
must shrink the width of the destination rectangle by that ratio to be able to display
the overlay.

After stretching, the destination rectangle must conform to any size alignment
restrictions the device might require. Therefore, it's a good idea to stretch the
destination rectangle before adjusting it to be size aligned. For more information, see
Boundary and Size Alignment.

Hardware does not require that you adjust the height of destination rectangles. You
can increase a destination rectangle's height to preserve aspect ratio without negative
effects.

in.doc – page 60

Overlay Color Keys
[This is preliminary documentation and subject to change.]

Like other types of surfaces, overlay surfaces use source and destination color keys
for controlling transparent blit operations between surfaces. Because overlay
surfaces are not displayed by blitting, there needs to be a different way to control
how an overlay surface is displayed over the primary surface when you call the
IDirectDrawSurface4::UpdateOverlay method. This need is filled by overlay color
keys. Overlay color keys, like their blit-related counterparts, have a source version
and a destination version that you set by calling the
IDirectDrawSurface4::SetColorKey method. (For more information, see Setting
Color Keys.) You use the DDCKEY_SRCOVERLAY or
DDCKEY_DESTOVERLAY flags to set a source or destination overlay color key.
Overlay surfaces can employ blit and overlay color keys together to control blit
operations and overlay display operations appropriately; the two types of color keys
do not conflict with one another.

The IDirectDrawSurface4::UpdateOverlay method uses the source overlay color
key to determine which pixels in the overlay surface should be considered
transparent, allowing the contents of the primary surface to show through. Likewise,
the method uses the destination overlay color key to determine the parts of the
primary surface that will be covered up by the overlay surface when it is displayed.
The resulting visual effect is the same as that created by blit-related color keys.

Positioning Overlay Surfaces
[This is preliminary documentation and subject to change.]

After initially displaying an overlay by calling the
IDirectDrawSurface4::UpdateOverlay method, you can update the destination
rectangle's by calling the IDirectDrawSurface4::SetOverlayPosition method.

Make sure that the positions you specify comply with any boundary alignment
restrictions enforced by the hardware. For more information, see Boundary and Size
Alignment. Also remember that SetOverlayPosition doesn't perform clipping for
you; using coordinates that would potentially make the overlay run off the edge of
the target surface will cause the method to fail, returning
DDERR_INVALIDPOSITION.

Creating Overlay Surfaces
[This is preliminary documentation and subject to change.]

Like all surfaces, you create an overlay surface by calling the
IDirectDraw4::CreateSurface method. To create an overlay, include the
DDSCAPS_OVERLAY flag in the associated DDSCAPS2 structure.

Overlay support varies widely across display devices. As a result, you cannot be sure
that a given pixel format will be supported by most drivers and must therefore be
prepared to work with a variety of pixel formats. You can request information about

in.doc – page 61

the non-RGB formats that a driver supports by calling the
IDirectDraw4::GetFourCCCodes method.

When you attempt to create an overlay surface, it is advantageous to try creating a
surface with the most desirable pixel format, falling back on other pixel formats if a
given pixel format isn't supported.

You can create overlay surface flipping chains. For more information, see Creating
Complex Surfaces and Flipping Chains.

Overlay Z-Orders
[This is preliminary documentation and subject to change.]

Overlay surfaces are assumed to be on top of all other screen components, but when
you display multiple overlay surfaces, you need some way to visually organize them.
DirectDraw supports overlay z-ordering to manage the order in which overlays clip
each other. Z-order values represent conceptual distances from the primary surface
toward the viewer. They range from 0, which is just on top of the primary surface, to
4 billion, which is as close to the viewer as possible, and no two overlays can share
the same z-order. You set z-order values by calling the
IDirectDrawSurface4::UpdateOverlayZOrder method.

Destination color keys are affected only by the bits on the primary surface, not by
overlays occluded by other overlays. Source color keys work on an overlay whether
or not a z-order was specified for the overlay.

Overlays without a specified z-order are assumed to have a z-order of 0. Overlays
that do not have a specified z-order behave in unpredictable ways when overlaying
the same area on the primary surface.

A DirectDraw object does not track the z-orders of overlays displayed by other
applications.

Note
You can ensure proper clipping of multiple overlay surfaces by calling
UpdateOverlayZOrder in response to WM_KILLFOCUS messages. When you
receive this message, set your overlay surface to the rearmost z-order position
by calling the UpdateOverlayZOrder method with the dwFlags parameter set
to DDOVERZ_SENDTOBACK.

Flipping Overlay Surfaces
[This is preliminary documentation and subject to change.]

Like other types of surfaces, you can create overlay flipping chains. After creating a
flipping chain of overlays, call the IDirectDrawSurface4::Flip method to flip
between them. For more information, see Flipping Surfaces.

Software decoders displaying video with overlay surfaces can use the DDFLIP_ODD
and DDFLIP_EVEN flags when calling the Flip method to use features that reduce

in.doc – page 62

motion artifacts. If the driver supports odd-even flipping, the
DDCAPS2_CANFLIPODDEVEN flag will be set in the DDCAPS structure after
retrieving driver capabilities. If DDCAPS2_CANFLIPODDEVEN is set, you can
include the DDOVER_BOB flag when calling the
IDirectDrawSurface4::UpdateOverlay method to inform the driver that you want
it to use the "Bob" algorithm to minimize motion artifacts. Later, when you call Flip
with the DDFLIP_ODD or DDFLIP_EVEN flag, the driver will automatically adjust
the overlay source rectangle to compensate for jittering artifacts.

If the driver doesn't set the DDCAPS2_CANFLIPODDEVEN flag when you retrieve
hardware capabilities, UpdateOverlay will fail if you specify the DDOVER_BOB
flag.

For more information about the Bob algorithm, see Solutions to Common Video
Artifacts.

Compressed Texture Surfaces
[This is preliminary documentation and subject to change.]

A surface can contain a bitmap to be used for texturing 3-D objects. When creating
the surface you must specify the DDSCAPS_TEXTURE flag in the dwFlags
member of the DDSCAPS structure.

For more information on the use of textures in Direct3D Immediate Mode, see
Textures.

In order to reduce the amount of memory consumed by textures, DirectDraw
supports the compression of texture surfaces.

Some Direct3D devices support compressed texture surfaces natively. On such
devices, once you have created a compressed surface and loaded the data into it, the
surface can be used in Direct3D just like any other texture surface. Direct3D handles
decompression when the texture is mapped to a 3-D object.

Other devices do not support compressed texture surfaces natively. When using such
devices, you may still find it useful to use compressed surfaces to represent textures
on disk or for textures that are loaded into memory but not currently being used. You
can use DirectDraw to convert the compressed textures to an uncompressed format
before giving the texture to Direct3D.

For more information on texture compression in DirectDraw, see the following
topics:

· Creating Compressed Textures
· Decompressing Compressed Textures
· Transparency in Blits to Compressed Textures
· Compressed Texture Formats

For information on using compressed textures in Direct3D Immediate Mode, see
Texture Compression.

in.doc – page 63

Creating Compressed Textures
[This is preliminary documentation and subject to change.]

To describe a compressed texture surface in the DDSURFACEDESC2 structure
when creating the surface, you must include the following steps:

· Specify the DDSCAPS_TEXTURE flag in the dwFlags member of the
DDSCAPS structure, just as you would for any texture.

· Set the dwFourCC member of the DDPIXELFORMAT structure to one of the
DXT codes described later.

· Include DDPF_FOURCC in the dwFlags member of DDPIXELFORMAT. Do
not set the DDPF_RGB flag.

· Specify a width and height that are a multiple of 4 pixels.

There are two ways to load image data into a compressed texture surface:

· Create a regular RGB or ARGB surface and load a normal bitmap into it, then
use IDirectDrawSurface4::Blt or IDirectDrawSurface4::BltFast to blit from
the uncompressed surface to the compressed surface. DirectDraw does the
compression for you.

· Load the compressed data from a file and copy it directly into the surface
memory. (See Accessing Surface Memory Directly.) You can create and convert
compressed texture (DDS) files using the DirectX Texture Tool (Dxtex.exe)
supplied with the Programmer's Reference. You can also create your own DDS
files and either copy the data from compressed surfaces or else use your own
routines to convert regular bitmap data to one of the compressed formats.

Note
When you call IDirectDrawSurface4::Lock or
IDirectDrawSurface4::GetSurfaceDesc on a compressed surface, the
DDSD_LINEARSIZE flag is set in the dwFlags member of the
DDSURFACEDESC structure, and the dwLinearSize member contains the
number of bytes allocated to contain the compressed surface data. The
dwLinearSize parameter resides in a union with the lPitch parameter, so these
parameters are mutually exclusive, as are the flags DDSD_LINEARSIZE and
DDSD_PITCH.
The advantage of this behavior is that an application can copy the contents of a
compressed surface to a file without having to calculate for itself how much
storage is required for a surface of a particular width and height in the specific
format.

The following table shows the five types of compressed textures. For more
information on how the data is stored (you need to know this only if you are writing
your own compression routines) see Compressed Texture Formats.

FOURCC Description Alpha

in.doc – page 64

premultiplied?

DXT1 Opaque / one-bit alpha n/a
DXT2 Explicit alpha Yes
DXT3 Explicit alpha No
DXT4 Interpolated alpha Yes
DXT5 Interpolated alpha No

Note
When you blit from a non-premultiplied format to a premultiplied format,
DirectDraw scales the colors based on the alpha values. Blitting from a
premultiplied format to a non-premultiplied format is not supported. If you try to
blit from a premultiplied-alpha source to a non-premultiplied-alpha destination,
the method will return DDERR_INVALIDPARAMS. If you blit from a
premultiplied-alpha source to a destination that has no alpha, the source color
components, which have been scaled by alpha, will be copied as is.

Decompressing Compressed Textures
[This is preliminary documentation and subject to change.]

As with compressing a texture surface, decompressing a compressed texture is
performed through DirectDraw blitting services. The HEL performs decompressing
blits between system memory surfaces, so these always supported. Likewise, the
HEL always performs blits for compressed managed textures (the
DDSCAPS2_TEXTUREMANAGE capability). For other situations, the restrictions
discussed in the following paragraphs apply.

If the driver supports the creation of compressed video-memory surfaces, then the
driver can also perform decompressing blits from a compressed video-memory
surface to an uncompressed video or system memory surface, so long as the
destination surface has the DDSCAPS_OFFSCREENPLAIN capability.

Blits from compressed system-memory surfaces to uncompressed video-memory
surfaces are largely unsupported and should not be attempted, even when the driver
supports compressed textures. This does not mean that it is impossible to decompress
a compressed system-memory surface and move its contents into a video memory
surface; it merely requires an additional step:

Û To decompress a system memory surface into
video memory:

1. Create an uncompressed, offscreen-plain, surface in system memory of the
desired dimensions and pixel format.

2. Blit from the compressed system-memory surface to the uncompressed system-
memory surface. (The DirectDraw HEL performs decompression in this case.)

3. Blit the uncompressed surface to the uncompressed video-memory surface.

in.doc – page 65

Transparency in Blits to Compressed Textures
[This is preliminary documentation and subject to change.]

DirectDraw provides a special trick for creating compressed textures with alpha from
plain RGB surfaces. If a source color key is provided on the source RGB surface,
DirectDraw assigns an alpha value of 0 to all pixels of that color in the destination.
This technique is especially useful for creating DXT1 textures, since they effectively
have only 1 bit of alpha information per pixel.

Note
There are no flags that control this behavior. If you do not want any
transparency in your compressed texture, do not set a source color key on the
source surface.

Compressed Texture Formats
[This is preliminary documentation and subject to change.]

This section contains information on the internal organization of compressed texture
formats. You don't need these details in order to use compressed textures, because
DirectDraw handles conversion to and from compressed formats. However, you
might find this information useful if you want to operate on compressed surface data
directly.

DirectDraw uses a compression format that divides texture maps into 4x4 texel
blocks. If the texture contains no transparency (is opaque), or if the transparency is
specified by a one-bit alpha, an 8-byte block represents the texture map block. If the
texture map does contain transparent texels, using an alpha channel, a 16-byte block
represents it.

These two types of format are discussed in the following sections:

· Opaque and One-bit Alpha Textures
· Textures with Alpha Channels

Note
Any single texture must specify that its data is stored as 64 or 128 bits per group
of 16 texels. If 64-bit blocks—that is, format DXT1—are used for the texture, it
is possible to mix the opaque and one-bit alpha formats on a per-block basis
within the same texture. In other words, the comparison of the unsigned integer
magnitude of color_0 and color_1 is performed uniquely for each block of 16
texels.
When 128-bit blocks are used, then the alpha channel must be specified in either
explicit (format DXT2 or DXT3) or interpolated mode (format DXT4 or DXT5)
for the entire texture. Note that as with color, once interpolated mode is selected
then either 8 interpolated alphas or 6 interpolated alphas mode can be used on a
block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1
is done uniquely on a block-by-block basis.

in.doc – page 66

Opaque and One-bit Alpha Textures
[This is preliminary documentation and subject to change.]

Texture format DXT1 is for textures that are opaque or have a single transparent
color.

For each opaque or one-bit alpha block, two 16-bit values (RGB 5:6:5 format) and a
4x4 bitmap with 2-bits-per-pixel are stored. This totals 64 bits for 16 texels, or 4-
bits-per-texel. In the block bitmap, there are two bits per texel to select between the
four colors, two of which are stored in the encoded data. The other two colors are
derived from these stored colors by linear interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the
two 16-bit color values stored in the block. They are treated as unsigned integers. If
the first color is greater than the second, it implies that only opaque texels are
defined. This means four colors will be used to represent the texels. In four-color
encoding, there are two derived colors and all four colors are equally distributed in
RGB color space. This format is analogous to RGB 5:6:5 format. Otherwise, for one-
bit alpha transparency, three colors are used and the fourth is reserved to represent
transparent texels.

In three-color encoding, there is one derived color and the fourth two-bit code is
reserved to indicate a transparent texel (alpha information). This format is analogous
to RGBA 5:5:5:1, where the final bit is used for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether
three- or four-color encoding is selected:

if (color_0 > color_1)
{
 // Four-color block: derive the other two colors.
 // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3
 // These two bit codes correspond to the 2-bit fields
 // stored in the 64-bit block.
 color_2 = (2 * color_0 + color_1) / 3;
 color_3 = (color 0 + 2 * color_1) / 3;
}
else
{
 // Three-color block: derive the other color.
 // 00 = color_0, 01 = color_1, 10 = color_2,
 // 11 = transparent.
 // These two bit codes correspond to the 2-bit fields
 // stored in the 64-bit block.
 color_2 = (color_0 + color_1) / 2;
 color_3 = transparent;
}

in.doc – page 67

The following tables show the memory layout for the 8-byte block. It is assumed that
the first index corresponds to the y-coordinate and the second corresponds to the x-
coordinate. For example, Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word address 16-bit word

0 Color_0
1 Color_1
2 Bitmap Word_0
3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color

4:0 (LSB) Blue color component
10:5 Green color component
15:11 Red color component

Bitmap Word_0 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[0][0]
3:2 Texel[0][1]
5:4 Texel[0][2]
7:6 Texel[0][3]
9:8 Texel[1][0]
11:10 Texel[1][1]
13:12 Texel[1][2]
15:14 (MSB) Texel[1][3]

Bitmap Word_1 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[2][0]
3:2 Texel[2][1]
5:4 Texel[2][2]
7:6 Texel[2][3]
9:8 Texel[3][0]
11:10 Texel[3][1]
13:12 Texel[3][2]
15:14 (MSB) Texel[3][3]

in.doc – page 68

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are
at the extremes. We will call red color_0 and black color_1. There will be four
interpolated colors that form the uniformly distributed gradient between them. To
determine the values for the 4x4 bitmap, the following calculations are used:

00 ? color_0
01 ? color_1
10 ? 2/3 color_0 + 1/3 color_1
11 ? 1/3 color_0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the
unsigned 16-bit integer, color_1. An example of where this format could be used is
leaves on a tree to be shown against a blue sky. Some texels could be marked as
transparent while three shades of green are still available for the leaves. Two of these
colors fix the extremes, and the third color is an interpolated color.

The bitmap encoding for the colors and the transparency is determined using the
following calculations:

00 ? color_0
01 ? color_1
10 ? 1/2 color_0 + 1/2 color_1
11 ? Transparent

Textures with Alpha Channels
[This is preliminary documentation and subject to change.]

There are two ways to encode texture maps that exhibit more complex transparency.
In each case, a block that describes the transparency precedes the 64-bit block
already described. The transparency is either represented as a 4x4 bitmap with four
bits per pixel (explicit encoding), or with fewer bits and linear interpolation
analogous to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block

3:0 Transparency block
7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of
the texels that describe transparency are encoded in a 4x4 bitmap with 4 bits per
texel. These 4 bits can be achieved through a variety of means such as dithering or

in.doc – page 69

by simply using the 4 most significant bits of the alpha data. However they are
produced, they are used just as they are, without any form of interpolation.

Note
DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for
each 16-bit word.

This is the layout for Word 0:

Bits Alpha

3:0 (LSB) [0][0]
7:4 [0][1]
11:8 [0][2]
15:12 (MSB) [0][3]

This is the layout for Word 1:

Bits Alpha

3:0 (LSB) [1][0]
7:4 [1][1]
11:8 [1][2]
15:12 (MSB) [1][3]

This is the layout for Word 2:

Bits Alpha

3:0 (LSB) [2][0]
7:4 [2][1]
11:8 [2][2]
15:12 (MSB) [2][3]

This is the layout for Word 3:

Bits Alpha

3:0 (LSB) [3][0]
7:4 [3][1]
11:8 [3][2]
15:12 (MSB) [3][3]

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept
similar to the linear encoding used for color. Two 8-bit alpha values and a 4x4

in.doc – page 70

bitmap with three bits per pixel are stored in the first eight bytes of the block. The
representative alpha values are used to interpolate intermediate alpha values.
Additional information is available in the way the two alpha values are stored. If
alpha_0 is greater than alpha_1, then six intermediate alpha values are created by the
interpolation. Otherwise, four intermediate alpha values are interpolated between the
specified alpha extremes. The two additional implicit alpha values are 0 (fully
transparent) and 255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?
if (alpha_0 > alpha_1) {
 // 8-alpha block: derive the other 6 alphas.
 // 000 = alpha_0, 001 = alpha_1, others are interpolated
 alpha_2 = (6 * alpha_0 + alpha_1) / 7; // bit code 010
 alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011
 alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100
 alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101
 alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110
 alpha_7 = (alpha_0 + 6 * alpha_1) / 7; // Bit code 111
 }
else { // 6-alpha block: derive the other alphas.
 // 000 = alpha_0, 001 = alpha_1, others are interpolated
 alpha_2 = (4 * alpha_0 + alpha_1) / 5; // Bit code 010
 alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011
 alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100
 alpha_5 = (alpha_0 + 4 * alpha_1) / 5; // Bit code 101
 alpha_6 = 0; // Bit code 110
 alpha_7 = 255; // Bit code 111
}

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha_0
1 Alpha_1
2 [0][2] (2 LSBs), [0][1], [0][0]
3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB)
4 [1][3], [1][2], [1][1] (2 MSBs)
5 [2][2] (2 LSBs), [2][1], [2][0]
6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB)
7 [3][3], [3][2], [3][1] (2 MSBs)

in.doc – page 71

Private Surface Data
[This is preliminary documentation and subject to change.]

You can store any kind of application-specific data with a surface. For example, a
surface representing a map in a game might contain information about terrain.

A surface can have more than one private data buffer. Each buffer is identified by a
GUID which you supply when attaching the data to the surface.

To store private surface data, you use the IDirectDrawSurface4::SetPrivateData
method, passing in a pointer to the source buffer, the size of the data, and an
application-defined GUID for the data. Optionally, the source data can exist in the
form of a COM object; in this case, you pass a pointer to the object's IUnknown
interface pointer and you set the DDSPD_IUNKNOWNPOINTER flag. Another
flag, DDSPD_VOLATILE, indicates that the data being attached to the surface is
valid only as long as the contents of the surface do not change. (See Surface
Uniqueness Values.)

SetPrivateData allocates an internal buffer for the data and copies it. You can then
safely free the source buffer or object. The internal buffer or interface reference is
released when IDirectDrawSurface4::FreePrivateData is called. This happens
automatically when the surface is freed.

To retrieve private data for a surface, you must allocate a buffer of the correct size
and then call the IDirectDrawSurface4::GetPrivateData method, passing the
GUID that was assigned to the data by SetPrivateData. You are responsible for
freeing any dynamic memory you use for this buffer. If the data is a COM object,
this method retrieves the IUnknown pointer.

If you don't know how big a buffer to allocate, first call GetPrivateData with zero
in *lpcbBufferSize. If the method fails with DDERR_MOREDATA, it returns the
necessary number of bytes in *lpcbBufferSize.

Surface Uniqueness Values
[This is preliminary documentation and subject to change.]

The uniqueness value of a surface allows you to determine whether the surface has
changed. When DirectDraw creates a surface, it assigns a uniqueness value, which
you can retrieve and store by using the
IDirectDrawSurface4::GetUniquenessValue method. Then, whenever you need to
determine whether the surface has changed, you call the method again and compare
the new value against the old one. If it's different, the surface has changed.

The actual value returned by GetUniquenessValue is irrelevant, unless it is 0.
DirectDraw assigns this value to a surface when it knows that the surface might be
changed by some process beyond its control. When GetUniquenessValue returns 0,
you know only that the state of the surface is indeterminate.

in.doc – page 72

To force the uniqueness value for a surface to change, an application can use the
IDirectDrawSurface4::ChangeUniquenessValue method. This method could be
called, for example, by an application or component that changed the private data for
a surface without changing the surface itself, and wished to notify some other
process of the change. Most applications, however, never need to change the
uniqueness value.

Using Non-local Video Memory
Surfaces

[This is preliminary documentation and subject to change.]

DirectDraw supports the Accelerated Graphics Port (AGP) architecture for creating
surfaces in non-local video memory. On AGP-equipped systems, DirectDraw will
use non-local video memory if local video memory is exhausted or if non-local video
memory is explicitly requested, depending on the type of AGP implementation that
is in place.

Currently, there are two implementations of the AGP architecture, known as the
"execute model" and the "DMA model." In the execute model implementation, the
display device supports the same features for non-local video memory surfaces and
local video memory surfaces. As a result, when you retrieve hardware capabilities by
calling the IDirectDraw4::GetCaps method, the blit-related flags in the
dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, dwNLVBFXCaps, and
dwNLVBRops members of the DDCAPS structure will be identical to those for
local video memory. Under the execute model, if local video memory is exhausted,
DirectDraw will automatically fall back on non-local video memory unless the caller
specifically requests otherwise.

In the DMA model implementation, support for blitting and texturing from non-local
video memory surfaces is limited. When the display device uses the DMA model,
the DDCAPS2_NONLOCALVIDMEMCAPS flag will be set in the dwCaps2
member when you retrieve device capabilities. In the DMA model, the blit-related
flags included in the dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps,
dwNLVBFXCaps, and dwNLVBRops members of the DDCAPS structure describe
the features that are supported; these features will often be a smaller subset of those
supported for local video memory surfaces. Under the DMA model, when local
video memory is exhausted, DirectDraw will automatically fall back on non-local
video memory for texture surfaces only, unless the caller had explicitly requested
local video memory. Texture surfaces are the only types of surfaces that will be
treated this way; all other types of surfaces cannot be created in non-local video
memory unless the caller explicitly requests it.

DMA model implementations vary in support for texturing from non-local video
memory surfaces. If the driver supports texturing from non-local video memory
surfaces, the D3DDEVCAPS_TEXTURENONLOCALVIDMEM flag will be set
when you retrieve the 3-D device's capabilities by calling the
IDirect3DDevice3::GetCaps method.

in.doc – page 73

Converting Color and Format
[This is preliminary documentation and subject to change.]

Non-RGB surface formats are described by four-character codes (FOURCC). If an
application calls the IDirectDrawSurface4::GetPixelFormat method to request the
pixel format, and the surface is a non-RGB surface, the DDPF_FOURCC flag will be
set and the dwFourCC member of the DDPIXELFORMAT structure will be valid.
If the FOURCC code represents a YUV format, the DDPF_YUV flag will also be set
and the dwYUVBitCount, dwYBitMask, dwUBitMask, dwVBitMask, and
dwYUVAlphaBitMask members will be valid masks that can be used to extract
information from the pixels.

If an RGB format is present, the DDPF_RGB flag will be set and the
dwRGBBitCount, dwRBitMask, dwGBitMask, dwBBitMask, and
dwRGBAlphaBitMask members will be valid masks that can be used to extract
information from the pixels. The DDPF_RGB flag can be set in conjunction with the
DDPF_FOURCC flag if a nonstandard RGB format is being described.

During color and format conversion, two sets of FOURCC codes are exposed to the
application. One set of FOURCC codes represents the capabilities of the blitting
hardware; the other represents the capabilities of the overlay hardware.

For more information, see Four Character Codes (FOURCC).

Surfaces and Device Contexts
[This is preliminary documentation and subject to change.]

It is often convenient to mix-and-match DirectDraw and GDI services to manipulate
the contents of DirectDraw surfaces. DirectDraw offers methods to enable GDI to
access DirectDraw surfaces through device contexts, and to retrieve a surface given
the surface's device context. This section contains the follows topics that describe
these features in detail:

· Retrieving the Device Context for a Surface
· Finding a Surface with a Device Context

Retrieving the Device Context for a Surface
[This is preliminary documentation and subject to change.]

If you want to modify the contents of a DirectDraw surface object by using GDI
functions, you must retrieve a GDI-compatible device context handle. This could be
useful if you wanted to display text in a DirectDraw surface by calling the
DrawText Win32 function, which accepts a handle to a device context as a
parameter. It is possible to retrieve a GDI-compatible device context for a surface by
calling the IDirectDrawSurface4::GetDC method for that surface. The following
example shows how this might be done:

in.doc – page 74

// For this example the lpDDS4 variable is a valid pointer
// to an IDirectDrawSurface4 interface.

 HDC hdc;
 HRESULT HR;

 hr = lpDDS4->GetDC(&hdc);
 if(FAILED(hr))
 return hr;

 // Call DrawText, or some other GDI
 // function here.

 lpDDS4->ReleaseDC(hdc);

Note that the code calls the IDirectDrawSurface4::ReleaseDC method when the
surface's device context is no longer needed. This step is required, because the
IDirectDrawSurface4::GetDC method uses an internal version of the
IDirectDrawSurface4::Lock method to lock the surface. The surface remains
locked until the IDirectDrawSurface4::ReleaseDC method is called.

Finding a Surface with a Device Context
[This is preliminary documentation and subject to change.]

You can retrieve a pointer to a surface's IDirectDrawSurface4 interface from the
device context for the surface by calling the IDirectDraw4::GetSurfaceFromDC
method. This feature might be very useful for component applications or ActiveX®
controls, that are commonly given a device context to draw into at run-time, but
could benefit by exploiting the features exposed by the IDirectDrawSurface4
interface.

A device context might identify memory that isn't associated with a DirectDraw
object, or the device context might identify a surface for another DirectDraw object
entirely. The latter case is most likely to occur on a system with multiple monitors.
If the device context doesn't identify a surface that wasn't created by that DirectDraw
object, the method fails, returning DDERR_NOTFOUND.

The following sample code shows what a very simple scenario might look like:

 // For this example, the hdc variable is a valid
 // handle to a video memory device context, and the
 // lpDD4 variable is a valid IDirectDraw4 interface pointer.

 LPDIRECTDRAWSURFACE4 lpDDS4;
 HRESULT hr;

 hr = lpDD4->GetSurfaceFromDC(hdc, &lpDDS4);
 if(SUCCEEDED(hr)) {

in.doc – page 75

 // Use the surface interface.
 }
 else if(DDERR_NOTFOUND == hr) {
 OutputDebugString("HDC not from this DirectDraw surface\n");
 }

Palettes
[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawPalette objects. The following
topics are discussed:

· What Are Palettes?
· Palette Types
· Setting Palettes on Nonprimary Surfaces
· Sharing Palettes
· Palette Animation

What Are Palettes?
[This is preliminary documentation and subject to change.]

Palettized surfaces need palettes to be meaningfully displayed. A palettized surface,
also known as a color-indexed surface, is simply a collection of numbers where each
number represents a pixel. The value of the number is an index into a color table that
tells DirectDraw what color to use when displaying that pixel. DirectDrawPalette
objects, casually referred to as palettes, provide you with an easy way to manage a
color table. Surfaces that use a 16-bit or greater pixel format do not use palettes.

A DirectDrawPalette object represents an indexed color table that has 2, 4, 16 or 256
entries to be used with a color indexed surface. Each entry in the palette is an RGB
triplet that describes the color to be used when displaying pixels within the surface.
The color table can contain 16- or 24-bit RGB triplets representing the colors to be
used. For 16-color palettes, the table can also contain indexes to another 256-color
palette. Palettes are supported for textures, off-screen surfaces, and overlay surfaces,
none of which is required to have the same palette as the primary surface.

You can create a palette by calling the IDirectDraw4::CreatePalette method. This
method retrieves a pointer to the palette object's IDirectDrawPalette interface. You
can use the methods of this interface to manipulate palette entries, retrieve
information about the object's capabilities, or initialize the object (if you used the
CoCreateInstance COM function to create it).

You apply a palette to a surface by calling the surface's
IDirectDrawSurface4::SetPalette method. A single palette can be applied to
multiple surfaces.

in.doc – page 76

DirectDrawPalette objects reserve entry 0 and entry 255 for 8-bit palettes, unless you
specify the DDPCAPS_ALLOW256 flag to request that these entries be made
available to you.

You can retrieve palette entries by using the IDirectDrawPalette::GetEntries
method, and you can change entries by using the IDirectDrawPalette::SetEntries
method.

The Ddutil.cpp source file included with the SDK contains some handy application-
defined functions for working with palettes. For more information, see the
DDLoadPalette functions in that source file.

Palette Types
[This is preliminary documentation and subject to change.]

DirectDraw supports 1-bit (2 entry), 2-bit (4 entry), 4-bit (16 entry), and 8-bit (256
entry) palettes. A palette can only be attached to a surface that has a matching pixel
format. For example, a 2-entry palette created with the DDPCAPS_1BIT flag can be
attached only to a 1-bit surface created with the DDPF_PALETTEINDEXED1 flag.

Additionally, you can create palettes that don't contain a color table at all, known as
index palettes. Instead of a color table, an index palette contains index values that
represent locations in another palette's color table.

To create an indexed palette, specify the DDPCAPS_8BITENTRIES flag when
calling the IDirectDraw4::CreatePalette method. For example, to create a 4-bit
indexed palette, specify both the DDPCAPS_4BIT and DDPCAPS_8BITENTRIES
flags. When you create an indexed palette, you pass a pointer to an array of bytes
rather than a pointer to an array of PALETTEENTRY structures. You must cast the
pointer to the array of bytes to an LPPALETTEENTRY type when you use the
IDirectDraw4::CreatePalette method.

Note that DirectDraw does not dereference index palette entries during blit
operations.

Setting Palettes on Nonprimary
Surfaces

[This is preliminary documentation and subject to change.]

Palettes can be attached to any palettized surface (primary, back buffer, off-screen
plain, or texture map). Only those palettes attached to primary surfaces will have any
effect on the system palette. It is important to note that DirectDraw blits never
perform color conversion; any palettes attached to the source or destination surface
of a blit are ignored.

Nonprimary surface palettes are intended for use by Direct3D applications.

in.doc – page 77

Sharing Palettes
[This is preliminary documentation and subject to change.]

Palettes can be shared among multiple surfaces. The same palette can be set on the
front buffer and the back buffer of a flipping chain or shared among multiple texture
surfaces. When an application attaches a palette to a surface by using the
IDirectDrawSurface4::SetPalette method, the surface increments the reference
count of that palette. When the reference count of the surface reaches 0, the surface
will decrement the reference count of the attached palette. In addition, if a palette is
detached from a surface by using IDirectDrawSurface4::SetPalette with a NULL
palette interface pointer, the reference count of the surface's palette will be
decremented.

Note
If IDirectDrawSurface4::SetPalette is called several times consecutively on
the same surface with the same palette, the reference count for the palette is
incremented only once. Subsequent calls do not affect the palette's reference
count.

Palette Animation
[This is preliminary documentation and subject to change.]

Palette animation refers to the process of modifying a surface's palette to change
how the surface itself looks when displayed. By repeatedly changing the palette, the
surface appears to change without actually modifying the contents of the surface. To
this end, palette animation gives you a way to modify the appearance of a surface
without changing its contents and with very little overhead.

There are two methods for providing straightforward palette animation:

· Modifying palette entries within a single palette
· Switching between multiple palettes

Using the first method, you change individual palette entries that correspond to the
colors you want to animate, then reset the entries with a single call to the
IDirectDrawPalette::SetEntries method.

The second method requires two or more DirectDrawPalette objects. When using
this method, you perform the animation by attaching one palette object after another
to the surface object by calling the IDirectDrawSurface4::SetPalette method.

Neither method is hardware intensive, so use whichever technique works best for
your application.

For specific information and an example of how to implement palette animation, see
Tutorial 5: Dynamically Modifying Palettes.

in.doc – page 78

Clippers
[This is preliminary documentation and subject to change.]

This section contains information about DirectDrawClipper objects. The following
topics are discussed:

· What Are Clippers?
· Clip Lists
· Sharing DirectDrawClipper Objects
· Independent DirectDrawClipper Objects
· Creating DirectDrawClipper Objects with CoCreateInstance
· Using a Clipper with the System Cursor
· Using a Clipper with Multiple Windows

What Are Clippers?
[This is preliminary documentation and subject to change.]

Clippers, or DirectDrawClipper objects, allow you to blit to selected parts of a
surface represented by a bounding rectangle or a list of several bounding rectangles.
(See Clip Lists.)

One common use for a clipper is to define the boundaries of the screen or window.
For example, imagine that you want to display a sprite as it enters the screen from an
edge. You don't want to make the sprite pop suddenly onto the screen; you want it to
appear as though it is smoothly moving into view. Without a clipper object,
DirectDraw does not allow you to blit the entire sprite, because part of it would fall
outside the destination surface. A straight copy of the pixel values in the sprite to the
destination surface buffer would result in an incorrect display and even memory
access violations. With a clipper that has the screen rectangle as its clip list,
DirectDraw knows how to trim the sprite as it performs the blit so that only the
visible portion is copied.

The following illustration shows this type of clipping.

in.doc – page 79

Destination
Surface

640 pixels

48
0

pi
xe

ls

Visible
portion

Clipped
Portion

Sprite Graphic

You can also use clipper objects to designate certain areas within a destination
surface as writable. DirectDraw clips blit operations in these areas, protecting the
pixels outside the specified clipping rectangle.

The following illustration shows this use of a clipper.
640 pixels

48
0

pix
els Valid Blit Area

Protected
Surface
Memory

Clip Lists
[This is preliminary documentation and subject to change.]

in.doc – page 80

A clip list consists of one or more RECT structures, in pixel coordinates.
DirectDraw manages clip lists by using a DirectDrawClipper object, which can be
attached to any surface.

The IDirectDrawSurface4::Blt method copies data only to rectangles in the clip
list. For instance, if the upper-right quarter of a surface was excluded by the
rectangles in the clip list, and an application blitted to the entire area of the clipped
surface, DirectDraw would effectively perform two blits, the first being to the upper-
left corner of the surface, and the second being to the bottom half of the surface, as
shown in the following diagram.

(Blits here will not be
 visible.)Blit Area 1

Blit Area 2

Clipping
Rectangle 1

Clipping Rectangle 2

You can manage a surface's clip list manually or, for a primary surface, have it done
automatically by DirectDraw.

To manage the clip list yourself, create a list of rectangles in the form of a
RGNDATA structure and pass this to the IDirectDrawClipper::SetClipList
method.

To have DirectDraw manage the clip list for a primary surface, you attach the clipper
to a window (even a full-screen window) by calling the
IDirectDrawClipper::SetHWnd method, specifying the target window's handle.
This has the effect of setting the clipping region to the client area of the window and
ensuring that the clip list is automatically updated as the window is resized, covered,
or uncovered.

If you set a clipper using a window handle, you cannot set additional rectangles.

Clipping for overlay surfaces is supported only if the overlay hardware can support
clipping and if destination color keying is not active.

Sharing DirectDrawClipper Objects
[This is preliminary documentation and subject to change.]

in.doc – page 81

DirectDrawClipper objects can be shared between multiple surfaces. For example,
the same DirectDrawClipper object can be set on both the front buffer and the back
buffer of a flipping chain. When an application attaches a DirectDrawClipper object
to a surface by using the IDirectDrawSurface4::SetClipper method, the surface
increments the reference count of that object. When the reference count of the
surface reaches 0, the surface will decrement the reference count of the attached
DirectDrawClipper object. In addition, if a DirectDrawClipper object is detached
from a surface by calling IDirectDrawSurface4::SetClipper with a NULL clipper
interface pointer, the reference count of the surface's DirectDrawClipper object will
be decremented.

Note
If IDirectDrawSurface4::SetClipper is called several times consecutively on
the same surface for the same DirectDrawClipper object, the reference count for
the object is incremented only once. Subsequent calls do not affect the object's
reference count.

Independent DirectDrawClipper
Objects

[This is preliminary documentation and subject to change.]

You can create DirectDrawClipper objects that are not directly owned by any
particular DirectDraw object. These DirectDrawClipper objects can be shared across
multiple DirectDraw objects. Driver-independent DirectDrawClipper objects are
created by using the new DirectDrawCreateClipper DirectDraw function. An
application can call this function before any DirectDraw objects are created.

Because DirectDraw objects do not own these DirectDrawClipper objects, they are
not automatically released when your application's objects are released. If the
application does not explicitly release these DirectDrawClipper objects, DirectDraw
will release them when the application closes.

You can still create DirectDrawClipper objects by using the
IDirectDraw4::CreateClipper method. These DirectDrawClipper objects are
automatically released when the DirectDraw object from which they were created is
released.

Creating DirectDrawClipper Objects
with CoCreateInstance

[This is preliminary documentation and subject to change.]

DirectDrawClipper objects have full class-factory support for COM compliance. In
addition to using the standard DirectDrawCreateClipper function and
IDirectDraw4::CreateClipper method, you can also create a DirectDrawClipper
object either by using the CoGetClassObject function to obtain a class factory and

in.doc – page 82

then calling the CoCreateInstance function, or by calling CoCreateInstance
directly. The following example shows how to create a DirectDrawClipper object by
using CoCreateInstance and the IDirectDrawClipper::Initialize method.

ddrval = CoCreateInstance(&CLSID_DirectDrawClipper,
 NULL, CLSCTX_ALL, &IID_IDirectDrawClipper, &lpClipper);
if (!FAILED(ddrval))
 ddrval = IDirectDrawClipper_Initialize(lpClipper,
 lpDD, 0UL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDrawClipper, is
the class identifier of the DirectDrawClipper object class, the
IID_IDirectDrawClipper parameter identifies the currently supported interface, and
the lpClipper parameter points to the DirectDrawClipper object that is retrieved.

An application must use the IDirectDrawClipper::Initialize method to initialize
DirectDrawClipper objects that were created by the class-factory mechanism before
it can use the object. The value 0UL is the dwFlags parameter, which in this case has
a value of 0 because no flags are currently supported. In the example shown here,
lpDD is the DirectDraw object that owns the DirectDrawClipper object. However,
you could supply a NULL value instead, which would create an independent
DirectDrawClipper object. (This is equivalent to creating a DirectDrawClipper
object by using the DirectDrawCreateClipper function.)

Before you close the application, close the COM library by using the CoUninitialize
function.

Using a Clipper with the System Cursor
[This is preliminary documentation and subject to change.]

DirectDraw applications often need to provide a way for users to navigate using the
mouse. For full-screen exclusive mode applications that use page-flipping, the only
option is to implement a mouse cursor manually with a sprite, moving the sprite
based on data retrieved from the device by DirectInput® or by responding to
Windows mouse messages. However, any application that doesn't use page-flipping
can still use the system's mouse cursor support.

When you use the system mouse cursor, you will sometimes fall victim to graphic
artifacts that occur when you blit to parts of the primary surface. These artifacts
appear as portions of the mouse cursor seemingly left behind by the system.

A DirectDrawClipper object can prevent these artifacts from appearing by
preventing the mouse cursor image from "being in the way" during a blit operation.
It's a relatively simple matter to implement, as well. To do so, create a
DirectDrawClipper object by calling the IDirectDraw4::CreateClipper method.
Then, assign your application's window handle to the clipper with the
IDirectDrawClipper::SetHWnd method. Once a clipper is attached, any
subsequent blits you perform on the primary surface with the
IDirectDrawSurface4::Blt method will not exhibit the artifact.

in.doc – page 83

Note that the IDirectDrawSurface4::BltFast method, and its counterparts in the
IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3 interfaces,
will not work on surfaces with attached clippers.

Using a Clipper with Multiple Windows
[This is preliminary documentation and subject to change.]

You can use a DirectDrawClipper object to blit to multiple windows created by an
application running at the normal cooperative level.

To do this, create a single DirectDraw object with a primary surface. Then, create a
DirectDrawClipper object and assign it to your primary surface by calling the
IDirectDrawSurface4::SetClipper method. To blit only to the client area of a
window, set the clipper to that window's client area by calling the
IDirectDrawClipper::SetHWnd method before blitting to the primary surface.
Whenever you need to blit to another window's client area, call the
IDirectDrawClipper::SetHWnd method again with the new target window handle.

Creating multiple DirectDraw objects that blit to each others' primary surface is not
recommended. The technique just described provides an efficient and reliable way to
blit to multiple client areas with a single DirectDraw object.

Multiple Monitor Systems
[This is preliminary documentation and subject to change.]

Windows 98 and Windows 2000 support multiple display devices and monitors on a
single system. The multiple monitor architecture (sometimes referred to as
"MultiMon") enables the operating system to use the display area from two or more
display devices and monitors to create a single logical desktop. For example, in a
MultiMon system with two monitors, the user could display applications on either
monitor, or even drag windows from one monitor to another. DirectDraw supports
this architecture, allowing applications to directly access hardware on multiple
display devices in a MultiMon system.

Note
As long as it is created on the null device and is not rendering directly to the
primary surface, a non-full-screen DirectDraw application will work
automatically with MultiMon, and the user will be able to drag the window from
one monitor to another. However, DirectDraw will take advantage of hardware
acceleration only when the window is entirely within the primary display. It is
recommended that windowed DirectDraw applications be specifically designed
for MultiMon by maintaining separate DirectDraw objects and surfaces for each
monitor. For more information, see Devices and Acceleration in MultiMon
Systems.

in.doc – page 84

This section contains information about using DirectDraw on systems with multiple
monitor support. The following topics are discussed:

· Enumerating Devices on MultiMon Systems
· DirectDraw Objects on Multiple Monitors
· Focus and Device Windows
· Devices and Acceleration in MultiMon Systems
· Debugging Full-Screen DirectDraw Applications with MultiMon

The Multimon.h header file included with the DirectX Programmer's Reference
makes it possible for code written around Windows 98 multiple monitor functions to
compile and run successfully on operating systems that do not support MultiMon.

The following sample applications demonstrate the implementation of MultiMon in
DirectDraw:

· Stretch2 Sample
· Stretch3 Sample
· Multimonitor Space Donuts Sample

Enumerating Devices on MultiMon
Systems

[This is preliminary documentation and subject to change.]

Use the DirectDrawEnumerateEx function to enumerate devices on systems with
multiple monitors, specifying flags to determine what types of DirectDraw devices
should be enumerated. The function calls an application-defined
DDEnumCallbackEx function for each enumerated device.

The DirectDrawEnumerateEx function is supported on Windows 98 and
Windows 2000 operating systems. It is available in Ddraw.lib for applications
compiled under DirectX 6.0 and later versions. Applications that statically link to the
function will always run under DirectX 6.0 and later, and will always run under any
version of DirectX on Windows 98 and Windows 2000. Such applications will fail if
run on previous versions of DirectX under Windows 95.

If your application needs to run on versions of DirectX older than DirectX 5.0, it
should use GetProcAddress to see if DirectDrawEnumerateEx is available. The
following example shows one way you can do this:

 HINSTANCE h = LoadLibrary("ddraw.dll");

 // If ddraw.dll doesn't exist in the search path,
 // then DirectX probably isn't installed, so fail.
 if (!h)
 return FALSE;

in.doc – page 85

 // Note that you must know which version of the
 // function to retrieve (see the following text).
 // For this example, we use the ANSI version.
 LPDIRECTDRAWENUMERATEEX lpDDEnumEx;
 lpDDEnumEx = (LPDIRECTDRAWENUMERATEEX)
GetProcAddress(h,"DirectDrawEnumerateExA");

 // If the function is there, call it to enumerate all display
 // devices attached to the desktop, and any non-display DirectDraw
 // devices.
 if (lpDDEnumEx)
 lpDDEnumEx(Callback, NULL,
 DDENUM_ATTACHEDSECONDARYDEVICES |
 DDENUM_NONDISPLAYDEVICES
);
 else
 {
 /*
 * We must be running on an old version of DirectDraw.
 * Therefore MultiMon isn't supported. Fall back on
 * DirectDrawEnumerate to enumerate standard devices on a
 * single-monitor system.
 */
 DirectDrawEnumerate(OldCallback,NULL);

 /* Note that it could be handy to let the OldCallback function
 * be a wrapper for a DDEnumCallbackEx.
 *
 * Such a function would look like:
 * BOOL FAR PASCAL OldCallback(GUID FAR *lpGUID,
 * LPSTR pDesc,
 * LPSTR pName,
 * LPVOID pContext)
 * {
 * return Callback(lpGUID,pDesc,pName,pContext,NULL);
 * }
 */
 }

 // If the library was loaded by calling LoadLibrary(),
 // then you must use FreeLibrary() to let go of it.
 FreeLibrary(h);

The previous example will work for applications that link to Ddraw.dll at run-time or
load-time.

in.doc – page 86

Note that you must retrieve the address of either the ANSI or Unicode version of the
DirectDrawEnumerateEx function, depending of the type of strings your
application uses. When declaring the corresponding callback function, use the
LPTSTR data type for the string parameters. The LPTSTR data type compiles to
use Unicode strings if you declare the _UNICODE symbol, and ANSI strings
otherwise. By using the LPTSTR data type, the function should compile properly
regardless of the string type you use in your application.

DirectDraw Objects on Multiple
Monitors

[This is preliminary documentation and subject to change.]

Windowed DirectDraw applications written for the null or default display driver will
work on MultiMon systems, but in applications optimized for MultiMon you will
want to create a separate DirectDraw object for each device, using the GUID
returned in the enumeration callback. (See Enumerating Devices on MultiMon
Systems.)

Avoid setting the cooperative level multiple times on a MultiMon system. If you
need to switch from full-screen to normal mode, it is best to create a new
DirectDraw object.

It is good practice to release all DirectDraw objects at the same time. If you release
only the secondary device or devices, the primary device goes back to its original
desktop mode, but only the taskbar is redrawn and the DirectDraw primary surface is
still present. You cannot draw to this surface without first releasing the DirectDraw
object and then re-creating it.

Focus and Device Windows
[This is preliminary documentation and subject to change.]

Each DirectDraw application that uses one or more monitors in full-screen exclusive
mode must have a single focus window, which is the window that receives keyboard
input.

Each device that is to hold a full-screen DirectDraw surface must be represented by a
DirectDraw object and a device window. The device window is the one that is sized
to fit the window and is put on top of all other windows.

For single-monitor applications, there is no distinction between the device and focus
window. They are one and the same.For multiple-monitor applications, however, you
need to set a device window for each monitor, and you have to let each DirectDraw
object know about the application's focus window. The focus window can also serve
as the device window for one of the monitors. Other device windows should be
children of the focus window so that the application does not minimize when the
user clicks on one of them.

See also:

in.doc – page 87

· Setting the Focus Window
· Setting Device Windows

Setting the Focus Window
[This is preliminary documentation and subject to change.]

To set the focus window, you call the IDirectDraw4::SetCooperativeLevel method
for each of the DirectDraw objects. You pass in a window handle (normally the
application window handle) and set the DDSCL_SETFOCUSWINDOW flag, as in
the following example:

/* It is presumed that lpDD is a valid IDirectDraw interface pointer,
 and that hWnd is a valid window handle. */

HRESULT ddrval = lpDD->SetCooperativeLevel(hWnd,
 DDSCL_SETFOCUSWINDOW);

The focus window must be the same for all devices.

Setting Device Windows
[This is preliminary documentation and subject to change.]

There are two ways to set a device window:

· Create a window yourself and pass its handle to the
IDirectDraw4::SetCooperativeLevel method of the DirectDraw object
representing the monitor, setting the DDSCL_SETDEVICEWINDOW,
DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE flags. This creates a full-
screen window and sets it as the device window for the monitor. Your
application will receive mouse messages for the window, and you are
responsible for destroying the window at the appropriate time. The window you
pass to SetCooperativeLevel should be either the focus window (possible only
if it is on the same device) or a child of the focus window.

· Let DirectDraw create the window. You pass the focus window handle to
SetCooperativeLevel and set the DDSCL_CREATEDEVICEWINDOW,
DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE flags. DirectDraw creates
a default device window that is a child of the focus window. It manages this
window and will destroy it at the appropriate time. Your application will not
receive any mouse messages for the window.

The following example sets an existing device window for the DirectDraw object
represented by lpDD.

/* It is presumed that lpDD is a valid IDirectDraw interface pointer,
 and that hWnd is the handle to an appropriate device window. */

in.doc – page 88

HRESULT hr = lpDD->SetCooperativeLevel(hWnd,
 DDSCL_SETDEVICEWINDOW | DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

The following example sets a default device window created by DirectDraw. In this
case, hWnd is the handle to the existing focus window.

HRESULT hr = lpDD->SetCooperativeLevel(hWnd,
 DDSCL_CREATEDEVICEWINDOW | DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

Although a focus window can be a device window, you cannot set a window as both
the focus window and a device window with a single call to SetCooperativeLevel.
You must first set it as the focus window and then set it as a device window.
However, it is possible to set a focus window and a default device window on the
same device with a single call to SetCooperativeLevel. The following example
shows how this can be done:

HRESULT hr = lpDD->SetCooperativeLevel(
 hwndFocus,
 DDSCL_SETFOCUSWINDOW | DDSCL_FULLSCREEN |
 DDSCL_EXCLUSIVE | DDSCL_CREATEDEVICEWINDOW);

In this example, an existing window (probably the application window) is set as the
focus window, and DirectDraw creates a default device window.

Devices and Acceleration in MultiMon
Systems

[This is preliminary documentation and subject to change.]

Full-screen exclusive mode DirectDraw objects will take advantage of hardware
acceleration regardless of whether they are running on the primary device or on a
secondary device. However, they cannot use built-in support for spanning graphics
operations across display devices. It is the application's responsibility to perform
operations on the appropriate device.

When the normal cooperative level is set, DirectDraw uses hardware acceleration
only when the window is wholly within the display area of the primary device. When
a window straddles two or more monitors, all blits are done in emulation and
performance can be significantly slower. This is necessarily the case, because
hardware buffers cannot blit to a display surface controlled by another piece of
hardware.

As long as you create the DirectDraw object for the null device—that is, pass NULL
to DirectDrawCreate as the lpGUID parameter—DirectDraw will blit to the entire
window regardless of where it is located. However, if the device is created by its
actual GUID, this is not the case, and blit operations that cross an edge of the
primary surface will be clipped (if you are using a clipper) or will fail, returning
DDERR_INVALIDRECT.

in.doc – page 89

Note
When you are blitting to a window in a MultiMon application, negative
coordinates are valid when the logical location of the secondary monitor is to
the left of the primary monitor.

To get the best performance in a windowed MultiMon application, you need to
create a DirectDraw object for each device, maintain off-screen surfaces in parallel
on each device, keep track of which part of the window resides on each device, and
perform separate blits to each device.

Debugging Full-Screen DirectDraw
Applications with MultiMon

[This is preliminary documentation and subject to change.]

It is possible to use a multimonitor system rather than remote debugging in order to
step through code while debugging a full-screen DirectDraw application.

You should use the primary monitor for your development environment and the
secondary monitor for the DirectDraw output. Also, you need to change a registry
setting through the DirectX property sheet in Control Panel. On the DirectDraw
page, click Advanced Settings and select the Enable Multi-Monitor Debugging
checkbox. This setting will prevent DirectDraw from minimizing your application
when it loses focus.

Under Windows 98, you cannot step through code when a surface is locked. For
more information, see Accessing Surface Memory Directly.

Advanced DirectDraw Topics
[This is preliminary documentation and subject to change.]

This section supplements the DirectDraw overview, providing information about
advanced DirectDraw issues. The following topics are discussed:

· Mode 13 Support
· Taking Advantage of DMA Support
· Using DirectDraw Palettes in Windowed Mode
· Video Ports
· Getting the Flip and Blit Status
· Determining the Capabilities of the Display Hardware
· Storing Bitmaps in Display Memory
· Triple Buffering
· DirectDraw Applications and Window Styles
· Matching True RGB Colors to the Frame Buffer's Color Space
· Displaying a Window in Full-Screen Mode

in.doc – page 90

Mode 13 Support
[This is preliminary documentation and subject to change.]

This section contains information about DirectDraw Mode 13 graphics mode
support. The following topics are discussed:

· About Mode 13
· Setting Mode 13
· Mode 13 and Surface Capabilities
· Using Mode 13

About Mode 13
[This is preliminary documentation and subject to change.]

DirectDraw supports access to the linear unflippable 320x200 8 bits per pixel
palettized mode known widely by the name Mode 13, its hexadecimal BIOS mode
number. DirectDraw treats this mode like a Mode X mode, but with some important
differences imposed by the physical nature of Mode 13.

Setting Mode 13
[This is preliminary documentation and subject to change.]

Mode 13 has similar enumeration and mode-setting behavior as Mode X. DirectDraw
will only enumerate Mode 13 if the DDSCL_ALLOWMODEX flag was passed to
the IDirectDraw4::SetCooperativeLevel method.

You enumerate the Mode 13 display mode like all other modes, but you make a
surface capabilities check before calling IDirectDraw4::EnumDisplayModes. To
do this, call IDirectDraw4::GetCaps and check for the
DDSCAPS_STANDARDVGAMODE flag in the DDSCAPS2 structure after the
method returns. If this flag is not present, then Mode 13 is not supported, and
attempts to enumerate with the DDEDM_STANDARDVGAMODES flag will fail,
returning DDERR_INVALIDPARAMS.

The EnumDisplayModes method now supports a new enumeration flag,
DDEDM_STANDARDVGAMODES, which causes DirectDraw to enumerate Mode
13 in addition to the 320x200x8 Mode X mode. There is also a new
IDirectDraw4::SetDisplayMode flag, DDSDM_STANDARDVGAMODE, which
you must pass in order to distinguish Mode 13 from 320x200x8 Mode X.

Note that some video cards offer linear accelerated 320x200x8 modes. On such cards
DirectDraw will not enumerate Mode 13, enumerating the linear mode instead. In
this case, if you attempt to set Mode 13 by passing the
DDSDM_STANDARDVGAMODE flag to SetDisplayMode, the method will
succeed, but the linear mode will be used. This is analogous to the way that linear
low resolution modes override Mode X modes.

in.doc – page 91

Mode 13 and Surface Capabilities
[This is preliminary documentation and subject to change.]

When DirectDraw calls an application's EnumModesCallback callback function,
the ddsCaps member of the associated DDSURFACEDESC or
DDSURFACEDESC2 structure contains flags that reflect the mode being
enumerated. You can expect DDSCAPS_MODEX for a Mode X mode or
DDSCAPS_STANDARDVGAMODE for Mode 13. These flags are mutually
exclusive. If neither of these bits is set, then the mode is a linear accelerated mode.
This behavior also applies to the flags retrieved by the
IDirectDraw4::GetDisplayMode method.

Using Mode 13
[This is preliminary documentation and subject to change.]

Because Mode 13 is a linear mode, unlike the Mode X modes, DirectDraw can give
an application direct access to the frame buffer.You can call the
IDirectDrawSurface4::Lock, IDirectDrawSurface4::Blt, and
IDirectDrawSurface4::BltFast methods to gain direct access to the primary
surface.

When using Mode 13, DirectDraw supports an emulated
IDirectDrawSurface4::Flip that is implemented as a straight copy of the contents of
a back buffer to the primary surface. You can emulate this yourself by copying all or
part of the back-buffer's contents to the primary surface using Blt or BltFast.

There is one warning concerning Lock and Mode 13. Although DirectDraw allows
direct linear access to the Mode 13 VGA frame buffer, do not assume that the buffer
is always located at address 0xA0000, since DirectDraw can return an aliased
virtual-memory pointer to the frame buffer which will not be 0xA0000. Similarly, do
not assume that the pitch of a Mode 13 surface is 320, because display cards that
support an accelerated 320x200x8 mode will very likely use a different pitch.

Taking Advantage of DMA Support
[This is preliminary documentation and subject to change.]

This section contains information about how you can take advantage of device
support for Direct Memory Access (DMA) to increase performance in completing
certain tasks. The following topics are discussed:

· About DMA Device Support
· Testing for DMA Support
· Typical Scenarios for DMA
· Using DMA

in.doc – page 92

About DMA Device Support
[This is preliminary documentation and subject to change.]

Some display devices can perform blit operations (or other operations) on system
memory surfaces. These operations are commonly referred to as Direct Memory
Access (DMA) operations. You can exploit DMA support to accelerate certain
combinations of operations. For example, on such a device, you could perform a blit
from system memory to video memory while using the processor to prepare the next
frame. In order to use such facilities, you must assume certain responsibilities. This
section details these tasks.

Testing for DMA Support
[This is preliminary documentation and subject to change.]

Before using DMA operations, you must test the device for DMA support and, if it
does support DMA, how much support it provides. Begin by retrieving the driver
capabilities by calling the IDirectDraw4::GetCaps method, then look for the
DDCAPS_CANBLTSYSMEM flag in the dwCaps member of the associated
DDCAPS structure. If the flag is set, the device supports DMA.

If you know that DMA is generally supported, you also need to find out how well the
driver supports it. You do so by looking at some other structure members that
provide information about system-to-video, video-to-system, and system-to-system
blit operations. These capabilities are provided in 12 DDCAPS structure members
that are named according to blit and capability type. The following table shows these
new members.

System-to-video Video-to-system System-to-system

 dwSVBCaps dwVSBCaps dwSSBCaps
 dwSVBCKeyCaps dwVSBCKeyCaps dwSSBCKeyCaps
 dwSVBFXCaps dwVSBFXCaps dwSSBFXCaps
 dwSVBRops dwVSBRops dwSSBRops

For example, the system-to-video blit capability flags are provided in the
dwSVBCaps, dwSVBCKeyCaps, dwSVBFXCaps and dwSVBRops members.
Similarly, video-to-system blit capabilities are in the members whose names begin
with "dwVSB," and system-to system capabilities are in the "dwSSB" members.
Examine the flags present in these members to determine the level of hardware
support for that blit category.

The flags in these members are parallel with the blit-related flags included in the
dwCaps, dwCKeyCaps, and dwFXCaps members, with respect to that member's
blit type. For example, the dwSVBCaps member contains general blit capabilities as
specified by the same flags you might find in the dwCaps member. Likewise, the
raster operation values in the dwSVBRops, dwVSBRops, and dwSSBRops members
provide information about the raster operations supported for a given type of blit
operation.

in.doc – page 93

One of the key features to look for in these members is support for asynchronous
DMA blit operations. If the driver supports asynchronous DMA blits between
surfaces, the DDCAPS_BLTQUEUE flag will be set in the dwSVBCaps,
dwVSBCaps, or dwSSBCaps member. (Generally, you'll see the best support for
system-memory-to-video-memory surfaces.) If the flag isn't present, the driver isn't
reporting support for asynchronous DMA blit operations.

Typical Scenarios for DMA
[This is preliminary documentation and subject to change.]

System memory to video memory transfers that use the SRCCOPY raster operation
are the most common type of hardware-supported blit operation. (The SRCCOPY
raster operation, which is documented in the Platform SDK, causes the data within
the source rectangle to be copied directly to the destination rectangle.) The most
typical use for such an operation is to move textures from a large collection of
system memory surfaces to a surface in video memory in preparation for subsequent
operations. System-to-video DMA transfers are about as fast as processor-controlled
transfers (for example, HEL blits), but are of great utility since they can operate in
parallel with the host processor.

Using DMA
[This is preliminary documentation and subject to change.]

Hardware transfers use physical memory addresses, not the virtual addresses which
are home to applications. Some device drivers require that you provide the surface's
physical memory address. This mechanism is implemented by the
IDirectDrawSurface4::PageLock method. If the device driver does not require
page locking, the DDCAPS2_NOPAGELOCKREQUIRED flag will be set when you
retrieve the hardware capabilities by calling the IDirectDraw4::GetCaps method.

Page locking a surface prevents the system from committing a surface's physical
memory to other uses, and guarantees that the surface's physical address will remain
constant until a corresponding IDirectDrawSurface4::PageUnlock call is made. If
the device driver requires page locking, DirectDraw will allow asynchronous DMA
operations only on system memory surfaces that the application has page locked. If
you do not call IDirectDrawSurface4::PageLock in such a situation, DirectDraw
will perform the transfers by using software emulation. Note that locking a large
amount of system memory will make Windows run poorly. Therefore, it is highly
recommended that only full-screen exclusive mode applications use
IDirectDrawSurface4::PageLock for large amounts of system memory, and that
such applications take care to unlock these surfaces when the application is
minimized. Of course, when the application is restored, you should page lock the
system memory surface again.

Responsibility for managing page locking is entirely in the hands of the application
developer. DirectDraw will never page lock or page unlock a surface. Additionally,
it is up to you to determine how much memory you can safely page lock without
adversely affecting system performance.

in.doc – page 94

Using DirectDraw Palettes in
Windowed Mode

[This is preliminary documentation and subject to change.]

IDirectDrawPalette interface methods write directly to the hardware when the
display is in exclusive (full-screen) mode. However, when the display is in
nonexclusive (windowed) mode, the IDirectDrawPalette interface methods call the
GDIs palette handling functions to work cooperatively with other windowed
applications.

The discussion in the following topics assumes that the desktop is in an 8-bit
palettized mode and that you have created a primary surface and a typical window.

· Types of Palette Entries in Windowed Mode
· Creating a Palette in Windowed Mode
· Setting Palette Entries in Windowed Mode

Types of Palette Entries in Windowed Mode
[This is preliminary documentation and subject to change.]

Unlike full-screen exclusive mode applications, windowed applications must share
the desktop palette with other applications. This imposes several restrictions on
which palette entries you can safely modify and how you can modify them. The
PALETTEENTRY structure you use when working with DirectDrawPalette objects
and GDI contains a peFlags member to carry information that describes how the
system should interpret the PALETTEENTRY structure.

The peFlags member describes three types of palette entries, discussed in this topic:

· Windows static entries
· Animated entries
· Nonanimated entries

Windows static entries

In normal mode, Windows reserves palette entries 0 through 9 and 246 through 255
for system colors that it uses to display menu bars, menu text, window borders, and
so on. In order to maintain a consistent look for your application and avoid damaging
the appearance of other applications, you need to protect these entries in the palette
you set to the primary surface. Often, developers retrieve the system palette entries
by calling the GetSystemPaletteEntries Win32® function, then explicitly set the
identical entries in a custom palette to match before assigning it to the primary
surface. Duplicating the system palette entries in a custom palette will work initially,
but it becomes invalid if the user changes the desktop color scheme.

To avoid having your palette look bad when the user changes color schemes, you can
protect the appropriate entries by providing a reference into the system palette

in.doc – page 95

instead specifying a color value. This way, no matter what color the system is using
for a given entry, your palette will always match and you won't need to do any
updating. The PC_EXPLICIT flag, used in the peFlags member, makes it possible
for you to directly refer to a system palette entry. When you use this flag, the system
no longer assumes that the other structure members include color information.
Rather, when you use PC_EXPLICIT, you set the value in the peRed member to the
desired system palette index and set the other colors to zero.

For instance, if you want to ensure that the proper entries in your palette always
match the system's color scheme, you could use the following code:

// Set the first and last 10 entries to match the system palette.
PALETTEENTRY pe[256];
ZeroMemory(pe, sizeof(pe));
for(int i=0;i<10;i++){
 pe[i].peFlags = pe[i+246].peFlags = PC_EXPLICIT;
 pe[i].peRed = i;
 pe[i+246].peRed = i+246;
}

You can force Windows to use only the first and last palette entry (0 and 255) by
calling the SetSystemPaletteUse Win32 function. In this case, you should set only
entries 0 and 255 of your PALETTEENTRY structure to PC_EXPLICIT.

Animated entries

You specify palette entries that you will be animating by using the PC_RESERVED
flag in the corresponding PALETTEENTRY structure. Windows will not allow any
other application to map its logical palette entry to that physical entry, thereby
preventing other applications from cycling their colors when your application
animates the palette.

Nonanimated entries

You specify normal, nonanimated palette entries by using the PC_NOCOLLAPSE
flag in the corresponding PALETTEENTRY structure. The PC_NOCOLLAPSE
flag informs Windows not to substitute some other already-allocated physical palette
entry for that entry.

Creating a Palette in Windowed Mode
[This is preliminary documentation and subject to change.]

The following example illustrates how to create a DirectDraw palette in
nonexclusive (windowed) mode. In order for your palette to work correctly, it is vital
that you set up every one of the 256 entries in the PALETTEENTRY structure that
you submit to the IDirectDraw4::CreatePalette method.

LPDIRECTDRAW4 lpDD; // Assumed to be initialized previously
PALETTEENTRY pPaletteEntry[256];
int index;

in.doc – page 96

HRESULT ddrval;
LPDIRECTDRAWPALETTE2 lpDDPal;

// First set up the Windows static entries.
for (index = 0; index < 10 ; index++)
{
 // The first 10 static entries:
 pPaletteEntry[index].peFlags = PC_EXPLICIT;
 pPaletteEntry[index].peRed = index;
 pPaletteEntry[index].peGreen = 0;
 pPaletteEntry[index].peBlue = 0;

 // The last 10 static entries:
 pPaletteEntry[index+246].peFlags = PC_EXPLICIT;
 pPaletteEntry[index+246].peRed = index+246;
 pPaletteEntry[index+246].peGreen = 0;
 pPaletteEntry[index+246].peBlue = 0;
}

// Now set up private entries. In this example, the first 16
// available entries are animated.
for (index = 10; index < 26; index ++)
{
 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE|PC_RESERVED;
 pPaletteEntry[index].peRed = 255;
 pPaletteEntry[index].peGreen = 64;
 pPaletteEntry[index].peBlue = 32;
}

// Now set up the rest, the nonanimated entries.
for (; index < 246; index ++) // Index is set up by previous for loop
{
 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE;
 pPaletteEntry[index].peRed = 25;
 pPaletteEntry[index].peGreen = 6;
 pPaletteEntry[index].peBlue = 63;
}

// All 256 entries are filled. Create the palette.
ddrval = lpDD->CreatePalette(DDPCAPS_8BIT, pPaletteEntry,
 &lpDDPal,NULL);

Setting Palette Entries in Windowed Mode
[This is preliminary documentation and subject to change.]

in.doc – page 97

The rules that apply to the PALETTEENTRY structure used with the
IDirectDraw4::CreatePalette method also apply to the
IDirectDrawPalette::SetEntries method. Typically, you maintain your own array
of PALETTEENTRY structures, so you do not need to rebuild it. When necessary,
you can modify the array, and then call IDirectDrawPalette::SetEntries when it is
time to update the palette.

In most circumstances, you should not attempt to set any of the Windows static
entries when in nonexclusive (windowed) mode or you will get unpredictable results.
The only exception is when you reset the 256 entries.

For palette animation, you typically change only a small subset of entries in your
PALETTEENTRY array. You submit only those entries to
IDirectDrawPalette::SetEntries. If you are resetting such a small subset, you must
reset only those entries marked with the PC_NOCOLLAPSE and PC_RESERVED
flags. Attempting to animate other entries can have unpredictable results.

The following example illustrates palette animation in nonexclusive mode:

LPDIRECTDRAW lpDD; // Already initialized
PALETTEENTRY pPaletteEntry[256]; // Already initialized
LPDIRECTDRAWPALETTE lpDDPal; // Already initialized
int index;
HRESULT ddrval;
PALETTEENTRY temp;

// Animate some entries. Cycle the first 16 available entries.
// They were already animated.
temp = pPaletteEntry[10];
for (index = 10; index < 25; index ++)
{
 pPaletteEntry[index] = pPaletteEntry[index+1];
}
pPaletteEntry[25] = temp;

// Set the values. Do not pass a pointer to the entire palette entry
// structure, but only to the changed entries.
ddrval = lpDDPal->SetEntries(
 0, // Flags must be zero
 10, // First entry
 16, // Number of entries
 & (pPaletteEntry[10])); // Where to get the data

Video Ports
[This is preliminary documentation and subject to change.]

in.doc – page 98

DirectDraw video-port extensions are a low-level programming interface, not
intended for mainstream multimedia programmers. The target customer is the video-
streaming software industry, which creates products like DirectShow™. Developers
who want to include video playback in their software can make use of video-port
extensions. However, for most software, a high-level programming interface like the
one provided by DirectShow is recommended for greater ease of use.

This section contains information about DirectDrawVideoPort objects. The
following topics are discussed:

· What Are Video Ports?
· Video-Port Technology Overview
· About DirectDraw Video-Port Extensions
· Video Frames and Fields
· HREF, VREF, and Connections
· Vertical Blanking Interval Data
· Auto-Flipping
· Solutions to Common Video Artifacts
· Solving Problems Caused by Half-Lines
· Exploiting Hardware Features

What Are Video Ports?
[This is preliminary documentation and subject to change.]

A DirectDrawVideoPort object represents the video-port hardware found on some
display adapters. Generally, a video-port object controls how the video-port
hardware applies a video signal it receives from a video decoder directly to the
frame buffer.

More than one channel of video can be controlled by creating as many
DirectDrawVideoPort objects as is required. Because each channel can be separately
enumerated and configured, the video hardware for each channel does not need to be
identical.

For more information, see Video-Port Technology Overview.

Video-Port Technology Overview
[This is preliminary documentation and subject to change.]

A video port is hardware on a display device that enables direct access to a surface
within the frame buffer, bypassing the CPU and PCI bus. Direct frame buffer access
makes it possible to efficiently play live or recorded video without creating
noticeable load on the CPU. Once in a surface, an image can be displayed on the
screen as an overlay, used as a Direct3D texture, or accessed by the CPU for capture
or other processing. The following paragraphs provide general information about the
components that make up the technology and how they work.

in.doc – page 99

Data Flow

In a machine equipped with a video port, data in a video stream can flow directly
from a video source through a video decoder and the video port to the frame buffer.
These components often exist together on a display adapter, but can be on separate
hardware components that are physically connected to one another. An example of
this data flow is provided in the following illustration.

Video Input
(Physical video input,
MPEG codec, or other

device)

Video
Decoder

Video-Port
Equipped
VGA Chip

Frame Buffer

Offscreen
overlay
surface

Monitor

Video
Playback

Image

Video source

In the scope of video-port technology, a video source is strictly a hardware video
input device, such as a Zoom Video port, MPEG codec, or other hardware source.
These sources broadcast signals in a variety of formats, including NTSC, PAL, and
SECAM through a physical connection to a video decoder.

Video Decoder

A video decoder is also a hardware component. The video decoder's job is to
decipher the information provided by the video source and send it to the video port
in an agreed upon connection format. The decoder possesses a physical connection
to the video port, and exposes its services through a stream class minidriver. The
decoder is responsible for sending video data and clock and sync information to the
video port.

Video port

Like the other components in the data flow path, the video port is a piece of
hardware. The video port exists on the display adapter's VGA chip and has direct
access to the frame buffer. It receives information sent from the decoder, processes
it, and places it in the frame buffer to be displayed. During processing, the video port
can manipulate image data to provide scaling, shrinking, color control, or cropping
services.

Frame Buffer

The frame buffer accepts video data as provided by the video port. Once received,
applications can programmatically manipulate the image data, blit it to other
locations, or show it on the display using an overlay (the most common use).

in.doc – page 100

About DirectDraw Video-Port Extensions
[This is preliminary documentation and subject to change.]

DirectDraw has been extended to include the DirectDrawVideoPort object, which
takes advantage of video-port technology and provides its services through the
IDDVideoPortContainer and IDirectDrawVideoPort interfaces.

DirectDrawVideoPort objects do not control the video decoder, because it provides
services of its own, nor does DirectDraw control the video source; it is beyond the
scope of the video port. Rather, a DirectDrawVideoPort object represents the video
port itself. It monitors the incoming signal and passes image data to the frame buffer,
using parameters set though its interface methods to modify the image, perform
flipping, or carry out other services.

The IDDVideoPortContainer interface, which you can retrieve by calling the
IDirectDraw4::QueryInterface method, provides methods to query the hardware
for its capabilities and create video-port objects. You create a video-port object by
calling the IDDVideoPortContainer::CreateVideoPort method. Video-port objects
expose their functionality through the IDirectDrawVideoPort interface, enabling
you to manipulate the video-port hardware itself. Using these interfaces, you can
examine the video-port's capabilities, assign an overlay surface to receive image
data, start and stop video playback, and set hardware parameters to manipulate
image data for cropping, color control, scaling, or shrinking effects.

DirectDraw video-port extensions provide for multiple video ports on the same
machine by allowing you to create multiple DirectDrawVideoPort objects. There is
no requirement that multiple video ports on a machine be identical—each port is
separately enumerated and configured separately, regardless of any hardware
differences that might exist.

In keeping with the general philosophy of DirectX, this technology gives
programmers low-level access to hardware features while insulating them from
specific hardware implementation details. It is not a high-level API.

Video Frames and Fields
[This is preliminary documentation and subject to change.]

Video can be interlaced or non-interlaced. When a video signal is interlaced, each
video frame is made of two fields of image data. Each field is a collection of every
other scan line in an image, starting with the first or second scan line. The first field,
referred to as the odd field (or field 1), contains the data for the first scan line and
skips every other scan line to the end of the image. Similarly, the even field (or field
2), carries every other scan line starting with the second. The "even-ness" or "odd-
ness" of a field is referred to as its field polarity.

When video is not interlaced, each field contains all of a frame's scan lines.
Typically, video signals are sent at a rate of 30 frames per second; in the case of
interleaved video, this means the rate is 60 fields per second.

in.doc – page 101

The fields that make up a frame do not always reflect the same moment in time. For
example, if the frames are separated by 1/30 of a second then the two fields of a
frame may be separated by 1/60 of a second. Because a television displays each field
individually, no two fields are simultaneously visible, and the difference between
fields adds to the illusion of movement.

HREF, VREF, and Connections
[This is preliminary documentation and subject to change.]

When a monitor or other display device is displaying an image, it typically scans
down the screen, creating an image from left to right, top to bottom. (Sometimes, the
device makes two passes down the screen to create a single image; this type of
display is called an interlaced display.) The video stream contains signals that
instruct the display device when a new line or new screen is to be drawn.

The terms HREF and VREF, also known as hsync and vsync, are the signals within
the video stream that tell a display device what to do and when to do it. The HREF
signals that a new line is to be drawn and the VREF signals a new screen.

For instance, imagine you're working with a video signal intended for the world's
smallest monitor. The monitor only has 4 scan lines. (This is not at all realistic, of
course, but it's simple.) On an oscilloscope, the HREF and VREF signals would look
somewhat like the following illustration.

VREF

HREF

In the preceding illustration, both HREF and VREF signals are "active high,"
meaning that they are considered active when in a heightened state (when the waves
go up). There is no standard for these signals. In some cases, places where the waves
go down ("low" states) might signal an active HREF or VREF, or sometimes one
will be active high and the other active low. Although the preceding illustration is
only an imaginary example, note that there are lots of HREF signals for each VREF.
This is because for each new screen, there are several scan lines. Of course, in a real
video signal for a real broadcast, you would see hundreds of HREFs for a single
VREF.

HREF signals, VREF signals, and video data are carried across physical data lines
from the decoder to the video port. In many cases, a number of lines are reserved for
video data, and others are dedicated to carrying HREF and VREF signals. However,
there is no standard for how these data lines are used.

A connection is a protocol that a video port or decoder uses to define how it uses
these data lines. Video ports and video decoders will support a variety of
connections. DirectDraw video-port extensions use globally-unique identifiers
(GUIDs) to identify each type of connection. You can query for the connections that

in.doc – page 102

the video port supports by calling the
IDDVideoPortContainer::GetVideoPortConnectInfo method. You create a
DirectDrawVideoPort object that supports a given connection by calling the
IDDVideoPortContainer::CreateVideoPort method.

Keep in mind that the video decoder is outside the scope of DirectDraw video-port
extensions, and exposes its supported connections through an interface of its own. By
enumerating the connections that the video-port supports and comparing the results
with the connections supported by the decoder, you can negotiate a common
connection (or "language") that both components understand.

Vertical Blanking Interval Data
[This is preliminary documentation and subject to change.]

In broadcast video, a small period of time elapses between video frames, during
which a display device refreshes its display for the next frame. This period of time is
called the Vertical Blanking Interval (VBI). Instead of sitting idle during the VBI,
broadcast video encodes data in the first twenty-one scan lines of a video frame and
sends these lines during the VBI. This data is often used for closed captioning or
time-stamping, but can be used for other purposes.

DirectDraw video-port extensions enable you to divert data contained with the VBI
to a surface, bypass scaling of VBI data, and automatically flip between VBI
surfaces in a flipping chain. Once data is in a surface, you can directly access the
surface's memory as needed.

For more information, see Auto-Flipping.

Auto-Flipping
[This is preliminary documentation and subject to change.]

To avoid tearing images when refreshing the screen between frames,
DirectDrawVideoPort objects can automatically flip their target overlay surfaces in
response to VREF signals. To use this service, the target surface you set to the video-
port object with the IDirectDrawVideoPort::SetTargetSurface method must be the
first surface in a flipping chain of overlay surfaces. Then, to begin playing the video
sequence, call the IDirectDrawVideoPort::StartVideo method, specifying the
DDVP_AUTOFLIP flag in the dwVPFlags member of the associated
DDVIDEOPORTINFO structure. The video-port object will flip to the next surface
in the flipping chain for each VREF signal it receives. If the video port is
interleaving fields, it will flip once for every two VREF signals it receives.

If you are using auto-flipping and want to direct VBI data to separate auto-flipped
surfaces, you must have the same number of VBI surfaces as you do standard video
surfaces.

Solutions to Common Video Artifacts
[This is preliminary documentation and subject to change.]

in.doc – page 103

Several problems are inherent in displaying broadcast video on display devices other
than televisions. This section briefly discusses some common problems, then
describes how DirectDraw video-port extensions tries to solve them.

NTSC Interlaced Display and Interleaved Memory

An NTSC signal broadcasts video at an approximate rate of 30 frames, or 60 fields,
per second. Like a frame, a field in an NTSC signal is independent of the other field
in a frame and can contain different image data. For more information on this
behavior, see Video Frames and Fields.

The problems caused by the independence of fields within a frame become apparent
when two fields are interleaved for display. In video with a lot of movement, the two
fields of a single frame will contain images that don't match each other, resulting in
motion artifacts.

One way that developers have tried to work around this behavior is by discarding
one of the fields. This solution causes a loss in image quality by roughly one-half,
but provides acceptable results for some purposes. Another method frequently used
is to display fields individually, stretching each vertically by a factor of two when it
is displayed. This provides better image quality, but because fields are offset by one
pixel in the y-direction, the result is an animation that "jitters" up and down as it
plays.

DirectDraw video-port extensions can employ two, more advanced, techniques for
improving image quality, known as "Bob" and "Weave." Both are supported by the
DirectDraw overlay surfaces that are used with video-port extensions.

The first algorithm, Bob, is very similar to the method of displaying each field in a
frame individually. However, for each field, the overlay's source rectangle is
adjusted to accommodate for any jittering effects. Effectively, the source rectangle
bounces up and down in time with the fields, negating the jittering on the screen.
The following illustration depicts this process.

Overlay Rectangle
Overlay Rectangle

Odd Field Even Field
Scan line 1

Scan line n

The Weave algorithm provides the best image quality for material that originates
from film by exploiting a common technique used in the video industry for
converting motion pictures to television. Unlike Bob, a video-port object does not
Weave by itself; you must combine the default overlay behavior of displaying both
fields simultaneously with kernel mode video transport (provided with
Windows 2000 and Windows 98) to implement the algorithm.

in.doc – page 104

Here is a synopsis of the algorithm, provided for completeness. Motion pictures
capture video at a rate of 24 frames per second. When converting a motion picture
for television, technicians use a technique called 3:2 pulldown to convert the frame
rate to the 30 frames per second required for television broadcasts. This technique
involves inserting a redundant field for every four true fields in the video stream to
come up with the required number of fields.

When you weave, you are reversing this process. You detect when 3:2 pulldown is
being used, removing any redundant fields to restore the original motion-picture
frames. The fields that make up the restored frames can then be interleaved in
memory without risk of motion artifacts. Occasionally, the pattern of redundant
frames will change due to edits within the original film or reel breaks. You must
monitor when these changes occur and update the behavior to adjust for the new
pattern.

By default, an overlay surface displays both fields simultaneously. This works well if
you're implementing the Weave algorithm, but prevents the video port from using
the Bob algorithm. You can programmatically change how the overlay treats video
data by calling the IDirectDrawSurface4::UpdateOverlay method. The flags you
include in the dwFlags parameter determine the overlay's behavior: if you include
the DDOVER_BOB flag, the video port will use the Bob algorithm; if you don't, it
displays both fields. Note that by simply displaying both fields simultaneously, the
resulting video will show motion artifacts.

Solving Problems Caused by Half-Lines
[This is preliminary documentation and subject to change.]

Some video decoders output a half line of meaningless data at the beginning of the
even field. If this extra line is written to the frame buffer, the resulting image will
appear garbled. In some cases, the video-port hardware is capable of sensing and
discarding this data before writing it to the frame buffer.

You can determine if a video port is capable of discarding this data when retrieving
connection information with the
IDDVideoPortContainer::GetVideoPortConnectInfo method. If the video port
cannot discard half-lines, the DDVPCONNECT_HALFLINE flag will be specified
in the dwFlags member of the associated DDVIDEOPORTCONNECT structure
for each supported connection.

If the video port is unable to discard half-lines, you have two options: you can
discard one of the fields, or you can work around the hardware's limitations by
making some adjustments in how you create the video-port object and display
images with the target overlay surface

Here's how to work around the problem. When creating the video-port object by
calling the IDDVideoPortContainer::CreateVideoPort method, include the
DDVPCONNECT_INVERTPOLARITY flag in the dwFlags member of the
associated DDVIDEOPORTCONNECT structure. This causes the video port to
invert the polarity of the fields in the video stream, treating even fields like odd

in.doc – page 105

fields and vice versa. Once reversed, the half-line preceding even fields will be
written to the frame buffer as the first scan line of each frame. To remove the
unwanted data, adjust the source rectangle of the overlay surface used to display the
image down one pixel by calling the IDirectDrawVideoPort::StartVideo method
with the necessary coordinates. Note that this technique requires that you allocate
one extra line in the surface containing the even field.

Exploiting Hardware Features
[This is preliminary documentation and subject to change.]

Video-port hardware often supports special features for adjusting color, shrinking or
zooming images, handling VBI data, or skipping fields. The HAL provides
information about these features by using flags in the DDVIDEOPORTCAPS
structure. You retrieve the capabilities of a machine's video-port hardware by calling
the IDDVideoPortContainer::EnumVideoPorts method.

To exploit these features for playback, you use the
IDirectDrawVideoPort::StartVideo method, which uses a DDVIDEOPORTINFO
structure to request that hardware features be used to modify image data before
placing it in the frame buffer or for display. By setting values and flags in this
structure, you can specify the source rectangle used with the overlay surface,
indicate cropping regions, request hardware scaling, and set pixel formats.

DirectDrawVideoPort objects do not emulate video-port hardware services.

Getting the Flip and Blit Status
[This is preliminary documentation and subject to change.]

When the IDirectDrawSurface4::Flip method is called, the primary surface and
back buffer are exchanged. However, the exchange may not occur immediately. For
example, if a previous flip has not finished, or if it did not succeed, this method
returns DDERR_WASSTILLDRAWING. In the samples included with the SDK, the
IDirectDrawSurface4::Flip call continues to loop until it returns DD_OK. Also, a
IDirectDrawSurface4::Flip call does not complete immediately. It schedules a flip
for the next time a vertical blank occurs on the system.

An application that waits until the DDERR_WASSTILLDRAWING value is not
returned is very inefficient. Instead, you could create a function in your application
that calls the IDirectDrawSurface4::GetFlipStatus method on the back buffer to
determine if the previous flip has finished.

If the previous flip has not finished and the call returns
DDERR_WASSTILLDRAWING, your application can use the time to perform
another task before it checks the status again. Otherwise, you can perform the next
flip. The following example demonstrates this concept:

while(lpDDSBack->GetFlipStatus(DDGFS_ISFLIPDONE) ==
 DDERR_WASSTILLDRAWING);

in.doc – page 106

 // Waiting for the previous flip to finish. The application can
 // perform another task here.

ddrval = lpDDSPrimary->Flip(NULL, 0);

You can use the IDirectDrawSurface4::GetBltStatus method in much the same
way to determine whether a blit has finished. Because
IDirectDrawSurface4::GetFlipStatus and IDirectDrawSurface4::GetBltStatus
return immediately, you can use them periodically in your application with little loss
in speed.

Determining the Capabilities of the
Display Hardware

[This is preliminary documentation and subject to change.]

DirectDraw uses software emulation to perform the DirectDraw functions not
supported by the user's hardware. To accelerate performance of your DirectDraw
applications, you should determine the capabilities of the user's display hardware
after you have created a DirectDraw object, then structure your program to take
advantage of these capabilities when possible.

You can determine these capabilities by using the IDirectDraw4::GetCaps method.
Not all hardware features are supported in emulation. If you want to use a feature
only supported by some hardware, you must also be prepared to supply some
alternative for systems with hardware that lacks that feature.

Storing Bitmaps in Display Memory
[This is preliminary documentation and subject to change.]

Blitting from display memory to display memory is usually much more efficient than
blitting from system memory to display memory. As a result, you should store as
many of the sprites your application uses as possible in display memory.

Most display adapter hardware contains enough extra memory to store more than the
primary surface and the back buffer. Call the IDirectDraw4::GetAvailableVidMem
method to determine the amount of total and available memory for storing bitmaps
in the display adapter's memory. After the call, the lpdwTotal parameter contains the
total amount of display memory, minus the primary surface and any private caches
held by driver, and lpdwFree contains the amount of display memory currently free
that can be allocated for a surface that matches the capabilities specified by the
structure at lpDDSCaps2.

Triple Buffering
[This is preliminary documentation and subject to change.]

in.doc – page 107

In some cases, that is, when the display adapter has enough memory, it may be
possible to speed up the process of displaying your application by using triple
buffering. Triple buffering uses one primary surface and two back buffers. The
following example shows how to initialize a triple-buffering scheme:

// The lpDDSPrimary and lpDDSBack variables are globally
// declared, uninitialized LPDIRECTDRAWSURFACE4 variables.
//
// The lpDD variable is a pointer to an IDirectDraw4 interface

DDSURFACEDESC2 ddsd;
ZeroMemory (&ddsd, sizeof(ddsd));

// Create the primary surface with two back buffers.
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
 DDSCAPS_FLIP | DDSCAPS_COMPLEX;
ddsd.dwBackBufferCount = 2;
ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

// If we successfully created the flipping chain,
// retrieve pointers to the surfaces we need for
// flipping and blitting.
if(ddrval == DD_OK)
{
 // Get the surface directly attached to the primary (the back buffer).
 ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;
 ddrval = lpDDSPrimary->GetAttachedSurface(&ddsd.ddsCaps,
 &lpDDSBack);
 if(ddrval != DD_OK) ;
 // Display an error message here.
}

You do not need to keep track of all surfaces in a triple buffered flipping chain. The
only surfaces you must keep pointers to are the primary surface and the back-buffer
surface. You need a pointer to the primary surface in order to flip the surfaces in the
flipping chain, and you need a pointer to the back buffer for blitting. For more
information, see Flipping Surfaces.

Triple buffering allows your application to continue blitting to the back buffer even
if a flip has not completed and the back buffer's blit has already finished. Performing
a flip is not a synchronous event; one flip can take longer than another. Therefore, if
your application uses only one back buffer, it may spend some time idling while
waiting for the IDirectDrawSurface4::Flip method to return with DD_OK.

in.doc – page 108

DirectDraw Applications and Window
Styles

[This is preliminary documentation and subject to change.]

If your application uses DirectDraw in windowed mode, you can create windows
with any window style. However, full-screen exclusive mode applications cannot be
created with the WS_EX_TOOLWINDOW style without risk of unpredictable
behavior. The WS_EX_TOOLWINDOW style prevents a window from being the
top most window, which is required for a DirectDraw full-screen, exclusive mode
application.

Full-screen exclusive mode applications should use the WS_EX_TOPMOST
extended window style and the WS_VISIBLE window style to display properly.
These styles keep the application at the front of the window z-order and prevent GDI
from drawing on the primary surface.

The following example shows one way to safely prepare a window to be used in a
full-screen, exclusive mode application.

//
// Register the window class, display the window, and init
// all DirectX and graphic objects.
//
BOOL WINAPI InitApp(INT nWinMode)
{
 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);
 wcex.hInstance = g_hinst;
 wcex.lpszClassName = g_szWinName;
 wcex.lpfnWndProc = WndProc;
 wcex.style = CS_VREDRAW|CS_HREDRAW|CS_DBLCLKS;
 wcex.hIcon = LoadIcon (NULL, IDI_APPLICATION);
 wcex.hIconSm = LoadIcon (NULL, IDI_WINLOGO);
 wcex.hCursor = LoadCursor (NULL, IDC_ARROW);
 wcex.lpszMenuName = MAKEINTRESOURCE(IDR_APPMENU);
 wcex.cbClsExtra = 0 ;
 wcex.cbWndExtra = 0 ;
 wcex.hbrBackground = GetStockObject (NULL_BRUSH);

 RegisterClassEx(&wcex);

 g_hwndMain = CreateWindowEx(
 WS_EX_TOPMOST,
 g_szWinName,
 g_szWinCaption,
 WS_VISIBLE|WS_POPUP,

in.doc – page 109

 0,0,CX_SCREEN,CY_SCREEN,
 NULL,
 NULL,
 g_hinst,
 NULL);

 if(!g_hwndMain)
 return(FALSE);

 SetFocus(g_hwndMain);
 ShowWindow(g_hwndMain, nWinMode);
 UpdateWindow(g_hwndMain);

 return TRUE;
}

Matching True RGB Colors to the
Frame Buffer's Color Space

[This is preliminary documentation and subject to change.]

Applications often need to find out how a true RGB color (RGB 888) will be mapped
into a frame buffer's color space when the display device is not in RGB 888 mode.
For example, imagine you're working on an application that will run in 16- and 24-
bit RGB display modes. You know that when the art was created, a color was
reserved for use as a transparent blitting color key; for the sake of argument, it is a
24-bit color such as RGB(128,64,255). Because your application will also run in a
16-bit RGB mode, you need a way to find out how this 24-bit color key maps into
the color space that the frame buffer uses when it's running in a 16-bit RGB mode.

Although DirectDraw does not perform color matching services for you, there are
ways to calculate how your color key will be mapped in the frame buffer. These
methods can be pretty complicated. For most purposes, you can use the GDI built-in
color matching services, combined with the DirectDraw direct frame buffer access,
to determine how a color value maps into a different color space. In fact, the
Ddutil.cpp source file included in the DirectX examples of the Platform SDK
includes a sample function called DDColorMatch that performs this task. The
DDColorMatch sample function performs the following main tasks:

1. Retrieves the color value of a pixel in a surface at 0,0.
2. Calls the Win32 SetPixel function, using a COLORREF structure that

describes your 24-bit RGB color.
3. Uses DirectDraw to lock the surface, getting a pointer to the frame buffer

memory.
4. Retrieves the actual color value from the frame buffer (set by GDI in Step 2) and

unlocks the surface

in.doc – page 110

5. Resets the pixel at 0,0 to its original color using SetPixel.

The process used by the DDColorMatch sample function is not fast; it isn't intended
to be. However, it provides a reliable way to determine how a color will be mapped
across different RGB color spaces. For more information, see the source code for
DDColorMatch in the Ddutil.cpp source file.

Note
Because the SetPixel GDI function only accepts a COLORREF structure on
input, this technique only works for matching RGB 888 colors to the frame
buffer's pixel format. If your application needs to match colors of another pixel
format, you should translate them to RGB 888 before using this technique or
query the primary surface for its pixel format and match colors manually.

Displaying a Window in Full-Screen
Mode

[This is preliminary documentation and subject to change.]

In full-screen mode, DirectDraw has exclusive control over the display. As a result,
dialog boxes and other windows created through GDI are not normally visible.
However, by using special techniques you can incorporate a Windows dialog box,
HTML Help, or any other kind of window in your application.

The FSWindow Sample illustrates how a dialog box can be displayed and updated in
a full-screen application, and how mouse clicks and keystrokes work just as if the
dialog box were being displayed by GDI.

In FSWindow, the dialog box is created and "shown" as an ordinary dialog window:

hWndDlg = CreateDialog(g_hInstance,
 MAKEINTRESOURCE(IDD_DIALOG_SAMPLE),
 hWnd, (DLGPROC) SampleDlgProc);
ShowWindow(hWndDlg, SW_SHOWNORMAL);

Of course, at this point the dialog box is shown only on the hidden GDI surface. It
does not appear on the primary surface, which is controlled by DirectDraw.

If the hardware capabilities include DDCAPS2_CANRENDERWINDOWED (see
DDCAPS), displaying and updating the dialog box is easy. The application simply
calls the IDirectDraw4::FlipToGDISurface method, which makes the GDI surface
the primary surface. From now on, all updates to the dialog box will be displayed
automatically, because GDI is now rendering directly to the front buffer. The
application continues rendering to the back buffer, and on each pass through the
rendering loop the contents of the back buffer are blitted to the front buffer by
DirectDraw. The dialog box is not overwritten because the front buffer is clipped to
the application window, and the dialog box is obscuring part of that window.

in.doc – page 111

The following code, from the FSWindow_Init function, creates the clipper,
associates it with the application window, and brings the GDI surface to the front:

if (ddObject->CreateClipper(0, &ddClipper, NULL) == DD_OK)
 ddClipper->SetHWnd(0, hwndAppWindow);
ddObject->FlipToGDISurface();

Then, in the FSWindow_Update function, the following code blits the rendered
contents of the back buffer to the clipping region:

ddFrontBuffer->SetClipper(ddClipper);
ddFrontBuffer->Blt(NULL, ddBackBuffer, NULL, DDBLT_WAIT, NULL);

Note that because the GDI surface is the primary surface, Windows continues
displaying the mouse cursor. (This would not be the case, however, if the application
were using DirectInput with the mouse device at the exclusive cooperative level.)

For hardware that does not have the DDCAPS2_CANRENDERWINDOWED
capability, the process of displaying and updating a window in full-screen mode is
somewhat more complicated. In this case, the application is responsible for obtaining
the image of the window created by GDI and blitting it to the back buffer after the
full-screen rendering has been done. The entire back buffer is then flipped to the
front in the usual way.

The FSWindow sample provides two different methods for accessing the display
memory of the window, depending on whether the content is static or dynamic. The
method for static content is faster because it involves blitting from a memory device
context rather than a screen device context. This method should be used for windows
that do not change, such as informational dialog boxes. (Remember, though, that
unless you manually update the bitmap in response to events, even basic animations
such as a button press will not be visible to the user.)

If the content is static, FSWindow calls the CreateBMPFromWindow function when
the window is initialized. This function creates a bitmap and blits the contents of the
window into it. The bitmap handle is stored in the global variable
hwndFSWindowBMP. Whenever the primary surface is about to be updated, this
bitmap is blitted to the back buffer, as follows:

if (FSWindow_IsStatic)
{
 hdcMemory = CreateCompatibleDC(NULL);
 SelectObject(hdcMemory, hwndFSWindowBMP);
 BitBlt(hdcBackBuffer, x, y, cx, cy, hdcMemory, 0, 0, SRCCOPY);
 DeleteDC(hdcMemory);
}

If, on the other hand, the content of the window is dynamic, the following code is
executed. It blits the image directly from the GDI surface (represented by the
hdcScreen device context) to the back buffer.

in.doc – page 112

BitBlt(hdcBackBuffer, x, y, cx, cy, hdcScreen, x, y, SRCCOPY);

The coordinates represent the position and dimensions of the window on the GDI
surface, as retrieved through a call to GetWindowRect.

When the FSWindow application is running on hardware that does not have the
DDCAPS2_CANRENDERWINDOWED capability, it does not use the GDI surface,
so Windows cannot display the mouse cursor. The application takes over this task by
obtaining information about the cursor and displaying it on the back buffer just
before the flip.

DirectDraw Tutorials
[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each providing step-by-step instructions
for implementing the basics of DirectDraw in a C/C++ or Visual Basic application.
The tutorials are written parallel to a set of sample files that are provided with this
SDK in the \Samples\Multimedia\DDraw\Tutorials directory, following their code
path and providing explanations along the way. Readers are encouraged to follow
along in the sample code as they move through these tutorials.

· DirectDraw C/C++ Tutorials
· DirectDraw Visual Basic Tutorials

DirectDraw C/C++ Tutorials
[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each of which provides step-by-step
instructions for implementing a simple DirectDraw application. These tutorials use
many of the DirectDraw sample files that are provided with this SDK. These samples
demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to
perform common tasks:

· Tutorial 1: The Basics of DirectDraw
· Tutorial 2: Loading Bitmaps on the Back Buffer
· Tutorial 3: Blitting from an Off-Screen Surface
· Tutorial 4: Color Keys and Bitmap Animation
· Tutorial 5: Dynamically Modifying Palettes
· Tutorial 6: Using Overlay Surfaces

in.doc – page 113

Some samples in these tutorials use older versions IDirectDraw and
IDirectDrawSurface interfaces. If you want to update these examples so they use
the DirectX 5.0 interfaces query for the new versions of the interfaces before using
them. In addition, you must change the appropriate parameters of any methods that
have been updated for new versions of the interfaces.

Note
The sample files in these tutorials are written in C++. If you are using a C
compiler, you must make the appropriate changes to the files for them to
successfully compile. At the very least, you need to add the vtable and this
pointers to the interface methods.

Tutorial 1: The Basics of DirectDraw
[This is preliminary documentation and subject to change.]

To use DirectDraw, you first create an instance of the DirectDraw object, which
represents the display adapter on the computer. You then use the interface methods
to manipulate the object. In addition, you need to create one or more instances of a
DirectDrawSurface object to be able to display your application on a graphics
surface.

To demonstrate this, the DDEx1 sample included with this SDK performs the
following steps:

· Step 1: Creating a DirectDraw Object
· Step 2: Determining the Application's Behavior
· Step 3: Changing the Display Mode
· Step 4: Creating Flipping Surfaces
· Step 5: Rendering to the Surfaces
· Step 6: Writing to the Surface
· Step 7: Flipping the Surfaces
· Step 8: Deallocating the DirectDraw Objects

Note
To use GUIDs successfully in your applications, you must either define
INITGUID prior to all other include and define statements, or you must link to
the Dxguid.lib library. You should define INITGUID in only one of your source
modules.

Step 1: Creating a DirectDraw Object
[This is preliminary documentation and subject to change.]

To create an instance of a DirectDraw object, your application should use the
DirectDrawCreate function as shown in the doInit sample function of the DDEx1

in.doc – page 114

program. DirectDrawCreate contains three parameters. The first parameter takes a
globally unique identifier (GUID) that represents the display device. The GUID, in
most cases, is set to NULL, which means DirectDraw uses the default display driver
for the system. The second parameter contains the address of a pointer that identifies
the location of the DirectDraw object if it is created. The third parameter is always
set to NULL and is included for future expansion.

The following example shows how to create the DirectDraw object and how to
determine if the creation was successful or not:

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);
if(ddrval == DD_OK)
{
 // lpDD is a valid DirectDraw object.
}
else
{
 // The DirectDraw object could not be created.
}

Step 2: Determining the Application's Behavior
[This is preliminary documentation and subject to change.]

Before you can change the resolution of the display, you must at a minimum specify
the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags in the dwFlags
parameter of the IDirectDraw::SetCooperativeLevel method. This gives your
application complete control over the display device, and no other application will
be able to share it. In addition, the DDSCL_FULLSCREEN flag sets the application
in exclusive (full-screen) mode. Your application covers the entire desktop, and only
your application can write to the screen. The desktop is still available, however. (To
see the desktop in an application running in exclusive mode, start DDEx1 and press
ALT+ TAB.)

The following example demonstrates the use of the SetCooperativeLevel method:

HRESULT ddrval;
LPDIRECTDRAW lpDD; // Already created by DirectDrawCreate

ddrval = lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE |
 DDSCL_FULLSCREEN);
if(ddrval == DD_OK)
{
 // Exclusive mode was successful.
}
else
{
 // Exclusive mode was not successful.
 // The application can still run, however.

in.doc – page 115

}

If SetCooperativeLevel does not return DD_OK, you can still run your application.
The application will not be in exclusive mode, however, and it might not be capable
of the performance your application requires. In this case, you might want to display
a message that allows the user to decide whether or not to continue.

If you are setting the full-screen, exclusive cooperative level, you must pass your
application's window handle to SetCooperativeLevel to allow Windows to
determine if your application terminates abnormally. For example, if a general
protection (GP) fault occurs and GDI is flipped to the back buffer, the user will not
be able to return to the Windows screen. To prevent this from occurring, DirectDraw
provides a process running in the background that traps messages that are sent to that
window. DirectDraw uses these messages to determine when the application
terminates. This feature imposes some restrictions, however. You have to specify the
window handle that is retrieving messages for your application—that is, if you create
another window, you must ensure that you specify the window that is active.
Otherwise, you might experience problems, including unpredictable behavior from
GDI, or no response when you press ALT + TAB.

Step 3: Changing the Display Mode
[This is preliminary documentation and subject to change.]

After you have set the application's behavior, you can use the
IDirectDraw::SetDisplayMode method to change the resolution of the display. The
following example shows how to set the display mode to 6404808 bpp:

HRESULT ddrval;
LPDIRECTDRAW lpDD; // Already created

ddrval = lpDD->SetDisplayMode(640, 480, 8);
if(ddrval == DD_OK)
{
 // The display mode changed successfully.
}
else
{
 // The display mode cannot be changed.
 // The mode is either not supported or
 // another application has exclusive mode.
}

When you set the display mode, you should ensure that if the user's hardware cannot
support higher resolutions, your application reverts to a standard mode that is
supported by a majority of display adapters. For example, your application could be
designed to run on all systems that support 6404808 as a standard backup
resolution.

in.doc – page 116

Note
IDirectDraw::SetDisplayMode returns a DDERR_INVALIDMODE error
value if the display adapter could not be set to the desired resolution. Therefore,
you should use the IDirectDraw::EnumDisplayModes method to determine the
capabilities of the user's display adapter before trying to set the display mode.

Step 4: Creating Flipping Surfaces
[This is preliminary documentation and subject to change.]

After you have set the display mode, you must create the surfaces on which to place
your application. Because the DDEx1 example is using the
IDirectDraw::SetCooperativeLevel method to set the mode to exclusive (full-
screen) mode, you can create surfaces that flip between the surfaces. If you were
using SetCooperativeLevel to set the mode to DDSCL_NORMAL, you could create
only surfaces that blit between the surfaces. Creating flipping surfaces requires the
following steps, also discussed in this topic:

· Defining the surface requirements
· Creating the surfaces

Defining the Surface Requirements
[This is preliminary documentation and subject to change.]

The first step in creating flipping surfaces is to define the surface requirements in a
DDSURFACEDESC structure. The following example shows the structure
definitions and flags needed to create a flipping surface.

// Create the primary surface with one back buffer.
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
 DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 1;

In this example, the dwSize member is set to the size of the DDSURFACEDESC
structure. This is to prevent any DirectDraw method call you use from returning with
an invalid member error. (The dwSize member was provided for future expansion of
the DDSURFACEDESC structure.)

The dwFlags member determines which members in the DDSURFACEDESC
structure will be filled with valid information. For the DDEx1 example, dwFlags is
set to specify that you want to use the DDSCAPS structure (DDSD_CAPS) and that
you want to create a back buffer (DDSD_BACKBUFFERCOUNT).

The dwCaps member in the example indicates the flags that will be used in the
DDSCAPS structure. In this case, it specifies a primary surface

in.doc – page 117

(DDSCAPS_PRIMARYSURFACE), a flipping surface (DDSCAPS_FLIP), and a
complex surface (DDSCAPS_COMPLEX).

Finally, the example specifies one back buffer. The back buffer is where the
backgrounds and sprites will actually be written. The back buffer is then flipped to
the primary surface. In the DDEx1 example, the number of back buffers is set to 1.
You can, however, create as many back buffers as the amount of display memory
allows. For more information on creating more than one back buffer, see Triple
Buffering.

Surface memory can be either display memory or system memory. DirectDraw uses
system memory if the application runs out of display memory (for example, if you
specify more than one back buffer on a display adapter with only 1 MB of RAM).
You can also specify whether to use only system memory or only display memory by
setting the dwCaps member in the DDSCAPS structure to
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY. (If you specify
DDSCAPS_VIDEOMEMORY, but not enough memory is available to create the
surface, IDirectDraw::CreateSurface returns with a
DDERR_OUTOFVIDEOMEMORY error.)

Creating the Surfaces
[This is preliminary documentation and subject to change.]

After the DDSURFACEDESC structure is filled, you can use it and lpDD, the
pointer to the DirectDraw object that was created by the DirectDrawCreate
function, to call the IDirectDraw::CreateSurface method, as shown in the
following example:

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
if(ddrval == DD_OK)
{
 // lpDDSPrimary points to the new surface.
}
else
{
 // The surface was not created.
 return FALSE;
}

The lpDDSPrimary parameter will point to the primary surface returned by
CreateSurface if the call succeeds.

After the pointer to the primary surface is available, you can use the
IDirectDrawSurface3::GetAttachedSurface method to retrieve a pointer to the
back buffer, as shown in the following example:

ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
ddrval = lpDDSPrimary->GetAttachedSurface(&ddcaps, &lpDDSBack);
if(ddrval == DD_OK)

in.doc – page 118

{
 // lpDDSBack points to the back buffer.
}
else
{
 return FALSE;
}

By supplying the address of the surface's primary surface and by setting the
capabilities value with the DDSCAPS_BACKBUFFER flag, the lpDDSBack
parameter will point to the back buffer if the
IDirectDrawSurface3::GetAttachedSurface call succeeds.

Step 5: Rendering to the Surfaces
[This is preliminary documentation and subject to change.]

After the primary surface and a back buffer have been created, the DDEx1 example
renders some text on the primary surface and back buffer surface by using standard
Windows GDI functions, as shown in the following example:

if (lpDDSPrimary->GetDC(&hdc) == DD_OK)
{
 SetBkColor(hdc, RGB(0, 0, 255));
 SetTextColor(hdc, RGB(255, 255, 0));
 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));
 lpDDSPrimary->ReleaseDC(hdc);
}

if (lpDDSBack->GetDC(&hdc) == DD_OK)
{
 SetBkColor(hdc, RGB(0, 0, 255));
 SetTextColor(hdc, RGB(255, 255, 0));
 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));
 lpDDSBack->ReleaseDC(hdc);
}

The example uses the IDirectDrawSurface3::GetDC method to retrieve the handle
of the device context, and it internally locks the surface. If you are not going to use
Windows functions that require a handle of a device context, you could use the
IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock methods to lock
and unlock the back buffer.

Locking the surface memory (whether the whole surface or part of a surface) ensures
that your application and the system blitter cannot obtain access to the surface
memory at the same time. This prevents errors from occurring while your application
is writing to surface memory. In addition, your application cannot page flip until the
surface memory is unlocked.

in.doc – page 119

After the surface is locked, the example uses standard Windows GDI functions:
SetBkColor to set the background color, SetTextColor to select the color of the text
to be placed on the background, and TextOut to print the text and background color
on the surfaces.

After the text has been written to the buffer, the example uses the
IDirectDrawSurface3::ReleaseDC method to unlock the surface and release the
handle. Whenever your application finishes writing to the back buffer, you must call
either IDirectDrawSurface3::ReleaseDC or IDirectDrawSurface3::Unlock,
depending on your application. Your application cannot flip the surface until the
surface is unlocked.

Typically, you write to a back buffer, which you then flip to the primary surface to
be displayed. In the case of DDEx1, there is a significant delay before the first flip,
so DDEx1 writes to the primary buffer in the initialization function to prevent a
delay before displaying the surface. As you will see in a subsequent step of this
tutorial, the DDEx1 example writes only to the back buffer during WM_TIMER. An
initialization function or title page may be the only place where you might want to
write to the primary surface.

Note
After the surface is unlocked by using IDirectDrawSurface3::Unlock, the
pointer to the surface memory is invalid. You must use
IDirectDrawSurface3::Lock again to obtain a valid pointer to the surface
memory.

Step 6: Writing to the Surface
[This is preliminary documentation and subject to change.]

The first half of the WM_TIMER message in DDEx1 is devoted to writing to the
back buffer, as shown in the following example:

case WM_TIMER:
 // Flip surfaces.
 if(bActive)
 {
 if (lpDDSBack->GetDC(&hdc) == DD_OK)
 {
 SetBkColor(hdc, RGB(0, 0, 255));
 SetTextColor(hdc, RGB(255, 255, 0));
 if(phase)
 {
 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));
 phase = 0;
 }
 else
 {
 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));

in.doc – page 120

 phase = 1;
 }
 lpDDSBack->ReleaseDC(hdc);
 }

The line of code that calls the IDirectDrawSurface3::GetDC method locks the
back buffer in preparation for writing. The SetBkColor and SetTextColor functions
set the colors of the background and text.

Next, the phase variable determines whether the primary buffer message or the back
buffer message should be written. If phase equals 1, the primary surface message is
written, and phase is set to 0. If phase equals 0, the back buffer message is written,
and phase is set to 1. Note, however, that in both cases the messages are written to
the back buffer.

After the message is written to the back buffer, the back buffer is unlocked by using
the IDirectDrawSurface3::ReleaseDC method.

Step 7: Flipping the Surfaces
[This is preliminary documentation and subject to change.]

After the surface memory is unlocked, you can use the IDirectDrawSurface3::Flip
method to flip the back buffer to the primary surface, as shown in the following
example:

while(1)
{
 HRESULT ddrval;
 ddrval = lpDDSPrimary->Flip(NULL, 0);
 if(ddrval == DD_OK)
 {
 break;
 }
 if(ddrval == DDERR_SURFACELOST)
 {
 ddrval = lpDDSPrimary->Restore();
 if(ddrval != DD_OK)
 {
 break;
 }
 }
 if(ddrval != DDERR_WASSTILLDRAWING)
 {
 break;
 }
}

in.doc – page 121

In the example, lpDDSPrimary parameter designates the primary surface and its
associated back buffer. When IDirectDrawSurface3::Flip is called, the front and
back surfaces are exchanged (only the pointers to the surfaces are changed; no data
is actually moved). If the flip is successful and returns DD_OK, the application
breaks from the while loop.

If the flip returns with a DDERR_SURFACELOST value, an attempt is made to
restore the surface by using the IDirectDrawSurface3::Restore method. If the
restore is successful, the application loops back to the IDirectDrawSurface3::Flip
call and tries again. If the restore is unsuccessful, the application breaks from the
while loop, and returns with an error.

Note
When you call IDirectDrawSurface3::Flip, the flip does not complete
immediately. Rather, a flip is scheduled for the next time a vertical blank occurs
on the system. If, for example, the previous flip has not occurred,
IDirectDrawSurface3::Flip returns DDERR_WASSTILLDRAWING. In the
example, the IDirectDrawSurface3::Flip call continues to loop until it returns
DD_OK.

Step 8: Deallocating the DirectDraw Objects
[This is preliminary documentation and subject to change.]

When you press the F12 key, the DDEx1 application processes the WM_DESTROY
message before exiting the application. This message calls the finiObjects sample
function, which contains all of the IUnknown::Release calls, as shown in the
following example:

static void finiObjects(void)
{
 if(lpDD != NULL)
 {
 if(lpDDSPrimary != NULL)
 {
 lpDDSPrimary->Release();
 lpDDSPrimary = NULL;
 }
 lpDD->Release();
 lpDD = NULL;
 }
} // finiObjects

The application checks if the pointers to the DirectDraw object (lpDD) and the
DirectDrawSurface object (lpDDSPrimary) are not equal to NULL. Then DDEx1
calls the IDirectDrawSurface3::Release method to decrease the reference count of
the DirectDrawSurface object by 1. Because this brings the reference count to 0, the
DirectDrawSurface object is deallocated. The DirectDrawSurface pointer is then

in.doc – page 122

destroyed by setting its value to NULL. Next, the application calls
IDirectDraw::Release to decrease the reference count of the DirectDraw object to
0, deallocating the DirectDraw object. This pointer is then also destroyed by setting
its value to NULL.

Tutorial 2: Loading Bitmaps on the
Back Buffer

[This is preliminary documentation and subject to change.]

The sample discussed in this tutorial (DDEx2) expands on the DDEx1 sample that
was discussed in Tutorial 1. DDEx2 includes functionality to load a bitmap file on
the back buffer. This new functionality is demonstrated in the following steps:

· Step 1: Creating the Palette
· Step 2: Setting the Palette
· Step 3: Loading a Bitmap on the Back Buffer
· Step 4: Flipping the Surfaces

As in DDEx1, doInit is the initialization function for the DDEx2 application.
Although the code for the DirectDraw initialization does not look quite the same in
DDEx2 as it did in DDEx1, it is essentially the same, except for the following
section:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)
 goto error;

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)
 goto error;

// Load a bitmap into the back buffer.
ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)
 goto error;

Step 1: Creating the Palette
[This is preliminary documentation and subject to change.]

The DDEx2 sample first loads the palette into a structure by using the following
code:

in.doc – page 123

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)
 goto error;

The sample function DDLoadPalette is part of the common DirectDraw functions
found in the Ddutil.cpp file located in the \Dxsdk\Sdk\Samples\Misc directory. Most
of the DirectDraw sample files in this SDK use this file. Essentially, it contains the
functions for loading bitmaps and palettes from either files or resources. To avoid
having to repeat code in the example files, these functions were placed in a file that
could be reused. Make sure you include Ddutil.cpp in the list of files to be compiled
with the rest of the DDExn samples.

For DDEx2, the DDLoadPalette sample function creates a DirectDrawPalette object
from the Back.bmp file. The DDLoadPalette sample function determines if a file or
resource for creating a palette exists. If one does not, it creates a default palette. For
DDEx2, it extracts the palette information from the bitmap file and stores it in a
structure pointed to by ape.

DDEx2 then creates the DirectDrawPalette object, as shown in the following
example:

pdd->CreatePalette(DDPCAPS_8BIT, ape, &ddpal, NULL);
return ddpal;

When the IDirectDraw2::CreatePalette method returns, the ddpal parameter points
to the DirectDrawPalette object, which is then returned from the DDLoadPalette
call.

The ape parameter is a pointer to a structure that can contain either 2, 4, 16, or 256
entries, organized linearly. The number of entries depends on the dwFlags parameter
in the CreatePalette method. In this case, the dwFlags parameter is set to
DDPCAPS_8BIT, which indicates that there are 256 entries in this structure. Each
entry contains 4 bytes (a red channel, a green channel, a blue channel, and a flags
byte).

Step 2: Setting the Palette
[This is preliminary documentation and subject to change.]

After you create the palette, you pass the pointer to the DirectDrawPalette object
(ddpal) to the primary surface by calling the IDirectDrawSurface3::SetPalette
method, as shown in the following example:

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)
 // SetPalette failed.

in.doc – page 124

After you have called IDirectDrawSurface3::SetPalette, the DirectDrawPalette
object is associated with the DirectDrawSurface object. Any time you need to
change the palette, you simply create a new palette and set the palette again.
(Although this tutorial uses these steps, there are other ways of changing the palette,
as will be shown in later examples.)

Step 3: Loading a Bitmap on the Back Buffer
[This is preliminary documentation and subject to change.]

After the DirectDrawPalette object is associated with the DirectDrawSurface object,
DDEx2 loads the Back.bmp bitmap on the back buffer by using the following code:

// Load a bitmap into the back buffer.
ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)
 // Load failed.

DDReLoadBitmap is another sample function found in Ddutil.cpp. It loads a bitmap
from a file or resource into an already existing DirectDraw surface. (You could also
use DDLoadBitmap to create a surface and load the bitmap into that surface. For
more information, see Tutorial 5: Dynamically Modifying Palettes.) For DDEx2, it
loads the Back.bmp file pointed to by szBackground onto the back buffer pointed to
by lpDDSBack. The DDReLoadBitmap function calls the DDCopyBitmap function
to copy the file onto the back buffer and stretch it to the proper size.

The DDCopyBitmap function copies the bitmap into memory, and it uses the
GetObject function to retrieve the size of the bitmap. It then uses the following code
to retrieve the size of the back buffer onto which it will place the bitmap:

// Get the size of the surface.
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;
pdds->GetSurfaceDesc(&ddsd);

The ddsd value is a pointer to the DDSURFACEDESC structure. This structure
stores the current description of the DirectDraw surface. In this case, the
DDSURFACEDESC members describe the height and width of the surface, which
are indicated by DDSD_HEIGHT and DDSD_WIDTH. The call to the
IDirectDrawSurface3::GetSurfaceDesc method then loads the structure with the
proper values. For DDEx2, the values will be 480 for the height and 640 for the
width.

The DDCopyBitmap sample function locks the surface and copies the bitmap to the
back buffer, stretching or compressing it as applicable by using the StretchBlt
function, as shown in the following example:

if ((hr = pdds->GetDC(&hdc)) == DD_OK)
{

in.doc – page 125

 StretchBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight, hdcImage, x, y,
 dx, dy, SRCCOPY);
 pdds->ReleaseDC(hdc);
}

Step 4: Flipping the Surfaces
[This is preliminary documentation and subject to change.]

Flipping surfaces in the DDEx2 sample is essentially the same process as that in the
DDEx1 tutorial (see Tutorial 1: The Basics of DirectDraw) except that if the surface
is lost (DDERR_SURFACELOST), the bitmap must be reloaded on the back buffer
by using the DDReLoadBitmap function after the surface is restored.

Tutorial 3: Blitting from an Off-Screen
Surface

[This is preliminary documentation and subject to change.]

The sample in Tutorial 2 (DDEx2) takes a bitmap and puts it in the back buffer, and
then it flips between the back buffer and the primary buffer. This is not a very
realistic approach to displaying bitmaps. The sample in this tutorial (DDEx3)
expands on the capabilities of DDEx2 by including two off-screen buffers in which
the two bitmaps—one for the even screen and one for the odd screen—are stored. It
uses the IDirectDrawSurface3::BltFast method to copy the contents of an off-
screen surface to the back buffer, and then it flips the buffers and copies the next off-
screen surface to the back buffer.

The new functionality demonstrated in DDEx3 is shown in the following steps:

· Step 1: Creating the Off-Screen Surfaces
· Step 2: Loading the Bitmaps to the Off-Screen Surfaces
· Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

Step 1: Creating the Off-Screen Surfaces
[This is preliminary documentation and subject to change.]

The following code is added to the doInit sample function in DDEx3 to create the
two off-screen buffers:

// Create an offscreen bitmap.
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddsd.dwHeight = 480;
ddsd.dwWidth = 640;
ddrval = lpDD->CreateSurface(&ddsd, &lpDDSOne, NULL);
if(ddrval != DD_OK)

in.doc – page 126

{
 return initFail(hwnd);
}

// Create another offscreen bitmap.
ddrval = lpDD->CreateSurface(&ddsd, &lpDDSTwo, NULL);
if(ddrval != DD_OK)
{
 return initFail(hwnd);
}

The dwFlags member specifies that the application will use the DDSCAPS
structure, and it will set the height and width of the buffer. The surface will be an
off-screen plain buffer, as indicated by the DDSCAPS_OFFSCREEN flag set in the
DDSCAPS structure. The height and the width are set as 480 and 640, respectively,
in the DDSURFACEDESC structure. The surface is then created by using the
IDirectDraw::CreateSurface method.

Because both of the off-screen plain buffers are the same size, the only requirement
for creating the second buffer is to call IDirectDraw::CreateSurface again with a
different pointer name.

You can also specifically request that the off-screen buffer be placed in system
memory or display memory by setting either the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY capability in the DDSCAPS structure. By saving the
bitmaps in display memory, you can increase the speed of the transfers between the
off-screen surfaces and the back buffer. This will become more important when
using bitmap animation. However, if you specify DDSCAPS_VIDEOMEMORY for
the off-screen buffer and not enough display memory is available to hold the entire
bitmap, a DDERR_OUTOFVIDEOMEMORY error value will be returned when you
attempt to create the surface.

Step 2: Loading the Bitmaps to the Off-Screen
Surfaces

[This is preliminary documentation and subject to change.]

After the two off-screen surfaces are created, DDEx3 uses the InitSurfaces sample
function to load the bitmaps from the Frntback.bmp file onto the surfaces. The
InitSurfaces function uses the DDCopyBitmap sample function located in Ddutil.cpp
to load both of the bitmaps, as shown in the following example:

// Load the bitmap resource.
hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap,
 IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION);

if (hbm == NULL)
 return FALSE;

in.doc – page 127

DDCopyBitmap(lpDDSOne, hbm, 0, 0, 640, 480);
DDCopyBitmap(lpDDSTwo, hbm, 0, 480, 640, 480);
DeleteObject(hbm);

return TRUE;

If you look at the Frntback.bmp file in Microsoft® Paint or another drawing
application, you can see that the bitmap consists of two screens, one on top of the
other. The DDCopyBitmap function breaks the bitmap in two at the point where the
screens meet. In addition, it loads the first bitmap into the first off-screen surface
(lpDDSOne) and the second bitmap into the second off-screen surface (lpDDSTwo).

Step 3: Blitting the Off-Screen Surfaces to the
Back Buffer

[This is preliminary documentation and subject to change.]

The WM_TIMER message contains the code for writing to surfaces and flipping
surfaces. In the case of DDEx3, it contains the following code to select the proper
off-screen surface and to blit it to the back buffer:

rcRect.left = 0;
rcRect.top = 0;
rcRect.right = 640;
rcRect.bottom = 480;
if(phase)
{
 pdds = lpDDSTwo;
 phase = 0;
}
else
{
 pdds = lpDDSOne;
 phase = 1;
}
while(1)
{
 ddrval = lpDDSBack->BltFast(0, 0, pdds, &rcRect, FALSE);
 if(ddrval == DD_OK)
 {
 break;
 }
}

The phase variable determines which off-screen surface will be blitted to the back
buffer. The IDirectDrawSurface3::BltFast method is then called to blit the selected
off-screen surface onto the back buffer, starting at position (0, 0), the upper-left
corner. The rcRect parameter points to the RECT structure that defines the upper-

in.doc – page 128

left and lower-right corners of the off-screen surface that will be blitted from. The
last parameter is set to FALSE (or 0), indicating that no specific transfer flags are
used.

Depending on the requirements of your application, you could use either the
IDirectDrawSurface3::Blt method or the IDirectDrawSurface::BltFast method to
blit from the off-screen buffer. If you are performing a blit from an off-screen plain
buffer that is in display memory, you should use IDirectDrawSurface3::BltFast.
Although you will not gain speed on systems that use hardware blitter on their
display adapters, the blit will take about 10 percent less time on systems that use
hardware emulation to perform the blit. Because of this, you should use
IDirectDrawSurface3::BltFast for all display operations that blit from display
memory to display memory. If you are blitting from system memory or require
special hardware flags, however, you have to use IDirectDrawSurface3::Blt.

After the off-screen surface is loaded in the back buffer, the back buffer and the
primary surface are flipped in much the same way as shown in the previous tutorials.

Tutorial 4: Color Keys and Bitmap
Animation

[This is preliminary documentation and subject to change.]

The sample in Tutorial 3 (DDEx3) shows one simple method of placing bitmaps into
an off-screen buffer before they are blitted to the back buffer. The sample in this
tutorial (DDEx4) uses the techniques described in the previous tutorials to load a
background and a series of sprites into an off-screen surface. Then it uses the
IDirectDrawSurface3::BltFast method to copy portions of the off-screen surface to
the back buffer, thereby generating a simple bitmap animation.

The bitmap file that DDEx4 uses, All.bmp, contains the background and 60
iterations of a rotating red donut with a black background. The DDEx4 sample
contains new functions that set the color key for the rotating donut sprites. Then, the
sample copies the appropriate sprite to the back buffer from the off-screen surface.

The new functionality demonstrated in DDEx4 is shown in the following steps:

· Step 1: Setting the Color Key
· Step 2: Creating a Simple Animation

Step 1: Setting the Color Key
[This is preliminary documentation and subject to change.]

In addition to the other functions found in the doInit sample function of some of the
other DirectDraw samples, the DDEx4 sample contains the code to set the color key
for the sprites. Color keys are used for setting a color value that will be used for
transparency. When the system contains a hardware blitter, all the pixels of a
rectangle are blitted except the value that was set as the color key, thereby creating

in.doc – page 129

nonrectangular sprites on a surface. The following code shows how to set the color
key in DDEx4:

// Set the color key for this bitmap (black).
DDSetColorKey(lpDDSOne, RGB(0,0,0));

return TRUE;

You can select the color key by setting the RGB values for the color you want in the
call to the DDSetColorKey sample function. The RGB value for black is (0, 0, 0).
The DDSetColorKey function calls the DDColorMatch function. (Both functions are
in Ddutil.cpp.) The DDColorMatch function stores the current color value of the
pixel at location (0, 0) on the bitmap located in the lpDDSOne surface. Then it takes
the RGB values you supplied and sets the pixel at location (0, 0) to that color.
Finally, it masks the value of the color with the number of bits per pixel that are
available. After that is done, the original color is put back in location (0, 0), and the
call returns to DDSetColorKey with the actual color key value. After it is returned,
the color key value is placed in the dwColorSpaceLowValue member of the
DDCOLORKEY structure. It is also copied to the dwColorSpaceHighValue
member. The call to IDirectDrawSurface3::SetColorKey then sets the color key.

You may have noticed the reference to CLR_INVALID in DDSetColorKey and
DDColorMatch. If you pass CLR_INVALID as the color key in the DDSetColorKey
call in DDEx4, the pixel in the upper-left corner (0, 0) of the bitmap will be used as
the color key. As the DDEx4 bitmap is delivered, that does not mean much because
the color of the pixel at (0, 0) is a shade of gray. If, however, you would like to see
how to use the pixel at (0, 0) as the color key for the DDEx4 sample, open the
All.bmp bitmap file in a drawing application and then change the single pixel at (0,
0) to black. Be sure to save the change (it's hard to see). Then change the DDEx4
line that calls DDSetColorKey to the following:

DDSetColorKey(lpDDSOne, CLR_INVALID);

Recompile the DDEx4 sample, and ensure that the resource definition file is also
recompiled so that the new bitmap is included. (To do this, you can simply add and
then delete a space in the Ddex4.rc file.) The DDEx4 sample will then use the pixel
at (0, 0), which is now set to black, as the color key.

Step 2: Creating a Simple Animation
[This is preliminary documentation and subject to change.]

The DDEx4 sample uses the updateFrame sample function to create a simple
animation using the red donuts included in the All.bmp file. The animation consists
of three red donuts positioned in a triangle and rotating at various speeds. This
sample compares the Win32 GetTickCount function with the number of
milliseconds since the last call to GetTickCount to determine whether to redraw any
of the sprites. It subsequently uses the IDirectDrawSurface3::BltFast method first
to blit the background from the off-screen surface (lpDDSOne) to the back buffer,

in.doc – page 130

and then to blit the sprites to the back buffer using the color key that you set earlier
to determine which pixels are transparent. After the sprites are blitted to the back
buffer, DDEx4 calls the IDirectDrawSurface3::Flip method to flip the back buffer
and the primary surface.

Note that when you use IDirectDrawSurface3::BltFast to blit the background from
the off-screen surface, the dwTrans parameter that specifies the type of transfer is set
to DDBLTFAST_NOCOLORKEY. This indicates that a normal blit will occur with
no transparency bits. Later, when the red donuts are blitted to the back buffer, the
dwTrans parameter is set to DDBLTFAST_SRCCOLORKEY. This indicates that a
blit will occur with the color key for transparency as it is defined, in this case, in the
lpDDSOne buffer.

In this sample, the entire background is redrawn each time through the updateFrame
function. One way of optimizing this sample would be to redraw only that portion of
the background that changes while rotating the red donuts. Because the location and
size of the rectangles that make up the donut sprites never change, you should be
able to easily modify the DDEx4 sample with this optimization.

Tutorial 5: Dynamically Modifying
Palettes

[This is preliminary documentation and subject to change.]

The sample described in this tutorial (DDEx5) is a modification of the sample
described in Tutorial 4 (DDEx4) example. DDEx5 demonstrates how to dynamically
change the palette entries while an application is running. The new functionality
demonstrated in DDEx5 is shown in the following steps:

· Step 1: Loading the Palette Entries
· Step 2: Rotating the Palettes

Step 1: Loading the Palette Entries
[This is preliminary documentation and subject to change.]

The following code in DDEx5 loads the palette entries with the values in the lower
half of the All.bmp file (the part of the bitmap that contains the red donuts):

// First, set all colors as unused.
for(i=0; i<256; i++)
{
 torusColors[i] = 0;
}

// Lock the surface and scan the lower part (the torus area),
// and keep track of all the indexes found.
ddsd.dwSize = sizeof(ddsd);
while (lpDDSOne->Lock(NULL, &ddsd, 0, NULL) == DDERR_WASSTILLDRAWING)

in.doc – page 131

 ;

// Search through the torus frames and mark used colors.
for(y=480; y<480+384; y++)
{
 for(x=0; x<640; x++)
 {
 torusColors[((BYTE *)ddsd.lpSurface)[y*ddsd.lPitch+x]] = 1;
 }
}

lpDDSOne->Unlock(NULL);

The torusColors array is used as an indicator of the color index of the palette used in
the lower half of the All.bmp file. Before it is used, all of the values in the
torusColors array are reset to 0. The off-screen buffer is then locked in preparation
for determining if a color index value is used.

The torusColors array is set to start at row 480 and column 0 of the bitmap. The
color index value in the array is determined by the byte of data at the location in
memory where the bitmap surface is located. This location is determined by the
lpSurface member of the DDSURFACEDESC structure, which is pointing to the
memory location corresponding to row 480 and column 0 of the bitmap
(y lPitch + x). The location of the specific color index value is then set to 1. The
y-value (row) is multiplied by the lPitch value (found in the DDSURFACEDESC
structure) to get the actual location of the pixel in linear memory.

The color index values that are set in torusColors will be used later to determine
which colors in the palette are rotated. Because there are no common colors between
the background and the red donuts, only those colors associated with the red donuts
are rotated. If you want to check whether this is true or not, just remove the
"*ddsd.lPitch" from the array and see what happens when you recompile and run the
program. (Without multiplying y lPitch, the red donuts are never reached and
only the colors found in the background are indexed and later rotated.) For more
information about width and pitch, see Width vs. Pitch.

Step 2: Rotating the Palettes
[This is preliminary documentation and subject to change.]

The updateFrame sample function in DDEx5 works in much the same way as it did
in Tutorial 4 (DDEx4). It first blits the background into the back buffer, and then it
blits the three donuts in the foreground. However, before it flips the surfaces,
updateFrame changes the palette of the primary surface from the palette index that
was created in the doInit function, as shown in the following code:

// Change the palette.
if(lpDDPal->GetEntries(0, 0, 256, pe) != DD_OK)
{

in.doc – page 132

 return;
}

for(i=1; i<256; i++)
{
 if(!torusColors[i])
 {
 continue;
 }
 pe[i].peRed = (pe[i].peRed+2) % 256;
 pe[i].peGreen = (pe[i].peGreen+1) % 256;
 pe[i].peBlue = (pe[i].peBlue+3) % 256;
}

if(lpDDPal->SetEntries(0, 0, 256, pe) != DD_OK)
{
 return;
}

The IDirectDrawPalette::GetEntries method in the first line queries palette values
from a DirectDrawPalette object. Because the palette entry values pointed to by pe
should be valid, the method will return DD_OK and continue. The loop that follows
checks torusColors to determine if the color index was set to 1 during its
initialization. If so, the red, green, and blue values in the palette entry pointed to by
pe are rotated.

After all of the marked palette entries are rotated, the
IDirectDrawPalette::SetEntries method is called to change the entries in the
DirectDrawPalette object. This change takes place immediately if you are working
with a palette set to the primary surface.

With this done, the surfaces are subsequently flipped.

Tutorial 6: Using Overlay Surfaces
[This is preliminary documentation and subject to change.]

This tutorial shows you, step by step, how to use DirectDraw and hardware
supported overlay surfaces in your applications. The tutorial is written around the
Mosquito sample application included with the DirectX SDK samples. Mosquito is a
simple application that uses a flipping chain of overlay surfaces to display an
animated bitmap on the desktop without blitting to the primary surface. The sample
adjusts the characteristics of the overlay surface as needed to accommodate for
hardware limitations.

The Mosquito sample application performs the following steps (complex tasks are
divided into smaller sub-steps):

· Step 1: Creating a Primary Surface

in.doc – page 133

· Step 2: Testing for Hardware Overlay Support
· Step 3: Creating an Overlay Surface
· Step 4: Displaying the Overlay Surface
· Step 5: Updating the Overlay Display Position
· Step 6: Hiding the Overlay Surface

Step 1: Creating a Primary Surface
[This is preliminary documentation and subject to change.]

To prepare for using overlay surfaces, you must first initialize DirectDraw and create
a primary surface over which the overlay surface will be displayed. Mosquito creates
a primary surface with the following code:

 // Zero-out the structure and set the dwSize member.
 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);

 // Set flags and create a primary surface.
 ddsd.dwFlags = DDSD_CAPS;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
 ddrval = g_lpdd->CreateSurface(&ddsd, &g_lpddsPrimary, NULL);

The preceding example begins by initializing the DDSURFACEDESC structure it
will use. It then sets the flags appropriate to create a primary surface and creates it
by calling the IDirectDraw2::CreateSurface method. For the call, the first
parameter is a pointer to a DDSURFACEDESC structure that describes the surface
to be created. The second parameter is a pointer to a variable that will receive an
IDirectDrawSurface interface pointer if the call succeeds. The last parameter is set
to NULL to indicate that no COM aggregation is taking place.

Step 2: Testing for Hardware Overlay Support
[This is preliminary documentation and subject to change.]

After initializing DirectDraw, you need to verify that the device supports overlay
surfaces. Because DirectDraw doesn't emulate overlays, if the hardware device
driver doesn't support them, you can't continue. You can test for overlay support by
retrieving the device driver capabilities with the IDirectDraw2::GetCaps method.
After the call, look for the presence of the DDCAPS_OVERLAY flag in the
dwFlags member of the associated DDCAPS structure. If the flag is present, then
the display hardware supports overlays; if not, you can't use overlay surfaces with
that device.

The following example, taken from the Mosquito sample application, shows how to
test for hardware overlay support:

BOOL AreOverlaysSupported()

in.doc – page 134

{
 DDCAPS capsDrv;
 HRESULT ddrval;

 // Get driver capabilities to determine Overlay support.
 ZeroMemory(&capsDrv, sizeof(capsDrv));
 capsDrv.dwSize = sizeof(capsDrv);

 ddrval = g_lpdd->GetCaps(&capsDrv, NULL);
 if (FAILED(ddrval))
 return FALSE;

 // Does the driver support overlays in the current mode?
 // (Currently the DirectDraw emulation layer does not support overlays.
 // Overlay related APIs will fail without hardware support).
 if (!(capsDrv.dwCaps & DDCAPS_OVERLAY))
 return FALSE;

 return TRUE;
}

The preceding example calls the IDirectDraw2::GetCaps method to retrieve device
driver capabilities. The first parameter for the call is the address of a DDCAPS that
will be filled with information describing the device driver's capabilities. Because
the application doesn't need information about emulation capabilities, the second
parameter is set to NULL.

After retrieving the driver capabilities, the example checks the dwCaps member for
the presence of the DDCAPS_OVERLAY flag using a logical AND operation. If the
flag isn't present, the example returns FALSE to indicate failure. Otherwise, the
example returns TRUE to indicate that the device driver supports overlay surfaces.

In your code, this might be a good time for you to check the
dwMaxVisibleOverlays and dwCurrentVisibleOverlays members in the DDCAPS
structure to ensure that no other overlay surfaces are in use by other applications.

Step 3: Creating an Overlay Surface
[This is preliminary documentation and subject to change.]

Now that you know that the driver supports overlay surfaces, you can try to create
one. Because there is no standard dictating how devices must support overlay
surfaces, you can't count on being able to create overlays of any particular size or
pixel format. Additionally, you can't expect to succeed in creating an overlay surface
on the first try. Therefore, be prepared to attempt creation multiple times starting
with the most desirable characteristics, falling back on less desirable (but possibly
less hardware intensive) configurations until one works.

Note

in.doc – page 135

You can call the IDirectDraw2::GetFourCCCodes method to retrieve a list of
FOURCC codes that describe non-RGB pixel formats that the driver will likely
support for overlay surfaces. However, in you want to try using RGB overlay
surfaces, it is recommended that you attempt to create surfaces in various
common RGB formats, falling back on another format if you fail.

The Mosquito sample follows a "best case to worst case" philosophy when creating
an overlay surface. Mosquito first tries to create a triple-buffered page flipping
complex overlay surface. If the creation attempt fails, the sample tries the
configuration with other common pixel formats. The following code fragment shows
how this can be done:

 ZeroMemory(&ddsdOverlay, sizeof(ddsdOverlay));
 ddsdOverlay.dwSize = sizeof(ddsdOverlay);

 ddsdOverlay.dwFlags= DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH |
 DDSD_BACKBUFFERCOUNT| DDSD_PIXELFORMAT;
 ddsdOverlay.ddsCaps.dwCaps = DDSCAPS_OVERLAY | DDSCAPS_FLIP |
 DDSCAPS_COMPLEX | DDSCAPS_VIDEOMEMORY;
 ddsdOverlay.dwWidth =320;
 ddsdOverlay.dwHeight =240;
 ddsdOverlay.dwBackBufferCount=2;

 // Try to create an overlay surface using one of the pixel formats in our
 // global list.
 i=0;
 do{
 ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];
 // Try to create the overlay surface
 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);
 } while(FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS));

The preceding example sets the flags and values within a DDSURFACEDESC
structure to reflect a triple-buffered page flipping complex overlay surface. Then, the
sample performs a loop during which it attempts to create the requested surface in a
variety of common pixel formats, in order of most desirable to least desirable pixel
formats. If the attempt succeeds, the loop ends. If all the attempts fail, it's likely that
the display hardware doesn't have enough memory to support a triple-buffered
scheme or that it doesn't support flipping overlay surfaces. In this case, the sample
falls back on a less desirable configuration using a single non-flipping overlay
surface, as shown in the following example:

 // If we failed to create a triple buffered complex overlay surface, try
 // again with a single non-flippable buffer.
 if(FAILED(ddrval))
 {
 ddsdOverlay.dwBackBufferCount=0;

in.doc – page 136

 ddsdOverlay.ddsCaps.dwCaps=DDSCAPS_OVERLAY |
DDSCAPS_VIDEOMEMORY;
 ddsdOverlay.dwFlags= DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|
DDSD_PIXELFORMAT;

 // Try to create the overlay surface
 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);
 i=0;
 do{
 ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];
 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);
 } while(FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS));

 // We couldn't create an overlay surface. Exit, returning failure.
 if (FAILED(ddrval))
 return FALSE;
 }

The previous code resets the flags and values in the DDSURFACEDESC structure
to reflect a single non-flipping overlay surface. Again, the example loops through
pixel formats attempting to create the surfaces, stopping the loop if an attempt
succeeded. If the attempts still didn't work, the sample returns FALSE to indicate
failure.

After you've successfully created your overlay surface or surfaces, you can load
bitmaps onto them in preparation for display.

Step 4: Displaying the Overlay Surface
[This is preliminary documentation and subject to change.]

After creating your overlay surface, you can display it. Often, display hardware
imposes alignment restrictions on the position and pixel width of the rectangles you
use to display the overlay. Additionally, you will often need to account for a
minimum required stretch factor by adjusting the width of the destination rectangle
in order to successfully display the overlay surface. The Mosquito sample performs
the following tasks to prepare and display the overlay surface:

· Step 4.1: Determining the Minimum Display Requirements
· Step 4.2: Setting Up the Source and Destination Rectangles
· Step 4.3: Displaying the Overlay Surface

Step 4.1: Determining the Minimum Display
Requirements

[This is preliminary documentation and subject to change.]

in.doc – page 137

Most display hardware imposes restrictions on displaying overlay surfaces. You must
carefully meet these restrictions in order to successfully display an overlay surface.
You can retrieve information about these restrictions by calling the
IDirectDraw2::GetCaps method. The DDCAPS structure that the method fills
contains information about overlay capabilities and their usage restrictions.
Hardware restrictions vary, so always look at the flags included in the dwFlags
member to determine which restrictions apply to you.

The Mosquito sample starts by retrieving the hardware capabilities, then takes action
based upon the minimum stretch factor, as shown in the following code fragment:

 // Get driver capabilities
 ddrval = g_lpdd->GetCaps(&capsDrv, NULL);
 if (FAILED(ddrval))
 return FALSE;

 // Check the minimum stretch and set the local variable accordingly.
 if(capsDrv.dwCaps & DDCAPS_OVERLAYSTRETCH)
 uStretchFactor1000 = (capsDrv.dwMinOverlayStretch>1000) ?
capsDrv.dwMinOverlayStretch : 1000;
 else
 uStretchFactor1000 = 1000;

The preceding code calls GetCaps to retrieve only the hardware capabilities. For
this call, the first parameter is a pointer the DDCAPS structure that will be filled
with the capability information for the device driver, and the second parameter is
NULL to indicate that emulation information is not to be retrieved.

The example retains the minimum stretch factor in a temporary variable for use later.
(Keep in mind that stretch factors are reported multiplied by 1000, so 1300 really
means 1.3.) If the driver reports a value greater than 1000, it means that the driver
requires that all destination rectangles must be stretched along the x-axis by a ratio
of the reported value. For example, if the driver reports a stretch factor 1.3 and the
source rectangle is 320 pixels wide, the destination rectangle must be at least 416
pixels wide. If the driver reports a stretch factor less than 1000, it means that the
driver can display overlays smaller than the source rectangle, but can also stretch the
overlay if desired.

Next, the sample examines values describing the driver's size alignment restrictions,
as shown in the following example:

 // Grab any alignment restrictions and set the local variables acordingly.
 uSrcSizeAlign = (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?
capsDrv.dwAlignSizeSrc:0;
 uDestSizeAlign= (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?
capsDrv.dwAlignSizeDest:0;

The sample uses more temporary variables to hold the reported size alignment
restrictions taken from the dwAlignSizeSrc and dwAlignSizeDest members. These

in.doc – page 138

values provide information about pixel width alignment restrictions and are needed
when setting the dimensions of the source and destination rectangles to reflect these
restrictions later. Source and destination rectangles must have a pixel width that is a
multiple of the values in these members.

Last, the sample examines the value that describes the destination rectangle
boundary alignment:

 // Set the "destination position alignment" global so we won't have to
 // keep calling GetCaps() every time we move the overlay surface.
 if (capsDrv.dwCaps & DDCAPS_ALIGNBOUNDARYDEST)
 g_dwOverlayXPositionAlignment = capsDrv.dwAlignBoundaryDest;
 else
 g_dwOverlayXPositionAlignment = 0;

The preceding code uses a global variable to hold the value for the destination
rectangle's boundary alignment, as taken from the dwAlignBoundaryDest member.
This value will be used when the program repositions the overlay later. (For details,
see Step 5: Updating the Overlay Display Position) You must set the x-coordinate of
the destination rectangle's top left corner to be aligned with this value, in pixels.
That is, if the value specified is 4, you can only specify destination rectangles whose
top-left corner has an x-coordinate at pixels 0, 4, 8, 12, and so on. The Mosquito
application initially displays the overlay at 0,0, so alignment compliance is assumed
and the sample doesn't need to retrieve the restriction information until after
displaying the overlay the first time. Your implementation might vary, so you will
probably need to check this information and adjust the destination rectangle before
displaying the overlay.

Step 4.2: Setting Up the Source and Destination
Rectangles

[This is preliminary documentation and subject to change.]

After retrieving the driver's overlay restrictions you should set the values for your
source and destination rectangles accordingly, assuring that you will be able to
successfully display the overlay. The following sample from the Mosquito sample
application starts by setting the characteristics of the source rectangle:

 // Set initial values in the source RECT.
 rs.left=0; rs.top=0;
 rs.right = 320;
 rs.bottom = 240;

 // Apply size alignment restrictions, if necessary.
 if (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC && uSrcSizeAlign)
 rs.right -= rs.right % uSrcSizeAlign;

The preceding code sets initial values for the surface to include the dimensions of the
entire surface. If the device driver requires size alignment for the source rectangle,

in.doc – page 139

the example adjusts the source rectangle to conform. The example adjusts the width
of the source rectangle to be narrower than the original size because the width cannot
be expanded without completely recreating the surface. However, your code could
just as easily start with a smaller rectangle and widen the rectangle to meet driver
restrictions.

After the dimensions of the source rectangle are set and conform with hardware
restrictions, you need to set and adjust the dimensions of the destination rectangle.
This process requires a little more work because the rectangle might need to be
stretched first, then adjusted to meet size alignment restrictions. The following code
performs the task of accounting for the minimum stretch factor:

 // Set up the destination RECT, starting with the source RECT values.
 // We use the source RECT dimensions instead of the surface dimensions in
 // case they differ.
 rd.left=0; rd.top=0;
 rd.right = (rs.right*uStretchFactor1000+999)/1000;
 // (Adding 999 avoids integer truncation problems.)

 // (This isn't required by DDraw, but we'll stretch the
 // height, too, to maintain aspect ratio).
 rd.bottom = rs.bottom*uStretchFactor1000/1000;

The preceding code sets the top left corner of the destination rectangle to the top left
corner of the screen, then sets the width to account for the minimum stretch factor.
While adjusting for the stretch factor, note that the example adds 999 to the product
of the width and stretch factor. This is done to prevent integer truncation that could
result in a rectangle that isn't as wide as the minimum stretch factor requires. For
more information, see Minimum and Maximum Stretch Factors. Also, after the
example stretches the width, it stretches the height. Stretching the height isn't
required, but was done to preserve the bitmap's aspect ratio and avoid a distorted
appearance.

After stretching the destination rectangle, the example continues by adjusting it to
conform to size alignment restrictions as follows:

 // Adjust the destination RECT's width to comply with any imposed
 // alignment restrictions.
 if (capsDrv.dwCaps & DDCAPS_ALIGNSIZEDEST && uDestSizeAlign)
 rd.right = (int)((rd.right+uDestSizeAlign-1)/uDestSizeAlign)*uDestSizeAlign;

The example checks the capabilities flags to see if the driver imposes destination
size alignment restrictions. If so, the destination rectangle's width is increased by
enough pixels to meet alignment restrictions. Note that the rectangle is adjusted by
expanding the width, not by decreasing it. This is done because decreasing the width
could cause the destination rectangle to be smaller than is required by the minimum
stretch factor, consequently causing attempts to display the overlay surface to fail.

in.doc – page 140

Step 4.3: Displaying the Overlay Surface
[This is preliminary documentation and subject to change.]

After you've set up the source and destination rectangles, you can display the overlay
for the first time. If you've prepared correctly, this will be simple. The Mosquito
sample uses the following code to initially display the overlay:

 // Set the flags we'll send to UpdateOverlay
 dwUpdateFlags = DDOVER_SHOW | DDOVER_DDFX;

 // Does the overlay hardware support source color keying?
 // If so, we can hide the black background around the image.
 // This probably won't work with YUV formats
 if (capsDrv.dwCKeyCaps & DDCKEYCAPS_SRCOVERLAY)
 dwUpdateFlags |= DDOVER_KEYSRCOVERRIDE;

 // Create an overlay FX structure so we can specify a source color key.
 // This information is ignored if the DDOVER_SRCKEYOVERRIDE flag isn't set.
 ZeroMemory(&ovfx, sizeof(ovfx));
 ovfx.dwSize = sizeof(ovfx);

 ovfx.dckSrcColorkey.dwColorSpaceLowValue=0; // Specify black as the color key
 ovfx.dckSrcColorkey.dwColorSpaceHighValue=0;

 // Call UpdateOverlay() to displays the overlay on the screen.
 ddrval = g_lpddsOverlay->UpdateOverlay(&rs, g_lpddsPrimary, &rd,
dwUpdateFlags, &ovfx);
 if(FAILED(ddrval))
 return FALSE;

The preceding example starts by setting the DDOVER_SHOW and
DDOVER_DDFX flags in the dwUpdateFlags temporary variable, indicating that
the overlay is to be displayed for the first time, and that the hardware should use the
effects information included in an associated DDOVERLAYFX structure to do so.
Next, the example checks a previously existing DDCAPS structure to determine if
overlay source color keying is supported. If it is, the
DDOVER_KEYSRCOVERRIDE is included in the dwUpdateFlags variable to take
advantage of source color keying and the example sets color key values accordingly.

After preparation is complete, the example calls the
IDirectDrawSurface3::UpdateOverlay method to display the overlay. For the call,
the first and third parameters are the addresses of the adjusted source and destination
rectangles. The second parameter is the address of the primary surface over which
the overlay will be displayed. The fourth parameter consists of the flags placed in the
previously prepared dwUpdateFlags variable, and the fifth parameter is the address
of DDOVERLAYFX structure whose members were set to match those flags.

in.doc – page 141

If the hardware only supports one overlay surface and that surface is in use, the
UpdateOverlay method fails, returning DDERR_OUTOFCAPS. Additionally, if
UpdateOverlay fails, you might try increasing the width of the destination rectangle
to accommodate for the possibility that the hardware incorrectly reported a minimum
stretch factor that was too small. However, this rarely occurs and Mosquito simply
fails if UpdateOverlay doesn't succeed.

Step 5: Updating the Overlay Display Position
[This is preliminary documentation and subject to change.]

After displaying the overlay surface, you might not need to do anything else.
However, some software might need to reposition the overlay surface. The Mosquito
sample uses the IDirectDrawSurface3::SetOverlayPosition method to reposition
the overlay, as shown in the following example:

 // Set x- and y-coordinates
 .
 .
 .
 // We need to check for any alignment restrictions on the x-position
 // and align it if necessary.
 if (g_dwOverlayXPositionAlignment)
 dwXAligned = g_nOverlayXPos - g_nOverlayXPos %
g_dwOverlayXPositionAlignment;
 else
 dwXAligned = g_nOverlayXPos;

 // Set the overlay to its new position.
 ddrval = g_lpddsOverlay->SetOverlayPosition(dwXAligned, g_nOverlayYPos);
 if (ddrval == DDERR_SURFACELOST)
 {
 if (!RestoreAllSurfaces())
 return;
 }

The preceding example starts by aligning the rectangle to meet any destination
rectangle boundary alignment restrictions that might exist. The global variable that it
checks, g_dwOverlayXPositionAlignment, was set earlier to equal the value reported
in the dwAlignBoundaryDest member of the DDCAPS structure when the
application previously called the IDirectDraw2::GetCaps method. (For details, see
Step 4.1: Determining the Minimum Display Requirements). If destination alignment
restrictions exist, the example adjusts the new x-coordinate to be pixel-aligned
accordingly. Failing to meet this requirement will cause the overlay surface not to be
displayed.

After making any requisite adjustments to the new x-coordinate, the example calls
IDirectDrawSurface3::SetOverlayPosition method to reposition the overlay. For

in.doc – page 142

the call, the first parameter is the aligned x-coordinate, and the second parameter is
the new y-coordinate. These values represent the new location of the overlay's top-
left corner. Width and height information are not accepted, nor are they needed
because DirectDraw already knows the dimensions of the surface from the
IDirectDrawSurface3::UpdateOverlay method made to initially display the
overlay. If the call fails because one or more surfaces were lost, the example calls an
application-defined function to restore them and reload their bitmaps.

Note
Take care not to use coordinates too close to the bottom or right edge of the
target surface. The IDirectDraw2::SetOverlayPosition method does not
perform clipping for you; using coordinates that would potentially make the
overlay run off the edge of the target surface will cause the method to fail,
returning DDERR_INVALIDPOSITION.

Step 6: Hiding the Overlay Surface
[This is preliminary documentation and subject to change.]

When you do not need the overlay surface anymore, or if you simply want to remove
it from view, you can hide the surface by calling the
IDirectDrawSurface3::UpdateOverlay method with the appropriate flags.
Mosquito hides the overlay in preparation for closing the application using the
following code:

void DestroyOverlay()
{
 if (g_lpddsOverlay){
 // Use UpdateOverlay() with the DDOVER_HIDE flag to remove an overlay
 // from the display.
 g_lpddsOverlay->UpdateOverlay(NULL, g_lpddsPrimary, NULL, DDOVER_HIDE,
NULL);
 g_lpddsOverlay->Release();
 g_lpddsOverlay=NULL;
 }
}

When the preceding example calls IDirectDrawSurface3::UpdateOverlay, it
specifies NULL for the source and destination rectangles, because they are irrelevant
when hiding the overlay. Similarly, the example uses NULL in the fifth parameter
because overlay effects aren't being used. The second parameter is a pointer to the
target surface. Lastly, the example uses the DDOVER_HIDE flag in the fourth
parameter to indicate that the overlay will be removed from view.

After the example hides the overlay, the example releases its IDirectDrawSurface3
interface and invalidates its global variable by setting it to NULL. For the purposes
of the Mosquito sample application, the overlay surface is no longer needed. If you

in.doc – page 143

still need the overlay surface for later, you could simply hide the overlay without
releasing it, then redisplay it whenever you require.

DirectDraw Visual Basic Tutorials
[This is preliminary documentation and subject to change.]

This section contains a series of tutorials, each of which provides step-by-step
instructions for implementing a simple DirectDraw application. These tutorials use
many of the DirectDraw sample files that are provided with this SDK. These samples
demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to
perform common tasks:

· Tutorial 1: Blitting to the Screen
· Tutorial 2: Using Transparency
· Tutorial 3: Using Full Screen Features
· Tutorial 4: Blitting to Areas of the Screen
· Tutorial 5: Enumerating DirectDraw Devices

Tutorial 1: Blitting to the Screen
[This is preliminary documentation and subject to change.]

This first tutorial deals with blitting a bitmap to the display adapter. The term blit is
shorthand for "bit block transfer," which is the process of transferring blocks of data
from one place in memory to another. Graphics programmers use blitting to transfer
graphics from one place in memory to another. Blits are often used to perform sprite
animation.

To use DirectDraw, you first create an instance of the DirectDraw object, which
represents the display adapter on the computer. You then use methods to manipulate
the object. In addition, you need to create one or more instances of a
DirectDrawSurface object to be able to display your application on a graphics
surface.

To demonstrate this, the Tutorial 1 - Blitting to the Screen sample included in this
SDK performs the following steps:

· Step 1: Creating the Form
· Step 2: Declaring Module Level Variables
· Step 2: Initializing Variables

in.doc – page 144

Step 1: Creating the Form
[This is preliminary documentation and subject to change.]

The Tutorial 1 - blitting sample is a Standard EXE project with a picture box control
placed on the form. The picture box control is placed with the top left corner of the
picture box with the top left corner of the form. This picture box is used to display
the bitmap image of the application and is named Picture1.

Step 2: Declaring Module Level Variables
[This is preliminary documentation and subject to change.]

The first step of coding DirectX application written in Visual Basic is to create the
DirectX7 Class. This object contains the methods necessary to create the starting
objects of all the DirectX components including DirectDraw, DirectSound, Direct3D
Immediate Mode, Direct3D Retained Mode, DirectInput and DirectPlay. Information
on Direct3D Retained Mode can be found in the DirectX Media for Visual Basic
node of this documentation.

The DirectX7 class is the top level class of the DxVBLib type library and an object
of this class is created with the statement:

Dim objDX As New DirectX7

Additional module level variables declarations found in the Tutorial 1 - blitting
sample are for a DirectDraw object, DirectDrawSurface objects, DirectDraw surface
description types, and a Boolean variable used to hold initialization information.

Note that in this sample we have set the Option Explicit flag and have an external
Win32 procedure declaration.

Step 3: Initializing Variables
[This is preliminary documentation and subject to change.]

The first procedure called from the Form_Load event is the init procedure. This
procedure creates the DirectDraw object. This is accomplished by invoking the
DirectX7.DirectDrawCreate method of the DirectX7 object and setting the
returned object to DirectDraw which we declared as an object variable of class
DirectDraw4. In the Tutorial 1 - blitting sample, this is done with the statement:

Set objDD = objDX.DirectDrawCreate("")

This method takes only one string argument and passing an empty string specifies
the active display driver.

Next you must specify the behavior of the application by calling the
DirectDraw4.SetCooperativeLevel method of the DirectDraw object. The Tutorial
1 - blitting sample is run as a regular windowed application and this is done with the
statement:

in.doc – page 145

Call objDD.SetCooperativeLevel (Me.hwnd, DDSCL_NORMAL)

You are now ready to start creating surfaces. Before you actually create the surface
object, you need to create a surface description by setting the members of the
DDSURFACEDESC2 type. One of the members of this type is ddscaps, a nested
type, and by setting the lFlags member of the DDSURFACEDESC2 to
DDSD_CAPS, you are stating that the ddscaps member is valid in this type. This is
done with the statement:

ddsd1.lFlags = DDSD_CAPS

Next you need to specify that this type description is for a primary surface, which is
done with the statement:

ddsd1.ddsCaps.lCaps = DDSCAPS_PRIMARYSURFACE

After creating the surface description, you actually create the surface object by
invoking the CreateSurface method from the DirectDraw object with the set surface
description as an argument. This is done in the Tutorial 1 - blitting sample with the
statement:

Set objDDPrimSurf = objDD.CreateSurface(ddsd1)

The surface object creation steps are repeated for a second surface which has the
DDSCAPS_OFFSCREENPLAIN flag set to specify that this surface is any off-
screen surface that is not an overlay, texture, z-buffer, front-buffer, back-buffer, or
alpha surface. It is used to identify plain surfaces. Then the CreateSurfaceFromFile
method is invoked from the DirectDraw object. This method creates the surface
object and loads a bitmap onto the surface. These steps are shown with the
statements:

ddsd2.lFlags = DDSD_CAPS
ddsd2.ddsCaps.lCaps = DDSCAPS_OFFSCREENPLAIN
Set objDDSurf = objDD.CreateSurfaceFromFile("lake.bmp", ddsd2)

After initializing all the variables and objects we set the bInit variable to True and
call the blt procedure.

Step 4: Blitting the Surface
[This is preliminary documentation and subject to change.]

So far in the Tutorial 1 - Blitting to the Screen sample you have created a primary
surface and a off-screen surface which has a loaded bitmap. To display the bitmap on
the screen, you must blit the off-screen surface to the primary surface. The blit
method of the DirectDraw surface object takes four arguments and returns a Long
indicating the success or failure of the blit. Two of the arguments of are type RECT
which specify the bounding rectangles of the destination surface and the source
surface.

in.doc – page 146

The coordinates of the source rectangle are obtained from the lHeight and the
lWidth members of the off-screen surface description. There are a few extra steps in
obtaining the destination rectangle. First of all, since Visual Basic uses twips for
screen measurement and DirectX uses pixels, the dimensions of the Visual Basic
picture box control must be converted to pixels before setting the destination
rectangle. This is accomplished by setting the ScaleMode property of the form to
Pixels and then making the width and height of the picture box equal to the
ScaleWidth and ScaleHeight of the form. In the Tutorial 1 - blitting sample, this is
done with the statements:

Picture1.Width = Me.ScaleWidth
Picture1.Height = Me.ScaleHeight

These statements are in the Form_Resize procedure and are executed when the form
is initially displayed and resized.

Furthermore, the destination RECT type is filled when the Win32 function
GetWindowRect is called.

Lastly the blit is perform with the blt method of the primary surface object:
ddrval = objDDPrimSurf.blt(r1, objDDSurf, r2, DDBLT_WAIT)

The result of the method is a Long that is stored in ddrval. You can check this
variable for success or failure. The last argument of the above method is the
DDBLT_WAIT flag which tells DirectDraw to wait if the blitter is busy and blit the
surface when it becomes available.

Tutorial 2: Using Transparency
[This is preliminary documentation and subject to change.]

<To be written>

Tutorial 3: Using Full Screen Features
[This is preliminary documentation and subject to change.]

<To be written>

Tutorial 4: Blitting to Areas of the
Screen

[This is preliminary documentation and subject to change.]

<To be written>

in.doc – page 147

Tutorial 5: Enumerating DirectDraw
Devices

[This is preliminary documentation and subject to change.]

<To be written>

DirectDraw Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the application programming
interface (API) elements provided by DirectDraw® in C/C++ and Visual Basic.
Reference material is organized by language:

· DirectDraw C/C++ Reference
· DirectDraw Visual Basic Reference

DirectDraw C/C++ Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements that DirectDraw
provides. Reference material is divided into the following categories:

· Interfaces
· Functions
· Callback Functions
· Structures
· Return Values
· Pixel Format Masks
· Four Character Codes (FOURCC)

Interfaces
[This is preliminary documentation and subject to change.]

This section contains reference information about the interfaces used with the
DirectDraw component. The following interfaces are covered:

· IDDVideoPortContainer
· IDirectDraw4

in.doc – page 148

· IDirectDrawClipper
· IDirectDrawColorControl
· IDirectDrawGammaControl
· IDirectDrawPalette
· IDirectDrawSurface4
· IDirectDrawVideoPort

IDDVideoPortContainer
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDDVideoPortContainer interface to create
and manipulate DirectDrawVideoPort objects. You retrieve a pointer to this interface
by calling the IUnknown::QueryInterface method of a DirectDraw object,
specifying the IID_IDDVideoPortContainer reference identifier.

The methods of the IDDVideoPortContainer interface can be organized into the
following groups:

Creating objects CreateVideoPort

Video ports EnumVideoPorts
QueryVideoPortStatus

Connections GetVideoPortConnectInfo

The IDDVideoPortContainer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

IUnknown AddRef
QueryInterface
Release

You can use the LPDDVIDEOPORTCONTAINER data type to declare a variable
that contains a pointer to an IDDVideoPortContainer interface. The Dvp.h header
file declares the LPDDVIDEOPORTCONTAINER with the following code:

typedef struct IDDVideoPortContainer FAR *LPDDVIDEOPORTCONTAINER;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 149

 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDDVideoPortContainer::CreateVid
eoPort

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::CreateVideoPort method creates a
DirectDrawVideoPort object.

HRESULT CreateVideoPort(
 DWORD dwFlags,
 LPDDVIDEOPORTDESC lpDDVideoPortDesc,
 LPDIRECTDRAWVIDEOPORT FAR *lplpDDVideoPort,
 IUnknown FAR *pUnkOuter
);

Parameters
dwFlags

Flags specifying video-port control options. This parameter can be one of the
following flags, or NULL if control options are not needed:
DDVPCREATE_VBIONLY

The process only wants to control the VBI portion of the video stream.
DDVPCREATE_VIDEOONLY

The process only wants to control the non-VBI (video) portion of the video
stream.

lpDDVideoPortDesc
Address of a DDVIDEOPORTDESC structure that describes the
DirectDrawVideoPort object to be created.

lplpDDVideoPort
Address of a variable that will be filled with a pointer to the new
DirectDrawVideoPort object's IDirectDrawVideoPort interface if the call
succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but
NULL.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

in.doc – page 150

DDERR_CURRENTLYNOTAVAIL
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFCAPS
DDERR_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDDVideoPortContainer::EnumVide
oPorts

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::EnumVideoPorts method enumerates all of the
video ports that the hardware exposes that are compatible with a provided video port
description.

HRESULT EnumVideoPorts(
 DWORD dwFlags,
 LPDDVIDEOPORTCAPS lpDDVideoPortCaps,
 LPVOID lpContext,
 LPENUMVIDEOCALLBACK lpEnumVideoCallback
);

Parameters
dwFlags

Reserved for future use. This parameter must be zero.
lpDDVideoPortCaps

Pointer to a DDVIDEOPORTCAPS structure that will be checked against the
available video ports. If this parameter is NULL, all video ports will be
enumerated.

lpContext
Address of a caller-defined structure that will be passed to each enumeration
member.

lpEnumVideoCallback

in.doc – page 151

Address of the EnumVideoCallback function that will be called each time a
match is found.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDDVideoPortContainer::GetVideo
PortConnectInfo

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::GetVideoPortConnectInfo method retrieves the
connection information supported by all video ports.

HRESULT GetVideoPortConnectInfo(
 DWORD dwPortId,
 LPDWORD lpNumEntries,
 LPDDVIDEOPORTCONNECT lpConnectInfo
);

Parameters
dwPortId

Identifier of the video port for which the connection information will be
retrieved.

lpNumEntries
Address of a variable containing the number of entries that the array at
lpConnectInfo can hold. If this number is less than the total number of
connections, the method fills the array with as many entries as will fit, sets the
value at lpNumEntries to indicate the total number of connections, and returns
DDERR_MOREDATA.

lpConnectInfo

in.doc – page 152

Address of an array of DDVIDEOPORTCONNECT structures that will be
filled with the connection options supported by the specified video port. If this
parameter is NULL, the method sets lpNumEntries to indicate the total number
of connections that the video port supports, then returns DD_OK.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_MOREDATA

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDDVideoPortContainer::QueryVid
eoPortStatus

[This is preliminary documentation and subject to change.]

The IDDVideoPortContainer::QueryVideoPortStatus method retrieves the status
of a DirectDrawVideoPort object.

HRESULT QueryVideoPortStatus(
 DWORD dwPortId,
 LPDDVIDEOPORTSTATUS lpVPStatus
);

Parameters
dwPortId

Identifier of the video port for which the status information will be retrieved.
lpVPStatus

Address of a DDVIDEOPORTSTATUS structure that will be filled with
information about the status of the specified video port.

in.doc – page 153

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CURRENTLYNOTAVAIL
DDERR_EXCEPTION
DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDraw4
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDraw4 interface to create DirectDraw
objects and work with system-level variables. This section is a reference to the
methods of this interface. For a conceptual overview, see The DirectDraw Object.

The methods of the IDirectDraw4 interface can be organized into the following
groups:

Allocating memory Compact
Initialize

Cooperative levels SetCooperativeLevel
TestCooperativeLevel

Creating objects CreateClipper
CreatePalette
CreateSurface

Device capabilities GetCaps

Display modes EnumDisplayModes

in.doc – page 154

GetDisplayMode
GetMonitorFrequency
RestoreDisplayMode
SetDisplayMode
WaitForVerticalBlank

Display status GetScanLine
GetVerticalBlankStatus

Miscellaneous GetAvailableVidMem
GetDeviceIdentifier
GetFourCCCodes

Surface management DuplicateSurface
EnumSurfaces
FlipToGDISurface
GetGDISurface
GetSurfaceFromDC
RestoreAllSurfaces

The IDirectDraw4 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The IDirectDraw4 interface extends the features of previous versions of the
interface by offering methods enabling more flexible surface management than
previous versions. Note that all of the surface-related methods in the IDirectDraw4
interface accept slightly different parameters than their counterparts in the
IDirectDraw2 interface. Wherever an IDirectDraw2 interface method might accept
a DDSURFACEDESC structure and retrieve an IDirectDrawSurface3 interface,
the methods in IDirectDraw4 accept a DDSURFACEDESC2 structure and retrieve
an IDirectDrawSurface4 interface instead.

IDirectDraw4 introduces improved compliance with COM rules dictating the
lifetimes of child objects. For more information, see Parent and Child Object
Lifetimes.

You can use the LPDIRECTDRAW, LPDIRECTDRAW2, or
LPDIRECTDRAW4 data types to declare a variable that contains a pointer to an

in.doc – page 155

IDirectDraw, IDirectDraw2, or IDirectDraw4 interface. The Ddraw.h header file
declares these data types with the following code:

typedef struct IDirectDraw FAR *LPDIRECTDRAW;
typedef struct IDirectDraw2 FAR *LPDIRECTDRAW2;
typedef struct IDirectDraw4 FAR *LPDIRECTDRAW4;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::Compact
[This is preliminary documentation and subject to change.]

The IDirectDraw4::Compact method is not currently implemented.

HRESULT Compact();

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_SURFACEBUSY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::CreateClipper
[This is preliminary documentation and subject to change.]

The IDirectDraw4::CreateClipper method creates a DirectDrawClipper object.

in.doc – page 156

HRESULT CreateClipper(
 DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
 IUnknown FAR *pUnkOuter
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.
lplpDDClipper

Address of a variable that will be set to a valid IDirectDrawClipper interface
pointer if the call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but
NULL.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFMEMORY

Remarks
The DirectDrawClipper object can be attached to a DirectDrawSurface and used
during IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltBatch, and
IDirectDrawSurface4::UpdateOverlay operations.

To create a DirectDrawClipper object that is not owned by a specific DirectDraw
object, use the DirectDrawCreateClipper function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 157

See Also
IDirectDrawSurface4::GetClipper, IDirectDrawSurface4::SetClipper

IDirectDraw4::CreatePalette
[This is preliminary documentation and subject to change.]

The IDirectDraw4::CreatePalette method creates a DirectDrawPalette object for
this DirectDraw object.

HRESULT CreatePalette(
 DWORD dwFlags,
 LPPALETTEENTRY lpDDColorArray,
 LPDIRECTDRAWPALETTE FAR *lplpDDPalette,
 IUnknown FAR *pUnkOuter
);

Parameters
dwFlags

One or more of the following flags:
DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.
DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.
DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.
DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.
DDPCAPS_8BITENTRIES

Indicates that the index refers to an 8-bit color index. This flag is valid only
when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT
flag, and when the target surface is in 8 bpp. Each color entry is 1 byte long
and is an index to a destination surface's 8-bpp palette.

DDPCAPS_ALPHA
Indicates that the peFlags member of the associated PALETTEENTRY
structure is to be interpreted as a single 8-bit alpha value (in addition to the
peRed, peGreen, and peBlue members). A palette created with this flag can
only be attached to a texture—a surface created with the
DDSCAPS_TEXTURE capability flag.

DDPCAPS_ALLOW256
Indicates that this palette can have all 256 entries defined.

DDPCAPS_INITIALIZE
Initialize this palette with the colors in the color array passed at
lpDDColorArray.

in.doc – page 158

DDPCAPS_PRIMARYSURFACE
This palette is attached to the primary surface. Changing this palette's color
table immediately affects the display unless DDPSETPAL_VSYNC is
specified and supported.

DDPCAPS_PRIMARYSURFACELEFT
This palette is the one attached to the left eye primary surface. Changing this
palette's color table immediately affects the left eye display unless
DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC
This palette can have modifications to it synced with the monitors refresh
rate.

lpDDColorArray
Address of an array of 2, 4, 16, or 256 PALETTEENTRY structures that will
initialize this DirectDrawPalette object.

lplpDDPalette
Address of a variable that will be set to a valid IDirectDrawPalette interface
pointer if the call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but
NULL.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::CreateSurface
[This is preliminary documentation and subject to change.]

in.doc – page 159

The IDirectDraw4::CreateSurface method creates a DirectDrawSurface object for
this DirectDraw object.

HRESULT CreateSurface(
 LPDDSURFACEDESC2 lpDDSurfaceDesc2,
 LPDIRECTDRAWSURFACE4 FAR *lplpDDSurface,
 IUnknown FAR *pUnkOuter
);

Parameters
lpDDSurfaceDesc2

Address of a DDSURFACEDESC2 structure that describes the requested
surface. You should set any unused members of the DDSURFACEDESC2
structure to zero before calling this method. A DDSCAPS2 structure is a
member of DDSURFACEDESC2.

lplpDDSurface
Address of a variable that will be set to a valid IDirectDrawSurface4 interface
pointer if the call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but
NULL.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW
DDERR_NOCOOPERATIVELEVELSET
DDERR_NODIRECTDRAWHW
DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE
DDERR_NOFLIPHW
DDERR_NOMIPMAPHW
DDERR_NOOVERLAYHW
DDERR_NOZBUFFERHW

in.doc – page 160

DDERR_OUTOFMEMORY
DDERR_OUTOFVIDEOMEMORY
DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_UNSUPPORTEDMODE

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::DuplicateSurface
[This is preliminary documentation and subject to change.]

The IDirectDraw4::DuplicateSurface method duplicates a DirectDrawSurface
object.

HRESULT DuplicateSurface(
 LPDIRECTDRAWSURFACE4 lpDDSurface,
 LPLPDIRECTDRAWSURFACE4 FAR *lplpDupDDSurface
);

Parameters
lpDDSurface

Address of the IDirectDrawSurface4 interface for the surface to be duplicated.
lplpDupDDSurface

Address of a variable that will be filled with an IDirectDrawSurface4 interface
pointer for the newly duplicated DirectDrawSurface object.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTDUPLICATE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACELOST

in.doc – page 161

Remarks
This method creates a new DirectDrawSurface object that points to the same surface
memory as an existing DirectDrawSurface object. This duplicate can be used just
like the original object. The surface memory is released after the last object
referencing it is released. A primary surface, 3-D surface, or implicitly created
surface cannot be duplicated.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::EnumDisplayModes
[This is preliminary documentation and subject to change.]

The IDirectDraw4::EnumDisplayModes method enumerates all of the display
modes the hardware exposes through the DirectDraw object that are compatible with
a provided surface description.

HRESULT EnumDisplayModes(
 DWORD dwFlags,
 LPDDSURFACEDESC2 lpDDSurfaceDesc2,
 LPVOID lpContext,
 LPDDENUMMODESCALLBACK2 lpEnumModesCallback
);

Parameters
dwFlags

DDEDM_REFRESHRATES
Enumerates modes with different refresh rates.
IDirectDraw4::EnumDisplayModes guarantees that a particular mode will
be enumerated only once. This flag specifies whether the refresh rate is taken
into account when determining if a mode is unique.

DDEDM_STANDARDVGAMODES
Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

lpDDSurfaceDesc2
Address of a DDSURFACEDESC2 structure that will be checked against
available modes. If the value of this parameter is NULL, all modes are
enumerated.

lpContext

in.doc – page 162

Address of an application-defined structure that will be passed to each
enumeration member.

lpEnumModesCallback
Address of the EnumModesCallback2 function that the enumeration procedure
will call every time a match is found.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method enumerates the dwRefreshRate member of the DDSURFACEDESC2
structure; the IDirectDraw::EnumDisplayModes method does not contain this
capability. If you use the IDirectDraw4::SetDisplayMode method to set the refresh
rate of a new mode, you must use IDirectDraw4::EnumDisplayModes to
enumerate the dwRefreshRate member.

This method differs from its counterparts in former interfaces in that it accepts the
address of an EnumModesCallback2 function as a parameter rather than an
EnumModesCallback function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::GetDisplayMode, IDirectDraw4::SetDisplayMode,
IDirectDraw4::RestoreDisplayMode

IDirectDraw4::EnumSurfaces
[This is preliminary documentation and subject to change.]

The IDirectDraw4::EnumSurfaces method enumerates all of the existing or
possible surfaces that meet the specified surface description.

HRESULT EnumSurfaces(

in.doc – page 163

 DWORD dwFlags,
 LPDDSURFACEDESC2 lpDDSD2,
 LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK2 lpEnumSurfacesCallback
);

Parameters
dwFlags

A combination of one search type flag and one matching flag. The search type
flag determines how the method searches for matching surfaces; you can search
for surfaces that can be created using the description in the lpDDSD2 parameter
or you can search for existing surfaces that already match that description. The
matching flag determines whether the method enumerates all surfaces, only
those that match, or only those that don't match the description in the lpDDSD2
parameter.
Search type flags
DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search
criterion. This flag can only be used with the
DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST
Enumerates the already existing surfaces that meet the search criterion.

Matching flags
DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the search criterion. This flag can
only be used with the DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH
Searches for any surface that matches the surface description.

DDENUMSURFACES_NOMATCH
Searches for any surface that does not match the surface description.

lpDDSD2
Address of a DDSURFACEDESC2 structure that defines the surface of interest.
This parameter can be NULL if dwFlags includes the
DDENUMSURFACES_ALL flag.

lpContext
Address of an application-defined structure that will be passed to each
enumeration member.

lpEnumSurfacesCallback
Address of the EnumSurfacesCallback2 function the enumeration procedure
will call every time a match is found.

in.doc – page 164

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
If the DDENUMSURFACES_CANBECREATED flag is set, this method attempts to
temporarily create a surface that meets the search criterion.

When using the DDENUMSURFACES_DOESEXIST flag, note that an enumerated
surface's reference count is incremented—if you are not going to use the surface, be
sure to use IDirectDrawSurface4::Release to release it after each enumeration. If
you will be using the surface, release it when it is no longer needed.

This method differs from its counterparts in previous interface versions in that it
accepts a pointer to an EnumSurfacesCallback2 function, rather than an
EnumSurfacesCallback function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
Enumerating Surfaces

IDirectDraw4::FlipToGDISurface
[This is preliminary documentation and subject to change.]

The IDirectDraw4::FlipToGDISurface method makes the surface that GDI writes
to the primary surface.

HRESULT FlipToGDISurface();

Parameters
None.

in.doc – page 165

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

Remarks
This method can be called at the end of a page-flipping application to ensure that the
display memory that GDI is writing to is visible to the user.

The method can also be used to make the GDI surface the primary surface, so that
normal windows such as dialog boxes can be displayed in full-screen mode. The
hardware must have the DDCAPS2_CANRENDERWINDOWED capability. For
more information, see Displaying a Window in Full-Screen Mode

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::GetGDISurface

IDirectDraw4::GetAvailableVidMe
m

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetAvailableVidMem method retrieves the total amount of
display memory available and the amount of display memory currently free for a
given type of surface.

HRESULT GetAvailableVidMem(
 LPDDSCAPS2 lpDDSCaps2,
 LPDWORD lpdwTotal,
 LPDWORD lpdwFree
);

in.doc – page 166

Parameters
lpDDSCaps2

Address of a DDSCAPS2 structure that indicates the hardware capabilities of
the proposed surface.

lpdwTotal
Address of a variable that will be filled with the total amount of display memory
available, in bytes. The value retrieved reflects the total video memory, less the
video memory required for the primary surface and any private caches the
display driver reserves.

lpdwFree
Address of a variable that will be filled with the amount of display memory
currently free that can be allocated for a surface that matches the capabilities
specified by the structure at lpDDSCaps2.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW

If NULL is passed to either lpdwTotal or lpdwFree, the value for that parameter is
not returned.

Remarks
The following C++ example demonstrates using
IDirectDraw4::GetAvailableVidMem to determine both the total and free display
memory available for texture-map surfaces:

// For this example, the lpDD variable is a valid
// pointer to an IDirectDraw interface.
LPDIRECTDRAW4 lpDD4;
DDSCAPS2 ddsCaps2;
DWORD dwTotal;
DWORD dwFree;
HRESULT hr;

hr = lpDD->QueryInterface(IID_IDirectDraw4, &lpDD4);
if (FAILED(hr))
 return hr;

in.doc – page 167

// Initialize the structure.
ZeroMemory(&ddsCaps2, sizeof(ddsCaps2));

ddsCaps2.dwCaps = DDSCAPS_TEXTURE;
hr = lpDD4->GetAvailableVidMem(&ddsCaps2, &dwTotal, &dwFree);
if (FAILED(hr))
 return hr;

This method provides only a snapshot of the current display-memory state. The
amount of free display memory is subject to change as surfaces are created and
released. Therefore, you should use the free memory value only as an approximation.
In addition, a particular display adapter card may make no distinction between two
different memory types. For example, the adapter might use the same portion of
display memory to store z-buffers and textures. So, allocating one type of surface
(for example, a z-buffer) can affect the amount of display memory available for
another type of surface (for example, textures). Therefore, it is best to first allocate
an application's fixed resources (such as front and back buffers , and z-buffers)
before determining how much memory is available for dynamic use (such as texture
mapping).

This method was not implemented in the IDirectDraw interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetCaps method fills in the capabilities of the device driver for
the hardware and the hardware-emulation layer (HEL).

HRESULT GetCaps(
 LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps
);

Parameters
lpDDDriverCaps

Address of a DDCAPS structure that will be filled with the capabilities of the
hardware, as reported by the device driver. Set this parameter to NULL if device
driver capabilities are not to be retrieved.

in.doc – page 168

lpDDHELCaps
Address of a DDCAPS structure that will be filled with the capabilities of the
HEL. Set this parameter to NULL if HEL capabilities are not to be retrieved.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

You can only set one of the two parameters to NULL to exclude it. If you set both to
NULL the method will fail, returning DDERR_INVALIDPARAMS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::GetDeviceIdentifier
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetDeviceIdentifier method obtains information about the
driver. This method can be used, with caution, to recognize specific hardware
installations in order to implement workarounds for poor driver/chipset behavior.

HRESULT GetDeviceIdentifier(
 LPDDDEVICEIDENTIFIER lpdddi,
 DWORD dwFlags
);

Parameters
lpdddi

Address of a DDDEVICEIDENTIFIER structure to receive information about
the driver.

dwFlags
Flags specifying options. The following flag is defined:
DDGDI_GETHOSTIDENTIFIER

Causes the method to return information about the host (typically 2-D)
adapter in a system equipped with a stacked secondary 3-D adapter. Such an
adapter appears to the application as if it were part of the host adapter, but is

in.doc – page 169

typically located on a separate card. When the dwFlags parameter is zero, the
stacked secondary's information is returned, because this most accurately
reflects the qualities of the DirectDraw object involved.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be DDERR_INVALIDPARAMS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::GetDisplayMode
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetDisplayMode method retrieves the current display mode.

HRESULT GetDisplayMode(
 LPDDSURFACEDESC2 lpDDSurfaceDesc2
);

Parameters
lpDDSurfaceDesc2

Address of a DDSURFACEDESC2 structure that will be filled with a
description of the surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTEDMODE

in.doc – page 170

Remarks
An application should not save the information returned by this method to restore the
display mode on clean-up. The application should use the
IDirectDraw4::RestoreDisplayMode method to restore the mode on clean-up,
thereby avoiding mode-setting conflicts that could arise in a multiprocess
environment.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::SetDisplayMode, IDirectDraw4::RestoreDisplayMode,
IDirectDraw4::EnumDisplayModes

IDirectDraw4::GetFourCCCodes
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetFourCCCodes method retrieves the FOURCC codes
supported by the DirectDraw object. This method can also retrieve the number of
codes supported.

HRESULT GetFourCCCodes(
 LPDWORD lpNumCodes,
 LPDWORD lpCodes
);

Parameters
lpNumCodes

Address of a variable that contains the number of entries that the array pointed
to by lpCodes can hold. If the number of entries is too small to accommodate all
the codes, lpNumCodes is set to the required number and the array pointed to by
lpCodes is filled with all that fits.

lpCodes
Address of an array of variables that will be filled with FOURCC codes
supported by this DirectDraw object. If you specify NULL, lpNumCodes is set
to the number of supported FOURCC codes and the method will return.

in.doc – page 171

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::GetGDISurface
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetGDISurface method retrieves the DirectDrawSurface
object that currently represents the surface memory that GDI is treating as the
primary surface.

HRESULT GetGDISurface(
 LPDIRECTDRAWSURFACE4 FAR *lplpGDIDDSSurface4
);

Parameters
lplpGDIDDSSurface4

Address of a variable that will be filled with a pointer to the
IDirectDrawSurface4 interface for the surface that currently controls GDI's
primary surface memory.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

in.doc – page 172

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::FlipToGDISurface

IDirectDraw4::GetMonitorFrequen
cy

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetMonitorFrequency method retrieves the frequency of the
monitor being driven by the DirectDraw object.

HRESULT GetMonitorFrequency(
 LPDWORD lpdwFrequency
);

Parameters
lpdwFrequency

Address of the variable that will be filled with the monitor frequency, reported
in Hz.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 173

IDirectDraw4::GetScanLine
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetScanLine method retrieves the scan line that is currently
being drawn on the monitor.

HRESULT GetScanLine(
 LPDWORD lpdwScanLine
);

Parameters
lpdwScanLine

Address of the variable that will contain the scan line the display is currently
drawing.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_VERTICALBLANKINPROGRESS

Remarks
Scan lines are reported as zero-based integers. The returned scan line value is
between 0 and n, where scan line 0 is the first visible scan line on the screen and n is
the last visible scan line, plus any scan lines that occur during the vertical blank
period. So, in a case where an application is running at 640480, and there are 12
scan lines during vblank, the values returned by this method will range from 0 to
491.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 174

See Also
IDirectDraw4::GetVerticalBlankStatus, IDirectDraw4::WaitForVerticalBlank

IDirectDraw4::GetSurfaceFromDC
[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetSurfaceFromDC method retrieves the
IDirectDrawSurface4 interface for a surface based on its GDI device context
handle.

HRESULT GetSurfaceFromDC(
 HDC hdc,
 LPDIRECTDRAWSURFACE4 * lpDDS4
);

Parameters
hdc

Handle to a display device context.
lpDDS4

Address of a variable that will be filled with a valid IDirectDrawSurface4
interface pointer if the call succeeds.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_NOTFOUND

Remarks
This method will succeed only for device context handles that identify surfaces
already associated with the DirectDraw object.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 175

 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
Surfaces and Device Contexts

IDirectDraw4::GetVerticalBlankSta
tus

[This is preliminary documentation and subject to change.]

The IDirectDraw4::GetVerticalBlankStatus method retrieves the status of the
vertical blank.

HRESULT GetVerticalBlankStatus(
 LPBOOL lpbIsInVB
);

Parameters
lpbIsInVB

Address of the variable that will be filled with the status of the vertical blank.
This parameter is TRUE if a vertical blank is occurring, and FALSE otherwise.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
To synchronize with the vertical blank, use the
IDirectDraw4::WaitForVerticalBlank method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 176

See Also
IDirectDraw4::GetScanLine, IDirectDraw4::WaitForVerticalBlank

IDirectDraw4::Initialize
[This is preliminary documentation and subject to change.]

The IDirectDraw4::Initialize method initializes a DirectDraw object that was
created by using the CoCreateInstance COM function.

HRESULT Initialize(
 GUID FAR *lpGUID
);

Parameters
lpGUID

Address of the globally unique identifier (GUID) used as the interface identifier.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_ALREADYINITIALIZED
DDERR_DIRECTDRAWALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW
DDERR_NODIRECTDRAWSUPPORT
DDERR_OUTOFMEMORY

This method is provided for compliance with the Component Object Model (COM)
protocol. If the DirectDrawCreate function was used to create a DirectDraw object,
this method returns DDERR_ALREADYINITIALIZED. If
IDirectDraw4::Initialize is not called when using CoCreateInstance to create a
DirectDraw object, any method that is called afterward returns
DDERR_NOTINITIALIZED.

Remarks
For more information about using IDirectDraw4::Initialize with
CoCreateInstance, see Creating DirectDraw Objects by Using CoCreateInstance.

in.doc – page 177

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::RestoreAllSurfaces
[This is preliminary documentation and subject to change.]

The IDirectDraw4::RestoreAllSurfaces method restores all the surfaces created for
the DirectDraw object, in the order they were created.

HRESULT RestoreAllSurfaces();

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method is provided for convenience. Effectively, this method calls the
IDirectDrawSurface4::Restore method for each surface created by this DirectDraw
object.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::Restore, Losing and Restoring Surfaces

in.doc – page 178

IDirectDraw4::RestoreDisplayMod
e

[This is preliminary documentation and subject to change.]

The IDirectDraw4::RestoreDisplayMode method resets the mode of the display
device hardware for the primary surface to what it was before the
IDirectDraw4::SetDisplayMode method was called. Exclusive-level access is
required to use this method.

HRESULT RestoreDisplayMode();

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_LOCKEDSURFACES
DDERR_NOEXCLUSIVEMODE

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::SetDisplayMode, IDirectDraw4::EnumDisplayModes,
IDirectDraw4::SetCooperativeLevel

IDirectDraw4::SetCooperativeLeve
l

[This is preliminary documentation and subject to change.]

in.doc – page 179

The IDirectDraw4::SetCooperativeLevel method determines the top-level behavior
of the application.

HRESULT SetCooperativeLevel(
 HWND hWnd,
 DWORD dwFlags
);

Parameters
hWnd

Window handle used for the application. Set to the calling application's top-
level window handle (not a handle for any child windows created by the top-
level window). This parameter can be NULL when the DDSCL_NORMAL flag
is specified in the dwFlags parameter.

dwFlags
One or more of the following flags:
DDSCL_ALLOWMODEX

Allows the use of Mode X display modes. This flag can only be used if the
DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT
Allows CTRL+ALT+DEL to function while in exclusive (full-screen) mode.

DDSCL_CREATEDEVICEWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that DirectDraw is to create and manage a default device window for this
DirectDraw object. For more information, see Focus and Device Windows.

DDSCL_EXCLUSIVE
Requests the exclusive level. This flag must be used with the
DDSCL_FULLSCREEN flag.

DDSCL_FPUSETUP
Indicates that the calling application is likely to keep the FPU set up for
optimal Direct3D performance (single precision and exceptions disabled) so
Direct3D does not need to explicitly set the FPU each time. For more
information, see DirectDraw Cooperative Levels and FPU Precision.

DDSCL_FULLSCREEN
Indicates that the exclusive-mode owner will be responsible for the entire
primary surface. GDI can be ignored. This flag must be used with the
DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED
Requests multithread-safe DirectDraw behavior. This causes Direct3D to take
the global critical section more frequently.

DDSCL_NORMAL
Indicates that the application will function as a regular Windows application.
This flag cannot be used with the DDSCL_ALLOWMODEX,
DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN flags.

in.doc – page 180

DDSCL_NOWINDOWCHANGES
Indicates that DirectDraw is not allowed to minimize or restore the
application window on activation.

DDSCL_SETDEVICEWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that the hWnd parameter is the window handle of the device window for this
DirectDraw object. This flag cannot be used with the
DDSCL_SETFOCUSWINDOW flag.

DDSCL_SETFOCUSWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that the hWnd parameter is the window handle of the focus window for this
DirectDraw object. This flag cannot be used with the
DDSCL_SETDEVICEWINDOW flag.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCLUSIVEMODEALREADYSET
DDERR_HWNDALREADYSET
DDERR_HWNDSUBCLASSED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

Remarks
This method must be called by the same thread that created the application window.

An application must set either the DDSCL_EXCLUSIVE or DDSCL_NORMAL
flag.

The DDSCL_EXCLUSIVE flag must be set to call functions that can have drastic
performance consequences for other applications. For more information, see
Cooperative Levels.

Interaction between this method and the IDirectDraw4::SetDisplayMode method
differs from their IDirectDraw counterparts. For more information, see Restoring
Display Modes.

Developers using Microsoft Foundation Classes (MFC) should keep in mind that the
window handle passed to this method should identify the application's top-level
window, not a derived child window. To retrieve your MFC application's top level
window handle, you could use the following code:

 HWND hwndTop = AfxGetMainWnd()->GetSafeHwnd();

in.doc – page 181

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::SetDisplayMode, IDirectDraw4::Compact,
IDirectDraw4::EnumDisplayModes, Mode X and Mode 13 Display Modes, Focus
and Device Windows

IDirectDraw4::SetDisplayMode
[This is preliminary documentation and subject to change.]

The IDirectDraw4::SetDisplayMode method sets the mode of the display-device
hardware.

HRESULT SetDisplayMode(
 DWORD dwWidth,
 DWORD dwHeight,
 DWORD dwBPP,
 DWORD dwRefreshRate,
 DWORD dwFlags
);

Parameters
dwWidth and dwHeight

Width and height of the new mode.
dwBPP

Bits per pixel (bpp) of the new mode.
dwRefreshRate

Refresh rate of the new mode. Set this value to 0 to request the default refresh
rate for the driver.

dwFlags
Flags describing additional options. Currently, the only valid flag is
DDSDM_STANDARDVGAMODE, which causes the method to set Mode 13
instead of Mode X 320x200x8 mode. If you are setting another resolution, bit
depth, or a Mode X mode, do not use this flag and set the parameter to 0.

in.doc – page 182

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDMODE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_LOCKEDSURFACES
DDERR_NOEXCLUSIVEMODE
DDERR_SURFACEBUSY
DDERR_UNSUPPORTED
DDERR_UNSUPPORTEDMODE
DDERR_WASSTILLDRAWING

Remarks
This method must be called by the same thread that created the application window.

If another application changes the display mode, the primary surface will be lost and
will return DDERR_SURFACELOST until it is recreated to match the new display
mode.

As part of the IDirectDraw interface, this method did not include the dwRefreshRate
and dwFlags parameters.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::RestoreDisplayMode, IDirectDraw4::GetDisplayMode,
IDirectDraw4::EnumDisplayModes, IDirectDraw4::SetCooperativeLevel,
Setting Display Modes, Restoring Display Modes

IDirectDraw4::TestCooperativeLev
el

[This is preliminary documentation and subject to change.]

in.doc – page 183

The IDirectDraw4::TestCooperativeLevel method reports the current cooperative-
level status of the DirectDraw device for a windowed or full-screen application.

HRESULT TestCooperativeLevel(void);

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK, indicating that the calling
application can continue executing.

If the method fails, the return value may be one of the following error values (see
remarks):

DDERR_INVALIDOBJECT
DDERR_EXCLUSIVEMODEALREADYSET
DDERR_NOEXCLUSIVEMODE
DDERR_WRONGMODE

Remarks
This method is particularly useful to applications that use the WM_ACTIVATEAPP
and WM_DISPLAYCHANGE system messages as a notification to restore surfaces
or re-create DirectDraw objects. The DD_OK return value always indicates that the
application can continue execution, but the failure codes are interpreted differently
depending on the cooperative-level that the application uses. For more information,
see Testing Cooperative Levels.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDraw4::WaitForVerticalBlan
k

[This is preliminary documentation and subject to change.]

The IDirectDraw4::WaitForVerticalBlank method helps the application
synchronize itself with the vertical-blank interval.

in.doc – page 184

HRESULT WaitForVerticalBlank(
 DWORD dwFlags,
 HANDLE hEvent
);

Parameters
dwFlags

Determines how long to wait for the vertical blank.
DDWAITVB_BLOCKBEGIN

Returns when the vertical-blank interval begins.
DDWAITVB_BLOCKBEGINEVENT

Triggers an event when the vertical blank begins. This value is not currently
supported.

DDWAITVB_BLOCKEND
Returns when the vertical-blank interval ends and the display begins.

hEvent
Handle of the event to be triggered when the vertical blank begins. This
parameter is not currently used.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::GetVerticalBlankStatus, IDirectDraw4::GetScanLine

in.doc – page 185

IDirectDrawClipper
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawClipper interface to manage clip
lists. This section is a reference to the methods of this interface. For a conceptual
overview, see Clippers.

The methods of the IDirectDrawClipper interface can be organized into the
following groups:

Allocating memory Initialize

Clip list GetClipList
IsClipListChanged
SetClipList
SetHWnd

Handles GetHWnd

The IDirectDrawClipper interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

You can use the LPDIRECTDRAWCLIPPER data type to declare a variable that
contains a pointer to an IDirectDrawClipper interface. The Ddraw.h header file
declares these data types with the following code:

typedef struct IDirectDrawClipper FAR *LPDIRECTDRAWCLIPPER;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawClipper::GetClipList
[This is preliminary documentation and subject to change.]

in.doc – page 186

The IDirectDrawClipper::GetClipList method retrieves a copy of the clip list
associated with a DirectDrawClipper object. A subset of the clip list can be selected
by passing a rectangle that clips the clip list.

HRESULT GetClipList(
 LPRECT lpRect,
 LPRGNDATA lpClipList,
 LPDWORD lpdwSize
);

Parameters
lpRect

Address of a rectangle that will be used to clip the clip list. This parameter can
be NULL to retrieve the entire clip list.

lpClipList
Address of an RGNDATA structure that will contain the resulting copy of the
clip list. If this parameter is NULL, the method fills the variable at lpdwSize to
the number of bytes necessary to hold the entire clip list.

lpdwSize
Size of the resulting clip list. When retrieving the clip list, this parameter is the
size of the buffer at lpClipList. When lpClipList is NULL, the variable at
lpdwSize receives the required size of the buffer, in bytes.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCLIPLIST
DDERR_REGIONTOOSMALL

Remarks
The RGNDATA structure used with this method has the following syntax:

typedef struct _RGNDATA {
 RGNDATAHEADER rdh;
 char Buffer[1];
} RGNDATA;

in.doc – page 187

The rdh member of the RGNDATA structure is an RGNDATAHEADER structure
that has the following syntax:

typedef struct _RGNDATAHEADER {
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
} RGNDATAHEADER;

For more information about these structures, see the documentation in the Platform
SDK.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawClipper::SetClipList

IDirectDrawClipper::GetHWnd
[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::GetHWnd method retrieves the window handle
previously associated with this DirectDrawClipper object by the
IDirectDrawClipper::SetHWnd method.

HRESULT GetHWnd(
 HWND FAR *lphWnd
);

Parameters
lphWnd

Address of the window handle previously associated with this
DirectDrawClipper object by the IDirectDrawClipper::SetHWnd method.

Return Values
If the method succeeds, the return value is DD_OK.

in.doc – page 188

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawClipper::SetHWnd

IDirectDrawClipper::Initialize
[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::Initialize method initializes a DirectDrawClipper object
that was created by using the CoCreateInstance COM function.

HRESULT Initialize(
 LPDIRECTDRAW lpDD,
 DWORD dwFlags
);

Parameters
lpDD

Address of the DirectDraw structure that represents the DirectDraw object. If
this parameter is set to NULL, an independent DirectDrawClipper object is
created (the equivalent of using the DirectDrawCreateClipper function).

dwFlags
This parameter is currently not used and must be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_ALREADYINITIALIZED
DDERR_INVALIDPARAMS

in.doc – page 189

This method is provided for compliance with the Component Object Model (COM)
protocol. If DirectDrawCreateClipper or the IDirectDraw4::CreateClipper
method was used to create the DirectDrawClipper object, this method returns
DDERR_ALREADYINITIALIZED.

Remarks
For more information about using IDirectDrawClipper::Initialize with
CoCreateInstance, see Creating DirectDrawClipper Objects with CoCreateInstance.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release,
IDirectDraw4::CreateClipper

IDirectDrawClipper::IsClipListChan
ged

[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::IsClipListChanged method monitors the status of the
clip list if a window handle is associated with a DirectDrawClipper object.

HRESULT IsClipListChanged(
 BOOL FAR *lpbChanged
);

Parameters
lpbChanged

Address of a variable that is set to TRUE if the clip list has changed.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

in.doc – page 190

DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawClipper::SetClipList
[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::SetClipList method sets or deletes the clip list used by
the IDirectDrawSurface4::Blt, IDirectDrawSurface4::BltBatch, and
IDirectDrawSurface4::UpdateOverlay methods on surfaces to which the parent
DirectDrawClipper object is attached.

HRESULT SetClipList(
 LPRGNDATA lpClipList,
 DWORD dwFlags
);

Parameters
lpClipList

Either an address to a valid RGNDATA structure or NULL. If there is an
existing clip list associated with the DirectDrawClipper object and this value is
NULL, the clip list will be deleted.

dwFlags
This parameter is currently not used and must be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CLIPPERISUSINGHWND
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

in.doc – page 191

Remarks
The clip list cannot be set if a window handle is already associated with the
DirectDrawClipper object. Note that the BltFast method cannot clip.

The RGNDATA structure used with this method has the following syntax:

typedef struct _RGNDATA {
 RGNDATAHEADER rdh;
 char Buffer[1];
} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER structure
that has the following syntax:

typedef struct _RGNDATAHEADER {
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
} RGNDATAHEADER;

For more information about these structures, see the documentation in the Platform
Software Development Kit.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawClipper::GetClipList, IDirectDrawSurface4::Blt,
IDirectDrawSurface4::BltFast, IDirectDrawSurface4::BltBatch,
IDirectDrawSurface4::UpdateOverlay

IDirectDrawClipper::SetHWnd
[This is preliminary documentation and subject to change.]

The IDirectDrawClipper::SetHWnd method sets the window handle that the
clipper object uses to obtain clipping information.

HRESULT SetHWnd(
 DWORD dwFlags,

in.doc – page 192

 HWND hWnd
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.
hWnd

Window handle that obtains the clipping information.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawClipper::GetHWnd

IDirectDrawColorControl
[This is preliminary documentation and subject to change.]

The IDirectDrawColorControl interface allows you to get and set color controls:

Color controls GetColorControls
SetColorControls

The IDirectDrawColorControl interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

in.doc – page 193

IUnknown AddRef
QueryInterface
Release

You can use the LPDIRECTDRAWCOLORCONTROL data type to declare a
variable that contains a pointer to an IDirectDrawColorControl interface. The
Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawColorControl FAR *LPDIRECTDRAWCOLORCONTROL;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawColorControl::GetColor
Controls

[This is preliminary documentation and subject to change.]

The IDirectDrawColorControl::GetColorControls method returns the current
color control settings associated with the specified overlay or primary surface. The
dwFlags member of the DDCOLORCONTROL structure indicates which of the
color control options are supported.

HRESULT GetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters
lpColorControl

Address of the DDCOLORCONTROL structure that will receive the current
control settings of the specified surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

in.doc – page 194

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawColorControl::SetColorControls, Using Color Controls, Gamma and
Color Controls

IDirectDrawColorControl::SetColor
Controls

[This is preliminary documentation and subject to change.]

The IDirectDrawColorControl::SetColorControls method sets the color control
settings associated with the specified overlay or primary surface.

HRESULT SetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters
lpColorControl

Address of the DDCOLORCONTROL structure containing the new values to
be applied to the specified surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

in.doc – page 195

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawColorControl::GetColorControls, Using Color Controls, Gamma and
Color Controls

IDirectDrawGammaControl
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawGammaControl interface to adjust
the red, green, and blue gamma ramp levels of the primary surface. This section is a
reference to the methods of this interface. This interface is supported by
DirectDrawSurface objects; you can retrieve a pointer to this interface by calling the
IUnknown::QueryInterface method of a DirectDrawSurface object, specifying the
IID_IDirectDrawGammaControl reference identifier.

For a conceptual overview, see Gamma and Color Controls.

Gamma ramps GetGammaRamp
SetGammaRamp

The IDirectDrawGammaControl interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

IUnknown AddRef
QueryInterface
Release

You can use the LPDIRECTDRAWGAMMACONTROL data type to declare a
variable that contains a pointer to an IDirectDrawGammaControl interface. The
Ddraw.h header file declares the data type with the following code:

typedef struct IDirectDrawGammaControl FAR *LPDIRECTDRAWGAMMACONTROL;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 196

 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawGammaControl::GetGa
mmaRamp

[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl::GetGammaRamp method retrieves the red,
green, and blue gamma ramps for the primary surface.

HRESULT GetGammaRamp(
 DWORD dwFlags,
 LPGAMMARAMP lpRampData
);

Parameters
dwFlags

Not currently used; set to 0.
lpRampData

Address of a DDGAMMARAMP structure that will be filled with the current
red, green, and blue gamma ramps. Each array maps color values in the frame
buffer to the color values that will be passed to the DAC (Digital-to-Analog
Converter).

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 197

See Also
IDirectDrawGammaControl::SetGammaRamp, Gamma and Color Controls

IDirectDrawGammaControl::SetGa
mmaRamp

[This is preliminary documentation and subject to change.]

The IDirectDrawGammaControl::SetGammaRamp method retrieves the red,
green, and blue gamma ramps for the primary surface.

HRESULT SetGammaRamp(
 DWORD dwFlags,
 LPGAMMARAMP lpRampData
);

Parameters
dwFlags

Flag indicating if gamma calibration is desired. Set this parameter
DDSGR_CALIBRATE to request that the calibrator adjust the gamma ramp
according to the physical properties of the display, making the result identical
on all systems. If calibration is not needed, set this parameter to 0.

lpRampData
Address of a DDGAMMARAMP structure that contains the new red, green,
and blue gamma ramp entries. Each array maps color values in the frame buffer
to the color values that will be passed to the DAC (Digital-to-Analog
Converter).

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

Remarks
Not all systems support gamma calibration. To determine if gamma calibration is
supported, call IDirectDraw4::GetCaps, and examine the dwCaps2 member of the
associated DDCAPS structure after the method returns. If the

in.doc – page 198

DDCAPS2_CANCALIBRATEGAMMA capability flag is present, then gamma
calibration is supported.

Calibrating gamma ramps incurs some processing overhead, and should not be used
frequently.

Including the DDSGR_CALIBRATE flag in the dwFlags parameter when running
on systems that do not support gamma calibration will not cause this method to fail.
The method succeeds, setting new gamma ramp values without calibration.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawGammaControl::GetGammaRamp, Gamma and Color Controls

IDirectDrawPalette
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawPalette interface to create
DirectDrawPalette objects and work with system-level variables. This section is a
reference to the methods of this interface. For a conceptual overview, see Palettes.

The methods of the IDirectDrawPalette interface can be organized into the
following groups:

Allocating memory Initialize

Palette capabilities GetCaps

Palette entries GetEntries
SetEntries

The IDirectDrawPalette interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

in.doc – page 199

You can use the LPDIRECTDRAWPALETTE data type to declare a variable that
contains a pointer to an IDirectDrawPalette interface. The Ddraw.h header file
declares the data type with the following code:

typedef struct IDirectDrawPalette FAR *LPDIRECTDRAWPALETTE;

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawPalette::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::GetCaps method retrieves the capabilities of this palette
object.

HRESULT GetCaps(
 LPDWORD lpdwCaps
);

Parameters
lpdwCaps

Flag from the dwPalCaps member of the DDCAPS structure that defines
palette capabilities:

DDPCAPS_1BIT
DDPCAPS_2BIT
DDPCAPS_4BIT
DDPCAPS_8BIT
DDPCAPS_8BITENTRIES
DDPCAPS_ALPHA
DDPCAPS_ALLOW256
DDPCAPS_PRIMARYSURFACE
DDPCAPS_PRIMARYSURFACELEFT
DDPCAPS_VSYNC

Return Values
If the method succeeds, the return value is DD_OK.

in.doc – page 200

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawPalette::GetEntries
[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::GetEntries method queries palette values from a
DirectDrawPalette object.

HRESULT GetEntries(
 DWORD dwFlags,
 DWORD dwBase,
 DWORD dwNumEntries,
 LPPALETTEENTRY lpEntries
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.
dwBase

Start of the entries that should be retrieved sequentially.
dwNumEntries

Number of palette entries that can fit in the address specified in lpEntries. The
colors of each palette entry are returned in sequence, from the value of the
dwStartingEntry parameter through the value of the dwCount parameter minus
1. (These parameters are set by IDirectDrawPalette::SetEntries.)

lpEntries
Address of the palette entries. The palette entries are 1 byte each if the
DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a
color description.

Return Values
If the method succeeds, the return value is DD_OK.

in.doc – page 201

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTPALETTIZED

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawPalette::SetEntries

IDirectDrawPalette::Initialize
[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::Initialize method initializes the DirectDrawPalette object.

HRESULT Initialize(
 LPDIRECTDRAW lpDD,
 DWORD dwFlags,
 LPPALETTEENTRY lpDDColorTable
);

Parameters
lpDD

Address of the DirectDraw structure that represents the DirectDraw object.
dwFlags and lpDDColorTable

These parameters are currently not used and must be set to 0.

Return Values
This method returns DDERR_ALREADYINITIALIZED.

This method is provided for compliance with the Component Object Model (COM)
protocol. Because the DirectDrawPalette object is initialized when it is created, this
method always returns DDERR_ALREADYINITIALIZED.

in.doc – page 202

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release

IDirectDrawPalette::SetEntries
[This is preliminary documentation and subject to change.]

The IDirectDrawPalette::SetEntries method changes entries in a
DirectDrawPalette object immediately.

HRESULT SetEntries(
 DWORD dwFlags,
 DWORD dwStartingEntry,
 DWORD dwCount,
 LPPALETTEENTRY lpEntries
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.
dwStartingEntry

First entry to be set.
dwCount

Number of palette entries to be changed.
lpEntries

Address of the palette entries. The palette entries are 1 byte each if the
DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a
color description.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 203

DDERR_NOPALETTEATTACHED
DDERR_NOTPALETTIZED
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawPalette::GetEntries, IDirectDrawSurface4::SetPalette

IDirectDrawSurface4
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawSurface4 interface to create
DirectDrawSurface objects and work with system-level variables. This section is a
reference to the methods of this interface. For a conceptual overview, see Surfaces.

The methods of the IDirectDrawSurface4 interface can be organized into the
following groups:

Allocating memory Initialize
IsLost
Restore

Attaching surfaces AddAttachedSurface
DeleteAttachedSurface
EnumAttachedSurfaces
GetAttachedSurface

Blitting Blt
BltBatch
BltFast
GetBltStatus

Color keying GetColorKey
SetColorKey

in.doc – page 204

Device contexts GetDC
ReleaseDC

Flipping Flip
GetFlipStatus

Locking surfaces Lock
PageLock
PageUnlock
Unlock

Miscellaneous GetDDInterface

Overlays AddOverlayDirtyRect
EnumOverlayZOrders
GetOverlayPosition
SetOverlayPosition
UpdateOverlay
UpdateOverlayDisplay
UpdateOverlayZOrder

Private surface data FreePrivateData
GetPrivateData
SetPrivateData

Surface capabilities GetCaps

Surface clipper GetClipper
SetClipper

Surface characteristics ChangeUniquenessValue
GetPixelFormat
GetSurfaceDesc
GetUniquenessValue
SetSurfaceDesc

Surface palettes GetPalette

in.doc – page 205

SetPalette

The IDirectDrawSurface4 interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

IUnknown AddRef
QueryInterface
Release

The IDirectDrawSurface4 interface extends the features of previous versions of the
interface by offering methods that offer better surface management and ease of use.
Note that many methods in this interface accept slightly different parameters than
their counterparts in former versions of the interface. Wherever an
IDirectDrawSurface3 interface method might accept a DDSURFACEDESC
structure or an IDirectDrawSurface3 interface, the methods in
IDirectDrawSurface4 accept a DDSURFACEDESC2 structure or an
IDirectDrawSurface4 interface instead.

You can use the LPDIRECTDRAWSURFACE, LPDIRECTDRAWSURFACE2,
LPDIRECTDRAWSURFACE3, or LPDIRECTDRAWSURFACE4 data types to
declare variables that point to various DirectDrawSurface object interfaces. The
Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawSurface FAR *LPDIRECTDRAWSURFACE;
typedef struct IDirectDrawSurface2 FAR *LPDIRECTDRAWSURFACE2;
typedef struct IDirectDrawSurface3 FAR *LPDIRECTDRAWSURFACE3;
typedef struct IDirectDrawSurface4 FAR *LPDIRECTDRAWSURFACE4;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::AddAttache
dSurface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::AddAttachedSurface method attaches the specified
surface to this surface.

HRESULT AddAttachedSurface(
 LPDIRECTDRAWSURFACE4 lpDDSAttachedSurface
);

in.doc – page 206

Parameters
lpDDSAttachedSurface

Address of an IDirectDrawSurface4 interface for the surface to be attached.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANNOTATTACHSURFACE
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACEALREADYATTACHED
DDERR_SURFACELOST
DDERR_WASSTILLDRAWING

Remarks
This method increments the reference count of the surface being attached. You can
explicitly unattach the surface and decrement its reference count by using the
IDirectDrawSurface4::DeleteAttachedSurface method. Unlike complex surfaces
that you create with a single call to IDirectDraw4::CreateSurface, surfaces
attached with this method are not automatically released. It is the application's
responsibility to release such surfaces.

Possible attachments include z-buffers, alpha channels, and back buffers. Some
attachments automatically break other attachments. For example, the 3-D z-buffer
can be attached only to one back buffer at a time. Attachment is not bidirectional,
and a surface cannot be attached to itself. Emulated surfaces (in system memory)
cannot be attached to nonemulated surfaces. Unless one surface is a texture map, the
two attached surfaces must be the same size. A flipping surface cannot be attached to
another flipping surface of the same type; however, attaching two surfaces of
different types is allowed. For example, a flipping z-buffer can be attached to a
regular flipping surface. If a nonflipping surface is attached to another nonflipping
surface of the same type, the two surfaces will become a flipping chain. If a
nonflipping surface is attached to a flipping surface, it becomes part of the existing
flipping chain. Additional surfaces can be added to this chain, and each call of the
IDirectDrawSurface4::Flip method will advance one step through the surfaces.

in.doc – page 207

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::DeleteAttachedSurface,
IDirectDrawSurface4::EnumAttachedSurfaces

IDirectDrawSurface4::AddOverlay
DirtyRect

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::AddOverlayDirtyRect method is not currently
implemented.

HRESULT AddOverlayDirtyRect(
 LPRECT lpRect
);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::UpdateOverlayDisplay

IDirectDrawSurface4::Blt
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Blt method performs a bit block transfer. This method
does not support z-buffering or alpha blending (see alpha channel) during blit
operations.

HRESULT Blt(
 LPRECT lpDestRect,
 LPDIRECTDRAWSURFACE4 lpDDSrcSurface,

in.doc – page 208

 LPRECT lpSrcRect,
 DWORD dwFlags,
 LPDDBLTFX lpDDBltFx
);

Parameters
lpDestRect

Address of a RECT structure that defines the upper-left and lower-right points
of the rectangle to blit to on the destination surface. If this parameter is NULL,
the entire destination surface will be used.

lpDDSrcSurface
Address of an IDirectDrawSurface4 interface for the DirectDrawSurface object
that is the source of the blit.

lpSrcRect
Address of a RECT structure that defines the upper-left and lower-right points
of the rectangle to blit from on the source surface. If this parameter is NULL,
the entire source surface will be used.

dwFlags
A combination of flags that determine the valid members of the associated
DDBLTFX structure, specify color key information, or that request special
behavior from the method. The following flags are defined.
Validation flags
DDBLT_COLORFILL

Uses the dwFillColor member of the DDBLTFX structure as the RGB color
that fills the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the dwDDFX member of the DDBLTFX structure to specify the effects
to use for this blit.

DDBLT_DDROPS
Uses the dwDDROP member of the DDBLTFX structure to specify the
raster operations (ROPS) that are not part of the Win32 API.

DDBLT_DEPTHFILL
Uses the dwFillDepth member of the DDBLTFX structure as the depth value
with which to fill the destination rectangle on the destination z-buffer surface.

DDBLT_KEYDESTOVERRIDE
Uses the ddckDestColorkey member of the DDBLTFX structure as the color
key for the destination surface.

DDBLT_KEYSRCOVERRIDE
Uses the ddckSrcColorkey member of the DDBLTFX structure as the color
key for the source surface.

DDBLT_ROP
Uses the dwROP member of the DDBLTFX structure for the ROP for this
blit. These ROPs are the same as those defined in the Win32 API.

in.doc – page 209

DDBLT_ROTATIONANGLE
Uses the dwRotationAngle member of the DDBLTFX structure as the
rotation angle (specified in 1/100th of a degree) for the surface.

Color key flags
DDBLT_KEYDEST

Uses the color key associated with the destination surface.
DDBLT_KEYSRC

Uses the color key associated with the source surface.
Behavior flags
DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If
no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT
Postpones the DDERR_WASSTILLDRAWING return value if the blitter is
busy, and returns as soon as the blit can be set up or another error occurs.

Obsolete and unsupported flags
All "DDBLT_ALPHA" flag values.

Not currently implemented.
All "DDBLT_ZBUFFER" flag values

This method does not currently support z-aware blit operations. None of the
flags beginning with "DDBLT_ZBUFFER" are supported in this release of
DirectX 6.0.

lpDDBltFx
Address of the DDBLTFX structure.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST
DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW

in.doc – page 210

DDERR_NOSTRETCHHW
DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

Remarks
This method is capable of synchronous or asynchronous blits (the default behavior),
either display memory to display memory, display memory to system memory,
system memory to display memory, or system memory to system memory. The blits
can be performed by using source color keys, and destination color keys. Arbitrary
stretching or shrinking will be performed if the source and destination rectangles are
not the same size.

Typically, IDirectDrawSurface4::Blt returns immediately with an error if the blitter
is busy and the blit could not be set up. Specify the DDBLT_WAIT flag to request a
synchronous blit. When you include the DDBLT_WAIT flag, the method waits until
the blit can be set up or another error occurs before it returns.

Note that RECT structures are defined so that the right and bottom members are
exclusive—therefore, right minus left equals the width of the rectangle, not one less
than the width.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::BltBatch
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::BltBatch method is not currently implemented.

HRESULT BltBatch(
 LPDDBLTBATCH lpDDBltBatch,
 DWORD dwCount,
 DWORD dwFlags
);

in.doc – page 211

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::BltFast
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::BltFast method performs a source copy blit or
transparent blit by using a source color key or destination color key.

HRESULT BltFast(
 DWORD dwX,
 DWORD dwY,
 LPDIRECTDRAWSURFACE4 lpDDSrcSurface,
 LPRECT lpSrcRect,
 DWORD dwTrans
);

Parameters
dwX and dwY

The x- and y-coordinates to blit to on the destination surface.
lpDDSrcSurface

Address of an IDirectDrawSurface4 interface for the DirectDrawSurface object
that is the source of the blit.

lpSrcRect
Address of a RECT structure that defines the upper-left and lower-right points
of the rectangle to blit from on the source surface.

dwTrans
Type of transfer.
DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.
DDBLTFAST_NOCOLORKEY

Specifies a normal copy blit with no transparency.
DDBLTFAST_SRCCOLORKEY

Specifies a transparent blit that uses the source's color key.
DDBLTFAST_WAIT

Postpones the DDERR_WASSTILLDRAWING message if the blitter is busy,
and returns as soon as the blit can be set up or another error occurs.

in.doc – page 212

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOBLTHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

Remarks
This method always attempts an asynchronous blit if it is supported by the hardware.

This method works only on display memory surfaces and cannot clip when blitting.
If you use this method on a surface with an attached clipper, the call will fail and the
method will return DDERR_UNSUPPORTED.

The software implementation of IDirectDrawSurface4::BltFast is 10 percent faster
than the IDirectDrawSurface4::Blt method. However, there is no speed difference
between the two if display hardware is being used.

Typically, IDirectDrawSurface4::BltFast returns immediately with an error if the
blitter is busy and the blit cannot be set up. You can use the DDBLTFAST_WAIT
flag, however, if you want this method to not return until either the blit can be set up
or another error occurs.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::ChangeUniq
uenessValue

[This is preliminary documentation and subject to change.]

in.doc – page 213

The IDirectDrawSurface4::ChangeUniquenessValue method manually updates the
uniqueness value for this surface.

HRESULT ChangeUniquenessValue();

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
DirectDraw automatically updates uniqueness values whenever the contents of a
surface change.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetUniquenessValue, Surface Uniqueness Values

IDirectDrawSurface4::DeleteAttac
hedSurface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::DeleteAttachedSurface method detaches two attached
surfaces.

HRESULT DeleteAttachedSurface(
 DWORD dwFlags,
 LPDIRECTDRAWSURFACE4 lpDDSAttachedSurface
);

in.doc – page 214

Parameters
dwFlags

This parameter is currently not used and must be set to 0.
lpDDSAttachedSurface

Address of the IDirectDrawSurface4 interface for the DirectDrawSurface
object to be detached. If this parameter is NULL, all attached surfaces are
detached.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANNOTDETACHSURFACE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_SURFACENOTATTACHED

Remarks
This method decrements the reference count of the surface being detached. If the
reference count of the surface being detached reaches zero, it is lost and removed
from memory.

Implicit attachments, those formed by DirectDraw rather than the
IDirectDrawSurface4::AddAttachedSurface method, cannot be detached.
Detaching surfaces from a flipping chain can alter other surfaces in the chain. If a
front buffer is detached from a flipping chain, the next surface in the chain becomes
the front buffer, and the following surface becomes the back buffer. If a back buffer
is detached from a chain, the following surface becomes a back buffer. If a plain
surface is detached from a chain, the chain simply becomes shorter. If a flipping
chain has only two surfaces and they are detached, the chain is destroyed and both
surfaces return to their previous designations.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

in.doc – page 215

See Also
IDirectDrawSurface4::Flip

IDirectDrawSurface4::EnumAttach
edSurfaces

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::EnumAttachedSurfaces method enumerates all the
surfaces attached to a given surface.

HRESULT EnumAttachedSurfaces(
 LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK2 lpEnumSurfacesCallback
);

Parameters
lpContext

Address of the application-defined structure that is passed to the enumeration
member every time it is called.

lpEnumSurfacesCallback
Address of the EnumSurfacesCallback2 function that will be called for each
surface that is attached to this surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

Remarks
This method enumerates only those surfaces that are directly attached to this surface.
For example, in a flipping chain of three or more surfaces, only one surface will be
enumerated, because each surface is attached only to the next surface in the flipping
chain. In such a configuration, you can call EnumAttachedSurfaces on each
successive surface to walk the entire flipping chain.

This method differs from its counterparts in previous interface versions in that it
accepts a pointer to an EnumSurfacesCallback2 function, rather than an
EnumSurfacesCallback function.

in.doc – page 216

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::EnumOverla
yZOrders

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::EnumOverlayZOrders method enumerates the overlay
surfaces on the specified destination. The overlays can be enumerated in front-to-
back or back-to-front order.

HRESULT EnumOverlayZOrders(
 DWORD dwFlags,
 LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK2 lpfnCallback
);

Parameters
dwFlags

One of the following flags:
DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.
DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.
lpContext

Address of the user-defined context that will be passed to the callback function
for each overlay surface.

lpfnCallback
Address of the EnumSurfacesCallback2 callback function that will be called
for each surface being overlaid on this surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

in.doc – page 217

Remarks
This method differs from its counterparts in previous interface versions in that it
accepts a pointer to an EnumSurfacesCallback2 function, rather than an
EnumSurfacesCallback function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::Flip
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Flip method makes the surface memory associated with
the DDSCAPS_BACKBUFFER surface become associated with the front-buffer
surface.

HRESULT Flip(
 LPDIRECTDRAWSURFACE4 lpDDSurfaceTargetOverride,
 DWORD dwFlags
);

Parameters
lpDDSurfaceTargetOverride

Address of the IDirectDrawSurface4 interface for an arbitrary surface in the
flipping chain. The default for this parameter is NULL, in which case
DirectDraw cycles through the buffers in the order they are attached to each
other. If this parameter is not NULL, DirectDraw flips to the specified surface
instead of the next surface in the flipping chain. The method fails if the specified
surface is not a member of the flipping chain.

dwFlags
Flags specifying flip options.
DDFLIP_EVEN

For use only when displaying video in an overlay surface. The new surface
contains data from the even field of a video signal. This flag cannot be used
with the DDFLIP_ODD flag.

DDFLIP_INTERVAL2
DDFLIP_INTERVAL3
DDFLIP_INTERVAL4

in.doc – page 218

These flags indicate how many vertical retraces to wait between each flip.
The default is 1. DirectDraw will return DERR_WASSTILLDRAWING for
each surface involved in the flip until the specified number of vertical
retraces has occurred. If DDFLIP_INTERVAL2 is set, DirectDraw will flip
on every second vertical sync; if DDFLIP_INTERVAL3, on every third sync;
and if DDFLIP_INTERVAL4, on every fourth sync.
These flags are effective only if DDCAPS2_FLIPINTERVAL is set in the
DDCAPS structure returned for the device.

DDFLIP_NOVSYNC
Causes DirectDraw to perform the physical flip as close as possible to the
next scan line. Subsequent operations involving the two flipped surfaces will
not check to see if the physical flip has finished—that is, they will not return
DDERR_WASSTILLDRAWING for that reason (but may for other reasons).
This allows an application to perform flips at a higher frequency than the
monitor refresh rate, but may introduce visible artifacts.
If DDCAPS2_FLIPNOVSYNC is not set in the DDCAPS structure returned
for the device, DDFLIP_NOVSYNC has no effect.

DDFLIP_ODD
For use only when displaying video in an overlay surface. The new surface
contains data from the odd field of a video signal. This flag cannot be used
with the DDFLIP_EVEN flag.

DDFLIP_WAIT
Typically, if the flip cannot be set up because the state of the display
hardware is not appropriate, the DDERR_WASSTILLDRAWING error
returns immediately and no flip occurs. Setting this flag causes the method to
continue trying to flip if it receives the DDERR_WASSTILLDRAWING
error from the HAL. The method does not return until the flipping operation
has been successfully set up, or another error, such as
DDERR_SURFACEBUSY, is returned.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOFLIPHW
DDERR_NOTFLIPPABLE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

in.doc – page 219

Remarks
This method can be called only for a surface that has the DDSCAPS_FLIP and
DDSCAPS_FRONTBUFFER capabilities. The display memory previously
associated with the front buffer is associated with the back buffer.

The lpDDSurfaceTargetOverride parameter is used in rare cases when the back
buffer is not the buffer that should become the front buffer. Typically this parameter
is NULL.

The IDirectDrawSurface4::Flip method will always be synchronized with the
vertical blank. If the surface has been assigned to a video port, this method updates
the visible overlay surface and the video port's target surface.

For more information, see Flipping Surfaces.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetFlipStatus

IDirectDrawSurface4::FreePrivate
Data

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::FreePrivateData method frees the specified private
data associated with this surface.

HRESULT FreePrivateData(
 REFGUID guidTag,
);

Parameters
guidTag

Reference to (C++) or address of (C) the globally unique identifier that
identifies the private data to be freed.

in.doc – page 220

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

Remarks
DirectDraw calls this method automatically when a surface is released.

If the private data was set by using the DDSPD_IUNKNOWNPOINTER flag, this
method calls the IUnknown::Release method on the associated interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetPrivateData, IDirectDrawSurface4::SetPrivateData

IDirectDrawSurface4::GetAttached
Surface

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetAttachedSurface method obtains the attached
surface that has the specified capabilities and increments the reference count of the
retrieved interface.

HRESULT GetAttachedSurface(
 LPDDSCAPS2 lpDDSCaps,
 LPDIRECTDRAWSURFACE4 FAR *lplpDDAttachedSurface
);

Parameters
lpDDSCaps

Address of a DDSCAPS2 structure that contains the hardware capabilities of the
surface.

in.doc – page 221

lplpDDAttachedSurface
Address of a variable that will contain a pointer to the retrieved surface's
IDirectDrawSurface4 interface. The retrieved surface is the one that matches
the description according to the lpDDSCaps parameter.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND
DDERR_SURFACELOST

Remarks
Attachments are used to connect multiple DirectDrawSurface objects into complex
structures, like the ones needed to support 3-D page flipping with z-buffers. This
method fails if more than one surface is attached that matches the capabilities
requested. In this case, the application must use the
IDirectDrawSurface4::EnumAttachedSurfaces method to obtain the attached
surfaces.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetBltStatus
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetBltStatus method obtains the blitter status.

HRESULT GetBltStatus(
 DWORD dwFlags
);

Parameters
dwFlags

One of the following flags:

in.doc – page 222

DDGBS_CANBLT
Inquires whether a blit involving this surface can occur immediately, and
returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE
Inquires whether the blit is done, and returns DD_OK if the last blit on this
surface has completed.

Return Values
If the method succeeds, that means a blitter is present, the return value is DD_OK.

If the method fails, the return value is DDERR_WASSTILLDRAWING if the blitter
is busy, DDERR_NOBLTHW if there is no blitter, or one of the following error
values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOBLTHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetCaps method retrieves the capabilities of the
surface. These capabilities are not necessarily related to the capabilities of the
display device.

HRESULT GetCaps(
 LPDDSCAPS2 lpDDSCaps
);

Parameters
lpDDSCaps

in.doc – page 223

Address of a DDSCAPS2 structure that will be filled with the hardware
capabilities of the surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method differs from its counterpart in the IDirectDrawSurface3 interface in
that it accepts a pointer to a DDSCAPS2 structure rather than the legacy DDSCAPS
structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetClipper
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetClipper method retrieves the DirectDrawClipper
object associated with this surface and increments the reference count of the returned
clipper.

HRESULT GetClipper(
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper
);

Parameters
lplpDDClipper

Address of a pointer to the DirectDrawClipper object associated with the
surface.

Return Values
If the method succeeds, the return value is DD_OK.

in.doc – page 224

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCLIPPERATTACHED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::SetClipper

IDirectDrawSurface4::GetColorKey
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetColorKey method retrieves the color key value for
the DirectDrawSurface object.

HRESULT GetColorKey(
 DWORD dwFlags,
 LPDDCOLORKEY lpDDColorKey
);

Parameters
dwFlags

Determines which color key is requested.
DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the structure specifies a color key or color space to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT
Set if the structure specifies a color key or color space to be used as a source
color key for blit operations.

DDCKEY_SRCOVERLAY
Set if the structure specifies a color key or color space to be used as a source
color key for overlay operations.

in.doc – page 225

lpDDColorKey
Address of the DDCOLORKEY structure that will be filled with the current
values for the specified color key of the DirectDrawSurface object.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOLORKEY
DDERR_NOCOLORKEYHW
DDERR_SURFACELOST
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::SetColorKey

IDirectDrawSurface4::GetDC
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetDC method creates a GDI-compatible handle of a
device context for the surface.

HRESULT GetDC(
 HDC FAR *lphDC
);

Parameters
lphDC

Address for the returned handle to a device context.

in.doc – page 226

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_DCALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

Remarks
This method uses an internal version of the IDirectDrawSurface4::Lock method to
lock the surface. The surface remains locked until the
IDirectDrawSurface4::ReleaseDC method is called.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::Lock

IDirectDrawSurface4::GetDDInterf
ace

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetDDInterface method retrieves an interface to the
DirectDraw object that was used to create the surface.

HRESULT GetDDInterface(
 LPVOID FAR *lplpDD
);

in.doc – page 227

Parameters
lplpDD

Address of a variable that will be filled with a valid interface pointer if the call
succeeds. Cast this pointer to an IUnknown interface pointer, then query for the
desired DirectDraw interface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method was not implemented in the IDirectDraw interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetFlipStatu
s

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetFlipStatus method indicates whether the surface
has finished its flipping process.

HRESULT GetFlipStatus(
 DWORD dwFlags
);

Parameters
dwFlags

One of the following flags:
DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and returns DD_OK
if the flip can be completed.

in.doc – page 228

DDGFS_ISFLIPDONE
Inquires whether the flip has finished and returns DD_OK if the last flip on
this surface has completed.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value is DDERR_WASSTILLDRAWING if the
surface has not finished its flipping process, or one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::Flip

IDirectDrawSurface4::GetOverlayP
osition

[This is preliminary documentation and subject to change.]

Given a visible, active overlay surface (DDSCAPS_OVERLAY flag set), the
IDirectDrawSurface4::GetOverlayPosition method returns the display coordinates
of the surface.

HRESULT GetOverlayPosition(
 LPLONG lplX,
 LPLONG lplY
);

in.doc – page 229

Parameters
lplX and lplY

Addresses of the x- and y-display coordinates.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPOSITION
DDERR_NOOVERLAYDEST
DDERR_NOTAOVERLAYSURFACE
DDERR_OVERLAYNOTVISIBLE
DDERR_SURFACELOST

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::SetOverlayPosition,
IDirectDrawSurface4::UpdateOverlay

IDirectDrawSurface4::GetPalette
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetPalette method retrieves the DirectDrawPalette
object associated with this surface and increments the reference count of the returned
palette.

HRESULT GetPalette(
 LPDIRECTDRAWPALETTE FAR *lplpDDPalette
);

in.doc – page 230

Parameters
lplpDDPalette

Address of a variable that will be filled with a pointer to the palette object's
IDirectDrawPalette interface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_NOPALETTEATTACHED
DDERR_SURFACELOST
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::SetPalette

IDirectDrawSurface4::GetPixelFor
mat

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetPixelFormat method retrieves the color and pixel
format of the surface.

HRESULT GetPixelFormat(
 LPDDPIXELFORMAT lpDDPixelFormat
);

in.doc – page 231

Parameters
lpDDPixelFormat

Address of the DDPIXELFORMAT structure that will be filled with a detailed
description of the current pixel and color space format of the surface.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::GetPrivateD
ata

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetPrivateData method copies the private data
associated with the surface to a provided buffer.

HRESULT GetPrivateData(
 REFGUID guidTag,
 LPVOID lpBuffer,
 LPDWORD lpcbBufferSize
);

Parameters
guidTag

Reference to (C++) or address of (C) the globally unique identifier that
identifies the private data to be retrieved.

lpBuffer
Address of a previously allocated buffer that will be filled with the requested
private data if the call succeeds. The application calling this method is
responsible for allocating and releasing this buffer.

in.doc – page 232

lpcbBufferSize
Size of the buffer at lpBuffer, in bytes. If this value is less than the actual size of
the private data (such as zero), the method sets this parameter to the required
buffer size, and the method returns DDERR_MOREDATA.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXPIRED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_MOREDATA
DDERR_NOTFOUND
DDERR_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::SetPrivateData, IDirectDrawSurface4::FreePrivateData

IDirectDrawSurface4::GetSurfaceD
esc

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetSurfaceDesc method retrieves a description of the
surface in its current condition.

HRESULT GetSurfaceDesc(
 LPDDSURFACEDESC2 lpDDSurfaceDesc
);

Parameters
lpDDSurfaceDesc

in.doc – page 233

Address of a DDSURFACEDESC2 structure that will be filled with the current
description of this surface. You need only initialize this structure's dwSize
member to the size, in bytes, of the structure prior to the call; no other
preparation is required.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
DDSURFACEDESC, DDSURFACEDESC2

IDirectDrawSurface4::GetUniquen
essValue

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::GetUniquenessValue method retrieves the current
uniqueness value for this surface.

HRESULT GetUniquenessValue(
 LPDWORD lpValue,
);

Parameters
lpValue

Address of a variable that will be filled with the surface's current uniqueness
value, if the call succeeds.

Return Values
If the method succeeds, the return value is DD_OK.

in.doc – page 234

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
The only defined uniqueness value is 0, to indicate that the surface is likely to be
changing beyond DirectDraw's control. Other uniqueness values are only significant
if they differ from a previously cached uniqueness value. If the current value is
different than a cached value, then the contents of the surface have changed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::ChangeUniquenessValue, Surface Uniqueness Values

IDirectDrawSurface4::Initialize
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Initialize method initializes a DirectDrawSurface
object.

HRESULT Initialize(
 LPDIRECTDRAW lpDD,
 LPDDSURFACEDESC2 lpDDSurfaceDesc
);

Parameters
lpDD

Address of the DirectDraw structure that represents the DirectDraw object.
lpDDSurfaceDesc

Address of a DDSURFACEDESC2 structure that will be filled with the relevant
details about the surface.

Return Values
The method returns DDERR_ALREADYINITIALIZED.

in.doc – page 235

Remarks
This method is provided for compliance with the Component Object Model (COM)
protocol. Because the DirectDrawSurface object is initialized when it is created, this
method always returns DDERR_ALREADYINITIALIZED.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release

IDirectDrawSurface4::IsLost
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::IsLost method determines if the surface memory
associated with a DirectDrawSurface object has been freed.

HRESULT IsLost();

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK because the memory has not
been freed.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

You can use this method to determine when you need to reallocate surface memory.
When a DirectDrawSurface object loses its surface memory, most methods return
DDERR_SURFACELOST and perform no other action.

in.doc – page 236

Remarks
Surfaces can lose their memory when the mode of the display card is changed, or
when an application receives exclusive access to the display card and frees all of the
surface memory currently allocated on the display card.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::Restore, Losing and Restoring Surfaces

IDirectDrawSurface4::Lock
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Lock method obtains a pointer to the surface memory.

HRESULT Lock(
 LPRECT lpDestRect,
 LPDDSURFACEDESC2 lpDDSurfaceDesc,
 DWORD dwFlags,
 HANDLE hEvent
);

Parameters
lpDestRect

Address of a RECT structure that identifies the region of surface that is being
locked. If NULL, the entire surface will be locked.

lpDDSurfaceDesc
Address of a DDSURFACEDESC2 structure that will be filled with the relevant
details about the surface.

dwFlags
DDLOCK_EVENT

This flag is not currently implemented.
DDLOCK_NOSYSLOCK

Do not take the Win16Mutex (also known as Win16Lock). This flag is
ignored when locking the primary surface.

DDLOCK_READONLY
Indicates that the surface being locked will only be read.

in.doc – page 237

DDLOCK_SURFACEMEMORYPTR
Indicates that a valid memory pointer to the top of the specified rectangle
should be returned. If no rectangle is specified, a pointer to the top of the
surface is returned. This is the default.

DDLOCK_WAIT
If a lock cannot be obtained because a blit operation is in progress, the
method retries until a lock is obtained or another error occurs, such as
DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY
Indicates that the surface being locked will be write enabled.

hEvent
This parameter is not used and must be set to NULL.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_WASSTILLDRAWING

Remarks
For more information on using this method, see Accessing Surface Memory Directly.

After retrieving a surface memory pointer, you can access the surface memory until
a corresponding IDirectDrawSurface4::Unlock method is called. When the surface
is unlocked, the pointer to the surface memory is invalid.

Do not call DirectDraw blit functions to blit from a locked region of a surface. If you
do, the blit returns either DDERR_SURFACEBUSY or
DDERR_LOCKEDSURFACES. Additionally, GDI blit functions will silently fail
when used on a locked video memory surface.

Unless you include the DDLOCK_NOSYSLOCK flag, this method causes
DirectDraw to hold the Win16Mutex (also known as Win16Lock) until you call the
IDirectDrawSurface4::Unlock method. GUI debuggers cannot operate while the
Win16Mutex is held.

in.doc – page 238

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::Unlock, IDirectDrawSurface4::GetDC,
IDirectDrawSurface4::ReleaseDC

IDirectDrawSurface4::PageLock
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::PageLock method prevents a system-memory surface
from being paged out while a blit operation using direct memory access (DMA)
transfers to or from system memory is in progress.

HRESULT PageLock(
 DWORD dwFlags
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTPAGELOCK
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

Remarks
You must call this method to make use of DMA support. If you do not, the blit
occurs using software emulation. For more information, see Using DMA.

The performance of the operating system could be negatively affected if too much
memory is locked.

in.doc – page 239

A lock count is maintained for each surface and is incremented each time
IDirectDrawSurface4::PageLock is called for that surface. The count is
decremented when IDirectDrawSurface4::PageUnlock is called. When the count
reaches 0, the memory is unlocked and can then be paged by the operating system.

This method works only on system-memory surfaces; it will not page lock a display-
memory surface or an emulated primary surface. If an application calls this method
on a display memory surface, the method will do nothing except return DD_OK.

This method was not implemented in the IDirectDraw interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::PageUnlock

IDirectDrawSurface4::PageUnlock
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::PageUnlock method unlocks a system-memory surface,
allowing it to be paged out.

HRESULT PageUnlock(
 DWORD dwFlags
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTPAGEUNLOCK
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTPAGELOCKED

in.doc – page 240

DDERR_SURFACELOST

Remarks
A lock count is maintained for each surface and is incremented each time
IDirectDrawSurface4::PageLock is called for that surface. The count is
decremented when IDirectDrawSurface4::PageUnlock is called. When the count
reaches 0, the memory is unlocked and can then be paged by the operating system.

This method works only on system-memory surfaces; it will not page unlock a
display-memory surface or an emulated primary surface. If an application calls this
method on a display-memory surface, this method will do nothing except return
DD_OK.

This method was not implemented in the IDirectDraw interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::PageLock

IDirectDrawSurface4::ReleaseDC
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::ReleaseDC method releases the handle of a device
context previously obtained by using the IDirectDrawSurface4::GetDC method.

HRESULT ReleaseDC(
 HDC hDC
);

Parameters
hDC

Handle to a device context previously obtained by
IDirectDrawSurface4::GetDC.

in.doc – page 241

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_UNSUPPORTED

Remarks
This method also unlocks the surface previously locked when the
IDirectDrawSurface4::GetDC method was called.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetDC

IDirectDrawSurface4::Restore
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Restore method restores a surface that has been lost.
This occurs when the surface memory associated with the DirectDrawSurface object
has been freed.

HRESULT Restore();

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

in.doc – page 242

DDERR_GENERIC
DDERR_IMPLICITLYCREATED
DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED
DDERR_WRONGMODE

Remarks
This method restores the memory allocated for a surface, but doesn't reload any
bitmaps that may have existed in the surface before it was lost. For more
information, see Losing and Restoring Surfaces.

Surfaces can be lost because the mode of the display card was changed or because an
application received exclusive access to the display card and freed all of the surface
memory currently allocated on the card. When a DirectDrawSurface object loses its
surface memory, many methods will return DDERR_SURFACELOST and perform
no other function. The IDirectDrawSurface4::Restore method will reallocate
surface memory and reattach it to the DirectDrawSurface object.

A single call to this method will restore a DirectDrawSurface object's associated
implicit surfaces (back buffers, and so on). An attempt to restore an implicitly
created surface will result in an error. IDirectDrawSurface4::Restore will not work
across explicit attachments created by using the
IDirectDrawSurface4::AddAttachedSurface method—each of these surfaces must
be restored individually.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::IsLost

IDirectDrawSurface4::SetClipper
[This is preliminary documentation and subject to change.]

in.doc – page 243

The IDirectDrawSurface4::SetClipper method attaches a clipper object to or
deletes one from a surface.

HRESULT SetClipper(
 LPDIRECTDRAWCLIPPER lpDDClipper
);

Parameters
lpDDClipper

Address of the IDirectDrawClipper interface for the DirectDrawClipper object
that will be attached to the DirectDrawSurface object. If this parameter is
NULL, the current DirectDrawClipper object will be detached.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_NOCLIPPERATTACHED

Remarks
When setting a clipper to a surface for the first time, this method increments the
clipper's reference count; subsequent calls to do not affect the clipper's reference
count. If you pass NULL as the lpDDClipper parameter, the clipper is removed from
the surface, and the clipper's reference count is decremented. If you do not delete the
clipper, the surface will automatically release its reference to the clipper when the
surface itself is released. According to COM rules, your application is responsible
for releasing any references it holds to the clipper when the object is no longer
needed.

This method is primarily used by surfaces that are being overlaid on or blitted to the
primary surface. However, it can be used on any surface. After a DirectDrawClipper
object has been attached and a clip list is associated with it, the DirectDrawClipper
object will be used for the IDirectDrawSurface4::Blt,
IDirectDrawSurface4::BltBatch, and IDirectDrawSurface4::UpdateOverlay
operations involving the parent DirectDrawSurface object. This method can also
detach a DirectDrawSurface object's current DirectDrawClipper object.

in.doc – page 244

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetClipper

IDirectDrawSurface4::SetColorKey
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetColorKey method sets the color key value for the
DirectDrawSurface object if the hardware supports color keys on a per surface basis.

HRESULT SetColorKey(
 DWORD dwFlags,
 LPDDCOLORKEY lpDDColorKey
);

Parameters
dwFlags

Determines which color key is requested.
DDCKEY_COLORSPACE

Set if the structure contains a color space. Not set if the structure contains a
single color key.

DDCKEY_DESTBLT
Set if the structure specifies a color key or color space to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the structure specifies a color key or color space to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT
Set if the structure specifies a color key or color space to be used as a source
color key for blit operations.

DDCKEY_SRCOVERLAY
Set if the structure specifies a color key or color space to be used as a source
color key for overlay operations.

lpDDColorKey

in.doc – page 245

Address of the DDCOLORKEY structure that contains the new color key
values for the DirectDrawSurface object. This value can be NULL to remove a
previously set color key.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_NOOVERLAYHW
DDERR_NOTAOVERLAYSURFACE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

Remarks
For transparent blits and overlays, you should set destination color on the destination
surface and source color on the source surface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetColorKey

IDirectDrawSurface4::SetOverlayP
osition

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetOverlayPosition method changes the display
coordinates of an overlay surface.

HRESULT SetOverlayPosition(

in.doc – page 246

 LONG lX,
 LONG lY
);

Parameters
lX and lY

New x- and y-display coordinates.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPOSITION
DDERR_NOOVERLAYDEST
DDERR_NOTAOVERLAYSURFACE
DDERR_OVERLAYNOTVISIBLE
DDERR_SURFACELOST
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetOverlayPosition,
IDirectDrawSurface4::UpdateOverlay

IDirectDrawSurface4::SetPalette
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetPalette method attaches a palette object to (or
detaches one from) a surface. The surface uses this palette for all subsequent

in.doc – page 247

operations. The palette change takes place immediately, without regard to refresh
timing.

HRESULT SetPalette(
 LPDIRECTDRAWPALETTE lpDDPalette
);

Parameters
lpDDPalette

Address of the IDirectDrawPalette interface for the palette object to be used
with this surface. If this parameter is NULL, the current palette will be
detached.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_INVALIDSURFACETYPE
DDERR_NOEXCLUSIVEMODE
DDERR_NOPALETTEATTACHED
DDERR_NOPALETTEHW
DDERR_NOT8BITCOLOR
DDERR_SURFACELOST
DDERR_UNSUPPORTED

Remarks
When setting a palette to a surface for the first time, this method increments the
palette's reference count; subsequent calls to do not affect the palette's reference
count. If you pass NULL as the lpDDPalette parameter, the palette is removed from
the surface, and the palette's reference count is decremented. If you do not delete the
palette, the surface will automatically release its reference to the palette when the
surface itself is released. According to COM rules, your application is responsible
for releasing any references it holds to the palette when the object is no longer
needed.

in.doc – page 248

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetPalette, IDirectDraw4::CreatePalette

IDirectDrawSurface4::SetPrivateD
ata

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetPrivateData method associates data with the surface
that is intended for use by the application, not by DirectDraw. Data is passed by
value, and multiple sets of data can be associated with a single surface.

HRESULT SetPrivateData(
 REFGUID guidTag,
 LPVOID lpData,
 DWORD cbSize,
 DWORD dwFlags
);

Parameters
guidTag

Reference to (C++) or address of (C) the globally unique identifier that
identifies the private data to be set.

lpData
Address of a buffer that contains the data to be associated with the surface.

cbSize
Size of the buffer at lpData, in bytes.

dwFlags
Flags describing the type of data being passed, or requesting that the data be
invalidated when the surface changes. The following flags are defined:
(none)

If no flags are specified, DirectDraw allocates memory to hold the data
within the buffer, and copies the data into the new buffer. The buffer
allocated by DirectDraw will automatically be freed as appropriate.

DDSPD_IUNKNOWNPOINTER

in.doc – page 249

The data at lpData is a pointer to an IUnknown interface. DirectDraw
automatically calls the IUnknown::AddRef method of this interface. When
this data is no longer needed, DirectDraw automatically calls the
IUnknown::Release method of this interface.

DDSPD_VOLATILE
The buffer at lpData is only valid while the surface remains unchanged from
its current state. If the surface's contents change, subsequent calls to the
IDirectDrawSurface4::GetPrivateData method will return
DDERR_EXPIRED.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

Remarks
DirectDraw does not manage the memory at lpData. If this buffer was dynamically
allocated, it is the caller's responsibility to free the memory.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::GetPrivateData, IDirectDrawSurface4::FreePrivateData

IDirectDrawSurface4::SetSurfaceD
esc

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::SetSurfaceDesc method sets the characteristics of an
existing surface.

HRESULT SetSurfaceDesc(
 LPDDSURFACEDESC2 lpddsd2,

in.doc – page 250

 DWORD dwFlags
);

Parameters
lpddsd2

Address of a DDSURFACEDESC2 structure that contains the new surface
characteristics.

dwFlags
This parameter is currently not used and must be set to 0.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT
DDERR_SURFACELOST
DDERR_SURFACEBUSY
DDERR_INVALIDSURFACETYPE
DDERR_INVALIDPIXELFORMAT
DDERR_INVALIDCAPS
DDERR_UNSUPPORTED
DDERR_GENERIC

Remarks
Currently, this method can only be used to set the surface data and pixel format used
by an explicit system memory surface. This is useful as it allows a surface to use
data from a previously allocated buffer without copying. The new surface memory is
allocated by the client application and, as such, the client application must also
deallocate it. For more information about how this method is used, see Updating
Surface Characteristics.

Using this method incorrectly will cause unpredictable behavior. The
DirectDrawSurface object will not deallocate surface memory that it didn't allocate.
Therefore, when the surface memory is no longer needed, it is your responsibility to
deallocate it. However, when this method is called, DirectDraw frees the original
surface memory that it implicitly allocated when creating the surface.

in.doc – page 251

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::Unlock
[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::Unlock method notifies DirectDraw that the direct
surface manipulations are complete.

HRESULT Unlock(
 LPRECT lpRect
);

Parameters
lpRect

Address of the RECT structure that was used to lock the surface in the
corresponding call to the IDirectDrawSurface4::Lock method. This parameter
can be NULL only if the entire surface was locked by passing NULL in the
lpDestRect parameter of the corresponding call to the
IDirectDrawSurface4::Lock method.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOTLOCKED
DDERR_SURFACELOST

Remarks
Because it is possible to call IDirectDrawSurface4::Lock multiple times for the
same surface with different destination rectangles, the pointer in lpRect links the
calls to the IDirectDrawSurface4::Lock and IDirectDrawSurface4::Unlock
methods.

in.doc – page 252

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::Lock

IDirectDrawSurface4::UpdateOverl
ay

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::UpdateOverlay method repositions or modifies the
visual attributes of an overlay surface. These surfaces must have the
DDSCAPS_OVERLAY flag set.

HRESULT UpdateOverlay(
 LPRECT lpSrcRect,
 LPDIRECTDRAWSURFACE4 lpDDDestSurface,
 LPRECT lpDestRect,
 DWORD dwFlags,
 LPDDOVERLAYFX lpDDOverlayFx
);

Parameters
lpSrcRect

Address of a RECT structure that defines the x, y, width, and height of the
region on the source surface being used as the overlay. This parameter can be
NULL when hiding an overlay or to indicate that the entire overlay surface is to
be used and that the overlay surface conforms to any boundary and size
alignment restrictions imposed by the device driver.

lpDDDestSurface
Address of the IDirectDrawSurface4 interface for the surface that is being
overlaid.

lpDestRect
Address of a RECT structure that defines the x, y, width, and height of the
region on the destination surface that the overlay should be moved to. This
parameter can be NULL when hiding the overlay.

dwFlags
DDOVER_ADDDIRTYRECT

in.doc – page 253

Adds a dirty rectangle to an emulated overlay surface.
DDOVER_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface
attached to the destination surface as the alpha channel for this overlay.

DDOVER_ALPHADESTCONSTOVERRIDE
Uses the dwAlphaDestConst member of the DDOVERLAYFX structure as
the destination alpha channel for this overlay.

DDOVER_ALPHADESTNEG
Indicates that the destination surface becomes more transparent as the alpha
value increases (0 is opaque).

DDOVER_ALPHADESTSURFACEOVERRIDE
Uses the lpDDSAlphaDest member of the DDOVERLAYFX structure as the
alpha channel destination for this overlay.

DDOVER_ALPHAEDGEBLEND
Uses the dwAlphaEdgeBlend member of the DDOVERLAYFX structure as
the alpha channel for the edges of the image that border the color key colors.

DDOVER_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel surface
attached to the source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCCONSTOVERRIDE
Uses the dwAlphaSrcConst member of the DDOVERLAYFX structure as
the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha value
increases (0 is opaque).

DDOVER_ALPHASRCSURFACEOVERRIDE
Uses the lpDDSAlphaSrc member of the DDOVERLAYFX structure as the
alpha channel source for this overlay.

DDOVER_AUTOFLIP
Automatically flip to the next surface in the flip chain each time a video port
VSYNC occurs.

DDOVER_BOB
Display each field individually of the interlaced video stream without causing
any artifacts.

DDOVER_BOBHARDWARE
Indicates that bob operations will be performed using hardware rather than
software or emulated. This flag must be used with the DDOVER_BOB flag.

DDOVER_DDFX
Uses the overlay FX flags in the lpDDOverlayFx parameter to define special
overlay effects.

DDOVER_HIDE
Turns off this overlay.

DDOVER_KEYDEST
Uses the color key associated with the destination surface.

in.doc – page 254

DDOVER_KEYDESTOVERRIDE
Uses the dckDestColorkey member of the DDOVERLAYFX structure as
the color key for the destination surface.

DDOVER_KEYSRC
Uses the color key associated with the source surface.

DDOVER_KEYSRCOVERRIDE
Uses the dckSrcColorkey member of the DDOVERLAYFX structure as the
color key for the source surface.

DDOVER_OVERRIDEBOBWEAVE
Indicates that bob/weave decisions should not be overridden by other
interfaces.

DDOVER_INTERLEAVED
Indicates that the surface memory is composed of interleaved fields.

DDOVER_SHOW
Turns on this overlay.

lpDDOverlayFx
Address of a DDOVERLAYFX structure that describes the effects to be used.
This parameter can be NULL if the DDOVER_DDFX flag is not specified.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_DEVICEDOESNTOWNSURFACE
DDERR_GENERIC
DDERR_HEIGHTALIGN
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_INVALIDSURFACETYPE
DDERR_NOSTRETCHHW
DDERR_NOTAOVERLAYSURFACE
DDERR_OUTOFCAPS
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_XALIGN

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 255

Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

IDirectDrawSurface4::UpdateOverl
ayDisplay

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::UpdateOverlayDisplay method is not currently
implemented.

HRESULT UpdateOverlayDisplay(
 DWORD dwFlags
);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::AddOverlayDirtyRect

IDirectDrawSurface4::UpdateOverl
ayZOrder

[This is preliminary documentation and subject to change.]

The IDirectDrawSurface4::UpdateOverlayZOrder method sets the z-order of an
overlay.

HRESULT UpdateOverlayZOrder(
 DWORD dwFlags,
 LPDIRECTDRAWSURFACE4 lpDDSReference
);

Parameters
dwFlags

One of the following flags:
DDOVERZ_INSERTINBACKOF

in.doc – page 256

Inserts this overlay in the overlay chain behind the reference overlay.
DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference overlay.
DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.
DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.
DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.
DDOVERZ_SENDTOFRONT

Moves this overlay to the front of the overlay chain.
lpDDSReference

Address of the IDirectDrawSurface4 interface for the DirectDraw surface to be
used as a relative position in the overlay chain. This parameter is needed only
for DDOVERZ_INSERTINBACKOF and DDOVERZ_INSERTINFRONTOF.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTAOVERLAYSURFACE

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawSurface4::EnumOverlayZOrders

IDirectDrawVideoPort
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectDrawVideoPort interface to channel
live video data from a hardware video port to a DirectDraw surface. This section is a
reference to the methods of this interface. For a conceptual overview, see Video
Ports.

in.doc – page 257

The methods of the IDirectDrawVideoPort interface can be organized into the
following groups:

Color controls GetColorControls
SetColorControls

Fields and Signals GetFieldPolarity
GetVideoSignalStatus

Flipping Flip
SetTargetSurface

Formats GetInputFormats
GetOutputFormats

Timing and Synchronization GetVideoLine
WaitForSync

Video control StartVideo
StopVideo
UpdateVideo

Zoom factors GetBandwidthInfo

The IDirectDrawVideoPort interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

IUnknown AddRef
QueryInterface
Release

You can use the LPDIRECTDRAWVIDEOPORT data type to declare a variable
that contains a pointer to an IDirectDrawVideoPort interface. The Dvp.h header
file declares the LPDIRECTDRAWVIDEOPORT with the following code:

typedef struct IDirectDrawVideoPort FAR *LPDIRECTDRAWVIDEOPORT;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 258

 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::Flip
[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::Flip method instructs the DirectDrawVideoPort object
to write the next frame of video to a new surface.

HRESULT Flip(
 LPDIRECTDRAWSURFACE lpDDSurface,
 DWORD dwFlags
);

Parameters
lpDDSurface

Address of the IDirectDrawSurface interface for the surface that will receive
the next frame of video. Setting this parameter to NULL causes DirectDraw to
cycle through surfaces in the flipping chain in the order they were attached.

dwFlags
Flip options flags. This parameter can be one of the following values:
DDVPFLIP_VIDEO

The specified surface is to receive the normal video data.
DDVPFLIP_VBI

The specified surface is to receive only the data within the vertical blanking
interval.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method can be used to prevent tearing. Calls to IDirectDrawVideoPort::Flip
are asynchronous—the actual flip operation will always be synchronized with the
vertical blank of the video signal.

in.doc – page 259

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetBandwi
dthInfo

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetBandwidthInfo method retrieves the minimum
required overlay zoom factors and device limitations of a video port that uses the
provided output pixel format.

HRESULT GetBandwidthInfo(
 LPDDPIXELFORMAT lpddpfFormat,
 DWORD dwWidth,
 DWORD dwHeight,
 DWORD dwFlags,
 LPDDVIDEOPORTBANDWIDTH lpBandwidth
);

Parameters
lpddpfFormat

Address of a DDPIXELFORMAT structure that describes the output pixel
format for which bandwidth information will be retrieved.

dwWidth and dwHeight
Dimensions of an overlay or video data. These interpretation of these parameters
depends on the value specified in the dwFlags parameter.

dwFlags
Flags indicating how the method is to interpret the dwWidth and dwHeight
parameters. This parameter can be one of the following values:
DDVPB_OVERLAY

The dwWidth and dwHeight parameters indicate the size of the source overlay
surface. Use this flag when the video port is dependent on the overlay source
size.

DDVPB_TYPE
The dwWidth and dwHeight parameters are not set. The method will retrieve
the device's dependency type in the dwCaps member of the associated
DDVIDEOPORTBANDWIDTH structure. Use this flag when you call this
method the first time.

DDVPB_VIDEOPORT

in.doc – page 260

The dwWidth and dwHeight parameters indicate the prescale size of the video
data that the video port writes to the frame buffer. Use this flag when the
video port is dependent on the overlay zoom factor.

lpBandwidth
Address of a DDVIDEOPORTBANDWIDTH structure that will be filled with
the retrieved bandwidth and device dependency information.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
This method will usually be called twice. When you make the first call, specify the
DDVPB_TYPE flag in the dwFlags parameter to retrieve information about the
device's overlay dependency type. Subsequent calls using the DDVPB_VIDEOPORT
or DDVPB_OVERLAY flags must be interpreted considering the device's
dependency type.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetColorCo
ntrols

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetColorControls method returns the current color
control settings associated with the video port.

HRESULT GetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters
lpColorControl

in.doc – page 261

Address of a DDCOLORCONTROL structure that will be filled with the
current settings of the video port's color control.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

Remarks
The dwFlags member of the DDCOLORCONTROL structure indicate which of
the color control options are supported.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetFieldPol
arity

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetFieldPolarity method retrieves the polarity of a
video field.

HRESULT GetFieldPolarity(
 LPBOOL lpbFieldPolarity
);

Parameters
lpbFieldPolarity

Address of a variable that will be set to indicate the current field polarity. This
value is set to TRUE if the current video field is the even field of an interlaced
video signal and FALSE otherwise.

in.doc – page 262

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_VIDEONOTACTIVE

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetInputFo
rmats

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetInputFormats method retrieves the input formats
supported by the DirectDrawVideoPort object.

HRESULT GetInputFormats(
 LPDWORD lpNumFormats,
 LPDDPIXELFORMAT lpFormats,
 DWORD dwFlags
);

Parameters
lpNumFormats

Address of a variable containing the number of entries that the array at
lpFormats can hold. If this number is less than the total number of codes, the
method fills the array with as many codes as will fit, sets the value at
lpNumFormats to indicate the total number of codes, and returns
DDERR_MOREDATA.

lpFormats
Address of an array of DDPIXELFORMAT structures that will be filled in with
the input formats supported by this DirectDrawVideoPort object. If this
parameter is NULL, the method sets lpNumFormats to the number of supported
formats and then returns DD_OK.

in.doc – page 263

dwFlags
Flags specifying the part of the video signal for which formats will be
enumerated. This parameter can be one of the following values:
DDVPFORMAT_VIDEO

Returns formats for the video data.
DDVPFORMAT_VBI

Returns formats for the VBI data.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_MOREDATA

Remarks
This method can also be used to return the number of formats supported. To do this,
set the lpFormats parameter to NULL. When the method returns, the variable at
lpNumFormats contains the total number of supported input formats.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::GetOutputF
ormats

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetOutputFormats method retrieves a list of output
formats that the DirectDrawVideoPort object supports for a specified input format.

HRESULT GetOutputFormats(
 LPDDPIXELFORMAT lpInputFormat,
 LPDWORD lpNumFormats,
 LPDDPIXELFORMAT lpFormats,
 DWORD dwFlags
);

in.doc – page 264

Parameters
lpInputFormat

Address of a DDPIXELFORMAT structure that describes the input format for
which conversion information is requested.

lpNumFormats
Address of a variable containing the number of entries that the array at
lpFromats can hold. If this number is less than the total number of codes, the
method fills the array with as many codes as will fit, sets the value at
lpNumFormats to indicate the total number of codes, and returns
DDERR_MOREDATA.

lpFormats
Address of an array of DDPIXELFORMAT structures that will be filled in with
the output formats supported by this DirectDrawVideoPort object. If this
parameter is NULL, the method sets lpNumFormats to the number of supported
formats and then returns DD_OK.

dwFlags
Flags specifying the part of the video signal for which formats will be
enumerated. This parameter can be one of the following values:
DDVPFORMAT_VIDEO

Returns formats for the video data.
DDVPFORMAT_VBI

Returns formats for the VBI data.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_MOREDATA

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

in.doc – page 265

IDirectDrawVideoPort::GetVideoLi
ne

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetVideoLine method retrieves the current line of
video being written to the frame buffer.

HRESULT GetVideoLine(
 LPDWORD lpdwLine
);

Parameters
lpdwLine

Address of a variable that will be filled with a value indicating the video line
currently being written to the frame buffer.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_VERTICALBLANKINPROGRESS
DDERR_VIDEONOTACTIVE

Remarks
The value this method retrieves reflects the true video line being written, relative to
the field height, before any prescaling occurs.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

in.doc – page 266

IDirectDrawVideoPort::GetVideoSi
gnalStatus

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::GetVideoSignalStatus method retrieves the status of
the video signal currently being presented to the video port.

HRESULT GetVideoSignalStatus(
 LPDWORD lpdwStatus
);

Parameters
lpdwStatus

Address of a variable that will contain a return code indicating the quality of the
video signal at the video port. The value will be set to one of the following
codes:
DDVPSQ_NOSIGNAL

No video signal is present at the video port.
DDVPSQ_SIGNALOK

A valid video signal is present at the video port.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::SetColorCo
ntrols

[This is preliminary documentation and subject to change.]

in.doc – page 267

The IDirectDrawVideoPort::SetColorControls method sets the color control
settings associated with the video port.

HRESULT SetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters
lpColorControl

Address of a DDCOLORCONTROL structure containing the new color control
settings that will be applied to the video port.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

IDirectDrawVideoPort::SetTargetS
urface

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::SetTargetSurface method sets the DirectDraw
surface object that will receive the stream of live video data and/or the vertical blank
interval data.

HRESULT SetTargetSurface(
 LPDIRECTDRAWSURFACE lpDDSurface,
 DWORD dwFlags
);

in.doc – page 268

Parameters
lpDDSurface

Address of the DirectDrawSurface object that will receive the video data.
dwFlags

Value specifying the type of target surface.
DDVPTARGET_VIDEO

The specified surface should receive the normal video data and vertical
interval data unless a separate surface was attached for this purpose.

DDVPTARGET_VBI
The specified surface should receive the data within the vertical blanking
interval.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawVideoPort::StartVideo, IDirectDrawVideoPort::StopVideo,
IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::StartVideo
[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::StartVideo method enables the hardware video port
and starts the flow of video data into the currently specified surface.

HRESULT StartVideo(
 LPDDVIDEOPORTINFO lpVideoInfo
);

in.doc – page 269

Parameters
lpVideoInfo

Address of a pointer to a DDVIDEOPORTINFO structure.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawVideoPort::SetTargetSurface, IDirectDrawVideoPort::StopVideo,
IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::StopVideo
[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::StopVideo method stops the flow of video port data
into the frame buffer.

HRESULT StopVideo();

Parameters
None.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value is DDERR_INVALIDOBJECT.

in.doc – page 270

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDrawVideoPort::SetTargetSurface, IIDirectDrawVideoPort::StartVideo,
IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::UpdateVide
o

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::UpdateVideo method updates parameters that govern
the flow of video data from the video port to the DirectDrawSurface object.

HRESULT UpdateVideo(
 LPDDVIDEOPORTINFO lpVideoInfo
);

Parameters
lpVideoInfo

Address of a DDVIDEOPORTINFO structure that describes the video transfer
parameters.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

in.doc – page 271

See Also
IDirectDrawVideoPort::SetTargetSurface, IDirectDrawVideoPort::StartVideo,
IDirectDrawVideoPort::StopVideo

IDirectDrawVideoPort::WaitForSyn
c

[This is preliminary documentation and subject to change.]

The IDirectDrawVideoPort::WaitForSync method waits for VSYNC or until a
given scan line is being drawn.

HRESULT WaitForSync(
 DWORD dwFlags,
 DWORD dwLine,
 DWORD dwTimeout
);

Parameters
dwFlags

Flag specifying how the method will wait for the video VSYNC or the specified
line number.
DDVPWAIT_BEGIN

Return at the start of the vertical blanking interval.
DDVPWAIT_END

Return at the end of the vertical blanking interval.
DDVPWAIT_LINE

Return when the video counter either reaches or passes the line specified by
the dwLine parameter.

dwLine
The video line determining when the method should return, relative to the field
height, before prescaling. This parameter is ignored if the dwFlags parameter is
set to DDVPWAIT_BEGIN or DDVPWAIT_END.

dwTimeout
Amount of time, in milliseconds, that the method will wait for the next video
vertical blank before timing out. If this parameter is 0, the method waits 3 times
the value specified in the dwMicrosecondsPerField member of the
DDVIDEOPORTDESC.

Return Values
If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

in.doc – page 272

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_VIDEONOTACTIVE
DDERR_WASSTILLDRAWING

Remarks
This method helps the caller synchronize with the video vertical blank interval or
with an arbitrary line of video data. The method blocks the calling thread until either
the video VSYNC occurs or when the video line counter matches the specified line
number.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.
 Import Library: Use ddraw.lib.

Functions
[This is preliminary documentation and subject to change.]

This section contains information about the following DirectDraw global functions:

· DirectDrawCreate
· DirectDrawCreateClipper
· DirectDrawEnumerate
· DirectDrawEnumerateEx

DirectDrawCreate
[This is preliminary documentation and subject to change.]

The DirectDrawCreate function creates an instance of a DirectDraw object.

HRESULT WINAPI DirectDrawCreate(
 GUID FAR *lpGUID,
 LPDIRECTDRAW FAR *lplpDD,
 IUnknown FAR *pUnkOuter
);

in.doc – page 273

Parameters
lpGUID

Address of the globally unique identifier (GUID) that represents the driver to be
created. This can be NULL to indicate the active display driver, or you can pass
one of the following flags to restrict the active display driver's behavior for
debugging purposes:
DDCREATE_EMULATIONONLY

The DirectDraw object will use emulation for all features; it will not take
advantage of any hardware supported features.

DDCREATE_HARDWAREONLY
The DirectDraw object will never emulate features not supported by the
hardware. Attempts to call methods that require unsupported features will
fail, returning DDERR_UNSUPPORTED.

lplpDD
Address of a variable that will be set to a valid IDirectDraw interface pointer if
the call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but
NULL.

Return Values
If the function succeeds, the return value is DD_OK.

If the function fails, the return value may be one of the following error values:

DDERR_DIRECTDRAWALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDDIRECTDRAWGUID
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW
DDERR_OUTOFMEMORY

Remarks
This function attempts to initialize a DirectDraw object, and it then sets a pointer to
the object if the call is successful.

On systems with multiple monitors, specifying NULL for lpGUID causes the
DirectDraw object to run in emulation mode when the normal cooperative level is
set. To make use of hardware acceleration on these systems, you must specify the
device's GUID. For more information, see Devices and Acceleration in MultiMon
Systems.

in.doc – page 274

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

DirectDrawCreateClipper
[This is preliminary documentation and subject to change.]

The DirectDrawCreateClipper function creates an instance of a DirectDrawClipper
object not associated with a DirectDraw object.

HRESULT WINAPI DirectDrawCreateClipper(
 DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
 IUnknown FAR *pUnkOuter
);

Parameters
dwFlags

This parameter is currently not used and must be set to 0.
lplpDDClipper

Address of a pointer that will be filled with the address of the new
DirectDrawClipper object.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but
NULL.

Return Values
If the function succeeds, the return value is DD_OK.

If the function fails, the return value may be one of the following error values:

DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

Remarks
This function can be called before any DirectDraw objects are created. Because
these DirectDrawClipper objects are not owned by any DirectDraw object, they are
not automatically released when an application's objects are released. If the

in.doc – page 275

application does not explicitly release the DirectDrawClipper objects, DirectDraw
will release them when the application terminates.

To create a DirectDrawClipper object owned by a specific DirectDraw object, use
the IDirectDraw4::CreateClipper method.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
IDirectDraw4::CreateClipper

DirectDrawEnumerate
[This is preliminary documentation and subject to change.]

This function is superseded by the DirectDrawEnumerateEx function.

The DirectDrawEnumerate function enumerates the primary DirectDraw display
device and a non-display device (such as a 3-D accelerator that has no 2-D
capabilities) if one is installed. The NULL entry always identifies the primary
display device shared with GDI.

HRESULT WINAPI DirectDrawEnumerate(
 LPDDENUMCALLBACK lpCallback,
 LPVOID lpContext
);

Parameters
lpCallback

Address of a DDEnumCallback function that will be called with a description
of each enumerated DirectDraw-enabled HAL.

lpContext
Address of an application-defined context that will be passed to the enumeration
callback function each time it is called.

Return Values
If the function succeeds, the return value is DD_OK.

If the function fails, the return value is DDERR_INVALIDPARAMS.

in.doc – page 276

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.

See Also
DirectDrawEnumerateEx

DirectDrawEnumerateEx
[This is preliminary documentation and subject to change.]

The DirectDrawEnumerateEx function enumerates all DirectDraw devices
installed on the system. The NULL entry always identifies the primary display
device shared with GDI.

HRESULT WINAPI DirectDrawEnumerateEx(
 LPDDENUMCALLBACKEX lpCallback,
 LPVOID lpContext,
 DWORD dwFlags
);

Parameters
lpCallback

Address of a DDEnumCallbackEx function that will be called with a
description of each enumerated DirectDraw-enabled HAL.

lpContext
Address of an application-defined value that will be passed to the enumeration
callback function each time it is called.

dwFlags
Flags specifying the enumeration scope. This parameter can be 0 or a
combination of the following flags. If the value is 0, the function will enumerate
only the primary display device.
DDENUM_ATTACHEDSECONDARYDEVICES

The function will enumerate the primary device, and any display devices that
are attached to the desktop.

DDENUM_DETACHEDSECONDARYDEVICES
The function will enumerate the primary device, and any display devices that
are not attached to the desktop.

DDENUM_NONDISPLAYDEVICES

in.doc – page 277

The function will enumerate the primary device, and any non-display
devices, such as 3-D accelerators that have no 2-D capabilities.

Return Values
If the function succeeds, the return value is DD_OK.

If the function fails, the return value is DDERR_INVALIDPARAMS.

Remarks
On systems with multiple monitors, this method enumerates multiple display
devices. For more information, see Multiple Monitor Systems.

For Windows 98, this function is supported in DirectX 5.0 and later; for all other
operating systems, DirectX 6.0 is required. Retrieve the DirectDrawEnumerateEx
function's address from the Ddraw.dll dynamic-link library by calling the
GetProcAddress Win32 function with the "DirectDrawEnumerateExA" (ANSI) or
"DirectDrawEnumerateExW" (Unicode) process name strings. If GetProcAddress
fails, then the installed version of the operating system does not support multiple
monitors. For more information, see Enumerating Devices on MultiMon Systems.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 98.
 Header: Declared in ddraw.h.
 Import Library: Use ddraw.lib.
 Unicode: Implemented as Unicode and ANSI versions on Windows NT.

Callback Functions
[This is preliminary documentation and subject to change.]

This section contains information about the following callback functions used with
DirectDraw:

· DDEnumCallback
· DDEnumCallbackEx
· EnumModesCallback
· EnumModesCallback2
· EnumSurfacesCallback
· EnumSurfacesCallback2
· EnumVideoCallback

in.doc – page 278

DDEnumCallback
[This is preliminary documentation and subject to change.]

The DDEnumCallback function is an application-defined callback function for the
DirectDrawEnumerate function.

BOOL WINAPI DDEnumCallback(
 GUID FAR *lpGUID,
 LPSTR lpDriverDescription,
 LPSTR lpDriverName,
 LPVOID lpContext
);

Parameters
lpGUID

Address of the unique identifier of the DirectDraw object.
lpDriverDescription

Address of a string containing the driver description.
lpDriverName

Address of a string containing the driver name.
lpContext

Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values
The callback function returns non-zero to continue the enumeration.

The callback function returns zero to stop it.

Remarks
You can use the LPDDENUMCALLBACK data type to declare a variable that can
contain a pointer to this callback function.

If UNICODE is defined, the string values will be returned as type LPWSTR rather
than LPSTR.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

in.doc – page 279

DDEnumCallbackEx
[This is preliminary documentation and subject to change.]

The DDEnumCallbackEx function is an application-defined callback function for
the DirectDrawEnumerateEx function.

BOOL WINAPI DDEnumCallbackEx(
 GUID FAR *lpGUID,
 LPSTR lpDriverDescription,
 LPSTR lpDriverName,
 LPVOID lpContext,
 HMONITOR hm
);

Parameters
lpGUID

Address of the unique identifier of the DirectDraw object.
lpDriverDescription

Address of a string containing the driver description.
lpDriverName

Address of a string containing the driver name.
lpContext

Address of an application-defined structure that will be passed to the callback
function each time the function is called.

hm
Handle to the monitor associated with the enumerated DirectDraw object. This
parameter will be NULL when the enumerated DirectDraw object is for the
primary device, a non-display device (such as a 3-D accelerator with no 2-D
capabilities), and devices not attached to the desktop.

Return Values
The callback function returns non-zero to continue the enumeration.

The callback function returns zero to stop it.

Remarks
You can use the LPDDENUMCALLBACKEX data type to declare a variable that
can contain a pointer to this callback function.

If UNICODE is defined, the string values will be returned as type LPWSTR rather
than LPSTR.

in.doc – page 280

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 98.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

See Also
Enumerating Devices on MultiMon Systems, Multiple Monitor Systems

EnumModesCallback
[This is preliminary documentation and subject to change.]

The EnumModesCallback function is an application-defined callback function for
the IDirectDraw3::EnumDisplayModes method, and its counterparts in earlier
interfaces.

This callback function is superseded by the EnumModesCallback2 function that is
used with the IDirectDraw4::EnumDisplayModes method.

HRESULT WINAPI EnumModesCallback(
 LPDDSURFACEDESC lpDDSurfaceDesc,
 LPVOID lpContext
);

Parameters
lpDDSurfaceDesc

Address of a read-only DDSURFACEDESC structure that provides the monitor
frequency and the mode that can be created.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values
The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks
You can use the LPDDENUMMODESCALLBACK data type to declare a variable
that can contain a pointer to this callback function.

in.doc – page 281

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

EnumModesCallback2
[This is preliminary documentation and subject to change.]

The EnumModesCallback2 function is an application-defined callback function for
the IDirectDraw4::EnumDisplayModes method.

HRESULT WINAPI EnumModesCallback(
 LPDDSURFACEDESC2 lpDDSurfaceDesc,
 LPVOID lpContext
);

Parameters
lpDDSurfaceDesc

Address of a read-only DDSURFACEDESC2 structure that provides the
monitor frequency and the mode that can be created.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values
The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks
You can use the LPDDENUMMODESCALLBACK2 data type to declare a
variable that can contain a pointer to this callback function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

in.doc – page 282

EnumSurfacesCallback
[This is preliminary documentation and subject to change.]

The EnumSurfacesCallback function is an application-defined callback function for
the IDirectDraw2::EnumSurfaces,
IDirectDrawSurface3::EnumAttachedSurfaces, and
IDirectDrawSurface3::EnumOverlayZOrders methods (and the versions from
earlier interfaces).

HRESULT WINAPI EnumSurfacesCallback(
 LPDIRECTDRAWSURFACE lpDDSurface,
 LPDDSURFACEDESC lpDDSurfaceDesc,
 LPVOID lpContext
);

Parameters
lpDDSurface

Address of the IDirectDrawSurface interface for the attached surface.
lpDDSurfaceDesc

Address of a DDSURFACEDESC structure that describes the attached surface.
lpContext

Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values
The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks
You can use the LPDDENUMSURFACESCALLBACK data type to declare a
variable that can contain a pointer to this callback function.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

in.doc – page 283

EnumSurfacesCallback2
[This is preliminary documentation and subject to change.]

The EnumSurfacesCallback2 function is an application-defined callback function
for the IDirectDrawSurface4::EnumAttachedSurfaces and
IDirectDrawSurface4::EnumOverlayZOrders methods.

HRESULT WINAPI EnumSurfacesCallback2(
 LPDIRECTDRAWSURFACE4 lpDDSurface,
 LPDDSURFACEDESC2 lpDDSurfaceDesc,
 LPVOID lpContext
);

Parameters
lpDDSurface

Address of the IDirectDrawSurface4 interface of the attached surface.
lpDDSurfaceDesc

Address of a DDSURFACEDESC2 structure that describes the attached surface.
lpContext

Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values
The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks
You can use the LPDDENUMSURFACESCALLBACK2 data type to declare a
variable that can contain a pointer to this callback function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

EnumVideoCallback
[This is preliminary documentation and subject to change.]

in.doc – page 284

The EnumVideoCallback function is an application-defined callback procedure for
the IDDVideoPortContainer::EnumVideoPorts method.

HRESULT WINAPI EnumVideoCallback(
 LPDDVIDEOPORTCAPS lpDDVideoPortCaps,
 LPVOID lpContext
);

Parameters
lpDDVideoPortCaps

Pointer to the DDVIDEOPORTCAPS structure that contains the video port
information, including the ID and capabilities. This data is read-only.

lpContext
Pointer to a caller-defined structure that is passed to the member every time it is
called.

Return Values
The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks
Video-port related functions cannot be called from inside the EnumVideoCallback
function. Attempts to do so will fail, returning DDERR_CURRENTLYNOTAVAIL.

You can use the LPDDENUMVIDEOCALLBACK data type to declare a variable
that can contain a pointer to this callback function.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.
 Import Library: User-defined.

Structures
[This is preliminary documentation and subject to change.]

This section contains information about the following structures used with
DirectDraw:

· DDBLTBATCH
· DDBLTFX

in.doc – page 285

· DDCAPS
· DDCOLORCONTROL
· DDCOLORKEY
· DDDEVICEIDENTIFIER
· DDGAMMARAMP
· DDOVERLAYFX
· DDPIXELFORMAT
· DDSCAPS
· DDSCAPS2
· DDSURFACEDESC
· DDSURFACEDESC2
· DDVIDEOPORTBANDWIDTH
· DDVIDEOPORTCAPS
· DDVIDEOPORTCONNECT
· DDVIDEOPORTDESC
· DDVIDEOPORTINFO
· DDVIDEOPORTSTATUS

Note
The memory for all DirectX structures should be initialized to zero before use.
In addition, all structures that contain a dwSize member should set the member
to the size of the structure, in bytes, before use. The following example performs
these tasks on a common structure, DDCAPS:

DDCAPS ddcaps; // Can't use this yet.

ZeroMemory(&ddcaps, sizeof(DDCAPS));
ddcaps.dwSize = sizeof(DDCAPS);

// Now the structure can be used.
.
.

DDBLTBATCH
[This is preliminary documentation and subject to change.]

The DDBLTBATCH structure passes blit operations to the
IDirectDrawSurface4::BltBatch method.

typedef struct _DDBLTBATCH{
 LPRECT lprDest;

in.doc – page 286

 LPDIRECTDRAWSURFACE lpDDSSrc;
 LPRECT lprSrc;
 DWORD dwFlags;
 LPDDBLTFX lpDDBltFx;
} DDBLTBATCH,FAR *LPDDBLTBATCH;

Members
lprDest

Address of a RECT structure that defines the destination for the blit.
lpDDSSrc

Address of a DirectDrawSurface object that will be the source of the blit.
lprSrc

Address of a RECT structure that defines the source rectangle of the blit.
dwFlags

Optional control flags.
DDBLT_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface
attached to the destination surface as the alpha channel for this blit.

DDBLT_ALPHADESTCONSTOVERRIDE
Uses the dwAlphaDestConst member of the DDBLTFX structure as the
alpha channel for the destination surface for this blit.

DDBLT_ALPHADESTNEG
Indicates that the destination surface becomes more transparent as the alpha
value increases (0 is opaque).

DDBLT_ALPHADESTSURFACEOVERRIDE
Uses the lpDDSAlphaDest member of the DDBLTFX structure as the alpha
channel for the destination surface for this blit.

DDBLT_ALPHAEDGEBLEND
Uses the dwAlphaEdgeBlend member of the DDBLTFX structure as the
alpha channel for the edges of the image that border the color key colors.

DDBLT_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel surface
attached to the source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE
Uses the dwAlphaSrcConst member of the DDBLTFX structure as the
source alpha channel for this blit.

DDBLT_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha value
increases (0 is opaque).

DDBLT_ALPHASRCSURFACEOVERRIDE
Uses the lpDDSAlphaSrc member of the DDBLTFX structure as the alpha
channel source for this blit.

in.doc – page 287

DDBLT_ASYNC
Processes this blit asynchronously through the FIFO hardware in the order
received. If there is no room in the FIFO hardware, the call fails.

DDBLT_COLORFILL
Uses the dwFillColor member of the DDBLTFX structure as the RGB color
that fills the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the dwDDFX member of the DDBLTFX structure to specify the effects
to be used for this blit.

DDBLT_DDROPS
Uses the dwDDROP member of the DDBLTFX structure to specify the
raster operations (ROPs) that are not part of the Win32 API.

DDBLT_KEYDEST
Uses the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE
Uses the ddckDestColorkey member of the DDBLTFX structure as the color
key for the destination surface.

DDBLT_KEYSRC
Uses the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE
Uses the ddckSrcColorkey member of the DDBLTFX structure as the color
key for the source surface.

DDBLT_ROP
Uses the dwROP member of the DDBLTFX structure for the ROP for this
blit. The ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE
Uses the dwRotationAngle member of the DDBLTFX structure as the
rotation angle (specified in 1/100th of a degree) for the surface.

DDBLT_ZBUFFER
Performs a z-buffered blit using the z-buffers attached to the source and
destination surfaces and the dwZBufferOpCode member of the DDBLTFX
structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE
Performs a z-buffered blit using the dwZDestConst and dwZBufferOpCode
members of the DDBLTFX structure as the z-buffer and z-buffer opcode,
respectively, for the destination.

DDBLT_ZBUFFERDESTOVERRIDE
Performs a z-buffered blit using the lpDDSZBufferDest and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer and
z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE
Performs a z-buffered blit using the dwZSrcConst and dwZBufferOpCode
members of the DDBLTFX structure as the z-buffer and z-buffer opcode,
respectively, for the source.

in.doc – page 288

DDBLT_ZBUFFERSRCOVERRIDE
A z-buffered blit using the lpDDSZBufferSrc and dwZBufferOpCode
members of the DDBLTFX structure as the z-buffer and z-buffer opcode,
respectively, for the source.

lpDDBltFx
Address of a DDBLTFX structure specifying additional blit effects.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDBLTFX
[This is preliminary documentation and subject to change.]

The DDBLTFX structure passes raster operations, effects, and override information
to the IDirectDrawSurface4::Blt method. This structure is also part of the
DDBLTBATCH structure used with the IDirectDrawSurface4::BltBatch method.

typedef struct _DDBLTFX{
 DWORD dwSize;
 DWORD dwDDFX;
 DWORD dwROP;
 DWORD dwDDROP;
 DWORD dwRotationAngle;
 DWORD dwZBufferOpCode;
 DWORD dwZBufferLow;
 DWORD dwZBufferHigh;
 DWORD dwZBufferBaseDest;
 DWORD dwZDestConstBitDepth;
 union
 {
 DWORD dwZDestConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferDest;
 } DUMMYUNIONNAMEN(1);
 DWORD dwZSrcConstBitDepth;
 union
 {
 DWORD dwZSrcConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;
 } DUMMYUNIONNAMEN(2);
 DWORD dwAlphaEdgeBlendBitDepth;
 DWORD dwAlphaEdgeBlend;

in.doc – page 289

 DWORD dwReserved;
 DWORD dwAlphaDestConstBitDepth;
 union
 {
 DWORD dwAlphaDestConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;
 } DUMMYUNIONNAMEN(3);
 DWORD dwAlphaSrcConstBitDepth;
 union
 {
 DWORD dwAlphaSrcConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
 } DUMMYUNIONNAMEN(4);
 union
 {
 DWORD dwFillColor;
 DWORD dwFillDepth;
 DWORD dwFillPixel;
 LPDIRECTDRAWSURFACE lpDDSPattern;
 } DUMMYUNIONNAMEN(5);
 DDCOLORKEY ddckDestColorkey;
 DDCOLORKEY ddckSrcColorkey;
} DDBLTFX,FAR* LPDDBLTFX;

Members
dwSize

Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwDDFX
Type of FX operations.
DDBLTFX_ARITHSTRETCHY

Uses arithmetic stretching along the y-axis for this blit.
DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to right.
DDBLTFX_MIRRORUPDOWN

Turns the surface on its x-axis. This blit mirrors the surface from top to
bottom.

DDBLTFX_NOTEARING
Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180
Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270
Rotates the surface 270 degrees clockwise during this blit.

in.doc – page 290

DDBLTFX_ROTATE90
Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST
Adds the dwZBufferBaseDest member to each of the source z-values before
comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE
Uses the dwZBufferLow and dwZBufferHigh members as range values to
specify limits to the bits copied from a source surface during this z-blit.

dwROP
Win32 raster operations. You can retrieve a list of supported raster operations by
calling the IDirectDraw4::GetCaps method.

dwDDROP
DirectDraw raster operations.

dwRotationAngle
Rotation angle for the blit.

dwZBufferOpCode
Z-buffer compares.

dwZBufferLow
Low limit of a z-buffer.

dwZBufferHigh
High limit of a z-buffer.

dwZBufferBaseDest
Destination base value of a z-buffer.

dwZDestConstBitDepth
Bit depth of the destination z-constant.

dwZDestConst
Constant used as the z-buffer destination.

lpDDSZBufferDest
Surface used as the z-buffer destination.

dwZSrcConstBitDepth
Bit depth of the source z-constant.

dwZSrcConst
Constant used as the z-buffer source.

lpDDSZBufferSrc
Surface used as the z-buffer source.

dwAlphaEdgeBlendBitDepth
Bit depth of the constant for an alpha edge blend.

dwAlphaEdgeBlend
Alpha constant used for edge blending.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth

in.doc – page 291

Bit depth of the destination alpha constant.
dwAlphaDestConst

Constant used as the alpha channel destination.
lpDDSAlphaDest

Surface used as the alpha channel destination.
dwAlphaSrcConstBitDepth

Bit depth of the source alpha constant.
dwAlphaSrcConst

Constant used as the alpha channel source.
lpDDSAlphaSrc

Surface used as the alpha channel source.
dwFillColor

Color used to fill a surface when DDBLT_COLORFILL is specified. This value
must be a pixel appropriate to the pixel format of the destination surface. For a
palettized surface it would be a palette index, and for a 16-bit RGB surface it
would be a 16-bit pixel value.

dwFillDepth
Depth value for the z-buffer.

dwFillPixel
Pixel value for RGBA or RGBZ fills. Applications that use RGBZ fills should
use this member, not dwFillColor or dwFillDepth.

lpDDSPattern
Surface to use as a pattern. The pattern can be used in certain blit operations that
combine a source and a destination.

ddckDestColorkey
Destination color key override.

ddckSrcColorkey
Source color key override.

Remarks
The unions in this structure have been updated to work with compilers that don't
support nameless unions. If your compiler doesn't support nameless unions, define
the NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

in.doc – page 292

DDCAPS
[This is preliminary documentation and subject to change.]

The DDCAPS structure represents the capabilities of the hardware exposed through
the DirectDraw object. This structure contains a DDSCAPS structure used in this
context to describe what kinds of DirectDrawSurface objects can be created. It may
not be possible to simultaneously create all of the surfaces described by these
capabilities. This structure is used with the IDirectDraw4::GetCaps method.

The ddraw.h header file contains multiple versions of this structure. See Remarks for
more information.

typedef struct _DDCAPS {
 DWORD dwSize;
 DWORD dwCaps; // driver-specific caps
 DWORD dwCaps2; // more driver-specific caps
 DWORD dwCKeyCaps; // color key caps
 DWORD dwFXCaps; // stretching and effects caps
 DWORD dwFXAlphaCaps; // alpha caps
 DWORD dwPalCaps; // palette caps
 DWORD dwSVCaps; // stereo vision caps
 DWORD dwAlphaBltConstBitDepths; // alpha bit-depth members
 DWORD dwAlphaBltPixelBitDepths; // .
 DWORD dwAlphaBltSurfaceBitDepths; // .
 DWORD dwAlphaOverlayConstBitDepths; // .
 DWORD dwAlphaOverlayPixelBitDepths; // .
 DWORD dwAlphaOverlaySurfaceBitDepths; // .
 DWORD dwZBufferBitDepths; // Z-buffer bit depth
 DWORD dwVidMemTotal; // total video memory
 DWORD dwVidMemFree; // total free video memory
 DWORD dwMaxVisibleOverlays; // maximum visible overlays
 DWORD dwCurrVisibleOverlays; // overlays currently visible
 DWORD dwNumFourCCCodes; // number of supported FOURCC codes
 DWORD dwAlignBoundarySrc; // overlay alignment restrictions
 DWORD dwAlignSizeSrc; // .
 DWORD dwAlignBoundaryDest; // .
 DWORD dwAlignSizeDest; // .
 DWORD dwAlignStrideAlign; // stride alignment
 DWORD dwRops[DD_ROP_SPACE]; // supported raster ops
 DWORD dwReservedCaps; // reserved
 DWORD dwMinOverlayStretch; // overlay stretch factors
 DWORD dwMaxOverlayStretch; // .
 DWORD dwMinLiveVideoStretch; // obsolete
 DWORD dwMaxLiveVideoStretch; // .
 DWORD dwMinHwCodecStretch; // .
 DWORD dwMaxHwCodecStretch; // .

in.doc – page 293

 DWORD dwReserved1; // reserved
 DWORD dwReserved2; // .
 DWORD dwReserved3; // .
 DWORD dwSVBCaps; // system-to-video blit related caps
 DWORD dwSVBCKeyCaps; // .
 DWORD dwSVBFXCaps; // .
 DWORD dwSVBRops[DD_ROP_SPACE]; // .
 DWORD dwVSBCaps; // video-to-system blit related caps
 DWORD dwVSBCKeyCaps; // .
 DWORD dwVSBFXCaps; // .
 DWORD dwVSBRops[DD_ROP_SPACE]; // .
 DWORD dwSSBCaps; // system-to-system blit related caps
 DWORD dwSSBCKeyCaps; // .
 DWORD dwSSBCFXCaps; // .
 DWORD dwSSBRops[DD_ROP_SPACE]; // .
 DWORD dwMaxVideoPorts; // maximum number of live video ports
 DWORD dwCurrVideoPorts; // current number of live video ports
 DWORD dwSVBCaps2; // additional system-to-video blit caps
 DWORD dwNLVBCaps; // nonlocal-to-local video memory blit caps
 DWORD dwNLVBCaps2; // .
 DWORD dwNLVBCKeyCaps; // .
 DWORD dwNLVBFXCaps; // .
 DWORD dwNLVBRops[DD_ROP_SPACE];// .
 DDSCAPS2 ddsCaps; // general surface caps
} DDCAPS,FAR* LPDDCAPS;

Members
dwSize

Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwCaps
Driver-specific capabilities.
DDCAPS_3D

Indicates that the display hardware has 3-D acceleration.
DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those overlay destination
rectangles with the x-axis aligned to the dwAlignBoundaryDest boundaries
of the surface.

DDCAPS_ALIGNBOUNDARYSRC
Indicates that DirectDraw will support only those overlay source rectangles
with the x-axis aligned to the dwAlignBoundarySrc boundaries of the
surface.

DDCAPS_ALIGNSIZEDEST

in.doc – page 294

Indicates that DirectDraw will support only those overlay destination
rectangles whose x-axis sizes, in pixels, are dwAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC
Indicates that DirectDraw will support only those overlay source rectangles
whose x-axis sizes, in pixels, are dwAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE
Indicates that DirectDraw will create display memory surfaces that have a
stride alignment equal to the dwAlignStrideAlign value.

DDCAPS_ALPHA
Indicates that the display hardware supports alpha-only surfaces. (See alpha
channel)

DDCAPS_BANKSWITCHED
Indicates that the display hardware is bank-switched and is potentially very
slow at random access to display memory.

DDCAPS_BLT
Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL
Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL
Indicates that display hardware is capable of depth filling z-buffers with a
blitter.

DDCAPS_BLTFOURCC
Indicates that display hardware is capable of color-space conversions during
blit operations.

DDCAPS_BLTQUEUE
Indicates that display hardware is capable of asynchronous blit operations.

DDCAPS_BLTSTRETCH
Indicates that display hardware is capable of stretching during blit operations.

DDCAPS_CANBLTSYSMEM
Indicates that display hardware is capable of blitting to or from system
memory.

DDCAPS_CANCLIP
Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED
Indicates that display hardware is capable of clipping while stretch blitting.

DDCAPS_COLORKEY
Supports some form of color key in either overlay or blit operations. More
specific color key capability information can be found in the dwCKeyCaps
member.

DDCAPS_COLORKEYHWASSIST
Indicates that the color key is partially hardware assisted. This means that
other resources (CPU or video memory) might be used. If this bit is not set,
full hardware support is in place.

in.doc – page 295

DDCAPS_GDI
Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE
Indicates that there is no hardware support.

DDCAPS_OVERLAY
Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP
Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC
Indicates that overlay hardware is capable of color-space conversions during
overlay operations.

DDCAPS_OVERLAYSTRETCH
Indicates that overlay hardware is capable of stretching. The
dwMinOverlayStretch and dwMaxOverlayStretch members contain valid
data.

DDCAPS_PALETTE
Indicates that DirectDraw is capable of creating and supporting
DirectDrawPalette objects for more surfaces than only the primary surface.

DDCAPS_PALETTEVSYNC
Indicates that DirectDraw is capable of updating a palette synchronized with
the vertical refresh.

DDCAPS_READSCANLINE
Indicates that display hardware is capable of returning the current scan line.

DDCAPS_STEREOVIEW
Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI
Indicates that display hardware is capable of generating a vertical-blank
interrupt.

DDCAPS_ZBLTS
Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS
Supports the use of the IDirectDrawSurface4::UpdateOverlayZOrder
method as a z-value for overlays to control their layering.

dwCaps2
More driver-specific capabilities.
DDCAPS2_AUTOFLIPOVERLAY

The overlay can be automatically flipped to the next surface in the flip chain
each time a video port VSYNC occurs, allowing the video port and the
overlay to double buffer the video without CPU overhead. This option is only
valid when the surface is receiving data from a video port. If the video port
data is non-interlaced or non-interleaved, it will flip on every VSYNC. If the
data is being interleaved in memory, it will flip on every other VSYNC.

DDCAPS2_CANBOBHARDWARE

in.doc – page 296

The overlay hardware can display each field of an interlaced video stream
individually.

DDCAPS2_CANBOBINTERLEAVED
The overlay hardware can display each field individually of an interlaced
video stream while it is interleaved in memory without causing any artifacts
that might normally occur without special hardware support. This option is
only valid when the surface is receiving data from a video port and is only
valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANBOBNONINTERLEAVED
The overlay hardware can display each field individually of an interlaced
video stream while it is not interleaved in memory without causing any
artifacts that might normally occur without special hardware support. This
option is only valid when the surface is receiving data from a video port and
is only valid when the video is zoomed at least two times in the vertical
direction.

DDCAPS2_CANCALIBRATEGAMMA
The system has a calibrator installed that can automatically adjust the gamma
ramp so that the result will be identical on all systems that have a calibrator.
To invoke the calibrator when setting new gamma levels, use the
DDSGR_CALIBRATE flag when calling the
IDirectDrawGammaControl::SetGammaRamp method. Calibrating
gamma ramps incurs some processing overhead, and should not be used
frequently.

DDCAPS2_CANDROPZ16BIT
16-bit RGBZ values can be converted into sixteen-bit RGB values. (The
system does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN
The driver is capable of performing odd and even flip operations, as specified
by the DDFLIP_ODD and DDFLIP_EVEN flags used with the
IDirectDrawSurface4::Flip method.

DDCAPS2_CANRENDERWINDOWED
The driver is capable of rendering in windowed mode.

DDCAPS2_CERTIFIED
Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLPRIMARY
The primary surface contains color controls (for instance, gamma)

DDCAPS2_COLORCONTROLOVERLAY
The overlay surface contains color controls (such as brightness, sharpness)

DDCAPS2_COPYFOURCC
Indicates that the driver supports blitting any FOURCC surface to another
surface of the same FOURCC.

DDCAPS2_FLIPINTERVAL
Indicates that the driver will respond to the DDFLIP_INTERVAL* flags. (see
IDirectDrawSurface4::Flip).

in.doc – page 297

DDCAPS2_FLIPNOVSYNC
Indicates that the driver will respond to the DDFLIP_NOVSYNC flag (see
IDirectDrawSurface4::Flip).

DDCAPS2_NO2DDURING3DSCENE
Indicates that 2-D operations such as IDirectDrawSurface4::Blt and
IDirectDrawSurface4::Lock cannot be performed on any surfaces that
Direct3D® is using between calls to the IDirect3DDevice3::BeginScene and
IDirect3DDevice3::EndScene methods.

DDCAPS2_NONLOCALVIDMEM
Indicates that the display driver supports surfaces in non-local video memory.

DDCAPS2_NONLOCALVIDMEMCAPS
Indicates that blit capabilities for non-local video memory surfaces differ
from local video memory surfaces. If this flag is present, the
DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED
DMA blit operations are supported on system memory surfaces that are not
page locked.

DDCAPS2_PRIMARYGAMMA
Supports dynamic gamma ramps for the primary surface. For more
information, see Gamma and Color Controls.

DDCAPS2_VIDEOPORT
Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES
Indicates that the display surfaces supports surfaces wider than the primary
surface.

dwCKeyCaps
Color-key capabilities.
DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the replaceable
bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE
Supports transparent blitting with a color space that identifies the replaceable
bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV
Supports transparent blitting with a color space that identifies the replaceable
bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV
Supports transparent blitting with a color key that identifies the replaceable
bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY
Supports overlaying with color keying of the replaceable bits of the
destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE
Supports a color space as the color key for the destination of RGB colors.

in.doc – page 298

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV
Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE
Supports only one active destination color key value for visible overlay
surfaces .

DDCKEYCAPS_DESTOVERLAYYUV
Supports overlaying using color keying of the replaceable bits of the
destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY
Indicates there are no bandwidth trade-offs for using the color key with an
overlay.

DDCKEYCAPS_SRCBLT
Supports transparent blitting using the color key for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE
Supports transparent blitting using a color space for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV
Supports transparent blitting using a color space for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV
Supports transparent blitting using the color key for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY
Supports overlaying using the color key for the source with this overlay
surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE
Supports overlaying using a color space as the source color key for the
overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV
Supports overlaying using a color space as the source color key for the
overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE
Supports only one active source color key value for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV
Supports overlaying using the color key for the source with this overlay
surface for YUV colors.

dwFXCaps
Driver-specific stretching and effects capabilities.
DDFXCAPS_BLTALPHA

Supports alpha-blended blit operations.
DDFXCAPS_BLTARITHSTRETCHY

in.doc – page 299

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch
and shrink surfaces during a blit operation. Occurs along the y-axis
(vertically).

DDFXCAPS_BLTARITHSTRETCHYN
Uses arithmetic operations, rather than pixel-doubling techniques, to stretch
and shrink surfaces during a blit operation. Occurs along the y-axis
(vertically), and works only for integer stretching (1, 2, and so on).

DDFXCAPS_BLTFILTER
Driver can do surface-reconstruction filtering for warped blits.

DDFXCAPS_BLTMIRRORLEFTRIGHT
Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN
Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION
Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90
Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally). This
flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This
flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally). This
flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically). This
flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTTRANSFORM
Supports geometric transformations (or warps) for blitted sprites.
Transformations are not currently supported for explicit blit operations.

in.doc – page 300

DDFXCAPS_OVERLAYALPHA
Supports alpha blending for overlay surfaces.

DDFXCAPS_OVERLAYARITHSTRETCHY
Uses arithmetic operations, rather than pixel-doubling techniques, to stretch
and shrink overlay surfaces. Occurs along the y-axis (vertically).

DDFXCAPS_OVERLAYARITHSTRETCHYN
Uses arithmetic operations, rather than pixel-doubling techniques, to stretch
and shrink overlay surfaces. Occurs along the y-axis (vertically), and works
only for integer stretching (1, 2, and so on).

DDFXCAPS_OVERLAYFILTER
Supports surface-reconstruction filtering for warped overlay sprites. Filtering
is not currently supported for explicitly displayed overlay surfaces (those
displayed with calls to IDirectDrawSurface4::UpdateOverlay).

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT
Supports mirroring of overlays across the vertical axis.

DDFXCAPS_OVERLAYMIRRORUPDOWN
Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that shrinking is
available.

DDFXCAPS_OVERLAYSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces.
This flag indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that shrinking is
available.

DDFXCAPS_OVERLAYSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This
flag indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that stretching is
available.

DDFXCAPS_OVERLAYSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces.

in.doc – page 301

This flag indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that stretching is
available.

DDFXCAPS_OVERLAYSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This
flag indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYTRANSFORM
Supports geometric transformations (or warps) for overlay sprites.
Transformations are not currently supported for explicitly displayed overlay
surfaces (those displayed with calls to
IDirectDrawSurface4::UpdateOverlay).

dwFXAlphaCaps
Driver-specific alpha capabilities.
DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface.
Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes
more opaque as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully transparent value. Used for blit
operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes
more transparent as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully opaque value. This flag can be used
only if DDCAPS_ALPHA is set. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1,
2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always the
fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha value
increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless
of the depth of the alpha information, 0 is always the fully opaque value. This
flag can be set only if DDCAPS_ALPHA has been set. Used for blit
operations.

in.doc – page 302

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND
Supports alpha blending around the edge of a source color-keyed surface.
Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more opaque as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more transparent as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully opaque value. This flag can be used
only if DDCAPS_ALPHA has been set. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1,
2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always the
fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha value
increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless
of the depth of the alpha information, 0 is always the fully opaque value. This
flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

dwPalCaps
Palette capabilities.
DDPCAPS_1BIT

Supports palettes that contain 1 bit color entries (two colors).
DDPCAPS_2BIT

Supports palettes that contain 2 bit color entries (four colors).
DDPCAPS_4BIT

Supports palettes that contain 4 bit color entries (16 colors).
DDPCAPS_8BIT

Supports palettes that contain 8 bit color entries (256 colors).
DDPCAPS_8BITENTRIES

Specifies an index to an 8-bit color index. This field is valid only when used
with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT capability
and when the target surface is in 8 bits per pixel (bpp). Each color entry is 1
byte long and is an index to an 8-bpp palette on the destination surface.

DDPCAPS_ALPHA
Supports palettes that include an alpha component. For alpha-capable
palettes, the peFlags member of for each PALETTEENTRY structure the
palette contains is to be interpreted as a single 8-bit alpha value (in addition
to the color data in the peRed, peGreen, and peBlue members). A palette
created with this flag can only be attached to a texture surface.

in.doc – page 303

DDPCAPS_ALLOW256
Supports palettes that can have all 256 entries defined.

DDPCAPS_PRIMARYSURFACE
Indicates that the palette is attached to the primary surface. Changing the
palette has an immediate effect on the display unless the DDPCAPS_VSYNC
capability is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT
Indicates that the palette is attached to the primary surface on the left.
Changing the palette has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_VSYNC
Indicates that the palette can be modified synchronously with the monitor's
refresh rate.

dwSVCaps
Stereo vision capabilities.
DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.
DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency
flickering.

DDSVCAPS_REDBLUE
Indicates that the stereo view is accomplished when the viewer looks at the
image through red and blue filters placed over the left and right eyes. All
images must adapt their color spaces for this process.

DDSVCAPS_SPLIT
Indicates that the stereo view is accomplished with split-screen technology.

dwAlphaBltConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaBltPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaBltSurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaOverlayConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaOverlayPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaOverlaySurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwZBufferBitDepths

in.doc – page 304

DDBD_8, DDBD_16, DDBD_24, or DDBD_32. (Indicates 8-, 16-, 24-, 32-bits
per pixel.) This member is obsolete for DirectX 6.0 and later. Use the
IDirect3D3::EnumZBufferFormats to retrieve information about supported
depth buffer formats.

dwVidMemTotal
Total amount of display memory on the device, in bytes, less memory reserved
for the primary surface and any private data structures reserved by the driver.
(This value is the same as the total video memory reported by the
IDirectDraw4::GetAvailableVidMem method.)

dwVidMemFree
Free display memory. This value equals the value in dwVidMemTotal, less any
memory currently allocated by the application for surfaces. Unlike the
GetAvailableVidMem method, which reports the memory available for a
particular type of surface (like a texture), this value reflects the memory
available for any type of surface.

dwMaxVisibleOverlays
Maximum number of visible overlays or overlay sprites.

dwCurrVisibleOverlays
Current number of visible overlays or overlay sprites.

dwNumFourCCCodes
Number of FourCC codes.

dwAlignBoundarySrc
Source rectangle alignment for an overlay surface, in pixels.

dwAlignSizeSrc
Source rectangle size alignment for an overlay surface, in pixels. Overlay source
rectangles must have a pixel width that is a multiple of this value.

dwAlignBoundaryDest
Destination rectangle alignment for an overlay surface, in pixels.

dwAlignSizeDest
Destination rectangle size alignment for an overlay surface, in pixels. Overlay
destination rectangles must have a pixel width that is a multiple of this value.

dwAlignStrideAlign
Stride alignment.

dwRops[DD_ROP_SPACE]
Raster operations supported.

dwReservedCaps
Reserved. Prior to DirectX 6.0, this member contained general surface
capabilities, which are now contained in the ddsCaps member (a DDSCAPS2
structure).

dwMinOverlayStretch and dwMaxOverlayStretch
Minimum and maximum overlay stretch factors multiplied by 1000. For
example, 1.3 = 1300.

dwMinLiveVideoStretch and dwMaxLiveVideoStretch
These members are obsolete; do not use.

in.doc – page 305

dwMinHwCodecStretch and dwMaxHwCodecStretch
These members are obsolete; do not use.

dwReserved1, dwReserved2, and dwReserved3
Reserved for future use.

dwSVBCaps
Driver-specific capabilities for system-memory-to-display-memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps member.

dwSVBCKeyCaps
Driver color-key capabilities for system-memory-to-display-memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwSVBFXCaps
Driver FX capabilities for system-memory-to-display-memory blits. Valid flags
are identical to the blit-related flags used with the dwFXCaps member.

dwSVBRops[DD_ROP_SPACE]
Raster operations supported for system-memory-to-display-memory blits.

dwVSBCaps
Driver-specific capabilities for display-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps member.

dwVSBCKeyCaps
Driver color-key capabilities for display-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwVSBFXCaps
Driver FX capabilities for display-memory-to-system-memory blits. Valid flags
are identical to the blit-related flags used with the dwFXCaps member.

dwVSBRops[DD_ROP_SPACE]
Raster operations supported for display-memory-to-system-memory blits.

dwSSBCaps
Driver-specific capabilities for system-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps member.

dwSSBCKeyCaps
Driver color-key capabilities for system-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwSSBCFXCaps
Driver FX capabilities for system-memory-to-system-memory blits. Valid flags
are identical to the blit-related flags used with the dwFXCaps member.

dwSSBRops[DD_ROP_SPACE]
Raster operations supported for system-memory-to-system-memory blits.

dwMaxVideoPorts
Maximum number of live video ports.

dwCurrVideoPorts
Current number of live video ports.

in.doc – page 306

dwSVBCaps2
More driver-specific capabilities for system-memory-to-video-memory blits.
Valid flags are identical to the blit-related flags used with the dwCaps2
member.

dwNLVBCaps
Driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags
are identical to the blit-related flags used with the dwCaps member.

dwNLVBCaps2
More driver-specific capabilities for nonlocal-to-local video memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps2 member.

dwNLVBCKeyCaps
Driver color-key capabilities for nonlocal-to-local video memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwNLVBFXCaps
Driver FX capabilities for nonlocal-to-local video memory blits. Valid flags are
identical to the blit-related flags used with the dwFXCaps member.

dwNLVBRops[DD_ROP_SPACE]
Raster operations supported for nonlocal-to-local video memory blits.

ddsCaps
DDSCAPS2 structure with general surface capabilities.

Remarks
For backward compatibility with previous versions of DirectX, the ddraw.h header
file contains multiple definitions for the DDCAPS structure. The version that passes
the preprocessor is determined by the value of the DIRECTDRAW_VERSION
constant. For details, see Component Version Constants.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDCOLORCONTROL
[This is preliminary documentation and subject to change.]

The DDCOLORCONTROL structure defines the color controls associated with a
DirectDrawVideoPortObject, an overlay surface, or a primary surface.

typedef struct _DDCOLORCONTROL {
 DWORD dwSize;
 DWORD dwFlags;

in.doc – page 307

 LONG lBrightness;
 LONG lContrast;
 LONG lHue;
 LONG lSaturation;
 LONG lSharpness;
 LONG lGamma;
 LONG lColorEnable;
 DWORD dwReserved1;
} DDCOLORCONTROL, FAR *LPDDCOLORCONTROL;

Members
dwSize

The the size of the structure, in bytes. This member must be initialized before
use.

dwFlags
Flags specifying which structure members contain valid data . When the
structure is returned by the IDirectDrawColorControl::GetColorControls
method, it also indicates which options are supported by the device.
DDCOLOR_BRIGHTNESS

The lBrightness member contains valid data.
DDCOLOR_COLORENABLE

The lColorEnable member contains valid data.
DDCOLOR_CONTRAST

The lContrast member contains valid data.
DDCOLOR_GAMMA

The lGamma member contains valid data.
DDCOLOR_HUE

The lHue member contains valid data.
DDCOLOR_SATURATION

The lSaturation member contains valid data.
DDCOLOR_SHARPNESS

The lSharpness member contains valid data.
lBrightness

Luminance intensity, in IRE units times 100. The valid range is 0 to 10,000. The
default is 750, which translates to 7.5 IRE.

lContrast
Relative difference between higher and lower intensity luminance values in IRE
units times 100. The valid range is 0 to 20,000. The default value is 10,000 (100
IRE). Higher values of contrast cause darker luminance values to tend towards
black, and cause lighter luminance values to tend towards white. Lower values
of contrast cause all luminance values to move towards the middle luminance
values.

lHue

in.doc – page 308

Phase relationship of the chrominance components. Hue is specified in degrees
and the valid range is -180 to 180. The default is 0.

lSaturation
Color intensity, in IRE units times 100. The valid range is 0 to 20,000. The
default value is 10,000, which translates to 100 IRE.

lSharpness
Sharpness in arbitrary units. The valid range is 0 to 10. The default value is 5.

lGamma
Controls the amount of gamma correction applied to the luminance values. The
valid range is 1 to 500 gamma units, with a default of 1.

lColorEnable
Flag indicating whether color is used. If this member is zero, color is not used; if
it is 1, then color is used. The default value is 1.

dwReserved1
This member is reserved.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDDEVICEIDENTIFIER
[This is preliminary documentation and subject to change.]

The DDDEVICEIDENTIFIER structure is passed to the
IDirectDraw4::GetDeviceIdentifier method to obtain information about a device.

typedef struct tagDDDEVICEIDENTIFIER {
 char szDriver[MAX_DDDEVICEID_STRING];
 char szDescription[MAX_DDDEVICEID_STRING];
 LARGE_INTEGER liDriverVersion;
 DWORD dwVendorId;
 DWORD dwDeviceId;
 DWORD dwSubSysId;
 DWORD dwRevision;
 GUID guidDeviceIdentifier;
} DDDEVICEIDENTIFIER, * LPDDDEVICEIDENTIFIER;

Members
szDriver

Name of the driver.

in.doc – page 309

szDescription
Description of the driver.

liDriverVersion
Version of the driver. It is legal to do less than and greater than comparisons on
the whole 64 bits. Caution should be exercised if you use this element to identify
problematic drivers. It is recommended that guidDeviceIdentifier be used for
this purpose.
The data takes the following form:
wProduct = HIWORD(liDriverVersion.HighPart)
wVersion = LOWORD(liDriverVersion.HighPart)
wSubVersion = HIWORD(liDriverVersion.LowPart)
wBuild = LOWORD(liDriverVersion.LowPart)

dwVendorId
Identifier of the manufacturer. Can be 0 if unknown.

dwDeviceId
Identifier of the type of chipset. Can be 0 if unknown.

dwSubSysId
Identifier of the subsystem. Typically this means the particular board. Can be 0
if unknown.

dwRevision
Identifier of the revision level of the chipset. Can be 0 if unknown.

guidDeviceIdentifier
Unique identifier for the driver/chipset pair. Use this value if you wish to track
changes to the driver/chipset in order to reprofile the graphics subsystem. It can
also be used to identify particular problematic drivers.

Remarks
The values in szDriver and szDescription are for presentation to the user only. They
should not be used to identify particular drivers, because different strings might be
associated with the same device, or the same driver from different vendors might be
described differently.

The dwVendorId, dwDeviceId, dwSubSysId, and dwRevision members can be
used to identify particular chipsets, but use extreme caution.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

in.doc – page 310

DDGAMMARAMP
[This is preliminary documentation and subject to change.]

The DDGAMMARAMP structure contains red, green, and blue ramp data for the
IDirectDrawGammaControl::GetGammaRamp and
IDirectDrawGammaControl::SetGammaRamp methods.

typedef struct _DDGAMMARAMP {
 WORD red[256];
 WORD green[256];
 WORD blue[256];
} DDGAMMARAMP, FAR * LPDDGAMMARAMP;

Members
red, green, and blue

Array of 256 WORD elements that describe the red, green, and blue gamma
ramps.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

See Also
Gamma and Color Controls

DDCOLORKEY
[This is preliminary documentation and subject to change.]

The DDCOLORKEY structure describes a source color key, destination color key,
or color space. A color key is specified if the low and high range values are the
same. This structure is used with the IDirectDrawSurface4::GetColorKey and
IDirectDrawSurface4::SetColorKey methods.

typedef struct _DDCOLORKEY{
 DWORD dwColorSpaceLowValue;
 DWORD dwColorSpaceHighValue;
} DDCOLORKEY,FAR* LPDDCOLORKEY;

in.doc – page 311

Members
dwColorSpaceLowValue

Low value, inclusive, of the color range that is to be used as the color key.
dwColorSpaceHighValue

High value, inclusive, of the color range that is to be used as the color key.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDOVERLAYFX
[This is preliminary documentation and subject to change.]

The DDOVERLAYFX structure passes override information to the
IDirectDrawSurface4::UpdateOverlay method.

typedef struct _DDOVERLAYFX{
 DWORD dwSize;
 DWORD dwAlphaEdgeBlendBitDepth;
 DWORD dwAlphaEdgeBlend;
 DWORD dwReserved;
 DWORD dwAlphaDestConstBitDepth;
 union
 {
 DWORD dwAlphaDestConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;
 } DUMMYUNIONNAMEN(1);
 DWORD dwAlphaSrcConstBitDepth;
 union
 {
 DWORD dwAlphaSrcConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
 } DUMMYUNIONNAMEN(2);
 DDCOLORKEY dckDestColorkey;
 DDCOLORKEY dckSrcColorkey;

 DWORD dwDDFX;
 DWORD dwFlags;
} DDOVERLAYFX,FAR *LPDDOVERLAYFX;

in.doc – page 312

Members
dwSize

Size of the structure, in bytes. This members must be initialized before the
structure is used.

dwAlphaEdgeBlendBitDepth
Bit depth used to specify the constant for an alpha edge blend.

dwAlphaEdgeBlend
Constant to use as the alpha for an edge blend.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth
Bit depth used to specify the alpha constant for a destination.

dwAlphaDestConst
Constant to use as the alpha channel for a destination.

lpDDSAlphaDest
Address of a surface to use as the alpha channel for a destination.

dwAlphaSrcConstBitDepth
Bit depth used to specify the alpha constant for a source.

dwAlphaSrcConst
Constant to use as the alpha channel for a source.

lpDDSAlphaSrc
Address of a surface to use as the alpha channel for a source.

dckDestColorkey
Destination color key override.

dckSrcColorkey
Source color key override.

dwDDFX
Overlay FX flags.
DDOVERFX_ARITHSTRETCHY

If stretching, use arithmetic stretching along the y-axis for this overlay.
DDOVERFX_MIRRORLEFTRIGHT

Mirror the overlay around the vertical axis.
DDOVERFX_MIRRORUPDOWN

Mirror the overlay around the horizontal axis.
dwFlags

This member is currently not used and must be set to 0.

Remarks
The unions in this structure have been updated to work with compilers that don't
support nameless unions. If your compiler doesn't support nameless unions, define
the NONAMELESSUNION token before including the Ddraw.h header file.

in.doc – page 313

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDPIXELFORMAT
[This is preliminary documentation and subject to change.]

The DDPIXELFORMAT structure describes the pixel format of a
DirectDrawSurface object for the IDirectDrawSurface4::GetPixelFormat method.

typedef struct _DDPIXELFORMAT{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwFourCC;
 union
 {
 DWORD dwRGBBitCount;
 DWORD dwYUVBitCount;
 DWORD dwZBufferBitDepth;
 DWORD dwAlphaBitDepth;
 DWORD dwLuminanceBitCount; // new for DirectX 6.0
 DWORD dwBumpBitCount; // new for DirectX 6.0
 } DUMMYUNIONNAMEN(1);
 union
 {
 DWORD dwRBitMask;
 DWORD dwYBitMask;
 DWORD dwStencilBitDepth; // new for DirectX 6.0
 DWORD dwLuminanceBitMask; // new for DirectX 6.0
 DWORD dwBumpDuBitMask; // new for DirectX 6.0
 } DUMMYUNIONNAMEN(2);
 union
 {
 DWORD dwGBitMask;
 DWORD dwUBitMask;
 DWORD dwZBitMask; // new for DirectX 6.0
 DWORD dwBumpDvBitMask; // new for DirectX 6.0
 } DUMMYUNIONNAMEN(3);
 union
 {
 DWORD dwBBitMask;
 DWORD dwVBitMask;
 DWORD dwStencilBitMask; // new for DirectX 6.0

in.doc – page 314

 DWORD dwBumpLuminanceBitMask; // new for DirectX 6.0
 } DUMMYUNIONNAMEN(4);
 union
 {
 DWORD dwRGBAlphaBitMask;
 DWORD dwYUVAlphaBitMask;
 DWORD dwLuminanceAlphaBitMask; // new for DirectX 6.0
 DWORD dwRGBZBitMask;
 DWORD dwYUVZBitMask;
 } DUMMYUNIONNAMEN(5);
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

Members
dwSize

Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
Optional control flags.
DDPF_ALPHA

The pixel format describes an alpha-only surface.
DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.
DDPF_ALPHAPREMULT

The surface uses the premultiplied alpha format. That is, the color
components in each pixel are premultiplied by the alpha component.

DDPF_BUMPLUMINANCE
The luminance data in the pixel format is valid, and the
dwLuminanceBitMask member describes valid luminance bits for a
luminance-only or luminance-alpha surface.

DDPF_BUMPDUDV
Bump-map data in the pixel format is valid. Bump-map information is in the
dwBumpBitCount, dwBumpDuBitMask, dwBumpDvBitMask, and
dwBumpLuminanceBitMask members.

DDPF_COMPRESSED
The surface will accept pixel data in the specified format and compress it
during the write operation.

DDPF_FOURCC
The dwFourCC member is valid and contains a FOURCC code describing a
non-RGB pixel format.

DDPF_LUMINANCE
The pixel format describes a luminance-only or luminance-alpha surface.

DDPF_PALETTEINDEXED1
DDPF_PALETTEINDEXED2

in.doc – page 315

DDPF_PALETTEINDEXED4
DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.
DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.
DDPF_RGB

The RGB data in the pixel format structure is valid.
DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write operation
to YUV data. The format of the data to be written will be contained in the
pixel format structure. The DDPF_RGB flag will be set.

DDPF_STENCILBUFFER
The surface encodes stencil and depth information in each pixel of the z-
buffer. This flag can only be used if the DDPF_ZBUFFER flag is also
specified.

DDPF_YUV
The YUV data in the pixel format structure is valid.

DDPF_ZBUFFER
The pixel format describes a z-buffer surface.

DDPF_ZPIXELS
The surface contains z information in the pixels.

dwFourCC
FourCC code. For more information see, Four Character Codes (FOURCC).

dwRGBBitCount
RGB bits per pixel (4, 8, 16, 24, or 32).

dwYUVBitCount
YUV bits per pixel (4, 8, 16, 24, or 32).

dwZBufferBitDepth
Z-buffer bit depth (8, 16, 24, or 32).

dwAlphaBitDepth
Alpha channel bit depth (1, 2, 4, or 8) for an alpha-only surface
(DDPF_ALPHA). For pixel formats that contain alpha information interleaved
with color data (DDPF_ALPHAPIXELS), you must count the bits in the
dwRGBAlphaBitMask member to obtain the bit-depth of the alpha component.
For more information, see Remarks.

dwLuminanceBitCount
Total luminance bits per pixel. This member applies only to luminance-only and
luminance-alpha surfaces.

dwBumpBitCount
Total bump-map bits per pixel in a bump-map surface.

dwRBitMask
Mask for red bits.

dwYBitMask

in.doc – page 316

Mask for Y bits.
dwStencilBitDepth

Bit depth of the stencil buffer. This member specifies how many bits are
reserved within each pixel of the z-buffer for stencil information (the total
number of z-bits is equal to dwZBufferBitDepth minus dwStencilBitDepth).

dwLuminanceBitMask
Mask for luminance bits.

dwBumpDuBitMask
Mask for bump-map UD bits.

dwGBitMask
Mask for green bits.

dwUBitMask
Mask for U bits.

dwZBitMask
Mask for z bits.

dwBumpDvBitMask
Mask for bump-map VD bits.

dwBBitMask
Mask for blue bits.

dwVBitMask
Mask for V bits.

dwStencilBitMask
Mask for stencil bits within each z-buffer pixel.

dwBumpLuminanceBitMask
Mask for luminance in a bump-map pixel.

dwRGBAlphaBitMask and dwYUVAlphaBitMask and
dwLuminanceAlphaBitMask

Masks for alpha channel.
dwRGBZBitMask and dwYUVZBitMask

Masks for z channel.

Remarks
The dwAlphaBitDepth member reflects the bit depth of an alpha-only pixel format
(DDPF_ALPHA). For pixel formats that include the alpha component with color
components (DDPF_ALPHAPIXELS), the alpha bit depth is obtained by counting
the bits in the various mask members. The following example function returns the
number of bits set in a given bitmask:

WORD GetNumberOfBits(DWORD dwMask)
{
 WORD wBits = 0;
 while(dwMask)
 {

in.doc – page 317

 dwMask = dwMask & (dwMask - 1);
 wBits++;
 }
 return wBits;
}

The unions in this structure have been updated to work with compilers that don't
support nameless unions. If your compiler doesn't support nameless unions, define
the NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

See Also
Off-Screen Surface Formats

DDSCAPS
[This is preliminary documentation and subject to change.]

The DDSCAPS structure defines the capabilities of a DirectDrawSurface object.
This structure is part of the DDCAPS and DDSURFACEDESC structures.

typedef struct _DDSCAPS{
 DWORD dwCaps;
} DDSCAPS, FAR* LPDDSCAPS;

Members
dwCaps

Capabilities of the surface. One or more of the following flags:
DDSCAPS_3D

Unsupported. Use the DDSCAPS_3DDEVICE instead.
DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can
use this flag to ensure that a device that can only render to a certain heap has
off-screen surfaces allocated from the correct heap. If this flag is set for a
heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD
Indicates that memory for the surface is not allocated until the surface is
loaded by using the IDirect3DTexture2::Load.

in.doc – page 318

DDSCAPS_ALPHA
Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER
Indicates that this surface is the back buffer of a surface flipping structure.
Typically, this capability is set by the CreateSurface method when the
DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the
DDSCAPS_FRONTBUFFER surface has this capability set. The other
surfaces are identified as back buffers by the presence of the
DDSCAPS_FLIP flag, their attachment order, and the absence of the
DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If
this capability is sent to the CreateSurface method, a stand-alone back
buffer is being created. After this method is called, this surface could be
attached to a front buffer, another back buffer, or both to form a flipping
surface structure. For more information, see
IDirectDrawSurface4::AddAttachedSurface. DirectDraw supports an
arbitrary number of surfaces in a flipping structure.

DDSCAPS_COMPLEX
Indicates that a complex surface is being described. A complex surface
results in the creation of more than one surface. The additional surfaces are
attached to the root surface. The complex structure can be destroyed only by
destroying the root.

DDSCAPS_FLIP
Indicates that this surface is a part of a surface flipping structure. When this
capability is passed to the CreateSurface method, a front buffer and one or
more back buffers are created. DirectDraw sets the
DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the
DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer
surface. The dwBackBufferCount member of the DDSURFACEDESC
structure must be set to at least 1 in order for the method call to succeed. The
DDSCAPS_COMPLEX capability must always be set when creating multiple
surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER
Indicates that this surface is the front buffer of a surface flipping structure.
This flag is typically set by the CreateSurface method when the
DDSCAPS_FLIP capability is set. If this capability is sent to the
CreateSurface method, a stand-alone front buffer is created. This surface
will not have the DDSCAPS_FLIP capability. It can be attached to other back
buffers to form a flipping structure by using
IDirectDrawSurface4::AddAttachedSurface.

DDSCAPS_HWCODEC
Indicates that this surface should be able to have a stream decompressed to it
by the hardware.

DDSCAPS_LIVEVIDEO
Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM

in.doc – page 319

Indicates that this surface exists in true, local video memory rather than non-
local video memory. If this flag is specified then
DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be
used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP
Indicates that this surface is one level of a mipmap. This surface will be
attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This
can be done explicitly by creating a number of surfaces and attaching them
by using the IDirectDrawSurface4::AddAttachedSurface method, or
implicitly by the CreateSurface method. If this capability is set,
DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX
Indicates that this surface is a 320200 or 320240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM
Indicates that this surface exists in non-local video memory rather than true,
local video memory. If this flag is specified, then
DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be
used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN
Indicates that this surface is any off-screen surface that is not an overlay,
texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to
identify plain surfaces.

DDSCAPS_OPTIMIZED
Not currently implemented.

DDSCAPS_OVERLAY
Indicates that this surface is an overlay. It may or may not be directly visible
depending on whether it is currently being overlaid onto the primary surface.
DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the
moment.

DDSCAPS_OWNDC
Indicates that this surface will have a device context (DC) association for a
long period.

DDSCAPS_PALETTE
Indicates that this device driver allows unique DirectDrawPalette objects to
be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE
Indicates the surface is the primary surface. It represents what is visible to the
user at the moment.

DDSCAPS_PRIMARYSURFACELEFT
Indicates that this surface is the primary surface for the left eye. It represents
what is visible to the user's left eye at the moment. When this surface is
created, the surface with the DDSCAPS_PRIMARYSURFACE capability
represents what is seen by the user's right eye.

DDSCAPS_STANDARDVGAMODE

in.doc – page 320

Indicates that this surface is a standard VGA mode surface, and not a Mode X
surface. This flag cannot be used in combination with the
DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY
Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE
Indicates that this surface can be used as a 3-D texture. It does not indicate
whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY
Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT
Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE
Indicates that changes made to this surface are immediately visible. It is
always set for the primary surface, as well as for overlays while they are
being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY
Indicates that only write access is permitted to the surface. Read access from
the surface may generate a general protection (GP) fault, but the read results
from this surface will not be meaningful.

DDSCAPS_ZBUFFER
Indicates that this surface is the z-buffer. The z-buffer contains information
that cannot be displayed. Instead, it contains bit-depth information that is
used to determine which pixels are visible and which are obscured.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDSCAPS2
[This is preliminary documentation and subject to change.]

The DDSCAPS2 structure defines the capabilities of a DirectDrawSurface object.
This structure is part of the DDSURFACEDESC2 structure.

typedef struct _DDSCAPS2 {
 DWORD dwCaps; // Surface capabilities
 DWORD dwCaps2; // More surface capabilities
 DWORD dwCaps3; // Not currently used
 DWORD dwCaps4; // .
} DDSCAPS2, FAR* LPDDSCAPS2;

in.doc – page 321

Members
dwCaps

One or more flag values representing the capabilities of the surface. (The flags
in this member are identical to those in the corresponding member of the
DDSCAPS structure.)
DDSCAPS_3D

Unsupported. Use the DDSCAPS_3DDEVICE instead.
DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can
use this flag to ensure that a device that can only render to a certain heap has
off-screen surfaces allocated from the correct heap. If this flag is set for a
heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD
Indicates that memory for the surface is not allocated until the surface is
loaded by using the IDirect3DTexture2::Load.

DDSCAPS_ALPHA
Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER
Indicates that this surface is the back buffer of a surface flipping structure.
Typically, this capability is set by the CreateSurface method when the
DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the
DDSCAPS_FRONTBUFFER surface has this capability set. The other
surfaces are identified as back buffers by the presence of the
DDSCAPS_FLIP flag, their attachment order, and the absence of the
DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If
this capability is sent to the CreateSurface method, a stand-alone back
buffer is being created. After this method is called, this surface could be
attached to a front buffer, another back buffer, or both to form a flipping
surface structure. For more information, see
IDirectDrawSurface4::AddAttachedSurface. DirectDraw supports an
arbitrary number of surfaces in a flipping structure.

DDSCAPS_COMPLEX
Indicates that a complex surface is being described. A complex surface
results in the creation of more than one surface. The additional surfaces are
attached to the root surface. The complex structure can be destroyed only by
destroying the root.

DDSCAPS_FLIP
Indicates that this surface is a part of a surface flipping structure. When this
capability is passed to the CreateSurface method, a front buffer and one or
more back buffers are created. DirectDraw sets the
DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the
DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer
surface. The dwBackBufferCount member of the DDSURFACEDESC

in.doc – page 322

structure must be set to at least 1 in order for the method call to succeed. The
DDSCAPS_COMPLEX capability must always be set when creating multiple
surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER
Indicates that this surface is the front buffer of a surface flipping structure.
This flag is typically set by the CreateSurface method when the
DDSCAPS_FLIP capability is set. If this capability is sent to the
CreateSurface method, a stand-alone front buffer is created. This surface
will not have the DDSCAPS_FLIP capability. It can be attached to other back
buffers to form a flipping structure by using
IDirectDrawSurface4::AddAttachedSurface.

DDSCAPS_HWCODEC
Indicates that this surface should be able to have a stream decompressed to it
by the hardware.

DDSCAPS_LIVEVIDEO
Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM
Indicates that this surface exists in true, local video memory rather than non-
local video memory. If this flag is specified then
DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be
used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP
Indicates that this surface is one level of a mipmap. This surface will be
attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This
can be done explicitly by creating a number of surfaces and attaching them
by using the IDirectDrawSurface4::AddAttachedSurface method, or
implicitly by the CreateSurface method. If this capability is set,
DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX
Indicates that this surface is a 320200 or 320240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM
Indicates that this surface exists in non-local video memory rather than true,
local video memory. If this flag is specified, then
DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be
used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN
Indicates that this surface is any off-screen surface that is not an overlay,
texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to
identify plain surfaces.

DDSCAPS_OPTIMIZED
Not currently implemented.

DDSCAPS_OVERLAY
Indicates that this surface is an overlay. It may or may not be directly visible
depending on whether it is currently being overlaid onto the primary surface.

in.doc – page 323

DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the
moment.

DDSCAPS_OWNDC
Indicates that this surface will have a device context (DC) association for a
long period.

DDSCAPS_PALETTE
Indicates that this device driver allows unique DirectDrawPalette objects to
be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE
Indicates the surface is the primary surface. It represents what is visible to the
user at the moment.

DDSCAPS_PRIMARYSURFACELEFT
Indicates that this surface is the primary surface for the left eye. It represents
what is visible to the user's left eye at the moment. When this surface is
created, the surface with the DDSCAPS_PRIMARYSURFACE capability
represents what is seen by the user's right eye.

DDSCAPS_STANDARDVGAMODE
Indicates that this surface is a standard VGA mode surface, and not a Mode X
surface. This flag cannot be used in combination with the
DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY
Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE
Indicates that this surface can be used as a 3-D texture. It does not indicate
whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY
Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT
Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE
Indicates that changes made to this surface are immediately visible. It is
always set for the primary surface, as well as for overlays while they are
being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY
Indicates that only write access is permitted to the surface. Read access from
the surface may generate a general protection (GP) fault, but the read results
from this surface will not be meaningful.

DDSCAPS_ZBUFFER
Indicates that this surface is the z-buffer. The z-buffer contains information
that cannot be displayed. Instead, it contains bit-depth information that is
used to determine which pixels are visible and which are obscured.

dwCaps2
Additional surface capabilities. This member can contain one or more of the
following capability flags or, when using this structure with the

in.doc – page 324

IDirectDrawSurface4::SetSurfaceDesc method, this member can contain an
additional flag to indicate how the surface memory was allocated:
Capability flags
DDSCAPS2_HARDWAREDEINTERLACE

Indicates that this surface will receive data from a video port using the de-
interlacing hardware. This allows the driver to allocate memory for any extra
buffers that may be required. The DDSCAPS_VIDEOPORT and
DDSCAPS_OVERLAY flags must also be set.

DDSCAPS2_HINTANTIALIASING
Indicates that the application intends to use antialiasing. Only valid if
DDSCAPS_3DDEVICE is also set.

DDSCAPS2_HINTDYNAMIC
Indicates to the driver that this surface will be locked very frequently (for
procedural textures, dynamic light maps, and so on). This flag can only be
used for texture surfaces (DDSCAPS_TEXTURE flag set in the dwCaps
member). This flag cannot be used with the DDSCAPS2_HINTSTATIC or
DDSCAPS2_OPAQUE flags.

DDSCAPS2_HINTSTATIC
Indicates to the driver that this surface can be reordered or retiled on load.
This operation will not change the size of the texture. It is relatively fast and
symmetrical, since the application may lock these bits (although it will take a
performance hit when doing so).
This flag can only be used for texture surfaces (DDSCAPS_TEXTURE flag
set in the dwCaps member). This flag cannot be used with the
DDSCAPS2_HINTDYNAMIC or DDSCAPS2_OPAQUE flags.

DDSCAPS2_OPAQUE
Indicates to the driver that this surface will never be locked again. The driver
is free to optimize this surface by retiling and actual compression. Such a
surface cannot be locked or used in blit operations, attempts to lock or blit a
surface with this capability will fail. This flag can only be used for texture
surfaces (DDSCAPS_TEXTURE flag set in the dwCaps member). This flag
cannot be used with the DDSCAPS2_HINTDYNAMIC or
DDSCAPS2_HINTSTATIC flags.

DDSCAPS2_TEXTUREMANAGE
Indicates that the client would like this texture surface to be managed by
DirectDraw and Direct3D Immediate Mode. This flag can only be used for
texture surfaces (DDSCAPS_TEXTURE flag set in the dwCaps member).
For more information, see Automatic Texture Management in the Direct3D
Immediate Mode documentation. Do not use this flag if your application uses
Direct3D Retained Mode. Instead, create textures in system memory and
allow Retained Mode to manage them.

dwCaps3 and dwCaps4
Not currently used.

in.doc – page 325

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDSURFACEDESC
[This is preliminary documentation and subject to change.]

The DDSURFACEDESC structure contains a description of a surface. This structure
is passed to the IDirectDraw2::CreateSurface method. The relevant members
differ for each potential type of surface.

When using the IDirectDraw4 interface, this structure is superseded by the
DDSURFACEDESC2 structure.

typedef struct _DDSURFACEDESC {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwHeight;
 DWORD dwWidth;
 union
 {
 LONG lPitch;
 DWORD dwLinearSize;
 };
 DWORD dwBackBufferCount;
 union
 {
 DWORD dwMipMapCount;
 DWORD dwZBufferBitDepth;
 DWORD dwRefreshRate;
 };
 DWORD dwAlphaBitDepth;
 DWORD dwReserved;
 LPVOID lpSurface;
 DDCOLORKEY ddckCKDestOverlay;
 DDCOLORKEY ddckCKDestBlt;
 DDCOLORKEY ddckCKSrcOverlay;
 DDCOLORKEY ddckCKSrcBlt;
 DDPIXELFORMAT ddpfPixelFormat;
 DDSCAPS ddsCaps;
} DDSURFACEDESC, FAR* LPDDSURFACEDESC;

in.doc – page 326

Members
dwSize

Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
Optional control flags. One or more of the following flags:
DDSD_ALL

Indicates that all input members are valid.
DDSD_ALPHABITDEPTH

Indicates that the dwAlphaBitDepth member is valid.
DDSD_BACKBUFFERCOUNT

Indicates that the dwBackBufferCount member is valid.
DDSD_CAPS

Indicates that the ddsCaps member is valid.
DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.
DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.
DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.
DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.
DDSD_HEIGHT

Indicates that the dwHeight member is valid.
DDSD_LINEARSIZE

Indicates that dwLinearSize member is valid.
DDSD_LPSURFACE

Indicates that the lpSurface member is valid.
DDSD_MIPMAPCOUNT

Indicates that the dwMipMapCount member is valid.
DDSD_PITCH

Indicates that the lPitch member is valid.
DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.
DDSD_REFRESHRATE

Indicates that the dwRefreshRate member is valid.
DDSD_WIDTH

Indicates that the dwWidth member is valid.
DDSD_ZBUFFERBITDEPTH

Indicates that the dwZBufferBitDepth member is valid.
dwHeight and dwWidth

Dimensions of the surface to be created, in pixels.

in.doc – page 327

lPitch
Distance, in bytes, to the start of next line. When used with the
IDirectDrawSurface4::GetSurfaceDesc method, this is a return value. When
creating a surface from existing memory or when calling the
IDirectDrawSurface4::SetSurfaceDesc method, this is an input value that must
be a DWORD multiple.

dwLinearSize
The size of the buffer. Currently returned only for compressed texture surfaces.

dwBackBufferCount
Number of back buffers.

dwMipMapCount
Number of mipmap levels.

dwZBufferBitDepth
Depth of z-buffer. This member is obsolete for DirectX 6.0 and later. Use the
IDirect3D3::EnumZBufferFormats to retrieve information about supported
depth buffer formats.

dwRefreshRate
Refresh rate (used when the display mode is described). The value of 0 indicates
an adapter fault.

dwAlphaBitDepth
Depth of alpha buffer.

dwReserved
Reserved.

lpSurface
Address of the associated surface memory. When calling
IDirectDrawSurface4::Lock, this member contains a valid pointer to surface
memory after the call returns. When creating a surface from existing memory or
when using the IDirectDrawSurface4::SetSurfaceDesc method, this member is
an input value that is the address of system memory allocated by the calling
application. Do not set this member if your application needs DirectDraw to
allocate and manage surface memory.

ddckCKDestOverlay
DDCOLORKEY structure that describes the destination color key to be used
for an overlay surface.

ddckCKDestBlt
DDCOLORKEY structure that describes the destination color key for blit
operations.

ddckCKSrcOverlay
DDCOLORKEY structure that describes the source color key to be used for an
overlay surface.

ddckCKSrcBlt
DDCOLORKEY structure that describes the source color key for blit
operations.

ddpfPixelFormat

in.doc – page 328

DDPIXELFORMAT structure that describes the surface's pixel format.
ddsCaps

DDSCAPS structure containing the surface's capabilities.

Remarks
This structure is similar to the DDSURFACEDESC2 structure, but contains a
DDSCAPS structure as the ddsCaps member, rather than a DDSCAPS2 structure.
Unlike DDSURFACEDESC2, this structure contains the dwZBufferBitDepth
member.

QuickInfo
 Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDSURFACEDESC2
[This is preliminary documentation and subject to change.]

The DDSURFACEDESC2 structure contains a description of a surface. This
structure is used to pass surface parameters to the IDirectDraw4::CreateSurface
and IDirectDrawSurface4::SetSurfaceDesc methods. It is also used to retrieve
information about a surface in calls to IDirectDrawSurface4::Lock and
IDirectDrawSurface4::GetSurfaceDesc. The relevant members differ for each
potential type of surface.

typedef struct _DDSURFACEDESC2 {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwHeight;
 DWORD dwWidth;
 union
 {
 LONG lPitch;
 DWORD dwLinearSize;
 } DUMMYUNIONNAMEN(1);
 DWORD dwBackBufferCount;
 union
 {
 DWORD dwMipMapCount;
 DWORD dwRefreshRate;
 } DUMMYUNIONNAMEN(2);
 DWORD dwAlphaBitDepth;
 DWORD dwReserved;

in.doc – page 329

 LPVOID lpSurface;
 DDCOLORKEY ddckCKDestOverlay;
 DDCOLORKEY ddckCKDestBlt;
 DDCOLORKEY ddckCKSrcOverlay;
 DDCOLORKEY ddckCKSrcBlt;
 DDPIXELFORMAT ddpfPixelFormat;
 DDSCAPS2 ddsCaps;
 DWORD dwTextureStage;
} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

Members
dwSize

Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
Optional control flags. One or more of the following flags:
DDSD_ALL

Indicates that all input members are valid.
DDSD_ALPHABITDEPTH

Indicates that the dwAlphaBitDepth member is valid.
DDSD_BACKBUFFERCOUNT

Indicates that the dwBackBufferCount member is valid.
DDSD_CAPS

Indicates that the ddsCaps member is valid.
DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.
DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.
DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.
DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.
DDSD_HEIGHT

Indicates that the dwHeight member is valid.
DDSD_LINEARSIZE

Indicates that the dwLinearSize member is valid.
DDSD_LPSURFACE

Indicates that the lpSurface member is valid.
DDSD_MIPMAPCOUNT

Indicates that the dwMipMapCount member is valid.
DDSD_PITCH

Indicates that the lPitch member is valid.

in.doc – page 330

DDSD_PIXELFORMAT
Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE
Indicates that the dwRefreshRate member is valid.

DDSD_TEXTURESTAGE
Indicates that the dwTextureStage member is valid.

DDSD_WIDTH
Indicates that the dwWidth member is valid.

DDSD_ZBUFFERBITDEPTH
Obsolete; see remarks.

dwHeight and dwWidth
Dimensions of the surface to be created, in pixels.

lPitch
Distance, in bytes, to the start of next line. When used with the
IDirectDrawSurface4::GetSurfaceDesc method, this is a return value. When
used with the IDirectDrawSurface4::SetSurfaceDesc method, this is an input
value that must be a DWORD multiple. See remarks for more information.

dwLinearSize
The size of the buffer. Currently returned only for compressed texture surfaces.

dwBackBufferCount
Number of back buffers.

dwMipMapCount
Number of mipmap levels.

dwRefreshRate
Refresh rate (used when the display mode is described). The value of 0 indicates
an adapter fault.

dwAlphaBitDepth
Depth of alpha buffer.

dwReserved
Reserved.

lpSurface
Address of the associated surface memory. When calling
IDirectDrawSurface4::Lock, this member is a valid pointer to surface
memory. When calling IDirectDrawSurface4::SetSurfaceDesc, this member is
a pointer to system memory that the caller explicitly allocates for the
DirectDrawSurface object. See remarks for more information.

ddckCKDestOverlay
DDCOLORKEY structure that describes the destination color key to be used
for an overlay surface.

ddckCKDestBlt
DDCOLORKEY structure that describes the destination color key for blit
operations.

ddckCKSrcOverlay

in.doc – page 331

DDCOLORKEY structure that describes the source color key to be used for an
overlay surface.

ddckCKSrcBlt
DDCOLORKEY structure that describes the source color key for blit
operations.

ddpfPixelFormat
DDPIXELFORMAT structure that describes the surface's pixel format.

ddsCaps
DDSCAPS2 structure containing the surface's capabilities.

dwTextureStage
Stage identifier used to bind a texture to a specific stage in 3-D device's
multitexture cascade. Although not required for all hardware, setting this
member is recommended for best performance on the largest variety of 3-D
accelerators. Hardware that requires explicitly assigned textures will expose the
D3DDEVCAPS_SEPARATETEXTUREMEMORIES 3-D device capability in
the D3DDEVICEDESC structure that is filled by the
IDirect3DDevice3::GetCaps method.

Remarks
The lPitch and lpSurface members are output values when calling the
IDirectDrawSurface4::GetSurfaceDesc method. When creating surfaces from
existing memory, or updating surface characteristics, these members are input values
that describe the pitch and location of memory allocated by the calling application
for use by DirectDraw. DirectDraw does not attempt to manage or free memory
allocated by the application. For more information, see Creating Client Memory
Surfaces and Updating Surface Characteristics.

This structure is nearly identical to the DDSURFACEDESC structure, but contains
a DDSCAPS2 structure as the ddsCaps member. Unlike DDSURFACEDESC, this
structure doesn't contain the dwZBufferBitDepth member. Z-buffer depth is
provided in the ddpfPixelFormat member.

The unions in this structure were written to work with compilers that don't support
nameless unions. If your compiler doesn't support nameless unions, define the
NONAMELESSUNION token before including the Ddraw.h header file.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in ddraw.h.

DDVIDEOPORTBANDWIDTH
[This is preliminary documentation and subject to change.]

in.doc – page 332

The DDVIDEOPORTBANDWIDTH structure describes the bandwidth
characteristics of an overlay surface when used with a particular video port and pixel
format configuration. This structure is used with the
IDirectDrawVideoPort::GetBandwidthInfo method.

typedef struct _DDVIDEOPORTBANDWIDTH {
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwOverlay;
 DWORD dwColorkey;
 DWORD dwYInterpolate;
 DWORD dwYInterpAndColorkey;
 DWORD dwReserved1;
 DWORD dwReserved2;
} DDVIDEOPORTBANDWIDTH,*LPDDVIDEOPORTBANDWIDTH;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before use.
dwCaps

Flag values specifying device dependency. This member can be one of the
following values:
DDVPBCAPS_DESTINATION

This device's capabilities are described in terms of the overlay's minimum
stretch factor. Bandwidth information provided for this device refers to the
destination overlay size.

DDVPBCAPS_SOURCE
This device's capabilities are described in terms of the required source
overlay size. Bandwidth information provided for this device refers to the
source overlay size.

dwOverlay
Stretch factor or overlay source size at which an overlay is supported multiplied
by 1000. For example 1.3 = 1300, or .75 = 750.

dwColorkey
Stretch factor or overlay source size at which an overlay with color keying is
supported multiplied by 1000. For example 1.3 = 1300, or .75 = 750.

dwYInterpolate
Stretch factor or overlay source size at which an overlay with y-axis
interpolation is supported multiplied by 1000. For example 1.3 = 1300, or .75 =
750.

dwYInterpAndColorkey
Stretch factor or overlay source size at which an overlay with y-axis
interpolation and color keying is supported multiplied by 1000. For example 1.3
= 1300, or .75 = 750.

in.doc – page 333

dwReserved1 and dwReserved2
Reserved; set to zero.

Remarks
When DDVPBCAPS_DESTINATION is specified, the stretch factors described in
the other members describe the minimum stretch factor required to display an
overlay with the dimensions given when calling the GetBandwidthInfo method.
Stretch factor values under 1000 mean that the video port is capable of shrinking an
overlay when displayed, and values over 1000 mean that the overlay must be
stretched larger than their source to be displayed.

When DDVPBCAPS_SOURCE is specified, the stretch factors described in the other
members describe how much you must shrink the overlay source in order for it to be
displayed. In this case, the best possible value is 1000, meaning that no shrinking is
required. Smaller values tell you that the source rectangle you specified when calling
GetBandwidthInfo were too large and must be smaller. For example, if the stretch
factor is 750 and you specified 320 pixels for the dwWidth parameter, then you will
not be able to display the overlay at that size. To successfully display the overlay,
you must use a source rectangle 240 pixels wide to successfully display the overlay.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.

DDVIDEOPORTCAPS
[This is preliminary documentation and subject to change.]

The DDVIDEOPORTCAPS structure describes the capabilities and alignment
restrictions of a video port. This structure is used with the
IDDVideoPortContainer::EnumVideoPorts method.

typedef struct _DDVIDEOPORTCAPS {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwMaxWidth;
 DWORD dwMaxVBIWidth;
 DWORD dwMaxHeight;
 DWORD dwVideoPortID;
 DWORD dwCaps;
 DWORD dwFX;
 DWORD dwNumAutoFlipSurfaces;
 DWORD dwAlignVideoPortBoundary;
 DWORD dwAlignVideoPortPrescaleWidth;

in.doc – page 334

 DWORD dwAlignVideoPortCropBoundary;
 DWORD dwAlignVideoPortCropWidth;
 DWORD dwPreshrinkXStep;
 DWORD dwPreshrinkYStep;
 DWORD dwNumVBIAutoFlipSurfaces;
 DWORD dwNumPreferredAutoflip;
 WORD wNumFilterTapsX;
 WORD wNumFilterTapsY;
} DDVIDEOPORTCAPS, *LPDDVIDEOPORTCAPS;

Members
dwSize

Size of the structure, in bytes. This must be initialized before use.
dwFlags

Flag values indicating the fields that contain valid data. The following flags are
defined:
DDVPD_AUTOFLIP

The dwNumAutoFlipSurfaces member is valid.
DDVPD_ALIGN

The dwAlignVideoPortBoundary, dwAlignVideoPortPrescaleWidth,
dwAlignVideoPortCropBoundary, and dwAlignVideoPortCropWidth are
valid.

DDVPD_CAPS
The dwCaps member is valid.

DDVPD_FILTERQUALITY
The wNumFilterTapsX and wNumFilterTapsY members are valid.

DDVPD_FX
The dwFX member is valid.

DDVPD_HEIGHT
The dwMaxHeight member is valid.

DDVPD_ID
The dwVideoPortID member is valid.

DDVPD_PREFERREDAUTOFLIP
The dwNumPreferredAutoflip member is valid.

DDVPD_WIDTH
The dwMaxWidth member is valid.

dwMaxWidth
Maximum width of the video port field.

dwMaxVBIWidth
Maximum width of the VBI data.

dwMaxHeight
Maximum height of the video port field.

in.doc – page 335

dwVideoPortID
Zero-based index identifying the video port.

dwCaps
Video port capabilities.
DDVPCAPS_AUTOFLIP

Flip can be performed automatically to avoid tearing when a VREF occurs. If
the data is being interleaved in memory, it will flip on every other VREF.

DDVPCAPS_COLORCONTROL
Can perform color control operations on incoming data before writing to the
frame buffer.

DDVPCAPS_INTERLACED
Supports interlaced video.

DDVPCAPS_NONINTERLACED
Supports non-interlaced video.

DDVPCAPS_OVERSAMPLEDVBI
Can accept VBI data in a different format or width than the regular video
data.

DDVPCAPS_READBACKFIELD
Supports the IDirectDrawVideoPort::GetFieldPolarity method.

DDVPCAPS_READBACKLINE
Supports the IDirectDrawVideoPort::GetVideoLine method.

DDVPCAPS_SHAREABLE
Supports two genlocked video streams that share the video port, where one
stream uses the even fields and the other uses the odd fields. Separate
parameters (including address, scaling, cropping, and so on) are maintained
for both fields.

DDVPCAPS_SKIPEVENFIELDS
Even fields of video can be automatically discarded.

DDVPCAPS_SKIPODDFIELDS
Odd fields of video can be automatically discarded.

DDVPCAPS_SYNCMASTER
Can drive the graphics sync (refresh rate) based on the video port sync.

DDVPCAPS_SYSTEMMEMORY
Capable of writing to surfaces created in system memory.

DDVPCAPS_VBIANDVIDEOINDEPENDENT
Indicates that the VBI and video portions of the video stream can be
controlled by independent processes.

DDVPCAPS_VBISURFACE
Data within the VBI can be written to a different surface.

dwFX
Additional video port capabilities.
DDVPFX_CROPTOPDATA

Limited cropping is available to crop VBI data.

in.doc – page 336

DDVPFX_CROPX
Incoming data can be cropped in the x-direction before it is written to the
surface.

DDVPFX_CROPY
Incoming data can be cropped in the y-direction before it is written to the
surface.

DDVPFX_IGNOREVBIXCROP
The video port can ignore the left and right cropping coordinates when
cropping oversampled VBI data.

DDVPFX_INTERLEAVE
Supports interleaving interlaced fields in memory.

DDVPFX_MIRRORLEFTRIGHT
Supports mirroring left to right as the video data is written into the frame
buffer.

DDVPFX_MIRRORUPDOWN
Supports mirroring top to bottom as the video data is written into the frame
buffer.

DDVPFX_PRESHRINKX
Data can be arbitrarily shrunk in the x-direction before it is written to the
surface.

DDVPFX_PRESHRINKY
Data can be arbitrarily shrunk in the y-direction before it is written to the
surface.

DDVPFX_PRESHRINKXB
Data can be binary shrunk (1/2, 1/4, 1/8, and so on) in the x-direction before
it is written to the surface.

DDVPFX_PRESHRINKYB
Data can be binary shrunk (1/2, 1/4, 1/8, and so on) in the y-direction before
it is written to the surface.

DDVPCAPS_PRESHRINKXS
Data can be shrunk in the x-direction by increments of 1/x, where x is
specified in the dwShrinkXStep member.

DDVPCAPS_PRESHRINKYS
Data can be shrunk in the y-direction by increments of 1/y, where y is
specified in the dwShrinkYStep

DDVPFX_PRESTRETCHX
Data can be arbitrarily stretched in the x-direction before it is written to the
surface.

DDVPFX_PRESTRETCHY
Data can be arbitrarily stretched in the y-direction before it is written to the
surface.

DDVPFX_PRESTRETCHXN
Data can be integer stretched in the x-direction before it is written to the
surface. (1x, 2x, 3x, and so forth)

in.doc – page 337

DDVPFX_PRESTRETCHYN
Data can be integer stretched in the y-direction before it is written to the
surface. (1x, 2x, 3x, and so forth)

DDVPFX_VBICONVERT
Data within the VBI can be converted independently of the remaining video
data.

DDVPFX_VBINOINTERLEAVE
Interleaving can be disabled for data within the VBI.

DDVPFX_VBINOSCALE
Scaling can be disabled for data within the VBI.

dwNumAutoFlipSurfaces
Maximum number of auto-flippable surfaces supported by the video port.

dwAlignVideoPortBoundary
Byte restriction of placement within the surface.

dwAlignVideoPortPrescaleWidth
Byte restriction of width after prescaling.

dwAlignVideoPortCropBoundary
Byte restriction of left cropping.

dwAlignVideoPortCropWidth
Byte restriction of cropping width.

dwPreshrinkXStep
Width can be shrunk in the x-direction in steps of 1/dwPreshrinkXStep.

dwPreshrinkYStep
Height can be shrunk in the y-direction in steps of 1/dwPreshrinkYStep.

dwNumVBIAutoFlipSurfaces
Maximum number of auto-flipping surfaces capable of receiving data
transmitted during the vertical blanking interval (VBI) independent from the
remainder of the video stream. When constructing the auto-flip chain, the
number of VBI surfaces must equal the number of surfaces receiving the
remainder of the video data.

dwNumPreferredAutoflip
Optimal number of auto-flippable surfaces supported by the hardware.

wNumFilterTapsX and wNumFilterTapsY
Number of taps the prescaler filter uses in the x- and y-directions. The value of 0
indicates that no prescaling is performed in that direction, 1 indicates that the
prescaler performs replication, 2 indicates that the prescaler uses two taps, and
so on.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.

in.doc – page 338

DDVIDEOPORTCONNECT
[This is preliminary documentation and subject to change.]

The DDVIDEOPORTCONNECT structure describes a video port connection. This
structure is used with the IDDVideoPortContainer::GetVideoPortConnectInfo
method.

typedef struct _DDVIDEOPORTCONNECT{
 DWORD dwSize;
 DWORD dwPortWidth;
 GUID guidTypeID;
 DWORD dwFlags;
 ULONG_PTR dwReserved1;
} DDVIDEOPORTCONNECT,*LPDDVIDEOPORTCONNECT;

Members
dwSize

Size of the structure, in bytes. This member must be initialized before use.
dwPortWidth

Width of the video port. This value represents the number of physical pins on
the video port, not the width of a surface in memory. This member must always
be set, even when the value in the guidTypeID member assumes a certain size.

guidTypeID
A GUID that describes the sync characteristics of the video port. The following
port types are predefined:
DDVPTYPE_E_HREFH_VREFH

External syncs where HREF is active high and VREF is active high.
DDVPTYPE_E_HREFH_VREFL

External syncs where HREF is active high and VREF is active low.
DDVPTYPE_E_HREFL_VREFH

External syncs where HREF is active low and VREF is active high.
DDVPTYPE_E_HREFL_VREFL

External syncs where HREF is active low and VREF is active low.
DDVPTYPE_CCIR656

Sync information is embedded in the data stream according to the CCIR656
specification.

DDVPTYPE_BROOKTREE
Sync information is embedded in the data stream using the Brooktree
definition.

DDVPTYPE_PHILIPS
Sync information is embedded in the data stream using the Philips definition.

dwFlags

in.doc – page 339

Flags describing the capabilities of the video-port connection. This member can
be set by DirectDraw when connection information is being retrieved or by the
client when connection information is being set. This member can be a
combination of the following flags:
DDVPCONNECT_DOUBLECLOCK

Indicates that the video port either supports double-clocking data or should
double-clock data. This flag is only valid with an external sync.

DDVPCONNECT_VACT
Indicates that the video port either supports using an external VACT signal or
should use the external VACT signal. This flag is only valid with an external
sync.

DDVPCONNECT_INVERTPOLARITY
Indicates that the video port is capable of inverting the field polarities or is to
invert field polarities.
When a video port inverts field polarities, it treats even fields as odd fields
and vice versa.

DDVPCONNECT_DISCARDSVREFDATA
The video port discards any data written during the VREF period, causing it
to not be written to the frame buffer. This flag is read-only.

DDVPCONNECT_HALFLINE
The video port will write half lines into the frame buffer, sometimes causing
the data to be displayed incorrectly. This flag is read-only.

DDVPCONNECT_INTERLACED
Indicates that the signal is interlaced. This flag is only used by the client
when creating a video port object.

DDVPCONNECT_SHAREEVEN
The physical video port is shareable, and that this video port object will use
the even fields. This flag is only used by the client when creating the video
port object.

DDVPCONNECT_SHAREODD
The physical video port is shareable, and that this video port object will use
the odd fields. This flag is only used by the client when creating the video
port object.

dwReserved1
Reserved; set to zero.

Remarks
This structure is used independently and as a member of the
DDVIDEOPORTDESC structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 340

Windows 95.
 Header: Declared in dvp.h.

DDVIDEOPORTDESC
[This is preliminary documentation and subject to change.]

The DDVIDEOPORTDESC structure describes a video-port object to be created.
This structure is used with the IDDVideoPortContainer::CreateVideoPort method.

typedef struct _DDVIDEOPORTDESC {
 DWORD dwSize;
 DWORD dwFieldWidth;
 DWORD dwVBIWidth;
 DWORD dwFieldHeight;
 DWORD dwMicrosecondsPerField;
 DWORD dwMaxPixelsPerSecond;
 DWORD dwVideoPortID;
 DWORD dwReserved1;
 DDVIDEOPORTCONNECT VideoPortType;
 ULONG_PTR dwReserved2;
 ULONG_PTR dwReserved3;
 } DDVIDEOPORTDESC, *LPDDVIDEOPORTDESC;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before use.
dwFieldWidth

Width of incoming video stream, in pixels.
dwVBIWidth

Width of the VBI data in the incoming video stream, in pixels.
dwFieldHeight

Field height for fields in the incoming video stream, in scan lines.
dwMicrosecondsPerField

Time interval, in microseconds, between live video VREF periods. This number
should be rounded up to the nearest microsecond.

dwMaxPixelsPerSecond
Maximum pixel rate per second.

dwVideoPortID
The zero-based ID of the physical video port to be used.

dwReserved1
Reserved; set to zero.

VideoPortType

in.doc – page 341

A DDVIDEOPORTCONNECT structure describing the connection
characteristics of the video port.

dwReserved2 and dwReserved3
Reserved; set to zero.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.

DDVIDEOPORTINFO
[This is preliminary documentation and subject to change.]

The DDVIDEOPORTINFO structure describes the transfer of video data to a
surface. This structure is used with the IDirectDrawVideoPort::StartVideo
method.

typedef struct _DDVIDEOPORTINFO{
 DWORD dwSize;
 DWORD dwOriginX;
 DWORD dwOriginY;
 DWORD dwVPFlags;
 RECT rCrop;
 DWORD dwPrescaleWidth;
 DWORD dwPrescaleHeight;
 LPDDPIXELFORMAT lpddpfInputFormat;
 LPDDPIXELFORMAT lpddpfVBIInputFormat;
 LPDDPIXELFORMAT lpddpfVBIOutputFormat;
 DWORD dwVBIHeight;
 ULONG_PTR dwReserved1;
 ULONG_PTR dwReserved2;
} DDVIDEOPORTINFO,*LPDDVIDEOPORTINFO;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before use.
dwOriginX and dwOriginY

X- and y-coordinates for the origin of the video data in the surface.
dwVPFlags

Video port options.
DDVP_AUTOFLIP

Perform automatic flipping. For more information, see Auto-flipping.

in.doc – page 342

DDVP_CONVERT
Perform conversion using the information in the lpddpfVBIOutputFormat
member.

DDVP_CROP
Perform cropping using the rectangle specified by the rCrop member.

DDVP_IGNOREVBIXCROP
The video port should ignore left and right cropping coordinates when
cropping oversampled VBI data.

DDVP_INTERLEAVE
Interlaced fields should be interleaved in memory.

DDVP_MIRRORLEFTRIGHT
Mirror image data from left to right as it is written into the frame buffer.

DDVP_MIRRORUPDOWN
Mirror image data from top to bottom as it is written into the frame buffer.

DDVP_OVERRIDEBOBWEAVE
Override automatic display method chosen by the driver, using only the
display method set by the caller when creating the overlay surface.

DDVP_PRESCALE
Perform pre-scaling or pre-zooming based on the values in the
dwPrescaleHeight and dwPrescaleWidth members.

DDVP_SKIPEVENFIELDS
Ignore input of even fields.

DDVP_SKIPODDFIELDS
Ignore input of odd fields.

DDVP_SYNCMASTER
Indicates that the video port VREF should drive the graphics VREF, locking
the refresh rate to the video port.

DDVP_VBICONVERT
The lpddpfVBIOutputFormat member contains data that should be used to
convert VBI data.

DDVP_VBINOSCALE
VBI data should not be scaled.

DDVP_VBINOINTERLEAVE
Interleaving can be disabled for data within the VBI.

rCrop
Cropping rectangle. This member is optional.

dwPrescaleWidth
Pre-scaling or zooming in the x-direction. This member is optional.

dwPrescaleHeight
Pre-scaling or zooming in the y-direction. This member is optional.

lpddpfInputFormat

in.doc – page 343

A DDPIXELFORMAT structure describing the pixel format to be written to
the video port. This will often be identical to the surface's pixel format, but can
differ if the video port is to perform conversion.

lpddpfVBIInputFormatand lpddpfVBIOutputFormat
DDPIXELFORMAT structures describing the input and output pixel formats of
the data within the vertical blanking interval.

dwVBIHeight
The amount of data within the vertical blanking interval, in scan lines.

dwReserved1 and dwReserved2
Reserved; set to zero.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.

DDVIDEOPORTSTATUS
[This is preliminary documentation and subject to change.]

The DDVIDEOPORTSTATUS structure describes the status of a video-port object.
This structure is used with the IDDVideoPortContainer::QueryVideoPortStatus
method.

typedef struct _DDVIDEOPORTSTATUS {
 DWORD dwSize;
 BOOL bInUse;
 DWORD dwFlags;
 DWORD dwReserved1;
 DDVIDEOPORTCONNECT VideoPortType;
 ULONG_PTR dwReserved2;
 ULONG_PTR dwReserved3;
} DDVIDEOPORTSTATUS, *LPDDVIDEOPORTSTATUS;

Members
dwSize

Size of this structure, in bytes. This member must be initialized before use.
bInUse

Value indicating the current status of the video port. This member is TRUE if
the video port is currently being used, and FALSE otherwise.

dwFlags
Flags

in.doc – page 344

DDVPSTATUS_VBIONLY
The video port interface is only controlling the VBI portion of the video
stream.

DDVPSTATUS_VIDEOONLY
The video port interface is only controlling the video portion of the video
stream.

dwReserved1
Reserved; set to zero.

VideoPortType
A DDVIDEOPORTCONNECT structure that receives information about the
video-port connection.

dwReserved2 and dwReserved3
Reserved; set to zero.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dvp.h.

Return Values
[This is preliminary documentation and subject to change.]

Errors are represented by negative values and cannot be combined. This table lists
the values that can be returned by all methods of the IDirectDraw4,
IDirectDrawSurface4, IDirectDrawPalette, IDirectDrawClipper,
IDDVideoPortContainer, and IDirectDrawVideoPort interfaces. For a list of the
error codes that each method can return, see the method description.

DD_OK
The request completed successfully.

DDERR_ALREADYINITIALIZED
The object has already been initialized.

DDERR_BLTFASTCANTCLIP
A DirectDrawClipper object is attached to a source surface that has passed
into a call to the IDirectDrawSurface4::BltFast method.

DDERR_CANNOTATTACHSURFACE
A surface cannot be attached to another requested surface.

DDERR_CANNOTDETACHSURFACE
A surface cannot be detached from another requested surface.

DDERR_CANTCREATEDC
Windows can not create any more device contexts (DCs), or a DC was
requested for a palette-indexed surface when the surface had no palette and

in.doc – page 345

the display mode was not palette-indexed (in this case DirectDraw cannot
select a proper palette into the DC).

DDERR_CANTDUPLICATE
Primary and 3-D surfaces, or surfaces that are implicitly created, cannot be
duplicated.

DDERR_CANTLOCKSURFACE
Access to this surface is refused because an attempt was made to lock the
primary surface without DCI support.

DDERR_CANTPAGELOCK
An attempt to page lock a surface failed. Page lock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CANTPAGEUNLOCK
An attempt to page unlock a surface failed. Page unlock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CLIPPERISUSINGHWND
An attempt was made to set a clip list for a DirectDrawClipper object that is
already monitoring a window handle.

DDERR_COLORKEYNOTSET
No source color key is specified for this operation.

DDERR_CURRENTLYNOTAVAIL
No support is currently available.

DDERR_DCALREADYCREATED
A device context (DC) has already been returned for this surface. Only one
DC can be retrieved for each surface.

DDERR_DEVICEDOESNTOWNSURFACE
Surfaces created by one DirectDraw device cannot be used directly by
another DirectDraw device.

DDERR_DIRECTDRAWALREADYCREATED
A DirectDraw object representing this driver has already been created for this
process.

DDERR_EXCEPTION
An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET
An attempt was made to set the cooperative level when it was already set to
exclusive.

DDERR_EXPIRED
The data has expired and is therefore no longer valid.

DDERR_GENERIC
There is an undefined error condition.

DDERR_HEIGHTALIGN
The height of the provided rectangle is not a multiple of the required
alignment.

DDERR_HWNDALREADYSET

in.doc – page 346

The DirectDraw cooperative level window handle has already been set. It
cannot be reset while the process has surfaces or palettes created.

DDERR_HWNDSUBCLASSED
DirectDraw is prevented from restoring state because the DirectDraw
cooperative level window handle has been subclassed.

DDERR_IMPLICITLYCREATED
The surface cannot be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY
The primary surface creation request does not match with the existing
primary surface.

DDERR_INVALIDCAPS
One or more of the capability bits passed to the callback function are
incorrect.

DDERR_INVALIDCLIPLIST
DirectDraw does not support the provided clip list.

DDERR_INVALIDDIRECTDRAWGUID
The globally unique identifier (GUID) passed to the DirectDrawCreate
function is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE
DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT
DirectDraw received a pointer that was an invalid DirectDraw object.

DDERR_INVALIDPARAMS
One or more of the parameters passed to the method are incorrect.

DDERR_INVALIDPIXELFORMAT
The pixel format was invalid as specified.

DDERR_INVALIDPOSITION
The position of the overlay on the destination is no longer legal.

DDERR_INVALIDRECT
The provided rectangle was invalid.

DDERR_INVALIDSTREAM
The specified stream contains invalid data.

DDERR_INVALIDSURFACETYPE
The requested operation could not be performed because the surface was of
the wrong type.

DDERR_LOCKEDSURFACES
One or more surfaces are locked, causing the failure of the requested
operation.

DDERR_MOREDATA
There is more data available than the specified buffer size can hold.

DDERR_NO3D
No 3-D hardware or emulation is present.

DDERR_NOALPHAHW

in.doc – page 347

No alpha acceleration hardware is present or available, causing the failure of
the requested operation.

DDERR_NOBLTHW
No blitter hardware is present.

DDERR_NOCLIPLIST
No clip list is available.

DDERR_NOCLIPPERATTACHED
No DirectDrawClipper object is attached to the surface object.

DDERR_NOCOLORCONVHW
The operation cannot be carried out because no color-conversion hardware is
present or available.

DDERR_NOCOLORKEY
The surface does not currently have a color key.

DDERR_NOCOLORKEYHW
The operation cannot be carried out because there is no hardware support for
the destination color key.

DDERR_NOCOOPERATIVELEVELSET
A create function is called without the IDirectDraw4::SetCooperativeLevel
method being called.

DDERR_NODC
No DC has ever been created for this surface.

DDERR_NODDROPSHW
No DirectDraw raster operation (ROP) hardware is available.

DDERR_NODIRECTDRAWHW
Hardware-only DirectDraw object creation is not possible; the driver does not
support any hardware.

DDERR_NODIRECTDRAWSUPPORT
DirectDraw support is not possible with the current display driver.

DDERR_NOEMULATION
Software emulation is not available.

DDERR_NOEXCLUSIVEMODE
The operation requires the application to have exclusive mode, but the
application does not have exclusive mode.

DDERR_NOFLIPHW
Flipping visible surfaces is not supported.

DDERR_NOFOCUSWINDOW
An attempt was made to create or set a device window without first setting
the focus window.

DDERR_NOGDI
No GDI is present.

DDERR_NOHWND
Clipper notification requires a window handle, or no window handle has been
previously set as the cooperative level window handle.

in.doc – page 348

DDERR_NOMIPMAPHW
The operation cannot be carried out because no mipmap capable texture
mapping hardware is present or available.

DDERR_NOMIRRORHW
The operation cannot be carried out because no mirroring hardware is present
or available.

DDERR_NONONLOCALVIDMEM
An attempt was made to allocate non-local video memory from a device that
does not support non-local video memory.

DDERR_NOOPTIMIZEHW
The device does not support optimized surfaces.

DDERR_NOOVERLAYDEST
The IDirectDrawSurface4::GetOverlayPosition method is called on an
overlay that the IDirectDrawSurface4::UpdateOverlay method has not
been called on to establish a destination.

DDERR_NOOVERLAYHW
The operation cannot be carried out because no overlay hardware is present
or available.

DDERR_NOPALETTEATTACHED
No palette object is attached to this surface.

DDERR_NOPALETTEHW
There is no hardware support for 16- or 256-color palettes.

DDERR_NORASTEROPHW
The operation cannot be carried out because no appropriate raster operation
hardware is present or available.

DDERR_NOROTATIONHW
The operation cannot be carried out because no rotation hardware is present
or available.

DDERR_NOSTRETCHHW
The operation cannot be carried out because there is no hardware support for
stretching.

DDERR_NOT4BITCOLOR
The DirectDrawSurface object is not using a 4-bit color palette and the
requested operation requires a 4-bit color palette.

DDERR_NOT4BITCOLORINDEX
The DirectDrawSurface object is not using a 4-bit color index palette and the
requested operation requires a 4-bit color index palette.

DDERR_NOT8BITCOLOR
The DirectDrawSurface object is not using an 8-bit color palette and the
requested operation requires an 8-bit color palette.

DDERR_NOTAOVERLAYSURFACE
An overlay component is called for a non-overlay surface.

DDERR_NOTEXTUREHW

in.doc – page 349

The operation cannot be carried out because no texture-mapping hardware is
present or available.

DDERR_NOTFLIPPABLE
An attempt has been made to flip a surface that cannot be flipped.

DDERR_NOTFOUND
The requested item was not found.

DDERR_NOTINITIALIZED
An attempt was made to call an interface method of a DirectDraw object
created by CoCreateInstance before the object was initialized.

DDERR_NOTLOADED
The surface is an optimized surface, but it has not yet been allocated any
memory.

DDERR_NOTLOCKED
An attempt is made to unlock a surface that was not locked.

DDERR_NOTPAGELOCKED
An attempt is made to page unlock a surface with no outstanding page locks.

DDERR_NOTPALETTIZED
The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW
The operation cannot be carried out because there is no hardware support for
vertical blank synchronized operations.

DDERR_NOZBUFFERHW
The operation to create a z-buffer in display memory or to perform a blit
using a z-buffer cannot be carried out because there is no hardware support
for z-buffers.

DDERR_NOZOVERLAYHW
The overlay surfaces cannot be z-layered based on the z-order because the
hardware does not support z-ordering of overlays.

DDERR_OUTOFCAPS
The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY
DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY
DirectDraw does not have enough display memory to perform the operation.

DDERR_OVERLAPPINGRECTS
Operation could not be carried out because the source and destination
rectangles are on the same surface and overlap each other.

DDERR_OVERLAYCANTCLIP
The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE
An attempt was made to have more than one color key active on an overlay.

DDERR_OVERLAYNOTVISIBLE

in.doc – page 350

The IDirectDrawSurface4::GetOverlayPosition method is called on a
hidden overlay.

DDERR_PALETTEBUSY
Access to this palette is refused because the palette is locked by another
thread.

DDERR_PRIMARYSURFACEALREADYEXISTS
This process has already created a primary surface.

DDERR_REGIONTOOSMALL
The region passed to the IDirectDrawClipper::GetClipList method is too
small.

DDERR_SURFACEALREADYATTACHED
An attempt was made to attach a surface to another surface to which it is
already attached.

DDERR_SURFACEALREADYDEPENDENT
An attempt was made to make a surface a dependency of another surface to
which it is already dependent.

DDERR_SURFACEBUSY
Access to the surface is refused because the surface is locked by another
thread.

DDERR_SURFACEISOBSCURED
Access to the surface is refused because the surface is obscured.

DDERR_SURFACELOST
Access to the surface is refused because the surface memory is gone. Call the
IDirectDrawSurface4::Restore method on this surface to restore the
memory associated with it.

DDERR_SURFACENOTATTACHED
The requested surface is not attached.

DDERR_TOOBIGHEIGHT
The height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE
The size requested by DirectDraw is too large. However, the individual
height and width are valid sizes.

DDERR_TOOBIGWIDTH
The width requested by DirectDraw is too large.

DDERR_UNSUPPORTED
The operation is not supported.

DDERR_UNSUPPORTEDFORMAT
The pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMASK
The bitmask in the pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMODE
The display is currently in an unsupported mode.

DDERR_VERTICALBLANKINPROGRESS

in.doc – page 351

A vertical blank is in progress.
DDERR_VIDEONOTACTIVE

The video port is not active.
DDERR_WASSTILLDRAWING

The previous blit operation that is transferring information to or from this
surface is incomplete.

DDERR_WRONGMODE
This surface cannot be restored because it was created in a different mode.

DDERR_XALIGN
The provided rectangle was not horizontally aligned on a required boundary.

Pixel Format Masks
[This is preliminary documentation and subject to change.]

This section contains information about the pixel formats supported by the hardware-
emulation layer (HEL). The following topics are discussed:

· Texture Map Formats
· Off-Screen Surface Formats

Texture Map Formats
[This is preliminary documentation and subject to change.]

A wide range of texture pixel formats are supported by the HEL. The following table
shows these formats. The Masks column contains the red, green, blue, and alpha
masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks

DDPF_RGB | 1 R: 0x00000000

DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 1 R: 0x00000000

DDPF_PALETTEINDEXED1 | G: 0x00000000

DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000

in.doc – page 352

DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000

DDPF_PALETTEINDEXED2 | G: 0x00000000

DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000

DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000

DDPF_PALETTEINDEXED4 | G: 0x00000000

DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 8 R: 0x00000000

DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB 8 R: 0x000000E0

G: 0x0000001C

B: 0x00000003

A: 0x00000000

DDPF_RGB | 16 R: 0x00000F00

DDPF_ALPHAPIXELS G: 0x000000F0

in.doc – page 353

B: 0x0000000F

A: 0x0000F000

DDPF_RGB 16 R: 0x0000F800

G: 0x000007E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB 16 R: 0x0000001F

G: 0x000007E0

B: 0x0000F800

A: 0x00000000

DDPF_RGB 16 R: 0x00007C00

G: 0x000003E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB | 16 R: 0x00007C00

DDPF_ALPHAPIXELS G: 0x000003E0

B: 0x0000001F

A: 0x00008000

DDPF_RGB 24 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 24 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

in.doc – page 354

A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 32 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

DDPF_RGB | 32 R: 0x00FF0000

DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x000000FF

A: 0xFF000000

DDPF_RGB | 32 R: 0x000000FF

DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x00FF0000

A: 0xFF000000

The HEL can create these formats in system memory. The DirectDraw device driver
for a 3-D–accelerated display card may create textures of other formats in display
memory. Such a driver exports the DDSCAPS_TEXTURE flag to indicate that it can
create textures.

Off-Screen Surface Formats
[This is preliminary documentation and subject to change.]

The following table shows the pixel formats for off-screen plain surfaces supported
by the DirectX® 5 HEL. The Masks column contains the red, green, blue, and alpha
masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks

DDPF_RGB | 1 R: 0x00000000

in.doc – page 355

DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000

DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000

DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 8 R: 0x00000000

DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB 16 R: 0x0000F800

G: 0x000007E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB 16 R: 0x00007C00

G: 0x000003E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB 24 R: 0x00FF0000

in.doc – page 356

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 24 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 32 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

DDPF_RGB | 32 R: 0x0000F800

DDPF_ZPIXELS G: 0x000007E0

B: 0x0000001F

Z: 0xFFFF0000

DDPF_RGB | 32 R: 0x00007C00

DDPF_ZPIXELS G: 0x000003E0

B: 0x0000001F

Z: 0xFFFF0000

In addition to supporting a wide range of off-screen surface formats, the HEL also
supports surfaces intended for use by Direct3D, or other 3-D renderers.

in.doc – page 357

Four Character Codes (FOURCC)
[This is preliminary documentation and subject to change.]

DirectDraw utilizes a special set of codes that are four characters in length. These
codes, called four character codes or FOURCCs, are stored in file headers of files
containing multimedia data such as bitmap images, sound, or video. FOURCCs
describe the software technology that was used to produce multimedia data. By
implication, they also describe the format of the data itself.

DirectDraw applications use FOURCCs for image color and format conversion. If an
application calls the IDirectDrawSurface4::GetPixelFormat method to request the
pixel format of a surface whose format is not RGB, the dwFourCC member of the
DDPIXELFORMAT structure identifies the FOURCC when the method returns.
For more information, see Converting Color and Format.

In addition, the biCompression member of the BITMAPINFOHEADER structure
can be set to a FOURCC to indicate the codec used to compress or decompress an
image.

FOURCCs are registered with Microsoft by the vendors of the respective multimedia
software technologies. Some common FOURCCs appear in the following list.

FOURCC Company Technology Name

AUR2 AuraVision Corporation AuraVision Aura 2: YUV 422
AURA AuraVision Corporation AuraVision Aura 1: YUV 411
CHAM Winnov, Inc. MM_WINNOV_CAVIARA_CHAMPAGNE
CVID Supermac Cinepak by Supermac
CYUV Creative Labs, Inc Creative Labs YUV
DXT1 Microsoft Corporation DirectX Texture Compression format 1
DXT2 Microsoft Corporation DirectX Texture Compression format 2
DXT3 Microsoft Corporation DirectX Texture Compression format 3
DXT4 Microsoft Corporation DirectX Texture Compression format 4
DXT5 Microsoft Corporation DirectX Texture Compression format 5
FVF1 Iterated Systems, Inc. Fractal Video Frame
IF09 Intel Corporation Intel Intermediate YUV9
IV31 Intel Corporation Indeo 3.1
JPEG Microsoft Corporation Still Image JPEG DIB
MJPG Microsoft Corporation Motion JPEG Dib Format
MRLE Microsoft Corporation Run Length Encoding
MSVC Microsoft Corporation Video 1
PHMO IBM Corporation Photomotion
RT21 Intel Corporation Indeo 2.1
ULTI IBM Corporation Ultimotion

in.doc – page 358

V422 Vitec Multimedia 24 bit YUV 4:2:2
V655 Vitec Multimedia 16 bit YUV 4:2:2
VDCT Vitec Multimedia Video Maker Pro DIB
VIDS Vitec Multimedia YUV 4:2:2 CCIR 601 for V422
YU92 Intel Corporation YUV
YUV8 Winnov, Inc. MM_WINNOV_CAVIAR_YUV8
YUV9 Intel Corporation YUV9
YUYV Canopus, Co., Ltd. BI_YUYV, Canopus
ZPEG Metheus Video Zipper

DirectDraw Visual Basic Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements that DirectDraw
provides. Reference material is divided into the following categories:

· Classes
· Types
· Enumerations
· Error Codes
· Pixel Format Masks
· Four Character Codes (FOURCC)

Classes
[This is preliminary documentation and subject to change.]

This section contains reference information about the classes used with the
DirectDraw component. The following classes are covered:

· DirectDraw4
· DirectDrawClipper
· DirectDrawColorControl
· DirectDrawEnum
· DirectDrawEnumModes
· DirectDrawEnumSurfaces
· DirectDrawGammaControl
· DirectDrawPalette

in.doc – page 359

· DirectDrawSurface4
· DirectX7

DirectDraw4
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDraw4 class to create DirectDraw objects
and work with system-level variables. This section is a reference to the methods of
this class. For a conceptual overview, see The DirectDraw Object.

The methods of the DirectDraw4 class can be organized into the following groups:

Cooperative levels SetCooperativeLevel
TestCooperativeLevel

Creating objects CreateClipper
CreatePalette
CreateSurface
CreateSurfaceFromFile
CreateSurfaceFromResource
GetDirect3D
LoadPaletteFromBitmap

Device capabilities GetCaps

Display modes GetDisplayMode
GetDisplayModesEnum
GetMonitorFrequency
RestoreDisplayMode
SetDisplayMode
WaitForVerticalBlank

Display status GetScanLine
GetVerticalBlankStatus

Miscellaneous GetAvailableTotalMem
GetFourCCCodes
GetFreeMem

IDH__dx_DirectDraw4_ddraw_vb

in.doc – page 360

GetNumFourCCCodes

Surface management DuplicateSurface
FlipToGDISurface
GetGDISurface
GetSurfaceFromDC
GetSurfacesEnum
RestoreAllSurfaces

The DirectDraw4 class extends the features of previous versions of the class by
offering methods enabling more flexible surface management than previous versions.

DirectDraw4.CreateClipper
[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateClipper method creates a DirectDrawClipper object.

object.CreateClipper(flags As Long) As DirectDrawClipper

object
Object expression that resolves to a DirectDraw4 object.

flags
Argument that is currently not used and must be set to 0.

Return Values
If the method succeeds, a DirectDrawClipper object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDraw4.CreateClipper_ddraw_vb

in.doc – page 361

Remarks
The DirectDrawClipper object can be attached to a DirectDrawSurface and used
during DirectDrawSurface4.Blt and DirectDrawSurface4.UpdateOverlay
operations.

See Also
DirectDrawSurface4.GetClipper, DirectDrawSurface4.SetClipper

DirectDraw4.CreatePalette
[This is preliminary documentation and subject to change.]

The DirectDraw4.CreatePalette method creates a DirectDrawPalette object for
this DirectDraw object.

object.CreatePalette(_
 flags As CONST_DDPCAPSFLAGS, _
 pe() As PALETTEENTRY) As DirectDrawPalette

object
Object expression that resolves to a DirectDraw4 object.

flags
One or more of the constants of the CONST_DDPCAPSFLAGS enumeration:
DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.
DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.
DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.
DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.
DDPCAPS_8BITENTRIES

Indicates that the index refers to an 8-bit color index. This flag is valid only
when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT
flag, and when the target surface is in 8 bpp. Each color entry is 1 byte long
and is an index to a destination surface's 8-bpp palette.

DDPCAPS_ALPHA
Indicates that the flags member of the associated PALETTEENTRY type is
to be interpreted as a single 8-bit alpha value. A palette created with this flag
can only be attached to a texture (a surface created with the
DDSCAPS_TEXTURE capability flag).

DDPCAPS_ALLOW256
Indicates that this palette can have all 256 entries defined.

IDH__dx_DirectDraw4.CreatePalette_ddraw_vb

in.doc – page 362

DDPCAPS_INITIALIZE
This flag is obsolete and ignored by DirectDraw.

DDPCAPS_PRIMARYSURFACE
This palette is attached to the primary surface. Changing this palette's color
table immediately affects the display unless DDPSETPAL_VSYNC is
specified and supported.

DDPCAPS_PRIMARYSURFACELEFT
This palette is the one attached to the left eye primary surface. Changing this
palette's color table immediately affects the left eye display unless
DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC
This palette can have modifications to it synced with the monitors refresh
rate.

pe()
An array of 2, 4, 16, or 256 PALETTEENTRY types that will initialize this
DirectDrawPalette object.

Return Values
If the method succeeds, a DirectDrawPalette object is returned.

Error Codes
If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.CreateSurface
[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateSurface method creates a DirectDrawSurface4 object for
this DirectDraw object.

object.CreateSurface(_
 dd As DDSURFACEDESC2) As DirectDrawSurface4

object
Object expression that resolves to a DirectDraw4 object.

IDH__dx_DirectDraw4.CreateSurface_ddraw_vb

in.doc – page 363

dd
A DDSURFACEDESC2 type that describes the requested surface. A
DDSCAPS2 type is a member of DDSURFACEDESC2.

Return Values
If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW
DDERR_NOCOOPERATIVELEVELSET
DDERR_NODIRECTDRAWHW
DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE
DDERR_NOFLIPHW
DDERR_NOMIPMAPHW
DDERR_NOOVERLAYHW
DDERR_NOZBUFFERHW
DDERR_OUTOFMEMORY
DDERR_OUTOFVIDEOMEMORY
DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_UNSUPPORTEDMODE

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.CreateSurfaceFromFi
le

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateSurfaceFromFile method creates a DirectDrawSurface4
object for this DirectDraw object and attaches the specified bitmap image to the
DirectDrawSurface object.

IDH__dx_DirectDraw4.CreateSurfaceFromFile_ddraw_vb

in.doc – page 364

object.CreateSurfaceFromFile(_
 file As String, _
 dd As DDSURFACEDESC2) As DirectDrawSurface4

object
Object expression that resolves to a DirectDraw4 object.

file
Name of the bitmap image to load onto the surface that is created.

dd
A DDSURFACEDESC2 type that describes the requested surface. A
DDSCAPS2 type is a member of DDSURFACEDESC2.

Return Values
If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW
DDERR_NOCOOPERATIVELEVELSET
DDERR_NODIRECTDRAWHW
DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE
DDERR_NOFLIPHW
DDERR_NOMIPMAPHW
DDERR_NOOVERLAYHW
DDERR_NOZBUFFERHW
DDERR_OUTOFMEMORY
DDERR_OUTOFVIDEOMEMORY
DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_UNSUPPORTEDMODE

For information on trapping errors, see the Visual Basic Error Trapping topic.

in.doc – page 365

DirectDraw4.CreateSurfaceFromR
esource

[This is preliminary documentation and subject to change.]

The DirectDraw4.CreateSurfaceFromResource method creates a
DirectDrawSurface4 object for this DirectDraw object and attaches the specified
resource to the DirectDrawSurface object.

object.CreateSurfaceFromResource(_
 file As String, _
 resName As String, _
 ddsd As DDSURFACEDESC2) As DirectDrawSurface4

object
Object expression that resolves to a DirectDraw4 object.

file
Filename of the resource that is loaded onto the surface that is created. If the
resource is part of the executable, specifying an empty string for this argument
will locate the resource. This argument can also be the name of an OCX where
the resource is located.

resName
Name of the resource that is loaded onto the surface that is created.

ddsd
A DDSURFACEDESC2 type that describes the requested surface. A
DDSCAPS2 type is a member of DDSURFACEDESC2.

Return Values
If the method succeeds, a DirectDrawSurface4 object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW
DDERR_NOCOOPERATIVELEVELSET
DDERR_NODIRECTDRAWHW

IDH__dx_DirectDraw4.CreateSurfaceFromResource_ddraw_vb

in.doc – page 366

DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE
DDERR_NOFLIPHW
DDERR_NOMIPMAPHW
DDERR_NOOVERLAYHW
DDERR_NOZBUFFERHW
DDERR_OUTOFMEMORY
DDERR_OUTOFVIDEOMEMORY
DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_UNSUPPORTEDMODE

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
If you supply an empty string as the module name and you run the application in the
Visual Basic environment, then the resource won't be found. Passing an empty string
will succeed only if you're using a stand-alone executable.

DirectDraw4.DuplicateSurface
[This is preliminary documentation and subject to change.]

The DirectDraw4.DuplicateSurface method duplicates a DirectDrawSurface4
object.

object.DuplicateSurface(_
 ddIn As DirectDrawSurface4) As DirectDrawSurface4

object
Object expression that resolves to a DirectDraw4 object.

ddIn
A DirectDrawSurface4 object that is the surface to be duplicated.

Return Values
If the method succeeds, a newly duplicated DirectDrawSurface4 object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_CANTDUPLICATE

IDH__dx_DirectDraw4.DuplicateSurface_ddraw_vb

in.doc – page 367

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method creates a new DirectDrawSurface4 object that points to the same
surface memory as an existing DirectDrawSurface object. This duplicate can be used
just like the original object. The surface memory is released after the last object
referencing it is released. A primary surface, 3-D surface, or implicitly created
surface cannot be duplicated.

DirectDraw4.FlipToGDISurface
[This is preliminary documentation and subject to change.]

The DirectDraw4.FlipToGDISurface method makes the surface that GDI writes to
the primary surface.

object.FlipToGDISurface()

object
Object expression that resolves to a DirectDraw4 object.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method can be called at the end of a page-flipping application to ensure that the
display memory that GDI is writing to is visible to the user.

See Also
DirectDraw4.GetGDISurface

IDH__dx_DirectDraw4.FlipToGDISurface_ddraw_vb

in.doc – page 368

DirectDraw4.GetAvailableTotalMe
m

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetAvailableTotalMem method retrieves the total amount of
display memory available for a given type of surface.

object.GetAvailableTotalMem(_
 ddsCaps As DDSCAPS2) As Long

object
Object expression that resolves to a DirectDraw4 object.

ddsCaps
A DDSCAPS2 type that indicates the hardware capabilities of the proposed
surface.

Return Value
If the method succeeds, the return value is the amount of total memory.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method provides only a snapshot of the current display-memory state. The
amount of free display memory is subject to change as surfaces are created and
released. Therefore, you should use the free memory value only as an approximation.
In addition, a particular display adapter card may make no distinction between two
different memory types. For example, the adapter might use the same portion of
display memory to store z-buffers and textures. So, allocating one type of surface
(for example, a z-buffer) can affect the amount of display memory available for
another type of surface (for example, textures). Therefore, it is best to first allocate
an application's fixed resources (such as front and back buffers , and z-buffers)

IDH__dx_DirectDraw4.GetAvailableTotalMem_ddraw_vb

in.doc – page 369

before determining how much memory is available for dynamic use (such as texture
mapping).

DirectDraw4.GetCaps
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetCaps method fills in the capabilities of the device driver for
the hardware and the hardware-emulation layer (HEL).

object.GetCaps(hwCaps As DDCAPS, helCaps As DDCAPS)

object
Object expression that resolves to a DirectDraw4 object.

hwCaps
A DDCAPS type that will be filled with the capabilities of the hardware, as
reported by the device driver. Set this argument to NOTHING if device driver
capabilities are not to be retrieved.

helCaps
A DDCAPS type that will be filled with the capabilities of the HEL. Set this
argument to NOTHING if HEL capabilities are not to be retrieved.

Error Codes
If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

You can only set one of the two arguments to NOTHING in Visual Basic to exclude
it. If you set both to NOTHING the method will fail, returning
DDERR_INVALIDPARAMS.

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.GetDirect3D
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetDirect3D method creates a Direct3D3 object.

object.GetDirect3D() As Direct3D3

object
Object expression that resolves to a DirectDraw4 object.

IDH__dx_DirectDraw4.GetCaps_ddraw_vb
IDH__dx_DirectDraw4.GetDirect3D_ddraw_vb

in.doc – page 370

Return Value
If the method succeeds, a Direct3D3 object is returned.

Error Codes
E_INVALIDINTERFACE
E_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
The object returned by a successful function call must be assigned to a Direct3D3
object variable. For example, in Visual Basic:

Dim Direct3D as Direct3D3
Set Direct3D = object.GetDirect3D()

DirectDraw4.GetDisplayMode
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetDisplayMode method retrieves the current display mode.

object.GetDisplayMode(surface As DDSURFACEDESC2)

object
Object expression that resolves to a DirectDraw4 object.

surface
A DDSURFACEDESC2 type that will be filled with a description of the surface
display mode.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTEDMODE

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDraw4.GetDisplayMode_ddraw_vb

in.doc – page 371

Remarks
An application should not save the information returned by this method to restore the
display mode on clean-up. The application should use the
DirectDraw4.RestoreDisplayMode method to restore the mode on clean-up,
thereby avoiding mode-setting conflicts that could arise in a multiprocess
environment.

See Also
DirectDraw4.SetDisplayMode, DirectDraw4.RestoreDisplayMode,
DirectDraw4.GetDisplayModesEnum

DirectDraw4.GetDisplayModesEnu
m

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetDisplayModesEnum method returns a
DirectDrawEnumModes object filled with display mode information.

object.GetDisplayModesEnum(_
 flags As CONST_DDEDMFLAGS, _
 ddsd As DDSURFACEDESC2) As DirectDrawEnumModes

object
Object expression that resolves to a DirectDraw4 object.

flags
One of the following constants of the CONST_DDEDMFLAGS enumeration:
DDEDM_REFRESHRATES

Enumerates modes with different refresh rates. This guarantees that a
particular mode will be enumerated only once. This flag specifies whether the
refresh rate is taken into account when determining if a mode is unique.

DDEDM_STANDARDVGAMODES
Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

ddsd
A DDSURFACEDESC2 type that will be filled with a description of the surface
display mode.

Return Value
If the method succeeds, a DirectDrawEnumModes object is returned which you can
then query for a description of the display modes.

IDH__dx_DirectDraw4.GetDisplayModesEnum_ddraw_vb

in.doc – page 372

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
E_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
An application should not save the information returned by this method to restore the
display mode on clean-up. The application should use the
DirectDraw4.RestoreDisplayMode method to restore the mode on clean-up,
thereby avoiding mode-setting conflicts that could arise in a multiprocess
environment.

See Also
DirectDraw4.SetDisplayMode, DirectDraw4.RestoreDisplayMode,
DirectDraw4.GetDisplayModesEnum

DirectDraw4.GetFourCCCodes
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetFourCCCodes method retrieves the FOURCC codes
supported by the DirectDraw object.

object.GetFourCCCodes(ccCodes() As Long)

object
Object expression that resolves to a DirectDraw4 object.

ccCodes
An array of variables that will be filled with the Four Character
Codes(FOURCC) supported by this DirectDraw object.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDraw4.GetFourCCCodes_ddraw_vb

in.doc – page 373

Remarks
To retrieve the number of codes supported by a DirectDraw4 object, use
DirectDraw4.GetNumFourCCCodes.

DirectDraw4.GetFreeMem
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetFreeMem method retrieves the total amount of display
memory currenty free.

object.GetFreeMem(ddsCaps As DDSCAPS2) As Long

object
Object expression that resolves to a DirectDraw4 object.

ddsCaps
A DDSCAPS2 type that indicates the hardware capabilities of the proposed
surface.

Return Value
The amount of total memory.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method provides only a snapshot of the current display-memory state. The
amount of free display memory is subject to change as surfaces are created and
released. Therefore, you should use the free memory value only as an approximation.
In addition, a particular display adapter card may make no distinction between two
different memory types. For example, the adapter might use the same portion of
display memory to store z-buffers and textures. So, allocating one type of surface
(for example, a z-buffer) can affect the amount of display memory available for
another type of surface (for example, textures). Therefore, it is best to first allocate
an application's fixed resources (such as front and back buffers , and z-buffers)

IDH__dx_DirectDraw4.GetFreeMem_ddraw_vb

in.doc – page 374

before determining how much memory is available for dynamic use (such as texture
mapping).

DirectDraw4.GetGDISurface
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetGDISurface method retrieves the DirectDrawSurface object
that currently represents the surface memory that GDI is treating as the primary
surface.

object.GetGDISurface() As DirectDrawSurface4

object
Object expression that resolves to a DirectDraw4 object.

Return Value
If the method succeeds, a DirectDrawSurface4 is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDraw4.FlipToGDISurface

DirectDraw4.GetMonitorFrequency
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetMonitorFrequency method retrieves the frequency of the
monitor being driven by the DirectDraw object.

object.GetMonitorFrequency() As Long

object
Object expression that resolves to a DirectDraw4 object.

IDH__dx_DirectDraw4.GetGDISurface_ddraw_vb
IDH__dx_DirectDraw4.GetMonitorFrequency_ddraw_vb

in.doc – page 375

Return Values
The monitor frequency, reported in Hz.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.GetNumFourCCCodes
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetNumFourCCCodes method retrieves the number of
FOURCC codes supported by the DirectDraw object.

object.GetFourCCCodes() As Long

object
Object expression that resolves to a DirectDraw4 object.

Return Value
The number of supported Four Character Codes(FOURCC).

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method is typically called before calling DirectDraw4.GetFourCCCodes.

DirectDraw4.GetScanLine
[This is preliminary documentation and subject to change.]

IDH__dx_DirectDraw4.GetNumFourCCCodes_ddraw_vb
IDH__dx_DirectDraw4.GetScanLine_ddraw_vb

in.doc – page 376

The DirectDraw4.GetScanLine method retrieves the scan line that is currently
being drawn on the monitor.

object.GetScanLine(lines As Long) As Long

object
Object expression that resolves to a DirectDraw4 object.

lines
The current scan line.

Return Value
If the method succeeds, the return value is DD_OK, indicating that the calling
application can continue executing.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_VERTICALBLANKINPROGRESS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Scan lines are reported as zero-based integers. The returned scan line value is
between 0 and n, where scan line 0 is the first visible scan line on the screen and n is
the last visible scan line, plus any scan lines that occur during the vertical blank
period. So, in a case where an application is running at 640480, and there are 12
scan lines during vblank, the values returned by this method will range from 0 to
491.

See Also
DirectDraw4.GetVerticalBlankStatus, DirectDraw4.WaitForVerticalBlank

DirectDraw4.GetSurfaceFromDC
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetSurfaceFromDC method retrieves the DirectDrawSurface4
object for a surface based on its GDI device context handle.

IDH__dx_DirectDraw4.GetSurfaceFromDC_ddraw_vb

in.doc – page 377

object.GetSurfaceFromDC(hdc As Long) As
DirectDrawSurface4

object
Object expression that resolves to a DirectDraw4 object.

hdc
The handle to a display device context.

Return Value
If the method succeeds, a DirectDrawSurface4 is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_NOTFOUND

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method will succeed only for device context handles that identify surfaces
already associated with the DirectDraw object.

See Also
Surfaces and Device Contexts

DirectDraw4.GetSurfacesEnum
[This is preliminary documentation and subject to change.]

The DirectDraw4.GetSurfacesEnum method returns a DirectDrawEnumSurfaces
object which is used to enumerate the attached surfaces of the DirectDraw4 object.

object.GetSurfacesEnum(_
 flags As CONST_DDENUMSURFACESFLAGS, _
 desc As DDSURFACEDESC2) As DirectDrawEnumSurfaces

object
Object expression that resolves to a DirectDraw4 object.

IDH__dx_DirectDraw4.GetSurfacesEnum_ddraw_vb

in.doc – page 378

flags
A CONST_DDENUMSURFACESFLAGS enumeration containing a
combination of one search type flag and one matching flag. The search type flag
determines how the method searches for matching surfaces; you can search for
surfaces that can be created using the description in the desc parameter or you
can search for existing surfaces that already match that description. The
matching flag determines whether the method enumerates all surfaces, only
those that match, or only those that don't match the description in the desc
parameter.
Search type flags
DDENUMSURFACES_CANBECREATED
Enumerates the first surface that can be created and meets the search criterion.
This flag can only be used with the DDENUMSURFACES_MATCH flag.
DDENUMSURFACES_DOESEXIST
Enumerates the already existing surfaces that meet the search criterion.
Matching flags
DDENUMSURFACES_ALL
Enumerates all of the surfaces that meet the search criterion. This flag can only
be used with the DDENUMSURFACES_DOESEXIST search type flag.
DDENUMSURFACES_MATCH
Searches for any surface that matches the surface description.
DDENUMSURFACES_NOMATCH
Searches for any surface that does not match the surface desc

desc
A DDSURFACEDESC2 type that defines the surface of interest. This
parameter can be NOTHING if the flags parameter includes the
DDENUMSURFACES_ALL flag.

Return Value
If the method succeeds, a DirectDrawEnumSurfaces object is returned which you
can then query for a description of the attached surfaces.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
E_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

in.doc – page 379

Remarks
If the DDENUMSURFACES_CANBECREATED flag is set, this method attempts to
temporarily create a surface that meets the search criterion.

DirectDraw4.GetVerticalBlankStat
us

[This is preliminary documentation and subject to change.]

The DirectDraw4.GetVerticalBlankStatus method retrieves the status of the
vertical blank.

object.GetVerticalBlankStatus() As Long

object
Object expression that resolves to a DirectDraw4 object.

Return Value
The status of the vertical blank. This argument is zero if a vertical blank is
occurring, and non-zero otherwise.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
To synchronize with the vertical blank, use the
DirectDraw4.WaitForVerticalBlank method.

See Also
DirectDraw4.GetScanLine, DirectDraw4.WaitForVerticalBlank

IDH__dx_DirectDraw4.GetVerticalBlankStatus_ddraw_vb

in.doc – page 380

DirectDraw4.LoadPaletteFromBitm
ap

[This is preliminary documentation and subject to change.]

The DirectDraw4.LoadPaletteFromBitmap method creates a DirectDrawPalette
object based on the palette of the specified bitmap for this DirectDraw object.

object.LoadPaletteFromBitmap(_
 bName As String) As DirectDrawPalette

object
Object expression that resolves to a DirectDraw4 object.

bName
The name of the bitmap from which you want to load the palette.

Return Value
If the method succeeds, a DirectDrawPalette object is returned.

Error Codes
If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDraw4.RestoreAllSurfaces
[This is preliminary documentation and subject to change.]

The DirectDraw4.RestoreAllSurfaces method restores all the surfaces created for
the DirectDraw object, in the order they were created.

object.RestoreAllSurfaces()

object
Object expression that resolves to a DirectDraw4 object.

IDH__dx_DirectDraw4.LoadPaletteFromBitmap_ddraw_vb
IDH__dx_DirectDraw4.RestoreAllSurfaces_ddraw_vb

in.doc – page 381

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method is provided for convenience. Effectively, this method calls the
DirectDrawSurface4.Restore method for each surface created by this DirectDraw
object.

See Also
DirectDrawSurface4.Restore, Losing and Restoring Surfaces

DirectDraw4.RestoreDisplayMode
[This is preliminary documentation and subject to change.]

The DirectDraw4.RestoreDisplayMode method resets the mode of the display
device hardware for the primary surface to what it was before the
DirectDraw4.SetDisplayMode method was called. Exclusive-level access is
required to use this method.

object.RestoreDisplayMode()

object
Object expression that resolves to a DirectDraw4 object.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_LOCKEDSURFACES
DDERR_NOEXCLUSIVEMODE

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDraw4.RestoreDisplayMode_ddraw_vb

in.doc – page 382

See Also
DirectDraw4.SetDisplayMode, DirectDrawEnumModes,
DirectDraw4.SetCooperativeLevel

DirectDraw4.SetCooperativeLevel
[This is preliminary documentation and subject to change.]

The DirectDraw4.SetCooperativeLevel method determines the top-level behavior
of the application.

object.SetCooperativeLevel(_
 hdl As Long, _
 flags As CONST_DDSCLFLAGS)

object
Object expression that resolves to a DirectDraw4 object.

hdl
Argument specifying the window handle used for the application. Set to the
calling application's top-level window handle (not a handle for any child
windows created by the top-level window). This argument can be NOTHING
when the DDSCL_NORMAL flag is specified in the flags argument.

flags
One or more of the following constants from the CONST_DDSCLFLAGS
enumeration:
DDSCL_ALLOWMODEX

Allows the use of Mode X display modes. This flag can only be used if the
DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT
Allows CTRL+ALT+DELl to function while in exclusive (full-screen) mode.

DDSCL_CREATEDEVICEWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that DirectDraw is to create and manage a default device window for this
DirectDraw object. For more information, see Focus and Device Windows.

DDSCL_EXCLUSIVE
Requests the exclusive level. This flag must be used with the
DDSCL_FULLSCREEN flag.

DDSCL_FULLSCREEN
Indicates that the exclusive-mode owner will be responsible for the entire
primary surface. GDI can be ignored. This flag must be used with the
DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED
Requests multithread-safe DirectDraw behavior. This causes Direct3D to take
the global critical section more frequently.

IDH__dx_DirectDraw4.SetCooperativeLevel_ddraw_vb

in.doc – page 383

DDSCL_NORMAL
Indicates that the application will function as a regular Windows application.
This flag cannot be used with the DDSCL_ALLOWMODEX,
DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES
Indicates that DirectDraw is not allowed to minimize or restore the
application window on activation.

DDSCL_SETDEVICEWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that the hdl argument is the window handle of the device window for this
DirectDraw object. This flag cannot be used with the
DDSCL_SETFOCUSWINDOW flag.

DDSCL_SETFOCUSWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that the hdl argument is the window handle of the focus window for this
DirectDraw object. This flag cannot be used with the
DDSCL_SETDEVICEWINDOW flag.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_EXCLUSIVEMODEALREADYSET
DDERR_HWNDALREADYSET
DDERR_HWNDSUBCLASSED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method must be called by the same thread that created the application window.

An application must set either the DDSCL_EXCLUSIVE or DDSCL_NORMAL
flag.

The DDSCL_EXCLUSIVE flag must be set to call functions that can have drastic
performance consequences for other applications. For more information, see
Cooperative Levels.

in.doc – page 384

See Also
DirectDraw4.SetDisplayMode, DirectDraw4.GetDisplayModesEnum, Mode X
and Mode 13 Display Modes, Focus and Device Windows.

DirectDraw4.SetDisplayMode
[This is preliminary documentation and subject to change.]

The DirectDraw4.SetDisplayMode method sets the mode of the display-device
hardware.

object.SetDisplayMode(_
 w As Long, _
 h As Long, _
 bpp As Long, _
 ref As Long, _
 mode As CONST_DDSDMFLAGS)

object
Object expression that resolves to a DirectDraw4 object.

w and h
The width and height of the new mode.

bpp
The bits per pixel (bpp) of the new mode.

ref
The refresh rate of the new mode. Set this value to 0 to request the default
refresh rate for the driver.

flags
One of the constants from the CONST_DDSDMFLAGS enumeration
describing additional options. Currently, the only valid flag is
DDSDM_STANDARDVGAMODE, which causes the method to set Mode 13
instead of Mode X 320x200x8 mode. If you are setting another resolution, bit
depth, or a Mode X mode, do not use this flag and set the argument to 0.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDMODE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_LOCKEDSURFACES

IDH__dx_DirectDraw4.SetDisplayMode_ddraw_vb

in.doc – page 385

DDERR_NOEXCLUSIVEMODE
DDERR_SURFACEBUSY
DDERR_UNSUPPORTED
DDERR_UNSUPPORTEDMODE
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method must be called by the same thread that created the application window.

If another application changes the display mode, the primary surface will be lost and
will return DDERR_SURFACELOST until it is recreated to match the new display
mode.

See Also
DirectDraw4.RestoreDisplayMode, DirectDraw4.GetDisplayModesEnum,
DirectDraw4.SetCooperativeLevel, Setting Display Modes, Restoring Display
Modes

DirectDraw4.TestCooperativeLevel
[This is preliminary documentation and subject to change.]

The DirectDraw4.TestCooperativeLevel method reports the current cooperative-
level status of the DirectDraw device for a windowed or full-screen application.

object.TestCooperativeLevel() As Long

object
Object expression that resolves to a DirectDraw4 object.

Return Values
If the method succeeds, the return value is DD_OK, indicating that the calling
application can continue executing.

Error Codes
If the method fails or if the DD_OK was not returned, the error code may be one of
the following values (see remarks):

DDERR_INVALIDOBJECT
DDERR_EXCLUSIVEMODEALREADYSET

IDH__dx_DirectDraw4.TestCooperativeLevel_ddraw_vb

in.doc – page 386

DDERR_NOEXCLUSIVEMODE
DD_OK
DDERR_WRONGMODE

Remarks
This method is particularly useful to applications that use the WM_ACTIVATEAPP
and WM_DISPLAYCHANGE system messages as a notification to restore surfaces
or re-create DirectDraw objects. A zero for a return value always indicates that the
application can continue execution without restoring or re-creating surfaces, but the
failure codes are interpreted differently depending on the cooperative-level that the
application uses. For more information, see Testing Cooperative Levels.

DirectDraw4.WaitForVerticalBlank
[This is preliminary documentation and subject to change.]

The DirectDraw4.WaitForVerticalBlank method helps the application synchronize
itself with the vertical-blank interval.

object.WaitForVerticalBlank(_
 flags As CONST_DDWAITVBFLAGS, _
 handle As Long) As Long

object
Object expression that resolves to a DirectDraw4 object.

flags
One of the following constants of the CONST_DDWAITVBFLAGS
enumeration specifying how long to wait for the vertical blank.
DDWAITVB_BLOCKBEGIN

Returns when the vertical-blank interval begins.
DDWAITVB_BLOCKBEGINEVENT

Triggers an event when the vertical blank begins. This value is not currently
supported.

DDWAITVB_BLOCKEND
Returns when the vertical-blank interval ends and the display begins.

handle
The handle of the event to be triggered when the vertical blank begins. This
argument is not currently used.

Return Values
If the method succeeds, the return value is DD_OK, indicating that the calling
application can continue executing.

IDH__dx_DirectDraw4.WaitForVerticalBlank_ddraw_vb

in.doc – page 387

Error Codes
If the method fails or if the return value is not DD_OK, the error code may be one of
the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DD_OK
DDERR_WASSTILLDRAWING

See Also
DirectDraw4.GetVerticalBlankStatus, DirectDraw4.GetScanLine

DirectDrawClipper
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawClipper class to manage clip lists.
This section is a reference to the methods of this class. For a conceptual overview,
see Clippers.

The methods of the DirectDrawClipper class can be organized into the following
groups:

Clip list GetClipList
GetClipListSize
IsClipListChanged
SetClipList

Handles GetHWnd
SetHWnd

DirectDrawClipper.GetClipList
[This is preliminary documentation and subject to change.]

The DirectDrawClipper.GetClipList method retrieves a copy of the clip list
associated with a DirectDrawClipper object.

object.GetClipList(rects() As RECT)

object

IDH__dx_DirectDrawClipper_ddraw_vb
IDH__dx_DirectDrawClipper.GetClipList_ddraw_vb

in.doc – page 388

Object expression that resolves to a DirectDrawClipper object.
rects()

An array of RECT types is filled with the clip list.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCLIPLIST
DDERR_REGIONTOOSMALL

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawClipper.SetClipList

DirectDrawClipper.GetClipListSize
[This is preliminary documentation and subject to change.]

The DirectDrawClipper.GetClipListSize method retrieves the size of the clip list
associated with a DirectDrawClipper object.

object.GetClipListSize() As Long

object
Object expression that resolves to a DirectDrawClipper object.

Return Value
If the method succeeds, the size of the clip list, in bytes, is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDPARAMS
DDERR_NOCLIPLIST

IDH__dx_DirectDrawClipper.GetClipListSize_ddraw_vb

in.doc – page 389

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawClipper.GetHWnd
[This is preliminary documentation and subject to change.]

The DirectDrawClipper.GetHWnd method retrieves the window handle previously
associated with this DirectDrawClipper object by the
DirectDrawClipper.SetHWnd method.

object.GetHWnd() As Long

object
Object expression that resolves to a DirectDrawClipper object.

Return Value
If the method succeeds, the window handle is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawClipper.SetHWnd

DirectDrawClipper.IsClipListChang
ed

[This is preliminary documentation and subject to change.]

The DirectDrawClipper.IsClipListChanged method monitors the status of the clip
list if a window handle is associated with a DirectDrawClipper object.

object.IsClipListChanged() As Long

object
Object expression that resolves to a DirectDrawClipper object.

IDH__dx_DirectDrawClipper.GetHWnd_ddraw_vb
IDH__dx_DirectDrawClipper.IsClipListChanged_ddraw_vb

in.doc – page 390

Return Value
If the method succeeds, the status of the clip list is returned. The result is non-zero if
the clip list has changed and zero if it hasn't.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawClipper.SetClipList
[This is preliminary documentation and subject to change.]

The DirectDrawClipper.SetClipList method sets or deletes the clip list used by the
DirectDrawSurface4.Blt and DirectDrawSurface4.UpdateOverlay methods on
surfaces to which the parent DirectDrawClipper object is attached.

object.SetClipList(_
 count As Long, _ ,
 rects() as RECT)

object
Object expression that resolves to a DirectDrawClipper object.

count
The number of RECT types in the rects() array.

rects()
An array of RECT types that describe the clip list.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_CLIPPERISUSINGHWND
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDrawClipper.SetClipList_ddraw_vb

in.doc – page 391

Remarks
The clip list cannot be set if a window handle is already associated with the
DirectDrawClipper object. Note that the DirectDrawSurface4.BltFast method
cannot clip.

See Also
DirectDrawClipper.GetClipList, DirectDrawSurface4.Blt,
DirectDrawSurface4.BltFast, DirectDrawSurface4.UpdateOverlay

DirectDrawClipper.SetHWnd
[This is preliminary documentation and subject to change.]

The DirectDrawClipper.SetHWnd method sets the window handle that will obtain
the clipping information.

object.SetHWnd(hdl As Long)

object
Object expression that resolves to a DirectDrawClipper object.

hdl
The window handle that will obtain the clipping information.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawClipper.GetHWnd

DirectDrawColorControl
[This is preliminary documentation and subject to change.]

The DirectDrawColorControl class allows you to get and set color controls:

IDH__dx_DirectDrawClipper.SetHWnd_ddraw_vb
IDH__dx_DirectDrawColorControl_ddraw_vb

in.doc – page 392

Color controls GetColorControls
SetColorControls

DirectDrawColorControl.GetColorC
ontrols

[This is preliminary documentation and subject to change.]

The DirectDrawColorControl.GetColorControls method returns the current color
control settings associated with the specified overlay or primary surface. The IFlags
member of the DDCOLORCONTROL type indicates which of the color control
options are supported.

object.GetColorControls(colorControl As DDCOLORCONTROL)

object
Object expression that resolves to a DirectDrawColorControl object.

colorControl
A DDCOLORCONTROL type that will receive the current control settings of
the specified surface.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawColorControl.SetColorControls, Using Color Controls, Gamma and
Color Controls

DirectDrawColorControl.SetColorC
ontrols

[This is preliminary documentation and subject to change.]

The DirectDrawColorControl.SetColorControls method sets the color control
settings associated with the specified overlay or primary surface.

IDH__dx_DirectDrawColorControl.GetColorControls_ddraw_vb
IDH__dx_DirectDrawColorControl.SetColorControls_ddraw_vb

in.doc – page 393

object.SetColorControls(colorControl As DDCOLORCONTROL)

object
Object expression that resolves to a DirectDrawColorControl object.

colorControl
A DDCOLORCONTROL type containing the new values to be applied to the
specified surface.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawColorControl.GetColorControls, Using Color Controls, Gamma and
Color Controls

DirectDrawEnum
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawEnum class to obtain information
on video driver display adapters that are installed on the computer. This object is
created and filled with data by the DirectX7.GetDDEnum method.

DirectDraw Enumeration GetCount
GetDescription
GetGuid
GetName

DirectDrawEnum.GetCount
[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetCount method returns the number of DirectDraw drivers
installed on the system.

object.GetCount() As Long

IDH__dx_DirectDrawEnum_ddraw_vb
IDH__dx_DirectDrawEnum.GetCount_ddraw_vb

in.doc – page 394

object

Object expression that resolves to a DirectDrawEnum object.

Return Value
The number of entries in the enumeration object.

Remarks
Each entry represents a DirectDraw driver description. To get individual driver
descriptions use DirectDrawEnum.GetDescription, DirectDrawEnum.GetGuid
and DirectDrawEnum.GetName.

DirectDrawEnum.GetDescription
[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetDescription method returns the driver description of the
specified DirectDraw device.

object.GetDescription(index As Long) As String

object
Object expression that resolves to a DirectDrawEnum object.

index
The particular DirectDraw device in the DirectDrawEnum object.

Return Value
The driver description of the device.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawEnum.GetGuid
[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetGuid returns the unique identifier of the specified
DirectDraw device.

object.GetGuid(index As Long) As String

object

IDH__dx_DirectDrawEnum.GetDescription_ddraw_vb
IDH__dx_DirectDrawEnum.GetGuid_ddraw_vb

in.doc – page 395

Object expression that resolves to a DirectDrawEnum object.
index

The particular DirectDraw device in the DirectDrawEnum object.

Return Value
The unique identifier of the device.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawEnum.GetName
[This is preliminary documentation and subject to change.]

The DirectDrawEnum.GetName returns the driver name of the specified
DirectDraw device.

object.GetName(index As Long) As String

object
Object expression that resolves to a DirectDrawEnum object.

index
The particular DirectDraw device in the DirectDrawEnum object.

Return Value
The driver name of the device.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawEnumModes
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawEnumModes class to enumerate the
computer's available video modes. This object is created and filled with data by the
DirectDraw4.GetDisplayModesEnum method.

DirectDraw Mode Enumeration GetCount
GetItem

IDH__dx_DirectDrawEnum.GetName_ddraw_vb
IDH__dx_DirectDrawEnumModes_ddraw_vb

in.doc – page 396

DirectDrawEnumModes.GetCount
[This is preliminary documentation and subject to change.]

The DirectDrawEnumModes.GetCount method returns the number of available
video modes.

object.GetCount() As Long

object
Object expression that resolves to a DirectDrawEnumModes object.

Return Value
The number of available video modes.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
Each entry represents a video mode. To get a description of an individual video
mode use DirectDrawEnumModes.GetItem.

DirectDrawEnumModes.GetItem
[This is preliminary documentation and subject to change.]

The DirectDrawEnumModes.GetItem method returns a video mode description for
the specified element in the enumeration object.

object.GetItem(index As Long, info As DDSURFACEDESC2)

object
Object expression that resolves to a DirectDrawEnumModes object.

index
Number specifying which element of the array to be accessed. Each element is
an available video mode.

info
A DDSURFACEDESC2 type that will be filled with video mode information.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectDrawEnumModes.GetCount_ddraw_vb
IDH__dx_DirectDrawEnumModes.GetItem_ddraw_vb

in.doc – page 397

Remarks
The number of video modes in the DirectDrawEnumModes object can be obtained
from the DirectDrawEnumModes.GetCount.

DirectDrawEnumSurfaces
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawEnumSurfaces class to enumerate
all of the created surfaces. This object is created and filled with data by the
DirectDrawSurface4.GetAttachedSurfaceEnum and
DirectDrawSurface4.GetOverlayZOrdersEnum methods.

DirectDraw Surface Enumeration GetCount
GetItem

DirectDrawEnumSurfaces.GetCoun
t

[This is preliminary documentation and subject to change.]

The DirectDrawEnumSurfaces.GetCount method returns the number of created
surfaces.

object.GetCount() As Long

object
Object expression that resolves to a DirectDrawEnumSurfaces object.

Return Value
The number of created surfaces.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
Each entry represents created DirectDraw surfaces. To get a description of a surface
use DirectDrawEnumSurfaces.GetItem.

IDH__dx_DirectDrawEnumSurfaces_ddraw_vb
IDH__dx_DirectDrawEnumSurfaces.GetCount_ddraw_vb

in.doc – page 398

DirectDrawEnumSurfaces.GetItem
[This is preliminary documentation and subject to change.]

The DirectDrawEnumSurfaces.GetItem method returns a specific surface from the
list of created surfaces of the DirectDrawEnumSurfaces object.

object.GetItem(index As Long) As DirectDrawSurface4

object
Object expression that resolves to a DirectDrawEnumSurfaces object.

index
Number specifying which element of the array to be accessed. Each element
represents a created surface.

Return Value
An DirectDrawSurface4 object describing the surface is returned.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To obtain the number of created surfaces call the
DirectDrawEnumSurfaces.GetCount method.

DirectDrawGammaControl
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawGammaControl class to adjust the
red, green, and blue gamma ramp levels of the primary surface. This section is a
reference to the methods of this class. This object is created with a call to the
DirectDrawSurface4.GetDirectDrawGammaControl.

For a conceptual overview, see Gamma and Color Controls.

Gamma ramps GetGammaRamp
SetGammaRamp

IDH__dx_DirectDrawEnumSurfaces.GetItem_ddraw_vb
IDH__dx_DirectDrawGammaControl_ddraw_vb

in.doc – page 399

DirectDrawGammaControl.GetGam
maRamp

[This is preliminary documentation and subject to change.]

The DirectDrawGammaControl.GetGammaRamp method retrieves the red,
green, and blue gamma ramps for the primary surface.

object.GetGammaRamp(_
 flags As CONST_DDSGRFLAGS, _
 gammaRamp As DDGAMMARAMP)

object
Object expression that resolves to a DirectDrawGammaControl object.

flags
One of the constants of the CONST_DDSGRFLAGS enumeration indicating if
gamma calibration is desired. Set this argument DDSGR_CALIBRATE to
request that the calibrator adjust the gamma ramp according to the physical
properties of the display, making the result identical on all systems. If
calibration is not needed, set this argument to 0.

gammaRamp
A DDGAMMARAMP type that will be filled with the current red, green, and
blue gamma ramps. This type maps color values in the frame buffer to the color
values that will be passed to the DAC (Digital-to-Analog Converter).

Error Codes
If the method fails, the error code may be one of the following:

DDERR_EXCEPTION
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawGammaControl.SetGammaRamp

DirectDrawGammaControl.SetGam
maRamp

[This is preliminary documentation and subject to change.]

IDH__dx_DirectDrawGammaControl.GetGammaRamp_ddraw_vb
IDH__dx_DirectDrawGammaControl.SetGammaRamp_ddraw_vb

in.doc – page 400

The DirectDrawGammaControl.SetGammaRamp method sets the red, green, and
blue gamma ramps for the primary surface.

object.SetGammaRamp(_
 flags As CONST_DDSGRFLAGS, _
 gammaRamp As DDGAMMARAMP)

object
Object expression that resolves to a DirectDrawGammaControl object.

flags
One of the constants of the CONST_DDSGRFLAGS enumeration indicating if
gamma calibration is desired. Set this argument DDSGR_CALIBRATE to
request that the calibrator adjust the gamma ramp according to the physical
properties of the display, making the result identical on all systems. If
calibration is not needed, set this argument to 0.

gammaRamp
A DDGAMMARAMP type that contains the new red, green, and blue gamma
ramp entries. Each array maps color values in the frame buffer to the color
values that will be passed to the DAC (Digital-to-Analog Converter).

Error Codes
If the method fails, the error code may be one of the following:

DDERR_EXCEPTION
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Not all systems support gamma calibration. To determine if gamma calibration is
supported, call DirectDraw4.GetCaps, and examine the lCaps2 member of the
associated DDCAPS type after the method returns. If the
DDCAPS_CANCALIBRATEGAMMA capability flag is present, then gamma
calibration is supported.

Calibrating gamma ramps incurs some processing overhead, and should not be used
frequently.

Including the DDSGR_CALIBRATE flag in the flags argument when running on
systems that do not support gamma calibration will not cause this method to fail. The
method succeeds, setting new gamma ramp values without calibration.

in.doc – page 401

See Also
DirectDrawGammaControl.GetGammaRamp

DirectDrawPalette
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawPalette class to create
DirectDrawPalette objects and work with system-level variables. This section is a
reference to the methods of this class. For a conceptual overview, see Palettes.

The methods of the DirectDrawPalette class can be organized into the following
groups:

Palette capabilities GetCaps

Palette entries GetEntries
SetEntries

DirectDrawPalette.GetCaps
[This is preliminary documentation and subject to change.]

The DirectDrawPalette.GetCaps method retrieves the capabilities of this palette
object.

object.GetCaps() As CONST_DDPCAPSFLAGS

object
Object expression that resolves to a DirectDrawPalette object.

Return Value
One of the following constants of the CONST_DDPCAPSFLAGS enumeration
indicating the capabilities of the palette object:

DDPCAPS_1BIT
DDPCAPS_2BIT
DDPCAPS_4BIT
DDPCAPS_8BIT
DDPCAPS_8BITENTRIES
DDPCAPS_ALPHA

IDH__dx_DirectDrawPalette_ddraw_vb
IDH__dx_DirectDrawPalette.GetCaps_ddraw_vb

in.doc – page 402

DDPCAPS_ALLOW256
DDPCAPS_PRIMARYSURFACE
DDPCAPS_PRIMARYSURFACELEFT
DDPCAPS_VSYNC

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawPalette.GetEntries
[This is preliminary documentation and subject to change.]

The DirectDrawPalette.GetEntries method queries palette values from a
DirectDrawPalette object.

object.GetEntries(_
 start As Long, _
 count As Long, _
 val() As PALETTEENTRY)

object
Object expression that resolves to a DirectDrawPalette object.

start
The start of the entries that should be retrieved sequentially.

count
The number of palette entries that can fit in the address specified in val(). The
colors of each palette entry are returned in sequence, from the value of the start
argument through the value of the count argument minus 1. (These arguments
are set by DirectDrawPalette.SetEntries.)

val()
An array of variables of type PALETTEENTRY. The palette entries are 1 byte
each if the DDPCAPS_8BITENTRIES flag was set in the flags argument of the
DirectDraw4.CreatePalette and 4 bytes otherwise. Each field is a color
description.

Error Codes
If the method fails, the error code may be one of the following:

IDH__dx_DirectDrawPalette.GetEntries_ddraw_vb

in.doc – page 403

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTPALETTIZED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawPalette.SetEntries

DirectDrawPalette.SetEntries
[This is preliminary documentation and subject to change.]

The DirectDrawPalette.SetEntries method changes entries in a DirectDrawPalette
object immediately.

object.SetEntries(_
 start As Long, _
 count As Long, _
 val() As PALETTEENTRY)

object
Object expression that resolves to a DirectDrawPalette object.

start
The first entry to be set.

count
The number of palette entries to be changed.

val()
An arrary of variables of type PALETTEENTRY. The palette entries are 1 byte
each if the DDPCAPS_8BITENTRIES flag was set in the flags argument of the
DirectDraw4.CreatePalette and 4 bytes otherwise. Each field is a color
description.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOPALETTEATTACHED
DDERR_NOTPALETTIZED
DDERR_UNSUPPORTED

IDH__dx_DirectDrawPalette.SetEntries_ddraw_vb

in.doc – page 404

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawPalette.GetEntries, DirectDrawSurface4.SetPalette

DirectDrawSurface4
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectDrawSurface4 class to create
DirectDrawSurface objects and work with system-level variables. This section is a
reference to the methods of this class. For a conceptual overview, see Surfaces.

The methods of the DirectDrawSurface4 class can be organized into the following
groups:

Allocating memory IsLost
Restore

Attaching surfaces AddAttachedSurface
DeleteAttachedSurface
GetAttachedSurface
GetAttachedSurfaceEnum

Blitting Blt
BltColorFill
BltFast
BltFx
BltToDC
GetBltStatus

Color keying GetColorKey
SetColorKey

Device contexts GetDC
ReleaseDC

Drawing and Text DrawBox
DrawCircle

IDH__dx_DirectDrawSurface4_ddraw_vb

in.doc – page 405

DrawEllipse
DrawLine
DrawRoundedBox
DrawText
GetDrawStyle
GetDrawWidth
GetFillColor
GetFillStyle
GetFontTransparency
GetForeColor
SetDrawStyle
SetDrawWidth
SetFillColor
SetFillStyle
SetFont
SetFontTransparency
SetForeColor

Flipping Flip
GetFlipStatus

Locking GetLockedPixel
GetLockedSurfaceBits
Lock
SetLockedPixel
SetLockedSurfaceBits
Unlock

Miscellaneous GetDirectDraw
GetDirectDrawColorControl
GetDirectDrawGammaControl
GetTexture

Overlays GetOverlayZOrdersEnum
UpdateOverlay
UpdateOverlayZOrder

Surface capabilities GetCaps

in.doc – page 406

Surface clipper GetClipper
SetClipper

Surface characteristics ChangeUniquenessValue
GetPixelFormat
GetSurfaceDesc
GetUniquenessValue

Surface palettes GetPalette
SetPalette

DirectDrawSurface4.AddAttached
Surface

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.AddAttachedSurface method attaches the specified
surface to this surface.

object.AddAttachedSurface(ddS As DirectDrawSurface4)

object
Object expression that resolves to a DirectDrawSurface4 object.

ddS
A DirectDrawSurface4 object for the surface to be attached.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_CANNOTATTACHSURFACE
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACEALREADYATTACHED
DDERR_SURFACELOST
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDrawSurface4.AddAttachedSurface_ddraw_vb

in.doc – page 407

Remarks
You can explicitly unattach the surface by using the
DirectDrawSurface4.DeleteAttachedSurface method. Unlike complex surfaces
that you create with a single call to DirectDraw4.CreateSurface, surfaces attached
with this method are not automatically released. It is the application's responsibility
to release such surfaces.

Possible attachments include z-buffers, alpha channels, and back buffers. Some
attachments automatically break other attachments. For example, the 3-D z-buffer
can be attached only to one back buffer at a time. Attachment is not bidirectional,
and a surface cannot be attached to itself. Emulated surfaces (in system memory)
cannot be attached to nonemulated surfaces. Unless one surface is a texture map, the
two attached surfaces must be the same size. A flipping surface cannot be attached to
another flipping surface of the same type; however, attaching two surfaces of
different types is allowed. For example, a flipping z-buffer can be attached to a
regular flipping surface. If a nonflipping surface is attached to another nonflipping
surface of the same type, the two surfaces will become a flipping chain. If a
nonflipping surface is attached to a flipping surface, it becomes part of the existing
flipping chain. Additional surfaces can be added to this chain, and each call of the
DirectDrawSurface4.Flip method will advance one step through the surfaces.

See Also
DirectDrawSurface4.DeleteAttachedSurface,
DirectDrawSurface4.GetAttachedSurfaceEnum

DirectDrawSurface4.Blt
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Blt method performs a bit block transfer. This method
does not support z-buffering or alpha blending (see alpha channel) during blit
operations.

object.Blt(_
 destRect As RECT, _
 ddS As DirectDrawSurface4, _
 srcRect As RECT, _
 flags As CONST_DDBLTFLAGS) As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

destRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit to on the destination surface. If this argument is NOTHING, the entire
destination surface will be used.

IDH__dx_DirectDrawSurface4.Blt_ddraw_vb

in.doc – page 408

ddS
A DirectDrawSurface4 object for the DirectDrawSurface object that is the
source of the blit.

srcRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit from on the source surface. If this argument is NOTHING, the entire
source surface will be used.

flags
Combination of constants from the CONST_DDBLTFLAGS enumeration that
determines the valid members of the associated DDBLTFX type, which specify
color key information, or request special behavior from the method. The
following flags are defined.
Validation flags
DDBLT_COLORFILL

Uses the lFill member of the DDBLTFX structure as the RGB color that fills
the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the lDDFX member of the DDBLTFX structure to specify the effects to
use for this blit.

DDBLT_DDROPS
Uses the lROP member of the DDBLTFX structure to specify the raster
operations (ROPS) that are not part of the Win32 API.

DDBLT_KEYDESTOVERRIDE
Uses the ddckDestColorKey_high and ddckDestColorKey_low members of
the DDBLTFX structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE
Uses the ddckSrcColorKey_high and ddckSrcColorKey_low members of
the DDBLTFX structure as the color key for the source surface.

DDBLT_ROP
Uses the lROP member of the DDBLTFX structure for the ROP for this blit.
These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE
Uses the lRotationAngle member of the DDBLTFX structure as the rotation
angle (specified in 1/100th of a degree) for the surface.

Color key flags
DDBLT_KEYDEST

Uses the color key associated with the destination surface.
DDBLT_KEYSRC

Uses the color key associated with the source surface.
Behavior flags
DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If
no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT

in.doc – page 409

Postpones the DDERR_WASSTILLDRAWING return value if the blitter is
busy, and returns as soon as the blit can be set up or another error occurs.

Obsolete and unsupported flags
All "DDBLT_ALPHA" flag values.

Obsolete.
All "DDBLT_ZBUFFER" flag values

This method does not currently support z-aware blit operations. None of the
flags beginning with "DDBLT_ZBUFFER" are supported in this release of
DirectX 6.0.

Return Values
The return value may be one of the following:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST
DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW
DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method is capable of synchronous or asynchronous blits (the default behavior),
either display memory to display memory, display memory to system memory,
system memory to display memory, or system memory to system memory. The blits
can be performed by using source color keys, and destination color keys. Arbitrary

in.doc – page 410

stretching or shrinking will be performed if the source and destination rectangles are
not the same size.

Typically, DirectDrawSurface4.Blt returns immediately with an error if the blitter
is busy and the blit could not be set up. Specify the DDBLT_WAIT flag to request a
synchronous blit. When you include the DDBLT_WAIT flag, the method waits until
the blit can be set up or another error occurs before it returns.

Note that dstRect and srcRect arguments are defined so that the right and bottom
members are exclusive—therefore, right minus left equals the width of the
rectangle, not one less than the width.

DirectDrawSurface4.BltColorFill
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltColorFill method performs a bit block transfer of a
single color to the specified destination rectangle.

object.BltColorFill(_
 destRect As RECT, _
 fillvalue As Long) As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

destRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit to on the destination surface. If this argument is NOTHING, the entire
destination surface will be used.

fillvalue
The color to blit.

Return Values
The return value may be one of the following:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST

IDH__dx_DirectDrawSurface4.BltColorFill_ddraw_vb

in.doc – page 411

DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW
DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.BltFast
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltFast method performs a source copy blit or transparent
blit by using a source color key or destination color key.

object.BltFast(_
 dx As Long, _
 dy As Long, _
 ddS As DirectDrawSurface4, _
 srcRect As RECT, _
 trans As CONST_DDBLTFASTFLAGS) As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

dx and dy
The x- and y-coordinates to blit to on the destination surface.

ddS
A DirectDrawSurface4 object for the DirectDrawSurface object that is the
source of the blit.

srcRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit from on the source surface.

trans
One of the constants from the CONST_DDBLTFASTFLAGS enumeration
which identifies the type of transfer.
DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.
DDBLTFAST_NOCOLORKEY

Specifies a normal copy blit with no transparency.

IDH__dx_DirectDrawSurface4.BltFast_ddraw_vb

in.doc – page 412

DDBLTFAST_SRCCOLORKEY
Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT
Postpones the DDERR_WASSTILLDRAWING message if the blitter is busy,
and returns as soon as the blit can be set up or another error occurs.

Return Value
The value may be one of the following:

DDERR_EXCEPTION
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOBLTHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

Remarks
This method always attempts an asynchronous blit if it is supported by the hardware.

This method works only on display memory surfaces and cannot clip when blitting.
If you use this method on a surface with an attached clipper, the call will fail and the
method will return DDERR_UNSUPPORTED.

The software implementation of DirectDrawSurface4.BltFast is 10 percent faster
than the DirectDrawSurface4.Blt method. However, there is no speed difference
between the two if display hardware is being used.

Typically, DirectDrawSurface4.BltFast returns immediately with an error if the
blitter is busy and the blit cannot be set up. You can use the DDBLTFAST_WAIT
flag, however, if you want this method to not return until either the blit can be set up
or another error occurs.

DirectDrawSurface4.BltFx
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltFx method performs a bit block transfer with
additional blit effect behavior specified in the BltFx argument.

IDH__dx_DirectDrawSurface4.BltFx_ddraw_vb

in.doc – page 413

object.BltFx(_
 destRect As RECT, _
 ddS As DirectDrawSurface4, _
 srcRect As RECT, _
 flags As CONST_DDBLTFLAGS, _
 BltFx As DDBLTFX) As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

destRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit to on the destination surface. If this argument is NOTHING, the entire
destination surface will be used.

ddS
A DirectDrawSurface4 object that is the source for the blit.

srcRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit from on the source surface. If this argument is NOTHING, the entire
source surface will be used.

flags
Combination of constants of the CONST_DDBLTFLAGS enumeration that
determines the valid members of the associated DDBLTFX type, specify color
key information, or that request special behavior from the method. The
following flags are defined.
Validation flags
DDBLT_COLORFILL

Uses the lFillColor member of the DDBLTFX type as the RGB color that
fills the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the lDDFX member of the DDBLTFX type to specify the effects to use
for this blit.

DDBLT_DDROPS
Uses the lROP member of the DDBLTFX type to specify the raster
operations (ROPS) that are not part of the Win32 API.

DDBLT_KEYDESTOVERRIDE
Uses the ddckDestColorKey_high and ddckDestColorKey_low members of
the DDBLTFX type as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE
Uses the ddckSrcColorKey_high and ddckSrcColorKey_low member of
the DDBLTFX type as the color key for the source surface.

DDBLT_ROP
Uses the lROP member of the DDBLTFX type for the ROP for this blit.
These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

in.doc – page 414

Uses the lRotationAngle member of the DDBLTFX type as the rotation
angle (specified in 1/100th of a degree) for the surface.

Color key flags
DDBLT_KEYDEST

Uses the color key associated with the destination surface.
DDBLT_KEYSRC

Uses the color key associated with the source surface.
Behavior flags
DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If
no room is available in the FIFO hardware, the call fails.

DDBLT_WAIT
Postpones the DDERR_WASSTILLDRAWING return value if the blitter is
busy, and returns as soon as the blit can be set up or another error occurs.

Obsolete and unsupported flags
All "DDBLT_ALPHA" flag values.

Obsolete.
All "DDBLT_ZBUFFER" flag values

This method does not currently support z-aware blit operations. None of the
flags beginning with "DDBLT_ZBUFFER" are supported in this release of
DirectX 6.0.

BltFx
A DDBLTFX type specifying additional blit effect operations to be performed.

Return Value
The value may be one of the following:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST
DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW

in.doc – page 415

DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

DirectDrawSurface4.BltToDC
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.BltToDC method performs a bit block transfer to the
specified device context.

object.BltToDC(_
 hdc As LONG, _
 srcRect As RECT, _
 destRect As RECT)

object
Object expression that resolves to a DirectDrawSurface4 object.

hdc
Handle to a device context.

srcRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit from on the source surface. If this argument is NOTHING, the entire
source surface will be used.

destRect
A RECT type that defines the upper-left and lower-right points of the rectangle
to blit to on the destination surface. If this argument is NOTHING, the entire
source surface will be used.

Return Value
The value may be one of the following:

DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST

IDH__dx_DirectDrawSurface4.BltToDC_ddraw_vb

in.doc – page 416

DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW
DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

DirectDrawSurface4.ChangeUniqu
enessValue

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.ChangeUniquenessValue method manually updates the
uniqueness value for this surface.

object.ChangeUniquenessValue()

object
Object expression that resolves to a DirectDrawSurface4 object.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_EXCEPTION
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
DirectDraw automatically updates uniqueness values whenever the contents of a
surface change.

See Also
DirectDrawSurface4.GetUniquenessValue

IDH__dx_DirectDrawSurface4.ChangeUniquenessValue_ddraw_vb

in.doc – page 417

DirectDrawSurface4.DeleteAttach
edSurface

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DeleteAttachedSurface method detaches two attached
surfaces.

object.DeleteAttachedSurface(ddS As DirectDrawSurface4)

object
Object expression that resolves to a DirectDrawSurface4 object.

ddS
A DirectDrawSurface4 object for the DirectDrawSurface object to be detached.
If this argument is NOTHING, all attached surfaces are detached.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_CANNOTDETACHSURFACE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_SURFACENOTATTACHED

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Implicit attachments, those formed by DirectDraw rather than the
DirectDrawSurface4.AddAttachedSurface method, cannot be detached. Detaching
surfaces from a flipping chain can alter other surfaces in the chain. If a front buffer is
detached from a flipping chain, the next surface in the chain becomes the front
buffer, and the following surface becomes the back buffer. If a back buffer is
detached from a chain, the following surface becomes a back buffer. If a plain
surface is detached from a chain, the chain simply becomes shorter. If a flipping
chain has only two surfaces and they are detached, the chain is destroyed and both
surfaces return to their previous designations.

See Also
DirectDrawSurface4.Flip

IDH__dx_DirectDrawSurface4.DeleteAttachedSurface_ddraw_vb

in.doc – page 418

DirectDrawSurface4.DrawBox
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawBox method draws a box on the surface.

object.DrawBox(_
 x1 As Long, _
 y1 As Long, _
 x2 As Long, _
 y2 As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2
The upper-left and bottom-right points of the box to be drawn.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default draw style is a solid line and the default fill style is set to transparent.
Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and
DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawCircle
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawCircle method draws a circle on the surface.

object.DrawCircle(_
 x1 As Long, _
 y1 As Long, _
 r As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, r
The center point and the radius of the circle to be drawn.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectDrawSurface4.DrawBox_ddraw_vb
IDH__dx_DirectDrawSurface4.DrawCircle_ddraw_vb

in.doc – page 419

Remarks
The default draw style is a solid line and the default fill style is set to transparent.
Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and
DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawEllipse
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawEllipse method draws a ellipse on the surface.

object.

object
Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2
The upper-left and the lower-right of the bounding rectangle of the ellipse to be
drawn.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default draw style is a solid line and the default fill style is set to transparent.
Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and
DirectDrawSurface4.SetFillStyle, respectively.

DirectDrawSurface4.DrawLine
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawLine method draws a line on the surface.

object.DrawLine(_
 x1 As Long, _
 y1 As Long, _
 x2 As Long, _
 y2 As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2
The end points of the line to be drawn.

IDH__dx_DirectDrawSurface4.DrawEllipse_ddraw_vb
IDH__dx_DirectDrawSurface4.DrawLine_ddraw_vb

in.doc – page 420

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default draw style is a solid line can be changed with a call to
DirectDrawSurface4.SetDrawStyle.

DirectDrawSurface4.DrawRounded
Box

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawRoundedBox method draws a rounded box on the
surface.

object.DrawRoundedBox(_
 x1 As Long, _
 y1 As Long, _
 x2 As Long, _
 y2 As Long, _
 rw As Long, _
 rh As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

x1, y1, x2, y2
The upper-left and lower-right points of the rectangle.

rw
The width of the ellipse used to draw the rounded corners.

rh
The height of the ellipse used to draw the rounded corners.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default draw style is a solid line and the default fill style is set to transparent.
Both styles can be changed with a call to DirectDrawSurface4.SetDrawStyle and
DirectDrawSurface4.SetFillStyle, respectively.

IDH__dx_DirectDrawSurface4.DrawRoundedBox_ddraw_vb

in.doc – page 421

DirectDrawSurface4.DrawText
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.DrawText method draws text on the surface.

object.DrawText(_
 x As Long, _
 y As Long, _
 text As String, _
 b As Boolean)

object
Object expression that resolves to a DirectDrawSurface4 object.

x, y
The location on the surface to draw text.

text
The text to display.

b
Boolean value indicating whether to draw to the current cursor position, see
Remarks.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To append text to the end of the last call to DirectDrawSurface4.DrawText, you
must pass 0,0 as the x and y coordinate and declare b as TRUE. If you declare b as
FALSE, then calling this method will result in text being displayed at the specified x
and y coordinates.

DirectDrawSurface4.Flip
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Flip method makes the surface memory associated with
the DDSCAPS_BACKBUFFER surface become associated with the front-buffer
surface.

object.Flip(_
 ddS As DirectDrawSurface4, _
 flags As CONST_DDFLIPFLAGS)

object

IDH__dx_DirectDrawSurface4.DrawText_ddraw_vb
IDH__dx_DirectDrawSurface4.Flip_ddraw_vb

in.doc – page 422

Object expression that resolves to a DirectDrawSurface4 object.
ddS

A DirectDrawSurface4 object for an arbitrary surface in the flipping chain. The
default for this argument is NOTHING, in which case DirectDraw cycles
through the buffers in the order they are attached to each other. If this argument
is not NOTHING, DirectDraw flips to the specified surface instead of the next
surface in the flipping chain. The method fails if the specified surface is not a
member of the flipping chain.

flags
One or more constansts of the CONST_DDFLIPFLAGS enumeration
specifying flip options.
DDFLIP_EVEN

For use only when displaying video in an overlay surface. The new surface
contains data from the even field of a video signal. This flag cannot be used
with the DDFLIP_ODD flag.

DDFLIP_INTERFVAL2
DDFLIP_INTERFVAL3
DDFLIP_INTERFVAL4

These flags indicate how many vertical retraces to wait between each flip.
The default is 1. DirectDraw will return DERR_WASSTILLDRAWING for
each surface involved in the flip until the specified number of vertical
retraces has occurred. If DDFLIP_INTERVAL2 is set, DirectDraw will flip
on every second vertical sync; if DDFLIP_INTERVAL3, on every third sync;
and if DDFLIP_INTERVAL4, on every fourth sync.
These flags are effective only if DDCAPS2_FLIPINTERVAL is set in the
DDCAPS structure returned for the device.

DDFLIP_ODD
For use only when displaying video in an overlay surface. The new surface
contains data from the odd field of a video signal. This flag cannot be used
with the DDFLIP_EVEN flag.

DDFLIP_WAIT
Typically, if the flip cannot be set up because the state of the display
hardware is not appropriate, the DDERR_WASSTILLDRAWING error
returns immediately and no flip occurs. Setting this flag causes the method to
continue trying to flip if it receives the DDERR_WASSTILLDRAWING
error from the HAL. The method does not return until the flipping operation
has been successfully set up, or another error, such as
DDERR_SURFACEBUSY, is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT

in.doc – page 423

DDERR_INVALIDPARAMS
DDERR_NOFLIPHW
DDERR_NOTFLIPPABLE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method can be called only for a surface that has the DDSCAPS_FLIP and
DDSCAPS_FRONTBUFFER capabilities. The display memory previously
associated with the front buffer is associated with the back buffer.

The ddS argument is used in rare cases when the back buffer is not the buffer that
should become the front buffer. Typically this argument is NOTHING.

The DirectDrawSurface4.Flip method will always be synchronized with the
vertical blank. If the surface has been assigned to a video port, this method updates
the visible overlay surface and the video port's target surface.

For more information, see Flipping Surfaces.

See Also
DirectDrawSurface4.GetFlipStatus

DirectDrawSurface4.GetAttachedS
urface

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetAttachedSurface method obtains the attached surface
that has the specified capabilities.

object.GetAttachedSurface(_
 caps As DDSCAPS2) As DirectDrawSurface4

object
Object expression that resolves to a DirectDrawSurface4 object.

caps
A DDSCAPS2 type that contains the hardware capabilities of the surface.

IDH__dx_DirectDrawSurface4.GetAttachedSurface_ddraw_vb

in.doc – page 424

Return Values
If the method succeeds, a DirectDrawSurface4 object is returned. The retrieved
surface is the one that matches the description according to the caps argument.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Attachments are used to connect multiple DirectDrawSurface objects into complex
types, like the ones needed to support 3-D page flipping with z-buffers. This method
fails if more than one surface is attached that matches the capabilities requested. In
this case, the application must use the
DirectDrawSurface4.GetAttachedSurfaceEnum method to obtain the attached
surfaces.

The object returned by a successful function call must be assigned to a
DirectDrawSurface4 object variable. For example, in Visual Basic:

Dim DDrawSurface as DirectDrawSurface4
Set DDrawSurface = object.GetAttachedSurface()

DirectDrawSurface4.GetAttachedS
urfaceEnum

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetAttachedSurfaceEnum method returns a
DirectDrawEnumSurfaces object that is filled with attached surfaces information .

object.GetAttachedSurfaceEnum() As
DirectDrawEnumSurfaces

object
Object expression that resolves to a DirectDrawSurface4 object.

IDH__dx_DirectDrawSurface4.GetAttachedSurfaceEnum_ddraw_vb

in.doc – page 425

Return Value
If the method succeeds, a DirectDrawEnumSurfaces enumeration interface is
returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
The number of attached surfaces is obtained with a call to
DirectDrawEnumSurfaces.GetCount and a description of the attached surface is
obtained with a call to DirectDrawEnumSurfaces.GetItem

The object returned by a successful function call must be assigned to a
DirectDrawEnumSurfaces object variable. For example, in Visual Basic:

Dim SurfaceEnum as DirectDrawEnumSurfaces
Set SurfaceEnum = object.GetAttachedSurfacesEnum()

DirectDrawSurface4.GetBltStatus
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetBltStatus method obtains the blitter status.

object.GetBltStatus(flags As CONST_DDGBSFLAGS) As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

flags
One of the constants of the CONST_DDGBSFLAGS enumeration:
DDGBS_CANBLT

Inquires whether a blit involving this surface can occur immediately, and
returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE
Inquires whether the blit is done, and returns DD_OK if the last blit on this
surface has completed.

IDH__dx_DirectDrawSurface4.GetBltStatus_ddraw_vb

in.doc – page 426

Return Values
If the method succeeds, depending on which constant is specified in the flags
argument, zero is returned for FALSE and non-zero for TRUE.

Error Codes
If the method fails, the error code is DDERR_WASSTILLDRAWING if the surface
has not finished its flipping process, or one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DD_OK
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetCaps
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetCaps method retrieves the capabilities of the surface.
These capabilities are not necessarily related to the capabilities of the display device.

object.GetCaps(caps As DDSCAPS2)

object
Object expression that resolves to a DirectDrawSurface4 object.

caps
A DDSCAPS2 type that will be filled with the hardware capabilities of the
surface.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDrawSurface4.GetCaps_ddraw_vb

in.doc – page 427

DirectDrawSurface4.GetClipper
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetClipper method retrieves the DirectDrawClipper
object associated with this surface.

object.GetClipper() As DirectDrawClipper

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, a DirectDrawClipper object associated with the surface is
returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCLIPPERATTACHED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawSurface4.SetClipper

Remarks
The object returned by a successful function call must be assigned to a
DirectDrawClipper object variable. For example, in Visual Basic:

Dim Clipper as DirectDrawClipper
Set Clipper = object.GetClipper()

DirectDrawSurface4.GetColorKey
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetColorKey method retrieves the color key value for
the DirectDrawSurface object.

IDH__dx_DirectDrawSurface4.GetClipper_ddraw_vb
IDH__dx_DirectDrawSurface4.GetColorKey_ddraw_vb

in.doc – page 428

object.GetColorKey(flags As Long, val As DDCOLORKEY)

object
Object expression that resolves to a DirectDrawSurface4 object.

flags
The color key requested.
DDCKEY_DESTBLT

Set if the type specifies a color key or color space to be used as a destination
color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the type specifies a color key or color space to be used as a destination
color key for overlay operations.

DDCKEY_SRCBLT
Set if the type specifies a color key or color space to be used as a source color
key for blit operations.

DDCKEY_SRCOVERLAY
Set if the type specifies a color key or color space to be used as a source color
key for overlay operations.

val
A DDCOLORKEY type that will be filled with the current values for the
specified color key of the DirectDrawSurface object.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOLORKEY
DDERR_NOCOLORKEYHW
DDERR_SURFACELOST
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawSurface4.SetColorKey

DirectDrawSurface4.GetDC
[This is preliminary documentation and subject to change.]

IDH__dx_DirectDrawSurface4.GetDC_ddraw_vb

in.doc – page 429

The DirectDrawSurface4.GetDC method creates a GDI-compatible handle of a
device context for the surface.

object.GetDC() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, the handle to a device context is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_DCALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method uses an internal version of the DirectDrawSurface4.Lock method to
lock the surface. The surface remains locked until the
DirectDrawSurface4.ReleaseDC method is called.

See Also
DirectDrawSurface4.Lock

DirectDrawSurface4.GetDirectDra
w

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDirectDraw method retrieves the DirectDraw object
that was used to create the surface.

IDH__dx_DirectDrawSurface4.GetDirectDraw_ddraw_vb

in.doc – page 430

object.GetDirectDraw() As DirectDraw4

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, a DirectDraw4 object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
The object returned by a successful function call must be assigned to a DirectDraw4
object variable. For example:

Dim DDrawObject as DirectDraw4
Set DDrawObject = object.GetDDInterface()

DirectDrawSurface4.GetDirectDra
wColorControl

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDirectDrawColorControl method returns the
DirectDrawColorControl object used with the surface.

object.GetDirectDrawColorControl() As
DirectDrawColorControl

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, a DirectDrawColorControl object is returned.

IDH__dx_DirectDrawSurface4.GetDirectDrawColorControl_ddraw_vb

in.doc – page 431

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetDirectDra
wGammaControl

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDirectDrawGammaControl method returns the
DirectDrawGammaControl object used with the surface.

object.GetDirectDrawGammaControl() As
DirectDrawGammaControl

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, a DirectDrawGammaControl object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetDrawStyle
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDrawStyle returns the style set by
DirectDrawSurface4.SetDrawStyle.

object.getDrawStyle() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

IDH__dx_DirectDrawSurface4.GetDirectDrawGammaControl_ddraw_vb
IDH__dx_DirectDrawSurface4.GetDrawStyle_ddraw_vb

in.doc – page 432

Return Values
The style set by DirectDrawSurface4.SetDrawStyle.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default draw style is a solid line.

DirectDrawSurface4.GetDrawWidt
h

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetDrawWidth returns the width set by
DirectDrawSurface4.SetDrawWidth.

object.getDrawWidth() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
The width set by DirectDrawSurface4.SetDrawWidth.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default draw width is 1.

DirectDrawSurface4.GetFillColor
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFillColor returns the fill color set by
DirectDrawSurface4.SetFillColor.

object.GetFillColor() As Long

IDH__dx_DirectDrawSurface4.GetDrawWidth_ddraw_vb
IDH__dx_DirectDrawSurface4.GetFillColor_ddraw_vb

in.doc – page 433

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
The fill color value set by DirectDrawSurface4.SetFillColor.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default fill color is black.

DirectDrawSurface4.GetFillStyle
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFillStyle returns the fill style set by
DirectDrawSurface4.SetFillStyle.

object.GetFillStyle() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
The the fill style set by DirectDrawSurface4.SetFillStyle.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default fill style is transparent.

DirectDrawSurface4.GetFlipStatus
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFlipStatus method indicates whether the surface has
finished its flipping process.

object.GetFlipStatus(flags As CONST_DDGFSFLAGS) As Long

IDH__dx_DirectDrawSurface4.GetFillStyle_ddraw_vb
IDH__dx_DirectDrawSurface4.GetFlipStatus_ddraw_vb

in.doc – page 434

object

Object expression that resolves to a DirectDrawSurface4 object.
flags

One of the following constants of the CONST_DDGFSFLAGS enumeration:
DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and returns DD_OK
if the flip can be completed.

DDGFS_ISFLIPDONE
Inquires whether the flip has finished and returns DD_OK if the last flip on
this surface has completed.

Return Values
If the method succeeds, depending on which constant is specified in the flags
argument, zero is returned for FALSE and non-zero for TRUE.

Error Codes
The error code is DDERR_WASSTILLDRAWING if the surface has not finished its
flipping process, or one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DD_OK
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawSurface4.Flip

DirectDrawSurface4.GetFontTrans
parency

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetFontTransparency returns the font transparency set
by DirectDrawSurface4.SetFontTransparency.

IDH__dx_DirectDrawSurface4.GetFontTransparency_ddraw_vb

in.doc – page 435

object.GetFontTransparency() As Boolean

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
If the font is set to be transparent, non-zero is returned and zero if the font is not set
to be transparent.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.GetForeColor
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetForeColor returns the fore color set by
DirectDrawSurface4.SetForeColor.

object.GetForeColor() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
The fore color set by DirectDrawSurface4.SetForeColor.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.GetLockedPix
el

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetLockedPixel method returns the specified pixel set by
DirectDrawSurface4.SetLockedPixel.

object.GetLockedPixel(_
 x As Long, _
 y As Long) As Long

IDH__dx_DirectDrawSurface4.GetForeColor_ddraw_vb
IDH__dx_DirectDrawSurface4.GetLockedPixel_ddraw_vb

in.doc – page 436

object
Object expression that resolves to a DirectDrawSurface4 object.

x and y
The coordinates of the locked pixel.

Return Values
Returns the color of the locked pixel. This value is in the same format as the pixel
format.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.GetLockedSur
faceBits

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetLockedSurfaceBits method fills an array with the
locked surface. After manipulating the locked bits, a call to
DirectDrawSurface4.SetLockedSurfaceBits will update the surface.

object.GetLockedSurfaceBits(memory As Any)

object
Object expression that resolves to a DirectDrawSurface4 object.

memory
An array filled with the locked surface bits. This array is comprised of the same
data type as the pixel format of the locked surface.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The pixel format can be obtained with a call to
DirectDrawSurface4.GetPixelFormat.

DirectDrawSurface4.GetOverlayZO
rdersEnum

[This is preliminary documentation and subject to change.]

IDH__dx_DirectDrawSurface4.GetLockedSurfaceBits_ddraw_vb
IDH__dx_DirectDrawSurface4.GetOverlayZOrdersEnum_ddraw_vb

in.doc – page 437

The DirectDrawSurface4.GetOverlayZOrdersEnum method returns a
DirectDrawEnumSurfaces object that is filled with overlay data. The created
DirectDrawEnumSurfaces object can then be called to enumerate the overlay
surfaces on the specified destination. The overlays can be enumerated in front-to-
back or back-to-front order..

object.GetOverlayZOrdersEnum(_
 flags As CONST_DDENUMOVERLAYZFLAGS) _
 As DirectDrawEnumSurfaces

object
Object expression that resolves to a DirectDrawSurface4 object.

flags
One of the following constants of the CONST_DDENUMOVERLAYZFLAGS
enumeration:
DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.
DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.

Return Value
If the method succeeds, a DirectDrawEnumSurfaces is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
The object returned by a successful function call must be assigned to a
DirectDrawEnumSurfaces object variable. For example:

Dim SurfaceEnum as DirectDrawEnumSurfaces
Set SurfaceEnum = object.GetOverlayZOrdersEnum(flags)

DirectDrawSurface4.GetPalette
[This is preliminary documentation and subject to change.]

IDH__dx_DirectDrawSurface4.GetPalette_ddraw_vb

in.doc – page 438

The DirectDrawSurface4.GetPalette method retrieves the DirectDrawPalette
object associated with this surface.

object.GetPalette() As DirectDrawPalette

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, a DirectDrawPalette object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_NOPALETTEATTACHED
DDERR_SURFACELOST
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also

DirectDrawSurface4.SetPaletteRemarks
The object returned by a successful function call must be assigned to a
DirectDrawEnumSurfaces object variable. For example:

Dim DDPalette as DirectDrawPalette
Set DDPalette = object.GetPalette()

DirectDrawSurface4.GetPixelForm
at

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetPixelFormat method retrieves the color and pixel
format of the surface.

object.GetPixelFormat(pf As DDPIXELFORMAT)
IDH__dx_DirectDrawSurface4.GetPixelFormat_ddraw_vb

in.doc – page 439

object

Object expression that resolves to a DirectDrawSurface4 object.
pf

A DDPIXELFORMAT type that will be filled with a detailed description of the
current pixel and color space format of the surface.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetSurfaceDe
sc

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetSurfaceDesc method retrieves a description of the
surface in its current condition.

object.GetSurfaceDesc(surface As DDSURFACEDESC2)

object
Object expression that resolves to a DirectDrawSurface4 object.

surface
A DDSURFACEDESC2 type that will be filled with the current description of
this surface.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

IDH__dx_DirectDrawSurface4.GetSurfaceDesc_ddraw_vb

in.doc – page 440

DirectDrawSurface4.GetTexture
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetTexture method returns a Direct3DTexture2 object.

object.GetTexture() As Direct3DTexture2

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
If the method succeeds, a Direct3DTexture2 object is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.GetUniquenes
sValue

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.GetUniquenessValue method retrieves the current
uniqueness value for this surface.

object.GetUniquenessValue() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Values
If the method succeeds, the surface's current uniqueness value is returned.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT

IDH__dx_DirectDrawSurface4.GetTexture_ddraw_vb
IDH__dx_DirectDrawSurface4.GetUniquenessValue_ddraw_vb

in.doc – page 441

DDERR_INVALIDPARAMS

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
The only defined uniqueness value is 0, to indicate that the surface is likely to be
changing beyond DirectDraw's control. Other uniqueness values are only significant
if they differ from a previously cached uniqueness value. If the current value is
different than a cached value, then the contents of the surface have changed.

See Also
DirectDrawSurface4.ChangeUniquenessValue

DirectDrawSurface4.IsLost
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.IsLost method determines if the surface memory
associated with a DirectDrawSurface object has been freed.

object.IsLost() As Long

object
Object expression that resolves to a DirectDrawSurface4 object.

Return Value
If the method succeeds, zero (FALSE) is returned indicating the surface has not been
freed and nonzero if it has been freed.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
You can use this method to find out if you need reallocate surface memory by
calling the DirectDrawSurface4.Restore method. When a DirectDrawSurface

IDH__dx_DirectDrawSurface4.IsLost_ddraw_vb

in.doc – page 442

object loses its surface memory, most methods return DDERR_SURFACELOST and
perform no other action.

Surfaces can lose their memory when the mode of the display card is changed, or
when an application receives exclusive access to the display card and frees all of the
surface memory currently allocated on the display card.

See Also
DirectDrawSurface4.Restore, Losing and Restoring Surfaces

DirectDrawSurface4.Lock
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Lock method obtains a pointer to the surface memory.

object.Lock(_
 r As RECT, _
 desc As DDSURFACEDESC2, _
 flags As CONST_DDLOCKFLAGS, _
 hnd As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

r
A RECT type that defines the upper-left and lower-right points of the rectangle
that identifies the region of surface that is being locked. If NOTHING, the entire
surface will be locked.

desc
A DDSURFACEDESC2 type that will be filled with the relevant details about
the surface.

flags
One or more of the following constants of the CONST_DDLOCKFLAGS
enumeration that describes the type of lock to be performed:
DDLOCK_EVENT

This flag is not currently implemented.
DDLOCK_NOSYSLOCK

If possible, do not take the Win16Mutex (also known as Win16Lock). This
flag is ignored when locking the primary surface.

DDLOCK_READONLY
Indicates that the surface being locked will only be read.

DDLOCK_SURFACEMEMORYPTR

IDH__dx_DirectDrawSurface4.Lock_ddraw_vb

in.doc – page 443

Indicates that a valid memory pointer to the top of the specified rectangle
should be returned. If no rectangle is specified, a pointer to the top of the
surface is returned. This is the default.

DDLOCK_WAIT
If a lock cannot be obtained because a blit operation is in progress, the
method retries until a lock is obtained or another error occurs, such as
DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY
Indicates that the surface being locked will be write enabled.

hnd
This parameter is not used and must be set to NOTHING.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
For more information on using this method, see Accessing Surface Memory Directly.

After retrieving a surface memory pointer, you can access the surface memory until
a corresponding DirectDrawSurface4.Unlock method is called. When the surface is
unlocked, the pointer to the surface memory is invalid.

Do not call DirectDraw blit functions to blit from a locked region of a surface. If you
do, the blit returns either DDERR_SURFACEBUSY or
DDERR_LOCKEDSURFACES. Additionally, GDI blit functions will silently fail
when used on a locked video memory surface.

This method often causes DirectDraw to hold the Win16Mutex (also known as
Win16Lock) until you call the DirectDrawSurface4.Unlock method. GUI
debuggers cannot operate while the Win16Mutex is held.

See Also
DirectDrawSurface4.Unlock, DirectDrawSurface4.GetDC,
DirectDrawSurface4.ReleaseDC

in.doc – page 444

DirectDrawSurface4.ReleaseDC
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.ReleaseDC method releases the handle of a device
context previously obtained by using the DirectDrawSurface4.GetDC method.

object.ReleaseDC(hdc As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

hdc
The handle to a device context previously obtained by
DirectDrawSurface4.GetDC.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method also unlocks the surface previously locked when the
DirectDrawSurface4.GetDC method was called.

See Also
DirectDrawSurface4.GetDC

DirectDrawSurface4.Restore
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Restore method restores a surface that has been lost. This
occurs when the surface memory associated with the DirectDrawSurface object has
been freed.

object.Restore()

IDH__dx_DirectDrawSurface4.ReleaseDC_ddraw_vb
IDH__dx_DirectDrawSurface4.Restore_ddraw_vb

in.doc – page 445

object

Object expression that resolves to a DirectDrawSurface4 object.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_IMPLICITLYCREATED
DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED
DDERR_WRONGMODE

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
This method restores the memory allocated for a surface, but doesn't reload any
bitmaps that may have existed in the surface before it was lost.

Surfaces can be lost because the mode of the display card was changed or because an
application received exclusive access to the display card and freed all of the surface
memory currently allocated on the card. When a DirectDrawSurface object loses its
surface memory, many methods will return DDERR_SURFACELOST and perform
no other function. The DirectDrawSurface4.Restore method will reallocate surface
memory and reattach it to the DirectDrawSurface object.

A single call to this method will restore a DirectDrawSurface object's associated
implicit surfaces (back buffers, and so on). An attempt to restore an implicitly
created surface will result in an error. DirectDrawSurface4.Restore will not work
across explicit attachments created by using the
DirectDrawSurface4.AddAttachedSurface method—each of these surfaces must
be restored individually.

See Also
DirectDrawSurface4.IsLost

in.doc – page 446

DirectDrawSurface4.SetClipper
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetClipper method attaches a clipper object to or deletes
one from a surface.

object.SetClipper(val As DirectDrawClipper)

object
Object expression that resolves to a DirectDrawSurface4 object.

val
A DirectDrawClipper object for the DirectDrawClipper object that will be
attached to the DirectDrawSurface object. If this argument is NOTHING, the
current DirectDrawClipper object will be detached.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_NOCLIPPERATTACHED

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
If you pass NOTHING as the val argument, the clipper is removed from the surface

This method is primarily used by surfaces that are being overlaid on or blitted to the
primary surface. However, it can be used on any surface. After a DirectDrawClipper
object has been attached and a clip list is associated with it, the DirectDrawClipper
object will be used for the DirectDrawSurface4.Blt, and
DirectDrawSurface4.UpdateOverlay operations involving the parent
DirectDrawSurface object. This method can also detach a DirectDrawSurface
object's current DirectDrawClipper object.

See Also
DirectDrawSurface4.GetClipper

IDH__dx_DirectDrawSurface4.SetClipper_ddraw_vb

in.doc – page 447

DirectDrawSurface4.SetColorKey
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetColorKey method sets the color key value for the
DirectDrawSurface object if the hardware supports color keys on a per surface basis.

object.SetColorKey(_
 flags As CONST_DDCKEYFLAGS, _
 val As DDCOLORKEY)

object
Object expression that resolves to a DirectDrawSurface4 object.

flags
One of the following constants of the CONST_DDCKEYFLAGS enumeration
specifying the type of color key requested.
DDCKEY_COLORSPACE

Set if the type contains a color space. Not set if the type contains a single
color key.

DDCKEY_DESTBLT
Set if the type specifies a color key or color space to be used as a destination
color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the type specifies a color key or color space to be used as a destination
color key for overlay operations.

DDCKEY_SRCBLT
Set if the type specifies a color key or color space to be used as a source color
key for blit operations.

DDCKEY_SRCOVERLAY
Set if the type specifies a color key or color space to be used as a source color
key for overlay operations.

val
A DDCOLORKEY type that contains the new color key values for the
DirectDrawSurface object. This value can be NOTHING to remove a previously
set color key.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE

IDH__dx_DirectDrawSurface4.SetColorKey_ddraw_vb

in.doc – page 448

DDERR_NOOVERLAYHW
DDERR_NOTAOVERLAYSURFACE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
For transparent blits and overlays, you should set destination color on the destination
surface and source color on the source surface.

See Also
DirectDrawSurface4.GetColorKey

DirectDrawSurface4.SetDrawStyle
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetDrawStyle sets the draw style.

object.SetDrawStyle(drawStyle As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

drawStyle
One of the following draw styles to be set.

Setting Description

0 (Default) Solid
1 Dash
2 Dot
3 Dash-Dot
4 Dash-Dot-Dot
5 Transparent
6 Inside Solid

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectDrawSurface4.SetDrawStyle_ddraw_vb

in.doc – page 449

See Also
DirectDrawSurface4.GetDrawStyle

DirectDrawSurface4.SetDrawWidt
h

[This is preliminary documentation and subject to change.]
The DirectDrawSurface4.SetDrawWidth sets the width of the line used in
drawing methods.

object.setDrawWidth(drawWidth As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

drawWidth
The width of the line used in drawing methods. The default value is 1. Any
value between 1 and 32,767 is valid.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectDrawSurface4.GetDrawWidth

DirectDrawSurface4.SetFillColor
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFillColor specifies the fill color used in drawing
methods.

object.SetFillColor(color As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

color
An RGB value to be used as the fill color in drawing methods. The default value
is black (&H00000000).

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectDrawSurface4.SetDrawWidth_ddraw_vb
IDH__dx_DirectDrawSurface4.SetFillColor_ddraw_vb

in.doc – page 450

See Also
DirectDrawSurface4.GetFillColor

DirectDrawSurface4.SetFillStyle
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFillStyle specifies the fill style used in the drawing
methods.

object.SetFillStyle(fillStyle As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

fillStyle
One of the following fill styles to be used in drawing methods.

Setting Description

0 Solid
1 (Default) Transparent
2 Horizontal Line
3 Vertical Line
4 Upward Diagonal
5 Downward Diagonal
6 Cross
7 Diagonal Cross

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectDrawSurface4.GetFillStyle

DirectDrawSurface4.SetFont
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFont specifies the font to be used in
DirectDrawSurface4.DrawText.

object.SetFont(font As IFont)

IDH__dx_DirectDrawSurface4.SetFillStyle_ddraw_vb
IDH__dx_DirectDrawSurface4.SetFont_ddraw_vb

in.doc – page 451

object

Object expression that resolves to a DirectDrawSurface4 object.
font

The font as specified in the IFont class.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.SetFontTrans
parency

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetFontTransparency specified whether the font to be
used when the DirectDrawSurface4.DrawText is called is transparent.

object.SetFontTransparency(b As Boolean)

object
Object expression that resolves to a DirectDrawSurface4 object.

b
Set to D_TRUE if the font is transparent or D_FALSE if the font is not
transparent.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectDrawSurface4.SetForeColor
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetForeColor method sets the foreground color used in
drawing methods.

object.SetForeColor(color As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

color
An RGB value to set as the foreground color.

IDH__dx_DirectDrawSurface4.SetFontTransparency_ddraw_vb
IDH__dx_DirectDrawSurface4.SetForeColor_ddraw_vb

in.doc – page 452

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectDrawSurface4.GetForeColor

DirectDrawSurface4.SetLockedPix
el

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetLockedPixel method sets a single pixel to the
specified color and updates the locked surface.

object.SetLockedPixel(_
 x As Long, _
 y As Long, _
 col As Long)

object
Object expression that resolves to a DirectDrawSurface4 object.

x and y
The coordinates of the pixel to set.

col
An RGB value to for the set pixel.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
You must first lock the surface with a call to DirectDrawSurface4.Lock.

See Also
DirectDrawSurface4.GetLockedPixel

DirectDrawSurface4.SetLockedSur
faceBits

[This is preliminary documentation and subject to change.]

IDH__dx_DirectDrawSurface4.SetLockedPixel_ddraw_vb
IDH__dx_DirectDrawSurface4.SetLockedSurfaceBits_ddraw_vb

in.doc – page 453

The DirectDrawSurface4.SetLockedSurfaceBits method updates the locked
surface.

object.SetLockedSurfaceBits(memory As Any)

object
Object expression that resolves to a DirectDrawSurface4 object.

memory
An array filled with the manipulated surface bits. This must be the same array
used in the method DirectDrawSurface4.GetLockedSurfaceBits.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To manipulate the locked surface, call
DirectDrawSurface4.GetLockedSurfaceBits. You must first lock the surface with
a call to DirectDrawSurface4.Lock.

DirectDrawSurface4.SetPalette
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.SetPalette method attaches a palette object to (or
detaches one from) a surface. The surface uses this palette for all subsequent
operations. The palette change takes place immediately, without regard to refresh
timing.

object.SetPalette(ddp As DirectDrawPalette)

object
Object expression that resolves to a DirectDrawSurface4 object.

ddp
A DirectDrawPalette object for the palette object to be used with this surface.
If this argument is NOTHING, the current palette will be detached.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT

IDH__dx_DirectDrawSurface4.SetPalette_ddraw_vb

in.doc – page 454

DDERR_INVALIDSURFACETYPE
DDERR_NOEXCLUSIVEMODE
DDERR_NOPALETTEATTACHED
DDERR_NOPALETTEHW
DDERR_NOT8BITCOLOR
DDERR_SURFACELOST
DDERR_UNSUPPORTED

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
If you pass NOTHING as the ddp argument, the palette is removed from the surface.

See Also
DirectDrawSurface4.GetPalette, DirectDraw4.CreatePalette

DirectDrawSurface4.Unlock
[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.Unlock method notifies DirectDraw that the direct
surface manipulations are complete.

object.Unlock(r As RECT)

object
Object expression that resolves to a DirectDrawSurface4 object.

r
A RECT type that is used to lock the surface in the corresponding call to the
DirectDrawSurface4.Lock method. This argument can be NOTHING only if
the entire surface was locked by passing NOTHING in the r argument of the
corresponding call to the DirectDrawSurface4.Lock method.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOTLOCKED

IDH__dx_DirectDrawSurface4.Unlock_ddraw_vb

in.doc – page 455

DDERR_SURFACELOST

For information on trapping errors, see the Visual Basic Error Trapping topic.

Remarks
Because it is possible to call DirectDrawSurface4.Lock multiple times for the same
surface with different destination rectangles, the r parameter links the calls to the
DirectDrawSurface4.Lock and DirectDrawSurface4.Unlock methods.

See Also
DirectDrawSurface4.Lock

DirectDrawSurface4.UpdateOverla
y

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.UpdateOverlay method repositions or modifies the
visual attributes of an overlay surface. These surfaces must have the
DDSCAPS_OVERLAY flag set in the DDSCAPS2 type when the surface is created.

object.UpdateOverlay(_
 RECT As RECT, _
 ddS As DirectDrawSurface4, _
 rectD As RECT, _
 flags As CONST_DDOVERFLAGS)

object
Object expression that resolves to a DirectDrawSurface4 object.

RECT
A variable of type RECT that defines the x, y, width, and height of the region
on the source surface being used as the overlay. This argument can be
NOTHING when hiding an overlay or to indicate that the entire overlay surface
is to be used and that the overlay surface conforms to any boundary and size
alignment restrictions imposed by the device driver.

ddS
A DirectDrawSurface4 object for the surface that is being overlaid.

rectD
A variable of type RECT that defines the x, y, width, and height of the region
on the destination surface that the overlay should be moved to. This argument
can be NOTHING when hiding the overlay.

flags

IDH__dx_DirectDrawSurface4.UpdateOverlay_ddraw_vb

in.doc – page 456

One or more of the following constants of the CONST_DDOVERFLAGS
enumeration:
DDOVER_ADDDIRTYRECT

This flag is not used.
DDOVER_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel surface
attached to the destination surface as the alpha channel for this overlay.

DDOVER_ALPHADESTNEG
Indicates that the destination surface becomes more transparent as the alpha
value increases (0 is opaque).

DDOVER_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel surface
attached to the source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha value
increases (0 is opaque).

DDOVER_AUTOFLIP
Automatically flip to the next surface in the flip chain each time a video port
VSYNC occurs.

DDOVER_BOB
Display each field individually of the interlaced video stream without causing
any artifacts.

DDOVER_BOBHARDWARE
Indicates that bob operations will be performed using hardware rather than
software or emulated. This flag must be used with the DDOVER_BOB flag.

DDOVER_HIDE
Turns off this overlay.

DDOVER_KEYDEST
Uses the color key associated with the destination surface.

DDOVER_KEYSRC
Uses the color key associated with the source surface.

DDOVER_OVERRIDEBOBWEAVE
Indicates that bob/weave decisions should not be overridden by other classes.

DDOVER_INTERLEAVED
Indicates that the surface memory is composed of interleaved fields.

DDOVER_SHOW
Turns on this overlay.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_DEVICEDOESNTOWNSURFACE
DDERR_GENERIC

in.doc – page 457

DDERR_HEIGHTALIGN
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_INVALIDSURFACETYPE
DDERR_NOSTRETCHHW
DDERR_NOTAOVERLAYSURFACE
DDERR_OUTOFCAPS
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_XALIGN

For information on trapping errors, see the Visual Basic Error Trapping topic.

DirectDrawSurface4.UpdateOverla
yZOrder

[This is preliminary documentation and subject to change.]

The DirectDrawSurface4.UpdateOverlayZOrder method sets the z-order of an
overlay.

object.UpdateOverlayZOrder(_
 flags As CONST_DDOVERZFLAGS, _
 ddS As DirectDrawSurface4)

object
Object expression that resolves to a DirectDrawSurface4 object.

flags
One of the following constants of the CONST_DDOVERZFLAGS
enumeration:
DDOVERZ_INSERTINBACKOF

Inserts this overlay in the overlay chain behind the reference overlay.
DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference overlay.
DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.
DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.
DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.

IDH__dx_DirectDrawSurface4.UpdateOverlayZOrder_ddraw_vb

in.doc – page 458

DDOVERZ_SENDTOFRONT
Moves this overlay to the front of the overlay chain.

ddS
A DirectDrawSurface4 object for the DirectDraw surface to be used as a
relative position in the overlay chain. This argument is needed only for
DDOVERZ_INSERTINBACKOF and DDOVERZ_INSERTINFRONTOF.

Error Codes
If the method fails, the error code may be one of the following:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTAOVERLAYSURFACE

For information on trapping errors, see the Visual Basic Error Trapping topic.

See Also
DirectDrawSurface4.GetOverlayZOrdersEnum

DirectDraw Global Methods
[This is preliminary documentation and subject to change.]

The DirectX7 class is the main class of any DirectX for Visual Basic application.
This class has methods that are used with all of the DirectX components. The
methods pertaining to DirectDraw are:

· DirectX7.DirectDrawCreate
· DirectX7.GetDDEnum

Types
[This is preliminary documentation and subject to change.]

This section contains information about the following types used with DirectDraw:

· DDBLTFX
· DDCAPS
· DDCOLORCONTROL
· DDCOLORKEY
· DDGAMMARAMP
· DDPIXELFORMAT
· DDSCAPS2
· DDSURFACEDESC2

in.doc – page 459

· DXDRIVERINFO
· PALETTEENTRY
· RECT

DDBLTFX
[This is preliminary documentation and subject to change.]

The DDBLTFX type passes raster operations, effects, and override information to
the DirectDrawSurface4.Blt method.

Type DDBLTFX
 ddckDestColorKey_high As Long
 ddckDestColorKey_low As Long
 ddckSrcColorKey_high As Long
 ddckSrcColorKey_low As Long
 lAlphaDestConst As Long
 lAlphaDestConstBitDepth As Long
 lAlphaEdgeBlend As Long
 lAlphaEdgeBlendBitDepth As Long
 lAlphaSrcConst As Long
 lAlphaSrcConstBitDepth As Long
 lDDFX As CONST_DDBLTFXFLAGS
 lDDROP As Long
 lFill As Long
 lReserved As Long
 lROP As Long
 lRotationAngle As Long
 lZBufferBaseDest As Long
 lZBufferHigh As Long
 lZBufferLow As Long
 lZBufferOpCode As Long
 lZDestConst As Long
 lZDestConstBitDepth As Long
 lZSrcConst As Long
 lZSrcConstBitDepth As Long
End Type

ddckDestColorKey_high
High value, inclusive, of the color range that is to be used as the destination
color key.

ddckDestColorKey_low
Low value, inclusive, of the color range that is to be used as the destination
color key.

IDH__dx_DDBLTFX_ddraw_vb

in.doc – page 460

ddckSrcColorKey_high
High value, inclusive, of the color range that is to be used as the source color
key.

ddckSrcColorKey_low
Low value, inclusive, of the color range that is to be used as the source color
key.

lAlphaDestConst
Constant used as the alpha channel destination.

lAlphaDestConstBitDepth
Bit depth of the destination alpha constant.

lAlphaEdgeBlend
Alpha constant used for edge blending.

lAlphaEdgeBlendBitDepth
Bit depth of the constant for an alpha edge blend.

lAlphaSrcConst
Constant used as the alpha channel source.

lAlphaSrcConstBitDepth
Bit depth of the source alpha constant.

lDDFX
Type of FX operations. One of the following constants of the
CONST_DDBLTFXFLAGS enumeration:
DDBLTFX_ARITHSTRETCHY

Uses arithmetic stretching along the y-axis for this blit.
DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to right.
DDBLTFX_MIRRORUPDOWN

Turns the surface on its x-axis. This blit mirrors the surface from top to
bottom.

DDBLTFX_NOTEARING
Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180
Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270
Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90
Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST
Adds the lZBufferBaseDest member to each of the source z-values before
comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE
Uses the lZBufferLow and lZBufferHigh members as range values to
specify limits to the bits copied from a source surface during this z-blit.

lDDROP

in.doc – page 461

DirectDraw raster operations.
lFill

Color used to fill a surface when DDBLT_COLORFILL is specified. This value
must be a pixel appropriate to the pixel format of the destination surface. For a
palettized surface it would be a palette index, and for a 16-bit RGB surface it
would be a 16-bit pixel value.

lReserved
Reserved for future use.

lROP
Win32 raster operations. You can retrieve a list of supported raster operations by
calling the DirectDraw4.GetCaps method.

lRotationAngle
Rotation angle for the blit.

lZBufferBaseDest
Destination base value of a z-buffer.

lZBufferHigh
High limit of a z-buffer.

lZBufferLow
Low limit of a z-buffer.

lZBufferOpCode
Z-buffer compares.

lZDestConst
Constant used as the z-buffer destination.

lZDestConstBitDepth
Bit depth of the destination z-constant.

lZSrcConst
Constant used as the z-buffer source.

lZSrcConstBitDepth
Bit depth of the source z-constant.

DDCAPS
[This is preliminary documentation and subject to change.]

The DDCAPS type represents the capabilities of the hardware exposed through the
DirectDraw object. This type contains a DDSCAPS2 type used in this context to
describe what kinds of DirectDrawSurface objects can be created. It may not be
possible to simultaneously create all of the surfaces described by these capabilities.
This type is used with the DirectDraw4.GetCaps method.

Type DDCAPS
 ddsCaps As DDSCAPS2
 lAlignBoundaryDest As Long

IDH__dx_DDCAPS_ddraw_vb

in.doc – page 462

 lAlignBoundarySrc As Long
 lAlignSizeDest As Long
 lAlignSizeSrc As Long
 lAlignStrideAlign As Long
 lAlphaBltConstBitDepths As Long
 lAlphaBltPixelBitDepths As Long
 lAlphaBltSurfaceBitDepths As Long
 lAlphaOverlayConstBitDepths As Long
 lAlphaOverlayPixelBitDepths As Long
 lAlphaOverlaySurfaceBitDepths As Long
 lCaps As CONST_DDCAPS1FLAGS
 lCaps2 As CONST_DDCAPS2FLAGS
 lCKeyCaps As CONST_DDCKEYCAPSFLAGS
 lCurrVideoPorts As Long
 lCurrVisibleOverlays As Long
 lFXAlphaCaps As CONST_DDFXALPHACAPSFLAGS
 lFXCaps As CONST_DDFXCAPSFLAGS
 lMaxHwCodecStretch As Long
 lMaxLiveVideoStretch As Long
 lMaxOverlayStretch As Long
 lMaxVideoPorts As Long
 lMaxVisibleOverlays As Long
 lMinHwCodecStretch As Long
 lMinLiveVideoStretch As Long
 lMinOverlayStretch As Long
 lNLVBCaps As CONST_DDCAPS1FLAGS
 lNLVBCaps2 As CONST_DDCAPS2FLAGS
 lNLVBCKeyCaps As CONST_DDCKEYCAPSFLAGS
 lNLVBFXCaps As CONST_DDFXCAPSFLAGS
 lNLVBRops (0 To 7) As Long
 lNumFourCCCodes As Long
 lPalCaps As CONST_DDPCAPSFLAGS
 lReserved1 As Long
 lReserved2 As Long
 lReserved3 As Long
 lReservedCaps As Long
 lRops (0 To 7) As Long
 lSSBCaps As CONST_DDCAPS1FLAGS
 lSSBCKeyCaps As CONST_DDCKEYCAPSFLAGS
 lSSBFXCaps As CONST_DDFXCAPSFLAGS
 lSSBRops (0 To 7) As Long
 lSVBCaps As CONST_DDCAPS1FLAGS
 lSVBCaps2 As CONST_DDCAPS2FLAGS
 lSVBCKeyCaps As CONST_DDCKEYCAPSFLAGS
 lSVBFXCaps As CONST_DDFXCAPSFLAGS
 lSVBRops (0 To 7) As Long

in.doc – page 463

 lSVCaps As CONST_DDSTEREOCAPSFLAGS
 lVidMemFree As Long
 lVidMemTotal As Long
 lVSBCaps As CONST_DDCAPS1FLAGS
 lVSBCKeyCaps As CONST_DDCKEYCAPSFLAGS
 lVSBFXCaps As CONST_DDFXCAPSFLAGS
 lVSRops (0 To 7) As Long
 lZBufferBitDepths As Long
End Type

ddsCaps
A DDSCAPS2 type used for further capability descriptions.

lAlignBoundaryDest
Destination rectangle alignment for an overlay surface, in pixels.

lAlignBoundarySrc
Source rectangle alignment for an overlay surface, in pixels.

lAlignSizeDest
Destination rectangle size alignment for an overlay surface, in pixels. Overlay
destination rectangles must have a pixel width that is a multiple of this value.

lAlignSizeSrc
Source rectangle size alignment for an overlay surface, in pixels. Overlay source
rectangles must have a pixel width that is a multiple of this value.

lAlignStrideAlign
Stride alignment.

lAlphaBltConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

lAlphaBltPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

lAlphaBltSurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

lAlphaOverlayConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

lAlphaOverlayPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

lAlphaOverlaySurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

lCaps
Constants of the CONST_DDCAPS1FLAGS describing driver-specific
capabilities.
DDCAPS_3D

in.doc – page 464

Indicates that the display hardware has 3-D acceleration.
DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those overlay destination
rectangles with the x-axis aligned to the lAlignBoundaryDest boundaries of
the surface.

DDCAPS_ALIGNBOUNDARYSRC
Indicates that DirectDraw will support only those overlay source rectangles
with the x-axis aligned to the lAlignBoundarySrc boundaries of the surface.

DDCAPS_ALIGNSIZEDEST
Indicates that DirectDraw will support only those overlay destination
rectangles whose x-axis sizes, in pixels, are lAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC
Indicates that DirectDraw will support only those overlay source rectangles
whose x-axis sizes, in pixels, are lAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE
Indicates that DirectDraw will create display memory surfaces that have a
stride alignment equal to the lAlignStrideAlign value.

DDCAPS_ALPHA
Indicates that the display hardware supports alpha-only surfaces. (See alpha
channel)

DDCAPS_BANKSWITCHED
Indicates that the display hardware is bank-switched and is potentially very
slow at random access to display memory.

DDCAPS_BLT
Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL
Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL
Indicates that display hardware is capable of depth filling z-buffers with a
blitter.

DDCAPS_BLTFOURCC
Indicates that display hardware is capable of color-space conversions during
blit operations.

DDCAPS_BLTQUEUE
Indicates that display hardware is capable of asynchronous blit operations.

DDCAPS_BLTSTRETCH
Indicates that display hardware is capable of stretching during blit operations.

DDCAPS_CANBLTSYSMEM
Indicates that display hardware is capable of blitting to or from system
memory.

DDCAPS_CANCLIP
Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED

in.doc – page 465

Indicates that display hardware is capable of clipping while stretch blitting.
DDCAPS_COLORKEY

Supports some form of color key in either overlay or blit operations. More
specific color key capability information can be found in the lCKeyCaps
member.

DDCAPS_COLORKEYHWASSIST
Indicates that the color key is partially hardware assisted. This means that
other resources (CPU or video memory) might be used. If this bit is not set,
full hardware support is in place.

DDCAPS_GDI
Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE
Indicates that there is no hardware support.

DDCAPS_OVERLAY
Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP
Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC
Indicates that overlay hardware is capable of color-space conversions during
overlay operations.

DDCAPS_OVERLAYSTRETCH
Indicates that overlay hardware is capable of stretching. The
lMinOverlayStretch and lMaxOverlayStretch members contain valid data.

DDCAPS_PALETTE
Indicates that DirectDraw is capable of creating and supporting
DirectDrawPalette objects for more surfaces than only the primary surface.

DDCAPS_PALETTEVSYNC
Indicates that DirectDraw is capable of updating a palette synchronized with
the vertical refresh.

DDCAPS_READSCANLINE
Indicates that display hardware is capable of returning the current scan line.

DDCAPS_STEREOVIEW
Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI
Indicates that display hardware is capable of generating a vertical-blank
interrupt.

DDCAPS_ZBLTS
Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS
Supports the use of the DirectDrawSurface4.UpdateOverlayZOrder
method as a z-value for overlays to control their layering.

lCaps2

in.doc – page 466

Constants of the CONST_DDCAPS2FLAGS enumeration describing more
driver-specific capabilities.
DDCAPS2_AUTOFLIPOVERLAY

The overlay can be automatically flipped to the next surface in the flip chain
each time a video port VSYNC occurs, allowing the video port and the
overlay to double buffer the video without CPU overhead. This option is only
valid when the surface is receiving data from a video port. If the video port
data is non-interlaced or non-interleaved, it will flip on every VSYNC. If the
data is being interleaved in memory, it will flip on every other VSYNC.

DDCAPS2_CANBOBHARDWARE
The overlay hardware can display each field of an interlaced video stream
individually.

DDCAPS2_CANBOBINTERLEAVED
The overlay hardware can display each field individually of an interlaced
video stream while it is interleaved in memory without causing any artifacts
that might normally occur without special hardware support. This option is
only valid when the surface is receiving data from a video port and is only
valid when the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANBOBNONINTERLEAVED
The overlay hardware can display each field individually of an interlaced
video stream while it is not interleaved in memory without causing any
artifacts that might normally occur without special hardware support. This
option is only valid when the surface is receiving data from a video port and
is only valid when the video is zoomed at least two times in the vertical
direction.

DDCAPS2_CANCALIBRATEGAMMA
The system has a calibrator installed that can automatically adjust the gamma
ramp so that the result will be identical on all systems that have a calibrator.
To invoke the calibrator when setting new gamma levels, use the
DDSGR_CALIBRATE flag when calling the
DirectDrawGammaControl.SetGammaRamp method. Calibrating gamma
ramps incurs some processing overhead, and should not be used frequently.

DDCAPS2_CANDROPZ16BIT
16-bit RGBZ values can be converted into sixteen-bit RGB values. (The
system does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN
The driver is capable of performing odd and even flip operations, as specified
by the DDFLIP_ODD and DDFLIP_EVEN flags used with the
DirectDrawSurface4.Flip method.

DDCAPS2_CANRENDERWINDOWED
The driver is capable of rendering in windowed mode.

DDCAPS2_CERTIFIED
Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLPRIMARY
The primary surface contains color controls (for instance, gamma)

in.doc – page 467

DDCAPS2_COLORCONTROLOVERLAY
The overlay surface contains color controls (such as brightness, sharpness)

DDCAPS2_COPYFOURCC
Indicates that the driver supports blitting any FOURCC surface to another
surface of the same FOURCC.

DDCAPS2_NO2DDURING3DSCENE
Indicates that 2-D operations such as DirectDrawSurface4.Blt and
DirectDrawSurface4.Lock cannot be performed on any surfaces that
Direct3D® is using between calls to the Direct3DDevice3.BeginScene and
Direct3DDevice3.EndScene methods.

DDCAPS2_NONLOCALVIDMEM
Indicates that the display driver supports surfaces in non-local video memory.

DDCAPS2_NONLOCALVIDMEMCAPS
Indicates that blit capabilities for non-local video memory surfaces differ
from local video memory surfaces. If this flag is present, the
DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED
DMA blit operations are supported on system memory surfaces that are not
page locked.

DDCAPS2_PRIMARYGAMMA
Supports dynamic gamma ramps for the primary surface. For more
information, see Gamma and Color Controls.

DDCAPS2_VIDEOPORT
Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES
Indicates that the display surfaces supports surfaces wider than the primary
surface.

lCKeyCaps
Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing
color-key capabilities.
DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the replaceable
bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE
Supports transparent blitting with a color space that identifies the replaceable
bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV
Supports transparent blitting with a color space that identifies the replaceable
bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV
Supports transparent blitting with a color key that identifies the replaceable
bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY

in.doc – page 468

Supports overlaying with color keying of the replaceable bits of the
destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE
Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV
Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE
Supports only one active destination color key value for visible overlay
surfaces .

DDCKEYCAPS_DESTOVERLAYYUV
Supports overlaying using color keying of the replaceable bits of the
destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY
Indicates there are no BANDWIDTH trade-offs for using the color key with
an overlay.

DDCKEYCAPS_SRCBLT
Supports transparent blitting using the color key for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE
Supports transparent blitting using a color space for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV
Supports transparent blitting using a color space for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV
Supports transparent blitting using the color key for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY
Supports overlaying using the color key for the source with this overlay
surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE
Supports overlaying using a color space as the source color key for the
overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV
Supports overlaying using a color space as the source color key for the
overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE
Supports only one active source color key value for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV
Supports overlaying using the color key for the source with this overlay
surface for YUV colors.

lCurrVideoPorts
Current number of live video ports.

in.doc – page 469

lCurrVisibleOverlays
Current number of visible overlays or overlay sprites.

lFXAlphaCaps
Constants of the CONST_DDFXALPHACAPSFLAGS enumeration decribing
driver-specific alpha capabilities.
DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface.
Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes
more opaque as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully transparent value. Used for blit
operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value becomes
more transparent as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully opaque value. This flag can be used
only if DDCAPS_ALPHA is set. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1,
2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always the
fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha value
increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless
of the depth of the alpha information, 0 is always the fully opaque value. This
flag can be set only if DDCAPS_ALPHA has been set. Used for blit
operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND
Supports alpha blending around the edge of a source color-keyed surface.
Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more opaque as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more transparent as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully opaque value. This flag can be used
only if DDCAPS_ALPHA has been set. Used for overlays.

in.doc – page 470

DDFXALPHACAPS_OVERLAYALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1,
2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always the
fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha value
increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless
of the depth of the alpha information, 0 is always the fully opaque value. This
flag can be used only if DDCAPS_ALPHA has been set. Used for overlays.

lFXCaps
Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver-
specific stretching and effects capabilities.
DDFXCAPS_BLTALPHA

Supports alpha-blended blit operations.
DDFXCAPS_BLTARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to stretch
and shrink surfaces during a blit operation. Occurs along the y-axis
(vertically).

DDFXCAPS_BLTARITHSTRETCHYN
Uses arithmetic operations, rather than pixel-doubling techniques, to stretch
and shrink surfaces during a blit operation. Occurs along the y-axis
(vertically), and works only for integer stretching (1, 2, and so on).

DDFXCAPS_BLTFILTER
Driver can do surface-reconstruction filtering for warped blits.

DDFXCAPS_BLTMIRRORLEFTRIGHT
Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN
Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION
Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90
Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally). This
flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This
flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN

in.doc – page 471

Supports integer shrinking (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally). This
flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically). This
flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTTRANSFORM
Supports geometric transformations (or warps) for blitted sprites.
Transformations are not currently supported for explicit blit operations.

DDFXCAPS_OVERLAYALPHA
Supports alpha blending for overlay surfaces.

DDFXCAPS_OVERLAYFILTER
Supports surface-reconstruction filtering for warped overlay sprites. Filtering
is not currently supported for explicitly displayed overlay surfaces (those
displayed with calls to DirectDrawSurface4.UpdateOverlay).

DDFXCAPS_OVERLAYMIRRORUPDOWN
Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that shrinking is
available.

DDFXCAPS_OVERLAYSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces.
This flag indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that shrinking is
available.

DDFXCAPS_OVERLAYSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This

in.doc – page 472

flag indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that stretching is
available.

DDFXCAPS_OVERLAYSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces.
This flag indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that stretching is
available.

DDFXCAPS_OVERLAYSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This
flag indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYTRANSFORM
Supports geometric transformations (or warps) for overlay sprites.
Transformations are not currently supported for explicitly displayed overlay
surfaces (those displayed with calls to
DirectDrawSurface4.UpdateOverlay).

lMinHwCodecStretch and lMaxHwCodecStretch
These members are obsolete; do not use.

lMinLiveVideoStretch and lMaxLiveVideoStretch
These members are obsolete; do not use.

lMinOverlayStretch and lMaxOverlayStretch
Minimum and maximum overlay stretch factors multiplied by 1000. For
example, 1.3 = 1300.

lMaxVideoPorts
Maximum number of live video ports.

lMaxVisibleOverlays
Maximum number of visible overlays or overlay sprites.

lNLVBCaps
Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-
specific capabilities for nonlocal-to-local video memory blits. Valid flags are
identical to the blit-related flags used with the lCaps member.

lNLVBCaps2

in.doc – page 473

Constants of the CONST_DDCAPS2FLAGS enumeration describing more
driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags
are identical to the blit-related flags used with the lCaps2 member.

lNLVBCKeyCaps
Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing
driver color-key capabilities for nonlocal-to-local video memory blits. Valid
flags are identical to the blit-related flags used with for the lCKeyCaps member.

lNLVBFXCaps
Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver
FX capabilities for nonlocal-to-local video memory blits. Valid flags are
identical to the blit-related flags used with the lFXCaps member.

lNLVBRops[0 to 7]
Raster operations supported for nonlocal-to-local video memory blits.

lNumFourCCCodes
Number of FourCC codes.

lPalCaps
Constants of the CONST_DDPCAPSFLAGS enumeration describing palette
capabilities.
DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.
DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.
DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.
DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.
DDPCAPS_8BITENTRIES

Specifies an index to an 8-bit color index. This field is valid only when used
with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT capability
and when the target surface is in 8 bits per pixel (bpp). Each color entry is 1
byte long and is an index to an 8-bpp palette on the destination surface.

DDPCAPS_ALLOW256
Indicates that this palette can have all 256 entries defined.

DDPCAPS_PRIMARYSURFACE
Indicates that the palette is attached to the primary surface. Changing the
palette has an immediate effect on the display unless the DDPCAPS_VSYNC
capability is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT
Indicates that the palette is attached to the primary surface on the left.
Changing the palette has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_VSYNC
Indicates that the palette can be modified synchronously with the monitor's
refresh rate.

in.doc – page 474

lReserved1, lReserved2, lReserved3, and IReservedCaps
Reserved for future use.

lRops[0 To 7]
Raster operations supported.

lSSBCaps
Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-
specific capabilities for system-memory-to-system-memory blits. Valid flags are
identical to the blit-related flags used with the lCaps member.

lSSBCKeyCaps
Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing
driver color-key capabilities for system-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with for the lCKeyCaps member.

lSSBCFXCaps
Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver
FX capabilities for system-memory-to-system-memory blits. Valid flags are
identical to the blit-related flags used with the lFXCaps member.

lSSBRops[0 To 7]
Raster operations supported for system-memory-to-system-memory blits.

lSVBCaps
Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-
specific capabilities for system-memory-to-display-memory blits. Valid flags are
identical to the blit-related flags used with the lCaps member.

lSVBCaps2
Constants of the CONST_DDCAPS2FLAGS enumeration describing more
driver-specific capabilities for system-memory-to-video-memory blits. Valid
flags are identical to the blit-related flags used with the lCaps2 member.

lSVBCKeyCaps
Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing
driver color-key capabilities for system-memory-to-display-memory blits. Valid
flags are identical to the blit-related flags used with for the lCKeyCaps member.

lSVBFXCaps
Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver
FX capabilities for system-memory-to-display-memory blits. Valid flags are
identical to the blit-related flags used with the lFXCaps member.

lSVBRops[0 To 7]
Raster operations supported for system-memory-to-display-memory blits.

lSVCaps
Constants of the CONST_DDSTEREOCAPSFLAGS enumeration describing
stereo vision capabilities.
DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.
DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency
flickering.

in.doc – page 475

DDSVCAPS_REDBLUE
Indicates that the stereo view is accomplished when the viewer looks at the
image through red and blue filters placed over the left and right eyes. All
images must adapt their color spaces for this process.

DDSVCAPS_SPLIT
Indicates that the stereo view is accomplished with split-screen technology.

lVidMemFree
Amount of free display memory.

lVidMemTotal
Total amount of display memory.

IVSBCaps
Constants of the CONST_DDCAPS1FLAGS enumeration describing driver-
specific capabilities for display-memory-to-system-memory blits. Valid flags are
identical to the blit-related flags used with the lCaps member.

lVSBCKeyCaps
Constants of the CONST_DDCKEYCAPSFLAGS enumeration describing
driver color-key capabilities for display-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with for the lCKeyCaps member.

lVSBFXCaps
Constants of the CONST_DDFXCAPSFLAGS enumeration describing driver
FX capabilities for display-memory-to-system-memory blits. Valid flags are
identical to the blit-related flags used with the lFXCaps member.

lVSBRops[0 To 7]
Raster operations supported for display-memory-to-system-memory blits.

lZBufferBitDepths
DDBD_8, DDBD_16, or DDBD_24. (Indicates 8-, 16-, 24-bits per pixel.) 32-bit
z-buffers are not supported.

DDCOLORCONTROL
[This is preliminary documentation and subject to change.]

The DDCOLORCONTROL type defines the color controls associated with a
DirectDrawVideoPortObject, an overlay surface, or a primary surface.

Type DDCOLORCONTROL
 lBrightness As Long
 lColorEnable As Long
 lContrast As Long
 lFlags As CONST_DDCOLORFLAGS
 lGamma As Long
 lHue As Long
 lReserved1 As Long
 lSaturation As Long

IDH__dx_DDCOLORCONTROL_ddraw_vb

in.doc – page 476

 lSharpness As Long
End Type

lBrightness
Luminance intensity, in IRE units times 100. The valid range is 0 to 10,000. The
default is 750, which translates to 7.5 IRE.

lColorEnable
Flag indicating whether color is used. If this member is zero, color is not used; if
it is 1, then color is used. The default value is 1.

lContrast
Relative difference between higher and lower intensity luminance values in IRE
units times 100. The valid range is 0 to 20,000. The default value is 10,000 (100
IRE). Higher values of contrast cause darker luminance values to tend towards
black, and cause lighter luminance values to tend towards white. Lower values
of contrast cause all luminance values to move towards the middle luminance
values.

lFlags
Constants of the CONST_DDCOLORFLAGS enumeration specifying which
type members contain valid data . When the type is returned by the
DirectDrawColorControl.GetColorControls method, it also indicates which
options are supported by the device.
DDCOLOR_BRIGHTNESS

The lBrightness member contains valid data.
DDCOLOR_COLORENABLE

The lColorEnable member contains valid data.
DDCOLOR_CONTRAST

The lContrast member contains valid data.
DDCOLOR_GAMMA

The lGamma member contains valid data.
DDCOLOR_HUE

The lHue member contains valid data.
DDCOLOR_SATURATION

The lSaturation member contains valid data.
DDCOLOR_SHARPNESS

The lSharpness member contains valid data.
lGamma

Controls the amount of gamma correction applied to the luminance values. The
valid range is 1 to 500 gamma units, with a default of 1.

lHue
Phase relationship of the chrominance components. Hue is specified in degrees
and the valid range is -180 to 180. The default is 0.

lReserved1
This member is reserved.

lSaturation

in.doc – page 477

Color intensity, in IRE units times 100. The valid range is 0 to 20,000. The
default value is 10,000, which translates to 100 IRE.

lSharpness
Sharpness in arbitrary units. The valid range is 0 to 10. The default value is 5.

DDCOLORKEY
[This is preliminary documentation and subject to change.]

The DDCOLORKEY type describes a source color key, destination color key, or
color space. A color key is specified if the low and high range values are the same.
This type is used with the DirectDrawSurface4.GetColorKey and
DirectDrawSurface4.SetColorKey methods.

Type COLORKEY
 high As Long
 low As Long
End Type

high
High value, inclusive, of the color range that is to be used as the color key.

low
Low value, inclusive, of the color range that is to be used as the color key.

DDGAMMARAMP
[This is preliminary documentation and subject to change.]

The DDGAMMARAMP type contains red, green, and blue ramp data for the
DirectDrawGammaControl.GetGammaRamp and
DirectDrawGammaControl.SetGammaRamp methods.

Type DDGAMMARAMP
 blue(0 To 255) As Integer
 green(0 To 255) As Integer
 red(0 To 255) As Integer
End Type

red, green, and blue
Describes the red, green, and blue gamma ramps.

See Also
Gamma and Color Controls

IDH__dx_DDCOLORKEY_ddraw_vb
IDH__dx_DDGAMMARAMP_ddraw_vb

in.doc – page 478

DDPIXELFORMAT
[This is preliminary documentation and subject to change.]

The DDPIXELFORMAT type describes the pixel format of a DirectDrawSurface
object for the DirectDrawSurface4.GetPixelFormat method.

Type DDPIXELFORMAT
 lAlphaBitDepth As Long
 lBBitMask As Long
 lBumpDuBitMask As Long
 lBumpDvBitMask As Long
 lBumpLuminanceBitMask As Long
 lFlags As CONST_DDPIXELFORMATFLAGS
 lFourCC As Long
 lGBitMask As Long
 lLuminanceAlphaBitMask As Long
 lLuminanceBitCount As Long
 lLuminanceBitMask As Long
 lRBitMask As Long
 lRGBAlphaBitMask As Long
 lRGBBitCount As Long
 lRGBZBitMask As Long
 lStencilBitDepth As Long
 lStencilBitMask As Long
 lUBitMask As Long
 lVBitMask As Long
 lYBitMask As Long
 lYUVAlphaBitMask As Long
 lYUVBitCount As Long
 lYUVZBitMask As Long
 lZBufferBitDepth As Long
End Type

lAlphaBitDepth
Alpha channel bit depth (1, 2, 4, or 8) for an alpha-only surface
(DDPF_ALPHA). For pixel formats that contain alpha information interleaved
with color data (DDPF_ALPHAPIXELS), you must count the bits in the
lRGBAlphaBitMask member to obtain the bit-depth of the alpha component.

lBBitMask
Mask for blue bits.

lBumpBitCount
Total bump-map bits per pixel in a bump-map surface.

lBumpDuBitMask
Mask for bump-map UD bits.

IDH__dx_DDPIXELFORMAT_ddraw_vb

in.doc – page 479

lBumpDvBitMask
Mask for bump-map VD bits.

lBumpLuminanceBitMask
Mask for luminance in a bump-map pixel.

lFlags
Constants of the CONST_DDPIXELFORMATFLAGS enumeration
describing optional control flags.
DDPF_ALPHA

The pixel format describes an alpha-only surface.
DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.
DDPF_ALPHAPREMULT

The surface uses the premultiplied alpha format. That is, the color
components in each pixel are premultiplied by the alpha component.

DDPF_BUMPLUMINANCE
The luminance data in the pixel format is valid, and the lLuminanceBitMask
member descibes valid luminance bits for a luminance-only or luminance-
alpha surface.

DDPF_BUMPDUDV
Bump-map data in the pixel format is valid. Bump-map information is in the
lBumpBitCount, lBumpDuBitMask, lBumpDvBitMask, and
lBumpLuminanceBitMask members.

DDPF_COMPRESSED
The surface will accept pixel data in the specified format and compress it
during the write operation.

DDPF_FOURCC
The lFourCC member is valid and contains a FOURCC code describing a
non-RGB pixel format.

DDPF_LUMINANCE
The pixel format describes a luminance-only or luminance-alpha surface.

DDPF_PALETTEINDEXED1
DDPF_PALETTEINDEXED2
DDPF_PALETTEINDEXED4
DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.
DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.
DDPF_RGB

The RGB data in the pixel format type is valid.
DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write operation
to YUV data. The format of the data to be written will be contained in the
pixel format type. The DDPF_RGB flag will be set.

DDPF_STENCILBUFFER

in.doc – page 480

The surface encodes stencil and depth information in each pixel of the z-
buffer.

DDPF_YUV
The YUV data in the pixel format type is valid.

DDPF_ZBUFFER
The pixel format describes a z-buffer-only surface.

DDPF_ZPIXELS
The surface contains z information in the pixels.

lFourCC
FourCC code. For more information see, Four Character Codes (FOURCC).

lGBitMask
Mask for green bits.

lRGBAlphaBitMask and lYUVAlphaBitMask and lLuminanceAlphaBitMask
Masks for alpha channel.

lLuminanceBitCount
Total luminance bits per pixel. This member applies only to luminance-only and
luminance-alpha surfaces.

lLuminanceBitMask
Mask for luminance bits.

lRBitMask
Mask for red bits.

lRGBAlphaBitMask and lYUVAlphaBitMask
Masks for alpha channel.

lRGBBitCount
RGB bits per pixel (4, 8, 16, 24, or 32).

lRGBZBitMask and lYUVZBitMask
Masks for z channel.

lStencilBitDepth
Bit depth of the stencil buffer. This member specifies how many bits are
reserved within each pixel of the z-buffer for stencil information (the total
number of z-bits is equal to lZBufferBitDepth minus lStencilBitDepth).

lStencilBitMask
Mask for stencil bits within each z-buffer pixel.

lUBitMask
Mask for U bits.

lVBitMask
Mask for V bits.

lYBitMask
Mask for Y bits.

lYUVBitCount
YUV bits per pixel (4, 8, 16, 24, or 32).

lZBitMask
Mask for z bits.

in.doc – page 481

lZBufferBitDepth
Z-buffer bit depth (8, 16, or 24). 32-bit z-buffers are not supported.

DDSCAPS2
[This is preliminary documentation and subject to change.]

The DDSCAPS2 type defines the capabilities of a DirectDrawSurface object. This
type is part of the DDSURFACEDESC2 type.

Type DDSCAPS2
 lCaps As CONST_DDSURFACECAPSFLAGS // Surface capabilities
 lCaps2 As CONST_DDSURFACECAPS2FLAGS // More surface
Capabilities
 lCaps3 As Long // Not currently used
 lCaps4 As Long // Not currently used
End Type

lCaps
One or more constants of the CONST_DDSURFACECAPSFLAGS
enumeration representing the capabilities of the surface.
DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications can
use this flag to ensure that a device that can only render to a certain heap has
off-screen surfaces allocated from the correct heap. If this flag is set for a
heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD
Not used, ignored by DirectDraw and Direct3D.

DDSCAPS_ALPHA
Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER
Indicates that this surface is the back buffer of a surface flipping type.
Typically, this capability is set by the CreateSurface method when the
DDSCAPS_FLIP flag is used. Only the surface that immediately precedes the
DDSCAPS_FRONTBUFFER surface has this capability set. The other
surfaces are identified as back buffers by the presence of the
DDSCAPS_FLIP flag, their attachment order, and the absence of the
DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER capabilities. If
this capability is sent to the CreateSurface method, a stand-alone back
buffer is being created. After this method is called, this surface could be
attached to a front buffer, another back buffer, or both to form a flipping
surface type. For more information, see
DirectDrawSurface4.AddAttachedSurface. DirectDraw supports an
arbitrary number of surfaces in a flipping type.

DDSCAPS_COMPLEX

IDH__dx_DDSCAPS2_ddraw_vb

in.doc – page 482

Indicates that a complex surface is being described. A complex surface
results in the creation of more than one surface. The additional surfaces are
attached to the root surface. The complex type can be destroyed only by
destroying the root.

DDSCAPS_FLIP
Indicates that this surface is a part of a surface flipping type. When this
capability is passed to the CreateSurface method, a front buffer and one or
more back buffers are created. DirectDraw sets the
DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the
DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer
surface. The lBackBufferCount member of the DDSURFACEDESC2 type
must be set to at least 1 in order for the method call to succeed. The
DDSCAPS_COMPLEX capability must always be set when creating multiple
surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER
Indicates that this surface is the front buffer of a surface flipping type. This
flag is typically set by the CreateSurface method when the DDSCAPS_FLIP
capability is set. If this capability is sent to the CreateSurface method, a
stand-alone front buffer is created. This surface will not have the
DDSCAPS_FLIP capability. It can be attached to other back buffers to form a
flipping type by using DirectDrawSurface4.AddAttachedSurface.

DDSCAPS_HWCODEC
Indicates that this surface should be able to have a stream decompressed to it
by the hardware.

DDSCAPS_LIVEVIDEO
Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM
Indicates that this surface exists in true, local video memory rather than non-
local video memory. If this flag is specified then
DDSCAPS_VIDEOMEMORY must be specified as well. This flag cannot be
used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP
Indicates that this surface is one level of a mipmap. This surface will be
attached to other DDSCAPS_MIPMAP surfaces to form the mipmap. This
can be done explicitly by creating a number of surfaces and attaching them
by using the DirectDrawSurface4.AddAttachedSurface method, or
implicitly by the CreateSurface method. If this capability is set,
DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX
Indicates that this surface is a 320200 or 320240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM
Indicates that this surface exists in non-local video memory rather than true,
local video memory. If this flag is specified, then
DDSCAPS_VIDEOMEMORY flag must be specified as well. This cannot be
used with the DDSCAPS_LOCALVIDMEM flag.

in.doc – page 483

DDSCAPS_OFFSCREENPLAIN
Indicates that this surface is any off-screen surface that is not an overlay,
texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to
identify plain surfaces.

DDSCAPS_OPTIMIZED
Not currently implemented.

DDSCAPS_OVERLAY
Indicates that this surface is an overlay. It may or may not be directly visible
depending on whether it is currently being overlaid onto the primary surface.
DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the
moment.

DDSCAPS_OWNDC
Indicates that this surface will have a device context (DC) association for a
long period.

DDSCAPS_PALETTE
Indicates that this device driver allows unique DirectDrawPalette objects to
be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE
Indicates the surface is the primary surface. It represents what is visible to the
user at the moment.

DDSCAPS_PRIMARYSURFACELEFT
Indicates that this surface is the primary surface for the left eye. It represents
what is visible to the user's left eye at the moment. When this surface is
created, the surface with the DDSCAPS_PRIMARYSURFACE capability
represents what is seen by the user's right eye.

DDSCAPS_RESERVED2
Reserved for future use.

DDSCAPS_STANDARDVGAMODE
Indicates that this surface is a standard VGA mode surface, and not a Mode X
surface. This flag cannot be used in combination with the
DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY
Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE
Indicates that this surface can be used as a 3-D texture. It does not indicate
whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY
Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT
Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE
Indicates that changes made to this surface are immediately visible. It is
always set for the primary surface, as well as for overlays while they are
being overlaid and texture maps while they are being textured.

in.doc – page 484

DDSCAPS_WRITEONLY
Indicates that only write access is permitted to the surface. Read access from
the surface may generate a general protection (GP) fault, but the read results
from this surface will not be meaningful.

DDSCAPS_ZBUFFER
Indicates that this surface is the z-buffer. The z-buffer contains information
that cannot be displayed. Instead, it contains bit-depth information that is
used to determine which pixels are visible and which are obscured.

lCaps2
Additional surface capabilities. This member can contain one or more of the
following capability constants of the CONST_DDSURFACECAPS2FLAGS
enumeration and can contain an additional flag to indicate how the surface
memory was allocated:
Capability flags
DDSCAPS2_HARDWAREDEINTERLACE

Indicates that this surface will receive data from a video port using the de-
interlacing hardware. This allows the driver to allocate memory for any extra
buffers that may be required. The DDSCAPS_VIDEOPORT and
DDSCAPS_OVERLAY flags must also be set.

DDSCAPS2_HINTDYNAMIC
Indicates to the driver that this surface will be locked very frequently (for
procedural textures, dynamic lightmaps, etc). This flag can only be used for
texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps
member). This flag cannot be used with the DDSCAPS2_HINTSTATIC or
DDSCAPS2_OPAQUE flags.

DDSCAPS2_HINTSTATIC
Indicates to the driver that this surface can be reordered or retiled on load.
This operation will not change the size of the texture. It is relatively fast and
symmetrical, since the application may lock these bits (although it will take a
performance hit when doing so). This flag can only be used for texture
surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member).
This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or
DDSCAPS2_OPAQUE flags.

DDSCAPS2_OPAQUE
Indicates to the driver that this surface will never be locked again. The driver
is free to optimize this surface by retiling and actual compression. Such a
surface cannot be locked or used in blit operations, attempts to lock or blit a
surface with this capability will fail. This flag can only be used for texture
surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps member).
This flag cannot be used with the DDSCAPS2_HINTDYNAMIC or
DDSCAPS2_HINTSTATIC flags.

DDSCAPS2_TEXTUREMANAGE
Indicates that the client would like this texture surface to be managed by
DirectDraw and Direct3D. This flag can only be used for texture surfaces
(DDSCAPS_TEXTURE flag set in the lCaps member).

in.doc – page 485

lCaps3 and lCaps4
Not currently used.

DDSURFACEDESC2
[This is preliminary documentation and subject to change.]

The DDSURFACEDESC2 type contains a description of a surface. This type is
passed to the DirectDraw4.CreateSurface method. The relevant members differ for
each potential type of surface.

Type DDSURFACEDESC2
 ddckCKDestBlt As DDCOLORKEY
 ddckCKDestOverlay As DDCOLORKEY
 ddckCKSrcBlt As DDCOLORKEY
 ddckCKSrcOverlay As DDCOLORKEY
 ddpfPixelFormat As DDPIXELFORMAT
 ddsCaps As DDSCAPS2
 lAlphaBitDepth As Long
 lBackBufferCount As Long
 lFlags As CONST_DDSURFACEDESCFLAGS
 lHeight As Long
 lLinearSize As Long
 lMipMapCount As Long
 lPitch As Long
 lRefreshRate As Long
 lTextureStage As Long
 lWidth As Long
 lZBufferBitDepth As Long
End Type

ddckCKDestBlt
DDCOLORKEY type that describes the destination color key for blit
operations.

ddckCKDestOverlay
DDCOLORKEY type that describes the destination color key to be used for an
overlay surface.

ddckCKSrcBlt
DDCOLORKEY type that describes the source color key for blit operations.

ddckCKSrcOverlay
DDCOLORKEY type that describes the source color key to be used for an
overlay surface.

ddpfPixelFormat
DDPIXELFORMAT type that describes the surface's pixel format.

IDH__dx_DDSURFACEDESC2_ddraw_vb

in.doc – page 486

ddsCaps
DDSCAPS2 type containing the surface's capabilities.

lAlphaBitDepth
Depth of alpha buffer.

lBackBufferCount
Number of back buffers.

lFlags
Optional control flags. One or more of the following constants of the
CONST_DDSURFACEDESCFLAGS enumeration:
DDSD_ALL

Indicates that all input members are valid.
DDSD_ALPHABITDEPTH

Indicates that the lAlphaBitDepth member is valid.
DDSD_BACKBUFFERCOUNT

Indicates that the lBackBufferCount member is valid.
DDSD_CAPS

Indicates that the ddsCaps member is valid.
DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.
DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.
DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.
DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.
DDSD_HEIGHT

Indicates that the lHeight member is valid.
DDSD_LINEARSIZE

Not used.
DDSD_LPSURFACE

Indicates that the lpSurface member is valid.
DDSD_MIPMAPCOUNT

Indicates that the lMipMapCount member is valid.
DDSD_PITCH

Indicates that the lPitch member is valid.
DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.
DDSD_REFRESHRATE

Indicates that the lRefreshRate member is valid.
DDSD_TEXTURESTAGE

Indicates that the lTextureStage member is valid.
DDSD_WIDTH

in.doc – page 487

Indicates that the lWidth member is valid.
DDSD_ZBUFFERBITDEPTH

Indicates that the lZBufferBitDepth member is valid.
lHeight and lWidth

Dimensions of the surface to be created, in pixels.
lLinearSize

Not currently used.
lMipMapCount

Number of mipmap levels.
lPitch

Distance, in bytes, to the start of next line. When used with the
DirectDrawSurface4.GetSurfaceDesc method, this is a return value. When
creating a surface from existing memory this is an input value that must be a
multiple.

lRefreshRate
Refresh rate (used when the display mode is described). The value of 0 indicates
an adapter fault.

lTextureStage
Stage identifier used to bind a texture to a specific stage in 3-D device's
multitexture cascade. Although not required for all hardware, setting this
member is recommended for best performance on the largest variety of 3-D
accelerators. Hardware that requires explicitly assigned textures will expose the
D3DDEVCAPS_SEPARATETEXTUREMEMORIES 3-D device capability in
the D3DDEVICEDESC structure that is filled by the
Direct3DDevice3.GetCaps method.

lZBufferBitDepth
Depth of z-buffer. 32-bit z-buffers are not supported.

Remarks
The lPitch member is an output values when calling the
DirectDrawSurface4.GetSurfaceDesc method. When creating surfaces from
existing memory, or updating surface characteristics, these members are input values
that describe the pitch and location of memory allocated by the calling application
for use by DirectDraw. DirectDraw does not attempt to manage or free memory
allocated by the application. For more information, see Creating Client Memory
Surfaces and Updating Surface Characteristics.

DXDRIVERINFO
[This is preliminary documentation and subject to change.]

IDH__dx_DXDRIVERINFO_ddraw_vb

in.doc – page 488

The DXDRIVERINFO type is used in the enumeration methods for DirectDraw,
DirectSound and Direct3D to hold driver information.

Type DXDRIVERINFO
 strDescription As String
 strGuid As String
 strName As String
End Type

strDescription
The textual description of the DirectDraw device.

strGuid
The GUID that identifies the DirectDraw driver being enumerated.

strName
The name of the DirectDraw driver corresponding to this device.

Remarks
This type is also used in DirectSound and Direct3D.

PALETTEENTRY
[This is preliminary documentation and subject to change.]

The PALETTEENTRY type specifies the color and usage of an entry in a logical
color palette.

Type PALETTEENTRY
 blue As Byte
 flags As Byte
 green As Byte
 red As Byte
End Type

blue
Specifies a blue intensity value for the palette entry.

flags
Specifies how the palette entry is to be used. The peFlags member may be set to
NOTHING or one of the following values:

Value Meaning

PC_EXPLICIT Specifies that the low-order word of the
logical palette entry designates a hardware
palette index. This flag allows the
application to show the contents of the

IDH__dx_PALETTEENTRY_ddraw_vb

in.doc – page 489

display device palette.
PC_NOCOLLAPSE Specifies that the color be placed in an

unused entry in the system palette instead
of being matched to an existing color in the
system palette. If there are no unused
entries in the system palette, the color is
matched normally. Once this color is in the
system palette, colors in other logical
palettes can be matched to this color.

PC_RESERVED Specifies that the logical palette entry be
used for palette animation. This flag
prevents other windows from matching
colors to the palette entry since the color
frequently changes. If an unused system-
palette entry is available, the color is placed
in that entry. Otherwise, the color is not
available for animation.

green
Specifies a green intensity value for the palette entry.

red
Specifies a red intensity value for the palette entry.

RECT
[This is preliminary documentation and subject to change.]

The RECT type defines the coordinates of the upper-left and lower-right corners of
a rectangle.

Type RECT
 Bottom As Long
 Left As Long
 Right As Long
 Top As Long
End Type

Bottom
Specifies the y-coordinate of the lower-right corner of the rectangle.

Left
Specifies the x-coordinate of the upper-left corner of the rectangle.

Right
Specifies the x-coordinate of the lower-right corner of the rectangle.

Top

IDH__dx_RECT_ddraw_vb

in.doc – page 490

Specifies the y-coordinate of the upper-left corner of the rectangle.

Enumerations
[This is preliminary documentation and subject to change.]

DirectDraw uses enumerations to group constants and to take advantage of the
statement completion feature of Visual Basic. The enumerations used in DirectSound
are:

· CONST_DDBITDEPTHFLAGS
· CONST_DDBLTFASTFLAGS
· CONST_DDBLTFLAGS
· CONST_DDBLTFXFLAGS
· CONST_DDCAPS1FLAGS
· CONST_DDCAPS2FLAGS
· CONST_DDCKEYCAPSFLAGS
· CONST_DDCKEYFLAGS
· CONST_DDCOLORFLAGS
· CONST_DDEDMFLAGS
· CONST_DDENUMOVERLAYZFLAGS
· CONST_DDENUMSURFACESFLAGS
· CONST_DDFLIPFLAGS
· CONST_DDFXALPHACAPSFLAGS
· CONST_DDFXCAPSFLAGS
· CONST_DDGBSFLAGS
· CONST_DDGFSFLAGS
· CONST_DDLOCKFLAGS
· CONST_DDOVERFLAGS
· CONST_DDOVERLAYFXFLAGS
· CONST_DDOVERZFLAGS
· CONST_DDPCAPSFLAGS
· CONST_DDPIXELFORMATFLAGS
· CONST_DDRAW
· CONST_DDSCLFLAGS
· CONST_DDSDMFLAGS
· CONST_DDSGRFLAGS
· CONST_DDSTEREOCAPSFLAGS
· CONST_DDSURFACECAPS2FLAGS

in.doc – page 491

· CONST_DDSURFACECAPSFLAGS
· CONST_DDSURFACEDESCFLAGS
· CONST_DDWAITVBFLAGS

CONST_DDBITDEPTHFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDBITDEPTHFLAGS enumeration is used to specify the bit depth.

Enum CONST_DDBITDEPTHFLAGS
 DDBD_1 = 16384
 DDBD_16 = 1024
 DDBD_2 = 8192
 DDBD_24 = 512
 DDBD_32 = 256
 DDBD_4 = 4096
 DDBD_8 = 2048
End Enum

DDBD_1 to 32
The bits per pixel.

CONST_DDBLTFASTFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDBLTFASTFLAGS enumeration is used in the trans parameter of
the DirectDrawSurface4.BltFast method to determine the type of transfer.

Enum CONST_DDBLTFASTFLAGS
 DDBLTFAST_DESTCOLORKEY = 2
 DDBLTFAST_NOCOLORKEY = 0
 DDBLTFAST_SRCCOLORKEY = 1
 DDBLTFAST_WAIT = 16
End Enum

DDBLTFAST_DESTCOLORKEY
Specifies a transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY
Specifies a normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY
Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT

IDH__dx_CONST_DDBITDEPTHFLAGS_ddraw_vb
IDH__dx_CONST_DDBLTFASTFLAGS_ddraw_vb

in.doc – page 492

Postpones the DDERR_WASSTILLDRAWING message if the blitter is busy,
and returns as soon as the blit can be set up or another error occurs.

CONST_DDBLTFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDBLTFLAGS enumeration is used in the flags parameter of the
DirectDrawSurface4.Blt and DirectDrawSurface4.BltFx methods to determine the
valid members of the associated DDBLTFX type. The DDBLTFX type specifies
color key information or request special behavior from the methods.

Enum CONST_DDBLTFLAGS
 DDBLT_ASYNC = 512
 DDBLT_COLORFILL = 1024
 DDBLT_DDFX = 2048
 DDBLT_DDROPS = 4096
 DDBLT_KEYDEST = 8192
 DDBLT_KEYDESTOVERRIDE = 16384
 DDBLT_KEYSRC = 32768
 DDBLT_KEYSRCOVERRIDE = 65536
 DDBLT_ROP = 131072
 DDBLT_ROTATIONANGLE = 262144
 DDBLT_WAIT = 16777216
End Enum

Validation flags
DDBLT_COLORFILL

Uses the lFill member of the DDBLTFX structure as the RGB color that fills
the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the lDDFX member of the DDBLTFX structure to specify the effects to
use for this blit.

DDBLT_DDROPS
Uses the lROP member of the DDBLTFX structure to specify the raster
operations (ROPS) that are not part of the Win32 API.

DDBLT_KEYDESTOVERRIDE
Uses the ddckDestColorKey_high and ddckDestColorKey_low members of
the DDBLTFX structure as the color key for the destination surface.

DDBLT_KEYSRCOVERRIDE
Uses the ddckSrcColorKey_high and ddckSrcColorKey_low members of the
DDBLTFX structure as the color key for the source surface.

DDBLT_ROP

IDH__dx_CONST_DDBLTFLAGS_ddraw_vb

in.doc – page 493

Uses the lROP member of the DDBLTFX structure for the ROP for this blit.
These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE
Uses the lRotationAngle member of the DDBLTFX structure as the rotation
angle (specified in 1/100th of a degree) for the surface.

Color key flags
DDBLT_KEYDEST

Uses the color key associated with the destination surface.
DDBLT_KEYSRC

Uses the color key associated with the source surface.
Behavior flags
DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order received. If no
room is available in the FIFO hardware, the call fails.

DDBLT_WAIT
Postpones the DDERR_WASSTILLDRAWING return value if the blitter is
busy, and returns as soon as the blit can be set up or another error occurs.

CONST_DDBLTFXFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDBLTFXFLAGS enumeration is used in the lDDFX member of the
DDBLTFX type to specify the type of FX operation.

Enum CONST_DDBLTFXFLAGS
 DDBLTFX_ARITHSTRETCHY = 1
 DDBLTFX_MIRRORLEFTRIGHT = 2
 DDBLTFX_MIRRORUPDOWN = 4
 DDBLTFX_NOTEARING = 8
 DDBLTFX_ROTATE180 = 16
 DDBLTFX_ROTATE270 = 32
 DDBLTFX_ROTATE90 = 64
 DDBLTFX_ZBUFFERBASEDEST = 256
 DDBLTFX_ZBUFFERRANGE = 128
End Enum

DDBLTFX_ARITHSTRETCHY
Uses arithmetic stretching along the y-axis for this blit.

DDBLTFX_MIRRORLEFTRIGHT
Turns the surface on its y-axis. This blit mirrors the surface from left to right.

DDBLTFX_MIRRORUPDOWN
Turns the surface on its x-axis. This blit mirrors the surface from top to bottom.

IDH__dx_CONST_DDBLTFXFLAGS_ddraw_vb

in.doc – page 494

DDBLTFX_NOTEARING
Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180
Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270
Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90
Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST
Adds the lZBufferBaseDest member of the DDBLTFX type to each of the
source z-values before comparing them with the destination z-values during this
z-blit.

DDBLTFX_ZBUFFERRANGE
Uses the lZBufferLow and lZBufferHigh members of the DDBLTFX type as
range values to specify limits to the bits copied from a source surface during this
z-blit.

CONST_DDCAPS1FLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDCAPS1FLAGS enumeration is used by the lCaps, lNLVBCaps,
lSSBCaps, lSVBCaps, and the lVSBCaps members of the DDCAPS type to
describe hardware capabilities.

Enum CONST_DDCAPS1FLAGS
 DDCAPS_3D = 1
 DDCAPS_ALIGNBOUNDARYDEST = 2
 DDCAPS_ALIGNBOUNDARYSRC = 8
 DDCAPS_ALIGNSIZEDEST = 4
 DDCAPS_ALIGNSIZESRC = 16
 DDCAPS_ALIGNSTRIDE = 32
 DDCAPS_ALPHA = 8388608
 DDCAPS_BANKSWITCHED = 134217728
 DDCAPS_BLT = 64
 DDCAPS_BLTCOLORFILL = 67108864
 DDCAPS_BLTDEPTHFILL = 268435456
 DDCAPS_BLTFOURCC = 256
 DDCAPS_BLTQUEUE = 128
 DDCAPS_BLTSTRETCH = 512
 DDCAPS_CANBLTSYSMEM = -2147483648
 DDCAPS_CANCLIP = 536870912
 DDCAPS_CANCLIPSTRETCHED = 1073741824
 DDCAPS_COLORKEY = 4194304

IDH__dx_CONST_DDCAPS1FLAGS_ddraw_vb

in.doc – page 495

 DDCAPS_COLORKEYHWASSIST = 16777216
 DDCAPS_GDI = 1024
 DDCAPS_NOHARDWARE = 33554432
 DDCAPS_OVERLAY = 2048
 DDCAPS_OVERLAYCANTCLIP = 4096
 DDCAPS_OVERLAYFOURCC = 8192
 DDCAPS_OVERLAYSTRETCH = 16384
 DDCAPS_PALETTE = 32768
 DDCAPS_PALETTEVSYNC = 65536
 DDCAPS_READSCANLINE = 131072
 DDCAPS_STEREOVIEW = 262144
 DDCAPS_VBI = 524288
 DDCAPS_ZBLTS = 1048576
 DDCAPS_ZOVERLAYS = 2097152
End Enum

DDCAPS_3D
Indicates that the display hardware has 3-D acceleration.

DDCAPS_ALIGNBOUNDARYDEST
Indicates that DirectDraw will support only those overlay destination rectangles
with the x-axis aligned to the lAlignBoundaryDest boundaries of the surface.

DDCAPS_ALIGNBOUNDARYSRC
Indicates that DirectDraw will support only those overlay source rectangles with
the x-axis aligned to the lAlignBoundarySrc boundaries of the surface.

DDCAPS_ALIGNSIZEDEST
Indicates that DirectDraw will support only those overlay destination rectangles
whose x-axis sizes, in pixels, are lAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC
Indicates that DirectDraw will support only those overlay source rectangles
whose x-axis sizes, in pixels, are lAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE
Indicates that DirectDraw will create display memory surfaces that have a stride
alignment equal to the lAlignStrideAlign value.

DDCAPS_ALPHA
Indicates that the display hardware supports alpha-only surfaces. (See alpha
channel)

DDCAPS_BANKSWITCHED
Indicates that the display hardware is bank-switched and is potentially very slow
at random access to display memory.

DDCAPS_BLT
Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL
Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL

in.doc – page 496

Indicates that display hardware is capable of depth filling z-buffers with a
blitter.

DDCAPS_BLTFOURCC
Indicates that display hardware is capable of color-space conversions during blit
operations.

DDCAPS_BLTQUEUE
Indicates that display hardware is capable of asynchronous blit operations.

DDCAPS_BLTSTRETCH
Indicates that display hardware is capable of stretching during blit operations.

DDCAPS_CANBLTSYSMEM
Indicates that display hardware is capable of blitting to or from system memory.

DDCAPS_CANCLIP
Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED
Indicates that display hardware is capable of clipping while stretch blitting.

DDCAPS_COLORKEY
Supports some form of color key in either overlay or blit operations. More
specific color key capability information can be found in the lCKeyCaps
member.

DDCAPS_COLORKEYHWASSIST
Indicates that the color key is partially hardware assisted. This means that other
resources (CPU or video memory) might be used. If this bit is not set, full
hardware support is in place.

DDCAPS_GDI
Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE
Indicates that there is no hardware support.

DDCAPS_OVERLAY
Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP
Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC
Indicates that overlay hardware is capable of color-space conversions during
overlay operations.

DDCAPS_OVERLAYSTRETCH
Indicates that overlay hardware is capable of stretching. The
lMinOverlayStretch and lMaxOverlayStretch members contain valid data.

DDCAPS_PALETTE
Indicates that DirectDraw is capable of creating and supporting
DirectDrawPalette objects for more surfaces than only the primary surface.

DDCAPS_PALETTEVSYNC
Indicates that DirectDraw is capable of updating a palette synchronized with the
vertical refresh.

in.doc – page 497

DDCAPS_READSCANLINE
Indicates that display hardware is capable of returning the current scan line.

DDCAPS_STEREOVIEW
Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI
Indicates that display hardware is capable of generating a vertical-blank
interrupt.

DDCAPS_ZBLTS
Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS
Supports the use of the DirectDrawSurface4.UpdateOverlayZOrder method
as a z-value for overlays to control their layering.

CONST_DDCAPS2FLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDCAPS2FLAGS enumeration is used in the lCaps2, lNLVBCaps2,
lSVBCaps2 members of the DDCAPS type to describe additional driver-specific
capabilities.

Enum CONST_DDCAPS2FLAGS
 DDCAPS2_AUTOFLIPOVERLAY = 8
 DDCAPS2_CANBOBINTERLEAVED = 16
 DDCAPS2_CANBOBNONINTERLEAVED = 32
 DDCAPS2_CANDROPZ16BIT = 256
 DDCAPS2_CANFLIPODDEVEN = 8192
 DDCAPS2_CERTIFIED = 1
 DDCAPS2_COLORCONTROLOVERLAY = 64
 DDCAPS2_COLORCONTROLPRIMARY = 128
 DDCAPS2_NO2DDURING3DSCENE = 2
 DDCAPS2_NONLOCALVIDMEM = 512
 DDCAPS2_NONLOCALVIDMEMCAPS = 1024
 DDCAPS2_NOPAGELOCKREQUIRED = 2048
 DDCAPS2_VIDEOPORT = 4
 DDCAPS2_WIDESURFACES = 4096
End Enum

DDCAPS2_AUTOFLIPOVERLAY
The overlay can be automatically flipped to the next surface in the flip chain
each time a video port VSYNC occurs, allowing the video port and the overlay
to double buffer the video without CPU overhead. This option is only valid
when the surface is receiving data from a video port. If the video port data is

IDH__dx_CONST_DDCAPS2FLAGS_ddraw_vb

in.doc – page 498

non-interlaced or non-interleaved, it will flip on every VSYNC. If the data is
being interleaved in memory, it will flip on every other VSYNC.

DDCAPS2_CANBOBHARDWARE
The overlay hardware can display each field of an interlaced video stream
individually.

DDCAPS2_CANBOBINTERLEAVED
The overlay hardware can display each field individually of an interlaced video
stream while it is interleaved in memory without causing any artifacts that might
normally occur without special hardware support. This option is only valid when
the surface is receiving data from a video port and is only valid when the video
is zoomed at least two times in the vertical direction.

DDCAPS2_CANBOBNONINTERLEAVED
The overlay hardware can display each field individually of an interlaced video
stream while it is not interleaved in memory without causing any artifacts that
might normally occur without special hardware support. This option is only
valid when the surface is receiving data from a video port and is only valid when
the video is zoomed at least two times in the vertical direction.

DDCAPS2_CANCALIBRATEGAMMA
The system has a calibrator installed that can automatically adjust the gamma
ramp so that the result will be identical on all systems that have a calibrator. To
invoke the calibrator when setting new gamma levels, use the
DDSGR_CALIBRATE flag when calling the
DirectDrawGammaControl.SetGammaRamp method. Calibrating gamma
ramps incurs some processing overhead, and should not be used frequently.

DDCAPS2_CANDROPZ16BIT
16-bit RGBZ values can be converted into sixteen-bit RGB values. (The system
does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN
The driver is capable of performing odd and even flip operations, as specified by
the DDFLIP_ODD and DDFLIP_EVEN flags used with the
DirectDrawSurface4.Flip method.

DDCAPS2_CANRENDERWINDOWED
The driver is capable of rendering in windowed mode.

DDCAPS2_CERTIFIED
Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLOVERLAY
The overlay surface contains color controls (such as brightness, sharpness)

DDCAPS2_COLORCONTROLPRIMARY
The primary surface contains color controls (for instance, gamma)

DDCAPS2_COPYFOURCC
Indicates that the driver supports blitting any FOURCC surface to another
surface of the same FOURCC.

DDCAPS2_NO2DDURING3DSCENE

in.doc – page 499

Indicates that 2-D operations such as DirectDrawSurface4.Blt and
DirectDrawSurface4.Lock cannot be performed on any surfaces that Direct3D®

is using between calls to the Direct3DDevice3.BeginScene and
Direct3DDevice3.EndScene methods.

DDCAPS2_NONLOCALVIDMEM
Indicates that the display driver supports surfaces in non-local video memory.

DDCAPS2_NONLOCALVIDMEMCAPS
Indicates that blit capabilities for non-local video memory surfaces differ from
local video memory surfaces. If this flag is present, the
DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED
DMA blit operations are supported on system memory surfaces that are not page
locked.

DDCAPS2_PRIMARYGAMMA
Supports dynamic gamma ramps for the primary surface.

DDCAPS2_VIDEOPORT
Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES
Indicates that the display surfaces supports surfaces wider than the primary
surface.

CONST_DDCKEYCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDCKEYCAPSFLAGS enumeration is used by the lCKeyCaps,
lNLVBCKeyCaps, lSSBCKeyCaps, lSVBCKeyCaps, and lVSBCKeyCaps members
of the DDCAPS type to describe the color-key capabilities of the hardware.

Enum CONST_DDCKEYCAPSFLAGS
 DDCKEYCAPS_DESTBLT = 1
 DDCKEYCAPS_DESTBLTCLRSPACE = 2
 DDCKEYCAPS_DESTBLTCLRSPACEYUV = 4
 DDCKEYCAPS_DESTBLTYUV = 8
 DDCKEYCAPS_DESTOVERLAY = 16
 DDCKEYCAPS_DESTOVERLAYCLRSPACE = 32
 DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV = 64
 DDCKEYCAPS_DESTOVERLAYONEACTIVE = 128
 DDCKEYCAPS_DESTOVERLAYYUV = 256
 DDCKEYCAPS_NOCOSTOVERLAY = 262144
 DDCKEYCAPS_SRCBLT = 512
 DDCKEYCAPS_SRCBLTCLRSPACE = 1024
 DDCKEYCAPS_SRCBLTCLRSPACEYUV = 2048
 DDCKEYCAPS_SRCBLTYUV = 4096

IDH__dx_CONST_DDCKEYCAPSFLAGS_ddraw_vb

in.doc – page 500

 DDCKEYCAPS_SRCOVERLAY = 8192
 DDCKEYCAPS_SRCOVERLAYCLRSPACE = 16384
 DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV = 32768
 DDCKEYCAPS_SRCOVERLAYONEACTIVE = 65536
 DDCKEYCAPS_SRCOVERLAYYUV = 131072
End Enum

DDCKEYCAPS_DESTBLT
Supports transparent blitting with a color key that identifies the replaceable bits
of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE
Supports transparent blitting with a color space that identifies the replaceable
bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV
Supports transparent blitting with a color space that identifies the replaceable
bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV
Supports transparent blitting with a color key that identifies the replaceable bits
of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY
Supports overlaying with color keying of the replaceable bits of the destination
surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE
Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV
Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE
Supports only one active destination color key value for visible overlay
surfaces .

DDCKEYCAPS_DESTOVERLAYYUV
Supports overlaying using color keying of the replaceable bits of the destination
surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY
Indicates there are no BANDWIDTH trade-offs for using the color key with an
overlay.

DDCKEYCAPS_SRCBLT
Supports transparent blitting using the color key for the source with this surface
for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE
Supports transparent blitting using a color space for the source with this surface
for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV
Supports transparent blitting using a color space for the source with this surface
for YUV colors.

in.doc – page 501

DDCKEYCAPS_SRCBLTYUV
Supports transparent blitting using the color key for the source with this surface
for YUV colors.

DDCKEYCAPS_SRCOVERLAY
Supports overlaying using the color key for the source with this overlay surface
for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE
Supports overlaying using a color space as the source color key for the overlay
surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV
Supports overlaying using a color space as the source color key for the overlay
surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE
Supports only one active source color key value for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV
Supports overlaying using the color key for the source with this overlay surface
for YUV colors.

CONST_DDCKEYFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDCKEYFLAGS enumeration is used in the flags parameter of the
DirectDrawSurface4.SetColorKey method to specify the type of color key
requested.

Enum CONST_DDCKEYFLAGS
 DDCKEY_COLORSPACE = 1
 DDCKEY_DESTBLT = 2
 DDCKEY_DESTOVERLAY = 4
 DDCKEY_SRCBLT = 8
 DDCKEY_SRCOVERLAY = 16
End Enum

DDCKEY_COLORSPACE
Set if the type contains a color space. Not set if the type contains a single color
key.

DDCKEY_DESTBLT
Set if the type specifies a color key or color space to be used as a destination
color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the type specifies a color key or color space to be used as a destination
color key for overlay operations.

DDCKEY_SRCBLT

IDH__dx_CONST_DDCKEYFLAGS_ddraw_vb

in.doc – page 502

Set if the type specifies a color key or color space to be used as a source color
key for blit operations.

DDCKEY_SRCOVERLAY
Set if the type specifies a color key or color space to be used as a source color
key for overlay operations.

CONST_DDCOLORFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDCOLORFLAGS enumeration is used in the lFlags member of the
DDCOLORCONTROL type to specify which members of the
DDCOLORCONTROL type contain valid data.

Enum CONST_DDCOLORFLAGS
 DDCOLOR_BRIGHTNESS = 1
 DDCOLOR_COLORENABLE = 64
 DDCOLOR_CONTRAST = 2
 DDCOLOR_GAMMA = 32
 DDCOLOR_HUE = 4
 DDCOLOR_SATURATION = 8
 DDCOLOR_SHARPNESS = 16
End Enum

DDCOLOR_BRIGHTNESS
The lBrightness member contains valid data.

DDCOLOR_COLORENABLE
The lColorEnable member contains valid data.

DDCOLOR_CONTRAST
The lContrast member contains valid data.

DDCOLOR_GAMMA
The lGamma member contains valid data.

DDCOLOR_HUE
The lHue member contains valid data.

DDCOLOR_SATURATION
The lSaturation member contains valid data.

DDCOLOR_SHARPNESS
The lSharpness member contains valid data.

CONST_DDEDMFLAGS
[This is preliminary documentation and subject to change.]

IDH__dx_CONST_DDCOLORFLAGS_ddraw_vb
IDH__dx_CONST_DDEDMFLAGS_ddraw_vb

in.doc – page 503

The CONST_DDEDMFLAGS enumeration is used in the flags parameter of the
DirectDraw4.GetDisplayModesEnum method to specify the type of enumeration.

Enum CONST_DDEDMFLAGS
 DDEDM_DEFAULT = 0
 DDEDM_REFRESHRATES = 1
 DDEDM_STANDARDVGAMODES = 2
End Enum

DDEDM_REFRESHRATES
Enumerates modes with different refresh rates. This guarantees that a particular
mode will be enumerated only once. This flag specifies whether the refresh rate
is taken into account when determining if a mode is unique.

DDEDM_STANDARDVGAMODES
Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

CONST_DDENUMOVERLAYZFL
AGS

[This is preliminary documentation and subject to change.]

The CONST_DDENUMOVERLAYZFLAGS enumeration is used by the flags
parameter of the DirectDrawSurface4.GetOverlayZOrdersEnum method to
describe how overlays should be enumerated.

Enum CONST_DDENUMOVERLAYZFLAGS
 DDENUMOVERLAYZ_BACKTOFRONT = 0
 DDENUMOVERLAYZ_FRONTTOBACK = 1
End Enum

DDENUMOVERLAYZ_BACKTOFRONT
Enumerates overlays back to front.

DDENUMOVERLAYZ_FRONTTOBACK
Enumerates overlays front to back.

CONST_DDENUMSURFACESFL
AGS

[This is preliminary documentation and subject to change.]

IDH__dx_CONST_DDENUMOVERLAYZFLAGS_ddraw_vb
IDH__dx_CONST_DDENUMSURFACESFLAGS_ddraw_vb

in.doc – page 504

The CONST_DDENUMSURFACESFLAGS enumeration is used by the
DirectDraw4.GetSurfacesEnum method to control how the method enumerates
attached surfaces.

Enum CONST_DDENUMSURFACESFLAGS
 DDENUMSURFACES_ALL = 1
 DDENUMSURFACES_CANBECREATED = 8
 DDENUMSURFACES_DOESEXIST = 16
 DDENUMSURFACES_MATCH = 2
 DDENUMSURFACES_NOMATCH = 4
End Enum

Search type flags
DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search criterion.
This flag can only be used with the DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST
Enumerates the already existing surfaces that meet the search criterion.

Matching flags
DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the search criterion. This flag can only
be used with the DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH
Searches for any surface that matches the surface description.

DDENUMSURFACES_NOMATCH
Searches for any surface that does not match the surface description.

CONST_DDFLIPFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDFLIPFLAGS enumeration is used in the flags parameter of the
DirectDrawSurface4.Flip method to specify flip options.

Enum CONST_DDFLIPFLAGS
 DDFLIP_EVEN = 2
 DDFLIP_INTERFVAL2 = 536870912
 DDFLIP_INTERFVAL3 = 805306368
 DDFLIP_INTERFVAL4 = 1073741824
 DDFLIP_NOVSYNC = 8
 DDFLIP_ODD = 4
 DDFLIP_WAIT = 1
End Enum

IDH__dx_CONST_DDFLIPFLAGS_ddraw_vb

in.doc – page 505

DDFLIP_EVEN
For use only when displaying video in an overlay surface. The new surface
contains data from the even field of a video signal. This flag cannot be used
with the DDFLIP_ODD flag.

DDFLIP_ODD
For use only when displaying video in an overlay surface. The new surface
contains data from the odd field of a video signal. This flag cannot be used
with the DDFLIP_EVEN flag.

DDFLIP_WAIT
Typically, if the flip cannot be set up because the state of the display
hardware is not appropriate, the DDERR_WASSTILLDRAWING error
returns immediately and no flip occurs. Setting this flag causes the method to
continue trying to flip if it receives the DDERR_WASSTILLDRAWING
error from the HAL. The method does not return until the flipping operation
has been successfully set up, or another error, such as
DDERR_SURFACEBUSY, is returned.

CONST_DDFXALPHACAPSFLA
GS

[This is preliminary documentation and subject to change.]

The CONST_DDFXALPHACAPSFLAGS enumeration is used in the
lFXAlphaCaps member of the DDCAPS type to describe driver-specific alpha
capabilities.

Enum CONST_DDFXALPHACAPSFLAGS
 DDFXALPHACAPS_BLTALPHAEDGEBLEND = 1
 DDFXALPHACAPS_BLTALPHAPIXELS = 2
 DDFXALPHACAPS_BLTALPHAPIXELSNEG = 4
 DDFXALPHACAPS_BLTALPHASURFACES = 8
 DDFXALPHACAPS_BLTALPHASURFACESNEG = 16
 DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND = 32
 DDFXALPHACAPS_OVERLAYALPHAPIXELS = 64
 DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG = 128
 DDFXALPHACAPS_OVERLAYALPHASURFACES = 256
 DDFXALPHACAPS_OVERLAYALPHASURFACESNEG = 512
End Enum

DDFXALPHACAPS_BLTALPHAEDGEBLEND
Supports alpha blending around the edge of a source color-keyed surface. Used
for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS

IDH__dx_CONST_DDFXALPHACAPSFLAGS_ddraw_vb

in.doc – page 506

Supports alpha information in pixel format. The bit depth of alpha information
in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as
the alpha value increases. Regardless of the depth of the alpha information, 0 is
always the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha information
in the pixel format can be 1, 2, 4, or 8. The alpha value becomes more
transparent as the alpha value increases. Regardless of the depth of the alpha
information, 0 is always the fully opaque value. This flag can be used only if
DDCAPS_ALPHA is set. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2,
4, or 8. The alpha value becomes more opaque as the alpha value increases.
Regardless of the depth of the alpha information, 0 is always the fully
transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha value
increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of
the depth of the alpha information, 0 is always the fully opaque value. This flag
can be set only if DDCAPS_ALPHA has been set. Used for blit operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND
Supports alpha blending around the edge of a source color-keyed surface. Used
for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha information
in pixel format can be 1, 2, 4, or 8. The alpha value becomes more opaque as the
alpha value increases. Regardless of the depth of the alpha information, 0 is
always the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha information
in pixel format can be 1, 2, 4, or 8. The alpha value becomes more transparent
as the alpha value increases. Regardless of the depth of the alpha information, 0
is always the fully opaque value. This flag can be used only if
DDCAPS_ALPHA has been set. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can be 1, 2,
4, or 8. The alpha value becomes more opaque as the alpha value increases.
Regardless of the depth of the alpha information, 0 is always the fully
transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha value
increases. The depth of the alpha channel data can be 1, 2, 4, or 8. Regardless of
the depth of the alpha information, 0 is always the fully opaque value. This flag
can be used only if DDCAPS_ALPHA has been set. Used for overlays.

in.doc – page 507

CONST_DDFXCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDFXCAPSFLAGS enumeration is used in the lFXCaps,
lNLVBFXCaps, lSSBFXCaps, lSVBFXCaps and lVSBFXCaps members of the
DDCAPS type to describe driver-specific stretching and effects capabilities,
nonlocal-to-local video memory blit capabilities, system-memory-to-system-memory
blit capabilities, system-memory-to-display-memory blit capabilities and display-
memory-to-system-memory blit capabilities.

Enum CONST_DDFXCAPSFLAGS
 DDFXCAPS_BLTALPHA = 1
 DDFXCAPS_BLTARITHSTRETCHY = 32
 DDFXCAPS_BLTARITHSTRETCHYN = 16
 DDFXCAPS_BLTFILTER = 32
 DDFXCAPS_BLTMIRRORLEFTRIGHT = 64
 DDFXCAPS_BLTMIRRORUPDOWN = 128
 DDFXCAPS_BLTROTATION = 256
 DDFXCAPS_BLTROTATION90 = 512
 DDFXCAPS_BLTSHRINKX = 1024
 DDFXCAPS_BLTSHRINKXN = 2048
 DDFXCAPS_BLTSHRINKY = 4096
 DDFXCAPS_BLTSHRINKYN = 8192
 DDFXCAPS_BLTSTRETCHX = 16384
 DDFXCAPS_BLTSTRETCHXN = 32768
 DDFXCAPS_BLTSTRETCHY = 65536
 DDFXCAPS_BLTSTRETCHYN = 131072
 DDFXCAPS_BLTTRANSFORM = 2
 DDFXCAPS_OVERLAYALPHA = 4
 DDFXCAPS_OVERLAYARITHSTRETCHY = 262144
 DDFXCAPS_OVERLAYARITHSTRETCHYN = 8
 DDFXCAPS_OVERLAYFILTER = 262144
 DDFXCAPS_OVERLAYMIRRORLEFTRIGHT = 134217728
 DDFXCAPS_OVERLAYMIRRORUPDOWN = 268435456
 DDFXCAPS_OVERLAYSHRINKX = 524288
 DDFXCAPS_OVERLAYSHRINKXN = 1048576
 DDFXCAPS_OVERLAYSHRINKY = 2097152
 DDFXCAPS_OVERLAYSHRINKYN = 4194304
 DDFXCAPS_OVERLAYSTRETCHX = 8388608
 DDFXCAPS_OVERLAYSTRETCHXN = 16777216
 DDFXCAPS_OVERLAYSTRETCHY = 33554432
 DDFXCAPS_OVERLAYSTRETCHYN = 67108864
 DDFXCAPS_OVERLAYTRANSFORM = 536870912
End Enum

IDH__dx_CONST_DDFXCAPSFLAGS_ddraw_vb

in.doc – page 508

DDFXCAPS_BLTALPHA
Supports alpha-blended blit operations.

DDFXCAPS_BLTARITHSTRETCHY
Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and
shrink surfaces during a blit operation. Occurs along the y-axis (vertically).

DDFXCAPS_BLTARITHSTRETCHYN
Uses arithmetic operations, rather than pixel-doubling techniques, to stretch and
shrink surfaces during a blit operation. Occurs along the y-axis (vertically), and
works only for integer stretching (1, 2, and so on).

DDFXCAPS_BLTFILTER
Driver can do surface-reconstruction filtering for warped blits.

DDFXCAPS_BLTMIRRORLEFTRIGHT
Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN
Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION
Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90
Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally). This
flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag
is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally). This
flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically). This flag
is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for blit operations.

in.doc – page 509

DDFXCAPS_BLTTRANSFORM
Supports geometric transformations (or warps) for blitted sprites.
Transformations are not currently supported for explicit blit operations.

DDFXCAPS_OVERLAYALPHA
Supports alpha blending for overlay surfaces.

DDFXCAPS_OVERLAYARITHSTRETCHY
Supports integer stretching (1, 2, and so on) of an overlay surface along the
y-axis (vertically).

DDFXCAPS_OVERLAYARITHSTRETCHYN
Supports arbitrary stretching of a surface along the x-axis (horizontal) for
overlays.

DDFXCAPS_OVERLAYFILTER
Supports surface-reconstruction filtering for warped overlay sprites. Filtering is
not currently supported for explicitly displayed overlay surfaces (those displayed
with calls to DirectDrawSurface4.UpdateOverlay).

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT
Supports mirroring of overlays across the vertical axis.

DDFXCAPS_OVERLAYMIRRORUPDOWN
Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only
the capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This
flag indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This flag
is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the
capabilities of a surface; it does not indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This
flag indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only
the capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-axis
(horizontally). This flag is valid only for DDSCAPS_OVERLAY surfaces. This

in.doc – page 510

flag indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically). This flag
is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates only the
capabilities of a surface; it does not indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-axis
(vertically). This flag is valid only for DDSCAPS_OVERLAY surfaces. This
flag indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYTRANSFORM
Supports geometric transformations (or warps) for overlay sprites.
Transformations are not currently supported for explicitly displayed overlay
surfaces (those displayed with calls to DirectDrawSurface4.UpdateOverlay).

CONST_DDGBSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDGBSFLAGS enumeration is used by the flags parameter of the
DirectDrawSurface4.GetBltStatus method to specify what type of status to obtain.

Enum CONST_DDGBSFLAGS
 DDGBS_CANBLT = 1
 DDGBS_ISBLTDONE = 2
End Enum

DDGBS_CANBLT
Inquires whether a blit involving this surface can occur immediately, and returns
DD_OK if the blit can be completed.

DDGBS_ISBLTDONE
Inquires whether the blit is done, and returns DD_OK if the last blit on this
surface has completed.

CONST_DDGFSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDGFSFLAGS enumeration is used by the flags parameter of the
DirectDrawSurface4.GetFlipStatus method to specify the type of flip status to
obtain.

Enum CONST_DDGFSFLAGS
IDH__dx_CONST_DDGBSFLAGS_ddraw_vb
IDH__dx_CONST_DDGFSFLAGS_ddraw_vb

in.doc – page 511

 DDGFS_CANFLIP = 1
 DDGFS_ISFLIPDONE = 2
End Enum

DDGFS_CANFLIP
Inquires whether this surface can be flipped immediately and returns DD_OK if
the flip can be completed.

DDGFS_ISFLIPDONE
Inquires whether the flip has finished and returns DD_OK if the last flip on this
surface has completed.

CONST_DDLOCKFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDLOCKFLAGS enumeration is used by the flags parameter of both
the DirectDrawSurface4.Lock and Direct3DVertexBuffer.Lock method to
indicate the how the lock is to be performed.

Enum CONST_DDLOCKFLAGS
 DDLOCK_EVENT = 2
 DDLOCK_NOSYSLOCK = 2048
 DDLOCK_READONLY = 16
 DDLOCK_SURFACEMEMORYPTR = 0
 DDLOCK_WAIT = 1
 DDLOCK_WRITEONLY = 32
End Enum

DDLOCK_EVENT
This flag is not currently implemented.

DDLOCK_NOSYSLOCK
If possible, do not take the Win16Mutex (also known as Win16Lock). This flag
is ignored when locking the primary surface.

DDLOCK_READONLY
Indicates that the surface being locked will only be read.

DDLOCK_SURFACEMEMORYPTR
Indicates that a valid memory pointer to the top of the specified rectangle should
be returned. If no rectangle is specified, a pointer to the top of the surface is
returned. This is the default.

DDLOCK_WAIT
If a lock cannot be obtained because a blit operation is in progress, the method
retries until a lock is obtained or another error occurs, such as
DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY

IDH__dx_CONST_DDLOCKFLAGS_ddraw_vb

in.doc – page 512

Indicates that the surface being locked will be write enabled.

CONST_DDOVERFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDOVERFLAGS enumeration is used in the flags parameter of the
DirectDrawSurface4.UpdateOverlay method to specify how the overlay should be
updated.

Enum CONST_DDOVERFLAGS
 DDOVER_ADDDIRTYRECT = 32768
 DDOVER_ALPHADEST = 1
 DDOVER_ALPHADESTCONSTOVERRIDE = 2
 DDOVER_ALPHADESTNEG = 4
 DDOVER_ALPHADESTSURFACEOVERRIDE = 8
 DDOVER_ALPHAEDGEBLEND = 16
 DDOVER_ALPHASRC = 32
 DDOVER_ALPHASRCCONSTOVERRIDE = 64
 DDOVER_ALPHASRCNEG = 128
 DDOVER_ALPHASRCSURFACEOVERRIDE = 256
 DDOVER_AUTOFLIP = 1048576
 DDOVER_BOB = 2097152
 DDOVER_DDFX = 524288
 DDOVER_HIDE = 512
 DDOVER_INTERLEAVED = 8388608
 DDOVER_KEYDEST = 1024
 DDOVER_KEYDESTOVERRIDE = 2048
 DDOVER_KEYSRC = 4096
 DDOVER_KEYSRCOVERRIDE = 8192
 DDOVER_OVERRIDEBOBWEAVE = 4194304
 DDOVER_REFRESHALL = 131072
 DDOVER_REFRESHDIRTYRECTS = 65536
 DDOVER_SHOW = 16384
End Enum

DDOVER_ADDDIRTYRECT
Adds a dirty rectangle to an emulated overlay surface.‹???: Is this flag
supported, overlay surfaces are not supported in the HEL.›

DDOVER_ALPHADEST
Uses either the alpha information in pixel format or the alpha channel surface
attached to the destination surface as the alpha channel for this overlay.

DDOVER_ALPHADESTNEG

IDH__dx_CONST_DDOVERFLAGS_ddraw_vb

in.doc – page 513

Indicates that the destination surface becomes more transparent as the alpha
value increases (0 is opaque).

DDOVER_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel surface
attached to the source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha value
increases (0 is opaque).

DDOVER_AUTOFLIP
Automatically flip to the next surface in the flip chain each time a video port
VSYNC occurs.

DDOVER_BOB
Display each field individually of the interlaced video stream without causing
any artifacts.

DDOVER_BOBHARDWARE
Indicates that bob operations will be performed using hardware rather than
software or emulated. This flag must be used with the DDOVER_BOB flag.

DDOVER_HIDE
Turns off this overlay.

DDOVER_INTERLEAVED
Indicates that the surface memory is composed of interleaved fields.

DDOVER_KEYDEST
Uses the color key associated with the destination surface.

DDOVER_KEYSRC
Uses the color key associated with the source surface.

DDOVER_OVERRIDEBOBWEAVE
Indicates that bob/weave decisions should not be overridden by other classes.

DDOVER_REFRESHALL

DDOVER_REFRESHDIRTYRECTS

DDOVER_SHOW
Turns on this overlay.

CONST_DDOVERLAYFXFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDOVERLAYFXFLAGS enumeration is used by the lDDFX
member of the DDOVERLAYFX type to specify the overlay FX.

Enum CONST_DDOVERLAYFXFLAGS
 DDOVERFX_ARITHSTRETCHY = 1

IDH__dx_CONST_DDOVERLAYFXFLAGS_ddraw_vb

in.doc – page 514

 DDOVERFX_MIRRORLEFTRIGHT = 2
 DDOVERFX_MIRRORUPDOWN = 4
End Enum

DDOVERFX_ARITHSTRETCHY
If stretching, use arithmetic stretching along the y-axis for this overlay.

DDOVERFX_MIRRORLEFTRIGHT
Mirror the overlay around the vertical axis.

DDOVERFX_MIRRORUPDOWN
Mirror the overlay around the horizontal axis.

CONST_DDOVERZFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDOVERZFLAGS enumeration is used in the flags parameter of the
DirectDrawSurface4.UpdateOverlayZOrder method to specify how the z-order of
an overlay should be updated.

Enum CONST_DDOVERZFLAGS
 DDOVERZ_INSERTINBACKOF = 5
 DDOVERZ_INSERTINFRONTOF = 4
 DDOVERZ_MOVEBACKWARD = 3
 DDOVERZ_MOVEFORWARD = 2
 DDOVERZ_SENDTOBACK = 1
 DDOVERZ_SENDTOFRONT = 0
End Enum

DDOVERZ_INSERTINBACKOF
Inserts this overlay in the overlay chain behind the reference overlay.

DDOVERZ_INSERTINFRONTOF
Inserts this overlay in the overlay chain in front of the reference overlay.

DDOVERZ_MOVEBACKWARD
Moves this overlay one position backward in the overlay chain.

DDOVERZ_MOVEFORWARD
Moves this overlay one position forward in the overlay chain.

DDOVERZ_SENDTOBACK
Moves this overlay to the back of the overlay chain.

DDOVERZ_SENDTOFRONT
Moves this overlay to the front of the overlay chain.

IDH__dx_CONST_DDOVERZFLAGS_ddraw_vb

in.doc – page 515

CONST_DDPCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDPCAPSFLAGS enumeration is used by the flags parameter of
DirectDraw4.CreatePalette, as a return value for DirectDrawPalette.GetCaps and
by the lPalCaps member of DDCAPS to describe the capabilities of the palette.

Enum CONST_DDPCAPSFLAGS
 DDPCAPS_1BIT = 256
 DDPCAPS_2BIT = 512
 DDPCAPS_4BIT = 1
 DDPCAPS_8BIT = 4
 DDPCAPS_8BITENTRIES = 2
 DDPCAPS_ALLOW256 = 64
 DDPCAPS_ALPHA = 1024
 DDPCAPS_INITIALIZE = 8
 DDPCAPS_PRIMARYSURFACE = 16
 DDPCAPS_PRIMARYSURFACELEFT = 32
 DDPCAPS_VSYNC = 128
End Enum

DDPCAPS_1BIT
Indicates that the index is 1 bit. There are two entries in the color table.

DDPCAPS_2BIT
Indicates that the index is 2 bits. There are four entries in the color table.

DDPCAPS_4BIT
Indicates that the index is 4 bits. There are 16 entries in the color table.

DDPCAPS_8BIT
Indicates that the index is 8 bits. There are 256 entries in the color
table_dx_color_table_glos.

DDPCAPS_8BITENTRIES
Indicates that the index refers to an 8-bit color index. This flag is valid only
when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT
flag, and when the target surface is in 8 bpp. Each color entry is 1 byte long and
is an index to a destination surface's 8-bpp palette.

DDPCAPS_ALPHA
Indicates that the flags member of the associated PALETTEENTRY type is to
be interpreted as a single 8-bit alpha value. A palette created with this flag can
only be attached to a texture (a surface created with the DDSCAPS_TEXTURE
capability flag).

DDPCAPS_ALLOW256
Indicates that this palette can have all 256 entries defined.

DDPCAPS_INITIALIZE

IDH__dx_CONST_DDPCAPSFLAGS_ddraw_vb

in.doc – page 516

This flag is obsolete and ignored by DirectDraw.
DDPCAPS_PRIMARYSURFACE

This palette is attached to the primary surface. Changing this palette's color
table immediately affects the display unless DDPSETPAL_VSYNC is specified
and supported.

DDPCAPS_PRIMARYSURFACELEFT
This palette is the one attached to the left eye primary surface. Changing this
palette's color table immediately affects the left eye display unless
DDPSETPAL_VSYNC is specified and supported.

DDPCAPS_VSYNC
This palette can have modifications to it synced with the monitors refresh rate.

CONST_DDPIXELFORMATFLA
GS

[This is preliminary documentation and subject to change.]

The CONST_DDPIXELFORMATFLAGS enumeration is

Enum CONST_DDPIXELFORMATFLAGS
 DDPF_ALPHA = 2
 DDPF_ALPHAPIXELS = 1
 DDPF_ALPHAPREMULT = 32768
 DDPF_BUMPDUDV = 524288
 DDPF_BUMPLUMINANCE = 262144
 DDPF_COMPRESSED = 128
 DDPF_FOURCC = 4
 DDPF_LUMINANCE = 131072
 DDPF_PALETTEINDEXED1 = 2048
 DDPF_PALETTEINDEXED2 = 4096
 DDPF_PALETTEINDEXED4 = 8
 DDPF_PALETTEINDEXED8 = 32
 DDPF_PALETTEINDEXEDTO8 = 16
 DDPF_RGB = 64
 DDPF_RGBTOYUV = 256
 DDPF_STENCILBUFFER = 16384
 DDPF_YUV = 512
 DDPF_ZBUFFER = 1024
 DDPF_ZPIXELS = 8192
End Enum

DDPF_ALPHA
The pixel format describes an alpha-only surface.

IDH__dx_CONST_DDPIXELFORMATFLAGS_ddraw_vb

in.doc – page 517

DDPF_ALPHAPIXELS
The surface has alpha channel information in the pixel format.

DDPF_ALPHAPREMULT
The surface uses the premultiplied alpha format. That is, the color components
in each pixel are premultiplied by the alpha component.

DDPF_BUMPDUDV
Bump-map data in the pixel format is valid. Bump-map information is in the
lBumpBitCount, lBumpDuBitMask, lBumpDvBitMask, and
lBumpLuminanceBitMask members.

DDPF_BUMPLUMINANCE
The luminance data in the pixel format is valid, and the lLuminanceBitMask
member descibes valid luminance bits for a luminance-only or luminance-alpha
surface.

DDPF_COMPRESSED
The surface will accept pixel data in the specified format and compress it during
the write operation.

DDPF_FOURCC
The lFourCC member is valid and contains a FOURCC code describing a non-
RGB pixel format.

DDPF_LUMINANCE
The pixel format describes a luminance-only or luminance-alpha surface.

DDPF_PALETTEINDEXED1
DDPF_PALETTEINDEXED2
DDPF_PALETTEINDEXED4
DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.
DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.
DDPF_RGB

The RGB data in the pixel format type is valid.
DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write operation to
YUV data. The format of the data to be written will be contained in the pixel
format type. The DDPF_RGB flag will be set.

DDPF_STENCILBUFFER
The surface encodes stencil and depth information in each pixel of the z-buffer.

DDPF_YUV
The YUV data in the pixel format type is valid.

DDPF_ZBUFFER
The pixel format describes a z-buffer-only surface.

DDPF_ZPIXELS
The surface contains z information in the pixels.

in.doc – page 518

CONST_DDRAW
[This is preliminary documentation and subject to change.]

The CONST_DDRAW enumeration contains constants used throughout
DirectDraw.

Enum CONST_DDRAW
 DD_ROP_SPACE = 8
End Enum

CONST_DDSCLFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDSCLFLAGS enumeration is used in the flags parameter of the
DirectDraw4.SetCooperativeLevel method to determine the top-level behavior of
the application.

Enum CONST_DDSCLFLAGS
 DDSCL_ALLOWMODEX = 64
 DDSCL_ALLOWREBOOT = 2
 DDSCL_CREATEDEVICEWINDOW = 512
 DDSCL_EXCLUSIVE = 16
 DDSCL_FULLSCREEN = 1
 DDSCL_MULTITHREADED = 1024
 DDSCL_NORMAL = 8
 DDSCL_NOWINDOWCHANGES = 4
 DDSCL_SETDEVICEWINDOW = 256
 DDSCL_SETFOCUSWINDOW = 128
End Enum

DDSCL_ALLOWMODEX
Allows the use of Mode X display modes. This flag can only be used if the
DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags are present.

DDSCL_ALLOWREBOOT
Allows CTRL+ALT+DEL to function while in exclusive (full-screen) mode.

DDSCL_CREATEDEVICEWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that DirectDraw is to create and manage a default device window for this
DirectDraw object. For more information, see Focus and Device Windows.

DDSCL_EXCLUSIVE
Requests the exclusive level. This flag must be used with the
DDSCL_FULLSCREEN flag.

IDH__dx_CONST_DDRAW_ddraw_vb
IDH__dx_CONST_DDSCLFLAGS_ddraw_vb

in.doc – page 519

DDSCL_FULLSCREEN
Indicates that the exclusive-mode owner will be responsible for the entire
primary surface. GDI can be ignored. This flag must be used with the
DDSCL_EXCLUSIVE flag.

DDSCL_MULTITHREADED
Requests multithread-safe DirectDraw behavior. This causes Direct3D to take
the global critical section more frequently.

DDSCL_NORMAL
Indicates that the application will function as a regular Windows application.
This flag cannot be used with the DDSCL_ALLOWMODEX,
DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES
Indicates that DirectDraw is not allowed to minimize or restore the
application window on activation.

DDSCL_SETDEVICEWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that the hdl argument is the window handle of the device window for this
DirectDraw object. This flag cannot be used with the
DDSCL_SETFOCUSWINDOW flag.

DDSCL_SETFOCUSWINDOW
This flag is supported in Windows 98 and Windows 2000 only. Indicates
that the hdl argument is the window handle of the focus window for this
DirectDraw object. This flag cannot be used with the
DDSCL_SETDEVICEWINDOW flag.

CONST_DDSDMFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDSDMFLAGS enumeration is used in the flags parameter of the
DirectDraw4.SetDisplayMode method to set the mode of the display-device
hardware.

Enum CONST_DDSDMFLAGS
 DDSDM_DEFAULT = 0
 DDSDM_STANDARDVGAMODE = 1
End Enum

DDSDM_STANDARDVGAMODE
Causes the method to set Mode 13 instead of Mode X 320x200x8 mode. If you
are setting another resolution, bit depth, or a Mode X mode, do not use this flag
and set the argument to 0.

IDH__dx_CONST_DDSDMFLAGS_ddraw_vb

in.doc – page 520

CONST_DDSGRFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDSGRFLAGS enumeration is used in the flags parameter of the
DirectDrawGammaControl.SetGammaRamp method to indicate that gamma
calibration is desired.

Enum CONST_DDSGRFLAGS
 DDSGR_CALIBRATE = 1
 DDSGR_DEFAULT = 0
End Enum

DDSGR_CALIBRATE
Requests that the calibrator adjust the gamma ramp according to the physical
properties of the display, making the result identical on all systems. If
calibration is not needed, set this argument to 0.

CONST_DDSTEREOCAPSFLAG
S

[This is preliminary documentation and subject to change.]

The CONST_DDSTEREOCAPSFLAGS enumeration is used by the lSVCaps
member of the DDCAPS type to describe stereo vision capabilities.

Enum CONST_DDSTEREOCAPSFLAGS
 DDSVCAPS_ENIGMA = 1
 DDSVCAPS_FLICKER = 2
 DDSVCAPS_REDBLUE = 4
 DDSVCAPS_SPLIT = 8
End Enum

DDSVCAPS_ENIGMA
Indicates that the stereo view is accomplished using Enigma encoding.

DDSVCAPS_FLICKER
Indicates that the stereo view is accomplished using high-frequency flickering.

DDSVCAPS_REDBLUE
Indicates that the stereo view is accomplished when the viewer looks at the
image through red and blue filters placed over the left and right eyes. All images
must adapt their color spaces for this process.

DDSVCAPS_SPLIT
Indicates that the stereo view is accomplished with split-screen technology.

IDH__dx_CONST_DDSGRFLAGS_ddraw_vb
IDH__dx_CONST_DDSTEREOCAPSFLAGS_ddraw_vb

in.doc – page 521

CONST_DDSURFACECAPS2FL
AGS

[This is preliminary documentation and subject to change.]

The CONST_DDSURFACECAPS2FLAGS enumeration is used by the lCaps2
member of DDSCAPS2 type to describe additional surface capabilities.

Enum CONST_DDSURFACECAPS2FLAGS
 DDSCAPS2_HARDWAREDEINTERLACE = 2
 DDSCAPS2_HINTANTIALIASING = 256
 DDSCAPS2_HINTDYNAMIC = 4
 DDSCAPS2_HINTSTATIC = 8
 DDSCAPS2_OPAQUE = 128
 DDSCAPS2_TEXTUREMANAGE = 16
End Enum

DDSCAPS2_HARDWAREDEINTERLACE
Indicates that this surface will receive data from a video port using the de-
interlacing hardware. This allows the driver to allocate memory for any extra
buffers that may be required. The DDSCAPS_VIDEOPORT and
DDSCAPS_OVERLAY flags must also be set.

DDSCAPS2_HINTANTIALIASING
Indicates that the application intends to use antialiasing. Only valid if
DDSCAPS_3DDEVICE is also set.

DDSCAPS2_HINTDYNAMIC
Indicates to the driver that this surface will be locked very frequently (for
procedural textures, dynamic lightmaps, etc). This flag can only be used for
texture surfaces (DDSCAPS_SYSTEMMEMORY flag set in the lCaps
member). This flag cannot be used with the DDSCAPS2_HINTSTATIC or
DDSCAPS2_OPAQUE flags.

DDSCAPS2_HINTSTATIC
Indicates to the driver that this surface can be reordered or retiled on load. This
operation will not change the size of the texture. It is relatively fast and
symmetrical, since the application may lock these bits (although it will take a
performance hit when doing so). This flag can only be used for texture surfaces
(DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag
cannot be used with the DDSCAPS2_HINTDYNAMIC or
DDSCAPS2_OPAQUE flags.

DDSCAPS2_OPAQUE
Indicates to the driver that this surface will never be locked again. The driver is
free to optimize this surface by retiling and actual compression. Such a surface
cannot be locked or used in blit operations, attempts to lock or blit a surface

IDH__dx_CONST_DDSURFACECAPS2FLAGS_ddraw_vb

in.doc – page 522

with this capability will fail. This flag can only be used for texture surfaces
(DDSCAPS_SYSTEMMEMORY flag set in the lCaps member). This flag
cannot be used with the DDSCAPS2_HINTDYNAMIC or
DDSCAPS2_HINTSTATIC flags.

DDSCAPS2_TEXTUREMANAGE
Indicates that the client would like this texture surface to be managed by
DirectDraw and Direct3D. This flag can only be used for texture surfaces
(DDSCAPS_TEXTURE flag set in the lCaps member). For more information,
see Automatic Texture Management in the Direct3D Immediate Mode
documentation.

CONST_DDSURFACECAPSFLA
GS

[This is preliminary documentation and subject to change.]

The CONST_DDSURFACECAPSFLAGS enumeration is used in the lCaps
member of the DDSCAPS2 type to describe the capabilities of the surface.

Enum CONST_DDSURFACECAPSFLAGS
 DDSCAPS_3DDEVICE = 8192
 DDSCAPS_ALLOCONLOAD = 67108864
 DDSCAPS_ALPHA = 2
 DDSCAPS_BACKBUFFER = 4
 DDSCAPS_COMPLEX = 8
 DDSCAPS_FLIP = 16
 DDSCAPS_FRONTBUFFER = 32
 DDSCAPS_HWCODEC = 1048576
 DDSCAPS_LIVEVIDEO = 524288
 DDSCAPS_LOCALVIDMEM = 268435456
 DDSCAPS_MIPMAP = 4194304
 DDSCAPS_MODEX = 2097152
 DDSCAPS_NONLOCALVIDMEM = 536870912
 DDSCAPS_OFFSCREENPLAIN = 64
 DDSCAPS_OPTIMIZED = -2147483648
 DDSCAPS_OVERLAY = 128
 DDSCAPS_OWNDC = 262144
 DDSCAPS_PALETTE = 256
 DDSCAPS_PRIMARYSURFACE = 512
 DDSCAPS_PRIMARYSURFACELEFT = 1024
 DDSCAPS_RESERVED2 = 8388608
 DDSCAPS_STANDARDVGAMODE = 1073741824
 DDSCAPS_SYSTEMMEMORY = 2048
 DDSCAPS_TEXTURE = 4096

IDH__dx_CONST_DDSURFACECAPSFLAGS_ddraw_vb

in.doc – page 523

 DDSCAPS_VIDEOMEMORY = 16384
 DDSCAPS_VIDEOPORT = 134217728
 DDSCAPS_VISIBLE = 32768
 DDSCAPS_WRITEONLY = 65536
 DDSCAPS_ZBUFFER = 131072
End Enum

DDSCAPS_3DDEVICE
Indicates that this surface can be used for 3-D rendering. Applications can use
this flag to ensure that a device that can only render to a certain heap has off-
screen surfaces allocated from the correct heap. If this flag is set for a heap, the
surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD
Not used, ignored by DirectDraw and Direct3D.

DDSCAPS_ALPHA
Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER
Indicates that this surface is the back buffer of a surface flipping type. Typically,
this capability is set by the CreateSurface method when the DDSCAPS_FLIP
flag is used. Only the surface that immediately precedes the
DDSCAPS_FRONTBUFFER surface has this capability set. The other surfaces
are identified as back buffers by the presence of the DDSCAPS_FLIP flag, their
attachment order, and the absence of the DDSCAPS_FRONTBUFFER and
DDSCAPS_BACKBUFFER capabilities. If this capability is sent to the
CreateSurface method, a stand-alone back buffer is being created. After this
method is called, this surface could be attached to a front buffer, another back
buffer, or both to form a flipping surface type. For more information, see
DirectDrawSurface4.AddAttachedSurface. DirectDraw supports an arbitrary
number of surfaces in a flipping type.

DDSCAPS_COMPLEX
Indicates that a complex surface is being described. A complex surface results in
the creation of more than one surface. The additional surfaces are attached to the
root surface. The complex type can be destroyed only by destroying the root.

DDSCAPS_FLIP
Indicates that this surface is a part of a surface flipping type. When this
capability is passed to the CreateSurface method, a front buffer and one or
more back buffers are created. DirectDraw sets the
DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the
DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer
surface. The lBackBufferCount member of the DDSURFACEDESC2 type
must be set to at least 1 in order for the method call to succeed. The
DDSCAPS_COMPLEX capability must always be set when creating multiple
surfaces by using the CreateSurface method.

DDSCAPS_FRONTBUFFER
Indicates that this surface is the front buffer of a surface flipping type. This flag
is typically set by the CreateSurface method when the DDSCAPS_FLIP

in.doc – page 524

capability is set. If this capability is sent to the CreateSurface method, a stand-
alone front buffer is created. This surface will not have the DDSCAPS_FLIP
capability. It can be attached to other back buffers to form a flipping type by
using DirectDrawSurface4.AddAttachedSurface.

DDSCAPS_HWCODEC
Indicates that this surface should be able to have a stream decompressed to it by
the hardware.

DDSCAPS_LIVEVIDEO
Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM
Indicates that this surface exists in true, local video memory rather than non-
local video memory. If this flag is specified then DDSCAPS_VIDEOMEMORY
must be specified as well. This flag cannot be used with the
DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP
Indicates that this surface is one level of a mipmap. This surface will be attached
to other DDSCAPS_MIPMAP surfaces to form the mipmap. This can be done
explicitly by creating a number of surfaces and attaching them by using the
DirectDrawSurface4.AddAttachedSurface method, or implicitly by the
CreateSurface method. If this capability is set, DDSCAPS_TEXTURE must
also be set.

DDSCAPS_MODEX
Indicates that this surface is a 320200 or 320240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM
Indicates that this surface exists in non-local video memory rather than true,
local video memory. If this flag is specified, then DDSCAPS_VIDEOMEMORY
flag must be specified as well. This cannot be used with the
DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN
Indicates that this surface is any off-screen surface that is not an overlay,
texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to identify
plain surfaces.

DDSCAPS_OPTIMIZED
Not currently implemented.

DDSCAPS_OVERLAY
Indicates that this surface is an overlay. It may or may not be directly visible
depending on whether it is currently being overlaid onto the primary surface.
DDSCAPS_VISIBLE can be used to determine if it is being overlaid at the
moment.

DDSCAPS_OWNDC
Indicates that this surface will have a device context (DC) association for a long
period.

DDSCAPS_PALETTE
Indicates that this device driver allows unique DirectDrawPalette objects to be
created and attached to this surface.

in.doc – page 525

DDSCAPS_PRIMARYSURFACE
Indicates the surface is the primary surface. It represents what is visible to the
user at the moment.

DDSCAPS_PRIMARYSURFACELEFT
Indicates that this surface is the primary surface for the left eye. It represents
what is visible to the user's left eye at the moment. When this surface is created,
the surface with the DDSCAPS_PRIMARYSURFACE capability represents
what is seen by the user's right eye.

DDSCAPS_RESERVED2
Reserved for future use.

DDSCAPS_STANDARDVGAMODE
Indicates that this surface is a standard VGA mode surface, and not a Mode X
surface. This flag cannot be used in combination with the DDSCAPS_MODEX
flag.

DDSCAPS_SYSTEMMEMORY
Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE
Indicates that this surface can be used as a 3-D texture. It does not indicate
whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY
Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT
Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE
Indicates that changes made to this surface are immediately visible. It is always
set for the primary surface, as well as for overlays while they are being overlaid
and texture maps while they are being textured.

DDSCAPS_WRITEONLY
Indicates that only write access is permitted to the surface. Read access from the
surface may generate a general protection (GP) fault, but the read results from
this surface will not be meaningful.

DDSCAPS_ZBUFFER
Indicates that this surface is the z-buffer. The z-buffer contains information that
cannot be displayed. Instead, it contains bit-depth information that is used to
determine which pixels are visible and which are obscured.

CONST_DDSURFACEDESCFLA
GS

[This is preliminary documentation and subject to change.]

IDH__dx_CONST_DDSURFACEDESCFLAGS_ddraw_vb

in.doc – page 526

The CONST_DDSURFACEDESCFLAGS enumeration is used in the lFlags
member of the DDSURFACEDESC2 type to specify which members of
DDSURFACEDESC2 contain valid data.

Enum CONST_DDSURFACEDESCFLAGS
 DDSD_ALL = 1047022
 DDSD_ALPHABITDEPTH = 128
 DDSD_BACKBUFFERCOUNT = 32
 DDSD_CAPS = 1
 DDSD_CKDESTBLT = 16384
 DDSD_CKDESTOVERLAY = 8192
 DDSD_CKSRCBLT = 65536
 DDSD_CKSRCOVERLAY = 32768
 DDSD_HEIGHT = 2
 DDSD_LINEARSIZE = 524288
 DDSD_LPSURFACE = 2048
 DDSD_MIPMAPCOUNT = 131072
 DDSD_PITCH = 8
 DDSD_PIXELFORMAT = 4096
 DDSD_REFRESHRATE = 262144
 DDSD_TEXTURESTAGE = 1048576
 DDSD_WIDTH = 4
 DDSD_ZBUFFERBITDEPTH = 64
End Enum

DDSD_ALL
Indicates that all input members are valid.

DDSD_ALPHABITDEPTH
Indicates that the lAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT
Indicates that the lBackBufferCount member is valid.

DDSD_CAPS
Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT
Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY
Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT
Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY
Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT
Indicates that the lHeight member is valid.

DDSD_LINEARSIZE

in.doc – page 527

Not used.‹This will be implemented sometime after DX6 and beyond Indicates
that lLinearSize member is valid.›

DDSD_LPSURFACE
Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT
Indicates that the lMipMapCount member is valid.

DDSD_PITCH
Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT
Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE
Indicates that the lRefreshRate member is valid.

DDSD_TEXTURESTAGE
Indicates that the lTextureStage member is valid.

DDSD_WIDTH
Indicates that the lWidth member is valid.

DDSD_ZBUFFERBITDEPTH
Indicates that the lZBufferBitDepth member is valid.

CONST_DDWAITVBFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DDWAITVBFLAGS enumeration is used by the flags parameter of
the DirectDraw4.WaitForVerticalBlank method to specify how long to wait for
the vertical blank.

Enum CONST_DDWAITVBFLAGS
 DDWAITVB_BLOCKBEGIN = 1
 DDWAITVB_BLOCKBEGINEVENT = 2
 DDWAITVB_BLOCKEND = 4
End Enum

DDWAITVB_BLOCKBEGIN
Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKBEGINEVENT
Triggers an event when the vertical blank begins. This value is not currently
supported.

DDWAITVB_BLOCKEND
Returns when the vertical-blank interval ends and the display begins.

IDH__dx_CONST_DDWAITVBFLAGS_ddraw_vb

in.doc – page 528

Error Codes
[This is preliminary documentation and subject to change.]

Errors are represented by negative values and cannot be combined. This table lists
the values that can be returned by all methods of the DirectDraw4,
DirectDrawSurface4, DirectDrawPalette, and DirectDrawClipper objects. For a
list of the error codes that each method can return, see the method description.

DD_OK
The request completed successfully.

DDERR_ALREADYINITIALIZED
The object has already been initialized.

DDERR_BLTFASTCANTCLIP
A DirectDrawClipper object is attached to a source surface that has passed
into a call to the DirectDrawSurface4.BltFast method.

DDERR_CANNOTATTACHSURFACE
A surface cannot be attached to another requested surface.

DDERR_CANNOTDETACHSURFACE
A surface cannot be detached from another requested surface.

DDERR_CANTCREATEDC
Windows can not create any more device contexts (DCs), or a DC was
requested for a palette-indexed surface when the surface had no palette and
the display mode was not palette-indexed (in this case DirectDraw cannot
select a proper palette into the DC).

DDERR_CANTDUPLICATE
Primary and 3-D surfaces, or surfaces that are implicitly created, cannot be
duplicated.

DDERR_CANTLOCKSURFACE
Access to this surface is refused because an attempt was made to lock the
primary surface without DCI support.

DDERR_CANTPAGELOCK
An attempt to page lock a surface failed. Page lock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CANTPAGEUNLOCK
An attempt to page unlock a surface failed. Page unlock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CLIPPERISUSINGHWND
An attempt was made to set a clip list for a DirectDrawClipper object that is
already monitoring a window handle.

DDERR_COLORKEYNOTSET
No source color key is specified for this operation.

DDERR_CURRENTLYNOTAVAIL
No support is currently available.

DDERR_DCALREADYCREATED

in.doc – page 529

A device context (DC) has already been returned for this surface. Only one
DC can be retrieved for each surface.

DDERR_DEVICEDOESNTOWNSURFACE
Surfaces created by one DirectDraw device cannot be used directly by
another DirectDraw device.

DDERR_DIRECTDRAWALREADYCREATED
A DirectDraw object representing this driver has already been created for this
process.

DDERR_EXCEPTION
An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET
An attempt was made to set the cooperative level when it was already set to
exclusive.

DDERR_EXPIRED
The data has expired and is therefore no longer valid.

DDERR_GENERIC
There is an undefined error condition.

DDERR_HEIGHTALIGN
The height of the provided rectangle is not a multiple of the required
alignment.

DDERR_HWNDALREADYSET
The DirectDraw cooperative level window handle has already been set. It
cannot be reset while the process has surfaces or palettes created.

DDERR_HWNDSUBCLASSED
DirectDraw is prevented from restoring state because the DirectDraw
cooperative level window handle has been subclassed.

DDERR_IMPLICITLYCREATED
The surface cannot be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY
The primary surface creation request does not match with the existing
primary surface.

DDERR_INVALIDCAPS
One or more of the capability bits passed to the callback function are
incorrect.

DDERR_INVALIDCLIPLIST
DirectDraw does not support the provided clip list.

DDERR_INVALIDDIRECTDRAWGUID
The globally unique identifier (GUID) passed to the
DirectX7.DirectDrawCreate function is not a valid DirectDraw driver
identifier.

DDERR_INVALIDMODE
DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT

in.doc – page 530

DirectDraw received a pointer that was an invalid DirectDraw object.
DDERR_INVALIDPARAMS

One or more of the parameters passed to the method are incorrect.
DDERR_INVALIDPIXELFORMAT

The pixel format was invalid as specified.
DDERR_INVALIDPOSITION

The position of the overlay on the destination is no longer legal.
DDERR_INVALIDRECT

The provided rectangle was invalid.
DDERR_INVALIDSTREAM

The specified stream contains invalid data.
DDERR_INVALIDSURFACETYPE

The requested operation could not be performed because the surface was of
the wrong type.

DDERR_LOCKEDSURFACES
One or more surfaces are locked, causing the failure of the requested
operation.

DDERR_MOREDATA
There is more data available than the specified buffer size can hold.

DDERR_NO3D
No 3-D hardware or emulation is present.

DDERR_NOALPHAHW
No alpha acceleration hardware is present or available, causing the failure of
the requested operation.

DDERR_NOBLTHW
No blitter hardware is present.

DDERR_NOCLIPLIST
No clip list is available.

DDERR_NOCLIPPERATTACHED
No DirectDrawClipper object is attached to the surface object.

DDERR_NOCOLORCONVHW
The operation cannot be carried out because no color-conversion hardware is
present or available.

DDERR_NOCOLORKEY
The surface does not currently have a color key.

DDERR_NOCOLORKEYHW
The operation cannot be carried out because there is no hardware support for
the destination color key.

DDERR_NOCOOPERATIVELEVELSET
A create function is called without the DirectDraw4.SetCooperativeLevel
method being called.

DDERR_NODC
No DC has ever been created for this surface.

in.doc – page 531

DDERR_NODDROPSHW
No DirectDraw raster operation (ROP) hardware is available.

DDERR_NODIRECTDRAWHW
Hardware-only DirectDraw object creation is not possible; the driver does not
support any hardware.

DDERR_NODIRECTDRAWSUPPORT
DirectDraw support is not possible with the current display driver.

DDERR_NOEMULATION
Software emulation is not available.

DDERR_NOEXCLUSIVEMODE
The operation requires the application to have exclusive mode, but the
application does not have exclusive mode.

DDERR_NOFLIPHW
Flipping visible surfaces is not supported.

DDERR_NOFOCUSWINDOW
An attempt was made to create or set a device window without first setting
the focus window.

DDERR_NOGDI
No GDI is present.

DDERR_NOHWND
Clipper notification requires a window handle, or no window handle has been
previously set as the cooperative level window handle.

DDERR_NOMIPMAPHW
The operation cannot be carried out because no mipmap capable texture
mapping hardware is present or available.

DDERR_NOMIRRORHW
The operation cannot be carried out because no mirroring hardware is present
or available.

DDERR_NONONLOCALVIDMEM
An attempt was made to allocate non-local video memory from a device that
does not support non-local video memory.

DDERR_NOOPTIMIZEHW
The device does not support optimized surfaces.

DDERR_NOOVERLAYDEST
The DirectDrawSurface4.UpdateOverlay method has not been called on to
establish a destination.

DDERR_NOOVERLAYHW
The operation cannot be carried out because no overlay hardware is present
or available.

DDERR_NOPALETTEATTACHED
No palette object is attached to this surface.

DDERR_NOPALETTEHW
There is no hardware support for 16- or 256-color palettes.

in.doc – page 532

DDERR_NORASTEROPHW
The operation cannot be carried out because no appropriate raster operation
hardware is present or available.

DDERR_NOROTATIONHW
The operation cannot be carried out because no rotation hardware is present
or available.

DDERR_NOSTRETCHHW
The operation cannot be carried out because there is no hardware support for
stretching.

DDERR_NOT4BITCOLOR
The DirectDrawSurface object is not using a 4-bit color palette and the
requested operation requires a 4-bit color palette.

DDERR_NOT4BITCOLORINDEX
The DirectDrawSurface object is not using a 4-bit color index palette and the
requested operation requires a 4-bit color index palette.

DDERR_NOT8BITCOLOR
The DirectDrawSurface object is not using an 8-bit color palette and the
requested operation requires an 8-bit color palette.

DDERR_NOTAOVERLAYSURFACE
An overlay component is called for a non-overlay surface.

DDERR_NOTEXTUREHW
The operation cannot be carried out because no texture-mapping hardware is
present or available.

DDERR_NOTFLIPPABLE
An attempt has been made to flip a surface that cannot be flipped.

DDERR_NOTFOUND
The requested item was not found.

DDERR_NOTINITIALIZED
An attempt was made to call an interface method of a DirectDraw object
created by CoCreateInstance before the object was initialized.

DDERR_NOTLOADED
The surface is an optimized surface, but it has not yet been allocated any
memory.

DDERR_NOTLOCKED
An attempt is made to unlock a surface that was not locked.

DDERR_NOTPAGELOCKED
An attempt is made to page unlock a surface with no outstanding page locks.

DDERR_NOTPALETTIZED
The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW
The operation cannot be carried out because there is no hardware support for
vertical blank synchronized operations.

DDERR_NOZBUFFERHW

in.doc – page 533

The operation to create a z-buffer in display memory or to perform a blit
using a z-buffer cannot be carried out because there is no hardware support
for z-buffers.

DDERR_NOZOVERLAYHW
The overlay surfaces cannot be z-layered based on the z-order because the
hardware does not support z-ordering of overlays.

DDERR_OUTOFCAPS
The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY
DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY
DirectDraw does not have enough display memory to perform the operation.

DDERR_OVERLAPPINGRECTS
Operation could not be carried out because the source and destination
rectangles are on the same surface and overlap each other.

DDERR_OVERLAYCANTCLIP
The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE
An attempt was made to have more than one color key active on an overlay.

DDERR_OVERLAYNOTVISIBLE
The method is called on a hidden overlay.

DDERR_PALETTEBUSY
Access to this palette is refused because the palette is locked by another
thread.

DDERR_PRIMARYSURFACEALREADYEXISTS
This process has already created a primary surface.

DDERR_REGIONTOOSMALL
The region passed to the DirectDrawClipper.GetClipList method is too
small.

DDERR_SURFACEALREADYATTACHED
An attempt was made to attach a surface to another surface to which it is
already attached.

DDERR_SURFACEALREADYDEPENDENT
An attempt was made to make a surface a dependency of another surface to
which it is already dependent.

DDERR_SURFACEBUSY
Access to the surface is refused because the surface is locked by another
thread.

DDERR_SURFACEISOBSCURED
Access to the surface is refused because the surface is obscured.

DDERR_SURFACELOST

in.doc – page 534

Access to the surface is refused because the surface memory is gone. Call the
DirectDrawSurface4.Restore method on this surface to restore the memory
associated with it.

DDERR_SURFACENOTATTACHED
The requested surface is not attached.

DDERR_TOOBIGHEIGHT
The height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE
The size requested by DirectDraw is too large. However, the individual
height and width are valid sizes.

DDERR_TOOBIGWIDTH
The width requested by DirectDraw is too large.

DDERR_UNSUPPORTED
The operation is not supported.

DDERR_UNSUPPORTEDFORMAT
The FourCC format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMASK
The bitmask in the pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMODE
The display is currently in an unsupported mode.

DDERR_VERTICALBLANKINPROGRESS
A vertical blank is in progress.

DDERR_VIDEONOTACTIVE
The video port is not active.

DDERR_WASSTILLDRAWING
The previous blit operation that is transferring information to or from this
surface is incomplete.

DDERR_WRONGMODE
This surface cannot be restored because it was created in a different mode.

DDERR_XALIGN
The provided rectangle was not horizontally aligned on a required boundary.

E_INVALIDINTERFACE
The specified interface is invalid or does not exist.

E_OUTOFMEMORY
Not enough free memory to complete the method.

Pixel Format Masks
[This is preliminary documentation and subject to change.]

This section contains information about the pixel formats supported by the hardware-
emulation layer (HEL). The following topics are discussed:

· Texture Map Formats

in.doc – page 535

· Off-Screen Surface Formats

Texture Map Formats
[This is preliminary documentation and subject to change.]

A wide range of texture pixel formats are supported by the HEL. The following table
shows these formats. The Masks column contains the red, green, blue, and alpha
masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks

DDPF_RGB | 1 R: 0x00000000
DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 1 R: 0x00000000
DDPF_PALETTEINDEXED1 | G: 0x00000000
DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000
DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 2 R: 0x00000000
DDPF_PALETTEINDEXED2 | G: 0x00000000
DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000
DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 4 R: 0x00000000
DDPF_PALETTEINDEXED4 | G: 0x00000000
DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 8 R: 0x00000000

in.doc – page 536

DDPF_PALETTEINDEXED8 G: 0x00000000
B: 0x00000000
A: 0x00000000

DDPF_RGB 8 R: 0x000000E0
G: 0x0000001C
B: 0x00000003
A: 0x00000000

DDPF_RGB | 16 R: 0x00000F00
DDPF_ALPHAPIXELS G: 0x000000F0

B: 0x0000000F
A: 0x0000F000

DDPF_RGB 16 R: 0x0000F800
G: 0x000007E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB 16 R: 0x0000001F
G: 0x000007E0
B: 0x0000F800
A: 0x00000000

DDPF_RGB 16 R: 0x00007C00
G: 0x000003E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB | 16 R: 0x00007C00
DDPF_ALPHAPIXELS G: 0x000003E0

B: 0x0000001F
A: 0x00008000

DDPF_RGB 24 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 24 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

in.doc – page 537

DDPF_RGB 32 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 32 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

DDPF_RGB | 32 R: 0x00FF0000
DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x000000FF
A: 0xFF000000

DDPF_RGB | 32 R: 0x000000FF
DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x00FF0000
A: 0xFF000000

The HEL can create these formats in system memory. The DirectDraw device driver
for a 3-D–accelerated display card may create textures of other formats in display
memory. Such a driver exports the DDSCAPS_TEXTURE flag to indicate that it can
create textures.

Off-Screen Surface Formats
[This is preliminary documentation and subject to change.]

The following table shows the pixel formats for off-screen plain surfaces supported
by the DirectX® 5 HEL. The Masks column contains the red, green, blue, and alpha
masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks

DDPF_RGB | 1 R: 0x00000000
DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 2 R: 0x00000000
DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000
A: 0x00000000

in.doc – page 538

DDPF_RGB | 4 R: 0x00000000
DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 8 R: 0x00000000
DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB 16 R: 0x0000F800
G: 0x000007E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB 16 R: 0x00007C00
G: 0x000003E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB 24 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 24 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 32 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

DDPF_RGB | 32 R: 0x0000F800

in.doc – page 539

DDPF_ZPIXELS G: 0x000007E0
B: 0x0000001F
Z: 0xFFFF0000

DDPF_RGB | 32 R: 0x00007C00
DDPF_ZPIXELS G: 0x000003E0

B: 0x0000001F
Z: 0xFFFF0000

In addition to supporting a wide range of off-screen surface formats, the HEL also
supports surfaces intended for use by Direct3D, or other 3-D renderers.

Four Character Codes (FOURCC)
[This is preliminary documentation and subject to change.]

DirectDraw utilizes a special set of codes that are four characters in length. These
codes, called four character codes or FOURCCs, are stored in file headers of files
containing multimedia data such as bitmap images, sound, or video. FOURCCs
describe the software technology that was used to produce multimedia data. By
implication, they also describe the format of the data itself.

DirectDraw applications use FOURCCs for image color and format conversion. If an
application calls the DirectDrawSurface4.GetPixelFormat method to request the
pixel format of a surface whose format is not RGB, the lFourCC member of the
DDPIXELFORMAT type identifies the FOURCC when the method returns. For
more information, see Converting Color and Format.

In addition, the biCompression member of the BITMAPINFOHEADER type can
be set to a FOURCC to indicate the codec used to compress or decompress an image.

FOURCCs are registered with Microsoft by the vendors of the respective multimedia
software technologies. Some common FOURCCs appear in the following list.

FOURCC Company Technology Name

AUR2 AuraVision Corporation AuraVision Aura 2: YUV 422
AURA AuraVision Corporation AuraVision Aura 1: YUV 411
CHAM Winnov, Inc. MM_WINNOV_CAVIARA_CHAMPAGNE
CVID Supermac Cinepak by Supermac
CYUV Creative Labs, Inc Creative Labs YUV
FVF1 Iterated Systems, Inc. Fractal Video Frame
IF09 Intel Corporation Intel Intermediate YUV9
IV31 Intel Corporation Indeo 3.1
JPEG Microsoft Corporation Still Image JPEG DIB
MJPG Microsoft Corporation Motion JPEG Dib Format

in.doc – page 540

MRLE Microsoft Corporation Run Length Encoding
MSVC Microsoft Corporation Video 1
PHMO IBM Corporation Photomotion
RT21 Intel Corporation Indeo 2.1
ULTI IBM Corporation Ultimotion
V422 Vitec Multimedia 24 bit YUV 4:2:2
V655 Vitec Multimedia 16 bit YUV 4:2:2
VDCT Vitec Multimedia Video Maker Pro DIB
VIDS Vitec Multimedia YUV 4:2:2 CCIR 601 for V422
YU92 Intel Corporation YUV
YUV8 Winnov, Inc. MM_WINNOV_CAVIAR_YUV8
YUV9 Intel Corporation YUV9
YUYV Canopus, Co., Ltd. BI_YUYV, Canopus
ZPEG Metheus Video Zipper

DirectDraw Samples
[This is preliminary documentation and subject to change.]

This section gives brief descriptions of sample applications in the DirectX
Programmer's Reference primarily intended to demonstrate the DirectDraw
component. The following sample programs are included:

· DDEnum Sample
· DDEx1 Sample
· DDEx2 Sample
· DDEx3 Sample
· DDEx4 Sample
· DDEx5 Sample
· DDOverlay Sample
· Donut Sample
· Flip2D Sample
· FSWindow Sample
· Font Sample
· Memtime Sample
· Mosquito Sample

in.doc – page 541

· Multimonitor Space Donuts Sample
· Space Donuts Sample
· Stretch Sample
· Stretch2 Sample
· Stretch3 Sample
· Switcher Sample
· Wormhole Sample

Although DirectX samples include Microsoft® Visual C++® project workspace files,
you might need to verify other settings in your development environment to ensure
that the samples compile properly. For more information, see Compiling DirectX
Samples and Other DirectX Applications.

DDEnum Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows how to enumerate the current DirectDraw devices and how to get
information using the IDirectDraw4::GetDeviceIdentifier method.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\DDEnum

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
The user interface is a simple dialog box. Two buttons, Prev and Next, display
information for the previous or next device that was enumerated. Click the Close
button to exit the application.

DDEx1 Sample
[This is preliminary documentation and subject to change.]

Description
DDEx1 demonstrates the tasks required to initialize and run a DirectDraw
application.

in.doc – page 542

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex1

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
DDEx1 requires no user input. Press the F12 key or the ESC key to quit the program.

Programming Notes
This program shows how to initialize DirectDraw and create a DirectDraw surface. It
creates a back buffer and uses page flipping to alternately display the contents of the
front and back buffers. Other techniques demonstrated include color fills and using
GDI functions on a DirectDraw surface.

DDEx2 Sample
[This is preliminary documentation and subject to change.]

Description
The DDEx2 program is an extension of DDEx1 that adds a bitmap.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex2

Executable: (SDK root)\Samples\Multimedia\DDraw\bin

User's Guide
DDEx2 requires no user input. Press F12 or ESC to quit the program.

Programming Notes
DDEx2 shows how to set a palettized video mode. Routines in DDutil.cpp load a
bitmap file and copy it to a DirectDraw surface.

DDEx3 Sample
[This is preliminary documentation and subject to change.]

Description
The DDEx3 program is an extension of DDEx2. This example demonstrates the use
of off-screen surfaces.

in.doc – page 543

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex3

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
DDEx3 requires no user input. Press F12 or ESC to quit the program.

The program requires at least 1.2 MB of video RAM.

Programming Notes
In addition to the front and back buffers, the program creates two off-screen surfaces
and loads bitmaps into them. It calls the IDirectDrawSurface4::BltFast method to
copy the contents of an off-screen surface to the back buffer, alternating the source
surface on each frame. After it blits the bitmap to the back buffer, DDEx3 flips the
front and back buffers.

DDEx4 Sample
[This is preliminary documentation and subject to change.]

Description
The DDEx4 program is an extension of DDEx3. It demonstrates a simple animation
technique.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex4

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
DDEx4 requires no user input. Press F12 or ESC to quit the program.

This program requires at least 1.2 MB of video RAM.

Programming Notes
Unlike DDEx3, the DDEx4 program creates only one off-screen surface. It loads a
bitmap containing a series of animation images onto this surface. To create the
animation, it blits portions of the off-screen surface to the back buffer, then flips the
front and back buffers.

The blitting routines illustrate the use of a source color key to create a sprite with a
transparent background.

in.doc – page 544

DDEx5 Sample
[This is preliminary documentation and subject to change.]

Description
The DDEx5 program is an extension of DDEx4. It demonstrates a simple palette
manipulation.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Ddex5

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
DDEx4 requires no user input. Press F12 or ESC to quit the program.

This program requires at least 1.2 MB of video RAM.

Programming Notes
The program uses IDirectDrawPalette::GetEntries to read a palette, modifies the
entries, and then uses IDirectDrawPalette::SetEntries to update the palette.

DDOverlay Sample
[This is preliminary documentation and subject to change.]

Description
This sample application demonstrates the use of overlays in a windowed DirectDraw
application.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\DDovrly

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Your hardware must support overlays in order for the program to run.

Try moving, resizing, and minimizing and restoring the window. Press ALT+F4 or
click the Close button to quit.

in.doc – page 545

Programming Notes
The program checks for overlay support, loads a bitmap into an overlay surface, and
updates the window from the overlay surface in response to Windows messages.

Donut Sample
[This is preliminary documentation and subject to change.]

Description
The Donut program uses DirectDraw to display an animated sprite directly on the
screen. In non-exclusive mode, the sprite appears on top of the desktop and any
windows. In exclusive mode, it appears on an otherwise blank screen.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Donut

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
The Donut application requires no user input. Press F12 or ESC to quit. Note that
because the program does not run in a window, you may have to switch to it by using
the taskbar or ALT+TAB before you can close it.

You can specify various command line switches to modify the operational
characteristics of this program. Each command line switch consists of one character,
and need not be preceded with a hyphen or slash. Alphabetical characters must be
capitals. The switches are as follows:

0 Default. Display the donut in the left position.
1 Display the donut in the middle position.
2 Display the donut in the right position.
X Use exclusive mode. The default is non-exclusive mode.
A Switch to 640x480x8 resolution and use exclusive mode.
B Switch to 800x600x8 resolution and use exclusive mode.
C Switch to 1024x768x8 resolution and use exclusive mode.
D Switch to 1280x1024x8 resolution and use exclusive mode.

The switches can be combined. If you specify two or more command line switches
that contradict each other, the last switch is used.

If you run the program in non-exclusive mode, it attempts to continue to run even
when it loses focus. If you run it in exclusive mode, it does not attempt to modify the
screen when it doesn't have focus.

in.doc – page 546

Programming Notes
The Donut program creates a primary DirectDraw surface and two off-screen
surfaces. Animation images are blitted from the off-screen surfaces directly to the
primary surface during each frame.

The program demonstrates how DirectX applications can set the video mode based
on user input. It is also useful for testing multiple exclusive mode applications
interacting with multiple non-exclusive mode applications.

Flip2D Sample
[This is preliminary documentation and subject to change.]

Description
This sample program demonstrates DirectDraw animation using surface flipping.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Flip2d

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
The Flip2D program displays and animates a cube. You can change the screen mode
by pressing the F10 key and selecting a resolution and color depth value from the
Modes menu. Use the Cube menu or the keyboard shortcuts to increase (F7) or
decrease (F8) the displayed size of the cube, or to switch to GDI drawing on the
primary surface (F9).

Programming Notes
Normally the cube is rendered on the back buffer and then the surface is flipped to
the front. You can compare the results with those from rendering directly on to the
front surface by choosing GDI drawing.

The palette that the Flip2D program uses for 8-bpp modes is red, green and blue
wash. There isn't enough room in the palette for yellow, orange, and purple. In 8-bpp
modes the Flip2D sample application maps yellow, orange and purple to red. If you
select DrawWithGDI from the Cube menu, yellow, orange, purple are drawn
without very many shades. This is because the program is using system colors, and
there are only a few shades of yellow, orange, and purple available in the system
palette.

in.doc – page 547

Font Sample
[This is preliminary documentation and subject to change.]

Description
This sample program shows how to directly lock and access video memory, using
text generated from a GDI font. There are much better ways to draw text into a
DirectDrawSurface, and the only point of this sample is to show exactly how to lock
and access the video memory directly.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Font

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
The program repeatedly updates a text string in the Arial font and moves it randomly
about the screen. No user input is required. Quit by closing the window.

Programming Notes
The program creates a font in a memory device context and a DIB section, and uses
them to get access to the pixels once GDI has drawn them. The text bitmap is then
put on the primary surface with a straight memory copy. It could easily be moved
instead to an off-screen surface which could then be blitted as needed, transparently
or not.

FSWindow Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows how you can bring up a dialog box, or any other type of window,
while your application is running in DirectDraw's full-screen exclusive mode. Even
devices that are non-GDI are detected and supported by creating a bitmap from their
window contents and then blitting that to the device.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\FSWindow

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

in.doc – page 548

User's Guide
If you have more than one device, the sample starts by displaying a dialog box so
that you can select which device to run the sample on. It then switches to full-screen
exclusive mode and displays a dialog box and the mouse cursor.

Click on the Cancel or OK button to close the dialog and hide the mouse cursor.
Press F1 to bring the dialog and cursor back. Press Esc to exit the program when the
dialog is no longer displayed.

Programming Notes
Most of the important code is in the Fswindow.cpp file.

The sample uses just the dynamic content mode, which constantly refreshes the
dialog box to show which controls have focus, text in the edit field, and so on. The
static content mode consumes less CPU time and would be good for pop-up windows
that display help messages, for example.

It is important to understand that the content window can be any type of window. It
could be an HTML Help window, or a window with a rich edit control to display
formatted text. The window does not need to have a square clipping region; it could
have a complex clipping region that fits the shape of the window you want to
display.

Memtime Sample
[This is preliminary documentation and subject to change.]

Description
The Memtime sample program is intended to be a demonstration of the advantages
and disadvantages of various drawing methods. It runs a series of tests of memory
bandwidth and displays a report.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\MemTime

Executable: None.

User's Guide
Choose Time All from the main menu to begin the tests. Note that your screen will
change resolution during the tests. It will also go blank for short periods of time.

in.doc – page 549

Programming Notes
The sample is not intended as an example of particular techniques in DirectDraw
programming. Of more interest are the results of the memory tests.

Mosquito Sample
[This is preliminary documentation and subject to change.]

Description
This program demonstrates DirectDraw animation using overlays.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Mosquito

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
To run the Mosquito application, you must have a display adapter that supports
overlays. On a computer with overlay support, the program creates a large mosquito
that flies around the screen. If your display adapter card doesn't support source color
keying for overlays, you'll see an ugly, black, rectangular background around the
mosquito.

Some cards have better overlay support in certain resolutions that others. If you
know your card has overlay support through DirectDraw, but the Mosquito program
is having problems creating or displaying the overlay, try switching to a lower screen
resolution or color depth and restarting the application.

Programming Notes
The program creates a complex overlay surface and animates by flipping.

Multimonitor Space Donuts
Sample

[This is preliminary documentation and subject to change.]

Description
This version of Space Donuts demonstrates the multimonitor capabilities of DirectX.

in.doc – page 550

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\MultiNut

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
In order to run the program, you must have Windows 2000 or Windows 98
configured for multiple monitors.

The program will run on up to nine monitors. The play area is determined by the
monitor configuration of your Windows desktop, which may be adjusted on the
Settings tab of the Display Control Panel. The amount of video RAM you have on
each video card will determine the maximum resolutions at which you will
experience a reasonable frame rate. If the frame rate is slow, try exiting, lowering
the resolution or color depth of your windows desktop, and restart.

Multimonitor Space Donuts supports two command-line switches:

-w# Put monitor number # in windowed mode
-s Turn sound off

For information on the keyboard interface, see Space Donuts.

Space Donuts Sample
[This is preliminary documentation and subject to change.]

Description
This simple game shows how to combine DirectDraw, DirectInput, and DirectSound.
Although it demonstrates other DirectX components, it is primarily intended to show
how to animate multiple sprites.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Donuts

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Input is from the keyboard by default, but you can select a joystick from the Game
menu.

The commands are listed on the opening screen. All numbers must be entered from
the numeric keypad. "Joy" refers to a joystick button.

Key Command

in.doc – page 551

ESC, F12 Quit
4 Turn left
6 Turn right
5 (Joy 3) Stop
8 Accelerate forward
2 Accelerate backward
7 (Joy 2) Shield
SPACEBAR (Joy 1) Fire
ENTER Start game
F1 Toggle trailing afterimage effect on/off
F3 Turn audio on/off
F5 Toggle frame rate display on/off
F10 Main menu

Space Donuts defaults to 640x480 at 256 colors. You can specify a different
resolution and pixel depth on the command line.

The game uses the following command line switches, which are case-sensitive:

e Use software emulation, not hardware acceleration
t Test mode, no input required
x Stress mode. Never stop if you can help it
S Turn sound off/on

These switches may be followed by three option numbers representing x-resolution,
y-resolution, and bits per pixel. For example:

donuts -S 800 600 16

Programming Notes
This game demonstrates many of the features of DirectDraw. It takes advantage of
hardware acceleration if it is supported by the driver.

The program requires less than 1 MB of video RAM.

The sound code is deliberately designed to stress the DirectSound API. It is not
intended to be a demonstration of how to use DirectSound API efficiently. For
example, each bullet on the screen uses a different sound buffer. Space Donuts
creates over 70 sound buffers (including duplicates), and between 20 to 25 may be
playing at any time.

The sounds are implemented using the helper functions in Dsutil.h and Dsutil.c
(found in the Sdk\Samples\Misc directory). These functions might help you to add
sound to your application quickly and easily.

in.doc – page 552

Stretch Sample
[This is preliminary documentation and subject to change.]

Description
The Stretch sample application program illustrates stretching and clipping while
blitting a bitmap image.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Stretch

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Stretch must be run in a video mode that uses 8 bits per pixel. It will not work
properly in other video modes.

The program displays a red torus moving in its client window. Control the rotational
speed with the Stop, Slow, and Fast options in the Rotation menu. Alter the size of
the window by selecting items from the Size menu, or by resizing the window with
the mouse.

Programming Notes
Any time you resize the Stretch program window to a size other than 1x1, you are
using the image stretching capabilities of the DirectDraw blitting methods.

The clipper for the primary surface is set to the client window. To demonstrate
clipping, partially overlap another window over the Stretch program's window.
When Stretch blits the bitmap, the portion of the bitmap that would fall within the
other window is clipped.

Stretch2 Sample
[This is preliminary documentation and subject to change.]

Description
Stretch2 is an extension of the Stretch program. In addition to the capabilities of the
Stretch example, Stretch2 illustrates how an application can use DirectDraw on
multiple monitors.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Stretch2

in.doc – page 553

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Resize the window to see the bitmap stretch. If you have more than one monitor
attached to your computer, the window can be dragged from monitor to monitor.

Programming Notes
Look at how the application handles WM_MOVE to detect when the window moves
monitors. Also note how it converts from window client coordinates to device
coordinates.

Multimon.h contains stub functions that enable the program to run on Windows 95
or Windows NT 4.0.

Stretch3 Sample
[This is preliminary documentation and subject to change.]

Description
The Stretch3 application is an improved version of the Stretch2 program. It
demonstrates more complex handling of DirectDraw images on multiple monitors.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Stretch3

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Resize the window to see the bitmap stretch. If you have more than one monitor
attached to your computer, the window can be dragged from monitor to monitor.

Switcher Sample
[This is preliminary documentation and subject to change.]

Description
This sample shows how to switch between the normal and exclusive cooperative
levels in DirectDraw.

in.doc – page 554

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Switcher

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Press ALT+ENTER to switch between full-screen and windowed mode. Quit the
program by pressing ESC.

Programming Notes
In normal (windowed) mode, the sample assigns a clipper, shows the mouse cursor,
and handles window moves, WM_PAINT messages, and pausing caused by losing
focus to other applications. In exclusive (full-screen) mode it uses page flipping
rather than blitting to update the scene.

Wormhole Sample
[This is preliminary documentation and subject to change.]

Description
This sample program shows how palette changes can create an animated effect.

Path
Source: (SDK root)\Samples\Multimedia\DDraw\Src\Wormhole

Executable: (SDK root)\Samples\Multimedia\DDraw\Bin

User's Guide
Press F12 or ESC to quit the program.

Programming Notes
Imagine a 4x4 display using 4 colors. We could set the colors up to look something
like this:

in.doc – page 555

Now we can cycle all of the colors in each row to the right. The one on the right will
wrap-around to the left.

If we continue this cycling we would get animated lines moving to the right. The
same can be done to animate the lines going down:

Now if we expand our palette to 16 color we can combine moving down and right at
the same time.

Move right:

Move down:

Move right and down:

in.doc – page 556

Now if you tile these 4x4 blocks end to end and cycle the colors as above, you get a
moving checkerboard. Wormhole does the same thing, except that it uses 15x15
blocks (225 colors) and instead of tiling the blocks end to end on a flat plane, it tiles
them in 3-D converging at the center of the wormhole.

The following code will generate the 3-D wormhole using the aforementioned 15x15
grids:

//Do all the work!
//convert r,theta,z to x,y,x to screen x,y
//plot the point
//z=-1.0+(log(2.0*j/DIVS) is the line that sets the math eqn for plot
//Feel free to try other functions!
//Cylindrical coordinates, e.g. z=f(r,theta)

#define STRETCH 25
#define PI 3.14159265358979323846
#define XCENTER 160
#define YCENTER 50
#define DIVS 1200
#define SPOKES 2400

void transarray(void)
 {
 float x,y,z;
 int i,j,color;
 for(j=1;j<DIVS+1;j++)
 for(i=0;i<SPOKES;i++)
 {
 z=-1.0+(log(2.0*j/DIVS));
 x=(320.0*j/DIVS*cos(2*PI*i/SPOKES));
 y=(240.0*j/DIVS*sin(2*PI*i/SPOKES));
 y=y-STRETCH*z;
 x+=XCENTER;
 y+=YCENTER;
 color=((i/8)%15)+15*((j/6)%15)+1;
 if ((x>=0)&&(x<=320)&&(y>=0)&&(y<=200))
 plot((int) x,(int) y,color);
 }
 }

After loading the bitmap to a DirectDraw surface, all that is left to do is rotate the
colors and you have a wormhole.

	About DirectDraw
	Why Use DirectDraw?
	Getting Started: Basic Graphics Concepts
	Device-Independent Bitmaps
	Drawing Surfaces
	Blitting
	Page Flipping and Back Buffering
	Introduction to Rectangles

	DirectDraw Architecture
	Architectural Overview for DirectDraw
	DirectDraw Object Types
	Hardware Abstraction Layer (HAL)
	Software Emulation
	System Integration

	DirectDraw Essentials
	Cooperative Levels
	About Cooperative Levels
	Testing Cooperative Levels

	Display Modes
	About Display Modes
	Determining Supported Display Modes
	Setting Display Modes
	Restoring Display Modes
	Mode X and Mode 13 Display Modes
	Support for High Resolutions and True-Color Bit Depths

	The DirectDraw Object
	What Are DirectDraw Objects?
	What's New in IDirectDraw4?
	New Features in IDirectDraw4
	Getting an IDirectDraw4 Interface

	Parent and Child Object Lifetimes
	Multiple DirectDraw Objects per Process
	Creating DirectDraw Objects by Using CoCreateInstance

	Surfaces
	Basic Concepts of Surfaces
	What Are Surfaces?
	Surface Interfaces
	Width vs. Pitch
	Color Keying
	Pixel Formats

	Creating Surfaces
	Creating the Primary Surface
	Creating an Off-Screen Surface
	Creating Complex Surfaces and Flipping Chains
	Creating Wide Surfaces
	Creating Client Memory Surfaces

	Flipping Surfaces
	Blitting to Surfaces
	Blitting Basics
	Blitting with BltFast
	Blitting with Blt
	Blit Timing
	Transparent Blitting
	What Is Transparent Blitting?
	Color Key Format
	Setting Color Keys
	Blitting with Color Keys

	Color Fills
	Blitting to Multiple Windows

	Losing and Restoring Surfaces
	COM Reference Count Semantics for Surfaces
	When Reference Counts will Change
	Reference Counts for Complex Surfaces
	Releasing Surfaces

	Enumerating Surfaces
	Enumerating existing surfaces
	Enumerating possible surfaces

	Updating Surface Characteristics
	Accessing Surface Memory Directly
	Gamma and Color Controls
	What Are Gamma and Color Controls?
	Using Gamma Controls
	About Gamma Ramp Levels
	Detecting Gamma Ramp Support
	Setting and Retrieving Gamma Ramp Levels

	Using Color Controls

	Overlay Surfaces
	Overlay Surface Overview
	Significant DDCAPS Members and Flags
	Source and Destination Rectangles
	Boundary and Size Alignment
	Minimum and Maximum Stretch Factors
	Overlay Color Keys
	Positioning Overlay Surfaces
	Creating Overlay Surfaces
	Overlay Z-Orders
	Flipping Overlay Surfaces

	Compressed Texture Surfaces
	Creating Compressed Textures
	Decompressing Compressed Textures
	Transparency in Blits to Compressed Textures
	Compressed Texture Formats
	Opaque and One-bit Alpha Textures
	Textures with Alpha Channels

	Private Surface Data
	Surface Uniqueness Values
	Using Non-local Video Memory Surfaces
	Converting Color and Format
	Surfaces and Device Contexts
	Retrieving the Device Context for a Surface
	Finding a Surface with a Device Context

	Palettes
	What Are Palettes?
	Palette Types
	Setting Palettes on Nonprimary Surfaces
	Sharing Palettes
	Palette Animation

	Clippers
	What Are Clippers?
	Clip Lists
	Sharing DirectDrawClipper Objects
	Independent DirectDrawClipper Objects
	Creating DirectDrawClipper Objects with CoCreateInstance
	Using a Clipper with the System Cursor
	Using a Clipper with Multiple Windows

	Multiple Monitor Systems
	Enumerating Devices on MultiMon Systems
	DirectDraw Objects on Multiple Monitors
	Focus and Device Windows
	Setting the Focus Window
	Setting Device Windows

	Devices and Acceleration in MultiMon Systems
	Debugging Full-Screen DirectDraw Applications with MultiMon

	Advanced DirectDraw Topics
	Mode 13 Support
	About Mode 13
	Setting Mode 13
	Mode 13 and Surface Capabilities
	Using Mode 13

	Taking Advantage of DMA Support
	About DMA Device Support
	Testing for DMA Support
	Typical Scenarios for DMA
	Using DMA

	Using DirectDraw Palettes in Windowed Mode
	Types of Palette Entries in Windowed Mode
	Creating a Palette in Windowed Mode
	Setting Palette Entries in Windowed Mode

	Video Ports
	What Are Video Ports?
	Video-Port Technology Overview
	About DirectDraw Video-Port Extensions
	Video Frames and Fields
	HREF, VREF, and Connections
	Vertical Blanking Interval Data
	Auto-Flipping
	Solutions to Common Video Artifacts
	Solving Problems Caused by Half-Lines
	Exploiting Hardware Features

	Getting the Flip and Blit Status
	Determining the Capabilities of the Display Hardware
	Storing Bitmaps in Display Memory
	Triple Buffering
	DirectDraw Applications and Window Styles
	Matching True RGB Colors to the Frame Buffer's Color Space
	Displaying a Window in Full-Screen Mode

	DirectDraw Tutorials
	DirectDraw C/C++ Tutorials
	Tutorial 1: The Basics of DirectDraw
	Step 1: Creating a DirectDraw Object
	Step 2: Determining the Application's Behavior
	Step 3: Changing the Display Mode
	Step 4: Creating Flipping Surfaces
	Defining the Surface Requirements
	Creating the Surfaces

	Step 5: Rendering to the Surfaces
	Step 6: Writing to the Surface
	Step 7: Flipping the Surfaces
	Step 8: Deallocating the DirectDraw Objects

	Tutorial 2: Loading Bitmaps on the Back Buffer
	Step 1: Creating the Palette
	Step 2: Setting the Palette
	Step 3: Loading a Bitmap on the Back Buffer
	Step 4: Flipping the Surfaces

	Tutorial 3: Blitting from an Off-Screen Surface
	Step 1: Creating the Off-Screen Surfaces
	Step 2: Loading the Bitmaps to the Off-Screen Surfaces
	Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

	Tutorial 4: Color Keys and Bitmap Animation
	Step 1: Setting the Color Key
	Step 2: Creating a Simple Animation

	Tutorial 5: Dynamically Modifying Palettes
	Step 1: Loading the Palette Entries
	Step 2: Rotating the Palettes

	Tutorial 6: Using Overlay Surfaces
	Step 1: Creating a Primary Surface
	Step 2: Testing for Hardware Overlay Support
	Step 3: Creating an Overlay Surface
	Step 4: Displaying the Overlay Surface
	Step 4.1: Determining the Minimum Display Requirements
	Step 4.2: Setting Up the Source and Destination Rectangles
	Step 4.3: Displaying the Overlay Surface

	Step 5: Updating the Overlay Display Position
	Step 6: Hiding the Overlay Surface

	DirectDraw Visual Basic Tutorials
	Tutorial 1: Blitting to the Screen
	Step 1: Creating the Form
	Step 2: Declaring Module Level Variables
	Step 3: Initializing Variables
	Step 4: Blitting the Surface

	Tutorial 2: Using Transparency
	Tutorial 3: Using Full Screen Features
	Tutorial 4: Blitting to Areas of the Screen
	Tutorial 5: Enumerating DirectDraw Devices

	DirectDraw Reference
	DirectDraw C/C++ Reference
	Interfaces
	Functions
	Callback Functions
	Structures
	Return Values
	Pixel Format Masks
	Texture Map Formats
	Off-Screen Surface Formats
	Four Character Codes (FOURCC)

	DirectDraw Visual Basic Reference
	Classes
	Types
	Enumerations
	Error Codes
	Pixel Format Masks
	Texture Map Formats
	Off-Screen Surface Formats
	Four Character Codes (FOURCC)

	DirectDraw Samples
	DDEnum Sample
	DDEx1 Sample
	DDEx2 Sample
	DDEx3 Sample
	DDEx4 Sample
	DDEx5 Sample
	DDOverlay Sample
	Donut Sample
	Flip2D Sample
	Font Sample
	FSWindow Sample
	Memtime Sample
	Mosquito Sample
	Multimonitor Space Donuts Sample
	Space Donuts Sample
	Stretch Sample
	Stretch2 Sample
	Stretch3 Sample
	Switcher Sample
	Wormhole Sample

